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ABSTRACT: Ion motion in Trapped Ion Mobility Spectrometers (TIMS) and Inverted Drift Tubes (IDT) has been investigated. 
The 2D axi-symmetric analytical solution to the Nernst-Planck equation for constant gas flows and opposed linearly increas-
ing fields is presented for the first time and is used to study the dynamics of ion distributions in the ramp region. It is shown 
that axial diffusion confinement is possible and that broad packets of ions injected initially into the system can be contracted. 
This comes at the expense of the generation of a residual radial field that pushes the ions outwards. This residual electric field 
is of significant importance as it hampers sensitivity and resolution when parabolic velocity profiles form. When RF is em-
ployed at low pressures, this radial field affects the stability of ions inside the mobility cell. Trajectories and frequencies for 
stable motion are determined through the study of Mathieu’s equation. Finally, effective resolutions for the ramp and plateau 
regions of the TIMS instrument are provided. While resolution depends on the inverse of the square root of mobility, when 
proper parameters are used, resolutions in the thousands can be achieved theoretically for modest distances and large mo-
bilities. 

INTRODUCTION 
Ion Mobility Spectrometry (IMS) involves a compen-

dium of techniques with the purpose of segregating small 
charged entities- molecules or nanoparticles- by means of 
an electrical field in the presence of a buffer gas. IMS relies 
strongly on the ability of ions to quickly reach an equilib-
rium drift velocity, 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , akin to a settling or terminal ve-
locity. Moreover, under small ion velocities, the electri-
cal/ion mobility is directly related to the product of the drift 
velocity and the electric field through a simple equation: 
𝐾𝐾𝐾𝐾~𝑣𝑣𝑑𝑑 . Ion mobility can then be related to ion size, charge 
and gas properties through the use of either the Stokes-Mil-
likan1,2 semi-empirical law or the more theoretical Mason-
Schamp equation3: 
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Here, N is the gas number density, T is the temperature, 
q is the ion’s charge, 𝑘𝑘𝑏𝑏 is the Boltzmann’s constant, m and 
M are the mass of the gas and ion respectively, and 𝛺𝛺 is the 
ion’s Collision Cross Section (CCS)4. Owing to this physical 
simple and controllable relation between electrical field and 
gas, IMS has been gaining momentum in both Aerosol Sci-
ence and Analytical Chemistry fields, becoming one of the 
most prominent separation techniques. As such, a myriad of 
IMS systems are emerging. Among such systems one can 
name the most conventional ones, Drift Tube (DTIMS)5 and 
Differential Mobility Analyzer (DMA)6, which have been 
available since the 1970s. Recently, many techniques and 
systems have appeared, including the Transversal Modu-
lated Wave (T-Wave)7, Field Asymmetric Ion Mobility Spec-
trometry (FAIMS)8, Overtone Mobility Spectrometer 
(OMS)9, Differential Mobility Spectrometer (DMS)10, Radial 

Opposed Migration of Ion and Aerosol Classifier 
(ROMIAC)11, Fast Integrated Mobility Spectrometer 
(FIMS)12, Structure for Lossless Ion Manipulation (SLIM)13, 
Diffusion Differential Analyzer (DDA)14, Trapped Ion Mobil-
ity (TIMS)15,16 and Inverted Drift Tube (IDT)17.  

Arguably, one of the most significant problems in IMS 
systems, common to all the aforementioned systems, is ion 
diffusion. The “random” movement of ions in the gas phase 
leads to lower resolution, transmission, and, ultimately, 
overall sensitivity. As such, it is of particular importance to 
constrain, regulate or overcome diffusion to obtain optimal 
separation results.  For the purpose of this study, and given 
that most IMS instruments have a well-defined axis of revo-
lution, diffusion can be divided into a) Radial diffusion, per-
pendicular to the axis of revolution and cause of lowering 
overall transmission and b) Axial diffusion, parallel to the 
axis of revolution and which in general lowers overall reso-
lution. Radial diffusion has been partially counteracted at 
low gas pressures through the use of radio-frequency (RF) 
confining voltages18. However, the high frequency and volt-
ages required to contain ions at high pressures precludes 
the use of RF in atmospheric pressure devices. Trying to 
overcome Axial diffusion, some systems resort to increasing 
the length of the characterization region, e.g. T-wave and 
DTIMS. It can be shown theoretically that, given Einstein-
Smoluchowski’s19 relation under ideal conditions, two ions 
of different mobilities under a constant field will separate if 
given sufficient length (or time). Noteworthy is the recent 
accomplishment separating isomers using SLIM systems20.  

It is however the TIMS and IDT systems that are the 
main focus of this manuscript for their unique ability to con-
strain Axial diffusion.  The two systems have in common a 
separation region where a flow of gas with velocity 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 
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carries the ion forward while a linearly increasing electric 
field of the type 𝐾𝐾�⃗ 𝑧𝑧  = −𝐴𝐴𝐴𝐴𝑘𝑘�⃗  opposes the movement of the
ions –a technique previously developed by Zeleny21 in gases 
and also proven in liquid phase experiments22. Here, 𝐴𝐴 is the 
slope of the field, z is the position in the axial direction and 
𝑘𝑘�⃗  is the unit vector in that direction. The ion’s movement in 
the axial direction is thus characterized by the competition 
between gas and drift velocity so that the ion’s velocity is 
given by 𝑣𝑣𝑧𝑧𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  In the TIMS instrument, ions
can be stopped/trapped, 𝑣𝑣𝑧𝑧𝑑𝑑𝑖𝑖𝑖𝑖 = 023, and are kept from col-
liding with the electrodes through the use of RF fields. The 
portion of the tube dedicated to stopping the ions, is known 
as the trapping (ramp or rising edge) region. Once trapped, 
the electric field is lowered, and the ions are “eluted” 
through a plateau region -constant electric field- and even-
tually transmitted to a Mass Spectrometer. While the trap-
ping typically takes 10s of ms, the elution happens in less 
than a ms. Diffusion confinement is therefore the main 
working principle in TIMS. A schematic of the process is 
shown in Figure 1. The IDT, in contrast, works at atmos-
pheric pressure and, as such, cannot make use of RF fields 
to constrain the ions radially. Under these circumstances, 
the ion must be kept in constant movement, 𝑣𝑣𝑧𝑧𝑑𝑑𝑖𝑖𝑖𝑖 ≠ 0, and 
a parameter labeled the separation ratio, 𝛬𝛬 = 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔  ≤
1, is used to specify the movement17. This parameter plays 
a key role in the ability of the IDT to resolve different ions.  

