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Abstract

Classical, non-equilibrium systems of diffusing species or entities undergoing deple-

tion, evaporation and reaction processes are at the heart of many problems in Physics,

Chemistry, Biology and Financial Mathematics. It is well known that fluctuations and

correlations in statistical systems can have a profound influence on the macroscopic

properties of the system. However, the traditional rate equations that describe the evo-

lution of mean populations in time and space do not incorporate statistical fluctuations.

This becomes an issue of great importance when population densities are low. In order

to develop a stochastic description of birth-and-death processes beyond the mean field

approximation I employ techniques in classical many-body Physics in a manner anal-

ogous to the treatment of quantum systems. I obtain promising results to understand

and quantify the exact circumstances of the failure of the mean-field approximation in

specific problems in Astrophysics, namely heterogeneous chemical reactions in inter-

stellar clouds, and in Aerosol Science, namely heterogeneous nucleation processes, and

deliver the means to manipulate the alternative stochastic framework according to the

Doi-Peliti formalism. In this framework the mean population of a species is given by

the average of a solution to a set of constraint equations over all realisations of the

stochastic noise. The constraint equations are inhomogeneous stochastic partial differ-

ential equations with multiplicative real or complex Gaussian noise. In general, these

equations cannot be solved analytically. Therefore I resort to the numerical implemen-

tation of the Doi-Peliti formalism. The main code is written in the GNU C language,

some algebraic calculations are performed by means of the MapleV package. In the

case of large population densities the stochastic framework renders the same results

as the mean field approximation whereas for low population densities its predictions

differ substantially from the calculations using the traditional model.
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Chapter 1

Introduction

1.1 Heterogeneous Chemical Reactions in Inter-

stellar Clouds

Heterogeneous chemical reactions are chemical reactions taking place on a pre-existing

surface, the grain or seed particle onto which atoms or molecules from the surrounding

gas-phase can be adsorbed onto or from which they can be evaporated. In this thesis

we study heterogeneous chemical reactions taking place on the surface of grain particles

that are suspended in interstellar clouds.

1.1.1 On the Classification of Interstellar Clouds

Stellar events such as, for example, massive explosions or gentler winds, result in

the ejection of gaseous and particulate matter into the interstellar medium, where

interstellar clouds are formed under the influence of gravity. The gaseous matter

is mainly atomic in nature. Consequently, molecular synthesis must occur within

the interstellar clouds themselves. This is important since molecules produced in

interstellar clouds will be incorporated into solid bodies such as comets, meteors, and

planets. Small portions of matter in interstellar clouds gradually collapse and heat up

to the point where nuclear reaction sets in and stars are formed. In turn, the stars

blow away interstellar matter surrounding them.

Interstellar clouds are regions of many light years in extent. In the 1970s [42]

the interstellar medium was classified into three phases that can be thought to be

in approximate pressure equilibrium with each other: the cold neutral medium or

interstellar clouds, the warm ionised medium or warm neutral medium, and the
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hot ionised medium or coronal gas. Within the cold neutral medium itself one can

distinguish between the dense clouds or dark clouds or molecular clouds —see Figure

1.1— which are most protected from UV radiation, the diffuse clouds which are fully

exposed to starlight, and the translucent clouds which are somewhere in between. In

2006 a new systematic classification was introduced in [56], namely the diffuse atomic

region, the diffuse molecular region, the translucent region, and the dense molecular

region.

The study of interstellar molecules requires a wide range of observational tech-

niques since they can be identified via their electronic (detectable in the UV band or

visible spectrum), vibrational (observed at IR wavelengths), and rotational spectra

(radio wavelengths). Since molecular hydrogen is symmetric and homonuclear it is not

possible to detect this chemical species via vibrational or rotational transitions caused

by the electric dipole. The number density of molecules is not directly observable,

whereas, the integral of the number density along the line of sight to stellar or

non-stellar lamps is. Molecular destruction can be caused by photodissociation where

photons break the molecular bond or by predissociation, where the molecule is first

photoexcited to an unstable state and then dissociates. Molecules must form at rates

fast enough to counterbalance the rates of destruction.

Diffuse atomic clouds are defined by the low molecular fraction in comparison

to diatomic hydrogen, H2. Hydrogen appears to be mainly in neutral atomic form.

Carbon and other atoms whose ionisation potentials are less than that of hydrogen

are almost fully ionised and provide abundant electrons. In diffuse atomic clouds all

molecules are quickly destroyed by photodissocation since this particular region is

fully exposed to the interstellar radiation field. Diffuse atomic clouds have low atomic

density (10cm−3 − 100cm−3) and gas temperatures of around 30K−100K.

In diffuse molecular clouds the intensity of the interstellar radiation field is lessened

so that the local fraction of hydrogen in molecular form is greater than 0.1. Although

molecules are observed in diffuse molecular clouds there is, nevertheless, enough

interstellar radiation present to photoionise atomic carbon, or to photodissociate

carbon monoxide. Atomic densities lie in the range of 100cm−3− 500cm−3 and the gas

phase temperature is again between 30K−100K. Hydrogen is the dominant chemical

species followed by helium (10 % of hydrogen population) and C, N , O with orders of

10−3 to 10−4 of hydrogen densities.

In translucent clouds, carbon begins to transfer from ionised atomic form into

neutral atomic or molecular form since this region in space is sufficiently protected
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from interstellar radiation. The type of chemistry occuring in translucent clouds

is qualitatively different from the chemistry in diffuse clouds due to the decreasing

electron fraction and the increasing abundance of the highly reactive carbon atoms.

In dense molecular clouds, the reactive carbon atoms are replaced by the very stable

carbon monoxide. Dense clouds are self-gravitating, their particle densities are at

least 104cm−3, and their temperatures are of the order of 10K−50K. The molecules

are mostly organic. Gas densities can be quite inhomogeneous. In the cores, the

density can be greater than 104cm−3. It is difficult to see through denser interstellar

clouds in the visible. They are usually observed at longer wavelengths: via spacebased

measurements (ISO, European satellite) in the infrared and via groundbased measure-

ments (radiotelescopes) in mm wavelength. More than 120 different molecular species

have been detected with molecular hydrogen again the dominant chemical species.

Concentrations of molecular hydrogen are about 104 times that of the second most

abundant molecule CO. Molecules range in size from 2 to 13 atoms.

1.1.2 On the Nature of Grain Particles

Roughly one percent (by mass) of interstellar matter is tied up in dust particles —see

Figure 1.2. Interstellar dust particles are assumed to be 98 % amorphous and only 2 %

crystalline. The grains are considered to be complex entities, fractal-like and porous.

Different rates of surface diffusion can occur on the same impure grain with sites

of strong binding that can trap species [32]. The size distribution of grain particles

ranges from tens of ångströms to several microns. The smaller grains are considered

to be large carbonaceous molecules. They are considered to be non-spherical. This

has been deduced from the scattering and polarisation properties of the grains and

via the absorption of radiation. In diffuse clouds the grain diameter is in the range

of 10−8m to 5 × 10−7m and the grain surface temperature is around 20K. It seems

that there are many more smaller grains than larger ones [30]. In addition, it is likely

that the grains are negatively charged unless photoelectric effects dominate since, in

a thermal medium, electrons travel more quickly than heavy positive ions. Therefore,

one probably does not have to consider positive ions on grain surfaces. In dense clouds,

grain surface temperatures can be as low as 10K. Most of the extinction is caused

by the dust particles that can scatter and adsorb radiation with an efficiency that

increases with decreasing wave length. One can distinguish between three size classes:

standard grains with a radius of (0.003− 3)× 10−6m, small grains 2− 10× 10−9m and

0.5 − 1 × 10−9m for polycylic aromatic hydrocarbon-like species. The grain density

n(grain) is estimated to be smaller than the atomic hydrogen gas density n(H) and
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Figure 1.1: “This composite image, combining data from NASA’s Chandra X-ray Ob-
servatory and Spitzer Space Telescope shows the star-forming cloud Cepheus B, located
in our Milky Way galaxy about 2,400 light years from Earth. A molecular cloud is
a region containing cool interstellar gas and dust left over from the formation of the
galaxy and mostly contains molecular hydrogen. The Spitzer data, in red, green and
blue shows the molecular cloud (in the bottom part of the image) plus young stars in
and around Cepheus B, and the Chandra data in violet shows the young stars in the
field.” Image credit: NASA/CXC/JPL-Caltech/PSU/CfA

is roughly n(grain) = 10−12n(H) [58]. The grains can be composed of carbonaceous

matter as well as of metallic silicates. Heavy elements (Si, Fe) and lighter elements

(O,C) are both important types of elements. Ice mantles that can develop around

dust particle cores consist mainly of water ice. This is observed through the broad

absorption features. Other components of ice mantles are CO, CO2 and methanol

ices. In reality, several types of inhomogeneities can occur: mixed, composite surfaces

and surfaces with imperfections such as kinks and terraces at which binding energies

are significantly greater than at normal binding sites. When considering grains with

ice mantles, the surface properties change during reaction processes and reactants

can not only sink into pores but enter the layer where they are enclosed by the ices.

Most heavy molecules formed on grains remain on the surface of the grain to form

a grain mantle unless a star forms nearby and the temperature rises —as became

clear from observational evidence. The appropriate temperature for cold cores in
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Figure 1.2: Interplanetary dust particle: such dust particles are made up by interstellar
dust sticking together. Interstellar dust particles are assumed to be of the size of one
tenth of the planetary dust. Image Credit: Dr. Henner Busemann, University of
Manchester.

dense interstellar clouds is about T = 10K. Grains can heat up quickly when a cosmic

ray (protons, iron nuclei) hits the grain —see [36]. One distinguishes between three

different desorption mechanisms: thermal desorption including cosmic ray induced

desorption, [31] photodesorption, [44] and reactive desorption [23]. Furthermore, there

are two possible mechansims triggering a heterogeneous chemical reaction: firstly,

a heterogeneous chemical reaction that takes place when an adsorbate lands atop

another one (Eley-Rideal mechanism). On smaller grains a strong interaction between

the adsorbate and the grain is likely to occur (chemisorption) which immobilises the

adsorbed reactant. Chemical reactions can only take place when a gas-phase species

strikes another reactant on the surface of the grain. This mechanism contributes

to interstellar chemistry only when the surface of the grain is covered with reactive

species. In that case, this mechanism is thought to dominate the formation of molec-

ular hydrogen in warm regions where weakly bound species evaporate too quickly to

diffuse appreciably [32]. At lower temperatures and on larger grains diffusive chemistry

(Langmuir-Hinshelwood diffusion mechanism) dominates: the heterogeneous chemical

reaction is initiated by the collision and reaction of two atoms or molecules adsorbed

onto the grain and their diffusion on its surface. In this case, the temperature has to

be high enough for motion to occur. Weakly bound species (physisorbed) —see [58]—

can sweep across the grain surface by thermal hopping between the binding sites or by

quantum mechanical tunnelling. Conditions where reactions occur much faster than

the rate at which species accrete onto grain surfaces are also called accretion limited

—see [58].
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1.1.3 Challenges in Interstellar Surface Chemistry

The nature of the gas phase of interstellar clouds is well established. In situ homoge-

neous production within interstellar clouds is not efficient due to the low densities and

low temperatures [36]. The chemistry is not rapid enough with estimated collision

times of around two weeks and a mean free path of 100, 000km. Furthermore, the

collisions are probably not reactive since the activation energy is too large compared

to the thermal energy. If the molecules were produced elsewhere there are two

possible means: the production of molecules in the huge atmospheres around old

stars (envelopes) and their transport to interstellar clouds by strong winds from

the star, and the formation in explosive events (supernovae) where gaseous and

particulate matter are ejected into the interstellar medium and clouds can form under

the influence of gravity. However, gaseous matter is mainly atomic in nature which

leads to the conclusion that the synthesis must occur within the interstellar clouds.

The biggest obstacle in the path of synthesis is the conversion of atoms into diatomic

molecules. In order to stabilise, for example, the H2 chemical bond the system must

rid itself of sufficient energy via emission of radiation (radiative association) which is

more efficient for larger systems with molecules. The chance of a third body striking

the H2 collision complex before the latter dissociates, in order to stabilise the complex

in the interstellar cloud is essentially zero. Under interstellar conditions, it seems

that it is not possible to convert atomic to molecular hydrogen. Yet, the surface of

seed particles present in an interstellar cloud can provide a template for chemical

reactions. The heterogeneous chemistry in interstellar clouds is, at the moment, the

only alternative available, although the process does not seem to be efficient enough

to fully convert atomic hydrogen into diatomic hydrogen in dense clouds within

reasonable astronomical time scales (105y - 106y).

Let us quote [30] on the state of research in interstellar surface chemistry: “Even

with the results of recent experiments, surface chemistry is generally far more poorly

understood than gas-phase chemistry, and in the case of interstellar dust grains, there

are additional problems given our lack of a detailed knowledge of the physical nature

of the surface. Among the problems faced by astrochemists are:

(i) the detailed mechanism for the formation of molecules (Langmuir-Hinshelwood vs

Eley-Rideal);

(ii) the dependence of the rate of surface reaction on grain size, the possible existence

of a grain mantle, the probable fluffy nature of interstellar grains, the smoothness and

roughness of the surface, and unknown energy parameters;

(iii) whether or not the rate equations used by surface chemists even apply to chemistry
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on small grain particles;

(iv) and how products can desorb from grain surfaces back into the gas.”

According to [58], in interstellar space, abundances of some reactants are so

low that it is questionable to consider them as averages. If the mean density of the

reacting atoms is small, statistical fluctuations brought about by the gain of atoms

onto the surface of the seed and by the loss of atoms from the grain, and by the

random diffusion of atoms on the surface of the seed particle, are important. The

traditional model employed to predict the abundances of chemical species produced in

heterogeneous chemical reactions does not include the treatment of such fluctuations.

Several attempts have been introduced to resolve that problem; in the Astrophysics

community this would comprise mainly Monte Carlo methods [9, 10, 59] and [8],

the modified rate approach [7, 57], the direct master equation approach [27, 4], and

the moments master equation method [1]. Analytical solutions to a master equation

approach have been found for the steady state1 case [4, 27, 40]. In the Mathematics

community, related studies have been carried out with respect to the Positive P

representation in [17] and the Gauge Poisson representation approach in [13, 33].

Renormalisation group analysis has been carried out in, for example, [34, 39, 52].

Experiments concerning grain surface chemistry under interstellar conditions with

seeds made of olivine or amorphous carbon have been carried out in [35, 47, 46, 48].

Our work provides an alternative approach for describing the kinetics of a het-

erogeneous chemical reaction which can be extended to other areas in population

dynamics.

1.2 Heterogeneous Nucleation of Aerosols

Nucleation is a relaxation process allowing a system to move forwards to thermody-

namic stability. It plays a fundamental role in processes such as condensation, pre-

cipitation, crystallisation, sublimation, boiling and freezing. In Nucleation Theory one

distinguishes between the homogeneous nucleation, that is, the condensation of a single

chemical compound on its own and the heterogeneous nucleation, that is, the conden-

sation of a compound on the surface of a pre-existing substance —the seed particle.

Many of the seed particles for heterogeneous nucleation are anthropogenic in origin

1If a system is in a steady state the recently observed behaviour of the system will continue into the
future. In stochastic systems, the probabilities that various different states will be repeated remains
constant. A system in dynamic equilbrium is also in a steady state. The reverse might not be true.
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and, in view of global climate change —see the reports of the Intergovernmental Panel

on Climate Change (IPCC)2—, it is pertinent to better understand the effect of par-

ticulate pollutants. In this thesis we will study a general framework for nucleation

kinetics which can be used to interpret experimental and observational data.

1.2.1 On the Nature of Aerosols

Aerosols are multiphase dispersed systems consisting of solid and/or liquid particles

suspended in a gas. The aerosol particles can interact with thermal, acoustic and op-

tical radiation, with gas-phase chemical species, with electric and gravitational fields.

They can be transported in gas flows and be deposited onto surfaces. They range

in size from the nanometer scale to the micrometer scale. The larger aerosols settle

to the ground by gravity in a matter of hours; the smaller aerosol particles can stay

in the atmosphere for several weeks until they are removed by precipitation. Aerosol

particles have a great impact on the environment in general, and on human lives in

particular; the latter can, for example, be illustrated by contemplating the effects of

inhaling aerosol particles causing asthma, lung cancer, cardiovascular issues, even pre-

mature death. Aerosols also play an important role in the alteration of the energy

balance of the climate system. All aerosol particles both absorb and scatter solar and

terrestrial radiation, but one can distinguish particles that pre-dominantly scatter from

those that predominantly absorb radiation, for example, sulphate aerosols and black

carbon respectively. The reflectivity of a surface or a body is measured via the albedo

which is defined as the ratio of the reflected electromagnetic radiation to the amount

incident upon it. Aerosols are thought to contribute to an effective increase in the

Earth’s albedo: an overall cooling. In addition to direct scattering of radiation, sul-

phate aerosols in particular can have an indirect effect on climate, through serving as

cloud condensation nuclei and hence affecting the size, density and lifetime of atmo-

spheric clouds.

”Atmospheric Aerosols are the product of a complicated totality of chemical and physical

processes.” [38]. Aerosols can vary widely in their composition and their physical char-

acteristics. They are either directly emitted into the atmosphere —primary sources—

or they are products of gas-to-particle conversions —secondary sources. The global

aerosol production is estimated to be between 2 × 1015g a−1 and 3 × 1015g a−1 [50].

Aerosols can be produced by humans, anthropogenic aerosols —see Figure 1.3—, or

they can arise due to natural reasons, natural areosols —see Figure 1.4. Examples for

anthropogenic sources of aerosols are: industrial wastes from chimneys, exhausts from

2See http://www.ipcc.ch
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vehicles, fires, explosions, soil erosion in agriculture, and open mining. Among the

natural aerosol sources are: sea spray evaporation, mineral dust wind, volcanic ashes,

biogenic aerosols, smokes from biota burning on land. According to [38], anthropogenic

sources have an input of 3× 1014g a−1 to 4× 1014g a−1 of aerosols to the atmosphere.

”The concentration of aerosol smog due to photochemical reactions with exhaust gases

in industrial centres reaches 2× 10−4g m−3, which is comparable with the consequences

of dust storms.” [38].

1.2.2 Heterogeneous Nucleation

Nucleation is the initial stage of a first-order phase transition3. Molecular clusters

or embryos —an aggregate of a small number of atoms or molecules— of a stable

phase form out of a metastable phase. The transformation involves emergences of

clusters of the new phase which —in a thermodynamical sense— are not necessarily

more stable than the original phase. Small clusters tend to be unstable and break

apart due to the high proportions of surface. Latent heat is transferred during the

process of nucleation. At thermodynamic equilibrium4 there is a non-zero surface

tension between the two phases. There is a critical supersaturation, or degree of

metastability of the vapour phase, required to drive nucleation forward at a chosen

rate. A vapour is called saturated when the vapour phase is in thermodynamic

equilibrium with the bulk condensate. If the vapour pressure is greater than the

pressure of the saturated vapour the vapour is supersaturated. This is a necessary

condition for nucleation to take place. Still the supersaturated phase can remain in a

metastable state in thermodynamic equilibrium for a certain time. The system has

to climb a free energy barrier before clusters become supercritical. A critical cluster

is a cluster of such size that the free energy at constant pressure and temperature

is a maximum. Clusters larger than the critical cluster are called nuclei. The time

scale for nucleation is less than microseconds and the growth process from a nucleus

to a droplet is in the millisecond range. For heterogeneous nucleation the critical

supersaturation and activation free energy or nucleation barrier are considerably lower

than for homogeneous nucleation. Typically, heterogeneous nucleation occurs soon

after the saturation ratio exceeds one, at much lower vapour concentrations than

3A phase is a region in the parameter space of thermodynamic variables in which the free energy
is analytic. Between such regions there are abrupt changes in the properties of the system, that is,
the free energy is no longer analytic in such a phase transition.

4A system is in thermodynamic equilibrium when it is in thermal equilibrium, mechanical equi-
librium and chemical equilibrium. It is characterised by the minimum of a thermodynamic potential
(Helmholtz free energy, Gibbs free energy etc.). In contrast, a dynamic equilibrium occurs when two
or more reversible processes occur at the same rate.
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homogeneous nucleation. In the atmosphere, conditions for homogeneous nucleation

are not easy to achieve, since the required vapour densities must be very much larger

than the equilibrium density. Water vapour, for example, preferentially condenses on

pre-existing surfaces.

Nucleation can be treated as a growth-decay ladder of molecular clusters. Molecules

of the gas-phase form clusters on the surface of the seed particle which grow and decay

until a critical cluster size is reached —see Figure 1.5. Henceforth, clusters with sizes

larger than the critical size grow rapidly to macroscopic sizes. The nucleation current

or nucleation rate is of special interest and is defined as the net number of clusters per

unit time that grow past the critical cluster size. Classical Nucleation Theory is based

on Gibb’s description of heterogeneous systems [24] —and was further developed

in [65, 21, 61, 51]— which has as a consequence that the critical clusters and the

evolving macrophase are characterised by similar bulk state parameters, that is, one

assigns thermodynamic properties of macroscopic systems to a microscopic entity.

Direct measurements of the characteristic properties of critical clusters are usually

very difficult to undertake. ”However, the description of the critical cluster properties

remains the main problem of the application of any nucleation theory regardless of the

approaches used to estimate the thermodynamic barrier for nucleation.” [20].

1.2.3 Introducing a Stochastic Framework to Nucleation The-

ory

The process of nucleation is driven by thermal fluctuations. Under certain circum-

stances statistical fluctuations might need to be included in the calculations. In [3] a

description using master equations instead of mean population dynamics was studied.

The values of the cluster concentrations on the surface of the seed differed in the two

approaches. Furthermore, a nucleation rate lower than the classical equations predicted

was obtained in the stochastic model. Therefore, it is important to develop a model by

which we replace the standard mean-field evolution equations5, the Becker-Döring rate

equations [2], with a stochastic dynamical framework. Since the nucleation process can

be regarded as a complex network of chemical reactions, it is natural to implement the

same stochastic framework as used to study interstellar surface chemistry.

5In many-body systems the mean-field theory replaces all interactions to any particular body with
an average interaction. This reduces a many-body problem to a one-body problem.
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Figure 1.3: Open fireplace in Hampton Court Palace: an example of an anthropogenic
aerosol source.

Figure 1.4: Clouds over London: an example of a natural aerosol source.

1.3 Overview

The common problem in heterogeneous chemical reactions and heterogeneous nu-

cleation processes that we want to address in this thesis is the implementation of a

formalism that takes into account statistical fluctuations in the time evolution of the

systems under consideration. For the correct treatment of population fluctuations

we employ methods based on the exploitation of the techniques of Quantum Field

Theory applied to classical many-body systems, [15, 16] and [45], according to the

Doi-Peliti formalism. These techniques have been summarised in the first sections of

the review paper [60]. In Chapter 2 we introduce the reader to the technical details

of the Doi-Peliti formalism concentrating on a simple example. We start from a
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Figure 1.5: Activation of aerosol particles into cloud droplets: before a critical config-
uration is reached molecules from the surrounding gas-phase of the seed particle are
gained and lost and the clusters grow and decay alternately. After a cluster has reached
a certain critical size at time tcritical the cluster will, on average, grow further easily
and eventually form a cloud or mist droplet.

master equation6, that is, the evolution equation of a probability distribution, for a

heterogeneous chemical reaction of type A + A → C. We introduce a spatial lattice

where the microstates7 of the system correspond to a set of occupation numbers at

each lattice site. A Fock space is constructed using annihilation and creation operators

at each lattice site. By means of this set-up it is easy to show that the master equation

is equivalent to a Schrödinger-like equation. This enables us to employ techniques to

a classical many-body problem that were originally developed in order to describe a

quantum mechanical system where the fluctuations are due to a quantum uncertainty.

We obtain the average particle population of the classical many-body system by

developing a mechanism for computing expectation values of observables analogous to

Feynman’s path integral formulation. Introducing a stochastic variable in a Gaussian

6See Appendix A.
7A microstate describes a specific microscopic configuration of a system. A macrostate refers to

the macroscopic configuration of the system and is characterised by a probability distribution on a
certain ensemble of microstates.
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transformation helps with the evaluation of the expression for the expectation values.

The complex fluctuating solutions to a set of constraint equations, which are stochastic

partial differential equations8, are then averaged over all realisations of the stochastic

noise. For numerical investigations, the solutions to the constraint equations can

be generated by various numerical schemes taken from [37]. A comparison of the

advantages and disadvantages between the Doi-Peliti formalism and other approaches

concludes the chapter.

In Chapter 3, exact and numerical solutions to the full dynamical evolution

equations as well as to the full stationary equations describing the evolution of the

population of chemical species in time involved in heterogeneous reaction types are

analysed. Furthermore, we highlight certain features of special cases where one of

the rate coefficients is equal to zero. We give the exact solutions to the mean-field

evolution equations of the average population of the reactants and the reaction

products in zero space dimensions which we will compare later on to the respective

quantities derived from the Doi-Peliti formalism. In order to verify the correct

implementation and the validity of the dynamical solutions according to the stochastic

framework we re-examine the steady state solution to the stationary master equation

for the probability distribution of the population of chemical reactants in the single

spatial site model. The latter can be obtained as an explicit solution in terms of

Bessel functions derived from an Ansatz based on generating functions. We emphasise

that great care has to be taken concerning the convergence of the series expansions of

the generating function solution. The steady state solution that is known from the

literature —see, for example, [27, 40, 5]— has to be restricted to a certain subspace

of the parameter space and a novel stochastic steady state solution valid in the rest of

the parameter space is presented. In the dynamical stochastic framework, the path

integral average according to the Doi-Peliti formalism provides the means to derive

the average density of reactants and reaction products. This average is computed for

the single spatial site model using Monte Carlo methods [43]. The Code is written in

the GNU C language. We expand on the models for the rate coefficients as employed

in the community of astrochemists and discuss the numerical results for various

data, especially for the heterogeneous hydrogen-hydrogen recombination and the

heterogeneous oxygen-oxygen recombination in interstellar clouds. We investigate the

dependence of the results on the rate with which molecules are accreted onto the grain

particle as well as the dependence on the grain surface temperature and compare our

8Stochastic differential equations are differential equations with an additional random term with
given stochastic properties.
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findings in the mean-field approximation, the stochastic steady state results and the

late-time value of the stochastic dynamical solution. We comment on the Stochastic

Gauge representation and —after a short summary— end the chapter with some

suggestions for some possible further work.

Chapter 4 is concerned with the extension of our calculations of heterogenoues

chemical reactions of type A + A → C from zero space dimensions to one space

dimension. We impose periodic boundary conditions and continue our analysis in

the same fashion as in the previous chapter for chemical reactions taking place on

the surface of a seed particle of the geometrical form of a ring. We conclude that

for homogeneous surfaces and periodic boundary conditions the stochastic results are

qualitatively the same as obtained in the single spatial site model. There are plenty

of future projects that could expand on that basis.

The hydrogen-oxygen chemical reaction network is of particular interest since it

is thought to be the main production route leading to the large abundance of water

ice in dense cold sources. Therefore, we focus our attention on chemical reaction

networks in Chapter 5. We start with the following class of heterogeneous chemical

reactions, namely, A + B → C. A stability analysis of the mean-field evolution

equations shows that for specific special cases instabilities might occur. We derive the

form of the stochastic constraint equations and the path integral average according

to the Doi-Peliti formalism. Furthermore, we formulate the master equation for the

hydrogen-oxygen network and obtain, by generalising the Gaussian transformation,

the corresponding set of coupled stochastic partial differential equations constraining

the fluctuating field associated with the density of reactants on the surface of the seed.

We note that a thorough discussion with regards to the numerical evolution of the

constraint equations is needed since the stochastic equations are stiff for interstellar

conditions.

In Chapter 6 we focus on nucleation processes taking place on foreign substances.

After a short introduction to the Classical Nucleation Theory, we confront the

predictions of the nucleation current in the Fletcher theory and in the Becker-Döring

model. We employ various models concerning the form of the rate coefficients and

analyse the overall behaviour of the evolution of the mean cluster concentrations and

of the nucleation current according to the mean-field rate equations, namely, the

Becker-Döring equations. We compare the value of the nucleation current with regards

to the Fletcher theory, the kinetic Becker-Döring nucleation rate and the dynamical
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Becker-Döring nucleation rate with experimental data considering the attachment of

monomers from the surrounding gas-phase of the seed to clusters preciding on the

surface of the seed particle. We proceed with the calculations for an effective surface

tension of the vapour-liquid interface and include growth processes of clusters on the

surface of the pre-existing particle that are due to diffusion on the surface of the seed

in the model. In order to take statistical fluctuations in heterogeneous nucleation

processes into account, we derive the constraint equations according to the Doi-Peliti

formalism in analogy to Chapter 5 where we studied chemical reaction networks. A

comparison between the mean-field framework and the stochastic framework is made

for a simple choice of rate coefficients.

We complete the thesis in Chapter 7 with some concluding remarks.

We want to point out that the definition of equilibrium will not be used in the

sense of a thermodynamical equilibrium but rather in a broader context. We under-

stand ”equilibrium” as a sort of steady state that is the result of a late-time limit in

a dynamical evolution. The words ”steady state” will not be used as they convey the

idea of a solution to a non-dynamical equation, that is an equation where the time

derivatives are set to zero.

A list of symbols used in this thesis can be found in Appendix F.
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Chapter 2

The Doi-Peliti Formalism

In this chapter we give an overview of the mathematical techniques employed to develop

a dynamical stochastic framework to deal with the evolution of average densities of

molecules or clusters diffusing on pre-existing surfaces. Our numerical investigations

are based on the Doi-Peliti formalism —see [15, 16, 45, 60] which encorporates methods

of Second Quantisation, Path Integral Calculations, Stochastic Differential Equations

and the Monte Carlo Approximation Methods among others. Subindices identifying

the particle type are suppressed when the context is clear. A schematic overview of

the mathematical procedures is given in Figure 2.6.

2.1 Master Equation and Schrödinger-like Equa-

tion

In this chapter, we concentrate on the prototypical heterogeneous chemical reactions

of type A + A −→ C, that is, situations in which atoms of a chemical species A

are adsorbed onto grain particles where they can react with each other to produce

diatomic molecules of another chemical species C —see Figure 2.1 and Figure 2.2. The

probability of two reaction partners to form a particle of species C in the surrounding

gas-phase of the seed is assumed to be negligible. We expect that when the number of

incoming reactive species on an individual grain is small, the mean-field rate equations

will fail to accurately describe the diffusive chemistry occurring on the surface of

the grain particle since they do not take into account statistical fluctuations. As

an alternative to the mean-field equations one can make use of a master equation.

We start our investigations by presenting the master equation that describes the

heterogeneous chemical process A + A −→ C. In the model to be considered one has

a D-dimensional lattice L with lattice constant l, the microstates correspond to the
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occupation numbers Ni, where i is a multi-index denoting the location in the lattice.

On the lattice, we assume that particles of a certain chemical species A perform a

continuous-time random walk. Molecules of species A are taken not to interact with

each other except when they occupy the same lattice site and form a reaction product

of chemical species C. In addition, particles of type A and C are allowed to occupy

the same site.

The dynamics of this stochastic system is modelled by the following master

equation:

dP ({NA}, {NC}; t)
dt

= ῑA
∑
i

(
P (..., NAi − 1, ..., {NC}; t)− P ({NA}, {NC}; t)

)
+

ῑC
∑
i

(
P ({NA}..., NCi − 1, ...; t)− P ({NA}, {NC}; t)

)
+

κ̄AA
∑
i

(
(NAi + 2)(NAi + 1)P (..., NAi + 2, ...NCi − 1, ...; t)−

NAi(NAi − 1)P ({NA}, {NC}; t)
)

+

λ̄A
∑
i

(
(NAi + 1)P (..., NAi + 1, ..., {NC}; t)−NAiP ({NA}, {NC}; t)

)
+

λ̄C
∑
i

(
(NCi + 1)P ({NA}, ..., NCi + 1, ...; t)−NCiP ({NA}, {NC}; t)

)
+

ζ̄A
∑
〈ij〉

(
(NAi + 1)P (..., NAi + 1, NAj − 1, ..., {NC}; t)−NAiP ({NA}{NC}; t) +

(NAj + 1)P (..., NAi − 1, NAj + 1, ..., {NC}; t)−NAjP ({NA}, {NC}; t)
)

+

ζ̄C
∑
〈ij〉

(
(NCi + 1)P ({NA}, ..., NCi + 1, NCj − 1, ...; t)−NCiP ({NA}{NC}; t) +

(NCj + 1)P ({NA}, ..., NCi − 1, NCj + 1, ...; t)−NCjP ({NA}, {NC}; t)
)
.

