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Generalization is a critical aspect of doing mathematics, with policy makers recommending that it 
be a central component of mathematics instruction at all levels. This recommendation poses serious
challenges, however, given researchers consistently identifying students’ difficulties in creating and 
expressing normative mathematical generalizations. We address these challenges by introducing a 
comprehensive framework characterizing students’ generalizing, the Relating-Forming-Extending 
framework. Based on individual interviews with 90 students, we identify three major forms of 
generalizing and address relationships between forms of abstraction and forms of generalization. 
This paper presents the generalization framework and discusses the ways in which different forms 
of generalizing can play out in activity.
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Introduction: The Importance of Mathematical Generalization
The act of generalizing is at the core of mathematical activity, serving as the means of 

constructing new knowledge. Researchers have argued that mathematical thought cannot occur 
in the absence of generalization (Sriraman, 2003; Vygotsky, 1986). As a result, “developing 
children’s generalizations is regarded as one of the principal purposes of school instruction” 
(Davydov, 1972/1990, p. 10). Researchers have studied the importance of generalization for 
promoting algebraic reasoning (Cooper & Warren, 2008), mathematical modeling (Becker & 
Rivera, 2006), functional thinking (Ellis, 2011; Rivera & Becker, 2007), and probability 
(Sriraman, 2003), among other areas. Despite the importance of generalization to success in 
mathematical reasoning, research on students’ abilities to generalize has identified pervasive 
student difficulties. For instance, Rivera (2008) reported results of 5 years of performance 
assessments on generalization given to more than 60,000 middle and early high school 
students; these findings revealed a stable ceiling value of only a 20% success rate in the 
construction of a general formula. Other researchers have similarly documented students’ 
difficulties in creating correct general statements, shifting from pattern recognition to pattern 
generalization, and using generalized language (e.g., English & Warren, 1995; Mason, 1996).

Although student difficulties are well documented, the instructional conditions necessary for 
fostering more productive student generalizing are not well understood. Complicating the matter, the
bulk of research on generalization has occurred with algebraic patterning tasks, situating 
generalization as a type of, and route to, algebraic reasoning (Becker & Rivera, 2006; Cooper & 
Warren, 2008). There remains a need to understand how students construct generality in more varied 
and more advanced mathematical domains. The goals of this study are to investigate students’ 
mathematical generalizing from middle school through the undergraduate level in the topics of 
algebra, advanced algebra, and combinatorics. In particular, our aim is to elaborate the nature of 
students’ generalizing, contributing to the field’s knowledge base by extending the investigation 

of generalization up the grade bands. Based on clinical interviews with 90 students from 6th 
grade through the undergraduate level, we introduce a framework characterizing three major 
forms of generalizing activity: relating, forming, and extending. We also introduce and discuss 
relationships between forms of generalization and forms of abstraction.

Theoretical Framework
Forms of Generalization

Definitions of generalization vary, with the most prominent situating generalization as an
individual, cognitive construct (e.g., Kaput, 1999). More recent sociocultural definitions 
position generalization within activity and context, as a collective act distributed across multiple
agents (Tuomi-Gröhn & Engeström, 2003). These perspectives attend to how social interaction, 
tools, and history shapes people’s generalizing, recognizing generalization as a social practice 
that is rooted in activity and discourse (Jurow, 2004). We borrow from both the cognitive and 
the sociocultural traditions to define generalizing as an activity in which learners in specific 
sociocultural and instructional contexts engage in at least one of the following three actions: (a) 
identifying commonality across cases (Dreyfus, 1991), (b) extending one’s reasoning beyond the
range in which it originated (Radford, 2006), and/or (c) deriving broader results from particular 
cases (Kaput, 1999). We use the term generalizing to refer to any of these processes, whereas 
generalization refers to the outcome(s) of these processes.

