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Abstract

The insertion of Electric Vehicles (EVs) represents a positive and proactive alternative in

the electrifying of transportation sector. Significant benefits for the environment are notable,

since carbon emissions and noise pollution are largely reduced. By the other hand, EVs

can be on the order of 80 to 90% efficient at converting electrical energy into forward

motion, compared with internal combustion engine (ICE) based vehicles that reach around

a 20% of efficiency. In the economic context, there is an important decrease in imported

oil dependence, which promotes the development of other type of energy sources (renewable

energy based sources) and stimulates the dynamics of other industrial sectors, i.e., lithium

ion batteries fabrication, Electric Vehicle Charging Stations (EVCSs) manufacturing, freight

transportation, etc.

However, the massive EVs charging will bring a tremendous pressure and impact on power

distribution system, creating power quality problems and non-desired demand peaks, which

addresses in power losses and voltage drops issues. In this sense, and with the objective

to improve the power grid load factor, an EVs charging demand management strategy is

needed, considering aspects related with EVs’ owners and utilities. Furthermore, the battery

is another problem that affects the adoption of EVs, specifically for the freight transportation

companies, due to the low distance autonomy in comparison to ICE based vehicles. Under

these circumstances, EVCSs location could provide a virtual increase in the EV driving range,

taking into account that the battery autonomy will not be improved at medium term.

Considering the issues mentioned above, this thesis is divided in several chapters that address

each problem separately. In first instance, a detailed literature review in regards with EVs

and their relation with PDS and transportation networks is performed in Chapter 2. In

Chapter 3 a probabilistic approach for the optimal charging of EVs in distribution systems is

proposed. The costs of both demand and energy losses in the system are minimized, subjected

to a set of constraints that consider EVs smart charging characteristics and operative aspects

of the electric network. The stochastic driving patterns for EVs’ owners, battery capacity

and active and reactive power demanded at load nodes are considered. The optimal charging
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of EVs connected to the system benefits the system’s operation, as it represents a strategy

to minimize the cost of energy losses and evaluate the capability of the system to charge

EVs’ batteries fully under certain penetration scenarios. Priority periods of EVs’ recharge

and the variation of energy price contribute to an adequate demand response, assisting the

network operator for complying with quality indices (decrement of power losses) set forward

by regulatory entities and developing studies of risk analysis for decision making. On the

other hand, there is a valuable participation of the EVs’ owners in improving the operation

of the distribution system. Monte Carlo simulation (MCS) is used to assess the stochastic

nature of the problem in a secondary (low voltage) distribution network. Then, in chapter 4, a

novel approach of EVs for merchandise transportation considering the location of EVCSs and

the impact on the Power Distribution System (PDS) is addressed. This integrated planning is

formulated through a mixed integer nonlinear mathematical model. Test systems of different

sizes are designed to evaluate the model performance, considering the transportation network

and PDS. The results show a trade-off between EVs routing, PDS energy losses and EVCSs

location. Following the same streamline of Chapter 4, in Chapter 5 an optimization model

for the Charging Station Location Problem of Electric Vehicles for Freight Transportation

CSLP-EVFT is presented. The proposed model aims to determine an optimal location

strategy of EVCSs and the routing plan of a fleet electric vehicle under battery driving range

limitation, in conjunction with the impact on the PDS. Freight transportation is modeled

under the mobility patterns followed by the Capacitated Vehicle Routing Problem CVRP for

contracted fleet, and Shortest Path SP problem for subcontracted fleet. A liner formulation

of the power flow is used in order to consider the impact on the electric grid. Several costs

are examined, i.e., EVs routing, installation and energy consumption of EVCSs, and energy

losses. The problem is reduced to a mixed integer non-linear mathematical model, which is

linearized by using multivariable Taylor’s series.

xiv



Chapter 1

Introduction

1.1 Problem Statement

One of the great obstacles for the massive adoption of Electric Vehicles (EVs) is their limited

autonomy compared with the internal combustion engines. The majority of the EVs in

2017 had autonomies (considering fully charged batteries) ranging from 100 km to 400 km

(Schmidt, 2017), subject to weather conditions, traffic congestion and road topology. This

autonomy range in batteries may not be sufficient for all EVs to be considered as a primary

mode of transportation and creates in drivers a feeling known as “range anxiety”, which

addresses the concern of EV’s driver to reach a critical level on the battery before arriving

to a charging station (Sarrafan et al., 2016).

On the other hand, the increasing in the introduction of EVs could have a large impact on

the power distribution system, e.g., non-desired demand peaks and violations in the allowable

voltage limits as a consequence of the simultaneous charging of batteries. Likewise, the power

quality could be reduced by the introduction of harmonics on voltages and currents, due to the

power-electronics-based charging infrastructure (Carradore and Turri, 2010). Other effects

generated by the introduction of EVs in the power network are the congestion on feeders

and transformers, overloading, and increment of power losses during charging of batteries.

From the power system operator stand point, economic aspects, power quality, reliability,
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and power losses must be considered (Clement-Nyns et al., 2010). Nevertheless, demand

management alternatives based on energy price and habits of EVs’ owners associated with

the recharge of batteries, contribute to mitigate the effects on the power network.

Research on Electric Vehicle Charging Stations (EVCSs) has been increased considerably

in recent years. This is due to the intrinsic characteristics of the model which encourages

academic research, but also due to practical reasons, since inadequate planning transportation

networks and power distribution systems results in inefficient use of the infrastructure and

high cost in charging stations (Zhang et al., 2017).

Considering the roll performed by an EVCS in the electric and transportation approach, the

problem addressed in this work can be summarized in the following paragraph:

¿How can the interaction between variables associated with demand response of EVs’ owners

and the distribution system operation be represented, respecting the random nature in the EVs

recharge habits and the variability of complex factors such as the energy price?. By the other side,

considering the EV movement through a transportation network, its need to arrive a destination

point and limited autonomy, ¿Is it possible to represent via a mixed integer linear mathematical

model, the relationship between the power distribution system and transportation network, the

impact provided by the EVs in these networks due to the recharge of batteries and, the association

between electric and transportation variables; to obtain an efficient operation from the electric and

mobility point of view?.

1.2 Study justification

According to roadmap followed by Energy Technology Perspectives in (Tanaka et al., 2011),

carbon dioxide emissions will be reduced up to 50% by 2050, compared with levels recorded

in 2005. In regards with the projections, transportation sector will contribute with a 30% of

this reduction, considering that EVs annual sales will reach 50 millions of units by 2050. This

is mainly because EVs represent a more friendly transportation alternative with environment,

in comparison with internal combustion-propelled vehicles. Some of the advantages of using

EVs are the reduction of greenhouse gases, curtailment in fossil fuels dependence and few noise

generation. Then, EVs represent a promising tool to improve the energetic sustainability and
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confront climate change effects.

Nonetheless, the emergence of EVs as a primary transportation mean is still overshadowed

by the low driving autonomy (compared with internal combustion vehicles), mainly due

to the lithium ion batteries that are currently leading the EVs energy storage market. The

improvement of this type of batteries to increase driving range, is disrupted greatly by factors

safety related, cost, operation temperature and materials availability (Scrosati and Garche,

2010), which shows that the battery autonomy will not be improved significantly in the

coming years.

Under these circumstances, EVCSs play an important roll in the electric mobility, being

necessary an appropriate siting and sizing of these infrastructures. In this way, both the

power and transportation networks are affected. From the point of view of the transportation

network, EVCSs planning contributes to enhance EVs driving range (greatly solving the

poor competitiveness of the lithium-ion batteries energy storage), providing the capacity to

perform longer travels whether in a huge city (Sao Paulo, Los Angeles, Mexico City, among

others) or between intermediate cities. By the other side, the power distribution network is

highly important in the EVCSs planning. The suitable EVCSs location has an influence on

the optimal values for the energy losses and voltage regulation in the distribution system.

In this manner, the EVCS is a linkage component between power distribution system and

transportation network (specifically for EVs). As shown in Section 2.1, there are several

works related with EVCSs planning. Furthermore, there is no research in which charging

stations location for freight EVs (considering several modalities) is solved, accompanied by

the effect over the power distribution network.

By solving this problem, EVs deployment is encouraged, promoting electric mobility to the

big freight transportation companies that require much less contaminating technologies to

perform their activities.

Finally, with the mathematical model obtained from this research around the EVCSs

planning, a solution is provided to a real life problem, considered as a high impact subject

to transportation network and power distribution systems, as well the interest created in the
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state entities and private companies involved in the reduction of pollution levels produced

by automotive sector.

1.3 Research obejctives

1.3.1 General Objective

Propose and resolve a mathematical model for electric vehicle charging stations planning,

considering the impact on the power distribution systems and mobility improvement in a

transportation network that involves the mixed operation of freight transportation.

1.3.2 Specific objectives

• Review the background around the planning (siting and sizing) of the electric vehicle

charging stations (EVCSs) and their impact on the power distribution system.

• Study and propose a demand management based mathematical model for electric

vehicles in a distribution system, considering the stochastic nature of recharge habits

and the energy price variation.

• Study the mathematical models in which the freight transportation vehicles are involved.

• Study the CVRP (Capacitated Vehicle Routing Problem) and the SP (Shortest Path)

Problem.

• Propose and integrate the CVRP and SP problems into a mathematical model.

• Study the LPF (Linearized Power Flow) to find the power network operation point,

based on a rectangular formulation and considering the distribution system unbalance.

• Propose a mathematical model that encompasses the LPF problem, in which the EVCSs

can be introduced.
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• Integrate the CVRP, SP and LPF models into one mathematical model, to strategically

locate the EVCSs.

• Create and develop consistent test systems.

1.4 Theoretical framework

In this work, EVCSs planning in power distribution and transportation networks mainly

involves the EVs and the respective variants, i.e., driving range, and type of transportation

(public, private, freight), as well as the charging mode (slow and fast). Through mathematical

programming, both the electric and transportation parts of the problem (power distribution

and transportation networks) can be represented, encompassing several aspects of the EVCSs

planning.

1.4.1 Type of EVs

In general, EVs are classified in plug-in and not plug-in EVs. Plug-in EVs can be connected

into the electrical network and recharge their batteries, in contrast with not plug-in EVs that

depend on other type of charging when their batteries have reached low state of charge.

• NEVs (Non plug-in Electric Vehicles): These vehicles are 100% battery-based, which is

swapped by another battery once has reached an allowable minimum state of charge.

• PEVs (Plug-in Electric Vehicles): Vehicles powered by a plug-in electric battery (Marra

et al., 2012). Once the state of charge has reached a minimum level, it has to be

connected into the electric network for charging proposal (See Figure 1.1).

• HEVs (Hybrid Electric Vehicles): This category encompasses not plug-in EVs, that

combines an electric motor with a internal combustion engine to create propulsion

(Negarestani et al., 2012). Range autonomy of these vehicles is larger in comparison

with NEVs. In a series configuration (Figure 1.2), the energy coming from the
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Driver

Charger Electric
motor

Mechanical 
coupling

Transmission Wheels

Figure 1.1: PEV system arquitecture

internal combustion is not transmitted directly to wheels. Internal combustion engine

is connected to a generator, which produces energy driven to an electric motor, being

this latter in charge to move the wheels. When electric generator produces surplus

of energy, this is stored in the battery, otherwise, energy is drawn from both, electric

generator and battery.

Driver

Charger

Fuel
TankBattery

Electric 
Motor

Internal 
Combustion Engine

Electric 
Generator

Mechanical 
Coupling Transmission Wheels

Figure 1.2: HEV series configuration system arquitecture

In a parallel configuration (Figure 1.3), both, electric and combustion motors, are

connected into the mechanical coupling, which is driven to the transmission. This

way, the vehicle can be powered either the electric motor, or combustion engine, or

both motors, or only with the combustion engine while the electric motor is charging

the battery.

• PHEVs (Plug-in Hybrid Electric Vehicles): These vehicles are classified as HEVs, able

to draw and store energy from the electric network (or from a renewable energy source)

for its propulsion (Williamson, 2013) (Serra, 2013). A PHEV can be in electric motor

mode, combustion engine mode, or a combination of both modes depending on the

efficiency.
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Figure 1.3: HEV parallel configuration system arquitecture

1.4.2 Electric Vehicles recharge infrastructure

Electric vehicle recharge system allows to draw energy from the electric network to the

batteries, which represents an important role for the appropriate development of the EVs,

and the interaction with distribution system. This transfer can be performed via inductive

(wireless recharge) or conductive (wire-based recharge) means, being this latter the most

used by the EVCSs.

Recharge infrastructure standards are generally well balanced, even when the industry has a

large variety of manufacturers. The typical components of an EVCS icludes (Fox, 2011):

• Over current protection devices, which counteracts the effects produced by short circuits

and overloading.

• Contactor for energy path control to the connector. This contactor de-energizes the

connector terminals when not connected.

• Interface with EV internal on-board recharging system, providing ground fault

protection.

• Indicators and alarms for proposal of state of charge information and guide the user

through the operational sequence.

• Connector or physical linkage between EVCS and EV.

By the other side, battery recharge process involves two phases, deployed within the IV
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characteristic (Current - Voltage) in Figure 1.4. The first phase, named as main phase,

consists of delivering the big majority of energy (at constant current and progressive increase

of voltage) to the battery until reach up to 80% of state of charge (Pistoia, 2010). The

duration of this phase depends on the available current and nominal value of the charger. In

the second phase, named as the final charge, the current is reduced progressively whilst the

voltage keeps constant, taking several hours to fully recharge battery.

I

V

t

Figure 1.4: IV charging characteristic

Since 2009, the Society of Automotive Engineering has been working on the SAEJ1772

standard, where the recharge system architecture is defined in North America. According

to the standards established by SAEJ1772, EVCSs can be classified in terms of the type of

electrical outlet used in the infrastructure and/or the over current protection device (Falvo

et al., 2014). However, nowadays the most common classification for EV chargers is in

function of the nominal power and the recharge time:

• Level 1: These chargers, also named as slow recharge, have a nominal power around 3.7

kW , similar to a conventional single-phase electrical outlet rated at 120 V AC and 12

A. At this current rate, the battery recharge takes too long, between 12 and 18 hours

depending on the battery energetic capacity. Its applications are intended for domestic

usage.

• Level 2: These chargers account with a nominal power range within 3.7 kW and 22

kW . For this reason, a single phase electrical supply rated at 208-240 V AC with 30
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A is used. In accordance with NEC (National Electrical Code) guidelines (Earley and

Sargent, 2010), an improvement of the electrical wire must be done to install this type

of chargers. Considering these power values, battery recharge time can be reduced up

to 50% in comparison with level 1 chargers. This charger is suitable for public places.

• Level 3: In this category fast charge systems are addressed. Power levels are larger,

compared with level 1 and level 2, which requires of a specialized infrastructure, beyond

that required by the charging systems for domestic applications. The recharge can be

performed in alternating or direct current, reaching nominal power up to 120 kW with

a total recharge time no greater than 30 minutes (enough to travel 270 km). Currently,

TESLA company is leading the installation of this type of chargers along the US and

European territory.

The standard SAEJ1772 defines the suitable connector (Figure 1.5) that complies with

conductive recharge requirements for EVs, considering both the physical and electric aspects

and, the performance and communication protocols (monitoring and invoicing).

SUPPLY

Connnection
 box

Connector

Flexible wire
Vehicle connector

COUPLING TO VEHICLE

Input to 
Vehicle

Vehicle

Figure 1.5: SAEJ1772 connector

1.4.3 Technical and regulatory aspects

According to (Architecture and Design, 2012), from the technical perspective, aspects related

with installation, access and operation influence in the regulatory framework for the adequate

EVCSs location. At installation level, some of the factors to take into account in the EVCS
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are:

• Recharge level: which can be of level 1, 2 or 3 (fast charge). This aspect was addressed

in more detailed in 1.4.2.

• Proximity to the distribution network: Installing EVCS close to the distribution feeder,

reduce the costs associated with including new wires. Additionally, EVCS installation

cost is decreased if the existing wires are rated with enough ampacity to connect the

EVCS.

• Mounting type: EVCSs can be configured in different forms for installation purposes,

being common the wall mounted and pole mounted configurations. The correct choice

depends on the available space and site environmental conditions.

• Available space: Besides the standards for EVCS location, the own components of this

infrastructure should not impact neither the normal flow of adjacent traffic nor interfere

with upload or download of merchandise and/or passengers.

• Technology: This encompasses the communication interface components between the

EV and EVCS, including the necessary sensors to identify whether an EVCS is occupied

or vacant.

From the access perspective to the EVCS, the following parameters are considered:

• Internet connection: In this way, the communication between the EVCS and the power

distribution company is established, for a more efficient energy management, By the

other side, EVs’ drivers can locate more easily the EVCS through mobile applications.

• Handicapped people accessibility: It is necessary to consider the minimum design rules

to avoid that the EVCS infrastructure represents an obstacle for people with limited

mobility and hence, can enter the vehicle.

• Traffic proximity: EVCS proximity with traffic can represent an advantage (high

convergence of EVs to the EVCS) or a disadvantage (installation constraint), depending

on particular interests, which are reflected in studies of mobility patterns.
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• Lighting: An appropriate lighting at the EVCS site, reduces the vandalism and improves

the EVs’ drivers safety while batteries are being recharged.

• Signalling and location: It is important the existence of an EVCS signalling strategic

system along the city and roadways that allows to locate EVCS without the need of

internet access. At level of detail, EVCSs have to be marked enough so that EV’s driver

can perform the recharge process without delays.

In regards with EVCS operation, the following components are involved:

• Agreements between EVCS owner and EVCS operator: Besides the physical

infrastructure demanded (new wiring, rewiring, transformer, etc), EVCS connection

to the distribution network requires a serious, solid and durable relationship between

the EVCS operator (Blink/car charging point, SemaConnect, Tesla Supercharger, eVgo,

aerovironment, among others) and EVCS owner.

• Metering: The majority of the EVCSs are equipped with integrated consumed energy

payment technologies. When multiple EVs can be recharged in a single EVCS, it is a

better strategy metering the energy of each EV by separate, in addition to use smart

meters to support users and distribution companies in the energy balance at peak hours.

• Efficiency in the EVCS operation and EV stay time.
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Chapter 2

Background review

This chapter presents a chronological background review of the EVs and their interaction with

power systems, specifically the electric distribution networks, considering several subjects

addressed in the IEEE Xplore database. Nevertheless, EVs also interact with transportation

networks, in terms of mobility, requirement on travel time and make decisions about when

and where to charge. In this sense, an updated state of the art of the EVCSs is also developed,

considering not only the IEEE Xplore database, but also other scientific databases, such as

Science Sirect, Springer and Scopus.

2.1 Electric Vehicles and power distribution systems: Literature

Review

The literature review related with the interaction of the EVs and the power distribution

networks, is based on an exhaustive search of the works published on the IEEE Xplore

database in the range of 1973 to 2017. In first instance, the term “electric vehicle” is used as

a key parameter in the database browser, obtaining around 30 thousand papers associated

with this relationship (EV and power grid). Then, each work content is examined and

classified according to a specific subject, as shown in Table 2.1.
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Table 2.1: Ranking by number of publications

Identification Topic Number of publications Total
ID1 Power quality 82
ID2 Scenarios study 358
ID3 Electricity markets 78
ID4 Demand response 57
ID5 Demand management 387
ID6 Power system stability 111
ID7 Vehicle to Grid (V2G) 260
ID8 BSS and/or EVCS 162

1495

According to Table 2.1, the first column identifies the work category. The works identified

as ID1, assess the reliability and the harmonics level, caused by the recharge of the EVs

in the distribution network, providing results in terms of indices, such as Total Harmonic

Distorsion (THD) and current and voltage signals spectrum. The importance of this category

is that the EVs have internal power electronic components considered as harmonic signals

sources. ID2 identifies the evaluation of the network load factor, energy losses lines and

transformers overloading, among other aspects, under different insertion levels of EVs. Other

aspects addressed in this category are the stochastic analysis, usage politics and EVs growth

trends in the automotive park. The works belonging to ID3, consider the studies framed

within the EVs participation in electricity markets, energy price and cost-benefit ratio.

The publications identified as ID4, correspond to those works in which demand response

provides an opportunity for EVs’ owners to play a significant role in the operation of the

electric grid, by reducing or shifting their EVs recharge during peak periods in response

to financial incentives. In ID5, the works include mathematical programming, focused on

minimizing the operation and investment costs and/or maximizing the quantity of EVs that

can be plugged into the network, considering operative constraints (load factor, voltage limits

and maximum current flows) and EVs’ owners driving patterns. ID6 is a category of the

studies in which the EVs provide signals to support the power system stability; including

ancillary services and voltage, frequency and small signal stability. The V2G (Vehicle to

Grid) concept and the interaction of EVs with distributed generation sources and power

storage systems, is developed in publications with ID7. And last but not the least, category
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ID8 presents the works that address the EV charging stations planning and battery swap

stations in distribution systems, supported by one or some of the following aspects: path

planning, transportation network, queuing analysis, traffic flows, routing and charging station

configuration.

In accordance with Figure 2.1, the impact of EVs in distribution networks was little studied

during the 70’s, reporting only one publication in IEEE Xplore database in the year 1973.

In the following decade, the panorama did not change notably, with only three publications.

However, the research streamlines were expanded to study the quality power (ID1). Later,

between 1990 and 2006, another category (ID5) came up to the list mentioned before, that

determines a starting point for the mathematical modelling and optimization, focused on the

timely demand management of consumers and EVs. In general, within 1973 and 2006, the

efforts around this discipline involve almost twenty publications, considering power quality,

scenario studies and demand management.
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Figure 2.1: Research trends of EVs and distribution networks 1973 - 2006.

Figure 2.2 provides details of the publications from 2007 to 2017. In 2007, research trends

have the same behaviour as Figure 2.1, however, in 2008 the range of study choices is expanded

to EVs participation in electricity markets, power systems stability and grid support under
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the V2G concept. In 2009 another trend arises, featured by the works relevant the role played

by EVs in the context of demand response. The year 2010 represents a point in which there is

vertiginous growth of the publication of EVs and their interaction with the power networks.

In the same year, the optimal location of EVs charging stations and battery swap stations

are introduced in the list of study.
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Figure 2.2: Research trends of EVs and distribution networks 2007 - 2017.

According to Figure 2.3, the period of time from 2010 to 2017 covers the largest amount

of publications; due to the need of network operators and academic community to manage

and confront the increase of EVs plugged into the distribution network. In the time-lapse

considered for the development of this literature review (1973 - 2017), the number of works is

up to 1495 publications, taking into account journals and conferences. As presented in Table

2.1, the state of the art was classified in compliance with the research stream and number of

publications. This does not imply a low importance for the category with the lowest number

of publications.
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Figure 2.3: Growth of the research from 1973 to 2017.

As earlier afore mentioned, the thematic associated with the interaction of EVs and electric

grids, started to be researched in the 70’s, according to IEEE Xplore database. Specifically in

1973, in (Salihi, 1973) a start point of this research is presented, expressing the relevance to

doing a study around the imminent deployment of EVs in the coming years and their impact

on generation plants and distribution systems. However, it was not until 1980 (Patil, 1980)

that electric companies become more receptive in topics related with the recharge of EVs,

stimulating recharge at night time to increase the load factor of the system and decrease

the cost per kWh. Hence, supported in mathematical definitions and technical arguments,

(Heydt, 1983) presents a study about improving the load factor, opening the possibility

for the demand management strategies focused on to cushion the collateral effects of EVs.

Not only the load factor improvement is one of the study topics in the 80’s, specifically in

1984 the impact over the power quality is started to be researched, due to the non-linear

nature of battery chargers of EVs (Orr et al., 1984). These devices can cause distortion in

voltage signal and generate harmonic currents, which create problems for power systems, e.g.

increase of neutral current, hot spots in transformers and inaccuracy on measure instruments.

To solve these problems, in (Orr et al., 1984) a current smoothing within EV charger circuit
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is proposed.

Since the 90s, the study of scenarios of EVs in electric networks had more popularity than

the power quality studies. This is due to the growing interest to determine strategies allowing

EVs to be recharged at hours of low conventional demand and so, to flatten the load curve.

Under this context, the authors of (Rahman and Shrestha, 1993) state their position that

not only the fact of having sufficient capacity of generation during valley hours has to be

considered, to provide energy to EVs without adverse effects in the electric grid, but also

it is necessary to study the strength of distribution systems in order to support these load

additions. Due that the large quantity of EVs should be recharged at the low demand period,

a considerable EVs load can generate non-desirable demand peaks at the beginning of this

period, for which, the need arises of developing fast charge batteries to perform the recharge

of some EVs at the end of the valley period and make more uniform the demand curve.

Thus, in (Suggs, 1994) the necessary elements are successfully established to boost EVs

market, among them, the development of batteries with better characteristics and the

willingness of the distribution companies to improve their electric infrastructure, to ensure

the reliable and timely delivery of energy to a great quantity of EVs. By the year 1995,

according to (KeKoster et al., 1995) the EV technology remained in prototype status in

terms of production and development of batteries, so, the number of EVs on the streets

for the next twenty years aimed to speculative data. This represented an obstacle to define

the load model of the EVs. Three years later, in 1998 the efforts were concentrated again

in the problems of power quality, where (Staats et al., 1998) presents a statistical method

to determine a maximum threshold of penetration of EVs in a distribution system, so that

the THD index was not exceeded over 5%. The same year, with the intention to model

appropriately the EV load in the system, (Chan et al., 1998) shows the modeling of EV

chargers from a procedure in which the Montecarlo Simulation is used, obtaining the THD

in terms of an expected value and a standard deviation. Nevertheless, in contrast with the

aspects mentioned in (Rahman and Shrestha, 1993), from the point of view of the distribution

company, fast charge is not desired because of the resulting big demand peaks. Despite to

motivate this kind of recharge in low demand periods, its usage is suggested in emergency
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cases. Under these supposed disadvantages, quick chargers take a lot of interest when it is

known in (Koyanagi et al., 1999) the likely effect of this type of chargers in the distribution

system. In that work the assessment of the size and influence of EVs charging harmonics

versus the penetration level is presented. Other works such as (Peres et al., 1999) discuss

about the behavior of the demand curves, considering random aspects like the initial time

of recharge of EV and the State of Charge (SOC). At the end of this decade, the report

presented in (Chan, 1999) explains the development of the EV in the last thirty years and

the effect at environmental level and electricity generation, confirming the terms established

in (Salihi, 1973) when the scale is tipped again to improve the performance of these vehicles.

At the beginning of 21st century, the field of action is extended to the role played by EVs

as distributed resources, to supply partial or totally the domestic demand in periods of time

where the energy price is relatively high (Brahma et al., 2000). Under this scheme some

benefits are: reduction of energy cost paid by the customer, mitigation of stress perceived by

the transformers and distribution lines, privileges related with taxes decrease and eases to

build recharge infrastructures at their homes, among others. Taking into account the aspect

above, it is important to point out the work done by the authors of (Ceraolo and Pede,

2001), where the distance travelled by EV is estimated with the remaining SOC and the

ability of the battery to provide energetic capacity in function of the discharge rate. In 2002,

power quality issues caused by the EVs recharge are addressed again, showing a quadratic

relation between the useful life transformer and current THD index of the battery charger,

establishing a limit between 25% and 30% for the THD, in function of providing a reasonable

life expectancy for the transformer (Gómez and Morcos, 2003). Taking up the usage of EVs as

distributed resources, it is mentioned in (Brooks, 2002) other advantages in this framework,

such as: mobile AC power, backup energy for homes and offices, stability ancillary services,

spinning reserve and regulation. Due to the increment of the battery activities, not only in

EV mobility, but also in the area of ancillary services, it is necessary to take into account

the economic viability of this framework, because the useful life of the batteries is reduced

when the charge/discharge rate is increased. In 2006 and as a consequence of doing a deeper

research about the potential of EVs in electric networks, the authors of (De Breucker et al.,
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2006) highlight the services presented by EVs fleets:

• Elimination of harmonics, because the non-linear elements of the battery chargers act

as active filters.

• Power factor improvement by injecting reactive power and peak shaving.

• Primary and secondary control for the power balance between the generation and the

demand.

• Frequency regulation in low stability grids, inclusive with less quantity of EVs.

• Ancillary generation for outages and construction projects.

During the year 2007, the focus was addressed on conventional topics (scenario studies and

demand management) without great contributions. The year 2008 represents a start point for

the participation of EVs in power systems stability and electricity markets. A clear example

is the work published in (Das and Aliprantis, 2008) where the small signal stability of a

power system with EVs is analyzed, which can act as constant current or impedance load.

The results show that, when the EVs are charged in constant current mode, the electric

network is prone to instability. Hence, in constant impedance mode, high EVs levels of

penetration can be reached before the instability point. Related with electric markets, in

the same year, (Wang, 2008) works with the effect of EVs on the Locational Marginal Price

(LMP). This framework of wholesale electricity prices is determined from the incremental cost

of system redispatch, to supply an additional demand unit in a specific location, subject to

generation and transmission constraints. The EVs are loads that can be recharged at different

geographic points and can influence greatly on LMP. Apparently it was not until 2008 that

the term Vehicle to Grid V2G is made official to characterize the ancillary services of EVs

to grid, although in previous years this topic had already been addressed. In this context,

some works like (Guille and Gross, 2008), study the requirements for V2G concept. The

existing information flow between the network operator and the EV encompasses: The ID of

EV, the preferences and parking status of EV, battery storage capacity, SOC and the power
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flow from the battery to grid. But the most important aspects consider the communication

range of the system and security in the information transmission, besides the fulfillment of

IEEE Standard 1547 where the minimum requirements are established to introduce energy to

electric grids (Kramer et al., 2008). Other publications like (Larsen et al., 2008) consider the

relevance of V2G concept for electricity generation balance in environments highly penetrated

by distributed generation, as in Denmark case that around 20% of its energetic capacity comes

from wind generation. However, in contrast, a study done by (Pina et al., 2008) determined

that the viability of increasing EVs in the Azores islands is related with the energy usage

coming from renewable sources for recharging EVs.

The efforts focused on demand management, scenario studies and V2G concept present an

increment in 2009. The mathematical modeling appears as a new alternative to study the

effects of EVs in distribution systems. The topics related with demand response and power

quality arise again, although in low proportions. Respect to V2G concept, the study done

in (Saber and Venayagamoorthy, 2009) proposes a mathematical programming model for

optimal dispatch of generation units, which include the small thermal units and the energy

stored in EVs, considering technical, spatial and temporary constraints. Particle Swarm

Optimization (PSO) is used to solve the problem, obtaining an increase in benefits and

reliability in the distribution system. It is necessary to point out through the stability stream

the authors of (El Chehaly et al., 2009), which propose a Short-Term Voltage Stability Index

(SVSI) for the wind generation with the ancillary services provided by EVs. This index

is based on the difference between pre-fault voltage and the minimum voltage reached at

fault status; in this manner with a high presence of EVs, SVSI can be reduced and voltage

profile is improved. As well as in (Saber and Venayagamoorthy, 2009), in (Lopes et al., 2009)

a mathematical model is designed in order to maximize the number of EVs plugged into

distribution systems, subject to voltage limits and batteries energetic requirements. This

same philosophy is applied in (Clement et al., 2009) where it is sought the minimization

of the losses in the system through the coordinated charging of EVs. In each iteration

of the optimization problem, a conventional load flow is executed to determine the actual

network status. A necessary work to highlight for its connection between electric grids and
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the distribution network gas, is the one presented in (Acha et al., 2009), where losses of

both grids are minimized through the transformers tap control and the compressors output

pressure, in order to cushion the impact of the EVs load.