(2.1)

The above equation (2.1) describes the evolution of the probability distribu-

tion P ({NA}, {NC}; t) for the total number of adsorbed molecules {NA} :=

{NA1 , NA2 , NA3 , ..., NAimax
} of species A where imax is the maximum number of lattice

sites and for the number of reaction products {NC} := {NC1 , NC2 , NC3 , ..., NCimax
}

of species C. The symbols NAi and NCi denote the number of A or C molecules at

lattice site i, respectively. The rate coefficient ῑ is called the source rate and gives the

rate at which atoms from the gas-phase are adsorbed onto the grain surface. The rate
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Figure 2.1: Seed particle —illustrated by the blue sphere— and several molecules of
the chemical species A —represented by the red discs— and of the chemical species C
—represented by the green discs— moving freely in the vicinity of the seed particle.
Eventually, some particles of species A or C will impinge upon the surface of the seed
particle and can, in turn, be emitted from the surface into the vicinity of the seed
particle.

coefficient λ̄ is called the evaporation rate and denotes the rate at which atoms are

evaporated from the grain surface into the gas-phase. The rate coefficient κ̄ is known

as the reaction rate and gives the rate with which two atoms react at the same lattice

site. The diffusion rate constant ζ̄ describes the rate at which the particles move on

the lattice.

In our model, the chemical reaction is taking place on a D-dimensional lattice,

allowing for multiple occupancy on each site —see Figure 2.3. This configuration is

also called the bosonic representation. The changes in population which we consider

are caused by:

1. adsorption of molecules of species A from the surrounding gas-phase of the grain

particle (first line in equation (2.1)), and adsorption of molecules of species C

from the surrounding gas-phase of the grain (second line in equation (2.1)),

2. binary reaction on the surface of the grain (third and fourth line in equation

(2.1)),
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Figure 2.2: Molecules of the chemical species A and C can be adsorbed onto the
surface of the seed at a rate ι and desorbed from the surface of the seed at a rate λ.
The molecules of species A and C are assumed to move across the surface of the seed
particle at a rate ζ. On the surface of the grain, molecules of species A can collide,
react and form a particle of chemical species C at a rate κ.

3. evaporation of molecules of species A from the grain into the surrounding gas-

phase (fifth line in equation (2.1)), and evaporation of molecules of species C

from the grain particle into the surrounding gas-phase (sixth line in equation

(2.1)),

4. particle hopping of molecules of species A from lattice site i to lattice site j

(seventh line in equation (2.1)), and particle hopping of molecules of species C

from site i to site j (ninth line in equation (2.1)),

5. particle hopping of molecules of species A from lattice site j to lattice site i

(eighth line in equation (2.1)), and particle hopping of molecules of species C

from site j to site i (last line in equation (2.1)).

In terms of the master equation (2.1) the above mentioned processes have the follow-

ing consequences on the evolution of the probability distribution: for example, the

probability P ({NA}, {NC}; t) of finding a certain number of A or C particles at a spe-

cific lattice site increases at a rate ῑAP (NA − 1, {NC}; t) when an atom of species A

is adsorbed onto a grain particle that has already {NA} − 1 adsorbed atoms on the
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Figure 2.3: Portion of the 2-dimensional lattice on which the chemical reaction A +
A −→ C takes place. On each lattice site we allow multiple occupancy. The changes
in population are caused by adsorption and evaporation of molecules, by hopping of
molecules from site i to site j and by binary reaction between the A molecules.

surface and decreases at a rate of ῑAP ({NA}, {NC}; t) when an A atom is adsorbed

onto a grain with {NA} atoms on the surface. Furthermore, the probability distribu-

tion P ({NA}, {NC}; t) decreases when an A atom is desorbed from a grain that has

{NA} atoms on the surface and increases when an A atom is desorbed from a grain

with {NA}+ 1 adsorbed A atoms present on the surface of the grain with the respec-

tive rates of λ̄A{NA}P ({NA}, {NC}; t) and λ̄A({NA} + 1)P ({NA} + 1, {NC}; t). The

remaining terms can be explained in the same fashion. The summation in equation

(2.1) indicated by the symbol
∑
〈ij〉 is taken over nearest neighbour sites only. The

factors (NXi + 2), (NXi + 1), NXi , (NXi − 1) describe the number of ways of choosing

particles of species X involved in the considered process. The random initial condition

is chosen corresponding to a Poissonian distribution1 on each lattice site

P ({NA}, {NC}; t ≡ 0) = e−n̄A(0)−n̄C(0)
∏
i

n̄A(0)NAi n̄C(0)NCi

NAi !NCi !
, (2.2)

where n̄A(0) and n̄C(0) are the initial average occupation numbers per lattice site for

1See Appendix A.
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the A and C particles, respectively.

Second Quantised Representation

In the next step we apply the methods of Second Quantisation according to the

publications by Doi [15, 16] with the long-term goal in mind to map the framework

of the dynamics of the heterogeneous chemical reaction system to a field theory. We

rewrite the master equation as a Schrödinger-like equation for a many-body wave

function2. This approach can be justified by noting that, first of all, the master

equation is a differential equation of first order with respect to time, and also, the

master equation is linear in the probability.

In order to simplify the notation we will suppress the dependence on space co-

ordinates x = (x1, x2, ..., xD). We work in an appropriate mathematical space, the

Fock space. A Fock space Fν(H) is a Hilbert space3 made from the direct sum of

tensor products of single-particle Hilbert spaces H

Fν(H) =
∞⊕
n=0

SνH⊗n, (2.3)

with Sν a symmetrising (in the case of bosons) or antisymmetrising (in the case of

fermions) operator. The Fock space is constructed by introducing the following oper-

ators at each lattice site i:

+
ai, i ∈ L : creation operator ,
−
ai, i ∈ L : annihilation operator ,

which satisfy the commutation relations

1

2
[
+
ai,
−
aj] :=

1

2
(
+
ai
−
aj −

−
ai

+
aj) = δij. (2.4)

The vacuum state |{0}〉 is defined by

−
ai |{0}〉 = 0 ∀i ∈ L, (2.5)

2More precisely, one obtains a Schrödinger equation with imaginary time. The substitution t→ it
(Wigner rotation) cancels out the imaginary i in the Schrödinger equation so that one is working with
an equation on R.

3A Hilbert space is an inner product space (vector space in which distances and angles can be
measured) that is complete (the limit of a sequence of vectors is an element of the vector space).
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with

|{0}〉 :=
⊗
j

|0j〉, (2.6)

where |0j〉 denotes the vacuum state in a single-particle Hilbert space.

It can be shown that the master equation (2.1) is equivalent to the Schrödinger-like

equation
d

dt
|Ψ(t)〉 = −H[

+
aAi ,

−
aAj ,

+
aCk ,

−
aCl ]|Ψ(t)〉, (2.7)

with the many-body wave function

|Ψ(t)〉 :=
∑

{NA},{NC}

P ({NA}, {NC}; t)
∏
i

(
+
aAi)

NAi (
+
aCi)

NCi |{0}〉, (2.8)

which is, in general, a non-Hermitian time evolution operator (quasi-Hamiltonian)4.

The Hamiltonian operator for the heterogeneous chemical reaction of type A+A→ C

reads

H[
+
aAi ,

−
aAj ,

+
aCk ,

−
aCl ] =

∑
M∈{A,C}

∑
i

(
+
aMi
−1i)(ῑM1i − λ̄M

−
aMi

)−

κ̄AA
V

∑
i

( +
aCi −

+
a

2

Ai

) −
a

2

Ai
+∑

M∈{A,C}

ζ̄M
∑
〈ij〉

(
+
aMi
− +

aMj
)(
−
aMi
− −aMj

).

(2.10)

The Schrödinger-like equation (2.7) is formally solved by

|Ψ(t)〉 = exp (−Ht)|Ψ(0)〉, (2.11)

with

|Ψ(0)〉 :=
∑

{NA},{NC}

e−n̄A(0)−n̄C(0)
∏
i

n̄A(0)NAi n̄C(0)NCi

NAi !NCi !
(
+
aAi)

NAi (
+
aCi)

NCi |{0}〉. (2.12)

For the verification of the equivalence between the master equation (2.1) and the

Schrödinger equation (2.7) one has to insert the states
∏

i(
+
aAi)

NAi (
+
aCi)

NCi |{0}〉 on

4A Hamiltonian is the observable corresponding to the total energy of the system. A Hermitian
operator H satisfies

〈u|Hv〉 = 〈Hu|v〉. (2.9)

Hermitian operators have real eigenvalues and orthogonal eigenfunctions.
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both sides of the master equation —equation (2.1)— and sum over the set of all occu-

pation numbers {NA} and {NC}. The form of the many-body wave function (2.8) can

be made plausible when considering the state vector |Ni〉 at site i ∈ L, namely,

|Ni〉 :=
+
a
Ni

i |0i〉. (2.13)

It holds that
−
ai |Ni〉 = Ni|Ni − 1〉, +

ai |Ni〉 = |Ni + 1〉. (2.14)

2.2 Expectation Values of Observables

We are interested in obtaining the expectation values for specific observables, in par-

ticular, the average number density of the chemical reaction partners and products

involved in the heterogeneous chemical reaction A + A → C. With respect to the

latter considerations, the expectation values of observables O are given by

〈O〉 :=
∑
{Ni}

O({Ni})P ({Ni}; t). (2.15)

We want the expectation values of the observables to be linear in the probabilities

according to the classical microscopic theory. The above expression (2.15) can be

rewritten in terms of projection states. A projection state 〈{P}| is defined as

〈{P}| := 〈{0}|e
P
j

−
aj . (2.16)

By definition, the projection state is a left eigenstate of all creation operators with unit

eigenvalue

〈{P}| +
ai= 〈{P}| ∀i ∈ L, (2.17)

and obeys the relation

〈{P}|{0}〉 = 1. (2.18)

Furthermore,

〈{P}|Ψ(t)〉 = 1. (2.19)

Conservation of probability of the master equation requires that

〈{P}|H = 0. (2.20)
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From the above mentioned properties of the projection state it follows that

〈O〉 =
∑
{Ni}

O({Ni})P ({Ni}; t) =
∑
{Ni}

〈{P}|O(
−
ai

+
ai)
∏
i

(
+
ai)

Ni |{0}〉P ({Ni}; t)

= 〈{P}|O(
−
ai

+
ai)|Ψ(t)〉. (2.21)

When interested in, for example, the average number of particles at a given lattice site

irrespective of the number of particles elsewhere it is convenient to commute the factor

of e
P
i

−
ai through to the right in the operators O and H in equation (2.28). This has

the effect of shifting
+
a→+

a +1 using e
−
a +
a= (

+
a +1)e

−
a . The operators are then normal

ordered. A similar manipulation, the Doi shift can be performed in the field theory by

a corresponding field shift. The operator O and its normal ordered counterpart have

the same expectation value if all creation operators occurring in the normal ordered

operator are replaced by the identity operator —see for example [60]. In particular, the

density operator
+
a
−
a reduces to the annihilation operator

−
a. After having performed the

Doi shift we assume that the operator O depends only on the annihilation operators.

Coherent State Representation

We divide the temporal evolution into T time slices of infinitesimal size 4t = tT−1:

|Ψ(t)〉 = lim
4t→0

exp (−H4t)
t
4t |Ψ(0)〉. (2.22)

Before the limit 4t → 0 is taken, the second quantised operators are mapped onto

complex numbers by inserting a complete set of coherent states |Ci(t)〉 at each time

slice. Coherent states are right eigenstates of the annihilation operator

−
ai |Ci(t)〉 = ϕi(t)|Ci(t)〉 i ∈ L, (2.23)

where the eigenvalue ϕi(t) is a complex function. The duals 〈Ci(t)| are left eigenstates

of the creation operator

〈Ci(t)|
+
ai= 〈Ci(t)|ϕ∗i (t) i ∈ L, (2.24)

with ϕ∗i (t) denoting the complex conjugate of the eigenvalue ϕi(t). We have, in the

basis of state vectors,

|Ci(t)〉 := e−
1
2
|ϕi(t)|2+ϕi(t)

+
ai |0i〉,

〈Ci(t)| := 〈0i|e−
1
2
|ϕ∗i (t)|2+ϕ∗i (t)

−
ai . (2.25)
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The coherent states are over-complete. Still, one can use them to create the identity

1 =
1

π

∫
d[<(ϕi)]d[=(ϕi)]|Ci(t)〉〈Ci(t)|, (2.26)

for a single lattice site i ∈ L, and for multiple lattice sites accordingly,

1 =

∫ ∏
i

(
1

π
d[<(ϕi)]d[=(ϕi)]

)
|{C(t)}〉〈{C(t)}|, (2.27)

with |{C(t)}〉 :=
⊗

j |Cj(t)〉. Let us recall the formula for the expectation values of

observables

〈O〉 = 〈{P}|O|Ψ(t)〉 = 〈{0}|e
P
i

−
aiOe−Ht|Ψ(0)〉, (2.28)

where the initial many-body wave function takes the form —see equations (2.2) and

(2.8)—

|Ψ(0)〉 := en̄(0)
(P

i

+
ai−1
)
|{0}〉. (2.29)

We observe the following proportionalities:

〈{P}| ∝ 〈{C1(t)}|, (2.30)

and for Poissonian initial conditions we have

|Ψ(0)〉 ∝ |{Cn̄(0)(t)}〉, (2.31)

with

〈{C1(t)}| := 〈{C(t)}|ϕ∗j=1 = 〈{0}|e−
1
2

+
P
i

−
ai ,

|{Cn̄(0)(t)}〉 := |{C(t)}〉ϕj=n̄(0) = e−
1
2
|n̄(0)|2+n̄(0)

P
i

+
ai |{0}〉, (2.32)

for all admissible values of j. Therefore, one can recast the equation for the expectation

values (2.28) into

〈O(t)〉 ∝ 〈{C1(t)}|Oe−Ht|{Cn̄(0)(t)}〉. (2.33)

We break the time interval [t0, tT ] into T short slices of duration 4t = tT−t0
T

. We

rewrite the expression

e−Ht = e−H4te−H4t.....︸ ︷︷ ︸
T times

, (2.34)

occurring in the equation for the expectation values (2.33) and insert the identity as

defined in (2.27) between each factor [6]. As a consequence, the discrete version of the
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expectation values of operators O(t) reads

〈O(t)〉 ∝ lim
4t→0

∫ (∏
i,τ

d[<(ϕi,τ )]d[=(ϕi,τ )]

)
〈{C1}|O|{C}T 〉 × · · ·

· · · ×
( T∏
τ=4t

〈{C}τ |e−H4t|{C}τ−4t〉
)
〈{C}τ=0|{Cn̄(0)}〉, (2.35)

where we have labelled each time slice by a time index τ ∈ [0,4t, 24t, ..., T ]. The

normalisation constant will be determined later on. One has that

〈{C}τ | exp
(
−H(

+
ai
−
ai)4t

)
|{C}τ−4t〉 = 〈{C}τ |{C}τ−4t〉 exp (−H({ϕ∗}τ , {ϕ}τ−4t)4t),

(2.36)

where the function H is obtained via

H({ϕ∗}τ , {ϕ}τ−4t) ∝ 〈{C}τ |H(
+
ai
−
ai)|{C}τ−4t〉, (2.37)

and

〈{C}τ |{C}τ−4t〉 =
∏
i

〈Ci,τ |Ci,τ−4t〉

=
∏
i

exp
(
−ϕ∗i,τ

(
ϕi,τ − ϕi,τ−4t

))
exp

(
1

2
|ϕi,τ |2 −

1

2
|ϕi,τ−4t|2

)
, (2.38)

where we use the overlap relation for two coherent states |Cα〉 and |Cβ〉 with eigenvalues

Cα and Cβ between different time slices, respectively:

〈Cα|Cβ〉 = exp

(
−1

2
|Cα|2 −

1

2
|Cβ|2 + C∗αCβ

)
. (2.39)

The contributions of the second exponential in (2.38) cancel except for the initial and

final time slice. At each time slice τ the first exponential renders

exp

(
−ϕ∗i,τ

dϕiτ
dt
4t+O(4t2)

)
, (2.40)

since O = O(
−
ai) and

〈{C1}|O(
−
ai)|{C}T 〉 = 〈{C1}|{C}T 〉O({ϕ}T ), (2.41)

59



where the functional5 O({ϕ}T ) is derived by replacing the annihilation operators with

the complex eigenvalue functions in the operator expression O(
−
ai). The remaining

factors that do not cancel, 〈{C1}|{C}T 〉〈{C}T |, give

∏
i

exp
(
− ϕ∗1,i(ϕ1,i − ϕi,T ) +

1

2
|ϕ1,i|2 −

1

2
|ϕi,T |2 +

1

2
|ϕi,T |2

)
∝ exp

∑
i

ϕi,T , (2.42)

with ϕ1,i = 1 for all i. The factors arising from |{C}0〉〈{C}0|{Cn̄(0)}〉 are

∏
i

exp
(
ϕ∗i,0n̄(0)− 1

2
|ϕi,0|2 −

1

2
|ϕi,0|2 −

1

2
|n̄(0)|2

)
∝ exp

∑
i

(n̄(0)ϕ∗i,0 − |ϕi,0|2). (2.43)

The time ordering of the eigenvalue functions and the complex conjugate of the eigen-

value functions in the arguments of the quasi-Hamiltonian is assumed not to be an

issue with the understanding of the complex conjugates to follow in time the original

fields. We expand the exponential function for small 4t, neglect higher order terms in

4t and, in the limit 4t→ 0, obtain the following expression for the expectation value

of an operator O:

〈O(t)〉 ∝
∫ ∏

i

DϕiDϕ
∗
iO({ϕ}T ) exp (−S({ϕ∗}, {ϕ})), (2.44)

where D denotes the measure of the functional integral6 and with the action functional7

S({ϕ∗}, {ϕ})

S({ϕ∗}, {ϕ}) =
∑
i

(
−ϕi(T )− n̄(0)ϕ∗i (0) + |ϕi(0)|2 +

∫ T

0

dt (ϕ∗i (t)∂tϕi(t) +H({ϕ∗}, {ϕ}))
)
.

(2.45)

5A functional is a function on a function space B that determines uniquely a number in R for each
element in B.

6In contrast to the domain of an ordinary integral which is a region in spacetime, the domain of a
functional integral is a space of functions.

7The evolution of a physical system corresponds to the requirement of the action being stationary
for small perturbations about the true evolution.
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After having performed the field theoretic Doi shift, the shifted action reads

S̃({ϕ̃}, {ϕ}) =
∑
i

(
− n̄A(0) + n̄A(0)(ϕ̃A,i(0)− n̄A(0))−

n̄C(0) + n̄C(0)(ϕ̃C,i(0)− n̄C(0)) +∫ T

0

dt
(
ϕ̃A,i(t)∂tϕA,i(t) + ϕ̃C,i(t)∂tϕC,i(t) + H̃({ϕ̃}, {ϕ})

))
,

(2.46)

where —following the procedure of [60]— one has the shifted Hamiltonian

H̃[{ϕ}, {ϕ̃}] = −ϕ̃A,i(t)(ῑA − λ̄AϕA,i(t))− ϕ̃C,i(t)(ῑC − λ̄CϕC,i(t)) +

κ̄AA(2ϕ̃A,i(t) + ϕ̃2
A,i(t)− ϕ̃C,i(t))ϕ2

A,i(t)−

ϕ̃A,i(t)ζ̄A∆ϕA,i(t)− ϕ̃C,i(t)ζ̄C∆ϕC,i(t), (2.47)

where ∆ :=
∑D

k=1
∂k

∂xk
is the Laplace operator. The symbol ϕ̃(t) is the shifted eigenvalue

of the dual of a coherent state under the creation operator defined by ϕ̃(t) := ϕ∗(t)−1.

Accordingly, all fields F that incorporate shifted eigenvalues instead of the original

eigenvalues will be denoted by the symbol F̃ in the sequel. In a next step, we take

the continuum limit of the lattice expectation value via

∑
i

−→
∫
l−D dDx. (2.48)

The dimensions of the unknown functions and of the constants are chosen by examining

the discrete Hamiltonian operator (2.10):

ϕAi,Cj(t)→ ψA,C(x, t)lD, ϕ̃Ai,Cj(t)→ ψ̃A,C(x, t),

ζ̄A,C → ζA,C l
−2, κ̄AA → κAAl

−D,

λ̄A,C → λA,C , ῑA,C → ιA,C l
D,

n̄A,C(0)→ nA,C(0)lD. (2.49)

61



initial point

final point

Figure 2.4: Different paths from the initial point to the final point: the path integral
sums up all possible paths from the initial to the final point with a certain weight.

The object ψ̃A,C(x, t) is dimensionless and ψA,C(x, t) scales like a density. The newly

introduced quantities have the following Standard International Units:

[ψA,C(x, t)] = m−D, [ζA,C ] = m2s−1,

[κAA] = mDs−1, [ιA,C ] = m−Ds−1,

[λA,C ] = s−1, [nA,C(0)] = m−D. (2.50)

In the continuum limit, the average particle density for the A molecules in the Doi-Peliti

formalism is given by the path integral average of the complex eigenvalue functions of

the coherent state vectors under the annihilation operator:

〈ψA(x, t)〉 := 〈{0}|ψA(x, t)e−S̃[ψ,ψ̃]|{0}〉

=

∫
DψADψCDψ̃ADψ̃CψA(x, t)e−S̃[ψ,ψ̃]∫

DψADψCDψ̃ADψ̃Ce−S̃[ψ,ψ̃]
.

(2.51)

For an illustration of the interpretation of a path integral see Figure 2.4 and Figure

2.5. The shifted action S̃ for the chemical reaction A + A −→ C in the continuum
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x0 x1 x2 x3 xD-1 xD 
t0 

TΔt 

Δt 
2Δt 
3Δt 

(T-1)Δt 

Figure 2.5: Definition of the path integral: we divide the time interval [t0, tT ] into
small time slices 4t = tT−1 and integrate over the coordinates xk of each slice. In the
continuum limit, 4t→ 0.

limit is given by

S̃[ψA, ψ̃A, ψC , ψ̃C ] :=

∫
dDx

(
− nA(0) + nA(0)(ψ̃A(x, 0)− nA(0))−

nC(0) + nC(0)(ψ̃C(x, 0)− nC(0)) +∫ tT

0

dt
(
ψ̃A(x, t)

∂ψA(x, t)

∂t
+ ψ̃C(x, t)

∂ψC(x, t)

∂t
+

H̃[ψA(x, t), ψ̃A(x, t), ψC(x, t), ψ̃C(x, t)]

)
,

(2.52)

with the shifted Hamiltonian H̃ in the continuum limit

H̃[ψA, ψ̃A, ψC , ψ̃C ] = −ψ̃A(x, t)(ιA − λAψA(x, t))− ψ̃C(x, t)(ιC − λCψC(x, t)) +

κAA(2ψ̃A(x, t) + ψ̃2
A(x, t)− ψ̃C(x, t))ψ2

A(x, t)−

ψ̃A(x, t)ζA∆ψA(x, t)− ψ̃C(x, t)ζC∆ψc(x, t). (2.53)
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Reverse Standard Field Theory Representation of a Langevin-type8 Stochas-

tic Partial Differential Equation

In order to obtain an action linear in the eigenvalue functions ψ̃(x, t) we introduce an

auxiliary field, η(x, t). We want to untangle the quadratic term9 ψ̃2
A(x, t) in the second

line of the above formula (2.53). A linear expression in ψ̃A(x, t) can be obtained by

means of a Gaussian transformation:

e−κAA
R tT
0 dt

R
dDxψ̃2

A(x,t)ψ2
A(x,t) ∝

∫
Dη P [η]ei

√
2κAA

R tT
0 dt

R
dDxψ̃A(x,t)ψA(x,t)η(x,t), (2.54)

where P [η] is the Gaussian probability distribution for a white noise10 η(x, t),

P [η] = e−
1
2

R tT
0 dt

R
dDxη2(x,t). (2.55)

The above procedure leads to the shifted action S̃ being linear in ψ̃A. Thus, one

can integrate out over ψ̃A(x, t) and ψ̃C(x, t) in (2.51) which results in the following

expression:

〈O[ψA, ψC ]〉 ∝
∫

DψADψCDη O[ψA, ψC ]δ[FA]δ[FC ]δ[FA0 ]δ[FC0 ]P [η]

∝
∫

Dη O[ψ̄A[η(x, t),x, t], ψ̄C [η(x, t),x, t]]P [η],

(2.56)

where δ[F ] is a functional Dirac delta distribution11. In its generalised Fourier repre-

sentation it is defined by

δ[F ] := constant

∫
Dγ(y)e

R
dyγ(y)F [z(y),y], (2.58)

8See Appendix A.
9Note that this manipulation is only applicable for binary chemical reactions.

10See Appendix A.
11A Dirac Delta Function is, loosely speaking, a ’function’ that has the value zero everywhere except

if the argument is equal to zero where its value is infinitely large in such a way that its total integral
is one. Mathematically more rigorous is the following definition∫ ∞

−∞
f(x)δ(dx) = f(0), (2.57)

for all continuous compactly supported functions f , the integral a Lesbegue integral and δ a measure.
The Dirac delta function may be seen as a continuous analog of the Kronecker delta.
A Dirac Delta Functional is regarded as a generalised function of the above definition.
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with γ(y) an arbitrary function and z(y) being a multicomponent field satisfying the

constraint

F [z(y), y] = 0. (2.59)

Accordingly, the functions ψ̄A[η(x, t),x, t] and ψ̄C [η(x, t),x, t] satisfy the following con-

straint equations:

FA[ψ̄A(x, t),x, t] ≡ −∂ψ̄A(x, t)

∂t
+ ζA∆ψ̄A(x, t)− 2κAAψ̄

2
A(x, t)− λAψ̄A(x, t) +

ιA + i
√

2κAAψ̄A(x, t)η(x, t) = 0, (2.60)

FC [ψ̄C(x, t),x, t] ≡ −∂ψ̄C(x, t)

∂t
+ ζC∆ψ̄C(x, t) + κAAψ̄

2
A(x, t)−

λCψ̄C(x, t) + ιC = 0, (2.61)

FA0 [ψ̄A(x, 0),x, 0] ≡ ψ̄A(x, 0)− nA(0) = 0, (2.62)

FC0 [ψ̄C(x, 0),x, 0] ≡ ψ̄C(x, 0)− nC(0) = 0, (2.63)

The remaining term incorporating the initial conditions cancels out in the normalisation

of the average. It follows from equation (2.56) that the average particle densities for

the A and C molecules on the surface of the grain, respectively, are given by the path

integral average (PIA)

〈ψA,C(x, t)〉 =

∫
Dη ψ̄A,C [η(x, t),x, t]e−

1
2

R tT
0 dt

R
dDxη2(x,t)∫

Dηe−
1
2

R tT
0 dt

R
dDxη2(x,t)

. (2.64)

The stochastic noise η(x, t) has zero mean value

〈η(x, t)〉P[η] = 0, (2.65)

and unit variance, that is, an auto-correlation given by

〈η(x, t)η(x′, t′)〉P[η] = δ(D)(x− x′)δ(t− t′), (2.66)

where δ denotes a Dirac Delta distribution. The above feature becomes evident when

considering the Gaussian distribution (2.55). The constraint equation (2.60) is an

inhomogeneous partial stochastic differential equation with multiplicative noise for a

complex fluctuating unknown field. Equations (2.60) and (2.61) resemble the deter-

ministic partial differential equations that describe the evolution of the mean particle
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Figure 2.6: Schematic of the Doi-Peliti Formalism.

densities 〈nA(x, t)〉 and 〈nC(x, t)〉 in the mean-field theory:

−∂〈nA(x, t)〉
∂t

+ ζA∆〈nA(x, t)〉 − 2κAA〈nA(x, t)〉2 − λA〈nA(x, t)〉+ ιA = 0,

−∂〈nC(x, t)〉
∂t

+ ζC∆〈nC(x, t)〉+ κAA〈nC(x, t)〉2 − λC〈nC(x, t)〉+ ιC = 0.

(2.67)

Despite this suggestive interpretation it is very important to keep in mind that in

equation (2.61) we are confronted with a complex fluctuating quantity that has, as

such, no physical interpretation. Only if the path integral average, equation (2.64), of

a solution to the set of constraint equations (2.60), (2.61), (2.62) and (2.63) is taken over

all possible realisations of the stochastic noise that appears in the constraint equations

can one interpret the outcome of this computation as a mean particle density.
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2.3 Comparison of the Doi-Peliti Formalism to

other Approaches

2.3.1 Positive P Representation or Fokker-Planck Approach

The Positive P representation —see, for example, [25, 14]— is a tool to map the master

equation for birth and death processes into more tractable stochastic differential equa-

tions. Other representations are the W, Q, P, and R representations which will not

discuss here. It is an alternative method by which one derives the same set of stochas-

tic equations and the mean density of chemical reactants as given by the Doi-Peliti

formalism via a Fokker-Planck equation instead of via a Schrödinger-like equation.

The latter has the advantage that at least in the case of the simple chemical reaction

A + A → C the form of the noise coefficients and the nature of the noise itself arise

naturally and without having to make certain assumptions beforehand. The Positive

P representation results in a stochastic time evolution with a positive propagator. One

uses a basis of coherent states which are not orthogonal. That allows a certain freedom

of choice in the construction of the representation. Provided that certain boundary

terms vanish one can generate a Fokker-Planck equation12 from the master equation

which in turn can be converted into a set of stochastic Langevin-type equations. The

solutions of the latter have to be averaged over many realisations of the stochastic

process. The biggest problem in the Positive P representation is the boundary terms.

In the derivation of the Fokker-Planck equation it is assumed that certain boundary

terms arising in the partial integration can be neglected. This is not always the case.

Therefore, systematic errors in the stochastic averages can occur especially with non-

integrable dynamical systems. The standard time-evolution equation is invalid when

non-linear terms are large relative to the other (linear) rates. The boundary terms

in the derivation of the Fokker-Planck equation become non-negligible. The so-called

Gauge-Poisson techniques eliminate boundary terms to give an exact representation as

a weighted rate equation with stochastic terms.

2.3.2 Direct Master Equation Approach

The basis for the Direct Master Equation Approach —cfr. [27, 4]— is the chemical

master equation for the state probability distribution. The probability distribution is

represented as a discrete set of many-body probabilities. Integration of the equations

and suitable summation give the average abundances. The coupling to the rate equa-

12See Appendix A.
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tions for gas-phase concentrations is easy. Yet, the biggest drawback of the Direct

Master Equation Approach is that the number of equations scales with the number

of molecules involved in the chemical reaction processes and not with the number of

species. For example, for eleven species involved in a chemical reaction network one

has to solve 6912 equations.

There is an attempt to resolve this problem in the Moments Equation Approach —

see, for example, [1]— which is a modification of the Direct Master Equation Approach.

However, new problems have emerged since the numerical code breaks down in the

deterministic regime and gives negative abundances.

2.3.3 Monte Carlo Simulations

One way to solve the master equation is by means of macroscopic Monte Carlo tech-

niques —see [9, 10, 59] — which are based on the Gillespie algorithm [26]. In the

Continous-Time Random-Walk (CTRW) Monte Carlo simulation —for a detailed de-

scription of the method we refer to [8]— microphysical processes are considered. It

determines the propagation of a microstate of a system forward in time via a Monte

Carlo algorithm. This method derives linear differential equations from the master

equation which yield the time dependence of a probability density. For one possible

evolution of the system one defines a most likely time interval (derived from an expo-

nential time distribution) and finds the most likely process that occurs in that interval.

This calculation is undertaken by comparing relative rates functions. The procedure

is repeated until a final time is reached. The initial state of the system propagates

towards the final state. One repeats the procedure and averages the results. The

drawback of this method is that it is not possible to couple these calculations to rate

equations describing the gas phase which is highly desirable.

2.3.4 Modified Rate Approach

The Modified Rate Approach —see, for example, [7, 57]— is a semi-empirical method.

