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Abstract: Diffuse optical tomography (DOT) aims at recovering three-
dimensional images of absorption and scattering parameters inside diffusive
body based on small number of transmission measurements at the boundary
of the body. This image reconstruction problem is known to be an ill-posed
inverse problem, which requires use of prior information for successful
reconstruction. We present a shape based method for DOT, where we
assume a priori that the unknown body consist of disjoint subdomains with
different optical properties. We utilize spherical harmonics expansion to
parameterize the reconstruction problem with respect to the subdomain
boundaries, and introduce a finite element (FEM) based algorithm that
uses a novel 3D mesh subdivision technique to describe the mapping
from spherical harmonics coefficients to the 3D absorption and scattering
distributions inside a unstructured volumetric FEM mesh. We evaluate
the shape based method by reconstructing experimental DOT data, from
a cylindrical phantom with one inclusion with high absorption and one
with high scattering. The reconstruction was monitored, and we found a
87% reduction in the Hausdorff measure between targets and reconstructed
inclusions, 96% success in recovering the location of the centers of the
inclusions and 87% success in average in the recovery for the volumes.
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1. Introduction

In this paper we present a shape based reconstruction method for Diffuse Optical tomogra-
phy (DOT). DOT [1], seeks the recovery of absorption and scattering parameters of biological
tissues, given measurements of transmitted light through tissue of several centimeters in thick-
ness. There are several physiologically interesting parameters which can be derived from the
knowledge of the absorption and scattering coefficients of light in tissue. These include tissue
oxygenation, blood volume and blood oxygenation [2, 3]. Primary applications are the detec-
tion and classification of tumorous tissue in the breast, monitoring of the oxygenation level in
infant brain tissue, and functional brain activation studies.

Image reconstruction in DOT is a non linear inverse problem, which is highly unstable with
respect to measurement noise. Traditionally, this image reconstruction problem is solved using
a high dimensional voxel based parameterization for the absorption and scattering parameters.
The success of the reconstruction depends on the inclusion of additional (a priori) informa-
tion to stabilize the reconstruction. Most commonly the prior information is included into the
problem either in the form of regularisation techniques, which imply the specification of a
prior probability distribution of voxel values based on geometric, local smoothness, or statis-
tical asumptions[4, 5, 7, 8, 15], by specification of tissue classifications and projection into a
subspace formed by regional groupings[6, 10, 11, 12], or a combination of methods[13, 14].
Reviews on the approaches for inclusion of a priori information can be found, for example, in
[9, 16, 17].

In this paper, we consider a different approach where the unknown body can be assumed
to consist of a small number of subdomains of different tissues with different absorption and
scattering values. Based on the assumption that the unknowns in such cases could be defined
by the subdomain boundaries, a field of shape based reconstruction techniques has emerged
in recent years. There have been many results in literature of either level-set techniques [18,
19, 20, 21, 22, 23, 24], where the boundaries of the subdomains are implicitly modeled by
the zero level of level-set functions, or parametric methods [25, 26, 27, 28] where an explicit
parameterisation of the boundaries is used. In the case of the shape based reconstructions that
use an explicit parameterisation of the boundaries, many different ways to describe the shapes
have been used such as spherical harmonics, ellipsoids and spheres in 3D or Fourier curves,
and Hermite polynomials, in 2D. The use of shape parameterisation makes the reconstruction
problem less ill-posed by providing implicit regularisation due to the reduced dimensionality of
the problem. Furthermore, in shape based approaches a priori information about the topology,
the approximate locations and shapes of the unknown subdomains and their optical properties
can be incorporated in the inversion directly and the division of the body to different tissue
types is obtained without post process segmentation.

In this paper, we present a three-dimensional (3D) shape based approach for DOT. We pa-
rameterize the inverse problem with respect to the spherical harmonics coefficients of the sub-
domain boundaries. To develop the FEM based forward mapping from the spherical harmonics
coefficients to the DOT data, we generalize the 2D element division technique presented in
[26] into a 3D element subdivision technique for the mapping of the spherical harmonics co-
efficients to the absorption and scattering distributions inside an unstructured volumetric FEM
mesh. In our previous work [25] we have evaluated a boundary element method (BEM) based
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3D shape estimation method for reconstructing simulated DOT data. In this work we evaluate
the shape based method by reconstructing experimental data and recover the location and shape
of absorption and scattering targets inside a cylindrical phantom.