Borrowing from Lobato’s (2003) transfer framework, we take an actor-oriented approach to 
studying students’ processes of generalizing. This approach represents a shift from the observer’s
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(usually the researcher’s) stance to the actor’s (the student’s) stance. In particular, it compels us 
to abandon normative notions of what should count as a generalization, instead seeking to 
understand the processes by which students construct relations of similarity that they experience 
as meaningful. Our framework also builds on Ellis’ (2007) taxonomy of generalizations, which 
distinguishes between students’ activity as they generalize, called generalizing actions, and 
students’ final statements of generalization, called reflection generalizations.
Forms of Abstraction

The second line of research we rely on examines the role of abstraction in developing 
generalizations (e.g., Dorfler, 1991). Abstraction has been characterized in multiple ways, but we
focus particularly on reflective abstraction and the interrelationships among the actions and 
operations that constitute students’ construction of mental objects. In particular, we distinguish 
three types of reflective abstraction salient in informing students’ generalizing activity: pseudo-
empirical abstraction, reflecting abstraction, and reflected abstraction (Montangero & Maurice-
Naville, 1997; Piaget, 2001). Pseudo-empirical abstraction is based on the observation of 
perceptible results, in which new knowledge is drawn not just from the properties of objects, but 
from how the student has organized the activities she has exerted on those objects. We further 
distinguish pseudo-empirical abstraction from other forms by noting that pseudo-empirical 
abstraction includes reflection on the outcome of one’s activity. The focus is on the products of a 
learner’s actions, rather than the coordination and transformation of actions themselves.

In contrast, reflecting abstraction includes reflection on one’s actions, not merely on the 
outcomes of those actions. One can transfer to a higher plane what he or she has gleaned from 
lower levels of activity, leading to differentiations that imply new, generalizing compositions at
that higher level. In reflected abstraction, one becomes conscious of his or her actions, bringing
awareness of qualitative differences between his or her actions. Through reflected abstraction, 
one is able to formulate, formalize, and subsequently operate on his or her thought.

Methods
We conducted a series of individual semi-structured interviews with middle school (ages 12-

14), high school (ages 14-17), and undergraduate students in the domains of algebra, advanced 
algebra, discrete mathematics, and combinatorics. The algebra and advanced-algebra topics 
included linear, quadratic, higher-order polynomial, and trigonometric functions, and the discrete
mathematics and combinatorics topics included counting problems, combination and permutation
problems, and the binomial theorem. We conducted 10 middle -school, 11 high-school, and 10 
undergraduate algebra or advanced algebra interviews, and 19 middle-school, 13 high-school, 
and 27 undergraduate discrete mathematics (combinatorics) interviews.

During the interviews we presented the participants with domain-specific tasks to elicit both
near and far generalizations, and we asked the participants to identify patterns and themes, 
discuss any elements of similarity they noticed, and, where reasonable, explain and discuss the 
generalizations they formed. All interviews were videotaped and we used gender -preserving 
pseudonyms for all participants. Table 1 presents a sample of the interview tasks across the 
mathematical domains.
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Table 1: Sample Interview Tasks

Interview Task
Domain and
grade level

The rectangle below grows along the dotted path as shown: Algebra, middle
school

Complete the following statement: When the length of the rectangle grows by
_____, the area grows by _____.

You have a 1 cm by 1 cm by 1 cm cube, and all sides grow at the same rate. How Adv. algebra,
much additional volume does the cube gain when the sides each increase by 1 cm? high school

You have a deck of number cards numbered 1-6. You create a two-card hand by Discrete math,
drawing a card from the deck, putting it back, and drawing a second card. middle school
Determine how many possible two-card hands you could get. How many times the
number of two-card hands would you have if you had twice the number of cards?

Suppose passwords consist of (uppercase) As, Bs, and/or the number 1. How many Combinatorics,
such passwords are there that are n characters long? undergraduate

Analysis
We relied on the constant comparative method (Strauss & Corbin, 1990) to analyze the 

interview data in order to identify forms of generalization and abstraction. For the first round of 
analysis we drew on Ellis’ (2007) analytic framework for categorizing students’ generalizing 
actions and reflection generalizations, using open coding to infer categories of generalizing 
activity based on students’ talk, gestures, and task responses. This first round led to an initial set 
of codes, which then guided subsequent rounds of analysis in which the project team met 
weekly to refine and adjust the codes in relation to one another. This iterative process continued 
until no new codes emerged. A final round of analysis was descriptive and supported the 
development of an emergent set of relationships between forms of abstraction and forms of 
generalizing, characterizing the evolving nature of students’ mental activity as they generalized.

