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1 Introduction

Understanding fermion masses and mixings is probably one of the most stubborn problems

the particle physics community has nowadays: we have plenty of data about masses and

mixings, which present clear patterns of hierarchies, yet we are unable to understand their

origin and their values. The Standard Model (SM) just parametrizes them with complete

generality and satisfying all requirements of renormalizable quantum field theories. The

most popular theories beyond the SM (supersymmetry for instance) do not add much on

the subject. The solution of this problem is probably linked to the origin of the spontaneous

symmetry breaking mechanism in the SM or to the question on why there are only three

generations of fermions. Until the complete solution is found one may adopt a more

modest bottom-up approach and try to find patterns that relate the many parameters

that characterize flavour. One of the simplest approaches in this direction has been to

find texture zeroes in the mass matrices that are compatible with the data (see [1–3]

for the quark/lepton sector and [4] for the neutrino sector). These texture zeroes are

supposed to be enforced by a symmetry (see for instance [5–8] and references therein) or be

approximate statements dictated by the dynamics of a more complete theory (for example,

in many radiative neutrino mass models [9, 10] neutrino masses can be computed and are

proportional to the charged lepton masses, in that case the elements proportional to me

are expected to be much smaller than the others [11–13]). Here we will discuss Majorana

neutrino mass textures in the spirit of [4] in which one looks for zeroes of the neutrino

mass matrix in a basis in which the charged lepton mass matrix is already diagonal (the

analysis of the texture zeroes with arbitrary charged lepton and neutrino mass matrices
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is much more complicated for it can be shown that some textures are trivial in the sense

that they can be obtained from general matrices just by changing the flavour basis [14]).

In particular, two-zero textures are very interesting because they give four relations among

the nine real parameters needed to describe the Majorana neutrino mass matrix, and these

relations can be checked against available data. In ref. [4] it was shown that there are only

seven two-zero textures which can accommodate data on neutrino masses and mixings (all

three-zero textures were already excluded). These textures have been extensively studied

in the past (see [8, 15–20] for recent analyses).

In most of the works the relations among parameters have been derived analytically for

the different textures. These relations have been used to scan the parameter space, letting

the six parameters measured in neutrino oscillation experiments vary in their allowed 3σ

regions and checking if the two-zero texture relations are satisfied. In general, correlations

among oscillation parameters are neglected. This is a good approximation for most of

them, but we now know the exact shape of the allowed region in the parameters s223-δ

(s223 = sin2 θ23 is the 2− 3 mixing, and δ the Dirac phase in the neutrino mixing matrix) is

quite asymmetric. This is in part due to the octant ambiguity in s223 and the asymmetry

in δ due to matter effects.

Here we will present an extremely simple method, completely numerical since the

beginning, and will use previous results as a testbed for the method. The method, based on

the minimization of a generalized χ2 function, which incorporates the constraints imposed

by the textures, is now possible thanks to the fact that the NuFIT collaboration [21, 22]1

has made publicly available the ∆χ2 of their fits to neutrino oscillation data, and to the

new Monte Carlo tools as MultiNest [25, 26] that will allow us a very robust and efficient

scanning of the parameter space. The method incorporates naturally s223-δ correlations,

allows us to compute the available parameter space after the texture zeros have been

imposed and provides a standard χ2 comparative test of how well the different textures

can accommodate the experimental data.2 It also generalizes trivially to the case in which

the zeroes are only approximate.3 All this without the need of any previous algebraic work

to disentangle the relations among parameters.

Although we have concentrated in neutrino mass two-zero textures using the last os-

cillations data available (NuFIT 2018, release 3.2 [22]), an aim of this work is to provide a

general template to analyze numerically the different flavour models which give predictions

for neutrino masses. Therefore, the methods developed here can be applied to other neu-

trino mass models and also to quark mass matrices with texture zeroes or other constraints.

Thus, in section 2 we fix the notation and briefly introduce the different two-zero

neutrino mass matrix textures. In section 3 we present the method we use to analyze

the textures while in section 4 we study the available parameter space for all the allowed

textures. In section 5 we discuss how the results change if the texture zeroes are only

approximate and also review non-allowed textures when the zeroes are only approximate.

Finally in section 6 we collect the main conclusion of our analysis.