This paper is organized as follows. In section 2 we present the diffusion equation based model
used for the transport of light in DOT. Section 3 describes the discretisation steps for modeling
of measurements for given shape parameters describing the boundaries of the subdomains. In
section 4 the inverse problem is formulated as finding the spherical harmonic coefficients that
minimize the least squares residual between the experimentally measured and the predicted
data. The derivation of the Jacobian of the forward model and an iterative method for solving
the inverse problem is implemented in the following subsections. Experimental phantom results
are given in 5. Finally, conclusions and ideas for future work are given in the last section of this
paper.

2. Forward model

The most common model for OT in a highly scattering medium is the diffusion approximation
to the radiative transfer equation [1]. In a domain Ω bounded by boundary ∂Ω we consider the
diffusion equation in the frequency case :

−∇D(r) ·∇Φ(r,ω)+ µa(r)Φ(r,ω)+
iω
c

Φ(r,ω) = q(r,ω) (1)

In (1), D and µa are the diffusion and absorption coefficients, ω is the source modulation fre-
quency, Φ is the photon density and c the speed of light in the medium. The boundary source
distribution q(r;ω) represents the number of photons at a boundary position r; The diffusion
coefficient is given by

D =
1

3(µa + µ ′s)
, (2)

Where µ ′s denotes the reduced scattering coefficient. The appropriate boundary condition for
our problem is of the Robin type

Φ(r,ω)+2ζ D(r)
∂Φ(r,ω)

∂ν
= 0, r ∈ ∂Ω (3)

where ζ models the refractive index mismatch at the boundary ∂Ω and ν is the outward surface
normal at r.

In the remainder of the paper we refer to the space of parameters p = {µa,D} as P . The
space of fields Φ will be denoted as F and the space of data y will be denoted as Z . The data
y will be calculated by the use of a measurement operator M : F →Z in the form:

y(r) = MΦ =−D(r)
∂Φ(r;ω)

∂ν
, r ∈ ∂Ω (4)

The operator typically calculates a vector of weighted integrals of the (complex-valued) fields
Φ along a set of surface elements at ∂Ω where the detectors are located ( one integral per
detector) . For our analysis it is sufficient to assume that this operator is linear and the adjoint
measurement operator M∗ : Z →F is also well defined. The adjoint operator will be used for
defining artificial ’adjoint sources’ for the calculation of the sensitivity functions in section 4.

Equations (1),(3) and (4) can also be formally described as an operator A mapping from the
parameter space to the measurement space

A : P →Z , A(p) = y , p ∈P and y ∈Z (5)
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3. Discretization with FEM

There have been many approaches, such as finite differences, finite elements and boundary
elements (BEM), for the solution of the diffusion equation model in arbitrary shaped domains
Ω. In this work we have adopted the finite elements method (FEM) to the application of a three
dimensional shape based problem. This choice was motivated by the work [26]. In addition in a
FEM problem we can easily combine piecewise constant regions together with inhomogeneous
background, and the size of the system matrix does not depend on the number of disjoint regions
presented in the problem as in the case of BEM, [25].

In FEM the domain Ω is divided into N disjoint elements Ω =
⋃N

n=1 Hn joined at i = 1 . . .h
vertex nodes Ti. In this paper we present the method in terms of tetrahedral elements, although
it could easily be generalized for other types of elements. Given the set of Ti nodes and a set of
associated basis functions υi(r), the solution for the field Φ defined in Ω, can be approximated
by a piecewise continuous function Φ(r) = ∑h

i=1 φiυi(r), where Φ = {φi} is the h-dimensional
vector of basis coefficients and υi are linear basis functions with limited support over the el-
ements that have the node Ti as one of their vertices. From previous work [29, 34], this basis
representation transforms the continuous problem of equation (1) and (3) into the linear system
of the FEM framework. (

K(D)+C(µa)+
1
2

αE+ iωB

)
Φ = q (6)

where α comes from the boundary conditions (3), and the system matrices K,C,E,B are given
by:

Ki j =
∫

Ω
D(r)∇υi(r) ·∇υ j(r)dr

Ci j =
∫

Ω
µa(r)υi(r)υ j(r)dr (7)

Ei j =
∫

∂Ω
υi(r)υ j(r)dS

Bi j =
1
c

∫

Ω
υi(r)υ j(r)dr

Equation (6) is formally solved by matrix inversion:

Φ =
(

K(D)+C(µa)+
1
2

αE+ iωB

)−1

q (8)

In the shape based-method we assume that the domain Ω contains L simply connected subdo-
mains {Ω`}, ` = 1, . . . ,L, which are bounded by closed surfaces {Γ`} and have constant optical
parameters µa and D (the remaining “background” domain is denoted by Ω0 = Ω \⋃L

`=1 Ω`).
Since this is a three dimensional application we choose a real valued spherical harmonics para-
metric representation for the boundaries of the regions {Ω`} as introduced in [25]. The surface
locations r|Γ`

, of a surface Γ`, are given by the representation

r|Γ`
=





xΓ`
(ϑ ,ϕ) = ∑W

l=0 ∑l
m=−l C

`,m
l,x Ỹ m

l (ϑ ,ϕ),
yΓ`

(ϑ ,ϕ) = ∑W
l=0 ∑l

m=−l C
`,m
l,y Ỹ m

l (ϑ ,ϕ),
zΓ`

(ϑ ,ϕ) = ∑W
l=0 ∑l

m=−l C
`,m
l,z Ỹ m

l (ϑ ,ϕ) ,
(9)

with expansion coefficients {Cm
l }. Here, the basis functions Ỹ m

l (ϑ ,ϕ) are defined as

Ỹ m
l (ϑ ,ϕ) :=

{
Re[Y m

l ](ϑ ,ϕ), when m≤ 0,
Im[Y m

l ](ϑ ,ϕ), when m > 0, (10)
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where Y m
l are the (complex-valued) spherical harmonics functions, and W is the maximum de-

gree of spherical harmonics used for the particular representation. For simplicity we introduce
the notation

γ = {γ`
k}= {C`,m

l,x ,C`,m
l,y ,C`,m

l,z } , with l = 1, · · ·W ,m =−l, · · · l (11)

such that the new index k ranges over k = 1, · · · ,3W 2. {γ`
k} describes the finite set of spherical

harmonics coefficients for the surface Γ` up to degree W .
Having divided the domain Ω into subregions Ω` with piecewise constant parameters, µa and

D can be expressed as

µa =
L

∑̀
=0

µa,`χ`(r), D =
L

∑̀
=0

D`χ`(r) (12)

where χ` is the characteristic function for a region Ω`. Substituting in equation (7), and since
only the matrices K and C are influenced by the parameters inside the domain, we get:

Ki j =
L

∑̀
=0

∫

supp(υiυ j)
⋂

Ω`

D`(r)∇υi(r) ·∇υ j(r)dr (13)

Ci j =
L

∑̀
=0

∫

supp(υiυ j)
⋂

Ω`

µa,`(r)υi(r) ·υ j(r)dr

Where supp(υiυ j) represents the part of the domain where both the basis functions are non-
zero, that is, the elements that contain both the Ti and Tj nodes.

The goal now is to express the forward operator as a mapping from the parameter space
P : {γ,µa,D} to the space of data Z . In the next subsections, we will present the methodology
used to convert the FEM algorithm to implement this mapping in five stages.

3.1. Classification of FEM mesh nodes

The first step in our computation is to identify which of the nodes Ti = (xi,yi,zi), of the finite
element discretisation are inside a given closed surface Γ`(θ ,φ). To reduce the computational
cost we calculate first the bounding box for the surface Γ`(θ ,φ) and work only with the nodes
that are inside the bounding box. Using the Jordan surface theorem [33], and the odd-even
test we need to identify the intersections of a line starting from a particular node Ti inside the
bounding box with the surface. We discetise the surface Γ`(θ ,φ) using the parametric mapping
function, that was initially introduced in [25], to map a triangular mesh originally defined on a
sphere to the parametric surface. The surface is now a finely defined triangular approximation
Γ`, with triangles G`

k and nodes S`
m. We draw the segment Ri = {(xi,yi,zi),(xi,yi,zmin)}, where

zmin is the lower z-coordinate of the volume and check for intersections with each of the tri-
angles G`

k in the surface approximation Γ`. We calculate the bounding quadrilateral along the
xy-plane for each of the triangles in the surface, and check if the projection of the node Ti along
the xy-plane lies inside. For the triangles satisfying this check we further check for intersections
with the line segment Ri, using the [32] ray-triangle intersection algorithm.