Figure 1. Sketch of TIMS setup. 

In either system, it is the combined effect of both veloc-
ities, drift and gas, that controls Axial diffusion. However, 
the complexity of the electro-fluid-dynamic interaction 
makes its analytical interpretation and understanding quite 
difficult. Prior to this manuscript, there has been a few at-
tempts at solving the equations of motion partially. Michel-
mann, Silveira and colleagues described ion motion, focus-
ing on the equilibrium position at the end of the ramp, on 
the elution portion of the plateau and on the gas flow char-
acterization23,24. They did in fact describe a confining elec-
tric potential so that “a deviation of the ions from the equi-
librium position will therefore result in a net restoring force 
equal to the ions’ charge multiplied by the difference in the 
electric field strength between the equilibrium position and 
the deviant position”. Many of their results have been me-
ticulously studied experimentally by Fernandez-Lima et 
al25-27. In particular, they have shown experimentally that 
Oversampling Selective Accumulation (OSA-TIMS) provides 
higher signal to noise ratio26,28. Later on, Bleiholder did a 
comprehensive study of the trajectory of an ion (or a packet 

of ions) from a Langevin perspective using non-uniform 
electric fields in non-stationary gases29. The 1D Nernst-
Planck balance equation for a distribution of ions of has 
been previously fully solved by our group showing the dif-
fusion-correction properties of such instruments17. Of most 
significance is the fact that an initial broad distribution can 
be compressed axially as it travels through the system. 

In this manuscript, the analytical solution of the 2D axi-
symmetrical Nernst-Planck equation is provided for the 
first time when a linearly increasing electric field opposes a 
gas flow that carries the ions. The 2D axi-symmetrical solu-
tion allows the effect of a residual radial electric field -due 
to the solenoidal aspect of the field- to be considered to-
gether with the Axial diffusion constraint. The solution is 
studied for two different flows; constant 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 and fully de-
veloped parabolic profile. The effect of the residual electric 
field has importance consequences for the stability of ions 
when using RF at low pressures. In fact, it precludes the pos-
sibility of using TIMS as an “RF-only” system for all ions. 
This is studied through a modified Mathieu’s equation and 
its stability region30. Finally, effective resolutions of the 
TIMS instrument are provided. Given the appropriate stabil-
ity conditions and electric fields, it is expected that mobility 
differences of less than 0.1% (equivalent resolutions larger 
than 1000) could be resolved at low pressures with RF and 
a plateau region in tubes of modest distances.  

RESULTS AND DISCUSSION 
Analysis of the ion motion in flows subject to opposing 
linearly increasing fields. 

There have been multiple studies of the equations of 
ion motion prior to the study accomplished here. Among 
different studies, the most prevalent one is that of Moseley’s 
dissertation31, also studied by McDaniel3, which deals with 
the ion motion equation and instrument resolution of a con-
ventional drift tube. Moseley shows that a general solution 
of the Nernst-Planck equation for constant electric fields 
and no gas flow can be obtained in terms of a power series 
expansion. A slightly different approach for non-constant 
electric fields will be followed in this manuscript. 

Consider a population of ions 𝑛𝑛(𝐴𝐴, 𝑟𝑟, 𝑡𝑡) of a single spe-
cies created at one end of a cylindrically symmetric drift 
space with gas of a uniform number density N. This popula-
tion is subject to a constant flow velocity in the positive z 
direction 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 while a linearly increasing electric field E op-
poses the movement. Assuming that E/N is small, the 
Nernst-Planck equation is given by: 
𝜕𝜕𝑖𝑖(𝑧𝑧,𝑑𝑑,𝑑𝑑)

𝜕𝜕𝑑𝑑
− ∇ ∙ �𝐷𝐷� ∙ ∇𝑛𝑛(𝐴𝐴, 𝑟𝑟, 𝑡𝑡) − ��⃗�𝑣𝑔𝑔𝑔𝑔𝑔𝑔 − 𝐾𝐾𝐾𝐾�⃗ �𝑛𝑛(𝐴𝐴, 𝑟𝑟, 𝑡𝑡)� = 0 (2a)

𝑛𝑛(±∞, ±∞ , 𝑡𝑡) = 0 ;   𝑛𝑛(𝐴𝐴, 𝑟𝑟, 0) = 𝑓𝑓(𝐴𝐴, 𝑟𝑟),
(2b,c) 

where 𝑓𝑓(𝐴𝐴, 𝑟𝑟) corresponds to a normal distribution or a 
point source (See Supporting info). Here 𝐷𝐷� is the isotropic 
diffusion tensor. Neglecting the existence of free charge 
leads to a second equation (equivalent to Laplace’s eq. for 
the potential): 

 ∇ ∙ 𝐾𝐾�⃗ = 𝑑𝑑𝐾𝐾𝐴𝐴
𝑑𝑑𝐴𝐴

+ 1
𝑟𝑟
𝑑𝑑𝑟𝑟𝐾𝐾𝑟𝑟
𝑑𝑑𝑟𝑟

= 0 (3) 