In this approach one artificially forces the abundances of reactive surface species to

be at least unity. In certain regions of the parameter space one modifies, for a simple

system, the basic rate equations for the diffusive surface chemistry. One reproduces

results of Monte Carlo treatments by slowing down the rate of diffusion of a fast-

moving surface particle so that it does not exceed the larger of the rates of evaporation

or accretion. In this approach one allows solutions of coupled differential equations

for gas-phase and surface chemistry. But there is no guarantee that it is correct in all

instances. Sometimes it can even yield worse results than the mean-field rate equations.
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2.3.5 Doi-Peliti Approach

In the light of the needs of the Astrochemistry community the Doi-Peliti formalism has

the advantage of the smooth tranisition between the stochastic and the deterministic

regime. The number of constraint equations scales only with the number of chemical

species under consideration. Furthermore, it seems possible to couple the grain-surface

equations to the gas-phase equations since the former are of rate equation type. It

might also be easier to consider inhomogeneities on an extended surface.
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Chapter 3

Heterogeneous Chemical Reaction

of Type A + A −→ C in the Single

Spatial Site Model

In this chapter, we concentrate on the single spatial site model for a heterogeneous

chemical reaction where two reactants of the same chemical species A form a chemical

reaction product of another chemical species C. In the course of our investigations, we

make the following assumptions on the nature of the grain particles:

• grains have all the same size;

• grains are homogeneous;

• each binding site on the grain has the same potential barrier between the one site

and its nearest neighbour (flat surfaces);

• grains have a constant base temperature.

We will only consider bare grains and are not concerned with the formation of ice

mantles.

We allow atoms or molecules to be adsorbed onto and evaporated from the sur-

face of the grain particle. The atoms are assumed to stick to the surface with high

efficiency which means the grain temperature is low enough. In our model, we assume

that the only reaction mechanism of importance is the diffusive one and consider

physisorbed species only. The adsorbed molecules diffuse on the surface of the seed

and eventually collide with another reactant. Consequently, they either form a

temporary chemical bond that is stabilised by the loss of energy to the phonon modes
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of the grain or the reaction product is immediately ejected from the surface.

The gas-phase atoms are assumed to remain at their initial concentration for

the duration of the calculation as in [57]. In addition, we focus on the case of low

energy barriers resulting in high inverse sweeping times, that is the time for one atom

to sweep the entire surface of the grain.

In the sequel, we study the time evolution of the population of the chemical re-

actants on the surface of the seed particle employing various approaches: we give

some analytical results concerning the mean-field solutions, the steady state stochastic

solutions and, in the special case when the source rate is equal to zero, the dynamical

stochastic solutions. Furthermore, we present numerical results obtained from a

code written in the GNU C language. We compare the observations in the stochastic

model with those obtained in the mean-field approach. In zero space dimensions,

the rate coefficients λ [s−1], κ [mDs−1] and ι [m−Ds−1], reduce to L [s−1], K [s−1],

and J [s−1]. Furthermore, in the single spatial site model, we calculate an average

particle population instead of an average particle density —this can be easily verified

in equations (3.168) and (3.181).

3.1 Mean-Field Steady State and Mean-Field Dy-

namical Solutions

The implicit solution to the mean-field evolution equation for the population of the

reactants of chemical species type A in zero space dimensions

d

dt
〈NA(t)〉+ 2KAA〈NA(t)〉2 + LA〈NA(t)〉 − JA = 0, (3.1)

reads

t =
1

α
ln

(
c

∣∣∣∣∣
α+LA
4KAA

+ 〈NA(t)〉
α−LA
4KAA

− 〈NA(t)〉

∣∣∣∣∣
)
,

α :=
√

8KAAJA + L2
A, (3.2)

with c being a positive integration constant. When investigating the behaviour of

the denominator of the argument of the natural logarithm one finds that a vanishing
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denominator leads to the steady state solution

〈NA〉ss =
α− LA
4KAA

, (3.3)

that is, the solution to the stationary equation

2KAA (〈NA〉ss)2 + LA〈NA〉ss − JA = 0. (3.4)

If one wants to restrict the results to solutions in the real plane one has to expect a

division of the space of solutions to the evolution equation (3.1) into two regimes —see

equation (3.2):

case I: 〈NA(t)〉 < 〈NA〉ss,

case II: 〈NA(t)〉 > 〈NA〉ss. (3.5)

For initial data satisfying 〈NA(0)〉 < 〈NA〉ss one stays in the regime corresponding to

case I, for initial data satisfying 〈NA(0)〉 > 〈NA〉ss one has case II. In the case when

the initial data takes exactly the steady state value one obtains the constant solution

(3.3). The dynamical mean-field solution to case I gives

〈NA(t)〉I =
−LA + α tanh(α

2
(t+ βI))

4KAA

,

βI := 2/α arctanh
(
(4KAA〈NA(0)〉I + LA)/α

)
, (3.6)

which is the correct real solution for an initial value that is less than the steady state

value. For case II one obtains the solution

〈NA(t)〉II =
−LA + α coth(α

2
(t+ βII))

4KAA

,

βII := 2/α arccoth
(
(4KAA〈NA(0)〉II + LA)/α

)
, (3.7)

which is the correct real solution for an initial value that is greater than the steady state

value. At a later point we will pay special attention to situations where the incoming

flux of molecules JA is small compared to the other rate coefficients. In this case, the

class I solution to the mean-field evolution equation (3.6) becomes complex which is

a consequence of the nature of the function of the inverse hyperbolic tangent that is

incorporated in that solution whereas for large values of the source rate compared to

the other rate coefficients, the class II solution to the mean-field evolution equation

becomes complex for a similar reason. Consequently, for fixed initial data one expects
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class I solutions to give the mean particle population of the A molecules for a large

source rate compared to the other rate coefficients and the class II solutions to represent

the average particle population of the reactants for a small source rate compared to

the other rate coefficients.

Analysing solutions (3.6) and (3.7) one can verify that in the mean-field model the

asymptotic values of the solutions to the evolution equation (3.1) with respect to time

give the steady state solution (3.3) to the stationary equation (3.4) since for t ∈ R

tanh(t) −→ 1 as t→∞,

coth(t) −→ 1 as t→∞. (3.8)

Note that the late time behaviour of the dynamic mean-field evolution equations

lim
t→∞
〈NA(t)〉 =

α− LA
4KAA

. (3.9)

is independent of the initial data.

The solution to the mean-field evolution equation for the reaction products of chemical

species type C

d

dt
〈NC(t)〉 −KAA〈NA(t)〉2 + LC〈NC(t)〉 − JC = 0, (3.10)

in zero space dimensions is

〈NC(t)〉 = e−LCt
(∫ t

0

eLCs
(
JC +KAA〈NA(s)〉2

)
ds+ 〈NC(0)〉

)
. (3.11)

The steady state solution 〈NC〉ss reads

〈NC〉ss =
KAA (〈NA〉ss)2 + JC

LC
, (3.12)

with 〈NA〉ss the steady state solution for the chemical species A (3.3). The form of

equation (3.10) implies that none of the chemical reaction products C are immediately

released into the gas phase upon formation and all molecules of type C are left on the

surface of the grain particle. In order to account for the possibility of spontaneous

desorption of C molecules into the gas phase one has to rewrite equation (3.10) in the

following way:

d

dt
〈NC(t)〉 − µKAA〈NA(t)〉2 + LC〈NC(t)〉 − JC = 0, (3.13)
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where the parameter µ accounts for the fraction of reaction products remaining on the

surface of the grain particle upon formation. Accordingly, the term (1 − µ)〈NC(t)〉
represents the fraction of C molecules that is spontaneously desorbed into the gas

phase due to the excess energy released during the chemical recombination. As

stated in [4] the parameter µ takes the following experimentally obtained values:

µ(olivine) = 0.33 and µ(carbon) = 0.413 in the hydrogen-hydrogen recombination.

The inclusion of the process of release into the gas phase is sensible because it is

not possible to observe the number of molecules on the surface of seed particles

in interstellar clouds. Instead, one has to resort to observations of the molecules

in the gas phase. We will, however, continue to analyse equation (3.10) since the

determination of the values of the parameter µ is relatively crude and there are hardly

any data available other than for the above given cases.

In general, the values of the rate coefficients are temperature dependent. More

precisely, the coefficients KAA and LA increase as the temperature increases —see

[7, 57]. Therefore, the lower the temperature the smaller the value of the source rate at

which one switches from case I solutions to case II solutions as can be seen from equa-

tion (3.12). In the numerical calculations it is observed that the transient time, that is,

the time span until the average particle population reaches an equilibrium value is in-

creasing for decreasing value of the source rate as we will see in sections 3.4.1 and 3.4.2.

Now, we want to list a few special cases that will be relevant later on when

comparing the mean-field solutions to the stochastic solutions.

3.1.1 Special Case: Vanishing Reaction Rate

For vanishing reaction rate, KAA ≡ 0, the solution to the mean-field rate equation for

the chemical species A reduces to

〈NA(t)〉 =
JA
LA

(1− e−LAt) + 〈NA(0)〉e−LAt, (3.14)

which approaches the following late time value:

lim
t→∞
〈NA(t)〉 =

JA
LA

. (3.15)
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3.1.2 Special Case: Vanishing Source Rate

In the special case of a vanishing source rate, JA ≡ 0, the solution to the mean-field

evolution equation for the reaction partners reads

〈NA(t)〉 =
〈NA(0)〉LA

2KAA〈NA(0)〉(eLAt − 1) + LAeLAt
, (3.16)

which exhibits the following late time behaviour:

lim
t→∞
〈NA(t)〉 = 0. (3.17)

3.1.3 Special Case: Vanishing Evaporation Rate

The solution to the equation for vanishing evaporation rate, LA ≡ 0, is a special

solution to the full mean-field solution where the evaporation rate is taken to be zero

in (3.6) and (3.7) respectively. The late time limit of the solutions is, accordingly:

lim
t→∞
〈NA(t)〉 =

√
JA

2KAA

. (3.18)

3.2 Stochastic Steady State Solution

Explicit steady state solutions for the stationary master equation have been calculated

in [27, 40, 5]. As a steady state solution we understand the solution to equation (2.1)

where the right hand side of the master equation is set to zero, that is

dP ({NA}, {NC}; t)
dt

≡ 0. (3.19)

The authors of [27, 40] employed methods of generating functions to derive an exact

solution to the stationary master equation whereas the authors of [5] resorted to linear

operations of the stationary master equation and the continued fraction expansion of

Bessel functions. We will discuss in detail the approach of [27, 40] and will comment

on [5] later on.

The stationary master equation (3.19) implies the following equation:

KAA(z + 1)
d2F (z)

dz2
+ LA

dF (z)

dz
− JAF (z) = 0, (3.20)
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where F (z) is the generating function defined as a MacClaurin series1

F (z) :=
∞∑

NA=0

zNAP (NA). (3.22)

According to [27, 40], the solution of the stationary master equation (3.20) in terms of

the above generating function is given by

F (z) =

(
1 + z

2

) 1
2

“
1− LA

KAA

”
I LA
KAA

−1

(√
JA(z+1)
KAA

)
I LA
KAA

−1

(√
8JA
KAA

) , (3.23)

where the function Iν(ξ) denotes a modified Bessel function of the first kind, where,

in general, ν ∈ C and ξ ∈ C. The average number of reactants in the steady state

model 〈NA〉sslit as presented in the literature [27, 40, 5] can be obtained via the following

relation:

〈NA〉sslit ≡
dF (z)

dz

∣∣∣∣
z=1

=
∞∑

NA=0

NAP (NA), (3.24)

which leads to the expression

〈NA〉sslit =

√
JA

2KAA

I LA
KAA

(√
8JA
KAA

)
I LA
KAA

−1

(√
8JA
KAA

) , (3.25)

and which satisfies the normalisation condition

F (1) =
∞∑

NA=0

P (NA) ≡ 1. (3.26)

The class of solution (3.25) can be obtained by either of the following two conditions:

1A MacClaurin series is a Taylor series expansion of a function f(z)

f(z) =
∞∑

i=0

f (i)(z0)
i!

(z − z0)i, (3.21)

about z0 = 0.
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Condition 1.

dF (z)

dz

∣∣∣∣
z=−1

=
∞∑

NA=0

(−1)NA−1NAP (NA) ≤
∞∑

NA=0

NAP (NA) =
dF (z)

dz

∣∣∣∣
z=1

,

dF (z)

dz

∣∣∣∣
z=−1

=
∞∑

NA=0

(−1)NA−1NAP (NA) ≥ −
∞∑

NA=0

NAP (NA) = −dF (z)

dz

∣∣∣∣
z=1

.

(3.27)

The above condition for the generating function was introduced in [40].

Condition 2.

F (z) smooth for all z ∈ R. (3.28)

The above condition for the generating function was employed in [27].

Since the generating function has no physical meaning per se we regard the latter

condition as overly restrictive and not physically justified. However, differentiability at

certain values of the argument is a necessary condition if the function and derivatives

thereof have a physical interpretation at this specific point. The first line of argument

will be considered at a later point.

The above result (3.25) has to be reviewed and reinterpreted. Let us start considering

various special cases that should still be correctly embedded in the mathematical

framework. To the best of my knowledge, until now there has not been any thorough

discussion on the convergence of the MacClaurin series of the solutions to equation

(3.20) and derivatives thereof. This is essential in order to be able to identify the

MacClaurin series of the solution which, in the sequel, we will call generating function

candidate —G(z)— with the series defining the generating function —F (z)— via

equation (3.22).

In the rest of the section we will refer to the following list of formulae for Bessel

functions as taken from [66]:

Compendium 1. Summary of formulae for the Bessel functions

• Symmetry Relation of Bessel functions with respect to the indices:

In(ξ) ≡ I−n(ξ) ∀n ∈ N. (3.29)
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• Relation between the first derivative of Bessel functions and Bessel functions:

dIν(ξ)

dξ
=
ν

ξ
Iν(ξ) + Iν+1(ξ). (3.30)

• Recurrence relation for Bessel functions:

Iν−1(ξ)− Iν+1(ξ) =
2ν

ξ
Iν(ξ). (3.31)

• Series expansion of a modified Bessel function of the first kind:

Iν(ξ) =
(ξ

2

)ν
Ων(ξ), (3.32)

for ν 6= −1,−2,−3, ... and complex ξ and with

Ων(ξ) :=
∞∑
k=0

1

Γ(k + 1 + ν)k!

(
ξ

2

)2k

, (3.33)

where Γ is the Gamma function which can be defined as a definite integral

Γ(z) =

∫ ∞
0

tz−1e−tdt for <(z) > 0. (3.34)

The Gamma function satisfies

Γ(z + 1) = zΓ(z). (3.35)

The above relation (3.32) implies

Iν(ξ) =
1

Γ(ν + 1)

(
ξ

2

)ν
(1 +O(z2)). (3.36)

This leads to
Iν1(ξ)

Iν2
=

Γ(ν2 + 1)

Γ(ν1 + 1)

(
ξ

2

)ν1−ν2
(1 +O(ξ2)). (3.37)

• Expansion of Bessel functions for small perturbations of the index:

Iν+ε(ξ) = Iν(ξ) + Θ(ν, ξ)ε+O(ε2), (3.38)

with

Θ(ν, ξ) := Iν(ξ) ln

(
ξ

2

)
−
∞∑
k=0

z(k + ν + 1)

k!Γ(k + ν + 1)

(
ξ

2

)2k+ν

, (3.39)
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where z(m) is the Digamma function.

3.2.1 Special Case: Vanishing Reaction Rate

Since the special case of a vanishing reaction rate reduces the master equation to an

ordinary differential equation of first order

LA
dF (z)

dz
− JAF (z) = 0 LA 6= 0 and JA 6= 0, (3.40)

we only have to determine one integration constant A for the generating function

candidate

G(z) = Ae
JAz

LA , (3.41)

which can be determined from the condition

G(1)
!

= 1, (3.42)

and leads to the solution

G(z) = e
JA
LA

(z−1)
. (3.43)

The MacClaurin series of the above generating function candidate G(z) converges for

all values of z, therefore we have

dmF (z)

dzm
≡ dmG(z)

dzm
m ∈ [0,∞]. (3.44)

Since the source for potential stochastic effects, namely the chemical reaction itself,

has been neglected the stochastic steady state solution, 〈NA〉ss, has to coincide with

the mean-field solution. This is indeed the case —cfr. with the late-time limit of the

dynamical mean-field solution (3.15):

〈NA〉ss :=
dF (z)

dz

∣∣∣∣
z=1

=
JA
LA

= 〈NA(t∞)〉, (3.45)

where t∞ is the time that is needed to reach equilibrium.

3.2.2 Special Case: Vanishing Source Rate

For vanishing source rate coefficient, the master equation can be represented by

KAA(z + 1)
d2F (z)

dz2
+ LA

dF (z)

dz
= 0 LA 6= 0, and KAA 6= 0. (3.46)
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One possible solution of the above ordinary differential equation is F (z) = constant for

all z which has as a consequence that the average number of reactants is zero. On the

other hand, equation (3.46) is potentially solved by the following generating function

candidate:

G(z) = A+B(1 + z)
1− LA

KAA . (3.47)

From the condition

G(z)|z=1
!

= 1, (3.48)

one integration constant can be eliminated, for example,

A = 1−B2
1− LA

KAA . (3.49)

In order to be able to use the normalisation condition (3.48) one has to verify that

F (z)|z=1 ≡ G(z)|z=1. (3.50)

For this, we define

F (z) :=
∞∑

NA=0

zNAP (NA),

G(z) := A+B(1 + z)
1− LA

KAA . (3.51)

Under which circumstances

F (z) ≡ G(z), (3.52)

or, in other words, under which circumstances converges F (z) towards G(z)? One can

write G(z) as a MacClaurin series

G(z) =
∞∑
N=0

C(N)zN = C0 + C1

∞∑
s=0

(
1− LA

KAA

s

)
zs. (3.53)

The convergence of the MacClaurin series is based on the convergence of the binomial

series

(1 + x)α =
∞∑
k=0

(
α

k

)
xk α ∈ C. (3.54)

The exact conditions —which we will give without proof— under which this series

converges are taken from [11]:

Theorem 1. “If the index α is an integer and α ≥ 0, the series terminates and is

therefore valid for all values of x (becoming the ordinary binomial theorem). For all
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other values of α the series is absolutely convergent for |α| < 1 and divergent for

|α| > 1. For x = +1 the series converges absolutely if α > 0, converges conditionally2

if −1 < α < 0 and diverges if α ≤ −1. Finally, at x = −1 the series is absolutely

convergent if α > 0, divergent if α < 0.”

This leaves us with the following observation:

The series (3.53) is absolutely convergent for 0 < LAK
−1
AA < 1. For x = +1 the series

converges absolutely if LAK
−1
AA < 1, converges conditionally if 2 > LAK

−1
AA > 1 and

diverges if 2 ≤ LAK
−1
AA. Finally, at x = −1 the series is absolutely convergent if

LAK
−1
AA < 1, divergent if LAK

−1
AA > 1. The condition LAK

−1
AA < 1 is relevant especially

for situations where one expects to find stochastic behaviour since a fast reaction rate

compared to the other rate coefficients will lead away from the deterministic regime

towards the stochastic regime.

According to the above criteria, one can divide the analysis into two cases:

• LAK−1
AA < 2: G(z) = A+B(1 + z)

1− LA
KAA ,

• LAK−1
AA ≥ 2: G(z) = A, since the series expansion of (1 + z)

1− LA
KAA diverges if

LAK
−1
AA ≥ 2.

Furthermore, if one assumes that LAK
−1
AA < 1, from the uniqueness of MacClaurin

series it follows that,

P (NA) ≡ C(N), (3.55)

which can be confronted with the common expression

P (NA) =
1

NA!

dNAF (z)

dzNA

∣∣∣∣
z=0

. (3.56)

In order to reexamine the regularity conditions (3.27) and (3.28) one has to consider

the first derivative of the generating function candidate with respect to its argument

dG(z)

dz
= B

(
1− LA

KAA

)
(1 + z)

− LA
KAA . (3.57)

The above expression is regular in z = 1 but singular in z = −1 as LA > 0 and

KAA > 0. This, according to the argumentative line of [27] —cfr. Condition (3.28)—,

is the reason why one class of solutions can be discarded, namely B = 0, which leaves

us with

G(z) = 1 =⇒ dG(z)

dz
= 0 ∀z, (3.58)

2A series is said to converge conditionally if the limit of the corresponding sequence exists and is
a finite number but the series of the modulus of the coeffients is not finite.
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in particular,

〈NA〉ss :=
dG(z)

dz

∣∣∣∣
z=1

= 0, (3.59)

for any value of LA, KAA. However, the evaluation of the first derivative of the generat-

ing function candidate at the point z = −1 is not of physical interest and regularity at

this point is not a necessary condition for the derivation of the average particle number

〈NA〉ss.
In the following we want to reexamine the regularity conditions (3.27) —see [40]— in

the light of convergence criteria. The mathematical manipulations leading to condition

(3.27) require that the series expansion of the first derivative of the generating function

is convergent at the points z = 1 and z = −1. Therefore, one has to verify whether the

generating function candidate fulfills this requirement. The convergence criteria —cfr.

Theorem 1— indicate that for the first derivative of the generating function candidate

(3.57) we have the following:

• at the point z = 1, the series expansion of the generating function candidate con-

verges absolutely if and only if LAK
−1
AA < 1 and the MacClaurin series of the first

derivative of the generating function candidate in z = 1 converges conditionally

if and only if LAK
−1
AA < 1.

• at the point z = −1, the series expansion of the generating function candidate

converges absolutely if and only if LAK
−1
AA < 1. However, at z = −1, the Mac-

Claurin series of the first derivative of the generating function candidate diverges

for all LA > 0 and KAA > 0.

This leads to the conclusion that if B = 0, the conditions 3.27 are fulfilled. However,

since the convergence criteria at point z = −1 are not fulfilled, from

dF (z)

dz

∣∣∣∣
z=−1

≤
∣∣∣∣ dF (z)

dz

∣∣∣∣
z=1

∣∣∣∣ <
dG(z)

dz

∣∣∣∣
z=−1

≤
∣∣∣∣ dG(z)

dz

∣∣∣∣
z=1

∣∣∣∣ , (3.60)

it does not follow that one necessarily needs B = 0. In [40], absolute convergence

of the first derivative of the generating function candidate at z = −1 was assumed

and Condition 3.27 was used to disregard one part of the solution that did not fulfill

Condition 3.27. Yet, in fact, one is left with the following:

• if LAK
−1
AA < 1:

〈NA〉ss ≡ 〈NA〉ssLAK−1
AA<1

= B2
− LA
KAA

(
1− LA

KAA

)
, (3.61)

where we will determine the second integration constant B at a later point;
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• if LAK
−1
AA ≥ 1:

〈NA〉ss ≡ 〈NA〉ssLAK−1
AA≥1

= 0. (3.62)

Note that in the literature the expression for the average number of reactants

〈NA〉sslit was given by

〈NA〉sslit = 〈NA〉ssLAK−1
AA≥1

, (3.63)

for any values of LA and KAA and it was not realised that this expression is only

true if LAK
−1
AA ≥ 1.

In a first step, for LAK
−1
AA < 1, we want to find bounds for the value of the average

reactant partner population by means of the probability for an even number of particles

Peven and the probability for an odd number of particles Podd. It is true that

Peven + Podd = 1, (3.64)

where

Peven :=
∞∑

NA=0

P (2NA),

Podd :=
∞∑

NA=0

P (2NA + 1). (3.65)

It follows from the definition of the generating function F (z) in (3.51) that

F (1) =
∞∑

NA=0

P (NA),

F (−1) =
∞∑

NA=0

(−1)NAP (NA). (3.66)

Adding the above two expressions together we derive the following:

F (1) + F (−1) = P (0) + P (1) + P (2) + P (3) + ....

P (0)− P (1) + P (2)− P (3) + ....

= 2
∞∑

NA=0

P (2NA) = 2Peven. (3.67)

Furthermore, we have that

F (1) ≡ 1. (3.68)
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Therefore, one derives

Peven =
1

2

(
1 + F (−1)

)
,

Podd =
1

2

(
1− F (−1)

)
. (3.69)

Let us now consider the two extreme cases, namely,

(i) Peven = 1→ Podd = 0,

(ii) Peven = 0→ Podd = 1. (3.70)

This has the following implication:

(i) F (−1) = 1,

(ii) F (−1) = −1. (3.71)

Since the MacClaurin series of the generating function candidate G(z) is absolutely

convergent at |z| = 1, for LAK
−1
AA < 1 we have that

G(z)
∣∣
|z|=1
≡ F (z)

∣∣
|z|=1

for
LA
KAA

< 1. (3.72)

Consequently, we can use the following identities to determine the integration con-

stants, namely,

G(z)|z=1
!

= 1,

G(z)|z=−1
!

= ±1. (3.73)

In the particular case of a vanishing source rate this means that in case (i) we have

A = 1, and, B = 0,

so that: 〈NA〉ss = 0, (3.74)

and in case (ii),

A = −1, and, B = 2
LA
KAA ,

so that: 〈NA〉ss = 1− LA
KAA

, (3.75)

which gives a lower and an upper limit for the possible value of the average population
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of A molecules,

〈NA〉ss ∈
[
0, 1− LA

KAA

]
. (3.76)

3.2.3 Special Case: Vanishing Evaporation Rate

The special case of a negligible evaporation process is of specific interest for the chemical

recombination of oxygen and nitrogen atoms, respectively, since the thermal evapora-

tion rate is of the order of 10−23 s−1. The generating function candidate that might

solve

KAA(z + 1)
d2F (z)

dz2
− JAF (z) = 0 KAA 6= 0, and JA 6= 0, (3.77)

reads

G(z) = A(1 + z)
1
2 I−1

(
2

√
JA
KAA

(1 + z)
1
2

)
+B(1 + z)

1
2 I1

(
2

√
JA
KAA

(1 + z)
1
2

)
.

According to the symmetry relation of Bessel functions with respect to the indices

(3.29), the above generating function candidate is equivalent to

G(z) = C(1 + z)
1
2 I1

(
2

√
JA
KAA

(1 + z)
1
2

)
.

From the condition

G(z)|z=1
!

= 1, (3.78)

it follows that

C ≡ 1
√

2I1

(√
8JA
KAA

) . (3.79)

In order to investigate the convergence behaviour of the MacClaurin series of the gen-

erating function candidate we rewrite (3.78) in the following way

G(z) = C

√
JA
KAA

(1 + z)Ω1(z), (3.80)

with Ω1(z) as given by (3.33). According to the criteria for the convergence of the

binomial series, the expansion of 1 + z converges absolutely for |z| = 1 and the series

Ω1 has infinite convergence radius. Therefore, the convergence radius of the generating

function candidate G(z) is the minimum of the two separately determined convergence

radii, that is, the generating function candidate G(z) converges absolutely for |z| = 1

and the above derivation for the normalisation constant is justified.
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In order to compute the derivatives of the generating function candidate G(z)

it is useful to employ the relation between the derivative of a modified Bessel function

of the first kind and modified Bessel functions and the recurrence relation of Bessel

functions —see (3.30) and (3.31). The first and second derivatives of the generating

function candidate are found to be

dG(z)

dz
=

1
√

2I1

(√
8JA
KAA

) ((1 + z)−
1
2 I1

(
2

√
JA
KAA

(1 + z)
1
2

)
+

√
JA
KAA

I2

(
2

√
JA
KAA

(1 + z)
1
2

) ,

d2G(z)

dz2
=

1
√

2I1

(√
8JA
KAA

) (2

√
JA
KAA

(1 + z)−1I2

(
2

√
JA
KAA

(1 + z)
1
2

)
+

JA
KAA

(1 + z)−
1
2 I3

(
2

√
JA
KAA

(1 + z)
1
2

) . (3.81)

The average particle number of the chemical reactants of species A can be obtained by

evaluating the first derivative of the generating function candidate with respect to z at

z = 1

〈NA〉ss :=
dG(z)

dz

∣∣∣∣
z=1

=
1

2
+

√
JA

2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) . (3.82)

Concerning the convergence of the series of the first derivative of the generating function

candidate at z = 1 we write

dG(z)

dz
= C

√
JA
KAA

(
Ω1(z) +

JA
KAA

(1 + z)Ω2(z)

)
, (3.83)

and in accordance with the arguments for the convergence of the series of the

generating function candidate G(z) the above series converges absolutely for |z| = 1.

To the best of my knowledge this is the first time the explicit result (3.82) has been

obtained in this way.

Let us now compare the findings concerning the solution to the stationary steady state

equation for vanishing evaporation rate with the results for vanishing source rate. In

order to do so, we have to expand the expression for the mean population of chemical

reaction partners (3.82) for small source rate according to (3.32). The average number
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of molecules of type A for small JAK
−1
AA is given by

〈NA(LA ≡ 0)〉ss =
1

2
+

JA
2KAA

(
1 +O

(
JA
KAA

))
. (3.84)

Accordingly, the limit of (3.84) for a source rate approaching zero and for fixed reaction

rate reads

lim
JA→0
〈NA(LA ≡ 0)〉ss =

1

2
. (3.85)

This can be confronted with the result from earlier calculations where we found that

the value of the average number of A molecules for vanishing source rate has to lie in

the interval

〈NA(JA ≡ 0)〉ss ∈
[
0, 1− LA

KAA

]
for

LA
KAA

< 1. (3.86)

For the additional condition of an evporation rate approaching zero with fixed reaction

rate this leads to

lim
LA→0

〈NA(JA ≡ 0)〉ss ∈ [0, 1] for
LA
KAA

< 1, (3.87)

which is consistent with (3.85). Recall that the expression for the average particle

number in the literature is given by

〈NA(JA ≡ 0)〉sslit = 0. (3.88)

Note that it is not possible to reach the above value from (3.84) since from (3.84) one

has that

〈NA(LA ≡ 0)〉ss ≥ 1

2
for all JA ≥ 0, and KAA > 0. (3.89)

In view of the preceeding result I continue with a reexamination of the general solution

to the equation (3.20).

3.2.4 Reexamination of the Stochastic Steady State Solution

to the Full Master Equation

The way to obtain a solution to the full differential equation

KAA(z + 1)
d2F (z)

dz2
+ LA

dF (z)

dz
− JAF (z) = 0, (3.90)
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with JA > 0, LA > 0, KAA > 0 results from the following Ansatz for the generating

function candidate:

G(z) = G0(1 + z)−
ν
2φ(ξ), (3.91)

which solves the equation

ξ2 d2φ(ξ)

dξ2
+ ξ

dφ(ξ)

dξ
− (ξ2 + ν2)φ(ξ) = 0, (3.92)

where

ν :=
LA
KAA

− 1 ν ∈ [−1,∞),

ξ = ξ(z) := 2

√
JA
KAA

(1 + z). (3.93)

This renders a solution which is a linear combination of the following form

G(z) = G+(z) +G−(z),

G+(z) := A(1 + z)−
ν
2 Iν [ξ(z)],

G−(z) := B(1 + z)−
ν
2 I−ν [ξ(z)], (3.94)

with A and B the normalisation constants. In order to acknowledge the full potential

of this solution it is advantageous to resubstitute for the original constants JA, LA,

KAA:

G(z) = A(1 + z)
− 1

2

“
LA
KAA

−1
”
I LA
KAA

−1

(
2

√
JA
KAA

(1 + z)
1
2

)
+

B(1 + z)
− 1

2

“
LA
KAA

−1
”
I

1− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
. (3.95)

In the following, we will also use the first and second derivatives of the above generating

function candidate with respect to its argument z:

dG(z)

dz
= A

√
JA
KAA

(1 + z)
− LA

2KAA I LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
+

B(1− LA
KAA

)(1 + z)
− 1

2

“
LA
KAA

+1
”
I

1− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
+

B

√
JA
KAA

(1 + z)
− LA

2KAA I
2− LA

KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
, (3.96)
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and

d2G(z)

dz2
= A

JA
KAA

(1 + z)
− 1

2

“
LA
KAA

+1
”
I LA
KAA

+1

(
2

√
JA
KAA

(1 + z)
1
2

)
−

B

(
1− LA

KAA

)
LA
KAA

(1 + z)
− 1

2

“
LA
KAA

+3
”
I

1− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
+

2B

(
1− LA

KAA

)√
JA
KAA

(1 + z)
− 1

2

“
LA
KAA

+2
”
I

2− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
+

B
JA
KAA

(1 + z)
− 1

2

“
LA
KAA

+1
”
I

3− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
. (3.97)

The average number of molecules of species A can be calculated from

〈NA〉ss :=
dG(z)

dz

∣∣∣∣
z=1

= A

√
JA
KAA

2
− LA

2KAA I LA
KAA

(√
8JA
KAA

)
+

B

(
1− LA

KAA

)
2
− 1

2

“
LA
KAA

+1
”
I

1− LA
KAA

(√
8JA
KAA

)
+

B

√
JA
KAA

2
− LA

2KAA I
2− LA

KAA

(√
8JA
KAA

)
. (3.98)

Let us now ignore the regularity conditions (3.27) and (3.28) as presented in [27, 40]

and proceed to analyse the behaviour of the two special solutions B = 0 and A = 0

respectively. The first case corresponds to the results obtained by [27, 40].