Results: The Relating-Forming-Extending Framework
Based on data analysis from the 90 interviews we developed an empirically-grounded 

framework capturing the broad range of generalizing activity across a variety of grade bands 
and domains. We present the results in two major sections. First we introduce the framework 
itself, which provides definitions, descriptions, and examples of each form of generalization 
demonstrated by the study participants (Tables 2-4). Due to space constraints, we do not 
elaborate on every form of generalizing, but we instead present a data episode identifying the 
interrelationships between the forms of abstraction and forms of generalizing. This episode is 
meant to be representative of the explanatory power of the framework, which we limit to one 
student due to space considerations. The Relating-Forming-Extending framework distinguishes 
between inter-contextual forms of generalizing, in which students established relations of 
similarity across problems or contexts, and intra-contextual forms of generalizing, in which 
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students formed and extended similarities and regularities within one task. Following the actor-
oriented perspective, we made the inter/intra distinction based on evidence of whether the 
student perceived the establishment of similarity or regularity he or she formed to occur across 
different contexts or situations, or to occur within the same context.

Table 2: Inter-Contextual Forms of Generalizing (Relating)
Form of Generalizing Example

Relating Connecting Back: HS Adv. Algebra Student: All the sides are the same
Situations: Formation of a length. The formula is generally the same [as the prior
Forming a relation connection between problem], you’re just adding one more side for the 4-
of similarity across a current and dimensional one.
contexts, previous problem
problems, or or situation.
situations Analogy Invention: MS Algebra Student: The more seconds he has, he’ll slow

Creating a new down. And the less seconds he has, he’ll speed up faster.
situation or Int: Okay, and how come? Student: You know how, if you
problem to be had less time to go into the grocery store to get the foods
similar to the on the grocery list, you would go faster if you had like 1
current one. second to do it in? You would, like, be in and out real

quick. Same thing here.
Relating Ideas or Strategies (Transfer): HS Adv. Algebra Student: So in this case it’d be P plus,
Influence of a prior context or task is let’s do V for valence because that’s one word I know for
evident in student’s current operating. outer ring. Int: Cool, is that from chemistry? Student: Yep.

Like the valence electrons…how much that equals plus the
previous one, would equal your new answer.

The inter-contextual forms of generalizing all involved a type of relating activity. The intra-
contextual generalizing, however, occurred in two major categories: (a) forming a similarity or 
regularity, in which students searched for and identified similar elements, patterns, and 
relationships (Table 3); and (b) extending or applying a similarity or regularity (Table 4). In the 
latter case, students extended established patterns or relationships to new cases.

Table 3: Intra-Contextual Forms of Generalizing (Forming)
Form of Generalizing Example

Relating Operative: Associating Und. Adv. Algebra Student: [Comparing x = sin(y)
Objects: objects by isolating a with y = sin(x) graphs] They’re both representing the
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Forming a similar property, function, same thing…with equal changes of angle measures
relation of or structure. my vertical distance is increasing at a decreasing rate
similarity [tracing graph]…here it’s doing the exact same thing.
between two or Figurative: Associating HS Adv. Algebra Student: How does the volume
more present objects by isolating equation relate to this cube? Well the three numbers
mathematical similarity in form. are getting one bigger and the three sides got one
objects bigger.

Activity: Relating objects MS Algebra Student: I think it would be 2 more than
or ideas based on the 6. Int: Two more than the 6? Okay, how come?
identifying one’s activity Student: Because, like, same as this one [points to the
as similar. prior problem] you’re just adding it.

Search for similarity or regularity: Searching HS Adv. Algebra Student: I don’t think it goes up by
to find a stable pattern, regularity, or element the same amount each time. Does it? That goes up by
of similarity across cases, numbers, or 3, and that goes up by 5, and that goes up by 7. Three,
figures. 5, 7. Yeah, it goes up by…okay.
Identify a Extracted: Extracting MS Combinatorics Student: For every addition
regularity: regularity across multiple problem that we do, like 6 plus 6 equals 12, it is
Identification of cases. always one more added to that every time.
a regularity or Projected: Describing a MS Algebra Student: You could do, you could do 1.5
pattern across predicted or known stable times growth and that would get you, times the growth
cases, numbers, feature. in the length and then that would give you the growth
or figures. in area.
Isolate constancy: Focusing on and isolating HS Adv. Algebra Student: This is like the one thing
regularity – a stable feature – across varying that you started off with [circles the original
features. rectangle]. It’s like the only constant really. And so

each time it changes a little bit so it’s really one of
these is being added each time and so that’s not really
taking it into account, the 15 that was already there.