In 2010, one of the most studied topics was the V2G concept, whose proposal consists of

providing power at peak demand hours and absorb power at minimum demand hours, taking

the advantage of storing energy of EVs. This is established by (Wang and Liu, 2010), where

the need of charging and discharging synchronization of EVs and the smart grid is presented

in order to avoid overloading in the distribution system. A specific study of this topic is done

in (Singh et al., 2010), where a known network is considered with several scenarios of EVs

inclusion, from 10% to 30%. In (Acha et al., 2010), the V2G interaction is used to decrease

the percentage of distribution transformers losses. There, the authors make the analysis by

using a Time Coordinated Optimized Power Flow (TCOPF), where EVs are considered as

distributed generation, making an optimal dispatch of energy according to their requirements

in an interval of time. Efficiency improvements of the system are achieved because the EVs

consume power from the grid while the demand is low, levelling the valley of the demand

profile and reducing the peaks in hours of maximum demand.

Other contributions, those shown in (Mallette and Venkataramanan, 2010), explore the

economic incentives that EVs users can receive by contributing to soften the load profile

curve. The foregoing is made by offering refunds to EVs buyers, taking as reference the

project carried out in California, where each customer with photovoltaic energy capacity

installed is eligible to obtain a discount of 2.5 USD/Wp. In (Makasa and Venayagamoorthy,

2010) the inclusion of PHEVs in distribution systems is considered as a factor to repercute

in the voltage stability, therefore, a method based on neural networks to determine a voltage

stability index given a specific condition is shown. Additionally, in the same year some studies

were developed with stochastic processes (Fluhr et al., 2010), demonstrating the importance

of an intelligent strategy to charge and discharge EVs. Following this research stream, in

(Soares et al., 2010) EVs are studied in different status: The first status presents a car in

motion, the second status suggests a car parked in an industrial area and the third status

supposes a car parked in a residential zone. The status of each vehicle at a given time is
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assigned according to a Montecarlo simulation. Two levels of EVs insertion are considered:

25% and 50%.

The next year, in 2011, some works like (Yamashita et al., 2011) developes a model for the

market and infrastructure of EVs recharge stations. As the year before, V2G interaction gains

prominence, with the study of frequency control of grids with a high degree of generation

by renewable energy sources (Almeida et al., 2011). The works in (Wang et al., 2011) and

(Kezunovic, 2012) present the possibility to use EVs and PHEVs as dynamic containers of

electric power, which can be set up at any time; while in (Feng et al., 2011) an optimization

algorithm combined with Voronoi polygons is implemented, which locates equitably recharge

stations, obtaining loads balanced according to the distribution of vehicles and the network

topology. In (Falahati et al., 2011), the authors evaluate reliability indices in an existing

system with different EVs insertion levels; concluding in particular, that the test system

used is not ready enough to supply the necessary demand for these elements in the system.

Therefore, as mentioned before, the relevance of coordination of EVs and electric network

is confirmed. The impact over sizing and capacity of the network is analyzed in (Rolink

and Rehtanz, 2011), where a general methodology using structural data for this proposal is

presented.

Several works treat the interaction between EVs and power grids from the economic and

technical perspectives, posing optimal charge and discharge schedules for the EVs, however,

there is an issue from the behalf of EV’s owner, related with the acceptance level of this

person to use the network to charge the vehicle battery when permitted, and deliver the

energy stored in it when needed. This topic is studied in (Grahn and Söder, 2011), where

the synchronization is not with the EV and its charge and discharge schedules, but with

the owners of these vehicles and their needs, because these (EVs owners) can dispose of the

energy from the network at any time, therefore, regulations have to be presented to restrict

the schedules and load capacity of each vehicle.

Large variety of studies done in 2012 use advanced optimization techniques, as the case of

(Turker et al., 2012), where dynamic programming is used in order to determine the minimum

22



current needed to achieve a desired SOC in the batteries, reducing the grid losses and the

chance of wires overloading. In (O’Connell et al., 2012), in order to avoid an electric system

saturation, a tariff plan is proposed to decrease the quantity of EVs running daily. This is

done based on day-ahead market, using a dynamic tariff that varies according to the energetic

scheduling of the day. In (Zheng et al., 2012b) the concept of battery swap station is used;

this is an idea that achieves to increase the dynamism around vehicular traffic. This scheme

does not affect daily tasks of users when the batteries removed are charged at valley hours.

As it advances, some of the topics slightly forgotten were taken up, as the case of the power

quality due to harmonic distortions, which is studied again in (Kütt et al., 2013) and (Kutt

et al., 2013), demonstrating that the most important harmonics (3rd and 5th harmonics)

injected into the grid, are cancelled each other when a large quantity of EVs are connected

in the same grid. Later, in (Tuttle et al., 2013), the chance to use the EVs as a backup

source at homes is studied, incorporating the scheme Vehicle to Home (V2H) to supply the

individual demand during interruptions of power delivery during short periods.

In 2014, additional works represent the EVs smart charge, used to flatten the load curve

(Andrés et al., 2014) with diverse methods and test systems. In (Su et al., 2014), the technical

impact over the distribution networks is not the unique topic of interest to study, but also

the environmental impact carried out by the EVs usage, through the CO2 reduction, which is

demonstrated in the results obtained. In (Zheng et al., 2014b) an optimization work is done,

where the benefits of battery swap stations and the recharge stations are compared. It is

demonstrated that the battery swap system is more suitable to apply in public transportation,

because the times for recharging batteries can be larger than the times taken to replace a

depleted battery for a fully charged one.

Some works in 2015, such as (Xu and Chung, 2016), demonstrate efforts in the improvement

of the distribution system under the V2H and V2G concepts, considering non-served energy

indices. Thereby, in two test cases the improvement is achieved; the first case is composed

by a centralized technology of EVs recharge (V2G mode), and the second case is formed by

disperse EVs charging stations (V2H mode). In the context of energy markets, prominent

23



works were published in 2015. As mentioned in (Illing and Warweg, 2015), the revenues are

the decisive factor in terms of integrating EVs into the energy market. In the United States

and some European countries, EVs participate in several business cases framed in primary,

secondary and tertiary reserve power, and day ahead and peak load reduction energy markets.

A more detailed focus is depicted by (Vagropoulos et al., 2016), where a centralized real

time EV charging management from an EV aggregator that participates in the energy and

regulation markets is developed. The EV aggregator optimizes the market bidding strategy

using a two-stage stochastic optimization model which produces optimal first-stage decisions

for submission in the day ahead market and second-stage scenario dependent decisions for

submission in the real time market. The model can account for all uncertain day ahead

and real time conditions, and energy deviations between day ahead and real time energy

markets. The storage technology implemented in EVs, offers an attractive alternative for EVs

to support the Short Term Operating Reserve (STOR). According to (Gough et al., 2015),

storage can help manage imbalances between electric power generation and consumption that

could result in undesirable impacts across the entire network. Among the reasons for which

this technology is a good option for STOR are:

• Storage has superior part-load efficiency.

• Efficient storage can use twice its rated capacity (i.e. it can stop discharging and start

charging at the same time).

• Storage output can be varied very rapidly (e.g. output can change from 0 to 100% and

from 100 to 0%)

From the EVs perspective, STOR implementation is highly dependent on several critical

factors, among them: State of Charge, connection availability at times of grid requirement,

fast response and capability of providing twice the rated capacity.

Ancillary services, such as active power control and voltage support are expected to be

provided by EVs (González-Romera et al., 2015). The first is associated with the balance

between production and demand to guarantee a secure operation of the electric grid at a
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constant frequency. Voltage support has to be performed locally, because voltage fluctuations

in power systems are usually due to the variation of reactive power demand and its

transmission along the power lines. Since reactive power cannot be transmitted over long

distances, voltage control has to be carried out by using special devices dispersed throughout

the system to produce the necessary reactive power to match demand and keep the voltage

within appropriate limits. According to the tasks to be developed by frequency and voltage

control, EVs must comply with the following four criteria: Supply duration, directional shifts,

response rate and service duty. Supply duration refers to the time over which the device,

in this case the EV, has to be available to provide the ancillary service. Directional shifts

is associated with sudden change in charge and discharge of the batteries, which is suitable

for short and volatile services. Long directional shifts are not convenient for EVs batteries

due to the degradation effects on the assets. Response rate is the time within which the

resource providing the ancillary service needs to initiate service, which can be from less than

one minute up to one hour. Service duty refers to intermittent or continuous nature of

consumption of the ancillary services. The first one enables the EV to be charged while it is

not providing the service.

In the framework of frequency control, the authors of (Izadkhast et al., 2015) propose a new

model to assign a participation factor to each EV, which facilitates the incorporation of several

EVs fleets characteristics, i.e., minimum desired state of charge, drive train power limitations

and charging modes (constant current and constant voltage). Participation factor defines the

EV availability for the provision of the primary frequency control. A wider range of responsive

devices, e.g., inverter-based photovoltaic systems, EVs and domestic controllable loads, are

considered in (Bayat et al., 2015) for frequency and voltage control, based on power sensitivity

analysis. These devices are classified according to the controllability degree. Once a voltage

or frequency violation is detected in the system, the most effective buses are identified and

receive the most effective control signals to perform appropriate changes in their reactive or

active powers. In (Hussain and Agarwal, 2015), a control technique is proposed to mitigate

the charging current ripple when the current shifts the reference. A different approach is

presented in (Poornazaryan et al., 2015), where the authors propose a method for primary
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and secondary frequency control, based on artificial neural networks to train and validate the

advanced droop control.

Returning to EVs and their interaction with electricity markets via aggregator concept, in

2016, the authors of (Zhang and Kezunovic, 2016) present contributions in the analytical

estimate of EV aggregated charging/discharging power capacity taking into account EV

stochastic mobility and driver’s behaviour, to improve the ramp rate of conventional

generators through cooperation, and participate in the ramp market on the system’s

reliability and flexibility as well as on EVs themselves. EVs fleets can be aggregated in

mobile energy storages, which has the potential to compensate the uncontracted power if

the contracts between the market players are breached. In this way, (Sarker et al., 2016)

performs an optimal strategy for both energy and reserve markets considering trade off and

effect on EV battery degradation, in order to assess the expected profit that aggregator can

collect by participating in the energy and regulation market.

Continuing with the research approaches in 2016, some contributions are addressed in

the context of demand response. This concept can avoid building new large-scale power

generation and transmission infrastructures by improving the electric utility load factor. In

(Johal et al., 2016), a demand response strategy is proposed for shaping a load profile to tackle

the problem of overloading in distribution transformer when the EVs are used along with

other loads. Overloading is first analysed and then, the demand response is used to mitigate

it, once the total load exceeds the rated power of the distribution transformer. A more

structured work is implemented in (Hafez and Bhattacharya, 2016) from the mathematical

model perspective, representing the total load at a charging station, considering a queuing

model followed by a neural network. The queuing model considers arrival of EVs as a

non-homogeneous Poisson process, and the service time is represented by using detailed

characteristics of battery. The charging station load (which is in function of number and

type of EVs charging at station, total charging current, arrival rate and time) is integrated

within a distribution operations framework to determine the optimal operation and smart

charging schedules. Some works classified in the demand response focus, can also be enrolled

in the demand management approach. This situation is presented in (Behboodi et al.,
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2016), where a strategy is proposed to achieve a grid-friendly charging load profile, based

on the transactive control paradigm. In this way, EVs’ owners can participate in real time

pricing electricity markets to reduce their charging costs. Similar efforts are presented in

(Catalão et al., 2016), developing a model for optimal behaviour of EV parking lots in

the energy and reserve markets, within the framework of price-based and incentive-based

demand response programs. Concluding with this year, a practical case study is carried

out in (Cross and Hartshorn, 2016), evaluating the impact of EV uptake on Britain’s power

distribution networks by monitoring 200 customers during 1.5 years. At current projections

for EVs insertion, upgrading low voltage infrastructure will cost consumers approximately

US$3 billion by 2050. This cost can be largely avoided if demand-side response is deployed,

to shift EV charging away from times of peak demand.

As depicted in Figure 2.3 at the beginning of this section, in 2017, research around EVs

and their interaction with distribution systems from different perspectives, was reduced in

approximately 29%, in contrast with 2016. According to Figure 2.1, the majority of the work

focuses decreased in 2017, except the approach with ID8 (related with charging stations

planning and battery swap stations), which presents the largest number of publications for

this year. The authors of (Harb et al., 2017) take into account that when new modern

technology is introduced to the power grid, it should be compatible with the grid in order

to improve its operation, ensure stability and reliability. In this work, several subjects are

considered in which the EVs are involved with distribution networks, this is, assessment

of different insertion levels of EVs in accordance with power quality (in terms of harmonic

distortion), voltage and frequency stability. In regards with power quality, the work shown in

(Martinenas et al., 2017) focuses on the experimental evaluation of the EVs to reduce voltage

unbalances by modulating the charging current according to local voltage measurements.

This autonomous control could partially solve voltage quality issues without the need of

grid upgrades or costly communication infrastructure, enabling higher number of EVs to be

integrated in the existing power network. The experiment is carried out with EVs that do not

have the V2G technology incorporated but are able to modulate the charging current in steps

according to the predefined droop control. Some energy markets-oriented works, such as that
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shown in (Chen et al., 2017), proposes an eVoucher program to encourage participation of

parking lots, with a high EVs penetration rate, in the retail electricity market at distribution

level.

As a vital part in smart grid, demand response supports the restoration of balance between

electricity demand and supply. This concept is highlighted by (Yao et al., 2017), where a real

time charging scheme is proposed to coordinate the EV charging loads based on the dynamic

electricity tariff. By the other hand, an optimization problem is formulated to maximize

the number of EVs selected for charging at each time period. Two objective functions

are in conflict: maximizing the EV owner’s convenience in meeting all charging requests

and minimizing the total electricity bill for the parking station. Similar contributions are

presented in (Lu et al., 2017), focused on the real time interactions between energy supplier

and the EVs users in a fully distributed system in which the only information available to

the end users is the current price. In this sense, a real time charging pricing algorithm is

introduced to maximise the aggregate utility of all the EVs users and minimise the electricity

cost generated by the energy supplier. In addition, the EVs users and the energy supplier

interact each other running the distributed algorithm to find the optimal power consumption

level, and the optimal price values to be revealed by the energy supplier, in order to adapt

the users’ demands constantly and maximise their own utility. Another study in (Pal and

Kumar, 2017) is presented in this context, defining demand response as “voluntary change

of demand”, proposing an approach to enable the EVs smart charging technology among

residential customers. This propose incorporates operation and analysis of power transaction

between the energy user and the electricity grid, including the concept of the power sharing

among neighbours in the residential demand response framework.

In the context of V2G, power system stability and energy markets, the efforts done by

(Dutta and Debbarma, 2017) are highlighted. The introduction of network characteristics

(Distribution power Losses and maximum power limits of the transformers and lines) in

the V2G concept, upgrades the accuracy of EV model to participate in the load frequency

control. This approach shows that EVs are fast responsive during contingency and very

effective in driving the error to zero. By the other side, in (Kaur et al., 2017) a multi-objective
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mathematical framework has been presented to cater frequency deviations at grid level using

fleet of EVs. The objective functions of this model are presented below:

• Minimization of grid frequency deviations using the available frequency regulation

capacity, dealing with the trade-off between fulfilling EVs’ energy demands and

providing maximum grid support.

• Maximization of V2G support to EVs while minimizing EV’s battery degradation: The

objective of this problem is to maximize the scheduling of the EVs participation while

considering the trade-off with battery degradation issues.

• Optimal regulation signal dispatch among aggregators and charging stations.

This review of the literature around EVs and the impact on the power distribution systems,

covers until the end of 2017, creating a promising prospect on the EVs and their capacities

to counteract different issues at electric, transport and environment level. However, subject

identified as ID8 (EVCSs planning) and its state of the art, deserves a separate section as

comprises the essence of this thesis.

2.2 The State of the art of the Electric Vehicle Charging Stations

This section addresses a review of the studies focused on the Electric Vehicle Charging

Stations (EVCSs) planning in the distribution systems, including in some of the cases

the transportation networks and Battery Swap Stations (BSSs). The bibliographic review

encompasses not only the IEEE Xplore database, but also references from other scientific

databases, such as SCOPUS, Springer and Science Direct.

2.2.1 IEEE Xplore database

In regards with IEEE Xplore database, the study around EVCSs planning and its impact

on power distribution systems, has been a subject with a start point in 2010 (See Figure
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2.4). As per the bibliographic review, in this year the authors of (Ip et al., 2010) propose

a two-stage model for the EVCSs location in urban areas, characterized by dense traffic,

narrow streets and other complex factors, such as the power distribution constraints. The

first stage associates traffic flow information in demand clusters using hierarchical grouping

analysis. Then, optimization techniques are applied over the groups to meet the demands and

place the EVCS according to criteria established by the optimization. These criteria include

EVCSs planning in a city that is built up from the beginning or the EVCSs placement as per

their capacities and demand coming from the groups.
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Figure 2.4: Growth of the EVCSs planning research as per IEEE Xplore database.

In 2011, neural networks and Gray prediction models were used in (Xie et al., 2011) as tools

for the EVs load forecasting, due to this type of loads is more complex to be predicted than

the conventional loads, which mainly depend on weather factors (temperature and humidity).

Following the same forecasting guidelines, the authors of (Luo et al., 2011) are supported in

the Gray prediction model and statistical data of the national automotive park, to forecast

the quantity of EVs with a minimum randomness degree. Based on this information, a low

cost and energy saving based EVCSs infrastructure planning is performed. Nevertheless, the

work published by (Feng et al., 2012a) accounts with other component compared with (Xie

30



et al., 2011) and (Luo et al., 2011), that besides to predict the number of EVs, analyses

the travel patterns, recharge characteristics and transportation network. This information

represents the input data to compute the recharge rate and the EVCSs service area with

weighted Voronoi diagrams, applying a Particle Swarm Optimization algorithm to find the

optimal planning of EVCSs.

The publications for the year 2012 were almost the double of the year before (only considering

EVCSs planning). One of these works are found in (Feng et al., 2012b), which develops an

EVCSs planning model (siting and sizing) in national highways considering the EVs mileage

and the impact on the power network, minimizing a cost function composed by two objectives

in conflict: charging cost and waiting fees. Supported by the queuing theory, the charger

service level and its operational efficiency are evaluated. Nevertheless, the work published

in (Hu and Song, 2012) is more related with the impact on the distribution network, which

additional to EVCSs siting and sizing, develops in parallel the power distribution networks

expansion planning. This leads to common practices carried out in power distribution

planning, i.e., upgrade substations capacity, wire gauge increase, construction of new

distribution branches and EVCSs, warranting safety constraints and reducing the network

investment and operation cost. However, the same authors of (Hu and Song, 2012), propose

in (Jia et al., 2012) an optimization mathematical model, solved with CPLEX for EVCSs

planning (without including the power network explicitly), representing the road network

through graph theory and minimizing the integrated cost, for both, the EVCSs and users.

An added value presented by (Moradijoz and Moghaddam, 2012) is to perform the optimal

location for EVs parking accompanied by the support that can provide to the distribution

network with the V2G concept. In this way, the active and reactive power losses are reduced

in the distribution system, meeting the allowable voltage and current limits, at the nodes

and branches respectively. The optimization process is done by using a genetic algorithm

and the status of the power network is obtained with an iterative backward forward sweep

load flow, which is executed in each generation of the genetic algorithm. In other researches

such as (Worley et al., 2012) the vehicle routing problem is developed combined with the

EVCSs planning, without considering the distribution system. In contrast with (Worley
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et al., 2012), in (Liu et al., 2012) the power network participates in the EVCSs planning,

when the distribution transformers costs, power losses and lots are taken into account. This

approach is framed into a non-linear non-convex mathematical model, which is solved using

particle swarm optimization. Finally, the battery swap stations operation model is studied in

(Zheng et al., 2012a) to maximize the annual benefit and minimize the impact on the network

caused by the battery recharge. The annual benefit is mainly composed by the subtraction

of daily incomes by the concept of battery rent and costs associated to: investment, recharge

and battery maintenance.

During the year 2013, as the year before, mathematical programming was widely used for

EVCSs and BSSs planning. That is the case of the work published in (Sarker et al., 2013),

that similar to (Zheng et al., 2012a), maximizes the profits coming from the BSSs business

model, except that in this case, besides the extraction of energy from the distribution system

for charge purposes, the batteries may deliver energy back to the network or interchange it

with other batteries. In this manner, batteries are able to participate in electricity market

and create economic advantages for both, the network operator (reduction of losses) and

BSSs’ owners. Other efforts framed within mathematical programming are presented in (Liu

et al., 2013) to locate and scale EVCSs following a methodology composed by two stages.

The first stage is to identify the points for EVCSs construction considering environmental

factors and service radius (supported by Thiessen polygons); then, in the second stage, an

optimization algorithm is executed to find the optimal capacities of the EVCSs, minimizing

costs associated to investment, maintenance and power losses in the planning period. The

mathematical model constraints are focused in the network operation and the EVCSs. The

mathematical model solution is found by applying the modified interior point due to its

strength and speed of convergence. Similar to the approach of (Liu et al., 2013), the authors

of (Lam et al., 2013) propose a mathematical model in which EVCSs are installed considering

the autonomy level of the EVs and convergence from the point of view of the users. To solve

the problem, a greedy algorithm is used based on the network properties over which the

EVCSs will be installed, with much lower execution times than those obtained with exact

techniques. Another approach that highlights in 2013 is the Flow-capturing optimization
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model presented in (Cruz-Zambrano et al., 2013), which maximizes the quantity of captured

flows by a charging installation, considering two perspectives: by one side the EVCS is placed

to capture the large quantity of flows given a fixed number of EVCSs; by the other side, the

number of EVCSs is optimized to capture a determined number of flows. The only work

in which the mathematical programming is not addressed, according to this bibliographic

review (at least for 2013) is developed in (Kim et al., 2013), that locates the EV fast chargers

in rest areas along the highways in South Corea, with an average separation each other of

24 km. Aided by the Liquefied Petroleum Gas (LPG) based vehicles propagation model,

the number of EVs can be predicted by 2034, being possible to size and determine the spots

quantity in each EVCS installed throughout the highways, without ignoring some factors

such as maximum traffic volume in the roadways, EVs batteries performance, utilization rate

of the current EVCSs and EVs efficiency based on the brand.

Over the course of the current decade (2010 - 2017), 2017 has been the year with the

largest number of publications related with EVCSs planning in distribution systems. Due

to the increase of installation of clean sources of distributed generation, some works such as

(Neyestani et al., 2014) research the optimal location of EV parking lots in the distribution

system, affected by the introduction of high uncertainty renewable energy sources (wind and

photovoltaic). In this manner, a useful tool is obtained in the future planning of the power

network, without ignoring that these EVs parking lots are points of participation in the

electricity reserve market, providing more economic benefits to the owners of these places

and improving the system reliability. By the other side, load flow is quite important to

inform about the status of power network, therefore, the research shown in (Haidar and

Muttaqi, 2016) determines the EV modelling as a constant power load, which results in

an unattractive alternative in comparison with ZIP (constant impedance, current and power

load) model, as this latter provides more accurate results related with power losses and nodal

voltages. Once more, as presented in (Cruz-Zambrano et al., 2013), the authors of (Chang

et al., 2014) study through a flow refuelling location model (used in the gas stations location),

the location of EVCSs and charging pads, which transfer the energy to the EV by inductive

means (wireless charging) in less time. From the point of view of the voltage stability, EVCSs
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can be used as reactive power injectors to improve the voltage profile and reduce the active

power losses, through a reactive power/voltage sensitivity analysis (Cui et al., 2014). By using

graph theory, in (Pourazarm et al., 2014) vehicle routing problem is studied to minimize the

travel times and charging times (homogeneous and non-homogeneous) at EVCSs. Through

a mixed integer linear programming formulation and dynamic programming, computational

time for the execution of the algorithm with many EVs can be reduced. From the stochastic

perspective, the work perfomed in (Aghaebrahimi et al., 2014) proposes a probabilistic

behaviour of the EVs presence in residential places, then, smart charge and discharge of EVs

is done, supported by a novel method that combines Cuckoo Search algorithm and sequential

Montecarlo simulation, executing Cuckoo search again to find the optimal location for EVCSs.

For 2014, fast chargers and BSSs planning are compared in (Zheng et al., 2014a) based on

the cost criteria of the battery life cycle. These two approaches (EVCSs and BSSs planning)

are modeled through a non-convex non-linear mixed integer programming problem, which

can be hardly solved by using exact techniques. In this way, differential evolution algorithm

is used to solve the problem.

Research related with deployment and performance of the Battery Swap Stations (BSSs)

has had a slight increment in the last years. However, in practice this technology has some

disadvantages due to the low maturity in the battery standardization. Although this, research

has not overlooked the BSSs, that in the year 2015 are studied by (Sarker et al., 2015), which

argues that the use of these infrastructures suppresses the long waiting of the EVs. The work

model of the BSS is framed into an optimization problem where the BSSs planning is done for

the next day, this is, determine the energy transactions between: batteries - power network,

power network - batteries, batteries - batteries, batteries - EVs and EVs - batteries. Via

robust optimization, the price uncertainty and batteries demand in the BSSs are modelled.

By the other hand, the battery swap strategy proposed by (Dong et al., 2016) attempts to

increase chargers efficiency and reduce waiting time of the EVs’ owners in the EVCS. In

this manner, spots operations scheduling is optimized in the EVCS, minimizing the cost of

energy consumption and maximizing the quantity of EVs to be recharged. This problem

is modelled through multi-state stochastic programming, integrating distributed sources of
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renewable energy and energy storage. The authors of (Pazouki et al., 2015a) work with the

integrated planning of EVCSs and distributed generation sources, concluding that the wrong

siting and sizing of EVCSs, leads to unexpected problems in the distribution network, that

can be compensated with distributed generators. The mathematical model is solved with

genetic algorithm and considers in the objective function, investment costs, technical factors

(system reliability, power losses and voltage profile) and environmental factors. Following a

similar approach, the same authors of (Pazouki et al., 2015a), perform in (Pazouki et al.,

2015b) an integrated planning of EVCSs and capacitors in power distribution systems. Some

studies such as (Neyestani et al., 2015) are motivated in include jointly the EVCSs planning

with uncertainty scenarios considering several factors, as follows: EVs behaviour, renewable

sources of distributed generation and energy generation price. Under these scenarios, two

operation stages are proposed: the first stage contains a mathematical model where the

benefit in the EVCSs interaction with energetic reserve market and electricity transactions

is maximized. In this sense, the EVCSs behaviour is determined, creating a key information

package that works as input for the second stage, which solves the EVCSs location problem in

the system. In this last stage, another mathematical model is performed, which minimizes the

costs associated with EVCSs installation and power losses, reliability and voltage fluctuation,

subject to operative constraints and maximum non-served energy level. Other works that

follow the same focus of multi-stage studies, are shown in (Khalkhali et al., 2015), where

the optimal siting and sizing of EVCSs is developed, in order to maximize the network

operator benefit, obtaining technical indices related with voltage improvement, active power

losses and CO2 emissions. In the next step, and according to the network operator profit

function and the technical indices computed for the possible nodes with charging station,

a Data Envelopment Analysis (DEA) process is implemented to qualify the nodes at the

distribution system. The nodes with the best qualification, will be the efficient places for the

EVCSs. However, another EVCS approach can be found in the specialized literature, that

is not to fix a location for this activity. Actually, the research developed in (Huang et al.,

2015), evaluates and parametrizes through queuing theory, the feasibility of a new concept

of mobile EVCSs and BSSs.
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In 2016, research has been addressed towards more BSSs than EVCSs planning. That is

the case of the work proposed by (Kang et al., 2016), where a novel strategy is proposed

to recharge EVs batteries, which can be replaced in a short time and recharged in valley

hours of energy consumption or when the energy price is low, based on real time price.

The problem is solved through a population based heuristic algorithm, which combines the

genetic algorithm with particle swarm optimization, taking adopted strategies of mutation

and dynamic crossing. With this scheme, it is attempted to minimize the costs associated with

batteries recharge and power losses, maintaining the power quality and voltage profile. By the

other hand, EVs batteries can be used to confront contingencies related with blackouts or local

outages. This is shown in (Sun et al., 2016), where an available capacity model is developed

with EVs batteries, analysing the starting generation characteristics and restoration power

supply links in the distribution system. In (Zhang et al., 2016) different types of charging

facilities are planned along roadside and public areas. Then, the forecasting of the spatial

and temporal distribution of EVs charging load is developed, using EVs driving parking

behaviors (from real-travel survey data), charging type, arrival time and parking duration.

Compared with previous years, 2017 has had the most number of publications related with

EVCSs planning, as depicted in Figure 2.4. Some important works are highlighted in this

period, combining the operation of the power distribution system and some aspects framed

into the transportation network, with predefined or to be defined EVCSs location. In (Bai

et al., 2017), the influence of Time Of Use (TOU) price on EV charging behaviour is presented.

Then, considering the EV’s users’ benefits and grid stable operation, a multi-objective

model is proposed encompassing four objectives. The first objective maximizes the charging

demands captured by EVCSs. The second objective minimizes the total cost of electricity

and time consumed during charging, in regards with interests of EVs’ users. As the EVs’

users are encouraged to charge their vehicles at off-peak hours due the TOU policy, the

pre-existing off-peak period may become a new peak demand, which can be controlled by

minimizing the load variance in the third objective function. The constraints of the model

are based on general aspects for EVCSs siting and sizing. Particle Swarm Optimization

with constriction factor was used to solve the multi-objective model and Data Envelopment

36



Analysis was performed to make the final planning decision among the Pareto solution to

determine the optimal EVCSs location. A similar focus is shown in (Yang et al., 2017), where

the coordinated dispatch strategies of EVs is studied to smooth renewable energy and load

fluctuations of a grid-connected microgrid, while ensuring the objectives of the logistic services

(meeting merchandise demands of customers). Some equations from the Capacitated Vehicle

Problem are used to model the logistics operation. Finally, in the collaborative context, the

authors of (Alizadeh et al., 2016), study the implications of large-scale integration of EVs

on power and transportation networks, concluding that the collaboration between the power

and transportation system operators can lead EVs towards a socially optimal traffic pattern

and energy footprint.