Provided that the field in the axial direction is given by 
𝐾𝐾�⃗ 𝑧𝑧 = −𝐴𝐴𝐴𝐴𝑘𝑘�⃗ , with A constant, the solenoidal aspect of the 
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3 

field (solving eq. (3)) yields the solution to the radial coun-
terpart: 

 𝐾𝐾�⃗ 𝑑𝑑 = 𝐴𝐴𝑑𝑑
2
𝑢𝑢�⃗ 𝑑𝑑 , (4) 

where 𝑢𝑢�⃗ 𝑑𝑑 is a unit vector in the radial direction. Note that 
this radial component pushes the ions towards the walls. It 
is expected therefore that ions will tend to steer more to-
wards the walls than in regular drift tubes. This will have 
implications in non-constant velocity profiles and RF con-
tainment, addressed below. TIMS literature uses the scan 
rate parameter,𝛽𝛽, to describe the change in the slope of the 
electric field so that ions can be eluted. 𝛽𝛽 can be related to  

 
Figure 2. Comparison of numerical (using eqs. (S5-S6)) and an-
alytical solutions (from eqs. (6-7)) for A) Radial and B) Axial 
directions. If a broad distribution is chosen initially in the axial 
direction, it is not only constrained but narrows as time passes.  

the initial slope of the field A if the length of the ramp region 
L and the electric field in the plateau, 𝐾𝐾𝑒𝑒, are known: 𝛽𝛽 =
(𝐴𝐴𝐴𝐴 − 𝐾𝐾𝑒𝑒)/𝑡𝑡.  
Eqs. (2a-c) and (3-4) form a set of partial differential equa-
tions (PDE) for which the analytical solution is desired. It is 
important to note that, although a 2D axi-symmetric solu-
tion is sought, an effect of angular diffusion exists. However, 
as long as the distribution is initially centered, the solution 
is invariant in the angular coordinate. Assuming no correla-
tion between radial and axial directions, the balance popu-
lation can be written as: 

 𝑛𝑛(𝐴𝐴, 𝑟𝑟, 𝑡𝑡) = 𝑛𝑛𝑧𝑧(𝐴𝐴, 𝑡𝑡)𝑛𝑛𝑑𝑑(𝑟𝑟, 𝑡𝑡).  (5) 

Being careful to account for the physical effects, a 
unique solution can be obtained when the initial condition 
is either a point source or a radially centered gaussian dis-
tribution (see Supporting info): 

 𝑛𝑛(𝐴𝐴, 𝑟𝑟, 𝑡𝑡) = 𝑖𝑖𝑠𝑠

(2𝜋𝜋)3/2 �𝜎𝜎𝑧𝑧2𝜎𝜎𝑟𝑟2
𝑒𝑒
−(𝑧𝑧−𝑧𝑧�)2

2𝜎𝜎𝑧𝑧2 𝑒𝑒
− 𝑟𝑟2

2𝜎𝜎𝑟𝑟
2 , (6) 

with: 

 𝜎𝜎𝑧𝑧2 = 2𝐷𝐷𝐿𝐿
𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠

�𝐴𝐴̅ − 𝑐𝑐𝑧𝑧𝜎𝜎
𝐾𝐾𝐴𝐴

2𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠
𝐴𝐴̅2� = 𝐷𝐷𝐿𝐿

𝐾𝐾𝐴𝐴
(1 − 𝑐𝑐𝑧𝑧𝜎𝜎𝑒𝑒−2𝐾𝐾𝐴𝐴𝑑𝑑) =

𝑘𝑘𝑇𝑇
𝑞𝑞𝐴𝐴

(1 − 𝑐𝑐𝑧𝑧𝜎𝜎𝑒𝑒−2𝐾𝐾𝐴𝐴𝑑𝑑); (7a) 

 𝜎𝜎𝑑𝑑2 = 2𝐷𝐷𝑟𝑟
𝐾𝐾𝐴𝐴

(𝑐𝑐𝑑𝑑𝜎𝜎𝑒𝑒𝐾𝐾𝐴𝐴𝑑𝑑 − 1);𝑎𝑎𝑛𝑛𝑑𝑑 (7b) 
 𝐴𝐴̅ = 𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠

𝐾𝐾𝐴𝐴
(1 − 𝑐𝑐𝑧𝑧𝑧𝑧𝑒𝑒−𝐾𝐾𝐴𝐴𝑑𝑑). (7c) 

Here, 𝑛𝑛𝑔𝑔 the total ion count and 𝑐𝑐𝑧𝑧𝜎𝜎 < 1, 𝑐𝑐𝑑𝑑𝜎𝜎 > 1, and 
𝑐𝑐𝑧𝑧𝑧𝑧 < 1 are constants that depend on the initial condition. 
That eq. (6) is the solution to eqs. (2a-c) can be easily proven 
by inserting the solution into the equation. In Figures 2A 
and 2B, numerical solutions of eq. (5) with random initial 
conditions are superimposed on the analytical solution con-
firming the validity of the solution in radial and axial direc-
tions respectively. In Figure 2B, the initial standard devia-
tion in the axial direction is purposefully chosen to be wide. 
As the distribution evolves, the standard deviation is re-
duced, proving axial confinement. The full solution for the 
2D axi-symmetric problem is shown in Figure 3A at 3 differ-
ent times. Given a point source as an initial condition, the 
distribution extends more radially than it does axially cre-
ating an oblong shape. Although the radial coordinate is 
represented here in a y-axis, the distribution would evolve 
in a radial fashion. The solution for several mobility diame-
ters (sphere-equivalent diameter for a given mobility) is 
shown in Figure 3B. The ability to separate ions at a con-
stant slope value 𝐴𝐴 and constant 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 is quite remarkable 
even with very large mobility differences thanks to the dif-
fusion confinement in the axial direction as explored below.  

