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7 sl(N)-LINK HOMOLOGY ( N ≥ 4) USING FOAMS AND THE KAPUSTIN-LI

FORMULA

MARCO MACKAAY, MARKO STOŠIĆ, AND PEDRO VAZ

ABSTRACT. We use foams to give a topological construction of a rational link homology cat-
egorifying thesl(N) link invariant, forN ≥ 4. To evaluate closed foams we use the Kapustin-
Li formula adapted to foams by Khovanov and Rozansky [7]. We show that for any link our
homology is isomorphic to the Khovanov-Rozansky [6] homology.

1. INTRODUCTION

In [10] Murakami, Ohtsuki and Yamada (MOY) developed a graphical calculus for the
sl(N) link polynomial. In [3] Khovanov categorified thesl(3) polynomial using singular
cobordisms between webs called foams. Mackaay and Vaz [9] generalized Khovanov’s re-
sults to obtain the universalsl(3) integral link homology, following an approach similar to
the one adopted by Bar-Natan [1] for the originalsl(2) integral Khovanov homology. In [6]
Khovanov and Rozansky (KR) defined a rational link homology which categorifies thesl(N)
link polynomial using the theory of matrix factorizations.

In this paper we use foams, as in [1, 3, 9], for an almost completely combinatorial topo-
logical construction of a rational link homology categorifying thesl(N) link polynomial. Our
theory is functorial under link cobordisms. Khovanov had tomodify considerably his orig-
inal setting for the construction ofsl(2) link homology in order to produce hissl(3) link
homology. It required the introduction of singular cobordisms with a particular type of sin-
gularity. The jump fromsl(3) to sl(N), for N > 3, requires the introduction of a new type of
singularity. The latter is needed for proving invariance under the third Reidemeister move.
Furthermore the combinatorics involved in establishing certain identities gets much harder
for arbitraryN. The theory of symmetric polynomials, in particular Schur polynomials, is
used to handle that problem.

Our aim was to find a combinatorial topological definition of Khovanov-Rozansky link
homology. Such a definition is desirable for several reasons, the main one being that it might
help to find a good way to compute the Khovanov-Rozansky link homology. Unfortunately
the construction that we present in this paper is not completely combinatorial. The introduc-
tion of the new singularities makes it much harder to evaluate closed foams and we do not
know how to do it combinatorially. Instead we use the Kapustin-Li formula [5], adapted by
Khovanov and Rozansky [7]1. A positive side-effect is that it allows us to show that for any
link our homology is isomorphic to Khovanov and Rozansky’s.

Although we have not completely achieved our final goal, we believe that we have made
good progress towards it. In Propositions 6.2 and 6.9 we derive a small set of relations on

1We thank M Khovanov for suggesting that we try to use the Kapustin-Li formula.
1
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foams which we show to be sufficient to guarantee that our linkhomology is homotopy invari-
ant under the Reidemeister moves. By deriving these relations from the Kapustin-Li formula
we prove that these relations are consistent. However, in order to get a purely combinatorial
construction we would have to show that they are also sufficient for the evaluation of closed
foams, or, equivalently, that they generate the kernel of the Kapustin-Li formula. We con-
jecture that this holds true, but so far our attempts to proveit have failed. It would be very
interesting to have a proof of this conjecture, not just because it would show that our method is
completely combinatorial, but also because our theory could then be used to prove that other
constructions, using different combinatorics, representation theory or symplectic/complex
geometry, give functorial link homologies equivalent to Khovanov and Rozansky’s. So far
we can only conclude that any other way of evaluating closed foams which satifies the same
relations as in Propositions 6.2 and 6.9 gives rise to a functorial link homology which cate-
gorifies thesl(N) link polynomial. We conjecture that such a link homology is equivalent to
the one presented in this paper and therefore to Khovanov andRozansky’s.

In section 2 we recall some basic facts about thesl(N)-link polynomials. In section 3 we
recall some basic facts about Schur polynomials and the cohomology of partial flag varieties.
In section 4 we define pre-foams and their grading. In section5 we explain the Kapustin-Li
formula for evaluating closed pre-foams and compute the spheres and the theta-foams. In
section 6 we derive a set of basic relations in the categoryFoamN, which is the quotient of
the category of pre-foams by the kernel of the Kapustin-Li evaluation. In section 7 we show
that our link homology complex is homotopy invariant under the Reidemeister moves. In
section 8 we show that our link homology complex extends to a link homology functor. In
section 9 we show that our link homology, obtained from our link homology complex using
the tautological functor, categorifies thesl(N)-link polynomial and that it is isomorphic to
the Khovanov-Rozansky link homology.

2. GRAPHICAL CALCULUS FOR THEsl(N) POLYNOMIAL

In this section we recall some facts about the graphical calculus forsl(N). Thesl(N) link
polynomial is defined by the skein relation

qNPN(")−q−NPN(!) = (q−q−1)PN(Q),

and its value for the unknot, which we take to be equal to[N] = (qN − q−N)/(q− q−1).
Let D be a diagram of a linkL ∈ S3 with n+ positive crossings andn− negative crossings.
Following an approach based on MOY’s state sum model [10] we can computePN(D) by

positive: = −q negative: = −q

0 1 0 1

FIGURE 1. Positive and negative crossings and their 0 and 1-flattening

flattening each crossing ofD in two possible ways, as shown in Figure 1, where we also
show our convention for positive and negative crossings. Each complete flattening ofD is an
example of aweb: a trivalent graph with three types of edges:simple, doubleandmarked
edges. Only the simple edges are equipped with an orientation. Near each vertex at most
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one edge can be distinguished with a(∗), as in Figure 2. Note that a complete flattening of
D never has marked edges, but we will need the latter for webs that show up in the proof of
invariance under the third Reidemeister move.

* *

* *

FIGURE 2. Vertices

Simple edges correspond to edges labelled 1, double edges toedges labelled 2 and marked
simple edges to edges labelled 3 in [10], where edges carry labels from 1 toN−1 and label
j is associated to thej-th exterior power of the fundamental representation ofsl(N).

We call a planar trivalent graph generated by the vertices and edges defined above aweb.
Webs can contain closed plane loops (simple, double or marked). TheMOY web movesin
Figure 3 provide a recursive way of assigning to each webΓ that only contains simple and
double edges a polynomial inZ[q,q−1] with positive coefficients, which we callPN(Γ). There
are more general web moves, which allow for the evaluation ofarbitrary webs, but we do not
need them here. Note that a complete flattening of a link diagram only contains simple and
double edges.

©= [N], =

[
N
2

]

= [2] , = [N−1]

= + [N−2]

+ = +

FIGURE 3. MOY web moves

Consistency of the relations in Figure 3 is shown in [10].
Finally let us define thesl(N) link polynomial. For anyi let Γi denote a complete flattening

of D. Then

PN(D) = (−1)n−q(N−1)n+−Nn− ∑
i

q|i|PN(Γi),

where|i| is the number of 1-flattenings inΓi, the sum being over all possible flattenings ofD.
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3. SCHUR POLYNOMIALS AND THE COHOMOLOGY OF PARTIAL FLAG VARIETIES

In this section we recall some basic facts about Schur polynomials and the cohomology of
partial flag varieties which we need in the rest of this paper.

3.1. Schur polynomials. A nice basis for homogeneous symmetric polynomials is givenby
the Schur polynomials. Ifλ = (λ1, . . . ,λk) is a partition such thatλ1 ≥ . . .≥ λk ≥ 0, then the
Schur polynomialπλ (x1, . . . ,xk) is given by the following expression:

(1) πλ (x1, . . . ,xk) =
|x

λ j+k− j
i |

∆
,

where∆ = ∏i< j(xi − x j), and by|x
λ j+k− j
i |, we have denoted the determinant of thek× k

matrix whose(i, j) entry is equal tox
λ j+k− j
i . Note that the elementary symmetric polynomials

are given byπ1,0,0,...,0,π1,1,0,...,0, . . . ,π1,1,1,...,1. There are multiplication rules for the Schur
polynomials which show that anyπλ1,λ2,...,λk

can be expressed in terms of the elementary
symmetric polynomials.

If we do not specify the variables of the Schur polynomialπλ , we will assume that these
are exactlyx1, . . . ,xk, with k being the length ofλ , i.e.

πλ1,...,λk
:= πλ1,...,λk

(x1, . . . ,xk).

In this paper we only use Schur polynomials of two and three variables. In the case of two
variables, the Schur polynomials are indexed by pairs of nonnegative integers(i, j), such that
i ≥ j, and (1) becomes

πi, j =
i

∑
ℓ= j

xℓ1xi+ j−ℓ
2 .

Directly from Pieri’s formulawe obtain the following multiplication rule for the Schur poly-
nomials in two variables:

(2) πi, jπa,b =∑πx,y,

where the sum on the r.h.s. is over all indicesx andy such thatx+ y = i + j + a+ b and
a+ i ≥ x≥ max(a+ j,b+ i). Note that this implies min(a+ j,b+ i)≥ y≥ b+ j. Also, we
shall writeπx,y ∈ πi, jπa,b if πx,y belongs to the sum on the r.h.s. of (2). Hence, we have that
πx,x ∈ πi, jπa,b iff a+ j = b+ i = x andπx+1,x ∈ πi, jπa,b iff a+ j = x+1, b+ i = x or a+ j = x,
b+ i = x+1.

We shall need the following combinatorial result which expresses the Schur polynomial in
three variables as a combination of Schur polynomials of twovariables.

For i ≥ j ≥ k≥ 0, and the triple(a,b,c) of nonnegative integers, we define

(a,b,c) ⊏ (i, j,k),

if a+b+c= i + j +k, i ≥ a≥ j and j ≥ b≥ k. We note that this implies thati ≥ c≥ k, and
hence max{a,b,c} ≤ i.

Lemma 3.1.
πi, j,k(x1,x2,x3) = ∑

(a,b,c)⊏(i, j,k)

πa,b(x1,x2)x
c
3.
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Proof. From the definition of the Schur polynomial, we have

πi, j,k(x1,x2,x3) =
(x1x2x3)

k

(x1−x2)(x1−x3)(x2−x3)

∣∣∣∣∣∣∣

xi−k+2
1 x j−k+1

1 1
xi−k+2

2 x j−k+1
2 1

xi−k+2
3 x j−k+1

3 1

∣∣∣∣∣∣∣
.

After subtracting the last row from the first and the second one of the last determinant, we
obtain

πi, j,k =
(x1x2x3)

k

(x1−x2)(x1−x3)(x2−x3)

∣∣∣∣∣
xi−k+2

1 −xi−k+2
3 x j−k+1

1 −x j−k+1
3

xi−k+2
2 −xi−k+2

3 x j−k+1
2 −x j−k+1

3

∣∣∣∣∣ ,

and so

πi, j,k =
(x1x2x3)

k

x1−x2

∣∣∣∣∣
∑i−k+1

m=0 xm
1 xi−k+1−m

3 ∑ j−k
n=0xn

1x j−k−n
3

∑i−k+1
m=0 xm

2 xi−k+1−m
3 ∑ j−k

n=0xn
2x j−k+n

3

∣∣∣∣∣ .

