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We investigate the time-frequency signatures of an on-chip
biphoton frequency comb (BFC) generated from a silicon ni-
tride microring resonator. Using a Franson interferometer, we
examine the multifrequency nature of the photon pair source
in a time entanglement measurement scheme; having multiple
frequency modes from the BFC results in a modulation of
the interference pattern. This measurement together with a
Schmidt mode decomposition shows that the generated con-
tinuous variable energy—time entangled state spans multiple
pair-wise modes. Additionally, we demonstrate nonlocal
dispersion cancellation, a foundational concept in time—energy
entanglement, suggesting the potential of the chip-scale BFC
for large-alphabet quantum key distribution.  © 2017 Optical
Society of America
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Quantum information processing (QIP) promises to improve the
security of our communications as well as to solve some algo-
rithms with exponential complexity in polynomial time [1].
The fundamental unit of quantum information is based on a
superposition of two states, the so-called qubit. It has been pro-
posed to extend this concept to a superposition of many states
(known as a high-dimensional state) for higher density informa-
tion encodings, fault-tolerant quantum computing, and even for
secure protocols in dense quantum key distribution (QKD).
Entangled photon pairs have been demonstrated as one of the
most promising platforms for implementing QIP systems. In
recent years, generation of entangled photons on-chip has gained
attention because of its reduced cost and compatibility with semi-
conductor foundries [2—-5]. Although biphoton frequency combs
(BFCs) have been generated using cavity-filtered broadband
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biphotons [6] and cavity-enhanced spontaneous parametric
downconversion [7], it was only recently that on-chip microreso-
nators have been used to generate entangled photons in the form
of a BFC [8-10]. These demonstrations suggest the use of chip-
scale sources for high-dimensional quantum processing [11-13].
However, studies such as [4,9,10] focused only on single sideband
pairs—the multifrequency nature of their sources (important for
high-dimensional quantum processing) was not explored. In this
Letter, we present examination of the time-frequency signatures
of an on-chip BFC generated from a silicon nitride microring res-
onator. Through Franson interferometry and a demonstration of
nonlocal dispersion compensation, we are able to examine the
multifrequency nature of our photon-pair source.

Figure 1 is a depiction of our experimental setup. To generate
our BFC, we use a tunable continuous-wave (CW) laser to pump
a microring at the resonance located at the frequency w,
(4, ~1550.9 nm). Through a spontaneous four-wave mixing
process, two pump photons decay into one photon at higher fre-
quency, called “signal,” and another photon at a lower frequency,
called “idler.” Because of the resonant structure of the microring,
this process occurs within narrow cavity resonances, described by
a lineshape function ®(Q), and the separation between these res-
onances is Aw, the free spectral range (FSR) of the microring. As a
consequence of energy conservation, the signal and idler photons
are highly correlated in frequency and time. This results in a
comb-like photon pair spectrum or BFC, as shown in Fig. 2(a).
In this figure, we observe a roll-off in the power of the sidebands
as we move away from the pump frequency. This is due to the
finite dispersion of the microring, which reduces the overlap of
the energy-matched resonances as we move away from the central
frequency (see Supplement 1, S.2). As a consequence of energy
conservation, we expect that the quantum state of the generated
biphotons may be written as

N
¥) = aylk k)sps (1)
k=1
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Fig. 1. Experimental setup. The biphoton frequency comb is gener-
ated by seeding a silicon nitride microring resonator (SiN MRR) with
a CW tunable laser. A pulse shaper splits signal and idler sidebands.
Chirped fiber Bragg gratings (CFBGs) with opposite dispersions are used
for the nonlocal dispersion cancellation experiment; unbalanced
(“Franson”) interferometers are used to measure two-photon interference
signatures. Detection is performed using single photon detectors (SPDs)
and a time interval analyzer (TIA).
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Fig. 2. Characterization of biphoton frequency comb. (a) Optical
spectrum. (b) Joint spectral intensity between signal photons with relative
modes from 2 to 7, §,_7, and idler photons with relative modes from 2 to
7, I,_5. Time correlations for (c) S,7,, (d) S373, and (e) S,73.

where
|k, k)S] = /qu)(Q - kAa))lCUP + Q, G)P - Q)S]’ (2)

which represents a superposition of many pair-wise signal and
idler frequency combinations symmetric around the pump
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frequency. While the complex factors a; give the amplitude
weighting and phase of the various signal-idler sideband pairs,
the experiments we conduct are insensitive to phase coherence
between multiple sidebands, and thus depend only on |a;|. The
pulse shaper [14] in Fig. 1 is used as a programmable frequency
filter to separate the desired signal and idler photons and to route
them to a pair of single-photon detectors. Additional bandstop
filters (not shown in Fig. 1) are used at the output of the micro-
ring to remove the pump, which also eliminates the first sideband
pair, and as such, we are able to examine from only sideband pairs
2 and beyond.

