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Abstract

The sole purpose of this paper is to give an algebraic characterization, in terms of

a superamalgamation property, of a local version of Craig interpolation theorem

that has been introduced and studied in earlier papers. We continue ongoing

research in abstract algebraic logic and use the framework developed by Andréka–

Németi and Sain.
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1. Introduction

The aim of this paper is to give an algebraic characterization of a local
version of Craig’s interpolation theorem that has been earlier studied in
[12], [17]. We use the framework of universal algebraic logic as introduced
in [1, 2]. This approach is strongly related to that of Blok and Pigozzi
[5, 4, 6, 19], Czelakowski [9], Font–Jansana [10, 11], and Henkin–Monk–
Tarski [13]. However, to keep the present work self-contained we briefly
recall the indispensable definitions and theorems in Section 2. In algebraic
logic one is interested in (i) finding a general method for assigning a class
of algebras Alg(L) to a logic L, and (ii) having such a method one wishes
to establish equivalence theorems of the following kind

Logic L has property P ⇐⇒ Alg(L) has property Alg(P ).

For example, if L is a modal logic, then Alg(L) is a class of Boolean al-
gebras with operators, where the extra Boolean operators correspond to
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the modalities of L. Many such equivalence results have been established
in the literature so far. Very rough examples are: completeness theorems
for logics correspond to representation theorems for algebras; compactness
properties correspond to the class of algebras being closed under ultra-
products; Beth definability theorems correspond to certain epimorphisms
between algebras being surjective. For details we suggest [1, 2] and ref-
erences therein: the literature contains similar theorems for a very large
number of further logical properties.

Craig interpolation property has been investigated ever since Craig
proved that this property holds for usual first order logic. Related problems
have been intensively studied in the literature of algebraic logic. It turned
out that interpolation properties of different logics are strongly related to
various amalgamation properties of certain classes of algebras. We refer to
Pigozzi [18], Sain [20] and to Sági–Shelah [21] and references therein. Craig
interpolation property has two major versions: (|= Craig) and ( Craig).

A logic L1 is said to have (|= Craig) property (see [14]) if whenever φ |=
ψ there is χ using only propositional letters common in φ and ψ such that
φ |= χ and χ |= ψ. It has been shown in Czelakowski [7] (Theorem 3) that
(|= Craig) interpolation property of L (for certain logics L) is equivalent
to Alg(L) having the amalgamation property.

In ( Craig) property  is a derived connective of the logic L under
consideration and need not be any kind of usual implication. It can be e.g.
intuitionistic implication or �(φ→ ψ) of modal logic, or �(φ→ 〈Future〉ψ)
of temporal logic, and many others. A logic L has ( Craig) property if
whenever |= φ  ψ there is χ using only propositional letters common
in φ and ψ such that |= φ  χ and |= χ  ψ. It has been proved in
[14, 2] that the algebraic property which corresponds to ( Craig) is the
superamalgamation property with respect to a relation R defined from
 . (The original version of superamalgamation has been introduced by
Maksimova [16, 15] and further studied and generalized by Madarász [14]).
Note that if the logic L in question carries a deduction theorem, then the
two mentioned versions of Craig interpolation theorem can be deduced from
each other (cf. [1, 2]).

There is a tradition in algebraic logic to study local versions of classical
theorems of logics, e.g. one defines the notion of local explicit definition
with respect to weak Beth definability property (cf. Chapter 7 in [2]) or

1The necessary definitions will be recalled in Section 2.
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local Craig interpolation with respect to homogeneous first order structures
[12]. Following [12] our logic L is said to have ( Local Craig) interpolation
property if whenever M |= φ  ψ there is χ using the common atomic
formulas (propositional letters) of φ and ψ only, such that M |= φ  χ
and M |= χ  ψ. Having propositional-like logics in mind one might be
tempted to think at this point that such a property should trivially hold as
either χ = True or χ = False should work. However, this is far from being
the case. One reason is that need not be any kind of classical implication
(as mentioned above), another reason is that our logic need not behave as
a propositional logic. In Section 5 we give an easy example for two very
similar propositional logics, one having (→ Local Craig) property, the other
not.

In this paper we give an algebraic characterization of the mentioned
local version of Craig interpolation property. In particular we show in The-
orem 4.2 that ( Local Craig) interpolation (Definition 4.1) of a logic L

corresponds to a strong version of the superamalgamation property (Defi-
nition 3.3).

