
Page 1 of 8 

7/20/2015 

2016-01-1396 

Optimal Design of Cellular Material Systems for Crashworthiness 

Kai Liu1, ZongYing Xu2, Duane Detwiler3, Andres Tovar2 
1Purdue University, 2Indiana University Purdue University Indianapolis, 3Honda R&D Americas, Inc. 

CITATION: Liu, K., Xu, Z., Detwiler, D., and Tovar, A., "Optimal Design of Cellular Material Systems for Crashworthiness," SAE Technical Paper 
2016-01-1396, 2016, doi:10.4271/2016-01-1396. 

Abstract 

This work proposes a new method to design crashworthiness 
structures that made of functionally graded cellular (porous) material. 
The proposed method consists of three stages: The first stage is to 
generate a conceptual design using a topology optimization algorithm 
so that a variable density is distributed within the structure 
minimizing its compliance. The second stage is to cluster the variable 
density using a machine-learning algorithm to reduce the dimension 
of the design space. The third stage is to maximize structural 
crashworthiness indicators (e.g., internal energy absorption) and 
minimize mass using a metamodel-based multi-objective genetic 
algorithm. The final structure is synthesized by optimally selecting 
cellular material phases from a predefined material library. In this 
work, the Hashin-Shtrikman bounds are derived for the two-phase 
cellular material, and the structure performances are compared to the 
optimized structures derived by our proposed framework. In 
comparison to traditional structures that made of a single cellular 
phase, the results demonstrate the improved performance when 
multiple cellular phases are used. 

Introduction 

Design for crashworthiness—which involves the analysis, synthesis, 
and optimization of protective vehicle components/systems during a 
crash event—is a long and computationally expensive engineering 
task. To reduce the design cycle time and increase the effectiveness 
of the structural component for crashworthiness, researchers have 
integrated design optimization methods [1], [2]. However, such 
integration is hindered by two technical challenges: conceptual 
design generation and non-linearity of the structural component. The 
first challenge, conceptual design generation, refers to the conception 
of the type of crush initiator, cellular pattern, or foam density 
distribution. This design is generally unknown and the designer has 
to test several configurations before committing to a design that can 
be further parameterized and optimized. The second challenge, non-
linearity of the crash computational model, imposes a great 
computational cost on the simulation, which makes it impractical to 
use traditional optimization methods. 

To systematically address the conceptual design generation of 
crashworthy structures, researchers have explored the use of topology 
optimization methods (material distribution) using analytical 
approximations of the sensitivity coefficients [3]. Methods based on 
linear implicit finite element analysis, such as equivalent static loads 
(ESL) [4], [5], or partially non-linear implicit methods [6], [7] are 
numerically efficient sicne sensitivity coefficients can be obtained; 
however, these methods are not applicable to capture all the relevant 
aspects of the transient crash event. Truly non-linear explicit methods 
have been applied through heuristic methods, leading to innovative and 
useful conceptual designs [8]–[14]. Some of the main developments have 

been achieved by the hybrid cellular automaton (HCA) method proposed 
by the corresponding author and collaborators [12]–[14]. The premise of 
the method is that high-energy absorbing structures can be 
synthesized by uniformly distributing the internal energy density in a 
voxel-based discretized design domain.  

To reduce the computational cost of crashworthiness design 
problems, metamodel methodologies have been frequently employed 
to replace the actual simulation models [15]–[18]. However, the 
performances of metamodel may vary from problem to problem, 
researchers have comparatively studied different metamodels for the 
use in crashworthiness design [19]–[21]. As a result of advances in 
computer throughput, multiple sophisticated, expensive metamodels 
and multi-objective have been incorporated into structure 
crashworthiness design [22]–[28]. Recently, cellular materials, e.g., 
foams, sawdust, honeycomb, have been increasingly used in 
crashworthiness applications. Theses (functionally-graded) cellular 
structures are filled in straight [29]–[32] and tapered [33]–[35] thin-
walled structures in order to increase the crashworthiness without 
sacrificing too much on weight. At the material level, numerous 
studies in the literature discussed the design of composite materials 
using optimization method to improve energy absorption capabilities 
[36]–[40]. However, the design algorithms for crashworthy structure 
and its cellular material can be barely found in the literature.  