Finally, after expanding the last determinant we obtain

(3) πi, j,k =
(x1x2x3)

k

x1−x2

i−k+1

∑
m=0

j−k

∑
n=0

(xm
1 xn

2−xn
1xm

2 )x
i+ j−2k+1−m−n
3 .

We split the last double sum into two: the first one whenm goes from 0 toj − k, denoted
by S1, and the other one whenm goes from j − k+ 1 to i − k+ 1, denoted byS2. To show
thatS1 = 0, we split the double sum further into three parts: whenm< n, m= n andm> n.
Obviously, each summand withm= n is equal to 0, while the summands of the sum form< n
are exactly the opposite of the summands of the sum form> n. Thus, by replacing onlyS2

instead of the double sum in (3) and after rescaling the indicesa= m+k−1, b= n+k, we
get

πi, j,k =
(x1x2x3)

k

x1−x2

i−k+1

∑
m= j−k+1

j−k

∑
n=0

(xm
1 xn

2−xn
1xm

2 )x
i+ j−2k+1−m−n
3

=
i

∑
a= j

j

∑
b=k

πa,bxi+ j+k−a−b
3 = ∑

(a,b,c)⊏(i, j,k)

πa,bxc
3,

as wanted. �

Of course there is a multiplication rule for three-variableSchur polynomials which is com-
patible with (2) and the lemma above, but we do not want to discuss it here. For details
see [2].

3.2. The cohomology of partial flag varieties. In this paper the rational cohomology rings
of partial flag varieties play an essential role. The partialflag varietyFld1,d2,...,dl , for 1≤ d1 <
d2 < .. . < dl = N, is defined by

Fld1,d2,...,dl = {Vd1 ⊂Vd2 ⊂ . . .⊂Vdl = CN|dim(Vi) = i}.

A special case isFlk,N, the Grassmanian variety of allk-planes inCN, also denotedGk,N. The
dimension of the partial flag variety is given by

dimFld1,d2,...,dl = N2−
l−1

∑
i=1

(di+1−di)
2−d2

1.
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The rational cohomology rings of the partial flag varieties are well known and we only recall
those facts that we need in this paper.

Lemma 3.2. H∗(Gk,N) is isomorphic to the vector space generated by allπi1,i2,...,ik modulo
the relations

(4) πN−k+1,0,...,0 = 0, πN−k+2,0,...,0 = 0, . . . , πN,0,...,0 = 0,

where there are exactly k−1 zeros in the multi-indices of the Schur polynomials.

A consequence of the multiplication rules for Schur polynomials is that

Corollary 3.3. The Schur polynomialsπi1,i2,...,ik, for N− k ≥ i1 ≥ i2 ≥ . . . ≥ ik ≥ 0, form a
basis of H∗(Gk,N)

Thus, the dimension ofGk,N is
(N

k

)
, and up to a degree shift, its quantum dimension (or graded

dimension) is
[

N
k

]
.

Another consequence of the multiplication rules is that

Corollary 3.4. The Schur polynomialsπ1,0,0,...,0,π1,1,0,...,0, . . . ,π1,1,1,...,1 (the elementary sym-
metric polynomials) generate H∗(Gk,N) as a ring.

Furthermore, we can introduce a non-degenerate trace form on H∗(Gk,N) by giving its
values on the basis elements

(5) ε(πλ ) =

{
(−1)⌊

k
2⌋, λ = (N−k, . . . ,N−k)

0, else
.

This makesH∗(Gk,N) into a commutative Frobenius algebra. One can compute the basis dual
to {πλ} in H∗(Gk,N), with respect toε . It is given by

(6) π̂λ1,...,λk
= (−1)⌊

k
2⌋πN−k−λk,...,N−k−λ1

.

We can also express the cohomology rings of the partial flag varietiesFl1,2,N andFl2,3,N
in terms of Schur polynomials. Indeed, we have

H∗(Fl1,2,N) =Q[x1,x2]/〈πN−1,0,πN,0〉,

H∗(Fl2,3,N) =Q[x1+x2,x1x2,x3]/〈πN−2,0,0,πN−1,0,0,πN,0,0〉.

The natural projection mapp1 : Fl1,2,N → G2,N induces

p∗1 : H∗(G2,N)→ H∗(Fl1,2,N),

which is just the inclusion of the polynomial rings. Analogously, the natural projectionp2 :
Fl2,3,N → G3,N, induces

p∗2 : H∗(G3,N)→ H∗(Fl2,3,N),

which is also given by the inclusion of the polynomial rings.
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* *

FIGURE 4. Some elementary foams

4. PRE-FOAMS

In this section we begin to define the foams we will work with. The philosophy behind
these foams will be explained in section 5. To categorify thesl(N) link polynomial we need
singular cobordisms with two types of singularities. The basic examples are given in Figure 4.
These foams are composed of three types of facets: simple, double and triple facets. The
double facets are coloured and the triple facets are marked to show the difference. Intersecting
such a foam with a plane results in a web, as long as the plane avoids the singularities where
six facets meet, such as on the right in Figure 4.

We adapt the definition of a world-sheet foam given in [11] to our setting.

Definition 4.1. Let sγ be a finite closed oriented 4-valent graph, which may containdisjoint
circles. We assume that all edges of sγ are oriented. A cycle in sγ is defined to be a circle
or a closed sequence of edges which form a piece-wise linear circle. Let Σ be a compact
orientable possibly disconnected surface, whose connected components are white, coloured
or marked, also denoted by simple, double or triple. Each component can have a boundary
consisting of several disjoint circles and can have additional decorations which we discuss
below. A closedpre-foam uis the identification spaceΣ/sγ obtained by glueing boundary
circles of Σ to cycles in sγ such that every edge and circle in sγ is glued to exactly three
boundary circles ofΣ and such that for any pointp∈ sγ :

(1) if p is an interior point of an edge, thenp has a neighborhood homeomorphic to the
letter Y times an interval with exactly one of the facets being double, and at most one
of them being triple. For an example see Figure 4;

(2) if p is a vertex of sγ , then it has a neighborhood as shown in Figure 4.
We call sγ thesingular graph, its edges and verticessingular arcsandsingular vertices, and
the connected components ofu−sγ the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black
dots (℄), a double facet can also have white dots (^), and a triple facet besides black and
white dots can have double dots (_). Dots can move freely on a facet but are not allowed to
cross singular arcs. See Figure 5 for examples of pre-foams.

Note that the cycles to which the boundaries of the simple andthe triple facets are glued
are always oriented, whereas the ones to which the boundaries of the double facets are glued
are not. Note also that there are two types of singular vertices. Given a singular vertexv,
there are precisely two singular edges which meet atv and bound a triple facet: one oriented
towardv, denotede1, and one oriented away fromv, denotede2. If we use the “left hand
rule”, then the cyclic ordering of the facets incident toe1 ande2 is either(3,2,1) and(3,1,2)
respectively, or the other way around. We say thatv is of type I in the first case and of type
II in the second case. When we go around a triple facet we see that there have to be as many
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*

**

a) b)

FIGURE 5. a) A pre-foam b) An open pre-foam

singular vertices of type I as there are of type II for the cyclic orderings of the facets to match
up. This shows that for a closed pre-foam the number of singular vertices of type I is equal
to the number of singular vertices of type II.

We can intersect a pre-foamu generically by a planeW in order to get a web, as long as
the plane avoids the vertices of sγ . The orientation of sγ determines the orientation of the
simple edges of the web according to the convention in Figure6.

W W

*

W
*

W W

*

W
*

FIGURE 6. Orientations near a singular arc

Suppose that for all but a finite number of valuesi ∈]0,1[, the planeW× i intersectsu
generically. Suppose also thatW×0 andW×1 intersectu generically and outside the vertices
of sγ . We callW× I ∩ u an openpre-foam. Interpreted as morphisms we read open pre-
foams from bottom to top, and their composition consists of placing one pre-foam on top of
the other, as long as their boundaries are isotopic and the orientations of the simple edges
coincide.

Definition 4.2. Let Pre− foam be the category whose objects are closed webs and whose
morphisms areQ-linear combinations of isotopy classes of pre-foams with the obvious iden-
tity pre-foams and composition rule.

We now define theq-degree of a pre-foam. Letu be a pre-foam,u1, u2 andu3 the disjoint
union of its simple and double and marked facets respectively and sγ(u) its singular graph.
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Define the partialq-gradings ofu as

qi(u) = χ(ui)−
1
2

χ(∂ui ∩∂u), i = 1,2,3

qsγ (u) = χ(sγ (u))−
1
2

χ(∂ sγ(u)).

whereχ is the Euler characteristic and∂ denotes the boundary.

Definition 4.3. Let u be a pre-foam withd
℄

dots of type℄, d
^

dots of typê andd
_

dots
of type_. Theq-grading ofu is given by

(7) q(u) =−
3

∑
i=1

i(N− i)qi(u)−2(N−2)qsγ (u)+2d
℄

+4d
^

+6d
_

.

The following result is a direct consequence of the definitions.

Lemma 4.4. q(u) is additive under the glueing of pre-foams.

5. THE KAPUSTIN-L I FORMULA AND THE EVALUATION OF CLOSED PRE-FOAMS

Let us briefly recall the philosophy behind the pre-foams. Losely speaking, to each closed
pre-foam should correspond an element in the cohomology ring of a configuration space of
planes in some bigCM. The singular graph imposes certain conditions on those planes. The
evaluation of a pre-foam should correspond to the evaluation of the corresponding element
in the cohomology ring. Of course one would need to find a consistent way of choosing the
volume forms on all of those configuration spaces for this to work. However, one encounters
a difficult technical problem when working out the details ofthis philosophy. Without ex-
plaining all the details, we can say that the problem can onlybe solved by figuring out what
to associate to the singular vertices. Ideally we would liketo find a combinatorial solution
to this problem, but so far it has eluded us. That is the reasonwhy we are forced to use the
Kapustin-Li formula.

We denote a simple facet withi dots by

i .

Recall thatπk,m can be expressed in terms ofπ1,0 andπ1,1. In the philosophy explained above,
the latter should correspond to℄ and^ on a double facet respectively. We can then define

(k,m)

as being the linear combination of dotted double facets corresponding to the expression of
πk,m in terms ofπ1,0 andπ1,1. Analogously we expressedπp,q,r in terms ofπ1,0,0, π1,1,0 and
π1,1,1 (see section 3). The latter correspond to℄, ^ and_ on a triple facet respectively, so
we can make sense of

*
(p,q,r) .

Our dot conventions and the results in proposition 6.2 will allow us to use decorated facets
in exactly the same way as we did Schur polynomials in the cohomology rings of partial flag
varieties.
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In the sequel, we shall give a working definition of the Kapustin-Li formula for the eval-
uation of pre-foams and state some of its basic properties. The Kapustin-Li formula was
introduced by A. Kapustin and Y. Li [5] in the context of the evaluation of 2-dimensional
TQFTs and extended to the case of pre-foams by M. Khovanov andL. Rozansky in [7].

5.1. The general framework. Let u= Σ/sγ be a closed pre-foam with singular graphsγ and
without any dots on it. LetF denote an arbitraryi-facet,i ∈ {1,2,3}, with a 1-facet being a
simple facet, a 2-facet being a double facet and a 3-facet being a triple facet.

