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§1. Introduction. In [4], we investigated the spaces of continuous functions
on countable products of compact Hausdorff spaces. Our main object here is
to extend the discussion to arbitrary products of compact Hausdorff spaces.
We prove the following theorems in Section 3.

THEOREM 3.1. Let \K7: yeF}, with F an arbitrary index set, be a family
of compact Hausdorff spaces. Suppose that, for each finite subset O of F, the
space

(C(U{K^. <peO}), pointwise)

is a-fragmented. Then the space

(C(FI \KY: yeF}), pointwise)

is a-fragmented.

Here and elsewhere, a Banach space equipped with a topology, such as the
weak topology or pointwise topology, is said to be "a-fragmented" if it is a-
fragmented with respect to the norm metric.

By combining a result of Zizler [12] with one of our lemmas we also obtain
a theorem.

THEOREM 3.2. Let {Kr: yeV}, with F an arbitrary index set, be a family
of compact Hausdorff spaces. Suppose that, for each finite subset <I> of F, the
space

has an equivalent locally uniformly convex norm. Then

C(\\{Ky:yeT})

has an equivalent locally uniformly convex norm.

In the original version of the present paper submitted in 1995, we stated:
"As far as we know it may be possible to prove that, if H and K are two
compact Hausdorff spaces and (C(H), pointwise) and (C(K), pointwise) are
both a-fragmented, then (C(HxK), pointwise) is also a-fragmented. If this
is so, then the condition that for each finite subset O of F the space

C(U {Kv: (pe<t>}, pointwise)

is a-fragmented, can be replaced by the more elegant condition that each
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(C(KY), pointwise) with y e F is cr-fragmented, in Theorem 6.1 [Theorem 3.1
above here]."

The missing link between Theorem 3.1 and its "more elegant" version has
now been supplied independently by Ribarska [11], Moors [9], and Namioka-
Pol [10]. On the other hand, the elegant version of Theorem 3.2 still eludes us.
but if the pointwise lower-semicontinuity of the norm is assumed everywhere.
then it is true. For, recently Babev and Ribarska [1] have proved that, if H
and K are compact Hausdorff spaces such that each of C(H) and C(K) can
be renormed with an equivalent pointwise lower-semicontinuous locally uni-
formly convex norm, then C(Hx K) can also be so renormed. Furthermore.
Theorem 3.2 remains true if "locally uniformly convex norm" in the hypothesis
and the conclusion are replaced with "pointwise lower-semicontinuous locally
uniformly convex norm". The justification of this additional fact is outlined
at the end of the paper.

§2. Generalizations of two theorems and a lemma. In order to prove one
of our main theorems, we need to give simple generalizations of Theorem 6.1
of [4] and of Theorem 2 of [7]. It will also be convenient to reformulate a
special case of Lemma 2 of [12]. In this section we give the necessary details.

THEOREM 2.1. Let {Xr: yeF} be a transfinite sequence ofBanach spaces.
For each yeV, let xY be a topology for XY with respect to which the norm of XY

is lower-semicontinuous. Let

X=co{XY:yer}

be the co-sum of the Banach spaces and let x be the topology on X induced by
the product topology ofl\{(XY, xY): y e F } . If each {XY, xY) is o-fragmented,
then so is (X, x). If each (Xr, xy) is o-fragmented using xr-ciosed sets, then {X,
x) is a-fragmented using x-closed sets.

Proof. For each y e Y and each r > 0, the fact that the norm of Xr is lower-
semicontinuous for xr ensures that each set of the form

{xeXY:\\x\\^.r}

is Ty-closed. Using this in place of the corresponding result for the weak top-
ology, and working with the topologies xr and x in place of the weak topolog-
ies, the theorem follows by the proof of Theorem 6.1 of [4].

THEOREM 2.2. Let X be a Banach space and let x be a topology with respect
to which the norm is lower-semicontinuous. Suppose that {TY: yeV} is a family
of linear maps Tr: X—>X that are norm and x continuous and satisfy the follow-
ing conditions.

(i) For each xsX, the map y<-+\\Trx\\ belongs to co(T).
(ii) Each xeX is in the norm closed linear span of {TYx: ye V\.
(iii) For each y e F , the norm closure Xr of TrX in X, when taken with the

relativization of x, is o-fragmented.

Then (X, x) is o-fragmented.
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Note that this theorem reduces to the first part of Theorem 2 of [7] when
T is taken to be the weak topology on X.

Proof. Repeat the original proof of Theorem 2 in [7], with the weak top-
ology replaced by x and using Theorem 5.1 above where the original proof
calls for Theorem 6.1 of [4].