Special Case: A 6= 0 and B ≡ 0

In the case that A 6= 0 and B = 0 the generating function candidate reduces to

G(z) = G+(z), (3.99)

and the only remaining integration constant A can be determined from the condition

G+(z)|z=1
!

= 1, (3.100)

which gives us

A =
2

1
2

“
LA
KAA

−1
”

I LA
KAA

−1

(√
8JA
KAA

) . (3.101)
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For the above normalisation condition we have to check the convergence behaviour in

the point z = 1 of the series expansion

G+(z) = A

(
JA
KAA

) 1
2

“
LA
KAA

−1
”

Ω LA
KAA

−1
(z), (3.102)

where the series Ω LA
KAA

−1
(z) —see (3.33)— has infinite radius of convergence. Con-

sequently, the series expansion of the generating function candidate converges for all

values of z.

We derive the following expression for the average chemical reactant population —cfr.

with (3.25)—

〈NA〉ss+ :=
dG(z)

dz

∣∣∣∣
z=1

≡ dG+(z)

dz

∣∣∣∣
z=1

=

√
JA

2KAA

I LA
KAA

(√
8JA
KAA

)
I LA
KAA

−1

(√
8JA
KAA

) . (3.103)

The series expansion for the first derivative of the generating function candidate con-

verges everywhere since

dG+(z)

dz
= A

(
JA
KAA

) 1
2

“
1+

LA
KAA

”
Ω LA
KAA

(z), (3.104)

with Ω LA
KAA

(z) as given by (3.33), converges everywhere.

We are interested in the limit LA → 0. If the fraction LAK
−1
AA is small we have that

(3.103) can be expanded according to (3.38) and (3.39)

〈NA〉ss+ =

√
JA

2KAA

I0

(√
8JA
KAA

)
I1

(√
8JA
KAA

) − LA
KAA

I0

(√
8JA
KAA

)(
Θ
(

1,
√

8JA
KAA

)
+
√

KAA
2JA

I0

(√
8JA
KAA

))
I2

1

(√
8JA
KAA

) −

Θ
(

0,
√

8JA
KAA

)
I1

(√
8JA
KAA

)
+O

((
LA
KAA

)2
) , (3.105)

where we have used that for small enough x

1

1 + x
= 1− x+O(x2). (3.106)
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For fixed reaction rate coefficient KAA, in the limit of the evaporation rate coefficient

LA approaching zero we obtain

lim
LA→0

〈NA〉ss+ =
1

2
+

JA
2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) , (3.107)

taking (3.30) into account. This result coincides with the exact solution to the master

equation for vanishing evaporation rate (3.82).

In addition, we are interested in the regime where the source rate JA is small. For

small JAK
−1
AA we have, according to (3.37):

〈NA〉ss+ =
JA
LA

(
1 +O

(
JA
KAA

))
, (3.108)

so that in the limit of the source rate coefficient approaching zero and for fixed reaction

rate coefficient we have

lim
JA→0
〈NA〉ss+ = 0, (3.109)

for fixed non-zero and finite evaporation rate which corresponds to the exact solution

to the master equation with zero source rate (3.46) for B = 0. Note that

〈NA〉sslit ≡ 〈NA〉ss+ . (3.110)

For the same reasons as mentioned in subsection 3.2.3, limit (3.107) and limit (3.109)

are not consistent. Expression (3.107) has one half as a lower bound as the term

containing the Bessel functions is always non-negative for all JA ≥ 0 and KAA > 0

which contradicts expression (3.109). This issue has not been realised in the literature.

Special Case: A ≡ 0 and B 6= 0

Let us now consider the special case where A = 0 and B 6= 0 in (3.95), that is,

G(z) = G−(z). (3.111)

The only remaining integration constant B can, again, be determined from the condi-

tion

G(z)|z=1
!

= 1, (3.112)
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which gives us

B =
2

1
2

“
LA
KAA

−1
”

I
1− LA

KAA

(√
8JA
KAA

) . (3.113)

Using (3.32) we can write

G−(z) = B(1 + z)
1− LA

KAA

(
JA
KAA

) 1
2

“
1− LA

KAA

”
Ω

1− LA
KAA

(z). (3.114)

The series expansion Ω
1− LA

KAA

(z) —cfr. (3.33)— converges for all values of z, whereas

the MacClaurin series of (1 + z)
1− LA

KAA converges absolutely for |z| = 1 if and only if

LAK
−1
AA < 1. Therefore, we have that the MacClaurin expansion of G−(z) converges

absolutely for |z| = 1 if and only if LAK
−1
AA < 1.

In this special case, the average population of the chemical reactants3 is given by

〈NA〉ss− :=
dG(z)

dz

∣∣∣∣
z=1

≡ dG−(z)

dz

∣∣∣∣
z=1

=
1

2

(
1− LA

KAA

)
+

√
JA

2KAA

I
2− LA

KAA

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

) .
(3.115)

The MacClaurin series of the first derivative of the generating function candidate con-

verges conditionally, since

dG−(z)

dz
= B

(
1− LA

KAA

)(
JA
KAA

) 1
2

“
1− LA

KAA

”
(1 + z)

− LA
KAA Ω

1− LA
KAA

(z) +

B

(
JA
KAA

) 1
2

“
3− LA

KAA

”
(1 + z)

1− LA
KAA Ω

2− LA
KAA

(z), (3.116)

with the series Ω
1− LA

KAA

(z) and Ω
2− LA

KAA

(z) as defined in (3.33). The latter series con-

verge everywhere, whereas the convergence radii of the expansions of (1 + z)
− LA
KAA and

(1 + z)
1− LA

KAA have to be determined from Theorem 1; the series expansion converges

conditionally for z = 1 if LAK
−1
AA < 1. As a consequence, the MacClaurin series of the

3This last expression should be understood in a statistical sense. More precisely, the rate coeffi-
cients describe statistical properties of the processes of adsorption, evaporation and chemical reaction
of molecules, and as such they are not well-defined for a single given molecule. In this sense, these con-
stants are analogous to the mean life of radioactive materials: one cannot say that a single radioactive
atom has a 50 % probability of decaying during a mean life period. Similarly, although LA expresses
the probability of evaporation, one cannot speak of the probability of a single particular molecule
to evaporate during the time span of observation. Instead one refers to the decay of any molecule
in an ensemble of molecules. The same line of argument is true for the reaction rate. Therefore, it
is reasonable to have a non-zero late-time value for the average particle population of the chemical
reactants even if the source rate is zero.
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first derivative of the generating function candidate converges conditionally for z = 1

if LAK
−1
AA < 1 which is the value of physical interest.

In the case of small LAK
−1
AA we employ (3.38) which gives us

〈NA〉ss− =
1

2
+
I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) − LA
KAA

1

2
+
I2

(√
8JA
KAA

)
Θ
(

1,
√

8JA
KAA

)
I2

1

(√
8JA
KAA

) +

Θ
(

2,
√

8JA
KAA

)
I1

(√
8JA
KAA

)
+O

((
LA
KAA

)2
)
, (3.117)

which for fixed KAA in the limit of vanishing evaporation rate LA leads to

lim
LA→0

〈NA〉ss− =
1

2
+

JA
2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) , (3.118)

which is the same result as obtained before —(3.107).

In the series expansion for small JAK
−1
AA we derive the following expression for the

average chemical reactant population4

〈NA〉ss− =
1

2

(
1− LA

KAA

)
+

JA

KAA

(
2− LA

KAA

) (1 +O
(
JA
KAA

))
. (3.119)

This means that in the limit of the source rate approaching zero and for fixed reaction

rate we have

lim
JA→0
〈NA〉ss− =

1

2

(
1− LA

KAA

)
, (3.120)

which gives the same expression as the exact solution to the master equation with zero

source rate (3.46) for A = 0. This result differs greatly from the computation of the

limit in the special case where A 6= 0 and B ≡ 0 —cfr. equation (3.109). In contrast

to (3.109) where the equivalent limit value is zero, the above limit is consistent with

the limit (3.84).

4As we will see later on, the lower bound of the late-time limit of the modulus of a solution to
the first stochastic constraint equation (3.177) corresponds to the leading order term in the above
expansion.
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General Case: A 6= 0 and B 6= 0

First, let us consider the normalisation condition

G(z)|z=1 = G+(z)|z=1 +G−(z)|z=1. (3.121)

The radius of convergence of the MacClaurin expansion of the full solution

G(z) = A

(
JA
KAA

) 1
2

“
LA
KAA

−1
”

Ω LA
KAA

−1
(z) +B(1 + z)

1− LA
KAA

(
JA
KAA

) 1
2

“
1− LA

KAA

”
Ω

1− LA
KAA

(z),

(3.122)

with the series Ω LA
KAA

−1
(z) and Ω

1− LA
KAA

(z) as given by (3.33), follows from the radii

of convergence of the MacClaurin expansion of the special solutions G+(z) and G−(z)

and one has the following:

(i) if LAK
−1
AA < 1:

G(z) ≡ GLAK
−1
AA<1(z) = G+(z) +G−(z), (3.123)

(ii) if LAK
−1
AA ≥ 1:

G(z) ≡ GLAK
−1
AA≥1(z) = G+(z), (3.124)

since the MacClaurin series of (1 + z)
1− LA

KAA does not converge absolutely in z = 1 and,

therefore, we have that B = 0 if LAK
−1
AA ≥ 1. In that case, the analysis undertaken for

the special case: A 6= 0 and B = 0 gives the average number of reactants

〈NA〉ss ≡ 〈NA〉ssLAK−1
AA≥1

= 〈NA〉ss+ , (3.125)

if and only if LAK
−1
AA ≥ 1. In the literature this expression was assumed to hold for

any value of LA > 0 and KAA > 0.

Let us now consider the case LAK
−1
AA < 1. We assign the values p ∈ [0, 1] to the

probabilities for even and odd populations in the following way

Peven = p, −→ Podd = 1− p, (3.126)

which —see (3.69)— is equivalent to

GLAK
−1
AA<1(z)|z=−1 = 2p− 1, (3.127)

if convergence of the expansion is given in z = −1. The above condition will be used

to fix one of the two integration constants A 6= 0 and B 6= 0 in the expression (3.123).

For this, we expand the generating function candidate (3.123) for (1+z) ≈ 0 according
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to (3.36). We derive

GLAK
−1
AA<1(z) =

A
(

JA
KAA

) 1
2

“
LA
KAA

−1
”

Γ
(

LA
KAA

) (1 +O (1 + z)) +

B
(

JA
KAA

) 1
2

“
1− LA

KAA

”
(1 + z)

1− LA
KAA

Γ
(

2− LA
KAA

) (1 +O (1 + z)) , (3.128)

so that for LAK
−1
AA < 1 we have the following:

GLAK
−1
AA<1(z)

∣∣
z=−1

=
A
(

JA
KAA

) 1
2

“
LA
KAA

−1
”

Γ
(

LA
KAA

) . (3.129)

Together with the condition

GLAK
−1
AA<1(z)|z=1

!
= 1, (3.130)

one can determine the second integration constant, so that

A = (2p− 1)Γ

(
LA
KAA

)(
JA
KAA

) 1
2

“
1− LA

KAA

”
,

B =
2

1
2

“
LA
KAA

−1
”

I
1− LA

KAA

(√
8JA
KAA

) − (2p− 1)
Γ
(

LA
KAA

)(
JA
KAA

) 1
2

“
1− LA

KAA

”
I LA
KAA

−1

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

) ,

(3.131)

96



where it is assumed that LAK
−1
AA < 1. Inserting the latter expressions in (3.98) we get

〈NA〉ssLAK−1
AA<1

=
1

2

(
1− LA

KAA

)
+

√
JA

2KAA

I
2− LA

KAA

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

) −
(2p− 1)

(
1− LA

KAA

)
Γ

(
LA
KAA

)(
JA
KAA

) 1
2

“
1− LA

KAA

”
2
− 1

2

“
LA
KAA

+1
”
I LA
KAA

−1

(√
8JA
KAA

)
+

(2p− 1)Γ

(
LA
KAA

)(
JA
KAA

)1− LA
2KAA

2
− LA

2KAA I LA
KAA

(√
8JA
KAA

)
−

(2p− 1)Γ

(
LA
KAA

)(
JA
KAA

)1− LA
2KAA

2
− LA

2KAA

I
2− LA

KAA

(√
8JA
KAA

)
I LA
KAA

−1

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

) .

(3.132)

Next, let us rewrite expression (3.132) in the following way

〈NA〉ssLAK−1
AA<1

=
1

2

(
1− LA

KAA

)
+

√
JA

2KAA

I
2− LA

KAA

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

) +

(2p− 1)Γ

(
LA
KAA

)(
AI LA

KAA

(√
8JA
KAA

)
−

AI
2− LA

KAA

(√
8JA
KAA

)
I

1+
LA
KAA

(√
8JA
KAA

)
+ CI LA

KAA

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

) −

B

(
I

1+
LA
KAA

(√
8JA
KAA

)
+ CI LA

KAA

(√
8JA
KAA

)))
, (3.133)

with

A :=

(
JA
KAA

)1− LA
2KAA

2
− LA

2KAA ,

B :=

(
1− LA

KAA

)(
JA
KAA

) 1
2

“
1− LA

KAA

”
2
− 1

2

“
LA
KAA

+1
”
,

C :=
LA√

2JAKAA

, (3.134)

where we used the recurrence relation for Bessel functions (3.31). We will compare the

above general expression for the mean molecule population with the particular cases
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discussed previously. The above expression (3.132) for small JAK
−1
AA can be written as

〈NA〉ssLAK−1
AA<1

=
1

2

(
1− LA

KAA

)
+

(
JA

2KAA − LA
+

(2p− 1)

(
JA
LA
− JA

2KAA − LA
− 1

2

(
1− LA

KAA

)))(
1 +O

(
JA
KAA

))
,

(3.135)

so that the limit of 〈NA〉ssLAK−1
AA<1

for the source rate approaching zero and for fixed

KAA is given by

lim
JA→0
〈NA〉ssLAK−1

AA<1
=

1

2

(
1− LA

KAA

)
− (2p− 1)

1

2

(
1− LA

KAA

)
. (3.136)

Consequently, the range for the value of the average population of reaction partners of

chemical species type A, which is determined by taking the minimum and maximum

value of p, namely p = 0 and p = 1, is

lim
JA→0
〈NA〉ssLAK−1

AA<1
∈
[
0, 1− LA

KAA

]
, (3.137)

which coincides with the result found in the section concerned with the solution to the

stationary stochastic equation for vanishing source rate coefficient —cfr. with (3.76).

In addition, we want to evaluate the above mean particle population 〈NA〉ssLAK−1
AA<1

for

the limit of the evaporation constant LA approaching zero in order to compare the full

steady state solution to the exact solution for vanishing evaporation constant (3.82).

Therefore, we consider expansions of Bessel functions for small perturbations of the

index (3.38). Using the approximation for sufficiently small values of LAK
−1
AA, we have

1

I
1− LA

KAA

(√
8JA
KAA

) =
1

I1

(√
8JA
KAA

)
1 +

LA
KAA

Θ
(

1,
√

8JA
KAA

)
+O

((
LA
KAA

)2
)

I1

(√
8JA
KAA

)
 . (3.138)
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Taking the above approximation into account we conclude that

〈NA〉ssLAK−1
AA<1

=
1

2

(
1− LA

KAA

)
+

√
JA

2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) − LA
KAA

Θ
(

2,
√

8JA
KAA

)
I1

(√
8JA
KAA

) − Θ
(

1,
√

8JA
KAA

)
I2

(√
8JA
KAA

)
I2

1

(√
8JA
KAA

)
+

O

((
LA
KAA

)2
))

+

(2p− 1)Γ

(
LA
KAA

)[
A
(
I0

(√
8JA
KAA

)
+ Θ

(
0,

√
8JA
KAA

)
LA
KAA

− I2

(√
8JA
KAA

)
−

2I2

(√
8JA
KAA

)
Θ
(

1,
√

8JA
KAA

)
LA
KAA

I1

(√
8JA
KAA

) + Θ

(
2,

√
8JA
KAA

)
LA
KAA

+O

((
LA
KAA

)2
)
−

C

I0

(√
8JA
KAA

)
I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) +
I0

(√
8JA
KAA

)
I2

(√
8JA
KAA

)
Θ
(

1,
√

8JA
KAA

)
LA
KAA

I2
1

(√
8JA
KAA

) −

I0

(√
8JA
KAA

)
Θ
(

2,
√

8JA
KAA

)
LA
KAA

I1

(√
8JA
KAA

) +
I2

(√
8JA
KAA

)
Θ
(

0,
√

8JA
KAA

)
LA
KAA

I1

(√
8JA
KAA

) +

O

((
LA
KAA

)2
)))

−

B

(
I1

(√
8JA
KAA

)
+ Θ

(
1,

√
8JA
KAA

)
LA
KAA

+O

((
LA
KAA

)2
)

+

C

(
I0

(√
8JA
KAA

)
+ Θ

(
0,

√
8JA
KAA

)
LA
KAA

+O

((
LA
KAA

)2
)))]

. (3.139)

The terms of zeroth order in LAK
−1
AA arising from the modified Bessel functions in the

terms multiplying (2p− 1)Γ
(

LA
KAA

)
cancel each other, so that the leading order terms
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are of first order in LAK
−1
AA, so that

〈NA〉ssLAK−1
AA<1

=

1

2
+

√
JA

2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

)
(1 +O

(
LA
KAA

))
+

(2p− 1)

((
LA
KAA

)−1

+O(1)

)(
f(JA, KAA)

(
LA
KAA

)
+O

((
LA
KAA

)1+ε
))

=

1

2
+

√
JA

2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

)
(1 +O

(
LA
KAA

))
+

(2p− 1)

(
f(JA, KAA) +O

((
LA
KAA

)ε))
, (3.140)

where ε > 0 and f(JA, KAA) 6= 0 and where we have used the form of the Laurent

expansion of the Gamma function at the point z = 0. We know that the average

number of chemical reaction partners for vanishing evaporation rate reads

〈NA(LA ≡ 0)〉ss =
1

2
+

√
JA

2KAA

I2

(√
8JA
KAA

)
I1

(√
8JA
KAA

) , (3.141)

so that we have to set

p ≡ 1

2
, (3.142)

in order for the limit of (3.140) for LA → 0 and fixed KAA 6= 0 to reproduce this exact

result. From (3.142) it follows that, in general,

G(z)z=−1 ≡ 0, (3.143)

for LAK
−1
AA < 1 which is equivalent to

A ≡ 0. (3.144)

The full expression for the average particle number of chemical reactants A for

LAK
−1
AA < 1 reduces to

〈NA〉ssLAK−1
AA<1

≡ dG−(z)

dz

∣∣∣∣
z=1

. (3.145)
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We argue that the expression for the average population of molecules of chemical species

type A (3.103) presented in the literature has to be replaced by the following:

〈NA〉ss =



1
2

(
1− LA

KAA

)
+
√

JA
2KAA

I
2− LA

KAA

„r
8JA
KAA

«
I
1− LA

KAA

„r
8JA
KAA

« : LAK
−1
AA < 1

√
JA

2KAA

I LA
KAA

„r
8JA
KAA

«
I LA
KAA

−1

„r
8JA
KAA

« : LAK
−1
AA ≥ 1

. (3.146)

Let us stress that the case LAK
−1
AA < 1 is of great physical relevance when employing

the M1 data which we will discuss in detail in the next section.

Production Rate

The stochastic production rate for the average number of molecules of chemical species

type C is defined as

PC := KAA
d2F (z)

dz2

∣∣∣∣
z=1

= KAA

∞∑
NA=0

NA(NA − 1)P (NA), (3.147)

which can be compared to the production rate for the average number of molecules of

chemical species type C in the mean-field framework

PC := KAA (〈NA〉ss)2 =
JA − LA〈NA〉ss

2
. (3.148)

In the special case of a vanishing reaction rate the generating function candidate reads

G(z) = e
JA
LA

(z−1)
. (3.149)

The MacClaurin series of the generating function candidate and its first and second

derivatives converge absolutely for z = 1. However, the production rate of the chemical

species C is zero for vanishing reaction rate coefficient —see equation (3.147).

The second derivative of the generating function candidate derived for the spe-
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cial case that the evaporation rate is zero reads

d2G(z)

dz2
=

1
√

2I1

(√
8JA
KAA

) (2

√
JA
KAA

(1 + z)−1I2

(
2

√
JA
KAA

(1 + z)
1
2

)
+

JA
KAA

(1 + z)−
1
2 I3

(
2

√
JA
KAA

(1 + z)
1
2

))
. (3.150)

Using (3.32) one can rewrite the above expression for the second derivative of the

generating function candidate in the following way

d2G(z)

dz2
=

1
√

2I1

(√
8JA
KAA

) (2

(
JA
KAA

) 3
2

Ω2(z) + (1 + z)

(
JA
KAA

) 5
2

Ω3(z)

)
, (3.151)

where the two series Ω2(z) and Ω3(z) according to (3.33) converge absolutely every-

where. The MacClaurin series of (1 + z) converges absolutely for z = 1 since its power

is strictly positive —see Theorem 1. Hence, the MacClaurin series of the second deriva-

tive of the generating function candidate for zero evaporation rate converges absolutely

for z = 1. Therefore, the production rate of chemical reaction products of species C

for vanishing evporation rate reads

PC =
KAA

I1

(√
8JA
KAA

) (√ JA
2KAA

I2

(√
8JA
KAA

)
+

JA
2KAA

I3

(√
8JA
KAA

))
≡ JA

2
, (3.152)

which corresponds to the production rate in the mean-field framework.

In the special case of zero source rate coefficient, the following generating func-

tion candidate was obtained

G(z) = A+B(1 + z)
1− LA

KAA . (3.153)

For LAK
−1
AA < 1, the second derivative of the above generating function candidate reads

d2G(z)

dz2
= −B LA

KAA

(
1− LA

KAA

)
(1 + z)

−1− LA
KAA , (3.154)

which does not converge for z = 1 since the real part of the power −LAK−1
AA − 1 is not

strictly greater than −1 even if LAK
−1
AA = 0. This has as a consequence that one can

not make use of the methods of generating functions to derive an expression for the
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production rate as given in (3.147) in the case that LAK
−1
AA < 1. For LAK

−1
AA ≥ 1, the

production rate is zero since the second derivative of the generating function candidate

is zero for all values of z.

In general, that is for the full master equation (3.20), the second derivative of

the generating function candidate reads

d2G(z)

dz2
= A

JA
KAA

(1 + z)
− 1

2

“
LA
KAA

+1
”
I LA
KAA

+1

(
2

√
JA
KAA

(1 + z)
1
2

)
−

B

(
1− LA

KAA

)
LA
KAA

(1 + z)
− 1

2

“
LA
KAA

+3
”
I

1− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
+

2B

(
1− LA

KAA

)√
JA
KAA

(1 + z)
− 1

2

“
LA
KAA

+2
”
I

2− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
+

B
JA
KAA

(1 + z)
− 1

2

“
LA
KAA

+1
”
I

3− LA
KAA

(
2

√
JA
KAA

(1 + z)
1
2

)
. (3.155)

Assuming that LAK
−1
AA ≥ 1, the production rate PC+ is given by

PC+ =
JA
2

I LA
KAA

+1

(√
8JA
KAA

)
I LA
KAA

−1

(√
8JA
KAA

) . (3.156)

Using (3.103) one can show that

PC+ ≡
JA − LA〈NA〉ss+

2
. (3.157)

The convergence criteria are satisfied for every value of z since

d2G+(z)

dz2
= A

(
JA
KAA

) 1
2

(
LA
KAA

+3)

Ω LA
KAA

+1
. (3.158)
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On the other hand, if LAK
−1
AA < 1, we have the following production rate, namely,

PC− = KAA

 LA
4KAA

(
LA
KAA

− 1

)
+

√
JA

2KAA

(
1− LA

KAA

) I
2− LA

KAA

(√
8JA
KAA

)
I

1− LA
KAA

(√
8JA
KAA

)+

J

2KAA

I
3− LA

KAA

(√
8JA
KAA

)
I

2− LA
KAA

(√
8JA
KAA

)
 .

(3.159)

Again, using (3.115) one can write

PC− ≡
JA − LA〈NA〉ss−

2
. (3.160)

However, absolute convergence has to be investigated before the above expression for

the production rate can be taken seriously. The above expression for the second deriva-

tive of the generating function candidate can be rewritten using (3.32):

d2G−(z)

dz2
= B

(
2

(
JA
KAA

) 1
2

“
3− LA

KAA

”
(1 + z)

− LA
KAA Ω

2− LA
KAA

(z) +(
JA
KAA

) 1
2

“
5− LA

KAA

”
(1 + z)

1− LA
KAA Ω

3− LA
KAA

(z)−(
1− LA

KAA

)
LA
KAA

(
JA
KAA

) 1
2

“
1− LA

KAA

”
(1 + z)

−1− LA
KAA Ω

1− LA
KAA

(z)

)
,

(3.161)

where the three series Ω
2− LA

KAA

(z), Ω
3− LA

KAA

(z) and Ω
1− LA

KAA

(z) which are defined by

(3.33) converge absolutely everywhere. Furthermore, we assume —as in preceding

calculations— that LAK
−1
AA < 1. The MacClaurin series of (1 + z)

1− LA
KAA converges

absolutely for z = 1 since its power is strictly greater than −1 as required, and the

MacClaurin series of (1 + z)
− LA
KAA only converges for z = 1 if LAK

−1
AA < 1. However,

the MacClaurin series of (1 + z)
−1− LA

KAA does not converge for z = 1 since the power

−1 − LA
KAA

is never strictly greater than −1 since LA ≥ 0 and KAA ≥ 0. Hence, the

MacClaurin series of the second derivative of the generating function candidate does

not converge for z = 1. Again, the methods of generating functions can not be used

to calculate the production rate. Finding an alternative procedure to calculate the

production rate of the chemical reaction product is beyond the scope of this thesis.
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Comment on the Alternative Approach

Let us recall the alternative approach to derive an exact solution to the stationary

master equation as presented in [5]. At this point we do not want to go into details

about regularity conditions in the mentioned publication. However, we would like

to point out that the reduced form of the non-vanishing off-diagonal elements of the

matrix M′′ which fulfills the stationary master equation

M′′p = 0, (3.162)

with p the probability vector

p := (P ({NA} = 0), P ({NA} = 1), P ({NA} = 2), ...), (3.163)

can not only be expressed as continued fractions of the ratio of Bessel functions as

stated by the authors, namely,

I LA
KAA

+N−1

(
2
√

JA
KAA

)
I LA
KAA

+N

(
2
√

JA
KAA

) , (3.164)

but also as continued fractions of the ratio of Bessel functions5

I
1− LA

KAA
−N

(
2
√

JA
KAA

)
I− LA

KAA
−N

(
2
√

JA
KAA

) . (3.165)

Consequently, from the latter observation one has to conclude that the alternative

approach by [5] also leads to a second exact solution of the stationary master equation,

in fact to a superposition of two solutions, that was not mentioned in the publication.

This result is consistent with the results presented in this thesis.

3.3 Stochastic Dynamical Solutions

This section is concerned with exact and numerical solutions to the stochastic constraint

equations arising in the Doi-Peliti formalism in order to determine the average particle

population of chemical reactants and reaction products in a single spatial site model

for a heterogeneous chemical reaction of type A+ A→ C.

5A detailed calculation can be found in Appendix B.
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3.3.1 Special Case: Vanishing Source Rate

Exact Solutions

The mean-field rate equation for the evolution of the average particle population of

chemical reactants of species A in the single spatial site model for vanishing source

rate reads6

d

dt
〈NA(t)〉+ 2KAA〈NA(t)〉2 + LA〈NA(t)〉 = 0, (3.166)

where 〈NA(t)〉 denotes the mean particle population of the A molecules in the mean-

field approximation. The mean-field evolution equation (3.166) is solved by

〈NA(t)〉 =
LA

2KAA

1

eLAt
(
1 + LA

2KAA
〈NA(0)〉−1

)
− 1

, (3.167)

for 〈NA(0)〉 6= 0. The stochastic constraint equation (2.61) for the complex fluctuating

field Φ̄A(t) in zero spatial dimensions with vanishing source rate takes the form

d

dt
Φ̄A(t) + 2KAAΦ̄2

A(t) + LAΦ̄A(t)− i
√

2KAAΦ̄A(t)η(t) = 0. (3.168)

The mean-field equation for the average particle population of the A molecules (3.166)

and the stochastic constraint equation associated with the A molecules (3.168) seem to

resemble each other. But, as mentioned before, a solution of the stochastic differential

equation (3.168) is a complex, fluctuating field that can only be interpreted as an aver-

age particle population after it has been averaged in the sense of equation (2.64). For

vanishing source rate it is possible to find an analytic solution of equation (3.168). The

stochastic constraint equation (3.168) has to be understood7 in terms of a stochastic

integral equation [22]

Φ̄A(t)− Φ̄A(0) =

∫ t

0

ds a[Φ̄A(s), s] +

∫ t

0

ds b[Φ̄A(s), s]η(s), (3.169)

6Note that the Langmuir-Hinshelwood rejection mechanism has been neglected which means that
the Langmuir-Hinshelwood rejection terms −JA〈NA〉 and −JA〈NC〉 in equation (3.166) have been
omitted. In the Langmuir-Hinshelwood rejection mechanism atoms of chemical species A that are
deposited on top of A or C molecules already present on the grain surface are rejected. This assumption
is a good approximation as long as the coverage of A and C atoms is low which is the case for interstellar
conditions. However, at very low temperatures A atoms are immobile and may pile up on the surface
leading to a high coverage. In order to include the Langmuir-Hinshelwood rejection mechanism in the
stochastic model one would have to include that via the joint probability distribution in the master
equation. In the sequel, we ignore this particular mechanism which enables us to compare our results
more readily to the computations by other groups, for example, [4].

7This is due to the continuous but not smooth nature of a stochastic process. The first integral is
the standard Riemann-Lebesgue integral and the second integral an Itô integral.
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with

a[Φ̄A(t), t] = −LAΦ̄A(t)− 2KAAΦ̄2
A(t) : drift coefficient ,

b[Φ̄A(t), t] = i
√

2KAAΦ̄A(t) : diffusion coefficient . (3.170)

The stochastic noise η(t) is rewritten in terms of the Wiener process8 W (t)

η(t)dt = dW (t), (3.171)

and, accordingly, equation (3.168) reads

dΦ̄A(t) =
[
− 2KAAΦ̄2

A(t)− LAΦ̄A(t)
]
dt+ i

√
2KAAΦ̄A(t)dW (t). (3.172)

The above equation is interpreted as a nonlinear reducible stochastic differential

equation with polynomial drift of degree two in the Itô picture9. In contrast to a

Stratonovich stochastic differential equation, an Itô stochastic differential equation can

not be solved directly by methods of classical calculus10. In order to obtain an analyt-

ical solution of an Itô stochastic differential equation one has to use a modified version

of the drift coefficient

a[Φ̄A(t), t] −→ a[Φ̄A(t), t]− 1

2
b[Φ̄A(t), t]

δ

δΦ̄A(t)
b[Φ̄A(t), t], (3.173)

where the derivative in the last term is a functional derivative11. Equation (3.172) is a

stochastic version of a Verhulst-like equation12 —see [37]. It can be reduced to a linear

stochastic differential equation with multiplicative noise. We obtain the solution to the

8See Appendix A.
9A stochastic differential equation is ambiguous in the sense that the noise term can be interpreted

in various ways. The two standard interpretations are the Itô picture and the Stratonovich picture.
If one intuitively views the stochastic noise as a random sequence of delta distributions, which cause
jumps in the unknown function, the value of the function at the time the delta distribution arrives
is undetermined. In the Itô picture the diffusion term is evaluated before the jump whereas in the
Stratonovich picture the mean of the value before and after the jump is assumed. For a more detailed
discussion see, for example, [62]. According to [37] “...the Stratonovich interpretation of a stochastic
differential equation is the appropriate one when the white noise is used as an idealization of a smooth
real noise process.”. However, if the underlying physical process is a discrete Markov process —see
Appendix A— “...diffusion processes satisfying Itô stochastic differential equations are a convenient
and mathematically tractable approximation of the actual process.” —see [37]

10Sample paths of a Wiener process are —with reasonable certainty— neither differentiable nor of
bounded variation. As a consequence one is left with different interpretations of stochastic equations,
namely the Itô and the Stratonovich interpretation. For a further reading we refer to [37].

