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Abstract____________________________________________________________ 
 
 
 
Working memory is the ability to briefly maintain and manipulate information 

beyond its transient availability to our senses.  This process of short-term stimulus 

retention has often been proposed to be anatomically distinct from long-term forms 

of memory.  Although it’s been well established that the medial temporal lobe 

(MTL) is critical to long-term declarative memory, recent evidence has suggested 

that MTL regions, such as the hippocampus, may also be involved in the working 

memory maintenance of configural visual relationships. I investigate this possibility 

in a series of experiments using Magnetoencephalography to record the cortical 

oscillatory activity within the theta frequency band of patients with bilateral 

hippocampal sclerosis and normal controls.  The results demonstrate that working 

memory maintenance of configural-relational information is supported by a theta 

synchronous network coupling frontal, temporal and occipital visual areas, and 

furthermore that this theta synchrony is critically dependent on the integrity of the 

hippocampus. Alternate forms of working memory maintenance, that do not require 

the relational binding of visual configurations, engage dissociable theta synchronous 

networks functioning independently of the hippocampus.  In closing, I will explore 

the interactions between long-term and short-term forms of memory and demonstrate 

that through these interactions, memory performance can effectively be improved. 
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I. Introduction 
 
 
 
 

 
Traditionally, the ability to retain events over very brief intervals of time 
(short-term memory) has been thought to be anatomically and functionally 
distinct from processes necessary for lasting memories (long-term memory). 
This dichotomy is primarily based on the landmark case-studies of a patient 
named “H.M.” who underwent bilateral temporal lobe resection after which he 
was unable to create new long-term memories.  Furthermore it was believed 
that in such cases, patients’ short-term memory abilities are intact despite their 
profound deficit in long-term retention. These early seminal studies by Milner 
and colleagues were pivotal to memory research for identifying the medial 
temporal lobe, specifically the hippocampus, as the seat of the long-term 
memory encoding system.  Over the past years, recent behavioural and electro-
physiological evidence has begun to challenge this classical distinction between 
long and short-term forms of memory where common functional and 
anatomical mechanisms may be shared by both.  Here, we will briefly introduce 
the different forms of memory processes, the clinical criteria for the patients 
studied, and the methodological and theoretical framework which will be the 
basis of our investigations in subsequent chapters.  
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1.1. Introduction to Memory___________________________________________ 
 

The study of memory has traditionally had the two distinct subdivisions of 

short-term and long-term memory.  Short-term memory is usually considered the 

retention of information over a very brief interval and was originally considered a 

retention area for later long-term memory processes.  In the past few decades, this 

rather simplistic view of short-term memory has been extended into a concept 

considered working memory, which incorporates the manipulation of this 

information being temporally stored in a workspace as well.  This process has been 

thought to be functionally and neurophysiologically distinct from long-term memory 

systems.  Long-term memory, on the other hand, is considered the process of 

encoding, storage, and retrieval of information over extended periods of time, often 

over the course of a lifetime.  The nature of information stored during the encoding 

period will depend on previously learned associations, emotional salience, contextual 

information, cognitive state, and attention.  The resulting memory that is stored for 

subsequent retrieval can be a conscious representation of experiences and factual 

knowledge or an unconscious and functional behaviour.   

 

1.2. Long Term Memory_______________________________________________ 

 

Long term memory can vary greatly from the acquisition of relatively recent 

information and experiences to the memories that have been consolidated over the 

course of a lifetime.  During the mid-1950s Brenda Milner and colleagues in 

Montreal ran a series of studies on patients with surgery to alleviate temporal lobe 

epilepsy.  Among these was a patient that seemingly had lost the ability to create any 

new enduring memories after a bilateral hippocampal resection.  This patient has 

become famous in the memory literature as ‘H.M.’ and thus began the beginning of 

medial temporal lobe, specifically the hippocampus, as the seat of long-term memory 

encoding system (Scoville and Milner, 1957).  Continued investigation by Milner’s 

group and many others’ work with amnesic patients, such as Larry Squire and Neal 

Cohen, lead to the separation of distinct systems of declarative and procedural 

memory within the long term memory process (Squire et al., 1980; Squire et al., 

1984).  This distinction was based on the evidence at the time that the hippocampus 

was necessary for conscious memories, hence declarative.  Such was the case with 
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patient H.M.’s impairments evident at the time.  While H.M. and other amnesic 

patients had drastic impairments with declarative encoding, the ability to learn 

unconscious or more procedural memories were relatively spared.  As evidence 

emerged over time that patients with hippocampal damage could in fact do specific 

tasks that were considered procedural, this distinction was later revised into Explicit 

and Implicit memory processes (Schacter and Graf, 1986). 

 

1.2.1. Explicit Memory________________________________________________ 

 

Explicit memory is when conscious recollection is required to recall an item, 

association, or context that has been previously encoded from experience.  One of 

the early pioneers in this field, David Schacter, simply stated it as the “intentional or 

conscious recollection of prior experiences as assessed in the laboratory by 

traditional tests of recall or recognition” (Schacter, 1999).  The traditional tests of 

such memory during the time were list recall after considerable delays in humans or 

the “Delayed non-match to sample test” (DNMST) in monkeys, developed by David 

Gaffan in Oxford.  This task is where an individual sees a stimulus (sample) then 

later needs to select between two stimuli and decide which stimuli does not match 

the one seen previously (probe).  Early DNMST studies on monkeys showed marked 

impairments on these tasks after medial temporal lobe lesions when significantly 

long delays between sample and probe were implemented(Mishkin and Delacour, 

1975; Mishkin and Murray, 1994).  The early success of these studies in non-human 

primates were thought to be an animal model of amnesia and thus modelling the 

memory deficits in patients such as H.M. (Squire and Zola-Morgan, 1991).    

Since this earlier work, animal models of explicit memory encoding networks 

have been researched in great detail.  Incoming sensory stimuli from the neocortical 

areas tend to converge in the rhinal cortices of the medial temporal lobe for an initial 

integration of sensory information (Suzuki and Amaral, 1994).  The perirhinal and 

parahippocampal regions of the rhinal cortices are the major source of input to the 

entorhinal cortex and seem to have distinct projections suggesting an anatomical 

specialization within the encoding process.  These entorhinal connections are 

subdivided where the perirhinal region is dedicated to the rostral two-thirds and the 

parahippocampus to the caudal two-thirds in the monkey and rat brain (Suzuki and 

Amaral, 1994; Burwell et al., 1995).  The entorhinal cortex then projects to a 
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unidirectional pathway within the hippocampus called the tri-synaptic circuit.  

Incoming information via the entorhinal cortex enters the granule cells of the dentate 

gyrus within the hippocampus and travel through the pyramidal cell layers of CA3 to 

CA1 terminating at the subiculum.  The subiculum of the hippocampus then projects 

back to the rhinal cortex, which then can project back to the cortical sensory areas, 

thus completing the circuit (Suzuki and Amaral, 1994; Burwell et al., 1995).   

This reciprocal circuit is considered the major pathway of explicit memory 

encoding, where storage may initially be in the hippocampal areas until sufficient 

reactivation of this circuit has created a substantial representation in the appropriate 

cortical areas (Squire & Zola-Morgan, 1991).   This differential storage mechanism 

is in complete accord with the aforementioned studies of epilepsy patients that could 

not create any new memories after removal of the medial temporal lobe, however, 

memories encoded prior to surgery were relatively intact.  Functional MRI studies 

have shown increased activity in the hippocampus with successful encoding of 

explicit memory (Small et al., 2001; Davachi and Wagner, 2002; Reber et al., 2002; 

Strange et al., 2002; Stark and Okado, 2003) and in retrieval success (Gabrieli et al., 

1997; Eldridge et al., 2000; Kirwan and Stark, 2004).  Depth electrode recordings 

used for epileptic seizure foci localization have also shown increased amplitude 

correlating to successful encoding (Cameron et al., 2001; Fernandez et al., 2002; Fell 

et al., 2003) and successful retrieval (Paller and McCarthy, 2002).  However, this 

relation to encoding success has not only been attributed to the hippocampus proper, 

similar results have also been found in the parahippocampal gyrus (Brewer et al., 

1998; Wagner et al., 1998; Fernandez et al., 2002; Strange et al., 2002) including the 

entorhinal and perirhinal cortex (Cameron et al., 2001; Fernandez et al., 2002; 

Kirwan and Stark, 2004).   

Although the involvement of the hippocampus and the rhinal cortex in explicit 

memory has been well established, the differential contributions of these areas is still 

speculative.  There has been some evidence of anatomical specificity within this 

network where increased BOLD signal within CA2, CA3, and the dentate gyrus of 

the hippocampus and the parahippocampus were correlated with successful encoding 

while successful retrieval was related to activation in the subiculum (Pihlajamaki et 

al., 2003; Zeineh et al., 2003).  While others have found no significant differences of 

retrieval and encoding within hippocampus, perirhinal, and parahippocampal 

neocortex (Stark and Okado, 2003).   
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The various hypotheses of this anatomical specialization within explicit 

memory processing usually tend to adhere to either a qualitative or quantitative 

distinction of function.  Qualitatively, the hippocampus is involved with explicit 

memories of associations, multi-item, spatial, episodic, and recollection; while the 

parahippocampal areas tend to process more automatic, non-effortful, single item, 

familiar, and recent information (Brown and Aggleton, 2001).  Quantitatively, the 

medial temporal lobe memory network functions more broadly in explicit memory 

where the individual sensory units from the cortex are integrated into a 

comprehensive experience or representation by the rhinal areas, which is then stored 

initially in the hippocampus and later in their corresponding cortical areas.  Whereas 

all these structures within the medial temporal lobe make differential contributions 

of association and conjunctive processing (Squire and Zola-Morgan 1991).    

 

1.2.2. Semantic and Episodic Memory____________________________________ 

 

The conscious recollection of an experience that occurs only once and within a 

particular context and moment in time is qualitatively very different than the 

knowledge of facts that are gradually accumulated and are usually contextually non-

specific.  This descriptive distinction of explicit memory was originally proposed in 

the 1970s (Tulving, 1977).  Tulving suggested that episodic memory is the encoding 

of personal episodes or experiences requiring conscious recollection of a temporal 

and spatial context in which the moment occurred.  Tulving considered this a binding 

of the event (What), place (Where), and a time (When) thus creating a coherent 

experience (Tulving, 1977).  While semantic memory, in comparison, is considered 

the “culturally shared general knowledge about the world” of specific facts where the 

conscious encoding of context is unnecessary (Graham et al., 2000).   

Emerging evidence from studies by Mort Mishkin and Vargha-Khadem on 

school children with focal hippocampal damage later supported such a neurological 

basis for this distinction.  These children tended to have relatively intact semantic 

memory encoding abilities, however their episodic memories of the personal 

experiences were severely impaired (Vargha-Khadem et al., 1997; Mishkin et al., 

1998).  Based on previous detailed neuroanatomical studies of the hippocampal 

system in monkeys (Suzuki and Amaral, 1994), it could be proposed that a selective 

lesion to the hippocampus could disrupt encoding processes specific to this area (i.e. 
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episodic), while lesions to the surrounding parahippocampal regions projecting to the 

hippocampus via the entorhinal cortex would disrupt the entire explicit memory 

network (Mishkin et al., 1998).  The previous studies of medial temporal lobe 

damage in temporal lobe epilepsy patients were probably more diffuse involving 

parahippocampal regions as well, which could explain their loss of both episodic and 

semantic encoding.  In the case of H.M., it was later confirmed by MRI that his 

medial temporal lobe removal included entorhinal cortex and perirhinal cortex, as 

well at the rostral portion of the hippocampus (Corkin et al., 1997).   

Accumulating evidence dissociating episodic and semantic memory as distinct 

systems has lead to revisions of this model where episodic memory is a subsystem of 

semantic memory (Tulving and Markowitsch, 1997).  Under this assumption, the 

perceptual stimulus initially is processed by the semantic system which is then fed 

into the hippocampus to be blended into a meaningful episodic memory if 

appropriate. Some recent work with patients suffering from Semantic Dementia has 

even suggested that episodic and semantic encoding may be reciprocal systems that 

will give a relative amount of memory encoding depending on the nature of the 

explicit memory to be encoded (Graham et al., 2000).  However, other researchers 

such as Larry Squire and Stuart Zola still feel the hippocampus and the 

parahippocampal cortex constitute a single explicit memory system that incorporates 

both semantic and episodic memory.   

 

1.2.3. Recognition Memory: Familiarity and Recollection___________________ 

 

Behavioural experiments during the 1970s and 1980s on episodic recognition 

memory began to uncover some qualitative differences concerning target recognition 

when experimenting with the confidence ratings of individuals’ responses (Jacoby 

and Dallas, 1981).  This led to a psychological distinction between the process of 

recognizing a stimulus, such as a picture, or a word; on the basis of the retrieval of 

specific contextual details and the process of recognizing an item based on it’s 

perceived memory strength, in the absence of any specific details about the stimulus 

or context (Jacoby and Dallas, 1981).  The traditional test for this dissociation is 

called the ‘Remember Know’ paradigm designed by Tulving (Tulving et al., 1988).  

During these tests an individual can ‘know’ a stimulus, hence can be familiar with a 

target stimuli, however, have no recollection of when or where it previously 
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occurred. Alternatively, the individual can recollect the situational context in which 

the stimulus was presented and thus ‘remember’ it (Gardiner, 1988; Tulving et al., 

1988).  Both of these forms of recognition memory satisfy the conscious prerequisite 

necessary for explicit memory, however, the recollection of the source or association 

in which it occurred is an important distinction between these two abilities.  Actively 

remembering the temporal and surrounding environment (where & when) requires 

the individual to undergo a “mental time travel” to re-experience the contextual 

details of the situation (Diana et al., 2007).   

Later work by Andrew Yonelinas during the 1990’s, incorporated some 

important aspects of signal detection theory into characterizing the dissociation of 

familiarity and recollection processing.  His group plotted the behavioural results of 

recognition memory tests into two probability functions called Receiver Operating 

Characteristic (ROC) curves.  Where one axis would be the correctly identified 

stimuli “hits” and the other is the incorrectly identified stimuli “false alarms” for 

both familiarity and recollection judgments (Yonelinas, 2001).  The resulting ROC 

curves displayed a symmetrical distribution for familiarity ratings, however the 

distribution of recollection would shift asymmetrically depending on the relative 

cost/benefit assessment of their responses.  Yonelinas proposed this to be a dual 

processing mechanism where familiarity is an equal-variance signal-detection 

mechanism while recollection is a threshold process (Yonelinas, 2001; Yonelinas 

and Parks, 2007).  Complementary results were found in rats where the recollection 

ROC distributions of hippocampal lesioned rats tended to be symmetrical when 

compared to before surgery despite the cost/benefit ratio for rewards (Fortin et al., 

2004).  Suggesting that the hippocampus may be necessary for the recollection 

component of recognition memory within the duel processing model (this notion will 

be further discussed in Chapter 7).   

Since Yonelina’s original proposal, a number of other dual processing and 

binding models have emerged in the literature, however, the neuroanatomical 

dissociation of familiarity and recollection has gained considerable evidence in 

structural MRI (Yonelinas and Parks, 2007) functional MRI (Duarte et al., 2004; 

Ranganath and D'Esposito, 2005) and event-related potential recordings with EEG 

(Mackenzie and Donaldson, 2007; Rugg and Curran, 2007).  The general agreement 

is that recollection encoding and retrieval tends to be correlated with increased 

activity in the hippocampus and the post parahippocampal gyrus.  In comparison, 
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encoding of familiar items correlates with perirhinal cortex activity and retrieval 

with decreased activity in this area (Diana et al., 2007).  Imaging studies and 

knowledge of the cortical inputs from these regions suggests that the perirhinal 

cortex receives more information concerning item features while the post 

parahippocampal gyrus is more concerned with integrative and contextual 

information that becomes blended into recollective information in the hippocampus. 

 

1.2.4. Implicit Memory________________________________________________ 

 

The other major branch of long-term memory is non-declarative or what is 

now commonly known as ‘implicit memory’.  Implicit memory refers to memory in 

which previous experiences from one’s life will affect the performance of a task 

without conscious awareness or intentional recollection of those experiences (Graf 

and Schacter, 1985).  In fact, the major delineation of implicit from explicit memory 

long-term memory is the unconscious processing that leads to the changes in 

performance and how this processing is thought to be completely divorced from the 

medial temporal lobe structures critical for explicit memory (Brooks and Baddeley, 

1976; Graf and Schacter, 1985). 

Undoubtedly the most common example of implicit processes is that of 

procedural memory, where during one’s day-to-day life, an individual doesn’t have 

to re-learn how to tie their shoes in the morning or operate the gear-shift in their car.  

These procedural memories are unconsciously remembered in their habitual form.  

Other less obvious forms of implicit memory are Pavlov’s infamous classical 

conditioning, non-associative ‘reflexive’ learning, and priming.  An exhaustive 

discussion of implicit memory and it’s various sub-divisions is beyond the scope of 

this current work and will not be a focus of the research to be presented here - for 

review and history see (Schacter, 1987).  However, it is important to note, that 

implicit memory learning has been shown to be intact in patients with medial 

temporal lobe damage (Jacoby and Dallas, 1981; Schacter et al., 1982; Graf and 

Schacter, 1985).   
 
 
 
 



23 
 

1.3. Short-term working Memory_______________________________________ 
 

Short term memory is usually considered the retention of discrete information 

over very brief intervals of just a few seconds.  In the past few decades, this rather 

simplistic view of short term memory has been extended into a concept considered 

working memory, which incorporates the manipulation of this information being 

temporally stored in a workspace (Baddeley and Hitch, 1974). This ability to actively 

maintain an otherwise transient visual stimulus within a workspace for short delayed 

recall, manipulation, or association has often been referred to as the “Blackboard of 

the mind” (Goldman-Rakic, 1996) or the “Visio-Spatial Sketch Pad” (Baddeley, 

1998).  The concept of working memory proposes a transient capacity limited system 

which supports human thought processes (Baddeley, 2003) and has been shown to be 

strongly predictive of intelligence and reasoning abilities (Fukuda and Vogel, 2009). 

An in depth discussion of working memory capacity limits (i.e. working memory 

load) and the neuroanatomical correlates of maintaining increased demands of 

discrete information will be discussed in Chapter 3. 

The predominate cognitive theory of working memory was proposed in the 

mid-1970’s by Baddeley and Hitch (1974), where two short-term storage systems 

interact with a central processing system known as the ‘central executive’.  Probably 

the most studied component of the two short-term storage systems is the 

‘phonological loop’ where memory traces of articulatory rehearsal allow the brief 

maintenance of verbalized material.  The most common example, is when you are 

attempting to remember a phone number and you sub-vocally rehearse this number 

in your mind until dialling.  This notion has been supported behaviourally by 

experiments showing decreased performance remembering strings of words or letters 

when internal articulatory rehearsal is suppressed (Murray and Roberts, 1968) and 

complimentary neuropsychological evidence of lesion patients with phonological 

short-term memory impairments in the absence of language deficits (Baddeley, 

1984).  The other storage component has been termed the ‘Visio-Spatial Sketch Pad’, 

where like it’s verbal equivalent, visual information is actively replayed during 

short-term working memory maintenance (visual working memory will be 

comprehensively discussed though-out subsequent chapters).  This three-component 

model was later revised to include a module known as the ‘episodic buffer’ that 

allows the interaction of the aforementioned working memory processes with 
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episodic long-term memory representations (Baddeley and Hitch, 2000).  This notion 

of functional interactions between long-term memory processes and short-term 

working memory maintenance will be explored in Chapters 6 and 7 - for review of 

the multi-component model of working memory see (Baddeley, 2003). 

Continued investigations by Milner’s group (1972) and others (Drachman and 

Arbit, 1966; Wickelgren, 1968) found that amnesic patients with medial temporal 

lobe damage displayed intact performance on tests where the retention of material 

was only for a few seconds.  Since these early studies, short-term memory has been 

consistently thought of as an independent memory system that is spared in patients 

with medial temporal lobe damage (Atkinson and Shiffrin, 1971; Milner, 1972; 

Shrager et al., 2008). 

Soon after the pivot studies released by Milner, it was found that single cell 

recordings of non-human primates within regions of the pre-frontal cortex displayed 

persistent neural firing during the active maintenance of visual information over 

working memory delays (Fuster and Alexander, 1971). Since this discovery, activity 

in the prefrontal cortex during delay periods of visual working memory tasks have 

been well established in animals (Funahashi et al., 1989; Nacher et al., 2006) and 

fMRI studies of humans (D'Esposito et al., 2000; Haxby et al., 2000; Postle et al., 

2000).  The short-term maintenance of information is now thought to be made 

possible by the functional engagement of cortical regions involving the prefrontal 

and the parietal cortices (Cohen et al., 1997; Courtney et al., 1997; Baddeley, 1998; 

Sarnthein et al., 1998; D'Esposito et al., 2000; Haxby et al., 2000; Postle et al., 2000; 

von and Sarnthein, 2000; Deiber et al., 2007). 

Together, this evidence has led to the notion of two functionally and 

neurophysiologically distinct memory systems. The first, is declarative long term 

memory processes that are dependent upon medial temporal lobe structures 

(hippocampus, perirhinal, entorhinal, and parahippocampal cortices) for the 

encoding, storage, and retrieval of information over extended periods of time, often 

over the course of a lifetime (Squire and Zola-Morgan, 1991). The second, is a 

distinct alternate short-term memory system allowing information from transient 

events to persist in the brain as active representations. This working memory system 

thus enables goal-directed behaviours such as decision making and learning to utilize 

and manipulate information beyond its transient sensory availability (Baddeley, 

1998).  However, over the past years, recent behavioural and electro-physiological 
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evidence has begun to challenge this classical distinction between long and short-

term forms of memory where functional and anatomical commonalities may be 

shared by both.   

 
1.4. Questioning distinctions between short- and long-term memory__________ 
 

Intriguing behavioural evidence has emerged over the past decade that the 

hippocampus may be involved in the short-term maintenance of the relational 

binding between objects  (Hannula et al., 2006; Olson et al., 2006a; Hannula and 

Ranganath, 2008) and the topographical representation of this visual information 

(Hartley et al., 2007).  Recently it has been demonstrated that amnesic patients with 

selective hippocampal atrophy display working memory impairments for the spatial 

configuration of objects over short delay periods (Hannula et al., 2006; Olson et al., 

2006a).  For instance, after a brief presentation of a natural scene, these patients are 

unable to keep in mind the configural association between multiple objects within 

that scene (Hannula et al., 2006; Hartley et al., 2007). Strikingly, this deficit is 

evident even at very short delays of just a few seconds of working memory 

maintenance.   

These results suggest that the medial temporal lobe, which has traditionally 

been associated with long-term memory (Squire et al., 1980), may also be critical to 

the maintenance of associative visual information of spatial configurations in 

working memory.  In accordance with this view, a number of imaging studies have 

shown increased activity in the hippocampus and surrounding medial temporal lobe 

areas during the delay period of working memory using fMRI (Cabeza et al., 2002; 

Monk et al., 2002) and using MEG (Campo et al., 2005).  Amnesic patients have 

recently been found to be impaired on other forms of relational visual memory 

(associative and sequence) and not strictly spatial configurative relations, while their 

ability to retain items non-associatively is relatively intact (Konkel et al., 2008). 

Therefore, deficits in the visuo-spatial components of these tasks may be a product 

of a more generalized impairment in relational binding due to hippocampal damage. 

Previous dissociations between long and short-term memory processes need to be re-

evaluated in order to incorporate these recent findings - for review see (Ranganath 

and Blumenfeld, 2005) and will be the focus of the research presented in subsequent 

chapters. 
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1.5. Introduction to Epilepsy____   ______________________________________ 

 

Epilepsy has been defined as the chronic occurrence of unprovoked seizures 

caused by uncontrolled discharges of cerebral neurons.  Depending on the region of 

the brain where seizures occur and the subsequent spread of the epileptic discharge, 

the resulting clinical manifestation of individuals suffering from epilepsy can greatly 

vary.  Because of this variability of symptom presentation, epilepsy can be difficult 

to diagnose with specificity in the absence of extensive diagnostic testing and is 

often initially confused with other conditions that can cause seizures, such as 

diabetes, heart disease, or depression.  Epilepsy is one of the most common 

neurological diseases in the world, affecting approximately 50 million people world-

wide and over 450,000 people in the United Kingdom alone (Everitt and Sander, 

1998).   

Approximately 60-70% of focal seizures originate in the temporal lobe, the 

majority of which are localized in the hippocampus. As previously discussed, the 

hippocampus and surrounding medial temporal lobe, are critical to many forms of 

memory and consequently individuals suffering from epilepsy seek help for memory 

problems more than any other kind of impairment.  In hospital-based MRI studies, 

hippocampal sclerosis (i.e. reduced volume of the hippocampus proper) was 

identified in 25-30% patients with focal epilepsy (Everitt and Sander, 1998; 

Wieshmann, 2003), however, short-term memory has often been reported to be intact 

in epilepsy patients with medial temporal lobe lesions (Drachman and Arbit, 1966; 

Milner, 1972).  The investigation of short-term memory deficits in epilepsy patients 

with bilateral hippocampal sclerosis and the dependence of certain forms of working 

memory maintenance on hippocampal integrity will be the focus of subsequent 

chapters (see Chapters 4, 5, & 7). 

 

1.5.1. Seizure classification ____________________________________________ 

 

Early systems of seizure classification lacked the specificity to differentiate 

between seizure type and syndrome.  For instance, the term ‘grand mal’ was often 

used to describe any form of tonic-clonic seizure (see term definitions below) and 

likewise, the term ‘petit mal’ was used to describe any minor form of seizure which 

could encompass both absences and complex partial seizures.  This diagnostic 



27 
 

criteria was later revised in 1981 by the Commission on Classification and 

Terminology of the International League Against Epilepsy (ICES) that would 

differentiate seizure types by clinical manifestation and electrophysiological 

recordings.  Although the ICES classification system has gained acceptance as the 

predominate diagnostic criteria in contemporary clinical assessments, some are 

critical that this system still lacks the specificity needed for a complete 

characterization of epileptic activity (Manford et al., 1992; Luders et al., 1993). 

The ICES system is first organized according to whether the source of the 

seizure is localized in the brain (partial – focal onset) or the source is distributed 

across cortical regions (generalized).  Partial seizures are then further sub-divided if 

consciousness is determined to be affected (complex) or not (simple) during the 

epileptic event.  All generalized seizures involve some degree of affected 

consciousness and are also further sub-divided based on their outward behavioural 

and motor characteristics (absence, myoclonic, clonic, tonic, tonic-clonic, and 

atonic). – see Table 1.1 

 
Table 1.1 

International Classification of Epileptic Seizures 

 

I. Partial seizures  

A. Simple partial seizures  

1. With motor symptoms  

a). Focal motor without march  

b). Focal motor with march (Jacksonian)  

c). Versive  

d). Postural  

e). Phonatory 

2. With somatosensory or special-sensory symptoms  

a). Somatosensory  

b). Visual  

c). Auditory  

d). Olfactory  

e). Gustatory  

f). Vertiginous 
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3. With autonomic symptoms or signs  

4. With psychic symptoms  

a). Dysphasia  

b). Dysmnesic  

c). Cognitive 

d). Affective  

e). Illusions  

f). Structured hallucinations 

B. Complex partial seizures  

1. Simple partial seizures at onset, followed by impairment of   

consciousness  

a). With simple partial features  

b. With automatisms 

2. With impairment of consciousness at onset  

a). With impairment of consciousness only  

b). With automatisms 

C. Partial seizures evolving to secondarily generalized seizures  

1. Simple partial seizures evolving to generalized seizures  

2. Complex partial seizures evolving to generalized seizures  

3. Simple partial seizures evolving to complex partial seizures evolving 

to generalized seizures 

II. Generalized seizures  

A. Absence seizures  

1. Typical absence seizures  

a). Impairment of consciousness only  

b). With mild clonic components  

c). With atonic components  

d). With tonic components  

e). With automatisms  

f). With autonomic components 

2. Atypical absence seizures 

B. Myoclonic seizures  

C. Clonic seizures  

D. Tonic seizures  
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E. Tonic-clonic seizures  

F. Atonic seizures 

 

Table 1.1. International Classification of Epileptic Seizure (ICES) created by 
the International League Against Epilepsy in 1981. 
 