1See also [23, 24] for alternative recent fits to neutrino oscillation data.
2For a related approach based also on a χ2 analysis see [17].
3One expects that, in some cases, radiative corrections will shift the texture zeroes to some small

quantities [27].
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2 The two-zero textures

Two-zero neutrino textures in the [4] approach are defined in the basis in which the charged

lepton Yukawa matrices are diagonal and there are only three active neutrino characterized

by a Majorana neutrino complex symmetric matrix.4 In this basis, the neutrino mass

matrix can be reconstructed from the six neutrino oscillation parameters, s212, s
2
23, s

2
13,

∆21 = m2
2 − m2

1, ∆31 = m2
3 − m2

1 and δ, and three more parameters still unknown, the

lightest neutrino mass m` (which is equal to m1 in the normal ordering (NO) solution and

m3 in the inverted one (IO)5) and two Majorana phases, α1 and α2:

Mν ≡

Mee Meµ Meτ

Meµ Mµµ Mµτ

Meτ Mµτ Mττ

 = UDνU
T , with Dν = diag(m1,m2,m3) (2.1)

where U is the PMNS matrix and can be written as

U =

 c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13


 eiα1/2

eiα2/2

1

 , (2.2)

Two-zero textures impose that (Mν)ab = 0 for two different elements. There are(
6
2

)
= 15 two-zero neutrino textures which were classified in ref. [4] in two groups; allowed6

A1 :

 0 0 X

0 X X

X X X

 , , A2 :

 0 X 0

X X X

0 X X

 , (2.3)

B1 :

X X 0

X 0 X

0 X X

 , B2 :

X 0 X

0 X X

X X 0

 , (2.4)

B3 :

X 0 X

0 0 X

X X X

 , B4 :

X X 0

X X X

0 X 0

 , (2.5)

C :

X X X

X 0 X

X X 0

 , (2.6)

and 8 textures which were already forbidden by data at the time they were introduced:

D1 :

X X X

X 0 0

X 0 X

 , D2 :

X X X

X X 0

X 0 0

 , (2.7)

4Generalization to texture zeroes including sterile neutrinos [28–30], zeroes of the inverted neutrino mass

matrix [31], or other relations among matrix elements [5, 32–41] is possible.
5We use the conventions of [21, 22] in which ∆31 is replaced by ∆32 = m2

3 −m2
2 in the IO case.

6A1 and A2 are only allowed in the case of NO, since IO places a lower bound on (Mν)ee which controls

the neutrinoless double beta decay rate.
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E1 :

 0 X X

X 0 X

X X X

 , E2 :

 0 X X

X X X

X X 0

 , E3 :

 0 X X

X X 0

X 0 X

 , (2.8)

F1 :

X 0 0

0 X X

0 X X

 , F2 :

X 0 X

0 X 0

X 0 X

 , F3 :

X X 0

X X 0

0 0 X

 , (2.9)

Following a standard notation, in eqs. (2.3– 2.9) we represent the position of the two

zeroes of the complex symmetric matrix in eq. (2.1). Two complex zeroes in the mass

matrix give 4 relations among the 9 real parameters entering Mν . Depending on the

texture, these relations will involve mainly the well known oscillation parameters or the

unknown non-oscillation parameters m`, α1 and α2 or a mixture of the two. For instance

A1 texture gives all the 3 unknown parameters in terms of the oscillation parameters, but

in addition it gives a relation between δ and the rest of the oscillation parameters which

can be tested against the experiment. On the other hand, F1 gives several solutions, in

one of them the masses are arbitrary but s12 = 0 and s13 = 0 and therefore it cannot

accommodate neutrino oscillation data. Another solution, the only discussed usually in

the literature, gives α1 = α2 = −2δ and arbitrary mixings, however, it requires exact

degeneracy m1 = m2 = m3, therefore ∆21 = 0 and ∆31 = 0, and it is also excluded.7

It is important to remark that forbidden exact textures could become allowed if the

zeroes are only approximate, we will discuss some examples in section 5.