2.2.2 Science direct and Springer databases

The research of EVCSs planning in the context of Science direct and Springer databases, has

been slightly addressed according to Figure 2.5. The search was done taking into account

the following key phrases in the browser: “electric vehicle” AND “charging station”.
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Figure 2.5: Growth of the EVCSs planning research as per Science direct and Springer databases.
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As proceeded with the IEEE Xplore database search, this review is performed chronologically

to provide an idea on how the EVCSs planning has progressed over the course of the time.

Being the strategy to show the advance in this topic, EVCSs planning starts in Science

direct and Springer databases to be research in 2012, but it was not until 2014 that relevant

contributions were published, such as (Sadeghi-Barzani et al., 2014), where a mixed integer

non-linear optimization model is proposed. Factors involved in the station development

cost, EVs energy and electric grid losses, electric substations location and urban roads are

included, supported by the geographic information. A novel assessment of grid reliability

impact due to siting and sizing of EVCSs is demonstrated with a loss of charging cost index.

Following this streamline of mathematical programming, in 2015, the authors of (Moradi

et al., 2015) propose a multi-objective optimization problem to obtain the optimal siting

and sizing of EVCSs and renewable energy sources, in order to reduce power losses, improve

voltage stability, EVs charging costs and increase network load factor. The introduction of

coefficients related with wind speed and solar irradiance, help in the charging process carried

out by EVs aggregators. In (Chung and Kwon, 2015) a multi-period optimization model

based on flow-refueling location model is proposed for EVCSs location planning, based on

an extensive numerical case study with the real Korean roadway network. Other studies

in which the mathematical programming is not used for EVCSs planning purposes, but

prominent tools are utilized, are established in (Brooker and Qin, 2015) and (Guo and Zhao,

2015). In (Brooker and Qin, 2015) the National Travelling Household Survey (NTHS) is

explored to understand the EVs travel behaviour and EVCSs usage patterns, in order to

identify potential location for EVCSs. By the other side, the authors of (Guo and Zhao,

2015) employ a multi-criteria decision making method based on an evaluation index system

for EVCSs selection, which consists of environmental, economic and social criteria.

Important studies were done in 2016, showing a comprehensive and extensive review

presented in (Shareef et al., 2016), addressing three key areas of EVs research: EV charging

technologies, EVs impacts and optimal placement and sizing of EVCSs. This latter is

addressed from different perspectives, considering economic benefits, power gird impacts

and solution techniques (meta-heuristic and exact techniques). The review encompasses
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a total of 185 references. Other objectives framed into the enhancement of the social

welfare in the long term by optimally locating public fast charging stations are focused

by (Gong et al., 2016). The proposed strategy maximizes the probability that EVs can

be effectively charged, minimizes charging infrastructure cost and mitigates the negative

impacts on both transportation and power networks. In the same context of fast charging

stations, the authors in (Guo et al., 2016) state that market competition might influence

in the deployment on these infrastructures. On the other side, based on a multi-agent

simulation platform, the authors of (Marmaras et al., 2016) model road transport and electric

power system to demonstrate how EV behavior can be adapted to changes in the underlying

road transport and/or energy network. The normal operation of both networks is assured.

Since the road network perspective, an adaptive routing algorithm is used to ensure EVs

reach their destination at minimum time, by using battery consumption constraints and

adjustments in the EV’s route to include the necessary recharging stops. In addition, a

charging management mechanism exists to coordinate the EV charging requests and meet

the overall demand limitations of the energy network. Several contributions are provided by

(Amini and Karabasoglu, 2018), among them, the development of a novel routing strategy

that considers location and electricity price of charging stations, changing the EVs efficiency

under different traffic situations and optimization of the power system operation with a more

accurate electricity demand of EVs. Closing the review in 2016, efforts around in regards

with EVCSs planning are performed by (Davidov and Pantoš, 2017b). The optimization

model proposed by the authors, ensures charging reliability by placing at least one charging

station within the EV’s driving range using a distance criterion. A quality of service index

is introduced in this proposal to assess the disposable charging time of the EV driver to

complete the planned trips.

As in (Davidov and Pantoš, 2017b), and keeping the focus on fast charging stations, in

2017 the authors of (Alhazmi and Salama, 2017) propose a two-stage strategy for fast

charging stations planning. The first stage consists in evaluating the system capability with

the existing EVCSs by using optimal power flow, obtaining the maximum number of EVs

that can be introduced without violating the technical constraints. In the second stage
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it is determined when the fast charging stations should be installed along with their power

capacities, also taking into account the growth of public EV charging demand and considering

the traffic flow patterns in the transportation network. The same authors of (Davidov and

Pantoš, 2017b), present an upgraded optimization model in (Davidov and Pantoš, 2017a)

considering the stochastic nature of the mobility behaviour of the EVs drivers and driving

range. Real applications of EVCSs planning can be found in (Awasthi et al., 2017), where

an EV transportation pilot project is being developed in the city of Allahabad. Data coming

from the power distribution system infrastructure is utilized jointly with the pilot project to

deal with EVCSs planning, using a hybrid algorithm based on genetic algorithm and improved

version of conventional particle swarm optimization. Other contributions that are worth to

mention, are shown in (Toro et al., 2017), and (Paz et al., 2018). In (Toro et al., 2017) a new

mathematical model for the calculation of the greenhouse emissions is developed, considering

the fuel consumption minimization. By the other hand, in (Paz et al., 2018), a multi-depot

vehicle location routing problem with time windows is performed considering EVs fleet, in

the context of partial recharge and battery swapping.

According to SCOPUS, one of the most promising multi-disciplinary databases in the

academic community, research around EVs is widely addressed, from different perspectives

and diverse solution tools. However, for the sake of this review, the search is carried out

by using the advanced filter considering the following key phrases, highly related with the

essence of this research:

• electric vehicle AND

• charging AND

• station AND

• vehicle routing problem AND

• distribution system OR

• grid
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In this manner, a total of forty nine papers are found until 2017, as shown in Figure 2.6.

Among them, the authors of (Li-ying and Yuan-bin, 2015), provide an optimal solution with

a minimal cost for a logistic company that plans to adopt EVs for freight transportation

and to construct its own EVCSs. In the proposed model, customer time window and battery

capacities of the EVs are considered, incorporating the location and ECVS type decision with

the vehicle routing plan. Notice that the transportation network is only considered, neglecting

the power grid. Under a similar framework, in (Sassi et al., 2015), the study performed finds

optimal routes for heterogeneous freight EVs considering the existing EVCSs. EVs account

with different operational costs and diverse batteries capacities. By the other side, the efforts

done by (Yang and Sun, 2015) aim to optimal locate battery swap stations considering the

conventional CVRP focus, using the driving range as a swapping station placement criteria.

The mathematical model is solved by using exact techniques for small scale instances and

meta-heuristic techniques for medium and large scale instances from the specialized literature.
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Figure 2.6: Growth of the EVCSs planning research as per SCOPUS database.

In addition to the key phrases depicted above, the term “city logistics” is also used, as

this concept is considered as critical to ensure quality of life in cities, by focusing on the

efficient and effective transportation of goods in urban areas while taking into account the
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negative effects on congestion safety and environment (Savelsbergh and Van Woensel, 2016).

Under these key phrases, only five papers were found encompassing the topics under study.

Electric mobility has a strong participation in the city logistics objective, however, logistics

companies are often skeptical in using freight EVs as they are too costly compared to vehicles

powered by combustion engines. The logic solution is to increase the battery driving range,

which can enhance its competitiveness in comparison with the conventional vehicles. In

this sense, a battery swaping approach in (Taefi et al., 2017) is developed, by performing a

numeric simulation approach to analyse the optimal balance cost between a high utilization

of medium-duty EVs (with low operational cost) and the common requirement that their

batteries will need for expensive replacements.
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Chapter 3

Optimal EVs demand management: A

probabilistic perspective

3.1 Overview

In this chapter, the optimal charging of EVs in distribution systems is addressed from the

probabilistic approach. The costs of both demand and energy losses in the system are

minimized, subject to a set of constraints that consider EVs smart charging characteristics

as well as operative aspects of the electric network. By using a probabilistic framework,

a scenario that is closer to reality is shown, as it considers the variation to the prediction

of the daily load profiles. This approach constitutes a support to quadratic and dynamic

programming techniques, where it is possible to obtain optimal charging of EVs, aimed to

improve demand management strategies. Being that the case, the stochastic behavior of the

input variables are considered, i.e., active and reactive conventional power demanded at the

nodes, initial state of charge iSOC of the batteries and arrival and departure time of EVs.

The purpose is to analyse statistically the total optimal rate of EVs recharge in a distribution

system, in terms of the expected value and probability density function.

Considering the nature of this problem, a procedure is performed by using Monte Carlo

Simulation (MCS) in a secondary (low voltage) distribution network. The conclusive study
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contributes to risk analysis, defining the uncertainty level of the results and supporting the

process of appropriate decision making, such as electricity generation dispatch, contingency

criteria, location and installation of EVCSs, distribution planning, among others. The

optimal charging of EVs connected to the system benefits the system’s operation, representing

a strategy to minimize the cost of energy losses and to evaluate the capability of the system

to perform the complete recharge of EVs’ batteries under certain penetration scenarios.

The development of a probabilistic load model is not within the scope of this work, neither

to express the random nature of the power load data nor the driving patterns (arrival and

departure times) and initial state of charge. For that reason, the probabilistic behavior

of the demand through a load model with normal distribution is assumed, and log-normal

distribution is considered for random variables as arrival time, departure time and initial state

of charge. However, this proposal allows the use of other types of probabilistic distributions

for the input variables.

3.2 Problem description and mathematical formulation

Several aspects can be considered to manage the EVs charging in a distribution system,

depending on the charging habits of vehicle owners and the automation level of the network.

The following EVs charging conditions are established:

• It is assumed that EVs’ owners arrive at their homes at 18:00 and departure the next day

at 07:00. During this frame of time the EVs are plugged to the network. Nevertheless,

arrival time and departure time of EVs are described by probability distributions, hence,

EVs do not arrive exactly at 18:00 or departure at 07:00. Therefore, the study period of

this problem, known as T, will be from 17:00 to 08:00, in order to encompass the EVs

that eventually arrive before 18:00 and/or departure after 07:00, depending on their

arrival and departure times.

• The time period T, is divided into several charging subperiods with different priorities

(Deilami et al., 2011a), as depicted in Figure 3.1. The priority scheme for the subperiods
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is previously defined by the network operator as a charging policy to be complied by

the EVs’ users. Before the beginning of period T, the vehicle’s owner is encouraged

to choose the priority subperiod under which his/her EV will be recharged, taking

into account that the EV battery will be totally recharged during the chosen subperiod.

Additionally, the selection of the EV charging subperiod depends on the level of urgency

of the vehicle’s owner for its availability. Therefore, if it is required that the EV be

recharged as soon as possible, high priority degree should be chosen, otherwise, another

recharge subperiod may be chosen with a more favourable energy price. Another aspect

consists in the variation of the starting time of high priority subperiod, which can be a

little before 18:00, depending on the EV arrival time. For the low priority subperiod,

the ending time can be a little after 07:00, depending on the departure time of the EV.

18:00 19:00 20:00 21:00 22:00 23:00 24:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

High
Priority

Medium
Priority

Low
Priority

17:00 08:00

Figure 3.1: Priority subperiods for the EV charging

• The power delivered to EVs is controlled for each time period t (set to 5 min in this

work), which implies the existence of a remote communication between the distribution

utility and the EV charging infrastructure.

• Each node of the system is able to recharge just one EV, taking into account that its

priority is to supply the demand connected to the node (as a residential load), regardless

the energy required by the EV.

• EVs’ batteries have a State of Charge SOC determined by a probability distribution.

For all EVs the minimum State of Charge SOCmin is 20%.

The nomenclature for indices, sets, parameters and variables involved in the proposed

mathematical model are presented as follows:
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Indices

l Network branch

n Network node

t Time interval of period T

Sets

nl Number of network branches

nn Number of network nodes

nt Number of time intervals within period T

Parameters

C(t) Energy price during time interval t [US$/kWh]

δ(t) Duration of time interval t

Ed(n) Distance travelled by the EV [km]

Ev(n) Energy to be transferred to the EV

Evr(n) Range of the battery [km]

I(l)max Maximum current of branch l

iSOC(n) Initial state of charge of EV’s battery at the node n

K(n,t)
Priority charging factor at node n during time interval t,

in case an EV is connected to node n

η Penalty factor in case an EV was not fully recharged

Pgmax Maximum power generated at the nodes

Pvmax Maximum power of EVs

R(l) Resistance of branch l

SOCmin Minimum state of charge

Vmax Maximum voltage magnitude at the nodes

Vmin Minimum voltage magnitude at the nodes

Ω(l) Reactance of branch l

Z(l) Impedance of branch l

Variables

fp(l, t) Active power flow through line l during time interval t
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fq(l, t) Reactive power flow through line l during time interval t

i(l, t)sqr Square of the current flowing through branch l in time interval t

pd(n, t) Active power demanded by conventional loads at node n during time interval t

pg(n, t) Active power generated at node n during time interval t

qg(n, t) Reactive power generated at node n during time interval t

φ(n))
Missing energy for the full recharge of the EV

at node n at the end of the study period T

pv(n, t) Active power demanded by the EV at node n in time interval t

qd(n, t) Reactive power demanded by conventional loads at node n during time interval t

SOC(n, t) State of charge of the EV connected at node n during time interval t

tarr(n) Arrival time of the EV at node n

tdep(n) Departure time of the EV at node n

v(n, t)sqr Square of the voltage at node n during time interval t

The mathematical model presented as follows, is based on (Franco et al.), and involves several

aspects of a coordinated smart EVs charging in a distribution system:

f =


nt∑
t=1

nl∑
l=1

[C (t) δ (t)] [R (l) i (l, t)sqr] +
nt∑
t=1

nn∑
n=1

[C (t) δ (t)] [pd (n, t) + pv (n, t)]−
nt∑
t=1

nn∑
n=1

[δ (t) pv (n, t)K (n, t)] + η
nn∑
n=1

[
ϕ (n, t)2

]
 (3.1)

s.t.

nl∑
l=1

[fp (l, t)in] + pg(n, t) = pd(n, t) + pv(n, t)+

nl∑
l=1

[fp (l, t)out +R (l)out i (l, t)sqrout] ∀n = 1, 2, ..., nn ∀t = 1, 2, ..., nt

(3.2)

nl∑
l=1

[fq (l, t)in] + qg(n, t) = qd(n, t)+

nl∑
l=1

[fq (l, t)out + Ω (l)out i (l, t)sqrout] ∀n = 1, 2, ..., nn ∀t = 1, 2, ..., nt

(3.3)
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v (ns, t)
sqr − v (nr, t)

sqr = Z (l)2 i (l, t)sqr +

+2 [R (l) fp (l, t) + Ω (l) fq (l, t)] ∀l = 1, 2, ..., nl ∀t = 1, 2, ..., nt
(3.4)

v (ns, t)
sqr i (l, t)sqr = fp (l, t)2 + fq (l, t)2 ∀l = 1, 2, ..., nl ∀t = 1, 2, ..., nt (3.5)

nt∑
t=1

[δ (t) pv (n, t)] + ϕ (n) + iSOC(n) = Ev (n) ∀n = 1, 2, ..., nn (3.6)

SOC(n, t) = SOC(n, t− 1) + δ (t) pv (n, t) ∀n = 1, 2, ..., nn ∀t = 1, 2, ..., nt (3.7)

V 2
min ≤ v (n, t)sqr ≤ V 2

max (3.8)

0 ≤ i (l, t)sqr ≤ I (l)2max (3.9)

0 ≤ pv (n, t) ≤ Pvmax (3.10)

0 ≤ pg (n, t) ≤ Pgmax (3.11)

Equation 3.1 represents a cost function which involves four terms. The first term is the

energy losses cost of the system; the second term represents the energy cost drawn by the

EVs and conventional loads (residential loads). An incentive cost by the EVs recharge is

established in the third term considering the priority degree of recharge, and the last term

corresponds to a penalty cost when one or several EVs are not fully recharged at the end of

the study period T (composed by the nt subperiods). Model constraints are described by

3.2 to 3.7. Equations 3.2 and 3.3 represent the active and reactive power balances at each

node. Voltage drops at the nodes and currents through the lines are implied in 3.4 and 3.5
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respectively. Notice that nodes ns and nr are the send and receive nodes of the line l under

study. Equation 3.6 relates the total battery energy, the energy drawn by the EV in each

time interval t of the study period T , and the missing battery energy in case this is not

fully recharged. In 3.7 the SOC for the EV is computed for each time period t, taking into

account the SOC of the preceding interval. The limits of nodal voltages, currents through the

lines and maximum recharge power of EVs are set in 3.8 to 3.10 respectively. Equation 3.11

limits the generated power at node n in a time interval t, which means that the distribution

system under study may contain distributed generation. The subscripts in and out denote

the flow entering and leaving a node respectively. Although the mathematical model has

as output variable the recharge power of each EV for each time period, this is, pv(n, t), the

optimal recharge rate is the summation of all the contributions of power delivered to the

EVs, describing quantitatively the impact on the entire system.

3.3 Probabilistic analysis: Frame of reference

The assessment from the probabilistic perspective, provides well-defined information about

the capability of the network to afford the insertion of EVs, in regards with the range of EVs

recharge powers. This indicates the risk levels and conditions under which the components of

the distribution systems (e.g. transformers, feeders, protective devices etc.) are submitted,

providing important information to the network operator to evaluate the system performance.

3.3.1 Random behavior of input data

In order to obtain a model of this problem, closer to reality, the random behavior of the

input data is considered by using probability distributions. One of the input parameters

of the problem is the arrival time tarr(n); this is, the moment in which the EV’s owner

gets home and connects EV to the electric network. The other parameter is the departure

time tdep(n), this is, the moment in which the EV is disconnected from the electric network

depending on the departure of the EV’s owner. To model these uncertainties, arrival and
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departure times are modelled as lognormally distributed random distributions, as suggested

in (Shaaban et al., 2013). The mean values of the arrival and departure times are 18:00

and 07:00, respectively, and their probability distributions are shown in Figures 3.2 and 3.3,

respectively.
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Figure 3.2: Probabilistic behavior of the arrival time

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

Departure time

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

07
:0

0

07
:0

5

07
:1

0

07
:1

5

07
:2

0

07
:2

5

07
:3

0

07
:3

5

07
:4

0

07
:4

5

07
:5

0

07
:5

5

08
:0

0

06
:5

5

06
:5

0

06
:4

5

06
:4

0

06
:3

5

06
:3

0

06
:2

5

06
:2

0

06
:1

5

06
:1

0

06
:0

5

06
:0

0

05
:5

5

05
:5

0

05
:4

5

Figure 3.3: Probabilistic behavior of the departure time

The initial state of charge iSOC(n) of the EV is calculated by 3.12, based on the daily distance

Ed(n) travelled by the EV, which is a random variable, following a lognormal probability

distribution function. In this case, the mean and variance of Ed(n) are 26.1 and 20.37 km,
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respectively, considering Evr(n) = 30 km as the range of an EV mid-size sedan with a battery

capacity Ev(n) of 8 kWh. It is assumed that the charging is performed at level 2, i.e. up to

a maximum of Pvmax = 4 kW (Mehboob et al., 2015).

iSOC(n) = 1− Ed(n)

Evr(n)
(3.12)

The loads connected to the nodes (conventional demand), other than the EVs demand, behave

randomly, assuming a normal distribution function. The mean value for the active power at

each node is µ = 2 kW with a power factor of 0.9. The standard deviation σ is 15% of the

mean value (Deilami et al., 2011b).

3.3.2 Montecarlo Simulation

In each iteration, Montecarlo Simulation (MCS) (Gill et al., 2000) generates random values of

input variables (conventional active and reactive demand for all nodes, initial state of charge

of the EVs’ batteries and arrival and departure times) with a probability distribution for

each one. Next, an optimization algorithm is performed, to build, iteratively the probabilistic

behavior of the output variables (optimal charging rate of EVs).

MCS procedure can be summarised as depicted in Figure 3.4. Once the system parameters

(electric parameters, energy cost, demand curve, priority factors, mean value, standard

deviation and probability distribution function) are read, random variations are generated

for the input variables, following the respective probability distribution. Subsequently, the

optimization algorithm is executed to obtain the EVs charging value for each time interval

t of the study period T (and other output variables of interest). This procedure is repeated

until convergence is reached. Finally, the expected value and standard deviation of the output

variable of interest are obtained by using the equations 3.13 and 3.14 respectively.

E (Y ) =
1

n

n∑
i=1

Yi (3.13)
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Read parameters
of the system

Initialize counter
 k = 1

Generate random values of
 the input variables: 

pd(n,t), qd(n,t), iSOC(n),
 tarr(n) and tdep(n)

Solve the optimization
problem

Obtain the optimal value for the 
    output variables of interest

Convergence has been
 reached?

Compute E(Y) and STD(Y)

Report results

NO

k = k + 1

YES

Figure 3.4: Procedure of MCS
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STD (Y ) =

√√√√ 1

n

n∑
i=1

(
Yi − Y

)2
(3.14)

3.4 Simulation results

3.4.1 19 nodes test system

To perform the probabilistic analysis using MCS, the 19 nodes test system presented in Table

A.1 is used. This system corresponds to a 415 V-low-voltage distribution network, with a 130

kV A transformer and 19 residential load nodes. The information related with the existence

of EVs at the end node of the branches is also shown, where “1” indicates that the node

has an EV and “0” otherwise. Likewise, the degree of priority for the EV recharge (High,

Medium and Low) is presented for each node.

During the study period T , the conventional load connected at each node, is affected by the

load curve measured at the distribution transformer, as illustrated in Figure 3.5.

Once the MCS is executed for the test system of Table A.1 (16% penetration level of EVs),

the expected value of the power delivered to all EVs and the conventional demands are

shown in Figure 3.6. During the charging subperiod of low priority, no EVs are recharged

(from 01:00 to 02:40 and from 04:30 to 07:00), since during those hours the electricity price

is higher than that at intermediate hours, as shown in Figure 3.7. This aspect makes the

mathematical model of 3.1 to 3.11 be more sensitive to the energy price, thus the recharge

of EVs is attractive in periods where the energy price is relatively low. In this context, it

is assumed that the energy price varies all the time (in this work every 5 min). It is worth

noting that this does not occur in schedule rates adopted by many utilities (flat, time of use

TOU, seasonal and tiered, among others).

The next scenario corresponds to a 63% of EVs penetration level. According to Figure 3.8,

the recharging behavior of the EVs is similar to the case shown before (with 16% of EVs

penetration level). Note that some EVs with high priority (red color) arrive at the houses
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Figure 3.5: Percentage of the peak power in the system during each along the studyperiod T
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Figure 3.6: EVs recharge under 16% penetration level (19 nodes test system)
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Figure 3.7: Variation of energy price

before 18:00. They start to draw energy from the network with an increasing rate of recharge

until 18:00, where the energy price starts to rise. At this point, the recharging decreases due

to the increase of the energy price until 22:00, where the EVs charging with high priority is

completed. The presence of power peaks is due to the variable nature of energy price. In

this context, the load curve (conventional loads and EVs) may be flatter in case of flat rate

of energy price.

In Figure 3.9, MCS evolution is presented for the 16% and 63% EVs penetration levels.

The cost of both, energy losses and energy demanded (EVs and conventional loads) reach

convergence in MCS after 500 iterations approximately. It is obvious that the cost for 63%

penetration level is higher than that for 16% penetration level cost, since the insertion of

EVs increases almost four times, leading to an increase of the overall cost. For both insertion

levels, all EVs were fully recharged, therefore, there was no penalization for the cost presented.
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Figure 3.8: EVs recharge under 63% penetration level (19 nodes test system)
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3.4.2 35 nodes test system

The proposed approach is also assessed in a larger network, which is composed by a 35 nodes

low voltage distribution network. The test system is presented in Table A.2. This feeder is

submitted to 63% of EVs insertion, resulting in a huge stress level. Figure 3.10 shows that

the power at the substation transformer reaches roughly 85% of its rated power.

In regards with Figure 3.10, EVs recharge is performed throughout the time window with a

63% EVs penetration level. At the beginning of the medium priority subperiod (blue), the

EVs recharge rate is low. As time goes by, recharge rate increases due to the decrease of

energy price. Just after the medium priority period (01:00), there is a steep decrease of the

EVs recharge power since at this time the recharge occurs only for EVs with low priority

(green). Likewise, from that point on, energy price becomes less expensive, encouraging the

recharge of EVs until 03:30 approximately where the energy price starts to increase. Then,

EVs recharge starts to decrease once again. Some of the EVs with low priority recharge have

to draw energy from the network until their respective departure times, later than the end

of study period (07:00), to be fully recharged, even when the energy price becomes higher.

57



Time

17
:0

0

22
:0

00

10

20

30

40

50

70

80

Pe
rc

en
ta

ge
 o

f r
at

ed
 p

ow
er

 a
t t

he
 

su
bs

ta
tio

n 
tra

ns
fo

rm
er

60

90

03
:0

0

08
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

23
:0

0

24
:0

0

01
:0

0

02
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

Figure 3.10: EVs recharge under 63% penetration level (35 nodes test system)

This aspect shows that EV recharge is more important than the cost of the energy that will

affect the objective function, without ignoring the fact that the energy price represents an

important factor in the mathematical model.

In Table 3.2 the expected values and standard deviations are presented for various decision

variables obtained using MCS, namely, energy drawn by the feeder, feeder losses, EVs

charging energy and cost of energy drawn by the feeder. According to the distribution of the

values given by the frequency histogram, normal distribution was the best distribution that

represented these output variables, being a very common continuous probability distribution.

Table 3.2: Probabilistic studies for 35-node test system

Output Variable Expected value Standard deviation 
Energy drawn by the feeder 769.2611 4.7546 
Feeder losses [kWh] 26.1826 0.315 
Evs charging energy [kWh] 113.3339 3.6116 
Cost of energy drawn by the feeder [US$] 45.8176 0.2239 
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3.4.3 Computational details

The mathematical model of this work has been implemented and run using the GAMS

environment (Gill et al., 2000), in a desktop with an Intel Core 3.3 GHz processor and 4

GB of RAM. This model is a NLP problem, which is solved using the MINOS solver. The

convergence criteria used for Montecarlo Simulation is based on the number of iterations, set

in 1000.

3.5 Conclusions

In this chapter, demand management for EVs in power distribution systems was tackled

from the stochastic point of view. Operative aspects of the distribution network and smart

procedures for EVs recharge were modelled mathematically, considering the probabilistic

behavior of driving patterns (arrival and departure times) and state of charge of EVs’

batteries. This latter is expressed in terms of the distance travelled by the EV.

Probabilistic studies, to account for different penetration levels of EVs, were performed by

using MCS. Statistical values, such as the expected value and probability density function

of the optimal rate of EVs recharge in the system and other output variables were found,

taking into consideration priority subperiods along the period of time under study. This

aspect establishes the fact that an EV has to be recharged as soon as possible, or has to wait

for a more appropriate time, depending on other factors, i.e., energy price.

If each priority subperiod is analyzed separately, the mathematical model presents sensitivity

from the point of view of the energy price, reflecting a tendency to provide charging power

at hours when the energy price is lower. Nevertheless, the feasibility in this problem is

more related with priority than optimality, because the technical constraints of voltage at

the nodes and currents through the lines have to be met before searching for minimising

objective function cost.
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Chapter 4

Electric vehicles routing and charging

stations location: First approach

4.1 Overview

The use of EVs has become a promising tool for the logistics sector electrification and the

inherent curtailment in the air pollution. Transportation companies are highly responsible

to reduce the green house gases emissions, emerging several pilot projects for merchandise

transportation with EVs in multinational companies such as DHL, FedEx and UPS, where

EVs have been included for routing planning. However, the EVs driving range still represents

a disadvantage to adopt them as main transportation means in logistics, compared with

ranges provided by internal combustion based vehicles. Batteries driving range depend

largely on their improvement, based on safety, cost, operation temperature and availability

of materials, which are difficult issues to handle (Hannan et al., 2017). This implies that the

EVs driving range will not be widely improved for the coming years.

Under these circumstances, charging stations play an important role on the electric mobility,

allowing to travel longer distances by indirectly increasing EV driving range. In this manner,

it is necessary to perform an appropriate siting of Electric Vehicle Charging Stations (EVCSs),

as this type of installations are strategic for the massive incorporation of EVs, reaching driving
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ranges comparable with conventional vehicles. Furthermore, optimal EVCSs siting does not

depend exclusively on the transportation network requirements, because those installations

imply large consumption of electricity. Therefore, the effect of the charging stations on the

power distribution networks has to be taken into account, in order to avoid congestion or

additional costs associated with energy losses.

In this chapter the Electric Vehicles Integrated Planning Problem (EVs-IPP) for cargo

transportation is presented. The optimal location of EVCSs is performed considering the

mobility of cargo EVs along the transportation network and the impact on the Power

Distribution System (PDS). This results as a consequence of the poor capacity that may be

presented on the EVs’ battery to provide enough autonomy to complete the routes adequately,

since the EVs are part of merchandise transport where considerable distances are traveled

too often. By the other side, EVCSs represent huge additional loads for the electric network,

being the proper location of this type of loads a critical aspect when the energy losses of the

PDS are assessed.

The proposed formulation is based on a mixed integer non-linear mathematical model to

portray the EVs mobility with the well known Capacitated Vehicle Routing Problem (CVRP)

and the distribution system operation with the power flow equations. Costs associated

with cargo EVs routing, EVCSs installation and energy losses are minimized, obtaining an

optimal operation in the transportation and electric networks. Additionally, the introduction

of a consistent penalty in the objective function helps to determine until what level the

current EVs’ battery autonomy is suitable to perform the routes. In regards with the

battery autonomy, the mathematical model tends to be feasible, as long as this term is

not greatly weighted in the objective function. This way, under a non-sufficient battery

autonomy scenario, the decision maker can realize that EVCSs installation is not enough to

meet the needs of EVs routing, being necessary to replace current batteries for others that

can provide larger driving range.
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4.2 EVs-IPP formulation

In the context of discrete mathematics, the integrated planning problem proposed can be

formulated as a graph theory problem. Let G = (V,A) a complete graph, where V = C ∪N

is the vertices set of the integrated problem and A is the arc set that interconnects all the

vertices. Set C = 1, ..., c represents the customers vertices and conform the transportation

network. Set N = c+ 1, ...,+n represents the power demand vertices and conform the PDS.