The paper is organized as follows. In the first section we briefly recall
the Andréka–Német–Sain approach to universal algebraic logic from [1, 2].
The framework is strongly related to that of Blok and Pigozzi [5, 4, 6, 19]
or Font–Jansana [10, 11]; if the Reader is familiar with any of these (or
similar) approaches, then we suggest skipping this section. Section 3 is
devoted to the strong superamalgamation property which will be used in
Theorem 4.2. In Section 4, after having defined ( Local Craig) property
we give the long-promised algebraic characterization. Then in Section 5 we
conclude with an easy example.

2. Preliminary definitions

In order to keep the paper more or less self-contained this section gives
some preliminary definitions and theorems. Everything in this section can
be found in a detailed form in [1, 2]. To save space the presentation here
we will be brief.

Definition 2.1 (Logic). A logic is a tuple L = 〈F,M,mng, |=〉 such that

• F (called the set of formulas) is a subset of finite sequences over some

alphabet;
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• M is a class (called the class of models);

• |=⊆M × F (validity relation);

• ∀φ, ψ ∈ F and M ∈M we have
(

mngM(φ) = mngM(ψ) and M |= φ
)

=⇒M |= ψ.

Definition 2.2 (Strongly nice logic). We say that L = 〈F,M,mng, |=〉 is
strongly nice if conditions (1)-(4) below hold.

1. There is a set Cn(L) of logical connectives and a set P (called atomic

formulas) such that F is the universe of the absolutely free algebra

(word algebra) generated by P in similarity type Cn. The word alge-

bra is denoted by F . If we want to emphasize the role of P , then we

write FP , FP , etc.

2. The function mngM is a homomorphism from F into some algebra,

for every M ∈M . (Compositionality).

3. Filter property: There are derived binary connectives ∆1, . . . ,∆n for

some n ∈ ω, n > 0 and derived connectives ε1, . . . , εm and δ1, . . . , δm
for some m > 0 such that

(i) (∀M ∈M)(∀φ, ψ ∈ F )
(

mngM(φ) = mngM(ψ)⇔ (∀i ≤ n) M |=

φ∆iψ
)

(ii) (∀M ∈ M)(∀φ ∈ F )
(

M |= φ ⇔ (∀j ≤ m)(∀i ≤ n) M |=

εj(φ)∆iδj(φ)
)

4. (∀M ∈ M)(∀h ∈ Hom(F ,mngM[F ]))(∃N ∈ M) mngN = h, where

for any homomorphism h : A → B, h[A] denotes the homomorphic

image of A along h. This property is called the semantic substitution

property.

As an illustration we mention that in case of classical propositional
logic we can take ε(φ) = True, δ(φ) = φ and ∆ =↔. Then item (3) of
Definition 2.2 reduces to the natural assumptions:

(i) (∀M ∈M)(∀φ, ψ ∈ F )
(

mngM(φ) = mngM(ψ)⇔M |= φ↔ ψ
)

(ii) (∀M ∈M)(∀φ ∈ F )
(

M |= φ⇔M |= True↔ φ
)

In case of the modal logic S5 one can also take φ∆ψ = �(φ ↔ ψ). Im-
plicational logic, where → is the only connective is an example of a logic
where n > 1 is needed. There we can take n = 2 and ∆1 =→, ∆2 =←.

Throughout the paper we will assume, for simplicity, that n=m= 1
in Definition 2.2(3). The Readers can convince themselves that this
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assumption can easily be bypassed and this just saves us from making
long formulas even longer.

Definition 2.3 (Algebraic counterpart). Let L = 〈F,M,mng, |=〉 be a

strongly nice logic.

• For K ⊆M define an equivalence relation ∼K on the formula algebra

F as follows

(∀φ, ψ ∈ F )
(

φ ∼K ψ ⇐⇒ (∀M ∈ K) mngM(φ) = mngM(ψ)
)

Since F is a set {∼K : K ⊆M} is also a set and by Definition 2.2(2)

∼K is a congruence relation. Write

Alg|=(L) = I
{

F/∼K : K ⊆M
}

where I denotes the operation of taking isomorphic copies.

• Algm(L) =
{

mngM[F ] : M ∈M
}

.