Recall that to eachi-facet we associated the rational cohomology ring of the Grassmanian
Gi,N, i.e. H∗(Gi,N,Q). Alternatively, we can associate to everyi-facetF, i variablesxF

1 . . . ,x
F
i ,

with degxF
i = 2i, and the potentialW(xF

1 , . . . ,x
F
i ), which is the polynomial defined such that

W(σ1, . . . ,σi) = yN+1
1 + . . .+yN+1

i ,

whereσ j is the j-th elementary symmetric polynomial in the variablesy1, . . . ,yi . The Jacobi
algebraJW, which is given by

JW =Q[xF
1 , . . . ,x

F
i ]/〈∂W〉

where we mod out by the ideal generated by the partial derivatives of W, is isomorphic
to H∗(Gi,N,Q). Note that the top degree nonvanishing element in this Jacobi algebra is
πN−i,...,N−i (multiindex of lengthi), i.e. the polynomial in variablesxF

1 , . . . ,x
F
i which gives

πN−i,...,N−i after replacing the variablexF
j by π1,...,1,0,...,0 with exactly j 1’s, 1≤ j ≤ i (see

also subsection 3.1). We define the trace (volume) form,ε , on the cohomology ring of the
Grassmanian, by giving it on the basis of the Schur polynomials:

ε(π j1,..., ji ) =

{
(−1)⌊

i
2⌋ if ( j1, . . . , j i) = (N− i, . . . ,N− i)

0 else
.

The Kapustin-Li formula associates touan element in the product of the cohomology rings
of the Grassmanians (or Jacobi algebras),J, over all the facets in the pre-foam. Alternatively,
we can see this element as a polynomial,KLu ∈ J, in all the variables associated to the facets.
Now, let us put some dots onu. Recall that a dot corresponds to an elementary symmetric
polynomial. So a linear combination of dots onu is equivalent to a polynomial,f , in the
variables of the dotted facets. The value of this dotted pre-foam we define to be

(8) 〈u〉KL := ε

(
∏
F

det(∂i∂ jWF)
g(F)

(N+1)g′(F)
KLu f

)
.

The product is over all facetsF andWF is the potential associated toF . For anyi-facetF,
i = 1,2,3, the symbolg(F) denotes the genus ofF andg′(F) = ig(F).

Having explained the general idea, we are left with defining the elementKLu for a dotless
pre-foam. For that we have to explain Khovanov and Rozansky’s extension of the Kapustin-
Li formula to pre-foams [7], which uses the theory of matrix factorizations.

5.2. Matrix factorizations. Let R= Q[x1, . . . ,xk] be a polynomial ring, andW ∈ R. By
a matrix factorization over ringR with the potentialW we mean a triple(M,D,W), where
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M =M0⊕M1 (rankM0= rankM1) is a finite-dimensionalZ/2Z-graded freeR-module, while
the (twisted) differentialD ∈ End(M) is such that degD = 1 and

(9) D2 =W Id .

In other words, a matrix factorization is given by the following square matrix with poly-
nomial entries

D =

[
0 D0

D1 0

]
,

such thatD0D1 = D1D0 =W Id. Matrix factorizations are also represented in the following
form:

M0 D0−−−→M1 D1−−−→M0.

The tensor product of two matrix factorizations with potentials W1 andW2 is a matrix
factorization with potentialW1+W2.

The dual of the matrix factorization(M,D,W) is given by

(M,D,W)∗ = (M∗,D∗,−W),

where

D∗ =

[
0 D∗

1
−D∗

0 0

]

andD∗
i , i = 0,1, is the dual map (transpose matrix) ofDi .

Throughout the paper we shall use a particular type of matrixfactorizations - namely the
tensor products of Koszul factorizations. For two elementsa,b∈ R, the Koszul factorization
{a,b} is defined as the matrix factorization

R
a

−−→R
b

−−→R.

Moreover ifa = (a1, . . . ,am) ∈ Rm andb= (b1, . . . ,bm) ∈ Rm, then the tensor product of
the Koszul factorization{ai ,bi}, i = 1, . . . ,m, is denoted by

(10)




a1 b1

a2 b2
...

...
am bm


 :=

m⊗

i=1

{ai ,bi}.

Sometimes we also write{a,b}=⊗m
i=1{ai ,bi}. If ∑m

i=1aibi = 0 then{a,b} is a 2-periodic
complex, and its homology is anR/〈a1, . . . ,am,b1, . . . ,bm〉-module.

5.3. Decoration of pre-foams. As we said, to each facet we associate certain variables (de-
pending on the type of facet), a potential and the corresponding Jacobi algebra. If the vari-
ables associated to a facetF arex1, . . . ,xi , then we defineRF =Q[x1, . . . ,xi ].

Now we pass to the edges. To each edge, we associate a matrix factorization whose poten-
tial is equal to the signed sum of the potentials of the facetsthat are glued along this edge. We
define it to be a certain tensor product of Koszul factorizations. In the cases we are interested
in, there are always three facets glued along an edge, with two possibilities: either two simple
facets and one double facet, or one simple, one double and onetriple facet.

In the first case, we denote the variables of the two simple facets byx and y and the
potentials byxN+1 andyN+1 respectively. To the double facet we associate the variables s
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andt and the potentialW(s, t). To the edge we associate the matrix factorization which is the
tensor product of Koszul factorizations given by

(11) MF1 =

(
x+y−s A′

xy− t B′

)
,

whereA′ andB′ are given by

A′ =
W(x+y,xy)−W(s,xy)

x+y−s
,

B′ =
W(s,xy)−W(s, t)

xy− t
.

Note that(x+y−s)A′+(xy− t)B′ = xN+1+yN+1−W(s, t).
In the second case, the variable of the simple facet isx and the potential isxN+1, the

variables of the double facet ares andt and the potential isW(s, t), and the variables of the
triple face arep, q andr and the potential isW(p,q, r). Define the polynomials

A =
W(x+s,xs+ t,xt)−W(p,xs+ t,xt)

x+s− p
,(12)

B =
W(p,xs+ t,xt)−W(p,q,xt)

xs+ t −q
,(13)

C =
W(p,q,xt)−W(p,q, r)

xt− r
,(14)

so that

(x+s− p)A+(xs+ t−q)B+(xt− r)C = xN+1+W(s, t)−W(p,q, r).

To such an edge we associate the matrix factorization given by the following tensor product
of Koszul factorizations:

(15) MF2 =




x+s− p A
xs+ t −q B

xt− r C


 .

In both cases, to an edge with the opposite orientation we associate the dual matrix factor-
ization.

Next we explain what we associate to a singular vertex. Firstof all, for each vertexv,
we define its local graphγv to be the intersection of a small sphere centered atv with the
pre-foam. Then the vertices ofγv correspond to the edges ofu that are incident tov, to which
we had associated matrix factorizations.

In this paper all local graphs are in fact tetrahedrons. However, recall that there are two
types of vertices (see the remarks below definition 4.1). Label the six facets that are incident
to a vertexv by the numbers 1,2,3,4,5 and 6. Furthermore, denote the edge along which are
glued the facetsi, j andk by (i jk). Denote the matrix factorization associated to the edge
(i jk) by Mi jk , if the edge points towardv, and byM∗

i jk , if the edge points away fromv. Note
thatMi jk andM∗

i jk are both defined overRi ⊗Rj ⊗Rk.
Now we can take the tensor product of these four matrix factorizations, over the polyno-

mial rings of the facets of the pre-foam, that correspond to the vertices ofγv. This way we
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obtain the matrix factorizationMv, whose potential is equal to 0, and so it is a 2-periodic
chain complex and we can take its homology. To each vertexv we associate an element
Ov ∈ H∗(Mv).

More precisely, ifv is of type I, then

(16)
H∗(Mv) ∼= Ext(MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q, r) ,

MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q, r)) .

If v is of type II, then

(17)
H∗(Mv) ∼= Ext(MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q, r) ,

MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q, r)) .

Both isomorphisms hold up to a global shift inq. Note that

MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q, r) ≃ MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q, r),

because both tensor products are homotopy equivalent to



x+y+z− p ∗
xy+xz+yz−q ∗

xyz− r ∗


 .

We have not specified the r.h.s. of the latter Koszul factorizations, because by theorem 2.1 in
[8] we have{a,b} ≃ {a,b′} if ∑aibi = ∑aib′i and if the sequence{ai} is regular. Ifv is of
type I, we takeOv to be the cohomology class of a fixed degree 0 homotopy equivalence

wv : MF1(x,y,s1, t1)⊗s1,t1 MF2(z,s1, t1, p,q, r) → MF1(y,z,s2, t2)⊗s2,t2 MF2(x,s2, t2, p,q, r).

The choice ofOv is unique up to a scalar, because theq-dimension of the Ext-group in (16)
is equal to

q3N−6 qdim(H∗(Mv)) = q3N−6[N][N−1][N−2] = 1+q(. . .),

where(. . .) is a polynomial inq. Note thatMv is homotopy equivalent to the matrix fac-
torization which corresponds to the closure ofϒ in [6], which allows one to compute the
q-dimension above using the results in the latter paper. Ifv is of type II, we takeOv to be the
cohomology class of the homotopy inverse ofwv. Note that a particular choice ofwv fixesOv

for both types of vertices and that the value of the Kapustin-Li formula for a closed pre-foam
does not depend on that choice because there are as many singular vertices of type I as there
are of type II (see the remarks below definition 4.1). We do notknow an explicit formula for
Ov. Although such a formula would be very interesting to have, we do not need it for the
purposes of this paper.

5.4. The Kapustin-Li derivative and the evaluation of closed pre-foams. From the def-
inition, every boundary component of each facetF is either a circle or a cyclicly ordered
finite sequence of edges, such that the beginning of the next edge corresponds to the end of
the previous edge. For every boundary component we choose anedgee - the value of the
Kapustin-Li formula does not depend on this choice. Denote the differential of the matrix
factorization associated to this edge byDe.
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The associated Kapustin-Li derivative ofDe in the variablesx1, . . . ,xk associated to the
facetF , is an element from End(M)∼= M⊗M∗, given by:

(18) OF,e = ∂Dê =
1
k! ∑

σ∈Sk

(sgnσ)∂σ(1)De∂σ(2)De. . .∂σ(k)De,

whereSk is the set of all permutations of the set{1, . . . ,k}, and∂iD is the partial derivative
of D with respect to the variablexi . Note thate can be the preferred edge for more than one
facet. In general, letOe be the product ofOF,e over all facetsF for which e is the preferred
edge. The order of the factors in this product is irrelevant,because they commute (see [7]).
If e is not the preferred edge for anyF, we takeOe to be the identity.

Finally, around each boundary component of∂F , for each facetF , we contract all tensor
factorsOe andOv. Note that one has to use super-contraction in order to get the right signs.

For a better understanding of the Kapustin-Li formula, consider the special case of a theta
pre-foamΘ. There are three facetsF1, F2, F3 which are glued along a common circlec, which
is the preferred edge for all three. We associated a certain matrix factorizationM to c with
differential D. Let ∂D1ˆ, ∂D2ˆ and∂D3ˆ be the Kapustin-Li derivatives ofD with respect to
the variables of the facetsF1, F2 andF3, respectively. Then we have

(19) KLΘ = Trs(∂D1ˆ∂D2ˆ∂D3ˆ).

