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Abstract

This thesis describes low-temperature transport measurements in low-dimensional
systems fabricated in high-mobility GaAs/AlGaAs heterostructures. These low-
dimensional systems are formed by electrostatically constricting the electrons in
the two-dimensional electron gas at the interface of the heterostructure, by apply-
ing a voltage to a pair of metallic gates known as a split-gate. At low temperatures
the electrical conduction occurs without scattering. The aim is to measure the
thermal conductance of these one-dimensional ballistic conductors.

The thermal conductance of a split-gate device was measured as a function of
gate voltage, over a wide range of temperatures and in the absence of a magnetic
field. The electrons on one side of the constriction were heated with an electric
current, and the temperature drop across the split-gate was measured using the
thermopower of another split-gate. The measurements show that the thermal
conductance displays plateaux corresponding to the one-dimensional subbands,
confirming previous results.

The design of the samples allows a quantitative test of the Wiedemann-Franz
law in one-dimensional constrictions. The results strongly suggest that the Wiede-
mann-Franz law is satisfied, and new information was obtained regarding the
anomaly in the conductance known as 0.7 structure, which can provide a new
insight into the nature of this anomaly. It is found that the thermal conductance
corresponding to the anomaly is suppressed with respect to the value expected
from a single-particle picture.
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Chapter 1

Basic Concepts

Electronic transport in a system is described as low-dimensional, when potential
barriers constrain the electrons in one or more directions. This is achieved with
structures that have relevant dimensions smaller than the de Broglie wavelength
λ of the electrons.

If the kinetic energy of the electrons is smaller than the confining potential
energy, the momentum and energy associated with the motion in the confined
direction are quantized [1, 2]. The electrons lose one or more degrees of freedom
and the system becomes two, one or zero-dimensional, depending on whether the
confinement occurs along one, two or three directions. The dimensionality of a
system depends on the length scales which determine the physical properties under
study. In general, in order to quantize the motion of a particle in one direction, the
confining potential must have a width comparable to the de Broglie wavelength
λ = h/p of the particle.

The electric transport of conducting materials like metals or semiconductors
can be understood using the Drude model of the free electron gas. The transport
properties at low temperatures are determined by the electrons close to the Fermi
level EF . Therefore, the electron gas will be considered low-dimensional if one
or more sample dimensions are comparable to the Fermi wavelength λF (the de
Broglie wavelength of the electrons at EF ).

Until the 1960s, quantum-confinement of electrons could be found only in
naturally occurring systems, such as atoms, molecules and crystals. The first
artificial structures with low-dimensional electronic systems were thin metallic
films [3]. With the development of the semiconductor technology, the focus of the
research in low-dimensional systems switched to Si mosfets (Metal Oxide-Semi-
conductor Field-Effect Transistor) and GaAs/AlGaAs heterostructures. Semicon-
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ductors have two main advantages over metallic films. First, due to the relative
high-quality of the semiconducting materials, the charge carriers have a higher
mobility than in thin films. Second, by doping or by applying an electric field,
the carrier concentration can be varied. The carrier density is much lower than
in metals, with a Fermi wavelength comparable to structures that can be easily
fabricated by lithographic methods. Semiconductors made it possible to study
novel transport regimes, as for example the ballistic regime. For general reviews
of the field see Refs. [4–9].

In this chapter, the basic concepts about low-dimensional electronic gases
(ldegs) are introduced. We will first see how quantum confinement of electrons
is achieved in the practice, concentrating on the GaAs/AlGaAs heterostructure.
Then, in order to interpret correctly the transport properties of low-dimensional
electronic systems, we have to understand the effect of the quantization of motion
on the equilibrium properties of a free-electron gas. Finally we will introduce the
semiclassical theory of homogeneous transport of ldegs.
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1.1. LDEGS IN PRACTICE

1.1 Low-dimensional electron gases in practice

In semiconductor technology there are two methods to achieve quantum confine-
ment of charge carriers:

1. growth of inhomogeneous layer structures, where the confinement occurs in
the growth direction, perpendicular to the substrate surface;

2. lateral pattering, achieved by ultrafine lithographic techniques.

Modulation-doped heterostructures

0 20 40 60 80 100 120 140

Depth (nm)

0

200

400

600

800

Energy (meV)

EF

GaAs
cap

Si : AlGaAs
n− type doping

AlGaAs
spacer

GaAs

2DEG

Figure 1.1: Conduction band profile of a GaAs/AlGaAs heterostructure. The
2deg is formed in the potential well below the Fermi level EF on the GaAs side of
the interface, far from the ionized donors in the doped AlGaAs layer. The width of
the potential well is of the order of 10 nm, comparable to the Fermi wavelength of
the electrons.

Heterostructures are inhomogeneous layer structures, where the discontinuities
in the conduction and valence band edges between different materials, provide
potential discontinuities that can be used to confine electrons. The first example of
confinement is the inversion layer of Silicon Metal-Oxide Semiconductor structures
(Si mos), where the confining potential is realized at the Si/SiO2 interface. Ando
et al. [4] focused on this material in their review.

11



1.1. LDEGS IN PRACTICE

Since the development of growth techniques such as Molecular Beam Epitaxy
(mbe) and Metal Organic Chemical Vapor Deposition (mocvd), it is possible to
grow crystals in layers with atomic precision. By controlling the composition of
the crystal and the doping, these techniques allow the fabrication of high-quality
lattice-matched heterostructures and band-structure engineering is possible. This
control also allows for modulation doping, where the dopants that provide the
free charge carriers in the heterostructure are spatially separated from the carriers
themselves, reducing the scattering from the ionized impurities [10].

The material of choice for research on low-dimensional systems in recent years
has been the modulation-doped GaAs/AlGaAs heterostructure (also known as
High-Electron-Mobility Transistor, hemt). Figure 1.1 shows an example of a
GaAs/AlGaAs heterostructure, which is fabricated by growing the ternary com-
pound AlxGa1−xAs (x ≈ 0.33) on a GaAs substrate. The mismatch in lattice
spacing between the two materials is very small, and so the crystal has few lattice
defects. At the interface between the two materials, the edge of the conduction
band is bent to form a potential well, and electrons donated by Si dopants in
the AlGaAs are trapped in the potential well at the interface. The dopants are
spatially separated from the 2deg by a spacer layer, thus reducing the scattering
of the electrons by the ionized dopants.

E1

E2

E3

E4

EC

EF

Figure 1.2: Schematic representation of the triangular potential well formed at
the interface of the GaAs/AlGaAs heterostructure depicted in Fig. 1.1. EC is the
bottom of the conduction band, EF is the chemical potential of the system, and
E1, E2, etc., are the 2d subbands of the electrons confined in the potential well.
Typically only the first subband is occupied, as depicted.

As shown in Fig. 1.2, the potential well in a heterojunction is approximately
triangular, and has a width comparable to the Fermi wavelength of the electrons.
The result is that the motion of the electrons trapped in the potential well is
quantized in the direction of growth of the crystal, but free in the plane parallel to
the interface. The electrons confined at the interface form a two-dimensional elec-
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1.1. LDEGS IN PRACTICE

tron gas (2deg). For a more detailed review of AlGaAs/GaAs heterostructures,
see Refs. [11, 12].

The other advantage of this heterostructure, besides the high mobility of the
charge carriers, is the possibility of changing the charge density of the 2deg.
Three mechanisms are generally used: shining light onto the sample, increasing
the hydrostatic pressure, and applying a voltage to a gate on the surface.

The electron density in a heterostructure at low temperature can be increased
by persistent photoconductivity (ppc). There are several different optical pro-
cesses that can generate extra electrons, and the effect is persistent because at low
temperatures electrons are trapped at the interface.

Another method to change the carrier density is the fabrication of a gate elec-
trode, as shown in Fig. 1.3. A metallic layer is deposited on the surface of the het-
erostructure, which forms a Schottky gate with the semiconducting material [13].
The charge density in the 2deg is varied electrostatically by applying a voltage
to the gate (one can picture the system as a parallel-plate capacitor). For more
information on the fabrication of low-dimensional structures see Refs. [5, 9].

Gate

2DEG

Figure 1.3: GaAs/AlGaAs heterostructure with a metallic gate deposited on the
surface. Applying a negative voltage on the gate reduces the charge density in the
region of the 2deg beneath the gate.

Lateral confinement

The 2deg created at a GaAs/AlGaAs heterojunction is the starting point for
many investigations of one and zero-dimensional electron systems, obtained by
further lateral confinement of the electrons in the 2deg. In order to create a
one-dimensional system, a narrow channel needs to be created in the plane of the
2deg. Most of the methods presented here share the lithographic techniques that
provide the pattern for lateral confinement.

Lithography refers to the method by which a desired pattern is transferred
onto a substrate. Typically, a resist is spun onto the surface of the sample and is
exposed selectively to a particular radiation source, which changes the chemical
bonding in the irradiated regions. A suitable developer then dissolves the exposed
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1.1. LDEGS IN PRACTICE

regions (positive resist) or the unexposed regions (negative resist), depending on
the requirements. The most popular nanolithographic technique is electron-beam
lithography : a modification of a conventional Scanning Electron Microscope (sem)
allows the e-beam to “write” the desired pattern directly onto the resist, with a
typical resolution of 10− 20 nm. For a typical 2deg formed in a heterostructure,
with an electron density n = 2 × 1011 cm−2 and a mobility µ = 2 × 106 cm/Vs,
the Fermi wavelength is λF ≈ 50 nm.

The simplest technique for lateral confinement is deep-mesa etching, where
the material is etched away to a depth below the GaAs/AlGaAs interface. This
technique is typically used to prepare a 2deg for large-scale geometry (like a Hall
bar), but is not considered reliable for the small channel widths necessary to obtain
one-dimensional transport.1

A more reliable approach is the shallow-mesa etching [14,15]. In this case, only
the doped layer of AlGaAs is etched away, depleting selected regions of the 2deg.
A variation of this technique is the trench-etching [16], where regions of the 2deg

are separated by etching trenches between them. Both of these techniques have
been used to fabricate one-dimensional channels.

2DEG

Depleted region

Split-gate

D 

 W

 L

Figure 1.4: Schematic representation of a split-gate device. L and W are the
lithographic length and width of the gap between the two gates, and D is the depth
of the 2deg with respect to the surface of the sample. Regions in the 2deg are
depleted by the application of a negative voltage to the split-gate, leaving a narrow
channel connecting the two sides of the 2deg.

The technique that allows for the widest variety of structures is the split-gate
technique [17]. We have seen that the voltage applied to a Schottky gate on the

1The sidewall of the mesa has a large roughness compared to the GaAs/AlGaAs interface,
and the defects left by the etching provide a high density of surface states, which affect the
potential in the channel, “softening” the confining potential.
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1.1. LDEGS IN PRACTICE

surface of the heterostructure can be used to control the electron density of the
2deg. By applying a suitable negative voltage, it is possible to deplete regions
of the 2deg beneath a patterned electrode, allowing a selective depletion of the
2deg. So it is possible to fabricate a variety of structures such as quantum wires
and quantum dots. For a review of the techniques, with references, see Refs. [6,8,9].
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1.2. LDEGS IN EQUILIBRIUM

1.2 Low-dimensional electron gases in equilibrium

In this section we review the basic properties of low-dimensional electron gases
(ldegs) in thermodynamic equilibrium. The results presented here can be ap-
plied to ldegs in GaAs/AlGaAs heterostructure in a straightforward manner, by
substituting the mass of the electron with the effective mass of electron in GaAs,
m∗ = 0.067me.2 The details of the wavefunctions corresponding to the bound
states are not required to understand the equilibrium properties of the electron
gas. For reviews of this topic see Refs. [4–6,9].

1.2.1 Electron gas: from 3d to 2d

Consider a gas of non-interacting electrons in a box of volume V = Lx ×Ly ×Lz.
In the absence of magnetic fields, the solution of the time-independent Schrödinger
equation for an electron yields

ψ(r) =
1√
V

exp (ik · r), (1.1)

where r = (x, y, z) is the position vector and k = (kx, ky, kz) is the wavevector.
The state has momentum ~k and energy Ek:

Ek =
~2k2

2m∗ =
~2

2m∗ (k
2
x + k2

y + k2
z) (1.2)

(m∗ is the mass of the electron). The density of states (dos) per unit volume is
given by

D(E) =
dN

dE
=

m∗

π2~2

√
2m∗E

~2
, (1.3)

where N(E) is the number of states per unit volume with energy between E and
E + dE (a factor 2 takes into account spin-degeneracy, s = 1

2
).

In thermodynamic equilibrium, the available states are occupied by the elec-
trons according to the Fermi-Dirac distribution:

f0(E,EF , T ) =

[
1 + exp

(
E − EF

kBT

)]−1

, (1.4)

where EF is the Fermi level, T is the temperature, and kB the Boltzmann constant.
2In typical situations only one 2d subband is occupied and it is possible to work within the

effective mass approximation, assuming parabolic bands.
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1.2. LDEGS IN EQUILIBRIUM

At low temperatures the Fermi function becomes

f0(E,EF , T ) −−−→
T→0

Θ(EF − E), (1.5)

where Θ(x) is the unit step function. This is known as the degenerate limit of
an electron gas, where all the states with energy lower than the Fermi energy,
E ≤ EF , are occupied. In the k-space, the occupied states with k ≤ kF =

√
2m∗

~2 EF

define the Fermi sphere. Also, the density of electrons can be related directly to
the Fermi level:

n3d =

∫ ∞

0

D(E)f0(E)dE =
m∗

π2~2

(
2m∗EF

~2

) 3
2

. (1.6)

If Lz ≤ λF =
2π

kF

, where λF is the Fermi wavelength, the electrons are confined

to the xy-plane. A one-electron eigenstate is then

ψ(r) = ψ′(x, y)φn(z), (1.7)

where φn(z) is the wavefunction corresponding to the confinement in the z-direction,
and

ψ′(x, y) =
1√
A

exp (i(kxx+ kyy)) (1.8)

is the wavefunction for a free electron in the xy-plane (A = Lx×Ly). The energy
of this eigenstate is given by

En,k = En +
~2

2m∗ (k
2
x + k2

y), (1.9)

where En is the (quantized) energy corresponding to φn(z). We can see that for
each bound state n there is a continuum of states associated with free motion
confined to the xy-plane. For every 2d subband n, the dos is the same and does
not depend on energy:

Dn(E) =
m∗

π~2
Θ(E − En) (1.10)

(a factor 2 is included to account for spin-degeneracy). Figure 1.5 depicts the total
dos of a 2deg: every step of the staircase corresponds to one 2d subband.

Most situations involve 2degs where E1 < EF < E2, where only the first 2d

subband is occupied. In this case the dos is constant, and, in the degenerate
limit, the occupied states fill a circle in the k -space with radius kF (see Fig. 1.6).
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1.2. LDEGS IN EQUILIBRIUM

Energy

D(E)
EF

E1 E2 E3 E4

Figure 1.5: Density of states for a 2deg as a function of energy. Every step of the
staircase corresponds to a 2d subband. The shaded region are the states occupied
in the ground-state (T = 0).

kx

ky

kF

Figure 1.6: Fermi “sphere” for a 2deg in equilibrium at T = 0. kF is the Fermi
wavevector : the states with k ≤ kF are occupied, while the states with k > kF are
empty.
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1.2. LDEGS IN EQUILIBRIUM

The total number of electrons per unit area can be written as

n2d =
m∗

π~2

∫ ∞

0

Θ(E − E1)Θ(EF − E)dE =
m∗

π~2
(EF − E1). (1.11)

1.2.2 Electron gas: from 2d to 1d

If we also confine the electron gas along the y-direction, the new one-electron
wavefunction is

ψ(r) =
1√
Lx

exp (ikxx)χm(y)φn(z), (1.12)

where χm(y) corresponds to the quantized motion in the y-direction, and the
energy of the electron is

En,m,k = En + Em +
~2k2

x

2m∗ , (1.13)

where Em is the energy corresponding to χm(y). For each n, m pair of bound
states, there is a continuum of states associated with free motion in the x-direction.
For each 2d subband n, the dos is now:

Dn(E) =
1

2π

√
2m∗

~2

∑
m

Θ(E − En)√
E − Em

. (1.14)

In Fig. 1.7 the total dos is sketched for three occupied 1d subbands.

Energy

D(E)
EF

E1 E2 E3 E4 E5

Figure 1.7: Density of states for a 1deg as a function of energy (within one
2d subband). The shaded region are the states occupied in the ground-state. The
effects of the divergences in Em are usually not observed due to the broadening
caused by disorder introduced in the fabrication process.
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kx

ky

kF

kx

ky

kF

−kF

Figure 1.8: Fermi “sphere” for ldegs in equilibrium at T = 0. On the left the
Fermi circle for a 2deg; on the right the Fermi “segment” for a 1deg. The confine-
ment along the y-direction changes the density of states, increasing the spacing ∆ky

between adjacent states. When ∆ky > kF , the condition Ly < λF is satisfied and
the system is 1d.

Figure 1.8 shows what happens to the Fermi circle in k-space. Each dot repres-
ents an available state: the spacing between the states depends on the boundary
conditions, ∆k ∼ 1/L. When the electron gas is confined along the y-direction,
the spacing ∆ky between the states increases. The motion of the electrons becomes
quantized when ∆ky ≥ kF , which is equivalent to the condition Ly ≤ λF .

1.2.3 2deg in a magnetic field

Consider a 2deg as described in Section 1.2.1 and let us apply a magnetic field
perpendicular to its plane. The free translational motion in the plane is now
impeded by the Lorentz force, which forces the electrons on cyclotron orbits. The
motion in these orbits is harmonic in time. The consequence is that the energy
spectrum is now completely quantized:

En,l = En + El = En +

(
l − 1

2

)
~ωc, (1.15)

where ωc = eB/m∗ is the cyclotron frequency. The conditions for this quantization
are that an electron does several orbits before being scattered, ωcτ > 1 (where τ is
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1.2. LDEGS IN EQUILIBRIUM

a scattering time), and that the thermal broadening of the Landau levels is small
compared to their spacing, kBT � ~ωc.

The energy levels El are known as Landau levels and, unlike the specific solu-
tions of the Schrödinger equation, they do not depend on the choice of gauge.
The spin degeneracy of each level is lifted in high magnetic fields by the Zeeman
splitting (which adds the term ±sgµBB to the energy). For each 2d subband n,

Energy

D(E)

EF

E1 E2 E3 E4 E5 E5

Figure 1.9: Density of states for a 2deg in perpendicular magnetic field (Zeeman
splitting has been neglected). The spacing between each level is given by ∆E =
~ωc ∝ B. The Fermi level EF is shown pinned to the highest occupied Landau
level.

the resulting dos is

D(E) =
2eB

h

∑
l

δ(E − El) (1.16)

and is depicted in Fig. 1.9. Each Landau level has the degeneracy 2eB/h and the
Fermi level “jumps” from one Landau level to the next when the magnetic field is
varied. This leads to oscillations in the response of the 2deg as a function of mag-
netic field (for example, Shubnikov-de Haas oscillations in the magnetoresistance).
Typically the Landau levels are broadened by disorder.

What happens if we consider that the 2deg is not infinite, but is constrained
along the y-direction by an electric potential U(y)? It can be shown [18] that the
energy of an electron becomes:

En,l(kx) = En +

(
l − 1

2

)
~ω∗c +

~2k2
x

2M
, (1.17)

where ω∗c and M are a cyclotron frequency and an effective mass that depend on
both the magnetic field and the potential U(y). For each 2d subband we have
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1.2. LDEGS IN EQUILIBRIUM

magneto-electric subbands, with Landau levels l that are no longer degenerate, but
have the dispersion of a 1d system. In a classical picture, these states correspond
to skipping orbits, where an electron “bounces” off the edges while moving in the
x-direction.