11A functional derivative is a generalisation of the directional derivative. It differentiates in the
direction of a function.

12See Appendix A.
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first stochastic constraint equation in zero spatial dimensions for vanishing source rate

—equation (3.172)—, namely,

Φ̄A(t) =
Φ̄A(0)e(KAA−LA)t+i

√
2KAAW (t)

1 + 2KAAΦ̄A(0)
∫ t

0
e(KAA−LA)s+i

√
2KAAW (s)ds

. (3.174)

Inserting the above solution into the path integral average (2.64) one obtains the av-

erage particle population for the A molecules in the stochastic framework13. If the

initial conditions are taken to be Φ̄A(0) = 0 one obtains the trivial solution14 which is

also a solution derived from the corresponding stationary master equation. In order to

compare the behaviour of the explicit solution to numerical findings as well as to the

stochastic steady state solution, we consider the following estimate for the modulus of

the above solution (3.174),

∣∣Φ̄A(t)
∣∣ =

∣∣∣∣∣Φ̄A(0)
e(KAA−LA)tei

√
2KAAW (t)

1 + 2KAAΦ̄A(0)
∫ t

0
e(KAA−LA)sei

√
2KAAW (s)ds

∣∣∣∣∣
=

∣∣∣∣∣Φ̄A(0)
e(KAA−LA)t

1 + 2KAAΦ̄A(0)
∫ t

0
e(KAA−LA)sei

√
2KAAW (s)ds

∣∣∣∣∣
≥
∣∣Φ̄A(0)

∣∣ e(KAA−LA)t

1 +
2KAA|Φ̄A(0)|

(
e(KAA−LA)t−1

)
KAA−LA

, (3.175)

where we used the fact that
∣∣∣ei√2KAAW (s)

∣∣∣ ≡ 1 and

∣∣∣∣1 + 2KAAΦ̄A(0)

∫ t

0

e(KAA−LA)sei
√

2KAAW (s)ds

∣∣∣∣
≤ 1 + 2KAA

∣∣∣∣Φ̄A(0)

∫ t

0

e(KAA−LA)sei
√

2KAAW (s)ds

∣∣∣∣ . (3.176)

We are interested in the late-time behaviour of the solution to the constraint equations.

Therefore, we take the limit t → ∞ in inequality (3.175). According to the rule of

L’Hôspital we obtain

lim
t→∞

∣∣Φ̄A(t)
∣∣ ≥ 1

2

(
1− LA

KAA

)
=: L. (3.177)

13In Appendix D we also present the exact solution to the constraint equation that is associated
with the reaction partners for the recombination of type A+A→ A.

14This feature is verified also by the numerical evaluation of the constraint equations and the
insertion of their solutions into the path integral average.

108



The modulus of the exact solution to the constraint equation for the chemical reactants

in the late-time limit is bounded from below. The lower bound depends on the evap-

oration rate coefficient and the reaction rate coefficient. This finding differs from the

late-time behaviour of the explicit solution to the corresponding mean-field equation,

(3.167), for which

lim
t→∞
|〈NA(t)〉| = 0, (3.178)

for LA 6= 0. Furthermore, we know from the previous subsection that

lim
JA→0
〈NA〉ss = L. (3.179)

Let us note that, in general, the averaged modulus of a solution to the stochastic

constraint does not coincide with the modulus of the averaged solution to the stochastic

constraint. One has that

〈
∣∣Φ̄A(t)

∣∣〉 := 〈
√
<
(
Φ̄A(t)

)2
+ =

(
Φ̄A(t)

)2〉,∣∣〈Φ̄A(t)〉
∣∣ :=

∣∣∣∣√<(〈Φ̄A(t)〉
)2

+ =
(
〈Φ̄A(t)〉

)2

∣∣∣∣ ,
=⇒ 〈

∣∣Φ̄A(t)
∣∣〉 ≥ ∣∣〈Φ̄A(t)〉

∣∣ . (3.180)

The stochastic constraint equation that is related to the reaction product, the C

particles,—equation (2.60)— in zero dimensions and for non-vanishing source rate JC

d

dt
Φ̄C(t) + LCΦ̄C(t)−KAAΦ̄2

A(t)− JC = 0, (3.181)

looks formally identical to the mean-field evolution equation for the average population

of C particles, 〈NC(t)〉:

d

dt
〈NC(t)〉+ LC〈NC(t)〉 −KAA〈NA(t)〉2 − JC = 0. (3.182)

However, since Φ̄A(t) is a complex fluctuating field, Φ̄C(t), is as well. Again, solutions

to the second constraint equation (3.181) need to be averaged in the sense of (2.64). In

the single spatial site model, a solution of the full second constraint equation (3.181),

that is for non-vanishing source rate, is given by

Φ̄C(t) =

(∫ t

0

eLCs
(
KAAΦ̄2

A(s) + JC
)
ds+ Φ̄C(0)

)
e−LCt. (3.183)

The stochasticity of the above solution is hidden in the first term containing the

fluctuating solution Φ̄A(t) of the first constraint equation (3.174).
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Once solutions to the stochastic constraint equations (3.174) and (3.183) are

known, one has to insert the respective solutions into the path integral average (2.64)

and compute the path integral by means of a Monte Carlo calculation in order to

obtain the average particle population for the A or C molecules, respectively. Random

samples are generated according to the Gaussian probability distribution (2.55); that

is, we generate Wiener processes. We estimate the path integral (2.64) by summing

a large number of solutions of the constraint equations associated with the set of

random samples generated in the above sense and divide the sum by the number of

random samples. The Monte Carlo method displays a convergence of 1/
√
N where

N is the number of random samples —see [49]. The numerical results presented

in the whole of this section are obtained by our own code written in the GNU C language.

Instead of using the expressions of the explicit solutions —equation (3.174) and

equation (3.183)— to generate solutions to the stochastic constraint equations one

can alternatively compute the paths directly from the stochastic differential equations

(3.172) and (3.181). The latter method turns out to be less time consuming. The

numerical implementation of the numerical schemes is in agreement with the exact

solution (3.174). This will be discussed further in the following paragraphs.

Numerical Implementation

The stochastic differential equation (3.172) can be converted into

XA,n+1 = XA,n + (−LAXA,n − 2KAAX
2
A,n)4n + i

√
2KAAXA,n4Wn, (3.184)

where XA,n := ΦA(tn) are the unknown variables in discretised time tn for n = 0, .., N .

The symbols4n := tn+1−tn give the time increments and4Wn := Wtn+1−Wtn are the

Wiener increments. The increments 4Wn are generated by two uniformly distributed

independent random variables via the Box-Müller transformation —see, for example,

[37]. According to the Box-Müller method two independent standard Gaussian random

variables G1 and G2 are given by

G1 =
√
−2 ln (U1) cos (2πU2),

G2 =
√
−2 ln (U1) sin (2πU2), (3.185)

where U1 and U2 are two independent uniformly distributed random variables. These

variables are obtained by means of the standard pseudo-random number generator
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included in the math.h library of the GNU C language. Alternatively, one can use the

pseudo random number generator described in [49]. These generators provide pseudo-

random numbers which are uniformly distributed. The numerical scheme (3.184) is

called the Euler scheme and is the most straightforward approach to undertake some

numerical investigations. Accordingly, the second constraint equation in the single

spatial site model for vanishing source rate —equation (3.181)— takes the following

form

XC,n+1 = XC,n + (−LCXC,n +KAAX
2
A,n)4n. (3.186)

As stochastic differential equations are extremely sensitive to numerical instabilities one

has to convince oneself that the code is stable and converging. Numerical schemes that

we have employed in order to check whether they might be more accurate or stable than

the Euler method are the Milstein scheme, the simplified order 2.0 weak Taylor scheme,

the implicit order 1.0 strong Runge-Kutta scheme, the predictor-corrector method of

order 1.0 with modified trapezoidal method of weak order 1.0. The numerical schemes

were taken from [37] and are presented in Appendix C. We observe that all of the

before mentioned numerical schemes are stable and there is only very little difference

noticable in the accuracy of the numerical results. If not otherwise stated we implement

the Milstein scheme which is an order 1.0 strong Taylor obtained from the Itô-Taylor

expansion. The stochastic constraint equation associated with the reaction partners A

expressed in the Milstein scheme reads

XA,n+1 = XA,n +
(
− LAXA,n − 2KAAX

2
A,n

)
4n +

i
√

2KAAXA,n4Wn −KAAXA,n

(
(4Wn)2 −4n

)
.

More accurate strong Taylor schemes can be obtained by including further mul-

tiple stochastic integrals from the stochastic Taylor expansion in the scheme. In

the case of an elapse of a long time until equilibrium is reached we saved only a

multiple of the time step to be evaluated in order to avoid computational complications.

For the numerical evaluation of the dynamical stochastic differential equations

we employ values for the rate coefficients that can be found in realistic physical

set-ups. Before we go into any further details about the physical background let us

refer to [30]: “If we consider the totality of surface experiments done to date, we

can generalize that laboratory work is at the stage where it has confirmed the view

of astrochemists as to what types of diffusive thermal processes can occur on low

temperature surfaces, but is only approaching the stage where it can give us unambigous

parameters to be used to determine actual rates under interstellar conditions.” Ex-
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periments designed to measure the reaction rate most often involve the techniques of

temperature programmed desorption where atoms are deposited with tiny deposition

rates on very cold surfaces. Diffusive reaction and desorption start to occur when

the temperature is raised slowly. In addition to thermal reactive processes, there is

also the possibility that energetic particles can drive a photochemistry. However, the

laboratory experiments that have been undertaken up until today were performed at

fluxes that are too great to be relevant for the interstellar scenario.

On the Choice of the Rate Coefficients

Throughout the rest of the thesis we will present our calculations based on two different

types of data. One set of rate coefficients is taken from the work of [29] and [53] that

employ lower estimates for the energy barriers than, for example, [4]. The first set

of parameteres are referred to as the M1 model parameters of [53], the second set

of parameters are the M2 model parameters of [53]. In the M1 model a radius of a

spherically symmetric grain particle R = 10−7m is assumed.

The following derivation for the rate coefficients and their specific values for hydrogen

recombination is based on [4] and on the experimental results and their analysis by

[35, 47, 46, 48]. In general, the actual values of the rate coefficients are temperature

dependent. Although we are concentrating on the single spatial site model, some of

the following Ansätze are subliminally based on the assumption that the geometry of

the grains is of spherically symmetry so that the number of lattice sites NS is given by

NS = 4πR2s [per monolayer], (3.187)

with R [m] is the seed radius15, and s [m−2monolayer−1] the surface density of

lattice sites which can be determined experimentally for the various materials under

consideration. In diffusive clouds, it is assumed that grain particles have a diameter of

2R ∈ [1 × 10−8m, 5 × 10−7m]. For grains consisting of amorphous carbon the surface

density of lattice sites takes the value s(carbon) = 5.07× 1017m−2monolayer−1 and for

olivine s(olivine) = 1.85 × 1018m−2monolayer−1 as presented in [4]. In what follows

we restrict our analysis to a single monolayer.

The reaction rate coefficient KAA [s−1] is determined by the sum of inverse dif-

fusion times
(
t−1
S

)∣∣
A

for each atom A sweeping over the entire surface of the grain via

15This quantity —among others— has to be understood not as the radius of a particular particle
but as the radii of an ensemble of grain particles of the exact same size.
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thermal hopping or tunnelling —see [57]—,

KAA =

(
t−1
S

) ∣∣
A

+
(
t−1
S

) ∣∣
A

2
[s−1]. (3.188)

The factor of one half arises since the reactants are of the same type and not distinguish-

able. The inverse diffusion times for the various considered processes are determined

via an Arrhenius-like Ansatz 16

t−1
S = N−1

S νv exp

(
−Ed
kT

)
thermal hopping,

t−1
S = N−1

S νv exp

(
−
√

8l2mEd
h

)
tunnelling, (3.189)

where νv [s−1] is the frequency of vibration of the adsorbed species, Ed [J] is the energy

barrier against diffusion from one lattice site to another, l [m] is the tunnelling length,

m [kg] the mass of the adsorbate, T [K] the temperature of the grain surface, k [JK−1]

the Boltzmann constant, and h [Js−1] the Planck constant. The size of the grain is

related to the size of the lattice by means of the site density of the particular adsorbate-

substrate system [58] —see (3.187). If the material of the grain particle is known, the

reaction rate coefficient is a function of the temperature and the size of the grain, that

is, in the case of thermal hopping,

KAA(R, T ) =
νv

4πR2s
exp

(
−Ed
kT

)
[s−1]. (3.190)

A vibration frequency that is typical for physiorption problems would be νv = 1012 s−1.

The temperature frame that is usually considered in diffusive clouds is T ∈ [15K, 20K].

The exponents Ed/k for atomic hydrogen as determined in laboratory experiments are

287K for an olivine surface and 511K for amorphous carbon. The mass of hydrogen

atoms is given by m = 1.67× 10−27kg. The particular form of the above expression of

the reaction rate coefficient is true as long as the assumption of instantaneous reaction

on occupation of the same lattice site is justified.

The evaporation rate coefficient LA [s−1] is equal to the inverse evaporation

time t−1
E for the A particles. We assume that the form of the desorption rate is given

by the simplified Polanyi-Wigner relation:

t−1
E = νv exp

(
−Ee
kT

)
[s−1] (3.191)

16See Appendix A.
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with Ee [J] the energy needed for evaporation. Note that the evaporation rate coefficient

is a function only of the temperature of the grain surface for a given type of material of

the grain. The evaporation energy term Ee/k for atomic hydrogen is 373K for olivine

grain surfaces and 658K for surfaces made of amorphous carbon. In general, it is true

that

Ed � Ee. (3.192)

As stated in [30], most species that are heavier than hydrogen exhibit desorption

energies that are too large for evaporation to occur in cold clouds. This special case

will be of interest later on.

The source rate coefficient is defined as

JA = SvAσn(A) [s−1], (3.193)

where vA [ms−1] is the speed of the gas-phase species, σ [m2] is the cross section of the

seed particle, n(A) [m−3] gives the gas phase concentration of the chemical species A

and S is the sticking coefficient. For low temperature adsorption, the sticking coefficient

can be assumed to be unity. We assume that the grain is spherical which leads to an

expression for the cross section

σ = πR2 [m2]. (3.194)

The speed in the gas phase is given by

vA =

√
8kTgas
πm

[ms−1], (3.195)

with Tgas [K] the temperature of the gas phase. In diffusive clouds this temperature

is estimated to be Tgas = 100K which leads to a value of vH = 1.451 × 103ms−1 for

hydrogen atoms. The gas phase concentration for hydrogen atoms in diffusive clouds

is taken to be n(H) = 1 × 107[m−3] so that the source rate coefficient for hydrogen

atoms is the following function of the radius of the seed particle

JH(R) = vHn(H)σ(R) = 4.56× 1010 R2 [s−1]. (3.196)

Note that the source rate coefficient only depends on the geometry of the seed but not

on the material the grain particle is made of.
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Discussion of the Numerical Results

The following plots were generated for the situation where two hydrogen atoms react

on the surface of an interstellar dust particle at a temperature T = 10K. Accord-

ing to [7], the gas phase concentration of atomic hydrogen in interstellar clouds is

nH ∈ [10−1cm−3, 104cm−3]. In [7] the rate coefficients at a temperature of T = 10K are

derived under the assumption that the number of binding sites on the grain is about

NS = 106 per monolayer. The reaction rate for the hydrogen atoms takes the value of

KHH = 5.1×104s−1, the evaporation rate LH = 1.9×10−3s−1 and the evaporation rate

for the reaction product, diatomic hydrogen, LH2 = 6.9× 10−8s−1. As initial values in

our calculations we used Φ̄H(0) = Φ̄H2(0) = 6. In Figure 3.1 we generate the real part

of one solution to the stochastic constraint equation (3.172) for the hydrogen atoms

under the above conditions. Figure 3.2 shows the imaginary part of the same solution

of the stochastic constraint equation for the reaction partners. In the following fig-

ures, Figure 3.3 and Figure 3.4, Figure 3.5 and Figure 3.6, and Figure 3.7 and Figure

3.8, the respective real and imaginary parts of the path integral average —equation

(2.64)— over 10, 100 and 1000 realisations of the white Gaussian noise for the H atoms

are shown, respectively. One observes that the real part of the path integral average

smoothes out and the fluctuations in the imaginary part decrease in intensity the more

realisations of the noise are employed in the path integral average. In particular, the

imaginary part of the PIA tends to zero for an increasing number of paths. Therefore,

it is safe to interpret the real part of the path integral average as the average particle

population.

Occasionally, the numerical evaluation of the stochastic differential equations exhibits

extreme spikes. This seems to be an unavoidable feature of this approach. Therefore,

it is crucial to compare simple cases with explicit analytical solutions if available and

to finetune the numerical schemes.

Figures 3.9 and 3.10 show the real and imaginary part of the solution to the second

stochastic equation in zero spatial dimensions for vanishing source rate —equation

(3.181)— associated with the reaction products H2. The same realisation of the

stochastic noise have been used to generate Figures 3.9 and 3.10 as in Figure 3.1

and Figure 3.2. Again, the fluctuations are smoothed out in Figure 3.11 and Figure

3.12 when the path integral average (2.64) for the diatomic hydrogen is taken over 1000

realisations of the stochastic noise.

From Figure 3.7 it is clear that the mean number of hydrogen atoms approaches asymp-

totically the value 〈Φ̄H(t∞)〉1000 ≈ 0.5, where t∞ denotes the time after the transient

processes when a constant late-time limit is reached. This is consistent with the esti-

mate of the late-time behaviour of the modulus of the explicit solution to the constraint
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equation —see (3.177)— and with the stochastic steady state solution —see (3.120).

From the numerial calculations we find that the late-time limit for the average of the

modulus of solutions to the first stochastic constraint (3.177) is not sharp, that is,

lim
t→∞
〈
∣∣Φ̄A(t)

∣∣〉 ≥ 1

2

(
1− LA

KAA

)
+ ε ε > 0, (3.197)

for small ε. Furthermore, we find that

lim
t→∞
〈
∣∣Φ̄A(t)

∣∣〉 = lim
t→∞

∣∣〈Φ̄A(t)〉
∣∣+ ε̃ ε̃ > 0, (3.198)

for small ε̃. The overall behaviour of 〈
∣∣Φ̄A(t)

∣∣〉 is smoother than the one of
∣∣〈Φ̄A(t)〉

∣∣. In

addition, we checked that 〈
∣∣Φ̄A(t)

∣∣〉1 =
∣∣〈Φ̄A(t)〉1

∣∣ where the average is taken over only

one path. The ratio between the averaged modulus of the solutions and the modulus of

the averaged solution does not change if the average is taken over ten or one thousand

paths. For completeness, Figure 3.13 shows the modulus of the same solution to the

first stochastic constraint, as plotted in Figure 3.1 and Figure 3.2, and Figure 3.14

gives the average of the modulus of the same solutions averaged over 1000 paths as

plotted in Figure 3.7 and 3.8. The above discussion can be compared with the results

obtained from the solution to the mean-field evolution equation (3.166) which predicts

an asymptotic value 〈NA(t)〉 −→ 0 as t −→∞ for LA 6= 0.

The errors in our calculations of the path integral average are mostly due to the errors

occurring from the Monte Carlo estimation of the PIA. The order of the error due to the

summing of paths according to (2.64) is proportional to the inverse of the square-root

of the number of paths employed in the summation. We choose the proportionality

constant to be equal to one which is a rather conservative estimation. As can be seen

from calculations presented later on, the errors in the stochastic results are in fact

much smaller than our worst-case scenario would predict.
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Figure 3.1: Real part of one possible solution to the first constraint equation (3.172)
for hydrogen atoms under interstellar space conditions (KHH = 5.1 × 104s−1, LH =
1.9 × 10−3s−1) with vanishing source rate (JH = 0s−1) and for the initial condition
Φ̄H(0) = 6.
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Figure 3.2: Imaginary part of the solution to the first constraint equation (3.172) for the
same stochastic noise as in Figure 3.1 for the reaction partners H under interstellar
space conditions (KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1), for zero source rate
(JH = 0s−1) and for the initial condition Φ̄H(0) = 6.
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Figure 3.3: Real part of the path integral average (PIA) of solutions to the first con-
straint equation (3.172) with vanishing source rate (JH = 0s−1) for hydrogen atoms
under interstellar conditions (KHH = 5.1×104s−1, LH = 1.9×10−3s−1) over 10 possible
paths and for the initial condition Φ̄H(0) = 6.
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Figure 3.4: Respective imaginary part of the path integral average (PIA) of solutions
to the first constraint equation (3.172) with zero source rate (JH = 0s−1) for hydrogen
atoms under interstellar conditions (KHH = 5.1× 104s−1, LH = 1.9× 10−3s−1) over 10
paths and for the initial condition Φ̄H(0) = 6.
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Figure 3.5: Real part of the path integral average (PIA) of solutions to the first con-
straint equation (3.172) with vanishing source rate (JH = 0s−1) for hydrogen atoms
under interstellar conditions (KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1) over 100
possible paths and for the initial condition Φ̄H(0) = 6.
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Figure 3.6: Respective imaginary part of the path integral average (PIA) of solutions
to the first constraint equation (3.172) with zero source rate (JH = 0s−1) for hydrogen
atoms under interstellar conditions (KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1) over
100 paths and for the initial condition Φ̄H(0) = 6.
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Figure 3.7: Real part of the path integral average (PIA) of solutions to the first con-
straint equation (3.172) with vanishing source rate (JH = 0s−1) for hydrogen atoms
under interstellar conditions (KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1) over 1000
possible paths and for the initial condition Φ̄H(0) = 6.
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Figure 3.8: Respective imaginary part of the path integral average (PIA) of solutions
to the first constraint equation (3.172) with zero source rate (JH = 0s−1) for hydrogen
atoms under interstellar conditions (KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1) over
1000 paths and for the initial condition Φ̄H(0) = 6.
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Figure 3.9: Real part of a possible solution of the second constraint equation (3.181)
for the same specific realisation of the stochastic noise as in Figure 3.1 for vanishing
source rates (JH = JH2 = 0s−1), the constraint equation for diatomic hydrogen under
interstellar conditions (KHH = 5.1 × 104s−1, LH2 = 6.9 × 10−8s−1) and for the initial
conditions Φ̄H(0) = Φ̄H2(0) = 6.
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Figure 3.10: Imaginary part of a possible solution to the second constraint equation
(3.181) for the same specific realisation of the stochastic noise as in Figure 3.2 with
zero source rates (JH = JH2 = 0s−1) under interstellar conditions (KHH = 5.1×104s−1,
LH2 = 6.9× 10−8s−1) and for the initial conditions Φ̄H(0) = Φ̄H2(0) = 6.
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Figure 3.11: Real part of the path integral average (PIA) of solutions to the second
constraint equation (3.181) for the reaction product H2 under interstellar conditions
(KHH = 5.1 × 104s−1, LH2 = 6.9 × 10−8s−1) over 1000 paths with vanishing source
rates (JH = JH2 = 0s−1) and for the initial conditions Φ̄H(0) = Φ̄H2(0) = 6.
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Figure 3.12: Respective imaginary part of the path integral average (PIA) of solutions
to the second constraint equation (3.181) for diatomic hydrogen under interstellar con-
ditions (KHH = 5.1 × 105s−1, LH2 = 6.9 × 10−8s−1) over 1000 realisations of the
stochastic noise for zero source rates (JH = JH2 = 0s−1) and for the initial conditions
Φ̄H(0) = Φ̄H2(0) = 6.
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Figure 3.13: Modulus of one solution to the first stochastic constraint equation for
vanishing source rate for hydrogen recombination under interstellar conditions with
JH = 0s−1, KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1 and for the initial condition
Φ̄H(0) = 6.
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Figure 3.14: Modulus of solutions to the first stochastic constraint equation for
vanishing source rate for hydrogen recombination under interstellar conditions with
JH = 0s−1, KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1 and for the initial condition
Φ̄H(0) = 6 averaged over 1000 paths.

123



3.3.2 Full Stochastic Dynamical Solution

As in the previous section, we generate solutions to the constraint equations (2.61)

and (2.60) in zero spatial dimensions yet with a positive source rate and compare the

qualitative form of the solutions to the mean-field evolution equations.

For a positive source rate, the stochastic constraint equations (2.61) and (2.60)

in the single spatial site model

−dΦ̄A(t)

dt
− 2KAAΦ̄2

A(t)− LAΦ̄A(t) + JA + i
√

2KAAΦ̄A(t)η(t) = 0, (3.199)

−dΦ̄C(t)

dt
+KAAΦ̄2

A(t)− LCΦ̄C(t) + JC = 0. (3.200)

can not be solved analytically. Therefore, one is left with numerical investigations

undertaken as described in the previous subsection.

Discussion of the Numerical Results

The plots in Figures 3.15 —giving the real part of a possible solution to the constraint

equation associated with the reactant hydrogen population— and 3.17 —representing

the real part of the path integral average of the hydrogen atoms population averaged

over 1000 realisations of the noise— are obtained for a source rate, JH = 108s−1,

that is large in comparison to the other rate coefficients, KHH = 5.1 × 104s−1,

LH = 1.9 × 10−3s−1. The initial conditions were chosen to be Φ̄H(0) = 0. In Fig-

ure 3.16 —plot of the real part of a possible solution to the first constraint— and

Figure 3.18 —plot of the real part of the corresponding path integral average over

1000 realisations of the noise— the source rate was chosen to be small, JH = 10−8s−1

whereas all other parameters were the same as for Figures 3.15 and 3.17. It can be

readily seen that the fluctuations in Figures 3.15 and 3.17 are much larger than in

Figures 3.16 and 3.18. In particular, the real part of the path integral average in

Figure 3.17 is very smooth. If one compares the above mentioned figures to Figure

3.19 —representing the average hydrogen population in the mean-field framework for

JH = 108s−1, KHH = 5.1× 104s−1, LH = 1.9× 10−3s−1 and 〈NH(0)〉 = 0— and Figure

3.20 —giving the average hydrogen population in the mean-field model with the same

parameters as employed for the production of Figure 3.19 yet for small source rate

JH = 10−8s−1, one observes that the result obtained from the stochastic formalism

—Figure 3.17— corresponds to the mean-field result —Figure 3.19. This is not the

case when confronting Figure 3.18 —the stochastic mean hydrogen population— with

Figure 3.20 —the corresponding average number of hydrogen atoms in the mean-field

124



model. The dependence of the threshold between the deterministic and the stochastic

regime will be explored further in the following section.

For the present discussion we shall assume the values of parameters corresponding to

the conditions occuring in interstellar clouds. Therefore, we numerically compare the

late-time stochastic average particle population, 〈ΦX(t∞)〉, to the late-time average

particle population in the mean-field framework, 〈NX(t∞)〉, of two chemical reactants

X under interstellar conditions, namely hydrogen and oxygen. Hydrogen and oxygen

recombination are important chemical reactions, for example, in the hydrogen-oxygen

reaction network —see Chapter 5. The estimates for the corresponding rate coefficients

are available in [58]. Quantum Tunnelling effects have been taken into account in the

derivation for the rate coefficients concerning the hydrogen-hydrogen reaction. Quan-

tum Tunnelling becomes more important for decreasing mass of the chemical reactants

and/or decreasing temperature. The value for the evaporation rate coefficient of the re-

actants has to be understood as a lower limit whereas the evaporation rate coefficient of

the reaction products is better defined. The results of our calculations are summarised

in Table 3.1 for a temperature of T = 10K, in Table 3.2 for a temperature of T = 15K

and in Table 3.3 for a temperature of T = 20K. Note that JX = JXn(X) with, for

example, n(H) ∈ [105m−3, 1010m−3] and n(O) = 106m−3 the gas phase densities. In

the numerical computations we choose n(H) = 106m−3 and take the initial conditions

to be equal to zero for all chemical species. One observes that in all cases except for the

hydrogen reaction at a temperature of T = 20K the stochastic average population of

the chemical reactants approximates 0.5 whereas the values of the average population

of the chemical reactants in the mean-field framework are much lower. This behaviour

is consistent with the observations in the latter section where the stochastic limit of

the average reactant population for vanishing source rate is one half for the particu-

lar choice of rate coefficients. In the exceptional case of the hydrogen reaction at the

highest temperature under consideration, the stochastic and the mean-field average

hydrogen population coincide since the evaporation rate coefficient dominates over the

reaction rate coefficient. Due to the lack of data we are not able to give a quantitative

description of the behaviour of the reaction products although it is very important to

investigate the qualitative behaviour of the dimolecular species in order to make sure

that the numerical results are stable. In general,

〈Φ̄C(t∞)〉 . Φ̄C(0) +
〈Φ̄A(t∞)〉

2
, (3.201)

for JC = 0s−1.

Furthermore, we make the following observation: the transient time, that is, the time
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span until the average particle population reaches a constant late-time limit, differs

between the various chemical reactions. In the calculations presented in Tables 3.1,

3.2 and 3.3 one notes that the higher the temperature the less time needed to reach

equilibrium. We will explore this aspect in detail later on.
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Figure 3.15: Real part of one possible solution to the first constraint equation (2.61)
in the single spatial site model for a value of the source rate of JH = 108s−1 for the
hydrogen reactants as well as for KHH = 5.1× 104s−1, LH = 1.9× 10−3s−1 and for the
initial condition Φ̄H(0) = 0.
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Figure 3.16: Real part of a solution to the stochastic equation (2.61) in zero space
dimensions constraining the hydrogen reaction partners (KHH = 5.1 × 104s−1, LH =
1.9 × 10−3s−1) with a source rate for the hydrogen atoms of value JH = 10−8s−1 and
for the initial condition Φ̄H(0) = 0.
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Figure 3.17: Real part of the path integral average of 1000 possible solutions to the
first constraint equation (2.61) in the single spatial site model for a value of the source
rate of JH = 108s−1 for the hydrogen reactants as well as for KHH = 5.1 × 104s−1,
LH = 1.9× 10−3s−1 and for the initial condition Φ̄H(0) = 0.
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Figure 3.18: Real part of the path integral average of 1000 possible solution to the
stochastic equation (2.61) in zero space dimensions constraining the hydrogen reaction
partners (KHH = 5.1×104s−1, LH = 1.9×10−3s−1) with a source rate for the hydrogen
atoms of value JH = 10−8s−1 and for the initial condition Φ̄H(0) = 0.
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Figure 3.19: Solution to the mean-field rate equation in the single spatial site model
for a value of the source rate of JH = 108s−1 for the hydrogen reactants for KHH =
5.1× 104s−1, LH = 1.9× 10−3s−1 and for the initial condition 〈NH(0)〉 = 0.
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Figure 3.20: Solution to the mean-field rate equation in zero space dimensions for
the hydrogen reaction partners (KHH = 5.1 × 104s−1, LH = 1.9 × 10−3s−1) with a
source rate for the hydrogen atoms of value JH = 10−8s−1 and for the initial condition
〈NH(0)〉 = 0.
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K[s−1] L[s−1] J[s−1cm−3] 〈N(t∞)〉 〈Φ(t∞)〉1000

H 5.1× 104 1.9× 10−3 1.5× 10−5 1.2× 10−5 5× 10−1

O 4.2× 10−5 3.7× 10−12 3.6× 10−6 2.1× 10−1 5× 10−1

Table 3.1: Late-time average particle population of hydrogen atoms and oxygen atoms
under interstellar conditions at T = 10K with zero initial conditions according to the
mean-field theory, 〈N(t∞)〉, and according to the stochastic framework, 〈Φ(t∞)〉1000.
The evaporation for hydrogen was dominated by thermodynamic evaporation and the
evaporation for oxygen was dominated by cosmic ray desorption. The values of the
rate coefficients —K reaction rate, L evaporation rate, and J := Jn−1 where J is the
source rate and n the gas phase density— are taken from [58].