As a matter of fact we will see that we have tonormalizethe Kapustin-Li formula in order
to get “nice values”.

5.5. Dot conversion and dot migration. The pictures related to the computations in this
subsection and the next three can be found in Proposition 6.2.

SinceKLu takes values in the tensor product of the Jacobian algebras of the potentials
associated to the facets ofu, we see that for a simple facet we havexN = 0, for a double
facetπi, j = 0 if i ≥ N−1, and for a triple facetπp,q,r = 0 if p≥ N−2. We call these thedot
conversion relations.

To each edge along which two simple facets with variablesx andy and one double facet
with the variabless andt are glued, we associated the matrix factorizationMF1 with entries
x+y−sandxy− t. Therefore Ext(MF1,MF1) is a module overR/〈x+y−s,xy− t〉. Hence,
we obtain thedot migration relationsalong this edge.

Analogously, to the other type of singular edge along which are glued a simple facet with
variablex, a double facet with variables andt, and a triple facet with variablesp, q andr,
we associated the matrix factorizationMF2 and Ext(MF2,MF2) is a module overR/〈x+s−
p,xs+ t −q,xt− r〉, and hence we obtain thedot migration relationsalong this edge.

5.6. (1,1,2)−Theta. Recall thatW(s, t) is the polynomial such thatW(x+ y,xy) = xN+1+
yN+1. More precisely, we have

(20) W(s, t) = ∑
i+2 j=N+1

ai j s
it j ,
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with aN+1,0 = 1, aN+1−2 j, j =
(−1) j

j (N+1)
(N− j

j−1

)
, for 2≤ 2 j ≤ N+1, andai j = 0 otherwise.

In particularaN−1,1 =−(N+1). Then we have

W′
1(s, t) = ∑

i+2 j=N+1

iai j s
i−1t j ,(21)

W′
2(s, t) = ∑

i+2 j=N+1

jai j s
it j−1.(22)

By W′
1(s, t) andW′

2(s, t), we denote the partial derivatives ofW(s, t) with respect to the first
and the second variable, respectively.

To the singular circle of a standard theta pre-foam with two simple facets, with variablesx
andy respectively, and one double facet, with variabless andt, we assign the matrix factor-
izationMF1:

(23) MF1 =

(
x+y−s A′

xy− t B′

)
.

Recall that

A′ =
W(x+y,xy)−W(s,xy)

x+y−s
,(24)

B′ =
W(s,xy)−W(s, t)

xy− t
.(25)

Hence, the differential of this matrix factorization is given by the following 4 by 4 matrix:

(26) D =

[
0 D0

D1 0

]
,

where

(27) D0 =

[
x+y−s −B′

xy− t A′

]
, D1 =

[
A′ B′

t −xy x+y−s

]
.

The Kapustin-Li formula assigns the polynomial,KLΘ1(x,y,s, t), which is given by the su-
pertrace of the twisted differential ofD

(28) KLΘ1 = Trs
(

∂xD∂yD
1
2
(∂sD∂tD−∂tD∂sD)

)
.

Straightforward computation gives

(29) KLΘ1 = B′
s(A

′
x−A′

y)+ (A′
x+A′

s)(B
′
y+xB′

t)− (A′
y+A′

s)(B
′
x+yB′

t),
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where byA′
i andB′

i we have denoted the partial derivatives with respect to the variablei. From
the definitions (24) and (25) we have

A′
x−A′

y = (y−x)
W′

2(x+y,xy)−W′
2(s,xy)

x+y−s
,

A′
x+A′

s =
W′

1(x+y,xy)−W′
1(s,xy)+y(W′

2(x+y,xy)−W′
2(s,xy))

x+y−s
,

A′
y+A′

s =
W′

1(x+y,xy)−W′
1(s,xy)+x(W′

2(x+y,xy)−W′
2(s,xy))

x+y−s
,

B′
s =

W′
1(s,xy)−W′

1(s, t)
xy− t

,

B′
x+yB′

t = y
W′

2(s,xy)−W′
2(s, t)

xy− t
,

B′
y+xB′

t = x
W′

2(s,xy)−W′
2(s, t)

xy− t
.

After substituting this back into (29), we obtain

(30) KLΘ1 = (y−x)

∣∣∣∣
α β
γ δ

∣∣∣∣ ,

where

α =
W′

1(x+y,xy)−W′
1(s,xy)

x+y−s
,

β =
W′

2(x+y,xy)−W′
2(s,xy)

x+y−s
,

γ =
W′

1(s,xy)−W′
1(s, t)

xy− t
,

δ =
W′

2(s,xy)−W′
2(s, t)

xy− t
.

From this formula we see thatKLΘ1 is homogeneous of degree 4N−6 (remember that degx=
degy= degs= 2 and degt = 4).

Since the evaluation is in the product of the Grassmanians corresponding to the three
disks, i.e. in the ringQ[x]/xN ×Q[y]/yN ×Q[s, t]/〈W′

1(s, t),W
′
2(s, t)〉, we havexN = yN = 0=

W′
1(s, t) =W′

2(s, t). Also, we can express the monomials ins andt as linear combinations of
the Schur polynomialsπk,l (writing s= π1,0 andt = π1,1)), and we haveW′

1(s, t) = (N+1)πN,0

andW′
2(s, t) =−(N+1)πN−1,0. Hence, we can writeKLΘ1 as

KLΘ1 = (y−x) ∑
N−2≥k≥l≥0

πk,l pkl(x,y),

with pkl being a polynomial inx andy. We want to determine which combinations of dots on
the simple facets give rise to non-zero evaluations, so our aim is to compute the coefficient of
πN−2,N−2 in the sum on the r.h.s. of the above equation (i.e. in the determinant in (30)). For
degree reasons, this coefficient is of degree zero, and so we shall only compute the parts of
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α , β , γ andδ which do not containx andy. We shall denote these parts by putting a bar over
the Greek letters. Thus we have

ᾱ = (N+1)sN−1,

β̄ = −(N+1)sN−2,

γ̄ = ∑
i+2 j=N+1, j≥1

iai j s
i−1t j−1,

δ̄ = ∑
i+2 j=N+1, j≥2

jai j s
it j−2.

Note that we have
t γ̄ +(N+1)sN =W′

1(s, t),

and
tδ̄ − (N+1)sN−1 =W′

2(s, t),

and so in the cohomology ring of the GrassmanianG2,N, we havet γ̄ = −(N+ 1)sN and
tδ̄ = (N+ 1)sN−1. On the other hand, by usings= π1,0 and t = π1,1, we obtain that in
H∗(G2,N)∼=Q[s, t]/〈πN−1,0,πN,0〉, the following holds:

sN−2 = πN−2,0+ tq(s, t),

for some polynomialq, and so

sN−1 = sN−2s= πN−1,0+πN−2,1+stq(s, t) = t(πN−3,0+sq(s, t)).

Thus, we have
∣∣∣∣

ᾱ β̄
γ̄ δ̄

∣∣∣∣ = (N+1)(πN−3,0+sq(s, t))tδ̄ +(N+1)πN−2,0γ̄ +(N+1)q(s, t)t γ̄

= (N+1)2(πN−3,0+sq(s, t))sN−1+(N+1)πN−2,0γ̄ − (N+1)2q(s, t)sN

= (N+1)2πN−3,0sN−1+(N+1)πN−2,0γ̄ .(31)

Since
γ̄ = (N−1)aN−1,1sN−2+ tr(s, t)

holds in the cohomology ring of Grassmanian, for some polynomial r(s, t), we have

πN−2,0γ̄ = πN−2,0(N−1)aN−1,1sN−2 =−πN−2,0(N−1)(N+1)sN−2.

Also, we have that for everyk≥ 2,

sk = πk,0+(k−1)πk−1,1+ t2w(s, t),

for some polynomialw. Replacing this in (31) and bearing in mind thatπi, j = 0, for i ≥N−1,
we get
∣∣∣∣

ᾱ β̄
γ̄ δ̄

∣∣∣∣ = (N+1)2sN−2(πN−2,0+πN−3,1− (N−1)πN−2,0)

= (N+1)2(πN−2,0+(N−3)πN−3,1+π2,2w(s, t))(πN−3,1− (N−2)πN−2,0)

= −(N+1)2πN−2,N−2.(32)
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Hence, we have

KLΘ1 = (N+1)2(x−y)πN−2,N−2+ ∑
N−2≥k≥l≥0

N−2>l

ci, j,k,l πk,l x
iy j .

Recall that in the product of the Grassmanians corresponding to the three disks, i.e. in the
ring Q[x]/xN ×Q[y]/yN ×Q[s, t]/〈πN−1,0,πN,0〉, we have

ε(xN−1yN−1πN−2,N−2) =−1.

Therefore the only monomialsf in x andy such that〈KLΘ1 f 〉KL 6= 0 are f1 = xN−2yN−1 and
f2 = xN−1yN−2, and〈KLΘ1 f1〉KL =−(N+1)2 and〈KLΘ1 f2〉= (N+1)2. Thus, we have that
the value of the theta pre-foam with unlabelled 2-facet is nonzero only when the first 1-facet
hasN−2 dots and the second one hasN−1 dots (and has the value−(N+1)2) and when the
first 1-facet hasN−1 dots and the second one hasN−2 dots (and has the value(N+1)2).
The evaluation of this theta foam with other labellings can be obtained from the result above
by dot migration.

5.7. (1,2,3)−Theta. For this theta the method is the same as in the previous case, just the
computations are more complicated. In this case, we have one1-facet, to which we associate
the variablex, one 2-facet, with variabless andt and the 3-facet with variablesp, q and r.
Recall that the polynomialW(p,q, r) is such thatW(a+b+ c,ab+bc+ac,abc) = aN+1+
bN+1+cN+1. We denote byW′

i (p,q, r), i = 1,2,3, the partial derivative ofW with respect to
i-th variable. Also, letA, B andC be the polynomials such that

A =
W(x+s,xs+ t,xt)−W(p,xs+ t,xt)

x+s− p
,(33)

B =
W(p,xs+ t,xt)−W(p,q,xt)

xs+ t −q
,(34)

C =
W(p,q,xt)−W(p,q, r)

xt− r
.(35)

To the singular circle of this theta pre-foam, we associatedthe matrix factorization (see
(12)-(15)):

MF2 =




x+s− p A
xs+ t −q B

xt− r C


 .

The differential of this matrix factorization is the 8 by 8 matrix

(36) D =

[
0 D0

D1 0

]
,

where

(37) D0 =

[
d0 −CI2

(xt− r)I2 d1

]
,

(38) D1 =

[
d1 CI2

(r −xt)I2 d0

]
.
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Hered0 andd1 are the differentials of the matrix factorization(
x+s− p A
xs+ t −q B

)
,

i.e.

d0 =

[
x+s− p −B
xs+ t −q A

]
, d1 =

[
A B

q−xs− t x+s− p

]
.

The Kapustin-Li formula assigns to this theta pre-foam the polynomial KLΘ2(x,s, t, p,q, r)
given as the supertrace of the twisted differential ofD, i.e.

KLΘ2 = Trs
(

∂xD
1
2
(∂sD∂tD−∂tD∂sD)∂3Dˆ

)
,

where

∂3Dˆ =
1
3!