3.2. Classification of mesh elements

Once the mesh nodes Ti are classified as inside or outside the region bounded by a parametric
surface Γ`(θ ,φ), we proceed with the classification of the elements Hn of the mesh using their
respective nodes. We mark an element as outside if all the nodes are outside the surface, and
similarly we mark an element as inside if all nodes are positioned internal to the region. In
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the case of an element with, one, two or three nodes inside a given region Γ` we mark it as
intercepted. Let I(Γ`) denote the intersecting elements to the surface Γ`.

I(Γ`) = {Hn|Hn
⋂

Ω` 6=∅, and Hn
⋂

Ω′
` 6=∅} (14)

The parameters for both the outside and the inside elements are constant over the element, so
that the elements contributions for the system matrix can be calculated using the equations (7),
directly. In the case of an intercepted element a more complicated procedure must be performed
as we will see in the next subsections.

3.3. Determination of intersections of a surface with the elements of the FEM mesh

In the case of an element Hv ∈ I(Γ`(θ ,φ)), defined by the nodes {T v
1 ,T v

2 ,T v
3 ,T v

4 }, we need to
find the intersection points kv along the edges of the tetrahedron. Using an element Gs ∈Γ`, with
its center the closest to the center of the element Hv, and using the information from the mesh
mapping function we get the spherical coordinates (ϑ0,ϕ0) for the node S0 of the element Gs.
The intersection point kv of the parametrically defined surface with the edge of the tetrahedron
between the nodes T v

1 and node T v
2 by definition is on that edge, so that:

(T v
2 − kv)× (T v

2 −T v
1 ) = 0 (15)

where we used the cross product of the segments defined by the respective end points. At the
same time the intersection point kv has to be on the parametrically defined surface. There exists
a pair of unknown spherical coordinates (ϑkv ,ϕkv) that correspond to this intersection point
according to (9)

kv =




xv
yv
zv


 =




∑W
l=0 ∑l

m=−l C
`,m
l,x Ỹ m

l (ϑkv ,ϕkv)

∑W
l=0 ∑l

m=−l C
`,m
l,y Ỹ m

l (ϑkv ,ϕkv)

∑W
l=0 ∑l

m=−l C
`,m
l,z Ỹ m

l (ϑkv ,ϕkv)


 . (16)

Solving equation (15) in respect to the spherical coordinates of the unknown intersection point
kv given by (16), is done using a generic Gauss-Newton non-linear solver with initial values
(ϑ0,ϕ0). Since those initial values were constructed to be close to final solution the solution is
rapid.

3.4. Subdivision of the tetrahedron in subtetrahedra

Once we have found the intersection point along the edges of a intercepted tetrahedron we can
perform a subdivision of the element into subtetrahedra so that the boundary defined by the
spherical harmonics surface Γ`(θ ,φ) is accurately represented in the numerical scheme. For an
intercepting element Hv ∈ I(Γ`(θ ,φ)), defined by the nodes {T v

1 ,T v
2 ,T v

3 ,T v
4 } we classify two

main cases for the intersection with a surface.

• Case 1: One of the nodes, T v
(+), is on a different side of the parametric surface from the

other three {T v
(−, i)} i = 1,2,3. In Fig. 1(a) we have denoted this partition of the nodes

with the signed distance for each node from the surface : we denote the single node with
(+) and the three nodes on the other side of the partition with (−). We should mention
that the intersection is treated symmetrically and irrespective of which side of the surface
is inside or outside. The node T v

(+) together with the three intersection points {kv
1,k

v
2,k

v
3},

calculated according to the previous subsection, form one subtetrahedron. The rest of the
element that lies on the negative side of the surface has now the shape of a pentahedron
and is split into seven subtetrahedra as shown in Fig. 1(c), where we have exploded the
subelements for better comprehension.
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(a) (b)