Axial diffusion confinement. 
It was recently shown that Axial diffusion can be regu-

lated using two opposite controlled forces17. In fact, an as-
ymptotic value for the standard deviation of a distribution 
of ions in the axial direction as time goes to infinity can be 
obtained using eq. (7a) as: 

 𝜎𝜎𝑧𝑧𝑡𝑡→∞
2 = 𝜎𝜎𝑧𝑧𝑔𝑔𝑠𝑠𝑎𝑎𝑎𝑎

2 = 𝐷𝐷𝐿𝐿/𝐾𝐾𝐴𝐴 = 𝑘𝑘𝑘𝑘/𝑞𝑞𝐴𝐴 (8) 

Note that eq. (8) is fairly identical to that of the asymp-
totic study of Michelmann et al. (Eq. 17.15 of Supporting 
info) confirming the validity of eq. (6). To reach the asymp-
totic standard deviation, the mean value of the ion in the ax-
ial direction must also reach an asymptotic condition (from 
eq. (7c)) given by: 

 𝐴𝐴�̅�𝑑→∞ = 𝐴𝐴�̅�𝑔𝑔𝑔𝑎𝑎𝑚𝑚 = 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔/𝐾𝐾𝐴𝐴. (9) 

The asymptotic standard deviation, eq. (8), is inde-
pendent of diffusion or mobility allowing this type of con-
finement to be used for large and small ions. It is also in in-
verse proportion to field slope A and the charge q. It can be 
extrapolated that the only limiting factor to get any desired 
separation -i.e. effective resolutions in the order of thou-
sands- is the limitation in the maximum slope A that can be 
applied.  A combination of four factors determine the maxi-
mum slope: 1) the gas electrical breakdown, 2) the gas flow 
velocity 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔, 3) the total length of the drift chamber and 4) 
the mobility/mobilities 𝐾𝐾 one is interested in separating. 
While the first factor is quite obvious, the other three have 
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to do with the fact that not all mobilities necessarily reach 
asymptotic conditions for a given set of conditions. For ex-
ample, very low mobilities would require either very high 
slopes or very small velocities to be trapped. Simultane-
ously, for any real separation to occur, 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 has to be large 
enough so that the distance between the mean values of two 
particular mobilities 𝐴𝐴1̅ and 𝐴𝐴2̅ is greater than the full width 
at half maximum (FWHM) of either peak. This definition of 
separation best represents the instrument performance as 

opposed to the more widely used resolution (see below). It 
is however true that an asymptotic effective resolution can 
still be obtained from eqs. (8-9). 

It is important to note that the above asymptotic solu-
tion can be reached regardless of the initial condition. This 
is a substantial advantage over other systems as unusually 
broad distributions can be sampled into the system and still 
be corrected axially if sufficient time is given. This effect, 
mostly unexplored, could be used to ac-

 
Figure 3 A) Evolution of a three-dimensional mobility distribution as it progresses through the ramp region of the instrument at 
three different instants in time (no RF). As the distribution progresses, ions freely migrate radially but are contained in the axial 
direction (see insets). The axial distribution width has been purposefully enhanced by a factor of 10. B) Evolution of packets of ions 
of different mobilities (singly charged spheres of given diameters) as they are being separated in the ramp region. More mobile ions 
diffuse more radially. However, they are all contained axially. 

cumulate ions for long periods and subject to lower space 
charge. 

Non-constant velocity profiles and tail forming. 
Previous Nernst-Planck equation (eqs. (2a-c)) has been 
solved assuming that 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 is a constant in the axial direction. 

However, this is not accurate. In general, in a constant 
section tube, a flow will eventually evolve into a parabolic 
profile. For a tube with a radius 𝑟𝑟0, the flow velocity for a 
fully developed parabolic profile with maximum velocity 
𝑣𝑣𝑚𝑚𝑔𝑔𝑚𝑚 is: 

 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑣𝑣𝑚𝑚𝑔𝑔𝑚𝑚(1 − 𝑟𝑟2/𝑟𝑟02). (10) 

Parabolic profiles have been shown to be accurate for 
TIMS geometries using CFD23. Under such circumstances, 
eq. (2) becomes coupled and the ion distribution solution 
becomes convoluted (eq. (5) is not valid). An approximation 
to the analytical solution, however can be explored and 
compared to a numerical solution, obtained using SIMION 
8.1. Figure 4A shows the result when packets of ions of up 
to 6 different mobilities are stopped inside the tube for a 
constant slope A, atmospheric pressure and no RF. The 

simulation was specifically adapted to represent an ideal 
situation of a tube with linearly increasing field. Ions start 
centered, migrate through the tube, and are eventually 
stopped at the asymptotic mean value (eq. (9)). At this 
point, they drift-diffuse radially. In contrast to the perpen-
dicular migration perceived with constant gas flow, ions are 
now pulled back trying to match gas and drift velocity. As 
the ions are pulled farther away from the center, the radial 
electric field becomes more prominent than either drift or 
gas velocity and ions are pushed towards the electrodes. It 
is encouraging to observe the little axial diffusion present 
even though multiple ions where used to form the trajecto-
ries of each curve. 