 
 
1.5.2. Syndrome classification             ____________________________________ 
 

The classification of epileptic seizures describes the symptomology of 

epileptic discharges, however, often lacks the aetiological specificity needed for 

prognostic evaluations of patients suffering from this condition.  In 1985, the 

International Classification of the Epilepsies and Epileptic Syndromes (ICEES) was 

developed for classification of the individual syndromes of epilepsy and it’s slightly 

revised version (ICEES 1989b) is now considered the standard diagnostic criteria for 

clinical evaluations.  Similar to the ICES, this system is primarily divided into cases 

where the seizure focus is localized or generalized (also with divisions for 

‘undetermined’ and ‘special’ syndromes), with these branches further sub-divided 

into idiopathic and symptomatic characterizations (Table 2.2).  Localized (focal) 

epilepsy syndromes are also then further characterized according to their anatomical 

localization, such as temporal lobe epilepsy.  It is important to note, that in the light 

of recent technological advances in neuroimaging and genetics, the ICEES system is 

being reappraised by the International League Against Epilepsy to incorporate these 

techniques in the diagnostic criteria of epilepsy syndromes. 

 
Table 1.2 

The International Classification of the Epilepsies and Epileptic Syndromes 

 

I. Localization-related epilepsies and syndromes 

A.  Idiopathic (with age-related onset) 

1.  Benign childhood epilepsy with centrotemporal spike 

2.  Childhood epilepsy with occipital paroxysms 

3.  Primary reading epilepsy 

B. Symptomatic 

1. Chronic progressive epilepsia partialis continua of childhood 
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2. Syndromes characterized by seizures with specific modes of 

precipitation. 

3. Temporal, frontal, parietal and occipital lobe epilepsies 

C. Cryptogenic 

1. Temporal, frontal, parietal and occipital lobe epilepsies 

II. Generalized epilepsies and syndromes 

A. Idiopathic (with age-related onset) 

1. Benign neonatal familial convulsions 

2. Benign neonatal convulsions 

3. Benign myoclonic epilepsy in infancy 

4. Childhood absence epilepsy (pyknolepsy) / Juvenile absence epilepsy 

5. Juvenile myoclonic epilepsy 

6. Epilepsy with GTCS seizures on awakening 

7. Other generalized idiopathic epilepsies not defined above 

8. Epilepsies with seizures precipitated by specific modes of activation. 

B. Cryptogenic or symptomatic 

1. West syndrome (infantile spasms, Blitz-Nick-Salaam Krampfe) 

2. Lennox-Gastaut syndrome 

3. Epilepsy with myoclonic-astatic seizures 

4. Epilepsy with myoclonic absences 

C. Symptomatic 

1. Non-specific aetiology 

2. Early myoclonic encephalopathy 

3. Early infantile epileptic encephalopathy with suppression burst 

4. Other symptomatic generalized epilepsies not defined above 

5. Epilepsies due to specific neurological diseases 

III. Epilepsies and syndromes undetermined whether focal or generalized 

A. With both generalized and focal seizures 

1. Neonatal seizures 

2. Severe myoclonic epilepsy in infancy 

3. Epilepsy with continuous spike-waves during slow wave sleep 

4. Acquired epileptic aphasia (Landau-Kleffner-syndrome) 

5. Other undetermined epilepsies not defined above 

B. Without unequivocal generalized or focal features. 
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IV. Special syndromes 

A. Situation-related seizures 

1. Febrile convulsions 

2. Isolated seizures or isolated status epilepticus 

3. Seizures occurring only when there is an acute metabolic or toxic 

event 

 

Table 1.2.  The International Classification of the Epilepsies and Epileptic 
Syndromes (ICEES) – Version: 1989b.  

 

 

1.5.3. Hippocampal epilepsy____________________________________________ 
 

The pathophysiology of seizure generation and propagation in epilepsy is 

poorly understood, however, influential theoretical models suggest a possible 

deregulation of the normal balance between synchronous excitatory and inhibitory 

synaptic firing can give rise to epileptogenic spike-wave discharges (Jefferys and 

Traub, 1998; Traub et al., 1998).  Furthermore, the hippocampus has been proposed 

to be especially prone to such a synaptic hyper-synchronicity due to the complex 

matrix of multiple excitatory glutamatergic feed-back loops within and between the 

many sub-regions of the hippocampus (Miles and Wong, 1986; Wong et al., 1986). 

For illustration purposes, a single pyramidal cell in the CA3 region of the rat 

hippocampus is thought to connect with 25,000 – 50,000 synapses within the same 

hippocampus and the CA3 region as a whole is estimated to have 5-10 billion 

synaptic connections within each hemisphere (Tamamaki et al., 1988).  A minor de-

synchronization of this dense network due to microdysgensis (Meencke and Janz, 

1984), lesions (Ferrer et al., 1992), or any form of tissue abnormality (Jefferys and 

Traub, 1998) could then lead to the propagation of this electrical surge throughout 

the inter-connected hippocampal cytoarchitecture, resulting in an exponentially 

larger epileptic discharge (in physics this is analogous to what is known as a 

‘bifurcation point’ in non-linear dynamics).   

Indeed the majority of focal seizures originate from the medial temporal lobe, 

specifically the hippocampus (Everitt and Sander, 1998); and hippocampal damage 

is the most common pathology found in chronic temporal lobe epilepsy (Babb et al., 

1987). 



32 
 

Hippocampal sclerosis is found in approximately 60% of temporal lobes removed for 

the treatment of epilepsy, and is associated with 60-70% chance of the patient 

becoming seizure free following resection (Everitt and Sander, 1998). 

 Volumetric reductions in the case of hippocampal sclerosis can often be 

determined from anatomical images of T1-weighted magnetic resonance imaging 

(MRI).  Additional MRI features characteristic of hippocampal sclerosis are 

increased signal intensity within the hippocampus on T2-weighted images (Berkovic 

et al., 1991).  Individually these two MRI measures may be indicative of various 

other pathologies, however, the combination of T1 volume loss and T2 abnormal 

signal intensity is thought to be highly specific for hippocampal sclerosis (see 

Chapter 4). 

As discussed earlier, the medial temporal lobe and the hippocampus are vital to 

the long-term memory system (Squire and Zola-Morgan, 1991) and it is evident that 

patients with temporal lobe epilepsy suffer from severe deficits in the encoding, 

storage, and retrieval of newly established information.  Exhaustive studies have 

highlighted the characteristic long-term memory impairments in these patients and as 

such, have served as an excellent model by which to examine the neuroanatomical 

correlates of human memory functioning - for review see (Leritz et al., 2006).  In the 

following chapters, we intend to expand these investigations of memory function in 

temporal lobe epilepsy patients with selective hippocampal damage in order to 

characterize specific short-term working memory processes that are dependent upon 

hippocampal integrity. 

 

1.6. Introduction to Oscillations ________________________________________ 

 

The ionic conductance responsible for the excitability of single neurons can 

result in dynamic electrical resonance and oscillatory activity (Llinas, 1988; 

Hutcheon and Yarom, 2000).  The architecture of neural networks and the relative 

speed of connectivity between these cells (due to axon conduction and synaptic 

delays in signalling), creates emergent oscillations that resonate at differing 

frequencies.  The self-organizing nature of neural variability between these cells is 

thought to give rise to an internal homeostatic rhythm within the brain that becomes 

perturbed from incoming sensory stimuli (Friston, 2000; Buzsaki et al., 2002; 

Buzsaki and Draguhn, 2004).  As a result, dynamic shifts in neural firing reverberate 
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through the brain’s neural architecture providing a transient accommodation in 

oscillatory activity.  It has therefore, been suggested that the precise timing of this 

activity within an assembly can be a means of conveying information (Buzsaki and 

Draguhn, 2004).  The spatial-temporal organization of interactions between neurons, 

in the form of oscillatory rhythms, gives rise to functional connectivity and thereby 

creating a neural assembly, or network, in which transient information can persist.   

The relative lengths of these oscillatory cycles limit the synaptic transmission 

of distant neural connectivity between cortical structures (Buzsaki and Draguhn, 

2004).  Therefore, oscillatory rhythms within the lower frequency spectrum are 

thought to coordinate the relative firing of distant neural assemblies, while fast 

oscillations (i.e. Gamma-Band) favour local interactions.  These rhythms specifically 

within the theta frequency band (4-12 Hz) have been proposed to be a general 

clocking mechanism in which to integrate the functional cooperation of distant 

assemblies into a coherent network (Sarnthein et al., 1998; Jones and Wilson, 2005).  

Theta band oscillations have been shown to functionally enhance the interactions of 

local and distant neural networks (Jones and Wilson, 2005) and has been implicated 

in processes such as synaptic plasticity (Arai and Lynch, 1992; Huerta and Lisman, 

1995), spatial navigation (Kahana et al., 1999; Caplan et al., 2001; Caplan et al., 

2003), memory encoding (Huxter et al., 2003), recollection (Guderian and Duzel, 

2005), mental imagery (Sarnthein et al., 1998), and delay maintenance 

(Raghavachari et al., 2001; Lee et al., 2005b; Raghavachari et al., 2006). The 

relationship of theta band oscillations supporting working memory maintenance will 

be discussed in greater detail in the following chapter. 
 
1.7. Introduction to Magnetoencephalography ______ ______________________ 
 

Magnetoencephalography (MEG) is a relatively recent technique developed for 

detecting oscillatory brain activity non-invasively from the surface of the scalp in 

humans.  Voltage changes during synaptic transmission within the brain are 

accompanied by corresponding magnetic field changes.  MEG can detect this weak 

magnetic fields (on the order of pico-tesla) generated by neural activity via a 

superconducting quantum interference device (SQUID) that amplifies magnetic 

changes recorded from an array of sensors situated around the scalp.  In contrast to 

the commonly used technique of electroencephalography (EEG), the MEG signal is 
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thought to reflect intracellular currents mainly from the cortical fissures of the brain 

making it a more suitable technique for recording hippocampal activity.  Also, MEG 

is thought to have a more homogeneous representation of the electromagnetic 

changes in the brain because magnetic fields are not as susceptible to signal 

distortion from the skull as is the case in electrical field recordings of EEG. 

 

Research Aims_______________________________________________________ 

 

In a series of working memory experiments using MEG we will investigate 

cortical synchronization within the theta band during the active working memory 

maintenance of visual information in normal controls and epilepsy patients with 

bilateral hippocampal sclerosis. Through a convergence of evidence, we hope to 

elucidate a rhythmic neural mechanism in which the hippocampus supports active 

representations of visual configurations relationships by coordinating the functional 

synchronization of different cortical regions, which is behaviourally and functionally 

dissociable from non-configural-relational forms of maintenance.  We will determine 

if actively maintaining the configural-relational aspects of a visual scene is 

associated with theta oscillatory coupling of temporal and occipital visual areas 

(Chapter 2) and furthermore, if this theta-network is critically dependent on the 

integrity of the hippocampus (Chapter 5).  Behaviourally, we will investigate if 

configural-relational forms of working memory critically depend on hippocampal 

integrity and if these deficits are due to difficulties in perceptual integration (Chapter 

4) or quantitative increases in working memory maintenance demands (Chapter 7). 

Furthermore, we intend to dissociate this network from non-configural-relational 

forms of working memory maintenance functionally via theta-network connectivity 

(Chapter 2 & 3) and behaviourally (Chapters 4, 5, 6 & 7). Chapters 6 and 7 will 

explore interactions between long-term memory encoding and short-term working 

memory maintenance.  In light of these interactions, we will demonstrate that under 

circumstances in which working memory maintenance processes are faulty, 

disruption of maintenance may lead to improved hippocampal independent 

recognition performance (Chapter 7).  In closing we hope to have characterized 

dissociable theta-networks of hippocampal-dependant and hippocampal-independent 

forms of working memory maintenance, and thereby challenge classical distinctions 

between short-term and long-term memory. 



35 
 

II. Differential Networks   
of Active Maintenance 

 

 

 

 
Rhythmic patterns of neural firing are ubiquitous throughout the cortex.  This 
internal homeostatic rhythm can become externally modified by stimuli 
arriving from the senses.  Maintaining a representation of this external reality is 
thought to be accomplished by the continual internal adjustments of these self-
generated patterns.  Here, we aim to utilize this framework to investigate how 
the brain’s rhythmic oscillations of neural activity can synchronize to create 
functional networks of stimulus persistence in working memory.  Recent 
evidence from single unit recordings in rodents and lesion studies in humans 
have suggested that medial temporal lobe theta band coherence may reflect a 
functional network supporting maintenance of spatial associations over 
retention periods.  This chapter will investigate the differential cortical 
synchronization (theta phase-coupling) during the active maintenance of the 
configural relationships of visual information compared to non-configural-
relational working memory maintenance.   
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2.1. Introduction_____________________________________________________ 

 

Theta frequency oscillations have been well established in spatial navigation 

and hippocampal encoding of location within a place field in rats(O'Keefe and 

Conway, 1978; O'Keefe, 1993; Huxter et al., 2003), however, a recent study using 

simultaneous tetrode recordings in rodents has demonstrated significant phase 

locking of CA1 hippocampal regions to medial prefrontal cortex (mPFC) phasic 

firing during T-maze navigation (Jones and Wilson, 2005).  The functional coupling 

of these structures was significantly enhanced when the active maintenance of goal 

and target location were needed to be kept in working memory in order to 

successfully complete task demands (Jones and Wilson, 2005).  The CA1-mPFC 

entrainment was specific to a 4 – 12 Hz cycle and strengthens the organizational role 

of theta rhythms during the delay periods of spatial working memory (Jones and 

Wilson, 2005).   

One hallmark of active maintenance is the persistent neural firing in the PFC 

during the delay periods of visual working memory tasks (Funahashi et al., 1989; 

Constantinidis et al., 2001; Miller and Cohen, 2001; Nacher et al., 2006).  This delay 

activity has been thought to an important mechanism in which behavioural goals can 

be kept online (Rainer et al., 1998; Asaad et al., 2000; Miller and Cohen, 2001) and 

modified according to changing task demands and contingencies (Asaad et al., 

1998).  The neuroanatomy of this network shows that the hippocampus projects uni-

directionally to the mPFC regions suggesting that CA1 firing is primarily driving the 

synchronization of these areas (Swanson, 1981; Jay et al., 1989).   

Similarly, theta frequency band elevations have been implicated in occipital 

visual cortex during working memory (Raghavachari et al., 2001), as well as, 

synchronization of these areas with the PFC during delay maintenance (Sarnthein et 

al., 1998).  Local field potential measurements in area V4 of the extrastriate cortex of 

monkeys during visual delay maintenance have shown preferential single unit neural 

firing at a particular phase of the theta rhythm (Lee et al., 2005b).  This entrainment 

of single unit activity to a preferred phase angle of the theta cycle was modulated by 

stimulus selectivity during maintenance and was independent of generalized 

increases in firing (Lee et al., 2005b).   Not only does this provide evidence for the 

importance of theta organization from single neurons to large-scale cortical 

synchronization during working memory delays, but suggests that this stimulus-
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selective theta activity may be a form of information representation during 

maintenance.  A similar pattern of preferential firing during particular phase angles 

of theta have been found in the hippocampal pyramidal neurons of rodents during 

navigation (O'Keefe, 1993; Buzsaki et al., 2002).   

As described in Chapter 1, it been well established that the medial temporal 

lobe is critical to long-term declarative memory (Cohen and Squire, 1980), however, 

recent evidence in humans has suggested that the hippocampus may be involved in 

the short-term retention of the relational binding between objects (Olson et al., 

2006a; Olson et al., 2006b; Hannula and Ranganath, 2008) and their topographical 

representation (Hartley et al., 2007).  For instance, amnesic patients with selective 

hippocampal atrophy have displayed working memory impairments over short 

delays for the spatial configuration of objects (Hannula et al., 2006).  Overall, 

suggesting that the hippocampus may coordinate the recruitment of the ventral visual 

stream (via theta band coupling) in order to maintain the associative information of 

configural stimuli over delays.   

 

Experiment 1. Configural-relational working 
memory maintenance in normal controls 
 

2.1. Aims 1__________________________________________________________ 

 

Using MEG recordings in healthy participants, we intend to establish that the 

maintenance of configural-relational and non-configural-relational forms of visual 

information (see methods section for term definitions) can be differentially 

characterized by induced phase-coupling within the theta band.  We hypothesize that 

the active maintenance of configural-relational information will enhance theta 

connectivity in sensor groups along the ventral visual processing areas and the 

medial temporal lobe.  Alternatively, non-configural-relational forms of working 

memory maintenance should engage a theta network involving frontal and parietal 

sensors, comparable to previous reports (Haxby et al., 2000; Postle et al., 2000; 

Deiber et al., 2007).  Since active maintenance should tend to have a loose temporal 

relationship (i.e. not time-locked to a stimulus event) induced oscillatory activity was 

investigated in order to yield information on the dynamics of cell assemblies during 

delays in working memory tasks (Deiber et al; 2007).  Furthermore, we chose to 
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investigate oscillatory activity specifically within the theta band because of its 

intrinsic properties of integrating the functional cooperation of distant assemblies 

into a coherent network (Jones and Wilson, 2005, Sarnthein et al., 1998).   

 

2.3. Study Design 1____________________________________________________ 

 

2.3.1 Participants.  

  

Eight right-handed healthy subjects (5 male / 3 female mean age 21.6; SD ± 3.2 

years) participated in the experiment.  All participants were recruited from the 

University College of London’s Psychology departmental subject pool and were 

determined to have no extraneous neurological or psychological disorders that would 

confound our results.  In addition, all subjects displayed normal or corrected to 

normal visual acuity.  All participants gave written informed consent to participate 

and the study was approved by the guidelines of the ethics committee of the 

University of London Research Ethics Committee for human-based research.  All 

participants were compensated at a rate of £6 per hour for the entirety of the study, 

which averaged two hours to complete. 

 

2.3.2. Stimuli and Task.   
 

The stimuli used in this experiment were photographs of 260 indoor and 260 

outdoor scenes.  All pictures were grey scaled and normalized to a mean grey value 

of 127 and an SD of 75, set at 300x300 pixels, and shown upon a grey background 

(127 value).  The experiment consisted of three conditions: a ‘non-configural-

relational’ delayed-match-to-sample (DMS) condition, a ‘configural-relational’ DMS 

condition, and a ‘control’ condition. In all three conditions, the trial structure and 

stimulus-timing were identical (Figure 1.1). After a 2 sec inter-trial-interval, an 

indoor or an outdoor scene was presented for 3 sec.  This was followed by a blank 

screen with a fixation cross for 5 sec and then by two test stimuli for 4.5 seconds. 

In all three conditions, participants were required to make a speeded 

indoor/outdoor discrimination for the sample image indicated by button press using 

the index or middle finger of the right hand. In the DMS conditions, the two test 

images after the delay interval were used to probe memory for the sample. In the 
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non-configural-relational DMS, one of the probes was an exact repetition of the 

sample and the other depicted an entirely difference novel scene of the same 

category (indoor or outdoor) as the sample. Participants’ were instructed to maintain 

the sample image in their memory in order to be able to correctly identify the 

matching sample. The location of the matching probe and the non-matching foil (left 

vs. right presentation) were counterbalanced across trials.  

In the configural-relational trial condition stimuli were manipulated in a 

relatively similar fashion as reported by (Ryan et al., 2000; Ryan and Cohen, 2004). 

Manipulated versions of the scenes involved changes in the relations among some 

elements of the scenes. The types of manipulations were (a) addition or deletion of a 

new object or (b) a spatial shifting of an object within a scene.  Manipulation type (a) 

was used in 56% of the trials and type (b) was used in 44% of the trials in the 

configural-relational DMS conditions.  Thus during sample scene presentation in the 

configural-relational condition, participants were required to encode the individual 

objects (e.g. a tree, a bench) as well as object-object (e.g., the tree amongst the 

benches) and object-location (e.g., the tree in the upper left-hand corner of the scene) 

associations. As participants were not able to predict which type of sample 

manipulation would be used in any given trial, both of these types of relational 

associations needed to be retained during the maintenance period in order to detect 

the non-matching sample -for a review of relational memory types see (Konkel et al., 

2008). Additionally, during the probe phase, participants could also utilize changes 

to the configural-relational scene-layout caused by either type of manipulation to 

detect the non-matching sample.  In this type of paradigm, Ryan and Cohen (2004) 

observed intact preserved memory performance (using eye movements as critical 

measure) over very short delays, but impaired memory over longer delays.  Also, 

please note, that the term 'configural' processing has been used previously in face-

perception literature to denote holistic relational processing of visual information. 

Here, the term configural-relational refers to the relational (either the spatial, object, 

or both) aspects of a visual scene in an associative manner that may, though not 

necessarily, include holistic representation of these relations. 

In the test phase of the control conditions, two scene images, both of which 

were completely different from the sample, were presented side-by-side and subjects 

were instructed to indicate if the two pictures were the same or different by button 

press.  In half of the trials the pictures were identical and the other half they differed 
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to the same degree as the probes in the configural-relational DMS condition.  The 

difficulty of discriminating between stimuli was designed to match the configural-

relational DMS condition so as to account for any anticipatory activity of difficult 

choices during the delay.  Subjects were instructed that they should not maintain the 

sample stimulus in memory as this would not help them to make the difficult 

same/different discrimination during the test phase.  

The three conditions were blocked with 20 trials per block.  Participants were 

instructed prior to each block as to which conditions would be tested.  It is important 

to note, that participants were fully aware of the working memory demands prior to 

the image maintenance necessary to answer successfully at probe.  There were 3 

blocks per condition, resulting in 60 trials per condition.  Presentation of 

indoor/outdoor stimuli were counterbalanced across each block and were kept 

constant across trials.   

 
Figure 2.1 

 
Figure 2.1. Experimental design.  An example of a single non-configural-
relational delayed-match-to-sample (DMS) trial where participants are 
instructed to make a deep encoding “indoor/outdoor” judgment at sample and 
maintain this information over the delay period in order to make a “left/right” 
match  decision at test (top).  A single configural-relational DMS trial where the 
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configuration of items within a scene must be maintained over the delay in 
order to make a correct decision at test (middle).  An example of a single 
control trial where participants are not required to maintain any stimulus 
information in order to make a discrimination judgment at test (bottom).   
 

 

2.4. Behavioural Results 1______________________________________________ 

 

2.4.1. DMS task performance.   
 

The three conditions differed in participants’ response accuracy during the 

probe phase (repeated-measures ANOVA; (F (2, 16) = 39.7; p< 0.001). Post-hoc 

paired t-tests (two-tailed, mean, s.d. - Bonferroni multiple comparison corrections) 

showed that accuracy was better in the non-configural-relational condition (99.3 ± 

1.21%) than the configural-relational (69.6 ± 8.15 %, t(8)=10.689, p<0.001) and 

control condition (59.3±13.72%, t(8)=8.265, p<0.001). We were successful in our 

attempt to match performance in the configural-relational and control conditions as 

there were no differences in accuracy between these conditions (59.3 ± 4.6% and 

69.6 ± 2.7% respectively, t(8) = 1.729, p=0.122). This was important to ensure that 

any delay activity effects attributed to the configural-relational DMS condition were 

not due to the anticipation of a difficult judgment/discrimination in the upcoming 

probe phase. (Figure 2.2) 
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Figure 2.2 

 
Figure 2.2.  Behavioural accuracy results of the delayed-match-to-sample 
paradigm tested on eight healthy controls in experiment 1.  Significant 
differences were found (**denoting significant differences at the level of 
p<0.001) for the configural-relational (CR) and Control conditions when 
compared to the non-configural-relational (non-CR) condition.  The CR and 
control conditions were well matched for accuracy. 
 

A repeated-measures ANOVA also revealed a significant difference between 

testing conditions for reaction times (RT’s) (F(2, 16) = 49.93; p<0.001).  Post-hoc 

paired t-tests (two-tailed, mean, s.d. - Bonferroni multiple comparison corrections) 

showed significant increases in RTs for configural-relational (2780.77 ± 737.8 ms) 

when compared to non-configural-relational DMS tasks (913.48 ± 288.2 ms, t(8) = -

8.379; p< 0.001).  A similar increase in RTs was found in the control tasks (2055.90 

± 596.1 ms) when compared to non-configural-relational DMS tasks (913.48 ± 288.2 

ms, t(8) = -6.135; p< 0.001).  Additionally, participants displayed slower RTs for 

control tasks compared to configural-relational DMS (t(8) = 4.870; p < 0.01). (Fig 

2.3) 
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Figure 2.3 

 

 
Figure 2.3.  Behavioural reaction time results of the DMS paradigm tested on 
eight healthy controls in experiment 1.  Significant differences were found (** 
denoting p<0.001) for the configural-relational (CR) and Control conditions 
when compared to the non-configural-relational (non-CR) condition.  In 
addition, slower reaction times were found for the control conditions when 
compared to the CR condition (* denoting significant differences at the level of 
p<0.01). 
 
 
2.4.2. Behavioural Discussion. 
 

The ability of participants to actively maintain non-configural-relational forms 

of visual information over delay periods was shown to be easier than the 

maintenance requirements of retaining the configural relationship between individual 

elements within the scene (as reflected in accuracy Fig. 2.2 and speed of response at 

probe Fig. 2.3).  Similarly, the perceptual discrimination task performed in the 

absence of any memory maintenance requirements was shown to be significantly 

more difficult than the non-configural-relational working memory.  It can be argued, 
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that there may be a ceiling effect in our current results for the non-configural-

relational DMS condition (an issue that will be systematically investigated in 

Chapter 2), however, the particular design of the current paradigm was to created in 

order to make direct comparisons of MEG recordings with the control and 

configural-relational conditions where stimulus content and timing must be identical.   

Furthermore, it is important to note that the speed of response (RT) for the 

perceptual discrimination between similar scenes at probe in the absence of any 

memory maintenance requirements (control condition) was shown to be significantly 

faster than the configural-relational condition (Fig. 2.3), however, the opposite trend 

is shown for accuracy (Fig. 2.2).  This disparity could reflect prior exposure to the 

image during encoding (and subsequent maintenance) of the configural-relational 

DMS condition and thereby slightly enhancing accuracy.  While the time necessary 

to visually discriminate between two similar stimuli (control condition) will be 

shorter than when participants then have to additionally compare this information 

with the image previously maintained within working memory (configural-relational 

condition).  This issue of perceptual processing and configural-relational 

maintenance requirements (Lee et al., 2005a; Graham et al., 2006; Shrager et al., 

2006) will be discussed in more detail in subsequent chapters (Chapters 4, 5, & 6).   

 

2.5. Magnetoencephalography Methods______ ____________________________ 
 
 
2.5.1. MEG Recordings and set-up. 
 

MEG data for all experiments were recorded using a 275-channel CTF Omega 

whole head gradiometer system (VSM MedTech, Coquitlam, BC, Canada).  The 

parameters in which MEG data are collected is contingent upon the particular 

frequency bands that are intended to be analyzed.  Signals can be properly sampled 

only if it does not contain frequencies above ½ sampling rate frequency - see Nyquist 

sampling theorem (Nyquist, 2002).  If the signal contains frequencies above this 

critical threshold then, not only is there a loss of phase information, but the sampling 

of proportionally higher frequencies waves can falsely mimic slower frequency 

oscillations (i.e. signal aliasing – see Figure 2.4).  Since our primary aim was to 

investigate induced oscillatory activity in a relatively low frequency band (Theta: 4-
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12 Hz cycles), MEG recordings were collected at 480 Hz sampling rate and with 120 

Hz low pass filtering.   

 
Figure 2.4 

 
 
Figure 2.4. Examples of signal aliasing where violations of Nyquist sampling 
theorem in the selection of the sampling rate at higher frequencies can falsely 
mimic slower wave frequency oscillations (Image courtesy of Oxford functional 
imaging lab, http://users.fmrib.ox.ac.uk). 
 
 

After participants were comfortably seated in the MEG, head localizer coils 

were attached to the nasion and preauricularly 1 cm anterior to the left and right 

tragus in order to monitor head movement during the recording sessions (Figure. 

2.5B).  The paradigm was projected on to a white screen positioned just in front of 

the participants and adjusted so as all images were in focus before the start of the 

experiment. 
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Figure 2.5 

 

 
 
Figure 2.5.  (A) The 275-channel CTF Omega whole head gradiometer system 
located at the Institute of Neurology’s Functional Imaging Laboratory of 
University College of London (image courtesy of FIL website, 
www.fil.ion.ucl.ac.uk).  (B) Placement of head-localization coils in order to 
triangulate head movement during scanning (points 1 & 2 indicate the right and 
left Preauricular placement and 3 is the Nasion – image courtesy of INSERM-
CEA Cognitive Neuroimaging uni, www.unicog.org) 
 
 
2.5.2. Wavelet transformations. 
 

All MEG data were pre-processed with Statistical Parametric Mapping 

software implemented in Matlab (SPM5; Wellcome Trust Centre for Neuroimaging, 

Institute of Neurology, London, UK).  Butterworth band pass filtering was applied 

(0.5 – 100 Hz) and reduced to a 140 sampling rate.  Data were epoched and then 

analyzed using continuous single-trial wavelet transformations within the theta band 

frequency (15 cycle Morlet wavelet transformations with logarithmic scaling 

between 3-8 Hz) using Matlab based in-house software (Guderian and Duzel, 2005).  