3 The method

The NuFIT collaboration [21, 22] has fitted all neutrino data on oscillations and made

available the obtained ∆χ2 as a function of the six neutrino oscillations parameters s212,

s223, s
2
13, ∆21, ∆31 and δ (well, they offer marginalized ∆χ2 for each parameter individually

and for all pairs of parameters). From their results one can conclude that, in general,

the correlations are small except for the less known parameters δ and s223 because the

octant ambiguity. Therefore, from their data one can approximately reconstruct the com-

plete ∆χ2 as

∆χ2
νf ≈ ∆χ2(s223, δ) + ∆χ2(s213) + ∆χ2(s212) + ∆χ2(∆21) + ∆χ2(∆31)− 4∆χ2

min, (3.1)

where the last term takes into account that the NuFIT collaboration normalizes each of the

different projections so that ∆χ2
min = 4.14 in the case of IO, therefore we have to subtract

four times ∆χ2
min to keep the same normalization. We have checked that using this ∆χ2

νf

one can reproduce reasonably well all correlation plots presented in refs. [21, 22].

One way to see if the constraints imposed by the textures are compatible with the

data would be to vary all the oscillations parameters in their allowed range (at 1σ, 2σ,

. . . ) and check if the correlation is satisfied. Then, one can predict also the non-oscillation

7For a list of the analytical expressions for all textures, with conventions slightly different from ours, see

for instance [15].
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parameters. This was done for instance in [20, 42]. However, by using this method one

does not take into account the correlations of δ with s223, which can be very important in

some cases.

Here we will use a different method, which has some advantages. We will define a

new χ2 that incorporates the constraints imposed by the texture zeros with Lagrange

multipliers8

χ2 = ∆χ2
νf +

1

λ21
|(Mν)ab|2 +

1

λ22
|(Mν)cd|2 . (3.2)

For λ1,2 → +∞ one should recover the NuFIT results while for λ1,2 → +0 the constraints

are enforced maximally. The interpretation of λ1 and λ2 is clear: the new terms only give

an appreciable contribution to the χ2 when |(Mν)ab| > λ1 (|(Mν)cd| > λ2). Then, using this

method we can also discuss approximate zeroes. In particular, for a numerical treatment,

one cannot set directly λ1,2 to zero. For our purposes, as the rest of the parameters in the

neutrino mass matrix must be at least 1 meV, it will be enough to take λ1,2 � 1 meV. To

be definite, in our simulations we will take always λ1 = λ2 = 0.1 meV and will check that

the results do not change if we take smaller values of the λ’s. Note that eq. (3.2) has the

standard χ2 interpretation of a measured Re{(Mν)ab},Im{(Mν)ab},= 0± λ1 and similarly

for (Mν)cd.

The method has another advantage because we can compute the χ2 at the minimum.

This value will give us an indication of how well the different textures are able to fit

the data.

4 Analysis of the allowed textures

Following the method discussed above, we will analyze the different allowed textures. Since

s212, s
2
13, ∆21, ∆31 are well known from oscillation data, only textures that can accommodate

their values will be allowed. δ and s223 are less known and there is more freedom to

accommodate their values. Thus it makes sense to represent the constraints imposed by

the different textures in the plane s223-δ. For that purpose we perform a simulation varying

s212, s
2
13, ∆21, ∆31 in their allowed 3σ ranges and find the region compatible with the

different textures in the s223-δ plane superposed to the NuFIT results (this is shown, for

instance on the left panel of figure 1). This gives a clear idea of the expected allowed regions

when the texture constraints are imposed to the NuFIT data according to eq. (3.2). It is

important to remark that while the constraints imposed by all the textures only depend

on cos δ, and therefore are symmetric with respect δ = 180◦, the global fit to neutrino

oscillation data is not, and this strongly constraints the overlap regions.

The result of the complete fit is shown on the right panels (s223-δ allowed region,

and the predictions for the non-oscillation parameters m`, α1, α2 against δ). In all cases

contours correspond to two-dimensional 68.27% 95.45% 99.73% C.L. regions computed by

minimization of the χ2 function in eq. (3.2) for a fixed pair or parameters with respect to

8Lagrange multiplier methods are common in constrained optimization, with variations known under

the name of penalty optimization, which are closer to our approach.
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the rest of parameters and then requiring9 χ2−χ2
min < 2.30, 6.18, 11.83. For a more efficient

sampling of the parameter space we use a nested sampling algorithm (MultiNest [25, 26])

and we do an explicit χ2 minimization on the Markov Chain points. As discussed above,

we took λ1 = λ2 = 0.1 meV and checked that, in the case of the allowed textures, the

results do not change if we take λ1 = λ2 = 0.05 meV. For m` we take values in the range

0–1000 meV.