(∂pD∂qD∂rD−∂pD∂rD∂qD+∂qD∂rD∂pD−

∂qD∂pD∂rD+∂rD∂pD∂qD−∂rD∂qD∂pD) .

After straightforward computations and some grouping, we obtain

KLΘ2 = −(Ap+As)[(Bt +Bq)(Cx+ tCr)− (Bx+sBq)(Ct +xCr)− (Bx−sBt)Cq]

− (Ap+Ax)[(Bs+xBq)(Ct +xCr)+ (Bs−xBt)Cq]

− (Ax−As)[Bp(Ct +xCr)− (Bt +Bq)Cp+BpCq]

+ At [((Bs+xBq)+Bp)(Cx+ tCr)+ ((Bs+xBq)

+ (Bx+sBq))Cp+((sBs−xBx)+ (s−x)Bp)Cq].

In order to simplify this expression, we introduce the following polynomials

a1i =
W′

i (x+s,xs+ t,xt)−W′
i (p,xs+ t,xt)

x+s− p
, i = 1,2,3,

a2i =
W′

i (p,xs+ t,xt)−W′
i (p,q,xt)

xs+ t −q
, i = 1,2,3,

a3i =
W′

i (p,q,xt)−W′
i (p,q, r)

xt− r
, i = 1,2,3.

Then from (33)-(35), we have

Ax+Ap = a11+sa12+ ta13, Ap+As= a11+xa12,

Ax−As= (s−x)a12+ ta13, At = a12+xa13,

Bp = a21, Bs−xBt =−x2a23,

sBs−xBx = xta23, Bx−sBt = (t −sx)a23,

Bt +Bq = a22+xa23, Bx+sBq = sa22+ ta23,Bs+xBq = xa22,

Cp = a31, Cq = a32, Cx+ tCr = ta33, Ct +xCr = xa33.

Using thisKLΘ2 becomes

KLΘ2 =−(t −sx+x2)

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
.
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Now the last part follows analogously as in the case of the(1,1,2)-theta pre-foam. For
degree reasons the coefficient ofπN−3,N−3,N−3 in the latter determinant is of degree zero, and
one can obtain that it is equal to(N+1)3. Thus, the coefficient ofπN−3,N−3,N−3 in KLΘ2 is
−(N+1)3(t−sx+x2) from which we obtain the value of the theta pre-foam when the 3-facet
is undotted. For example, we see that

ε(KLΘ2π1,1(s, t)
N−3xN−1) =−(N+1)3.

It is then easy to obtain the values when the 3-facet is labelled byπN−3,N−3,N−3(p,q, r) using
dot migration. The example above implies that

ε(KLΘ2πN−3,N−3,N−3(p,q, r)x
2) =−(N+1)3.

5.8. Spheres.The values of dotted spheres are easy to compute. Note that for any sphere
with dots f the Kapustin-Li formula gives

ε( f ).

Therefore for a simple sphere we get 1 iff = xN−1, for a double sphere we get−1 if f =
πN−2,N−2 and for a triple sphere we get−1 if f = πN−3,N−3,N−3.

5.9. Normalization. It will be convenient to normalize the Kapustin-Li evaluation. Letu be
a closed pre-foam with graphΓ. Note thatΓ has two types of edges: the ones incident to
two simple facets and one double facet and the ones incident to one simple, one double and
one triple facet. Edges of the same type form cycles inΓ. Let e112(u) be the total number of
cycles inΓ with edges of the first type ande123(u) the total number of cycles with edges of
the second type. We normalize the Kapustin-Li formula by dividing KLu by

(N+1)2e112+3e123.

In the sequel we only use this normalized Kapustin-Li evaluation keeping the same notation
〈u〉KL. Note that the numberse112(u) ande123(u) are invariant under the relation (MP). Note
also that with this normalization the KL-evaluation in the examples above always gives 0,−1
or 1.

5.10. The glueing property. If u is an open pre-foam whose boundary consists of two parts
Γ1 andΓ2, then the Kapustin-Li formula associates tou an element from Ext(M1,M2), where
M1 andM2 are matrix factorizations associated toΓ1 andΓ2 respectively. Ifu′ is another
pre-foam whose boundary consists ofΓ2 and Γ3, then it corresponds to an element from
Ext(M2,M3), while the element associated to the pre-foamuu′, which is obtained by gluing
the pre-foamsu andu′ alongΓ2, is equal to the composite of the elements associated tou and
u′.

On the other hand, we can seeu as a morphism from the empty set to its boundaryΓ =
Γ2∪Γ1, whereΓ1 is equal toΓ1 but with the opposite orientation. In that case, the Kapustin-
Li formula associates to it an element from

Ext( /0,MΓ2 ⊗M∗
Γ1
)∼= H∗(Γ).

Of course both ways of applying the Kapustin-Li formula are equivalent up to a globalq-shift
by corollary 6 in [6].

In the case of a pre-foamu with corners, i.e. a pre-foam with two horizontal boundary
componentsΓ1 andΓ2 which are connected by vertical edges, one has to “pinch” thevertical
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edges. This way one can consideru to be a morphism from the empty set toΓ2∪v Γ1, where
∪v means that the webs are glued at their vertices. The same observations as above hold,
except thatMΓ2 ⊗M∗

Γ1
is now the tensor product over the polynomial ring in the variables

associated to the horizontal edges with corners.

6. THE CATEGORYFoamN

Recall that〈u〉KL denotes the Kapustin-Li evaluation of a closed pre-foamu.

Definition 6.1. The categoryFoamN is the quotient of the categoryPre− foam by the
kernel of 〈 〉KL, i.e. by the following identifications: for any websΓ, Γ′ and finite sets
fi ∈ HomPre−foam (Γ,Γ′) andci ∈Q we impose the relations

∑
i

ci fi = 0 ⇔ ∑
i

ci〈g
′ fig〉KL = 0,

for all g∈ HomPre−foam ( /0,Γ) andg′ ∈ HomPre−foam (Γ′, /0). The morphisms ofFoamN are
calledfoams.

In the next two propositions we prove the “principal” relations inFoamN. All other rela-
tions that we need are consequences of these and will be proved in subsequent lemmas and
corollaries.

Proposition 6.2. The following identities hold inFoamN:
(Thedot conversionrelations)

i = 0 if i ≥ N.

(k,m) = 0 if k ≥ N−1.

*
(p,q,r) = 0 if p ≥ N−2.

(Thedot migrationrelations)

= +

=

* = * + *

* = * + *

* = *
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(Thecutting neckrelations)

=
N−1

∑
i=0

N−1−i

i

(CN1)

=− ∑
0≤ j≤i≤N−2

(i,j)

(i,j)

(CN2) * =− ∑
0≤k≤ j≤i≤N−3

*

*
(i,j,k)

(i,j,k)

(CN∗)

(Thesphererelations)

i
=

{
1, i = N−1

0, else
(S1)

(i,j)
=

{
−1, i = j = N−2

0, else
(S2)

*

(i,j,k)
=

{
−1, i = j = k= N−3

0, else.
(S∗)

(TheΘ-foamrelations)

N−1

N−2
=−1=−

N−2

N−1
(C) and

*
(N−3,N−3,N−3)

=−1=−

(N−3,N−3,N−3)
*

(C∗).

Inverting the orientation of the singular circle of(C∗) inverts the sign of the corresponding
foam. A theta-foam with dots on the double facet can be transformed into a theta-foam with
dots only on the other two facets, using the dot migration relations.

(TheMatveev-Piergalinirelation)

*

=

*

,
*

=
*

. (MP)

Proof. The dot conversion and migration relations, the sphere relations, the theta foam rela-
tions have already been proved in section 5.

The cutting neck relations are special cases of formula (5.68) in [7], whereO j andO∗
j can

be read off from our equations (6).
The Matveev-Piergalini (MP) relation is an immediate consequence of the choice of input

for the singular vertices. Note that in this relation there are always two singular vertices
of different type. The elements in the Ext-groups associated to those two types of singular
vertices are inverses of each other, which implies exactly the (MP) relation by the glueing
properties explained in subsection 5.10. �

The following identities are a consequence of the dot and thetheta relations.
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Lemma 6.3.

*(p,q,r)
(j,k)

i
=





−1 if (p,q, r) = (N−3− i,N−2−k,N−2− j)

−1 if (p,q, r) = (N−3−k,N−3− j,N−1− i)

1 if (p,q, r) = (N−3−k,N−2− i,N−2− j)

0 else

Note that the first three cases only make sense if

N−2≥ j ≥ k≥ i +1≥ 1

N−1≥ i ≥ j +2≥ k+2≥ 2

N−2≥ j ≥ i ≥ k+1≥ 1

respectively.

Proof. We denote the value of a theta foam byΘ(πp,q,r ,π j,k, i). Since theq-degree of a non-
decorated theta foam is equal to−(N−1)−2(N−2)−3(N−3) =−(6N−14), we can have
nonzero values ofΘ(πp,q,r ,π j,k, i) only if p+q+ r+ j+k+ i = 3N−7. Thus, if the 3-facet is
not decorated, i.e.p= q= r = 0, we have only four possibilities for the triple( j,k, i) – namely
(N−2,N−2,N−3), (N−2,N−3,N−2), (N−2,N−4,N−1) and(N−3,N−3,N−1).
By Proposition 6.2 we have

Θ(π0,0,0,πN−2,N−2,N−3) =−1.

However by dot migration, Lemma 3.1 and the fact thatπp,q,r = 0 if p≥ N−2, we have

0= Θ(πN−2,N−2,N−3,π0,0,0) = Θ(π0,0,0,πN−2,N−2,N−3)+Θ(π0,0,0,πN−2,N−3,N−2),

0= Θ(πN−1,N−3,N−3,π0,0,0) = Θ(π0,0,0,πN−2,N−3,N−2)+Θ(π0,0,0,πN−3,N−3,N−1),

0= Θ(πN−1,N−2,N−4,π0,0,0) = Θ(π0,0,0,πN−2,N−2,N−3)+Θ(π0,0,0,πN−2,N−3,N−2)+

+Θ(π0,0,0,πN−2,N−4,N−1).

Thus, the only nonzero values of the theta foams, when the 3-facet is nondecorated are

Θ(π0,0,0,πN−2,N−2,N−3) = Θ(π0,0,0,πN−3,N−3,N−1) =−1,

Θ(π0,0,0,πN−2,N−3,N−2) = +1.

Now we calculate the values of the general theta foam. Suppose first thati ≤ k. Then we
have

(39) Θ(πp,q,r ,π j,k, i) = Θ(πp,q,r ,πi,iπ j−i,k−i , i) = Θ(πp+i,q+i,r+i ,π j−i,k−i ,0),

by dot migration. In order to calculateΘ(πx,y,z,πw,u,0) for N−3≥ x≥ y≥ z≥ 0 andN−2≥
w≥ u≥ 0, we use Lemma 3.1. By dot migration we have

(40) Θ(πx,y,z,πw,u,0) = ∑
(a,b,c)⊏(x,y,z)

Θ(π0,0,0,πw,uπa,b,c).