The objective of this work is to propose a new method to design 
cellular system for crashworthiness. In our previous work, we 
proposed a systemic approach to design and optimize thin-walled 
tubular component [13], [14], [41]. The energy absorbing capabilities 
of the thin-walled components depend on the plastically deformable 
progressive crushing zones. The progressive crushing zones were 
generated using the principle of compliant mechanism. With an 
efficient initial design, we used shell thickness as design variables 
and applied our proposed three-stage design optimization algorithm 
to design crashworthiness structures [21]. In this investigation, the 
three-stage design optimization algorithm is revised for designing 
cellular material system with crashworthiness consideration. The 
conceptual design is generated using topology optimization to 
maximize structure stiffness. Unsupervised machine learning – K-
means – is applied to characterize topology optimization results. With 
a limited number of design variables, we are able to search over the 
entire design space to find the best cellular material for each cluster 
within a given material library. The results demonstrate remarkable 
improvements in all crashworthiness measures that are considered in 
this study as compared to the cellular materials that found on the 
Hashin-Shtrikman upper bound.   

The rest of the paper is organized in three main sections: conceptual 
design generation, design parameterization, and design optimization. 
The summary and discussion of the results are presented in the final 
section. 
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Conceptual Design 

Problem definition 

To generalize a conceptual design, structural optimization approach 
is used. If a material property is characterized by a parameter 𝑥 ∈ ℝ, 
where 0 ≤ 𝑥 ≤ 1, then the conceptual design problem is to find the 
distribution of all possible parameterized materials 𝐱 ∈ ℝ(  in a 
discretized structure with 𝑛  discrete elements that maximize an 
objective function 𝑓(𝐱) subject to equality 𝐡(𝐱) and inequality 𝐠(𝐱) 
constraints. In this investigation, traditional topology optimization 
problem is solved with only mass constraint. The design problem is 
shown in Figure 1. A structure is subject to a 0.0022	kg	rigid pole 
impact, where the pole is prescribed with 10×105	mm/s	velocity. 
The rectangular domain is 800	mm×100	mm×80	mm. Only half of 
the structure is considered as a design domain due to symmetricity of 
the problem. The structure is discretized using 5	mm×5	mm×5	mm 
brick elements. The problem parameters are summarized in Table 1. 

 

Figure 1 Design domain for the beam design problem. 

Mathematically, the topology optimization problem is the following: 

find 𝐱 ∈ ℝ(
minimize 𝑓 𝐱 = 𝐅C𝐔(𝐱)
subject	to 𝑚 𝐱 − 𝑚 ≤ 0

𝟎 ≤ 𝐱 ≤ 𝟏

	,   (1) 

where the equilibrium conditions 𝐊 𝐱 𝐔 𝐱 = 𝐅 is satisfied. 𝐊(𝐱) is 
the global stiffness matrix of the structure, 𝐔(𝐱) and 𝐅 are the global 
displacement and force vector, respectively. The material model used 
in Eq.   (1) is: 

𝐸 𝑥 = 	𝑥𝐸R,   (2) 

where 𝐸R is the Elastics modulus of solid material as given in Table 
2. 

Table 1 Design problem parameters 

Parameter Value 
Dimensions 400	×	100	×	80	mm5 

FEA mesh 160	×	20	×	16 

Mass fraction 𝑚 0.25 

 

Table 2 Base material properties used in this study. 

Property Value 
Density 2.70×10VW	kg/mm5 

Elastic modulus 70×105	N/mmY 

Poisson’s ratio 0.33 

 

In this stage, we are assuming small strain and displacement. Since 
the material is also elastic, only a set of unit force is applied. After 
performing 35 iterations using top3d [42], the topology optimized 
structure in Figure 2. This final topology contains 23685 distinct 
design variable values. 