Set J ⊂ N contains all the candidate vertices to install EVCS that in this case is the set

of all the nodes except the PDS substations. Sets N and C and their respective arcs can

be seen as two disjunctive graphs, and the interaction between these graphs is given by the

EVs charging. The EVs are required to meet the customers merchandise demand. PDS

vertices of set N are connected each other through lines, which represent the electrical wires,

conforming set L = 1, ..., l.

In this sense, EVs-IPP considers the interaction of three different subproblems. The first

subproblem is known in the literature as the Capacitated Vehicle Routing Problem (CVRP),

where a vehicles fleet with limited cargo capacity leave from a unique depot and deliver

merchandise to several customers. The vehicles have to fully meet the merchandise demands,

seeking a travelling minimal cost (Toth and Vigo, 2002). The second subproblem is related

with the location of EVCSs, which indirectly provides an increase of the EVs battery range

in order to complete the travel successfully. The third subproblem addresses the power

flow formulation, involving the operation point of the PDS under the additional loads in

accordance with the EVCSs installation.

4.2.1 Nomenclature

For better understanding of the mathematical formulation, the notations used in this chapter

are listed as follows:
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Sets

C Set of customers

J Set of candidate nodes to install EVCSs

0 Depot

0’ Copy of Depot

V C ∪ J ∪ 0 ∪ 0′

K Set of Electric Vehicles

N Set of nodes belonging the PDS

L Set of lines belonging the PDS

Parameters

W1 Weight factor for EVCSs installation cost term

W2 Weight factor for routing cost

W3 Weight factor for penalization term

W4 Weight factor for energy losses cost

fh EVCSs installation cost [USD]

fmh EVCSs maintenance cost [USD]

CPI Consumer Price Index

nt Number of years to shift to future value

ak Cost per kilometer traveled by vehicle k [USD/km]

dgh Distance from node g to node h [km]

amk Maintenance cost of vehicle k to travel one kilometer [USD/km]

apk Cost of the additional capacity of the EV’s battery [USD/km]

b Cost of 1 kWh of energy losses [USD/kWh]

Lossw/oEV CSs Power losses of the PDS without EVCSs installed [kW ]

M Big number

|K| Cardinality of set K

qg Merchandise demand at customer node g
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Uk Merchandise cargo capacity of vehicle k

Q Battery autonomy [km]

P d
n Active power demanded at node n [kW ]

Rmn Resistance of line mn belonging the PDS [Ω]

Xmn Reactance of line mn belonging the PDS [Ω]

Zmn Impedance of line mn belonging the PDS [Ω]

Vmin Lower voltage bound at PDS nodes [V ]

Vmax Upper voltage bound at PDS nodes [V ]

Imax Upper current bound at PDS lines [A]

PG
max Upper level of active power generated at PDS nodes [W ]

PEV CS Nominal active power drawn by EVCS installed [W ]

Variables

α Cost of EVCSs installed [USD]

β Cost of EVs routing on transportation network [USD]

γ Cost of penalization [USD]

yh
Binary decision variable for EVCS installation at candidate

node h. If yh = 1 the EVCS is installed and yh = 0 otherwise

xghk
Binary decision variable, taking the value of 1 if vehicle k

goes from node g to node h and 0 otherwise

P fictitious
hk Missing autonomy to reach node h with vehicle k [km]

isqrtmn Square current flowing through line mn of PDS [A2]

µghk Remaining merchandise when vehicle k leaves node g and goes to node h

pb1hk Battery autonomy before vehicle k arrives node h [km]

pb2gk Battery autonomy after vehicle k leaves node g [km]

Pmn Active power flowing line mn of PDS [kW ]

PG
n Active power generated at node n [kW ]

PEn Active power drawn by an EVCS installed at node n [kW ]

Qmn Reactive power flowing line mn of PDS [kV ar]
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QG
n Reactive power generated at node n [kV ar]

V sqr
m Square voltage at node m [V 2]

4.2.2 EVs-IPP Mathematical model

The mathematical model for EVs-IPP is presented in equations 4.1 to 4.29, considering O

as the depot where the vehicles start the respective routes and O′ is a depot copy where

the vehicles will complete the routes. Note that equation 4.1 is the objective function and

equations 4.2 to 4.29 are the set of constraints.

The objective function in 4.1 seeks to minimize the summation of four terms. The first term is

the construction and maintenance cost of an EVCS at node h. The second term is the routing

cost performed by the vehicle k from node g to node h. In this term the maintenance in

terms of the distance traveled by the EV is also considered. The third term is a penalization

created in case of need to increase the battery autonomy in EVs, in order to complete the

routes and deliver the merchandise to customers. This term is the cost to make the problem

feasible and is defined as the product between a positive variable (Increase of the battery

autonomy at vehicle k to arrive node h) and the cost apk of the additional capacity of the

battery. The last term represents the cost of the energy losses increase through the PDS lines

compared with the energy losses when no EVCSs were installed (Benchmark case).

min z = W1 · α +W2 · β +W3 · γ +W4 · ω (4.1)

The four terms of the objective function are defined in equations 4.2 to 4.5 respectively, along

a period equal to one year and shifted to future value. This latter depends on the number of

years nt the cost will be shifted to future and the Consumer Price Index CPI.

α =
∑
h∈J

(fh + fmh) · yh · (1 + CPI)nt (4.2)
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β = 365 ·
∑
g∈V

∑
h∈V

∑
k∈K

dgh · xghk · (ak + amk) · (1 + CPI)nt (4.3)

γ = 365 ·
∑
h∈V

∑
k∈K

apk · P ficticious
hk · (1 + CPI)nt (4.4)

ω = 8760 · b
∑
mn∈L

(
isqrtmn ·Rmn − Lossw/oEVCSs

)
· (1 + CPI)nt (4.5)

Weighting factors W1, W2, W3 and W4 in objective function provide a level of importance for

each term, making the summation of all of them equals to the unity. The values assigned to

these factors depend on strategic data managed by decision maker in the integrated planning.

This information is related with financial availability to implement the routing, EVCSs

construction, battery technology, among others. The values that best represent the deal

between objectives can be obtained via a multi-objective approach, in order to build up an

optimal front of solutions (which is not into the scope of this work). In the proposed model,

punctual values for these factors are used in all instances and runs, distributing the relative

importance of each term in objective function, in such a way that the need to increase the

battery autonomy is largely penalized, followed by the routing cost, then, EVCSs installation

cost and energy losses costs. Thus, in this proposal it is assumed that W3 >W2 >W1 = W4.

Factor W3 has the highest relevance, as it is attempted that a change of the battery capacity

be not attractive. W2 is greater than W1 as the change in objective function value is more

sensitive to the EVCSs installation cost than that with the routing cost.

The constraint in 4.6 requires every arc to be traveled only once, while constraint in 4.7 is an

inequality to warranty that EVs only recharge their batteries at a located EVCS. Equation

4.8 is a constraint that assures the flow for each vehicle at each node. In 4.9, it is shown

that the quantity of vehicles leaving the depot has to be the same as the number of vehicles

entering the depot. Constraint in 4.10 requires each vehicle to do one trip at most. In 4.11,

the cardinality of set K, assures that the maximum quantity of vehicles leaving the depot is

limited by the quantity of vehicles available.
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∑
g∈V \{o′},g 6=h

∑
k∈K

xghk = 1 ∀h ∈ C (4.6)

∑
g∈V \{o′}g 6=h

∑
k∈K

xghk ≤M · yh ∀h ∈ J (4.7)

∑
h∈V \{o},h6=g

xghk −
∑

h∈V \{o′},h6=g

xghk = 0 (4.8)

∑
h∈V \{o}

xohk −
∑

h∈V \{o′}

xho′k = 0 ∀k ∈ K (4.9)

∑
h∈V \{o}

xohk ≤ 1 ∀k ∈ K (4.10)

∑
k∈K

∑
h∈V \{o}

xohk ≤ |K| (4.11)

When vehicles visit an EVCS without merchandise demand, qh = 0, h ∈ J . Constraint in

4.12 represents that the summation of the remaining load ughk of an EV entering an EVCS

is equal to the remaining load of the vehicle leaving an EVCS. This guarantees the vehicle

capacity balance and indicates that an EVCS can be revisited more than once. The change

in the remaining load of an EV when entering a customer node (with qh >0) is calculated

by constraint 4.13. If the vehicle k visits customer h, the remaining cargo is reduced by

customer demand qh. If the customer h is not visited by vehicle k, the constraint keeps valid.

Both, constraints in 4.12 and 4.13 make an EV to pass by an EVCS more than once but visit

a customer only once, and eliminate the generation of subtours. Constraint in 4.14 contains

the range for ughk that can be at most, the total cargo capacity of the EV.

From the point of view of the EV battery, constraint in 4.15 records the EV battery autonomy

in terms of distance. When the vehicle k with a battery autonomy Q, travels along the arc
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gh, the battery autonomy before entering node h pb1hk, is the subtraction between the battery

range after leaving node g pb2gk and the distance traveled dgh along the arc.

∑
g∈V \{o′,j}

ughk =
∑

g∈V \{o,j}

uhgk ∀h ∈ J,∀k ∈ K (4.12)

∑
h∈V \{o,g}

ughk ≤
∑

h∈V \{o′,g}

(uhgk − qg · xhgk) + Uk ·

1−
∑

h∈V \{o′,g}

xhgk

 ∀g ∈ C, ∀k ∈ K

(4.13)

0 ≤ ughk ≤ Uk · xghk ∀g ∈ V \{o′}, h ∈ V \{o}, g 6= h, k ∈ K (4.14)

pb1hk ≤ pb2gk − dgh · xghk +Q(1− xghk) ∀g ∈ V \{o′}, h ∈ V \{o′}, g 6= h, k ∈ K (4.15)

Constraint 4.16 indicates that all the vehicles have to leave the depot with batteries

completely charged. This also applies for the EVCSs, where constraint 4.17 describes that a

vehicle will have its battery fully charged once leaving from the EVCS. Right before an EV

enters a customer node, the battery autonomy will be the same once it leaves the node, which

is established in constraint 4.18. If the vehicle does not have enough autonomy to arrive to

the next node, a variable called P fictitious
hk is in charge to provide the missing autonomy. This

latter is introduced in the objective function as a penalization, motivating the installation of

EVCSs instead of to increase the EVs battery autonomy. In 4.19 the non-negativity of the

battery autonomy is declared, and the binary decision variables are shown in 4.20.

pb2ok = Q ∀k ∈ K (4.16)

pb2gk = Q · yg ∀g ∈ J (4.17)
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pb2hk = pb1hk + P fictitios
hk ∀h ∈ C (4.18)

pb1hk ≥ 0 ∀h ∈ V (4.19)

yj, xghk ∈ {0, 1} ∀j ∈ J,∀g ∈ V \{o′}, h ∈ V \{o}, k ∈ K (4.20)

From 4.21 to 4.27 the status of the PDS is assessed. The balance of active and reactive power

is done in 4.21 and 4.22 respectively. The voltage drop along the network segment mn is

computed in 4.23 and the current square is obtained with constraint 4.24.

The constraints from 4.25 to 4.28 determine the voltage limits for each node, current flowing

through the lines, active power generated and power consumed by the EVCSs, being PEV CS

the maximum power consumed by each EVCS. The non-negativity of the battery autonomy

added to EV is formulated in 4.29.

∑
mn∈L

Pmn −
∑
nr∈L

(Pnr + isqrtnr ·Rnr) + PG
n = P d

n + PEn ∀m ∈ N, n ∈ N, r ∈ N (4.21)

∑
mn∈L

Qmn −
∑
nr∈L

(Qnr + isqrtnr ·Xnr) +QG
n = Qd

n ∀m ∈ N, n ∈ N, r ∈ N (4.22)

vsqrm − vsqrn = 2(Rmn · Pmn +Xmn ·Qmn) + Z2
mn · isqrmn ∀mn ∈ L,m ∈ N, n ∈ N (4.23)

vsqrn · isqrmn = P 2
mn +Q2

mn ∀mn ∈ L, n ∈ N (4.24)

V 2
min ≤ vsqrn ≤ V 2

max ∀n ∈ N (4.25)
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0 ≤ isqrmn ≤ I2max ∀mn ∈ L (4.26)

0 ≤ PG
n ≤ PG

max ∀n ∈ N (4.27)

PEn = PEV CS.yh ∀n ∈ N, ∀h ∈ J (4.28)

P fictitios
hk ≥ 0 ∀h ∈ V, k ∈ K (4.29)

4.2.3 Test systems

In order to validate the mathematical model proposed, three different instances composed by

combination of transportation networks and power distribution systems from the specialized

literature are proposed. The characteristics of the transportation, power distribution and

hybrid networks, are featured below. Some tests are carried out on the uncoupled instances.

Transportation networks test systems

In this study, small-size instances for CVRP are used to examine the EVs-IPP mathematical

model from the transportation network approach. As shown in (Yang and Sun, 2015), three

instances are generated from the Pn16k8 instance, available in (Augerat, 2013). Instead of

using all customers in the instance, each instance contains only a certain number of customers.

For example, in this work, Pn6k2 presents the last 6 customers of Pn16k8, Pn7k3 presents

the last 7 customers of Pn16k8 with 3 vehicles, and Pn8k3 contains the last 8 customers of

Pn16k8 with 3 vehicles (see Table 4.2). According to the tests performed in (Yang and Sun,

2015), the autonomy Q for the EV’s battery is set in [1.2dmax], being dmax the maximum

Euclidean distance between any two nodes in the network. The cost associated with an EVCS
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construction is [0.5Q]. In this case, it is assumed that all the customer nodes are candidates

for EVCSs.

Table 4.2: Small-size transportation network instances

Instance 

Coord.
X 

Coord.
Y 

Pn6k2 Pn7k3 Pn8k3 

Customer 
node 

EVCS 
candidate 

node 

Customer 
node 

EVCS 
candidate 

node 

Customer 
node EVCS candidate node 

1 9 57 58 

1 8 2 10 62 42 

1 7 2 9 3 11 42 57 

2 8 3 10 4 12 27 68 

3 9 4 11 5 13 43 67 

4 10 5 12 6 14 58 48 

5 11 6 13 7 15 58 27 

6 12 7 14 8 16 37 69 

Depot (0 and 0’) 1 -1 

 

Table 4.3 provides the results obtained by EVs-IPP in Pn6k2, Pn7k3 and Pn8k3 instances,

which can also be found in (Yang and Sun, 2015). Note that the candidate nodes where

EVCSs were installed, are underlined along the EVs routes described in the column “Route”.

Table 4.3: Results for three different transportation network instances

k=1 k=2 k=3
Pn6k2 2 426.8609 0-10-4-5-0’ 0-1-9-3-6-2-0’ 21
Pn7k3 2 428.5961 0-6-1-12-5-0’ 0-3-7-14-4-2-0’ 688
Pn8k3 2 597.1575 0-4-16-8-5-3-0’ 0-7-2-14-0’ 0-1-6-14-0’ 352

Instance EVCSs
installed

Objective
function

Route
Time [s]
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Power distribution test systems

By the side of power distribution networks, three test systems from the literature were used.

The first system can be found in (Civanlar et al., 1988) and is presented in Tables B.1 and

B.2. This instance is a three-feeder system with 16 nodes, which will be named DS16N. The

second test system is a 34-nodes feeder (named in this work DS34N ) available in (Ribeiro,

2013) and also presented in Tables B.3 and B.4. This system is rated at 11kV and utilized

by other authors in optimal location of capacitors. The third case (named DS23N in this

work), with 23 nodes, is a two-feeder distribution system proposed in (Miranda et al., 1994)

rated at 28kV, and is shown in Tables B.5 and B.6.

Considering the effect of the power distribution system in EVs-IPP mathematical model,

the electric feeders mentioned above are coupled with a transportation network. No matter

which transportation network is used for this test, if a big autonomy Q for the EVs’ batteries

is used, the vehicles are able to complete the routes and meet the customers, without the

need to install any EVCSs. In this sense, the results (voltage profile) from the point of view

of the power distribution system will be quite similar as those that can be obtained with the

conventional back-forward sweep algorithm, as there are no additional power loads. The error

in p.u. between the voltage calculated by back-forward sweep algorithm and the EVs-IPP

mathematical model is shown in Figures 4.1, 4.2 and 4.3 for DS16N, DS34N, DS23N test

systems respectively.

Since the lower limit of voltage constraint in EVs-IPP mathematical model is not reached, the

voltage at nodes are very similar compared with the voltage obtained with backward-forward

sweep algorithm, as this latter is not able to restrict this variable. Figures 4.1 to 4.3 depict

that the maximum error between the two methods is 1.9928x10−9.

Coupled systems

In order to examine the EVs-IPP’s capability from a general perspective, both electric and

transportation networks are coupled. Therefore, three new instances are created from the
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Figure 4.3: Voltages error in p.u. for DS23N test system

power networks and transportation instances shown before. These new instances are exposed

in detail in Tables B.7, B.8 and B.9. Figure 4.4 shows the coupling between Pn6k2 and

DS16N. Note that nodes joined with continuous line represent the power distribution system,

being nodes 7, 8 and 9 the distribution substations. The transportation network is portrayed

by the square nodes. Figure 4.5 presents the coupling between Pn7k3 and DS34N, where

node 8 is the distribution substation. Finally, coupling of Pn8k3 and DS23N is shown in

Figure 4.6, with two distribution feeders around the transportation network compound by

8 nodes. In all three instances, it is assumed that none of the PDS nodes is located at the

same coordinates of the customers. Therefore, EVCSs are not able to be installed on the

customers’ nodes (as EVCSs draw power from electric grid), which implies that the EV is

required to visit a power network node (to an installed EVCS) once the battery is almost

depleted and returns to still visiting the customers.
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4.3 Results

Coupled systems shown in Figures 4.4, 4.5 and 4.6 are utilized to assess the performance

of EVs-IPP. Parameters for all three instances were chosen consistently to the reality.

According to (Motors, 2017), an EVCS may draw from the PDS up to 120 kW for a 272 km

battery-range. In this work, PEVCS used is 60 kW , as the average range evaluated in the

runs is around 130 km, considering a linear behavior between maximum power at EVCS and

distance that can be traveled. The cost fh related with EVCS construction is assumed to be

22000 USD, as established in (Agenbroad, 2014), taking into account type of installation,

materials, connectivity, data and other factors. Parameter fmh, which is the maintenance

cost associated with this infrastructure, is around 10% the installation cost. From the point

of view of the EV operation, the average cost is 2.423 USD to travel 100 km, as reported by

(of Energy, 2017), and an estimation of 86 USD for EV maintenance every 5000 km traveled.

The parameter apk is chosen arbitrarily as 1000 times the cost per kilometer traveled, in order

to strongly penalize the third term in the objective function. By the hand of PDS losses, the

power losses cost used in all cases is 4.34 Cents per kWh. To shift the cost to future value,
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CPI is set in 5%.

Weighting factors assigned in the objective function at all runs are: W1 = 0.1, W2 = 0.2,

W3 = 0.6 and W4 = 0.1. The third term is multiplied by a high weight factor in objective

function, compared with other terms, as the purpose is to obtain a solution where the EVCSs

installation be encouraged instead of change the EVs’ battery for a battery with larger

autonomy. Notice that the weighting factor for routing cost is larger than that multiplying

EVCSs installation cost, due to the installation of one EVCS can affect significantly the

objective function value. Contrastingly, the change in routing caused by battery driving

range, implies a slight affectation to the objective function, making this latter less sensitive

to the routing cost change. By the other side, the term for change in energy losses cost,

could have a high weighting factor, being appropriate to install EVCSs close the substations.

However, this could result in a non-desired increment for the routing cost and eventually

activate the third term in objective function, which is not attractive due to the reasons

mentioned earlier. Therefore, energy losses cost (forth term in objective function) is highly

dependent on the other objectives (EVCSs installation and EVs routing) due to its weighting

factor and that the actions executed on the transportation network, greatly influence in the

distribution system performance.

The proposed EVs-IPP model has been programmed and executed in the GAMS (General

Algebraic Modeling System) environment on a HP desktop computer, Windows 64-bit

operating system, with an Intel Core i3 @ 3.3 GHz processor and 4 GB of RAM. The

presence of non-linearities and integer and continuous variables into equations, make the

proposed EVs-IPP model be a MINLP, which is solved using the DICOPT solver (GAMS,

2017). In all runs, default values for DICOPT solver were used, i.e., 20 number of cycles for

alternating solution of NLP subproblem and MIP master problem, and GAP of zero for MIP

master problem solution.
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4.3.1 Pn6k2-DS16N

The results for instance Pn6k2-DS16N are presented in Table 4.4, considering different values

of battery autonomy Q and three values for parameter M described in equation 4.7. This

parameter restricts the number of arcs entering and leaving an EVCS, limiting indirectly the

number of vehicles that can visit the EVCS. For example, if M = 1, one EV is allowed to

visit the EVCS. If M = 2, only two EVs are permitted to enter an EVCS, and if M = 150

(or a big number), all the EVs in the routing problem can visit the EVCS.

According to Table 4.4, as the battery autonomy (first column) is increased for a certain value

of M (column 7), there is a reduction of the cost associated with EVCS installation, EVs

routing and PDS energy losses (second, third and fourth columns respectively). Columns

5 and 6 show the nodes sequence traveled by the EVs, with the EVCSs identified in bold.

When the battery autonomy Q is large enough (Q >180 km), no EVCSs are installed and

the terms α and ω are zero, obtaining the same results as those presented in benchmark case.

Figure 4.7 depicts the EVs routes and the EVCSs installed along the PDS for instance

Pn6k2-DS16N, with Q=80 km and M = 1. Note that the EVCSs are allowed to be visited

by one EV. After visiting EVCS in 11, EV1 has to visit another EVCS located at node 14, as

the recharge acquired in 11 is not sufficient to visit all customers and come back to the depot.

For values of Q greater or equal than 80 km, the third term γ of the objective function is

always zero. For values of Q less than 80 km, i.e., Q=65 km in Table 4.4, the term γ is greater

than zero. This situation suggests an upgrade in the battery, because along the routes, the

autonomy for both EVs is not sufficient to complete some arcs and installing more EVCSs

could incur in a relevant increase of energy losses (installation of EVCSs at nodes quite far

from the substation). Specifically, for Q=65 km and M = 150, the route traveled by EV1

is the longest path found in all the runs shown in Table 4.4. Due to M has a big number,

there are more options to go back to depot after visiting customers and the routing length

becomes longer than other cases. In contrast with this case, the routing length is smaller for

Q=65 km and M = 1, as the EVCS revisit is not permitted, reducing the options for EVs

to go back to depot.
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Table 4.4: Results for instance Pn6k2 −DS16N

Q 
[km] 

α 
[USD] 

β 
[USD] 

ω 
[USD] 

Details of route M Time 
[s] k=1 k=2 

65 154430 483983 3515056 0-5-22-19-1-20-4-
0' 0-13-2-3-17-6-0' 1 809 

80 247088 663491 4454116 0-11-14-3-6-2-12-
0' 0-10-1-20-4-5-22-19-13-0' 1 1940 

90 185316 600830 2862231 0-13-3-6-2-12-0' 0-11-1-20-4-5-19-10-0' 1 860 
100 92658 423713 1355481 0-12-1-3-6-2-10-0' 0-5-20-4-0' 1 177 
110 92658 450983 1112783 0-1-20-5-0' 0-4-19-3-6-2-10-0' 1 112 
120 61772 419941 728485 0-2-6-3-20-4-0' 0-1-19-5-0' 1 70 
130 61772 420425 728485 0-2-6-3-19-0' 0-1-20-4-5-0' 1 67 
140 61772 413734 717722 0-4-19-5-0' 0-10-2-6-3-1-0' 1 114 
150 61772 413734 717722 0-1-3-6-2-10-0' 0-5-19-4-0' 1 164 
160 30886 356486 381939 0-4-5-0' 0-1-3-6-2-10-0' 1 10 
170 30886 356486 381939 0-1-3-6-2-10-0' 0-4-5-0' 1 18 
180 0 324905 0 0-5-4-0' 0-2-6-3-1-0' 1 5 
200 0 324905 0 0-2-6-3-1-0' 0-5-4-0' 1 5 

65 123544 566686 3171244 0-13-2-3-17-6-0' 0-13-17-1-20-22-5-22-20-
4-0' 2 709 

80 92658 571488 1355481 0-10-20-4-5-20-1-
10-0' 0-12-3-6-2-12-0' 2 136 

90 92658 571055 1355481 0-10-6-3-2-12-0' 0-12-1-20-5-4-20-10-0' 2 403 
100 61772 426025 773007 0-4-20-5-0' 0-1-20-3-6-2-10-0' 2 41 
110 61772 426025 773007 0-1-20-5-0' 0-10-2-6-3-20-4-0' 2 149 
120 30886 394444 388708 0-4-20-5-0' 0-1-20-3-6-2-0' 2 31 
130 30886 394444 388708 0-1-20-5-0' 0-4-20-3-6-2-0' 2 40 
140 30886 394444 388708 0-1-20-3-6-2-0' 0-4-20-5-0' 2 47 
150 30886 394444 388708 0-4-20-3-6-2-0' 0-1-20-5-0' 2 23 
160 30886 356486 381939 0-5-4-0' 0-10-2-6-3-1-0' 2 19 
170 30886 356486 381939 0-4-5-0' 0-1-3-6-2-10-0' 2 18 
180 0 324905 0 0-1-3-6-2-0' 0-4-5-0' 2 5 
200 0 324905 0 0-5-4-0' 0-1-3-6-2-0' 2 5 

65 123544 649628 2133795 0-13-12-20-22-5-
22-4-20-12-13-0' 

0-13-12-1-20-3-6-2-12-13-
0' 150 109 

80 61772 542047 968403 0-12-20-4-5-20-1-
12-0' 0-12-3-6-2-12-0' 150 54 

90 61772 542047 968403 0-12-2-6-3-12-0' 0-12-1-20-4-5-20-0' 150 112 
100 30886 449419 388708 0-20-3-6-2-1-20-0' 0-5-20-4-0' 150 28 
110 30886 449419 388708 0-20-3-6-2-1-20-0' 0-4-20-5-0' 150 29 
120 30886 394444 388708 0-2-6-3-20-1-0' 0-4-20-5-0' 150 21 
130 30886 394444 388708 0-2-6-3-20-4-0' 0-5-20-1-0' 150 24 
140 30886 394444 388708 0-4-20-5-0' 0-1-20-3-6-2-0' 150 33 
150 30886 394444 388708 0-2-6-3-20-4-0' 0-1-20-5-0' 150 27 
160 30886 356486 381939 0-4-5-0' 0-1-3-6-2-10-0' 150 13 
170 30886 356486 381939 0-10-2-6-3-1-0' 0-4-5-0' 150 20 
180 0 324905 0 0-1-3-6-2-0' 0-5-4-0' 150 3 
200 0 324905 0 0-1-3-6-2-0' 0-4-5-0' 150 3 

79



Dep

9
10

15

11

1614

6

7
2

4
1

3

5

12

13

17
19

20

18

21

8
120

100

80

60

40

20

0

-20
-20 0 20 40 8060 100

22

km

km

Dep

EV1

EV2

PDS

EVCS

Customer

Depot

Power Substation

Electric node

Figure 4.7: Pn6k2 −DS16N with M = 1 and Q = 80km

For M = 2 and Q=80 km, the graphic result is shown in Figure 4.8. Due to M = 2, the

number of arcs entering and leaving an EVCS installed can be less or equal than 2. Even

if M = 2 some of the EVCSs receive one vehicle, which visits the EVCS, then goes to visit

other customers and come back to the same EVCS to recharge the battery and continue with

the travel. This case applies for EV2, which once leaves from node 12 (EVCS installed), visits

the customers at nodes 3, 6 and 2, and returns to node 12. The same situation happens for

EV1, when revisits EVCS installed at node 20 after visiting customers at nodes 4 and 5.

When M = 150 and Q=80 km, the behavior is pretty the same as that presented in Figure

4.8. While for M = 2, EV1 visits the EVCS installed at node 10, the routing sequence (see

this case in Table 4.4) changes slightly when M = 150, as EV1 visits EVCS at node 12 (which

is also visited by EV2). This is the result of relaxing the parameter M with a big number,

allowing the EVCS to receive several EVs. In this sense, the number of EVCSs is reduced,

resulting in the decrease of energy losses in PDS.
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Figure 4.8: Pn6k2 −DS16N with M = 2 and Q=80 km

4.3.2 Pn7k3-DS34N

Following the same dynamic with Pn6k2-DS16N, the results for Pn7k3-DS34N are presented

in Table 4.5. In this latter, the execution time increases compared with Pn6k2-DS16N for

the majority of the cases, because the introduction of more customers and vehicles (from the

transportation approach), and the enlargement of the PDS contributes to a greater degree of

the computational effort. In some cases all the three vehicles are used. For those runs where

Q <120 km, Q <90 km and Q <30 km for M = 1, M = 2 and M = 150 respectively, the

solver failed and was not able to find a feasible solution after too long.