By increasing the magnetic field, the states in the +x-direction are pushed
towards one edge by the Lorentz force, while the states for motion in the −x-
direction are pushed towards the opposite edge. The resulting edge states carrying
current in opposite direction are spatially separated, which has a dramatic effect
on the transport properties, as observed in the Quantum Hall Effect (qhe).
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1.3. DIFFUSIVE TRANSPORT IN LDEGS

1.3 Diffusive transport in low-dimensional electron

gases

If we restrict ourselves to the carrier transport parallel to the confining potentials,
we can discuss homogeneous transport in a low-dimensional system in the same
context as for bulk systems. We can apply the semiclassical theory of transport
based on Boltzmann’s transport equation, and describe the transport properties
in terms of macroscopic phenomenological parameters such as mobility, conduct-
ivity, thermopower, etc. In the linear response regime it is possible to write these
parameters in terms of the equilibrium properties of a ldeg. For a more detailed
discussion see Refs. [19–22].

1.3.1 Semiclassical approach to transport

Assume that we can describe a ldeg in terms of a distribution function f(r,p, t),
where r is the position and p is the momentum of a particle. The number of
particles that occupy a state at a time t within the volume drdp located at (r,p)

in phase space is given by
f(r,p, t)drdp. (1.18)

Furthermore we assume that the following semiclassical equations are valid for
the motion of a particle under the influence of an external electric field F (in the
absence of a magnetic field):

dp

dt
=
d(~k)

dt
= −eF, (1.19a)

dr

dt
= v(k) =

1

~
∇kEk, (1.19b)

where Ek is the energy of an electron with momentum p = ~k. Considering time
scales longer than the mean free time between scattering events, the distribution
function after a time interval δt will be

f(r + vδt,p− eFδt, t+ δt) = f(r,p, t) +

∣∣∣∣∂f∂t
∣∣∣∣
coll

δt, (1.20)

where
∣∣∣∣∂f∂t

∣∣∣∣
coll

is the rate of change of the distribution function due to scattering. If

both the external fields and the scattering are weak, we can treat them as separate
perturbations of the equilibrium system. Expanding and re-arranging the terms

23



1.3. DIFFUSIVE TRANSPORT IN LDEGS

in Eq. (1.20), we can write a kinetic equation for the distribution function, the
Boltzmann transport equation:

∂f

∂t
= −1

~
∇kEk · ∇rf +

e

~
F · ∇kf +

∣∣∣∣∂f∂t
∣∣∣∣
coll

. (1.21)

Assuming that the scattering events are instantaneous in time and space, and
that they randomize the phase of the carrier (i.e., after a scattering event a particle

is not correlated to other particles), we can write
∣∣∣∣∂f∂t

∣∣∣∣
coll

as a detailed balance of

in-scattering and out-scattering events and the collision integral becomes∣∣∣∣∂f∂t
∣∣∣∣
coll

=

∫
dk′

(2π)d
{S(k′,k) [f(k′)(1− f(k))]︸ ︷︷ ︸

IN

−S(k,k′) [f(k)(1− f(k′))]︸ ︷︷ ︸
OUT

},

(1.22)
where S(k′,k) is the scattering rate from state k′ to state k, d is the dimensionality
of the system and the integral sums over all possible values of k′.

If the system is in a steady state and close to equilibrium, we can use the
relaxation time approximation:∣∣∣∣∂f∂t

∣∣∣∣
coll

= −f(k)− f0(Ek)

τ(Ek)
, (1.23)

which means that the effect of scattering tends to bring the distribution function
f(k) back to its equilibrium form f0 (the Fermi function) with some characteristic
time scale τ(Ek). At this point, the non-equilibrium distribution function for a
homogeneous system (∇rf = 0) in a steady state (∂f/∂t = 0) can be written as

f(k) = f0(Ek) + τ(Ek)eF · v(k)
∂f0

∂E
(Ek). (1.24)

We can use this result to calculate, for example, the current density:

J = −e
∫

dk′

(2π)d
v(k)f(k)

= −e
∫

dk′

(2π)d
v(k)

(
τ(Ek) eF · v(k)

∂f0

∂E
(Ek)

)
= −e2

∫ ∞

0

dE D(E) τ(E) v(E) (v(E) · F)
∂f0

∂E
(E),

(1.25)

where the integral over k has been converted into an integral over E. Factoring
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1.3. DIFFUSIVE TRANSPORT IN LDEGS

out the electric field F and the carrier density n, Eq. (1.25) becomes

J = −e2n


∫∞

0
dE D(E) τ(E) v2

F(E)
∂f0

∂E
(E)∫∞

0
dE D(E) f0(E)

 · F, (1.26)

where vF is the component of v along the electric field. The term in braces can

be written as −〈τ〉
m

and thus:

J =
e2n〈τ〉
m

F = enµF, (1.27)

where µ =
e〈τ〉
m

is the mobility. In the degenerate limit, 〈τ〉 ≈ τ(E = EF ),
showing that the transport properties of the ldeg are determined by the dos at
the Fermi level. Other physical properties, such as conductivity or thermopower,
can be related to the relaxation time 〈τ〉 by the same procedure.

kx

ky

O

kD

Figure 1.10: Fermi circle for a 2deg in a small electric field. The out-of-
equilibrium Fermi circle is shifted with respect to the equilibrium Fermi circle by kD,
the wavevector corresponding to the drift velocity vD. Electrons occupying states
in the light-grey area tend to scatter into states in the dark-grey area. Electrons
in the states in the medium-grey area cannot scatter, and have no influence on the
transport properties.

For a 2deg there is a good picture that illustrates what happens to the dis-
tribution function when an uniform electric field is applied, and we examine the
linear response in a steady state. The distribution function becomes:

f(k) = f0(k− kD), (1.28)
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1.3. DIFFUSIVE TRANSPORT IN LDEGS

where kD is the wavevector corresponding to the drift velocity vD = µF. In k-
space this distribution function is simply the equilibrium Fermi circle shifted from
the origin by a vector kD =

m

~
vD, as depicted in Fig. 1.10.

All the information about the scattering mechanisms that affect the transport
properties of the ldeg is contained in the relaxation time τ . If there is more than
one scattering process, and the processes are independent from each other, the
total scattering time is given by Mathiessen’s rule:

1

τ
=

∑
j

1

τj
. (1.29)

1.3.2 Scattering mechanisms

For a 2deg in a GaAs/AlGaAs heterostructure there are several possible scat-
tering mechanisms. In addition to those normally present in bulk GaAs (bulk
phonon scattering, background impurities, inter-subband scattering), there are
mechanisms specific to the heterojunction structures (remote ionized impurities,
interface phonons, interface roughness). Although many mechanisms are possible
in principle [5, 23], only a few determine the mobility of the 2deg:

1. Coulomb scattering from remote and background ionized impurities;

2. interaction with bulk acoustic and optical phonons.

Coulomb scattering

Coulomb scattering is due to the presence of ionized impurities in the nominally
undoped GaAs (called background impurities), and the ionized dopants in the
doped AlGaAs layer (called remote impurities). Although the density of remote
impurities is higher, their distance from the electron gas makes them less effective
scatterers than the background impurities.

The impurities interact with the electrons via the Coulomb interaction. This
mechanism dominates the momentum relaxation of the electrons at low temperat-
ures, providing a temperature-independent mobility. However, since the scattering
is elastic, it does not contribute to the energy relaxation of the electrons.

Phonon scattering

One can distinguish three regimes for phonon scattering, depending on the tem-
perature [24]:
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1.3. DIFFUSIVE TRANSPORT IN LDEGS

• Inelastic regime for T & 40 K.

• Equipartition regime for 4 K . T . 40 K.

• Bloch-Grüneisen regime for T . 4 K.

In the inelastic regime the electrons scatter from optical phonons via the Fröhlich
interaction. In a polar crystal an optical phonon changes the separation between
positive and negative ions. This changes the polarization field which affects the
electrons. The energy scale for this interaction is given by ~ωopt & EF . At low
temperatures (kBT � ~ωopt) optical phonons are “frozen” and do not contribute
to the scattering.

In both the equipartition regime and the Bloch-Grüneisen regime, the electron-
phonon interaction is dominated by acoustic phonons. The electron-phonon coup-
ling is of two types:

1. Deformation potential (dp): the local deformation of the lattice due to
acoustic phonons shifts the band-edges of the GaAs.

2. Piezoelectric coupling (pz): acoustic phonons deform the lattice in a polar
material, changing the polarization field.

The energy scale for both couplings is set by ~ωmax ≈ 2~uskF (where us is the
speed of sound), and the scattering can be considered quasi-elastic.3

In the equipartition regime kBT � ~ωmax and the Bose occupation factor for
the phonons is approximately linear in temperature. The experiments presented in
this work were performed at low temperatures, where kBT ≈ ~ωmax and the system
is in the Bloch-Grüneisen regime. There is a small number of phonons (which
depends exponentially on temperature) and the electron gas is strongly degenerate.
Both these factors lead to a drastic reduction of the electron-phonon scattering.
Figure 1.11 shows the electron mobility in GaAs/AlGaAs heterostructures as a
function of temperature. The contribution of the different scattering mechanisms
are shown, as well as the total mobility which is obtained using Mathiessen’s
rule (1.29).

3The speed of sound us is much lower than the speed of the electrons at the Fermi surface

vF = ~kF

m . That means that ~uskF � ~vF kF =
~2k2

F

m
= 2EF and therefore ~ωmax � EF .
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1.3. DIFFUSIVE TRANSPORT IN LDEGS

Figure 1.11: Temperature dependence of the electron mobility in GaAs/AlGaAs
heterostructures, from [25]. Points are experimental data, curves are calculated
mobilities. In the limit of low temperatures, the mobility is determined by scattering
with ionized impurities.

28



Bibliography

[1] L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Non-Relativistic The-
ory (Pergamon Press, London, 1958).

[2] R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids,
Nuclei, and Particles (Wiley, New York, 1985).

[3] V. N. Lutskii, Phys. Stat. Sol. A 1, 199 (1970).

[4] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

[5] J. J. Harris, J. A. Pals, and R. Woltjer, Rep. Prog. Phys. 52, 1217 (1989).

[6] C. W. J. Beenakker and H. van Houten, Solid State Physics 44, 1 (1991).

[7] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University
Press, Cambridge, 1995).

[8] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge
University Press, Cambridge, 1997).

[9] J. H. Davies, The Physics of Low-Dimensional Semiconductors. An Introduc-
tion (Cambridge University Press, Cambridge, 1998).

[10] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys.
Lett. 33, 665 (1978).

[11] M. J. Kelly and R. J. Nicholas, Rep. Prog. Phys. 48, 1699 (1985).

[12] M. J. Kelly, Low-dimensional semiconductors: materials, physics, technology,
devices (Oxford University Press, Oxford, 1995).

[13] S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

[14] W. J. Skocpol, L. D. Jackel, E. L. Hu, R. E. Howard, and L. A. Fetter, Phys.
Rev. Lett. 49, 951 (1982).

29



BIBLIOGRAPHY

[15] H. van Houten, B. J. van Wees, M. G. J. Heijman, and J. P. André, Appl.
Phys. Lett. 49, 1781 (1986).

[16] A. Kristensen, J. Bo Jensen, M. Zaffalon, C. B. Sørensen, S. M. Reimann,
P. E. Lindelof, M. Michel, and A. Forchel, J. Appl. Phys. 83, 607 (1998).

[17] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys.
Rev. Lett. 56, 1198 (1986).

[18] K.-F. Berggren, G. Roos, and H. van Houten, Phys. Rev. B 37, 10118 (1988).

[19] J. M. Ziman, Electrons And Phonons. The Theory of Transport Phenomena
in Solids (Oxford University Press, Oxford, 1963).

[20] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College
Publishing, 1976).

[21] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

[22] K. Huang, Statistical Mechanics (Wiley, New York, 1987).

[23] B. K. Ridley, Rep. Prog. Phys. 54, 169 (1991).

[24] T. Kawamura and S. D. Sarma, Phys. Rev. B 45, 3612 (1992).

[25] W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Phys. Rev. B
30, 4571 (1984).

30



Chapter 2

Ballistic conduction through
one-dimensional constrictions

In the previous chapter we have seen the effect of confinement on the equilib-
rium properties of an electron gas. We have also seen that transport parallel to
the confining potentials can be described by the semiclassical theory of transport.
Quantum effects enter only through the description of the bound states arising
from the confinement, and the phase information of the particles is ignored due
to ensemble averaging. In structures too small for ensemble averaging, quantum
interference affects the transport properties, leading to effects like universal con-
ductance fluctuations and weak localization [1, 2].

One of the assumptions underlying the semiclassical transport theory is to look
at the system over time scales that are much longer than the average scattering
time 〈τ〉. What happens if the size of the sample is comparable or smaller than
the average distance between scattering events? The transport properties are no
longer determined by the scattering from impurities, but by the scattering at the
sample boundaries, which means that the transport depends on the geometry of
the sample. This regime is called ballistic transport.

The dependence of the transport properties on the geometry of the sample is
analogous to electromagnetic waveguides. The approach of treating conductors as
electron waveguides was introduced by Landauer [3], and has lead to the develop-
ment of the Landauer-Büttiker formalism [4], which relates mesoscopic transport
to the transmission and reflection probabilities of the electrons [5]. Although
the earliest applications of Landauer’s approach were to tunneling junctions, the
formalism has been successfully applied to ballistic conductors.

The prime example of such ballistic conductors are the split-gate devices [6–8],
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which use the split-gate technique to form a constriction in a 2deg. At low
temperatures the transport through the constriction can be ballistic, and a one-
dimensional ballistic conductor is obtained. The transport properties of such
devices have been successfully described within the Landauer-Büttiker formalism.

In this chapter we introduce ballistic transport, and point out the main dif-
ferences from diffusive transport. The Landauer-Büttiker formalism will be out-
lined, and then we will see how one-dimensional constrictions in a 2deg behave
as ballistic conductors. Finally we will present the conductance anomaly in 1d

constrictions known as the 0.7 structure.
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2.1. BALLISTIC TRANSPORT

2.1 Ballistic transport

The Fermi wavelength is the length scale which determines whether an electron
gas is confined or not. It is possible to define other length scales which are charac-
teristic of a ldeg and which determine the regime of electronic transport. When
the size of the conductor is comparable to one of these length scales, the conductor
is usually called mesoscopic (because it is “between” the microscopic and macro-
scopic). In this case macroscopic properties, such as conductivity, are insufficient
to fully describe the transport. For a review see Refs. [1, 2].

2.1.1 Characteristic length scales in a 2deg

In Section 1.3 the average scattering time τm = 〈τ〉 was introduced. This is
the average time interval necessary for an electron to change its momentum due
to scattering, and is also called momentum-relaxation time. The length scale
associated with this time is the mean free path:

Le = vF τm, (2.1)

where vF is the Fermi velocity of the electrons. The mean free path is the average
distance an electron travels before its initial momentum is destroyed. It is this
length scale that determines whether transport is ballistic or diffusive. If the length
of a conductor is smaller than the mean free path, the electrons pass through
without being scattered (hence the term “ballistic”). The only source of scattering
are the boundaries, and so in the ballistic regime the geometry of the conductor
becomes important. For a 2deg with electron density n = 2 × 1011 cm−2 and
mobility µ = 2 × 106 cm/Vs, τm ≈ 76 ps and Le ≈ 15 µm. Modern lithographic
techniques can fabricate structures with lengths below 1 µm.

The length scale which tells us whether quantum interference effects are im-
portant is the phase-relaxation length Lϕ. Similar to the mean free path, the
phase-relaxation length is usually defined in terms of the phase-relaxation time
τϕ, which is the average time for an electron to lose its initial phase:

Lϕ =
√
Dτϕ, (2.2)

where D is the diffusion coefficient. When this length is determined by inelastic
processes, the phase-relaxation length is sometimes called inelastic mean free path
(as opposed to the elastic mean free path Le). In high-mobility GaAs/AlGaAs
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2.1. BALLISTIC TRANSPORT

heterostructures at low temperatures, the phase-relaxation length is given by Lϕ =

vF τϕ, where vF is the Fermi velocity of the electrons and τϕ is determined by the
electron-electron scattering time τee

1. For a 2deg with electron density n =

2 × 1011 cm−2 and mobility µ = 2 × 106 cm/Vs, vF ≈ 2 × 105 m/s and
τϕ ∼ τee ≈ 100 fs, which gives Lϕ ≈ 20 nm.

We have seen that a magnetic field changes the spectrum of a 2deg at low tem-
peratures, with the formation of discrete energy levels. It is possible to associate
a length scale to the Landau levels, the magnetic length:

LB =

√
~
eB

. (2.3)

This length scale gives the spatial extent of the wave function that corresponds to
the lowest Landau level. At B = 1 T LB ≈ 26 nm.

2.1.2 From diffusive to ballistic transport regime

Figure 2.1 presents a depiction of the three possible transport regimes for a con-
striction defined in a 2deg. In the diffusive regime both the length L and the
width W of the constriction are much greater than the mean free path Le of
the electrons. The transport properties at low temperatures are determined by
impurity scattering and can be expressed in terms of local quantities such as mo-
bility µ or conductivity σ, which are well defined in this regime. The semiclassical
approach described in the previous chapter is appropriate to describe the trans-
port. Quantum interference effects are important if the size of the constriction is
comparable to the phase-relaxation length, as it is possible for low-mobility semi-
conductors. As long as both the mean free path and the phase-relaxation length
are small, the conductor can be considered as a portion of 2deg.

If the width of the constriction W is smaller than the mean free path Le, but
the length L is larger, the regime is called quasi-ballistic. In this case both in-
ternal impurity scattering and boundary scattering are important to the transport
properties. This is an intermediate regime between diffusive and ballistic, show-
ing some of the size effects which have a more dramatic effect on transport in the
ballistic regime (such as the edge states mentioned Section 1.2.3).

The transport is in the ballistic regime if both the length L and the width W
of the conductor are much smaller than the mean free path Le. Now the scattering

1Electron-electron interactions do not affect the momentum-relaxation time and the elastic
mean free path.
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is dominated by the boundaries of the constrictions2, and the transport properties
cannot be expressed in terms of local quantities but depend on the geometry of the
conductor. This dependence on the sample geometry is analogous to electromag-
netic wave guides. So, as opposed to the diffusive regime where the conductance
of the sample can be written as G = (W/L)σ (where σ is the conductivity), the
conductance can be expressed in terms of transmission probability T of the elec-
tron wave-guide: G = (e2/h)T , which is the essence of the Landauer approach to
transport in small structures.

Diffusive
Le < L,W

Quasi-ballistic
W < Le < L

Ballistic
L,W < Le

L

W

Figure 2.1: Three possible regimes for the transport in a 1d conductor defined by
a constriction in a 2deg, from Ref. [1]. L and W are the length and the width of the
constriction, Le is the mean free path of the charge carriers. In the ballistic regime
the momentum of the carrier parallel to the axis of the conductor is conserved. The
scattering at the boundaries of the constriction is depicted as specular (which is a
good approximation for a constriction defined electrostatically).