To verify the correlations of our comb-like photon pairs, we first
select the signal and idler photons of the second sideband pair
(831,). Using the pair of single-photon detectors along with an
event timer, we record the relative arrival time between signal
and idler photons as coincidences. Some accidental events are also
registered as a result of detecting background (uncorrelated) pho-
tons—any event that is not due to a signal and idler from the same
photon pair is considered an accidental (dark counts, signal and
idler from different pairs, or any such combination). Figure 2(c)
shows the measured coincidences (accidentals were not sub-
tracted); the sharp peak with a full width at half-maximum
(FWHM) of ~600 ps corresponds to the temporal correlation.
This is in agreement with the expected correlation time,
which is calculated from the inverse of the resonance linewidth
(~27 x 270 MHz). Furthermore, to show correlations exist only
between energy-matched frequencies, we measured the coinciden-
ces between the third signal and third idler (5573) [Fig. 2(d)], and
the coincidences between the second signal and third idler (S,73)
[Fig. 2(e)]. The absence of a coincidence peak between the second
signal and third idler reveals a lack of correlation between mis-
matched frequencies. In addition, we were able to obtain a
high coincidence-to-accidental ratio (CAR) of 52 for the third side-
band pair, without compensating for the losses in our setup; if we
take into account the losses from the biphoton generation stage up
till detection, the corrected CAR would be 655.

To show the spectro-temporal correlations across the photon-
pair spectrum, we measured the joint spectral intensity (JSI) by
using the pulse shaper as a programmable frequency filter to route
different sidebands to the pair of detectors. The time correlation
measurement was repeated between all combinations of the side-
band pairs from 2 to 7 (S,_,7,_7). Figure 2(b) shows the measured
JSI, which provides a strong confirmation that time correlations
appear only in the energy-matched sidebands.

Next, we examine the signatures of using multiple frequency
bins of the BFC in a two-photon interference experiment [15]. In
this experiment, a Franson interferometer—two unbalanced
Mach—Zehnder interferometers (MZIs)—are placed in the signal
and idler paths (Fig. 1). The relative delays between the long and
short arms in the signal and idler interferometers, defined as z,
and 7;, respectively, are approximately 6 ns. This value is much
less than the coherence time of the pump (~1 ps) but greater than
the coherence time of a single photon (~1 ns) to avoid self-in-
terference. Here, the difference between 7, and 7, is defined as
7,. When 7, is near to 0, the arrival time difference between sig-
nal and idler photons traveling through the long arms is approx-
imately the same as when they both travel through the short arms.
In consequence, we have path indistinguishability in this detec-
tion scheme using gated detection to register only the mentioned
events (|SS) and |LL)), discarding the events in which the signal
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photon travels the long path and the idler photon travels the short
path and vice versa (|SL) and |LS)). By setting 7, to 0 and varying
7, and 7; together, we retrieve a sinusoidal coincidence pattern
with a period of ~2.5 fs (half the period of the pump laser)
and a visibility of 80% = 5% for all signal and idler sidebands
(see Supplement 1, S.3). [Here, instead of using two interferom-
eters, we sent signal and idler sidebands (S, 4/, 4) through one
interferometer and they were split at the output using a pulse
shaper.] The interference pattern is similar to those reported in
previous microcavity BFC experiments that examined only a sin-
gle signal—idler pair [4,9,10]. The high visibility [16] shows for
the first time that we maintain energy—time entanglement even
for biphotons consisting of a multiplicity of sideband mode pairs.

To see the multifrequency signature, we fix 7, and vary 7;
(hence varying 7,) in a two interferometer experiment.
Sweeping 7, over a small range results in a sinusoidal interference
pattern in the registered coincidences, as shown in Figs. 3(a)
and 3(d). The period of ~5 fs corresponds to the average optical
carrier frequency. For Figs. 3(a)-3(c) we use two pairs of side-
bands (S, 3/, 3). By varying 7, over a larger range, we observe
modulation and revival of the envelope of the two-photon fringes
with a period of 2.6 ps, corresponding to the inverse of the mi-
croring’s FSR. In contrast, the fringe envelope for an individual
signal—idler pair should decay smoothly on the sub-nanosecond
time scale of Fig. 2 [4,9]; the observation of picosecond scale
modulation arises from the superimposed contributions of
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Fig. 3. Two-photon interference experiment of BFC. Interference
fringes measured with a Franson interferometer for (a) small and (b) large
7, ranges with two sideband pairs. (c) The visibility of the sinusoidal
fringes in (b). Registered coincidences using three sideband pairs for
(d) small and (e) large 7, ranges. (f) The visibility of the sinusoidal fringes
in (e). The blue error bars are the experimental results, the red curves in
(b), (¢), (e), and (f) are theoretical predictions, and the green curves in (a)
and (d) are sinusoids fitted to the experimental data.
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multiple signal-idler frequency bins. For two signals and idlers,
the coincidence rate, C, is of the form