We have repeated this procedure for all the allowed textures. In section 5 we will

discuss, in some cases, how the constraints are relaxed if the textures are only approximate

by taking λ1 = λ2 = 5 meV and also how forbidden textures can become allowed if texture

zeroes are only approximate, by taking λ1 = λ2 = 1 meV.

4.1 A1 and A2 textures (only NO)

Both A1 and A2 textures require (Mν)ee = 0 which is exactly the matrix element that

controls the neutrinoless double beta decay rate, mββ = (Mν)ee. It is well known the cor-

relation between mββ and m` and the fact that in the IO case mββ is bounded from below,

mββ & 10 meV [43, 44], therefore, A1 and A2 textures are only allowed in the NO case.

The left panels of figure 1 show clearly that in the case of these two textures there

are large regions of overlap between the NuFIT results and the constraint imposed by the

textures with A1 giving some preference for slightly smaller values of δ while A2 prefers

larger values.

On the right panels we present the constrained fit, eq. (3.2). The plane s223-δ obviously

gives the overlap regions shown on the left panels. In the rest of the plots we present

the predictions for the non-oscillations parameters, m`, α1 and α2 against δ, which clearly

show the strong correlation between the Majorana phases α1, α2 and δ and the fact that

in these two textures the lightest neutrino mass m` is predicted to be in a region around

5 meV.

4.2 B textures

Textures of type B are all very similar and, taking into account the ordering convention,

we have eight of them. Basically they all predict δ ∼ 270◦ (or δ ∼ 90◦ which is strongly

disfavoured by present fits), and α1 ∼ α2 ∼ 180◦. This is a consequence of the small value

of s213. They also give a lower bound on the lightest neutrino mass, m`, of the order of

40–50 meV. Thus, we present in figure 2 complete results only for texture B1, in both NO

and IO cases.

On the left panels of figure 2 we see the constraints imposed by the B1 texture for

both the NO (above) and IO (below) superimposed to the NuFIT contour plots in the

plane δ-s223. In the NO case δ is slightly below 270◦ and s223 < 0.5 while in the NO it is

just the opposite (δ is slightly above 270◦ and s223 > 0.5). Since central values of NuFIT

are slightly moved to higher values of s223 in the case of IO, in this case it seems there is

9Notice that since we always subtract χmin to compute C.L. regions, in the case of IO we do have a

1σ region, even when the texture constraint is not imposed. This is different to what is presented in the

2D plots by the NuFIT collaboration, where, in the case of IO, the χmin = 4.14 relative to the NO is not

subtracted and therefore no 1σ region appears.
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Figure 1. On the left of the panels we present the NuFIT results [21, 22], in the s223-δ plane, for

the global fit to neutrino data (blue-gray coloured contours correspond to 68.27% 95.45% 99.73%

C.L. regions ) as compared with the prediction of the textures, in red, obtained when the rest of

the oscillation parameters are varied in 3σ. On the right we present the new fit to the data, as

discussed in the text, when the constraints from the textures are imposed. The upper panel is for

the A1 texture and the lower one for the A2 texture, which are only allowed in the NO case.

a larger overlap region. Notice that, as explained at the beginning of the section, to draw

contours we always use contours of χ−χmin and, therefore, these contours do not take into

account that IO has a much larger value of χ2 (4.14 relative to NO).

On the right panels we present, as in figure 1, the results of the complete fit. The

plots of δ-s223 just give the tiny overlap region for δ ∼ 270◦ and values of s223 < 0.5 in the

NO case or s223 > 0.5 in the IO one. The α1, α2 plots show they are basically fixed to

α1 ∼ α2 = 180◦. The plot of δ versus m` is more interesting because it clearly shows that

m` is bounded from below and can be rather large. For comparison we also give, in green,

the band forbidden by Cosmology (we take m` ≤ (m1 + m2 + m3)/3 . 60 meV, ref. [45],

which includes data from CMB and baryonic acoustic oscillations).