Considering the situation in which M = 150 and Q = 30, the graphic solution is depicted in

Figure 4.9. It is noted from this case that the EVCSs are installed as closest as possible to

the power substation located at node 8, as a measure to reduce energy losses. By the other

side, the revisit is done in all the ECVSs installed, due to relaxation of constraint in 4.7 by

increasing parameter M . Note from Table 4.5 that this run has the longest computational

time (around 8 hours) to obtain a solution, because the autonomy is slightly bigger than the

distance between the depot and the closest electric node where an EVCS should be installed
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Table 4.5: Results for instance Pn7k3 −DS34N

Q [km] α 
[USD] β [USD] ω [USD] Details of route M Time [s] 

k=1 k=2 k=3 
120 61772 338027 2194760 0-6-1-5-21-0' 0-2-4-7-3-22-0'   1 11882 
130 61772 327429 2073954 0-6-1-5-10-0' 0-3-7-4-2-20-0'   1 5691 
140 61772 432216 1556729 0-3-7-9-2-4-0' 0-6-1-5-10-0'   1 5839 
150 61772 330324 1556729 0-2-4-7-3-9-0' 0-10-5-1-6-0'   1 5730 
160 30886 449912 537845 0-6-0' 0-2-4-7-3-9-0' 0-5-1-0' 1 626 
170 0 466447 0 0-6-1-5-0' 0-3-0' 0-7-4-2-0' 1 27 
180 0 326609 0 0-3-7-4-2-0' 0-6-1-5-0'   1 39 
200 0 352291 0 0-7-3-2-4-0' 0-6-1-5-0'   1 11 
90 61772 346245 2106560 0-10-6-1-5-21-0' 0-21-3-7-4-2-10-0'   2 32122 
100 61772 337444 2073954 0-10-6-1-5-10-0' 0-20-2-4-7-3-20-0'   2 22598 
110 61772 397053 1556729 0-9-3-7-4-2-10-0' 0-9-5-1-10-6-0'   2 27553 
120 30886 339063 1084099 0-0' 0-6-1-5-21-0' 0-21-3-7-4-2-0' 2 1329 
130 30886 329757 1051509 0-3-7-4-2-20-0' 0-6-1-5-20-0'   2 818 
140 30886 327851 1017078 0-6-1-5-10-0' 0-3-7-4-2-10-0'   2 1002 
150 30886 343577 537845 0-6-1-5-9-0' 0-2-4-7-3-9-0'   2 299 
160 30886 343577 537845 0-9-3-7-4-2-0' 0-6-1-5-9-0'   2 103 
170 0 466447 0 0-7-4-2-0' 0-5-1-6-0' 0-3-0' 2 82 
180 0 326609 0 0-2-4-7-3-0' 0-5-1-6-0'   2 27 
200 0 326609 0 0-0' 0-6-1-5-0' 0-3-7-4-2-0'  2 29 

30 185316 509999 7986105 0-9-20-11-6-12-1-
12-5-12-11-20-9-0' 

0-9-20-22-2-22-3-23-
4-23-7-22-20-9-0'   150 28010 

60 61772 367532 2820349 0-11-5-1-6-11-0' 0-21-7-4-2-21-3-21-0'   150 6728 
80 30886 426192 1084099 0-21-1-5-21-6-21-0' 0-21-2-4-7-3-21-0'   150 2683 
90 30886 346314 1051509 0-20-2-4-7-3-20-0' 0-20-5-1-6-20-0'   150 411 
100 30886 339333 1017078 0-10-6-1-5-10-0' 0-10-3-7-4-2-10-0'   150 1825 
110 30886 339333 1017078 0-10-5-1-6-10-0' 0-10-2-4-7-3-10-0'   150 197 
120 30886 339333 1017078 0-10-6-1-5-10-0' 0-10-2-4-7-3-10-0'   150 562 
130 30886 453507 537845 0-9-2-4-7-3-9-0' 0-9-1-5-9-6-0'   150 177 
140 30886 373938 537845 0-9-3-7-4-2-9-0' 0-9-6-1-5-9-0'   150 194 
150 30886 343577 537845 0-6-1-5-9-0' 0-9-3-7-4-2-0'   150 88 
160 30886 343577 537845 0-6-1-5-9-0' 0-2-4-7-3-9-0'   150 61 

*160 30886 505182 3438866 0-3-7-4-35-1-0' 0-6-35-5-2-0'   150 9112 
170 0 466447 0 0-6-1-5-0' 0-7-4-2-0' 0-3-0' 150 53 
180 0 326609 0 0-5-1-6-0' 0-2-4-7-3-0'   150 35 
200 0 326609 0 0-5-1-6-0' 0-2-4-7-3-0'   150 16 
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(dist(Dep, 9)=29.33 km). This fact contributes that finding a feasible solution be hard as

the battery autonomy is barely enough to complete the route.
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Figure 4.9: Pn7k3 −DS34N with M = 150 and Q=30 km

Looking into a larger autonomy, figure 4.10 represents the solution with M = 150 and Q=160

km. In this situation, the behavior is consistent in regards with the location of the EVCS

close to the power substation (at node 9). See that only one EVCS is installed to virtually

increase the battery autonomy and meet the customers. However, other situations should

be studied, for example: Figure 4.11 shows that a large portion of the nodes (area shaded)

belonging PDS are not allowed to install EVCSs (nodes from 9 to 15 and from 20 to 30)

due to other issues (limitations associated with terrain topology, public space, right of way,

etc.) that are not addressed in this work. In this sense, the EVCS should be installed at the

node where the energy losses be as reduced as possible. The solution shows that this can be

reached by installing the EVCS at node 35, which is the next node out of the restricted area

and with a less distance to the substation, compared with nodes 31, 32, 33 and 34. The costs

and sequence of routes obtained for this solution are found in Table 4.5 at Q=*160 km.
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Figure 4.10: Pn7k3 −DS34N with M = 150 and Q=160 km
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Figure 4.11: Pn7k3 −DS34N with M = 150 and Q=160 km, restricting EVCSs at nodes 9-15 and 20-30
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4.3.3 Pn8k3-DS23N

As mentioned before, the addition of a new customer to the transportation network,

contributes to increase computational effort for finding a solution, which can be seen in Table

4.6 for instance Pn8k3-DS23N. Even if the mathematical model is relaxed with M = 150 for

constraint in 4.7, run time is notably long compared with the instances Pn6k2-DS16N and

Pn7k3-DS34N for similar cases of battery autonomy Q. It is not possible for solver to find a

solution for cases when M = 1 (not presented in Table 4.6) and the installation of EVCSs is

required, i.e., when the solution is different from the benchmark case. By the other side, when

M = 2 and Q < 160 km no solution is found, because the number of customers and limitation

in parameter M (which greatly restricts the mathematical model) makes impossible to get

at least a feasible solution, due to an exact solution technique is being used.

Table 4.6: Results for instance Pn8k3 −DS23N

Q [km] α [USD] β [USD] ω [USD] Details of route M Time 
[s] k=1 k=2 k=3 

160 30886 492614 305791 0-11-1-6-0’ 0-7-2-0’ 0-11-3-8-5-4-0’ 2 16280 
170 0 489870 0 0-5-8-4-0’ 0-6-2-7-0’ 0-1-3-0’ 2 218 
180 0 482567 0 0-4-8-5-3-0’ 0-1-6-0’ 0-2-7-0’ 2 245 
60 61772 564356 996107 0-11-1-25-11-0’ 0-11-7-25-3-4-11-0’ 0-11-2-6-25-5-8-11-0’ 150 19686 
70 61772 605522 636591 0-11-3-23-1-11-0’ 0-11-7-11-4-11-0’ 0-11-2-6-23-5-8-11-0’ 150 6999 
80 30886 616619 305791 0-11-7-11-2-6-11-0’ 0-11-3-5-8-11-4-11-0’ 0-11-1-11-0’ 150 7487 
90 30886 510102 305791 0-11-1-11-0’ 0-11-6-2-7-11-0’ 0-11-4-8-5-3-11-0’ 150 1133 

100 30886 510102 305791 0-11-6-2-7-11-0’ 0-11-1-11-0’ 0-11-3-5-8-4-11-0’ 150 718 
110 30886 510102 305791 0-11-7-2-6-11-0’ 0-11-1-11-0’ 0-11-3-5-8-4-11-0’ 150 1337 
120 30886 494395 305791 0-7-2-6-11-0’ 0-11-3-5-8-4-11-0’ 0-1-11-0’ 150 791 
130 30886 490312 305791 0-6-1-11-0’ 0-11-2-7-0’ 0-4-8-5-3-11-0’ 150 10297 
140 30886 490312 305791 0-6-1-11-0’ 0-4-8-5-3-11-0’ 0-7-2-11-0’ 150 189 
150 30886 490312 305791 0-11-1-6-0’ 0-11-3-5-8-4-0’ 0-7-2-11-0’ 150 3866 
160 30886 483843 305791 0-2-7-0’ 0-6-1-11-0’ 0-4-8-5-3-11-0’ 150 318 
170 0 489870 0 0-6-2-7-0’ 0-3-1-0’ 0-4-8-5-0’ 150 64 

Routing solution with M = 2 and Q=160 km is shown in figure 4.12. See that Q is barely

sufficient to complete a big portion of the routes length, being necessary the installation of

only one EVCS for EV2 and EV3. EV1 is able to meet its respective customers with autonomy

assigned.

In contrast with case mentioned above, Figure 4.13 illustrates a different situation in which
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Figure 4.12: Pn8k3-DS23N with M = 2 and Q=160 km

M is increased (relaxed mathematical model) and autonomy is reduced. For M = 150 and

Q=60 km, the installation of two EVCSs is required at both feeders of the PDS. According

to Table 4.6, it is worth to mention that in this case the cost for energy losses is increased

in three times compared with situation shown in Figure 4.12. Likewise, it is noted that both

EVCSs are visited by all EVs to renew autonomy and meet customers.

Table 4.7 shows the average values of the objective function terms, for each value of parameter

M in all three instances.

4.4 Conclusions

This chapter presented an electric vehicle integrated planning problem (EVs-IPP) model

to improve the performance of transportation network and power distribution system PDS.

A sensitivity analysis was performed by relaxing mathematical model and using different

values of EVs’ battery autonomy. In this manner, the number of EVs permitted to be

recharged at a given EVCS was under control, examining different costs for each solution,
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Figure 4.13: Pn8k3-DS23N with M = 150 and Q=60 km

Table 4.7: Summary of results in terms of average values

Pn6k2-DS16N 
M α [USD] β [USD] ω [USD] Time [s] 
1 83154 434893 1304304 334 
2 47516 423218 749763 125 

150 38013 428701 551286 36 
Pn7k3-DS34N 

1 34746 377906 990002 3730 
2 30886 353112 905965 7814 

150 37063 387165 1438902 3343 
Pn8k3-DS23N 

2 10295 488350 101930 5581 
150 33459 521320 365401 4407 
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i.e., EVCSs installed along the PDS, EVs routing and energy losses. The cases in which

was not necessary to install EVCSs due to the high battery autonomy, the results related

with routing (transportation network approach) and power flow (PDS approach) were quite

similar to those obtained in the benchmark case.

By restricting some nodes at the PDS, EVCSs were located as closest as possible to the power

feeder substation, in order to make minimum the energy losses. The latter greatly contribute

to objective function when the EVCSs are subjected to receive only one vehicle. In the cases,

where a comparison with autonomy could be done, i.e., for Pn6k2-DS16N instance with

M = 1, the energy losses cost was 16 times greater than those presented when the EVCSs

are able to receive all the EVs (M = 150).

Due to the existence of several terms in objective function, the problem could be treated from

the point of view of the multi-objective optimization. By varying weighting factors, a set of

solutions can be built up, represented along a Pareto front. However, the proposed model can

be solved by using meta-heuristic techniques such as NSGA II, SPEA, Epsilon Constraint,

among others, to find a front of solutions with different weights for each objective. In this

work, concrete values for weighting factors in the objective function were used, in order to

represent consistently the priorities established by the decision maker, which would be the

owner of both, the transportation and power distribution networks. Otherwise, the problem

should be dealt as a bi-level problem, where the solution of the routing and EVCSs installation

costs would be the input to find the energy losses on the power flow formulation.
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Chapter 5

Electric vehicles routing and charging

stations location: Second approach

5.1 Overview

In this chapter, the Charging Station Location Problem of Electric Vehicles for Freight

Transportation (CSLP-EVFT) is presented, under the mobility patterns of freight EVs along

the transportation network. The main aspects addressed in this approach are: First, the

optimal location of EVCSs is performed, considering the impact on the power distribution

system PDS; and second, travel patterns are focused on the mobility behavior of contracted

and subcontracted fleet, which are framed respectively into the Capacitated Vehicle Routing

Problem (CVRP) and the Shortest Path (SP) problem. A mixed integer linear mathematical

model is proposed to portray the freight EVs travel patterns and the operation of the

distribution system; the latter is achieved by using a novel power flow formulation which

allows to include the effect of the grid by an affine constraint. This study is motivated by

the low capacity that may be presented on the EVs’ battery to provide enough autonomy to

complete routes successfully, since the freight EVs are required to travel very long distances

too often. EVCSs provide a virtual increase on EV’s autonomy in case this latter is close to

be depleted, warranting the deliveries to all the customers. On the other hand, the proper
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location of the EVCSs, represents a critical aspect when the energy losses of the PDS are

addressed since these loads draw large quantities of energy during EV charging.

According to the works mentioned in section 2.2, the EVCSs planning in transportation

networks and power distribution systems has not been widely investigated simultaneously,

resulting in a real problem for the logistics firm and network operators. This works assumes

that the transportation company and the distribution system belong the same owner, as

objective functions and constraints of both networks are in the same mathematical model.

Otherwise, the problem should be handled considering a bi-level approach, being the routing

solution and EVCSs location, the input to find the energy consumption and energy losses

with the power flow formulation.

Contributions of this chapter are summarized as follows:

• A new problem called CSLP-EVFT is proposed for optimal locating of EVCSs along

the power distribution system and transportation network, finding optimal routes for

contracted and subcontracted fleet conformed by EVs for freight transportation.

• Besides the Capacitated Vehicle Routing Problem (CVRP), the Shortest Path (SP)

problem is introduced, to model EVs path that follows the route from a start point

towards an end point throughout the transportation network.

• The operation with minimum power losses is evaluated by using a linear approach for

the power flow on the distribution system.

5.2 CSLP-EVFT Mathematical formulation

CSLP-EVFT is divided into three subproblems: the CVRP and SP models for the mobility

travels in the merchandise transportation, the strategy for optimal location of EVCSs, and

the linear formulation of power flow equations in the distribution system. All of them are

combined in a mathematical model, which is explained in the following subsections.
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The notations used in this chapter are listed as follows, for the sake of the mathematical

formulation understanding:

Sets

N Set of customers on the transportation network

K Set of vehicles in the CVRP formulation

E Set of vehicles in the SP formulation

C Set of candidate points to install EVCSs

Parameters

KV EHIC Number of vehicles for CVRP

demc Demand of merchandise at customer c

Cap Vehicle cargo capacity

starte Initial nodes for routes traveled by vehicles in SP problem

ende End nodes for routes traveled by vehicles in SP problem

dc,o Distance from node c to node o [km]

dd,p Distance from node d to node p [km]

Vnom Nominal voltage of the distribution system [V ]

Snpa,b,c Constant power load at electrical node n [W ]

Snia,b,c Constant current load at electrical node n [W ]

Snza,b,c Constant impedance load at electrical node n [W ]

Ta,b,c Three-phase unit vector

Ckm Cost per kilometer traveled [USD/km]

Cmain−km Maintenance cost in terms of kilometers traveled [USD/km]

fa Annualization factor

nt
Number of years in which the operation is

considered, (routing and energy consumption)

CPI Consumer Price Index

Cconst Construction cost of EVCS [USD]

Pbat EVCS nominal power [W ]
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Cenergy Cost of energy [USD/kWh]

Lossesw/outEV s
Power losses in the distribution system without

electric vehicles (Benchmark case) [W ]

Variables

Y visitc,k
Binary decision variable for CVRP with value of 1

if vehicle k visits the customer at transportation node c, and 0 otherwise

xc,o,k
Binary decision variable for CVRP, with value of 1 if vehicle k goes

from node c to node o of the transportation network and 0 otherwise

tc,o Remaining merchandise to be delivered at arc c− o

yd,p,e
Binary decision variable in SP problem, taking the value of 1

if vehicle e goes from node d to node p and 0 otherwise

adistc,k Distance traveled at node c by vehicle k in CVRP [km]

Qbatcvrp Battery autonomy of the vehicles in CVRP [km]

adistauxo,k Auxiliar variable for distance traveled at node o by vehicle k in CVRP [km]

Y cvrpo
Binary decision variable in CVRP, taking the value of 1

if an EVCS is installed at node o and 0 otherwise

adistSPd,e Distance traveled at node d by vehicle e in SP problem [km]

QbatSP Battery autonomy of the vehicles in SP problem [km]

Y spp,e
Binary decision variable in SP problem, taking the value of 1

if an EVCS is installed at node p, and 0 otherwise

adistauxSPo,e Auxiliar variable for distance traveled at node o by vehicle e in SP problem [km]

Uauxv Unification variable for Y cvrpo and Y spp,e at node v

ISa,b,c
Three-phase current at slack node [A]

Ina,b,c
Three-phase current at electrical node n other than the slack node [A]

VSa,b,c
Three-phase voltage at slack node [V ]

Vna,b,c
Three-phase voltage at electrical node n other than the slack node[V ]

Losses Power losses in the distribution system [W ]
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5.2.1 Capacitated Vehicle Routing Problem (CVRP)

Vehicles utilized in merchandise transportation, are in accordance with the mobility patterns

assigned by the CVRP. This implies that a fleet of vehicles with limited cargo capacity leaves

from a unique depot, deliver merchandise to several customers and come back to depot,

following the behavior of a contracted fleet (belonging to the depot owner). The vehicles

have to fully meet the merchandise demands, seeking a travelling minimal cost (Toth and

Vigo, 2002). Equations 5.1 to 5.10 represent the CVRP formulation, taking into consideration

a fixed number of EVs in the problem.

∑
k∈K

Y visitc,k = 1 ∀c ∈ N\{Dep} (5.1)

∑
c∈N

∑
k∈K

xc,o,k = 1 ∀o ∈ N\{Dep} (5.2)

∑
c∈N

∑
k∈K

xo,c,k = 1 ∀o ∈ N\{Dep} (5.3)

∑
k∈K

∑
o∈N

xDep,o,k = KV EHIC (5.4)

∑
k∈K

∑
o∈N

xo,Dep,k = KV EHIC (5.5)

∑
o∈N

xo,c,k = Y visitc,k ∀c ∈ N∀k ∈ K (5.6)

∑
q∈N
c 6=q

tq,c =
∑
o∈N
c 6=o

tc,o + demc ∀c ∈ N\{Dep} (5.7)
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∑
c∈N
c6=Dep

tDep,c =
∑
c∈N
c6=Dep

demc (5.8)

tc,o ≤
∑
k∈K

Cap · xc,o,k ∀c ∈ N,∀o ∈ N (5.9)

tc,Dep = 0 ∀c ∈ N\{Dep} (5.10)

Equation 5.1 imposes that one vehicle is assigned to one customer. Equations 5.2 and 5.3 are

indegree and outdegree constraints, which impose that exactly one arc enters and leaves each

vertex associated with each customer, respectively. Similarly, 5.4 and 5.5 show the degree

requirements for the depot vertex, e.g., the number of vehicles leaving the depot has to be

the same as the number of vehicles entering the depot. Equation 5.6 avoids the visit to a

customer by several vehicles. The flow of merchandise through each arc is tracked by 5.7. In

5.8 the summation of the flows of merchandise leaving the depot should be equal to the total

customers demand to be delivered. Equation 5.9 denotes that the remaining merchandise

flowing through each arc is less than the cargo capacity of the vehicle. In 5.10, the remaining

merchandise to be delivered is null just before completing the route.

5.2.2 Shortest Path (SP) problem

Other modes of freight transportation are developed in accordance with the SP problem, in

which the vehicles have to travel from a start point to an end point, minimizing the travel

distance (Pallottino and Scutella, 1998). This mode of transportation is in accordance with

the subcontracted fleet, as the transportation company is only pending that merchandise is

delivered at the destination point, no matters how or which route the vehicle (belonging the

subcontracted fleet) takes to come back to the start point. Equations 5.11 to 5.13 depict the

SP formulation, considering a fixed number of vehicles.
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∑
p∈N

yd,p,e −
∑
p∈N

yp,d,e = 1 ∀d ∈ N, ∀e ∈ E, d = starte (5.11)

∑
p∈N

yd,p,e −
∑
p∈N

yp,d,e = 0 ∀d ∈ N,∀e ∈ E, d 6= starte, d 6= ende (5.12)

∑
p∈N

yd,p,e −
∑
p∈N

yp,d,e = −1 ∀d ∈ N,∀e ∈ E, d = ende (5.13)

Equation 5.11 imposes that only one arc leaves from the start point of the route. In 5.12 the

number of arcs leaving from an intermediate node has to be the same as the number of arcs

entering the node. Equation 5.13 details that only one arc enters the end point of the route.

5.2.3 EVCSs location for CVRP

The EVCSs planning is related with the optimal location of these infrastructures along the

transportation network. A key element on the EVCSs location is the battery autonomy

consumption which is in terms of the distance being traveled on the route. Equation 5.14

describes the distance traveled at any node other than the depot and the candidate nodes to

charging stations.

xDep,o,k · dDep,o +
∑

c∈N
c6=Dep
c6=o

xc,o,k · (dc,o + adistc,k) = adisto,k

∀o ∈ N, ∀k ∈ K, o 6= Dep, o /∈ C

(5.14)

Notice that one of the expressions involved in 5.14 is a non-linear term, i.e., the product

between a binary variable and continuous variable, xc,o,k · adistc,k. This latter is linearized

according to the mathematical approach depicted in 5.15, replacing the product xc,o,k ·adistc,k
by glc,o,k. In 5.16, the distance accumulated at node c is assigned to vehicle k for the arc

c− o.
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|glc,o,k − adistc,k| ≤ Qbatcvrp · (1− xc,o,k) ∀c ∈ N,∀o ∈ N,∀k ∈ K, c 6= Dep (5.15)

glc,o,k ≤ Qbatcvrp · xc,o,k ∀c ∈ N,∀o ∈ N,∀k ∈ K, c 6= Dep (5.16)

Equation 5.15 is equivalent to the expression in 5.17, considering the absolute value definition.

−Qbatcvrp · (1− xc,o,k) ≤ glc,o,k − adistc,k ≤ Qbatcvrp · (1− xc,o,k)

∀c ∈ N,∀o ∈ N, ∀k ∈ K, c 6= Dep
(5.17)

In this sense, 5.14 is written in a linear form as shown in 5.18.

xDep,o,k · dDep,o +
∑

c∈N
c6=Dep
c6=o

xc,o,k · dc,o + glc,o,k = adisto,k

∀o ∈ N, ∀k ∈ K, o 6= Dep, o /∈ C

(5.18)

The distance traveled at the depot once the route is completed, is given by 5.19.

∑
c∈N
c 6=Dep

xc,Dep,k · dc,Dep + glc,Dep,k = adistDep,k ∀k ∈ K (5.19)

The installation of an EVCS at the transportation node, involves the resetting of distance

traveled so far, which is translated in making zero the value of adisto,k. Note in 5.20 that

when an ECVS is installed, this is, Y cvrpo = 1, the variable adisto,k is reset. If Y cvrpo = 0,

then Equation 5.20 keeps valid.

adisto,k ≤ (1− Y cvrpo) ·Qbatcvrp ∀o ∈ C, ∀k ∈ K, o 6= Dep (5.20)

An auxiliary variable adistauxo,k for the distance traveled adisto,k is required to avoid

a conflict when the EVCS is installed and adisto,k becomes null. Equation 5.21 shows

adistauxo,k, which is calculated for all the nodes of the transportation network.
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xDep,o,k · dDep,o +
∑
c∈N
c 6=Dep
c 6=o

xc,o,k · dc,o + glc,o,k = adistauxo,k ∀o ∈ N,∀k ∈ K (5.21)

Equation 5.22 synchronizes the connection between adisto,k and adistauxo,k. If, Y cvrpo = 0

(non-installation of an EVCS), the variables adisto,k and adistauxo,k are equal, otherwise,

the equation keeps valid.

|adistauxo,k − adisto,k| ≤ Qbatcvrp · Y cvrpo ∀o ∈ C, ∀k ∈ K, o 6= Dep (5.22)

Equation 5.22 is equivalent to 5.23, in accordance with absolute value definition.

−Qbatcvrp · Y cvrpo ≤ adistauxo,k − adisto,k ≤ Qbatcvrp · Y cvrpo
∀o ∈ C, ∀k ∈ K, o 6= Dep

(5.23)

In Equations 5.24 and 5.25 the values for both adistc,k and adistauxc,k should not be greater

than the battery autonomy . Equation 5.26 specifies the non-negativity of the EVCSs to be

installed.

adistc,k ≤ Qbatcvrp · Y visitc,k ∀c ∈ N,∀k ∈ K, c 6= Dep (5.24)

adistauxc,k ≤ Qbatcvrp · Y visitc,k ∀c ∈ N,∀k ∈ K, c 6= Dep (5.25)

∑
c∈C

Y cvrpc ≥ 0 (5.26)

5.2.4 EVCSs location for SP problem

For the EVs that follow the SP problem, the EVCSs location is quite similar to the strategy

treated for CVRP, except that in this case there is no depot due to the nature of SP problem,

97



instead, the start point for the EV’s route is considered.

The distance traveled at any node is depicted in 5.27, since the node is not a candidate for

charging station. However, the presence of the non-linearity yd,p,e · adistSPd,e leads to the

linearization in 5.28, being glSPd,p,e the variable that replaces this product. Equation 5.28

is equivalent to 5.29 due to the absolute value concept. In 5.30, the distance accumulated in

d is assigned to the vehicle e for the arc d− p.

∑
d∈N
d=starte

yd,p,e · dd,p+
∑

d∈N
d 6=starte

yd,p,e· (dd,p + adistSPd,e) = adistSPp,e

∀p ∈ N,∀e ∈ E, p /∈ C
(5.27)

|glSPd,p,e − adistSPd,e| ≤ Qbatsp · (1− yd,p,e)

∀p ∈ N, ∀e ∈ E, p /∈ C
(5.28)

−Qbatsp · (1− yd,p,e) ≤ glSPd,p,e − adistSPd,e ≤ Qbatsp · (1− yd,p,e)

∀d ∈ N,∀p ∈ N, ∀e ∈ E, d 6= starte
(5.29)

glSPd,p,e ≤ Qbatsp · yd,p,e ∀d ∈ N, ∀p ∈ N, ∀e ∈ E, d 6= starte (5.30)

In this sense, 5.27 is replaced by 5.31.

∑
d∈N
d=starte

yd,p,e · dd,p+
∑

d∈N
d 6=starte

yd,p,e · dd,p+glSPd,p,e = adistSPp,e

∀p ∈ N, ∀e ∈ E, p /∈ C
(5.31)

Equation 5.32 performs the resetting of adistSPp,e when the EVCS is installed.

adistSPp,e ≤ (1− Y spp,e) ·Qbatsp ∀p ∈ C, ∀e ∈ E (5.32)

For the distance traveled adistSPp,e, an auxiliary variable adistauxSPp,e, computed in 5.33,

is also necessary to avoid a mathematical conflict when the EVCS is installed and adistSPp,e
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becomes null. See in 5.34 the non-negativity of the number of EVCSs installed for the EVs

that follow the SP mobility patterns.

∑
d∈N
d=starte

yd,p,e · dd,p+
∑

d∈N
d6=starte

yd,p,e · dd,p+glSPd,p,e = adistauxSPp,e

∀p ∈ N, ∀e ∈ E
(5.33)

∑
d∈C

∑
e∈E

Y spd,e ≥ 0 (5.34)

5.2.5 Unifying variables of EVCSs installation

As noticed before, the installation of EVCSs is treated separately for CVRP and SP problem,

due to the difference in EVs travel behaviors for each approach. With this in mind, both,

Y cvrpc and Y spd,e are merged into Uauxv in order to represent the installation of charging

stations of EVs that follow either the CVRP or SP focuses. This unification is carried out in

Equations 5.35 to 5.37.

∑
p∈N
p=v

Y spp,e − 1 ≤ Uauxv − 1 ≤ −
∑
p∈N
p=v

Y spp,e + 1 ∀v ∈ N, ∀e ∈ E (5.35)

∑
c∈N
c=v

Y cvrpc − 1 ≤ Uauxv − 1 ≤ −
∑
c∈N
c=v

Y cvrpc + 1 ∀v ∈ N (5.36)

−
∑
c∈N
c=v

Y cvrpc −
∑
p∈N
p=v

∑
e∈E

Y spp,e ≤ Uauxv ≤
∑
c∈N
c=v

Y cvrpc +
∑
p∈N
p=v

∑
e∈E

Y spp,e ∀v ∈ N (5.37)

5.2.6 Power flow linear formulation

The installation of an EVCS at a transportation node leads to the energy consumption

from the power distribution network, as long as the transportation node is an EVCS
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candidate (located on the same coordinates as the power distribution node). The operation

of the electric network is assessed through the methodology shown in (Garces, 2016), which

addresses a linear approximation of power flow on the complex plane. Nodal voltages and

currents are represented through the admittance matrix Y of the electric network, expressed

in 5.38.

 ISa,b,c

Ina,b,c

 =

 YSSa,b,c
YSna,b,c

YnSa,b,c
Ynna,b,c

 VSa,b,c

Vna,b,c

 (5.38)

where S is the Slack node and n are the remaining nodes. Loads on the power distribution

system are represented in 5.39 according to the ZIP model.

S = Sn

(
Vn
Vnom

)α
(5.39)

The exponent α takes the value of 0, 1 or 2 for the constant power, current and impedance

load respectively. If a Wye connected load is at node n, Vn is the line to neutral voltage;

otherwise it would be a line to line voltage for Delta-connected loads. Supported by the

expression in 5.39, the voltage and current of a node can be associated in 5.40 as follows:

Ina,b,c
=
S∗npa,b,c
V ∗na,b,c

+ h · S∗nia,b,c + h2 · S∗nza,b,c · Vna,b,c
h =

1

Vnom
(5.40)

Being n any node other than the Slack node; p, i, z, are the indices for the constant power,

current and impedance load respectively. The a,b,c indices represent the three-phase system.

Notice the ZIP model is linear in Vna,b,c
except for the constant power loads. This term is

approximated in order to obtain a linear power flow.

A linear approximation is developed on the complex numbers (Flanigan, 1972) and not on the

real set as in the conventional power flow formulations. The function f (∆V ) = 1/ (1−∆V )

is analytic for all ‖∆V ‖ < 1. By using Taylor series around zero, the expression in 5.41 is

obtained.
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1

1−∆V
=
∞∑
n=0

(∆V )n ‖∆V ‖ < 1 (5.41)

A linear form is shown in 5.42 by neglecting high order terms and defining V = 1−∆V .

1

V
=

1

1−∆V
≈ 1 + ∆V = 2− V (5.42)

Notice that 5.42 is valid for values of V close to 1 p.u. for example, the error for V = 0.8,

this is, ∆V = 0.2, is around 5% and decreases as V approaches to 1.

Considering the Wye-connected loads, the first term of 5.40 is multiplied in the numerator

and denominator by Ta,b,c/Vnom, where Ta,b,c = [1, e−2π/3j, e2π/3j]T . Then, this term becomes

linear as presented in 5.43.

S∗npa,b,c
V ∗na,b,c

=
S∗npa,b,c
V ∗na,b,c

· 1/ (Ta,b,c/Vnom)

1/ (Ta,b,c/Vnom)
= h · S∗npa,b,c ◦

(
2− h · V ∗na,b,c

◦ Ta,b,c
)
◦ Ta,b,c (5.43)

See that (·) is the conventional product and (◦) is the Hadamard product. In this manner,

5.40 is converted into 5.44:

Ina,b,c
= 2h · S∗npa,b,c ◦ Ta,b,c − h

2 · S∗npa,b,c ◦ V
∗
na,b,c

◦ T 2
a,b,c + h · S∗nia,b,c + h2 · diag

(
S∗nza,b,c

)
· Vna,b,c

(5.44)

In 5.38 the expression for Ika,b,c can be rewritten as follows:

Ina,b,c
= YnSa,b,c

· VSa,b,c
+ Ynna,b,c

· Vna,b,c
(5.45)

Then, making equal 5.44 and 5.45, and after arranging some terms, 5.46, 5.47 and 5.48 are

obtained:

A = YnSa,b,c
· VSa,b,c

− 2h · S∗npa,b,c ◦ Ta,b,c − h · S
∗
nia,b,c

(5.46)
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B = h2 · S∗npa,b,c ◦ T
2
a,b,c (5.47)

C = Ynna,b,c
− h2 · diag

(
S∗nza,b,c

)
(5.48)

Notice that the terms above are in accordance with A+B ◦V ∗na,b,c
+C ·Vna,b,c

= 0. This latter

requires to be solved in rectangular representation, as shown in 5.49, to obtain the nodal

voltages.