W;, + 0 W;, - 0
C x 1+ cos | 2wz, —I—Trd cos Trd ,

@)
where wy is the pump frequency and ; is the idler frequency of
the nth sideband pair. The envelope and visibility of the coinci-
dences agree with the quantum mechanical model in Eq. (3). We
repeated this experiment for three sideband pairs (S, 47,_4)—the
intensities of these sidebands were equalized with the pulse shaper
in order to have almost equal contribution in the interference ex-
periment. With increased number of sideband pairs, the visibility
versus delay curve becomes sharper [Figs. 3(d)-3(f)], again in
agreement with theory (see Supplement 1, S.3). The visibility
of the fringes in Fig. 3 is as high as 92% = 13%. The modulation
in the fringe envelope, down to 14% = 2%, gives us clear evi-
dence of equal contribution of these sidebands in the coincidence
pattern.

After examining pairwise time entanglement, we calculate the
Schmidt number based on the measured JSI. The degree of cor-
relations, calculated via Schmidt decomposition, gives us a
Schmidt number lower-bound (X ,;;,,) of 4.0 [17]. Therefore, we
are able to corroborate a high frequency correlation of our pho-
tons, since K, is greater than 1. If the off-diagonal terms are all
set to zero in our measured JSI, we obtain a Schmidt number of
4.08, which confirms that we have a very low number of acciden-
tals in our measurements. This Schmidt number can also be in-
terpreted as the number of transferable bits (log, (K ;) = 2)
with a photon pair. We note that while we have large continuous
variable energy—time entanglement under pairs of resonance
modes as suggested by ®(€2) in Eq. (2)—which would result
in a very high Schmidt number—our measurement technique
does not allow access to the fine structure under each resonance.
Thus, the Schmidt analysis is done on 4, but time—energy entan-
glement is on |4, £)g;. Therefore, our Schmidt number bound
indicates that the continuous variable energy—time entangled state
spans four effective modes (given by ay,).

We proceed to examine the potential of the BFC for quantum
key distribution by demonstrating a nonlocal dispersion cancel-
lation measurement [18], wherein the correlation peak maintains
its undispersed form even though the signal and idler photons are
dispersed. This nonlocal dispersion cancellation effect can en-
hance security in QKD by serving as a non-orthogonal basis
to direct time-correlation measurements [19,20]. First, we use
four sideband pairs (S,_s/,_s) and measure the correlation func-
tion in the absence of dispersion [Fig. 4(a)]. Next, we apply
dispersion of 2 ns/nm (using a chirped fiber Bragg grating, which
provides dispersion equivalent to that of ~120 km of standard
single-mode fiber, but with a loss of only 3 dB) to only the signal
sidebands of the BFC; this results in a measurement of four cor-
relation peaks corresponding to the four different sideband pairs.
The peaks are spaced by 6 ns, an expected outcome since different
frequencies travel at different speeds in a dispersive medium
[Fig. 4(c)]. Applying the opposite dispersion to only the idler side-
bands will result in a similar outcome but with opposite sign of
delay variation [Fig. 4(d)]. These measurements with the sepa-
rated correlation peaks are equivalent to a frequency-to-time map-
ping of our BFC, thus enabling us to resolve the JSI in the
temporal basis [21]. To emphasize this equivalence, the diagonal


https://www.osapublishing.org/optica/viewmedia.cfm?URI=optica-4-6-655-s001.PDF
https://www.osapublishing.org/optica/viewmedia.cfm?URI=optica-4-6-655-s001.PDF

Letter

3 3
~15 x 10 - x 10
2 | @ 2 2 Sashs
S0 e”
2 Syshys 3 -Donl,;
2 NoD 2 1
Q Q
25 2
g 205
g £
o S
-40 -20 0 20 40 -40 40
Delay [ns] Delay ns]
3
=3 x 10 =3 x10°
= (c) Sibhg Syshhs S S,51hs
\3/ . ° -Donl,;
7 2 72
Q Q
Q Q
= =
Q Q
=h =B
Q Q
£ £
g £
Oy Akl Oy Audedl b
-40 -20 0 20 40 -40 40
Delay [ns] Delay ns]