2Boundary scattering has two limiting case: diffuse scattering, where the momentum of a car-
rier is completely randomized after a scattering event; specular scattering, where the component
of the momentum parallel to the axis of the channel is conserved. Specular scattering is typical
for electrostatically defined constrictions.
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2.2 Landauer-Büttiker formalism

Landauer [3, 9] proposed an approach where the current through a conductor is
expressed in terms of the probability that an electron is transmitted. He provided
a formula for the linear response conductance G of a one-dimensional conductor
with a single channel. Fisher and Lee [10] extended the Landauer formula to a
multi-channel conductor and showed that it could be derived from the Kubo for-
mula, via the scattering matrix. Engquist and Anderson [11] stressed the need to
consider the actual conditions corresponding to the measurements, and Imry [12]
clarified the concept of contact resistance. Büttiker et al. [13] extended Land-
auer’s approach to devices with multiple reservoirs and non-zero magnetic fields.
For more details, see Refs. [2, 5, 14].

2.2.1 Landauer formula

Consider the 1d conductor in Fig. 2.2, where a scattering region S is connected
to reservoirs (left and right) by leads. For simplicity we assume that the leads
are ideal (i.e., without scattering) and that only one 1d subband is occupied.
Each reservoir has a distribution of electrons given by the Fermi function (with
chemical potential µL and µR, respectively). All the inelastic scattering is assumed
to occur in these reservoirs, which means that the phase of the electrons injected
or absorbed by them is randomized. The flow of electrons from one reservoir to
the other can be described using incident (I ), reflected (R) and transmitted (T )
flux. The flux can be written in term of a transmission probability t(E), which is
a function of energy.

µL µRS

I T

R

Figure 2.2: Example of two-terminal device. A scatterer S is connected to two
reservoirs by ideal leads. The two reservoirs are characterized by their chemical
potentials µL and µR. I, R and T are the incident, reflected and transmitted
component of the electron flux.

If we apply a small potential difference V between the two reservoirs, such that
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eV = µL − µR � µL, µR, the current flowing from left to right is:

I = e

∫ ∞

0

D(E) f0(E, µL) v(E) t(E) dE −

− e

∫ ∞

0

D(E) f0(E, µR) v(E) t(E) dE,

(2.4)

whereD(E) is the dos in the leads, f0(E, µ) is the Fermi function for the reservoirs
(D(E)f0(E, µ) gives the number of electrons), v(E) is the velocity and t(E) is

the transmission probability. In 1d D(E) =
1

h

√
2m∗/E (from Eq. (1.14)) and

v(E) =
√

2E/m∗ (from Eq. (1.19b)), so D(E)v(E) =
1

h
. Equation (2.4) at low

temperatures becomes then

I = e

∫ µL

0

D(E) v(E) t(E) dE − e

∫ µR

0

D(E) v(E) t(E) dE

= 2e
1

h

∫ µL

µR

t(E) dE

=
2e

h
t(µ) (µL − µR) =

2e2

h
t(µ)V,

(2.5)

where a factor 2 accounts for spin-degeneracy and it has been assumed that t(E)

is nearly constant over the range between µL and µR. t(µ) is the transmission

probability of the scatterer S at the average chemical potential, µ =
µL + µR

2
.

The conductance of a single-channel 1d conductor with transmission probability
T = t(µ) is then:

G =
I

V
=

2e2

h
T, (2.6)

which is known as the two-terminal Landauer formula.

If transport is ballistic, T → 1 and G =
2e2

h
. This result seems contradict-

ory because we obtain a finite conductance (and hence, finite resistance) for a
conductor when there is no scattering. Eq. (2.6) was derived by considering the
current flowing from one reservoir into the other, through the conductor. Since
the conductor has only a few transmitting modes, the electrons are “squeezed”
though the conductor. It is the fact that the current has to go through a narrow
channel that gives a finite resistance (contact resistance), even if the channel itself
is ballistic.
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2.3 Split-gate devices as one-dimensional ballistic

conductors

The split-gate technique [6] was presented in the previous chapter as a method to
produce low-dimensional systems in a semiconductor heterostructure. Figure 2.3
is a schematic representation of such a split-gate: by applying a negative voltage
to the gates, a constriction is formed in the 2deg. If the width of the constriction
is small enough, it forms a one-dimensional conductor that connects two regions
of 2deg (it is also known as quantum point contact, qpc). At low temperatures,
the mean free path of the electrons can be much larger than the length of the
constriction, and so the transport is ballistic.

2DEG

Depleted region

Split-gate

D 

 W

 L Vg

Figure 2.3: Schematic representation of a split-gate device. L and W are the
lithographic length and width of the gap between the gates. D is the depth of the
2DEG. Applying a negative voltage Vg to the split-gate, the regions of the 2DEG
beneath the gates are depleted and a narrow channel is left, which connects the two
sides of the 2DEG.

In 1988 van Wees et al. [7] and Wharam et al. [8] independently reported
measurements of the conductance versus gate voltage in split-gate structures. The
measurements showed plateaux in the conductance quantized in integer multiples
of 2e2/h. The data can be interpreted in terms of Landauer-Büttiker formalism
for a two-terminal device. For a ballistic conductor in the absence of a magnetic
field:

G =
2e2

h
N, (2.7)

where N is the number of transmitting channels in the 1d conductor. In a split-
gate device the number of transmitting 1d subbands varies with gate voltage Vg.
The more negative Vg, the narrower the constriction, and the lower the electron
density. As the 1d subbands are depopulated with decreasing Vg, G decreases by
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steps of
2e2

h
, and the resulting G(Vg) characteristic looks like in Fig.2.4.
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Figure 2.4: Conductance characteristic G(Vg) as a function of gate voltage Vg of
a split-gate device (split-gate B in sample III), at T ≈ 50 mK.
The conductance has been corrected for a series resistance of 840 Ω, which is due
to the regions of 2deg that connect the constriction to the electric leads. The inset
shows the overall characteristic.

A realistic model for the potential profile in a split-gate device is given by the
saddle-point potential [15, 16]:

V (x, y) = V0 −
1

2
m∗ω2

xx
2 +

1

2
m∗ω2

yy
2, (2.8)

where (x, y) are the coordinates in the plane of the 2deg, V0 is the potential at the
center of the saddle, m∗ is the effective mass of the electrons, and ωx and ωy are
parameters that characterize the potential (curvatures). The “y-part” of Eq. (2.8)
describes the confining potential of the constriction in the 2deg, and ~ωy gives
the energy spacing between the 1d subbands. The “x-part” gives the shape of a
potential barrier, which allows for tunneling through the constriction even when a
subband is not fully transmitting. The transmission probabilities are given by [16]

tmn = δmn
1

1 + exp(−πεn)
, (2.9)
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where δmn is the Kronecker delta and εn = 2
~ωx

(
E − ~ωy(n+ 1

2
)− V0

)
is a dimension-

less measure of the energy E. The resulting transmission is plotted in Fig. 2.5,
and one can see the similarity with the conductance in Fig. 2.4.
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Figure 2.5: Transmission probability of a saddle-point potential with ~ωx = 1 meV
and ~ωy = 3 meV. t00, t11, t22 are the transmission probabilities of single subbands
as a function of energy, t is the sum of the transmission probabilities of all subbands.
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2.3.1 The “0.7 structure”

The 0.7 structure is a shoulder-like feature observed in the electrical conductance
at G ≈ 0.7(2e2/h), as can be seen in Fig. 2.6. The exact height and shape depends
on temperature and electron density. In 1996 Thomas et al. [17] showed that the
0.7 structure is an intrinsic property of a 1d constriction. Further work determined
several properties of the 0.7 structure:

• The 0.7 structure becomes stronger with increasing temperature [17]. From
a shoulder-like feature at G ≈ 0.7(2e2/h) it evolves into a plateau-like feature
at G ≈ 0.6(2e2/h), as shown in Fig. 2.6. Such a change in conductance is
not observed in the regular quantized plateaux, and the 0.7 structure is still
present at temperatures where the regular plateaux are thermally smeared.

• As the magnetic field is increased, the 0.7 structure evolves continuously into
the spin-split plateau at e2/h [17]. Features analogous to the 0.7 structure
are observed for higher subbands (e.g., at ∼1.7(2e2/h) and ∼2.7(2e2/h)),
which evolve into spin-split plateaux with increasing magnetic field (“0.7
analogues”) [18, 19]. As the temperature is increased, the e2/h spin-split
plateau increases towards ∼ 0.6× (2e2/h) [20].

• With decreasing electron density the 0.7 structure becomes more marked and
moves towards e2/h [18,19]. As the temperature is increased, the feature at
∼e2/h moves towards ∼0.6(2e2/h).

• Measurements of the non-linear conductance G(Vsd) (where Vsd is the source-
drain bias) show that the 0.7 structure evolves into a plateau-like structure
at ∼0.85(2e2/h) [18, 19]. An additional feature at ∼0.3(2e2/h) appears to
evolve from the 0.7 structure (first observed in Refs. [21, 22]).

The 0.7 structure is not due to an impurity or a resonance in the constriction,
because it would become weaker with increasing temperature.3 The magnetic field
dependence indicates that the 0.7 structure is related to the spin. The fact that
the 0.7 structure becomes stronger with decreasing electron density, and that the
g-factor is higher for the lower subbands than for the bulk 2deg [17,18], as shown
in Fig. 2.7 on page 43, points towards the exchange interaction as important
mechanism in the 0.7 structure. These considerations lead Thomas et al. to

3Figure 2.6 shows an impurity feature (marked with a star). It becomes weaker with increasing
temperature; in contrast the 0.7 structure becomes stronger.
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interpret the 0.7 structure as a spontaneous spin polarization due to electron-
electron interactions.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.75 -1.7 -1.65 -1.6 -1.55

G
 (

2e
2 /h

)

Vg (V)

0.7 structure

✱

Figure 2.6: The 0.7 structure in the electrical conductance G(Vg) (split-gate A in
sample I), measured at T ≈ 0.3 K (full red) and at T ≈ 1.2 K (dashed green). The
black arrow indicates the 0.7 structure: at T ≈ 0.3 K it is observed as a shoulder at
G ≈ 0.75(2e2/h), which evolves into a plateau-like structure at G ≈ 0.63(2e2/h) at
T ≈ 1.2 K. The star (*) marks a feature due to an impurity (see Sec. 5.2.4).

Spontaneous spin polarization

Lieb and Mattis [23] proved that the ground-state of an infinite 1d conductor
cannot be spin-polarized. However, the theorem might not be applicable to split-
gate devices, because the constriction has a finite width and a finite length, and so
it is not strictly 1d. Wang and Berggren [24] showed that exchange interactions
in a quasi -1d conductor result in a spontaneous spin polarization. The saddle-
point potential in the constriction has a different height for spin-up and spin-
down electrons, so that when G ≤ 2e2/h only one spin is fully transmitted, but
the other has to tunnel. However, this theory agrees only qualitatively with the
measurements, and in particular does not explain the temperature dependence.

Further confirmation of the 0.7 structure came from Kristensen et al. [25, 26],
who showed that the temperature dependence and the source-drain bias measure-
ments of shallow-etched constrictions give the same results as split-gate devices,
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Figure 2.7: The in-plane g factor g‖ as a function of subband index N , from [18].
The dashed line at |g| = 0.44 indicates the g factor for bulk GaAs.

the only difference being the higher energy scale due to the larger subband spa-
cing provided by the shallow-etching technique. The temperature dependence of
the conductance suppression was interpreted as thermal activation across a gap
between the average chemical potential and an anomalous subband edge.

Singlet-triplet resonances

Rejec et al. [27] showed that an electron can be bound in a cylindrical quantum
wire with a small thickness fluctuation. The bound electron affects the transport
via Coulomb interaction and can form singlet or triplet resonances, resulting in
conductance structures at 0.25(2e2/h) and 0.75(2e2/h). However, the 0.7 structure
in 1d constrictions has not the features of a resonance structure, and no structure
at ∼0.25(2e2/h) has been observed in the linear conductance. Also, the saddle-
point potential of a 1d constriction is different from the cylindrical bulging wire.

Kondo-like effect

In 2002 Cronenwett et al. [28] measured the electrical conductance of split-gate
devices as a function of temperature, magnetic field and source-drain bias. Source-
drain bias measurements at low temperatures and in low magnetic field show a
zero-bias anomaly : a narrow peak in the G(Vsd, Vg = const.) curves about Vsd =

0, corresponding to a “lifting” of the conductance of the 0.7 structure towards
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2e2/h. The peak disappears at high temperatures, and splits into two peaks
when the magnetic field is increased. These properties of the 0.7 structure lead
Cronenwett et al. to interpret the 0.7 structure as something similar to the Kondo
effect in quantum dots.

The interpretation of the 0.7 structure as Kondo-like effect is also supported
by the fact that the conductance scales with temperature following a Kondo-like
form, and that the corresponding Kondo temperature can be related to the width
of the zero-bias peak. However, there is no obvious way to localize a spin in an
open system like a 1d constriction. Meir et al. [29] showed that multiple reflections
between entrance and exit of a constriction result in a single bound electron, which
can be treated as an s = 1/2 Kondo impurity.

More experimental results

Further experimental results were obtained by Appleyard et al. [30], who measured
the thermopower of a split-gate device in magnetic field. When the magnetic
field is zero, the measured thermopower corresponding to the 0.7 structure is not
proportional to the transconductance, violating the Cutler-Mott relation (3.17b).
In high magnetic fields the subbands are Zeeman-split and the thermopower follows
the Cutler-Mott relation.

Graham et al. [31] performed source-drain bias measurements of split-gate
devices in magnetic field. It was found that when Zeeman-split subbands of op-
posite spin cross, the conductance shows features similar to the 0.7 structure.
These “0.7 analogs” are interpreted as consequence of the exchange interaction,
which lifts the degeneracy at the crossing point.

Roche et al. [32] measured the non-equilibrium current noise in a split-gate
device. The Fano factor was found to be significantly reduced on the 0.7 structure.
In high magnetic fields, where the 0.7 structure has evolved into the Zeeman-split
plateau at e2/h, the Fano factor was zero, as expected. Based on these results, the
0.7 structure was interpreted as a consequence of two conducting channels with
different transmission probabilities, associated with different spin orientations.

The 0.7 structure has been investigated also in quantum wires longer than the
typical split-gate device. Reilly et al. [33] measured the conductance of quantum
wires with nominal lengths of l = 0, 0.5, and 2 µm. The results obtained for
the l = 0 µm quantum wires are consistent with the measurements performed
by others. The measurements of the l = 0.5 µm quantum wire show a feature
at 0.7(2e2/h), which evolves continuously towards ∼0.55(2e2/h) with increasing

44



2.3. SPLIT-GATE DEVICES AS 1D BALLISTIC CONDUCTORS

electron density. In the l = 2 µm quantum wire a feature at G ≈ 0.5(2e2/h) is
observed, in addition to a feature at ∼1.7(2e2/h).

Luttinger liquid and Wigner crystallization

A typical objection against the theories of the 0.7 structure is that a 1d conductor
with interacting electrons is a Luttinger liquid. Maslov and Stone [34] have shown
that a Luttinger liquid connected to reservoirs has a dc conductance quantized
at e2/h per spin orientation, exactly as in the non-interacting case. In contrast,
the thermal conductance is not expected to be quantized at (e2/h)L0T , because
the energy is transported by plasmons, which have different scattering properties
than the electrons. So a violation of the Wiedemann-Franz law is expected. In
particular, Fazio et al. [35] predict that in some temperature range plasmons can
be localized due to random variations of electron density in the 1d conductor.
The thermal conductance decreases from its non-interacting value with increasing
temperature.

Matveev [36] models a quantum wire at low electron density as a Wigner
crystal, where the Coulomb interactions between the electrons lead to short-range
order. This system displays a separation of spin and charge degrees of freedom,
characteristic of a Luttinger liquid. The conductance of the quantum wire is the
result of a charge contribution of 2e2/h, and a negative correction due to a spin
contribution, which depends on temperature.

Despite the amount of theoretical work, there is still no general agreement on
the origin of the 0.7 structure. In Chapter 5 we will see that this work provides new
information about the transport properties of the 0.7 structure, in particular that
the thermal conductance is reduced and the Wiedemann-Franz law is violated.
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Chapter 3

Thermoelectric properties of
one-dimensional constrictions

So far the discussion has been focused on the electrical conductance of low-
dimensional systems. The main reason is that the conductance has been the
principal concern of experimental and theoretical investigations. In this chapter
we will extend the discussion to thermoelectric transport. As before, we will first
discuss the thermoelectric properties of a ldeg within the semiclassical approach,
focusing on the linear response regime. Following Landauer’s approach, we will
then see the thermoelectric properties for ballistic transport. Finally, we will
briefly discuss hot electrons and electron thermometry, necessary to investigate
experimentally the thermoelectric transport.
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3.1 Thermoelectric transport in an electron gas

The transport in a ldeg in the diffusive regime can be described within the
semiclassical approach. The transport properties are expressed in terms of mac-
roscopic phenomenological parameters such as conductance, thermoelectric power
and thermal conductance. Before presenting the semiclassical theory of thermo-
electric transport, a physical picture of thermoelectric effects will be given.

3.1.1 Physical picture of thermoelectric transport

Consider two reservoirs of electrons (left and right), connected by a conductor.
The electrons in each reservoir are distributed according to the Fermi function,
with well defined temperature Ti and chemical potential µi (i = L,R). The idea
is to present the thermoelectric effects as they are measured experimentally, dis-
regarding the details of the conductor connecting the two reservoir. The following
discussion follows Landauer’s approach to transport, and we will see that it can
be applied in a straightforward manner to ballistic transport.

Electrical conductance

E

fFD

µR

T

E

fFD

µL

T

µ

I

Figure 3.1: Electrical conductance. A potential difference ∆V is applied between
the reservoirs, which are at the same temperature, TL = TR = T ; µ is the chemical
potential in equilibrium. The result is an imbalance in the chemical potentials
∆µ ≡ µL − µR = −e∆V , which gives rise to an electric current I.

Figure 3.1 depicts a typical electrical conductance measurement. A potential
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difference ∆V is applied between the two reservoirs, which are at the same temper-
ature, TL = TR = T (that is, ∆T ≡ TL − TR = 0). The chemical potential in the
reservoirs is shifted from the equilibrium value µ such that ∆µ ≡ µL−µR = −e∆V ,
and as a result there is a net flow of electrons from one reservoir to the other, giving
rise to an electric current I. The electrical conductance is defined as

G =

(
I

∆V

)
∆T=0

. (3.1)

If e∆V � µ, the system is close to equilibrium, and the conductance G yields
information about transmission properties at the Fermi energy µ.

In four-terminal measurements the current is controlled as an independent
variable, and the potential drop across the conductor is measured. Therefore the
quantity measured is the electrical resistance

R =

(
∆V

I

)
∆T=0

=
1

G
. (3.2)

Thermal conductance

E

fFD

T

E

fFD

T + ∆T

µ

IQ

Figure 3.2: Thermal conductance. A temperature difference (∆T 6= 0) is applied
between the reservoirs, while the electric current between the two is kept at zero,
I = 0. The flow of heat IQ results from the fact that there are more electrons slightly
above the chemical potential µ on the left rather than on the right.

Consider the situation in Fig. 3.2. A temperature difference ∆T ≡ TL−TR > 0

is applied between the two reservoirs, while the electric current is kept zero (I = 0).
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This means that the number of electrons going from left to right is the same as
the number of electrons going from right to left. Since the electrons coming from
the left reservoir have a higher energy than the electrons from the right reservoir
(because TL > TR), there is a net transfer of energy from left to right, i.e., a heat
flow IQ. The thermal conductance is defined as

κ = −
(
IQ
∆T

)
I=0

. (3.3)

Similar to the electrical conductance, when the system is close to equilibrium
(∆T � TL, TR), the thermal conductance gives information about the transmis-
sion at µ, t(µ.