Theorem 2.4. For any strongly nice logic L we have

Algm(L) ⊆ Alg|=(L) ⊆ SPAlgm(L) = SPAlg|=(L)

Definition 2.5 (General logic). A general logic is a class L = 〈LP : P is

a set〉, where for each set P , LP = 〈FP ,MP ,mngP , |=P 〉 is a logic in the

sense of Definition 2.1. L is called strongly nice if conditions (1)-(4) below

hold.

1. For each set P , LP is strongly nice.

2. For any sets P,Q, Cn(LP ) = Cn(LQ)
def
= Cn(L) and the distin-

guished connectives ∆i, εj , δj in Definition 2.2(3) are the same.

3. If f : P → Q is a bijection, then LQ is ‘isomorphic’ to LP , that is,

there exists a bijection fM : MP → MQ such that for all φ ∈ FP

and M ∈MP we have

mngP
M(φ) = mngQ

fM (M)
(fF (φ)),

and

M |=P φ =⇒ fM (M) |=Q fF (φ).

Here fF is the isomorphism fF : FP → FQ induced by f .
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4. For all sets P ⊆ Q we have
{

mngP
M : M ∈MP

}

=
{

(mngQ
M

) ↾ FP : M ∈MQ
}

Definition 2.6 (Algebraic counterpart of a general logic). Let L = 〈LP :
P is a set〉 be a strongly nice general logic. Then

Alg|=(L) =
⋃

{

Alg|=(LP ) : P is a set
}

Algm(L) =
⋃

{

Algm(LP ) : P is a set
}

Theorem 2.7. For a strongly nice general logic we have Alg|=(L) =
SPAlgm(L).

Theorem 2.8. For a strongly nice general logic and a formula φ ∈ FL we

have

|=L φ iff Alg|=(L) |= εj(φ) = δj(φ), for all j < m.

Remark 2.9. For a strongly nice logic L = 〈F,M,mng, |=〉, a model M ∈
M and a formula α ∈ F we have the following equivalence:

M |= α ⇔ M |= ε(α)∆δ(α) Definition 2.2(3)(ii)

⇔ mngM(ε(α)) = mngM(δ(α)) Definition 2.2(3)(i)

⇔ mngM[F ] |= ε(α) = δ(α)

Finally, we will make use of the patchwork property of models:

Definition 2.10 (Patchwork property). We say that the general logic L

has the patchwork property if

(∀sets P,Q)(∀M ∈MP )(∀N ∈MQ)
(

FP∩Q 6= ∅ and mngP
M ↾ F

P∩Q = mngQ
N
↾ FP∩Q

)

=⇒

=⇒ (∃A ∈MP∪Q)
(

mngP∪Q
A

↾ FP = mngP
M and mngP∪Q

A
↾ FQ = mngQ

N

)

The patchwork property is a very natural property of logics: most of
the logics discussed in the literature enjoys this property, cf. Chapter 7
in [2]. The next theorem shows that from the algebraic point of view the
patchwork property is a mild assumption.
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Theorem 2.11. For every strongly nice general logic L there is a strongly

nice general logic L′ such that Alg|=(L) = Alg|=(L′) and L′ has the patch-

work property.

We adopted here the Andréka–Német–Sain approach to universal alge-
braic logic [1, 2]. This approach originates in Tarski and others’ process of
algebraization of first order logic by using cylindric algebras. An other way
of algebraizing logics is developed by Blok, Pigozzi [4, 5] and Czelakowski
and is based on earlier work on logical matrices by other logicians such as
 Lukasiewicz and  Loś.

One of the main differences between the two approaches is the definition
of what a logic is. It has been shown in Font–Jansana [10, 11] that the
class of strongly nice general logics (Definition 2.5) is equivalent to the
main class of algebraizable sentential logics in the sense of Blok–Pigozzi,
moreover under some natural restrictions the classes of algebras associated
with a logic by the two approaches are the same. For a comprehensive,
thorough comparison of the two approaches we suggest the paper [10].

3. The strong superamalgamation property

Superamalgamation property goes back to Maksomiva [16, 15]. According
to the original definition (cf. Definition 7.0.55 in [2]) a class K of partially
ordered similar algebras has the superamalgamation property if for any
A0,A1,A2 ∈ K and for any embeddings i1 : A0 → A1 and i2 : A0 → A2

there exists an A ∈ K and embeddings m1 : A1 → A, m2 : A2 → A such
that m1 ◦ i1 = m2 ◦ i2 and

(∀x∈Aj)(∀y ∈ Ak)
(

mj(x) ≤ mk(y)=⇒(∃z∈A0)(x ≤ ij(z) and ik(z) ≤ y)
)

where {j, k} = {1, 2}. A slightly modified version of the superamalgama-
tion property has been introduced in [14]. Intuitively, the main difference is
that the relation therein is not necessarily an ordering but is term-definable
in the following sense.