 
Figure 2 The final topology generated for the beam problem. 

Design Parameterization 

The conceptual design is generated using over ten-thousand design 
variables. It is impractical to utilize general optimization schemes 
with such a high number of design variables. In addition, the physical 
representation of the intermediate values 𝑥 ∈ 0,1  is unclear, even 
impractical. To overcome the above problems, one major task of this 
investigation is to reduce the dimension of design space. The reduced 
number of design variables also increases the manufacturability of 
the optimized design. In this work, we propose the use of 
unsupervised machine learning techniques to reduce the design space 
dimensionality. One promising unsupervised machine learning 
technique is K-means clustering. 

K-means clustering 

K-means, first used by James MacQueen in 1967 [43], remains as 
one of the most popular unsupervised machine learning techniques. 
In this method, given a set of observations 𝐱 ∈ ℝ( the algorithm aims 
to partition the 𝑛 observations into 𝐾 sets 𝐒 = 𝑆R, … , 𝑆_  where 𝐾 ≤
𝑛. The objective is to minimize the within-cluster sum of squares 
defined as   

find 𝝁 ∈ ℝ_

minimize 𝐽 𝜇 = 𝑥c − 𝜇d Y

ef∈gh

,
_

diR

   (3) 
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Where 𝜇d  is the mean of points in 𝑆d . Commonly, an iterative 
refinement algorithm is used to perform K-means clustering [44].  
The procedure of classifying data follows some simple steps as 
shown in Algorithm 1. This algorithm returns element indices for 
each cluster. 

Algorithm 1. Iterative K-means clustering algorithm 

 
 1  Randomly initialize 𝐾 cluster centroids 𝜇R, 𝜇Y, … , 𝜇_ 
 2  while stopping criterion has not been met 
 3      for 𝑘 ← 1	to 𝐾 
 4           𝑆d ← ∅  
 5      for 𝑖 ← 𝟏 to 𝑛 
 6           𝑗 ← argminqr 	 𝑥c − 𝜇sr  

 7          𝑆s ← 𝑆s ∪ 𝑥c   

 8      for 𝑘 ← 1	to 𝐾 
 9          𝜇d ←

R
gh

𝑥cef∈gh  

 

The K-means clustering result is heavily dependent on the initial 
cluster centers (the first step in Algorithm 1), which is neither always 
global optimum nor repeatable. To increase the chance of K-means 
algorithm converging to the global minima, multiple restarts 
(typically 50-1000 times) can be used and clustering that gave lowest 
cost Eq.   (3) can be picked. However, this method is inefficient. As 
an alternative to the standard heuristic K-means algorithm, this 
investigation incorporates Ckmeans.1d.dp. Ckmeans.1d.dp is a 
software package written in R that implements a dynamic 
programming algorithm to perform optimal one-dimensional K-
means clustering [45]. It guarantees optimality and repeatability [46]. 

Optimal K value 

In K-means, the number 𝐾 represents the number of means (clusters) 
one wants to partition for a set of observations. The choice of optimal 
𝐾 value is always ambiguous, especially for not well-separated data 
sets. To enhance manufacturability as well as effective use of 
surrogate models later, the optimal 𝐾 value in this study is selected in 
the range of 2 and 10. 

Figure 3 shows how the objective value in Eq.   (3) varies with 
number of clusters 𝐾 . As can be seen from the figure, an elbow 
appears around  𝐾	 = 	3  and 𝐾	 = 	4 . Therefore, we could choose 
either 3 or 4 as the optimal value for 𝐾. In this investigation, both 3 
and 4 are studies in the design optimization stage. Figure 4 and 
Figure 5 show the topology optimized structure (Figure 2) been 
clustered into 3 and 4 groups, respectively. The contour indicates 
different clusters. 