 −Ar
−Ai

 =

 Br + Cr Bi − Ci
Bi + Ci −Br + Cr

 Vr

Vi

 (5.49)

where r and i indicate real and imaginary part, respectively.

5.2.7 Objective function

The equations 5.1 to 5.49 mentioned earlier, represent the constraints of the proposed

CSLP-EVFT. The objective function is composed by the summation of six terms, shown

in 5.50 to 5.55, in which the installation and operation costs are involved.

C1 =

(
365 · (Ckm + Cmain−km) ·

∑
c∈N

∑
o∈N

∑
k∈K

xc,o,k · dc,o

)
· fa (5.50)

C2 =

(
365 · (Ckm + Cmain−km) ·

∑
d∈N

∑
p∈N

∑
e∈E

yd,p,e · dd,p

)
· fa (5.51)

Equation 5.50 and 5.51 are the costs associated with the routing performed by the EVs that

follow the mobility patterns of CVRP and SP problem respectively. It is assumed that the

routes are repeated daily along one year and the maintenance cost is also considered within

the cost per kilometer traveled. The cost of EVCSs installation are depicted in 5.52, and the

operation costs related with EVCSs energy consumption, are established in 5.53 and 5.54 for
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the CVRP and SP problem respectively. Notice that the time that an EV (either for CVRP

or SP problem) takes to fully charge its battery is considered to be 0.5 hours (fast charging),

assuming that this time will not affect the time to perform the routing.

C3 = Cconst ·
∑
v∈N

Uauxv (5.52)

C4 =

(
365 · 0.5 · Pbat · Cenergy ·

∑
c∈N

Y cvrpc

)
· fa (5.53)

C5 =

(
365 · 0.5 · Pbat · Cenergy ·

∑
p∈N

∑
e∈E

Y spp,e

)
· fa (5.54)

Energy losses of the distribution system are computed in 5.55, based on the difference with

respect to the benchmark case energy losses, e.g., without EVCSs. The term Losses is a

non-linear expression that is deployed in 5.56 and 5.57.

C6 = (365 · 0.5 · Cenergy) ·
(
Losses− Lossesw/outEV s

)
· fa (5.55)

Losses = V T
R GBUSVR + V T

I GBUSVI (5.56)

Losses =


VRSGSSVRS + VRSGSkVRk+

VRnGnSVRS + VRnGnnVRn+

VISGSSVIS + VISGSnVIn+

VInGSSVIS + VInGnnVIn

 (5.57)

where GBUS is the real part of admittance matrix and, VR and VI are the real and imaginary

parts of nodal voltages respectively.

All of the costs except C3, are affected by a factor of annualization fa to shift to present value

the operation costs along the future years, which is computed according to 5.58. Notice
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that nt corresponds to the number of years in which the operation (routing and energy

consumption) is considered and CPI is the Consumer Price Index.

fa =
nt

(1 + CPI)nt
(5.58)

5.3 Test systems and CSLP-EVFT mathematical model validation

In order to validate the mathematical model proposed, two different test instances composed

by combination of transportation networks and power distribution systems are proposed.

Transportation and power networks are chosen from (Augerat, 2013) and (Feeders, 2013)

respectively. Detailed information of these test systems can also be found in Section C.

The first system, shown in Figure 5.1, is formed by the CVRP instance Pn19k2 and the 34

node distribution test system, which is named Pn19k2 − IEEE34. Note that nodes joined

with continuous line represent the power distribution system, being node 800 the distribution

substation. Customers (drawn as solid squares) are identified by the numbers enclosed in

squares, and electric nodes are in solid circles. Some nodes of the power network are made

to coincide with the spatial location of all or part of the transportation network customers.

These points are the candidate nodes for EVCSs.

A larger size test system is composed by the combination between the CVRP instance En22k4

and the 123 node distribution test system. The resulting test system is named En22k4 −

IEEE123 and shown in Figure 5.2. Note that all the customers coincide with a node of the

power network, except the depot node, which is identified with the number 1 enclosed in

square. The distribution substation is located at node 150.

CSLP-EVFT mathematical model validation is carried out by providing a large enough

amount of EV battery autonomy QbatCV RP and QbatSP , in order to avoid the installation of

EVCSs. In this sense the result for both transportation and power networks correspond to

benchmark cases. Table 5.2 presents the objective function and the routes performed by the

vehicles in each instance, considering only the transportation network.
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Figure 5.1: Pn19k2-IEEE34 test system

Table 5.2: Benchmark case results with the transportation network approach

Instance Objective function Details of route Time [s] 

Pn19k2-IEEE34 212 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-11-2-1 416 

En22k4-IEEE123 375 

1-20-22-18-21-1 
1-13-16-19-15-17-1 
1-9-7-3-2-6-8-10-1 
1-14-12-5-4-11-1 

976 
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Figure 5.2: En22k4-IEEE123N test system
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From the point of view of the power distribution system, the voltages at electric nodes

should be very close (and not the same as the power flow formulation corresponds to a linear

approach) to results reported on the IEEE database. Figure 5.3 and Figure 5.4 depict the

difference in per unit of the voltages obtained with the CSLP-EVFT mathematical model,

compared with the benchmark case voltages for Pn19k2−IEEE34 and En22k4−IEEE123

test systems respectively. The maximum difference in voltage is 1.3× 10−3.
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Figure 5.3: Difference in voltage of Pn19k2 − IEEE34 compared with benchmark case

The results shown before are based on the CSLP-EVFT mathematical model with the

non-linear expression for the term Losses. In order to obtain a formulation that can be

solved easily and with reduced computational times, the linearization of Losses is proposed

in 5.59 to 5.62. This procedure is carried out by using Taylor series around a point of

operation, which is chosen as the operation of the power distribution system without EVCSs.

Losses = ∆Losses + Lossesop (5.59)
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Figure 5.4: Difference in voltage of En22k4 − IEEE123 compared with benchmark case

∆Losses =
VRSGSn∆VRn + ∆VRnGnSVRS + ∆VRnGnnVRno + VRnoGnn∆VRn+

VISGSn∆VIn + ∆VInGnSVIS + ∆VInGnnVIno + VInoGnn∆VIn
(5.60)

VRn = ∆VRn + VRno (5.61)

VIn = ∆VIn + VIno (5.62)

At the operation point, power losses are identified as Lossesop, and real and imaginary parts

of voltages at nodes (other than slack node S) are shown as VRno and VIno respectively.

5.4 Results

Coupled systems shown in Figures 5.1 and 5.2, are utilized to assess the performance of

CSLP-EVFT problem, considering the linear formulation presented for the term Losses.
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Parameters for Pn19k2 − IEEE34 and En22k4 − IEEE123 instances were chosen

consistently to the reality. As reported by (Motors, 2017), an EVCS may draw up to 120

kW during 20 minutes from the electric distribution network for a 272 km battery range.

In this work, the power demanded by the EV (for either the CVRP or SP problem) during

the recharge is assumed to be 30 kW , as this value represents a suitable additional load

for the distribution system and the duration of the recharge under this power would not

affect the travel duration time. This value is introduced in the term S∗kia,b,c of the power

flow equations, due to the recharge of the EVs can be represented as constant current load

(Wang et al., 2013). The cost related with EVCS construction is 22000 USD, in accordance

with (Agenbroad, 2014), considering type of installation, connectivity, materials, data and

other factors. From the point of view of the EVs operation, the average cost is 2.423 USD

to travel 100 km, as reported by (of Energy, 2017), and an estimation of 100 USD is used

under the concept of EV maintenance for every 5000 km traveled. The operation cost of the

EVCSs, e.g., cost for both, energy consumed from the distribution network and energy losses,

is estimated in 0.2 USD/kWh. Consumer Price Index CPI for the annualization factor is

set in 10%.

The proposed CSLP-EVFT model has been programmed and executed in the GAMS (General

Algebraic Modeling System) environment (Gill et al., 2017). on a HP desktop computer,

Windows 64-bit operating system, with an Intel Core i3 @ 3.3 GHz processor and 4 GB of

RAM. The non-linear approach (non-linear expression for the term Losses) is solved using

the DICOPT solver and the linearized mathematical model is solved with CPLEX solver.

5.4.1 Pn19k2-IEEE34

The results for instance Pn19k2− IEEE34 are presented in Table 5.3, considering different

values of battery autonomy, under the non-linearized approach of the mathematical model

(non-linear expression for Losses). The first two columns show the values for autonomy

QCV RP and QSP for CVRP and SP problems respectively. In the third column, the costs

for each term at the objective function are presented. The routes sequence for each EV,
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following the respective mobility pattern (CVRP or SP), are shown in the sixth column. For

all runs, the depot at CVRP is identified as 1 and the start and end points for the SP routes

are the same. Numbers in bold are the EVCSs installed, which provide the recharge service

for both type of EVs (CVRP and SP focuses). It is assumed that no more than one EV is

able to be recharged at the same time.

Table 5.3: Results for Pn19k2 − IEEE34 with non-linearized mathematical model

QCVRP 
[km] 

QSP 
[km] 

Costs 
[USD] 

Mobility 
pattern Detail of routes Time 

[s] 

30 20 

C1: 505872 
C2: 469413 
C3: 169400 
C4: 26042 
C5: 22787 
C6: 3985 

CVRP 1-11-2-8-10-16-14-6-19-7-1 
1-3-9-17-18-4-13-15-12-5-1 

1238 
SP 

12-5-2-7-3-8-10 
1-2-11-4-18 

15-2-7-3-8-6-14 
17-9-4-11-2-5-12 

40 24 

C1: 530938 
C2: 437511 
C3: 121000 
C4: 19531 
C5: 16276 
C6: 2494 

CVRP 
1-11-13-4-18-17-9-10-16-

14-6-1 
1-2-5-12-15-3-8-19-7-1 

2870 

SP 

12-15-11-3-8-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-11-15-12 

50 28 

C1: 483085 
C2: 426118 
C3: 121000 
C4: 16276 
C5: 13021 
C6: 2125 

CVRP 1-19-6-14-16-10-8-3-11-2-1 
1-7-9-17-18-4-13-15-12-5-1 

1779 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-11-15-12 

60 32 

C1: 483085 
C2: 426118 
C3: 72600 
C4: 16276 
C5: 6510 
C6: 1772 

CVRP 1-19-6-14-16-10-8-3-11-2-1 
1-7-9-17-18-4-13-15-12-5-1 

1541 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-10-16-14 
17-9-4-13-15-12 

70 36 

C1: 508151 
C2: 414724 
C3: 48400 
C4: 13021 
C5: 6510 
C6: 901 

CVRP 
1-7-8-3-11-13-15-12-5-2-1 
1-19-6-14-16-10-9-17-18-4-

1 
1163 

SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

80 40 

C1: 483085 
C2: 414724 
C3: 48400 
C4: 9765 
C5: 6510 
C6: 901 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-11-2-1 

411 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

QCVRP 
[km] 

QSP 
[km] Costs [USD] Mobility 

pattern Detail of routes Time 
[s] 

90 44 

C1: 483085 
C2: 414724 
C3: 48400 
C4: 9765 
C5: 6510 
C6: 184 

CVRP 1-2-11-3-8-10-16-14-6-19-1 
1-7-9-17-18-4-13-15-12-5-1 

870 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

100 48 

C1: 483085 
C2: 430675 
C3: 24200 
C4: 3255 
C5: 3255 
C6: 757 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-11-2-1 

117 
SP 

12-15-11-10 
1-2-11-4-18 

15-13-4-9-10-16-14 
17-9-4-13-15-12 

110 52 

C1: 496760 
C2: 414720 
C3: 24200 
C4: 0 
C5: 3255 
C6: 19 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-2-11-1 

242 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

120 56 

C1: 483085 
C2: 414724 
C3: 0 
C4: 0 
C5: 0 
C6: 0 

CVRP 1-19-6-14-16-10-8-3-11-2-1 
1-7-9-17-18-4-13-15-12-5-1 

500 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

130 60 

C1: 483085 
C2: 414724 
C3: 0 
C4: 0  
C5: 0 
C6: 0 

CVRP 1-2-11-3-8-10-16-14-6-19-1 
1-5-12-15-13-4-18-17-9-7-1 

425 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

   

  

 

  

According to Table 5.3, as the battery autonomy is increased, there is a reduction of costs

associated with EVCS installation (C3) and energy consumption (C4 and C5). Notice that

cost of delta of energy losses in C6 is also decreased. Although this, the routing cost shown

in C1 and C2 may not necessarily decrease with the increment of the battery autonomy, as
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the candidate points for EVCS coincide with the customers location, otherwise, a change in

these costs would be noticeable. The last two runs only depict costs for EVs routing, being

these cases the representation of the benchmark case results, as no EVCSs are installed and

therefore the energy consumption and delta of losses are null.

As mentioned above, the non-linearized approach was developed using DICOPT solver in

GAMS environment. This solver develops an alternating sequence of NLP subproblems

(from the relaxed MINLP) and MIP master problem. The convergence in each MIP master

problem is reached with the GAP feature, which is zero by default. The general algorithm has

a convergence with the number of cycles (default: 20 cycles). In this work, the MIP master

problem stops when the GAP is not decreased after several iterations, and the number of

cycles is set in 5. This latter can commit the problem optimality, moreover, the main purpose

is to validate and obtain at least a feasible solution. In Table 5.4, important aspects of the

MIP master problem are shown, such as upper and lower bound, GAP and execution time.

Notice that the last two runs where no EVCSs are installed, the global optimal solution is

obtained, due to GAP is zero.

Table 5.4: GAP results for Pn19k2 − IEEE34 with non linearized mathematical model

QCVRP 

[km] 
QSP 

[km] 

Upper bound 
(Objective 
function) 

Lower 
bound 

GAP 
[%] 

Time 
[s] 

30 20 1197499 1105148 7,712 1238 
40 24 1127750 993333 11,919 2870 
50 28 1061625 955463 10 1779 
60 32 1006361 951615 5,44 1541 
70 36 991707 929031 6,32 1163 
80 40 963385 909821 5,56 411 
90 44 962668 903271 6,17 870 
100 48 945227 877265 7,19 117 
110 52 938954 867030 7,66 242 
120 56 897809 897809 0 500 
130 60 897809 897809 0 425 

Average 999163 935235 6,17 1014 
 

In Table 5.5, the results for Pn19k2−IEEE34 are shown, under the context of the linearized

mathematical model, considering the linear expression for the term Losses. This aspect
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makes the problem to be solved in less computational times compared with the non-linearized

model. Besides of this, there is a reduction in the overall cost of the objective function, on

behalf of the costs for CVRP and SP routing and delta of energy losses. This latter is

strongly related with the EVCSs location, which are attempted to be installed as close as

to the distribution substation or at three-phase nodes. The EVCSs installation at one-phase

electric nodes may provide larger power losses in comparison to three-phase nodes.

Table 5.5: Results for Pn19k2 − IEEE34 with linearized mathematical model

QCVRP 
[km] 

QSP 
[km] 

Costs 
[USD] 

Mobility 
pattern Detail of routs Time 

[s] 

30 20 

C1: 489921 
C2: 442069 
C3: 193600 
C4: 29297 
C5: 22787 
C6: 2417 

CVRP 1-7-19-6-14-16-10-8-11-2-1 
1-5-12-15-13-4-18-17-9-3-1 

451 
SP 

12-5-2-7-3-8-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-11-2-5-12 

40 24 

C1: 483085 
C2: 437511 
C3: 145200 
C4: 19531 
C5: 16276 
C6: 1448 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-11-2-1 

399 
SP 

12-15-11-3-8-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-11-15-12 

50 28 

C1: 483085 
C2: 426118 
C3: 121000 
C4: 16276 
C5: 13021 
C6: 1015 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-11-2-1 

624 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-11-15-12 

60 32 

C1: 483085 
C2: 414724 
C3: 96800 
C4: 13021 
C5: 6510 
C6: 1368 

CVRP 1-5-12-15-13-4-18-17-9-7-1 
1-2-11-3-8-10-16-14-6-19-1 

95 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

70 36 

C1: 483085 
C2: 414724 
C3: 72600 
C4: 13021 
C5: 6510 
C6: 522 

CVRP 1-5-12-15-13-4-18-17-9-7-1 
1-2-11-3-8-10-16-14-6-19-1 

188 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

80 40 

C1: 483085 
C2: 414724 
C3: 48400 
C4: 9765 
C5: 6510 
C6: 299 

CVRP 1-5-12-15-13-4-18-17-9-7-1 
1-19-6-14-16-10-8-3-11-2-1 

287 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

QCVRP 
[km] 

QSP 
[km] 

Costs 
[USD] 

Mobility 
pattern Detail of routs Time 

[s] 

90 44 

C1: 483085 
C2: 414724 
C3: 48400 
C4: 9765 
C5: 6510 
C6: 293 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-19-6-14-16-10-8-3-11-2-1 

141 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

100 48 

C1: 483085 
C2: 430675 
C3: 24200 
C4: 3255 
C5: 3255 
C6: 239 

CVRP 1-5-12-15-13-4-18-17-9-7-1 
1-2-11-3-8-10-16-14-6-19-1 

163 
SP 

12-15-11-10 
1-2-11-4-18 

15-13-4-9-10-16-14 
17-9-4-13-15-12 

110 52 

C1: 483085 
C2: 414724 
C3: 24200 
C4: 0 
C5: 3255 
C6: 19 

CVRP 1-5-12-15-13-4-18-17-9-7-1 
1-19-6-14-16-10-8-3-11-2-1 

332 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

120 56 

C1: 483085 
C2: 414724 
C3: 0 
C4: 0 
C5: 0 
C6: 0 

CVRP 1-5-12-15-13-4-18-17-9-7-1 
1-2-11-3-8-10-16-14-6-19-1 

177 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

130 60 

C1: 483085 
C2: 414724 
C3: 0 
C4: 0 
C5: 0 
C6: 0 

CVRP 1-7-9-17-18-4-13-15-12-5-1 
1-2-11-3-8-10-16-14-6-19-1 

286 
SP 

12-15-11-10 
1-2-11-4-18 

15-11-3-8-6-14 
17-9-4-13-15-12 

   

  

 
  

The linearized mathematical model is solved using CPLEX solver. The algorithm is stopped

when the GAP value is not decreased after certain number of iterations. This information

is shown in Table 5.6, with the lower and upper bound for each run, besides the execution

time.
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Table 5.6: GAP results for Pn19k2 − IEEE34 with linearized mathematical model

QCVRP 

[km] 
QSP 

[km] 

Upper bound 
(Objective 
function)  

Lower 
bound 

GAP 
[%] 

Time 
[s] 

30 20 1180091 1081553 8,35 451  
40 24 1103051 964067 12,6 399  
50 28 1060515 957645 9,7 624  
60 32 1015508 967779 4,7 95  
70 36 990462 927072 6,4 188  
80 40 962783 893944 7,15 287  
90 44 962777 912135 5,26 141  
100 48 944709 880374 6,81 163  
110 52 925283 875318 5,4 332  
120 56 897809 897809 0 177  
130 60 897809 897809 0 286  

Average 994617 932318 6,03 285  
 

5.4.2 En22k4-IEEE123

The increment in customers and electric nodes on transportation and power distribution

networks respectively, contributes to increase computational effort for finding a solution,

which can be seen in Table 5.7 for instance En22k4− IEEE123. As the battery autonomy

is increased, the installation of EVCSs is less required and hence the energy drawn by EVs

from the distribution system is reduced, as noted in C3, C4 and C5. Cost associated with

delta of energy losses also follows a descending behavior to reach a point, in which no EVCSs

must be installed, e.g., the objective function is only affected by the routing costs established

in C1 and C2 for CVRP and SP approaches respectively. Table 5.8 presents information

related with GAP value and execution time for the MIP master problem in DICOPT solver.

Number of cycles in each run is set in 5.
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Table 5.7: Results for En22k4 − IEEE123 with non-linearized mathematical model

QCVRP 
[km] 

QSP 
[km] Costs [USD] Mobility 

pattern Detail of routes Time 
[s] 

30 30 

C1: 881860 
C2: 619810 
C3: 338800 
C4: 26042 
C5: 45574 
C6: 2333 

CVRP 

1-12-5-4-2-3-7-9-1 
1-15-18-22-21-19-16-1 

1-13-8-6-10-11 
1-17-20-14-1 

24793 

SP 

 5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-6-3 

40 35 

C1: 890970 
C2: 617530 
C3: 266200 
C4: 22787 
C5: 32553 
C6: 1694 

CVRP 

1-15-22-20-17-1 
1-16-19-21-18-13-1 
1-10-8-6-3-2-11-1 
1-14-12-5-4-7-9-1 

16433 

SP 

5-4-9-11-13-16-19 
12-14-17-15-16 

14-9-11-8-10 
 20-17-1-11-8-3 

50 40 

C1: 863630 
C2: 617530 
C3: 217800 
C4: 19532 
C5: 19532 
C6: 1348 

CVRP 

1-15-17-22-20-1 
1-7-2-3-6-8-10-1 

1-13-16-19-21-18-1 
1-14-12-4-5-9-11-1 

9304 

SP 

 5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

60 45 

C1: 893250 
C2: 633480 
C3: 145200 
C4: 16276 
C5: 13021 
C6: 927 

CVRP 

1-10-8-6-3-2-1 
1-11-9-7-5-4-12-14-1 

1-17-15-22-20-1 
1-13-16-19-21-18-1 

3128 

SP 

 5-4-9-11-13-16-19 
12-9-11-13-16 

14-17-1-11-8-10 
20-17-1-13-8-3 

70 50 

C1: 856790 
C2: 617530 
C3: 145200 
C4: 13021 
C5: 13021 
C6: 1038 

CVRP 

1-11-4-5-12-14-1 
1-13-16-19-21-18-1 
1-10-8-6-3-2-7-9-1 

1-15-22-20-17-1 
3209 

SP 

5-4-9-11-13-16-19  
12-14-17-15-16 

14-9-11-8-10 
20-17-1-11-8-3 

80 55 

C1: 888700 
C2: 617530 
C3: 72600 
C4: 9765 
C5: 6510 
C6: 580 

CVRP 

1-20-14-17-1 
1-9-7-3-2-4-5-12-1 
1-11-6-8-10-13-1 

1-16-19-21-22-18-15-1 
1526 

SP 

 5-4-9-11-13-16-19 
12-14-17-15-16 

14-9-11-8-10 
20-17-1-11-8-3 

QCVRP 
[km] 

QSP 
[km] Costs [USD] Mobility 

pattern Detail of routes Time 
[s] 

90 60 

C1: 900090 
C2: 617530 
C3: 48400 
C4: 6510 
C5: 3255 
C6: 370 

CVRP 

1-9-7-3-2-4-5-12-1 
1-14-20-22-18-1 
1-10-8-6-11-13-1 

1-17-15-21-19-16-1 
1313 

SP 

 5-4-9-11-13-16-19 
 12-14-17-15-16 
 14-9-11-8-10  
20-17-1-11-8-3 

100 65 

C1: 916040 
C2: 617530 
C3: 48400 
C4: 6510 
C5: 6510 
C6: 364 

CVRP 

1-15-17-21-19-16-1 
1-14-20-22-18-1 

1-11-8-6-3-2-7-9-1 
1-13-10-4-5-12-1 

2377 

SP 

5-4-9-11-13-16-19  
12-9-11-13-16  
 14-9-11-8-10 

 20-17-1-11-8-3 

110 70 

C1: 900090 
C2: 617530 
C3: 48400 
C4: 6510 
C5: 3255 
C6: 371 

CVRP 

1-13-16-19-21-18-1 
1-17-15-20-22-1 
1-3-2-6-8-10-1 

1-14-12-5-4-7-9-11-1 
1361 

SP 

5-4-9-11-13-16-19  
12-9-11-13-16  
 14-9-11-8-10 

 20-17-1-11-8-3 

120 75 

C1: 881860 
C2: 631200 
C3: 24200 
C4: 3255 
C5: 0 
C6: 110 

CVRP 

1-10-8-6-3-2-7-1 
1-14-20-22-18-15-1 
1-12-5-4-9-11-13-1 

1-17-21-19-16-1 
956 

SP 

5-4-9-11-13-16-19  
 12-14-17-15-16 

 14-9-11-8-10 
 20-14-9-7-2-3 

150 80 

C1: 881860 
C2: 631200 
C3: 24200 
C4: 3255 
C5: 0 
C6: 196 

CVRP 

1-13-16-19-21-18-1 
1-11-2-3-6-8-10-1 
1-14-12-5-4-7-9-1 
1-20-22-15-17-1 

1690 

SP 

 5-4-9-11-13-16-19 
 12-14-17-15-16 

 14-9-11-8-10 
 20-14-9-7-2-3 

200 130 

C1: 854520 
C2: 617530 
C3: 0 
C4: 0 
C5: 0 
C6: 0 

CVRP 

1-7-2-3-6-8-10-1 
1-14-12-5-4-9-11-1 
1-13-16-19-21-18-1 

1-15-22-20-17-1 
976 

SP 

 5-4-9-11-13-16-19 
 12-14-17-15-16 

 14-9-11-8-10 
 20-17-1-11-8-3 
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Table 5.8: GAP results for En22k4 − IEEE123 with non-linearized mathematical model

QCVRP 

[km] 
QSP 

[km] 

Upper bound 
(Objective 
function)  

Lower 
bound 

GAP 
[%] 

Time 
[s] 

30 30 1914419 1696366 11,39 24793 
40 35 1831734 1531146 16,41 16433 
50 40 1739372 1497947 13,88 9304 
60 45 1702154 1465895 13,88 3128 
70 50 1646600 1435835 12,8 2109 
80 55 1595685 1436116 10 1526 
90 60 1576155 1418539 10 1313 

100 65 1595354 1435818 10 2377 
110 70 1576156 1418540 10 1361 
120 75 1540625 1386562 10 956 
150 80 1540711 1386639 10 1690 
200 130 1472050 1324845 10 976 

Average 1644251 1452854 11,53 5497 
 

As performed with the first instance, runs with the linearized mathematical model are also

implemented. In Table 5.9 the runs for different values of battery autonomy are shown.

Under the linearized approach, the majority of the executions present a reduced cost of

CVRP and SP routing, and EVCSs installation. The latter does not apply to the first case

(QCV RP=30 km and QSP=30 km) in which the EVCS installation cost is greater compared

with the non-linearized model. Notice in Table 5.9 that the EVCS installed at customer 17

serves the EVs associated with SP problem, in contrast with the non-linearized case where

the same EVCS serves both type of EVs. In regards with delta of energy losses, it is supposed

that this cost should be reduced as the battery autonomy increases. However, this cost is

increased in some cases, i.e., when the autonomy changes from QCV RP=120 km and QSP=75

km to QCV RP=150 km and QSP=80 km. Although the number of EVCSs installed is the

same for both cases, the cost of energy losses is greater in the second case (QCV RP=150 km

and QSP=80 km) because the electrical path from the distribution substation to the EVCS

installed at customer 14 is less than that for the customer at 9. From the point of view of

the computational effort, the run times for most of the cases decrease notably in comparison

to results shown in Table 5.7.
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Table 5.9: Results for En22k4 − IEEE123 with linearized mathematical model

QCVRP 
[km] 

QSP 
[km] Costs [USD] Mobility 

pattern Detail of routes Time 
[s] 

30 30 

C1: 856790 
C2: 617530 
C3: 363000 
C4: 26042 
C5: 48829 
C6: 2477 

CVRP 

1-9-7-2-3-6-8-10-1 
1-14-12-5-4-11-1 

1-18-21-19-16-13-1 
1-15-22-20-17-1 

3460 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

40 35 

C1: 856790 
C2: 622090 
C3: 242000 
C4: 19532 
C5: 32553 
C6: 1593 
 

CVRP 

1-9-7-2-3-6-8-10-1 
1-14-12-5-4-11-1 
1-17-20-22-15-1 

1-13-16-19-21-18-1 
698 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-15-1-11-8-3 

50 40 

C1: 888700 
C2: 631200 
C3: 193600 
C4: 19532 
C5: 19532 
C6: 1265 

CVRP 

1-10-8-6-3-2-11-1 
1-13-16-19-21-22-1 

1-17-20-18-15-1 
1-14-12-5-4-7-9-1 

2994 

SP 

5-4-9-11-13-16-19 
12-14-17-15-16 
14-9-11-8-10 
20-14-9-7-2-3 

60 45 

C1: 872740 
C2: 617530 
C3: 145200 
C4: 16276 
C5: 16276 
C6: 999 

CVRP 

1-7-2-3-6-8-10-1 
1-20-22-21-18-1 

1-11-9-4-5-12-14-1 
1-17-15-19-16-13-1 

71 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

70 50 

C1: 925150 
C2: 617530 
C3: 121000 
C4: 13021 
C5: 13021 
C6: 729 

CVRP 

1-7-2-3-6-8-10-1 
1-16-19-21-22-18-15-1 

1-17-20-14-1 
1-13-4-5-12-9-11-1 

3189 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

80 55 

C1: 854520 
C2: 617530 
C3: 96800 
C4: 9765 
C5: 9765 
C6: 767 

CVRP 

1-7-2-3-6-8-10-1 
1-15-22-20-17-1 

1-14-12-5-4-9-11-1 
1-18-21-19-16-13-1 

990 

SP 

5-4-9-11-13-16-19 
12-14-17-15-16 
14-9-11-8-10 

20-17-1-11-8-3 

QCVRP 
[km] 

QSP 
[km] Costs [USD] Mobility 

pattern Detail of routes Time 
[s] 

90 60 

C1: 854520 
C2: 617530 
C3: 48400 
C4: 6510 
C5: 6510 
C6: 367 

CVRP 

1-15-22-20-17-1 
1-18-21-19-16-13-1 

1-10-8-6-3-2-7-1 
1-14-12-5-4-9-11-1 

376 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

100 65 

C1: 861350 
C2: 617530  
C3: 48400 
C4: 6510 
C5: 6510 
C6: 375 

CVRP 

1-15-22-20-17-1 
1-13-16-19-21-18-1 
1-9-7-2-3-6-8-10-1 
1-11-5-4-12-14-1 

144 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

110 70 

C1: 868190 
C2: 617530 
C3: 24200 
C4: 6510 
C5: 3255 
C6: 176 

CVRP 

1-11-2-3-6-8-10-1 
1-14-12-5-4-7-9-1 
1-15-17-20-22-1 

1-13-16-19-21-18-1 
1056 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

120 75 

C1: 909200 
C2: 617530 
C3: 24200 
C4: 3255 
C5: 0 
C6: 176 

CVRP 

1-14-12-5-4-7-9-1 
1-13-20-17-1 

1-10-8-6-3-2-11-1 
1-16-19-21-22-18-15-1 

2002 

SP 

5-4-9-11-1316-19 
12-14-17-15-16 
14-9-11-8-10 

20-17-1-11-8-3 

150 80 

C1: 854520 
C2: 617530 
C3: 24200 
C4: 3255 
C5: 0 
C6: 90 

CVRP 

1-10-8-6-3-2-7-1 
1-11-9-4-5-12-14-1 

1-17-20-22-15-1 
1-18-21-19-16-13-1 

1113 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

200 130 

C1: 854520 
C2: 617530 
C3: 0 
C4: 0 
C5: 0 
C6: 0 

CVRP 

1-18-21-19-16-13-1 
1-7-2-3-6-8-10-1 

1-11-9-4-5-12-14-1 
1-17-20-22-15-1 

46 

SP 

5-4-9-11-13-16-19 
12-9-11-13-16 
14-9-11-8-10 

20-17-1-11-8-3 

As performed in instances above, the linearized model is solved using CPLEX solver and,

GAP values, computational times and the respective average for each run are presented in

Table 5.10.
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Table 5.10: GAP results for En22k4 − IEEE123 with linearized mathematical model

QCVRP 

[km] 
QSP 

[km] 

Upper bound 
(Objective 
function) 

Lower 
bound 

GAP 
[%] 

Time 
[s] 

30 30 1914668 1633958 14,66 3460 
40 35 1774558 1539056 13,27 698 
50 40 1753829 1536512 12,39 2994 
60 45 1669021 1464382 12,26 71 
70 50 1690451 1426554 15,61 3189 
80 55 1589147 1375231 13,46 990 
90 60 1533837 1380453 10 376 

100 65 1540675 1386607 10 144 
110 70 1519861 1367874 10 1056 
120 75 1554361 1398924 10 2002 
150 80 1499595 1349635 10 1113 
200 130 1472050 1324845 10 46 

Average 1626004 1432002 11,8 1344 

In order to assess the linearized model in terms of the power flow formulation, the maximum

voltage difference respect to the non-linearized model (non-linear term for Losses) is found

in Table 5.11 for both instances.
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Table 5.11: Maximum voltage difference between non-linearized and linearized models

Pn19k2-IEEE34 En22k4-IEEE123 

QCVRP [km] QSP [km] Max. Dif. [p.u] QCVRP [km] QSP [km] Max. Dif. [p.u] 

30 20 0.016366226 30 30 0.000402307 

40 24 0.010846248 40 35 0.000276445 

50 28 0.010447972 50 40 0.0003341 

60 32 0.006739884 60 45 0.000331383 

70 36 0.003773189 70 50 0.000753311 

80 40 0.005995303 80 55 0.000879476 

90 44 0.002535781 90 60 6.82391x10-5 

100 48 0.006798513 100 65 6.82391x10-5 

110 52 0.00358965 110 70 0.000589611 

120 56 7.96501x10-11 150 80 0.000715173 

130 60 7.96501x10-11 200 130 2.6835x10-10 

According to Table 5.11, as the battery autonomy is reduced, the voltage difference between

two models is increased, because the installation of EVCSs makes the power distribution

point of operation to move away from the point over which the linearization was carried out

(without EVCSs installed). Notice that this linearization shown better results for En22k4−

IEEE123 instance, due to the robustness of this distribution system to receive more loads,

compared with results of Pn19k2− IEEE34 instance.