Definition 3.1. Let t be an algebraic similarity type and e(x, y) an equa-

tion of type t containing x and y as its only variables. Let K be a class

of algebras of type t. For every A ∈ K we define a binary relation Re

corresponding to equation e as follows:

(∀a, b ∈ A)(a Re b iff A |= e(a, b))
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From now on we fix an algebraic similarity type t and a class K of
algebras of type t. We write SUPAP for superamalgamation property. Let
us recall the definition of (Re SUPAP) from [14].

Definition 3.2 (Re SUPAP). Let e(x, y) be an equation having x, y as

its only variables and Re the corresponding binary relation in the sense of

Definition 3.1. We say that K has (Re SUPAP) if for every A1,A1,A2 ∈ K

and embeddings i1 : A0 → A1, i2 : A0 → A2 there exists A ∈ K and

embeddings m1 : A1 → A, m2 : A2 → A such that the following diagram

A1

A0 A

A2

i1 m1

i2 m2

commutes and satisfies

(∀x∈Aj)(∀y∈Ak)
(

mj(x)Re mk(y)=⇒(∃z∈A0)(x Re ij(z) and ik(z)Re y)
)

where {j, k} = {1, 2}.

The original definition in [14] dealt with a set of equations instead of
a single equation e. One could easily modify Definitions 3.1, 3.2 (and the
forthcoming Definition 3.3) to handle the case with a set of equations. But
to keep the text simple we will refrain from doing so and stick to the single
equation case.

Madarász [14] also introduces the (Free Re SUPAP) property: K has
the (Free Re SUPAP) if in Definition 3.2 we have A0 = FrK(X ∩ Y ), A1 =
FrK(X), A2 = FrK(Y ) and A = FrK(X ∪ Y ) are K-free algebras and the
embeddings are the natural embeddings between the free algebras (for a
more precise definition see Definition 4.4 in [14]).

The amalgamation property we make use of is a slight modification of
Definition 3.2.

Definition 3.3 (Strong Re SUPAP). Let e(x, y) be an equation having

x, y as its only variables and Re the corresponding binary relation in the

sense of Definition 3.1. We say that K has (Strong Re SUPAP) if for every
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A0, A1, A2 ∈ K with A0 ≤ A1 and A0 ≤ A2 there exists A ∈ K such that

A1 ≤ A, A2 ≤ A and we have

(∀x ∈ Aj)(∀y ∈ Ak)
(

x Re y ⇒ (∃z ∈ A0)(x Re z and z Re y)
)

where {j, k} = {1, 2}.

The difference between (Re SUPAP) and (Strong Re SUPAP) is that
in the latter we require the embeddings i1, i2, m1 and m2 in Definition 3.2
to be the inclusion maps. Note that as Ai ≤ A it does not matter whether
xRez is evaluated in Ai or in A, thus the definition makes sense.

4. Local Craig interpolation

Definition 4.1. Let L be a general logic and let  be a derived binary

connective of L. We say that L has the ( Local Craig) interpolation

property if for every φ, ψ ∈ FL and model M ∈ML whenever M |= φ ψ
and (⋆) below holds, then also M |= φ  χ and M |= χ  ψ for some

χ ∈ FL with Voc(χ) ⊆ Voc(φ) ∩ Voc(ψ), where Voc(α) denotes the set of

atomic formulas occurring in α, for any formula α ∈ FL.

{χ ∈ FL : Voc(χ) ⊆ Voc(φ) ∩Voc(ψ)} 6= ∅ (⋆)

Theorem 4.2. Let L be a strongly nice general logic satisfying the patch-

work property. Assume L has a derived binary connective  and let R be

the binary relation which corresponds to the equation ε(x y) = δ(x y)
in the sense of Definition 3.1. Then the following statements below hold.