For the rest of B textures we present in figure 3 the region allowed by the textures on

top of the NuFIT results in the plane s223-δ. We can see the small differences between the

different textures, B1-NO,B3-NO,B2-IO,B4-IO require s223 < 0.5 while B1-IO,B3-IO,B2-
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Figure 2. Same as figure 1 for the B1 texture. Upper panels for NO and lower ones for IO . In the

δ-m` plot we also present, for comparison, the bound on the lightest neutrino mass obtained from

Cosmology (we use m` < 60 meV [45]).
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Figure 3. Same as the left panels of figure 2 for the B2,B3 and B4 textures. Above for in NO and

below for IO.
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Figure 4. Same as figure 2 for the C texture. In the upper panels for NO and the lower ones

for IO.

NO,B4-NO require s223 > 0.5. On the other hand B1-NO,B4-NO,B2-IO,B3-IO give δ values

a bit below 270◦ while B1-IO,B4-IO,B2-NO,B3-NO give δ a bit above 270◦. The exact

bands allowed at the 3σ level, together with the limits on the masses, are presented in

table 1.

4.3 C texture

Texture C, represented in figure 4, is probably the most peculiar of the textures since it

divides the space of parameters in two disjoint regions according to the exact value of δ

(this is clearly seen in the δ-m` plot).

In the case of NO it predicts s223 ' 0.5 with a high degree of precision (see for in-

stance [46]) and forbids a small region around δ ∼ 270◦ (well, it requires very large values

of m` to reach it). Since the last NuFIT results seem to favour values around s223 = 0.5,

as we will see in table 1, this texture gives one of the lowest values of the χ2, but this is

at the cost of very large values of m`, which, as shown in the δ-m` plot, can be in conflict

with Cosmology data. For the Majorana phases it gives α1 ∼ α2 ∼ 180◦ (see table 1 for

the exact values).
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The IO case is even more peculiar. It forbids small regions around δ = 270◦ and s223
around 0.5, and this is also translated into the possible values of α1 and α2. On the other

hand, even though it also gives a lower bound on m`, there is still some space to make it

compatible with Cosmology.

4.4 Best fit parameters

In table 1 we give the 3σ bands for the relevant parameters (∆21, ∆31, s12, s13 are within

the standard oscillation fit ranges) in the different allowed textures in both the NO and

IO cases. We also present allowed bands for the lightest neutrino mass m`, the Cosmology

mass mcos = m1 + m2 + m3 and the effective mass relevant for neutrinoless double beta

decay mββ = |(Mν)ee|. We also give the χ2 on the best fit parameters. Finally, to see the

impact of the Cosmology bound, m` < 60 meV, in the last column we also present the χ2

values obtained when m` < 60 meV is imposed. Following the NuFIT collaboration, in the

in the IO case we have included the value of the minimum, 4.14, relative to the absolute

minimum of NuFIT which happens for NO. However to compute the 3σ bands we take, as

usual, χ− χmin = 9.

All textures considered, give χ2 values around 1 (B2,4-IO which give slightly larger

values). This is really interesting since, as discussed in the introduction, two-zero neutrino

textures depend on only five real parameter from the six oscillation parameters.

On the other hand, looking at figures 2–4 one can see that in the s223 − δ plane the

constraints for B′s and C-NO are basically lines, so the amount of parameter space is very

small. This can be measured using a Bayesian estimator, like the Bayes factor, but to

compute it is technically complicated and has also its own conceptual problems because

the comparison depends strongly on the volume of the priors and their parametrization,

thus in this paper we decided to present only the χ2 values at the minimum.

5 Approximate texture zeroes

Above we have considered only allowed textures in the limit in which the texture zeroes

are exact. In specific models the texture zeros come from symmetries which are slightly

broken or are consequences of the dynamics (zeroes could arise only at some order of

perturbation theory or be proportional to some small couplings). Moreover, one expects,

that in some cases, radiative corrections will fill the texture zeroes with small quantities [27].

Then, it makes sense to ask how stable are the conclusions of our analysis against small

perturbations.10 On the other hand, it is possible that textures that were considered

excluded, if they are exact, become allowed if the zeroes are only approximate. The method

proposed in this paper makes it trivial to discuss these problems.