Single-trial transformations were analyzed separately for amplitude and phase-

coupling for each subject in the experiment. 
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2.5.3. Phase Coupling Analysis. 
 

To detect functional coupling between sensor groups, a specific subset of 

wavelets were selected within the theta band (5, 6, 7 Hz) for analysis. Then using 

continuous single-trial wavelet transformations on unaveraged data (band pass 

filtered between 3 – 9 Hz; sampling of every 4th time point), phase differences were 

calculated prior to averaging for each time point of each trial, between all possible 

sensor combinations of unique sensor pairs and then averaged across trials. Phase 

alignment for each time point and sensor-pair was measured as the length of the unit 

phase vector across trials divided by the number of trials. This computation yielded a 

complex value of phase synchronization ranging from 0 to 1 (Phase locking value 

(PLV) – see (Lachaux et al., 1999). A value of 1 would correspond to perfect phase 

alignment across trials and a value of 0 to random phase variation across trials 

(Figure 2.6) 
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Figure 2.6 

 
 

Figure 2.6. An example of phase-coupling measurements between two selected 
MEG sensors across subsequent recording trials (1-3) within a specified time 
window.  At a given time, a phase-locking value (PLV) is generated ranging 
from 0 to 1 in order to measure the degree in which two ongoing frequency 
oscillations are synchronized.   Where a PLV = 0 denotes no phase-coupling and 
a PLV = 1 is perfect phase-coupling between sensors. 
 
 

The precise timing of patterned neural activity from large-scale cortical 

assemblies is thought to be captured by MEG recordings in the form of frequency 

oscillations (Fries, 2005).  When the rise and fall of these oscillations from disparate 

cortical areas are synchronized in time (and within a particular frequency) they are 

considered to be ‘coupled’ to the same phase. Theoretically, phase-coupling between 

different MEG sensor groups reflects the synchronous coordination of these 

assemblies into a functional cortical network (Fries, 2005).   
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Synchrony plots were generated on these transformations contrasting 

differences in sensor coupling between testing conditions during the delay after 

correcting for a 500ms pre-stimulus baseline (threshold of p<0.05). Sensor groups 

displaying significant theta synchrony and clustered with at least three other 

neighbouring significant sensors were chosen for further region of interest analysis 

using for serial related measures t-tests (threshold of p<0.05) to see spatial-temporal 

changes reveal the magnitude of theta coupling as a function of the experimental 

manipulation during both sample and delay periods. Phase coupling was not 

analyzed during the probe phase. 

 

2.6. Magnetoencephalography Results 1__________________________________ 

 

2.6.1. Theta-Phase coupling results. 
 

We performed an unbiased search for theta coupling (6 Hz wavelet) between 

sensors that were analyzed for all possible combinations of MEG sensors, without an 

a priori bias.  Coupling between two sensors was considered to be significant at a 

threshold p<0.05 per time point if present continuously over three successive theta 

cycles. Using this approach we found that theta-coupling was stronger in the 

configural-relational DMS than control condition over left occipital and temporal 

sensors.  Participants’ ability to maintain non-configural-relational stimuli in 

working memory was associated with enhanced phase-coupling over right frontal 

and parietal sensor groups during delay maintenance compared with the control 

condition.  
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Figure 2.7 

 
Figure 2.7. Phase coupling analysis using a 6 Hz wavelet (threshold of p<0.05 
per time point if present continuously over three successive theta cycles) 
contrasting experimental conditions displayed in sensor space for experiment 1 
comparing configural-relational and non-configural-relational working 
memory delay periods.  In experiment 1, synchrony plots of non-configural-
relational delay maintenance (A) display increased right frontal and parietal 
theta-band sensor coupling (blue) compared to configural-relational delay 
maintenance (B) which increased left occipito-temporal theta-coupling (red).   

 
 
This pattern of left occipito-temporal theta synchrony for configural-relational 

DMS and fronto-parietal theta synchrony for the non-configural-relational DMS also 

held when directly contrasting the two DMS conditions (Figure 2.7A and 2.7B).  To 

visualize the time course of these characteristic synchrony patterns we plotted the 

amount of theta synchronization across time (Figure 2.8).  It can be seen that 

synchrony between right fronto-parietal sensors is significantly increased for the 

non-configural-relational condition approximately 1500ms after sample offset and 

continuing for the rest of the delay period, but remained constant relative to baseline 

throughout the delay in the configural-relational DMS condition (Figure 2.8A).  On 

the other hand, the occipito-temporal sensors showed theta-synchrony elevations 

throughout much of the sample and delay period for the configural-relational DMS 

condition while non-configural-relational levels remained at baseline or below 

(Figure 2.8B).  Additionally, there was a similar pattern of augmented theta phase-

coupling for mid-frontal and left temporal sensors groups for the configural-

relational DMS condition (Figure 2.8C).  However, the fronto-temporal 

enhancement peaked soon after stimulus off-set while occipito-temporal connectivity 
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increased during the later portion of the delay.  The relative time-courses of 

augmented theta activity between fronto-temporal and occipito-temporal sensor 

groups (Figure 2.8B and 2.8C) seem to suggest an interplay of network connectivity 

that support differential maintenance processes during stimulus presentation and 

subsequent maintenance of configural-relational stimuli. 

 
Figure 2.8 

 

 
 
 

- Figure 2.8. Continued on following page 
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Figure 2.8. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for non-configural-relational 
(‘Non-CR’ in blue) vs. configural-relational (‘CR’ in red) delayed-match-to-
sample (DMS) conditions in Experiment 1 (threshold of p<0.05 per time point if 
present continuously over three successive theta cycles indicated by markings 
on x-axis).  Non-configural-relational DMS significantly increased theta 
synchrony of right fronto-parietal sensor groups during delay periods (A).  
Alternatively, the configural-relational DMS condition engaged a network of 
left occipito-temporal (B) and fronto-temporal theta synchrony (C) during 
stimulus encoding and delay periods.  
 
 
2.6.2. Theta Amplitude Analysis. 
 

To exclude the possibility that condition differences found in the phase-

coupling analysis might be due to parallel differences in theta amplitudes, single trial 

wavelet transformations were further analyzed using serial related measures t-tests 

(threshold of p<0.05) on identical sensor groups indicated in the phase-coupling 

results as having significant differences between conditions. Where as if a specific 

pattern of wavelet frequencies distinguish between conditions in sensor space for the 

amplitude analysis in the same direction as the phase-coupling results of the same 

frequency band then amplitude differences may have biased the phase-coupling 

signal. Only effects that were significant across at least one entire cycle of the 

corresponding theta frequency were considered to be reliable; e.g. 200ms for a 5.9 

Hz theta oscillation (Guderian and Duzel, 2005). 
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2.6.3. Theta Amplitude Results. 
 

Importantly, these synchrony patterns were not artefacts due to corresponding 

theta amplitude differences between DMS conditions. In fact, plots of theta-

amplitudes over identical sensor groups either showed no theta amplitude differences 

(Figure 2.9A and Figure 2.9C), or showed larger theta amplitudes in the non-

configural-relational compared to the configural-relational DMS condition (Figure 

2.9B). These results are in accord with working memory studies in animals showing 

that theta-synchrony changes are independent of amplitude differences (Siapas et al., 

2005).  Thus confirming our findings from Experiment 1 displaying characteristic 

theta synchrony patterns associated with the differential working memory demands 

necessary for configural-relational and non-configural-relational maintenance.   

 
Figure 2.9 

 
 
 
 

 
 

- Figure 2.9. Continued on following page 
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Figure 2.9.  Serial measures t-test comparisons plotting the mean theta 
amplitudes over sensor groups (shown on right-side insets) that were identical 
to sensor groups that displayed significant theta phase coupling in Fig 2.8 
(threshold of p<0.05 per time point if present continuously over three successive 
theta cycles indicated by markings on x-axis, error bars indicate s.e.m.). There 
were either no theta amplitude differences (A and C), or larger theta 
amplitudes in the non-configural-relational (‘Non-CR’ in blue) compared to the 
configural-relational (‘CR’ in Red) DMS condition (B). This Indicates that theta 
synchrony cannot be explained by corresponding theta amplitude differences 
between DMS conditions. 
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2.7. Discussion 1______________________________________________________ 

 

Neural synchronization specifically within the theta-band frequency (4-8 Hz) is 

thought to reflect working memory processes (Jones and Wilson, 2005; Lee et al., 

2005b).  We investigated the hypothesis that differential theta networks are involved 

when maintaining the configural relationship of individual elements within a scene 

when compared to non-configural-relational forms of working memory delay 

maintenance.  Using MEG recordings in healthy participants, we establish that 

configural-relational and non-configural-relational maintenance can be differentially 

characterized by induced phase-coupling within the theta band (Figure 2.7).  

Our results show that the active maintenance of non-configural-relational 

visual information enhances theta synchrony between right frontal and parietal 

sensors (Figure 2.7A), compatible with earlier studies showing fronto-parietal 

engagement during working memory delays (Cohen et al., 1997; Courtney et al., 

1997; Baddeley, 1998; Sarnthein et al., 1998; D'Esposito et al., 2000; Haxby et al., 

2000; Postle et al., 2000; von Stein and Sarnthein, 2000; Deiber et al., 2007).  

Furthermore, our data suggests that this induced theta activity is functionally (Figure 

2.7A) and behaviourally (Figure 2.2) dissociable from the additional working 

memory demands of maintaining configural-relational representations.  However, if 

this characteristic shift of theta synchrony patterns (Figure. 2.7) are due to a 

quantitative increase in demands on working memory resources or a qualitative 

reorganization supporting differential maintenance process, are still yet to be 

determined (-see Chapter 3).   

When participants were required to actively maintain the configural 

relationship of elements with a scene over delay periods, a characteristically different 

pattern of theta synchronous activity appeared compared to non-configural-relational 

maintenance (Figure 2.7).  Enhanced theta coupling of left fronto-temporal sensors 

emerged during encoding of the stimulus and slowly diminished over the delay 

period (Figure 2.8C).  While, increased occipito-temporal theta coupling emerged 

over the later portion of delay periods (Figure 2.8B).  Closer inspection of the 

relative enhancement and decrement of theta coupling between these two sensor 

combinations over the time course of encoding and maintenance suggest a possible 

transfer of theta network allocation may occur during working memory retention 

(this notion will be explored in Chapters 7 and 8). 
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It is important to note that these synchrony patterns did not correspond to theta 

amplitude changes in the same sensor groups (Figure 2.9) complimenting previous 

work in animals showing that theta-synchrony changes are independent of amplitude 

differences (Sirota et al., 2008).  Furthermore, there is abundant evidence for the 

possibility that theta oscillations can be generated neocortically in humans 

(Raghavachari et al., 2001; Caplan et al., 2003).  However, a recent study in rodents 

also suggested that cortically recorded theta oscillations may be volume conducted 

from the hippocampus (Sirota et al., 2008). Although we cannot exclude this 

possibility, the fact that the task differences in occipito-temporal theta-synchrony 

were not accompanied by corresponding changes in theta-amplitudes argues against 

a volume conduction account.  

Recent physiological studies in animals raise the possibility that the 

coordination of persistent theta activity supporting associative forms of cortical 

representations during delay maintenance (i.e. configural-relational) are dependent 

upon hippocampus-dependent slow network oscillations (Buzsaki and Draguhn, 

2004; Jones and Wilson, 2005; Sirota et al., 2008).  It has be proposed that 

hippocampus-dependent theta oscillations may coordinate the synchronized activity 

of different brain regions that represent the multiple scene elements and their 

locations in space (O'Keefe and Conway, 1978; O'Keefe, 1993).  Furthermore, in 

rodents it has been shown that hippocampally generated theta oscillations (Green and 

Arduini, 1954; Vanderwolf, 1969) can modify neuronal activity outside limbic areas 

(Sirota et al., 2008).  

During goal-directed behaviour in rodents, medial prefrontal cortical neuronal 

firing is phase-locked to the hippocampal theta rhythm and this is accompanied by 

synchronization of the hippocampal and prefrontal theta-rhythms (Jones and Wilson, 

2005).  This pattern of fronto-temporal theta synchronization is very similar to our 

current findings during configural-relational stimulus encoding and early 

maintenance (Figure 2.8C).  Persist activity in the prefrontal cortex is thought to 

reflect the tuning of maintenance processes on the current task demands during 

working memory (Fuster and Alexander, 1971; Goldman-Rakic, 1996; Onton et al., 

2005; Deiber et al., 2007), as well as, the resistance to cognitive deviations from 

those demands (Chao and Knight, 1995; Artchakov et al., 2009).  The persistence of 

fronto-temporal theta synchronization during configural-relational DMS tasks may 

then reflect similar processes of coordinating attentional working memory resources 
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to support increases in task demands compared to the non-configural-relational 

condition (Figure 2.2) 

Additionally, the occipito-temporal theta synchrony found during configural-

relational maintenance may indicate the coordination of cortical representations 

along the visual ventral stream processing hierarchy.  The active maintenance of 

visual scenes have been shown previously to influence single unit neural firing in 

visual area V4 of the extrastriate cortex of monkeys that is patterned in time to the 

particular phase of the ongoing local theta rhythm (Lee et al., 2005b).  Although Lee 

and colleagues did not resolve whether the visual occipital theta rhythm was coupled 

to medial temporal lobe oscillators, it is very suggestive that the occipito-temporal 

pattern (Figure 2.7B) of theta synchronous activity found here may reflect similar 

mechanisms.  In this way, the hippocampus may contribute to integrating 

representations of complex conjunctions of scene elements in more rostral portions 

of the ventral stream, such as the rhinal cortex, with representations of component 

features in more posterior regions (e.g., visual areas such as V4) (Bussey and 

Saksida, 2002; Ryan and Cohen, 2004; Aggleton et al., 2007; Hannula and 

Ranganath, 2008; Harrison and Tong, 2009).   
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2.8. Summary________________________________________________________ 
 

Using a delayed-match-to-sample MEG paradigm, we show that configural-

relational maintenance engaged stronger theta-coupling between fronto-temporal and 

occipito-temporal sensor groups during the delay period.  While non-configural-

relational delay periods were characterized by enhancement of theta-synchrony 

between right frontal and parietal sensor groups in the absence of configural-

relational working memory demands.  These results suggest that configural-

relational delay maintenance recruits a network of synchronous brain regions driven 

by theta oscillations that is qualitatively different from non-configural-relational 

maintenance. 

Together, with recent investigations in animals (Jones and Wilson, 2005) and 

in humans with hippocampal lesions (Olson et al., 2006a; Hannula and Ranganath, 

2008; Konkel et al., 2008), these disparate pieces of evidence converge towards the 

possibility that the hippocampus supports the active maintenance of configural-

relational information in working memory by coordinating the synchronization of 

different cortical regions through theta oscillations.  This current study did not allow 

us to determine the cortical sources of the occipito-temporal synchrony (-see Chapter 

5) or how this pattern of activity is contingent upon differential increases in working 

memory demands (-see Chapter 3).  However, the characteristic topography of this 

synchrony pattern, its selectivity to configural maintenance demands, as well as 

previous reports of the dependence of associative forms of working memory on 

hippocampal integrity (Olson et al., 2006a; Hannula and Ranganath, 2008; Konkel et 

al., 2008) are very suggestive of such a possibility. 
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III. Maintenance demands 
of discrete information  

 

 

 

 
Differential networks of stimulus maintenance can be characterized by theta 
synchronization of cortical regions during working memory delays.  The 
qualitative demand upon working memory resources to maintain the configural 
relationship between elements within a scene has been shown to engage a 
fronto-temporal and occipito-temporal theta network.  However, the functional 
enhancement of this network may reflect the increased number of elements 
within the scene to be retained and not the qualitative binding of these elements 
configurally.  This chapter will investigate an alternate method of increasing 
working memory demands quantitatively to determine if occipito-temporal 
theta synchrony supporting configural-relational maintenance also 
characterizes generalized increases in working memory demands.  By 
manipulating maintenance requirements by increasing the discrete number of 
visual information to be held in working memory we can isolate the specificity 
of theta networks supporting maintenance demands. 
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3.1. Introduction_____________________________________________________ 

 

Individuals are rarely required to retain just one single item, such as a picture, 

in their minds over short delay intervals.  The ability of working memory to maintain 

multiple pieces of transient information, also called ‘load’, is thought to be a 

capacity limited process that contributes to a wide variety of cognitive tasks, such as 

decision making, selective attention, and language (Baddeley, 2003).  Furthermore, 

variations within the population for individual working memory capacity abilities 

has been thought to be strongly predictive of intelligence and reasoning abilities 

(Fukuda and Vogel, 2009).   

Classically, the storage capacity of working memory has been described as 

“seven plus or minus two”, individual items that can be actively maintained over a 

short duration (ref).  However, later studies have shown this to be an over-estimate, 

for when participants are not allowed to engage in rehearsal of the items or cannot 

‘chunk’ strings of items into sub-components, then the limited capacity of working 

memory seems to be approximately four items (Luck and Vogel, 1997; Cowan et al., 

2000; Owen, 2004).  Furthermore, the complexity (Kane et al., 2006; Xu and Chun, 

2006) and/or similarity of the items being stored (Awh et al., 2007), as well as, the 

allocation of attentional focus on relevant items (Garavan, 1998; McElree, 2001) 

have been thought to additionally modulate these capacity limits. However, the 

differential working memory capacity limits of individuals are thought to be 

regardless if an observer is maintaining a single feature (e.g. colour) or multiple 

features of the items (e.g. colour and orientation) (Luck and Vogel, 1997). 

Recently, two viewpoints have emerged of how working memory capacity 

limits should be characterized as the amount of cognitive resources: the discrete 

resource or ‘slot’ model and the flexible resource model.  The discrete resource 

model proposes that the storage of individual items are maintained within a discrete 

number of ‘slots’ that determine an individual’s capacity limit.  Therefore, exceeding 

the resource limits for this fixed number of items will result in subsequent items to 

not be retained and thus decreasing memory performing above an individual’s 

capacity threshold (Zhang and Luck, 2008).  On the other hand, the flexible resource 

model proposes that working memory resources that determine capacity limits are 

allocated continuously, where each item shares a relative store of the available 
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resources and increased item loading thereby decreases the proportion of retentional 

accuracy for each item (Bays and Husain, 2008).   

Both resource models are currently under debate, however, recent EEG 

recordings have demonstrated possible neurophysiological correlates of these item-

limited modulations for average (Vogel and Machizawa, 2004) and individual 

working memory capacity limits (Fukuda and Vogel, 2009).  The rate-limiting 

factors of working memory storage has been supported by imaging studies observing 

load- and accuracy- dependant activations in parietal and occipital regions (Vogel 

and Machizawa, 2004).  It has therefore been proposed that these regions of the 

posterior cortex act as the capacity-limited storage of visual items in working 

memory (Owen, 2004).  As described in Chapter 1, previous evidence showing 

regions of the pre-frontal cortex specifically tuned to cope with increases in working 

memory demands (Fuster and Alexander, 1971; Goldman-Rakic, 1996; Jensen and 

Tesche, 2002; Onton et al., 2005; Deiber et al., 2007; Artchakov et al., 2009) have 

been proposed to functionally interact with posterior cortical regions to maintain 

current task demands and goals and resistance to distraction - in monkeys (Miller and 

Cohen, 2001; Artchakov et al., 2009) and in humans (Chao and Knight, 1995) – this 

notion will be further explored in Chapter 7.   

As demonstrated in Experiment 1, the active maintenance of non-configural-

relational visual information enhances theta synchrony between right frontal and 

parietal sensors (Figure 2.7A), which is consistent with earlier studies showing 

fronto-parietal engagement during working memory delays (Cohen et al., 1997; 

Courtney et al., 1997; Baddeley, 1998; Sarnthein et al., 1998; D'Esposito et al., 2000; 

Haxby et al., 2000; Postle et al., 2000; von Stein and Sarnthein, 2000; Deiber et al., 

2007).  Dynamic adjustments along this network are thought to be modulated in 

order to compensate for quantitative increases of item retention (‘load’) during 

working memory maintenance.   

Although the precise nature of working memory’s resource limits are still 

under debate (Bays and Husain, 2008; Fukuda and Vogel, 2009), working memory is 

by definition a capacity limited process (Baddeley, 2003).  Furthermore, it has been 

proposed that, under certain conditions, long-term memory regions (such as the MTL 

and specifically the hippocampus) may be engaged to compensate when these 

capacity limits are exceeded and working memory resources are insufficient for 

high-load retention -see (Shrager et al., 2006) for a further discussion see Chapters 6 
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& 7).  Investigations in multi-item working memory load performance in patients 

with hippocampal lesions have thus far been conflicting, where some report no 

working memory deficits (Olson et al., 2006a) and others have reported impairments 

(Aggleton et al., 2007; Axmacher et al., 2007).  Additionally, it has remained 

inconclusive if some reports of hippocampal activation during delay intervals of high 

working memory load in healthy individuals (Axmacher et al., 2007; Rissman et al., 

2008) reflect compensatory short-term maintenance mechanisms (Shrager et al., 

2006; Shrager et al., 2008) or are due to the configural-relational nature of the visual 

stimuli being maintained (Olson et al., 2006a).  As demonstrated in Experiment 1, 

configural-relational maintenance clearly increases demands on working memory 

resources (Figure 2.2) and is contingent upon occipito-temporal theta-coupling ( 

Figure 2.7) to support these increases in maintenance demands.  However the 

question still remains, what is the precise nature of these demands on working 

memory resources? 

 

Experiment 2. Working memory load in normal 
controls 
 

3.2. Aims 2__________________________________________________________ 
 

The distinct occipital-temporal coupling characterizing configural-relational 

working memory may reflect the increased demands of quantitatively maintaining a 

higher number of single elements within a scene (Shrager et al., 2006; Shrager et al., 

2008).  In accordance with this view, hippocampal engagement (as proposed to be 

reflected by occipital-temporal theta synchrony) may not be driven by the increased 

qualitative demands of maintaining the configural relationship between these 

elements in working memory.  Therefore, an alternative method of increasing 

maintenance demands on working memory is by increasing the number of scenes to 

be retained over the same delay period in healthy participants.  To address this 

possibility, we investigated the theta-coupling patterns associated with increases in 

the working memory ‘load’ from 1 to 3 or 5 scenes to be maintained non-configural-

relationally in healthy participants while undergoing MEG recordings. Although, the 

specific contribution of the medial temporal lobe and the hippocampus to high 

working memory load cannot be determined in this study (- this will be further 
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investigated in Chapter 7), we can determine if occipital-temporal theta coupling 

supporting the qualitative demands of configural-relational representations are 

reflecting the quantitative increases of working memory load. 

 

3.3. Study Design 2____________________________________________________ 

 

3.3.1. Participants. 
  

Sixteen right-handed healthy subjects (7 male/ mean age 23.2, SD 3.9) 

participated in the experiment.  All participants were recruited from the University 

College of London’s Psychology departmental subject pool and were determined to 

have no extraneous neurological or psychological disorders that would confound our 

results.  In addition, all eight subjects displayed normal or corrected to normal visual 

acuity.  All participants gave written informed consent to participate and the study 

was approved by the guidelines of the ethics committee of the University of London 

Research Ethics Committee for human-based research.  All participants were 

compensated at a rate of £6 per hour for the entirety of the study, which averaged 

two hours to complete. 

 

3.3.2. Stimuli and Task.   
 

We investigated the theta-coupling patterns associated with increasing the non-

configural-relational DMS ‘load’ from 1 to 3 or 5 scenes to be maintained without 

the additional demands of configural-relational maintenance (Figure 3.1).  All MEG 

recording parameters were identical to those of Experiment 1. 

The sample, foil, and probe stimuli consisted of 742 black and white 

photographs of indoor or outdoor scenes. Scene stimuli were chosen to match the 

stimuli comparisons with the configural-relational DMS manipulation in Experiment 

1. As mentioned previously, a common strategy to enhance working memory 

retention (i.e. above 3-4 items) is the active verbal rehearsal of the items being 

retained.  In this current study design we are confident that this strategy would not 

benefit participants performance because of the difficulty of applying verbal “tags” 

to the stimuli used (Figure 3.1).  After testing, participants often noted that they 

attempted verbal rehearsal in the earlier trials of the study then abandoned this 
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strategy and relied on maintaining the purely visual elements of the scenes.  

Therefore, the visual working memory loading conditions in this current study were 

aimed at manipulating just below short-term capacity limits (1, 3 items) and just 

beyond average capacity thresholds (5 items) (Cowan, 2000; Owen, 2004, Luck and 

Vogel, 1997). 

With this design we also sought to disrupt active maintenance of scenes by 

task-irrelevant distraction during the delay period.  Distracter stimuli consisted of 

105 black and white photographs of male and female faces with neutral emotional 

expression selected from the Karolinska Directed Emotional Faces database 

(Lundqvist, et al., 1998).  In this chapter we will focus primarily on the working 

memory maintenance without distraction conditions and return to a systematic 

investigation of task-relevant (Chapter 6) and task-irrelevant (Chapter 7) distraction 

in later chapters. 

Presentation of all indoor/outdoor and male/female stimuli were 

counterbalanced across each block and were kept constant across individual trials. 

All pictures were grey scaled and normalized to a mean grey value of 127 and a SD 

of 75, set at 300x300 pixels, and shown upon a grey background (127 value).   
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Figure 3.10 

 
 

Figure 3.1.  Experiment 2 working memory ‘load’ DMS paradigm. An example 
of DMS trials where 1 item load (top), 3 item load (middle), or 5 item load 
(bottom) presented serially must be maintained over a 5 second delay period in 
order to make a “match” decision at test. 

 
 

The experiment was a 2x3 factorial design consisting of 7 successive delayed-

match-to-sample blocks with 30 trials per block, resulting in 35 trials per condition. 

The manipulations in this experiment were sample stimulus load of one, three, or 

five items presented serially for 1 sec duration each. On half of the trials, a face 

distracter stimuli (1 sec) was presented during the delay period (jittered within a 3 

sec window during the middle of the delay).  Subjects were instructed to maintain 

the sample stimuli (1, 3, or 5 items) over a 5 sec delay period whilst fixating on a 

cross (same retention interval as Experiment 1). At probe subjects were presented 

with a single picture (1 sec) and asked to indicate by button press using the index or 

middle finger of the right hand if the picture was a “match” or “non-match” to one of 

the aforementioned sample stimuli. Targets and foils were randomized and 

counterbalanced across testing blocks. After which, there was a 3.5 sec inter-trial-

interval where subjects were instructed to blink before fixing on the next cue (0.5 

sec) (Figure 3.1). 
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3.4. Behavioural Results 2______________________________________________ 

 

3.4.1. DMS task performance.   
 

A 2x3 repeated-measures ANOVA (distracter x load) revealed main effects for 

DMS load on participants’ accuracy (F(2,30) = 26.5; p<0.001) and their RTs 

(F(2,30) = 15.50; p<0.001), however, there was no effect of distracter stimuli 

presented during the delay for accuracy (F(1,15) =1.49; p=0.24) or for RTs (F(1,15) 

=0.50; p=0.49) – but see Chapter 7. Pair-wise comparisons of accuracy on load 

(two-tailed, mean, s.e.m. -Bonferroni multiple comparison corrections) displayed 

differences between ’load 1’ vs. ‘load 3’ (96.6 ± 1.1% and 89.1 ± 2.4%, respectively; 

t(15) = 3.332, p<0.01), between ’load 3’ vs. ‘load 5’ (80.3 ± 1.9%, t(15) = 3.996, 

p<0.005), and between ’load 1’vs ‘load 5’ items (t(15) = 9.599, p<0.001) – Figure 

3.2.   

 
Figure 3.11 

 
 

Figure 3.2.  Behavioural accuracy results of the working memory ‘load’ DMS 
paradigm tested on sixteen healthy controls in experiment 2.  We were 
successful in manipulating working memory ‘load’ as evident from the 
accuracy decreases from 1 to 3 items (p<0.01), 3 to 5 items (p<0.005).  Working 
memory performance was seemingly unaffected by task-irrelevant distraction 
(see Chapter 7). 
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Additional pair-wise comparisons (two-tailed, mean, s.e.m. - Bonferroni 

multiple comparison corrections) showed increased RTs for item load between ’load 

1’ vs. ‘load 3’ (924.7 ± 90.1 ms and 1015.3 ± 77.4 ms, respectively; t(15) = -3.772, 

p<0.005) and ’load 1’ vs. ‘load 5’ (1032.7 ± 78.5 ms, p<0.005) while no RT 

differences were found between ’load 3’ vs. ‘load 5’ (t(15) = -1.647, p=0.120) – 

Figure 3.3. Post-hoc paired t-test comparisons (two-tailed, mean, s.e.m.) were 

performed to ensure that no differences for RTs between foils (1034.2 ± 13.8 ms) 

and targets (1019.7 ± 13.1 ms, t (153.4) = 9.39, p=0.35) or between correct (1236.9 ± 

28.5 ms) and incorrect responses (1273.4 ± 34.2 ms, t (35.9) = -0.82, p=0.41) could 

inherently bias the effect of DMS load demands on RTs. 