Sincec≤ p≤ N−3, a summand on the r.h.s. of (40) can be nonzero only forc= N−3 and
a andb such thatπN−2,N−2 ∈ πw,uπa,b, i.e. a= N−2−u andb= N−2−w. Hence the value
of (40) is equal to−1 if

(41) (N−2−u,N−2−w,N−3)⊏ (x,y,z),
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and 0 otherwise. Finally, (41) is equivalent tox+y+z+w+u= 3N−7, x≥ N−2−u≥ y,
y≥ N−2−w≥ zandx≥ N−3≥ z, and so we must haveu> 0 and

x = N−3,

y = N−2−u,

z = N−2−w.

Going back to (40), we have that the value of theta is equal to 0if l = i, and in the casel > i
it is nonzero (and equal to−1) iff

p = N−3− i,

q = N−2−k,

r = N−2− j,

which gives the first family.
Suppose now thatk< i. As in (39) we have

(42) Θ(πp,q,r ,π j,k, i) = Θ(πp+k,q+k,r+k,π j−k,0, i −k).

Hence, we now concentrate onΘ(πx,y,z,πw,0,u) for N−3≥ x≥ y≥ z≥ 0, N−2≥ w≥ 0 and
N−1≥ u≥ 1. Again, by using Lemma 3.1 we have

(43) Θ(πx,y,z,πw,0,0) = ∑
(a,b,c)⊏(x,y,z)

Θ(π0,0,0,πw,0πa,b,u+c).

Sincea≤ N−3, we cannot haveπN−2,N−2 ∈ πw,0πa,b and we can haveπN−2,N−3 ∈ πw,0πa,b

iff a = N− 3 andb= N− 2−w. In this case we have a nonzero summand (equal to 1) iff
c= N−2−u. Finally πN−3,N−3 ∈ πw,0πa,b iff a= N−3 andb= N−3−w. In this case we
have a nonzero summand (equal to−1) iff c= N−1−u. Thus we have a summand on the
r.h.s. of (43) equal to+1 iff

(44) (N−3,N−2−w,N−2−u)⊏ (x,y,z),

and a summand equal to−1 iff

(45) (N−3,N−3−w,N−1−u)⊏ (x,y,z).

Note that in both above cases we must havex+y+z+w+u= 3N−7, x= N−3 andu≥ 1.
Finally, the value of the r.h.s of (43) will be nonzero iff exactly one of (44) and (45) holds.

In order to find the value of the sum on r.h.s. of (43), we split the rest of the proof in three
cases according to the relation betweenw andu.

If w ≥ u, (44) is equivalent toy ≥ N− 2−w, z≤ N− 2−w, while (45) is equivalent to
y≥ N−3−w, z≤ N−3−w andu≥ 2. Now, we can see that the sum is nonzero and equal
to 1 iff z= N− 2−w and soy = N− 2− u. Returning to (42), we have that the value of
Θ(πp,q,r ,π j,k, i) is equal to 1 for

p = N−3−k,

q = N−2− i,

r = N−2− j,

for N−2≥ j ≥ i ≥ k+1≥ 1, which is our third family.



sl(N)-LINK HOMOLOGY (N ≥ 4) USING FOAMS AND THE KAPUSTIN-LI FORMULA 25

If w≤ u−2, (44) is equivalent toy≥ N−2−w, z≤ N−2−u andu≤ N−2 while (45)
is equivalent toy≥ N−3−w, z≤ N−1−u. Hence, in this case we have that the total sum
is nonzero and equal to−1 iff y= N−3−w andz= N−1−u, which by returning to (42)
gives that the value ofΘ(πp,q,r ,π j,k, i) is equal to−1 for

p = N−3−k,

q = N−3− j,

r = N−1− i,

for N−3≥ i −2≥ j ≥ k≥ 0, which is our second family.
Finally, if u= w+1 (44) becomes equivalent toy≥ N−2−w andz≤ N−3−w, while

(45) becomesy≥ N−3−w andz≤ N−3−w. Thus, in order to have a nonzero sum, we
must havey=N−3−w. But in that case, because of the fixed total sum of indices, wewould
havez= N−1−u= N−2−w> N−3−w, which contradicts (45). Hence, in this case, the
total value of the theta foam is 0. �

As a direct consequence of the previous theorem, we have

Corollary 6.4. For fixed values of j, k and i, if j6= i−1 and k 6= i, there is exactly one triple
(p,q, r) such that the value ofΘ(πp,q,r ,π j,k, i) is nonzero. Also, if j= i−1 or k= i, the value
of Θ(πp,q,r ,π j,k, i) is equal to0 for every triple(p,q, r). Hence, for fixed i, there are

(n−1
2

)

5-tuples(p,q, r, j,k) such thatΘ(πp,q,r ,π j,k, i) is nonzero.
Conversely, for fixed p, q and r, there always exist three different triples( j,k, i) (one from

each family), such thatΘ(πp,q,r ,π j,k, i) is nonzero.
Finally, for all p, q, r, j, k and i, we have

Θ(πp,q,r ,π j,k, i) = Θ(π̂p,q,r , π̂ j,k,N−1− i).

The following relations are an immediate consequence of Lemma 6.3, Corollary 6.4 and
(CNi), i = 1,2,∗.

Corollary 6.5.

(46)
*

(p,q,r)

i

=





− (q,r) if p = N−3− i

− (p+1,q+1) if r = N−1− i

(p+1,r) if q = N−2− i

0 else
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(47) *
i

(k,m)

=





−
*

(k−1,m−1,i) if N−2≥ k≥ m≥ i +1≥ 1

−
*
(i−2,k,m) if N−1≥ i ≥ k+2≥ m+2≥ 2

*
(k−1,i−1,m) if N−2≥ k≥ i ≥ m+1≥ 1

0 else

(48)
*

*
(p,q,r)

(k,m)

=





− p+2 if q = N−2−m, r = N−2−k

− r if p = N−3−m, q= N−3−k

q+1 if p = N−3−m, r = N−2−k

0 else

Lemma 6.6.
m

(i,j)

k

=

{
−1 if m+ j = N−1= i +k+1

+1 if j +k= N−1= i +m+1,

Proof. By the dot conversion formulas, we get

m

(i,j)

k

=
i− j

∑
α=0 α

m+i−α

k+j+
.

By (C) we have

α

m+i−α

k+j+
=





−1 if m+ i − (N−1) = α = N−2− (k+ j)

+1 if m+ i − (N−2) = α = N−1− (k+ j)

0 else.

We see that, in the sum above, the summands for two consecutive values ofα will cancel
unless one of them is zero and the other is not. We see that the total sum is equal to−1 if the
first non-zero summand is atα = i− j and+1 if the last non-zero summand is atα = 0. �

The following bubble-identities are an immediate consequence of Lemma 6.6 and (CN1)
and (CN2).

Corollary 6.7.

(49)

j

i

=





− (i−1,j) if i > j ≥ 0

(j−1,i) if j > i ≥ 0

0 if i = j
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(50)

i

(k,j)

=





− k+1 if i + j = N−1

j if i +k= N−2

0 else

The following identities follow easily from (CN1), (CN2), Lemma 6.3, Lemma 6.6 and
their corollaries.

Corollary 6.8.

+ ∑
a+b+c=N−2

a b

c

= (3C)

= − (RD1)

* = − + (RD2)

=− (FC)

Note that by the results above we are able to compute〈u〉KL combinatorially, for any closed
foamu whose singular graphs has no vertices, simply by using the cutting neck relations near
all singular circles and evaluating the resulting spheres and theta foams. If the singular graph
of u has vertices, then we do not know if our relations are sufficient to evaluateu. We
conjecture that they are sufficient, and that therefore our theory is strictly combinatorial, but
we do not have a complete proof.

Proposition 6.9. The following identities hold inFoamN:

(Thedigon removalrelations)

= − (DR1)

= ∑
a+b+c=N−2

a

b

c

=
N−2

∑
i=0

(i,0)

N−2−i

(DR2)
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** = − * + * − * (DR31)

*

=− ∑
0≤ j≤i≤N−3

*

*

(i,j,0)

(N−3−j,N−3−i,0)

(DR32)

*

=−
N−3

∑
i=0

*

(N−3−i,0,0)

*
i

(DR33)

(Thefirst square removalrelation)

=− + ∑
a+b+c+d=N−3

c b

a

d

(SqR1)

Proof. We first explain the idea of the proof. Naively one could try toconsider all closures
of the foams in a relation and compare their KL-evaluations.However, in practice we are
not able to compute the KL-evaluations of arbitrary closed foams with singular vertices.
Therefore we use a different strategy. We consider any foam in the proposition as a foam
from /0 to its boundary, rather than as a foam between one partof its boundary to another part.
If u is such a foam whose boundary is a closed webΓ, then by the properties explained in
Section 5 the KL-formula associates tou an element inH∗(Γ), which is the homology of the
complex associated toΓ in [6]. By Definition 6.1 and by the glueing properties of the KL-
formula, as explained in Section 5, the induced linear map from〈 |KL : FoamN( /0,Γ)→H∗(Γ)
is injective. The KL-formula also defines an inner product onFoamN( /0,Γ) by

(u,v) 7→ 〈uv̂〉KL.

By v̂ we mean the foam inFoamN(Γ, /0) obtained by rotatingv along the axis which corre-
sponds to they-axis (i.e. the horizontal axis parallel to the computer screen) in the original
picture in this proposition. By the results in [6] we know thedimension ofH∗(Γ). Sup-
pose it is equal tom and that we can find two sets of elementsui andu∗i in FoamN( /0,Γ),
i = 1,2, . . . ,m, such that

〈ui û∗j 〉KL = δi, j ,

whereδi, j is the Kronecker delta. Then{ui} and{u∗i } are mutually dual bases ofFoamN( /0,Γ)
and〈 |KL is an isomorphism. Therefore, two elementsf ,g ∈ FoamN( /0,Γ) are equal if and
only if

〈 f ûi〉KL = 〈gûi〉KL,
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for all i = 1,2, . . . ,m (alternatively one can use theu∗i of course). In practice this only helps
if the l.h.s. and the r.h.s. of thesem equations can be computed, e.g. iff ,g and theui are all
foams with singular graphs without vertices. Fortunately that is the case for all the relations
in this proposition.

Let us now prove (DR1) in detail. Note that the boundary of any of the foams in (DR1),
denotedΓ, is homeomorphic to the web

.

Recall that the dimension ofH∗(Γ) is equal to 2N(N− 1) (see [6]). For 0≤ i, j ≤ 1 and
0≤ m≤ k≤ N−2, letui, j;(k,m) denote the following foam

i

j
(k,m)

.

Let
u∗i, j;(k,m) = u1− j,1−i;(N−2−m,N−2−k).

From Equation (49) and the sphere relation (S2) it easily follows that〈ui, j;(k,m)û∗r,s;(t,v)〉KL =

δi,rδ j,sδk,tδm,v, whereδ denotes the Kronecker delta. Note that there are exactly 2N(N−1)
quadruples(i, j;(k, l)) which satisfy the conditions. Therefore theui, j;(k,m) define a basis of
H∗(Γ) and theu∗i, j;(k,m) define its dual basis. In order to prove (DR1) all we need to do next is
check that

〈(l.h.s. of (DR1))ûi, j;(k,m)〉KL = 〈(r.h.s. of (DR1))ûi, j;(k,m)〉KL,

for all i, j and(k,m). This again follows easily from equation (49) and the sphererelation
(S2).