An approximation to an analytical solution can be ob-
tained when the variation of the velocity is assumed to be 
small (𝑑𝑑𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔/𝑑𝑑𝑟𝑟~0). Under such circumstances the mean of 
the distribution is given by: 

 𝐴𝐴̅ = 𝑣𝑣𝑎𝑎𝑔𝑔𝑚𝑚(1−𝑑𝑑2/𝑑𝑑0
2)

𝐾𝐾𝐴𝐴
(1 − 𝑐𝑐𝑧𝑧𝑧𝑧𝑒𝑒−𝐾𝐾𝐴𝐴𝑑𝑑). (11) 

The analytical approximation states that, as an ion dif-
fuses radially, it has enough time to accommodate to the 

Page 4 of 10

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5 

change in the velocity of the gas by reducing its drift veloc-
ity. This, however, would not be physically true as far away 
from the center and towards the electrodes, the radial drift 
due to the residual radial electric field would be too large 
for the ion to equilibrate axial drift and gas velocity. Indeed, 
when comparing the mean values of the analytical approxi-
mation to the SIMION solution, as shown in Figure 4B, they 
agree remarkably well close to the center but deviate far-
ther away from the center. This is more prominent for 
higher mobility ions as diffusion occurs more quickly. 

 The full analytical solution should be of the type: 

 𝐴𝐴̅ = 𝑣𝑣𝑎𝑎𝑔𝑔𝑚𝑚(1−2𝑑𝑑2/𝑑𝑑02𝑒𝑒−   𝑟𝑟2/𝑟𝑟0
2 ) 

𝐾𝐾𝐴𝐴
(1 − 𝑐𝑐𝑧𝑧𝑧𝑧𝑒𝑒−𝐾𝐾𝐴𝐴𝑑𝑑) (12) 

The results from eq. (12) are shown in Figure 4C. Note 
that eq. (12) is an asymptotic solution. No attempt to find 
the full analytical solution is made in the present manu-
script. 

The importance of the parabolic velocity profile should 
not be underestimated, especially at atmospheric pressure 
as it could seriously impair the resolution of the instrument 
if left unchecked. If ions are allowed to migrate through the 
ramp (𝛬𝛬 < 1) and collected by a detector, long tails might 
appear due to the half-moon shaped distributions created. 
Figure 5 shows a comparison between

 
Figure 4. A) SIMION 8.1 trajectory results of packages of singly charged spherical ions of 6 different mobilities being axially trapped 
in a tube with a parabolic velocity profile and no RF. Ions start centered, migrate through the tube and stop when  𝛬𝛬 = 1. At that 
point they drift-diffuse radially. B) Superposition of analytical approximation eq. (11) when (𝑑𝑑𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔)/𝑑𝑑𝑟𝑟~0 and SIMION 8.1 trajecto-
ries. C) Analytical approximation using eq. (12). 

parabolic and constant velocity profiles when ions are col-
lected a distance L from the particle insertion point. Figure 
5A shows the effect of the tails when multiple mobilities are 
present. While the tail might not be significant for a single 
mobility ion, it can become a large problem when multiple 
mobilities are present. In contrast, Figure 5B shows the ions 
under constant gas velocity and where all ions can be easily 
differentiated. Although the re-percussions of the tail will 
be of paramount importance when no RF is present, they 
may also become important with RF and high mobility ions. 

Aside from RF, there are ways to avoid or attenuate the 
problem. One possibility is to insert the ions centered in the 
tube. Since the radial electric field is proportional to r, it is 
extremely weak in the center and the radial migration of the 
ions can be hampered. Another way is to taper the tube so 
that a plug flow is formed leading to a more constant veloc-
ity in the center. A last resort is to collect the ions only at the 
center with the corresponding signal loss. 

 
Figure 5. Intensity as a function of time for ions collected a dis-
tance L downstream in an IDT with no RF for A) parabolic ve-
locity profile and B) constant velocity profile. Note the effect of 
the tails created in A). 

Radial Losses and RF confinement at low pressures. 
A relevant issue appearing when using a linearly in-

creasing electric field in the axial direction is the appear-
ance of a residual electric field to comply with the 
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divergence (eqs. (3-4)). This radial field pushes the ions out-
wards augmenting the effect of regular radial diffusion. This 
becomes quite problematic, especially at high pressures 
where RF cannot be used. At such pressures, the only possi-
bility to avoid large diffusion losses is to have the ions as 
centered as possible initially while keeping them in the tube 
for the shortest possible time. This requires the separation 
ratio 𝛬𝛬 to be small, hampering the overall resolution that 
the IDT instrument can achieve.  

At low pressures, RF can and should be used to contain 
the ions. However, the existence of the residual field (eq. 
(4)) complicates the use of RF as an all-ion guide. To study 
the effect of this field on the stability of the ions, an ideal RF 
potential for 4 hyperbolic rods may be superimposed on the 
axial potential: 

 𝛷𝛷 = 𝛷𝛷0
2𝑑𝑑02

(𝑥𝑥2 − 𝑦𝑦2)   ;   𝛷𝛷0 = 𝑈𝑈 + 𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉(𝑤𝑤𝑡𝑡 + 𝜃𝜃0), (13) 

Here, 𝑤𝑤 is the RF driving frequency, 𝜃𝜃0 the initial phase, and 
U and V are the DC and AC potentials applied respectively. 
In general, for RF guide-only mode, U should equal to 0. 
With 𝑈𝑈 = 0, and considering the effect of drag, the radial 
equations of motion (�⃗�𝐹 = 𝑞𝑞𝐾𝐾�⃗ − �⃗�𝐹𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 = 𝑀𝑀�⃗�𝑎) in Cartesian 

coordinates are: 

  𝑀𝑀 𝑑𝑑2𝑚𝑚
𝑑𝑑𝑑𝑑2

− 𝑞𝑞𝑚𝑚
𝑑𝑑02
�𝐴𝐴
2

+ 𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉(𝑤𝑤𝑡𝑡 + 𝜃𝜃0)� + 𝑞𝑞
𝐾𝐾
𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