Table 4: Intra-Contextual Forms of Generalizing (Extending)
Form of Generalizing Example

Continuing: Continuing an existing pattern or MS Combinatorics Student: [Moves from a 7-card
regularity to a new case. case to an 8-card case]: It is like the last time. You

don’t count (8, 8) twice.
Operating: Near: Making a minor HS Adv. Algebra Student: [After having established a
Operating on change to a regularity in pattern of adding 8 square units for every additional
an identified order to extend it to a new rectangle]: And then plus 8, or I could just do plus,
pattern, case. um, 8 times 5, right? And so that would be 40.
regularity, or Projection: Making a major Und. Combinatorics Student: [After solving cases
relationship in change to a regularity in with 3 and 4 combinations]: So now I believe if you
order to extend order to project it to a far gave me something where if there was 20
it to a new case. combinations I could solve how many combinations
case. there are without having to write them all out: 220 and

whatever that equals.
Transforming: Constructing a Quantity: HS Adv. Algebra Student: [Exploring the three sides
Extending a Constructing a new quantity of a rectangular prism, the interviewer asks the
generalization or a relationship between student to express one side in terms of the other.] So
and, in doing quantities in order to extend it’s x plus 1, right?
so, changing a regularity to a new case.
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the Recursive Embedding: Und. Combinatorics Student: Okay, we’re definitely
generalization Embedding a previous using 1, so we’re limiting ourselves to only 2
that is being situation into a new one as a possible states for the entire password, A and B,
extended. key component of the new which means it’s basically no different than what we

task. did in one of the earlier examples. So that I’ll
probably just figure, okay, 2 to the 3rd equals 8.

Removing particulars: Extending a specific MS Algebra Student: I was thinking, like, trying to
relationship, pattern, or regularity by put it in an equation I guess, so it kind of makes
removing particular details to express the sense…Well it could be, area equals 2 plus total
relationship more generally. length [writes A = 2 + T].

We illustrate several intra-contextual generalizations and their relationships to forms of 
abstraction by presenting the work of Willow, a middle-school algebra student, who worked on
the growing rectangle task (Table 1). Willow initially established a numerical relationship 
between the length of 4 cm and the area of 6 cm2:

Well, the area is 2 more than the length so I would think if, however, if they grew like the 
same amounts of, if this (points to the area) grew by 2 in the area, so it would be 8 and this
(points to the length) grew by 2 and it would be 6, then it would always be 2 more if they 
grew in the same, like, the same amount.
Willow identified a regularity by stating “It (the areas) would always be 2 more (than the 

length)”. Although Willow’s generalization is incorrect, it represented a pattern that she saw as 
valid. We also suspect Willow’s generalization relied on a pseudo-empirical abstraction, not 
because her generalization was incorrect, but because she appeared to generalize based on the 
outcome of her activity. Specifically, Willow’s operation was to take the difference of the 
numbers 4 and 6, and she generalized the difference remaining constant. She made an additive 
comparison between numerical values that did not appear to be based in quantitative operations 
relating length to area. When asked what would happen if the rectangle grew by another 4 cm, 
Willow responded, “So it grew by 4…would the area have grown by 4 too? It could be, like, 10.”
Here Willow extended by continuing the “area = length + 2” relationship she had established to a
new case. She then further generalized by stating, “If the length grew by x, then the area would 
be 2 more than the total length,” which she expressed as “A = 2 + T”. Here Willow extended by 
removing particulars in order to algebraically express the relationship she had established. We 
maintain that this string of generalizations remained grounded in Willow’s activity of pseudo-
empirical abstraction. Her focus remained on the result of her operation, the difference of 2, and 
at no time did Willow coordinate the growth of the rectangle simultaneously with varying 
measures of length and area.