 

Figure 3 K-means clusters vs. Objective 

 

 

Figure 4 Clustering Figure 2 into 3 groups 

 

Figure 5 Clustering Figure 2 into 4 groups 

Design Optimization  

After design parameterization using K-means, design space is 
reduced from ℝ( to ℝ_. The design optimization stage is to find the 
best cellular material for each cluster that maximize structure internal 
energy absorption and minimize mass. As a first step into 
crashworthiness design using cellular materials, we are limited 
ourselves within a predefined cellular material library. 
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Cellular material library 

This work considers elastic isotropic materials. Four types of cellular 
materials are generated by varying the size of cubic hole in the center 
as shown in Figure 6. The material properties are characterized using 
homogenization method [47] and are summarized in Table 3.  

 

Figure 6 Cellular Material Structures. 
 

Table 3 Cellular Material Library, ID increases from left to right in Figure 6. 

Material
ID 

Density  
(kg/mm5) 

Elastic modulus 
(N/mmY) 

Poisson’s  
ratio 

Volume 
fraction 

1 2.70×10VW	 70.00×105 0.33 1.00 

2 2.70×10VW	 62.53×105 0.33 0.94 

3 2.70×10VW	 20.01×105 0.36 0.61 

4 2.70×10VW	 13.89×105 0.46 0.20 

 

The Hashin-Shtrikman bounds for this two-phase cellular material are 
calculated using [48]: 

𝐾v∗ = 𝐾v +
𝜈R

1
𝐾R − Kv

+ 3𝜈v
3𝐾v + 4𝐺v

	, 

𝐾R∗ = 𝐾R +
𝜈v

1
𝐾v − KR

+ 3𝜈R
3𝐾R + 4𝐺R

	, 

𝐺v∗ = 𝐺v +
𝜈R

1
𝐺R − Gv

+ 6 𝐾v + 2𝐺v 𝜈v
5𝐺v 3𝐾v + 4𝐺v

	, 

𝐺R∗ = 𝐺R +
𝜈v

1
𝐺v − GR

+ 6 𝐾R + 2𝐺R 𝜈R
5𝐺R 3𝐾R + 4𝐺R

	, 

where the subscript 0 or 1 indicate void or solid material. 𝑣 ∙ ,  𝐾 ∙  
and 𝐺 ∙  denote the Poisson’s ratio, bulk moduli and shear moduli, 
respectively. The bounds for the Young’s modulus are calculated by 
using the relation 𝐸∗ = 9𝐾∗𝐺∗ ∕ 8𝐾∗ + 𝐺∗  and are shown in Figure 
7. The four cellular material points are fitted using a polynomial 
function. H-S bounds show that the materials in the library are within 
the bounds, and the material model we used earlier in the conceptual 
design generation stage does not satisfy the H-S bounds—see Eq.   
(2). 

Figure 7 Hashin-Shtrikman Bounds for Elastic Modulus. 

Problem formulation 

To find the optimal clusters’ cellular structure with maximized 
crashworthiness, we proposed a conflict multi-objective design 
optimization problem. For solid structures, the structure internal 
energy is proportional to structure mass, i.e., higher internal energy 
along with higher mass. By replacing solid parts with different 
cellular materials, we aim to find structures (Pareto fronts) that have 
high internal energy as well as low mass. Mathematically, this multi-
objective optimization problem is defined as: 

find 𝐌𝐈𝐃 ∈ ℕ_

maximize Internal	Energy
minimize Mass
subject	to 𝑀𝐼𝐷d ∈ 1,2,3,4

𝑘 = 1,… , 𝐾

, ( 4 ) 

where ℕ is the natural numbers that exclude 0, 𝑀𝐼𝐷d is the material 
ID (see Table 3) for cluster 𝑘 . This proposed multi-objective 
programming problem is solved by metamodeling and global 
optimization algorithms. Some key steps are described in the 
following subsections. 