LEMMA 2.1. Let X be a Banach space and suppose that, for some infinite
limit ordinal Y, there is a family {Pr: O^yssF} of linear maps PY: X—>X
satisfying:

(a) \\PY\\^\ forO=£yssr;
(b) PT is the identity on X, and Po - 0;
(c) PaPp = PpPa = Pa for 0 ss a < 0ss T;
(d) for each limit ordinal A with 0 < A^ F, and for each xeX,

lim PMx

Then there is a family {Tr: 0 =s y < F} of linear maps T7: X—>X such that
(i) ||7V||*£2,0«y<r;

(ii) for x&X the map y\\Tyx\\ belongs to co(T);
(iii) each XEX belongs to the closed linear span of the set {TYx: 0 =£ y < F};
(iv) for 0 =£ y < r ,

TrXaPy+lX.

Further, if X is any topology on X, and the maps Pr, 0 ̂  y < F, are X-continuous,
then so are the maps TY for 0 ̂  y < F.

Proof. We define a family { r y : 0 ^ y < F } of linear maps T7: X^X by

taking

Ty = Py + ]-P7 for0s£y<F.

The condition (i) follows immediately from condition (a).

To prove that condition (ii) holds, we need show that, for each xeX and
for each e > 0, there are only finitely many y with 0=s y < F for which

\\Trx\\^e.

Suppose on the contrary that there are infinitely many fi with 0 =£ fi < F and
||7"p.Y||^e. Let H\,[i2, • • •,/xn, • • •, with ^3=1 , be an infinite increasing
sequence of such ordinals. Then

\\(P,i+lx)-(P,,x)\\^£ for 13=1.

Let A be the supremum of the ordinals /i,-, /s= 1. Then A is necessarily a limit
ordinal with A^sF and

lim fi,•= A.
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By condition (d),

lim P^x = lim P^ + iX — P\X.

This contradicts the inequality

Thus the map y*-> 117̂ x11 belongs to co(F) and the condition (ii) holds.

To prove (iii) we consider any point x of X. Let E be the closed linear span
of {T7x: 0=sy <F}. Since, by (b) and (d),

x = Prx = lim Pfj x,

it is sufficient to show that P^XEE for each fj. with O s s^<F. We do this by
induction. Clearly P0x = 0sE. Suppose that, for some X with 0 < A < F . we
have Pyx- E for each y with O^y <A. If A is a limit ordinal, then, by (d).
Pxx- Xvca.y-^\PyX€iE. If A = a + 1 , then PaxeE. Since Pa^,x~ Pax = Tax
belongs to E we have P\X = (Pa+iX-Pax) + PaxeE. Hence PixeE for
0 =£ A < F as required.

For the last condition (iv) we note that, if 0 =s y < F, then

T h u s r Y + l x y
The ultimate remark about the topology T follows immediately from the

definition of the maps Tr in terms of the maps Pr.

§3. Products of compact Hausdorff spaces. In this section we prove two
of our main theorems.

THEOREM 3.1. Let {KY: y e F } , with F an arbitrary index set, be a family
of compact Hausdorff spaces. Suppose that, for each finite subset <S> of F, the
space

(C(U {Ky: (ps<P\), pointwise)

is a-fragmented. Then the space

(C(U {Kr: yeF}), pointwise)

is o-fragmented.

THEOREM 3.2. Let {KY: yeV}, with F an arbitrary index set, be a family
of compact Hausdorff spaces. Suppose that, for each finite subset O of F, the
space
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has an equivalent locally uniformly convex norm. Then

has an equivalent locally uniformly convex norm.

We first prove two lemmas.

LEMMA 3.1. Let {K7: 1 =£ y < F}, with F an infinite limit ordinal, be a fam-
ily of compact Hausdorff spaces. Write

for 1 < a s s T and K{1) = {0}. Then there is a family {TY:Q^y<T} of norm
and pointwise continuous linear maps Tr: C(K)—>C(K) with the following
properties.

(i) ||7V||«2/orO=£y<r.
(ii) Forfe C(K) the map y-> | | r r / | | belongs to co(T).
(iii) Each f in C(K) belongs to the closed linear span of the set

{7V/:6*£y<r}.
(iv) For 0 =£ y < F, the norm closure of the set T7 C(K) in C(K) is linearly

isometric and linearly pointwise homeomorphic to a closed linear sub-
space of C(K(r + l)).

Proof For each y with 1 ss y < F, we select a base point kr in KY. We use

with xy e Kr for 1 =£ y < F, to denote the typical point in K. For x in K and
1 «sa=£F we write

for a point in Â "* corresponding to x, and we use

(x<a), k[a])

for the point y in K with

The map .Y >-» (x(c°, k[al) is clearly a continuous retraction of K onto a compact
subset homeomorphic to K{a). Let Pa be the corresponding map from C(K)
to itself carrying the function / o f C(K) to the function g of C(K) defined by

g(x) =f{x(a\k[a\

and let Po = 0. Note that Pa is a bounded linear projection from C(K) to
C(K) that is continuous from (C(K), pointwise) to itself.

It follows immediately from the definitions that conditions (a), (b), and (c)
of Lemma 2.1 are satisfied with X= C(K).
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We now prove two facts.
(d) For each limit ordinal /3 with 0</3=sr, and for each / in C(A"),

hmPaf=Ppf

in the norm topology.
(e) For 0 ^ a < T, the range of Pa in C{K) is a closed linear subset of C(K)

that is linearly isometric and linearly pointwise homeomorphic to
C{K{a)).