(c) (d)

Fig. 1. Demonstration of the tetrahedral element subdivision scheme used for the two
different cases of surface-tetrahedron intersection. (a) In the case when one node de-
noted (+) is on the one side of the surface while the three others denoted by (−) on the
other partition created by the surface . Having found the three intersection points along the
adjacent edges of the node, denoted by (x) we divide the tetraherdon into eight subelements
shown exploded in (c). (b) In this case, two nodes lay on each side of the surface dividing
the tetrahedron into two pentahedral prisms, one on each side of the surface. Having found
the four intersection points kv

1 . . .kv
4, denoted (x) along the edges connecting each the nodes

on the one side (+) of the surface to those on the other (−),we cut the element into six
tetrahedra subelements shown exploded in (d).

• Case 2 Two of the nodes , T v
(+, 1) T v

(+, 2) are on the positive side of the parametric surface
and the other two {T v

(−, i)} i = 1, . . . ,2 on the negative. In Fig. 1(b) we denote two nodes
with (+) and two with (−). Having found in the previous subsection the four intersection
points {kv

1,k
v
2,k

v
3,k

v
4}, of the parametric surface with the edges of the element connecting

each of the (+) nodes to the(−) nodes, we divide the tetrahedron into two prismatic
solids of five faces each. In sequence the divided substructures are subdivided into three
tetrahedra each producing the exploded subtetrahedra of Fig. 1(d).

3.5. Computation of the system matrix

As we have mentioned already the contributions in the system matrix from the elements that
belong in wholly to the background or are wholly internal to a particular region are calculated
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using the integrals (13). For those elements I(Γ`(θ ,φ)), that are intersected by the surface of
a region we have to calculate the separate integrals

∫
∇υi ·∇υ j dr and

∫
υi ·υ j dr for each of

their subelements. The integrals are mapped from the subtetrahedron to the local element and
then evaluated with a Gaussian quadrature in the local element, according to a 3D version of
the procedure described in [26].

4. Inverse Problem

Given g the vector of experimental measurements, the inverse problem is defined as the mini-
mization of the least squares cost functional,

Ξ(γ) = ‖g−A(γ,µa,D)‖2
2 = ‖g−A(p)‖2

2 (17)

The shape estimation problem then becomes the one of finding the spherical harmonics param-
eters that define the boundary configuration that minimizes the functional above, that is

f ind γ ∗ so that : Ξ(γ ∗) = min‖g−A(γ ∗,µa,D)‖2
2 (18)

A typical way to minimize such a cost function is a Newton-type method, [30, 35], where we
search for a minimum for Ξ(γ) by iterations of local linearization and Taylor expansion around
the current estimate as

γ n+1 = γ n +(JT
n Jn +Λ)−1JT

n (g−A(γ n,µa,D)). (19)

where Λ, is a regularisation matrix.

4.1. Jacobian calculation

The Jacobian matrix, in respect to the shape parameters, is defined as

J =
∂A(γ,µa,D)

∂γ
, (20)

Looking at (6) and (13) and noting:

S(γ,µa,D) := K(γ,D)+C(γ,µa)+
1
2

αE+ iωB (21)

we obtain:

S
∂Φ
∂γ

=−∂S

∂γ
Φ (22)

which leads to
∂Φ
∂γ

=−S−1 ∂S

∂γ
Φ . (23)

By applying the discrete version of the measurement operator to both sides of the equation we
obtain the Jacobian

J = M
[

∂Φ
∂γ

]
=−M S−1 ∂S

∂γ
Φ =−Φ∗ ∂S

∂γ
Φ (24)

where Φ∗ denotes the adjoint solution. Here, we should note that the exterior boundary ∂Ω
is considered known and the shape parameters do not influence the external boundary. The
inclusions are also assumed mutually disjoint and disjoint of the exterior boundary. Therefore
the derivative of S in respect to the shape parameters γk are not dependent on the boundary
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term E or the frequency term B. The elements of the derivatives of S with respect to the shape
parameters γk are derived in equations (22)-(32)of [26].