Fig. 4. Nonlocal dispersion cancellation experiment. Time correlation
of four sideband pairs S, 57, 5 (a) without dispersion, (c) with positive
dispersion of D = 2 ns/nm applied on signal photons S, 5, (d) with
negative dispersion of D = -2 ns/nm applied on idler photons 7, s,
and (b) with both dispersions applied at the same time as shown in
Fig. 1 for nonlocal dispersion cancellation. In these plots, accidentals
were subtracted and the effect of a finite detection-gate width (which
results in a roll-off in coincidences as one moves away from zero delay)
was compensated. The red squares in (b) represent the diagonal of the JSI
in Fig. 2(b) for the sideband pairs S, 57, 5, normalized to the maximum
of the blue plot for ease of visualization.

terms of the JSI for sideband pairs (S;_s, /5_s) are normalized to
the maximum of Fig. 4(c) and plotted as red squares; the good
agreement with the correlation peaks in time provides a quanti-
tative confirmation of frequency-to-time mapping. When we ap-
ply both dispersive media (positive dispersion on the signals and
negative dispersion on the idlers), we expect nonlocal cancellation
of the dispersion. As shown in Fig. 4(b), this behavior is clearly
observed: the coincidence plot collapses back into a single peak,
with an improvement in the peak-to-background ratio evident
despite the extra loss incurred through the introduction of a
second CFBG.

In conclusion, we explore the time and frequency signatures of
a BFC generated in a silicon nitride microring resonator. Two
photon interference experiments demonstrate that continuous
variable energy—time entanglement persists for biphotons span-
ning a multiplicity of discrete frequency modes and reveal inter-
ferometry signatures characteristic of the multiple frequency
mode content. A Schmidt number analysis indicates that the con-
tinuous variable energy—time entangled state spans four effective
discrete frequency modes. This suggests potential utility to high-
dimensional frequency-bin coding recently proposed for quantum
information processing [13]. Higher dimensionality should be
possible through dispersion engineering, which would result in a
BFC with increased number of frequency bins with a more homo-
geneous flux of photons in a larger bandwidth.

Vol. 4, No. 6 / June 2017 / Optica 658

Funding. National Science Foundation (NSF) (ECCS-
1407620).

Acknowledgment. JA] acknowledges support by
Colciencias and Fulbright Colombia. We acknowledge Xiaoxiao
Xue and Yi Xuan for providing the microring sample and thank
Keith McKinzie, Nathan O’Malley, and Joseph M. Lukens for
comments and discussions.

"These authors contributed equally to this work.

See Supplement 1 for supporting content.

REFERENCES

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (Cambridge University, 2010).

2. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M.
Lipson, A. L. Gaeta, and P. Kumar, Opt. Express 14, 12388 (2006).

3. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S.
Massar, Opt. Express 17, 16558 (2009).

4. S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and
A. L. Gaeta, arXiv:1508.04358 (2015).

5. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J.
Sipe, and D. Bajoni, Optica 2, 88 (2015).

6. Y. J. Lu, R. L. Campbell, and Z. Y. Ou, Phys. Rev. Lett. 91, 163602
(20083).

7. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, Appl. Phys. Lett.
91, 191104 (2007).

8. C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A.
Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R.
Morandotti, Opt. Express 22, 6535 (2014).

9. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T.
Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R.
Morandotti, Science 351, 1176 (2016).

10. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang,
C. A. Ramos, L. A. Ngah, T. Lunghi, E. Picholle, N. Belabas-
Plougonven, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, G.
Sauder, L. Labonté, and S. Tanzilli, Opt. Express 24, 28731 (2016).

11. Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y.-X. Gong, J. C. Bienfang,
A. Restelli, J. H. Shapiro, N. C. Wong, and C. W. Wong, Nat. Photonics 9,
536 (2015).

12. B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, New J. Phys. 16,
033017 (2014).

13. J. M. Lukens and P. Lougovski, Optica 4, 8 (2017).

14. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).

15. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).

16. R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 93,
010503 (2004).

17. A. Eckstein, G. Boucher, A. Lemaitre, P. Filloux, I. Favero, G. Leo, J. E.
Sipe, M. Liscidini, and S. Ducci, Laser Photon. Rev. 8, L76 (2014).

18. J. D. Franson, Phys. Rev. A 45, 3126 (1992).

19. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D.
Englund, Phys. Rev. A 87, 062322 (2013).

20. C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L.
Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F.
Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H.
Shapiro, and D. Englund, Phys. Rev. A 90, 062331 (2014).

21. A. Valencia, M. V. Chekhova, A. Trifonov, and Y. Shih, Phys. Rev. Lett.
88, 183601 (2002).


https://www.osapublishing.org/optica/viewmedia.cfm?URI=optica-4-6-655-s001.PDF

	XML ID funding