The other digon removal relations are proved in the same way.We do not repeat the whole
argument again for each digon removal relation, but will only give the relevant mutually dual
bases. For (DR2), note thatΓ is equal to

.

Let ui,k,m denote the foam

k

(i,0)

(m,0)

for 0≤ i,m≤ N−2 and 0≤ k≤ N−1. The dual basis is defined by

u∗i,k,m =−uN−2−m,N−1−k,N−2−i ,

for the same range of indices. Note that there areN(N−1)2 possible indices, which corre-
sponds exactly to the dimension ofH∗(Γ).



30 MARCO MACKAAY, MARKO STOŠIĆ, AND PEDRO VAZ

For (DR31), the webΓ is equal to

* *
.

let ui;(k,m);(p,q,r) denote the foam

*

i

(k,m)

(p,q,r)

for 0≤ i ≤ 2, 0≤ m≤ k≤ 1 and 0≤ r ≤ q≤ p≤ N−3. The dual basis is given by

u∗i;(k,m);(p,q,r) = u2−(k+m);(1−⌊ i
2⌋,1−⌈ i

2⌉);(N−3−r,N−3−q,N−3−p),

for 0 ≤ t ≤ s≤ 1, 0≤ m≤ k ≤ 1 and 0≤ r ≤ q ≤ p ≤ N− 3. Note that there are 32
(N

3

)

possible indices, which corresponds exactly to the dimension of H∗(Γ).
For (DR32), takeΓ to be

*

* .

Let ui;(k,m);(s,t) denote the foam

i

*
*

(k,m,0)

(s,t,0)

for 0≤ i ≤ N−1, 0≤ m≤ k≤ N−3 and 0≤ t ≤ s≤ N−3. The dual basis is given by

u∗i;(k,m);(s,t) = uN−1−i;(N−3−t,N−3−s);(N−3−m,N−3−k),

for the same range of indices. Note that there areN
(N−1

2

)2
indices, which corresponds exactly

to the dimension ofH∗(Γ).
For (DR33), takeΓ to be

*

* .

Let ui, j;(k,m) denote the foam

*
i

*
(j,0,0)

(k,m
)

for 0≤ i, j ≤ N−3 and 0≤ m≤ k≤ N−2. Define

u∗i, j;(k,m) = uN−3− j,N−3−i;(N−2−m,N−2−k),

for the same range of indices. Note that there are(N− 2)2
(N

2

)
indices, which corresponds

exactly to the dimension ofH∗(Γ).
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For (SqR1), the relevant webΓ is equal to

.

By the results in [6] we know that the dimension ofH∗(Γ) is equal toN2+ 2N(N− 2)+
N2(N−2)2. The proof of this relation is very similar, except that it isslightly harder to find
the mutually dual bases inH∗(Γ). The problem is that the two terms on the right-hand side
of (SqR1) are topologically distinct. Therefore we get four different types of basis elements,
which are glueings of the upper or lower half of the first term and the upper or lower half of
the second term. For 0≤ i, j ≤ N−1, letui, j denote the foam

with the top simple facet labelled byi and the bottom one byj. Take

u∗i, j = uN−1− j,N−1−i .

Note that
〈ui, j û∗k,m〉KL = δi,kδ j,m

by the (FC) relation in Corollary 6.8 and the Sphere Relation(S1).
For 0≤ i ≤ N−1 and 0≤ k≤ N−3, letv′i,k denote the foam

with the simple square on the r.h.s. labelled byi and the other simple facet byk. Note that the
latter is only one facet indeed, because it has a saddle-point in the middle where the dotted
lines meet. For the same range of indices, we definew′

i,k by

with the simple square on the l.h.s. labelled byi and the other simple facet byk. The basis
elements are now defined by

vi,k = ∑
a+b+c=N−3−k

v′c,a+b+i

and
wi, j = ∑

a+b+c=N−3− j

w′
c,a+b+i .
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The respective duals are defined by

v∗i,k = w′
k,N−1−i and w∗

i,k = v′k,N−1−i .

We show that

〈vi, j v̂∗k,m〉KL = δi,kδ j,m = 〈vi, j v̂∗k,m〉KL

holds. First apply the (FC) relation of Corollary 6.8. Then apply (RD1) of the same corollary
twice and finally use the sphere relation (S1).

For 0≤ i, j ≤ N−1 and 0≤ k,m≤ N−3, lets′i, j,k,m denote the foam

with the simple squares labelled byk andm, from left to right respectively, and the other two
simple facets byi and j, from front to back respectively. The basis elements are defined by

si, j,k,m = ∑
a+b+c=N−3−k
d+e+ f=N−3−m

s′c, f ,i+a+d, j+b+e.

For the same range of indices, the dual elements of this shapeare given by

s∗i, j,k,m = s′m,k,N−1−i,N−1− j .

From (RD1) of Corollary 6.8, applied twice, and the sphere relation (S1) it follows that

〈sa,b,c,d ŝ∗i, j,k,m〉KL = δa,iδb, jδc,kδd,m

holds.
It is also easy to see that the inner product〈 〉KL of a basis element and a dual basis element

of distinct shapes, i.e. indicated by different letters above, gives zero. For example, consider

〈ui, j v̂∗k,m〉KL

for any valid choice ofi, j,k,m. At the place where the two different shapes are glued,

ui, j v̂∗k,m

contains a simple saddle with a simple-double bubble. By Equation (50) that bubble kills

〈ui, j v̂∗k,m〉KL,

becausem≤ N−3. The same argument holds for the other cases. This shows that {u,v,w,s}
and{u∗,v∗,w∗,s∗} form dual bases ofH∗(Γ), because the number of possible indices equals
N2+2N(N−2)+N2(N−2)2.

In order to prove (SqR1) one now has to compute the inner product of the l.h.s. and the
r.h.s. with any basis element ofH∗(Γ) and show that they are equal. We leave this to the
reader, since the arguments one has to use are the same as we used above. �
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Corollary 6.10. (Thesecond square removalrelation)

=− −
**

(SqR2)

Proof. Apply the Relation (SqR1) to the simple-double square tube perpendicular to the triple
facet of the second term on the r.h.s. of (SqR2). The first term on the r.h.s. of (SqR1) yields
minus the first term on the r.h.s. of (SqR2) after applying the relations (DR32), (MP) and the
Bubble Relation (46). The second term on the r.h.s. of (SqR1), i.e. the whole sum, yields
the l.h.s. of (SqR2) after applying the relations (DR33), (MP) and the Bubble Relation (46).
Note that the signs come out right because in both cases we gettwo bubbles with opposite
orientations. �

7. INVARIANCE UNDER THE REIDEMEISTER MOVES

Let Kom(FoamN) andKom/h(FoamN) denote the category of complexes inFoamN and
the same category modulo homotopies respectively. As in [1]and [9] we can take all different
flattenings ofD to obtain an object inKom(FoamN) which we call〈D〉. The construction is
well known by now and is indicated in Figure 7.

〈"〉 = 0−→ 〈Q〉 −→ 〈[〉 −→ 0

〈!〉 = 0−→ 〈[〉 −→ 〈Q〉 −→ 0

FIGURE 7. Complex associated to a crossing. Underlined terms correspond
to homological degree zero

Theorem 7.1. The bracket〈 〉 is invariant inKom/h(FoamN) under the Reidemeister moves.

Proof. Reidemeister I: Consider diagramsD andD′ that differ in a circular region, as in the
figure below.

D = D′ =

We give the homotopy between complexes〈D〉 and〈D′〉 in Figure 82. By the Sphere Relation
(S1), we getg0 f 0 = Id〈D′〉0. To see thatd f0 = 0 holds, one can use dot mutation to get a new
labelling of the same foam with the double facet labelled byπN−1,0, which kills the foam
by the dot conversion relations. The equalitydh= Id〈D〉1 follows from (DR2). To show
that f 0g0 + hd = Id〈D〉0, apply (RD1) to hd and then cancel all terms which appear twice
with opposite signs. What is left is the sum ofN terms which is equal toId〈D〉0 by (CN1).
Therefore〈D′〉 is homotopy-equivalent to〈D〉.

2We thank Christian Blanchet for spotting a mistake in a previous version of this diagram.
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〈D〉 :

〈D′〉 :

g0 =

��

d =

//

h= ∑
a+b+c=N−2

a

b

c

oo

0 //

f 0 =
N−1
∑

i=0

i

N−1−i

OO

0
��

0

OO

FIGURE 8. Invariance underReidemeister I

Reidemeister IIa: Consider diagramsD andD′ that differ in a circular region, as in the figure
below.

D = D′ =

We only sketch the arguments that the diagram in Figure 9 defines a homotopy equivalence
between the complexes〈D〉 and〈D′〉:

D’ :

D :

−
0

0 0

I

fg
0

FIGURE 9. Invariance underReidemeister IIa
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• g and f are morphisms of complexes (use only isotopies);
• g1 f 1 = Id〈D′〉1 (uses equation (49));
• f 0g0+hd= Id〈D〉0 and f 2g2+dh= Id〈D〉2 (use isotopies);
• f 1g1+dh+hd= Id〈D〉1 (use (DR1)).

Reidemeister IIb: Consider diagramsD andD′ that differ only in a circular region, as in the
figure below.

D = D′ =

Again, we sketch the arguments that the diagram in Figure 10 defines a homotopy equivalence
between the complexes〈D〉 and〈D′〉:

D :

D’ : 0 0

a

b

ca c
b

d
c

a
b

0

fg
0

a+b+c = N−2Σ− Σ
a+b+c = N−2

−

a+b+c+d=N−3

Σ

FIGURE 10. Invariance underReidemeister IIb

• g and f are morphisms of complexes (use isotopies and DR2);
• g1 f 1 = Id〈D′〉1 (use (FC) and (S1));
• f 0g0+hd= Id〈D〉0 and f 2g2+dh= Id〈D〉2 (use (RD1) and (DR2));
• f 1g1+dh+hd= Id〈D〉1 (use (DR2), (RD1), (3C) and (SqR1)).
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Reidemeister III: Consider diagramsD andD′ that differ only in a circular region, as in the
figure below.

D = D′ =

In order to prove that〈D′〉 is homotopy equivalent to〈D〉 we show that the latter is homotopy
equivalent to a third complex denoted〈Q〉 in Figure 11. The differential in〈Q〉 in homological
degree 0 is defined by

**

for one summand and a similar foam for the other summand. By applying a symmetry relative
to a horizontal axis crossing each diagram in〈D〉 and〈Q〉 we obtain a homotopy equivalence
between〈D′〉 and〈Q′〉. It is easy to see that〈Q〉 and〈Q′〉 are isomorphic. In homological
degree 0 the isomorphism is given by the obvious foam with twosingular vertices. In the
other degrees the isomorphism is given by the identity (in degrees 1 and 2 one has to swap
the two terms of course). The fact that this defines an isomorphism follows immediately from
the (MP) relation. We conclude that〈D〉 and〈D′〉 are homotopy equivalent. �

From Theorem 7.1 we see that we can use any diagramD of L to obtain the invariant in
Kom/h(FoamN) which justifies the notation〈L〉 for 〈D〉.