We prove (d). Let / i n C(K) and e > 0 be given. Just as in Theorem 4.4 of
[4], there is a finite subset $ c f such that, whenever x, yeK and

Xy = yv for (pe O,

then

\f{x)-f(y)\<e.

Since j3 is a limit ordinal, there is an a0< fi with [a0, /3)nO = 0 . Now, when-
ever ae[a0, j3) and xeK, we have

(xla\ k[a\ = (xW), k[\ for <pe O,

so that

\f(x(a\kla])-f(xw\km)\<e.

Thus

\\Paf-PpJ\\<e.

Since y > 0 is arbitrary, this ensures that

lim Paf=Ppf,

as required.
To prove (e) we introduce, for l = £ a < r , maps <pa from C(K'":) to C(K)

and \|/« from C(K) to C(/s:(a)). For g in C(Kla)) we take <p«(g) to be the
function in C(K) given by

F o r / i n C(K) we take y/a(f) to be the function in C(K<a)) given by

Clearly

and

is the identity on C(K(a)).
Furthermore, \j/a maps C(AT) onto C(K(a)) and <pa is an isometric embed-

ding of C{K{a)) into C(K). It can also be seen directly that q>a embeds
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(C(K[a)), pointwise) homeomorphically into (C(K), pointwise), It follows that

range Pa = range (q>a ° \j/a) = range <pa,

so that range Pa is isometrically isomorphic and pointwise homeomorphic to
C(KW)). This proves (e).

The conditions (a) to (d) of Lemma 2.1 are now satisfied with X= C(K),
and further, for 0=s a < F, the space Pa + iC(K) is isometrically isomorphic and
pointwise homeomorphic to C(K(a + l)). Thus, by Lemma 2.1, there is a family
{Tr: 0=sy<F} of norm and pointwise continuous linear maps T7:
C(K)^>C(K) satisfying the conditions (i) to (iv).

For the next lemma, we retain the notation used in the statement of Lemma
3.1. In particular, F is an infinite limit ordinal.

LEMMA 3.2. (1) If, for each a with l ^ a < F , (C(AT(a)), pointwise) is a-
f'ragmented, then (C(K), pointwise) is also a-fragmented.

(2) If, for each a with 1 =£ a < F, C(K(a)) has an equivalent locally uniformly
convex norm, then C(K) also has an equivalent locally uniformly convex norm.

Proof. By Lemma 3.1 there is a family {Ta: 1 =£ a < F} of linear maps Ta:
C(K) —>C{K) satisfying the conditions (i) to (iv) of that lemma. Condition (iv)
ensures that (TaC(K), pointwise) is a-fragmented in case (1) and that the norm
closure of TaC(K) in C(K) has an equivalent locally uniformly convex norm
in case (2).

The result (1) follows by Theorem 2.2 above. The result (2) follows by use
of Theorem 1 of Zizler [12].

We can now give the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. We use induction on the cardinality of F. There is
nothing to prove if F is finite. So we suppose that, for some infinite cardinal
Kg. the theorem holds for all cardinals less than Kg. After well-ordering, we
may suppose that F is the least ordinal with cardinal Kg. Then the hypotheses
of Lemma 3.2(1) are satisfied, and we conclude that (C(K), pointwise) is a-
fragmented when jF| = Na. The result follows by transfinite induction.

Proof of Theorem 3.2. The result follows as in the proof of Theorem 3.1
using Lemma 3.2(2) rather than Lemma 3.2(1).

§4. Final remarks. (1) As mentioned in the Introduction, this paper is a
revision of an earlier one of 1995. Many results in the earlier version have
been made obsolete by the subsequent development, and they are omitted in
the present paper. However the following result seems new and worth men-
tioning here. The proof is rather long. Let K\, K2,...,be totally ordered
spaces that are compact in their order topology. Write K- 11;*= i Kt. Then (C(K),
pointwise) has a countable cover by sets of small local norm diameter.
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(2) In the Introduction we have remarked that Theorem 3.2 remains valid
if each "locally uniformly convex (luc) norm" in the statement is replaced with
"pointwise lower-semicontinuous (lsc) luc norm". We see this as follows: In
Lemma 3.1, assume that, for each y with 0 ^ y < F, C(Kr+[) admits an equival-
ent pointwise lsc luc norm. Then, for each y, the map Tr is pointwise continu-
ous and Tr(C(K)) admits an equivalent pointwise lsc luc norm. Also the
supremum norm of C(K) is clearly pointwise lsc. Now given these facts, the
luc norm constructed from the family {7"y:0s£y<r} using Theorem 1 of
Zizler [12] is easily seen to be pointwise lsc. (The same kind of argument has
been used by Deville and Godefroy in [2].) It follows that Lemma 3.2(2), and
hence Theorem 3.2, remains valid when pointwise lower-semicontinuity is
added to the assumption and the conclusion.

For a discussion of compact totally ordered spaces, see [8].
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