Electrons carry both electric charge and energy, so the thermal conductance is
connected to the electrical conductance via the Wiedemann-Franz law :

κ = L0TG, (3.4)

where L0 =
π2k2

B

3e2
≈ 2.44× 10−8 WΩ/K2 is the Lorenz number.

Cross-effects

E

fFD

µR

T

E

fFD

µL

T + ∆T

µ

I = 0

Figure 3.3: Seebeck effect. A temperature difference ∆T 6= 0 is applied to the
reservoirs, while the electric current is kept zero, I = 0. The result is an imbalance in
the chemical potentials between the two reservoirs, which yields a potential difference
∆V = 1

−e∆µ.
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Figure 3.3 shows the Seebeck effect, which occurs when a temperature difference
∆T is applied between the two reservoirs and the electric current is kept zero
(I = 0). The flow of electrons from the hot reservoir to the cold reservoir is
balanced by a potential difference ∆V (thermovoltage), which is proportional to
the temperature difference ∆T . The thermoelectric power (or thermopower) is
defined as

S = −
(

∆V

∆T

)
I=0

. (3.5)

The Peltier effect is a heat flow IQ due to an electric current I, when there is
no temperature difference between the two reservoirs. The corresponding Peltier
coefficient is defined as

Π =

(
IQ
I

)
∆T=0

. (3.6)

Both the Seebeck and the Peltier effects relate thermal properties to electrical
properties, and the two are themselves related through the Kelvin-Onsager rela-
tion: Π = ST (see Eq. (3.11c)).

3.1.2 Formalism of thermoelectric transport

Usually thermoelectric transport in the diffusive regime is approached via the
theory of non-equilibrium thermodynamics [1]. A system of particles is defined
in terms of extensive parameters, such as total entropy, total energy, number of
particles, etc. The system is also characterized by intensive parameters, such
as temperature and chemical potential. In equilibrium the intensive parameters
are constant throughout the system. When there are spatial gradients of these
parameters, there are fluxes of the extensive parameters and the system is out of
equilibrium. For example, a gradient in temperature results in a heat flow, while
a gradient in density yields diffusion (flow of particles).

Empirically, for a large class of irreversible phenomena and under a wide range
of experimental conditions, a system can be assumed to be in local equilibrium.
This means that thermodynamic quantities such as entropy, temperature, density,
etc., are well defined locally. Also, under the same conditions, the irreversible
flows of the extensive parameters are well approximated by linear functions of
the gradients of the intensive parameters. These linear functions are the formal
expression of phenomenological laws such as Fourier’s law of heat conduction and
Ohm’s law for electrical conduction.

For a diffusive conductor the relevant intensive parameters for thermoelectric
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transport are the temperature T and the electrochemical potential µe = µ − eV ,
where V is the electric potential. Gradients of these parameters drive electric
currents and heat flows. If the electric field and the temperature gradient are
small and slowly varying, the electric current density j and the thermal current
density jQ can be expressed in terms of linear functions of the gradients [2, 3]:

 j

jQ

 =


L(0) 1

eT
L(1)

−1

e
L(1) − 1

e2T
L(2)




1

e
∇µe

∇T

 =

 σ L

M N




1

e
∇µe

∇T

 ,

(3.7)
where the thermoelectric transport coefficients σ, L, M and N are tensors (following
the notation in Ref. [4]), and are defined in terms of integrals:

L(α) = −e2
∫ ∞

0

dE D(E) τ(E) v(E)v(E) (E − µ)α ∂f0

∂E
(E) (3.8)

(see Section 1.3.1 for the definition of the terms used). The transport coefficients
satisfy the Onsager reciprocity relations [5, 6]:

σ(B) = σ̃(−B) (3.9a)

L(B) = − 1

T
M̃(−B) (3.9b)

N(B) = Ñ(−B), (3.9c)

where B is the magnetic field and Ã is the transpose of the matrix A.
In experiments it is usual to control the electric current and the temperature

as independent variables. So, it is often more convenient to rearrange Eq. (3.7) in
the following way: 

1

e
∇µe

jQ

 =

 ρ S

π −κ


 j

∇T

 , (3.10)

where ρ, S, π and κ are respectively the resistivity, the thermoelectric power, the
Peltier coefficient and the thermal conductivity. These quantities are related to
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the transport coefficients via the following relations:

ρ = σ−1 (3.11a)

S = −ρL (3.11b)

π = Mρ = ST (3.11c)

κ = MρL− N. (3.11d)

For an isotropic conductor and in the absence of magnetic field, the tensors are
diagonal. In the degenerate limit, the transport coefficients (3.11) can be written
as [2]

ρ ≈ 1

σ(EF )
(3.12a)

S ≈ π2k2
BT

3e

(
d lnσ(E)

dE

)
E=EF

(3.12b)

κ ≈ L0Tσ(EF ). (3.12c)

Equation (3.12a) is a result we have seen with Eq. (1.27), where we implicitly

defined σ =
e2n〈τ〉
m∗ with 〈τ〉 ≈ τ(EF ). Equation (3.12b) is the Cutler-Mott for-

mula for thermopower [7]. Equation (3.12c) is the Wiedemann-Franz law (see
Eq. (3.4) and Ref. [2]). In the 2deg of a GaAs/AlGaAs heterostructure, the
Wiedemann-Franz law (3.12c) is valid as long as σ(E) is a slowly varying func-
tion over the range kBT and the scattering is predominantly elastic. As seen in
Sec. 1.3.2, these conditions are satisfied at low temperatures where scattering is
dominated by ionized impurities. At higher temperatures electron-phonon scatter-
ing is not negligible and needs to be taken into account (e. g., phonon drag [8,9]);
it also results in a violation of the Wiedemann-Franz law [10].
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3.2 Thermoelectric properties of one-dimensional

constrictions

We have seen that ballistic transport occurs in structures which have a size L, W
less than the mean free path Le of the electrons. There is no scattering inside the
conductor, hence the assumption of local equilibrium breaks down. In the absence
of local equilibrium, we cannot define a local temperature, chemical potential,
and their gradients. However, the temperatures and the chemical potentials of
the reservoirs connected to the conductor are still well defined. This is where the
discussion presented in Section 3.1.1 is helpful. We can discuss the thermoelectric
transport in terms of quantities defined in the reservoirs that are connected by
the ballistic conductor. The electric conductance, thermal conductance, etc., are
determined by the transmission properties of the conductor.

Sivan and Imry [11] extended the Landauer formula for the conductance (Sec-
tion 2.2.1) to take into account temperature differences. A multi-terminal formu-
lation was given by Butcher [4]. The discussion in the rest of this section follows
van Houten et al. [12].

3.2.1 Landauer-Büttiker formalism for thermoelectric trans-

port

Consider two reservoirs connected by a conductor, as in Section 3.1.1. If we
substitute gradients with differences between the reservoirs, we can write the non-
local version of Eq. (3.7):

 I

IQ

 =


L(0) 1

eT
L(1)

−1

e
L(1) − 1

e2T
L(2)




1

e
∆µe

∆T

 =

 G L

M K




1

e
∆µe

∆T

 ,

(3.13)

where T =
TL + TR

2
is the average temperature and L(α), given by

L(α) =
2e2

h

∫ ∞

0

t(E) (E − EF )α

(
−∂f0

∂E

)
dE, (3.14)
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is the equivalent of Eq. (3.8); t(E) is the transmission of the conductor (a factor
2 is included for spin-degeneracy). Equation (3.13) can be rewritten as

1

e
∆µe

IQ

 =

 R S

Π −κ


 I

∆T

 , (3.15)

where the coefficients are the same as defined in Section 3.1.1 and satisfy the
following relations:

R = G−1 (3.16a)

S = −L
G

(3.16b)

Π =
M

G
= ST (3.16c)

κ = −K
(

1 +
S2GT

K

)
. (3.16d)

The tensorial character of the transport coefficient has been ignored, but in the
presence of a magnetic field, they satisfy the same Onsager relations as in Eq. (3.9).

In the degenerate limit, the thermoelectric coefficients for the linear-response
regime become:

G ≈ 2e2

h
t(EF ) (3.17a)

S ≈ π2k2
BT

3e

(
dlnt(E)

dE

)
E=EF

(3.17b)

κ ≈ L0TG. (3.17c)

The similarities of these equations with the semiclassical case (3.12) are obvious,
the new feature being the transmission coefficient t(E) of the conductor.
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3.2.2 Thermoelectric coefficients for the saddle-point poten-

tial

In Section 2.3 the saddle-point potential was introduced as a model for the elec-
trostatic potential produced in a split-gate device. The transmission is given by

t(E) =
∞∑

n=0

[
1 + exp

(
−2π (E − En)

~ωx

)]−1

, (3.18)

where En = ~ωy

(
n+ 1

2

)
+ V0. Equation (3.18) enables us to calculate the ther-

moelectric coefficients via the integral in Eq. (3.14).
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Figure 3.4: Calculated thermoelectric coefficients for a saddle-point potential as
a function of Fermi level, after [12]. Left axis: conductance G (full curve) and
thermal conductance κ/L0T (broken curve); right axis: thermopower S and Peltier
coefficient Π/T (same dotted curve). The parameters for the saddle-point potential
are ~ωx = 1 meV, ~ωy = 3 meV; the temperature T is 1 K.

Figure 3.4 shows an example of the calculated thermoelectric coefficients. The
electrical conductance follows closely the total transmission at the Fermi level
(Eq. (3.17a) and Fig. 2.5), which is in agreement with experimental results. The
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calculated thermal conductance follows the Wiedemann-Franz law (3.17c) except
where the condition S2 � L0 is not satisfied. The thermopower satisfies the
Cutler-Mott relation (3.12b). In particular, it is zero on a conductance plateau
and shows peaks between plateaux. Proetto [13] has shown that the thermopower
peak between plateau i and plateau i+ 1 is given by:

S
(i)
pk =

π2kB
2

3e

T

~ωx

1

i+ 1
2

. (3.19)

Equation (3.19) can be used to calibrate the thermopower of a constriction to be
used as an electron thermometer, as has been shown by Appleyard et al. [14].
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3.3 Hot electrons and electron thermometry

In order to investigate thermoelectric transport in one-dimensional constrictions,
we need to be able to produce temperature differences and measure the tem-
perature in the 2deg. The current heating technique [15] is a common way to
increase the temperature of the electrons above the temperature of the lattice in
a controlled way. There are several methods available for electron thermometry,
but we will focus on the technique described by Appleyard et al. [14], which uses
the thermopower of a 1d constriction as a thermometer.

“Hot” electrons at low temperatures

The main scattering mechanisms for electrons in a GaAs/AlGaAs heterostructure
have been discussed in Sec. 1.3.2. For a ldeg in the Bloch-Grüneisen regime, the
electron-phonon interaction is weak and is responsible for the energy-loss of the
electrons.1 If we apply a voltage to a ldeg beyond the linear response regime, the
electron gas gains energy from the electric field. Anderson et al. [16] showed that
if the scattering rate τ−1

ee for electron-electron interaction is much higher than
the rate τ−1

eph for electron-phonon interaction, the electron gas can be described
by a new Fermi function.2 The hot electrons can be considered as a system in
equilibrium at a temperature Tel, weakly coupled to the system of phonons in
equilibrium at a temperature Tph ≤ Tel (two-bath model).

A steady state is reached when the power of the Joule heating of electron gas
is balanced by the energy-loss rate due to scattering with phonons. In this case
the net energy-loss rate of the electrons to the phonons is [15]

Q̇el−ph(Tel, Tph) = Nel (F (Tel)− F (Tph)) , (3.20)

where Q̇el−ph is the power lost, Nel is the number of electrons, and F (T ) is a func-
tion which depends on the energy-loss mechanism. For a 2deg in a GaAs/AlGaAs
heterostructure at low temperatures, F (T ) = αT γ, where α and γ depend on the
specific scattering mechanism. Measuring the temperature dependence of Q̇el−ph

can give us information about the specific electron-phonon interaction responsible
1Coulomb scattering is elastic and does not contribute to the energy relaxation.
2For example, in an AlGaAs/GaAs heterostructure at low temperatures, τeph is of the order

of 1 ns [17], and τee can be as low as 10 fs [18], depending on the electron density.
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for the energy relaxation of the electrons [18–20]:

γ = 3 unscreened pz

γ = 5 unscreened dp and screened pz

γ = 7 screened dp

For the temperature range of our interest (T < 1 K), we are in the Bloch-Grüneisen
regime. Experiments have shown that in this regime γ ≈ 5 [14, 20].

Figure 3.5: Acoustic-phonon energy loss rates in GaAs/AlGaAs heterostructures,
from Shubnikov-de Haas data, from [21]. The experimental points are fitted to the-
ory using a deformation potential of 11 eV. The contributions made by piezoelectric
and polar optical modes are also shown.

Electron thermometry

Due to the weak coupling between electrons and phonons, the techniques available
to measure the lattice temperature of bulk materials cannot be applied to electrons.
Several techniques take advantage of the electrical transport properties of the
2deg itself, such as the temperature dependence of the zero field resistance and
weak localization corrections [22,23], or the Shubnikov-de Haas oscillations in the
magnetoresistance [20, 24, 25]. Mesoscopic effects such as Coulomb blockade have
also been used for electron thermometry [26].
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Molenkamp et al. [27] introduced the idea of using the thermopower of a 1d

constriction to probe the local temperature of a 2deg. Appleyard et al. [14] have
shown how the thermopower can be calibrated to measure the electron temperat-
ure. Using the saddle-point potential model, it is possible to relate the height of
the peaks in the thermopower to the parameters ωx and ωy of the potential, as
can be seen from Eq. (3.19). These parameters can be determined from conduct-
ance measurements far from equilibrium, and hence allow the calibration of the
thermopower, which can be used as a secondary thermometer.
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Chapter 4

Experimental techniques

All the experimental work described in this dissertation required the measure-
ment of small voltages and currents in mesoscopic structures fabricated from
GaAs/AlGaAs heterostructures or quantum wells. From these experiments we
determine the electron temperature, electrical, and thermal conductance of 1d

ballistic conductors.
The ideas behind the design and the fabrication of the devices will be presented

first. We will show that the quality of the devices are a major improvement on
previous work. Then, we will describe the measurements; the focus will be on
the electrical circuits, rather than the methods to achieve the low temperatures
necessary for the measurements.
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4.1 Devices

The devices were fabricated from wafers grown by Dr. M. Y. Simmons and Dr. I. Far-
rer at the mbe facility at the Cavendish Laboratory, Cambridge University. The
photolithography was done by Dr. Y. Proskuryakov and Mr. J. Underdown at
rhul, with advice from Dr. N. Lumpkin at the Cavendish Laboratory. The e-
beam lithography was done by myself at rhul.

Device Wafer Depth Spacer Density Mobility
I T458 297 nm 80 nm 2.5× 1011 cm−2 3.3× 106 cm2/Vs
II T567 97 nm 40 nm 3.2× 1011 cm−2 1.4× 106 cm2/Vs
III T569 97 nm 40 nm ∼3.1× 1011 cm−2 ∼4.9× 106 cm2/Vs

Table 4.1: Characteristics of the wafers. Wafer identifies the wafer fabricated at
the Cavendish Laboratory. The depth of the 2deg is measured from the surface of
the wafer; Spacer is the width of the spacer layer. The electron density and the
mobility are obtained from the characterization measurements, where possible.

4.1.1 Design

Molenkamp et al. [1] was the first to measure the thermopower of a split-gate to
probe the local temperature of the electron gas, allowing measurements of heat flow
through a second split-gate. The measurements showed that the Peltier coefficient
has the same oscillations as a function of gate voltage as the thermopower, a
result expected from Eq. (3.16c). Also, the thermal conductance κ displayed, see
Fig. 4.1, weak plateaux corresponding to those seen in the electrical conductance
G, as expected from the Wiedemann-Franz law (see Eq. (3.17c)).

Appleyard et al. [2] showed that the thermopower of a split-gate can be cal-
ibrated, so that it can be used as a secondary thermometer of the electron tem-
perature. An extension of the design used in that experiment was proposed for
thermal conductance measurements in Ref. [3], and is used in this work, as shown
in Figs. 4.2 and 4.3.

A current IH = VH/RH heats the electrons in the heating channel up to a
temperature TH . Heat flows through the main constriction A into the thermal
box defined by the three split-gates. The electrons in this box are heated up to
a temperature Tbox, and lose heat by conduction through the other two constric-
tions (B and C ) and to the lattice via the electron-phonon interaction. Since the
electron-electron interactions occur much faster than any other interaction relev-
ant to heat flows (see Sec. 2.1.1 and 3.3), Tbox is uniform throughout the thermal
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Figure 4.1: Electrical conductance G (dotted line) of a 1d constriction and ther-
movoltage Vth = V5 − V1 as a function of gate voltage V E

gate, from [1].
The thermovoltage has been measured at a lattice temperature of TL = 1.8 K for
different heating currents: (a) 1.0 µA, (b) 1.3 µA, (c) 1.5 µA.

box. The electrons in the voltage arms on the other side of these constrictions,
are at the lattice temperature TL, and are expected to act as a heat sink. The
split-gates B and C are used as a thermometer to measure the electron temper-
ature in the box [2, 3]. Since high-impedance voltage probes are used to measure
the thermovoltage V box

th , no current is expected to flow from the heating channel
through any of the constrictions.

TH is determined by measuring the thermovoltage V H
th when constriction A is

not defined. Since the thermal box is small compared to the heating channel, the
definition of A does not affect the electron temperature in the channel. When A
is not defined, the electrons in the box are heated up to TH and measuring the
thermovoltage yields the correct temperature. The temperature distribution along
the heating channel does not affect the measurement of TH because it is measured
locally.

The measurements were carried out in the steady state, where the heat balance
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for the thermal box yields:

I
(IN)
Q = I

(OUT)
Q

I
(A)
Q = I

(B)
Q + I

(C)
Q + I

(el−ph)
Q

κA(TH − Tbox) = κB(Tbox − TL) + κC(Tbox − TL) + Q̇el−ph(Tbox, TL)

κA(TH − Tbox) = (κB + κC)(Tbox − TL) + Q̇el−ph(Tbox, TL),

(4.1)

where κA,B,C is the thermal conductance of constriction A, B and C, respectively
(as defined by Eq. (3.3)) and Q̇el−ph(Tbox, TL) is given by Eq. (3.20).

A

B C

e-ph

Heating channelI

V

VR

H

box
th

HH

Figure 4.2: Schematic of the measurement of the thermal conductance κ.
The voltage VH drives the heating current IH , which is determined by the resistance
RH . IH heats the electrons in the heating channel to a temperature TH , and the
heat flows through the constrictions A, B, and C as depicted by the arrows. Some
amount of heat is lost via the electron-phonon interaction (e-ph).
V box

th = (|SB|+ |SC |) · (Tbox−TL) is the thermovoltage measured; Tbox is the electron
temperature in the box, and TL is the lattice temperature.
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A

B C

Heating channel

Figure 4.3: Schematic representation of a device. Dark grey areas are the mesa
(containing the 2deg) and light grey areas are the metallic gates fabricated by
photolithography. Black structures are the gates fabricated by e-beam lithography
and the crossed pads are the ohmic contacts to the 2deg. A,B, C are the split-
gates: A is designated as the “main” split-gate, B is the “thermometer”, and C is the
“reference”. The three split-gates electrostatically define a “box” of electrons with
an area between 20 µm2 and 100 µm2. The mesa where the thermal box is formed,
is approximately (80× 40) µm2 in size, and the heating channel is (800× 100) µm2.
The whole chip has an approximate area of (1.4× 1.4) mm2.
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4.1.2 Fabrication

The techniques used to fabricate the devices from the wafers are standard, and
were carried out in the clean-room facilities at rhul. Photolithography is used to
fabricate the mesa, the ohmic contacts to the 2deg, and the macroscopic gates
(optical gates). The mesoscopic structures were fabricated by e-beam lithography.