 
Figure 3.12 

 

 
 

Figure 3.3. Reaction time results of the working memory ‘load’ DMS paradigm 
tested on sixteen healthy controls in experiment 2.  Significant increases of 
reaction times were found for 1 to 3 items (p<0.005) and 1 to 5 items (p<0.005).  
Similar to Figure 2, reaction times were seemingly unaffected by task-irrelevant 
distraction (see Chapter 7). 
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3.4.2. Behavioural Discussion. 

Our attempt to manipulate working memory demands by increasing the 

number of scenes to remember during delays (load) were successfully reflected in 

participants’ decrease in accuracy as the number of items to remember was increased 

(Figure 3.2).  This was further supported by a generalized increase in reactions times 

(Figure 3.3) with increasing load.  Consistent with previous reports (Cowan, 2000; 

Owen, 2004, Luck & Vogel, 1997), when working memory resources are near to the 

average capacity threshold (i.e. three or five items ) the ability to maintain multiple 

discrete visual elements in working memory steadily decreased when verbal 

rehearsal was not a beneficial strategy.  Furthermore, this significant decrement of 

performance is a reflection of quantitative increase in working memory demands, 

which is behaviourally analogous to the qualitative increase in demands of 

configural-relational scene maintenance found in Experiment 1 (Figure 2.2).  

Consistent with this notion, if the absence of occipito-temporal theta coupling was 

due to a ceiling effect in the non-configural-relational DMS condition, then high load 

non-configural-relational maintenance (5 item) where working memory demands are 

comparatively stressed (yet quantitatively, not qualitatively) should yield similar 

theta synchrony patterns as configural-relational maintenance.  

 

3.5. Magnetoencephalography Results 2__________________________________ 

 

3.5.1. Theta-Phase coupling results. 

 

Theta phase coupling of increasing memory load demands was investigated 

using the same methodological procedures as in Experiment 1. Consistent with 

previous reports  (Cohen et al., 1997; Courtney et al., 1997; Baddeley, 1998; 

Sarnthein et al., 1998; D'Esposito et al., 2000; Haxby et al., 2000; Postle et al., 2000; 

von Stein and Sarnthein, 2000; Deiber et al., 2007), maintenance of single item 

working memory load was associated with enhanced theta-synchrony along the 

fronto-parietal network (Figure 3.4A), a synchrony pattern characteristic of the non-

configural-relational results in Experiment 1 (Figure 2.7) suggesting that results are 

comparable between these two experiments.   
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Increasing the number of scene images that had to be retained during the delay 

from one to five was associated with increased theta coupling of bilateral frontal and 

temporal sensors (Figure 3.4B).  This pattern expands on previous EEG studies 

showing increases in frontal theta-coupling for working memory loading of stimuli 

such as letter strings (Deiber et al., 2007) and is thought to reflect increasing 

demands of working memory resources (Fuster and Alexander, 1971; Goldman-

Rakic, 1996; Onton et al., 2005; Deiber et al., 2007; Artchakov et al., 2009).   It is 

important to note, that these results do not claim that fronto-parietal theta 

engagement is not also occurring during high-load maintenance, but instead that the 

characteristic synchrony difference compared to low load is significant enhancement 

of bi-frontal theta coupling. 

 
Figure 3.13 

 

 
 

Figure 3.4.  Phase coupling analysis using a 6 Hz wavelet (threshold of p<0.05 
per time point if present continuously over three successive theta cycles) 
contrasting experimental conditions displayed in sensor space for Experiment 2 
comparing non-configural-relational working memory load.  Synchrony plots of 
1 item delay maintenance (A) displayed a similar right frontal and parietal 
theta-phase coupling (blue) as the non-configural task in the previous 
experiment.  While the 5 item delay maintenance (B) increased theta-phase 
coupling of bi-frontal sensor groups (red), a pattern that is non-overlapping 
with the configural-relational maintenance sensor coupling. 
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Most importantly, the bi-frontal theta synchrony due to increased working 

memory load was completely non-overlapping with the occipito-temporal theta-

synchrony of configural-relational maintenance (Figure 2.7B), indicating that 

dissociable networks are responsible for supporting the separate maintenance 

demands of discrete item loading and configural-relational representations. This 

effectively rules out the possibility that functional differences between configural-

relational and non-configural-relational working memory maintenance are due to 

quantitative increases in working memory demands, but instead reflect a qualitative 

alternate mechanism supporting the associative demands of spatial configurations 

characterized by occipital-temporal theta synchrony.  

To visualize the time course of these characteristic synchrony patterns we 

plotted the amount of theta synchronization across time (Figure 3.5).  It can been 

seen that for both low load (Figure 3.5A) and high load (Figure 3.5B) condition the 

characteristic theta coupling for these conditions (front-parietal and bi-frontal, 

respectively) was already engaged during encoding, then this synchrony persisted 

across the retention period. Consistent with Experiment 1 (Figure 2.8), this suggests 

that delay period theta synchronization is actively replaying the encoded precept 

during working memory maintenance upon a theta-networks already engaged by 

stimulus off-set during encoding (for discussion of working memory ‘replay’ – see 

Supplementary Discussion, Chapter 5).  Furthermore, it is interesting to note that bi-

frontal theta-coupling reaches an apex in the early portion of the delay (~1000 ms) 

then declines to baseline by the later portion of the delay.  Although this was not 

directly investigating this study, these synchrony changes are suggestive of a 

possible differential switching of theta networks engagement across long retention 

periods (i.e. 5 seconds) in order to support increasing demands of high working 

memory load (Figure 3.5B) or configural-relational maintenance (Figure 2.8B & 

2.8C). – this notion will be discussed further in Chapter 7. 
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Figure 3.14 

 

 
 
Figure 3.5. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for non-configural-relational 
low working memory load (‘1 item load’ in blue) vs. high working memory load 
(‘5 item load’ in red) delayed-match-to-sample (DMS) conditions in Experiment 
2 (threshold of p<0.05 per time point if present continuously over three 
successive theta cycles indicated by markings on x-axis).  Similarly to the non-
configural-relational condition of Experiment 1, low working memory load 
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significantly increased theta synchrony of right fronto-parietal sensor groups 
during delay periods (A).  Alternatively, the high working memory load 
condition engaged a network of bi-lateral and left temporal theta synchrony (B) 
during stimulus encoding and delay periods.  A pattern that is completely non-
overlapping with the configural-relational maintenance theta engagement of 
Experiment 1. 
 

 
3.6. Discussion 2______________________________________________________ 

 

These results shed light on the differential engagement of theta synchronous 

networks supporting increases of working memory maintenance demands.  

Quantitative increases in maintaining a high load of discrete visual elements in 

working memory was characterized by theta-coupling of bi-frontal sensor groups 

(Figure 3.4B).  This modulation of increased frontal coupling as function of working 

memory load is in accordance with the notion that increased engagement of the PFC 

is thought to  reflect increasing demands of working memory resources (Fuster and 

Alexander, 1971; Goldman-Rakic, 1996; Onton et al., 2005; Deiber et al., 2007; 

Artchakov et al., 2009).  In contrast, the engagement of occipito-temporal theta-

coupling is a dissociable network supporting the qualitative demand increases of 

maintaining the configural relationship of individual scene elements (Figure 2.7B).  

Although both processes tax working memory resource demands as reflected by 

participants’ behavioural performance, the functional networks associated with these 

two forms of maintenance are topographical dissociable.  As well as, display 

recruitment of alternate theta networks for additional resource allocation compared 

to the “classic” fronto-parietal network (Cohen et al., 1997; Courtney et al., 1997; 

Baddeley, 1998; Sarnthein et al., 1998; D'Esposito et al., 2000; Haxby et al., 2000; 

Postle et al., 2000; von Stein and Sarnthein, 2000; Deiber et al., 2007) supporting 

low demand working memory (Figure 3.4A & 2.7A). 

In this current study we did not find modulations along parietal and occipital 

regions (Cowan et al., 2000; Owen, 2004; Fukuda and Vogel, 2009) of frontal 

sensors with increasing working memory load.  Our current data did not support the 

notion that frontal regions functionally interact with posterior cortical regions to 

maintain current task demands and goals (Chao and Knight, 1995). Although, this 

was not the specific aim of this experimental manipulation, it is curious that 

functional engagement along the frontal-parietal (and occipital regions) was not 
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enhanced with systematic increases of load (Cowan et al., 2000; Owen, 2004; 

Fukuda and Vogel, 2009).  However, this was most likely due to the design of theta 

coupling comparisons between conditions in sensor space, where synchrony pattern 

differences were contrasts and there-by displaying significant ‘differences’ in 

activity. Therefore, it is likely that qualitative increases in stimulus loading 

strengthened theta-coupling along frontal-parietal (and occipital regions) 

maintenance network, but this enhancement was below the significance threshold 

chosen for this comparative analysis. Never the less, the robust bi-frontal 

engagement was the most significant network distinguishing high-load from low-

load maintenance within this experimental design.  The nature of this bi-frontal 

coupling in high-load maintenance and its relationship to delay distraction will be 

explored further in Chapter 7. 

Our findings are in accordance with recent studies of patients with amnesia due 

to medial temporal lobe (hippocampal) damage displaying selective impairments in 

the ability to maintain relational conjunctions in working memory but had no 

memory load related impairment (Olson et al., 2006b; Finke et al., 2008). Although 

this anatomical distinction and the contribution of the hippocampus to these theta 

synchrony patterns could not be determined in Experiments 1 or 2 (but see Chapter 5 

and 7), our current results suggest a possible anatomical dissociation contributing to 

distinct theta networks supporting increased working memory maintenance demands. 
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3.7. Summary________________________________________________________ 

 

In experiment 2, we sought to increase demands on working memory 

maintenance resources by quantitatively increasing the number of individual scenes 

to be retained.  High load maintenance (compared to low load) was characterized by 

theta-coupling of bi-frontal sensor groups.  This pattern of engagement was 

functionally dissociable from the occipito-temporal theta-coupling supporting the 

maintenance demands of configural relationships during working memory delays.  

Furthermore, both of these maintenance demands topographically differed from the 

“classic” fronto-parietal working memory network which characterized low load 

(Experiment 2) and non-configural-relational (Experiment 1) delay maintenance. 

Although, the specific contribution of the medial temporal lobe and the hippocampus 

to either of these forms of working memory demands could not be determined in this 

study, the topographical engagement of theta coupling of these two networks are 

clearly dissociable.  The anatomical relationship (MTL) of these theta synchrony 

patterns to the differential working memory demands will be investigated in later 

chapters (Chapters 5 & 7).  Specifically, the contribution of hippocampal integrity to 

configural-relational working memory maintenance and occipito-temporal theta 

synchrony. 
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IV. Working memory 
deficits in patients with 
epilepsy  

 

 
 
 
 
The hippocampus and surrounding medial temporal lobe structures have long 
been held to be critical for long-term declarative memory but not for short-term 
or working memory. The notion that patients with selective and bilateral medial 
temporal lobe lesions have intact short-term memory has been a key argument 
to support the classical distinction between long-term memory and working 
memory.  Recent behavioural and electro-physiological evidence, as well as, the 
results from Experiments 1 and 2, have begun to challenge this classical 
distinction. Converging evidence now suggests that the ability to maintain 
configural-relational information in working memory for periods as short as a 
few seconds critically depends on the hippocampus. In functional terms, the 
hippocampus may be necessary for coordinating maintenance when it relies on 
distributed cortical representations of objects, locations and their conjunctions.  
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4.1. Introduction_____________________________________________________ 

 

As discussed in Chapter 1, the ability to retain events over very brief intervals 

of time (short-term memory) has been thought to be anatomically and functionally 

distinct from mechanisms necessary for lasting memories (long-term memory). 

However, ecent reports of patients with selective hippocampal atrophy displaying 

working memory impairments for the spatial relationship of objects over short delay 

periods (Hannula et al., 2006; Olson et al., 2006a) suggests that the hippocampus 

may contribute to the configural-relational DMS task performance in Experiment 1.  

Furthermore, the characteristic topography of occipito-temporal theta 

synchronization found during configural-relational delay maintenance suggests that 

the hippocampus is necessary for the functional coordination of these cortical 

regions in order to support the maintenance of the configural relationships within a 

scene.  Having established that this theta network is functionally dissociable from 

quantitative increases in working memory maintenance demands (Experiment 2), we 

next sought to investigate our hypothesis that configural-relational working memory 

is behaviorally dependent on hippocampal integrity. To this end, we tested the 

configural-relational working memory performance of patients with bilateral 

hippocampal sclerosis (BHS) due to epilepsy.  Patients with left temporal lobe 

epilepsy determined to be ‘MRI-negative’ for hippocampal reductions (LTN), served 

as a control group to match the effects of recurrent epileptic seizures and 

antiepileptic medication in BHS patients, but without hippocampal sclerosis. 

Furthermore, we will determine if configural-relational working memory 

performance is due to any contributing factors of the patients’ abilities of perceptual 

discrimination.  These tasks were performed while patients underwent MEG 

recordings to determine theta synchronization during working memory maintenance 

periods, however, this chapter will primarily focus on the behavioural and structural 

characterization between these two cohorts of epilepsy patients (-see Chapter 5 for 

investigation of delay maintenance theta synchronization of epilepsy cohorts). 
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Experiment 3A. Configural-relational working 
memory in bilateral hippocampal sclerosis 
 

 

4.2. Aims 3A_________________________________________________________ 

 

We will first characterize two epilepsy patient cohorts for subsequent working 

memory testing. Our ‘test’ cohort consisted of six patients with bilateral 

hippocampal sclerosis (BHS) and our ‘control’ cohort are six patients with left 

temporal lobe epilepsy determined to be ‘MRI-negative’ for hippocampal reductions 

(LTN).  We then tested patients on a slightly modified version of the DMS paradigm 

used in Experiment 1 to determine if BHS patients display selective impairments in 

configural-relational DMS conditions and if this impairment is due to deficits in 

perceptual discrimination.   

 

4.3. Study Design 3A__________________________________________________ 

 

4.3.1. Patient groups.  
 

Bilateral Hippocampal Sclerosis (BHS).  

Nine patients with temporal lobe epilepsy and Bilateral Hippocampal Sclerosis 

(BHS) were recruited for this study.  Three BHS patients were excluded from the 

final analysis: LH004 couldn’t perform the DMS task (leading to the paradigm 

modifications outlined in the Stimuli and Task section below), AJ003 was excluded 

due to indications of diagnosis co-morbidity (possible Asbergers Syndrome), and 

AB025 was excluded due to left hand dominance, which can obfuscate results of the 

phase-coupling synchrony analysis (see Chapter 5).  Therefore, the final BHS test 

cohort consisted of 6 right-handed patients (2 female/ mean age 43.2; SD 9.8). 
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Left Temporal Lobe Epilepsy (LTN). 

The control group consisted of 6 right-handed patients with left Temporal Lobe 

Epilepsy (LTN) (2 female/ 37.2; SD 11.4) with normal structural MRI scans (Figure 

4.2). This LTN group was chosen in order to match the effects of recurrent epileptic 

seizures and antiepileptic medication of the BHS cohort, whilst comparing 

structurally intact hippocampi (LTN) to patients with bilateral hippocampal sclerosis 

(BHS) (Table 4.1).  

 

4.3.2. Characterization of patient groups. 
 

All patients were attending clinics of the Department of Clinical and 

Experimental Epilepsy of UCL Institute of Neurology and the National Hospital for 

Neurology and Neurosurgery. Two experienced neurologists reviewed the seizure 

characteristics and current medications of both epilepsy groups investigated in this 

study and were determined to be comparable between groups (Table 4.1).   

In addition, 11 normal controls (NC) participated in a behavioural version of 

the same experiment (4 male/ mean age 24.7; SD 3.9).  All NC participants were 

recruited from the University College of London’s Psychology departmental subject 

pool and were determined to have no extraneous neurological or psychological 

disorders that would confound our results.  In addition, all subjects displayed normal 

or corrected to normal visual acuity.  All participants gave written informed consent 

to participate and the study was approved by the guidelines of the ethics committee 

of the University of London Research Ethics Committee for human-based research.  

All participants were compensated at a rate of £6 per hour for the entirety of the 

study, which averaged two hours to complete. 
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Table 4.3 

 
Subjects Dx DOB Seizure 

Onset 
Seizure 

type 
Seizure 

Freq 
Medications 

DH006 
 

BHS 15/02/1962 17 yrs 
 

cps 
 

3x week 
 

Lev 1250mg 
od; Cbz 
200mg od 

EM011 
 

BHS 26/08/1983 4 yrs 
 

cps 
 

1x month 
 

Pgb 675mg od; 
Cbz 1200mg 
od; Ace 500mg 
od; Flx 20mg 
od 

GP013 BHS 31/08/1957 3 yrs cps 
 

2x month 
 

NaVPA 
1000mg bd; 
Phy 450mg 
bd; Lev 
2500mg bd; 
Clob 10mg 
tds 

TC016 BHS 21/12/1965 10 yrs cps 
 

1x month 
 

Cbz 1800mg 
od; Tpm 
200mg od; 
Prm 500mg 
od 

TE015 BHS 08/01/1958 9 yrs cps 
 

1-2x month 
 

Lev 1000mg 
bd; Cbz 
600mg bd; 
Pgb 250mg 
bd 

M_R BHS 01/08/1963 37 yrs cps & sgs 
 

2-3x week 
 

Cbz 700mg 
bd; Pgb 
300mg bd; 
Lmt 150mg 
bd 

SC005 LTN 22/04/1980 6 yrs cps 
 

1x month 
 

Cbz 1000mg 
bd; Lev 
1000mg bd; 
Lmt 150mg 
bd 

RG014 LTN 24/12/1954 21 yrs cps 
 

0-6 x  
month 

 

Cbz 400mg 
tds; Prm 
250mg tds; 
Clon 0.5mg 
od 

FT026 LTN 15/09/1980 5.5 yrs cps 
 

2-4x  
month 

 

Lev 1 g bd; 
Lmt 300 mg 
bd 

H_P LTN 06/09/1959 11 yrs cps 
 

2-3x day 
 

Lev 1300mg 
bd; Phy 
150mg bd; 
Prop 40mg 
od; Lof 70mg 
bd 
 

NM021 LTN 12/02/1974 18 yrs cps 
 

1x hour 
 

Lev 1500mg 
bd; Clob 
20mg od 

SN010 LTN 20/01/1975 23 yrs cps & sgs 
 

1x month 
 

Lmt 200 mg 
bd; Pgb 50 
mg bd 

 
Table 4.1. Demographic information for bilateral hippocampal sclerosis 
patients (BHS) and left temporal lobe epilepsy patients with normal MRI 
(LTN). Seizure type: complex partial seizures (cps), generalized seizures (sgs). 
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Medication: Acetazolamide (Ace), Carbamazepine (CBZ), Clobazam  (CLB), 
Clonazepam (CLN), Lamotrigine (LTG), Levetiracetam (LVT), Lofepramine 
(Lof), Phenytoin (PHT), Pregabalin (PGB), Primidone (PMD), Propranolol 
(Prop), Sodium Valproate (VPA), Topiramate (TPM).   
 
 

All patients underwent comprehensive clinical whole brain MRI scans 

including: T1-weighted, proton density, T2-weighted and FLAIR acquisition 

protocols. These images were reviewed by two experienced consultant 

neuroradiologists who found no structural abnormalities other than bilateral 

hippocampal sclerosis in the BHS group (see Figure 4.1 for T1-weighted images 

showing isolated bilateral hippocampal atrophy in BHS patients M_R, DH006, and 

EM011.  See Figure 4.2 for BHS patients TE015 and visual comparison of LTN 

patient FT026 with normal appearing hippocampi).  Unfortunately, T1-weighted 

images could not be obtained for visual demonstration purposes for BHS patients 

GP013 and TE015 because they were scanned at an alternative site. We are confident 

that the comprehensive review of structural MR imaging by consultant 

neuroradiologists confirms that these patients (BHS) have isolated hippocampal 

injury and there is no structurally visible damage to extra-hippocampal medial 

temporal lobe structures.  

 
Figure 4.15 

 
 
 
 

- Figure 4.1. Continued on following page. 
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Figure 4.1. T1-weighted images showing isolated bilateral hippocampal atrophy 
in BHS patients M_R, DH006, and EM011 (See Figure 3.2 for BHS patient 
TE015). No images were available for BHS patients GP013 and TE015. 
 

Hippocampal volume measurements for all BHS and LTN patients were 

assessed according to an atlas-based volumetric technique (Woermann et al., 1998) 

and were conducted as standard diagnostic intake of the Department of Clinical and 

Experimental Epilepsy of UCL Institute of Neurology and the National Hospital for 

Neurology and Neurosurgery (Hippocampal volumes in this study we retrieved via 

database and were not performed by the candidate) – see Table 4.2. 

One-way ANOVAs comparing hippocampal volumes of BHS and LTN 

patients confirmed bilateral volume differences (Right Hippocampus: (F (1, 9) = 

29.64; p<0.001) & Left Hippocampus: (F (1, 9) = 31.98; p<0.001).  Independent t-
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tests (two-tailed, mean, s.e.m.) confirmed substantial bilateral hippocampal 

reductions in the BHS group compared to LTN patients (BHS right hippocampal 

volume (1.834 ± 0.195 cc) vs. LTN right hippocampal volume (2.933 ± 0.089 cc; 

t(9) = -5.444, p<0.001) & BHS left hippocampal volume (1.502 ± 0.210 cc)  vs. LTN 

left hippocampal volume (2.925 ± 0.150 cc; t(9) = -5.655, p<0.001) – see Figure 4.2 

for visual comparison of BHS patient TE015 and LTN patient FT026.  Hippocampal 

volume data were not available for one patient with BHS.   

Independent t-tests (two-tailed, mean, s.e.m.) confirmed that there were no 

group differences between BHS and LTN patients in regards to age (BHS 44.3 ± 

3.87yrs, LTN 38.33 ± 4.60 yrs, t(10) = 0.998, p=0.342), age of seizure onset (BHS 

13.3 ± 5.16 yrs, LTN 14.08 ± 3.17, t(10) = -0.125, p=0.903) performance IQ (BHS 

92.00 ± 9.77, LTN 102.75 ± 6.34, t(6) = -0.923, p=0.392), and working memory 

digit span (scaled scores derived from the sum of strings recited forward and 

backward, BHS 9.50 ± 1.06, LTN 8.75 ± 2.14, t(8) = 0.350, p=0.735) (Table 4.2). 
 

Table 4.4 

 
Subject Dx Volume_R Volume_L VIQ PIQ Digit span 

(WM) 
DH006 BHS 1.44 0.95 104 87 11 
EM011 BHS 2.47 1.8 113 116 12 
GP013 BHS * * 93 * 11 
TC016 BHS 1.83 1.96 84 36 8 
TE015 BHS 1.42 1.04 96 * 10 
M_R BHS 2.01 1.76 80 69 5 

SC005 LTN 3.04 3.32 97 106 * 
RG014 LTN 3.02 2.88 * * * 
FT026 LTN 2.68 2.8 102 * 8 
H_P LTN 3.27 3.41 107 119 12 

NM021 LTN 2.75 2.5 70 90 3 
SN010 LTN 2.84 2.64 96 96 12 

  
Table 4.2. Hippocampal volumes and selected neuropsychological testing used 
for exclusionary criteria for bilateral hippocampal sclerosis patients (BHS) and 
left temporal lobe epilepsy patients with normal MRI (LTN). Hippocampal 
volumes are reported in cubic centimetres. Digit span (scaled scores derived 
from the sum of strings recited forward and backward): < 5=impaired, 9-11 
mid average 12-13 high average. * Note some data missing. 
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Figure 4.16 
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Figure 4.2. Sample T1-weighted images of epilepsy cohorts:  (A) Patient FT026 
with left temporal lobe epilepsy determined to be ‘MRI-negative’ for 
hippocampal volume reductions and signal abnormalities (LTN) and (B) 
epilepsy patient TE015 with isolated bilateral hippocampal sclerosis (BHS) and 
no other apparent structural or signal abnormalities. 
 
 
4.3.3. Stimuli and Task.   
 

A slightly modified version of the DMS paradigm used in Experiment 1 was 

used for this study.  A number of trials for the configural-relational condition that 

proved difficult for healthy subjects in Experiment 1 were replaced with a slightly 

easier version to avoid floor effects in the epilepsy patients. Our first BHS patient 

tested (LH004) had substantial difficulty remembering task instructions, such as 

button press assignments, in addition to the requirements of retaining scene stimuli 

in working memory.  Therefore, patients were supported when remembering DMS 

and control task instructions by presenting instructions for button presses on the 

lower portion of the display screen (i.e. ‘which picture did you just see: 1. Left 2. 

Right’).  No task instructions were present on the screen during delay periods, which 

was the time-window of analysis for MEG recording (see Chapter 5).   

This experiment also included 40 additional configural-relational and non-

configural-relational DMS trials in which after the delay period only blank boxes 

were presented during probe.  These ‘no probe’ trials comprised half of all the DMS 

blocks and were presented randomly within each block.  These trials were used to 

test later recognition memory (~30-45 minutes after exposure) for the sample stimuli 

without contamination by repetition effects (for results and discussion see Chapter 

6).  Apart from these aforementioned modifications, all other stimuli and timing 

parameters were identical to Experiment 1. 
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4.4. Behavioural Results_3A____________________________________________ 

 

4.4.1. DMS task performance.   
 

As expected, BHS patients were selectively impaired in configural-relational 

DMS performance. In contrast, the LTN patients with structurally intact hippocampi 

were unimpaired relative to normal controls (NC) in both the configural-relational, 

non-configural-relational DMS and control conditions (Figure 4.3). A 2x3 repeated-

measures ANOVA with condition as the within subjects factor (configural-relational 

and non-configural-relational DMS) and diagnosis as the between subjects factor 

(BHS, LTN, NC) revealed main effects for condition (F(1,19) = 136.19, p<0.001) 

and group (F(2,19) = 16.84, p<0.001), as well as a condition by group interaction 

(F(2,19)=8.85, p<0.005).  

Follow up ANOVAs comparing NC with LTN or NC with BHS confirmed that 

only BHS differed in the configural-relational DMS performance. This was first 

determined by a 2x2 repeated-measures ANOVA confirming that the LTN scores 

were comparable to the NC as a control group in both DMS conditions, with no 

interaction (F(1,14)=1.719, p=0.211) or group effects (F(1,14)=1.77, p=0.204). Then 

an additional 2x2 repeated-measures ANOVA confirmed an interaction of condition 

by diagnosis between BHS and NC groups (F(1,15)=15.61, p<0.005).  ANOVAs 

showed a trend towards an interactions between BHS and LTN performance 

(F(1,9)=4.827, p=0.056) and post-hoc independent t-test comparisons (one-tailed, 

mean, s.e.m.) revealed lower accuracy for the configural-relational DMS condition in 

BHS patients (58.0 ± 5.1%) compared to LTN patients (76.4 ± 3.2%; t(9) = -2.790, 

p<0.01). In contrast, no differences were found between groups for non-configural-

relational (t(9)=-1.083, p=0.15) or control (t(9)=-0.841, p=0.21) condition accuracy, 

thus confirming a selective impairment within the BHS group for configural-

relational working memory performance.  

An additional post-hoc paired t-test comparison (one-tailed, mean, s.e.m.), 

clearly showed lower accuracy in BHS patients for the configural-relational DMS 

condition (58.0 ± 5.2%) compared to the control condition (74.7 ± 7.6%; t(5) = 

2.464, p<0.05) clarifying that this is an effect of memory impairment and not one of 

difficulties with perceptual discrimination in these patients.        
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Figure 4.17 

 
 

Figure 4.3. Mean behavioural performance in DMS trials in Experiment 3A for 
bilateral hippocampal sclerosis patients (BHS) and left temporal lobe epilepsy 
patients determined to be ‘MRI-negative’ for hippocampal pathology (LTN). 
The data show a selective impairment for the BHS group for configural-
relational (CR) DMS performance (>95% confidence interval; error bars 
indicate s.e.m.).  
 