Design of experiments 

Design of experiments is the selection procedure for finding the 
points in the design space that must be analyzed. Many strategies can 
be used to sample the design points [15], e.g., the factorial, D-
optimal, and Latin hypercube designs. Since the design variables 
have only discretized values, D-optimal designs are used in this 
investigation. D-optimal designs are straights optimizations based on 
a chosen optimality criterion and the model that will be fit. The 
optimality criterion is to maximize 𝐗C𝐗 , the determinant of the 
information matrix 𝐗C𝐗 . This optimality criterion results in 
minimizing the generalized variance of the parameter estimates for a 
pre-specified model. As a result, the ‘optimality’ of a given D-
optimal design is model dependent. The model selected in this 
investigation is linear model with interaction terms. That is, suppose 
the number of clusters 𝐾 = 3 (three design variables), then the three-
factor, seven-term interaction model is: 
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𝑦 = 𝛽v + 𝛽R𝑋R + 𝛽Y𝑋Y + 𝛽5𝑋5 + 𝛽RY𝑋R𝑋Y + 𝛽R5𝑋R𝑋5 + 𝛽Y5𝑋Y𝑋5
+ 𝜀 

The levels being considered are: 

𝑋R: 4	levels	 1, 2, 3, 4  

𝑋Y: 4	levels	(1, 2, 3, 4) 

𝑋5: 4	levels	(1, 2, 3, 4) 

The candidate set is a full factorial in all factors containing 45 = 64 
possible design runs. The number of design runs in D-optimal 
designs used in this investigation is 10×𝐾, i.e., 30 in this example. 

Metamodeling 

Unlike initial conceptual design stage, this stage solves crash 
simulations using explicit geometry nonlinear finite element analysis 
(LS-Dyna). To reduce the computational cost of crashworthiness 
design problems, metamodel methodologies are used. Based on our 
previous study, Kriging is chosen to build metamodel for internal 
energy [21]. One challenge in this investigation is to build an 
accurate metamodel. This investigation uses Efficient Global 
Optimization (EGO) scheme to build our metamodel [49]. The EGO 
algorithm works as follows: after we fit an initial metamodel with 
10×𝐾 samples, the expected improvement is maximized using global 
optimization algorithms, such as genetic algorithm, branch-and-
bound algorithm. If the expected improvement is less than 0.1% of 
the present best function value two times in a row, we stop. 
Otherwise, we sample the function where expected improvement is 
maximized, and rebuild the metamodel, and iterate. The expected 
improvement is defined: 

E 𝐼 𝐱 = 𝑦��� − 𝑦 𝛷
𝑦��� − 𝑦

𝑠
+ 𝑠𝜙

𝑦��� − 𝑦
𝑠

, 

where 𝑦���  is the present best function value, 𝑦  is the predicted 
function value, 𝑠 is the root-mean-square error of the predictor, 𝜙 ∙  
and 𝛷 ∙  are the probability density function (PDF) and cumulative 
density function (CDF) of a normal distribution, respectively.  

Optimization 

The design optimization problem is to find the material model for 
each cluster within a given material library. The cluster size 
considered in this investigation is up to 4 clusters. Therefore, the 
maximum design space is 4� = 256. Once the metamodel is built, 
the optimal can be found efficiently by using exhaustive search. One 
should note that the dimension of the design space growth 
exponentially with the number of clusters, once the computational 
cost of exhaustive search is no longer manageable, a more efficient 
global optimal search algorithm should be used.  

Results 

The optimization results for 3 and 4 clusters are shown in Figure 8 
and Figure 9. In the figures, the entire design space is in plotted in 
“+”, i.e., 45 = 64  with 𝐾 = 3  and 4� = 256  with 𝐾 = 4 . “Solid 
material” shows the near linear relationship between structure mass 
and internal energy by using the linear material model Eq.   (2), 

although there is no physical meaning for those material except at 
mass fraction 0 and 1. “K1 cellular material” indicates that the whole 
structure is replacement by one single cellular material, total of 4 
points in diamond are shown in the figure, and the dashed line is a 
polynomial interpolation of these 4 points. “H-S upper bound” and 
“H-S lower bound” are the simulation results of solid structure with 
material elastic modulus sampled from Figure 7. 