To answer the first question we have considered the texture B1-NO and studied how

the parameter space changes when we move from λ = 0.1 meV to λ = 5 meV. This is a

typical example with a very constrained parameter space (δ, α1 and α2 are basically fixed).

In figure 5 we compare the allowed parameter space in these two cases and see that when

10For an example of perturbed textures in the context of the minimal see-saw model see [47].
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m` mcos mββ s223 δ α1 α2 χ2 χ2
m`<60

A1-NO 4.2–7.8 64-70 0–0.3 0.42–0.59 154–290 56–210 256–383 0.8 0.8

A2-NO 3.4–7.1 62-69 0–0.3 0.45–0.62 217–369 169–334 −8–139 1.9 1.9

B1-NO >47 >170 50–245 0.42–0.50 267–270 180–187 177–180 0.7 4

B1-IO >37 >165 62–195 0.50–0.62 269–271 175-180 180–182 4.2 4.2

B2-NO >39 >147 41–202 0.50–0.61 270–274 170–180 180–184 0.7 1.5

B2-IO >48 >205 74–315 0.43–0.50 269–271 180–183 179–180 6.2 12

B3-NO >50 >179 53–249 0.42–0.50 270–273 176–180 180–182 0.7 5

B3-IO >40 >172 64–266 0.50–0.62 268–271 180–186 177-180 4.2 4.4

B4-NO >41 >153 43–206 0.50–0.61 266–270 180–186 178–180 0.7 1.7

B4-IO >56 >212 76–334 0.43–0.50 269–271 176–180 180–182 6.2 13

C–NO
>159 >484 >151

0.50
175–262 178–180 178-180 0.2 >1000

>167 278–346 180–182 180-182 1.1 >1000

C–IO
>35 >155 >34 0.51–0.61 231–269 186–281 151–178 4.8 5.1

>67 0.44–0.49 273–289 120–168 185–202 6.7 13

Table 1. 99.73% C.L. results for the fits of the different textures. All masses are given in meV and

all angles in degrees taken in the range [0, 360◦], except in some cases in which to avoid disjoint

bands we have enlarged the region slightly below 0◦ or above 360◦. IO χ2 already include the 4.14

relative to NO obtained by the NuFIT collaboration but it is subtracted to compute the bands. We

present also the χ2 values obtained when the Cosmology bound m` < 60 meV is imposed.
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Figure 5. Allowed 3σ regions in the case of the B1-NO texture when the texture zeroes are only

approximate.

the texture zeroes are not exact the available parameter space increase enormously but still

the main predictions of the texture remain.

By using our method we could easily check quantitatively at which level the forbidden

textures are excluded and how stable is this exclusion when the zeroes are not exact. Thus,

we first minimized the χ2 in eq. (3.2) for λ = 0.1 meV. We found that all textures, except
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F -type textures, give very large χ2 (larger than 50 for all of them and in some cases,

D-NO, over 1000). However, F -textures, give somehow lower values, and in particular

F1-NO gives a fit with χ2 below 10. These results are even more clear when we increase

λ from 0.1 meV to 1 meV, in which case χ2 as low as 0.5 can be obtained (F1-NO).11

while the rest of the forbidden textures still give a large χ2. To understand this result it

is useful to see why exact F -textures are forbidden. Take the case of F1 for instance, its

mass matrix has two zeroes at the elements (Mν)12 and (Mν)13 and it is block-diagonal

with (Mν)23 as the only non-trivial non-diagonal element. Then, one would conclude that

s12 = s13 = 0, which, of course, cannot accommodate neutrino oscillation data.12 However,

this is not the only solution since, by taking the parametrization in eqs. (2.1– 2.2), one can

easily see that if m1 = m2 = m3 there are also solutions with arbitrary mixings (see for

instance [15]). This solution also implies that α1 = α2 = −2δ (or α1 = α2 = 2kπ − 2δ k =

±1,±2, · · · ). However, if masses are degenerate, ∆21 = ∆31 = 0, and oscillation data

cannot be accommodated either. In the method we are proposing all possible solutions

are included automatically. Thus, in figure 6 we present results, in the case of F1-NO, for

λ = 0.1 meV and λ = 1 meV. All the oscillation parameters, including ∆31 and ∆21, can

be adjusted easily in the two cases although for λ = 0.1 meV χ2 is somehow larger but

still below 9. Moreover, to fit the data, large values of m` are required (see figure 6). If

we take λ = 1 meV the fit is much improved (χ2 below 1) and allows for much smaller

values of m`.