(
∂S

∂γk

)

i j
= (δ µa) ∑

p,p′

∫

Γ
γkυp ·υ ′p +(δD) ∑

p,p′

∫

Γ
γk∇υp ·∇υ ′p (25)

where (δ µa) and (δD) denote the difference of µa and D between inside and outside the bound-
ary Γ. Using (25) on (24) we get the element Jsd,k, corresponding to the source s and detector d
for the shape parameter k, of the Jacobian:

Jsd,k =−(δ µa)Φ
∗(d)
Γ GkΦ

(s)
Γ − (δD)Φ∗(d)

Γ FkΦ
(s)
Γ (26)

where

Gk
pp′ =

∫

Γ
γkϕp(r) ·ϕp′(r) (27)

Fk
pp′ =

∫

Γ
γk ∇ϕp(r) ·∇ϕp′(r) (28)

are the integrals over surface Γ of the shape coefficient γk that describe that surface.
From the derivation of the Jacobian above we note that integrations over the surfaces of the

boundaries Γ` of the regions Ω` are necessary. For the calculation of the fields Φ` and the
adjoint fields Φ∗` on the nodes S` of the surface Γ` we find first the element Ep of the volume
discretisation where the node Ss of the surface belongs to, and recall the shape functions of this
element.

Φ(Ss) =
4

∑
l=1

= Φ(l)υl(Ss) (29)

where l ranges through the number of nodes in one element in the FEM discretisation (4 for a
tetrahedra).

4.2. Scalings

To improve the conditioning of the inverse problem we use rescaling of the data [34] : we take
the log of the frequency domain complex data and also separate the real and imaginary part, so
that:

g̃ =
(

Re(ln(g))
Im(ln(g))

)
(30)

which reflects to the scaled Jacobian J̃ defined as

J̃ =


 Re [diag

(
1

A(γ,µa,D)

)
J(γ)]

Im [diag
(

1
A(γ,µa,D)

)
J(γ)]


 (31)

5. Results

A cylindrical phantom of diameter 69.25 mm and height 110 mm made from epoxy resin
was used to acquire data using a frequency-domain instrument developed at Helsinki Uni-
versity of Technology [31]. The phantom uses TiO2 particles and an infrared dye to provide
scattering and absorption properties similar to that of biological tissue. The homogeneous
optical coefficients of the background material were approximately µ ′s = 1± 0.1 mm−1 and
µa = 0.01± 0.001 mm−1 at a wavelength of 800 nm. The speed of light for the phantom ma-
terial was c = 0.19 mm ps−1. Two cylindrical inhomogeneities of diameter 9.5 mm and height
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Fig. 2. The experimental setup used. The sources are denoted by ”x” and detectors are de-
noted ”o”. We also have drawn the positions of the two blobs the one on the left with double
the absorption of the background and the one on the right that has double the scattering.

9.5 mm were located in the central plane z = 0 of the cylinder. The optical properties of the two
targets relative to the background were set to (µa,2µ ′s) and (2µa,µ ′s), respectively. The geome-
try of the phantom is shown in Fig. 2. Optical fibres were used to transmit light from the source
and to the detectors. In this experiment, 16 source and 16 detector sites arranged in two rings
at a spacing of 12 mm were used. Filtering out the measurements from the detectors that are
close to a source when the source is used to avoid light saturation, results in a final set of 192
amplitude and phase measurements in our data sets. To suppress amplitude scalings between
the experimental and simulated datasets, data was collected in two sets, one with the blobs in-
side the homogeneous domain gmeas and one where the blobs were absent gre f . The augmented
residual of (17) becomes

Ξ̃(γ) = ‖gmeas−A(γ,µa,D)−gre f +A(pre f )‖2
2 (32)

Where A(pre f ) represents the solution of the numerical model without any blobs inside and
homogeneous optical properties of µa = 0.0078mm−1 and µ ′s = 1.065mm−1

The Finite Element Model used in the reconstruction consisted of an unstructured cylindrical
mesh with 22351 nodes and 121500 linear tetrahedral elements. The initial guesses for the
unknown blobs were parameterised using Spherical Harmonics of second degree, represented
by sets of twelve coefficients. The mapped surface mesh was of 1442 nodes and 2880 linear
triangular elements.