K[s−1] L[s−1] J[s−1cm−3] 〈N(t∞)〉 〈Φ(t∞)〉1000

H 5.5× 104 2.2× 102 1.8× 10−5 8.2× 10−8 5× 10−1

O 1.3× 10−1 1.14× 10−11 4.4× 10−6 4.1× 10−3 5× 10−1

Table 3.2: Late-time average particle population of hydrogen atoms and oxygen atoms
under interstellar conditions at T = 15K with zero initial conditions according to the
mean-field theory, 〈N(t∞)〉, and according to the stochastic framework, 〈Φ(t∞)〉1000.
The evaporation for hydrogen was dominated by thermodynamic evaporation and the
evaporation for oxygen was due to cosmic ray desorption as well as due to the thermo-
dynamics. The values of the rate coefficients —K reaction rate, L evaporation rate,
and J := Jn−1 where J is the source rate and n the gas phase density— are taken from
[58].
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K[s−1] L[s−1] J[s−1cm−3] 〈N(t∞)〉 〈Φ(t∞)〉1000

H 7.1× 104 7.5× 104 2.0× 10−5 2.7× 10−10 2.67× 10−10

O 7.1× 100 4.8× 10−6 5.1× 10−6 6.0× 10−4 5× 10−1

Table 3.3: Late-time average particle population of hydrogen atoms and oxygen atoms
under interstellar conditions at T = 20K with zero initial conditions according to the
mean-field theory, 〈N(t∞)〉, and according to the stochastic framework, 〈Φ(t∞)〉1000.
The evaporation for all chemical species was due to thermodynamic desorption. The
values of the rate coefficients —K reaction rate, L evaporation rate, and J := Jn−1

where J is the source rate and n the gas phase density— are taken from [58].
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3.4 Comparison between the Solutions

In the following, we want to investigate the similarities and discrepancies between the

stochastic and the deterministic regime depending on the source rate coefficient and

on the temperature of the grain surface, respectively.

3.4.1 Comparison between the Mean-Field Steady State So-

lution and the Stochastic Steady State Solution

In this part of the thesis, we compare the average population of chemical reactants of

type A as computed from the stationary mean-field equation

〈NA〉ss =

√
8KAAJA + L2

A − LA
4KAA

, (3.202)

to the average number of reactants as given by the stochastic steady state solution to

the stationary master equation

〈NA〉ss =



1
2

(
1− LA

KAA

)
+
√

JA
2KAA

I
2− LA

KAA

„r
8JA
KAA

«
I
1− LA

KAA

„r
8JA
KAA

« =: 〈NA〉ssLAK−1
AA<1

: LAK
−1
AA < 1

√
JA

2KAA

I LA
KAA

„r
8JA
KAA

«
I LA
KAA

−1

„r
8JA
KAA

« =: 〈NA〉ssLAK−1
AA≥1

: LAK
−1
AA ≥ 1

.

(3.203)

For reference, we also give the stochastic steady state solution as presented in the

literature

〈NA〉sslit ≡ 〈NA〉ssLAK−1
AA≥1

. (3.204)

In Table 3.4 we present the available data taken from [58] for the oxygen rate coef-

ficients at different temperatures of the grain surface. These parameters correspond

to the so-called M1 model and represent low estimates for silicate surfaces or surfaces

that are partially icy. For any of the temperatures under consideration, namely,

T = 10K, T = 15K and T = 20K, the condition LO/KOO < 1 is satisfied. In Table 3.5,

we give the average number of oxygen atoms on the surface of a grain particle which

has a surface temperature of T = 10K according to the mean-field theory, 〈NO〉ss,
and according to the stochastic framework, 〈NO〉sslit and 〈NO〉ssLO/KOO<1 depending on

the value of the source rate coefficient JO. Table 3.6 lists the same quantities for a

grain surface temperature of T = 15K and Table 3.7 for T = 20K. For a grain surface

temperature of T = 10K, the mean-field results and the stochastic results coincide
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down to a source rate coefficient of JO = 1 × 10−3s−1. The mean-field steady state

solution approaches zero for decreasing value of the source rate whereas the stochastic

steady state solution reaches a value of 0.5 regardless of the choice of the source rate if

JO is small enough. Both of the stochastic steady state values coincide for all values of

the source rate coefficient. For a grain surface temperature of T = 15K the threshold

between the deterministic regime and the stochastic regime is at a source rate of

JO = 1 × 101s−1. One observes small deviations between the two stochastic steady

state solutions at very small values of the source rate. At a grain surface temperature

of T = 20K the mean-field framework seems to fail for values of the source rate

coefficient that are less than JO = 1 × 103s−1. In addition, the stochastic steady

state solution 〈NO〉sslit decreases for decreasing source rate whereas the stochastic

steady state solution 〈NO〉ssLO/KOO<1 stays —after a critical value of the source rate is

reached— at the value of one half even if the source rate decreases further.

The above statements can be visualised in Figure 3.21 —for T = 10K—, in Figure

3.22 —for T = 15K— and in Figure 3.23 —for T = 20K—, where we have plotted the

mean-field steady state solution, 〈NO〉ss, and the two stochastic steady state solutions,

〈NO〉ssLO/KOO<1 and 〈NO〉sslit.
In addition, the stochastic steady state values for small source rate coefficient

can be compared to the leading order terms of the expansion of the exact solu-

tions for small JAK
−1
AA, namely JAL

−1
A for the expansion of the stochastic steady

state solution 〈NA〉ssLAK−1
AA≥1

and 0.5(1 − LAK
−1
AA) for the stochastic steady state

solution 〈NA〉ssLAK−1
AA<1

. For a temperature of T = 10K, the leading order in the

expansion 〈NO〉ssLOK−1
OO≥1

(JOK
−1
OO small ) reads JO × 2.7027 × 1011 and the leading

order term in the expansion 〈NO〉ssLOK−1
OO<1

(JOK
−1
OO small ) is given by 5 × 10−1.

If the temperature of the grain surface is T = 15K, the leading order term in

the expansion 〈NO〉ssLOK−1
OO≥1

(JOK
−1
OO small ) reads JO × 8.7719 × 1010 and the

leading order term in the expansion 〈NO〉ssLOK−1
OO<1

(JOK
−1
OO small ) is given by

5 × 10−1. For a temperature of T = 20K, the leading order in the expansion

〈NO〉ssLOK−1
OO≥1

(JOK
−1
OO small ) reads JO × 2.0833 × 105 and the leading order term in

the expansion 〈NO〉ssLOK−1
OO<1

(JOK
−1
OO small ) is given by 5×10−1. From the comparison

between the above values with the mean oxygen population —see Table 3.5, Table

3.6 and Table 3.7— one can conclude that the higher the temperature the greater the

value of the source rate at which the leading order term is a good approximation for

the full stochastic steady state solution. This is even more the case when considering

the hydrogen-hydrogen recombination at the same temperatures of the surface of the

grain particle.
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In Table 3.8 we list the M1 model data according to [58] for the heterogeneous

chemical reaction between two hydrogen atoms producing diatomic hydrogen at

the grain surface temperatures T = 10K, where LHK
−1
HH < 1, T = 15K , where

LHK
−1
HH < 1, and T = 20K, where LHK

−1
HH ≥ 1. The latter implies that for

T = 20K, the stochastic steady state solution as presented in the standard literature

〈NH〉sslit ≡ 〈NH〉ssLHK−1
HH≥1

will give the correct stochastic result whereas for T = 10K

and T = 15K, the stochastic steady state solution 〈NH〉ssLHK−1
HH<1

has to be employed.

In Table 3.9 we give the average hydrogen population according to the stationary

mean-field rate equations 〈NH〉ss depending on the value of the source rate coefficient

JH ∈ [108s−1, 10−8s−1] and compare the mean-field results with the corresponding

stochastic steady state solutions in the case where the surface of the grain particle has

a temperature of T = 10K. For values of the source rate of less than JH = 104s−1 the

mean-field steady state solution does not reproduce the value of the stochastic steady

state solution. Furthermore, the stochastic steady state solution according to the

literature does not coincide with the stochastic steady state solution presented in this

thesis for values of the source rate which are less than JH = 10−2s−1. In Table 3.10 the

same quantities are listed for a grain surface temperature of T = 15K. The threshold

between deterministic and stochastic regime occurs for slightly greater value of the

source rate, namely JH = 105s−1, as before, where the discrepancies between the two

stochastic steady state solutions are found for much greater value of the source rate

—JH = 103s−1— as for a colder grain. In the case where the temperature of the grain

surface is T = 20K, the mean-field steady state solution and the stochastic solution

give the same result for any value of the source rate.

The numerical findings are depicted in Figure 3.24 for a temperature of T = 10K, in

Figure 3.25 for a temperature of T = 15K, and in Figure 3.26 for a temperature of

T = 20K.

As we have done for the oxygen-oxygen recombination, one can compare the stochastic

steady state values for small source rate coefficient to the leading order terms of the

expansion of the exact solutions for small JAK
−1
AA, namely JAL

−1
A for the expansion

of the stochastic steady state solution 〈NA〉ssLAK−1
AA≥1

and 0.5(1 − LAK
−1
AA) for the

stochastic steady state solution 〈NA〉ssLAK−1
AA<1

. For a hydrogen recombination taking

place on the surface of a grain with a temperature of T = 10K the leading order in the

expansion 〈NH〉ssLHK−1
HH≥1

(JHK
−1
HH small ) reads JH × 5.26316 × 102 and the leading

order term in the expansion 〈NH〉ssLHK−1
HH<1

(JHK
−1
HH small ) is given by 5 × 10−1. In

case the temperature of the grain surface takes the value T = 15K the leading order

term in the expansion 〈NH〉ssLHK−1
HH≥1

(JHK
−1
HH small ) reads JH × 4.54545 × 10−3 and

the leading order term in the expansion 〈NH〉ssLHK−1
HH<1

(JHK
−1
HH small ) is given by
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4.98 × 10−1. For a grain surface temperature of T = 20K one has that the leading

order term of 〈NH〉ssLHK−1
HH≥1

(JHK
−1
HH small ) is JH × 1.33333 × 10−3. As can be seen

from Table 3.9, Table 3.10 and Table 3.11, there is only a small difference between the

values of the source rate at different grain surface temperatures for which the leading

order of the expansion of the stochastic steady state solution corresponds to the full

stochastic steady state solution.

In general, the average reactant population as predicted by the mean-field framework

approaches zero for decreasing value of the source rate which is not necessarily true for

the average reactant population as obtained from the stochastic steady state solution.

Next, we want to examine the dependence of the average hydrogen population

on the grain surface temperature. In Table 3.12 we reproduce the values of the

thermal evaporation rate coefficient according to [4] —M2 parameters— for a grain

particle made of either olivine or amorphous carbon in a temperature range of

T ∈ [5K, 30K]. In Table 3.13 we list the reaction rate coefficients depending on

the grain surface temperature which are computed as described in the section on

the numerical implementation of the Doi-Peliti formalism for a grain diameter of

d1 := 10−8m and d2 := 5 × 10−7m, assuming that the grain is made of either olivine

or amorphous carbon. The hydrogen source rate for a grain diameter of d1 := 10−8m

is given by JH = 1.14× 10−6s−1, and for a grain diameter of d2 := 5× 10−7m it reads

JH = 2.85× 10−3s−1.

For a seed surface made of amorphous carbon we compare the dependence of the

average hydrogen population in the stationary mean-field model, 〈NH〉ss, in the

stationary stochastic model , 〈NH〉ssLH/KHH≥1 and 〈NH〉ssLH/KHH<1 in Table 3.14 and

Figure 3.27 for a grain diameter of d1 := 10−8m and in Table 3.15 and Figure 3.28 for a

grain diameter of d2 := 5× 10−7m. For a seed surface made of olivine the dependence

of the average hydrogen population in the stationary mean-field model, 〈NH〉ss, in

the stationary stochastic model , 〈NH〉ssLH/KHH≥1 and 〈NH〉ssLH/KHH<1 are summarised

in Table 3.16 and plotted in Figure 3.29 for a grain diameter of d1 := 10−8m and in

Table 3.17 and Figure 3.30 for a grain diameter of d2 := 5 × 10−7m. In general, the

average hydrogen population on the smaller grains is less than the average hydrogen

population on the bigger grain particles. For both the specific materials forming the

grain particle and for the particular range of temperature, one observes that for the

larger grain size d2 := 5× 10−7m all the results lie in the deterministic regime. For the

smaller seed size, d1 := 10−8m, and on cold grains, the average hydrogen population

according to the mean-field framework corresponds to the average hydrogen population

as predicted by the stochastic framework, in the case of olivine for T = 5K, and in
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the case of amorphous carbon for T = 10K. However, increasing the grain surface

temperature the stochastic regime is entered, that is for T = 10K the mean-field

steady state solution and the stochastic steady state solution for a grain particle made

of olivine differ as do the mean-field steady state solution and the stochastic steady

state solution for a grain particle made of amorphous carbon in the temperature range

of T ∈ [15K, 25K]. For any of the two materials under consideration and for higher

temperatures one observes that the average hydrogen population obtained from the

stationary mean-field rate equations and the average hydrogen population derived

from the stochastic steady state solution have the same values.
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T = 10K KOO = 4.2× 10−5s−1 LthdO = 2.0× 10−23s−1 LcrdO = 3.7× 10−12s−1

T = 15K KOO = 1.3× 10−1s−1 LthdO = 7.7× 10−12s−1 LcrdO = 3.7× 10−12s−1

T = 20K KOO = 7.1× 100s−1 LthdO = 4.8× 10−6s−1 LcrdO = 3.7× 10−12s−1

Table 3.4: Dependence of oxygen rate coefficients, namely the reaction rate coefficient
KOO, the thermal desorption rate LthdO and the cosmic ray desorption rate LcrdO , on the
temperature of the grain surface according to [58].

JO [s−1] 〈NO〉ss 〈NO〉sslit 〈NO〉ssLO/KOO<1

108 1.091089451× 106 1.091089576× 106 1.091089576× 106

107 3.450327798× 105 3.450329046× 105 3.450329045× 105

106 1.091089451× 105 1.091090701× 105 1.091090701× 105

105 3.450327798× 104 3.450340296× 104 3.450340296× 104

104 1.091089451× 104 1.091101951× 104 1.091101951× 104

103 3.450327798× 103 3.450452802× 103 3.450452802× 103

102 1.091089451× 103 1.091214472× 103 1.091214473× 103

101 3.450327798× 102 3.451578476× 102 3.451578476× 102

100 1.091089451× 102 1.092341604× 102 1.092341604× 102

10−1 3.450327795× 101 3.462896218× 101 3.462896222× 101

10−2 1.091089449× 101 1.103809333× 101 1.103809334× 101

10−3 3.450327775× 100 3.582666587× 100 3.582666585× 100

10−4 1.091089429× 100 1.245245686× 100 1.245245687× 100

10−5 3.450327575× 10−1 6.105975638× 10−1 6.105976225× 10−1

10−6 1.091089231× 10−1 5.118104648× 10−1 5.118113469× 10−1

10−7 3.450325595× 10−2 5.011802821× 10−1 5.011894885× 10−1

10−8 1.091087249× 10−2 5.000265503× 10−1 5.001189942× 10−1

10−9 3.450305772× 10−3 4.990885627× 10−1 5.000118607× 10−1

Table 3.5: Dependence of the mean-field steady state values 〈NO〉ss, the stochastic
steady state values as given in the literature 〈NO〉sslit, and the stochastic steady state
values 〈NO〉ssLO/KOO<1 of the average oxygen population on the source rate JO at T =

10K for an evaporation coefficient LO = 3.7× 10−12s−1 and KOO = 4.2× 10−5s−1.
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JO [s−1] 〈NO〉ss 〈NO〉sslit 〈NO〉ssLO/KOO<1

108 1.961161352× 104 1.961173851× 104 1.961173852× 104

107 6.201736730× 103 6.201861733× 103 6.201861733× 103

106 1.961161352× 103 1.961286363× 103 1.961286363× 103

105 6.201736730× 102 6.202987107× 102 6.202987110× 102

104 1.961161352× 102 1.962412548× 102 1.962412548× 102

103 6.201736730× 101 6.214274671× 101 6.214274674× 101

102 1.961161352× 101 1.973782408× 101 1.973782409× 101

101 6.201736730× 100 6.330676928× 100 6.330676929× 100

100 1.961161352× 100 2.099972434× 100 2.099972434× 100

10−1 6.201736730× 10−1 8.129370893× 10−1 8.129370895× 10−1

10−2 1.961161352× 10−1 5.375117811× 10−1 5.375117818× 10−1

10−3 6.201736728× 10−2 5.038363263× 10−1 5.038363297× 10−1

10−4 1.961161350× 10−2 5.003844841× 10−1 5.003845168× 10−1

10−5 6.201736708× 10−3 5.000381355× 10−1 5.000384606× 10−1

10−6 1.961161331× 10−3 5.000005961× 10−1 5.000038461× 10−1

10−7 6.201736510× 10−4 4.999678867× 10−1 5.000003846× 10−1

10−8 1.961161133× 10−4 4.996752493× 10−1 5.000000385× 10−1

10−9 6.201734538× 10−5 4.967709927× 10−1 5.000000038× 10−1

Table 3.6: Dependence of the mean-field steady state values 〈NO〉ss, the stochastic
steady state values according to the literature 〈NO〉sslit, and the stochastic steady state
values 〈NO〉ssLO/KOO<1 of the average oxygen population on the source rate JO at T =

15K for an evaporation coefficient LO = 1.14× 10−11s−1 and KOO = 1.3× 10−1s−1.
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JO [s−1] 〈NO〉ss 〈NO〉sslit 〈NO〉ssLO/KOO<1

108 2.653724462× 103 2.653849471× 103 2.653849472× 103

107 8.391813585× 102 8.393063858× 102 8.393063861× 102

106 2.65372446× 102 2.654975344× 102 2.654975345× 102

105 8.391813568× 101 8.404341580× 101 8.404341574× 101

104 2.653724445× 101 2.666313606× 101 2.666313607× 101

103 8.391813415× 100 8.519692942× 100 8.519692944× 100

102 2.653724292× 100 2.788512506× 100 2.788512506× 100

101 8.391811895× 10−1 1.007112387× 100 1.007112398× 100

100 2.653722772× 10−1 5.673316669× 10−1 5.673325782× 10−1

10−1 8.391796682× 10−2 5.069974190× 10−1 5.070090867× 10−1

10−2 2.653707560× 10−2 5.005839158× 10−1 5.007035572× 10−1

10−3 8.391644570× 10−3 4.988732148× 10−1 5.000700813× 10−1

10−4 2.653555452× 10−3 4.882875494× 10−1 5.000067042× 10−1

10−5 8.390123612× 10−4 4.032214441× 10−1 5.000003662× 10−1

10−6 2.652034860× 10−4 1.470521550× 10−1 4.999997324× 10−1

10−7 8.374929192× 10−5 1.999876063× 10−2 4.999996690× 10−1

10−8 2.636876875× 10−5 2.074555378× 10−3 4.999996627× 10−1

10−9 8.224501328× 10−6 2.082331212× 10−4 4.999996621× 10−1

Table 3.7: Dependence of the mean-field steady state values 〈NO〉ss, the stochastic
steady state values as derived in the literature 〈NO〉sslit, and the stochastic steady state
values 〈NO〉ssLO/KOO<1 of the average oxygen population on the source rate JO at T =

20K for an evaporation coefficient LO = 4.8× 10−6s−1 and KOO = 7.1× 100s−1.
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T = 10K KHH = 5.1× 104s−1 LthdH = 1.9× 10−3s−1 LcrdH = 6.0× 10−9s−1

T = 15K KHH = 5.5× 104s−1 LthdH = 2.2× 102s−1 LcrdH = 6.0× 10−9s−1

T = 20K KHH = 7.1× 104s−1 LthdH = 7.5× 104s−1 LcrdH = 6.0× 10−9s−1

Table 3.8: Dependence of hydrogen rate coefficients, namely the reaction rate coefficient
KHH , the thermal desorption rate LthdH and the cosmic ray desorption rate LcrdH , on the
grain surface temperature T according to [58].

JH [s−1] 〈NH〉ss 〈NH〉sslit 〈NH〉ssLH/KHH<1

108 3.131121× 101 3.14470× 101 3.14470× 101

107 9.901475× 100 1.003890× 101 1.003890× 101

106 3.131121× 100 3.264278× 100 3.264278× 100

105 9.901475× 10−1 1.149676× 100 1.149676× 100

104 3.131121× 10−1 5.922002× 10−1 5.922002× 10−1

103 9.901474× 10−2 5.097340× 10−1 5.097404× 10−1

102 3.131121× 10−2 5.009750× 10−1 5.009797× 10−1

101 9.901466× 10−3 5.000505× 10−1 5.000980× 10−1

100 3.131112× 10−3 4.995352× 10−1 5.000098× 10−1

10−1 9.901382× 10−4 4.952957× 10−1 5.000010× 10−1

10−2 3.131028× 10−4 4.566211× 10−1 5.000001× 10−1

10−3 9.901544× 10−5 2.563103× 10−1 5.0× 10−1

10−4 3.130190× 10−5 4.761905× 10−2 5.0× 10−1

10−5 9.892166× 10−6 5.202333× 10−3 5.0× 10−1

10−6 3.121821× 10−6 5.257624× 10−4 5.0× 10−1

10−7 9.808776× 10−7 5.262604× 10−5 5.0× 10−1

10−8 3.039369× 10−7 5.257102× 10−6 5.0× 10−1

Table 3.9: Dependence of the mean-field steady state values, 〈NH〉ss, the stochastic
steady state values according to the literature 〈NH〉sslit, and the stochastic steady state
values 〈NH〉ssLH/KHH<1 of the average hydrogen population on the source rate JH at

T = 10K for the evaporation coefficient LH = 1.9× 10−3s−1 and KHH = 5.1× 104s−1.
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JH [s−1] 〈NH〉ss 〈NH〉sslit 〈NH〉ssLH/KHH<1

108 3.015013× 101 3.027591× 101 3.027591× 101

107 9.533626× 100 9.661124× 100 9.661124× 100

106 3.014114× 100 3.147523× 100 3.147523× 100

105 9.524631× 10−1 1.112528× 100 1.112557× 100

104 3.005130× 10−1 5.801986× 10−1 5.840125× 10−1

103 9.435150× 10−2 4.593738× 10−1 5.070542× 10−1

102 2.916771× 10−2 2.387524× 10−1 4.989104× 10−1

101 8.586923× 10−3 4.168113× 10−2 4.980911× 10−1

100 2.176619× 10−3 4.504667× 10−3 4.980091× 10−1

10−1 3.816986× 10−4 4.541343× 10−4 4.980009× 10−1

10−2 4.446594× 10−5 4.5450430× 10−5 4.98× 10−1

10−3 4.535171× 10−6 4.545413× 10−6 4.98× 10−1

10−4 4.544422× 10−7 4.545450× 10−7 4.98× 10−1

10−5 4.545351× 10−8 4.545351× 10−8 4.98× 10−1

10−6 4.545444× 10−9 4.545455× 10−9 4.98× 10−1

10−7 4.545453× 10−10 4.545455× 10−10 4.98× 10−1

10−8 4.545454× 10−11 4.545455× 10−11 4.98× 10−1

Table 3.10: Dependence of the mean-field steady state values, 〈NH〉ss, the stochastic
steady state values according to the literature 〈NH〉sslit, and the stochastic steady state
values 〈NH〉ssLH/KHH<1 of the average hydrogen population on the source rate JH at

T = 15K for the evaporation coefficient LH = 2.2× 102s−1 and KHH = 5.5× 104s−1.
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JH [s−1] 〈NH〉ss 〈NH〉sslit ≡ 〈NH〉ssLH/KHH≥1

108 2.627447× 101 2.639787× 101

107 8.131883× 100 8.251781× 100

106 2.402748× 100 2.511409× 100

105 6.156689× 10−1 6.856860× 10−1

104 1.102992× 10−1 1.185992× 10−1

103 1.301273× 10−2 1.316339× 10−2

102 1.329984× 10−3 1.331607× 10−3

101 1.332997× 10−4 1.333160× 10−4

100 1.33330× 10−5 1.333316× 10−5

10−1 1.333330× 10−6 1.333332× 10−6

10−2 1.333330× 10−7 1.333333× 10−7

10−3 1.333333× 10−8 1.333333× 10−8

10−4 1.333333× 10−9 1.333333× 10−9

10−5 1.333333× 10−10 1.333333× 10−10

10−6 1.333333× 10−11 1.333333× 10−11

10−7 1.333333× 10−12 1.333333× 10−12

10−8 1.333333× 10−13 1.333333× 10−13

Table 3.11: Dependence of the mean-field steady state values, 〈NH〉ss, the stochastic
steady state values according to the literature 〈NH〉sslit which in this case coincides with
the stochastic steady state values 〈NH〉ssLH/KHH≥1 of the average hydrogen population

on the source rate JH at T = 20K for the evaporation coefficient LH = 7.5 × 104s−1

and KHH = 7.1× 104s−1.
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Figure 3.21: Dependence of the average oxygen population on the source rate JO
according to the mean-field framework, 〈NO〉ss, and the stochastic framework, 〈NO〉sslit
and 〈NO〉ssLO/KOO<1, generated from the M1 data (KOO = 4.2 × 10−5s−1, LO = 3.7 ×
10−12s−1) for a grain surface temperature of T = 10K. The lines are a guide to the eye.
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Figure 3.22: Dependence of the average oxygen population on the source rate JO
according to the mean-field framework, 〈NO〉ss, and the stochastic framework, 〈NO〉sslit
and 〈NO〉ssLO/KOO<1, generated from the M1 data (KOO = 1.3 × 10−1s−1, LO = 1.14 ×
10−11s−1) for a grain surface temperature of T = 15K. The lines are a guide to the eye.
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Figure 3.23: Dependence of the average oxygen population on the source rate JO
according to the mean-field framework, 〈NO〉ss, and the stochastic framework, 〈NO〉sslit
and 〈NO〉ssLO/KOO<1, generated from the M1 data (KOO = 7.1 × 100s−1, LO = 4.8 ×
10−6s−1) for a grain surface temperature of T = 20K. The lines are a guide to the eye.
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Figure 3.24: Dependence of the average hydrogen population on the source rate JH
according to the mean-field framework, 〈NH〉ss, and the stochastic framework, 〈NH〉sslit
and 〈NH〉ssLH/KHH<1, generated from the M1 data (KHH = 5.1 × 104s−1, LH = 1.9 ×
10−3s−1) for a grain surface temperature of T = 10K. The lines are a guide to the eye.
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Figure 3.25: Dependence of the average hydrogen population on the source rate JH
according to the mean-field framework, 〈NH〉ss, and the stochastic framework, 〈NH〉sslit
and 〈NH〉ssLH/KHH<1, generated from the M1 data (KHH = 5.5 × 104s−1, LH = 2.2 ×
102s−1) for a grain surface temperature of T = 15K. The lines are a guide to the eye.
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Figure 3.26: Dependence of the average hydrogen population on the source rate JH
according to the mean-field framework, 〈NH〉ss, and the stochastic framework, 〈NH〉sslit
and 〈NH〉ssLH/KHH<1, generated from the M1 data (KHH = 7.1 × 104s−1, LH = 7.5 ×
104s−1) for a grain surface temperature of T = 20K. The lines are a guide to the eye.
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T [K] LolivineH [s−1] LcarbonH [s−1]

5 3.9961× 10−21 7.0282× 10−46

10 6.321× 10−5 2.6511× 10−17

15 1.5869× 101 8.891× 10−8

20 7.951× 103 5.149× 10−3

25 3.314× 105 3.71× 100

30 3.984× 106 2.982× 102

Table 3.12: Dependence of thermal evaporation rate LH on the grain surface tempera-
ture T for an olivine grain surface and a seed surface consisting of amorphous carbon
in a hydrogen recombination process.

T [K] Kolivine
HH (d1) [s−1] Kcarbon

HH (d1) [s−1] Kolivine
HH (d2) [s−1] Kcarbon

HH (d2) [s−1]

5 2.0285× 10−16 2.5879× 10−35 8.114× 10−20 1.0352× 10−38

10 5.908× 10−4 4.0308× 10−13 2.363× 10−7 1.612× 10−16

15 8.4368× 100 1.007× 10−5 3.3747× 10−3 4.0266× 10−9

20 1.0082× 103 5.031× 10−2 4.033× 10−1 2.012× 10−5

25 1.778× 104 8.334× 100 7.113× 100 3.334× 10−3

30 1.205× 105 2.514× 102 4.819× 101 1.006× 10−1

Table 3.13: Dependence of the reaction rate coefficient KHH on the grain surface
temperature for a grain diameter of d1 := 10−8m and d2 := 5× 10−7m, and for a grain
made of olivine or amorphous carbon in a hydrogen recombination process.
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T [K] 〈NH〉ss 〈NH〉ssLH/KHH≥1 〈NH〉ssLH/KHH<1

5 1.484102× 1014 — undefined
10 1.189164× 103 — 1.189289× 103

15 2.357184× 10−1 — 5.503949× 10−1

20 2.204525× 10−4 — 4.488392× 10−1

25 3.072772× 10−7 — 2.774179× 10−1

30 3.822938× 10−9 3.822938× 10−9 —

Table 3.14: Dependence of the average hydrogen population according to the steady
state mean-field expression 〈NH〉ss, compared to the average hydrogen population ac-
cording to the stochastic steady state values 〈NH〉ssLH/KHH≥1 and 〈NH〉ssLH/KHH<1 for a

grain diameter of d1 := 10−8m and a seed surface made of amorphous carbon.

T [K] 〈NH〉ss 〈NH〉ssLH/KHH≥1 〈NH〉ssLH/KHH<1

5 3.710183× 1017 — undefined
10 2.973205× 106 — 2.973205× 106

15 5.893975× 102 5.895203× 102 —
20 5.511317× 10−1 5.511408× 10−1 —
25 7.681930× 10−4 7.68193× 10−4 —
30 9.557344× 10−6 9.557344× 10−6 —

Table 3.15: Dependence of the average hydrogen population according to the steady
state mean-field expression 〈NH〉ss, compared to the average hydrogen population ac-
cording to the stochastic steady state values 〈NH〉ssLH/KHH≥1 and 〈NH〉ssLH/KHH<1 for a

grain diameter of d2 := 5× 10−7m and a seed surface made of amorphous carbon.
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T [K] 〈NH〉ss 〈NH〉ssLH/KHH≥1 〈NH〉ssLH/KHH<1

5 5.300904× 104 — 5.300916× 104

10 1.424297× 10−2 — 4.475233× 10−1

15 7.183817× 10−8 7.183817× 10−8 —
20 1.433793× 10−10 1.433782× 10−10 —
25 3.439952× 10−12 3.439952× 10−12 —
30 2.861446× 10−13 2.861446× 10−13 —

Table 3.16: Dependence of the average hydrogen population according to the steady
state mean-field expression 〈NH〉ss, compared to the average hydrogen population ac-
cording to the stochastic steady state values 〈NH〉ssLH/KHH≥1 and 〈NH〉ssLH/KHH<1 for a

grain diameter of d1 := 10−8m and a seed surface made of olivine.

T [K] 〈NH〉ss 〈NH〉ssLH/KHH≥1 〈NH〉ssLH/KHH<1

5 1.325226× 108 — 1.325226× 108

10 3.560795× 101 3.562303× 101 —
15 1.792752× 10−4 1.795954× 10−4 —
20 3.584428× 10−7 3.584455× 10−7 —
25 8.599879× 10−9 8.599879× 10−9 —
30 7.153614× 10−10 7.153614× 10−10 —

Table 3.17: Dependence of the average hydrogen population according to the steady
state mean-field expression nssH , compared to the average hydrogen population accord-
ing to the stochastic steady state values 〈NH〉ssLH/KHH≥1 and 〈NH〉ssLH/KHH<1 for a grain

diameter of d2 := 5× 10−7m and a seed surface made of olivine.
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Figure 3.27: Dependence of the average hydrogen population on the grain surface
temperature T according to the mean-field framework, 〈NH〉ss, and the stochastic
framework, 〈NH〉ss, generated from the M2 data for a grain made of amorphous carbon
and a grain diameter of d1 := 1× 10−8m. The lines are a guide to the eye.
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Figure 3.28: Dependence of the average hydrogen population on the grain surface
temperature T according to the mean-field framework, 〈NH〉ss, and the stochastic
framework, 〈NH〉ss, generated from the M2 data for a grain made of amorphous carbon
and a grain diameter of d2 := 5× 10−7m. The lines are a guide to the eye.
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Figure 3.29: Dependence of the average hydrogen population on the grain surface
temperature T according to the mean-field framework, 〈NH〉ss, and the stochastic
framework, 〈NH〉ss, generated from the M2 data for a grain made of olivine and a
grain diameter of d1 := 1× 10−8m. The lines are a guide to the eye.
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Figure 3.30: Dependence of the average hydrogen population on the grain surface
temperature T according to the mean-field framework, 〈NH〉ss, and the stochastic
framework, 〈NH〉ss, generated from the M2 data for a grain made of olivine and a
grain diameter of d2 := 5× 10−7m. The lines are a guide to the eye.
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3.4.2 Comparison between Mean-Field Dynamical And

Stochastic Dynamical Solutions

In this part of the thesis, we compare solutions to the full evolution equations in the

mean-field framework

d

dt
〈NA(t)〉+ 2KAA〈NA(t)〉2 + LA〈NA(t)〉 − JA = 0, (3.205)

to the results of the stochastic dynamical formalism

〈Φ̄A(t)〉 =

∫
DηΦ̄A(t)P [η(t)]∫

DηP [η(t)]
, (3.206)

with the stochastic constraint equation

d

dt
Φ̄A(t) + 2KAAΦ̄2

A(t) + LAΦ̄A(t)− JA − i
√

2KAAΦ̄A(t)η(t) = 0. (3.207)

Furthermore, we confront the stochastic steady state solutions

〈NA〉ss =



1
2

(
1− LA

KAA

)
+
√

JA
2KAA

I
2− LA

KAA

„r
8JA
KAA

«
I
1− LA

KAA

„r
8JA
KAA

« =: 〈NA〉ssLAK−1
AA<1

: LAK
−1
AA < 1

√
JA

2KAA

I LA
KAA

„r
8JA
KAA

«
I LA
KAA

−1

„r
8JA
KAA

« =: 〈NA〉ssLAK−1
AA≥1

: LAK
−1
AA ≥ 1

.