 = 0; (14a) 

 𝑀𝑀 𝑑𝑑2𝑎𝑎
𝑑𝑑𝑑𝑑2

− 𝑞𝑞𝑎𝑎
𝑑𝑑02
�𝐴𝐴
2
− 𝑉𝑉𝑐𝑐𝑉𝑉𝑉𝑉(𝑤𝑤𝑡𝑡 + 𝜃𝜃0)� + 𝑞𝑞

𝐾𝐾
𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

 = 0. (14b) 

Here, the third term corresponds to the drag, proportional 
to the velocity, and is given, e.g. in eq. (14a), in terms of ion 
mobility as 𝑞𝑞

𝐾𝐾
𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑

. The electric field (second term) is a compo-
sition of the field provided by 𝛷𝛷 and that provided by eq. (4) 
(See Supporting info).  Due to the residual radial electric 
field, the equations of motion carry a DC-equivalent poten-
tial that cannot be avoided, as if 𝑈𝑈 had been chosen to be 
−𝐴𝐴/2. 𝐴𝐴/2, unlike U, cannot be chosen to be 0 and will play 
a key role in the stability of the ions. Note that this DC po-
tential is also different from the one applied in quadru-
poles32 as it has the same sign on both eqs. (14a-b). With a 
change of variables, eqs. (14a-b) become the Mathieu eqs.: 

 𝑑𝑑2𝑢𝑢
𝑑𝑑𝜉𝜉2

− �𝑎𝑎𝑢𝑢 ± 2𝑞𝑞𝑢𝑢𝑐𝑐𝑉𝑉𝑉𝑉(2𝜉𝜉)�𝑢𝑢 + 2𝑞𝑞
𝑤𝑤𝑚𝑚𝐾𝐾

𝑑𝑑𝑢𝑢
𝑑𝑑𝜉𝜉

 = 0 ;  (14c) 

  𝜉𝜉 = 𝑤𝑤𝑑𝑑
2

  ;𝑎𝑎𝑢𝑢 = 2𝑞𝑞𝐴𝐴
𝑤𝑤2𝑑𝑑02𝑚𝑚

  ; 𝑞𝑞𝑢𝑢 = 2𝑞𝑞𝑞𝑞
𝑤𝑤2𝑑𝑑02𝑚𝑚

,  (14d-f) 

Figure 6. A) Stability region of the eqs. 14. For a positive A, the stable region is shown in gray while an enlarged stability domain is 
shown in the inset. B) RF confinement ion trajectories with and without drag for initial velocities parallel to one of the axis and non-
centered initial positions. C) RF confinement ion trajectories with and without drag for initial velocities at 45 degrees.  

where 𝑢𝑢 represents either x or y. Figure 6A shows the sta-
bility domain for eqs. (14c) when drag is considered negli-
gible, e.g. vacuum conditions. Drag at low pressures has 
been shown to have little influence on stability, slightly en-
larging the stability region33,34. Due to the requirement of al-
ways having an equivalent non-zero DC potential, not all 
masses are stable at all frequencies, and care must be had to 
not lose ions in the process. For example, if the slope A was 
reduced at some point (smaller 𝑎𝑎𝑢𝑢), it could potentially lead 
to some ions becoming unstable. To avoid this, 𝑞𝑞𝑢𝑢 would 
have to be simultaneously reduced. 

The motion of ions on stable trajectories is shown in 
Figures 6B-C for different initial conditions of position and 
velocity of the ions. When drag is not considered, the trajec-
tories are confined to a region that depends strongly on the 
initial conditions and phase. Figure 6B shows trajectories 
with initial velocities parallel to one of the axes for 𝜃𝜃0 at 0 
and 180 degrees. Figure 6C shows initial velocities at 45 de-
grees. When drag is considered, stable trajectories tend to-
wards the center as shown in Figures 6B-C. Random walk 

diffusion is not considered and could potentially affect the 
ion stability. 

Effective resolutions using RF confinements. 
Asymptotic resolution of the ramp region.  

In a previous manuscript17, it was described how reso-
lution, in its common definition used for drift tube ion mo-
bility, 𝐴𝐴̅/Δ𝐴𝐴, was an ill-conditioned parameter for IDT. As an 
example, one can look at the case of an IDT with no field pre-
sent where ions of different mobilities would reach the de-
tector simultaneously. Despite the very high resolution in 
terms of 𝐴𝐴̅/Δ𝐴𝐴, there would be no separation. A better alter-
native is to use the resolving power employed in chroma-
tography for two peaks; given by the ratio of the distance 
between two peak centers, Δ𝐴𝐴̅, and the average full width at 
half maximum, 𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀���������� , minus 1; 𝑅𝑅𝑝𝑝 = Δ�̅�𝑧

𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀���������� − 1. From its 
definition, one should expect two peaks to be resolved if 
𝑅𝑅𝑝𝑝 > 0.  𝑅𝑅𝑝𝑝 can be used to obtain effective resolutions. For 
instance, for the TIMS instrument, an effective asymptotic 
resolution for the ramp (trapped) region can be obtained 

Page 6 of 10

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7 

when the separation ratio 𝛬𝛬 reaches 1 (See Supporting 
info): 

 𝑅𝑅𝛬𝛬→1 = �̅�𝑧𝑔𝑔𝑠𝑠𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀����������𝑔𝑔𝑠𝑠𝑎𝑎𝑎𝑎

 (15) 

Here, for a resolution of 100, the instrument will be able to 
resolve two mobilities that differ 1%. Given eqs. (8-9) and 
assuming that, for two very close mobilities,  𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀����������𝑔𝑔𝑔𝑔𝑎𝑎𝑚𝑚  
 ~ 2�2 ln(2)𝜎𝜎𝑧𝑧𝑔𝑔𝑔𝑔𝑎𝑎𝑚𝑚2  , the asymptotic resolution for a ramp 
of length L yields (see Supporting info): 