(i) Assume that M |= φ  ψ implies {χ ∈ FL : Voc(χ) ⊆ Voc(φ) ∩
Voc(ψ)} 6= ∅. Then
(

L has ( Local Craig)
)

=⇒
(

Algm(L) has (Strong R SUPAP)
)

(ii)
(

L has ( Local Craig)
)

⇐=
(

Algm(L) has (Strong R SUPAP)
)

(iii) Assume the similarity type of Alg(L) contains at least one constant

symbol. Then
(

L has ( Local Craig)
)

⇐⇒
(

Algm(L) has (Strong R SUPAP)
)

Proof. (ii) Assume Algm(L) has (Strong R SUPAP), let φ, ψ ∈ FL and
let M ∈ ML be a model such that M |= φ  ψ and {χ ∈ FL : Voc(χ) ⊆
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Voc(φ) ∩ Voc(ψ)} 6= ∅. We need to find χ ∈ FL with Voc(χ) ⊆ Voc(φ) ∩
Voc(ψ) such that M |= φ  χ and M |= χ  ψ hold. Write V = Voc(φ)
and W = Voc(ψ). Take the following algebras: A = mngV ∪W

M
[FV ∪W ],

A1 = mngV ∪W
M

[FV ], A2 = mngV ∪W
M

[FW ], A0 = mngV ∪W
M

[FV ∩W ].

Lemma 4.3. Ai ≤ A for i ≤ 2 and A0 ≤ A1 ∩ A2. For all i ≤ 2 we have

Ai,A ∈ Algm(L).

Proof. That A0 ≤ A1 and A0 ≤ A2 follows from the very fact that
FV ∩W ≤ FV ∩FW and that mngV ∪W

M
is a homomorphism. Thus we need

to verify A0,A1,A2 ∈ Algm(L). We prove more: If L is strongly nice, then
Algm(L) is closed under taking subalgebras.

To this end let A ∈ Algm(L) and B ≤ A. We prove B ∈ Algm(L). Take
any surjection g : A→ B and let ḡ : FA → B be the unique homomorphism
that extends g. By the substitution property (Definition 2.2(4)) there is a
model M ∈MA with ḡ = mngA

M
and therefore B = mngA

M
[FA] ∈ Algm(L).

�

Let now x = mngV ∪W
M

(φ) and y = mngV ∪W
M

(ψ). By the filter prop-
erty (Definition 2.2(3)) and Remark 2.9, M |= φ  ψ is equivalent to
A |= xR y. By (Strong R SUPAP) of Algm(L) there is z ∈ A0 such that
xR z and zR y. As z ∈ A0 there must exists some χ ∈ FV ∩W such that
z = mngV ∪W

M
(χ). Then xR z implies M |= φ  χ and zR y implies

M |= χ ψ.

(i) Assume that M |= φ  ψ implies {χ ∈ FL : Voc(χ) ⊆ Voc(φ) ∩
Voc(ψ)} 6= ∅ and that L has ( Local Craig). In order to show that
Algm(L) has (Strong R SUPAP) pick algebras A0, A1, A2 ∈ Algm(L)
such that A0 ≤ A1 ∩ A2.

Lemma 4.4. If L is a strongly nice general logic that has the patchwork

property, then for every A0, A1, A2 ∈ Algm(L) with A0 ≤ A1 ∩ A2 there is

A ∈ Algm(L) such that A1 ≤ A and A2 ≤ A.

Proof. Suppose A0, A1, A2 ∈ Algm(L) are such that A0 ≤ A1 and A0 ≤ A2.
Let f : A1 → A1 and g : A2 → A2 be the identity mappings. Then
f and g extend to homomorphisms f̄ : FA1 → A1 and ḡ : FA2 → A2.
By the substitution property of L (Definition 2.2(4)) there are models
M ∈ MA1 and N ∈ MA2 so that f̄ = mngA1

M
and ḡ = mngA2

N
. By the
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patchwork property (Definition 2.10) for some model D ∈ MA1∪A2 we
have mngA1∪A2

D
↾ FA1 = mngA1

M
and mngA1∪A2

D
↾ FA2 = mngA2

N
. It follows

that A1 = mngA1

M
[FA1 ] ≤ mngA1∪A2

D
[FA1∪A2 ] and A2 = mngA2

N
[FA2 ] ≤

mngA1∪A2

D
[FA1∪A2 ]. �

Let A be as in Lemma 4.4. As A ∈ Algm(L) it is the image of the mean-
ing function with respect to some model M, i.e. A = mngA