Right when the interviewer began to remove the task in order to transition to a new problem,
Willow suddenly evidenced a shift in her thinking, saying, “Unless it will start at 0?”

Because if you start it at 0…to find out the actual growth, then, say this is like the first they 
grew and this, kind of, so this grew by 4 first (gestures along the length) and then this grew 
by 6 (gestures to the whole figure, along the area). So this (the length) could grow by 4 again,
and this (the area) could grow by 6 again.
Willow appeared to construct a dynamic image of the rectangle growing “from 0”. She further 

explained, “Because it would always be plus 4 and plus 6, so if you said when the length grows by 
8, the area grows by 12.” Willow imagined the rectangle growing in chunks, iterating twice. Willow 
therefore identified a regularity that if the rectangle started growing from 0, then for every 4-cm 

increase in length, the rectangle would increase in area by 6 cm2. This regularity, unlike the first 
one Willow identified, was based on an image of growth in which Willow was able to 
coordinate an increase in length with a corresponding increase in area. This image was informed
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by the operations of forming a ratio and iterating it. It was also a product of reflecting 
abstraction in that Willow reflected on her activity in order to coordinate iterating her formed 
ratio with the number of times it was iterated. Therefore, she could then state that the length 
would increase by 4 again, resulting in another increase of 6 for the area. Willow extended by 
continuing the relationship, and she did so by relying on her ability to coordinate growth in one 
quantity with growth in the other.

We take further evidence that Willow engaged in reflecting abstraction by what occurred 
next. Namely, she was able to extend by operating on the relationship she had formed, 
multiplying each term in the 4:6 ratio by 4, then by 10, ½, ¼, ¾, and 5/4 in order to generate 
new length:area pairs. This extension was significant because it included the use of both whole 
number and fraction values. It also suggests that Willow had reflected on her operation of 
forming a ratio in order to develop a flexible, generalizable relationship with which she could 
meaningfully operate. Willow ultimately developed a unit ratio, explaining, “Each time the 
growth in length goes up by 1, the growth in area, I think the growth in area equals [writes A = 
1.5 × L].” Thus Willow identified a new regularity and then removed particulars for this 
regularity. When she removed particulars, she reflectively abstracted a ratio from the 
phenomenological bounds in which it was created, and Willow’s subsequent flexible use of this 
ratio with messy numbers is evidence that she could imagine it holding for any arbitrary value.

Discussion
The Relating-Forming-Extending framework identifies forms of generalizing based on data 

from multiple grade bands and mathematical domains, addressing the need to understand how 
students construct generality in more varied and advanced mathematical contexts. Willow’s work
provides evidence that students can and do generalize their reasoning on a variety of problems 
beyond typical patterning tasks. In particular, in contrast to much of the literature identifying 
how students inductively generalize patterns, Willow abductively (Peirce, 1931-1958; Radford, 
2006) developed a generalization from just one case. Willow’s reflective activity enabled her to 
develop, solidify and apply generalizations in two ways. Firstly, she generalized an additive 
comparison based on the numerical relationship she established between 4 and 6 (a pseudo-
empirical abstraction). Secondly, she generalized by forming and operating on a ratio between 
quantities that was rooted in her image of the rectangle’s length growing in tandem with its area 
(a reflecting abstraction).

The Relating-Forming-Extending framework extends prior work by distinguishing and 
characterizing three forms of generalizing activity and by coordinating these forms of 
generalizing with forms of abstracting. The case of Willow shows that students can engage in 
many forms of generalizing, such as identifying regularities, extending by continuing, and 
removing particulars, based on either pseudo-empirical or reflecting abstraction. Other forms of
generalizing, such as extending by operating or transforming, appear to be more typically 
grounded in reflecting abstraction, as they often entail differentiations based on activity in order
to support new compositions. By attending to both abstraction and generalization in students’ 
sense-making, we can begin to characterize how students can leverage initial abstractions into 
first-pass generalizations that they can then reflect on and transform in further activity. Further 
analysis of these relationships between abstraction and generalization will inform a better 
understanding of the conceptual mechanisms driving generalizing activity in a variety of 
mathematical contexts.
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