Figure 4.4: sem micrographs of a typical device. The dark areas are parts of the
mesa (containing the 2deg), the light areas are the macroscopic gates (the “medium
grey” areas are the GaAs substrate exposed in the mesa-etching process). Gold wires
are bonded to the ohmic pads and the gate pads.
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Photolithography: mesa

The resist (Microposit photoresist S1813 ) is spun onto the wafer and baked on
a hot-plate for 10 mins at 90℃. The 1.2 µm thick layer of resist is exposed to
ultraviolet light through a chrome-on-quartz mask, and the pattern is developed
(with Microposit MF-319 ) to expose the regions of the wafer that do not form
the mesa. The chip is placed in a wet etchant (H3PO4 : H2O : H2O2) for 2 − 3

minutes to remove material to a depth below the level of the 2deg (the rate is
about 40 nm/min), leaving a mesa with the desired pattern. The etching process
also passivates the walls of the mesa and electrically isolates the 2deg.

Photolithography: ohmic contacts and macroscopic gates

Once the mesa has been fabricated, there are two more photolithography steps.
In both steps the resist, the exposure and the development are the same as for the
mesa, but instead of being etched, the exposed regions are covered with a layer
of metal. To make ohmic contacts, approximately 150 nm of AuGeNi alloy is
deposited by evaporation in an uhv chamber. After lift-off, the metal is annealed
in a Ar atmosphere at 460℃ for 90 seconds. To fabricate the macroscopic gates,
15 nm of Nichrome 5 and 35 nm of Au are deposited. In both cases, lift-off is
achieved by placing the wafer in acetone at 50℃ for several minutes.

E-beam lithography

The chip with completed mesa, ohmic contacts and optical gates is coated with
two layers of resist. First, copolymer mma(8.5)maa is spun and baked for 10
minutes at 150℃, then pmma is deposited and baked for 10 minutes at 140℃.
This double-layer resist has a thickness of 130 + 60 nm and provides an under-
cut, which facilitates the lift-off. In the sem the sample is exposed to a 25 keV

electron-beam controlled by a computer, which draws the desired pattern on the
surface (shown in Fig. 4.5). After developing the resist in IPA : H2O (93 : 7) for
a few seconds (depending on the exposure dose), evaporation and lift-off occur as
for the optical gates.

Finally, the chip is cleaved-cut and glued with BF-2 into a non-magnetic
ceramic package (Chantek with 20 leads). The contacts on the wafer are bonded
to the package with 25 µm diameter Au wires, using an ultrasonic wedge-bonder.
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I) II) III)

10 µm

Figure 4.5: The patterns for the e-beam lithography used in the fabrication of the
samples presented in this work. From left to right, sample I, II, and III, respectively.

Figure 4.6: sem micrograph of the thermal box. The split-gates have length
L ≈ 0.5 µm and width W ≈ 0.63 µm, as defined by the lithography. This design
was used in sample III, and the thermal box defined by the gates has an area
Abox ≈ (6× 10) µm2.
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4.2 Experimental setups

Initial tests at T = 4.2 K were performed in a dipping dewar, to test ohmics,
leakage currents and overall characteristics of the split-gates. Lower temperatures
are achieved in a pumped 3He cryostat (0.3 ≤ T ≤ 1.2 K), and a 3He/4He dilution
refrigerator (0.03 ≤ T ≤ 0.75 K). The setup using the dipping dewar consists of
a simple dipping-probe with a standard Chantek sample holder, which has spring-
loaded contacts for electrical connections to the chip carrier. Instruments are
connected to the leads via standard bnc connectors at the top of the stick.

The 3He cryostat has a top-loading probe with a Chantek sample holder, and
electrical access from the outside occurs via bnc connectors. The device sits in
a small volume of liquid 3He, which lasts approximately 24 to 48 hours. The
temperature of the liquid 3He is controlled by varying the heating power of the
sorb that pumps the 3He vapor, giving temperatures in the range 0.3 − 1.2 K,
which are measured by a resistance thermometer mounted in the sample holder.
This cryostat has a superconducting coil that provides a magnetic field up to 8 T,
perpendicular to the plane of the device.

The 3He/4He dilution refrigerator has a Chantek sample holder mounted on
the “coldfinger”, with electrical access given by bnc connectors. The refrigerator
provides continuous cooling with a base temperature of about 10 mK. Temper-
atures up to about 750 mK are achieved by applying a current to a resistance
heater. A RuO2 thermometer is mounted at the base of the mixing chamber. A
superconducting coil with magnetic fields up to 14 T is available.

The experiments involved measuring small currents and voltages, and in order
to have a good signal-to-noise ratio, low-frequency ac phase-sensitive detection
was employed. Typical setups used an ac voltage source (Krohn-Hite 4400A or
4402B oscillators), pre-amplification of the signals (EG&G Brookdeal 5002 current
pre-amplifier; HMS Elektronik 568 differential voltage pre-amplifier) and lock-in
amplifiers (Perkin Elmer Instruments 7265 digital lock-in). dc voltages were
provided by a digital-analog-converter (IOTech DAC488/4 ). Wherever possible,
the measurement circuit had only one electrical ground, in order to avoid ground-
loops and noise pick-up from the environment (50 Hz from the mains power and
radio-frequency broadcasting). This was made possible by using pre-amplifiers
powered by lead-acid batteries and voltage sources (oscillator and dac) with float-
ing terminals. To protect the device from transients or accidental discharges, low-
pass RC filters were used on all the connections to the gates. A computer (Acorn
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OSC pot. div.

104 : 1

Cryostat

DAC

bl. cap. Pre-ampl.

Dig. lock-in

Virt. gnd

COMPUTER

Figure 4.7: Setup for the two-terminal conductance measurement of a split-gate
device. “OSC” is the oscillator providing a voltage which is reduced by the potential
divider from 100 mV to 10 µV (typical values). The current is measured by the
pre-amplifier (with a typical amplification of 107 V/A), to the left of which is a
blocking capacitor (typical values 43 or 162 µF) that prevents any dc voltage from
the pre-amplifier being applied to the sample. The pre-amplifier is powered from a
battery pack, and its output is fed into a digital lock-in amplifier. The lock-in is
locked on the same frequency (typically 18 Hz) as the voltage from the oscillator.
The gate voltage Vg is varied using a digital-analog converter (dac). Both the lock-
in and the dac communicate via gpib with a computer, which controls the gate
voltage and records the measurements.

RiscPC700, running CryoMeas written by Dr. C. Ford) was used to control the
measurements and record the data.

4.2.1 Characterization

Initial measurements are carried out in a dipping dewar to test a device and
determine the characteristics of the 2deg and the split-gates. Testing includes
checking the ohmic contacts and the leakage of the gates. The next step is to
measure the conductance of each split-gate as a function of gate voltage, using the
configuration shown in Fig. 4.7. Although 4.2 K is typically too high to resolve
the quantized 1d subbands, the conductance measurements can tell whether the
split-gates operate as expected, for example, finding the gate voltage where the
1d channel is defined and where pinch-off occurs.

Once a device has been selected for the experiments, a proper characterization
of the split-gates requires measurement of the equilibrium conductance G = I/V
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Figure 4.8: Typical configuration for the measurement of the non-linear two-
terminal differential conductance of a split-gate. The setup is basically the same as
in Fig. 4.7, except there is no blocking capacitor between the device and the pre-
amplifier. One channel of the dac provides the source-drain voltage Vsd (which is
added to the ac voltage from the oscillator in the potential divider).

at temperatures where the subbands are resolved. This is achieved by carrying
out the conductance measurements in the 3He cryostat T ≈ 0.3 K, or in the
3He/4He dilution refrigerator at T ≈ 0.05 K. In order to keep the system in the
linear-response regime, only small voltages can be applied to the device (0.3 K ∼=
30 µV). Typically an excitation voltage of 10 µV is used, which gives a current of
approximately 10 nA (the resistance of a split-gate is of the order of 10 kΩ).

The next step of the characterization is the measurement of the non-linear
conductance (differential conductance G = dI/dV ), using the setup presented in
Fig. 4.8. The measurement requires the application of a dc voltage Vsd of 1−10 mV

between source and drain, and the measurement of the current in response of a
small excitation voltage (typically 10 µV). As explained in Refs. [4–7], the non-
linear differential conductance measurements allow the subband spacing to be
determined. Also, using the saddle-point potential (Sec. 2.3), it is possible to
calibrate the thermopower of the split-gates via Eq. (3.19) (see Section 3.2.2).

In order to characterize the 2deg, it is necessary to measure both the electron
density and the mobility. This is done by measuring the Shubnikov-de Haas os-
cillations of the resistance of the heating channel while sweeping a magnetic field
B, perpendicular to the 2deg (see, for example, Refs. [8, 9]). Usually the current
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Pre-ampl.

Dig. lock-in

GND
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Figure 4.9: Typical configuration for the Shubnikov-de Haas measurement, where
the four-terminal resistance of the heating channel is measured as a function of a
magnetic field applied perpendicular to the 2deg. The ac current in the heating
channel, typically 10 nA, is fixed by putting a large resistor of 10 MΩ in series with
the device. The voltage is measured by the voltage pre-amplifier, with a typical
amplification of 100 or 1000, using high-impedance leads. The computer controls
the magnetic field and records the measured voltage.

is 10 nA, which, for a heating channel of approximately 100 Ω resistance, gives a
measured voltage of 1 mV. The electron density and the mobility are obtained
from the zero-field resistance and the periodicity of the magneto-resistance in low
fields (up to 2 T).

4.2.2 Thermopower and thermal conductance

In order to measure thermal and thermoelectric effects, a temperature difference
is produced between reservoirs of electrons, using the current heating technique
(see Sec. 3.3 and Ref. [10]).

Since the heating of the electrons occurs via Joule heating, the electron tem-
perature oscillates with the frequency of the dissipated power P = RHI

2
H (where

RH is the resistance of the heating channel). Therefore, if the heating current IH
has a frequency f , the electron temperature oscillates at a frequency 2f , shown in
Fig. 4.10.

Our measurements of the thermopower follow Ref. [2]. The gate voltage of
split-gate B is swept, while split-gate C (the reference) is set on a conductance
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Figure 4.10: Current heating technique. IH = I0 sin(ωt) is the heating current,
P = RHI2

H is the power of Joule heating in the heating channel, and V = −S∆T ,
where ∆T ∝ P , is the thermoelectric voltage. If the ac current that provides
the heating of the electrons has a frequency f , the resulting thermal effects (Joule
heating and thermoelectric voltage) have a frequency of 2f .

plateau (which corresponds to zero thermopower, SC = 0). In this configura-
tion the thermovoltage of the electron thermometer (constriction B) due to the
temperature difference TH − TL, is measured without additional thermovoltage
contributions from portions of the 2deg and the wires (see Fig. 4.2). Since the
diffusion length of electrons in the 2deg is of the order of 10 µm, the temperature
TH is uniform over the size of the mesoscopic structures.

Figure 4.11 shows the measurement setup, where the heating current IH is
provided by an oscillator and a 100 kΩ resistor. For currents between 0.1 µA and
10 µA, the temperature differences TH−TL are of the order of 0.05−5 K (depending
on the lattice temperature TL). For a typical thermopower S ≈ −20 µV/K (at
1 K), this results in thermovoltages of Vth = 1 − 100 µV, that are measured by
the differential voltage pre-amplifier.

The principle of the thermal conductance measurements has been explained in
Section 4.1.1, and follows that presented in Ref. [1], but with an improved design.
As in Ref. [1], the temperature Tbox is the direct result of heat conduction through
constriction A. The main improvement to the design is a well defined temperature
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OSC
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GND
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Figure 4.11: Typical configuration for thermopower measurements. The current in
the heating channel IH is provided by the oscillator and the 100 kΩ resistor (typically
IH = 0.1− 10 µA). The corresponding Joule heating in the heating channel (RH ≈
100 Ω) is P = RHI2

H = 1−104 pW. The thermoelectric voltage Vth is measured using
a differential pre-amplifier with high-impedance probes (typically Vth = 0.1−10 µV).
The digital lock-in amplifier is locked at 2f , twice the frequency of the heating
current. Both the dac that controls the gate voltages and the connection between
the oscillator and lock-in have been omitted for simplicity.

Tbox, which is uniform in the thermal box.
Split-gate B (the “thermometer”) is set at a local maximum of the thermopower,

so that Eq. (3.19) is used as a calibration of the measured thermovoltage. Split-
gate C is again set on a conductance plateau, where SC = 0. The electrical
conductance G is compared the thermal conductance κ, allowing a quantitative
test of the Wiedemann-Franz law (3.17c). The setup for the measurement of the
thermal conductance is the same as for the thermopower, but with the addition
of the main constriction. The typical configuration is is shown in Fig. 4.12.
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OSC
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Figure 4.12: Typical configuration for the thermal conductance measurements.
The setup is essentially the same as for thermopower measurements, see Fig. 4.11,
with the addition of the main split-gate, whose voltage is controlled by the dac (not
depicted). The internal oscillator of the lock-in amplifier is used, so that the voltage
can be controlled by the computer (allowing changes of the heating current IH).
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Chapter 5

Thermal conductance measurements

In this chapter the results of the thermal conductance measurements will be
presented and discussed. The principle and the setup of the measurements are
explained in detail in the previous chapter, but will be presented briefly here as a
reminder. The measurements for each sample are presented and discussed separ-
ately, because each sample has its own peculiar characteristics that make a com-
parison with the theory problematic. The samples are presented in chronological
order, and we will see that there is a progression where the experimental results
get closer to the theory. At the end of the chapter we present the conclusions that
can be reached based on the measurements.
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5.1. SETUP AND SAMPLE CHARACTERISTICS

5.1 Setup and sample characteristics

Figure 5.1 is a schematic representation of the device, where the current IH in the
“heating channel” heats the electrons to a temperature TH . Heat flows through the
constrictions A, B and C, and some heat is also lost to the lattice by the electron-
phonon interaction. The temperature of the electrons in the “thermal box”, Tbox,
is determined by balancing the heat flows in and out of the box:

κA(TH − Tbox) = (κB + κC)(Tbox − TL) + Q̇el−ph(Tbox, TL), (5.1)

where TL is the lattice temperature, Q̇el−ph(Tbox, TL) = Nel (F (Tbox)− F (TL)) is
the heat lost via the electron-phonon interaction, andNel is the number of electrons
in the box. Tbox is uniform throughout the box, because the scattering time
for electron-electron interactions is much smaller than the time necessary for an
electron to travel from one constriction to another (d ≈ 5 µm), and the average
scattering time for electron-phonon interaction1.

In a measurement, split-gate B (the thermometer) is held at a constant gate
voltage Vg on a peak in the thermopower, corresponding to GB = (NB + 1

2
)(2e2/h)

in the electrical conductance (NB is the subband index; typically NB = 1). Split-
gate C (the reference) is held on a conductance plateau GC = NC(2e2/h) (NC

is the subband index; typically NC = 1). The electron temperature Tel is then
determined by measuring the thermovoltage between B and C :

Vth = (|SB|+ |SC |) · (Tel − TL) = |SB| · (Tel − TL), (5.2)

where SC = 0 because C is held on a conductance plateau. The calibration (3.19)
of the thermopower of SB yields

Vth =

(
c∗
Tel + TL

2

)
· (Tel − TL) = c(T 2

el − T 2
L), (5.3)

where c = c∗/2 = (π2kB
2/6e~ωx)(NB + 1

2
)−1 = (19.2/[~ωx]meV)(NB + 1

2
)−1 µV/K2

is a calibration constant that depends on the properties of constriction B, and
is determined by the calibration (see also Sec. 3.2.2). The gate voltage of A, the
“main” split-gate, is swept, varying its thermal conductance and hence the amount
of heat flowing into the box. We will write V box

th and V H
th when the thermovoltage

measures Tbox and TH respectively.
1τee ∼ 100 fs � τtransit ≈ d/vF ∼ 100 ps � τeph ∼ 1 ns.
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5.1. SETUP AND SAMPLE CHARACTERISTICS

Table 5.1 summarizes the characteristics of the samples. The electron density
n and the mobility µ of the 2deg are determined by Shubnikov-de Haas meas-
urements. The area of the thermal box Abox is obtained from the lithographic
dimensions of the gates defining it, and the box contains Nel = n ·Abox electrons.

L and W are respectively the lithographic length and width of the split-gates.
The thermometer constriction is calibrated by determining the parameters for
the saddle-point potential ~ωx and ~ωy, using non-linear electrical conductance
measurements. The calibration constant c is given for NB = 1, which is the
typical situation.

A

B C

e-ph

Heating channelI H

V box
th

Figure 5.1: Schematic of the thermal box. The box (in orange) is defined by the
three split-gates A, B and C (in black), where the thermal conductance κ(Vg) of A,
the main constriction, will be measured. B is the thermometer: its thermopower is
used to measure the electron temperature in the box. C is the reference: it provides
a reference for the thermovoltage measurements, removing spurious voltages on the
2deg.
The electrons in the heating channel (in red) are heated by a current IH . The heat
flows through the constrictions as depicted, and e-ph is the heat lost to the lattice
by electron-phonon interaction in the box. The electron temperature in the box,
Tbox, is measured from the thermovoltage V box

th between B and C.
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The electron-phonon interaction is estimated to be [1–3]

F (T ) = 270 · T 5 ·
( n

1011 cm−2

)− 3
2
,

so the heat lost to the phonons is given by Q̇el−ph(Tbox, TL) = Nel (F (Tbox)− F (TL)) =

b(T 5
box − T 5

L) eV/sK5. For TL = 0.3 K and Tbox = 0.4 K, Q̇el−ph(Tbox, TL) ∼
104 eV/s. Under the same conditions, the heat flow through a 1d constriction is
Q̇ = κ(Tbox − TL) = L0GT · (Tbox − TL) ≈ 4 × 106 eV/s, with G = 2e2/h and
T = 1

2
(TL + Tbox). Therefore, the heat lost via the electron-phonon interaction

is expected to be orders of magnitude less than the heat transmitted through
constrictions B and C.

Sample I II III
n (1011 cm−2) 2.5 3.2 3.0∗
µ (106 cm2/Vs) 3.3 1.4 4.6∗

Abox (µm2) 35 15 60
Nel (1000) 87.5 48.0 180
b (106 eV/s) 6 2.3 9.4
L (µm) 0.50 0.8 0.50
W (µm) 0.63 0.8 0.63
~ωx (meV) 0.80 n. a. 1.0
~ωy (meV) 1.7 n. a. 3.7
c (µV/K2) 16 n. a. 12.8

Table 5.1: Overview of the sample characteristics.
The (∗) marks n and µ that were not obtained from Shubnikov-de Haas measure-
ments of the sample, but from the general characteristics of the wafer. The char-
acterization of the thermometer constriction could not be done for sample II. The
parameter c is given for NB = 1.
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5.2 Sample I

Sample I was the first device measured. We will see that the measured V box
th (Vg)

curves show the effect of 1d quantization in the main constriction. We will also see
that the experimental Tbox(Vg) curves do not match the theory, and this discrep-
ancy will be discussed. Then we will discuss the other features of the measured
κ(Vg), in particular the unexpected reduction in κ at the 0.7 structure. Finally, we
will show that the sample design used in this work is superior to earlier designs [4].