The reconstruction results are shown in Fig. 3(e) and Fig. 4(e) for the absorption target and
Fig. 3(f) and Fig. 4(f) for the scattering target. Both the absorption and scattering targets were
recovered well in terms of general shape as well as localization. In the same figures we show
a drawing of the actual positions for the targets as given by the experiment and the solution
from the use of a pixel based algorithm as presented in [34]. Since the shape based method
constrains any cross talk and artifacts from appearing the reconstructed image produces a much
higher contrast image than the pixel based algorithm, which we can see by comparison in Fig.
4 and Fig. 3.

To assess the success of the shape based reconstruction we present in Fig. 5 a set of metrics

#114465 - $15.00 USD Received 21 Jul 2009; revised 16 Sep 2009; accepted 28 Sep 2009; published 6 Oct 2009

(C) 2009 OSA 12 October 2009 / Vol. 17,  No. 21 / OPTICS EXPRESS  18950



(a) (b)

(c) (d)

(e) (f)

Fig. 3. Comparison between the target, the reconstruction with the pixel based and the
shape based method in vertical cross sections along the x-z plane (a) The real position
of the µa target in a slice along the y = 0 plane and (b) the real position of the µ ′s target
in a slice along the y =−12.3. (c) The y = 0 slice of the recovered µa image from the use
of a pixel based method as described in [34].(d) The y = −12.3 slice of the recovered µ ′s
image from the use of a pixel based method as described in [34]. We notice that the pixel
based reconstruction is successful but the contrast is smoothed out due to the regularisation
used and the homogeneous background contains artifacts.(e) A view along the y-axis of
the recovered µa object from the shape based reconstruction in solid color and the initial
guess for the object as an outline. (f) A view along the y-axis of the recovered µ ′s object
from the shape based reconstruction in solid color and the initial guess for the object as an
outline. We notice that the recovered shapes and locations of the object are very close to
the expected ones.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparison of the view along the central x-y plane between target, the recon-
struction with the pixel based and the shape based method As in figure 3 for horizontal
slices along the z = 0 plane, the real positions of the targets in (a) and (b) and the result
from the pixel based method in (c) and (d), and a view along the z-axis (e) and (f) for the
shape based method.
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which we calculated for each iteration of the algorithm. The first one is the normalized residual
of the data

‖g−A(γ n)‖2
2/|‖g−A(γ 1)‖2

2

which can be seen in Fig. 5(a). The residual is decreased during the first iterations until a local
minimum was reached and then with the addition of further degrees of spherical harmonics is
allowed to decrease further.

To measure the rate of convergence for the algorithm in the parameter space, we calculated,
in Fig. 5(b), the ratio of the volumes of the reconstructed shapes to the volumes of the target
shapes for each iteration. To approximate the shape properties of the targets we used cylindrical
surface meshes Γ target

1 and Γ target
2 for the µa and the µ ′s targets, based on the assumed sizes and

locations. To calculate the volume each object was divided into tetrahedra based on the mapped
mesh and the volumes of all the tetrahedra were later added to calculate the total volume of
the object. The desired value for this ratio is one and we notice that both the absorption and
the scattering objects are performing quite well with the absorption reconstructed object being
smaller than the expected target. The main reason for the smaller absorption target volume could
be an inaccuracy in the experimental calculation of the “correct” values for both the absorption
and scattering for the background and the targets. A study of the relation between the optical
parameters and the volume was presented in [25] and were consistent with theoretical results
showing an inherent ambiguity between size and contrast for diffusion coefficient [36] and for
absorption coefficient [37].

To assess how close the reconstructed shapes were to the expected ones we also calculated
the Hausdorff distance between the surfaces of the cylindrical targets and the recovered surface
in each iteration in Fig. 5(c) The Hausdorff distance measures the degree of mismatch between
the two sets, as the distance of the node v of Γ target

p that is the farthest away from any node of
the evolution surfaces Γn

p at iteration n and is defined as

Haus(Γ target
p ,Γ n

p ) = max
v∈Γ target

p

min
v′∈Γ n

p
|v−v′|

where p ∈ [1,2]. We notice that even though the image of the reconstructed targets along the
z = 0 plane is accurate the sharp edges on the top and bottom of the cylindrical targets were not
reconstructed equally well, as can be seen in Fig. 3(e) and Fig. 3(f). This is an expected result
due to the diffusive nature of DOT, together with the positioning of the sources and detectors
along the z = 0 plane that reduces the sensitivity of the the data in the z-direction.