5.5 Conclusions

Many companies have had facility location and vehicle routing as two of the most crucial

decisions to reduce logistics cost. For a logistics corporation, equipped with a fleet of electric

vehicles, the routing cost is directly affected by the location strategy for charging stations.
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On the other hand, this aspect leads to impact the power distribution network, from the

point of view of the electric utility. Therefore, this chapter studied the Charging Station

Location Problem of Electric Vehicles for Freight Transportation CSLP-EVFT to improve

the performance of transportation network and power distribution system.

The distance traveled by the EVs, introduced along the mathematical model, represented an

appropriate alternative to optimally locate Electric Vehicle Charging Stations EVCSs on the

transportation network with the equivalent nodes on the distribution system. By the other

side, the battery autonomy is considered as a critical factor in the EVCSs location, as this is

described in terms of the distance that can be traveled.

When no EVCSs were installed, as a consequence of too large battery autonomy, the

linear formulation of power flow, depicted in the mathematical model, had favorable results

compared with benchmark case results, showing a maximum difference of 1.3× 10−3.

Due to the presence of a non-linear expression for the term Losses in the objective function,

a Taylor series based linearization was used to obtain a mathematical model completely

linearized. This focus leads not only to handle this nonlinearity, but also reduce the

overall objective function, which involves the cost of EVs routing, installation and energy

consumption of EVCSs, and delta of energy losses. In many cases, the computational times

of runs was improved notably.

For any case, non-linearized or linearized mathematical model, the EVCSs location involves

a change in the term for delta of Energy losses. This term is reduced whether by means the

EVCS is installed as close as to the distribution substation or at a one-phase or three-phase

distribution node.

In regards with the power distribution system operation, the voltage difference between the

linearized and non-linearized mathematical models is increased as the battery autonomy is

reduced. This is because the installation of EVCSs makes the power distribution point of

operation to move away from the point over which the linearization was carried out (without

EVCSs installed). The robustness of the distribution system incurs in the results shown by

the linearization.
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The mathematical model addressed in this chapter, suggests a unique owner of the

transportation company and the distribution system. Otherwise, the problem should be

handled considering a bi-level approach, being the routing solution and EVCSs location, the

input to find the energy consumption and energy losses with the power flow formulation.
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Chapter 6

General conclusions

The research in this thesis primarily deals with the optimal location of Electric Vehicle

Charging Stations (EVCSs) in transportation networks, considering the impact on the power

distribution systems. In this sense, three mathematical models were proposed in the context

of demand management for EVs and optimal siting and sizing of charging facilities, in

accordance with the interests of network operators, logistic companies and end-consumers.

6.1 Summary

The main contents and conclusions of this thesis can be summarized as follows:

• In chapter 2, a detailed and updated review (until the end of 2017) of the state of the

art was presented, considering the interaction of EVs and power distribution systems

and transportation networks. Thus, the large deployment during the last decades of

EVs and the research around the impact on the distribution network, has led to split up

the literature review developed in this thesis in several topics, such as: power quality,

study of scenarios, electricity markets, demand response, demand management, power

system stability, vehicle to grid technology and, optimal location of EVCSs. This latter

deserved a separate section, due to its relevance in terms of the operation, not only of
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the distribution system, but also of the transportation network. The research growth of

optimal location of EVCSs, has been demonstrated with the increment during the last

seven years (from the end of 2017), on the number of publications identified in highly

ranked specialized literature databases, i.e., IEEE Xplore, Science Direct, Springer

and Scopus. The optimal location of EVCSs play an important role for the efficient

operation of the transportation network and power distribution system (as the EVCS is

considered the connection between both networks). This is widely related with the “city

logistics” concept, which is about finding efficient and effective ways to transport goods

in urban areas while taking into account the negative effects on congestion, safety and

environment. Along the review of EVCSs location, some of the problem formulations

found are based on graph and queuing theory, integer programming, flow capturing

optimization model, flow refueling location model and peak load shifting. By the

other side, the models proposed in the literature contain characteristics that involve

traffic flow, cost of EVCS, customer waiting fees, urban restrictions and, EVCS cost

of service and coverage. The algorithms used to solve the mathematical models, cover

from exact techniques to approximated techniques (meta-heuristics), such as particle

swarm optimization, greedy algorithm, genetic algorithms, ant colony algorithm and

Cuckoo search.

• Chapter 3 presented a mathematical model for a demand management strategy in

distribution systems with different insertion levels of EVs, considering the probabilistic

behavior of variables that affect the operation of the distribution network, i.e., driving

patterns (arrival and departure times) and state of charge of EVs’ batteries. Under

the framework of variation of energy price based on charging priority subperiods, the

optimal operation point of the distribution network was obtained in terms of statistics,

such as, the expected value and probability density function of the optimal rate of the

EVs recharge in the system. With the freedom of EVs’ owners to choose the charging

subperiod, according to their needs, the mathematical model is sensitive with the

variability of energy price, as demonstrated when charging power was provided at hours

when the energy price is lower. Additionally, cost of energy losses in the distribution
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network were minimized and other important terms in the objective function were

considered, that account for penalization of the incomplete EVs recharge and a reward

term to maximize the amount of EVs to be recharged. In this context, the study

contributes to risk analysis, defining the uncertainty level of the results and supporting

the process of appropriate decision making, mainly for location and installation of

EVCSs. Furthermore, other processes could be supported, e.g., electricity generation

dispatch, contingency criteria and distribution system planning.

• Chapter 4 presented and discussed a novel mathematical optimization model for the

optimal location of EVCSs in transportation networks, considering the impact on

the power distribution system (PDS). The developed mathematical model (MINLP

formulation) incorporates in the objective function the cost of EVCSs installation and

cost of routing for EVs utilized in merchandise delivery, following the Capacitated

Vehicle Routing Problem (CVRP) approach. Other terms correspond to the increment

of energy losses cost in PDS, respect to the benchmark case (No EVCSs installed),

and a penalization term used to make feasible the solution. This latter was activated

in case that the EVCSs installed were not sufficient for EVs to complete the routes

and meeting the customers demand merchandise. Otherwise, a change of the current

batteries used in the EVs would have been necessary, for others with a larger driving

range. The weight factors presented in the objective function, were chosen consistently

with the relative importance of each term. This is, the need to increase the battery

autonomy was largely penalized in comparison with the other terms (change of battery

is not attractive); and routing cost is of greater importance than EVCSs installation and

energy losses cost. By the other side, the parameter M permitted to control the revisit

to an EVCS. Accordingly, the amount of EVCSs installed, routing and energy losses

cost were affected, since parameter M represented a sensitive factor in the problem,

besides the battery autonomy.

• In chapter 5 a mathematical model is formulated for the charging station location

problem of EVs used by logistics companies, which involves the direct impact on the

routing cost and power distribution system performance. Transportation operation
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was in regards with the CVRP formulation and Shortest Path (SP) problem, given

the mobility patterns of logistics companies. Power distribution network assessment

was proposed by using a power flow linear formulation, which allowed to include the

effect of the grid by an affine set of constraints. In the model proposed, the objective

function was conformed by the following objectives: cost of EVCSs, routing cost for

the freight EVs that followed the travel patterns of CVRP and SP formulations, cost of

energy consumption in the EVCSs and the increment of the energy losses cost respect

to the benchmark case (No EVCSs installed). The battery autonomy, featured in terms

of the distance that can be traveled, represented a suitable sensitive factor for the

EVCSs location, with a relevant impact in the EVCSs installation cost, EVs energy

consumption and energy losses. Furthermore, energy losses cost was also affected by how

close the EVCS was located from the substation and if it was installed at a one-phase

or three-phase distribution node. By the other side, the linearized mathematical (MIP

formulation) model presented better results, in comparison with the initial approach

(MINLP formulation), where the energy losses term was not linear.

• Notice that approach used in model 2 presented in chapter 4, seeks similar objectives

compared with model 3 proposed in chapter 5, from the point of view of distribution

system performance, EVCSs investment and transportation network operation. It is

necessary to clarify that in both models, the transportation company and distribution

system belong the same owner. Otherwise, the problem should be handled considering

a bi-level approach, being the routing solution and EVCSs location, the input to find

the energy consumption and energy losses with the power flow formulation.

• The mathematical approach proposed in model 3, incorporated a set of constraints

that were not addressed in model 2, and made the general problem more adjusted

to the reality. Some of these aspects are framed in the unbalance characteristic

of the distribution network and the introduction of another type of transportation

pattern (Shortest Path formulation), in the mobility scheme of the logistics companies.

Nevertheless, model 2 adopted special features, which were not included in model 3.

For example, the EV is able to be recharged more than once in the same EVCS and,
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transportation and distribution network nodes are allowed to be in different spatial

coordinates. These attributes have a direct impact on the cost of EVCSs installation,

routing and energy losses. Lastly, if the EVCSs installed are not enough to make

possible for EVs to meet customers demand merchandise, the model could suggest an

improvement in the driving range battery.

6.2 Contributions and future works

In the framework of the EVs, and the notable interaction with the power distribution systems

and transportation networks, the following contributions have been performed along the

development of this thesis:

• A comprehensive and detail revision of the prominent works was presented, related with

the EVs charging management strategies and the impact of the distribution networks,

covering different points of view, e.g., power quality, electricity markets, demand

response, power system stability and vehicle to grid assessments. Furthermore, the

study also contributed on the review of EVs charging facilities location methodologies,

providing a substantial frame of reference for future efforts around this topic. References

cited in the literature review correspond to classic and recent papers (until the end of

2017), with explanatory graphics that help to present the information by type, amount

of papers, publication year and database consulted.

• A novel EV charging strategy was formulated in distribution systems. Unlike the works

published in other papers, the mathematical model developed in this thesis, considers

different aspects from the stochastic point of view, i.e, conventional demand, initial state

of charge of battery and, arrival and departure times for EVs. In this manner, different

output variables, such as the optimal rate of EV charging power can be obtained, in

terms of the probability density function. Other works found in this regards, address

some or all of these characteristics by using deterministic approaches, which limits the

development of risk analysis and decision making tools.
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• Two mathematical models (described in chapter 4 and chapter 5) were proposed and

developed for the optimal location of EVCSs. The main aspect that makes different

these models in contrast with other works published in the literature, is based on

the integration of the power distribution and transportation networks in the same

framework, taking into account that the EVCS is the link between both networks.

Additionally and given the low capacity of the EVs batteries, these mathematical

models promote an alternative to provide a virtual increase of the EV driving range (by

the approach of the EVCSs installation). This concept avoids to change the current

batteries with larger-capacity ones, that could decrease the EV performance due to

weight increment.

• New test systems were proposed in the context of validation, covering power distribution

and transportation networks published in the literature. Accordingly, other proposals

of mathematical modeling and solution algorithms can be verified and compared with

the results obtained in this thesis.

• The development of this thesis contributes to the the area of operations research, focused

on smart grids and mobility electrification for logistics companies, with the consequent

improvement of power distribution and transportation network operation and reduction

of pollution levels.

Based on the research presented in this thesis, the ideas and directions for further research

are suggested as follows:

• The two mathematical models for the optimal location of EVCSs, considered a flat

transportation network, and that the driving range is estimated with the current state

of charge of battery, expressed in terms of the distance traveled by the EV. However,

other factors should be taken into account for this estimation, such as average driving

speed, average power consumption and slopes of the trip.

• An improved and more sophisticated mathematical model can be structured,

encompassing the novel features involved in models 2 and 3. These items are:
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unbalance distribution network, EVCS revisit component and, different location for

EVCS candidate nodes and customers nodes. In addition to this, different modes for

merchandise delivery travel patterns can be introduced, such as multi-depot vehicle

routing problem. This latter corresponds to one of the expansion strategies of the

freight transportation companies.

• As part of a wider approach, the implementation of solution methodologies based on

meta-heuristic techniques and set partitioning, will be considered in future research

to validate the proposed mathematical models in larger instances, considering the

introducing of index t. This latter represents the behavior over the course of the time

of these models and their respective variables and parameters. Consequently, the work

developed in this thesis will be adjusted for real-world applications, from the planning

and operation point of view.

• The introduction of energy storage and renewable energy resources could be

implemented with the optimal location of EVCSs, based on the new tests systems

proposed in this thesis and other approaches in which several owners are involved. These

approaches can be focused on master-slave techniques and iterative cascade algorithms.
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Appendix A

Test systems for optimal probabilistic

charging of EVs
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Table A.1: 19 nodes test system

Line Initial node End node R [Ohm] Ω [Ohm] 
Penetration level Priority degree 

16%  63% 16% 63% 

1 1 2 0.0415 0.0415 1 1 Medium Medium 

2 2 3 0.0424 0.0189 0 0 N/A N/A 

3 3 4 0.0444 0.0198 0 1 N/A Medium 

4 4 5 0.0369 0.0165 0 0 N/A N/A 

5 5 6 0.052 0.0232 0 1 N/A Low 

6 6 7 0.0524 0.0234 0 1 N/A Low 

7 7 8 0.3123 0.0311 0 1 N/A High 

8 7 9 0.2002 0.0199 0 0 N/A N/A 

9 7 10 1.734 0.1729 0 1 N/A Medium 

10 6 11 0.2607 0.026 0 1 N/A High 

11 6 12 1.3605 0.1357 0 0 N/A N/A 

12 4 13 0.14 0.014 0 1 N/A Low 

13 3 14 0.7763 0.0774 0 0 N/A N/A 

14 2 15 0.5977 0.0596 1 1 High Medium 

15 1 16 0.1423 0.0496 0 0 N/A N/A 

16 16 17 0.0837 0.0292 1 1 Low Low 

17 17 18 0.3123 0.0311 0 1 N/A High 

18 1 19 0.0163 0.0062 0 1 N/A Low 
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Table A.2: 35 nodes test system

Line Initial node End node R [Ohm] Ω [Ohm] 
Penetration level Priority degree 

16%  63% 16% 63% 

1 1 2 0.0415 0.0415 1 1 High Low 

2 2 3 0.0424 0.0189 0 0 N/A N/A 

3 3 4 0.0444 0.0198 0 1 N/A High 

4 4 5 0.0369 0.0165 0 0 N/A N/A 

5 5 6 0.052 0.0232 1 1 Low Medium 

6 6 7 0.0524 0.0234 0 1 N/A High 

7 7 8 0.3123 0.0311 0 1 N/A Low 

8 7 9 0.2002 0.0199 0 0 N/A N/A 

9 7 10 1.734 0.1729 0 1 N/A Low 

10 6 11 0.2607 0.026 0 1 N/A Low 

11 6 12 1.3605 0.1357 0 1 N/A Medium 

12 4 13 0.14 0.014 1 1 Medium Low 

13 3 14 0.7763 0.0774 0 1 N/A Medium 

14 2 15 0.5977 0.0596 0 1 N/A Medium 

15 1 16 0.1423 0.0496 0 1 N/A Low 

16 16 17 0.0837 0.0292 0 1 N/A High 

17 17 18 0.3123 0.0311 0 1 N/A Medium 

18 1 19 0.0163 0.0062 0 1 N/A Low 

19 15 20 0.5977 0.0596 0 1 N/A Low 

20 13 21 0.14 0.014 0 0 N/A N/A 

21 19 22 0.2607 0.026 0 0 N/A N/A 

22 3 23 1.734 0.1729 0 0 N/A N/A 

23 18 24 1.3605 0.1357 1 0 Low N/A 

24 14 25 0.7763 0.0774 0 0 N/A N/A 

25 16 26 0.1423 0.0496 0 0 N/A N/A 

26 22 27 0.2607 0.026 1 1 Low Medium 

27 20 28 0.5977 0.0596 0 0 N/A N/A 

28 4 29 0.14 0.014 1 1 Medium Medium 

29 5 30 0.14 0.014 0 0 N/A N/A 

30 24 31 1.3605 0.1357 0 1 N/A Low 

31 22 32 0.2607 0.026 0 1 N/A High 

32 27 33 0.2607 0.026 0 0 N/A N/A 

33 23 34 1.734 0.1729 0 1 N/A Low 

34 30 35 0.14 0.014 0 1 N/A Low 
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Appendix B

Test systems for EVCSs location:

First approach
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Table B.1: 16 nodes test system: R and X parameters. Substations at nodes 1, 2 and 3

Line Initial node End node R 
[Ohm] 

X 
[Ohm] 

1 1 4 0.39675 0.529 
2 4 5 0.4232 0.5819 
3 4 6 0.4761 0.9522 
4 6 7 0.2116 0.2116 
5 2 8 0.5819 0.5819 
6 8 9 0.4232 0.5819 
7 8 10 0.5819 0.5819 
8 9 11 0.5819 0.5819 
9 9 12 0.4232 0.5819 
10 3 13 0.5819 0.5819 
11 13 14 0.4761 0.6348 
12 13 15 0.4232 0.5819 
13 15 16 0.2116 0.2116 

Table B.2: 16 nodes test system: loads

Node S [VA] P [W] Q [Var] 
1 0 0 0 
2 0 0 0 
3 0 0 0 
4 2561250 2000000 1600000 
5 3026549 3000000 400000 
6 2039608 2000000 -400000 
7 1920937 1500000 1200000 
8 4825971 4000000 2700000 
9 5314132 5000000 1800000 

10 1345362 1000000 900000 
11 721110 600000 -400000 
12 4810405 4500000 -1700000 
13 1345362 1000000 900000 
14 1486607 1000000 -1100000 
15 1345362 1000000 900000 
16 2247221 2100000 -800000 
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Table B.3: 34 nodes test system: R and X parameters. Substation at node 1

Initial node  End node R [Ohm] X [Ohm] 
1 2 0.117 0.048 
2 3 0.1073 0.044 
3 4 0.1645 0.0457 
4 5 0.1495 0.0415 
5 6 0.1495 0.0415 
6 7 0.3144 0.054 
7 8 0.2096 0.036 
8 9 0.3144 0.054 
9 10 0.2096 0.036 
10 11 0.131 0.0225 
11 12 0.1048 0.018 
3 13 0.1572 0.027 
13 14 0.2096 0.036 
14 15 0.1048 0.018 
15 16 0.0524 0.009 
6 17 0.1794 0.0498 
17 18 0.1645 0.0457 
18 19 0.2079 0.0473 
19 20 0.189 0.043 
20 21 0.189 0.043 
21 22 0.262 0.045 
22 23 0.262 0.045 
23 24 0.3144 0.054 
24 25 0.2096 0.036 
25 26 0.131 0.0225 
26 27 0.1048 0.018 
7 28 0.1572 0.027 
28 29 0.1572 0.027 
29 30 0.1572 0.027 
10 31 0.1572 0.027 
31 32 0.2096 0.036 
32 33 0.1572 0.027 
33 34 0.1048 0.018 
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Table B.4: 34 nodes test system: loads

Node S [VA] P [W] Q [Var] 
1 0 0 0 
2 459963 391000 242250 
3 0 0 0 
4 459963 391000 242250 
5 459963 391000 242250 
6 0 0 0 
7 0 0 0 
8 459963 391000 242250 
9 459963 391000 242250 

10 0 0 0 
11 459963 391000 242250 
12 273193 232900 142800 
13 144340 122400 76500 
14 144340 122400 76500 
15 144340 122400 76500 
16 26254 22950 12750 
17 459963 391000 242250 
18 459963 391000 242250 
19 459963 391000 242250 
20 459963 391000 242250 
21 459963 391000 242250 
22 459963 391000 242250 
23 459963 391000 242250 
24 459963 391000 242250 
25 459963 391000 242250 
26 459963 391000 242250 
27 274085 232900 144500 
28 151376 127500 81600 
29 151376 127500 81600 
30 151376 127500 81600 
31 115990 96900 63750 
32 115990 96900 63750 
33 115990 96900 63750 
34 115990 96900 63750 
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Table B.5: 23 nodes test system: R and X parameters. Substations at nodes 1 and 2

Line Initial node End node R[Ohm] X[Ohm] 
1 1 3 0.820801 0.692946 
2 3 4 1.14036 0.78624 
3 1 5 0.636778 0.537588 
4 5 6 1.14036 0.78624 
5 6 7 1.14036 0.78624 
6 7 8 0.91375 0.63 
7 6 9 0.91375 0.63 
8 9 10 1.14036 0.78624 
9 3 11 1.253665 0.86436 
10 11 12 2.62429 1.80936 
11 2 13 1.027055 0.70812 
12 13 14 1.14036 0.78624 
13 14 15 1.597235 1.10124 
14 2 16 1.370625 0.945 
15 16 17 1.370625 0.945 
16 17 18 1.027055 0.70812 
17 14 19 0.91375 0.63 
18 19 20 0.79679 0.54936 
19 15 21 1.370625 0.945 
20 21 22 0.91375 0.63 
21 22 23 0.683485 0.47124 
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Table B.6: 23 nodes test system: loads

Node S [VA] P [W] Q [Var] 
1 0 0 0 
2 0 0 0 
3 4140048,31 3300000 2500000 
4 1375000 1100000 825000 
5 500000 400000 300000 
6 1750000 1400000 1050000 
7 2500000 2000000 1500000 
8 750000 600000 450000 
9 250000 200000 150000 

10 1875000 1500000 1125000 
11 2375000 1900000 1425000 
12 2500000 2000000 1500000 
13 250000 200000 150000 
14 1250000 1000000 750000 
15 1125000 900000 675000 
16 1000000 800000 600000 
17 1250000 1000000 750000 
18 1625000 1300000 975000 
19 625000 500000 375000 
20 625000 500000 375000 
21 0 0 0 
22 1250000 1000000 750000 
23 750000 600000 450000 

136



Table B.7: Pn6k2 −DS16N Vehicle capacity: 40 No. of vehicles:2

Node in 
transportation 

network 

Node in 
Power 

network 
 X Y Customer demand CVRP:1 PDS:2 

1 N/A  42 57 8 1 
2 N/A  27 68 7 1 
3 N/A  43 67 14 1 
4 N/A  58 48 6 1 
5 N/A  58 27 19 1 
6 N/A  37 69 11 1 
7 1  -7.14 80.22 0 2 
8 2  45.5 109.02 0 2 
9 3  92.03 81.87 0 2 

10 4  -7.14 70.22 0 2 
11 5  -19.01 67.06 0 2 
12 6  3.95 67.06 0 2 
13 7  1.28 60.18 0 2 
14 8  45.9 103.73 0 2 
15 9  41.41 93.73 0 2 
16 10  60.9 97.5 0 2 
17 11  38.75 82.23 0 2 
18 12  49.34 85.9 0 2 
19 13  77.97 71.31 0 2 
20 14  66.41 62.37 0 2 
21 15  97.57 57.01 0 2 
22 16  85.19 40.77 0 2 
23 N/A  1 -1 Dep 1 
24 N/A  1 -1 Dep’ 1 
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Table B.8: Pn7k3 −DS34N Vehicle capacity: 40 No. of vehicles:3

Node in 
transportation 

network 

Node in 
Power 

network 
X Y Customer demand CVRP:1 PDS:2 

1 N/A 62 42 8 1 
2 N/A 42 57 8 1 
3 N/A 27 68 7 1 
4 N/A 43 67 14 1 
5 N/A 58 48 6 1 
6 N/A 58 27 19 1 
7 N/A 37 69 11 1 
8 1 -23.11 28.33 0 2 
9 2 1.14 28.33 0 2 

10 3 26.51 28.33 0 2 
11 4 45.14 28.33 0 2 
12 5 65 28.33 0 2 
13 6 84.75 28.33 0 2 
14 7 102.35 28.33 0 2 
15 8 124.5 28.33 0 2 
16 9 124.5 11.14 0 2 
17 10 106.26 11.14 0 2 
18 11 90.88 11.14 0 2 
19 12 69.67 11.14 0 2 
20 13 26.51 35.41 0 2 
21 14 26.51 47.48 0 2 
22 15 26.51 58.47 0 2 
23 16 26.51 69.55 0 2 
24 17 84.75 40.43 0 2 
25 18 84.75 53.22 0 2 
26 19 84.75 68.86 0 2 
27 20 84.75 79.67 0 2 
28 21 68.48 79.67 0 2 
29 22 48.12 79.67 0 2 
30 23 26.91 79.67 0 2 
31 24 8.86 79.67 0 2 
32 25 -10.87 79.67 0 2 
33 26 -10.87 67.38 0 2 
34 27 -10.87 54.6 0 2 
35 28 102.35 40.22 0 2 
36 29 102.35 52.38 0 2 
37 30 102.35 65.49 0 2 
38 31 106.26 -13.14 0 2 
39 32 91.47 -13.14 0 2 
40 33 69.94 -13.14 0 2 
41 34 46.15 -13.14 0 2 
42 N/A 1 -1 Dep 1 
43 N/A 1 -1 Dep' 1 
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Table B.9: Pn8k3 −DS23N Vehicle capacity: 40 No. of vehicles:3

Node in 
transportation 

network 

Node in 
Power 

network 
X Y Customer demand CVRP:1 PDS:2 

1 N/A 57 58 28 1 
2 N/A 62 42 8 1 
3 N/A 42 57 8 1 
4 N/A 27 68 7 1 
5 N/A 43 67 14 1 
6 N/A 58 48 6 1 
7 N/A 58 27 19 1 
8 N/A 37 69 11 1 
9 3 20.55 21.78 0 2 
10 4 29.77 17.96 0 2 
11 5 26.67 36.53 0 2 
12 6 30.5 45.75 0 2 
13 7 34.32 54.97 0 2 
14 8 37.39 62.36 0 2 
15 9 37.89 42.69 0 2 
16 10 47.11 38.86 0 2 
17 11 16.35 11.64 0 2 
18 12 37.57 2.84 0 2 
19 1 24 30.09 0 2 
20 13 74.95 65.56 0 2 
21 14 84.53 62.75 0 2 
22 15 80.59 49.33 0 2 
23 16 54.8 71.47 0 2 
24 17 51.43 59.95 0 2 
25 18 48.89 51.32 0 2 
26 19 77.27 59.37 0 2 
27 20 75.31 52.68 0 2 
28 21 77.21 37.81 0 2 
29 22 74.96 30.14 0 2 
30 23 73.28 24.4 0 2 
31 2 66.32 68.09 0 2 
32 N/A 1 -1 Dep 1 
33 N/A 1 -1 Dep' 1 
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Appendix C

Test systems for EVCSs location:

Second approach
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Table C.1: 34 nodes test system topology and associated transportation nodes.

Initial 
node 

End 
node 

Length 
[ft]. Config. 

Transportation 
node at end 

node 

Initial 
node 

End 
node 

Length 
[ft]. Config. 