5.2.1 Results

Measurements were performed at constant lattice temperature in the range TL ≈
0.3− 1.2 K. Figure 5.2 shows the V box

th (Vg) curves taken at TL = 0.315 K for fixed
heating currents IH between 0.89 and 7.08 µA. The thermovoltage curves show
three plateaux at Vg ≈ −1.6, −1.4, −1.2 V, corresponding to the conductance
plateaux shown in Fig. 5.4a.

The measured V box
th (Vg) curves span an order of magnitude in voltage (V box

th ≈
0.1 − 2 µV), and to highlight similarities and differences between them, each
curve has been normalized by dividing it by the thermovoltage measured on the
first plateau (Vg ≈ −1.6 V). In the linear regime the normalized curves are
expected to collapse onto a single curve (see Ref. [1] for the analogous behaviour
of thermopower measurements). Figure 5.3 shows that the linear regime occurs
for IH < 2 µA (TH ≤ 0.5 K).

Figure 5.4b shows the V box
th (Vg) traces of Fig. 5.2 after normalization. As

expected, the curves overlap near the first plateau, but show a greater spread
for higher subbands (Vg & −1.5 V). Measurements at higher IH lie below those at
lower current, which is consistent with the increased effect of the electron-phonon
interaction at higher electron temperatures (see Section 3.3). The same behaviour
is observed in the normalized curves shown in Fig. 5.5.

Figure 5.4c shows normalized V box
th (Vg) curves taken at TL between 0.3 K and

0.9 K, and at IH = 7.08 µA. As expected, the curves overlap on the first plateau,
but near the second plateau there is a wider spread than in Fig. 5.4b; as the lattice
temperature increases, the second plateau in the normalized traces goes from ∼1.5

to ∼1.75. Curves measured at higher lattice temperature become more “thermally
smeared” with respect to the low temperature curves.

For comparison to the thermal measurements, Fig. 5.4a shows the two-terminal
conductance G(Vg) of the main split-gate, measured at TL ≈ 0.3 K and 1.2 K, and
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Figure 5.2: V box
th (Vg) characteristics of sample I at TL = 0.315 K, for IH =

7.08, 5.00, 3.54, 2.50, 1.77, 1.25, 0.89 µA.
As IH is increased, TH becomes larger, and consequently more heat is transmitted
into the thermal box through constriction A. At low IH the curves scale approxim-
ately as V box

th ∼ I2
H , consistent with TH scaling with Joule heating in the heating

channel.
The feature marked with a star (*) is an artefact of the measurement, and is dis-
cussed in Sec. 5.13.
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which is corrected for a series resistance of Rs ≈ 900 Ω. There is a 0.7 structure
at Vg ≈ −1.675 V and a small peak at Vg ≈ −1.72 V, due to an impurity in
the constriction. This impurity peak has been used to align the electrical and
thermal traces in Fig. 5.4, since they were not measured simultaneously. The
alignment required shifts in gate voltage of approximately 0.02 V. When aligned,
the following features can be identified in the thermal conductance measurements:

• Plateaux i = 1, 2, 3 are observed at Vg ≈ −1.6, −1.4, −1.2 V, respectively,
coinciding with the plateaux in G(Vg).

• The 0.7 structure occurs at Vg ≈ −1.675 V.

• There is an impurity feature at Vg ≈ −1.72 V.

• There are features between the first and second plateau, similar to the 0.7
structure, but with no correspondence in G(Vg).

• The peaks beyond pinch-off, Vg . −1.73 V, show no corresponding feature
in G(Vg).
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Figure 5.3: TH as a function of I2
H for TL = 0.315 K in sample I.

TH is determined from V H
th using the calibration of the thermopower (5.2). The

heating currents and the lattice temperature are the same as in Fig. 5.2. The regime
where the thermopower is linear, i. e. (TH −TL)/TL � 1 and V H

th ∼ I2
H , is indicated

by the black arrow.

Figure 5.5 shows normalized V box
th (Vg) curves measured at three different lattice

temperatures: TL = 0.380, 0.510, and 0.705 K. The behaviour of the curves is
consistent with that observed in Figs. 5.4b and c.
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Figure 5.4: Comparison of thermal conductance and electrical conductance meas-
urements for sample I.
(a) G(Vg) of the main split-gate for TL = 0.3 K (solid red curve) and TL = 1.2 K
(dashed green curve).
(b) Normalized V box

th (Vg) measured at TL = 0.315 K for IH = 0.89− 7.08 µA (from
Fig. 5.2).
(c) Normalized V box

th (Vg) measured for IH = 7.08 µA at TL ≈ 0.3− 0.9 K.
The black arrow indicates the “impurity feature”, not to be confused with the artefact
in κ(Vg), which is marked by a star (*) in Fig. 5.2, and which is beyond pinch-off.
The red arrow indicates the 0.7 structure which has a corresponding feature in κ(Vg).
The green arrow points at features in κ(Vg) which have no correspondence in G(Vg),
and will be discussed in Sec. 5.4.2.
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Figure 5.5: Sample I: normalized V box
th (Vg) measured at lattice temperatures

(a) TL = 0.380 K, (b) 0.510 K, and (c) 0.705 K.
In each figure, curves for four different IH are presented. On the second plateau,
the curves at higher IH lie below those at lower current, consistent with an increase
electron-phonon interaction. The second plateau in the normalized traces goes from
∼1.5 to ∼1.75 with increasing TL.
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5.2.2 Comparison of experiment and theory

The calibration of the thermometer split-gate using Eq. (5.3), allows us to convert
the V box

th (Vg) characteristics into Tbox(Vg) curves. The results are then compared
to theoretical calculations, where the thermal conductances of the constrictions
are calculated by computing the integrals in Eq. (3.14) (see Section 3.2.1). The
two-terminal conductance at low temperatures G(Vg) is used as the transmission
probability t(E) of the main constriction, and is assumed to be temperature in-
dependent. The parameters obtained from the calibration of the thermometer
split-gate have been used for the reference constriction.2

From the calculated thermal conductances, the heat balance equation (5.1) is
solved with respect to Tbox for given TH and TL, and theoretical Tbox(Vg) curves
are produced. Figure 5.6 shows Tbox(Vg) generated from Fig.5.4: on the left are
the experimental curves, on the right are the calculated Tbox(Vg) curves. The
theoretical curves are consistently higher than the experimental ones by a factor
∼2; similar discrepancies are seen at other TL in sample I.

The theoretical calculations rely on accurate measurements of both TL and TH .
Both the sample and the resistance thermometer are in good thermal contact with
the liquid 3He. Therefore the accuracy of the measurement reflects the stability
of the 3He temperature and the calibration of the thermometer, which can change
slightly with time and thermal cycling. The accuracy of TL is estimated to be 5%.

The accuracy of TH depends on both the accuracy of TL and the calibration
of SB. The accuracy of the thermopower calibration is no better than 20% (see
Appendix), and determines the accuracy of the temperature measurements. A
relative error of 20% is not enough to account for the discrepancies in Fig. 5.6. In
the following section we will describe an improved method, which does not depend
on the calibration of the thermometer.

2The split-gate C is lithographically identical to split-gate B, so the parameters ωx, ωy are
assumed to be the same.
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Figure 5.6: Electron temperature Tbox in the thermal box, as a function of gate
voltage Vg on split-gate A.
Left : Experimental temperatures obtained from measurements at TL = 0.315 K
(Fig. 5.2), using the calibration of the thermometer constriction given by Eq. (5.3).
Right : Theoretical temperatures calculated using the values of TL and TH at fixed
GB = 1.5(2e2/h) and GC = 2e2/h; G(Vg) at T ≈ 0 K of split-gate A has been
used to obtain the transmission probability t(E). The values for TH on the right
correspond to the values of IH on the left.
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5.2.3 Test of the Wiedemann-Franz law

The heat balance equation (5.1) assumes that heat flows through the 1d constric-
tions or into the lattice. If we assume that each of the constriction has a thermal
conductance κ proportional to the electrical conductance G, then

κ = α G T, (5.4)

where α is a constant and T is the average of the temperatures on either side of
the constriction (see Section 3.2 and Ref. [5]). If α is the same constant for A, B
and C, the heat balance equation (5.1) becomes

αGA

(
TH + Tbox

2

)
(TH − Tbox) = α(GB +GC)

(
Tbox + TL

2

)
(Tbox − TL)+

+Q̇el−ph(Tbox, TL).

(5.5)
Equation (5.5) can be rewritten as

GA = (GB +GC)
T 2

box − T 2
L

T 2
H − T 2

box

+
2Q̇el−ph(Tbox, TL)

α(T 2
H − T 2

box)
. (5.6)

Using the calibration (5.3) of the thermometer split-gate, Eq. (5.6) becomes

GA = (GB +GC)
V box

th

V H
th − V box

th

+
2Q̇el−ph(Tbox, TL)

α(T 2
H − T 2

box)
, (5.7)

where V H
th = c(T 2

H−T 2
L) is obtained by measuring the thermopower of constriction

B when constriction A is not defined. For typical temperatures (TL < 1 K) the
heat lost via the electron-phonon interaction is small compared to the heat flowing
through the constrictions, so the term containing Q̇el−ph(Tbox, TL) in Eq. (5.7) can
be neglected, giving

GA = (GB +GC)
V box

th

V H
th − V box

th

. (5.8)

The left-hand side of Eq. (5.8) is the conductance GA = G(Vg) of the main
split-gate. If the Wiedemann-Franz law is valid, GA = κA/L0TA = κ(Vg)/L0T (Vg),
where TA = T (Vg) = 1

2
(TH +Tbox) and L0 is the Lorenz number (see Section 3.2.1).

On the right-hand side, GB + GC =
(
(NB + 1

2
) +NC

)
(2e2/h) is constant in a

given measurement, and V box
th /(V H

th − V box
th ) does not depend on the calibration

of the thermometer constriction, but requires that TL and IH are kept constant.
G(Vg), V box

th (Vg), and V H
th , can be measured independently. Therefore, by plotting
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(GB +GC)
V box

th (Vg)

V H
th − V box

th (Vg)
and comparing it to G(Vg), the Wiedemann-Franz law

can be tested, without explicit calibrations. We will write (κ/L0T )(Vg) for the
curves obtained using Eq. (5.8).
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Figure 5.7: Test of the Wiedemann-Franz law for sample I. Eq. (5.8) has been
applied to the curves in Fig. 5.4b and c:
(a) TL = 0.315 K, IH ≈ 0.9− 7 µA.
(b) IH = 7.08 µA, TL ≈ 0.3− 0.9 K.
The electron-phonon interaction has been neglected. If the Wiedemann-Franz law
is valid, the (κ/L0T )(Vg) curves are expected to follow the electrical conductance
G(Vg) (thick red curve).

The advantage of Eq. (5.8) is that an accurate measurement of the lattice
temperature is not necessary, and as long as both V box

th and V H
th are measured

at the same TL and IH , the calibration of the thermometers does not enter the
equation. However, if heat losses due to the electron-phonon are not negligible,
the full expression in Eq. (5.7) has to be used.

The results of applying Eq. (5.8) to sample I are shown in Fig. 5.7. In Fig. 5.7a
the curves are measured at TL = 0.315 K for different IH (as in Fig. 5.2 and
Fig. 5.4b). In Fig. 5.7b the curves have the same heating current, IH = 7.08 µA, at
different TL (as in Fig. 5.4c). In both figures the thick red curve is the two-terminal
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conductanceG(Vg) of the main split-gate, and all the other curves are (κ/L0T )(Vg),
as calculated using the right-hand side of Eq. (5.8); if the Wiedemann-Franz law
is valid, all the curves should follow G(Vg). The experimental curves in Fig. 5.7a
are about a factor ∼2 lower than the expected curve G(Vg), similar to Fig. 5.6.
In Fig. 5.7b the experimental curves are also lower than expected, but there is no
consistent pattern in the discrepancies.
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Figure 5.8: Test of the Wiedemann-Franz law for sample I, including the electron-
phonon interaction. Eq. (5.7), which includes the heat losses to the lattice, has been
applied to the curves in Fig. 5.4b and c:
(a) TL = 0.315 K, IH ≈ 0.9− 7 µA.
(b) IH = 7.08 µA, TL ≈ 0.3− 0.9 K.
The curves in this figure differ from the corresponding curves in Fig. 5.7 by less than
10% for TL . 0.5 K; with increasing lattice temperature the difference goes up to
100% (for the trace at TL ≈ 0.9 K).

Figure 5.8 shows the result of including the electron-phonon interaction into
the data analysis (Eq. (5.7)). The curves of Fig. 5.7 are changed by 10% for
TL . 0.5 K, and the difference increases up to 100% for the curve at TL ≈ 0.9 K.

The major discrepancy between experiment and theory is that Tbox is lower
than predicted. By using Eq. (5.8), an inaccurate calibration of the thermometers
is ruled out, but other reasons could be:
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• a breakdown of the Wiedemann-Franz law in a 1d constriction, or

• a greater heat flow out of the thermal box than expected, or

• a smaller heat flow into the thermal box than expected.

Breakdown of the Wiedemann-Franz law

Equations (5.7) and (5.8) assume that κ is proportional to G and T , as in Eq. (5.4),
with the same constant of proportionality α for all constrictions. If α 6= L0, it
would not affect the validity of Eq. (5.8); however, if the heat losses due to electron-
phonon interaction are included, then α could be determined using Eq. (5.7).
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Figure 5.9: Fits of the thermal conductance to the theoretical curve for sample I:
(a) TL = 0.315 K, IH ≈ 0.9− 7 µA.
(b) IH = 7.08 µA, TL ≈ 0.3− 0.9 K.
The experimental curves from Fig. 5.8 have been fitted to the theoretical curve
G(Vg), by adjusting a parameter in the second term on the right hand-side of
Eq. (5.7). This fitting applies to two situations:
1) the constant α in Eq. (5.4) differs from the Lorenz number, with (a) α ≈
1.6− 4.6× 10−2L0 and (b) α ≈ 2.8− 12× 10−2L0;
2) the heat lost via electron-phonon interaction is greater than expected, following
Eq. (5.9) with (a) β ≈ 22− 59, and (b) β ≈ 8− 36.

95



5.2. SAMPLE I

Figure 5.9 shows fits to the measurements using the data from Fig. 5.8. At
constant TL (on the left) the (κ/L0T )(Vg) curves fit best to G(Vg) with α ≈
1.6 − 4.2 × 10−2L0; the fitted α decreases with decreasing IH . At constant IH
(on the right) the curves fit with α ≈ 2.7 − 11 × 10−2L0, but there is no clear
temperature dependence.

Greater heat flow out of the box

A lower Tbox is consistent with a greater than expected heat flow out of the thermal
box. Besides the thermometer and reference constrictions, the other route for
heat loss is to the lattice, via the electron-phonon interaction. If we assume that
electron-phonon interaction is larger in the thermal box than in a bulk 2deg by
a factor β, then Eq. (5.7) becomes

GA = (GB +GC)
V box

th

V H
th − V box

th

+ β
2Q̇el−ph(Tbox, TL)

L0(T 2
H − T 2

box)
. (5.9)

Adjusting the factor β to fit the experimental curves to G(Vg) gives the curves
shown in Fig. 5.9. At TL = 0.315 K, β is between 22 and 59, and decreases as IH
increases. For the curves measured at IH = 7.08 µA, β is between 8 and 36, but
has no defined dependence on temperature.

Smaller heat flow into the box

A lower Tbox could be due to a lower than expected TH , resulting in less heat
flowing into the thermal box. If TH is reduced, we can modify Eq. (5.8) by a
factor γ:

GA = (GB +GC)
V box

th

(γV H
th )− V box

th

. (5.10)

The result of adjusting γ to fit the measured (κ/L0T )(Vg) to G(Vg) is shown
in Fig. 5.10. At TL = 0.315 K, γ is between 0.43 and 0.59, and increases with
increasing IH . At IH = 7.08 µA, γ is between 0.13 and 0.74, and does not follow
a clear temperature dependence.

Conclusion

An error in the calibration is ruled out by using Eq. (5.8). The other samples
do not display the same kind of discrepancy between theory and experiment, and
the correction to the experimental curves that fits best the theory is given by
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Figure 5.10: Fits of the thermal conductance to the theoretical curve for sample
I. The experimental curves from Fig. 5.7 have been fitted to the theoretical curve
by adjusting the factor γ in Eq. (5.10):
(a) TL = 0.315 K, IH ≈ 0.9 − 7 µA; γ increases from 0.43 to 0.59 with increasing
IH .
(b) IH = 7.08 µA, TL ≈ 0.3−0.9 K; γ varies between 0.13 and 0.74, with no obvious
pattern.

Eq. (5.10). Therefore, the most likely source of the discrepancy is an impurity
configuration peculiar to this sample, whose effect is mainly to reduce the amount
of heat flowing into the thermal box.
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5.2.4 Other features

So far we have focused on the conductance plateaux. In the following we will
examine other features.

0.7 structure
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Figure 5.11: Comparison of the thermal measurement (κ/L0T )(Vg) and the elec-
trical conductance G(Vg) for sample I. The thicker curves are the two-terminal con-
ductance G(Vg) at TL = 0.3 K (full, red) and TL = 1.2 K (dashed, green), corrected
for a series resistance. The remaining curves are obtained from Eq. (5.7) and are
normalized at the first plateau. At Vg ≈ −1.675 V the 0.7 structure in the electrical
conductance is observed at G ≈ 0.75(2e2/h) for TL = 0.3 K and at G ≈ 0.63(2e2/h)
for TL = 1.2 K. In the thermal conductance the corresponding feature is observed
at κ/L0T ≈ (0.47− 0.5)2e2/h.

Figure 5.11 shows a selection of κ/L0T curves for sample I obtained using
Eq. (5.7). The experimental data span a range of lattice temperatures and heating
currents, and the traces have been normalized on the first plateau. For comparison,
the curves are shown with the G(Vg) characteristics measured at TL = 0.3 K and
TL = 1.2 K.

In G(Vg) the 0.7 structure appears as a shoulder at G ≈ 0.75(2e2/h) at TL =

0.3 K. At TL = 1.2 K the 0.7 structure has evolved into a small plateau at
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G ≈ 0.63(2e2/h), consistent with previous measurements [6–8]. In the thermal
conductance, the feature corresponding to the 0.7 structure is observed at ∼(0.47−
0.5)2e2/h, with no observable temperature dependence. In Sec. 5.5 we will see that
the calculated curves, using G(Vg) as transmission t(E), show the 0.7 structure at
κ/L0T > 0.5(2e2/h).
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Figure 5.12: The impurity feature (marked with an arrow) observed in G(Vg), is
also present in (κ/L0T )(Vg).
(a) experimental κ/L0T curves obtained from Eq. (5.7) and normalized at the first
plateau: T ≈ 0.380 K, 0.415 K, 0.465 K, and 0.530 K.
(b) κ/L0T curves calculated using G(Vg) as t(E), for temperatures T = 0.050 K,
0.075 K, 0.100 K, 0.150 K, and 0.200 K.
In both cases the temperatures span a range of about 0.150 K, but the average
temperature for the theoretical curves is between three and seven times smaller
than for the experimental curves. However, the experimental and theoretical curves
show the same qualitative behaviour.

Impurity feature

Figure 5.12 shows the measured κ/L0T and the same quantity calculated from
G(Vg) of the main constriction. The experimental curves have been normalized at
the first plateau. The evolution of the impurity feature with increasing temperat-
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ure is qualitatively the same in the measured curves and the theoretical prediction.
However, the theoretical curves have been calculated using temperatures between
0.05 K and 0.2 K, while the experimental curves have temperatures between 0.38 K

and 0.53 K.