(3.208)

with the late-time values of the stochastic dynamical solutions, 〈Φ̄A(t∞)〉1000.

We proceed by employing the values for the rate coefficients as given by the

M1 model data for the heterogeneous chemical reaction of two hydrogen atoms —see

Table 3.8. For the initial value Φ̄H(0) = 0 we generate solutions to the first constraint

equation for the hydrogen reaction partners in zero space dimensions for different

values of the source rate JH in the range of [108s−1, 10−8s−1] and compute the path

integral average 〈Φ̄H(t)〉1000 according to (2.64). We compare the late-time results

to the solutions of the mean-field dynamical equations 〈NH(t∞)〉 at late times t∞

for the initial conditions 〈NH(0)〉 = 0 and the stochastic steady state value for the

average hydrogen population 〈NA〉ss —see Table 3.18 for a grain surface temperature

of T = 10K, Table 3.19 for a grain surface temperature of T = 15K and Table 3.20 for

a grain surface temperature of T = 20K. We find that the late-time average number

of hydrogen atoms, 〈NH(t∞)〉, corresponds —within numerical errors— to the average
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number of hydrogen atoms as obtained from the stationary mean-field equations,

〈NH〉ss. The results of the latter section are reproduced, that is, the numerical

exploitation of the Doi-Peliti formalism delivers the same value for the mean hydrogen

population as the exact stochastic steady state solution. Therefore, all conclusions

from the latter section apply.

The M2 model data —see Tables — are used to compare the late-time average

hydrogen population according to the dynamical mean-field expression 〈NH(t∞)〉,
the late-time average hydrogen population according to the stochastic dynamical

expression 〈Φ̄A(t∞)〉1000 and the stochastic steady state value 〈NA〉ss. In Table 3.21

we consider grain particles made of amorphous carbon with a diameter of d1 = 10−8m

in a temperature range of T ∈ [5K, 30K], and in Table 3.22 we analyse the average

hydrogen population on a grain under the same conditions yet for a smaller size of

the seed, namely, d2 = 5 × 10−7m. We summarise the outcome of our numerical

investigations for the average hydrogen population in Table 3.23 for olivine seeds of size

d1 = 10−8m in a temperature range of T ∈ [5K, 30K] and in Table 3.24 for the smaller

size of d2 = 5 × 10−7m. Again, the results obtained from the Doi-Peliti formalism

coincide with the results that stem from the stochastic steady state calculations.

In addition, we have listed the values of the transient time. One observes in both,

the mean-field and the Doi-Peliti framework, that the transient time decreases for

increasing temperature and that they are of the same order of magnitude in both

dynamical models. The transient time does not seem to be affected by the size of the

seed. However, it takes longer for the average hydrogen population on a grain made

of amorphous carbon to reach equilibrium than on an olivine seed.
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JH [s−1] 〈NH〉ss = 〈NH(t∞)〉 〈NH〉ssLH/KHH<1 〈Φ̄H(t∞)〉1000

108 3.131121× 101 3.14470× 101 3.143× 101

107 9.901475× 100 1.003890× 101 1.003× 101

106 3.131121× 100 3.264278× 100 3.26× 100

105 9.901475× 10−1 1.149676× 100 1.15× 100

104 3.131121× 10−1 5.922002× 10−1 5.9× 10−1

103 9.901474× 10−2 5.097404× 10−1 5.0× 10−1

102 3.131121× 10−2 5.009797× 10−1 5.0× 10−1

101 9.901466× 10−3 5.000980× 10−1 5.0× 10−1

100 3.131112× 10−3 5.000098× 10−1 5.0× 10−1

10−1 9.901382× 10−4 5.000010× 10−1 5.0× 10−1

10−2 3.131028× 10−4 5.000001× 10−1 5.0× 10−1

10−3 9.901544× 10−5 5.0× 10−1 5.0× 10−1

10−4 3.130190× 10−5 5.0× 10−1 5.0× 10−1

10−5 9.892166× 10−6 5.0× 10−1 5.0× 10−1

10−6 3.121821× 10−6 5.0× 10−1 5.0× 10−1

10−7 9.808776× 10−7 5.0× 10−1 5.0× 10−1

10−8 3.039369× 10−7 5.0× 10−1 5.0× 10−1

Table 3.18: Dependence of the mean-field steady state values 〈NH〉ss and the late-time
mean-field values 〈NH(t∞)〉, the stochastic steady state values 〈NH〉ssLH/KHH<1, and

the stochastic late-time values 〈Φ̄H(t∞)〉1000 averaged over 1000 paths of the average
hydrogen population on the source rate JH at a grain surface temperature of T = 10K
for the evaporation coefficient LH = 1.9 × 10−3s−1 and KHH = 5.1 × 104s−1, and for
the initial condition Φ̄H(0) = 0.
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JH [s−1] 〈NH〉ss = 〈NH(t∞)〉 〈NH〉ssLH/KHH<1 〈Φ̄H(t∞)〉1000

108 3.015013× 101 3.027591× 101 3.028× 101

107 9.533626× 100 9.661124× 100 9.66× 100

106 3.014114× 100 3.147523× 100 3.15× 100

105 9.524631× 10−1 1.112557× 100 1.11× 100

104 3.005130× 10−1 5.840125× 10−1 5.8× 10−1

103 9.435150× 10−2 5.070542× 10−1 5.1× 10−1

102 2.916771× 10−2 4.989104× 10−1 5.0× 10−1

101 8.586923× 10−3 4.980911× 10−1 5.0× 10−1

100 2.176619× 10−3 4.980091× 10−1 5.0× 10−1

10−1 3.816986× 10−4 4.980009× 10−1 5.0× 10−1

10−2 4.446594× 10−5 4.98× 10−1 5.0× 10−1

10−3 4.535171× 10−6 4.98× 10−1 5.0× 10−1

10−4 4.544422× 10−7 4.98× 10−1 5.0× 10−1

10−5 4.545351× 10−8 4.98× 10−1 5.0× 10−1

10−6 4.545444× 10−9 4.98× 10−1 5.0× 10−1

10−7 4.545453× 10−10 4.98× 10−1 5.0× 10−1

10−8 4.545454× 10−11 4.98× 10−1 5.0× 10−1

Table 3.19: Dependence of the mean-field steady state values 〈NH〉ss and the late-time
mean-field values 〈NH(t∞)〉, the stochastic steady state values 〈NH〉ssLH/KHH<1, and

the stochastic late-time values 〈Φ̄H(t∞)〉1000 averaged over 1000 paths of the average
hydrogen population on the source rate JH at a grain surface temperature of T = 15K
for the evaporation coefficient LH = 2.2× 102s−1 and KHH = 5.5× 104s−1, and for the
initial condition Φ̄H(0) = 0.
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JH [s−1] 〈NH〉ss = 〈NH(t∞)〉 〈NH〉sslit ≡ 〈NH〉ssLH/KHH≥1 〈Φ̄H(t∞)〉stochastic
108 2.627447× 101 2.639787× 101 2.640× 101

107 8.131883× 100 8.251781× 101 8.25× 101

106 2.402748× 100 2.511409× 100 2.51× 100

105 6.156689× 10−1 6.856860× 10−1 6.9× 10−1

104 1.102992× 10−1 1.185992× 10−1 1.2× 10−1

103 1.301273× 10−2 1.316339× 10−2 1.32× 10−2

102 1.329984× 10−3 1.331607× 10−3 1.33× 10−3

101 1.332997× 10−4 1.333160× 10−4 1.33× 10−4

100 1.33330× 10−5 1.333316× 10−5 1.33× 10−5

10−1 1.333330× 10−6 1.333332× 10−6 1.33× 10−6

10−2 1.333330× 10−7 1.333333× 10−7 1.33× 10−7

10−3 1.333333× 10−8 1.333333× 10−8 1.33× 10−8

10−4 1.333333× 10−9 1.333333× 10−9 1.33× 10−9

10−5 1.333333× 10−10 1.333333× 10−10 1.33× 10−10

10−6 1.333333× 10−11 1.333333× 10−11 1.33× 10−11

10−7 1.333333× 10−12 1.333333× 10−12 1.33× 10−12

10−8 1.333333× 10−13 1.333333× 10−13 1.33× 10−13

Table 3.20: Dependence of the mean-field steady state values 〈NH〉ss and the late-time
mean-field values 〈NH(t∞)〉, the stochastic steady state values 〈NH〉ssLH/KHH≥1, and

the stochastic late-time values 〈Φ̄H(t∞)〉1000 averaged over 1000 paths of the average
hydrogen population on the source rate JH at a grain surface temperature of T = 20K
for the evaporation coefficient LH = 7.5× 104s−1 and KHH = 7.1× 104s−1, and for the
initial condition Φ̄H(0) = 0.
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T [K] 〈NH(t∞)〉 〈NH(t∞)〉 〈NH〉ss ttransient [s]

5 1.484102× 1014 1.4841× 1014 1020

10 1.189164× 103 1.1891× 103 1.189289× 103 109

15 2.357184× 10−1 5.5× 10−1 5.503949× 10−1 106

20 2.204525× 10−4 4.5× 10−1 4.488392× 10−1 103

25 3.072772× 10−7 2.7× 10−1 2.774179× 10−1 100

30 3.822938× 10−9 3.8× 10−9 3.822938× 10−9 10−2

Table 3.21: Dependence of the late-time average hydrogen population on the grain
surface temperature T according to the dynamical mean-field expression 〈NH(t∞)〉,
compared to the late-time average hydrogen population according to the stochastic
dynamical values 〈NH(t∞)〉 and the stochastic steady state solution 〈NH〉ss for a grain
diameter of d1 := 10−8m and a seed surface made of amorphous carbon and the tran-
sient time ttransient.

T [K] 〈NH(t∞)〉 〈NH(t∞)〉 〈NH〉ss ttransient [s]

5 3.710183× 1017 3.71018× 1017 1020

10 2.973205× 106 2.97321× 106 2.973205× 106 109

15 5.893975× 102 5.893× 102 5.895203× 102 106

20 5.511317× 10−1 5.5106× 10−1 5.511408× 10−1 103

25 7.681930× 10−4 7.682× 10−4 7.68193× 10−4 100

30 9.557344× 10−6 9.56× 10−6 9.557344× 10−6 10−2

Table 3.22: Dependence of the late-time average hydrogen population on the grain
surface temperature T according to the dynamical mean-field expression nH(t∞), com-
pared to the late-time average hydrogen population according to the stochastic dy-
namical values 〈NH(t∞)〉 and the stochastic steady state solution 〈NH〉ss for a grain
diameter of d2 := 5 × 10−7m and a seed surface made of amorphous carbon and the
transient time ttransient.
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T [K] 〈NH(t∞)〉 〈NH(t∞)〉 〈NH〉ss ttransient [s]

5 5.300904× 104 5.30091× 104 5.300916× 104 1011

10 1.424297× 10−2 4.5× 103 4.475233× 10−1 105

15 7.183817× 10−8 7.2× 10−8 7.183817× 10−8 10−1

20 1.433782× 10−10 1.4× 10−10 1.433782× 10−10 10−3

25 3.439952× 10−12 3.4× 10−12 3.439952× 10−12 10−5

30 2.861446× 10−13 2.85× 10−13 2.861446× 10−13 10−6

Table 3.23: Dependence of the late-time average hydrogen population on the grain
surface temperature T according to the dynamical mean-field expression 〈NH(t∞)〉,
compared to the late-time average hydrogen population according to stochastic dy-
namical values 〈NH(t∞)〉 and the stochastic steady state solution 〈NH〉ss for a grain
diameter of d1 := 10−8m and a seed surface made of olivine and the transient time
ttransient.

T [K] 〈NH(t∞)〉 〈NH(t∞)〉 〈NH〉ss ttransient [s]

5 1.325226× 108 1.32523× 108 1.325226× 108 1011

10 3.560795× 101 3.5632× 101 3.562303× 101 105

15 1.795954× 10−4 1.796× 10−4 1.795954× 10−4 100

20 3.584455× 10−7 3.584× 10−7 3.584455× 10−7 10−3

25 8.599879× 10−9 8.6× 10−9 8.599879× 10−9 10−4

30 7.153614× 10−10 7.154× 10−10 7.153614× 10−10 10−6

Table 3.24: Dependence of the late-time average hydrogen population on the grain
surface temperature T according to the dynamical mean-field expression 〈NH(t∞)〉,
compared to the late-time average hydrogen population according to the stochastic
dynamical values 〈NH(t∞)〉 and the stochastic steady state solution 〈NH〉ss for a grain
diameter of d2 := 5 × 10−7m and a seed surface made of olivine compared to the
stochastic steady state solution 〈N ss

H 〉 and the transient time ttransient.
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3.4.3 Stochastic Gauge Representation

According to [25] and [17], in the numerical evaluation of the constraint equations

possible systematic errors may occur. In the language of the Positive P representation

—see the end of the latter chapter— these problems arise due to the presence of bound-

ary term errors that occur in the derivation of the stochastic constraint equations from

the Positive P representation based on the same master equation as employed in the

Doi-Peliti formalism. Unfortunately, there are no rigorous results on these instabili-

ties. The author of [14] defines four classes of indications for boundary term errors:

Moving Singularities, Noise Divergences, Discontinuous Drift, and Broadness of Initial

Distribution. In the sequel, we will concentrate on the first two. In deterministic equa-

tions, moving singularities are detected when solutions diverge in a finite time. When

moving singularities are present in the drift term of the stochastic differential equa-

tion, boundary term errors seem to occur [17, 25]. Noise divergences are instabilities

in the diffusion term and systematic errors result by an analogous mechanism as for

instabilities of the drift terms. Moving singularities or noise divergences do not occur

provided that the limits

lim
|ΦA|→∞

a[ΦA]

|ΦA|
,

lim
|ΦA|→∞

b[ΦA]

|ΦA|
, (3.209)

converge for ΦA ∈ C. The functional a is the drift coefficient and the functional b the

diffusion coefficient as given in (3.170). The first constraint equation (3.168) for the

path integral average in the Doi-Peliti formalism does not fulfill the conditions for the

absence of moving singularities or noise divergences as defined in [14]. According to

[17] accumulating errors could occur due to occasional excursions of single trajectories

into the negative half-space. After having made a large loop to large negative values of

the real part of a solution to the stochastic differential equation, the trajectories return

almost immediately to large positive values of the real part of a solution. These loops

are predicted to distort the averages and to cause a systematic error that sometimes is

non-negligible.

In [17], a way of minimising these accumulating errors is presented, namely Stochastic

Gauge methods. The introduction of an extra variable is used to stabilise the stochastic

differential equations accepting the draw-back of introducing an additional stochastic

differential equation in the new variable. Sampling errors are estimated and controlled

by the choice of gauge and by increasing the number of realisations of the noise over
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which the average is taken. In general, they have

dΥ

dt
= Υgi[Φ̂k(t)]ηi(t),

dΦ̂j(t)

dt
= aj[Φ̂k(t)] + bji[Φ̂k(t)]

(
ηi(t)− gi[Φ̂k(t)]

)
, (3.210)

where Υ is the new complex Gauge variable, gk are the components of the complex

Gauge functional, ak the components of the drift coefficient vector, bkl the components

of the diffusion coefficient matrix and ηk are white, Gaussian noises satisfying

〈ηk(t)〉P[η] = 0,

〈ηi(t)ηj(t′)〉P[η] = δijδ(t− t′). (3.211)

The Gauge variable Υ has to satisfy the following conditions:

Υ(0) = 1,

〈Υ(t)〉P[η] = 1,

〈dΥ(t)〉P[η] = 0. (3.212)

The average population of the chemical reactants in the Stochastic Gauge Theory,

〈.〉SG, is then calculated via

〈Φ̂A(t)〉SG := 〈Υ(t)Φ̂A(t)〉 ≡ 〈Φ̄A(t)〉, (3.213)

where the latter average is the standard path integral average, (3.206), with solutions to

the constraint equations (3.207). In [17], three possible choices for the Gauge functional

are presented: namely, the Amplitude Gauge:

gA := i
√

2KAA

(
Φ̂A(t)− |Φ̂A(t)|

)
; (3.214)

the Phase Gauge:

gP := i
√

2KAA

(
<
(
Φ̂A(t)

)
− |Φ̂A(t)|

)
; (3.215)

and the Step Gauge:

gS := i
√

8KAA<
(
Φ̂A(t)

)
Θ(−<

(
Φ̂A(t)

)
), (3.216)
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where Θ is the Heaviside step function17. This leads to the modified versions of the

first constraint equation (3.168) for vanishing source rate in the Amplitude Gauge:

d

dt
Φ̂A(t) + 2KAAΦ̂A(t)|Φ̂A(t)|+ LAΦ̂A(t)− JA − i

√
2KAAΦ̂A(t)η(t) = 0; (3.218)

in the Phase Gauge:

d

dt
Φ̂A(t) + 2KAAΦ̂A(t)|Φ̂A(t)|+ 2iKAAΦ̂A(t)=

(
Φ̂A(t)

)
+ LAΦ̂A(t)− JA −

i
√

2KAAΦ̂A(t)η(t) = 0; (3.219)

and in the Step Gauge:

d

dt
Φ̂A(t) + 2KAAΦ̂A(t)|<

(
Φ̂A(t)

)
|+ 2iKAAΦ̂A(t)=

(
Φ̂A(t)

)
+ LAΦ̂A(t)− JA −

i
√

2KAAΦ̂A(t)η(t) = 0. (3.220)

The authors of [12] argue that —for their particular choice of parameters— the specific

value of one half for the averaged stochastic solution in the late-time limit arises from

the fact that the master equation leaves the subspaces of even {NA} and odd {NA}
invariant. Their claim is that the excursion of a trajectory to large real values of

a solution to the stochastic constraint equations is close to an even or odd number

of chemical reactants with the same probability. The total probability is redistributed

equally over both invariant subspaces. The latter argument is a valid one since, indeed,

—as we have seen in the subsection concerned with the derivation of the stochastic

steady state solutions to the full master equation,

Peven = Podd ≡
1

2
. (3.221)

In this regard, the result for the stochastic steady state solution as presented in this

thesis is consistent with the observation made in the numerical calculations in both

the Doi-Peliti formalism as well as in the Positive P representation. The above line

of argument, however, is not the correct explanation why the average number of A

molecules takes exactly the value of one half. In fact, the value of one half is only

the result for a specific set of parameters as can be seen from Table 3.25. The values

17The Heaviside step function in its generalised form is defined via∫
Θ(z)

dh(z)
dz

dz = −h(0), (3.217)

for a sufficiently smooth function h(z) with sufficiently quick decay.
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J [s−1] 〈NA〉ssLA/KAA≥1 〈NA〉ssLA/KAA<1 〈Φ̄A〉1000(t∞)

102 1.00763× 101 1.00763× 101 1.007× 101

101 3.24148 3.24148 3.24
100 1.09201 1.09289 1.09

10−1 4.06934× 10−1 5.03211× 10−1 5.0× 10−1

10−2 8.58964× 10−2 4.11024× 10−1 4.1× 10−1

10−3 9.83631× 10−3 4.01110× 10−1 4.0× 10−1

10−4 9.98336× 10−4 4.00111× 10−1 4.0× 10−1

Table 3.25: Comparison between the stochastic steady state solution 〈NA〉ssLA/KAA≥1

according to (3.103), the stochastic steady state solution 〈NA〉ssLA/KAA<1 according to

(3.115) and the late-time value of the mean stochastic dynamical solution averaged
over 1000 realisations of the path 〈Φ̄A〉1000(t∞) according to (2.64) for LA = 0.1s−1 and
KAA = 0.5s−1 and varying source rate JA.

JA = 0.1s−1, LA = 0.1s−1 and KAA = 0.5s−1 were employed in article [17]. The limit

for fixed reaction rate coefficient and a source rate coefficient approaching zero of the

stochastic steady state solution presented in this thesis is given by

lim
JA→0
〈N ss

A 〉LAK−1
AA<1 =

1

2

(
1− LA

KAA

)
= 0.4. (3.222)

We do not claim stability for the stochastic constraint equations under all circum-

stances. In our calculations, we have observed the excursion of particular paths with

very high spikes that caused an explosion of the path in finite time. These paths,

however, could be identified by inspection and were excluded from the rest of the

calculations. We still would like to point out that the argument that the numerical

evaluation of the stochastic constraint equations had to be altered by means of stochas-

tic gauge methods in order to obtain results consistent with the stochastic steady state

solution is not valid. The numerical results that stem from the unaltered stochastic

constraint equations do not coincide with the evaluation of the stochastic steady state

solution as presented in the standard literature yet they coincide with the evaluation of

the stochastic steady state solution as presented in this thesis. Since LAK
−1
AA = 0.2 < 1,

solution 〈NA〉ssLA/KAA<1 is the correct stochastic steady state solution to compare the

stochastic late-time value of the dynamical calculations with. Furthermore, the leading

order term in the expansion of the stochastic steady state solution for small JAK
−1
AA is

indeed 0.5(1−LAK−1
AA) = 0.4 which corresponds to the results presented in Table 3.25.
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3.5 Conclusions and Outlook

In this chapter we analysed the late-time behaviour of solutions to the mean-field rate

equations describing the evolution of the mean number of reactants and reactions prod-

ucts involved in a heterogeneous chemical reaction of type A+A→ C. We revised the

steady state solution to a stationary master equation that replaces the set of mean-field

evolution equations in order to take statistical fluctuations into account. We found that

the exact solution as presented in the standard literature was of limited validity and

an exact solution to the stationary master equation was derived for the subspace of

the parameter space where the commonly used steady state solution does not apply.

In our numerical calculations we concentrated on chemical reactions taking place on

the surface of interstellar dust particles. We compared the mean-field steady state

solution, the solution to the mean-field evolution equations, and the stochastic steady

state solution for two sets of model data and investigated the dependence of the mean

reactant population on the adsorption rate as well as on the surface grain temperature.

Furthermore, we confronted the predictions for the mean number of reactants present

on the surface of the seed as given by the Doi-Peliti formalism, which is a stochas-

tic framework for the dynamics of certain populations, with the results obtained in

the mean-field framework. We explored the parameter space, that is, the space for

the adsorption rate coefficient, desorption rate coefficient and reaction rate coefficient,

in order to identify the threshold between the deterministic regime and the stochas-

tic regime. In addition, we found in our numerical simulations that the consistency

between the corrected stochastic steady state solution and the late-time value of the

stochastic dynamical solution is remarkable.

However, an alternative derivation for the production rate of the chemical species C for

a specific subspace of the parameter space is still outstanding since the commonly used

way of calculating the production rate is not consistent under certain circumstances.

Since it is nearly impossible to make any statement on the population of chemical

reactants or chemical reaction products remaining on the surface of the grain from an

observational point of view, the Astrophysics community is especially interested in the

recombination rate and the recombination efficiency.

From the numerical calculations it is also clear that the conclusion as to where the

threshold between the deterministic regime and the stochastic regime lies in the pa-

rameter space is very sensitive to the choice of model data. In order to make a well

founded statement it would, therefore, be highly desirable to have more experimental

data at hand as well as to develop a more detailed model for the rate coefficients.

In the following chapter, we will extend our previous analysis from considerations of
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only a single lattice site to a one-dimensional problem.
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Chapter 4

Chemical Surface Reactions of

Type A + A −→ C in One Space

Dimension

In this chapter, we expand the calculations based on the Doi-Peliti formalism from a

model on a single spatial lattice site to a model in one space dimension for which we

have to adapt the rate coefficients available in the literature and to develop further the

numerical code. We impose simple boundary conditions on the grain particle which

are, nevertheless, a good approximation for a realistic interstellar dust particle. In

the same fashion as in the previous chapter we undertake numerical investigations

by comparing the predictions that stem from mean-field theory to the results arising

from the stochastic framework. We explore the parameter space and investigate the

behaviour of the late-time value of the average reactant density on the surface of the

grain in dependence of the size of the seed and in dependence of the diffusion rate

coefficient.

4.1 Constraint Equations in One Space Dimension

We start our investigations by comparing the stochastic ordinary differential equations

that appear as constraint equations in the Doi-Peliti formalism in zero space dimensions

to the equivalent stochastic partial differential equations in one space dimension. The

rate coefficients are adapted with respect to the particular choice of geometry of the

grain particle.
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Quantity SI units

eigenvalue function of coherent state: Φ̄A(t) 1
reaction rate coefficient: KAA s−1

evaporation rate coefficient: LA s−1

source rate coefficient: JA s−1

stochastic noise: η(t) s−
1
2

Wiener process: W (t) s
1
2

Table 4.1: Dimensionality of the quantities employed in the stochastic constraint equa-
tion in zero space dimensions (4.1).

4.1.1 Comparison between Stochastic Constraints in Zero and

One Space Dimensions

First, let us recall the form of the stochastic constraint equations in zero space di-

mensions. The stochastic ordinary differential equation that constrains the complex

fluctuating field ΦA(t) associated with the reaction partners A at a single lattice point

reads

d

dt
Φ̄A(t) + 2KAAΦ̄2

A(t) + LAΦ̄A(t)− JA + i
√

2KAAΦ̄A(t)η(t) = 0,

(4.1)

where the stochastic noise is determined by the following statistical properties:

〈η(t)〉P[η] = 0, 〈η(t)η(t′)〉P[η] = δ(t− t′), (4.2)

where

P [η] = e−
1
2

R
η2(t)dt. (4.3)

For the numerical evaluation it is reasonable to approximate the stochastic noise η(t)

by the well-defined Wiener process W (t)

η(t) =
d

dt
W (t). (4.4)

The SI units of the quantities employed in the stochastic constraint equation (4.1)

are listed in Table 4.1. The one-dimensional first stochastic constraint equation is a
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Quantity SI units

eigenvalue function of coherent state: φ̄A(x, t) m−1

diffusion rate coefficient: dA m2s−1

reaction rate coefficient: kAA ms−1

evaporation rate coefficient: lA s−1

source rate coefficient: jA s−1m−1

stochastic noise: η(x, t) s−
1
2 m−

1
2

Wiener process: w(x, t) m
1
2 s

1
2

Table 4.2: Dimensionality of the quantities employed in the stochastic constraint equa-
tion in one space dimensions (4.5).

stochastic partial differential equation, namely,

∂

∂t
φ̄A(x, t)− dA

∂2

∂x2
φ̄A(x, t) + 2kAAφ̄

2
A(x, t) + lAφ̄A(x, t)− jA +

i
√

2kAAφ̄A(x, t)η(x, t) = 0, (4.5)

where the stochastic noise η(x, t) satisfies the following correlations:

〈η(x, t)〉P[η] = 0, 〈η(x, t)η(x′, t′)〉P[η] = δ(x− x′)δ(t− t′), (4.6)

with P [η] the Gaussian probability distribution

P [η] = e−
1
2

R R
η2(x,t)dtdx. (4.7)

The stochastic noise η(x, t) is understood as a derivative of a Wiener process w(x, t)

in the following way

η(x, t) =
∂2

∂x∂t
w(x, t). (4.8)

Solutions to the stochastic constraint equations (4.5) can be employed to compute the

path integral average

〈φA(x, t)〉 =

∫
Dη φ̄A(x, t)P [η]∫

DηP [η]
. (4.9)

The SI units of the quantities in the stochastic constraint equation for one space dimen-

sion (4.5) are given in Table 4.2. The Wiener noise w(x, t) corresponds to a Brownian

sheet —see Figure 4.1. For completeness, we give the evolution equation for the average
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Figure 4.1: Schematic of a Brownian sheet in one space dimension with 4t the time
increment, 4x the space increment and Wt,x the Wiener noise.

particle density 〈nA(x, t)〉 in the mean-field framework in one space dimension

∂

∂t
〈nA(x, t)〉 − dA

∂2

∂x2
〈nA(x, t)〉+ 2kAA〈nA(x, t)〉2 + lA〈nA(x, t)〉 − jA = 0.

(4.10)

4.1.2 Choice of Geometry of the Grain Particle

In the sequel, we neglect the fact that the chemical species have a finite volume and we

assume that the atoms or molecules adsorbed onto the grain surface are point particles.

Furthermore, we assume that the grain particle is cold, that is T ∈ [5K, 30K]. In

addition, we impose the condition that all binding sites are equidistant and equivalent

which means we allocate the same rate coefficients to all binding sites. The boundary

conditions are chosen to be periodic which, in one space dimension, give a ring as the

grain particle as illustrated in Figure 4.2. According to the established view1 on the

form of grain particles within the astrochemistry community, the choice of periodic

boundary conditions is well justified. Since we make the Ansatz of a smooth surface

it follows that the circumference is, indeed, C = 2πR where R is the radius of the

1Dr Herma Cuppen: private communication

168



Figure 4.2: Schematic of the discretised grain particle in one space dimension with
periodic boundary conditions where the symbols x denote numerical grid points and t
the time slices.

ring. Note that even if some of the rate coefficients are in fact microscopic parameters

we have to rewrite the expressions for the rate coefficients in terms of macroscopic

quantities —including geometrical quantities— in order to be able to assign a specific

value to the rate coefficients. The diffusion constant dA is obtained from rather crude

statistical considerations and is defined as the product of the mean velocity of the

molecules times the mean free pathway and —for higher space dimensions— has to be

divided by the dimension [19]. Accordingly, in one space dimension the diffusion rate

coefficient dA takes the following form:

dA =
(4l)2

4t
=
νv exp

(
−Ed
kT

)
4R2s2

[m2s−1], (4.11)
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where we have used the following properties

4l =
C
NS

[m],

4t =
tS
NS

[s],

t−1
S = N−1

S νv exp

(
−Ed
kT

)
[s−1],

NS = 4πR2s [1]. (4.12)

with 4l denoting the lattice constant, NS the number of binding sites, 4t the time

increment, tS the sweeping time with respect to the entire surface, νv the vibration

frequency, Ed the diffusion barrier, T the temperature of the grain surface and k the

Boltzmann constant. In this model, the form of the diffusion rate coefficient does not

change for higher space dimensions except for the multiplying factor. The reaction rate

coefficient kAA in one space dimension2 reads

kAA =
4l
4t

[ms−1], (4.15)

or, given in the macroscopic parameters,

kAA =
C
2

(
t−1
S + t−1

S

)
= CKAA [ms−1]. (4.16)

The evaporation rate coefficient lA in one space dimension does not differ from the

evaporation rate coefficient LA in zero space dimensions

lA = t−1
E ≡ LA [s−1], (4.17)

whereas the source rate coefficient jA in one space dimension becomes

jA =
JA
C

[m−1s−1], (4.18)

2The corresponding reaction rate coefficient in two space dimensions is defined via

k
(2)
AA =

(4l)2

4t
. (4.13)

If, for example, one has a square of lattice points with each side of equal length a and imposing
periodic boundary conditions one has that

k
(2)
AA =

a2νv exp
(
−Ed

kT

)
4πR2s

. (4.14)
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where JA is the source rate coefficient in zero space dimensions.