 

4.5. Discussion 3A____________________________________________________ 

 

In accordance with previous evidence (Hannula et al., 2006; Olson et al., 

2006a), epilepsy patients with hippocampal atrophy (BHS) were selectively impaired 

in their configural-relational working memory performance.  While epilepsy 

patients, matched for the contributing factors of seizures and medications, but 

normal appearing hippocampi (LTN), displayed no such deficit and in fact, their 

configural-relational accuracy was comparable to that of normal controls (NC).  
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Furthermore, there was no difference in non-configural-relational and control 

condition performance between BHS and LTN patients.   

It is important to note, that the involvement of the hippocampus for complex 

spatial perception/ discrimination in the absence of maintenance requirements still 

remains an issue to be resolved (Lee and Baxter).  However, our current study was 

not designed to address this issue specifically, but instead aimed to control for such a 

possibility of perceptual impairments in hippocampally damaged patients when 

investigating the role of hippocampal integrity in the short-term memory 

maintenance of configural-relational information.  Patients with hippocampal 

damage (BHS) did show a decrease in control condition performance compared to 

LTN (Figure 4.4), but this decrease was minimal and not significant compared to the 

drastic configural-relational impairment in BHS patients. 

As Lee and Baxter (2010) note, the control condition used in this current study 

may not provide a sensitive test of the hypothesis that the hippocampus is involved 

in the perception of spatial stimuli.  Hippocampally damaged patients display 

significant impairments when the view-point of a configural-relational arrangement 

of a scene is changed, however, these same studies also conclude that this 

impairment is only consistent across all the hippocampal patients in the test cohort 

when a delay interval is introduced (Hartley et al., 2007). Arguably, working 

memory updating could still be required in such tasks, even when no delay period is 

imposed experimentally, because the online manipulation of a configural-relational 

arrangement (i.e. mentally rotating the elements of a spatial configuration to a new 

allocentric representation) requires the active maintenance and the subsequent online 

manipulation of this information (Hartley et al., 2007). 

Our current data rule out the possibility that configural-relational working 

memory impairments in patients with bilateral hippocampal sclerosis are not due to 

difficulties in perceptual discrimination as confirmed by the control condition used 

in this study. Furthermore, our data do not support a role of hippocampal 

involvement in the perception of spatial stimuli, however, our current study was not 

designed to investigate this issue systematically.  To this end, we do find evidence 

for a selective impairment in configural-relational working memory that cannot be 

accounted for by difficulties in perceptual discrimination. 

These results suggest that the hippocampus may also be critical to the 

maintenance of associative visual information of spatial configurations in working 
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memory.  In accordance with this view, a number of imaging studies have shown 

increased activity in the hippocampus and surrounding medial temporal lobe areas 

during the delay period of working memory using fMRI (Cabeza et al., 2002; Monk 

et al., 2002) and using MEG (Campo et al., 2005).  Amnesic patients with MTL 

damage have recently been found to be impaired on other forms of relational visual 

memory (associative and sequence) and not strictly spatial configurative relations, 

while their ability to retain items non-associatively is relatively intact (Konkel et al., 

2008). Therefore, deficits in the visuo-spatial components of these tasks may be a 

product of a more generalized impairment in relational binding due to hippocampal 

damage.  
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4.6. Summary________________________________________________________ 

 

We investigated the ability of epilepsy patients with bilateral hippocampal 

sclerosis (BHS) to retain the configural relationships within natural scenes during 

working memory delays of 5 seconds (same manipulation of Experiment 1).  The 

strength of this current experiment compared to previous reports (Hannula et al., 

2006; Olson et al., 2006a), was the inclusion of a patient ‘control’ group, as well as 

normal controls (NC), which consisted of left temporal lobe epilepsy patients 

without hippocampal damage (LTN) to account for any confounding effects of 

seizures or medications on working memory performance and MEG recordings (see 

Chapter 5).  With this approach, we identified a selective deficit in configural-

relational working memory performance in BHS patients that could not be accounted 

for by difficulties in perceptual discrimination without delay maintenance (control 

condition) in these patients.  In light of the theta-coupling results of Experiment 1, 

this selective deficit in configural-relational DMS performance when hippocampal 

integrity is compromised, proposes a strong link between the hippocampus and 

occipito-temporal theta synchronization during working memory maintenance of 

configural relationships.  This hypothesis will be directly investigated in Chapter 5.  
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V. Hippocampus dependent and 
independent theta networks 
of active maintenance 

 
 
 
 

Thus far, in a series of working memory experiments using MEG we 
investigated interareal cortical synchronization within the theta frequency band 
during the active maintenance of configural-relational or non-configural-
relational visual stimuli of working memory delays.  Configural-relational 
maintenance significantly enhanced a theta-coupled network between left 
fronto-temporal and occipito-temporal sensor groups during delay periods 
compared to non-configural-relational maintenance in normal controls.  
Increasing the number of items to be maintained during delays, on the other 
hand, enhanced bi-frontal theta synchrony.  Thus suggesting that the network 
responsible for the retention of configural relationships is a qualitatively 
different mechanism than that supporting quantitative increases in the number 
of discrete stimuli to be maintained.  Patients with bilateral hippocampal 
damage display selective deficits in configural-relational working memory that 
cannot be attributed to difficulties in perceptual discrimination.  Overall, these 
results suggest that configural-relational delay maintenance recruits a network 
of synchronous brain regions within the theta band that are functionally 
different from non-configural-relational and high-load maintenance.  The 
associative and binding properties of the hippocampus commonly described in 
long term memory may be recruited for this form of working memory in order 
to maintain the configural relationship of information during delays.   
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5.1. Introduction_____________________________________________________ 

 

In accordance with recent evidence (Hannula et al., 2006; Olson et al., 2006a; 

Olson et al., 2006b; Hartley et al., 2007), we have demonstrated that patients with 

bilateral lesions in the hippocampus (BHS) are not only impaired in creating new 

long-term memories, but also display a selective deficit maintaining associative 

working memory representations of configural-relational information whilst 

performing normally for non-configural-relational information (Experiment 3A). 

After a brief presentation of a natural scene, these patients are unable to keep in mind 

the configural relationship between multiple objects within the scene. Importantly, 

this selective impairment cannot be attributed to seizure symptoms, medication, or 

difficulties in perceptual discrimination of visual information. 

As discussed in Chapter 2, recent physiological studies in animals raise the 

possibility that one key functional contribution of the hippocampus towards 

associative maintenance is to coordinate the persistent activity of cortical 

representations through hippocampus-dependent theta network oscillations (Buzsaki 

and Draguhn, 2004; Jones and Wilson, 2005).  In humans, we show that actively 

maintaining a configural-relational representation during working memory delays 

engages an occipito-temporal and fronto-temporal theta synchronous network 

(Experiment 1).  Furthermore, this network was functionally dissociable from the 

theta-coupled topography of non-configural-relational forms of working memory 

even when maintenance demands were quantitatively increased with discrete visual 

items (Experiment 2).   

We therefore propose that configural-relational working memory maintenance 

is supported by hippocampus-dependent theta oscillations coordinating the 

synchronized activity of different brain regions that represent the multiple scene 

elements and their locations in space (O'Keefe and Conway, 1978; O'Keefe, 1993; 

O'Keefe and Recce, 1993).  Although frequently articulated, this link between 

hippocampal integrity, theta synchrony and associative working memory 

maintenance has remained largely theoretical (Lisman and Idiart, 1995; Buzsaki and 

Draguhn, 2004; Montgomery et al., 2008; Sirota et al., 2008).  In this chapter, we 

will directly investigate this possibility, using an integrative approach that combines 

studying working memory maintenance in bilateral hippocampal sclerosis patients 

(BHS) who display selective configural-relational DMS task impairments 
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(Experiment 3A), with the functional measures of theta synchrony as obtained by 

whole-head MEG recordings. 

 

 
Experiment 3B. Configural-relational working 
memory maintenance in BHS 
 

5.2. Aims 3B_________________________________________________________ 

 

Having established that BHS patients are selectively impaired in their ability to 

maintain the configural-relational aspects of a visual scene (Experiment 3A), we will 

test our hypothesis that configural-relational maintenance is not only behaviourally, 

but functionally dependent on hippocampal integrity.  Hence, we expect that patients 

with BHS displaying impaired performance in the configural-relational DMS 

condition would be accompanied by a selective loss of occipito-temporal theta 

synchronization. In contrast, non-configural-relational maintenance associated with 

theta synchrony between frontal and parietal regions will be unaffected by 

hippocampal injury.  Patients with left temporal lobe epilepsy determined to be 

‘MRI-negative’ for hippocampal reductions (LTN), served as a control group to 

match the effects of recurrent epileptic seizures and antiepileptic medication in BHS 

patients, but without hippocampal sclerosis. 

 

5.3. Magnetoencephalography Results 3B_________________________________ 

 

5.3.1. Patient groups.  
 

Six patients with temporal lobe epilepsy and Bilateral Hippocampal Sclerosis 

(BHS) comprised the MEG test group in this study (2 female/ mean age 43.2; SD 

9.8).  The MEG control group consisted of 6 right-handed patients with left 

Temporal Lobe Epilepsy (LTN) (2 female/ 37.2; SD 11.4) with normal structural 

MRI scans (Figure 4.2). This LTN group was chosen in order to match the effects of 

recurrent epileptic seizures and antiepileptic medication of the BHS cohort, whilst 

comparing structurally intact hippocampi (LTN) to patients with bilateral 
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hippocampal sclerosis (BHS) (Table 4.1). – see Chapter 4 for diagnostic criteria and 

study modifications. 

 

5.3.2. Theta-Phase coupling results. 

 

To test our hypothesis that hippocampal integrity is necessary for the occipito-

temporal theta synchrony of configural working memory, we analyzed LTN and 

BHS patients’ 6Hz phase coupling from similar sensor regions displaying significant 

synchrony in healthy adults in Experiment 1. Consistent with this hypothesis we 

expected to find selectively reduced occipito-temporal synchrony for the configural-

relational DMS condition in the BHS group while fronto-parietal synchrony would 

be functionally intact during non-configural-relational DMS.  

As expected, the increased occipito-temporal synchrony for configural-

relational vs. non-configural-relational conditions was maintained in patients with 

LTN (Figure. 5.1A), but was completely abolished in the BHS group (Figure. 

5.1B). Direct between group t-test comparisons of configural-relational DMS 

conditions revealed increased 6Hz synchrony during much of the encoding and delay 

periods for LTN compared to BHS in the configural-relational condition (Figure. 

5.1C). Furthermore, within the BHS cohort, t-test comparisons showed the expected 

preserved increases in fronto-parietal theta coupling for non-configural-relational 

DMS during maintenance and encoding when compared to the control condition 

(Figure. 5.2A). In fact, t-tests directly comparing configural-relational and non-

configural-relational DMS in the BHS group displayed identical time courses of 

fronto-parietal theta synchrony enhancement (Figure. 5.2B). Finally, as in 

Experiment 1, LTN patients displayed stronger left fronto-temporal synchrony 

during configural-relational than non-configural-relational maintenance, while BHS 

patients showed decreased left fronto-temporal synchrony for configural-relational 

maintenance (Figure. 5.3). 
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Figure 5.18 

 
 

 
 
 
 

 
 
 
 
 

- Figure 5.1. Continued on following page. 
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Figure 5.1.  Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for non-configural-relational 
(non-CR in blue) vs. configural-relational (CR in red) delayed-match-to-sample 
(DMS) conditions in Experiment 3B.  Increased occipito-temporal theta 
synchrony for CR DMS during encoding and maintenance was significantly 
enhanced in temporal lobe epilepsy patients without hippocampal lesions (LTN) 
(A).  This theta synchrony increase was absent for identical sensor groups in 
bilateral hippocampal sclerosis patients (BHS) during CR DMS (B).  In the 
encoding and maintenance phase of CR DMS, the LTN (blue) group showed 
stronger occipito-temporal theta synchrony than the BHS group (red) (C). 
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Figure 5.19 

 

 
Figure 5.2. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for non-configural-relational 
(blue) vs. configural-relational (red) delayed-match-to-sample (DMS) conditions 
in Experiment 3B (threshold of p<0.05 per time point if present continuously 
over three successive theta cycles indicated by markings on x-axis).  Theta 
synchrony of frontal and parietal sensor groups is shown to be intact in 
bilateral hippocampal sclerosis patients (BHS) during the non-CR DMS 
condition (A).  Comparing non-CR and CR DMS conditions in BHS shows 
similar spatial-temporal patterns of theta synchrony between frontal and 
parietal sensor groups (B). 
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Figure 5.20 

 

 
Figure 5.3.  Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) during the configural-
relational delayed-match-to-sample (DMS) condition in Experiment 3B.  
Patients with bilateral hippocampal lesions (BHS shown in blue) display 
decreased fronto-temporal theta synchrony compared to temporal lobe epilepsy 
patients without hippocampal lesions (LTN shown in red).   
 
 
5.4. Discussion 3B____________________________________________________ 

 

Our findings provide converging evidence for a critical role of hippocampus-

dependent cortical theta-synchrony in the active maintenance of configural-relational 

visual information. We also demonstrate that this theta-synchrony, coupling occipital 

and temporal sensors, is functionally and anatomically dissociated from non-

configural-relational working memory, which engaged theta synchrony between 

frontal and parietal sensors. Furthermore, Experiment 2 demonstrated that increasing 

working memory load in the absence of configural-relational maintenance demands 

engaged bilateral frontal theta-synchrony (Figure 3.4). This indicates that occipito-

temporal theta synchrony in configural-relational maintenance cannot be accounted 

for by the additional demands of maintaining more scene elements.   

In patients with bilateral hippocampal sclerosis (BHS) occipito-temporal theta 

synchrony was selectively abolished (Figure 5.1B) and also left fronto-temporal 
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theta synchrony (Figure 5.3), while being preserved in our patients with LTN and 

normal appearing hippocampi (Figure 5.1A). Importantly, BHS patients also 

displayed selective memory impairment in the configural-relational DMS condition 

while their accuracy for non-configural-relational DMS tasks was comparable to that 

of healthy control subjects and the LTN group (Figure 4.4). Unspecific disease 

related factors such as seizures, antiepileptic medication and disability which were 

common to both LTN and BHS groups therefore cannot account for the impairment 

of the BHS group (Table 4.1). This convergence of structural, functional and 

behavioural results indicates a critical role of hippocampus-dependent theta 

oscillations in coordinating the active maintenance of configural-relational 

associations. Previous work has predicted such a possibility (Lisman and Idiart, 

1995; Buzsaki and Draguhn, 2004; Ryan and Cohen, 2004; Hannula et al., 2006; 

Olson et al., 2006a; Olson et al., 2006b; Hannula and Ranganath, 2008; Montgomery 

et al., 2008; Sirota et al., 2008), but this is the first experiment to combine a 

functional coupling approach with hippocampal lesion patients necessary to 

demonstrate this process.  

Our findings in the BHS group are consistent with recent behavioural studies 

that patients with medial temporal lobe amnesia (caused by hypoxic brain injury or 

encephalitis) have intact working memory performance for object and location, but 

significant impairments for object-location conjunctions over short delays (Ezzyat 

and Olson, 2008).  Likewise, bilateral hippocampal atrophy caused by hypoxia has 

recently been reported to cause a selective deficit in configural-relational working 

memory performance (Hannula et al., 2006).  

In light of these results, the hippocampus dependent theta synchronization of 

occipital and temporal brain regions may contribute to integrating representations of 

complex conjunctions of scene elements in more rostral portions of the ventral 

stream, such as the rhinal cortex, with representations of component features in more 

posterior regions (e.g., visual areas such as V4) (Bussey and Saksida, 2002; Ryan 

and Cohen, 2004; Aggleton et al., 2007; Hannula and Ranganath, 2008).  In 

mechanistic terms, it has been suggested that through theta oscillations the 

hippocampus may drive the reciprocal exchange of information with neocortical 

areas (Sirota et al., 2008). According to this suggestion, the hippocampus may 

actively control the transfer of neocortical information to the hippocampus itself via 

theta-phase biasing of neocortical network dynamics (Sirota et al., 2008). With our 
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findings, one possibility is that the hippocampus drives this reciprocal transfer of 

information with both occipital and temporal brain regions. Another possibility is 

that only one of these neocortical regions is entrained by the hippocampus while the 

other is entrained through cortico-cortical theta synchrony. Both of these possibilities 

are compatible with our observation that the occipito-temporal theta synchrony is 

abolished with bilateral hippocampal injury. 

In Experiment 1, we showed that the active maintenance of non-configural-

relational visual information enhances theta synchrony between right frontal and 

parietal sensors (Figure 2.8A), compatible with earlier studies showing fronto-

parietal engagement during working memory (Courtney et al., 1997; Baddeley, 

1998; Sarnthein et al., 1998; Postle et al., 2000; von Stein and Sarnthein, 2000; 

Deiber et al., 2007).  In patients with hippocampal atrophy (BHS) this network 

remained functionally intact (Figure 5.2A) and thus independent of hippocampal 

integrity. This observation of hippocampally independent neocortical theta coupling 

is physiologically plausible given the evidence for mechanisms responsible for the 

local neocortical generation of theta oscillations (Blatow et al., 2003). Also, the 

behavioural functionality of this network was shown to be spared in these patients, 

as no performance differences for non-configural-relational DMS conditions were 

found between BHS, LTN, or NC (Figure 4.4). Comparisons of configural-relational 

and non-configural-relational maintenance conditions in the BHS group showed 

identical time courses of fronto-parietal theta synchrony enhancement (Figure 5.2B), 

suggesting that when hippocampal integrity is compromised, the fronto-parietal 

theta-network is used also under configural-relational task demands, but this theta-

network cannot functionally support the maintenance requirements of configural-

relational stimuli.  

In Experiment 2, we demonstrated that increasing the number of scene images 

that had to be retained during the delay from one to five was associated with 

increased theta coupling of bilateral frontal and temporal sensors (Figure 3.4B). This 

pattern is very similar to increases in frontal theta-coupling during working memory 

loading tasks found previously in EEG studies (Deiber et al., 2007). Most 

importantly, the bi-frontal theta synchrony due to increased working memory load 

was non-overlapping with the occipito-temporal theta-synchrony of configural-

relational maintenance (Figure 2.7B), indicating that dissociable networks are 

responsible for supporting the separate maintenance demands of item loading and 
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configural-relational representations. This strongly argues against the possibility that 

functional differences between the configural-relational and non-configural-

relational maintenance conditions are due to increases in working memory load in 

the configural-relational condition. Our current results are compatible with recent 

studies showing that patients with medial temporal lobe amnesia showed a selective 

impairment in the ability to maintain relational conjunctions in working memory but 

had no memory load related impairment (Olson et al., 2006b).  This current 

experiment cannot necessarily rule out the possibility that maintenance under high 

working memory load may also be compromised by bilateral hippocampal lesions 

(Fell et al., 2003; Axmacher et al., 2007), however, the high-load working memory 

performance in the same BHS patients as studied here, will be systematically 

investigated in Chapter 7.  

Enhanced occipito-temporal synchrony in the configural-relational task was 

initially engaged during encoding and then extended into the delay period for normal 

controls (Figure 2.8B) and patients with LTN and normal hippocampi (Figure 5.1A) 

while in BHS patients, theta synchrony was abolished already during stimulus 

encoding (Figure 5.1B). These findings suggest that bilateral hippocampal injury 

may impair cooperative binding of information distributed across occipital and 

temporal regions initially during encoding and the deficits observed during the delay 

may be an extension of this problem. Such an account is compatible with recent 

fMRI findings that short-term memory for object-location relationships is accounted 

for by encoding related activation of the hippocampus (Hannula and Ranganath, 

2008). 

It should therefore be considered as to whether our data implies a role for the 

hippocampus also in the perceptual processing of the configural-relational aspects of 

scenes during encoding (Chalfonte and Johnson, 1996; Graham et al., 2006) -see 

discussion (Shrager et al., 2006).  However, such a role of the hippocampus in 

perceptual feature integration is not supported in our current study because the BHS 

patients performed normally in the perceptual control condition (Figure 4.4) which 

involved the same amount of visual scene manipulations as in the configural-

relational DMS condition - for similar observations see (Ryan and Cohen, 2004).  

Thus far, we have provided evidence that hippocampus-dependent theta 

coordination is critical for the ability to maintain configural-relational associative 

information in working memory.  In contrast, non-configural-relational maintenance 
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was associated with hippocampus-independent theta synchrony between frontal and 

parietal regions. These data thus show the existence of hippocampus-dependent and 

hippocampus-independent cortical networks of theta synchronization. Together these 

results question the long-standing functional and anatomical dichotomy between 

long-term and short-term memory.  
 
5.5. Supplementary Discussion__________________________________________  
 

A current theoretical assumption of visual working memory maintenance is 

that the neural patterns involved in stimulus perception may be actively replayed 

during delays in order to maintain the salient visual properties of the stimulus. As 

discussed in previous chapters, an influential computational model predicts that the 

individual features of complex visual stimuli can be represented within the firing 

patterns of distinct neural assemblies, thus binding these properties into a complete 

visual perception by the temporal synchronization of these assemblies (Lisman and 

Idiart, 1995).  This model emphasizes the role of theta oscillatory activity within 

medial temporal lobe (especially hippocampus) as such a clocking mechanism to 

hold complex perceptual representations “in mind” by the sequenced reactivations of 

periodically based activity that is phase-coupled to the theta rhythm (Jensen and 

Lisman, 2005; Jensen, 2006).  In light of the results we have shown thus far, recent 

computational modelling (Lisman and Idiart, 1995; Jensen and Tesche, 2002; Jensen 

and Lisman, 2005; Jones and Wilson, 2005; Jensen, 2006), and animal single cell 

recordings  (Lengyel et al., 2005) provide strong evidence in favour of theta-phase 

providing a plausible physiological mechanism for the retention of complex visual 

information in humans.  

A recent study by Fuentamilla and colleagues (2010) applied a multivariate 

pattern classifier algorithm on time-frequency data obtained from MEG recordings in 

normal controls while performing the same configural-relational and non-configural 

relational DMS manipulation as in Experiments 1 and 3.  By the use of pattern 

classifier analysis on time-frequency MEG data, we directly tested whether category-

selective neural patterns of activity during visual encoding (indoor or outdoor scene) 

would be reactivated during the process of image maintenance and whether these 

category-selective neural patterns were periodically reactivated on a particular theta 

phase during maintenance (i.e. “nested”) – for methods see (Fuentemilla et al.). 
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Consistent with this aim, Fuentamilla and colleagues found a high degree of 

accurate category-specific reactivations during the delay period, possibly reflecting 

the ‘neural code’ attributed to these internally represented stimulus types (Figure 

5.4). Both non-configural-relational and configural-relational maintenance periods 

showed a greater amount of reactivations as compared to those obtained during the 

delay period of the control condition where no working memory maintenance was 

required. Furthermore, configural-relational maintenance revealed a higher number 

of accurate reactivations during delays compared to the non-configural-relational 

condition, supporting evidence from previous chapters (Experiments 1-3) that 

maintaining the configural relationship of visual scenes within working memory is 

more demanding upon network maintenance.   

 
Figure 5.21 

 
Figure 5.4. Specific-category stimuli reactivation during the maintenance 
period (4.5 sec, y-axis) for each DMS condition (same design as Experiments 1 
and 3) and for each trained classifier (x-axis). Plots represent the percentage of 
subjects that showed significant reactivations.  
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In Experiments 1 and 3, we demonstrated characteristic theta-coupled 

networks supporting configural-relational and non-configural-relational forms of 

working memory maintenance. Next, Fuentamilla and colleagues tested if these 

MVPC feature reactivations during maintenance were phase-locked to the ongoing 

theta networks similar to those found in Experiments 1 and 3. Since a detailed time 

course estimation of category specific reactivation was obtained, all of the theta 

phases that coincided with a significant reactivation predicted by all classifiers could 

be calculated with a corresponding “Phase-Locking Value” (PLV) (Lachaux et al., 

1999) as a measure of the resulting sensor-by-sensor theta phase concentration 

during  delays (6Hz – same frequency band as Experiments 1-3). Consistent with the 

hypothesis that the neural code of information maintenance would be actively 

clocked by a corresponding theta phase (Jensen and Lisman, 2005), significant PLV 

was found for both non-configural-relational and configural-relational stimuli 

reactivations during working memory maintenance (Figure 5.5B). In accordance 

with the results of Experiments 1 and 3, category-selective reactivations tended to be 

engaged in distinct regional sensor space. While non-configural-relational neural 

pattern reactivation was linked to fronto-parietal regions, configural-relational 

information maintenance was coupled to theta phase activity from fronto-temporal 

regions (Figure 5.5A).  

 
Figure 5.22 
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Figure 5.5. Theta (6Hz) phase coupling of category specific reactivation during 
configural-relational and non-configural-relational maintenance (same design 
as Experiments 1 & 3. (A) Sensor-specific significant (P<0.05) theta phase-
locking reactivations for non-configural-relational and configural-relational 
information. For each experimental condition and for each subject, sensor-by-
sensor phase-locking was obtained by collecting theta phase state that 
corresponded to each time-point where any of the 10 classifiers predicted 
indoor/outdoor reactivation during delay. Once a global “Phase-Locking 
Value” (PLV) was obtained for each sensor, an exclusive conjunction analysis 
was computed where non-configural-relational and configural-relational PLV 
was compared to the control condition PLV. Those sensors that showed 
significant PLV (two-sample t-test; P<0.05) were plotted in the scalp surface. 
(B) Specific subject angle distribution at two selected sensors from (A).  
 

Fuentamilla and colleagues demonstrated for the first time, non-invasively 

and in humans, direct evidence for the theoretical prediction that neural patterns of 

stimuli during encoding are internally reactivated during maintenance when stimuli 

are no longer present externally in the environment. Additionally, that these working 

memory reactivations are supported by an ongoing theta rhythm that is phase-locked 

to the stimulus attributes being maintained in Experiments 1 and 3. These results 

critically support the computational model predicting that complex visual features 

are periodically reactivated over delays and that these reactivations are nested on a 

particular theta phase in humans during working memory (Lisman and Idiart, 1995; 

Jensen and Lisman, 2005; Jensen, 2006).  This work supports previous electro-

physiological observations in the visual cortex of non-human animals (Lee et al., 

2005b) and within the fronto-hippocampal circuitry (Siapas et al., 2005). It has been 

suggested that this mechanism of phase-coupling may be a basis for the  ability to 

actively maintain multiple items during working memory delays (Lisman and Idiart, 

1995).  Furthermore, these results support the hypothesis proposed in earlier chapters 

that configural-relational and non-configural-relational forms of information 

processing and maintenance seem to rely on dissociable theta networks.  
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5.6. Summary________________________________________________________  

 

Thus far, in a series of working memory experiments using MEG we 

investigated cortical synchronization within the theta band during the active 

maintenance of configural-relational or non-configural-relational visual stimuli using 

DMS tasks in healthy adults and patients with bilateral hippocampal lesions 

(Chapters 2-5).  Using this approach, we show that actively maintaining configural-

relational aspects of a visual scene was associated with theta oscillatory coupling of 

temporal and occipital visual areas (Chapter 2) and furthermore, that this theta-

network is critically dependent on the integrity of the hippocampus.  The ability to 

support configural-relational forms of working memory are behaviourally show to 

depend on hippocampal integrity and cannot be explained by difficulties in 

perceptual integration (Chapter 4).  In contrast, non-configural-relational 

maintenance was associated with theta synchrony between frontal and parietal 

regions (Chapter 2) and this form of maintenance was unaffected by hippocampal 

injury. Work by Fuentamilla and colleagues, demonstrates that the periodic 

reactivation of configural-relational and non-configural-relational information during 

the working memory maintenance period of the same experimental manipulation is 

locked to the on-going theta synchronization of these networks (Fuentamilla et al., 

2010). Together, these data indicate that hippocampus-dependent theta synchrony 

plays an anatomically specific and critical role in for the active maintenance of 

configural-relational information.  
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VI. Interactions of long 
term and short term 
memory  

 

 

 
 
 

Working memory processes have been thought to be anatomically and 
functionally distinct from the networks necessary for the encoding and retrieval 
of long-term memory.  Thus far we have provided convincing evidence that 
hippocampus dependent theta synchronization is necessary for certain forms of 
short-term working memory maintenance and thereby challenging this classical 
distinction. This evidence supports the notion of functional and anatomical 
interactions between working memory maintenance and long-term memory 
encoding.  In this chapter we will explore how configural-relational and non-
configural-relational maintenance processes interact with long-term retention 
and elucidate the commonalities of these memory networks. 
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6.1. Introduction_____________________________________________________ 

Some early models saw of working memory as a gateway through which 

information could enter into long-term memory (Atkinson and Shiffrin, 1971).  