8. FUNCTORIALITY

The proof of the functoriality of our homology follows the same line of reasoning as in
[1] and [9]. As in those papers, it is clear that the construction and the results of the previous
sections can be extended to the category of tangles, following a similar approach using open
webs and foams with corners. A foam with corners should be considered as living inside a
cylinder, as in [1], such that the intersection with the cylinder is just a disjoint set of vertical
edges.

The degree formula can be extended to the category of open webs and foams with corners
by

Definition 8.1. Let u be a foam withd
℄

dots of type℄, d
^

dots of type^ andd
_

dots of
type_. Let bi be the number of vertical edges of typei of the boundary ofu. Theq-grading
of u is given by

(51) q(u) =−
3

∑
i=1

i(N− i)qi(u)−2(N−2)qsγ (u)+
1
2

3

∑
i=1

i(N− i)bi +2d
℄

+4d
^

+6d
_

.

Note that the Kapustin-Li formula also induces a grading on foams with corners, because
for any foamu between two (open) websΓ1 andΓ2, it gives an element in the graded vector
space Ext(M1,M2), whereMi is the matrix factorization associated toΓi in [6], for i = 1,2.
Recall that the Ext groups have aZ/2Z×Z-grading. For foams there is noZ/2Z-grading,
but theZ-grading survives.

Lemma 8.2. For any foam u, the Kapustin-Li grading of u is equal to q(u).
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D
:

:
Q *

*

−

−

−
I

I
−

I
−

I

I

I

*

−

FIGURE 11. Invariance underReidemeister III. A circle attached to the tail
of an arrow indicates that the corresponding morphism has a minus sign.

Proof. Both gradings are additive under horizontal and vertical glueing and are preserved
by the relations inFoamN. Also the degrees of the dots are the same in both gradings.
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Therefore it is enough to establish the equality between thegradings for the foams which
generateFoamN. For any foam without a singular graph the gradings are obviously equal,
so let us concentrate on the singular cups and caps, the singular saddle point cobordisms and
the cobordisms with one singular vertex in Figure 4. To compute the degree of the singular
cups and caps, for both gradings, one can use the digon removal relations. For example, let
us consider the singular cup

.

Any grading that preserves relation (DR1) has to attribute the value of−1 to that foam,
because the foam on the l.h.s. of (DR1) has degree 0, being an identity, and the dot on the
r.h.s. has degree 2. Similarly one can compute the degrees ofthe other singular cups and caps.
To compute the degree of the singular saddle-point cobordisms, one can use the removing disc
relations (RD1) and (RD2). For example, the saddle-point cobordism in Figure 4 has tohave
degree 1. Finally, using the (MP) relation one shows that both foams on the r.h.s. in Figure 4
have to have degree 0. �

Corollary 8.3. For any closed foam u we have that〈u〉KL is zero if q(u) 6= 0.

As in [9] we have the following lemma, which is the analogue ofLemma 8.6 in [1]:

Lemma 8.4. For a crossingless tangle diagram T we have that HomFoamN(T,T) is zero in
negative degrees andQ in degree zero.

Proof. Let T be a crossingless tangle diagram andu ∈ HomFoamN(T,T). Recall thatu can
be considered to be in a cylinder with vertical edges intersecting the latter. The boundary of
u consists of a disjoint union of circles (topologically speaking). By dragging these circles
slightly into the interior ofu one gets a disjoint union of circles in the interior ofu. Apply re-
lation (CN1) to each of these circles. We get a linear combination of terms in HomFoamN(T,T)
each of which is the disjoint union of the identity onT, possibly decorated with dots, and a
closed foam, which can be evaluated by〈 〉KL. Note that the identity ofT with any num-
ber of dots has always non-negative degree. Therefore, ifu has negative degree, the closed
foams above have negative degree as well and evaluate to zero. This shows the first claim in
the lemma. Ifu has degree 0, the only terms which survive after evaluating the closed foams
have degree 0 as well and are therefore a multiple of the identity on T. This proves the second
claim in the lemma. �

The proofs of Lemmas 8.7-8.9 in [1] are “identical”. The proofs of Theorem 4 and The-
orem 5 follow the same reasoning but have to be adapted as in [9]. One has to use the
homotopies of our Section 7 instead of the homotopies used in[1]. Without giving further
details, we state the main result. LetKom/Q∗h(FoamN) denote the categoryKom/h(FoamN)
modded out byQ∗, the invertible rational numbers. Then

Proposition 8.5. 〈 〉 defines a functorLink → Kom/Q∗h(FoamN).

9. THE sl(N)-LINK HOMOLOGY

Definition 9.1. Let Γ, Γ′ be closed webs andf ∈ HomFoamN(Γ,Γ′). Define a functorF
between the categoriesFoamN and the categoryVectZ of Z-graded rational vector spaces
andZ-graded linear maps as
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(1) F (Γ) = HomFoamN( /0,Γ),
(2) F ( f ) is the Q-linear mapF ( f ) : HomFoamN( /0,Γ) → HomFoamN( /0,Γ′) given by

composition.

Note thatF is a tensor functor and that the degree ofF ( f ) equalsq( f ). Note also that
F (S) ∼= H∗

(
CPN−1

)
{−N+1} andF ( )∼= H∗ (G2,N){−2N+4}.

The following are a categorified version of the relations in Figure 3.

Lemma 9.2(MOY decomposition). We have the following decompositions under the functor
F :

(1) F

( )
∼= F

()
{−1}

⊕
F

()
{1}.

(2) F

( )
∼=

N−2⊕
i=0

F

( )
{2−N+2i}.

(3) F

( )
∼= F

( )
⊕
(

N−3⊕
i=0

F

( )
{3−N+2i}

)
.

(4) F






⊕

F





∼= F






⊕

F





.

Proof. (1): Define grading-preserving maps

ϕ0 : F

( )
{1} → F

()
ϕ1 : F

( )
{−1}→ F

()

ψ0 : F

()
→ F

( )
{1} ψ1 : F

()
→ F

( )
{−1}

as

ϕ0 =F

( )
, ϕ1 =F

( )
, ψ0 =F

( )
, ψ1 =−F

( )
.

The bubble identities imply thatϕiψ j = δi, j (for i, j = 0,1) and from the (DR1) relation it

follows thatψ0ϕ0+ψ1ϕ1 is the identity map inF
( )

.

(2): Define grading-preserving maps

ϕi : F

( )
{N−2−2i}→ F

( )
, ψi : F

( )
→ F

( )
{N−2−2i} ,

for 0≤ i ≤ N−2, as

ϕi = F




N−2−i


 , ψi =

i

∑
j=0

F




i−j

j


 .
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We haveϕiψk = δi,k and
N−2
∑

i=0
ψiϕi = Id

(
F

( ))
. The first assertion is straight-

forward and can be checked using the (RD) and (S1) relations and the second is immediate
from the (DR2) relation, which can be written as

=
N−2

∑
i=0

i

∑
j=0

i−j

j

N−2−i

(DR2)

(3): Define grading-preserving maps

ϕi : F

( )
{N−3+2i}→ F

( )
, ψi : F

( )
→ F

( )
{N−3+2i} ,

for 0≤ i ≤ N−3, and

ρ : F

( )
→ F

( )
, τ : F

( )
→ F

( )
,

as

ϕi = F




i


 , ψi = ∑

a+b+c=N−3−i

F




a b

c


 ,

ρ = F





 , τ =−F





 .

Checking thatϕiψk = δi,k for 0≤ i,k ≤ N− 3, ϕiτ = 0 andρψi = 0, for 0≤ i ≤ N− 3,

andρτ = −1 is left to the reader. From the (SqR1) relation it follows thatτρ +
N−3
∑

i=0
ψiϕi =

Id
(
F
( ))

.
Direct Sum Decomposition (4): We prove direct decomposition (4) showing that

F





∼= F






⊕

F


*


 F





∼= F






⊕

F


 *


 .

a) b)

Note that this suffices because the last term on the r.h.s. of a) is isomorphic to the last term
on the r.h.s. of b) by the (MP) relation.

To provea) we define grading-preserving maps

ϕ0 : F





→ F





 , ϕ1 : F





→ F


 *


 ,
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ψ0 : F





→ F





 , ψ1 : F


 *


→ F





 ,

by

ϕ0 =−F





 , ϕ1 =−F


 **


 ,

ψ0 = F





 , ψ1 = F




**


 .

We have thatϕiψ j = δi, j for i, j = 0,1 (we leave the details to the reader). From the (SqR2)
relation it follows that

ψ0ϕ0+ψ1ϕ1 = Id


F







 .

Applying a symmetry to all diagrams in decompositiona) gives us decompositionb). �

In order to relate our construction to thesl(N) polynomial we need to introduce shifts.
We denote by{n} an upward shift in theq-grading byn and by[m] an upward shift in the
homological grading bym.

Definition 9.3. Let 〈L〉i denote thei-th homological degree of the complex〈L〉. We define
the i-th homological degree of the complexF (L) to be

Fi(L) = F 〈L〉i [−n−]{(N−1)n+−Nn−+ i},

wheren+ andn− denote the number of positive and negative crossings in the diagram used
to calculate〈L〉.

We now have a homology functorLink → VectZ which we still callF . Definition 9.3,
Theorem 7.1 and Lemma 9.2 imply that

Theorem 9.4. For a link L the graded Euler characteristic of H∗ (F (L)) equals PN(L), the
sl(N) polynomial of L.

The MOY-relations are also the last bit that we need in order to show the following theo-
rem.

Theorem 9.5. For any link L, the bigraded complexF (L) is isomorphic to the Khovanov-
Rozansky complex KR(L) in [6].

Proof. The map〈 |KL defines a grading preserving linear injectionF (Γ) → KR(Γ), for any
web Γ. Lemma 9.2 implies that the graded dimensions ofF (Γ) andKR(Γ) are equal, so
〈 |KL is a grading preserving linear isomorphism, for any webΓ.

To prove the theorem we would have to show that〈 |KL commutes with the differentials.
We call
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thezip and

theunzip. Note that both the zip and the unzip haveq-degree 1. LetΓ1 be the source web of
the zip andΓ2 its target web, and letΓ be the theta web, which is the total boundary of the
zip where the vertical edges have been pinched. Theq-dimension of Ext(Γ1,Γ2) is equal to

q2N−2 qdim(Γ) = q+q2(. . .),

where(. . .) is a polynomial inq. Therefore the differentials in the two complexes commute
up to a scalar. By the removing disc relation (RD1) we see that if the “zips” commute up toλ ,
then the “unzips” commute up toλ−1. If λ 6= 1, we have to modify our map between the two
complexes slightly, in order to get an honest morphism of complexes. We use Khovanov’s
idea of “twist equivalence” in [4]. For a given link considerthe hypercube of resolutions.
If an arrow in the hypercube corresponds to a zip, multiply〈(target)|KL by λ , where target
means the target of the arrow. If it corresponds to an unzip, multiply 〈(target)|KL by λ−1.
This is well-defined, because all squares in the hypercube (anti-)commute. By definition this
new map commutes with the differentials and therefore proves that the two complexes are
isomorphic. �

We conjecture that the above isomorphism actually extends to link cobordisms, giving a
projective natural isomorphism between the two projectivelink homology functors. Proving
this would require a careful comparison between the two functors for all the elementary link
cobordisms.
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