One interesting point is that the correlation between phases α1 = α2 = −2δ, remains

in spite of the non-exact texture zeros. This result can be understood by using standard

degenerate perturbation theory: if the exact texture produces a degenerate spectrum and

we introduce a small perturbation, it will shift the eigenvalues by a small quantity but

the mixings, given by the eigenvectors which diagonalize the perturbation, will not be

suppressed and can be as large as needed to fit the data. In the case of F1-NO, for

M12,13 � m3 one typically finds

∆31 ∝
1

s13
m3|M12,13| , ∆21 ∝ m3|M12,13| (5.1)

with coefficients which depend on s12 and s23. This shows a natural enhancement of

∆31 with respect to ∆21 due to the smallness of s13. Moreover, since ∆31,21 are fixed by

oscillations, and we are requiring |M12,13| < λ, it is clear that, in general, smaller λ’s will

require larger m3 to fit the data, as clearly seen in figure 6. On the other hand, for the

phases we have

ei(α1+2δ) ≈ ei(α2+2δ) ≈ 1 +O
(
M12,13

m3

)
(5.2)

which explains the strong correlation of the Majorana phases with δ even when the texture

is only approximate.

11Notice that precisely F -type textures are expected to receive larger radiative corrections [27].
12This trivial and natural solution has been dismissed in works that use the method of refs. [15, 48].
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Figure 6. Allowed 3σ regions in the case of the “excluded” F1-NO texture when the texture zeroes

are only approximate.

6 Conclusions

We have introduced a general method, based on a χ2 analysis with constraints enforced by

Lagrange multipliers, to analyze numerically possible relations among the elements of the

fermion mass matrices. As an example, we have applied it to the case of two-zero neutrino

textures. The method has allowed us to disentangle the available parameter space, give

correlation plots among parameters and confidence level bands without any algebraic work.

We have also compared the different textures according the minimum χ2 they can give.

In the case of the known “allowed” textures, A,B,C we have seen that, although in

some cases B and C textures offer a fit with smaller values of χ2, A textures are favoured

with respect the rest of the allowed textures because:

-They have a larger parameter space: the highly restricted values of δ in the other

textures, especially B textures, will make it difficult to accommodate them if the oscilla-

tion data becomes more precise. In fact, already now textures B2-IO and B4-IO have no

overlapping region at the 1σ level with the last NuFIT results, which is manifested in a χ2

above 6 (this already takes into account the IO χ2 minimum value of 4.14 relative to NO).

-All textures, except A-type textures, require large values of the lightest neutrino mass,

m` & 40 meV, in particular m` & 160 meV in the C-NO texture. This can be in tension

with Cosmology, which at present requires m` < 60 meV. But, of course, there could be

some, still unknown mechanism, that could make Cosmology data compatible with larger

neutrino masses.

On the other hand, neutrinoless double beta decay experiments will provide another

test of the textures. If it is found in the next round of experiments A1 and A2 textures, at

least if they are exact, will be excluded since they require mββ = 0.
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We have also discussed approximate texture zeros. We found that in the case of

the allowed textures the general conclusions are not changed if the zero-matrix elements

are below 1 meV, although in the case of textures B, which have a strongly constrained

parameter space, it is enlarged if the zeros are just 5 meV. More importantly, we have

also analyzed the case of forbidden textures by taking matrix elements below 1 meV. In

general, all forbidden textures remain forbidden (they give values of χ2 above 50). However,

textures of type F , could become allowed with χ2 which are below 1, in particular, in the

case of F1-NO and F3-NO.

Finally we have shown that the numeric method proposed in this paper is a good

complement of the analytic studies to study the relations between Yukawa couplings/mass

matrices imposed by symmetries or the flavour structure of the theory. The method in-

corporates naturally correlations among measured parameters, allows us to compute the

available parameter space and provides a standard χ2 comparative test of how well the

different models can accommodate the experimental data. It also generalizes trivially to

the case in which the relations among parameters are only approximate.
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