However, this view was later abandoned because of the strong evidence of double 

dissociations between these processes (see Chapter 1).  Recently, some influential 

models of working memory (Baddeley, 1998, 2003; Axmacher et al., 2007) have 

begun to regain the possibility that what is rehearsed or maintained in working 

memory can update and interact with representations in long-term memory.  Recent 

electrophysiological studies in patients with hippocampal damage (Axmacher et al., 

2009) and genetic models in rodents (Malleret et al.) have supported such 

interactions where long-term and short-term memory processes compete for common 

resource allocation.  This notion is supported by our results showing that long-term 

memory regions are critical to certain forms of short-term maintenance, however, the 

question still remains: Does hippocampal involvement in the working memory 

maintenance of configural relationships represent a genuine working memory 

process that is separable from long-term declarative memory?  

Experiment 3C. Delayed recognition memory after 
configural-relational DMS in epilepsy and normal 
controls 
 

6.2. Aim 3C__________________________________________________________ 

We have demonstrated that the hippocampus is necessary for the retention of 

configural relationships of visual information during working memory.  

Furthermore, that configural-relational maintenance is supported by hippocampal-

dependent theta synchronization of occipito-temporal and fronto-temporal regions 

during delay periods.  This network has been shown to be dissociable from non-

configural-relational forms of working memory that function independently of the 

hippocampus.  The medial temporal lobe, and specifically the hippocampus, are 

pivotal to the encoding and retrieval of long-term memory. We therefore, investigate 

in this section if hippocampal recruitment during configural-relational working 
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memory maintenance results in long-term retention of stimuli compared to non-

configural-relational maintenance.   

6.3. Study Design 3C__________________________________________________ 

 

6.3.1. Participants. 
 

This experiment was an extension of experiment 3A & 3B.  For demographics 

and DMS behavioural performance of epilepsy patients and normal control 

participants see Experiment 3A, Chapter 4.  For MEG recording analysis and 

discussion see Experiment 3B, Chapter 5. 

 

6.3.2. Stimuli and Task.   
 

As previously described in Chapter 4, a slightly modified version of the DMS 

paradigm implemented in Experiment 1 was used for this study (Experiment 3).  One 

modification made in this experiment was the inclusion of 40 additional configural-

relational and non-configural-relational DMS trials in which after the delay period 

only blank boxes were presented during probe.  These ‘no probe’ trials comprised 

half of all the DMS blocks and were presented randomly within each block.  These 

trials were used to test later recognition memory for the sample stimuli without 

contamination by repetition effects (Figure 6.1).   

Approximately 30-40 minutes after completing the DMS tasks, participants 

took a recognition memory test.  For this test, subjects were shown images of which 

40 were samples in the configural-relational task (no probe trials) and 40 samples in 

the non-configural-relational task (no probe trials), and 80 were new scenes (foils) 

which we not presented previously in the experiment. The scenes were presented one 

every three seconds with a 1 sec inter-trial-interval where participants classified the 

scenes as ‘old’ or ‘new’ by making one of two button presses.  They were instructed 

that accuracy and reaction times were equally important.  
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Figure 6.23 

 
 
Figure 6.1 Example of modifications made to DMS paradigm design for 
Experiment 3C, where sample images were later used for long-term memory 
recognition tests from ‘no probe’ non-configural-relational (top) and ‘no probe’ 
configural-relational (bottom) DMS trials.  
 
 
6.4. Results_3C_______________________________________________________ 

 

6.4.1. Delayed recognition performance.  
 

When analyzing participants’ delayed recognition memory performance we 

calculated a measure of ‘corrected hit-rate’ for each participant to adjust for any 

response bias at probe (see Chapter 1 for discussion).  This was done by taking the 

number of ‘hits’ – subject responds ‘yes’ to a previously seen target stimuli, 

subtracted by the number of ‘false alarms’ – subject responds ‘yes’ to a previously 

unseen foil stimuli; then divided by the total number of trials.  This results in a single 

value for each participant, ranging from 0 to 1, adjusted for an individual’s bias for 

recognition memory responses between target and probe stimuli. 

Using corrected hit-rate, we found that both NC and LTN participants 

displayed increased delayed memory recognition for configural-relational stimuli 

compared to the non-configural-relational DMS condition, while this was not the 

case for BHS patients (Figure. 6.2). A 2x3 repeated-measures ANOVA of corrected 

recognition (hit) rates with condition (configural-relational and non-configural-

relational samples) as the within-subjects factor and group (LTN, NC, BHS) as the 
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between-subjects factor, revealed main effects for condition (F(1,20)=9.26, p<0.01) 

and group (F(2,20)=7.92, p<0.005), as well as, a group by condition interaction 

(F(2,20)=3.55, p<0.05). Compared to LTN, BHS patients were impaired in both 

recognition memory tests (main effect of group, F (1, 10) =5.26, p<0.05). Post-hoc 

paired t-test comparisons (one-tailed, mean, s.d.) showed increased delayed memory 

recognition for configural-relational stimuli compared to non-configural-relational 

stimuli for the NC (0.54±0.20 vs. 0.36±0.13, t(10) = -3.65, p<0.01) and for the LTN 

( 0.370±0.07 vs. 0.310±0.05, t(5)=-1.974, p=0.05) but not for the BHS (0.19±0.11 

vs. 0.17±0.08, t(5)=-0.484, p=0.649) group (- see Table. 6.1, for raw DMS and 

delayed recognition raw scores).   

 
Figure 6.24 

 
Figure 6.2. Mean corrected hit rates of delayed recognition memory for non-
configural-relational (non-CR) and configural-relational (CR) stimuli in 
experiment 3C for patients with bilateral hippocampal sclerosis (BHS), left 
temporal lobe epilepsy patients determined to be ‘MRI-negative’ for 
hippocampal reductions (LTN), and college-aged normal controls (NC).  P-
values denoting differences between conditions are indicated by asterisks 
(paired t-test, one-tailed, s.d.).  
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Table 6.5 

 
Subject Dx non-configural configural Recog_non-configural Recog_configural 
DH006 BHS 0.975 0.5484 0.2273 0.1717 
EM011 BHS 1 0.75 0.3109 0.4135 
GP013 BHS 0.9744 0.4118 0.0731 0.1282 
TC016 BHS 1 0.6216 0.1133 0.2448 
TE015 BHS 0.8718 0.675 0.2016 0.0817 

m_r BHS 1 0.475 0.1123 0.1123 
SC005 LTN 1 0.775 0.4721 0.5971 
RG014 LTN 1 0.65 0.3003 0.2746 
SN010 LTN * * 0.2026 0.2688 
FT026 LTN 1 0.7692 0.4125 0.5494 

h_p LTN 1 0.85 0.1375 0.2375 
NM021 LTN 0.975 0.775 0.332 0.2949 

DB NC 1 0.85 0.3 0.625 
GS NC 0.975 0.875 0.3375 0.7875 
JL NC 1 0.925 0.4125 0.8375 
SD NC 1 0.9 0.5875 0.7125 
YA NC 1 0.775 0.325 0.475 
SR NC 1 0.7368 0.2539 0.1974 
YH NC 0.975 0.825 0.5375 0.5875 
VA NC 0.975 0.875 0.2375 0.5125 
SA NC 1 0.7895 0.4375 0.5375 
AB NC 1 0.675 0.1315 0.3468 

DB2  NC 1 0.7692 0.3614 0.3473 
 
Table 6.1 Raw accuracy scores for bilateral hippocampal sclerosis patients 
(BHS), left temporal lobe epilepsy patients determined to be ‘MRI-negative’ for 
hippocampal reductions (LTN), and normal controls (NC) on configural-
relational (CR) and non-configural-relational (non-CR) DMS tasks and 
corrected hit-rates of delayed recognition test.  * Due to a hardware 
malfunction no behavioural data was collected for SN010 during MEG 
recording.  
 
 
6.5. Interim Discussion_3C_____________________________________________ 

In this section we aimed to investigate the relationship between working 

memory maintenance and long-term memory by testing memory for scene images 

(for those trials that had no probe images) from each DMS condition in a delayed 

recognition memory test. The DMS samples maintained previously during the MEG 

session in patients (BHS & LTN) or during a behavioural session in normal controls 

(NC) had to then be discriminated from previously unseen novel scenes 30-45 

minutes later.  It is important to note, that the encoding and maintenance period of 
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configural-relational and non-configural-relational DMS tasks used in this 

experiment had identical task instructions and stimuli characteristics.  On all trials, 

participants were asked to make a deep encoding judgment (‘indoor or outdoor 

picture?’) during the encoding period and the only factor that can attribute to 

delayed-recognition memory differences between conditions are the innate encoding 

and maintenance requirements of the tasks. 

In normal controls and LTN patients, delayed recognition memory for scenes 

from the configural-relational DMS trials were significantly better than for scenes 

from the non-configural-relational DMS trials (Figure 6.2). Importantly, delayed 

recognition memory for both types of samples was at chance in patients with BHS, 

despite the fact that these patients were unimpaired in the working memory 

performance for non-configural-relational stimuli (Figure 4.4), as well as, displayed 

intact fronto-parietal synchrony (Figure 5.2A). These findings suggest that the 

hippocampus-dependent theta coordination of occipital and temporal regions during 

configural-relational maintenance also contributed to encoding into long-term 

memory but this was not the case for the hippocampus-independent fronto-parietal 

theta synchrony.  

These results are compatible with the suggestion that hippocampal 

maintenance operations may contribute to long term memory encoding (Ryan and 

Cohen, 2004; Ezzyat and Olson, 2008; Hannula and Ranganath, 2008).  This 

possibility of a link between hippocampus-dependent theta network contributions to 

working memory maintenance and encoding into long-term memory will be further 

investigated in subsequent sections.  In contrast to long-term memory, working 

memory is defined as a transient process (Mishkin and Delacour, 1975; Baddeley, 

1984), where stimulus retention will decay over time and the maintenance of these 

representations are susceptible to delay interference (Shrager et al., 2006; Shrager et 

al., 2008).  Next we will investigate these two notions of working memory in the 

configural-relational and non-configural-relational DMS tasks used in Experiments 

1-3. 
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Experiment 4. Configural-relational and 5-item load 
DMS with variable delay length. 
 
 
6.6. Aim_4___________________________________________________________ 

 

Working memory has been described as a transient process, where information 

held activity in mind will degradate over time.  However, the temporal distinctions 

between what is considered short-term working memory maintenance and long-term 

memory consolidation are not well defined.  Evidence from earlier chapters 

demonstrating engagement of long-term memory regions of the medial temporal lobe 

during configural-relational maintenance further obfuscate the temporal distinctions 

between what constitutes long-term memory and short-term working memory.  In 

this section we will briefly explore variations of DMS memory performance during 

delay length manipulations of configural-relational and high load non-configural-

relational maintenance. 

 

6.7. Study Design_4___________________________________________________ 

 

6.7.1. Participants. 
 

Twenty one right-handed healthy subjects (7 male/ mean age 24.5, SD 5.3 

years) participated in the experiment.  All participants were recruited from the 

University College of London’s Psychology departmental subject pool and were 

determined to have no extraneous neurological or psychological disorders that would 

confound our results.  In addition, all subjects displayed normal or corrected to 

normal visual acuity.  All participants gave written informed consent to participate 

and the study was approved by the guidelines of the ethics committee of the 

University of London Research Ethics Committee for human-based research.  All 

participants were compensated at a rate of £6 per hour for the entirety of the study, 

which averaged two hours to complete. 
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6.7.2. Stimuli and task design. 

This experiment was a modified version of the configural-relational condition 

of Experiment 1 and the high-load condition of Experiment 2 where the DMS delay 

period length was manipulated.  Participants were required to retain visual 

information from the sample scenes over a delay period of either 5 seconds (same as 

Experiments 1, 2 & 3), 15, or 30 seconds in order to make a correct answer at probe.  

In the 5-item load condition, subjects were instructed to maintain the 5 sample 

stimuli over a randomized delay period of either 5, 15, or 30 seconds whilst fixating 

on a cross. At probe subjects were presented with a single picture (1 sec) and asked 

to indicate if the picture was a “match” or “non-match” to one of the aforementioned 

sample stimuli. Targets and foils were randomized and counterbalanced across 

testing blocks. After which, there was a 3.5 sec inter-trial-interval where subjects 

were instructed to blink before fixing on the next cue (0.5 sec). 

In the configural-relational condition, an indoor or an outdoor scene was 

presented for 3 sec.  This was followed by a blank screen with a fixation cross with a 

randomized delay period of either 5, 15, or 30 seconds followed by two test stimuli 

for 4.5 seconds.  The two test stimuli were manipulated versions of the scenes 

involved changes in the relations among some elements of the scenes.  Participants 

were required to encode and maintain the configural relationships of the objects 

within the scene in order to make a correct answer at probe. (-see Experiment 1- 

Chapter 2, for full methods and design description). 

All stimuli, task parameters, and timing (except delay lengths) were identical 

to Experiment 1 (configural-relational condition) and Experiment 2 (5 item ‘load’ 

condition).  Conditions were presented in blocks and order of the testing blocks were 

randomized for each subject to avoid any practice effects for conditions (2 blocks of 

30 trials for each condition).  
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6.8. Results 4_________________________________________________________ 

 

6.8.1. DMS performance.  

A 2x3 repeated-measures ANOVA (condition x delay length) revealed a main 

effect for DMS condition on participants’ accuracy (F (1, 19) = 4.44; p = 0.048) and 

a trend for delay length (F (2, 38) = 2.82; p = 0.072).  An interaction of DMS 

condition by delay length approached significance (F (2, 38) = 3.07; p =0.058).  

However, pair-wise comparisons (two-tailed, mean, s.e.m.) within DMS conditions 

displayed significant decreases in accuracy when visual stimuli were maintained for 

5 seconds compared to 30 seconds in the high-load condition (87.3 ± 1.76% and 81.3 

± 2.4%, respectively; t(19) = 3.04, p = 0.007), but no accuracy decrease was found in 

the configural-relational condition (5 seconds, 81.3 ± 2.2% and 30 seconds, 82.3 ± 

1.7%; t(19) = -0.42, p = 0.677). - Figure 6.3 

Figure 6.25 

 

Figure 6.3. DMS task performance with variable delay lengths of 5, 15, or 30 
seconds for the configural-relational condition; similar to Experiments 1 & 3 
(red) and the 5 item ‘load’ condition; similar to Experiment 2 (blue).  High 
working memory load accuracy significantly decreases (p = 0.007) when 
maintenance requirements are extended from 5 to 30 seconds while configural-
relational performance remains relatively constant for maintenance periods up 
to 30 seconds long. 
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6.9. Interim Discussion 4_______________________________________________ 

 

In previous chapters we demonstrated that configural-relational maintenance 

engages a functionally dissociable theta-network than high load working memory 

maintenance.  The current results of Experiment 4 suggest that the maintenance 

requirements of these networks are differentially effected by the temporal demands 

of delay length.  Decreases in DMS performance when maintenance requirements 

are extended to 30 seconds in the high load condition are suggestive that the 

quantitative representation of multiple scenes are susceptible to working memory 

decay/noise within this short temporal window (i.e. 5 to 30 seconds of maintenance).  

However, DMS performance supporting the qualitative representation of the 

configural relationships within a scene remained relatively constant within this time 

frame.   

Furthermore, Experiment 3C above, showed a clear enhancement of delayed-

recognition memory for configural-relational stimuli up to 45 minutes after initial 

exposure when hippocampal integrity was intact.  Together these results suggest that 

hippocampal theta recruitment during configural-relational maintenance may result 

in the simultaneous encoding of sample stimuli within the brief temporal window 

characteristic of working memory delays and this retention may persist up to 45 

minutes later (i.e. long-term recognition memory).   

It is important to note that at the shortest delay length (5 seconds), high load 

DMS performance was considerably higher than configural-relational DMS accuracy 

(see Figure 6.3).  Then with increases in delay length, high load DMS performance 

steadily decreased to that of the configural-relational condition irrespective of 

maintenance length.  It is thereby possible that after 30 seconds of maintenance both 

of these conditions may display similar profiles of declining DMS accuracy merely 

because performance was not initially matched at 5 seconds.  Testing longer 

manipulations of delay length between conditions would help to elucidate this issue, 

however, doing so would result in very lengthy experiments and is beyond the scope 

of this current work.  However, using manipulations of delay length as a method of 

increasing demands upon maintenance of high load working memory processes will 

be further explored in Experiment 7 of the following chapter. 
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Experiment 5. Delay interference during configural-
relational and 5-item load DMS 
 
 
6.10. Aim 5__________________________________________________________ 

In Chapter 4, we demonstrated that the hippocampus is necessary to support 

short-term working memory for configural relationships (Experiment 3A).  Retention 

of this information seems to not decay as quickly as 5-item maintenance over delay 

intervals up to 30 seconds long, even if short delay performance (~5 seconds) is 

lower than that of high-load DMS tasks (Experiment 4).  Furthermore, maintenance 

of configural relationships results in long-term retention of stimuli (~45 minutes) 

compared to non-configural-relational forms of information (Experiment 3C).  It is 

therefore, important to determine if hippocampal-dependant configural-relational 

DMS performance is in fact a working memory process that is dissociable from 

long-term memory encoding.  It has recently been argued that a hallmark of working 

memory is its susceptibility to interference during delay periods and furthermore, 

that the hippocampus is not critical for this form of active maintenance or working 

memory (Shrager et al., 2006).  In this section we will investigate delay interference 

susceptibility of configural-relational and high load non-configural-relational DMS 

task performance. 

 

6.11. Study Design 5___________________________________________________ 

 

6.11.1. Participants.  
 

17 right-handed healthy subjects (11 Male/6 Female, mean age 24.5 yrs/ SD ± 

4.78 yrs) participated in the experiment.  All participants were recruited from the 

University College of London’s Psychology departmental subject pool and were 

determined to have no extraneous neurological or psychological disorders that would 

confound our results.  In addition, all subjects displayed normal or corrected to 

normal visual acuity.  All participants gave written informed consent to participate 

and the study was approved by the guidelines of the ethics committee of the 

University of London Research Ethics Committee for human-based research.  All 
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participants were compensated at a rate of £6 per hour for the entirety of the study, 

which averaged two hours to complete. 

 

6.11.2. Stimuli and Task Design.  
 

The experiment consisted of two blocked delayed-match-to-sample (DMS) 

working memory conditions, the configural-relational condition and a high-load (5-

item) non-configural-relational condition. Participants were required to maintain 

either 5 scenes (same as the 5-item working memory load condition of Experiment 

2) or the configural relationships within a single scene (same as the configural-

relational DMS condition in Experiments 1 and 3) over a 5 seconds delay period. 

Experimental parameters, response requirements and stimulus material were the 

same as in the original experiments (- see Chapters 2 & 3).  There were two blocks 

of 30 trials each, resulting in 60 trials per DMS condition (ordering of block 

presentation was randomized).   

 
Figure 6.26 

 
 
Figure 6.4. Examples of a configural-relational interference trial (top) and a 
high-load non-configural-relational interference trial (bottom) used in 
Experiment 5.  Participants were required to maintain either 5 scenes (same as 
the 5-item working memory load condition of experiment 2) or the configural 
relationships within a single scene (same as the configural-relational DMS 



119 
 

condition in experiments 1 and 3).  Interference trials required participants to 
make a ‘same/different’ perceptual discrimination judgment during delay 
maintenance (same as probe during control conditions of experiments 1 & 3).  

 
 
In the 5 item working memory load condition, subjects were instructed to 

maintain 5 sample stimuli (1 sec each) over a 5 sec delay period whilst fixating on a 

cross. At probe subjects were presented with a single picture (4.5 sec) and asked to 

indicate by button press using the index or middle finger of the right hand if the 

picture was a “match” or “non-match” to one of the aforementioned sample stimuli. 

Targets and foils were randomized and counterbalanced across testing blocks. After 

which, there was a 2 sec inter-trial-interval where subjects were instructed to blink 

before fixing on the next cue (0.5 sec).  The configural-relational DMS condition 

stimulus timing was exactly matched to the configural-relational condition in 

Experiments 1 and 3. 

To investigate the effect of interference on the maintenance process for these 

DMS conditions we presented a difficult visual discrimination task for 3 seconds 

during the middle of the 5 second delay period on 50% of the DMS trials.  The 

interference tasks required participants to judge if two scenes presented side-by-side 

were the same or different (same task as the control condition probes in Experiments 

1 and 3).  This interference task was chosen to disrupt ‘visual’ rehearsal (or replay) 

by introducing a task that is relevant to the current working memory maintenance 

demands (i.e. indoor and outdoor natural scenes). 

 

6.12. Results 5________________________________________________________ 

 

6.12.1. Behavioural performance.   
 

A 2x2 within-subjects ANOVA (condition x interference) on the 17 

participants tested revealed main effects for condition (F(1,16) = 7.477; p = 0.015) 

and for interference (F(1,16) = 22.535; p = 0.0001) with no interaction (F(1,16) = 

2.212; p = 0.156).  Accuracy was significantly decreased in both DMS conditions 

when the interference task was presented during delay periods.  The 5-item load 

DMS condition performance (83.00 % ± 2.45%) was significantly reduced when the 

interference task was introduced during the delay period (76.24% ± 3.03%, 

t(16)=2.439, p = 0.027).  Similarly, the configural-relational DMS condition 
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performance (78.71% ± 2.47%) significantly decreased with the interference task 

(67.18% ± 2.38%, t(16)=5.229, p=0.0001).   

 
Figure 6.27 

 
 
Figure 6.5.  Mean behavioural performance of non-configural-relational 5-item 
working memory load DMS condition (5 wml) and the configural-relational 
condition (CR).  Performance of both conditions were significantly reduced by 
delay interference (int) of perceptual discrimination judgments presented 
during a delay period of 5 seconds. 
 

Importantly, no differences were found in the performance of the interference 

task between DMS conditions (5-item load DMS interference task (73.00% ± 2.17%) 

and configural-relational DMS interference task (71.00% ± 2.89%, t(16)=0.619, 

p=0.545) suggesting that the delay maintenance processed were specifically 

disrupted and that decreases in performance were not attributed to additional 

difficulties in encoding sample stimuli between conditions (Figure 6.6).  The 

impairment of DMS performance with task interference during the delay indicates 

that the configural-relational DMS task, as well as the high load DMS condition both 

required an active maintenance processes akin to working memory (Shrager et al., 

2006; Shrager et al., 2008). 
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Figure 6.28 

 

 
 

Figure 6.6.  Mean behavioural performance of the interference task (int_task) 
for the 5-item working memory load DMS (WML) and the configural-relational 
DMS (CR) conditions.  No differences between participants ability to 
perceptually discriminate between visual scenes (int_task) suggests that the 
delay maintenance processed were specifically disrupted in this manipulation 
and that decreases in performance (Figure 6.5) were not attributed to 
additional difficulties in encoding sample stimuli between conditions. 
 
 
6.13. Interim Discussion 5______________________________________________ 

 

It has recently been argued that a hallmark of working memory is its 

susceptibility to interference during delay periods (Shrager et al., 2006; Shrager et 

al., 2008) and furthermore, that the hippocampus is not critical for this form of active 

maintenance or working memory. In Experiment 5, we clearly demonstrate that not 

just the high working memory load condition, but also the configural-relational 

condition of our DMS task was shown to be sensitive to delay interference 

supporting the possibility raised by our theta-coupling data that the configural-

relational condition also required an active form of maintenance akin to working 

memory (Experiments 1 & 3). Our findings therefore show that the hippocampus is 
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functionally and behaviourally critical for actively maintaining the configural 

relationships of visual stimuli in working memory. In agreement with other authors -

for review see (Ranganath and Blumenfeld, 2005), our data call for a reconsideration 

of the classical distinction between hippocampus-dependent long-term memory and 

hippocampus-independent active maintenance of working memory.  

 
6.14. Final Discussion _________________________________________________ 

 

Hippocampal involvement during maintenance of configural relationships 

seems to share characteristics of working memory processes and long-term 

declarative memory. We demonstrate that configural-relational short-term delay 

maintenance results in increased long-term recognition memory compared to non-

configural-relational stimuli (Experiment 3C).  This is despite lower working 

memory performance on these tasks compared to non-configural-relational stimuli 

prior to delayed recognition memory testing (Experiment 3A).  This is presumably 

due to hippocampal recruitment via theta phase-coupling to support this form of 

working memory maintenance will enhance subsequent long-term encoding of this 

information.  It seems likely that this enhancement is due to differences in the active 

maintenance of configural-relational and non-configural-relational stimuli since the 

task requirements both required the same deep-encoding judgment (i.e. 

indoor/outdoor scene).  Furthermore, non-configural-relational maintenance was 

shown to decay over DMS delays of 30 seconds while configural-relational 

performance was relatively unchanged.   

Similar results have shown that short-term persistence of information within 

working memory can enhance long-term retention of the same information (Schon et 

al, 2004; Ranganath et al, 2005; Khader et al., 2007) suggesting a common resource 

allocation for both stimulus maintenance and encoding.  In accordance with this 

view, the opposite effect has also been shown, where incompatible or faulty 

representations held in working memory can also interfere with long-term memory 

recognition (Axmacher et al., ; Axmacher et al., 2009). 

It has recently been argued that the key hallmark of working memory is its 

susceptibility to interference during delay periods (Shrager et al., 2008), in which 

long-term memory is resilient.  Under this assumption, a recent behavioural study 
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has shown that hippocampal damaged patients only display short-term memory 

deficits under conditions where individuals with normal hippocampi are not 

susceptible to delay interference (i.e. stimulus retention relies on long-term memory 

- (Shrager et al., 2006; Shrager et al., 2008). 

Contrary to this, we show that task-relevant interference presented during 

short-term retention intervals (5 seconds) can disrupt configural-relational working 

memory maintenance to the same degree as high item load working memory of 

similar stimuli (Experiment 5).  Furthermore, we demonstrated that increases in 

working memory load is characterized by the functional theta synchronization of bi-

frontal cortical regions (Experiment 2) and was completely  non-overlapping with 

the occipito-temporal synchrony of configural-relational working memory 

maintenance (Experiment 1). Thus, engagement of the hippocampus during 

configural-relational delay maintenance (Experiment 3B) is not merely a 

compensatory mechanism to quantitatively enhance capacity, but instead is 

necessary to coordinate the qualitative binding of these associative representations 

during working memory. 

Together, these findings challenge the classical functional-anatomical 

distinctions between long and short-term memory. We have demonstrated that 

hippocampus-dependent theta coordination is critical for the ability to maintain 

configural-relational information in visual working memory, yet will also result in 

long-term persistence of this information.  Furthermore, this process is susceptible to 

interference during delay periods akin to working memory processes. These studies 

shed light on the functional relationships between the neural systems necessary for 

short-term maintenance and long-term retention, yet the nature of how these 

processes can interact with one another will be the focus of Chapter 7.   
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6.15. Summary______ ________________________________________________ 

 

In this chapter we have provided evidence of behavioural interactions between 

short-term working memory maintenance and long-term memory retention.  

Hippocampus-dependent configural-relational maintenance results in increased 

delayed recognition, while this enhancement does not occur for non-configural-

relational working memory (Experiment 3C).  Furthermore, retention of non-

configural-relational multi-item representations seem to decay over delays of 30 

seconds while persistence of the configural relationships within a scene seem to be 

relatively unaffected within this same time-window (Experiment 4).  However, both 

of these forms of delay maintenance are susceptible to interference during short-term 

retention periods characteristic of working memory processes (Experiment 5).  These 

results elucidate an interactive relationship between these processes and demand 

reconsideration of the classical functional-anatomical distinctions between long and 

short-term memory. 
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VII. Distraction can 
improve Memory 

 
 
 
 
The ability to maintain transient information actively in our mind can become 
disrupted by external distraction.  This short-term working memory 
maintenance has been shown to compliment long-term memory encoding and 
retention, thus sharing common resource allocations.  However, in cases when 
stimulus maintenance is faulty, distraction interference could then alternatively 
allow a more accurate memory representation to persist that does not rely on 
working memory resources. In this section we will demonstrate that disruption 
of working memory maintenance by task-irrelevant distraction can abolish 
deficits in delayed memory retention in patients with Bilateral Hippocampus 
Sclerosis.  Likewise, under similar conditions where healthy participants’ 
working memory performance becomes compromised, we show that disruption 
of this faulty maintenance will lead to improvements of memory performance 
over retention intervals. 
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7.1. Introduction_____________________________________________________ 

Working memory is the ability to maintain information actively in the mind 

over short periods of time and has been thought to provide an interface between 

long-term memory and perception (Baddeley, 2003). This short-term persistence of 

information within working memory has been shown to enhance long-term retention 

of the same information (Experiment 3C – also see Schon et al, 2004; Ranganath et 

al, 2005; Khader et al., 2007) suggesting a common resource allocation for both 

stimulus maintenance and encoding.  In accordance with this view, incompatible or 

faulty representations held in working memory have been shown to interfere with 

long-term memory recognition (Axmacher et al., 2009, 2010).  Recent genetic 

models in rodents have shown that mice with a mutant expression reducing 

hippocampal long-term synaptic potentiation (a proposed neural mechanism for 

long-term memory encoding) results in increases working memory capacity 

(Mallerat et al., 2010). These results suggest that the opposite interaction might be 

possible as well, where disrupting working memory maintenance could allow for 

alternative long-term memory processes to overcome stimulus recognition during 

retention intervals.  In such cases where working memory performance is impaired, 

maintenance disruption could lead to improvements in delayed recognition memory 

performance due to the persistence of an alternate and possibly more accurate 

memory signal. 