Transportation 
node at end 

node 
800 802 2580 1 0 907 860 1010 2 0 
802 891 865 1 0 834 842 280 2 0 
891 806 865 1 12 836 909 430 2 0 
806 808 32230 1 2 909 840 430 2 0 
808 892 2902 4 0 836 862 280 2 0 
892 810 2902 4 11 842 904 675 2 0 
808 812 37500 1 7 904 923 674 2 0 
812 814 29730 1 0 923 844 1 2 0 
814 850 10 2 0 844 905 1820 2 0 
816 818 1710 3 0 905 846 1820 2 0 
816 895 5105 2 0 846 906 265 2 0 
895 824 5105 2 0 906 925 264 2 0 
818 893 24075 3 3 925 848 1 2 0 
893 820 24075 3 9 850 816 310 2 19 
820 894 6870 3 0 852 832 10 2 0 
894 822 6870 3 4 854 899 11665 4 0 
824 896 1515 4 0 899 856 11665 4 0 
896 826 1515 4 0 854 852 36830 2 10 
824 897 420 2 0 858 901 810 3 0 
897 828 420 2 0 901 864 810 3 0 
828 898 10220 2 6 858 902 2915 2 0 
898 830 10220 2 0 902 834 2915 2 0 
830 854 520 2 14 860 908 1340 2 0 
832 900 2450 2 0 908 836 1340 2 0 
900 858 2450 2 0 862 910 2430 5 0 
834 907 1010 2 0 910 838 2430 5 17 
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Table C.2: 34 nodes test system configuration.

Parameters 
Configuration 

1 2 3 4 5 
R11 1.3368 1.9300 2.7995 0.0000 0.0000 
R12 0.2101 0.2327 0.0000 0.0000 0.0000 
R13 0.2130 0.2359 0.0000 0.0000 0.0000 
R22 1.3238 1.9157 0.0000 2.7995 1.9217 
R23 0.2066 0.2288 0.0000 0.0000 0.0000 
R33 1.3294 1.9219 0.0000 0.0000 0.0000 
X11 1.3343 1.4115 1.4855 0.0000 0.0000 
X12 0.5779 0.6442 0.0000 0.0000 0.0000 
X13 0.5015 0.5691 0.0000 0.0000 0.0000 
X22 1.3569 1.4281 0.0000 1.4855 1.4212 
X23 0.4591 0.5238 0.0000 0.0000 0.0000 
X33 1.3471 1.4209 0.0000 0.0000 0.0000 
B11 5.3350 5.1207 4.2251 0.0000 0.0000 
B12 -1.5313 -1.4364 0.0000 0.0000 0.0000 
B13 -0.9943 -0.9402 0.0000 0.0000 0.0000 
B22 5.0979 4.9055 0.0000 4.2251 4.3637 
B23 -0.6212 -0.5951 0.0000 0.0000 0.0000 
B33 4.8880 4.7154 0.0000 0.0000 0.0000 
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Table C.3: Loads at 34 nodes test system. *Capacitive load

Node 
Connection 

Wye=1, 
Delta=0 

Load modeling (α)  
PQ=0, I=1, Z=2 

Phase 1 Phase 2 Phase 3 

P [kW] Q [kVar] P [kW] Q [kVar] P [kW] Q [kVar] 

860 1 0 20 16 20 16 20 16 
840 1 1 9 7 9 7 9 7 
844 1 2 135 105 135 105 135 105 
848 0 0 20 16 20 16 20 16 
832 0 1 150 75 150 75 150 75 
830 0 2 10 5 10 5 25 10 
891 1 0 0 0 30 15 25 14 
892 1 1 0 0 16 8 0 0 
893 1 2 34 17 0 0 0 0 
894 1 0 135 70 0 0 0 0 
895 0 1 0 0 5 2 0 0 
896 1 1 0 0 40 20 0 0 
897 1 0 0 0 0 0 4 2 
898 1 0 7 3 0 0 0 0 
899 1 0 0 0 4 2 0 0 
900 0 2 7 3 2 1 6 3 
901 1 0 2 1 0 0 0 0 
902 0 0 4 2 15 8 13 7 
907 0 2 16 8 20 10 110 55 
908 0 0 30 15 10 6 42 22 
909 0 1 18 9 22 11 0 0 
910 1 0 0 0 28 14 0 0 
904 1 0 9 5 0 0 0 0 
905 1 0 0 0 25 12 20 11 
906 1 0 0 0 23 11 0 0 
*923 1 2 0 -100 0 -100 0 -100 
*925 0 2 0 -150 0 -150 0 -150 
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Table C.4: Benchmark case results at 34 nodes test system.

Node Va θa Vb θb Vc θc 
800 1.05 0 1.05 -120 1.05 120 
802 1.0475 -0.05 1.0484 -120.07 1.0484 119.95 
806 1.0457 -0.08 1.0474 -120.11 1.0474 119.92 
808 1.0136 -0.75 1.0296 -120.95 1.0289 119.3 
810 0 0 1.0294 -120.95 0 0 
812 0.9763 -1.57 1.01 -121.92 1.0069 118.59 
814 0.9467 -2.26 0.9945 -122.7 0.9893 118.01 
816 1.0172 -2.26 1.0253 -122.71 1.02 118.01 
818 1.0163 -2.27 0 0 0 0 
820 0.9926 -2.32 0 0 0 0 
822 0.9895 -2.33 0 0 0 0 
824 1.0082 -2.37 1.0158 -122.94 1.0116 117.76 
826 0 0 1.0156 -122.94 0 0 
828 1.0074 -2.38 1.0151 -122.95 1.0109 117.75 
830 0.9894 -2.63 0.9982 -123.39 0.9938 117.25 
832 1.0359 -3.11 1.0345 -124.18 1.036 116.33 
834 1.0309 -3.24 1.0295 -124.39 1.0313 116.09 
836 1.0303 -3.23 1.0287 -124.39 1.0308 116.09 
838 0 0 1.0285 -124.39 0 0 
840 1.0303 -3.23 1.0287 -124.39 1.0308 116.09 
842 1.0309 -3.25 1.0294 -124.39 1.0313 116.09 
844 1.0307 -3.27 1.0291 -124.42 1.0311 116.06 
846 1.0309 -3.32 1.0291 -124.46 1.0313 116.01 
848 1.031 -3.32 1.0291 -124.47 1.0314 116 
850 1.0176 -2.26 1.0255 -122.7 1.0203 118.01 
852 0.9581 -3.11 0.968 -124.18 0.9637 116.33 
854 0.989 -2.64 0.9978 -123.4 0.9934 117.24 
856 0 0 0.9977 -123.41 0 0 
858 1.0336 -3.17 1.0322 -124.28 1.0338 116.22 
860 1.0305 -3.24 1.0291 -124.39 1.031 116.09 
862 1.0303 -3.23 1.0287 -124.39 1.0308 116.09 
864 1.0336 -3.17 0 0 0 0 
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Additional characteristics for 34 nodes distribution network characteristics:

• Slack node: 800

• Vnom=24.9 kV

• Stransf=2.5 MVA

• Regulators at:

Line 814-850: tapa : 12, tapb : 5, tapc : 5

Line 852-832: tapa : 13, tapb : 11, tapc : 12

Table C.5: Pn19k2 instance and candidate nodes for EVCSs.

Customer Coord. X Coord. Y Candidate for EVCS Demand 
1 30 40 0 0 
2 37 52 1 19 
3 49 43 1 30 
4 52 64 1 16 
5 31 62 0 23 
6 52 33 1 11 
7 42 41 1 31 
8 52 41 0 15 
9 57 58 1 28 
10 62 42 1 14 
11 42 57 1 8 
12 27 68 1 7 
13 43 67 0 14 
14 58 27 1 19 
15 37 69 0 11 
16 61 33 0 26 
17 62 63 1 17 
18 63 69 0 6 
19 45 35 1 15 
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Table C.6: Connectivity matrix for SP problem in Pn19k2 instance.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 
2 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 
3 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 
4 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 
5 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 
6 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 
7 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 
8 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
9 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 

10 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 
11 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 
12 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
13 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 
14 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
15 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 
16 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 
18 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 
19 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Additional characteristics for transportation network in Pn19k2 instance:

• CVRP:

Vehicle capacity: 160

Number of vehicles: 2

• SP problem:

Vehicle 1: Start point: 12, End point: 10

Vehicle 2: Start point: 1, End point: 18

Vehicle 3: Start point: 15, End point: 14

Vehicle 4: Start point: 17, End point: 12
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Table C.7: 123 nodes test system topology and associated transportation nodes.

Initial node End node Length [ft.] Config. Transportation 
node at end node Initial node End node Length [ft.] Config. Transportation 

node at end node 
149 1 400 1 20 64 65 425 12 0 

1 2 175 10 0 65 66 325 12 9 
1 3 250 11 0 160 67 350 6 10 
3 4 200 11 0 67 68 200 9 0 
3 5 325 11 0 68 69 275 9 0 
5 6 250 11 0 69 70 325 9 0 
1 7 300 1 0 70 71 275 9 0 
7 8 200 1 0 67 72 275 3 13 
8 9 225 9 0 72 73 275 11 0 

14 10 250 9 0 73 74 350 11 0 
14 11 250 9 0 74 75 400 11 0 
8 12 225 10 0 72 76 200 3 0 
8 13 300 1 0 76 77 400 6 0 
9 14 425 9 0 77 78 100 6 0 

34 15 100 11 0 78 79 225 6 16 
15 16 375 11 0 78 80 475 6 0 
15 17 350 11 0 80 81 475 6 0 
13 18 825 2 14 81 82 250 6 19 
18 19 250 9 0 82 451 249 6 0 
19 20 325 9 0 451 83 1 6 0 
18 21 300 2 0 81 84 675 11 0 
21 22 525 10 0 84 85 475 11 0 
21 23 250 2 12 76 86 700 3 0 
23 24 550 11 0 86 87 450 6 21 
23 25 275 2 0 87 452 174 9 0 
25 26 350 7 0 452 88 1 9 0 
26 27 275 7 0 87 89 275 6 0 
25 28 200 2 0 89 453 224 10 0 
28 29 300 2 5 453 90 1 10 0 
29 30 350 2 0 89 91 225 6 18 
26 31 225 11 0 91 454 299 11 0 
31 32 300 11 0 454 92 1 11 0 
27 33 500 9 0 91 93 225 6 0 
13 34 150 11 0 93 94 275 9 0 

135 35 375 4 0 93 95 300 6 22 
35 36 650 8 0 95 96 200 10 0 
36 37 300 9 0 67 97 250 3 8 
36 38 250 10 0 97 98 275 3 0 
38 39 325 10 0 98 99 550 3 0 
35 40 250 1 0 99 100 300 3 0 
40 41 325 11 0 197 101 250 3 0 
40 42 250 1 0 101 102 225 11 0 
42 43 500 10 0 102 103 325 11 0 
42 44 200 1 0 103 104 700 11 0 
44 45 200 9 0 101 105 275 3 3 
45 46 300 9 0 105 106 225 10 0 
44 47 250 1 0 106 107 575 10 0 
47 48 150 4 0 105 108 325 3 0 
47 49 250 4 0 108 109 450 9 0 
49 50 250 4 0 109 110 300 9 0 
50 51 250 4 0 110 111 575 9 0 

152 52 400 1 0 110 112 125 9 0 
52 53 200 1 0 112 113 525 9 0 
53 54 125 1 0 113 114 325 9 0 
54 55 275 1 15 51 151 500 4 0 
55 56 275 1 0 30 250 200 2 4 
54 57 350 3 0 108 300 1000 3 2 
57 58 250 10 0 100 450 800 3 6 
58 59 250 10 0 18 135 10 4 0 
57 60 750 3 0 150 149 10 1 0 
60 61 550 5 0 13 152 10 1 17 
60 62 250 12 11 60 160 10 6 0 
62 63 175 12 0 97 197 10 3 0 
63 64 350 12 7      
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Table C.8: 123 nodes test system configuration.

Parameters 
Configuration 

1 2 3 4 5 6 7 8 9 10 11 12 
R11 0.4576 0.4666 0.4615 0.4615 0.4666 0.4576 0.4576 0.4576 1.3292 0.0000 0.0000 1.5209 
R12 0.1560 0.1580 0.1535 0.1580 0.1560 0.1535 0.0000 0.1535 0.0000 0.0000 0.0000 0.5198 
R13 0.1535 0.1560 0.1580 0.1535 0.1580 0.1560 0.1535 0.0000 0.0000 0.0000 0.0000 0.4924 
R22 0.4666 0.4615 0.4576 0.4666 0.4576 0.4615 0.0000 0.4615 0.0000 1.3292 0.0000 1.5329 
R23 0.1580 0.1535 0.1560 0.1560 0.1535 0.1580 0.0000 0.0000 0.0000 0.0000 0.0000 0.5198 
R33 0.4615 0.4576 0.4666 0.4576 0.4615 0.4666 0.4615 0.0000 0.0000 0.0000 1.3292 1.5209 
X11 1.0780 1.0482 1.0651 1.0651 1.0482 1.0780 1.0780 1.0780 1.3475 0.0000 0.0000 0.7521 
X12 0.5017 0.4236 0.3849 0.4236 0.5017 0.3849 0.0000 0.3849 0.0000 0.0000 0.0000 0.2775 
X13 0.3849 0.5017 0.4236 0.3849 0.4236 0.5017 0.3849 0.0000 0.0000 0.0000 0.0000 0.2157 
X22 1.0482 1.0651 1.0780 1.0482 1.0780 1.0651 0.0000 1.0651 0.0000 1.3475 0.0000 0.7162 
X23 0.4236 0.3849 0.5017 0.5017 0.3849 0.4236 0.0000 0.0000 0.0000 0.0000 0.0000 0.2775 
X33 1.0651 1.0780 1.0482 1.0780 1.0651 1.0482 1.0651 0.0000 0.0000 0.0000 1.3475 0.7521 
B11 5.6765 5.9809 5.3971 5.3971 5.9809 5.6765 5.1154 5.1154 4.5193 0.0000 0.0000 67.2242 
B12 -1.8319 -1.1645 -0.6982 -1.1645 -1.8319 -0.6982 0.0000 -1.0549 0.0000 0.0000 0.0000 0.0000 
B13 -0.6982 -1.8319 -1.1645 -0.6982 -1.1645 -1.8319 -1.0549 0.0000 0.0000 0.0000 0.0000 0.0000 
B22 5.9809 5.3971 5.6765 5.9809 5.6765 5.3971 0.0000 5.1740 0.0000 4.5193 0.0000 67.2242 
B23 -1.1645 -0.6982 -1.8319 -1.8319 -0.6982 -1.1645 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
B33 5.3971 5.6765 5.9809 5.6765 5.3971 5.9809 5.1704 0.0000 0.0000 0.0000 4.5193 67.2242 
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Table C.9: Loads at 123 nodes test system. *Capacitive load

Node 
Connection 

Wye=1, 
Delta=0 

Load 
modeling 

(α)  
PQ=0, I=1, 

Z=2 

Phase 1 Phase 2 Phase 3 

Node 
Connection 

Wye=1, 
Delta=0 

Load 
modeling 

(α)  
PQ=0, 

I=1, Z=2 

Phase 1 Phase 2 Phase 3 

P 
[kW] 

Q 
[kVar] 

P 
[kW] 

Q 
[kVar] 

P 
[kW] 

Q 
[kVar] 

P 
[kW] 

Q 
[kVar] 

P 
[kW] 

Q 
[kVar] 

P 
[kW] 

Q 
[kVar] 

1 1 0 40 20 0 0 0 0 63 1 0 40 20 0 0 0 0 
2 1 0 0 0 20 10 0 0 64 1 1 0 0 75 35 0 0 
4 1 0 0 0 0 0 40 20 65 0 2 35 25 35 25 70 50 
5 1 1 0 0 0 0 20 10 66 1 0 0 0 0 0 75 35 
6 1 2 0 0 0 0 40 20 68 1 0 20 10 0 0 0 0 
7 1 0 20 10 0 0 0 0 69 1 0 40 20 0 0 0 0 
9 1 0 40 20 0 0 0 0 70 1 0 20 10 0 0 0 0 

10 1 1 20 10 0 0 0 0 71 1 0 40 20 0 0 0 0 
11 1 2 40 20 0 0 0 0 73 1 0 0 0 0 0 40 20 
12 1 0 0 0 20 10 0 0 74 1 2 0 0 0 0 40 20 
16 1 0 0 0 0 0 40 20 75 1 0 0 0 0 0 40 20 
17 1 0 0 0 0 0 20 10 76 0 1 105 80 70 50 70 50 
19 1 0 40 20 0 0 0 0 77 1 0 0 0 40 20 0 0 
20 1 1 40 20 0 0 0 0 79 1 2 40 20 0 0 0 0 
22 1 2 0 0 40 20 0 0 80 1 0 0 0 40 20 0 0 
24 1 0 0 0 0 0 40 20 82 1 0 40 20 0 0 0 0 
28 1 1 40 20 0 0 0 0 83 1 0 0 0 0 0 20 10 
29 1 2 40 20 0 0 0 0 84 1 0 0 0 0 0 20 10 
30 1 0 0 0 0 0 40 20 85 1 0 0 0 0 0 40 20 
31 1 0 0 0 0 0 20 10 86 1 0 0 0 20 10 0 0 
32 1 0 0 0 0 0 20 10 87 1 0 0 0 40 20 0 0 
33 1 1 40 20 0 0 0 0 88 1 0 40 20 0 0 0 0 
34 1 2 0 0 0 0 40 20 90 1 1 0 0 40 20 0 0 
35 0 0 40 20 0 0 0 0 92 1 0 0 0 0 0 40 20 
37 1 2 40 20 0 0 0 0 94 1 0 40 20 0 0 0 0 
38 1 1 0 0 20 10 0 0 95 1 0 0 0 20 10 0 0 
39 1 0 0 0 20 10 0 0 96 1 0 0 0 20 10 0 0 
41 1 0 0 0 0 0 20 10 98 1 0 40 20 0 0 0 0 
42 1 0 20 10 0 0 0 0 99 1 0 0 0 40 20 0 0 
43 1 2 0 0 40 20 0 0 100 1 2 0 0 0 0 40 20 
45 1 1 20 10 0 0 0 0 102 1 0 0 0 0 0 20 10 
46 1 0 20 10 0 0 0 0 103 1 0 0 0 0 0 40 20 
47 1 1 35 25 35 25 35 25 104 1 0 0 0 0 0 40 20 
48 1 2 70 50 70 50 70 50 106 1 0 0 0 40 20 0 0 
49 1 0 35 25 70 50 35 20 107 1 0 0 0 40 20 0 0 
50 1 0 0 0 0 0 40 20 109 1 0 40 20 0 0 0 0 
51 1 0 20 10 0 0 0 0 111 1 0 20 10 0 0 0 0 
52 1 0 40 20 0 0 0 0 112 1 1 20 10 0 0 0 0 
53 1 0 40 20 0 0 0 0 113 1 2 40 20 0 0 0 0 
55 1 2 20 10 0 0 0 0 114 1 0 20 10 0 0 0 0 
56 1 0 0 0 20 10 0 0 451 1 2 0 -200 0 -200 0 -200 
58 1 1 0 0 20 10 0 0 452 1 2 0 -50 0 0 0 0 
59 1 0 0 0 20 10 0 0 453 1 2 0 0 0 -50 0 0 
60 1 0 20 10 0 0 0 0 454 1 2 0 0 0 0 0 -50 
62 1 2 0 0 0 0 40 20          
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Table C.10: Benchmark case results at 123 nodes test system.

Node Va θa Vb θb Vc θc Node Va θa Vb θb Vc θc 
1 1.0311 -0.66 1.0412 -120.33 1.0348 119.6 63 0.9866 -3.49 1.0236 -121.97 1.0022 117.74 
2 0 0 1.041 -120.33 0 0 64 0.9863 -3.47 1.0217 -121.93 1 117.7 
3 0 0 0 0 1.0331 119.57 65 0.9856 -3.48 1.0214 -121.89 0.997 117.7 
4 0 0 0 0 1.0326 119.56 66 0.9858 -3.51 1.0216 -121.87 0.9955 117.7 
5 0 0 0 0 1.0318 119.55 67 1.0355 -3.77 1.0311 -122.19 1.0345 117.61 
6 0 0 0 0 1.0311 119.53 68 1.034 -3.79 0 0 0 0 
7 1.0218 -1.13 1.0395 -120.57 1.0291 119.35 69 1.0322 -3.83 0 0 0 0 
8 1.0158 -1.44 1.0382 -120.74 1.0253 119.18 70 1.031 -3.85 0 0 0 0 
9 1.0144 -1.47 0 0 0 0 71 1.0303 -3.86 0 0 0 0 

10 1.006 -1.5 0 0 0 0 72 1.0359 -3.86 1.0302 -122.29 1.0343 117.5 
11 1.0057 -1.51 0 0 0 0 73 0 0 0 0 1.0321 117.46 
12 0 0 1.0379 -120.74 0 0 74 0 0 0 0 1.0303 117.42 
13 1.0079 -1.87 1.036 -120.97 1.0196 118.9 75 0 0 0 0 1.0293 117.4 
14 1.0063 -1.5 0 0 0 0 76 1.0358 -3.92 1.0297 -122.38 1.0349 117.45 
15 0 0 0 0 1.0183 118.87 77 1.037 -3.99 1.0308 -122.46 1.0358 117.37 
16 0 0 0 0 1.0173 118.85 78 1.0373 -4.01 1.0312 -122.48 1.036 117.35 
17 0 0 0 0 1.0178 118.86 79 1.037 -4.02 1.0313 -122.48 1.0359 117.36 
18 0.9988 -2.29 1.0319 -121.22 1.0122 118.83 80 1.0394 -4.07 1.0329 -122.54 1.0368 117.24 
19 0.9975 -2.31 0 0 0 0 81 1.0415 -4.14 1.0352 -122.57 1.0374 117.14 
20 0.9967 -2.33 0 0 0 0 82 1.0424 -4.18 1.0364 -122.6 1.0382 117.11 
21 0.9983 -2.34 1.032 -121.22 1.0111 118.81 83 1.0436 -4.2 1.0375 -122.63 1.039 117.07 
22 0 0 1.0305 -121.25 0 0 84 0 0 0 0 1.0348 117.09 
23 0.9979 -2.39 1.0323 -121.2 1.01 118.79 85 0 0 0 0 1.0336 117.07 
24 0 0 0 0 1.0085 118.77 86 1.0349 -3.95 1.0279 -122.55 1.0364 117.42 
25 0.9972 -2.45 1.0328 -121.2 1.0091 118.8 87 1.0342 -3.97 1.0272 -122.63 1.0369 117.39 
26 0.997 -2.48 0 0 1.0023 118.79 88 1.0342 -4 0 0 0 0 
27 0.9966 -2.49 0 0 1.0022 118.79 89 1.0338 -3.96 1.027 -122.68 1.0373 117.38 
28 0.9968 -2.48 1.033 -121.19 1.0087 118.8 90 0 0 1.0269 -122.72 0 0 
29 0.9967 -2.5 1.0332 -121.19 1.0083 118.79 91 1.0336 -3.96 1.0266 -122.69 1.0376 117.36 
30 0.9969 -2.5 1.0331 -121.18 1.0078 118.77 92 0 0 0 0 1.0375 117.31 
31 0 0 0 0 1.0017 118.77 93 1.0333 -3.97 1.0265 -122.71 1.0377 117.37 
32 0 0 0 0 1.0013 118.77 94 1.0326 -3.98 0 0 0 0 
33 0.9953 -2.52 0 0 0 0 95 1.0332 -3.96 1.0261 -122.73 1.0378 117.37 
34 0 0 0 0 1.0187 118.88 96 0 0 1.0258 -122.73 0 0 
35 0.996 -2.38 1.0293 -121.31 1.0112 118.77 97 1.0345 -3.82 1.0306 -122.21 1.0338 117.6 
36 0.9951 -2.4 1.0288 -121.36 0 0 98 1.0343 -3.83 1.0303 -122.22 1.0336 117.59 
37 0.9943 -2.41 0 0 0 0 99 1.0346 -3.82 1.0295 -122.23 1.0332 117.55 
38 0 0 1.0282 -121.37 0 0 100 1.0348 -3.82 1.0294 -122.21 1.0328 117.53 
39 0 0 1.0278 -121.38 0 0 101 1.0337 -3.86 1.0303 -122.22 1.0332 117.59 
40 0.9945 -2.42 1.0282 -121.36 1.0101 118.72 102 0 0 0 0 1.0318 117.56 
41 0 0 0 0 1.0097 118.71 103 0 0 0 0 1.0301 117.53 
42 0.9929 -2.45 1.027 -121.41 1.0092 118.68 104 0 0 0 0 1.0283 117.49 
43 0 0 1.0257 -121.43 0 0 105 1.0323 -3.9 1.0301 -122.27 1.0335 117.61 
44 0.9918 -2.48 1.0263 -121.44 1.0084 118.65 106 0 0 1.029 -122.29 0 0 
45 0.9913 -2.49 0 0 0 0 107 0 0 1.0275 -122.32 0 0 
46 0.9909 -2.5 0 0 0 0 108 1.0309 -3.97 1.0308 -122.28 1.0334 117.65 
47 0.9908 -2.5 1.0253 -121.47 1.0074 118.61 109 1.0267 -4.05 0 0 0 0 
48 0.9905 -2.51 1.025 -121.47 1.0072 118.6 110 1.0248 -4.09 0 0 0 0 
49 0.9905 -2.51 1.0247 -121.48 1.0071 118.58 111 1.024 -4.1 0 0 0 0 
50 0.9905 -2.52 1.0247 -121.47 1.0067 118.57 112 1.0241 -4.1 0 0 0 0 
51 0.9903 -2.53 1.0248 -121.47 1.0067 118.58 113 1.022 -4.14 0 0 0 0 
52 1.0018 -2.26 1.0348 -121.22 1.0164 118.64 114 1.0216 -4.15 0 0 0 0 
53 0.9991 -2.43 1.034 -121.34 1.0148 118.51 135 0.9988 -2.29 1.0318 -121.23 1.0122 118.83 
54 0.9976 -2.53 1.0334 -121.41 1.0138 118.43 149 1.0436 -0.02 1.0437 -120.02 1.0436 119.98 
55 0.9974 -2.54 1.0334 -121.42 1.0139 118.43 150 1 0 1 -120 1 120 
56 0.9974 -2.53 1.0332 -121.43 1.014 118.43 151 0.9903 -2.53 1.0248 -121.47 1.0067 118.58 
57 0.9945 -2.83 1.0306 -121.61 1.0113 118.21 152 1.0078 -1.88 1.036 -120.98 1.0196 118.89 
58 0 0 1.03 -121.63 0 0 160 0.988 -3.52 1.0256 -122.01 1.0052 117.75 
59 0 0 1.0296 -121.63 0 0 197 1.0345 -3.82 1.0306 -122.21 1.0338 117.59 
60 0.988 -3.51 1.0256 -122 1.0052 117.76 250 0.9969 -2.5 1.0331 -121.18 1.0078 118.77 
61 0.988 -3.51 1.0256 -122 1.0052 117.76 300 1.0309 -3.97 1.0308 -122.28 1.0334 117.65 
62 0.9872 -3.5 1.0245 -121.98 1.0032 117.75 450 1.0348 -3.82 1.0294 -122.21 1.0328 117.53 
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Additional characteristics for 123 nodes distribution network characteristics:

• Slack node: 150

• Vnom=4.16 kV

• Stransf=5 MVA

• Regulators at:

Line 9-14: tapa : −1

Line 25-26: tapc : −1

Line 160-67: tapa : 8, tapb : 1, tapc : 5

Line 150-149: tapa : 7, tapb : 7, tapc : 7
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Table C.11: En22k4 instance and candidate nodes for EVCSs.

Customer Coord. X Coord. Y Candidate for EVCS Demand 
1 145 215 0 0 
2 151 264 1 1100 
3 159 261 1 700 
4 130 254 1 800 
5 128 252 1 1400 
6 163 247 1 2100 
7 146 246 1 400 
8 161 242 1 800 
9 142 239 1 100 
10 163 236 1 500 
11 148 232 1 600 
12 128 231 1 1200 
13 156 217 1 1300 
14 129 214 1 1300 
15 146 208 1 300 
16 164 208 1 900 
17 141 206 1 2100 
18 147 193 1 1000 
19 164 193 1 900 
20 129 189 1 2500 
21 155 185 1 1800 
22 139 182 1 700 
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Table C.12: Connectivity matrix for SP problem in En22k4 instance.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 
2 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
6 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
8 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 
9 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
11 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
12 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
13 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 
15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 
17 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

Additional characteristics for transportation network in En22k4 instance:

• CVRP:

Vehicle capacity: 6000

Number of vehicles: 4

• SP problem:

Vehicle 1: Start point: 5, End point: 19

Vehicle 2: Start point: 12, End point: 16

Vehicle 3: Start point: 14, End point: 10

Vehicle 4: Start point: 20, End point: 3
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Appendix D

Publications

The works presented as follows, were published (or currently under review) in specialized

journals and conferences during the development of this thesis:

• Title: Optimal probabilistic charging of electric vehicles in distribution systems

Authors: Andrés Arias, Mauricio Granada, Carlos A. Castro

Journal: IET Electrical Systems in Transportation

http://ieeexplore.ieee.org/document/8019958/

• Title: Integrated planning of electric vehicles routing and charging stations location

considering transportation networks and power distribution systems

Authors: Andrés Arias, Juan D. Sánchez, Mauricio Granada

Journal: International Journal of Industrial Engineering Computations

http://www.growingscience.com/ijiec/IJIEC_2017_33.pdf

• Title book: Veh́ıculos eléctricos, enerǵıa y movilidad

Authors: Mauricio Granada, Andrés Arias, Juan D. Sánchez

Editorial: UTP
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https://www.researchgate.net/publication/322698118_Vehiculos_electricos_

energia_y_movilidad

• Title: Optimal placement of freight electric vehicles charging stations and their impact

on the power distribution network (under review)

Authors: Andrés Arias, Alejandro Garcés, Mauricio Granada

Journal: NETWORKS. An international journal

• Title: Veh́ıculos eléctricos para el transporte de carga: planeación integrada

considerando el sistema de distribución de enerǵıa (under review)

Authors: Juan D. Sánchez, Andrés Arias, Mauricio Granada

Journal: IEEE Latin America Transactions

• Title: Optimal Charging Schedule of Electric Vehicles Considering Variation of Energy

Price

Authors: Andrés Arias, Geovanny Marulanda, Camila Puentes, Ricardo Hincapié and

Mauricio Granada

Conference: Transmission & Distribution Conference and Exposition - Latin America,

2014 IEEE PES

http://ieeexplore.ieee.org/document/6955238/

• Title: An IEEE Xplore database literature review regarding the interaction between

electric vehicles and power grids

Authors: Andrés Arias, Juan D. Sánchez, Luis H. Mart́ınez, Ricardo Hincapié, Mauricio

Granada

Conference: Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015

IEEE PES

http://ieeexplore.ieee.org/document/7381237/

• Title: An efficient approach to solve the combination between Battery Swap Station

Location and CVRP by using the MTZ formulation
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Authors: Andrés Arias, Juan D. Sánchez, Luis H. Mart́ınez, Ricardo Hincapié, Mauricio

Granada

Conference: Innovative Smart Grid Technologies Latin America (ISGT LATAM), 2015

IEEE PES

http://ieeexplore.ieee.org/document/7381218/
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