 𝑅𝑅𝛬𝛬→1 = � 𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠2

8 ln(2)𝐾𝐾𝐴𝐴𝐷𝐷
= �

𝑞𝑞𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠𝐿𝐿
8 ln(2)𝑘𝑘𝑏𝑏𝑇𝑇𝐾𝐾

= � 𝑞𝑞𝐴𝐴𝐿𝐿2

8 ln(2)𝑘𝑘𝑏𝑏𝑇𝑇
= � 𝑞𝑞𝐿𝐿𝐸𝐸𝑧𝑧�=𝐿𝐿

8 ln(2)𝑘𝑘𝑏𝑏𝑇𝑇
. (16a-

d) 

It is assumed that the separation ratio 𝛬𝛬 reaches one at the 
end of the ramp so that 𝐴𝐴�̅�𝑔𝑔𝑔𝑎𝑎𝑚𝑚 = 𝐴𝐴, being 𝐾𝐾�̅�𝑧=𝐿𝐿 = 𝐴𝐴𝐴𝐴 the cor-
responding electric field.  Despite the similarity of eq. (16d) 
to the DTIMS resolution, there are marked differences be-
tween the two. The most important one is that the electric 
field is not constant like in a DTIMS. The field required to 
reach 𝛬𝛬 = 1 at the end of the tube will therefore depend on 
the mobility and the velocity of the gas. Moreover, given the 
quadratic nature of the voltage employed, one has to be 
careful to avoid breakdown scenarios. In order to explore 
these dependencies, it is better to use the second expression 

for the resolution, which has a direct dependence on 
𝐾𝐾,𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔, 𝐴𝐴; eq. (16b). Figure 7A shows the dependence of the 
resolution on reduced mobility, 𝐾𝐾0, for a L=50cm ramp with 
different gas velocities, 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔, ranging from 50 to 200m/s at 
two different pressures and a temperature of 300K. Resolu-
tion shows an inverse square root dependence with mobil-
ity and a marked increase at higher pressures. At a com-
monly used gas flow of 150m/s23, resolutions of ~200 can 
be reached for reduced mobilities of 𝐾𝐾0 = 0.5𝑐𝑐𝑚𝑚2/𝑉𝑉𝑉𝑉 
(𝐶𝐶𝐶𝐶𝐶𝐶~210𝐴𝐴2). The voltage required however to trap this 
mobility would be around 4.0kV at 0.5m (𝑉𝑉 = 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴/2𝐾𝐾). 
For different reduced mobilities 𝐾𝐾0 = 0.3 − 1.1 𝑐𝑐𝑚𝑚2/𝑉𝑉𝑉𝑉, the 
change in resolution with gas velocity for 𝐴𝐴=50cm and pres-
sure of 2.5 torr is given in Figure 7B. The resolution of the 
ramp region has been somewhat ignored in previous theo-
retical assessments of the TIMS instrument due to the diffi-
culty in solving eq. (2a-c). As shown here, it could be of 
strong consequence if treated correctly and especially if 
coupled with the plateau region of the TIMS described be-
low. 

Resolution in the plateau region.  
To take advantage of the ramp separation and asymp-

totic resolution, a way to elute the ions must be included to 
collect them in

Figure 7. Asymptotic resolutions of the ramp and plateau regions. A) Ramp Resolution 𝑅𝑅𝛬𝛬→1 as a function of reduced mobility 𝐾𝐾0 for 
different gas velocities. B) 𝑅𝑅𝛬𝛬→1 as a function of 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 for different reduced mobilities 𝐾𝐾0. C) 𝑅𝑅𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑡𝑡 as a function of reduced mobility 
𝐾𝐾0 for different average separation ratios 𝛬𝛬�̅�𝑝. D) 𝑅𝑅𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑡𝑡 as a function of the scan rate 𝛽𝛽 for different reduced mobilities. 

a detector or be transferred to a Mass Spectrometer. The 
most reasonable way to elute the ions, is to reduce the slope 
A of the electric field a sufficient amount so that ions drift 
outside of the trapping region. Once lowered, the ions start 
moving through the plateau region. This plateau region fol-
lows a separation procedure similar to that of the drift tube 
but where the velocity of the gas carries the ion forward 
while the position-independent electric field, 𝐾𝐾𝑒𝑒,  opposes 
the flow. Using the definition of Resolving power (See 

Supporting info), one can calculate the effective resolution. 
The resolution for a plateau of length 𝐴𝐴2 is given by: 

 𝑅𝑅𝑝𝑝𝑡𝑡𝑔𝑔𝑑𝑑𝑒𝑒𝑔𝑔𝑢𝑢 = �
𝑞𝑞𝐿𝐿2𝛬𝛬𝑝𝑝𝐸𝐸𝑒𝑒

�1−𝛬𝛬𝑝𝑝�16𝑡𝑡𝑖𝑖2𝑘𝑘𝑏𝑏𝑇𝑇
= �

𝑞𝑞𝐿𝐿2,𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒
16𝑡𝑡𝑖𝑖2𝑘𝑘𝑏𝑏𝑇𝑇

 (17) 