Experiment 6. Working memory load and task-
irrelevant delay distraction in epilepsy 
 
7.2. Aim 6  __________________________________________________________ 

  

It has been recently proposed that when the number of items to be held in 

working memory (load) exceeds the maintenance capacity of working memory 

resources then long-term memory systems are recruited in order to compensate (Fell 

et al., 2003; Rissman et al., 2008; Shrager et al., 2008). Under this assumption, 

information incapable of persisting in the transient capacity-limited system of 

working memory is transferred to a more robust long-term memory store, and 

thereby preserving a dichotomy between these two systems. Many studies of patients 
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with medial temporal lobe amnesia have reported selective impairments in the ability 

to maintain the relational conjunctions in working memory, but no memory load 

related impairment (Olsen et al., 2006; Finke et al., 2008).  While others have found 

working memory load impairments in amnesic patients (Shrager et al., 2006; Shrager 

et al., 2008).  This calls into question if deficits found in patients with Bilateral 

Hippocampal Sclerosis (BHS) for configural-relational DMS tasks (Experiment 3A) 

are due to impairments of supporting increases of the quantitative elements to be 

maintained within a scene or the qualitative relational binding of this information.  

This interpretation seems unlikely, since the occipito-temporal theta-coupling found 

during configural-relational maintenance in normal controls (Experiment 1) and the 

epilepsy control group (LTN – Experiment 3C), was non-overlapping with theta-

coupling bi-frontal sensor topography of high load working memory maintenance 

(Experiment 2).  In this section we will test the same BHS group as in Experiment 3 

on their ability to retain increases in the number of individual scene elements (i.e. 

working memory load – Experiment 2) over delays of 5 seconds and furthermore, 

determine the susceptibility of DMS performance to task-irrelevant delay distraction. 

 

7.3. Study Design_6___________________________________________________ 

 

7.3.1. Patient groups.  
 

All patients underwent comprehensive clinical whole brain MRI scans 

including: T1-weighted, proton density, T2-weighted and FLAIR acquisition 

protocols. These images were reviewed by two experienced consultant 

neuroradiologists who found no structural abnormalities other than bilateral 

hippocampal sclerosis in the BHS group.  All patients were attending clinics at the 

Department of Clinical and Experimental Epilepsy of UCL Institute of Neurology 

and the National Hospital for Neurology and Neurosurgery. 

 

BHS: 5 right-handed patients with temporal lobe epilepsy and Bilateral 

Hippocampal Sclerosis (BHS) (2 female/ mean age 43.2±10.9 yrs) participated in the 

experiment as the testing group (same cohort as Experiment 3 – Chapters 4 & 5) 
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TLE: 6 right-handed patients with temporal lobe epilepsy (1 female/ 36.7±12.4 yrs) 

determined to be ‘MRI-negative’ for hippocampal volume reductions and signal 

abnormalities (TLE), served as a control group to match the effects of recurrent 

epileptic seizures and antiepileptic medication in BHS patients, but without 

hippocampal sclerosis.  We were only able to recruit three of the six same LTN 

patients from Experiment 3 as many had subsequently under gone temporal lobe 

resection in hopes to alleviate seizures.  Therefore, three additional right hemisphere 

dominate TLE patients with no hippocampal reductions were included in this study.  

The TLE control group was well balanced with 3 left and 3 right hemisphere 

dominate temporal lobe epilepsy patients with normal hippocampi (- see results 

section displaying no behavioural differences between right and left dominate TLE 

patients on the DMS tasks tested in this experiment).   

 

Normal Controls: In addition, 15 normal controls (NC) participated in the same 

experimental paradigm (9 female/mean age 24.7±3.9).  Magnetoencephalography 

Recordings were collected on 10 of these participants while undergoing the 

experimental procedure (Experiment 2).   

 

7.3.2. Stimuli and Task.   

We tested the same epilepsy patients with bilateral hippocampal sclerosis 

(BHS) as in Experiment 3 on their ability to actively maintain multiple visual scenes 

within working memory over a brief delay period (same design as Experiment 2).  

Using a delayed-match-to-sample task (DMS), patients were presented a series of 

black and white pictures of natural scenes (1, 3, or 5 images presented serially) and 

asked to keep all of these pictures actively in their mind.  After a delay period of 5 

seconds, we presented a single picture that was from the prior stimulus array or was 

a completely novel scene (Figure 7.1A).  Patients were then asked to indicate if they 

had seen the picture previously or if it was entirely new.  We additionally tested a 

group of patients with temporal lobe epilepsy (TLE) determined to be ‘MRI-

negative’ for hippocampal reductions to control for the effects of recurrent epileptic 

seizures and antiepileptic medication in BHS patients, but without hippocampal 

atrophy.  
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Figure 7.29 

 

Figure 7.1. Working memory ‘load’ DMS paradigm. An example of delayed 
match to sample trials where 1 item load (top), 3 item load (middle), or 5 item 
load (bottom) presented serially must be maintained over a 5 second delay 
period in order to make a “match” decision at test.  On 50% of trials a face 
distracter is presented for 1 second. – same as Experiment 2. 

With this design we also sought to disrupt active maintenance of scenes by 

task-irrelevant distraction during the delay period.  Distracter stimuli consisted of 

105 black and white photographs of male and female faces with neutral emotional 

expression selected from the Karolinska Directed Emotional Faces database 

(Lundqvist et al., 1998).  On half of the DMS trials, a face distracter stimuli (1 sec) 

was presented during the delay period (jittered within a 3 sec window during the 

middle of the delay). 
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7.4. Behavioural Results_6_____________________________________________ 

 

7.4.1. DMS task performance.   
 

Since the control patient group in this study consisted of 3 left and 3 right 

temporal lobe dominate epilepsy patients (TLE) without hippocampal atrophy, we 

first analyzed DMS performance between the left and right dominate TLE patients to 

determine if they could be characterized behaviourally as a homogenous comparison 

to BHS patients.  A 2x3 repeated-measures ANOVA (distracter x load) confirmed 

main effects for Load (F(2,8) = 9.31; p=0.008) and as expected not for Distracter 

(F(1,4) = 0.081; p=0.790).  The between subjects comparison (Right TLE and Left 

TLE), confirmed no differences (F(1,4) = 0.485; p = 0.525) and no interaction with 

distracter susceptibility by group (p=0.680).  Therefore, we are confident that left 

and right dominate TLE patients can be merged as a homogenous patient control 

group to compare to BHS patients. 

A 2x3x3 repeated-measures ANOVA with load (1,3,5 item) and distraction 

(with or without) as the within-subjects factor and group (BHS, TLE, NC) as the 

between subjects factor revealed main effects for load (F(2,26) = 54.70; p = 0.0001), 

for group (F(2,23) = 4.85; p = 0.017), and a strong trend for distraction (F(1,23) = 

3.69; p = 0.067).  Furthermore, we revealed a distraction by group interaction (F(2, 

23) = 4.18; p = 0.028) and a nearly significant load by group interaction (F(3.7,43.0) 

= 2.55; p = 0.56).  Post-hoc Tukey HSD tests revealed pair-wise mean differences 

between the BHS and the NC groups at the 0.05 level.  

Follow up repeated-measures ANOVAs directly comparing the BHS and NC 

groups revealed main effects for load (F(2,36) = 45.84; p =0.0001), for distraction 

(F(1,18) = 7.19; p = 0.015), and for group (F(1,18) = 16.95; p = 0.001).  Also, a load 

by group (F(1.8,33.1)=4.25; p=0.025), distraction by group (F(1,18)=14.12; p=0.001 

and a load by distraction by group (F(1.37, 24.6)=3.98; p = 0.046) interaction.  Post-

hoc One-way ANOVAS confirmed that BHS patients were significantly impaired for 

1 item (BHS (90.8 ± 3.11%) vs. NC (97.0 ± 4.26%) p=0.008), 3 item (BHS (67.8 ± 

12.7%) vs. NC (91.0 ± 6.01%) p=0.0001), and 5 item (BHS (70.0 ± 7.64%) vs. NC 

(81.0 ± 7.53%) p = 0.012) DMS loading when compared to the NC group (Figure 

7.3).  When distraction was presented during the delay, BHS performance increased 

enough to absolve all group differences (p>0.05). 
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Furthermore, follow up ANOVAs comparing only the patient groups’ accuracy 

for 3 and 5-item loading (with/without distraction) revealed a main effect for 

distraction (F(1,9) = 6.57; p = 0.031) and a clear trend of a distraction by group 

interaction (F(1,9) = 4.27; p = 0.069) (Figure 7.2).   

 
Figure 7.30 

 
 

Figure 7.2.  Mean DMS accuracy for patients with bilateral hippocampal 
sclerosis (BHS, in purple) and temporal lobe epilepsy but no hippocampal 
damage (TLE, in blue) when required to maintain 1, 3 , or 5 scenes (wml) over a 
5 second delay period.  When no distraction was present during the retention 
period (left) BHS patients’ high-load performance was decreased compared to 
TLE patients, however, when a task-irrelevant face distraction was presented 
for 1 sec during delays (wml D), BHS high-load DMS performance was 
enhanced. 
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Figure 7.31 

 
 
Figure 7.3.  Mean DMS accuracy for patients with bilateral hippocampal 
sclerosis (BHS, in purple) and young normal control participants (NC, in grey) 
when required to maintain 1, 3 , or 5 scenes (wml) over a 5 second delay period.  
When no distraction was present during the retention period (left) BHS 
patients’ performance was significantly compared to NC, however, when a task-
irrelevant face distraction was presented for 1 sec during delays (wml D), BHS 
high-load DMS performance was enhanced to the level of young NC. 
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Table 7.6 

 
Subject Dx Wml 1 Wml 3 Wml 5 Wml 1 (D) Wml 3 (D) Wml 5 (D) 
DH006 BHS 0.94 0.81 0.76 0.97 0.94 0.91 
EM011 BHS 0.94 0.71 0.60 0.91 0.78 0.68 
GP013 BHS 0.90 0.78 0.79 0.88 0.82 0.80 
M_R BHS 0.87 0.56 0.69 0.88 0.74 0.63 
TE015 BHS 0.89 0.53 0.66 0.93 0.78 0.74 
SN010 L_TLE 0.94 0.66 0.63 0.79 0.62 0.76 
FT026 L_TLE 0.97 0.88 0.91 0.97 0.97 0.88 
NM021 L_TLE 1.0 0.97 0.94 1.0 1.0 0.86 
G_C R_TLE 0.97 0.89 0.83 1.0 0.97 0.74 
J_F R_TLE 0.96 0.76 0.85 0.91 0.74 0.68 
R_C R_TLE 0.68 0.70 0.56 0.91 0.63 0.86 
 
Table 7.1. Raw scores for working memory load (and task-irrelevant 
distraction) DMS tasks in patients with bilateral hippocampal sclerosis (BHS) 
and temporal lobe epilepsy (TLE) without hippocampal atrophy. 
 
 
 
7.5. Interim Discussion 6_______________________________________________ 

When BHS patients were required to actively maintain more than one image in 

their mind, performance quickly decreased when compared to the TLE control group 

(Figure 7.2), however, in the absence of hippocampal reductions (TLE), patients’ 

ability to maintain multiple items within working memory does not differ from 

college age normal controls (NC).  This suggests that the hippocampus may 

contribute to some compensatory mechanisms of multi-item working memory 

maintenance.  However, it is important to note the decreases in 3 and 5 –item load 

DMS performance in BHS (Figure 7.2) are not nearly as profound as the configural-

relational DMS impairments for BHS patients compared to temporal lobe epilepsy 

patients without hippocampal damage (Figure 4.4).  It is therefore likely that 

hippocampal integrity is beneficial for some multi-item retention strategies over 

DMS delays, but is not critical to this form of maintenance as in the case of 

configural-relational working memory maintenance.  For instance, a common 

rehearsal strategy is often to replay information during maintenance in the particular 

order it was presented (Baddeley, 2003).  Hippocampal damage is known to affect 

sequence learning (O'Keefe, 1993) and may impact BHS performance because of an 

impaired ability to use this particular working memory strategy, yet multi-item 



134 
 

maintenance was not abolished, and therefore not critical, in these tasks compared to 

configural-relational DMS tasks (Experiment 3A).  

On half of the DMS trials a single black and white image of a face was 

presented (1 sec) during the retention period in order to disrupt working memory 

maintenance processes.  The effect of distraction on working memory performance 

in the TLE (Figure 7.2) and NC (Figure 7.3) cohorts are comparable to previous 

reports (Clapp et al., ; Chao and Knight, 1995; Postle et al., 2005) where task-

irrelevant interference has minor effects compared to cognitive ‘interruptions’ 

(Experiment 4, - also see Clapp et al., 2009) or task-relevant distraction (Chao and 

Knight, 1998; Postle, 2005; Yoon et al., 2006; Sreenivasan and Jha, 2007). 

However, in contrast to current theories of working memory delay 

interference susceptibility, the presentation of a face distracter during retention 

periods enhanced DMS performance in the BHS patients (Figure 7.2 & Figure 7.3).  

The load dependant declines in BHS patient performance (3-item: BHS (67.8 ± 

12.7%) vs. NC (91.0 ± 6.01%) p=0.0001), and 5-item: (BHS (70.0 ± 7.64%) vs. NC 

(81.0 ± 7.53%) p = 0.012) when compared to the NC (Figure 7.3) and similarly 

when compared to TLE (Figure 7.2), were abolished on trials with delay distraction. 

Therefore, the ability to retain multiple items can be effectively enhanced in patients 

with BHS by the presentation of brief task-irrelevant information during working 

memory maintenance.  It is important to note, that the BHS patients investigated in 

this study where considerably older (mean age 43.2; SD 9.8) and were without 

gainful employment because of their memory difficulties, however, delay distraction 

improved memory performance to that of young college students (mean age 

24.7±3.9).  This unexpected and fortuitous enhancement of DMS memory 

performance in BHS could possibly lead to therapeutic benefits for these patients in 

the future.  
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Experiment 7. Task-irrelevant delay distraction 
during 5-item load DMS with variable maintenance 
length. 

 

 

7.6. Aim 7  __________________________________________________________ 

 

Next we asked if distraction facilitated memory enhancement is specific to 

patients where hippocampal integrity is compromised (BHS) or if this is a 

generalized phenomena that is not related to an anatomical specificity.  Although the 

DMS performance enhancement with distraction was a robust increase compared to 

without distraction in BHS patients (3-item without distraction, 67.8  ± 12.7% & 

with distraction, 81.2 ± 7.69%; 5-item without distraction, 70.0 ± 7.64% & with 

distraction, 75.2 ± 10.9%), the patient group displaying this effect was a relatively 

small group with a very specific neuropathology.  We therefore aimed to simulate 

such delay-dependant deficits in NC participants by extending DMS delay lengths to 

increase the temporal maintenance demands to the extent in which behavioural 

performance would match that of the BHS patients (similar delay length 

manipulation as Experiment 5).  In a modified version of the aforementioned DMS 

task, we asked a group of college aged normal control (NC) participants to maintain 

5 black and white pictures of natural scenes (same as 5-item load condition of 

Experiments 2 & 6) over a variable retention period of 5, 20, or 45 seconds.  After 

which, they were instructed to make the same old/new judgment as Experiment 6 in 

patients.  On 50% of DMS trials, the randomized presentation of a single black and 

white image of a face for 1 second would appear during the middle of the delay 

period (Figure 7.4).   
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7.7. Study Design_7___________________________________________________ 

 

7.7.1. Participants.  
 

21 healthy subjects (13 female/mean age 23.9 ± 5.5 yrs) participated in this 

study (one participant was excluded from the study due to not following task 

instructions).  All participants were recruited from the University College of 

London’s Psychology departmental subject pool and were determined to have no 

extraneous neurological or psychological disorders that would confound our results.  

In addition, all subjects displayed normal or corrected to normal visual acuity.  All 

participants gave written informed consent to participate and the study was approved 

by the guidelines of the ethics committee of the University of London Research 

Ethics Committee for human-based research.  All participants were compensated at a 

rate of £6 per hour for the entirety of the study, which averaged two hours to 

complete. 

 

7.7.2. Stimuli and Task Design.  
 

The photographic stimuli and visual presentation settings are identical to that 

of the 5-item load condition of Experiment 6 in patients.  This experiment was a 2x3 

factorial design consisting of 4 successive DMS blocks with 30 trials per block, 

resulting in 20 trials per condition.  The manipulations in this experiment were delay 

lengths of 5, 20, or 45 seconds and on half of the trials, a face distracter stimuli (1 

sec) was presented during the middle of the delay period.  Subjects were instructed 

to maintain the 5 sample stimuli over a variable delay period whilst fixating on a 

cross and to ignore the face distracter stimuli.  It is important to note that participants 

were unaware how long they must actively maintain the sample stimuli as there was 

no prior indication of the delay length of the current trial or if a distracter would be 

presented during the trial.  Targets, foils, delay length, and distracter presentation 

was randomized and counterbalanced across testing blocks (Figure 7.4). 
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Figure 7.32 

 
 
Figure 7.4. 5-item working memory load DMS paradigm. An example of 
delayed match to sample trials where 5 individual scenes must be maintained 
over a 5 second (top), 20 second (middle), or 45 second (bottom) delay period in 
order to make a “match” decision at test.  On 50% of trials a face distracter is 
presented for 1 second.  
 
 

7.8. Behavioural Results_7_____________________________________________ 

 

7.8.1. DMS task performance.  
  

A 2x3 repeated-measures ANOVA with delay length (5, 20, 45 sec) and 

distraction (with and without) as the within subjects factor resulted in a main effect 

for delay length (F(1.64,31.27) = 6.311; p=0.008) and trend for distraction (F(1,19) = 

2.171; p=0.157).  Post-hoc paired t-tests (two-tailed, mean, s.e.m.) showed a 

significant increase in performance when distraction was presented during the 45 

second delay (no distraction (76.25 ± 2.64%) vs. with distraction (81.25±1.74%, 

t(19)=-2.127, p = 0.045) – see Figure 7.5.   

Since memory improvements with distraction were only apparent in the BHS 

patients when DMS performance fell below 80% (in 3-item and 5-item loading 

conditions), we performed a median split at this threshold for the 45 sec delay length 
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condition resulting in two groups: Low performers (< 80%) 9 participants 

(cumulative percent 45, mean age 25.78 ± 5.09; 5 female) and High performers (≥ 

80%) 11 participants (cumulative percent 55, mean age 22.55 ± 5.80; 8 Female).  A 

2x3 repeated-measures ANOVA (distraction x delay) revealed main effects for delay 

(F(1.34, 10.71) = 7.83; p=0.013) and distraction (F(1,8) = 10.0; p=0.013), as well as, 

a strong trend for a delay by distraction interaction (F(1.79,14.29) = 3.65; p=0.057).  

– see Table 7.2. 

 
Table 7.7 

 
Table 7.2.  Median split at 80% accuracy threshold for the 45 sec delay length 
condition: Low performers (< 80%) 9 participants (cumulative percent 45) and 
High performers (≥ 80%) 11 participants (cumulative percent 55). 
 

Post-hoc paired t-tests (two-tailed, mean, s.e.m.) confirmed significantly 

increased DMS performance in the low performers when a 1 sec distracter is 

presented during the 45 sec delay period (78.89 ± 3.31%) compared to when no 

distracter is presented (66.11 ± 2.86%, t(8)=-3.944, p = 0.004) – see Figure 7.6).  

Additionally, 2x3 repeated-measures ANOVAs and post-hoc paired t-tests in the 

high performing group do not show any performance enhancement with distraction 

and in fact, the high performers group seem to do slightly worse with distraction (20 

sec delay: no distraction 86.82 ± 3.59%; with distraction 84.55 ± 3.66%, t(10)= 

0.959, p = 0.360; & 45 sec delay: no distraction 84.55 ± 1.84%; with distraction 

83.18 ± 1.55%, t(10)= 0.760, p = 0.465) – see Figure 7.7. 

 
 

WML_45

1 5.0 5.0 5.0
1 5.0 5.0 10.0
2 10.0 10.0 20.0
3 15.0 15.0 35.0
2 10.0 10.0 45.0
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2 10.0 10.0 85.0
1 5.0 5.0 90.0
2 10.0 10.0 100.0

20 100.0 100.0

.50

.55

.65

.70

.75

.80

.85

.90

.95
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent



139 
 

 
Figure 7.33 

 
 

Figure 7.5. Mean DMS accuracy for normal controls (NC) when required to 
maintain 5 scenes over a 5 second, 20 second, or 45 delay period (no distraction 
in purple).  On half of the trials, a 1 second face distracter would appear (blue) 
during the middle of the delay.  When DMS performance was sufficiently 
decreased by the temporal demands of extended maintenance (i.e. 45 seconds) 
task-irrelevant delay distraction significantly increased DMS performance. 
 
 
7.9. Interim Discussion 7_______________________________________________ 

 

Extending the 5-item retention interval to 45 seconds in the NC group (main 

effect for delay length (F (1.64, 31.27) = 6.311; p=0.008) sufficiently modelled BHS 

multi-item performance deficits at shorter delay lengths (NC 5-item: 76.25 ± 2.64%; 

BHS 5-item: 70.0 ± 7.64%).  Analogous to the memory enhancement found in BHS 

patients, on DMS trials in which a face stimulus was presented during this extended 

delay period resulted in a significant increase in memory performance in NC 

(81.25±1.74%, t(19)=-2.127, p = 0.045) – see Figure 7.5.  

Since increases in BHS patients’ memory performance were profoundly more 

robust after performance fell below a critical threshold (< 80% in 3 and 5-item load) 

and similarly in NC (< 80% in 45 sec delay length), we performed a median split at 

this threshold creating a ‘low performance’ NC group to more accurately model the 

load-dependant deficits of the BHS patients (Table 7.2).  When the accuracy of the 

low performance group fell below this threshold (45 sec delay: 66.11 ± 2.86%) and 
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matched that of BHS patients (3-item: 67.8 ± 12.7% and 5-item: 70.0 ± 7.64%), the 

presence of distracter stimuli during the retention interval significantly improved 

memory performance (78.89 ± 3.31%, t (8) =-3.944, p = 0.004) – see Figure7.6.  

Task-irrelevant distraction raised memory performance to the same level as the 

minimal delay length condition (5 sec delay: 81.67 ± 4.33%), thereby effectively 

abolishing any delay length related memory deficit at 45 seconds.   

 
Figure 7.34 

 
 
Figure 7.6. Mean DMS accuracy for Low Performers when required to 
maintain 5 individual scenes over a 5 second, 20 second, or 45 delay period (no 
distraction in purple & with distraction in blue).  When accuracy of the low 
performance group without distraction (45 sec delay: 66.11 ± 2.86%) matched 
that of BHS patients (3-item: 67.8 ± 12.7% and 5-item: 70.0 ± 7.64%), the 
presence of task-irrelevant distracter stimuli during the retention interval 
significantly improved memory performance. 

 
In the high performance NC group no such memory improvement was found 

with delay distraction (Figure 7.7).  Additionally, high and low group comparisons 

showed a strong trend for a delay by distraction interaction (F (1.79, 14.29) = 3.65; 

p=0.057) suggesting that distraction facilitated memory enhancement must be 

contingent on differential maintenance processes that underlie the behavioural 

correlates found between these groups.  
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Figure 7.35 

 
 

Figure 7.7. Mean DMS accuracy for High Performers when required to 
maintain 5 individual scenes over a 5 second, 20 second, or 45 delay period (no 
distraction in purple & with distraction in blue).  In the high performance NC 
group no such memory improvement was found with delay distraction 

 
 

 
Experiment 8. High-load theta maintenance 
disruption by task-irrelevant distraction 
 

7.10. Aim 8_      ______________________________________________________ 

 

Are task-irrelevant stimuli during working memory delays actually distracting?  

One question that arises from Experiment 6 and 7, is if face stimuli presented during 

the retention interval are facilitating maintenance processes (working memory 

enhancement) or disrupting online retention (working memory disruption) and 

thereby allowing a more accurate alternative memory trace to persist more clearly.   

Bilateral regions of the pre-frontal cortex have been shown to be directly 

affected by the quantitative loading of individual items in working memory (Postle, 

2006; Zhu et al., 2006; Dolcos et al., 2007).  In Experiment 3, we demonstrated that 
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load-dependant increases of bi-frontal theta phase-coupling reflected high-load 

maintenance of multiple items during the DMS retention interval maintenance using 

the same study design as used here in Experiment 6.  Therefore, to test if distracter 

stimuli during multi-item retention enhances or disrupts maintenance processes, we 

analysed the bi-frontal theta phase-coupling from the NC participants of Experiment 

2 that underwent MEG recordings during testing (see Chapter 3 methods).  We 

previously demonstrated load-dependant increases of theta synchronization between 

frontal sensors to be significantly enhanced during the early portion of delay periods, 

but eventually diminished as the retention interval persisted (Figure 3.5B).   

 
7.11. Magnetoencephalography Results 8_________________________________ 
 

7.11.1. Phase Coupling Analysis.  
 

To test our hypothesis that the presentation of task-irrelevant stimuli during 

delay periods of the DMS task will disrupt high-load theta-coupling maintenance, we 

re-analyzed 6 Hz phase-coupling during the retention interval of the high-load 

condition (5-item) in the same 10 healthy participants of Experiment 2.  The MEG 

participants’ data was split into two groups based on the median performance of the 

high load condition without distraction (same as Experiment 7): Low performers (≤ 

80%) 5 participants (cumulative percent 50, mean age 26.8 ± 7.5; 4 female) and 

High performers (> 80%) 5 participants (cumulative percent 50, mean age 22.8 ± 

2.8; 4 Female).   

The low performers group displayed the same trend of increased 5-item DMS 

performance with task-irrelevant distraction (74.6 ± 1.75% vs. 79.4 ± 3.78%) as 

BHS patients (Experiment 6) and as the low performers group in normal controls 

(Experiment 7), but this improvement did not reach significance due to a small 

sample size (p>0.05).  However, independent samples t-tests between groups do 

confirm significant differences between high and low performers without distraction 

(86.6 ± 1.36% vs. 74.6 ± 1.75% respectively; t (8) = 5.41, p = 0.001), while these 

group differences are abolished with delay distraction (p>0.05).  – Figure 7.8. 
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Figure 7.36 

 
 

Figure 7.8. The MEG participants’ data was split into two groups based on the 
median performance of the high load condition without distraction (same as 
Experiment 8): Low performers (≤ 80%) 5 participants (cumulative percent 50) 
and High performers (> 80%) 5 participants (cumulative percent 50).   
 
 

Within group serial measures t-tests (p<0.05 threshold) on bi-frontal sensor 

groups of the low performer group revealed significantly increased theta-coupling 

for 5-item load vs. 1-item load (Figure 7.9B).  This elevated bi-frontal coupling was 

evident soon after stimulus offset and steadily rises across the delay period.  In 

contrast, high performers had a similar trend for increased bi-frontal coupling soon 

after stimulus offset (5 vs. 1-item load); however this enhancement dissipates over 

the course of the delay (Figure 7.9A). Between group t-test comparisons of the 5-

item load condition (independent samples t-test, same threshold as above) on similar 

sensor groups significantly contrast the bi-frontal theta-coupling decrement in the 

high performer group while the low performers coupling steady increases over the 

course of the delay (Figure 7.10).   
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Figure 7.37 

 

 
Figure 7.9. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for non-configural-relational 
low working memory load (‘1 item load’ in blue) vs. high working memory load 
(‘5 item load’ in red) delayed-match-to-sample (DMS) conditions in Experiment 
8 (threshold of p<0.05 per time point if present continuously over three 
successive theta cycles indicated by markings on x-axis).  In high performers 
(A), bi-frontal theta coupling is enhanced in the early portion of the delay 
period for 5-item load vs. 1-item load, and this coupling dissipates over the 
course of the delay similar to Experiment 2.  However, in low performers (B) 
this bi-frontal theta coupling enhancement for 5-item load maintenance 
continues throughout the delay. 
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Within group serial measures t-tests (p<0.05 threshold) contrasting 5-item load 

with and without delay distraction in the low performers group shows significant 

disruption of bi-frontal coupling after distracter presentation (~2000 ms) compared 

to the increased coupling of the no distracter condition (Figure 7.11A).  This 

disruption of theta-coupling after distraction continues throughout the rest of the 

delay, a pattern that mimics the same temporal pattern of activity of the high 

performing group when no distraction is presented (Figure 7.12).  In contrast, the 5-

item load condition (with and without distraction) of the high performing group 

resulted in no significant theta-coupling differences of bi-frontal sensor groups 

(Figure 7.11B), as well as no behavioural impact of distraction (Figure 7.8). 