Finally, in Fig. 5(d), the zeroth degree of the spherical harmonics representation, which rep-
resents the center of the objects, is used to calculate the distance between the expected center
of the targets and the evolution objects in each iteration.

C(Γ target
p ,Γ n

p ) = |Γ target
pc −Γn

pc|

The resulting graph shows that the center of the expected targets was recovered successfully.
As a further verification of the proposed algorithm we performed the reconstruction repeatedly
starting from three different initial guesses, as can be seen in (media 1), (media 2) and (media
3) from Fig. 6. The shape based method performed quite well recovering the targets in each
case as can be seen in the movies linked to this article. This provides evidence that convergence
to the desired solution is not heavily depended on the choice of the initial guesses.

6. Conclusion

We presented a shape based reconstruction algorithm for diffuse optical tomography. The for-
ward model was based on a Finite Element Method with a novel mesh subdivision algorithm
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Fig. 5. Metrics used to assess the quality of the reconstruction, plotted for the itera-
tions of the shape evolution. (a) The normalized residual ‖g−A(γ n)‖2

2/|g−A(γ 1)‖2
2. (b)

the volume ratios between targets and reconstructed shapes. (c) the Hausdorff measure for
the mismatch between the surfaces of the shapes and (d) the distance between the center of
the target objects and the reconstructed ones.

for the mapping from the spherical harmonics coefficients to the absorption and scattering pa-
rameter distributions in an unstructured volumetric FEM mesh. We validated the shape based
method by reconstructing successfully a scattering and an absorption target from experimental
measurements in a cylindrical phantom.

The Finite Element Method proved a good tool for three dimensional shape based recon-
structions since it can deal with different topologies without a change in the size of the system
matrix and could allow for reconstructions to include piecewise constant regions together with
non-homogeneous regions.

The advantage of the method relies on the reduction in the dimension of the inverse problem
leading to fast reconstructions, that are free from local voxel artifacts. This method could have
many applications in the experimental data reconstructions and could enhance the quality of
images in DOT reconstructions.

In this paper we showed that the proposed method works with experimental measurements.
There is still work to be done to validate the shape based approach for a clinical application.
More specifically, some of the problems that we might face arise from the fact that biological
tissue is not, in general, piecewise constant. To initially assess this problem we conducted sim-
ulation experiments wherein the background region was not homogeneous but drawn from a
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Reconstructions from experimental data, using different initial positions, as
presented in the media files attached to the paper. The first row of the graph consists of
the initial guesses in yellow and the experimental targets, red for absorption and blue for
scattering displayed in Fig. 6(a) (media 1) Fig. 6(b) (media 2) and Fig. 6(c) (media 3). In
the second row we have the reconstruction that resulted from those different initial guesses
respectively, with the targets recovered successfully in each case.

Normal distribution with specifed variation. In these tests (results not included in this paper)
we found the proposed method tolerated variation up to 10% in the absorption and scatter of
the background without significant decrease in the recovery accuracy of the inclusions. Further-
more, the largest parameters contrast in biological tissues is usually expected across the tissue
interfaces. The choice of the FEM in the shape-based method was so that the homogeneity of all
the regions in the domain is not a requirement and homogenous regions can be combined with
non homogeneous in the same problem. This extension is part of the future work towards re-
construction of data from biological tissues. In [25] we have seen that biological tissues can be
modeled using a parametric shape based method and in [38] we have seen a combined method
that uses a image based method to create an good initial guess for the positions of the different
types of tissue and a shape based for the creation of a improved reconstruction.

In addition, since atlases of biological tissue are widely available, and the possibility of mul-
timodality instrumentation becomes more and popular, the inclusion of good initial information
for a shape based approach can be achieved.

We believe that the demonstration of the shape-based method able to produce good results
for experimental data, is a significant step towards future investigation on the feasibility of the
method for clinical applications.
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