As can be seen from Figure 8 and Figure 9, “K1 cellular material” 
sits between “H-S lower bound” and “H-S upper bound”, which is as 
expected. “H-S upper bound” dominates “K1 cellular material”, 
which indicates that our predefined cellular materials are not optimal. 
On the other hand, plenty of “+” points dominate the H-S upper 
bound, which demonstrates that the use of multiple cellular materials 
is more efficient than single phase cellular material. 

Another notable observation from Figure 8 and Figure 9 is that the 
“solid material” (solid-void topologies) dominates all design 
experiments since the model uses artificial material properties which 
do not exist in the real world as illustrated in Figure 7. Additional 
reasons why solid-void topologies are still the optimal include: (1) 
our predefined cellular materials do not consider void structure, since 
void material will bring structure discontinuity during the simulation; 
(2) the material library is predefined and not necessarily optimal.  

 

Figure 8 Design optimization results with 𝐾 = 3. 

 



Page 6 of 8 

7/20/2015 

 

Figure 9 Design optimization results with 𝐾 = 4. 

Figure 10 and Figure 11 show the Pareto-optimal solution (marked 
with magenta “+” in Figure 8 and Figure 9) , i.e., the point closes to 
the utopia point. The contour represents the corresponding cellular 
material structure as in Figure 6. The Pareto-optimal solution for 𝐾 =
3  is at (0.6989, 1.6910×10�)  while for 𝐾 = 4  it is located at 
(0.5265, 1.2780×10�). As can be seen from Figure 11, even though 
we have predefined 4 clusters, the Pareto-optimal solution contains 
only 3 different cellular materials. By using more clusters, one is able 
to achieve more optimal solutions that are beyond “H-S upper 
bound”; by using less clusters, the optimized structures are easy to be 
manufactured. A good choice of number of clusters is the trade-off 
between performance and manufacturability. 

 

Figure 10 Pareto-optimal solution of 𝐾 = 3. 

 

Figure 11 Pareto-optimal solution of 𝐾 = 4. 

Summary and Discussion 

This work proposed a method to optimally design crashworthy 
structures made of functionally graded cellular material. The method 
consists of three stages: conceptual design generation, design 
parameterization (clustering), and metamodel-based multi-objective 
design optimization. The first stage is to generate a good conceptual 
design using topology optimization. The result is a conceptual density 
distribution over the design domain. The second stage is to cluster the 
densities and reduce the dimension of the design space. In this work, 
we use an unsupervised machine learning algorithm—K-means 
clustering. The last stage is the design optimization of the cluster 
cellular structure. In this stage, global optimization algorithm is 
applied on the clustered structure and geometric nonlinearity is 
considered in the finite element analysis model. Due to the 
nonlinearity and complexity of the model, metamodel is used. As a 
first attempt to crashworthiness design using cellular materials, we 
mainly focused on a set of predefined cellular materials. The result is 
a set of Pareto optimization points that maximizes internal energy and 
minimizes structure mass.  

In terms of internal energy absorption and mass, solid-void 
topologies are still dominant [42], but this work shows that designs 
with multiple cellular materials perform better than the ones with a 
single cellular material. The proposed method has proven effective on 
solid-shell thin-wall tubular structures subject to frontal impact [21]. 
This work demonstrates tremendous opportunities to advance this 
method and optimally design cellular vehicle structures subjected to 
side impact.  

The current ongoing research, which includes avoiding predefined 
cellular materials in the third stage of the design algorithm that 
followed by one additional design cellular materials stage, utilizes 
inverse homogenization and topology optimization to design optimal 
cellular material for each cluster based on the results from design 
parameterization stage.  

 
Figure 12 Topology optimized structure with mass fraction 0.25 and internal 
energy 8.5041×10�	mJ. 
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