 
 
Figure 7.38 

 
 

Figure 7.10. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for the ‘5 item load’ delayed-
match-to-sample (DMS) conditions comparing low performers (blue) vs. high 
performers (red) in Experiment 9 (threshold of p<0.05 per time point if present 
continuously over three successive theta cycles indicated by markings on x-
axis).  Bi-frontal theta-coupling of the high performance group clearly declines 
over the course of the delay period, while low performers bi-frontal engagement 
persists across the entire delay. 
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Figure 7.39 

 

 
 

Figure 7.11. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for 5-item working memory 
load with no distraction (blue) vs. with distraction (red) delayed-match-to-
sample (DMS) conditions in Experiment 9 (threshold of p<0.05 per time point if 
present continuously over three successive theta cycles indicated by markings 
on x-axis).  In low performers (A), bi-frontal theta coupling enhancement is 
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disrupted with face distraction, while this coupling increases throughout the 
delay without delay distraction.  In contrast, high performers (B) show no 
differences between bi-frontal theta-coupling with or without delay distraction. 
 
 
7.12. Interim discussion 8______________________________________________ 

 

In Experiment 2, we demonstrated load-dependant increases of theta 

synchronization between frontal sensors to be significantly enhanced during the early 

portion of delay periods, but eventually diminished as the retention interval persisted  

(Figure 3.5B).  However, when these participants are separated into high and low 

performance groups (based on 5-item load accuracy), the high performers display a 

similar pattern of initial bilateral frontal theta phase-coupling enhancement for 5-

item (vs. 1-item) maintenance that subsides over time (Figure 7.9A).  Alternatively, 

the low performance group also display this initial pattern, however bi-frontal theta 

engagement significantly increases over the course of the entire delay period (Figure 

7.9B).  Direct comparisons of high and low performance groups confirm significant 

theta-synchrony decreases in the later portion of the delay for participants with more 

accurate 5-item memory performance (Figure 7.10).  Therefore, the online retention 

of multiple items seems to become adversely affected by the continued persistence of 

bilateral coupling across delay periods, as in the case of low performing NC 

participants (Figure 7.8).  

We hypothesized that if continued theta-coupling of frontal sensors across the 

later portion of the delay period reflects a faulty or ‘noisy’ maintenance 

representation (as in the case of the low performance group), then distracter stimuli 

presented during the retention period would effectively disrupt this bi-frontal 

coupling.  As expected, task-irrelevant distraction (presented ~2000ms) completely 

disrupts bi-frontal theta high-load maintenance processes in the low performance 

group when compared to 5-item load delay activity without distraction (Figure 

7.11A).  Furthermore, the temporal pattern of theta synchronous activity in these 

regions after distraction in the low performers are almost identical to that of the high 

performance group when no distraction is present (Figure 7.12).  This convergence 

of behavioural and functional evidence strongly suggests that the persistence of 

faulty high-load maintenance can be disrupted by task-irrelevant distraction and 

thereby mimicking endogenous neural mechanisms that facilitate better performance, 
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as in the case of the high performance group.  Consistent with this notion, the 

presence of distracter stimuli during delay maintenance in the high performance 

group showed no significant effect on bi-frontal theta coupling (Figure 7.11B) or on 

performance (Figure 7.8). 

 
Figure 7.40 

 

 
 

Figure 7.12. Serial measures t-test comparisons of 6 Hz phase-coupling on 
selected sensor groups (shown on right-side insets) for 5-item working memory 
load in the high performance group with no distraction (blue) vs. the low 
performance group with distraction (red) delayed-match-to-sample (DMS) 
conditions in Experiment 8 (threshold of p<0.05 per time point if present 
continuously over three successive theta cycles indicated by markings on x-
axis).  The temporal pattern of theta synchronous activity in these regions after 
distraction in the low performers are almost identical to that of the high 
performance group when no distraction is present. 
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7.13. Final Discussion _________________________________________________ 

 

In this chapter we show that task-irrelevant distraction can improve high-load 

DMS performance in BHS patients (Experiment 6) and in similar conditions where 

healthy participants maintain a ‘faulty’ working memory representation, as in the 

case of extended delay period lengths (Experiment 7).  Furthermore, we demonstrate 

that in such cases, task-irrelevant distraction is disrupting prefrontal theta-network 

maintenance (Experiment 8).  These results call into question what form of memory 

performance is being enhanced by task-irrelevant distraction. 

The short-term retention of certain forms of visual information in working 

memory have been shown to be intimately linked to long-term memory processes 

(Ranganath et al., 2005) and specifically to regions of the medial temporal lobe 

dedicated to long-term memory (Experiment 3A, also see - (Hannula et al., 2006; 

Hannula and Ranganath, 2008).  Furthermore, successful long-term memory 

encoding and subsequent delayed recognition memory retrieval have been shown to 

be greatly facilitated by working memory maintenance of the same items 

(Experiment 3C, also see – (Schon et al., 2004; Ranganath et al., 2005; Khader et al., 

2007) suggesting a common limited resource allocation for both stimulus 

maintenance and encoding  As a direct consequence, when multiple representations 

held in working memory are incomplete or faulty, then continued maintenance of 

these items will interfere with later long-term memory recognition (Axmacher et al., 

2009; 2010).   

Consistent with these results, when faulty working memory maintenance 

persists (high load conditions in BHS –Experiment 6) or becomes faulty due to delay 

lengths exceeding the ability of working memory resources (45 sec delay in low 

performers – Experiment 7), there was a related decrease in performance when 

maintenance relies purely on frontal theta working memory mechanisms.  

Alternatively, if faulty maintenance is disrupted in such cases by task-irrelevant 

distraction (Experiment 8), then a more accurate alternate memory signal is allowed 

persist, thereby increasing DMS performance.  

Radiological reports confirm medial temporal lobe damage in these BHS 

patients is confined to the hippocampi bilaterally (see Chapter 4), thus it is unlikely 

that any hippocampus-dependant memory processes can account for distracter 

facilitated memory enhancement.  However, since regions of the rhinal cortex are 
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thought to be spared in these patients, one possible explanation is that disrupting 

faulty maintenance (via interruption of bi-frontal theta-coupling) allows familiarity-

based judgements to become unclouded by a noisy working memory representation.  

Evidence that familiarity-based recognition is dependent on the perirhinal cortex and 

not on hippocampal integrity supports such a notion - for review see (Eichenbaum et 

al., 2007). 

Alternatively, it could be hypothesized that the presentation of task-irrelevant 

stimuli during delays enhances vigilance or attention to current task goals (i.e. 

working memory enhancement) by cueing participants to stay on task.  However, 

such an account seems contrary to previous evidence showing regions of the pre-

frontal cortex specifically tuned to cope with increases in working memory demands 

(Fuster and Alexander, 1971; Goldman-Rakic, 1996; Jensen and Tesche, 2002; 

Onton et al., 2005; Deiber et al., 2007; Artchakov et al., 2009) and resistance to 

distraction (Chao and Knight, 1998; Miller and Cohen, 2001; Artchakov et al., 

2009).  Similarly, we demonstrated that engagement of theta-coupling between bi-

frontal regions are enhanced with increases of working memory demands in NC 

(Experiment 2), however, the temporal attenuation of this activity over the course of 

retention, either endogenously (high performers- Figure 7.9A) or by exogenous 

distraction (low performers- Figure 7.9B), suggests an optimal window of prefrontal 

engagement that supports delay performance.  Recent electrophysiological evidence 

highlighting the differential effects of variable distracter presentation during working 

memory delays (Artchakov et al., 2009) support this possibility.  Although it seems 

unlikely that late delay decreases in pre-frontal engagement would reflect an increase 

in participants’ vigilance to current task demands, further investigation is necessary 

to determine the exact nature of cortical processing responsible for the improvement 

in memory performance reported in this chapter. 

It has been well established that the maintenance of visual representations 

become more susceptible to interference from distraction when the capacity of 

working memory is quantitatively ‘loaded’ by increases of information (Chao and 

Knight, 1995; Baddeley, 1998; Chao and Knight, 1998; Baddeley, 2003). However, 

in contrast to current theories, we found that task-irrelevant distraction during delay 

periods improved DMS performance in BHS patients. This memory enhancement 

was robust enough to raise the BHS patients’ performance to the same level of 

college age healthy controls.  Additionally, we show that in similar conditions where 
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healthy participants maintain a ‘faulty’ working memory representation, as in the 

case of extended delay period lengths, task-irrelevant distraction can increase 

performance in participants to such an extent that any delay period impairment is 

abolished.  

The bilateral synchronization of frontal brain regions within the theta 

frequency band are characteristic of maintaining increases of visual information in 

working memory. Using MEG we establish that, paradoxically, the persistence of 

visual information is impeded when this bi-frontal theta maintenance process 

exceeds a time dependant optimal efficiency. In such cases, disrupting this coupling 

mechanism with task-irrelevant distraction allows for a more accurate long-term 

memory signal to persist, thereby improving performance.  Our findings elucidate an 

important functional interaction between short-term working memory and long-term 

memory processes and have potential therapeutic implications for patients suffering 

from memory impairments. 
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7.14. Summary_______________________________________________________ 

 

In contrast to current theories, we found that task-irrelevant distraction during 

delay periods improved DMS performance in patients with bilateral hippocampal 

sclerosis (BHS). This memory enhancement was robust enough to raise the BHS 

patients’ performance to the same level of college age healthy controls. Additionally, 

we show that in similar conditions where healthy participants maintain a ‘faulty’ 

working memory representation, as in the case of extended delay period lengths, 

task-irrelevant distraction can increase performance in participants to such an extent 

that any delay period impairment is abolished. The bilateral synchronization of 

frontal brain regions within the theta frequency band are a characteristic of 

maintaining increased working memory load. Here we demonstrate that the 

persistence of visual information is impeded when this bi-frontal theta maintenance 

process exceeds a time dependant optimal efficiency. In such cases, disrupting this 

coupling mechanism with task-irrelevant distraction allows for a more accurate long-

term memory signal to persist, thereby improving performance. 
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VIII. Conclusion 
 

 
 

In a series of working memory experiments using Magnetoencephalography 
(MEG) we investigated cortical synchronization within the theta band during 
the active maintenance of configural-relational or non-configural-relational 
visual stimuli in delayed-match-to-sample tasks (DMS) in healthy adults and 
patients with bilateral hippocampal lesions.  Using this approach we provide 
converging evidence for a critical role of hippocampus-dependent cortical theta-
synchrony in the active maintenance of configural-relational visual information. 
We also demonstrate that this theta-synchrony, coupling occipito-temporal and 
fronto-temporal sensors, is functionally and anatomically dissociated from non-
configural-relational visual maintenance, which engaged theta synchrony 
between frontal and parietal sensors. Furthermore, increasing the working 
memory load in the absence of configural-relational maintenance demands 
engaged bilateral frontal theta-synchrony. This indicates that occipito-temporal 
theta synchrony in configural-relational maintenance cannot be accounted for 
by the additional demands of maintaining more scene elements.  Although 
patients with bilateral hippocampal damage do display decreased performance 
in multi-item working memory maintenance, this deficit can be effectively 
abolished by the presentation of task-irrelevant distraction during delay 
periods.  Similarly in healthy participants, when faulty working memory 
maintenance mechanisms (i.e. bi-frontal theta-coupling) are disrupted by task-
irrelevant distraction, memory performance may be enhanced by allowing a 
more accurate hippocampal-independent alternative memory trace to persist.  
We provide functional, behavioural, and anatomical evidence for complex 
interactions between long-term and short-term memory challenging the 
classical distinction between these forms of memory where functional and 
anatomical commonalities may be shared by both.   
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8.1. Closing Discussion________________________________________________ 
 
 

The persistence of stimuli in working memory is not a temporally locked 

phenomenon, but one that evolves over time, and therefore we chose investigate the 

neural dynamics of delay maintenance by induced oscillatory activity.  Furthermore, 

we chose to investigate oscillatory activity specifically within the theta band because 

of its intrinsic properties of integrating the functional cooperation of distant 

assemblies into a coherent network (Jones and Wilson, 2005; Sarnthein et al., 1998).  

We utilized this framework to investigate how the brain’s rhythmic oscillations of 

neural activity can synchronize to create functional networks of stimulus persistence 

in working memory.  In Experiment 1 we demonstrate cortical synchronization 

during the active maintenance of the configural relationships of visual information 

was characterized by the induced theta-synchronous coupling of fronto-temporal and 

occipito-temporal brain regions.  While non-configural-relational forms of 

maintenance using identical stimuli engaged a theta-coupled network involving 

frontal and parietal areas more commonly reported in working memory maintenance 

(Cohen et al., 1997; Courtney et al., 1997; Baddeley, 1998; Sarnthein et al., 1998; 

D'Esposito et al., 2000; Haxby et al., 2000; Postle et al., 2000; von Stein and 

Sarnthein, 2000; Deiber et al., 2007). 

Recently it has been demonstrated that amnesic patients with selective 

hippocampal atrophy, not only have profound long-term memory impairments 

(Lavenex and Amaral, 2000; Squire and Zola-Morgan, 1991), but also display 

working memory deficits for the spatial configuration of objects over short delay 

periods (Hannula et al., 2006; Olson et al., 2006a).  Consistent with this notion, we 

show that patients with bilateral hippocampal sclerosis (BHS) could not remember 

images after 60 minutes of exposure, but performed normally when the retention 

interval was only 5 seconds for non-configural-relational working memory tasks 

(Experiment 3C).  These patients also displayed preserved fronto-parietal theta 

synchronization during working memory retention intervals (Experiment 3B).   

Importantly, BHS patients’ ability to retain the configural relationships within 

scenes over brief intervals was severely impaired and this was accompanied by a 

selective abolishment of occipito-temporal theta synchrony (Experiment 3A & 3B).  

These results are consistent with the functional coordination of cortical activity by 

hippocampal driven theta previously reported in rodents (Sirota et al., 2008; Jones 
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and Wilson, 2005; Siapas et al., 2005) and was the first to demonstrate that the 

hippocampus is functionally critical to this network in human working memory.  

Furthermore, fronto-parietal theta engagement was evident in both configural-

relational and non-configural-relational delay periods in BHS, suggesting that when 

hippocampal integrity is compromised, the “classic” working memory network is 

engaged, but cannot functionally support the additional maintenance requirements of 

configural-relational representations (Experiment 3B).  

Together, these results emphasize the critical role of hippocampal theta 

synchronization to coordinate occipital and temporal brain regions during short-term 

working memory delays of configural-relational information.  This theta network 

may contribute to the associative integration of visual elements in the rostral portions 

of the ventral visual stream, such as the rhinal cortex, with the individual component 

features in more posterior regions (e.g., visual areas such as V4) (Bussey and 

Saksida, 2002; Ryan and Cohen, 2004; Aggleton et al., 2007; Hannula and 

Ranganath, 2008) and thereby allowing a holistic representation to persist.  Possibly 

through feedback connections to the cortex, hippocampal neurons can activate a 

more detailed, lower-level representation that is stored in the cortex which would be 

needed for the retention of specific configural features in complex visual stimuli 

(Lisman and Idiart, 1995; Olson et al., 2006b; Hannula and Ranganath, 2008). This 

could be accomplished by the periodic reactivation of single visual features 

(Fuentamilla et al., 2010) from the ventral visual stream, thus favouring auto-

associative binding of several parts into a meaningful whole.  

In contrast, non-spatial information maintenance would be linked to the 

reactivation of mental representations in the absence of vivid sensory details stored 

in the visual stream (Haxby et al., 2000), thus engaging the participation of frontal 

and posterior associative cortical regions previously reported in object-based 

working memory maintenance (Fuster and Alexander, 1971; Sarnthein et al., 1998), 

yet still functionally interconnected through the organisational properties of theta 

synchrony (Sarnthein et al., 1998).  Through theta oscillations the hippocampus may 

drive the reciprocal exchange of information with neocortical areas during 

configural-relational maintenance (Sirota et al., 2008). According to this suggestion, 

the hippocampus may actively control the transfer of neocortical information to the 

hippocampus itself via theta-phase biasing of neocortical network dynamics (Sirota 

et al., 2008).  This hippocampally dependent mechanism of relational binding of 
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visual information from neocortical regions may be ubiquitous to the retention of 

contextual associations for both long-term and short-term memory. 

Previous behavioural studies in patients with hippocampal sclerosis have also 

found deficits in binding the features of a scene being already present at encoding 

(Hannula and Ranganath, 2008), suggesting possible underlying perceptual deficits 

in these patients when performing visual discrimination. In a recent fMRI study, 

short-term memory for object-location relationships was determined during the 

encoding related activation of the hippocampus (Hannula and Ranganath, 2008).  

Occipito-temporal synchrony of configural-relational working memory was found to 

be initially engaged during encoding and then extended into the delay period for 

individuals without hippocampal damage, while in BHS patients theta synchrony 

was abolished already during stimulus encoding (Experiment 3B). Similar deficits in 

the early encoding of declarative long-term memory processes have recently been 

reported in patients with hippocampal lesions (Dewer et al., 2007).  It has therefore 

been hypothesized that the underlying causes of the characteristic amnesic 

impairments in patients such as “H.M.”, might be due to a deficit in the 

consolidation of new information and not in the retrieval of this information, as 

initially proposed (Scoville and Milner, 1957; Lavenex and Amaral, 2000; Squire 

and Zola-Morgan, 1991).  These findings suggest that bilateral hippocampal injury 

may impair cooperative binding of information distributed across occipital and 

temporal regions initially during encoding and the deficits observed during delay 

periods may be an extension of this problem. 

In Experiment 2, we demonstrated that increasing the number of scene images 

that had to be retained during the delay from one to five was associated with 

increased theta coupling of bilateral frontal and temporal sensors. This pattern is 

very similar to increases in frontal theta-coupling during working memory loading 

tasks found previously in EEG studies (Deiber et al., 2007). Most importantly, the 

bi-frontal theta synchrony due to increased working memory load was non-

overlapping with the occipito-temporal theta-synchrony of configural-relational 

maintenance, indicating that dissociable networks are responsible for supporting the 

separate maintenance demands of item loading and configural-relational 

representations. This strongly argues against the possibility that functional 

differences between the configural-relational and non-configural-relational 
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maintenance conditions are due to increases in working memory load in the 

configural-relational condition.  

When BHS patients were required to actively maintain more than one image in 

their mind, DMS performance did decreased when compared to the temporal lobe 

epilepsy control group with no hippocampal reductions (TLE) and college age 

normal controls (NC).  This suggests that the hippocampus may contribute to some 

compensatory mechanisms of multi-item working memory maintenance.  However, 

it is important to note the decreases in 3 and 5 –item load DMS performance in BHS 

(Experiment 6) were not nearly as profound as the configural-relational DMS 

impairments for BHS patients compared to temporal lobe epilepsy patients without 

hippocampal damage in Experiment 3A.  It is therefore likely that the hippocampal 

integrity is beneficial for some multi-item retention strategies (i.e. sequence 

rehearsal), but is not critical to this form of maintenance as in the case of configural-

relational working memory maintenance because multi-item maintenance was not 

completely abolished.  These results are compatible with recent studies showing that 

patients with medial temporal lobe amnesia showed a selective impairment in the 

ability to maintain relational conjunctions in working memory but had no memory 

load related impairment (Olson et al., 2006; Finke et al., 2008).   

Delayed recognition memory for scenes from the configural-relational DMS 

trials in normal controls and LTN patients (Experiment 3C) were significantly better 

than for scenes from the non-configural-relational DMS trials.  Importantly, delayed 

recognition memory for both types of samples was at chance in patients with BHS 

(Experiment 3C), despite the fact that these patients were unimpaired in the working 

memory performance for non-configural-relational stimuli (Experiment 3A), as well 

as, displayed intact fronto-parietal synchrony (Experiment 3B). These findings 

suggest that the hippocampus-dependent theta coordination of occipito-temporal and 

fronto-temporal regions during configural-relational maintenance also contributed to 

encoding into long-term memory but this was not the case for the hippocampus-

independent fronto-parietal theta synchrony. These results are compatible with the 

suggestion that hippocampal maintenance operations may contribute to long term 

memory encoding (Hannula and Ranganath, 2008; Ryan and Cohen, 2004; Ezzyat 

and Olson, 2008).  Likewise, configural-relational DMS performance remained 

relatively constant for up to 30 seconds of maintenance, while high-load non-

configural-relational maintenance performance declined within this time frame 
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(Experiment 4).  Together these results support the possibility of a link between 

hippocampus-dependent theta network contributions to working memory 

maintenance and encoding into long-term memory.   

However, it is still argued that hippocampus is not critical for working memory 

maintenance and that contributions of medial temporal lobe are only in cases where 

working memory capacity is exceeded and long-term memory processes compensate 

for additional maintenance demands (Shrager et al., 2008).  Furthermore, it has been 

proposed then that the key hallmark of working memory is its susceptibility to 

interference during delay periods (Shrager et al., 2008), in which long-term memory 

is resilient.  Under this assumption, a recent behavioural study has shown that 

hippocampal damaged patients only display short-term memory deficits under 

conditions where individuals with normal hippocampi are not susceptible to delay 

interference (i.e. stimulus retention relies on long-term memory - Shrager et al., 

2008).   

To address this hypothesis directly, we demonstrated that task-relevant 

interference presented during delays disrupts configural-relational working memory 

maintenance to the same degree as high item load working memory (Experiment 5). 

Also, theta synchronization of bi-frontal cortical regions for high working memory 

load (Experiment 2) was completely non-overlapping with the occipito-temporal 

synchrony of configural-relational working memory maintenance (Experiment 1).  

These results strongly support configural-relational maintenance as a hippocampally 

dependant process akin to working memory maintenance where behavioural, 

functional, and anatomical commonalities are shared by both short- and long-term 

memory. 

It has been demonstrated that successful long-term memory encoding and 

subsequent delayed recognition memory retrieval have been shown to be greatly 

facilitated by working memory maintenance of the same items (Schon et al, 2004; 

Ranganath et al, 2005; Khader et al., 2007) highlighting a functional interaction of 

both short-term stimulus maintenance and long-term memory encoding.  As a direct 

consequence of such an interaction, when multiple representations held in working 

memory are incomplete or faulty, then continued maintenance of these items will 

interfere with later long-term memory recognition (Axmacher et al., 2009, 2010).  

One serendipitous result of such an interaction between long-term and short-term 

memory is the finding that task-irrelevant distraction during delay periods improved 
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DMS task performance in patients with bilateral hippocampal sclerosis (BHS).  

Furthermore, that this memory enhancement was robust enough to raise the BHS 

patients’ performance to the same level of college age healthy controls (Experiment 

6).  Not only does this support the notion that what is rehearsed or maintained in 

working memory can update and interact with representations in long-term memory 

(Baddeley, 2003), but also has important implications for individuals suffering from 

these forms of memory impairments.   

Additionally, by extending delay lengths of DMS retention interval we were 

able to behaviourally match high-load performance of normal controls to that of 

BHS patients.  Under such conditions, a continued interaction of representations in 

working memory seem to interfere with rapidly formed long-term memory 

representations.  Furthermore, disrupting working memory rehearsal by task-

irrelevant distraction can thereby effectively improve memory performance in such 

conditions. We demonstrate this possibility in the case of extended DMS delay 

period lengths in normal controls where task-irrelevant distraction increased 

performance to such an extent that any delay period impairment was abolished 

(Experiment 7).   

Furthermore, we highlight a neural correlate of this phenomena where the 

persistence of high load working memory can be impeded when bi-frontal theta 

maintenance processes exceeds a time dependant optimal efficiency.  In Experiment 

3, we show that 5-item working memory load engaged such a network during the 

onset of the delay period, but this activity dissipated as the high-load retention 

interval continued.  The continued persistence of bi-frontal synchronization 

throughout the delay characterized individuals who’s accuracy was below the 

median performance of the group when no distraction was present during retention.  

In such cases, task-irrelevant distraction was shown to disrupt this persistent bi-

frontal coupling over the course of the delay period and was related to a 

corresponding increase in DMS performance (Experiment 8).   When comparing this 

low DMS performance group with delay distraction with the high DMS performance 

group when no distraction was present, the relative time course of bi-frontal theta 

engagement during delays between these two groups were nearly identical.  These 

results are highly suggestive that the temporal attenuation of this activity over the 

course of retention, either endogenously or by exogenous distraction, suggests an 

optimal window of prefrontal engagement that supports delay performance.   
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Although to determine what form of memory retention is being enhanced could 

not be addressed in these studies, radiological reports confirm medial temporal lobe 

damage in the BHS patients of Experiment 6 was confined to the hippocampi 

bilaterally (see Chapter 4), thus it is unlikely that any hippocampus dependant 

memory processes can account for distracter facilitated memory enhancement.  

Furthermore, the corresponding relationship of bi-frontal theta-coupling working 

memory disruption by distraction and the corresponding DMS behavioural 

enhancement makes it unlikely that processes dependent upon working memory are 

responsible.  However, since regions of the rhinal cortex are thought to be spared in 

these patients, one possible explanation is that disrupting faulty maintenance (via 

interruption of bi-frontal theta-coupling) allows familiarity-based judgements to 

become unclouded by a noisy working memory representation.  Evidence that 

familiarity-based recognition is dependent on the perirhinal cortex and not on 

hippocampal integrity support such a notion - for review see (Eichenbaum et al., 

2007).  Therefore, the most parsimonious account is that in cases when stimulus 

maintenance is faulty, task-irrelevant distraction could then alternatively allow a 

more accurate familiarity representation to persist that does not rely on working 

memory resources. 

 
8.2. Closing Summary_________________________________________________ 

 

 We show that actively maintaining configural-relational aspects of a visual 

scene was associated with theta oscillatory coupling of temporal and occipital visual 

areas (Chapter 2) and furthermore, that this theta-network is critically dependent on 

the integrity of the hippocampus (Chapter 5).  The ability to support configural-

relational forms of working memory are behaviourally shown to depend on 

hippocampal integrity and cannot be explained by difficulties in perceptual 

integration (Chapter 4).  In contrast, non-configural-relational maintenance was 

associated with theta synchrony between frontal and parietal regions (Chapter 2) and 

this form of maintenance was unaffected by hippocampal injury (Chapter 5). 

Additionally, we establish that unlike maintaining the configural association between 

objects within a scene, increasing the number of scenes (that is increasing ‘load’) to 

be maintained over 5 seconds was associated with a bi-lateral frontal theta synchrony 

pattern (Chapter 3). Together, these data indicate that hippocampus-dependent theta 
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synchrony plays an anatomically specific and critical role in for the active 

maintenance of configural-relational information.  

These earlier chapters highlight the functional, behavioural, and anatomical 

interactions between long-term and short-term working memory and call for a 

reconsideration of the classical functional-anatomical distinctions between these two 

forms of memory.  By exploring these interactions in later chapters, we find that the 

longevity of configural-relational DMS representations for short-term maintenance 

(5-30 seconds) and delayed recognition (45 minutes) seem less apt to decay 

compared to non-configural-relational DMS.  However, both are susceptible to delay 

interference during maintenance akin to working memory processes. In accordance 

with these interactions, we find that task-irrelevant distraction during delay periods 

improved DMS performance in BHS patients. This memory enhancement was robust 

enough to raise the BHS patients’ performance to the same level of college age 

healthy controls.  Additionally, we show that in similar conditions where healthy 

participants maintain a ‘faulty’ working memory representation, as in the case of 

extended delay period lengths, task-irrelevant distraction can increase performance 

in participants to such an extent that any delay period impairment is abolished. 

Furthermore we find an electrophysiogical correlate where persistence of visual 

information is impeded when bi-frontal theta maintenance processes exceed a time 

dependant optimal efficiency. In such cases, disrupting this coupling mechanism 

with task-irrelevant distraction allows for a more accurate long-term memory signal 

to persist, thereby improving performance. 
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