Here, the separation ratio in the plateau, 𝛬𝛬𝑝𝑝 = 𝐾𝐾𝐾𝐾𝑒𝑒/
𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔, must be lower than one to allow ions to move through 
the plateau with velocity 𝑣𝑣𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔�1 − 𝛬𝛬𝑝𝑝�. The closer 𝛬𝛬𝑝𝑝 
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is to 1, the higher the resolution. One can introduce an effec-
tive length, 𝐴𝐴2,𝑒𝑒𝑑𝑑𝑑𝑑 = 𝐴𝐴2𝛬𝛬𝑝𝑝/(1 − 𝛬𝛬𝑝𝑝), to compare the plateau 
region to a DTIMS. If the separation ratio is lowered to 𝛬𝛬𝑝𝑝 =
0.8, then the effective length of the plateau region would be 
4 times its total length (0.8/(1 − 0.8)). One can drastically 
increase the effective length to boost the resolution, e.g. by 
almost 10-fold at 𝛬𝛬𝑝𝑝 = 0.99. The increase in resolution, 
however, comes at a cost. Since the elution is time-based 
and there is no diffusion control in the plateau, peaks will 
tend to broaden as they become separated, greatly decreas-
ing the peak maximums. A compromise must then be made 
between peak max intensity and resolution. Eq. (17) differs 
from the resolution previously derived for the TIMS24. Aside 
from other simplifications, the previous resolution assumed 
that the eluting electric field changes over time at a given 
rate. Resolution in eq. (17) can consider changes in the elec-
tric field by assuming that the separation ratio changes with 
time, 𝛬𝛬𝑝𝑝 = 𝛬𝛬𝑝𝑝(𝑡𝑡). In fact, for linear changes in the slope of 
the field, an average value of the separation ratio 𝛬𝛬�̅�𝑝 can be 
used as a substitute in eq. (17). 𝛬𝛬�̅�𝑝can then be related to the 
scan rate 𝛽𝛽 by (See Supporting info): 

 𝛬𝛬�̅�𝑝 = 1 − �
𝐿𝐿2𝐾𝐾𝐾𝐾
2𝑣𝑣𝑔𝑔𝑔𝑔𝑠𝑠2   (18) 

Combined resolution for TIMS.  
The overall resolution is a complicated convolution of 

both regions, ramp and plateau and is given by (See Sup-
porting info): 

 𝑅𝑅𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑡𝑡 = (𝐿𝐿2,𝑒𝑒𝑒𝑒𝑒𝑒+𝐿𝐿)�𝐸𝐸𝑒𝑒𝑞𝑞

�8𝑡𝑡𝑖𝑖2𝑘𝑘𝑏𝑏𝑇𝑇�𝐿𝐿𝛬𝛬�𝑝𝑝+2𝐿𝐿2,𝑒𝑒𝑒𝑒𝑒𝑒�
 (19) 

When 𝐴𝐴2,𝑒𝑒𝑑𝑑𝑑𝑑 ≫ 𝐴𝐴, i.e., the effective plateau length is 
much larger than the length of the ramp region, eq. (19) re-
duces to previous reported resolutions except for a factor of 
𝛬𝛬�̅�𝑝 , due, perhaps, to different simplifications24. Figure 7C 
shows the combined resolution for a plateau length of 
𝐴𝐴2=50cm as a function of the change in 𝛬𝛬�̅�𝑝 from 0.7 to 0.99 
for different reduced mobilities 𝐾𝐾0. While resolutions are 
extremely high for very high plateau separation ratios, it 
will involve losing max peak intensity, and care must be 
taken. It is easy to observe that the length of the plateau 𝐴𝐴2 
is not as important as the separation ratio used. In principle 
one could have a very small physical length and still achieve 
high separation if a large separation ratio 𝛬𝛬�̅�𝑝 would be em-
ployed. In fact, this can be observed when one tries to obtain 
the resolution of the TIMS instrument with only 46mm in 
length. Figure 7D shows such resolution as a function of the 
scan rate, 𝛽𝛽, using eq. (18) and assuming that the scan rate 
is linear with time, as is the case in TIMS. The slower the 
scan rate, the higher the resolution (higher average separa-
tion ratios). The proportionality 𝑅𝑅𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔𝑡𝑡~𝛽𝛽−0.25 in Figure 7D 
is not exact as derived from the equations. Under all scenar-
ios presented, it is considered that the ions inside the ramp 
have reached its asymptotic condition. This might not be the 
case if the scan rate is too fast. 
The resolutions obtained here should be considered an up-
per bound as they neglect the effects of parabolic velocity 
profiles. However, R~400 have already been obtained ex-
perimentally in TIMS revealing the instrument possibili-
ties35. The greatest benefit of these systems, not possible in 

a DTIMS, is that, regardless of the initial width of the pack-
age of ions, well-defined asymptotic distributions are guar-
anteed at the beginning of the plateau region thanks to the 
confinement in the ramp. 

CONCLUSIONS 
The ability of instruments with linearly increasing 

fields to provide high resolutions and compact distributions 
due to their diffusion-confining ability has been explored. A 
solution to the 2D Nernst-Planck equation is provided for 
the first time. The way axial diffusion confining is generated, 
i.e. equilibrium between the electric field and gas flow, how-
ever, leads to important issues that may hamper resolution 
and/or sensitivity. The main two issues, covered in this 
manuscript, are the formation of parabolic velocity profiles 
and the existence of residual radial field components. Both 
issues can be avoided at low pressures with the help of RF 
radial confinement. A regular RF only ion guide, however, 
would not be sufficient to contain all ions and a frequency 
range must be employed to avoid ion loss. Atmospheric 
pressure precludes the use of RF so reducing the effects of 
the velocity profiles and residual fields is the only possibil-
ity. The fact that resolution is indirectly proportional to the 
square root of the mobility makes IDT a perfect candidate 
for larger species (~100nm), if the issues are resolved/ con-
tained. 

In conclusion, TIMS and IDT systems have excellent 
separation capabilities with resolutions that rival the best 
gas phase separation systems. The new insights in this man-
uscript open a new path to further develop these instru-
ments with great potential in the fields of Analytical Chem-
istry and Aerosol Science.   
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