Past-pinch-off feature
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Figure 5.13: Thermovoltage measurements at TL = 0.315 K and IH = 7.08 µA.
(a) The real part of the thermovoltage signal, Re(Vth).
(b) The imaginary part of the signal, Im(Vth).
The two curves in each plot have been measured in two different situations: the
thermal box is defined and the reference split-gate is set on the first conductance
plateau (solid red); the reference constriction is not defined and the box is open
(dashed green).

In the thermal conductance measurements a feature is observed after the main
split-gate has reached pinch-off, at −1.75 V . Vg . −1.73 V. Figure 5.13 shows
that for gate voltages beyond pinch-off, the signal becomes first negative and then
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forms a positive peak. The height of this peak is weakly dependent on IH , but
depends more strongly on TL. Measurements also show a linear dependence of the
peak height with the frequency of IH .

Figure 5.13 shows the in-phase and quadrature thermoelectric voltage, Re(Vth)

and Im(Vth), respectively. The curves are measured in two different situations:
in one case (red), the thermal box is defined by setting the reference at the first
conductance plateau; in the other case (green), the box is open by keeping C
at zero gate voltage. TH and IH are the same in both cases, but the feature is
qualitatively different.

The facts that the feature is different for open and defined box, that the peak
height depends on frequency, and that this feature has been observed in other
samples, supports the idea that it is an artefact of the measurement. We interpret
this “past-pinch-off feature” as due to the separation of the voltage probes on one
side of A, from the electrical earth on the heating channel on the other side of
A. The thermovoltage does not go to zero as it should probably due to capacitive
coupling between the two regions of the 2deg separated by A at pinch-off.

Defined thermal box vs open box

In previous measurements [4] of the thermal conductance there was no defined
thermal box. Instead it was assumed that a region of uniform electron temperature
is defined within LD×Wch, where LD is the diffusion length of the electrons in the
2deg and Wch is the width of the channel as defined by gates. This situation can
be reproduced in our sample by putting the gate voltage of the reference split-gate
at zero (that is, constriction C is not defined and the thermal box is half open).

In sample I, the diffusion length is LD ≈ 19 µm andWch = 12−20 µm, therefore
LD ×Wch = 200 − 400 µm2, much larger than Abox ≈ 35 µm2. If TL and IH are
the same, the thermovoltages in the two situations are expected to scale inversely
with the area of uniform electron temperature. In this case (LD×Wch)/Abox ≈ 10,
which is consistent with V box

th /V open
th ≈ 14, as can be seen in Fig. 5.14.
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Figure 5.14: Thermovoltage measurements at TL = 0.315 K and IH = 7.08 µA,
for two different situations, in sample I.
Defined box : the thermal box is defined, with the reference split-gate set at GC =
2e2/h; the area of the box is Abox ≈ 35 µm2.
Open box : the reference constriction not defined, and the electron temperature is
uniform over an area of 200 − 400 µm2.
The ratio of the signals is V box

th /V open
th ≈ 14. The 0.7 structure is at κ/L0T ≈ e2/h

in both cases.
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5.3 Sample II

Sample II was fabricated with the aim of increasing the thermovoltage as much
as possible. The area of the thermal box was reduced to decrease the effect of
the electron-phonon interaction, and the length of the split-gates was increased
to decrease the ~ωx parameter and so increase the sensitivity of the thermometer
constrictions (according to Eq. (5.3)).

The consequence of bringing the constrictions so close to each other, is that
the gate voltage on one split-gate affects the other constrictions. This reduces
the range of gate voltages that can be swept on the main constriction, because it
affects the thermometer and reference. The lengthening of the split-gates results
in the appearance of resonance structures at low temperatures, which makes the
calibration of the thermopower unreliable. In addition to these problems, the
characteristics showed random telegraph switching [9].

For these reasons, sample II is not very representative of the general behaviour
of split-gate devices. However, we observe the same reduction in κ at the 0.7
structure, as in the other two samples.

5.3.1 Results

Measurements were performed at constant lattice temperatures in the range TL ≈
0.3−1.2 K. Figure 5.15 shows the V box

th (Vg) curves taken at TL = 0.84 K for heating
currents IH = 2− 10 µA. The curves show plateaux at Vg ≈ −3.05 and −2.75 V,
corresponding to the usual conductance plateaux i = 1 and 2, as can be seen in
Fig. 5.16.

The measured V box
th (Vg) curves span an order of magnitude in voltage (V box

th ≈
0.1 − 1 µV), and to highlight similarities and differences between them, each
trace has been normalized by dividing by the voltage on the first plateau (at
Vg ≈ −3.05 V). Figures 5.16b and c show the normalized V box

th (Vg) characteristics
for TL = 0.84 K and TL = 0.52 K, respectively. The normalized curves overlap
near the first plateau, but on the second plateau the curves with higher IH lie
beneath the curves for lower IH , which is consistent with a larger electron-phonon
interaction. The height of the second plateau, relative to the first plateau, increases
with decreasing lattice temperature, opposite behaviour to that observed in sample
I (see Fig. 5.5).

Figure 5.16a shows the conductance characteristics G(Vg) of the main split-
gate, measured at TL ≈ 0.3 K and at TL ≈ 1.2 K, and corrected for a series
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Figure 5.15: V box
th (Vg) characteristics of sample II at TL = 0.84 K and IH =

10, 7, 5, 2 µA (from top to bottom). Each curve is the result of plotting several
consecutive measurements at the same time.
For IH ≤ 7 µA, V box

th scales approximately as I2
H . The feature marked with a star

(*) is an artefact of the measurement, as discussed in Sec. 5.2.4.

resistance (Rs ≈ 1800 and 700 Ω, respectively). The curves are the result of several
consecutive measurements, and show that there is random telegraph switching
(rts) [9]. The same type of rts is also present in the G(Vg) characteristics of
split-gates B and C. The 0.7 structure is observed at Vg ≈ −3.2 V: for TL ≈ 1.2 K

it is at G ≈ 0.63(2e2/h), but for TL ≈ 0.3 K it is at G ≈ 0.5(2e2/h). This is
not the usual behaviour of the 0.7 structure, and it is most likely due to impurity
effects. Also, resonant structures are visible on the conductance plateaux, which
are thermally “smeared” in the G(Vg) curve taken at TL ≈ 1.2 K. As for sample
I, the κ(Vg) shows a feature after pinch-off (at Vg ≈ −3.35 V), which has no
corresponding feature in G(Vg).

Figure 5.17 shows three normalized V box
th (Vg) characteristics at 1) TL = 0.52 K

and IH = 5 µA, 2) TL = 0.84 K and IH = 5 µA, and 3) TL = 0.84 K and
IH = 10 µA. The average of the electron temperature on either side of the main
constriction, TA = 1

2
(Tbox + TH), increases from curve 1 to 3. As it does so,

the height of the second plateau decreases relative to the first plateau, which is
consistent with an increased electron-phonon interaction.
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Figure 5.16: Comparison of thermal conductance κ(Vg) and electrical conductance
G(Vg) for sample II.
(a) G(Vg) measured at TL ≈ 0.3 K (red) and TL ≈ 1.2 K (green), both corrected for
a series resistance
(b) Normalized V box

th (Vg) measured at TL = 0.52 K for IH = 2− 5 µA.
(c) Normalized V box

th (Vg) measured at TL = 0.84 K for IH = 5− 10 µA.
For each trace several consecutive measurements are plotted at the same time.
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Figure 5.17: Temperature dependence of V box
th (Vg) for sample II. The average

temperature at the main constriction, TA = 1
2(Tbox + TH), increases from the top

curve to the bottom curve.

5.3.2 Test of the Wiedemann-Franz law

Since there is no calibration of the thermometer split-gate in sample II, a com-
parison between theory and experiment as described in Sec. 5.2.2 is not possible.
However, it is possible to perform an approximate test of the Wiedemann-Franz
law using Eq. (5.8):

GA = (GB +GC)
V box

th

V H
th − V box

th

, (5.8)

where GA = G(Vg) is the electric conductance of split-gate A, GB and GC are the
electric conductances of B and C (held constant throughout the measurement),
and V H

th is the thermovoltage measured when A is not defined. The right-hand
side of Eq. (5.8) is κ/L0T of A.

Figures 5.18a and b show the result of applying Eq. (5.8) to the measurements
taken at TL = 0.52 K and TL = 0.84 K. On the first plateau all κ/L0T traces lie
within 25% of the expected curve, G(Vg). The curves with higher heating current
IH lie beneath the curves with lower IH , which is consistent with the effect of the
electron-phonon interaction (neglected in Eq. (5.8)). However, for Vg & −3 V the
(κ/L0T ) traces lie above the theoretical curve, beyond the experimental errors.
This discrepancy cannot be explained by the electron-phonon interaction, which
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Figure 5.18: Test of the Wiedemann-Franz law for sample II. Equation (5.8) has
been applied to the data from Fig. 5.16:
(a) κ/L0T at TL = 0.52 K for IH = 2− 5 µA.
(b) κ/L0T at TL = 0.84 K for IH = 5− 10 µA.
The thick, red curve is G(Vg), corrected for a series resistance. The feature corres-
ponding to the 0.7 structure is at Vg ≈ −3.2 V.
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would have the opposite effect.
Since the distance between the constrictions is only ∼5 µm, it is possible that

the split-gates affect each other via capacitive coupling. It was observed that the
characteristic of a split-gate is affected by the gate voltage applied to neighboring
split-gates. This cross-talk of the split-gates was minimised on the thermometer
constriction, by keeping the left half of A at a constant gate voltage. The right half
of split-gate A can still affect the reference constriction. If C is not on a conduct-
ance plateau, the thermopower is no longer zero and the measured thermovoltage
is larger:

V box
th = (|SB|+ |SC |) · (Tbox − TL) > |SB| · (Tbox − TL).

However, SC increases with increasing IH , while the observed discrepancy has the
opposite behaviour.

It is possible to obtain a better agreement with the expected curve, by modi-
fying Eq. (5.8) as in Eq. (5.10):

GA = (GB +GC)
V box

th

γV H
th − V box

th

, (5.10)

where γ is an adjustable parameter. Figure 5.19 shows the result of the free para-
meter fitting for the curves from Fig. 5.18. The traces for TL = 0.84 K match
the expected curves within 15%, using γ ≈ 1.06 − 1.19. For TL = 0.52 K the
match is within 25% with γ ≈ 1.06 − 1.54. This is consistent with a measured
thermovoltage V H

th smaller than expected, possibly due to a variation of electron
temperature between the heating channel and the thermometer split-gate. How-
ever, the diffusion length of the 2deg is about 9 µm, twice the length of the
thermal box, which means that the electrons should have a uniform temperat-
ure over an area much larger than the thermal box. Therefore, the discrepancy
between experiment and theory is not understood.
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Figure 5.19: Free parameter fitting of thermal conductance curves for sample II:
(a) κ/L0T at TL = 0.52 K for IH = 2− 5 µA; γ ≈ 1.06− 1.54.
(b) κ/L0T at TL = 0.84 K for IH = 5− 10 µA; γ ≈ 1.06− 1.19.
The thick, red curve is G(Vg), corrected for a series resistance.
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5.3.3 Other features

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3.4 -3.35 -3.3 -3.25 -3.2 -3.15 -3.1 -3.05 -3

G
, κ

/L
0T

 (
2e

2 /h
)

Vg (V)

Figure 5.20: Comparison of the thermal κ/L0T and electrical conductance G for
sample II.
The thick, red curve is G(Vg) measured at TL = 1.2 K, corrected for a series res-
istance of 1800 Ω. The remaining curves are obtained from Eq. (5.7), using the
data from Figs. 5.15a,b: TL = 0.52 K with IH = 2 − 5 µA, and TL = 0.84 K with
IH = 5− 10 µA.
At Vg ≈ −3.2 V, the 0.7 structure in G(Vg) is observed at G ≈ 0.65(2e2/h). The
corresponding feature in κ(Vg) is observed at κ/L0T ≈ (0.4− 0.5)2e2/h.

Figure 5.20 shows the κ/L0T curves for TL = 0.52 K and TL = 0.84 K. The
traces are compared to G(Vg), which was measured at TL = 1.2 K and has been
corrected for a series resistance of 900 Ω. The 0.7 structure appears in the G(Vg)

curve at G ≈ 0.65(2e2/h); the corresponding feature in the κ/L0T curves is ob-
served between 0.4(2e2/h) and 0.5(2e2/h). This is consistent with the results for
sample I, shown in Sec. 5.2.4.

Figure 5.21 shows the past-pinch-off feature for sample II. The two curves
were taken at TL = 0.84 K and IH = 10 µA, and TL = 0.52 K and IH = 5 µA,
respectively. Re(Vth) is the same for both curves, except where the peak after
pinch-off appears.
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Figure 5.21: Thermal conductance measurements at TL = 0.84 K and IH = 10 µA
(red) and at TL = 0.52 K and IH = 5 µA (green).
(a) The real part of the thermovoltage signal, Re(Vth).
(b) The imaginary part of the signal, Im(Vth).
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5.4 Sample III

Sample III was fabricated trying to avoid the problems sample II had. The litho-
graphic dimensions of the split-gates are the same as for sample I, but the gates are
spread further apart from each other. Conductance measurements show that there
is no cross-talk between split-gates, which allowed thermal conductance measure-
ments over a much wider range of gate voltages. However, the area of the thermal
box is greater than in the other samples, which leads to an increased effect of the
electro-phonon interaction.

Again, the experimental κ(Vg) curves do not match exactly the theory, and
both impurity effects and rts are observed. However, the discrepancy between
experiment and theory is much smaller than in samples I and II. The experimental
curves also display a reduction in κ corresponding to the 0.7 structure, like in the
other two samples.

5.4.1 Results

Measurements were performed at constant lattice temperature in the range TL ≈
0.05 − 0.5 K. Figure 5.22 shows the V box

th (Vg) curves taken at TL = 0.203 K

for heating currents IH = 0.88 − 10 µA. The curves show plateaux at Vg ≈
−1.55,−1.3,−1.05, and−0.85 V, corresponding to the conductance plateaux shown
in Fig. 5.23a.

The measured V box
th (Vg) curves span an order of magnitude in voltage (V box

th ≈
0.1 − 5 µV), and to highlight similarities and differences between them, each
curve has been normalized by the voltage on the first plateau (at Vg ≈ −1.55 V).
Figure 5.23b shows the traces of Fig. 5.22 after normalization. As expected, the
curves overlap around the first plateau, but for Vg & −1.45 V they spread out.
The curves measured at higher heating current IH are lower than those at lower
IH , which is consistent with an increased effect of the electron-phonon interaction.

Figure 5.23c shows normalized V box
th (Vg) curves taken at TL ≈ 0.05, 0.2, and

0.5 K, and at IH = 2.5 and 5.0 µA. The curves taken at higher IH lie beneath the
curves for lower IH , and the curves taken at higher TL lie below those at lower TL.
Both behaviours are consistent with the increased effect of the electron-phonon
interaction.

For comparison to the thermal measurements, Fig. 5.23a shows the electrical
conductanceG(Vg) of the main split-gate, measured at TL ≈ 0.05 K. The measured
conductance is corrected for a series resistance of Rs ≈ 500 Ω. The following
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features can be identified in the thermal conductance traces:

• Plateaux i = 1, 2, 3, 4, 5 are at Vg ≈ −1.55, −1.3, −1.05, −0.85, −0.70 V,
respectively, coinciding with the plateaux in G(Vg).

• The 0.7 structure occurs at Vg ≈ −1.66 V.

• Additional features appear between plateaux, which have no corresponding
feature in G(Vg).

• There is a feature at Vg ≈ −1.72 V, corresponding to a tail in the conduct-
ance right after pinch-off.

• The artefact beyond pinch-off at Vg ≈ −1.75 V has no corresponding feature
in the electrical conductance.

Figure 5.24 shows normalized V box
th (Vg) curves measured at three different lat-

tice temperatures: TL ≈ 0.05 K, 0.2 K, and 0.5 K. The behaviour of the curves is
consistent with that observed in Fig. 5.24b and c. The range of heating currents is
approximately the same for all three measurements: IH ≈ 1.5− 10 µA. With in-
creasing lattice temperature the spread of the normalized curves becomes smaller,
and at TL = 0.496 K the normalized V box

th (Vg) overlap up to the fifth plateau.
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Figure 5.22: V box
th (Vg) characteristics of sample III at TL = 0.203 K and

IH = 10.0, 7.07, 5.00, 3.54, 2.50, 1.77, 1.25, 0.88 µA (from top to bottom):
(a) Full curves, where we can see V H

th = V box
th (Vg = 0).

(b) Close-up on the first five plateaux.
The feature marked with a star (*) is an artefact of the measurement, as discussed
in Sec. 5.2.4.
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Figure 5.23: Comparison of thermal conductance measurements to G(Vg) for
sample III:
(a) G(Vg) at TL ≈ 0.05 K, corrected for a series resistance of 500 Ω.
(b) Normalized V box

th (Vg) at TL = 0.203 K for IH ≈ 0.9− 10 µA.
(c) Normalized V box

th (Vg) measured for IH = 2.5 and 10 µA at TL ≈ 0.05, 0.2, 0.5 K.
The black arrow at Vg = −1.66 V indicates the 0.7 structure, the red arrow indicates
a tail in the electrical conductance after pinch-off, and the star indicates an artefact
in the V box

th (Vg) curves, which is not present in G(Vg).
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Figure 5.24: Normalized V box
th (Vg) characteristics of sample III:

(a) TL ≈ 0.05 K and IH = 7.07, 5.00, 3.54, 2.50, 1.77 µA.
(b) TL = 0.203 K and IH = 10.0, 7.07, 5.00, 3.54, 2.50, 1.77, 1.25 µA.
(c) TL = 0.496 K and IH = 10.0, 7.07, 5.00, 3.54, 2.50, 1.77 µA.
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5.4.2 Test of the Wiedemann-Franz law

Unlike samples I and II, sweeping the gate voltage on A in sample does not affect
constrictions B and C. So it was possible to measure a full V box

th (Vg) curve from
Vg = 0 to pinch-off, without adjusting the gate voltage applied to the thermometer
split-gate. Hence both V box

th (Vg) and V H
th = V box

th (Vg = 0) are measured under the
same conditions, and the Wiedemann-Franz law can be tested over a larger number
of plateaux.

Figure 5.25 shows the results of applying Eq. 5.7 to the measurements taken
at TL ≈ 0.05, 0.2, and 0.5 K:

GA = (GB +GC)
V box

th

V H
th − V box

th

+
2Q̇el−ph(Tbox, TL)

L0(T 2
H − T 2

box)
. (5.7)

In all three cases the experimental κ/L0T curves lie beneath the expected curve,
G(Vg). The discrepancy decreases as the heating current increases:

(a) at TL ≈ 0.05 K, the discrepancy goes from ∼50% for IH = 1.77 µA down to
∼30% for IH = 7.07 µA;

(b) at TL = 0.203 K, the discrepancy goes from ∼40% for IH = 1.25 µA down to
∼23% for IH = 10.0 µA;

(c) at TL = 0.496 K, the discrepancy goes from ∼30% for IH = 1.77 µA down to
∼5% for IH = 10.0 µA.