M
[FA]. Then

A1 = mngA
M

[FA1 ], A2 = mngA
M

[FA2 ] and A0 = mngA
M

[FA0 ]. Suppose
now that for some x ∈ A1 and y ∈ A2 we have xR y. By definition
there are formulas φ ∈ FA1 and ψ ∈ FA2 such that mngA

M
(φ) = x and

mngA
M

(ψ) = y. By Remark 2.9, A |= xR y is equivalent to M |= φ  ψ.
By assumption {χ ∈ FL : Voc(χ) ⊆ Voc(φ)∩Voc(ψ)} 6= ∅. Using ( Local
Craig) property of L there is a formula χ ∈ FA1∩A2 such that M |= φ χ
and M |= χ  ψ. Clearly z = mngA

M
(χ) ∈ A0 and it follows that xR z

and zR y.

(iii) If the similarity type of Alg(L) contains at least one constant symbol
then for every φ, ψ ∈ FL the set {χ ∈ FL : Voc(χ) ⊆ Voc(φ) ∩ Voc(ψ)} is
nonempty. Thus the statement follows from (i) and (ii). �

5. Example: Sentential logic(s)

First we recall from e.g. [1, 2] two usual ways of defining sentential logic.
In particular we define the logics LS and L′

S . In each case the set of logical
connectives is Cn = {∧,¬} and for a set P of atomic formulas the set
of formulas FP is defined as the universe of the absolutely free algebra
generated by P in similarity type Cn. The difference is in the definition of
the models, mng and |=.

Classical sentential logic LS. Fix a set P . In classical sentential logic
a model M ∈MP is a function assigning 1 (true) or 0 (false) to each atomic
proposition p ∈ P . Any such mapping extends in a usual way to a unique
mapping FP → 2 (which we also denote by M). We define mngP

M
and |=P

for all formulas ϕ ∈ FP as follows.

mngP
M(ϕ) = M(ϕ)

M |=P ϕ if and only if M(ϕ) = 1
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Finally, LS =
〈

〈FP ,MP ,mngP , |=P 〉 : P is a set
〉

. The two classes of
algebras corresponding to LS are (see Chapter 7 of [1])

Alg|=(LS) = BA

Algm(LS) = {2}

where BA is the class of all Boolean algebras and 2 is the 2-element Boolean
algebra.

Sentential logic as modal logic L′
S. The set of connectives and for

any set P the set of formulas are like in the previous case. The class of
models for the set P of atomic formulas is

M ′
S =

{

〈W, v〉 : W 6= ∅, v : P → P(W )
}

.

For a model M = 〈W, v〉, w ∈W and a formula ϕ one can define M, w 
 ϕ
in the usual modal logic way (cf. p.97 of [1]). We let the meaning function
mngM : FP → 〈P(W ),∩,r〉 to be the homomorphic extension such that

M, w 
 ϕ IFF w ∈ mngM(ϕ), and

M |= ϕ IFF W = mngM(ϕ).

This defines the general logic L′
S . The two classes of algebras corresponding

to L′
S are (see Chapter 7 of [1])

Alg|=(L′
S) = BA

Algm(L′
S) = setBA

where setBA = S{〈P(W ),∩,r〉 : W is a nonempty set} is the class of all
non-trivial set Boolean algebras.

Both LS and L′
S has a derived connective → defined in the usual way

that corresponds to the usual Boolean ordering ≤. E.g. Theorem 4.2(ii)
reads as

(

Algm(LS) has (Strong ≤ SUPAP)
)

=⇒
(

LS has (→ Local Craig)
)

It is straightforward to check that LS has (→ Local Craig) interpolation:
on the one hand Algm(LS) = {2} obviously has (Strong ≤ SUPAP) and
thus Theorem 4.2(ii) applies, on the other hand if M |= φ→ ψ, then either
χ = x ∧ ¬x or its negation is a suitable interpolant formula.
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But Algm(L′
S) does not have (Strong ≤ SUPAP): take A1 = A2 =

〈P({a, b, c}),∩,r〉 and let A0 be the subalgebra of A1 generated by the
element a. Then we have b ≤ c⊥ but neither a nor a⊥ is in between b and
c⊥. A very easy argument shows that L′

S does not have (→ Local Craig)
interpolation either.
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[21] G. Sági, S. Shelah, On Weak and Strong Interpolation in Algebraic Logics,

Journal of Symbolic Logic, Vol. 71, No. 1, (2006), pp. 104–118.

Department of Logic, Jagiellonian University, Kraków, and
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