As has been done for samples I and II, we can modify Eq. (5.7) as follows:

GA = (GB +GC)
V box

th

γV H
th − V box

th

+
2Q̇el−ph(Tbox, TL)

L0(T ′
2
H − T 2

box)
, (5.11)

where γ is a free parameter and T ′2H is obtained using γV H
th in Eq. (5.3). Adjusting

γ to fit the experimental curves to the theory yields the results shown in Fig. 5.26:

(a) at TL ≈ 0.05 K, γ = 0.72− 0.80;

(b) at TL = 0.203 K, γ = 0.72− 0.82;

(c) at TL = 0.496 K, γ = 0.80− 0.95.
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Figure 5.25: Test of the Wiedemann-Franz law for sample III. Eq. (5.7) has been
applied to the data from Fig. 5.16:
(a) (κ/L0T ) at TL ≈ 0.05 K for IH ≈ 1.7− 7.1 µA.
(b) (κ/L0T ) at TL = 0.203 K for IH ≈ 1.2− 10 µA.
(c) (κ/L0T ) at TL = 0.496 K for IH ≈ 1.7− 10 µA.
The thick, red curve is G(Vg), corrected for a series resistance of 500 Ω. The feature
corresponding to the 0.7 structure is at Vg ≈ −1.66 V.
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Figure 5.26: Free parameter fitting of (κ/L0T )(Vg) curves for sample III:
(a) κ/L0T at TL ≈ 0.05 K for IH ≈ 1.7− 7.1 µA; γ ≈ 0.72− 0.80.
(b) κ/L0T at TL = 0.203 K for IH ≈ 1.2− 10 µA; γ ≈ 0.72− 0.82.
(c) κ/L0T at TL = 0.496 K for IH ≈ 1.7− 10 µA; γ ≈ 0.80− 0.95.
The thick, red curve is G(Vg), corrected for a series resistance of 500 Ω.
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0.7 structure

Figure 5.27 shows a selection of (κ/L0T )(Vg) curves from the whole range of meas-
urements. At Vg ≈ −1.66 V the 0.7 structure is observed in G(Vg) as a shoulder at
G ≈ 0.8(2e2/h). The corresponding feature in the thermal conductance is between
0.4(2e2/h) and 0.5(2e2/h).
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0.7 structure

0.7 analogue

Figure 5.27: Comparison of the thermal measurement (κ/L0T )(Vg) and the elec-
trical conductance G(Vg) for sample III.
The thick, red curve is G(Vg) measured at TL ≈ 0.05 K and corrected for a series
resistance. The κ/L0T curves are a selection over the whole range of measurements,
and features analogous to the 0.7 structures are observed between the first and
second plateau.

At Vg ≈ −1.4, κ(Vg) shows a feature analogous to the 0.7 structure at κ/L0T ≈
1.4(2e2/h) (halfway between the first and the second plateau). There is no corres-
ponding feature in G(Vg). This 0.7 analogue is similar to the features described
in Ref. [7].
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5.5 Conclusions

In this chapter thermal conductance measurements in three samples have been
presented and discussed. In the following we will summarize the results and con-
clusions. Our attention will be focused mainly on the thermal conductance feature
related to the 0.7 structure.

5.5.1 Summary of the measurements

The thermal conductance κ of a split-gate device has been measured as function
of gate voltage Vg for temperatures between 0.05 K and 1.2 K. Previous measure-
ments [4] showed that κ(Vg) displays rough structures corresponding to the usual
plateaux at N(2e2/h) in the electrical conductance G(Vg).

The design of the samples used in this work follows the proposal in Ref. [10],
and is presented schematically in Fig. 5.1 on page 83. The electrons on one side
of the constriction were heated with a current, and the temperature drop across
the constriction was measured using the thermopower of another constriction. A
third split-gate completes the definition of a region of uniform electron temperature
between the main constriction and the thermometer constriction, and provides a
reference for the thermovoltage measurement.

The measurements confirm the advantages of the new design over earlier de-
signs [4], as can be seen from Fig. 5.14 on page 102. The measured thermovoltage
is larger and a wider range of temperatures in the linear regime is accessible. The
higher accuracy of the measurements allows for quantitative tests of the theory,
and in particular of the Wiedemann-Franz law.

5.5.2 Quantization of the thermal conductance and

Wiedemann-Franz law

Comparing the thermovoltage measurements to the conductance curves G(Vg)

shows that in all three samples the thermal conductance κ(Vg) displays plateaux
corresponding to the plateaux in G(Vg). If the Wiedemann-Franz law, κ = L0TG,
is satisfied, all the κ(Vg) curves of a sample are expected to collapse onto one curve
when divided by L0T , and the resulting curve is expected to follow the G(Vg) of
the sample.

As can be seen from Fig. 5.8 on page 94, Fig. 5.18 on page 107, and Fig. 5.25
on page 118, most of the κ(Vg) curves do not follow this expected behaviour. Each
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sample seems to have peculiar type of discrepancy between theoretical and exper-
imental curves. Several scenarios for these discrepancies have been considered: a
breakdown of the Wiedemann-Franz law, an electron-phonon interaction stronger
than expected, and a lower than expected electron heating by the heating current.
The experimental curves have been fitted to the theoretical curves with each of
these scenarios, but no single conclusion about a mechanism could be reached.

The fact that the discrepancies between measured and theoretical curves show
no consistent pattern between different samples, suggests that they are not an
intrinsic property of a 1d constriction. Heat flows and electron temperatures can
be affected by the specific properties of the sample and are not determined solely
by the constrictions, so we can assume that the absolute value of the κ(Vg) curves
obtained from the measurements deviates from the theoretical value. We can
interpret this deviation from theory as a calibration problem: the electron tem-
peratures measured are not the ones directly related to the thermal conductance.
We believe that a 1d constriction will follow the Wiedemann-Franz law, and that
it can be observed for a sample where there is no such calibration problem.

Under this assumption, we can compare the shape of the κ(Vg) curves for
different temperatures and for different samples, and compare them to the cor-
responding G(Vg). This is done by dividing the curves by their value on the first
plateau.3 The result of this “normalization” fits with the expected behaviour [11]:
κ(Vg) follows G(Vg) on the plateaux, and between the plateaux it is flatter. The
exception is the feature corresponding to the 0.7 structure.

5.5.3 0.7 structure

Under the assumption that the first plateau follows the Wiedemann-Franz law,
κ = (2e2/h)L0T , in all samples the thermal conductance feature corresponding to
the 0.7 structure shows the following:

0.85
e2

h
L0 T . κ .

e2

h
L0 T. (5.12)

The electrical conductance of the 0.7 structure is never observed below 0.63(2e2/h),
and grows stronger with increasing temperature. In contrast, κ becomes thermally
smeared with increasing temperature, but it never develops a plateau like G.

Figure 5.28 shows the theoretical κ(Vg), calculated using G(Vg) as transmis-
sion probability t(E), and the experimental curves for sample I. The G(Vg) was

3Effectively, we are “re-calibrating” T (Vg) in the (κ/L0T )(Vg) = κ(Vg)/L0T (Vg) curves.
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Figure 5.28: Calculated and experimental (κ/L0T )(Vg) curves for sample I.
The theoretical curves are calculated from the transmission probability t(E), which
is obtained from G(Vg) measured at TL ≈ 1.2 K, which has a well defined plat-
eaux at G ≈ 0.63(2e2/h). The temperatures for the calculations were T =
0.05 K, 0.25 K, 0.50 K. The experimental curves are a selection over the range
T ≈ 0.3− 1 K.

measured at T ≈ 1.2 K and has a plateaux at G ≈ 0.63(2e2/h). Theoretically the
0.7 structure in G(Vg) gives a feature at κ/L0T ≈ 1.3(e2/h), but the experimental
curves exhibit the corresponding feature at κ/L0T ≈ e2/h. This difference shows
that the 0.7 structure does not follow the single-particle picture, on which the
calculations are based.

Figure 5.29 shows (κ/L0T )(Vg) curves for sample I and sample III. Both
samples again show the structure at κ/L0T ≈ e2/h (marked with A and B),
as does sample II (which can be seen in Fig. 5.20 on page 110). Since all three
samples show the same result, we believe that, like the 0.7 structure in G(Vg), this
feature is an intrinsic property of a 1d constriction. Furthermore, both samples
I and III show an analogue feature at 2.7(e2/h) . κ/L0T . 3(e2/h), which has
no corresponding feature in G(Vg). In sample I (marked with D) the feature is
visible for T > 0.7 K, but for sample III (marked with C ) it is observed at all
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Figure 5.29: (κ/L0T )(Vg) curves for samples I and III. All curves have been
normalized at the first plateau, and cover the whole temperature range examined.
The curves for sample I are offset horizontally by ∼200 mV for clarity.
The features indicated by A and B correspond to the 0.7 structure. C marks the
0.7 analogue in sample III, which is observed at all temperatures. D marks a similar
feature in sample I, which is observed only for TL > 0.7 K.

temperatures.
According to Van Houten et al. [11], if the transmission probability t(E)

changes abruptly from one 1d to the next, the thermal conductance displays quasi-
plateaux at odd multiples of L0T (e2/h). Figure 5.30 shows theoretical (κ/L0T )(Vg)

curves, calculated using the saddle-point potential with ωy/ωx = 5. As the tem-
perature increases, features at κ/L0T & (2N + 1)e2/h develop between the reg-
ular plateaux. In contrast, the experimental curve shows features at κ/L0T .

(2N + 1)e2/h even at the lowest temperatures. Again, the experimental features
cannot be explained within a single-particle picture.

Summarizing some of the experimental results on the 0.7 structure obtained
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Figure 5.30: Theoretical (κ/L0T )(Vg) curves, calculated using the saddle-point
potential model. The parameters are ~ωx = 1 meV and ~ωx = 5 meV. The
traces are off-set horizontally for clarity. For T > 1 K, κ shows structures at
κ/L0T & (2N + 1)e2/h, in addition to the regular plateaux.

here and elsewhere:

electrical conductance G ≈ 0.63
2e2

h
− 0.85

2e2

h

thermal conductance κ ≈ e2

h
L0T

thermopower S > 0

(5.13)

In the following sections we will present and discuss possible interpretations for
the observed features.

Two channels

From the outset [6] until the latest works [12], the 0.7 structure has often been
interpreted as the result of two channels, with different transmission probabilities.
Wang and Berggren [13] found in their calculations that the potential barrier in
the constriction is different for spin up and spin down: spin-up electrons are fully
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transmitted, but spin-down electrons tunnel through the barrier. We can assume
the same and write the contribution of each channel as follows:

Spin-up Spin-down
G e2/h 0 − e2/h

κ L0 T (e2/h) ∼0

S 0 > 0

There are several problems with this interpretation. If the conductance for the
spin-down channel was due to tunneling, we would expect an increase in G with in-
creasing temperature, contrary to what is observed. The temperature dependence
is consistent with a scattering mechanism, which saturates at high temperatures.
However, neither tunneling nor scattering can explain why the thermal conduct-
ance of the spin-down channel is nearly zero and has no temperature depend-
ence. Tunneling or scattering in the spin-down channel yield an energy-dependent
transmission probability, and, according to the Cutler-Mott relation, a non-zero
thermopower.

Cronenwett et al. [14] interpreted the 0.7 structure as a Kondo-like effect, based
on similarities with the Kondo effect in quantum dots (qds). The 0.7 structure is
the result of a fully transmitting channel and a Kondo-like channel:

Normal Kondo-like
G e2/h (e2/h) f(T/TK)

κ L0 T (e2/h) ≤ L0 T (e2/h)

S 0 6= 0 and changes sign

where f(T/TK) is the universal function for Kondo conductance, and TK is the
Kondo temperature. G seems to fit reasonably well with the measurements, in-
cluding the zero-bias anomaly. However, the thermal conductance of a qd in the
Kondo regime is predicted [15] to increase from zero to L0 T (e2/h) with decreasing
temperature, contrary to what is observed for the 1d constriction. Furthermore,
the thermopower of a qd changes sign with increasing temperature [15], which is
also not observed in 1d constrictions.

Luttinger liquid

The 0.7 structure has also been interpreted as a manifestation of Luttinger liquid
(ll) behaviour. Maslov and Stone [16] have shown that two-terminal conductance
of a ll connected to Fermi liquid reservoirs should be quantized at e2/h per spin
orientation (the interaction between electrons in the 1d conductor does not change
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G). This does not agree with the measured conductance of the 0.7 structure, which
is always 0.63(2e2/h) . G < 2e2/h.

Kane and Fisher [17] showed that the interaction in a Luttinger liquid modifies

the Wiedemann-Franz law:
κ

TG
= L =

L0

g
6= L0, where g is the parameter

characterizing the ll. For repulsive interactions between electrons we have g < 1,
and thus L > L0, contrary to the measured L < L0. So, neither G nor κ of the
0.7 structure show the behaviour expected from a Luttinger liquid.

Wigner crystal

Matveev [18,19] proposed a model for the 0.7 structure, where the quantum wire
at low densities is a Wigner crystal. In this model the charge and spin degrees
of freedom are separated. If the quantum wire is connected to reservoirs, the
conductance has two contributions:

G =
1

Rc +Rs

,

where Rc = h/2e2 is the charge contribution, and Rs = 0 − h/2e2 is the spin con-
tribution. In the limit of high temperatures, Rs saturates at h/2e2, and we obtain
G = e2/h. The measurements give G > 0.63(2e2/h) for the highest temperatures
where it is observed, so this model does not match the experimental results.

Alternative

Here we will present an interpretation based on the “two channels” approach.
In Section 5.2.2 we showed a comparison between experiment and theory, where
the theoretical curves are obtained from calculations of the type presented in
Ref. [11]. It is assumed that the transmission probability can be obtained from
the low-temperature conductance:

t(E) = lim
T→0

G(Vg).

Although this assumption is correct only within a single-particle picture, it is a
legitimate starting point to understand transport.

Based on Fig. 5.29, we see that κ/L0T has plateaux at multiples of 2e2/h and
weaker features at odd multiples of e2/h. Assuming that κ(Vg) gives a more faithful
picture of t(E) than G(Vg), we could say that t(E) has well-defined plateaux at
2N(e2/h) and less well-defined ones at (2N + 1)(e2/h). This situation reminds
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one of the Zeeman-split subbands in a low magnetic field, so we can attribute the
structure of t(E) to a spontaneous spin polarization in the 1d constriction. The
problem is why G(Vg) does not show plateaux at (2N + 1)(e2/h)? It might be
that the conductance is enhanced when there is one spin polarized subband, with
a mechanism similar to the Kondo effect.

In conclusion, all the interpretations presented do not cover one or more aspects
of the experimental properties of the 0.7 structure. In particular the suppression
of the thermal conductance with respect to the electrical conductance cannot be
explained by the existing theories. However, the most promising seems to be the
interpretation of two channels.

5.5.4 Suggestions for future work

Measurements presented here strongly suggest that the Wiedemann-Franz law is
satisfied by a 1d constriction. The necessary next step is to perform the same
measurements in samples not affected by impurities or rts.

An important step is repeating the measurements in a parallel magnetic field.
This is especially important for the 0.7 structure, which is known to evolve into the
Zeeman-split e2/h plateau in G(Vg); observing the evolution of the corresponding
feature in κ(Vg) can give new information. We expect that κ/L0T will stay at
∼e2/h, and develop into a plateau in a strong magnetic field, according to the
single-particle picture.

In order to determine whether the κ(Vg) curves presented show intrinsic proper-
ties of 1d constriction, measurements in different types of constriction are suggest.
Examples are constrictions formed by split-gates in deeper 2degs, and constric-
tions fabricated by shallow-etching. In particular the etched constrictions should
be interesting, because these have typically larger subband spacing. Therefore a
wider temperature range is available, and it should be possible to observe whether
the features at κ/L0T ≈ e2/h, 3e2/h scale with temperature as the 0.7 structure
does.
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Appendix A

Sample characterization

We will present here the result of the characterization measurements of the samples.
The setups are explained in Chapter 4, and the results are summarized in the form
of graphics.

For all samples we present the conductance characteristics G(Vg) of the three
split-gate devices. From the G(Vg) characteristic of the thermometer constriction,
we obtain the ratio ωy/ωx for the saddle-point potential [1, 2].

Where a magnetic field perpendicular to the 2deg was available, we performed
Shubnikov-de Haas measurements [3] in the heating channel to characterize the
2deg. At low magnetic fields, the magnetoresistance of a 2deg is periodic as a
function of B−1, and from the periodicity ∆(B−1) we obtain the electron density:

n =
2e

h∆(B−1)
.

From the resistivity at zero magnetic field ρ(B = 0) we obtain the mobility:

µ =
1

enρ(B = 0)
,

where ρ = f · R(B = 0), and f = W/L = 1/8 is the geometrical factor of the
heating channel.

Source-drain bias measurements [4–7] allow to measure the subband spacing
in a 1d constriction and determine the parameter ωy of the saddle-point potential.
From ωy/ωx we obtain the ωx, which enters the calibration of the thermometer
constriction, as shown in Section 3.2.2.
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A.1. SAMPLE I

A.1 Sample I

0

200

400

600

800

1000

1200

1400

-2 -1.5 -1 -0.5 0

G
 (

µS
)

Vg (V)

A

B

C

0

200

400

600

800

1000

1200

1400

-2 -1.5 -1 -0.5 0

G
 (

µS
)

Vg (V)

A

B

C

0

200

400

600

800

1000

1200

1400

-2 -1.5 -1 -0.5 0

G
 (

µS
)

Vg (V)

A

B

C

0

1

2

3

4

5

-1.5 -1 -0.5

G
 (

2e
2 /h

)

Vg (V)

0

1

2

3

4

5

-1.5 -1 -0.5

G
 (

2e
2 /h

)

Vg (V)

0

1

2

3

4

5

-1.5 -1 -0.5

G
 (

2e
2 /h

)

Vg (V)

Figure A.1: Conductance characteristics for sample I at T ≈ 0.3 K. The inset
shows a close-up of the characteristics near pinch-off. We obtain ωy/ωx = (2.1±0.2)
for B.
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Figure A.2: Shubnikov-de Haas measurements for sample I at T ≈ 0.3 K. The
inset shows ∆R = R(B)−R(0) as a function of B−1. We obtain R(0) = (61± 1) Ω
and ∆(B−1) = (0.19± 0.02) T−1.
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Figure A.3: Source-drain bias measurements for sample I at T ≈ 0.3 K. The
traces are off-set horizontally for clarity. The source-drain voltage Vsd is −3.4 mV
for the left-most trace, and increases by 0.2 mV going to the right (Vsd = +3.4 mV
for the right-most trace). The subband spacing is ~ωy = (1.7 ± 0.1) meV, which
gives ~ωx = (0.8± 0.1) meV.
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A.2 Sample II
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Figure A.4: Conductance characteristics for sample II at T ≈ 0.3 K. The traces
of A and B are off-set horizontally for clarity. The inset shows a close-up of the
characteristics near pinch-off.
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Figure A.5: Shubnikov-de Haas measurements for sample II at T ≈ 0.3 K. The
inset shows ∆R = R(B)−R(0) as a function of B−1. We obtain R(0) = (57± 1) Ω
and ∆(B−1) = (0.15± 0.02) T−1.
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A.3 Sample III
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Figure A.6: Conductance characteristics for sample III at T ≈ 0.05 K. The trace
of A is off-set horizontally for clarity. The inset shows a close-up of the characteristics
near pinch-off. We obtain ωy/ωx = (3.7± 0.2) for B.
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Figure A.7: Source-drain bias measurements for sample III at T ≈ 0.05 K. The
traces are off-set horizontally for clarity. The source-drain voltage Vsd is −6 mV for
the left-most trace, and increases by 0.25 mV going to the right (Vsd = +6 mV for
the right-most trace). The subband spacing is ~ωy = (3.7 ± 0.1) meV, which gives
~ωx = (1.0± 0.1) meV.
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