In Table 4.3 we recapitulate the values of the evaporation rate coefficients of

hydrogen reactants with respect to grain particles made of either olivine or amorphous

carbon depending on the value of the temperature T of the surface of the seed. Table

4.4 gives the dependence of the adsorption rate jH on the grain surface radius R in

a hydrogen recombination process. Tables 4.5, 4.6, 4.7, and 4.8 list the reaction rate

coefficients and the diffusion rate coefficients in a hydrogen recombination process

for specific surface temperatures and for a grain radius of R = 10−9m, R = 10−8m,

R = 10−7m, and R = 10−6m with regard to an olivine grain surface and a seed surface

consisting of amorphous carbon, respectively.
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T [K] lolivineH [s−1] lcarbonH [s−1]

5 3.9961× 10−21 7.0282× 10−46

10 6.321× 10−5 2.6511× 10−17

15 1.5869× 101 8.891× 10−8

20 7.951× 103 5.149× 10−3

25 3.314× 105 3.71× 100

30 3.984× 106 2.982× 102

Table 4.3: Dependence of the thermal evaporation rate coefficient lH on the grain
surface temperature T for an olivine grain surface and a seed surface consisting of
amorphous carbon in a hydrogen recombination process.

R [m] jH [s−1m−1]

10−9 7.257× 100

10−8 7.257× 101

10−7 7.257× 102

10−6 7.257× 103

Table 4.4: Dependence of the adsorption rate coefficient jH on the grain surface radius
R in a hydrogen recombination process.

T [K] kolivineHH [ms−1] kcarbonHH [ms−1] dolivineH [m2s−1] dcarbonH [m2s−1]

5 3.186× 10−23 4.065× 10−42 8.612× 10−33 4.009× 10−51

10 9.280× 10−11 6.332× 10−20 2.508× 10−20 6.244× 10−29

15 1.325× 10−6 1.581× 10−12 3.582× 10−16 1.559× 10−21

20 1.584× 10−4 7.902× 10−9 4.280× 10−14 7.793× 10−18

25 2.793× 10−3 1.309× 10−6 7.549× 10−13 1.291× 10−15

30 1.893× 10−2 3.949× 10−5 5.115× 10−12 3.894× 10−14

Table 4.5: Dependence of the reaction rate coefficient kHH and the diffusion rate coef-
ficient dH on the grain surface temperature T for an olivine grain surface and a seed
surface consisting of amorphous carbon in a hydrogen recombination process for a grain
particle radius of R = 10−9m.
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T [K] kolivineHH [ms−1] kcarbonHH [ms−1] dolivineH [m2s−1] dcarbonH [m2s−1]

5 3.186× 10−24 4.065× 10−43 8.612× 10−35 4.009× 10−53

10 9.280× 10−12 6.332× 10−21 2.508× 10−22 6.244× 10−31

15 1.325× 10−7 1.581× 10−13 3.582× 10−18 1.559× 10−23

20 1.584× 10−5 7.902× 10−10 4.280× 10−16 7.793× 10−20

25 2.793× 10−4 1.309× 10−7 7.549× 10−15 1.291× 10−17

30 1.893× 10−3 3.949× 10−6 5.115× 10−14 3.894× 10−16

Table 4.6: Dependence of the reaction rate coefficient kHH and the diffusion rate coef-
ficient dH on the grain surface temperature T for an olivine grain surface and a seed
surface consisting of amorphous carbon in a hydrogen recombination process for a grain
particle radius of R = 10−8m.

T [K] kolivineHH [ms−1] kcarbonHH [ms−1] dolivineH [m2s−1] dcarbonH [m2s−1]

5 3.186× 10−25 4.065× 10−44 8.612× 10−37 4.009× 10−55

10 9.280× 10−13 6.332× 10−22 2.508× 10−24 6.244× 10−33

15 1.325× 10−8 1.581× 10−14 3.582× 10−20 1.559× 10−25

20 1.584× 10−6 7.902× 10−11 4.280× 10−18 7.79291747× 10−22

25 2.793× 10−5 1.309× 10−8 7.549× 10−17 1.291× 10−19

30 1.893× 10−4 3.949× 10−7 5.115× 10−16 3.894× 10−18

Table 4.7: Dependence of the reaction rate coefficient kHH and the diffusion rate coef-
ficient dH on the grain surface temperature T for an olivine grain surface and a seed
surface consisting of amorphous carbon in a hydrogen recombination process for a grain
particle radius of R = 10−7m.

T [K] kolivineHH [ms−1] kcarbonHH [ms−1] dolivineH [m2s−1] dcarbonH [m2s−1]

5 3.186× 10−26 4.065× 10−45 8.612× 10−39 4.009× 10−57

10 9.280× 10−14 6.332× 10−23 2.508× 10−26 6.244× 10−35

15 1.325× 10−9 1.581× 10−15 3.582× 10−22 1.559× 10−27

20 1.584× 10−7 7.902× 10−12 4.280× 10−20 7.793× 10−24

25 2.793× 10−6 1.309× 10−9 7.549× 10−19 1.291× 10−21

30 1.892× 10−5 3.949× 10−8 5.115× 10−18 3.894× 10−20

Table 4.8: Dependence of the reaction rate coefficient kHH and the diffusion rate coef-
ficient dH on the grain surface temperature T for an olivine grain surface and a seed
surface consisting of amorphous carbon in a hydrogen recombination process for a grain
particle radius of R = 10−6m.
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4.2 Numerical Evaluation

In this section, we present the numerical results obtained from the evaluation of the

mean-field evolution equations (4.10) in one space dimension with periodic boundary

conditions as well as the corresponding dynamical values derived from the numeri-

cal exploitation of the Doi-Peliti formalism —see equation (4.21)— under the same

phyiscal assumptions. Necessarily, we have to modify the numerical code according to

the discretised constraints in one space dimension. If not otherwise stated the initial

conditions were chosen to be zero.

4.2.1 Discretisation of Stochastic Constraint Equations

In order to generate solutions to the constraint equation (4.5) we have to appropriately

discretise this stochastic partial differential equation. Therefore, we integrate equation

(4.5) and get∫ ∫
∂

∂t
φ̄A(x, t)dxdt− dA

∫ ∫
∂2

∂x2
φ̄A(x, t)dxdt+

2kAA

∫ ∫
φ̄2
A(x, t)dxdt+ lA

∫ ∫
φ̄A(x, t)dxdt− jA

∫ ∫
dxdt+

i
√

2kAA

∫ ∫
φ̄A(x, t)η(x, t)dxdt = 0. (4.19)

The discretisation of the Laplace term is obtained via the Forward Time Centred Space

Discretisation (FTCS) method —see [49]. Hence, the discretised version of equation

(4.19) is given by

φ̄A;(t+1,x) − φ̄A;(t,x)

4t
4x4t− dA

φ̄A;(t,x+1) − 2φ̄A;(t,x) + φ̄A;(t,x−1)

(4x)2
4x4t+

2kAAφ̄
2
A;(t,x)4x4t+ lAφ̄A;(t,x)4x4t− jA4x4t+

i
√

2kAAφ̄A;(t,x)
4wt,x
4x4t

4x4t = 0, (4.20)

which leads to

φ̄A;(t+1,x) = φ̄A;(t,x) + dA
φ̄A;(t,x+1) − 2φ̄A;(t,x) + φ̄A;(t,x−1)

(4x)2
4t−

2kAAφ̄
2
A;(t,x)4t− lAφ̄A;(t,x)4t+ jA4t−

i
√

2kAAφ̄A;(t,x)
4wt,x
4x

, (4.21)
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with 4wt,x := g
√
4t
√
4x, where g is a stochastic variable with Gaussian distribution,

namely 〈g〉 = 0 and 〈g2〉 = 1. The variable g is generated via a Box-Müller transforma-

tion —see Section 3.3. The stability criterion arising from the FTCS for deterministic

differential equations is
2dA4t
(4x)2

< 1. (4.22)

It can be verified in our numerical calculations that for increasing value of the diffusion

rate dA one has to decrease the value of the chosen time increment4t in order to ensure

stability. In the following numerical computations we find that, in general, the value of

the stability parameter for the corresponding stochastic differential equation is in fact

less than the stability parameter for deterministic differential equations. We choose a

certain number N of numerical grid points X that guarantees a satisfying convergence.

Accordingly, we have N4x = C where 4x denotes the separation between the numer-

ical grid points. With decreasing 4x, the time increment 4t has to be decreased to

ensure stability. This means that for decreasing 4x the numerical calculations will be

more time consuming since for fixed circumference C and decreasing increment 4x the

number of numerical grid points N has to be increased and the time steps 4t have to

be decreased.

4.2.2 Numerical Results

The late-time value of the average reactant density 〈nA(X, t∞)〉 on a homogeneous

grain particle in one space dimension and with periodic boundary conditions that

stems from the mean-field equations (4.10) is independent of the diffusion constant

for each numerical grid point X. In particular, for Figure 4.3 the rate coefficients

were chosen to be kAA = 0.5 ms−1, lA = 0.1s−1, jA = 101s−1m−1 and dA = 10−1ms−1

and the radius of the grain was taken to be R = 10−3m. In addition, the late-time

value of the average reactant density is independent of the number of numerical grid

points which, in that particular example, was equal to ten. The independence on the

diffusion rate coefficient is due to the fact that in the particular chosen set-up and

for homogeneous inital data there is no gradient in the spatial dimension. This is

different for the stochastic partial differential equations since there is a different noise

for each spatial point hence there is a gradient in the spatial dimension for a particular

solution.

In Figures 4.4 and 4.5 we plot the real and imaginary part of one possible set of

solutions to the discretised version of the first constraint equation (4.21) on a ring

of radius R = 103m with the same rate coefficients as employed for the generation

of Figure 4.3. We observe that the overall behaviour of each individual evolution is
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similar to the ones at other numerical grid points which underpins the infinite speed

of propagation of perturbations in diffusive systems as in the one presented here. We

choose the number of numerical grid points to be ten since the numerical error that

arises due to a smaller number of numerical grid points is less significant than the

numerical error that is due to a smaller number of paths employed in the path integral

average. A generation of only 100 paths to be employed in a path integral for ten

numerical grid points is equivalent to the generation of 1000 paths employed in the

path integral in the single lattice site model yet it can be even more time consuming

which stems from the fact that in order to ensure stability one usually has smaller

time increments and, therefore, longer running times in the one-dimensional model.

Figures 4.6 and 4.7 where we present the real and imaginary part of a path integral

average of solutions to the discretised version of the first constraint equation (4.21) on

a ring of radius R = 103m with the same rate coefficients as above averaged over only

10 realisations of the noise illustrate the occasional occurence of larger spikes that

might give rise to computational issues.

In Figure 4.8 we investigate the dependence of the late-time value of the average

reactant density on a ring with radius R = 10−3m (with ten numerical grid points) on

the value of the diffusion rate dA in the mean-field framework and in the stochastic

framework. The remaining rate coefficients were chosen to be kAA = 0.5 ms−1, lA = 0.1

s−1, jA = 101s−1m−1. The same comparison is made in Figure 4.9 with a source rate

coefficient of jA = 109s−1m−1. For the smaller source rate coefficient one observes

a greater late-time value of the average reactant density derived from the stochastic

framework than the one obtained from mean-field theory. The latter is constant for

all values of the diffusion rate coefficient. Furthermore, the diffusion constant tends to

homogenise the fluctuations of the stochastic field to a certain extent: for increasing

value of the diffusion rate coefficient the average reactant density decreases until it

levels out beyond a certain value of the diffusion rate. In the case of the larger source

rate coefficient the stochastic theory and the mean-field theory predict the same

late-time value of the average reactant density. The same overall behaviour can be

seen from Figures 4.10 and 4.11 where the same rate coefficients were used to give the

average reactant density on a ring with radius R = 10−1m. In general, it is true that

for fixed values of the rate coeffiecients the late-time value of the average reactant

density according to the Doi-Peliti formalism gets closer to the late-time value of the

average molecule density on the grain according to the mean-field theory for larger

sizes of the grain —cfr. Figures 4.8, 4.9, 4.10 and 4.11.

We proceed by employing values for the rate coefficients as given in Tables 4.3,
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4.4, 4.5, 4.6, 4.7 and 4.8, which correspond to the heterogeneous hydrogen-hydrogen

reaction taking place on olivine grains of different sizes and at different temperatures.

We observe that the late-time value of the average density of hydrogen atoms on the

ring according to the mean-field evolution equation, 〈nH(x, t∞)〉, and the late-time

value of the average density of hydrogen atoms on the ring according to the path

integral average in the stochastic framework, 〈φH(x, t∞)〉, coincide at each lattice

site for the specific choices of parameters. This result is somewhat to be expected

from the observations in zero space dimensions —cfr. Figure 3.29 and Figure 3.30—

where deterministic behaviour of the average hydrogen population was found. From

Figure 4.12 it is clear that the cooler the surface of the grain the higher the density of

hydrogen atoms on the ring. For a fixed temperature the hydrogen density decreases

with decreasing size of the grain. This generic behaviour can also be observed when

considering the heterogeneous hydrogen-hydrogen reaction taking place on the surface

of a grain particle made of amorphous carbon for the rate coefficients as given in

Tables 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. The transient time is much greater for grain

particles consisting of amorphous carbon than for olivine seeds so that, at present, a

thorough discussion of the evolution of the average hydrogen density on an amorphous

carbon grain is not viable since the numerical computation is too time consuming with

regard to the evaluation of the path integral average. However, the present results

indicate that for almost all situations under consideration the value of the average

hydrogen density lies in the deterministic regime except for a grain size of R = 10−9m

and at a temperature of T = 20K.
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Figure 4.3: Evolution of average reactant density in time t on a ring with radius
R = 10−3m according to the mean-field equations and ten numerical grid points X.
The rate coefficients were chosen in the following way: kAA = 0.5 ms−1, lA = 0.1s−1,
jA = 101s−1m−1 and dA = 10−1m2s−1.
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Figure 4.4: Evolution of the real part of one possible solution to the first stochastic
constraint equation in one space dimension with periodic boundary conditions, that
is, a ring with radius R = 10−3m, in time t and ten numerical grid points X. The
rate coefficients were chosen in the following way: kAA = 0.5 ms−1, lA = 0.1s−1,
jA = 101s−1m−1 and dA = 10−1m2s−1.

179



t [s]

X

-600
-400
-200

 0
 200
 400
 600
 800

Im[!H(X,t)] [m-1]

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

Figure 4.5: Evolution in time t of the corresponding imaginary part of the same so-
lution to the first stochastic constraint equation in one space dimension with periodic
boundary conditions as presented in Figure 4.4 for a radius R = 10−3m, and ten numer-
ical grid points X. The rate coefficients were chosen in the following way: kAA = 0.5
ms−1, lA = 0.1s−1, jA = 101s−1m−1 and dA = 10−1m2s−1.
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Figure 4.6: Evolution of the average reactant density in time t on a ring with radius R =
10−3m according to the Doi-Peliti framework and ten numerical grid points X. The
path integral average was taken over 10 realisations of the noise. The rate coefficients
were chosen in the following way: kAA = 0.5 ms−1, lA = 0.1s−1, jA = 101s−1m−1 and
dA = 10−1m2s−1.
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Figure 4.7: Evolution of the imaginary part of the solutions presented in Figure 4.6
in time t on a ring with radius R = 10−3m according to the Doi-Peliti formalism and
ten numerical grid points X. The rate coefficients were chosen in the following way:
kAA = 0.5 ms−1, lA = 0.1 s−1, jA = 101s−1m−1 and dA = 10−1m2s−1.
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Figure 4.8: Dependence of the late-time value of the average reactant density on a ring
with radius R = 10−3m (with ten numerical grid points) on the value of the diffusion
rate dA in the mean-field framework and in the stochastic framework. The remaining
rate coefficients were chosen to be kAA = 0.5 ms−1, lA = 0.1 s−1, jA = 101s−1m−1. The
lines are a guide to the eye.
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Figure 4.9: Dependence of the late-time value of the average reactant density on a ring
with radius R = 10−3m (with ten numerical grid points) on the value of the diffusion
rate dA in the mean-field framework and in the stochastic framework. The remaining
rate coefficients were chosen to be kAA = 0.5 ms−1, lA = 0.1 s−1, jA = 109s−1m−1. The
lines are a guide to the eye.
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Figure 4.10: Dependence of the late-time value of the average reactant density on a ring
with radius R = 10−1m (with ten numerical grid points) on the value of the diffusion
rate dA in the mean-field framework and in the stochastic framework. The remaining
rate coefficients were chosen to be kAA = 0.5 ms−1, lA = 0.1 s−1, jA = 101s−1m−1. The
lines are a guide to the eye.
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Figure 4.11: Dependence of the late-time value of the average reactant density on a ring
with radius R = 10−1m (with ten numerical grid points) on the value of the diffusion
rate dA in the mean-field framework and in the stochastic framework. The remaining
rate coefficients were chosen to be kAA = 0.5 ms−1, lA = 0.1 s−1, jA = 109s−1m−1. The
lines are a guide to the eye.
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Figure 4.12: Dependence of the late-time value of the hydrogen density on olivine rings
of various sizes and surface temperatures. The lines are a guide to the eye.
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4.3 Conclusions and Outlook

For the M2 model data, the particular choice of the geometrical form of a grain

particle in one space dimension and the assumption of homogeneity of the seed do not

seem to lead to results that differ greatly from the observations in the single spatial

site model. We conclude that, for general rate coefficients that are independent of the

size of the seed, stochastic effects for larger grains are less important than for smaller

seed particles. A rapid diffusion can enhance this feature.

Although so far, the astrochemical community has been satisfied with the re-

striction to periodic boundary conditions it would be desirable to impose non-periodic

boundary conditions and consider a finite string instead of a ring —see Figure 4.13—

where interesting behaviour at the edges is to be expected. A natural next step in our

investigations which is illustrated in Figure 4.14 is to move from one to two space di-

mensions where, again, one can choose periodic boundary conditions —corresponding

to a torus— or non-periodic boundary conditions, that is, a finite plane. A further

improvement of our calculations lies in the possibility to consider inhomogeneous

grain surfaces. Such configurations can be readily achieved by assigning different

values to a specific rate coefficient, for example, the diffusion rate or the reaction

rate, at different binding sites as visualised in Figure 4.15. Hence, we are able to

model grain particles that consist of patches of different materials. Another challenge

concerns finding an alternative form of the rate coefficients. Already in zero space

dimensions assumptions on the geometry in two space dimensions are made to derive

tractable expressions for the model parameters. This issue remains in the calculations

in one space dimension. Especially if one is interested in imposing non-periodic

boundary conditions the non-spherical geometry contradicts the common assumptions

introduced in the previous chapter and one has

NS 6= 4πR2s, (4.23)

JA 6= n(A)vAσ(R). (4.24)
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Figure 4.13: Schematic of possible geometrical choices for the grain particle in one
space dimension.

Figure 4.14: Schematic of possible geometrical choices for the grain particle in two
space dimensions.

Figure 4.15: Schematic of an inhomogeneous (d1
A 6= d2

A 6= d3
A, k1

AA 6= k2
AA 6= k3

AA)
one-dimensional grain particle with periodic boundary conditions.
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Chapter 5

Chemical Reaction Networks

In this chapter, we present a stochastic alternative to the mean-field rate equations

describing the evolution of several distinct chemical species involved in a chemical

reaction network based on the Doi-Peliti formalism. We start with the inspection

of a single chemical reaction of type A + B → C taking place on a grain particle,

and combine the results of Chapter 2 with the outcome of the computations for the

heterogeneous chemical reaction of type A+B → C to study the stochastic framework

by means of the hydrogen-oxygen reaction network.

5.1 Heterogeneous Chemical Reaction of Type A+

B −→ C

The process in which molecules of a chemical species A and of another distinct species

B deposit onto the surface of a solid or liquid particle and eventually form a third

type of chemical species C as a reaction product can be treated in the same fashion as

described in Chapter 2. In the sequel, we exclude the scenario where both A and B

species can react with themselves, otherwise additional terms would have to be added

to the evolution equations.
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5.1.1 Stability Analysis Of The Dynamical Mean-Field Equa-

tions

The evolution equations for the average molecule densities 〈n(x, t)〉 in the mean-field

model

−∂〈nA(x, t)〉
∂t

+ ζA∆〈nA(x, t)〉 − κAB〈nA(x, t)〉〈nB(x, t)〉 − λA〈nA(x, t)〉+ ιA = 0,

−∂〈nB(x, t)〉
∂t

+ ζB∆〈nB(x, t)〉 − κAB〈nA(x, t)〉〈nB(x, t)〉 − λB〈nB(x, t)〉+ ιB = 0,

−∂〈nC(x, t)〉
∂t

+ ζC∆〈nC(x, t)〉+ κAB〈nA(x, t)〉〈nB(x, t)〉 − λC〈nC(x, t)〉+ ιC = 0,

(5.1)

reduce in zero space dimensions to

−d〈NA(t)〉
dt

−KAB〈NA(t)〉〈NB(t)〉 − LA〈NA(t)〉+ JA = 0, (5.2)

−d〈NB(t)〉
dt

−KAB〈NA(t)〉〈NB(t)〉 − LB〈NB(t)〉+ JB = 0, (5.3)

−d〈NC(t)〉
dt

+KAB〈NA(t)〉〈NB(t)〉 − LC〈NC(t)〉+ JC = 0. (5.4)

In general, it is not possible to give an exact solution to this system of non-linear first

order equations.

When an n-dimensional system of non-linear first order equations

d

dt
n(t) = a[n(t)], (5.5)

where a[n(t)] is a vector depending on the unknown functions n(t) :=

(n1(t), n2(t), n3(t), ...)T , has no exact solution it is important to study the behaviour of

the solutions to the equations in a qualitative way. In what follows we make use of the

general ideas of Chapter IX in [28]. The steady state solution is defined as the solution

n̊ for which

a(n̊) ≡ 0. (5.6)

The Taylor expansion of equation (5.5) around the steady state solution n̊ reads

d

dt
n(t) = a(n̊) + J|n̊ (n(t)− n̊) +O

(
(n(t)− n̊)2) , (5.7)
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with J the Jacobian matrix

J|n̊ :=


δa1

δn1

δa1

δn2
. . .

δa2

δn1

δa2

δn2
. . .

...
...

. . .

∣∣∣∣
n̊

. (5.8)

The first term of the Taylor expansion vanishes by definition. By means of the function

v(t) := n(t)− n̊, equation (5.7) can be rewritten as

d

dt
v(t) = J|̊nv(t) +O(v2(t)). (5.9)

This set of equations is now an n-dimensional system of linear first order ordinary

differential equations. We proceed by solving the eigenequation

J|̊nei = liei, (5.10)

for the eigenvalues li and the eigenvectors ei. Ignoring all higher orders O
(
(n(t)− n̊)2)

the general solution to equation (5.7) yields

n(t) =
∑
i

ciei exp (lit), (5.11)

where ∑
i

ciei ≡ n(0). (5.12)

This solution satisfies the initial conditions. From the uniqueness of the Taylor expan-

sion this is the only solution. In order to analyse the flows of the trajectories in the

vicinity of the steady state solution we consider the eigenvalues of the Jacobian matrix.

The form and signs of the eigenvalues will prove the steady state solution to be stable

or unstable.

General Case: LA > 0, LB > 0, JA > 0, JB > 0, KAB > 0

In order to perform a stability analysis of the solutions to equations (5.2), (5.3) and

(5.4) we linearise the set of evolution equations in a neighbourhood of the steady state

solution. First, we have to compute the steady state solutions N̊A, N̊B and N̊C to the

above system of equations, that is solutions to the mean-field equations with

d〈Ni(t)〉
dt

≡ 0 for i ∈ {A,B,C}. (5.13)
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The steady state solutions as obtained by MAPLE 11 read

N̊A =
−LBN̊B + JB

KABN̊B

, (5.14)

N̊B =
(JB − JA)KAB − LALB ±

√
K2
AB(JB − JA)2 + LALB

(
2KAB(JA + JB) + LALB

)
2LBKAB

,

(5.15)

N̊C =
JC +KABN̊AN̊B

LC
. (5.16)

The first two evolution equations (5.2) and (5.3) are independent from the third evolu-

tion equation (5.4) and therefore we concentrate on the equations governing the reaction

partners, molecules of species A and B, in the sequel. The linearised equations in the

sense of equation (5.9) take the form

d

dt

(
vA(t)

vB(t)

)
+

(
J11 J12

J21 J22

)(
vA(t)

vB(t)

)
+

(
wA

wB

)
= 0, (5.17)

with

J11 = LA +KABN̊B,

J12 = KABN̊A,

J21 = KABN̊B,

J22 = LB +KABN̊A,

wA = LAN̊A +KABN̊AN̊B − JA,

wB = LBN̊B +KABN̊AN̊B − JB. (5.18)

This system is not homogeneous so we perform a shift of the constant vector w by

introducing ṽ(t) := v(t)− u, where

uA =
J12wB − J22wA
J11J22 − J12J21

,

uB =
J21wA − J11wB
J11J22 − J12J21

. (5.19)

and obtain a homogeneous set of equations

d

dt

(
ṽA(t)

ṽB(t)

)
+

(
J11 J12

J21 J22

)(
ṽA(t)

ṽB(t)

)
= 0, (5.20)
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The eigenvalues of the above system according to (5.10) are

l1,2 =
J11 + J22 ±

√
(J11 − J22)2 + 4J12J21

2

=
LA + LB +KAB(N̊A + N̊B)±

√
(LA − LB +KAB(N̊B − N̊A))2 + 4K2

ABN̊AN̊B

2
,

(5.21)

and have multiplicity one. In the sequel we denote the eigenvalue l1 as the eigenvalue

with positive square root and the eigenvalue l2 as the eigenvalue with negative square

root. The corresponding eigenvectors to the eigenvalues (5.21) read

e1,2 =

(
J11−J22±

√
(J11−J22)2+4J12J21

2J21

1

)

=

LA−LB+KAB(N̊B−N̊A)±
√

(LA−LB+KAB(N̊B−N̊A))2+4K2
ABN̊AN̊B)

2KABN̊B

1

 . (5.22)

Hence, the general solution to equation (5.7) is given by

n(t) = c+e1 exp(l1t) + c−e2 exp(l2t), (5.23)

with eigenvalues (5.21) and eigenvectors (5.22) as calculated above and with the inte-

gration constants

c+ =
〈NB(0)〉

2
+

〈NA(0)〉J21√
(J11 − J22)2 + 4J12J21

− (J11 − J22)〈NB(0)〉
2
√

(J11 − J22)2 + 4J12J21

,

c− = 〈NB(0)〉 − c+. (5.24)
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In terms of the rate coefficients the integration constants take the following form

c+ =
〈NB(0)〉

2
+

〈NA(0)〉KABN̊B√
(LA − LB +KAB(N̊B − N̊A))2 + 4K2

ABN̊AN̊B

−

(LA − LB +KAB(N̊B − N̊A))〈NB(0)〉

2
√

(LA − LB +KAB(N̊B − N̊A))2 + 4K2
ABN̊AN̊B

,

c− =
〈NB(0)〉

2
− 〈NA(0)〉KABN̊B√

(LA − LB +KAB(N̊B − N̊A))2 + 4K2
ABN̊AN̊B

+

(LA − LB +KAB(N̊B − N̊A))〈NB(0)〉

2
√

(LA − LB +KAB(N̊B − N̊A))2 + 4K2
ABN̊AN̊B

. (5.25)

In a next step we analyse the phase space portraits for specific forms of the rate

coefficients that are of special physical interest.

Special Case I: LA = LB > 0, JA > 0, JB > 0, KAB > 0

For the chemical reaction where the evaporation rates of the reaction partners are equal

LA = LB ≡ L. (5.26)

In this case the steady state solutions N̊A, N̊B and N̊C read

N̊A =
−LN̊B + JB

KABN̊B

,

N̊B =
(JB − JA)KAB − L2 ±

√
K2
AB(JB − JA)2 + L2

(
2KAB(JA + JB) + L2

)
2LKAB

,

N̊C =
JAB +KABN̊AN̊B

LAB
. (5.27)

The eigenvalues with multiplicity one according to equation (5.21) reduce to

l1 = L+KAB(N̊A + N̊B),

l2 = L. (5.28)
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The corresponding eigenvectors take the form

e1 =

(
− N̊A
N̊B

1

)
,

e2 =

(
1

1

)
. (5.29)

The constants c+ and c− in the general solution

n(t) = c+e1 exp(l1t) + c−e2 exp(l2t), (5.30)

are given by

c+ =
〈NB(0)〉 − 〈NA(0)〉

1 + N̊A
N̊B

,

c− = 〈NB(0)〉 − c+. (5.31)

Both eigenvalues l1 and l2 are strictly positive for L,KAB, N̊A, N̊B strictly positive and

we are faced with an unstable node. The flow away from the fixed point will —for

large t— be dominated by the larger eigenvalue l1. For a particular chemical reaction

with L≪ 1, the phase space portrait almost corresponds to the one created by a non-

simple fixed point where one observes a flow in only one direction and the fixed point

turns into a fixed line. We conclude that it is not possible for the late-time dynamical

solution to reach the fixed point.

Special Case II: LA > 0, LB = 0, JA > 0, JB > 0, KAB > 0

For certain chemical reactions — for example, for the reaction H + O −→ HO — the

evaporation rates for one of the reaction partners, namely the oxygen molecules, and

the evaporation rate for the reaction product are very small. In fact, in the numerical

computations they can be set to zero for practical purposes. Therefore we will assume

LB = LC = 0 in the sequel. In this special case the steady state values for the reaction

partners (5.14) and (5.16) are obtained when considering equations (5.2) and (5.3) with

LB = 0

N̊A =
JA − JB
LA

,

N̊B =
JBLA

KAB(JA − JB)
. (5.32)
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Inserting the above steady state solutions into the evolution equation for the reaction

product (5.4) yet with LC = 0 one finds that

d〈NC(t)〉
dt

= JB + JC , (5.33)

so that 〈NC(t)〉 −→ ∞ for t −→∞ since the adsorption rate JC is always positive and

the adsorption rate JB is taken to be strictly positive.

It is important to note that the possibility JA = JB is not allowed —see equations (5.2)

and (5.3). The eigenvalues (multiplicity one)

l1,2 =
LA +KAB(N̊A + N̊B)±

√
(LA +KAB(N̊B − N̊A))2 + 4K2

ABN̊AN̊B

2
,

(5.34)

are determined by the eigenequation (5.10). The corresponding eigenvectors read

e1,2 =

LA+KAB(N̊B−N̊A)±
√

(LA+KAB(N̊B−N̊A))2+4K2
ABN̊AN̊B

2KABN̊B

1

 , (5.35)

and the constants c+ and c− in the general solution

n(t) = c+e1 exp(l1t) + c−e2 exp(l2t), (5.36)

are given by

c+ =
〈NB(0)〉

2
+

〈NA(0)〉KABN̊B√
(LA +KAB(N̊B − N̊A))2 + 4K2

ABN̊AN̊B

−

(LA +KAB(N̊B − N̊A))〈NB(0)〉

2
√

(LA +KAB(N̊B − N̊A))2 + 4K2
ABN̊AN̊B

,

c− = 〈NB(0)〉 − c+. (5.37)

It is clear that l1 > 0 for all feasible values of the constants. To analyse the sign of

eigenvalue l2 —that is, the eigenvalue with negative square root— let us first assume

that

0 ≤
LA +KAB(N̊A + N̊B)−

√
(LA +KAB(N̊B − N̊A))2 + 4K2

ABN̊AN̊B

2
. (5.38)
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This inequality is equivalent to

−2LAKABN̊A ≤ 2LAKABN̊A. (5.39)

On the other hand, the assumption

0 ≥
LA +KAB(N̊A + N̊B)−

√
(LA +KAB(N̊B − N̊A))2 + 4K2

ABN̊AN̊B

2
, (5.40)

leads to the inequality

−2LAKABN̊A ≥ 2LAKABN̊A. (5.41)

This leaves us with two possibilites: if either of the constants LA, KAB, N̊A equals

zero the second eigenvalue takes the form l2 = 0. In this case the steady state solution

is a degenerated fixed point and there is only flow in one direction away from the

fixed point. If all of the constants LA, KAB, N̊A are strictly positive it follows that

the second eigenvalue l2 is strictly positive for all choices of constants and the phase

space portrait delivers an unstable node.

The potential occurrence of instabilities in the mean-field dynamical model in-

dicates that one should take extra care in the numerical exploitation of the stochastic

dynamical model where a similar analysis as undertaken in the latter paragraphs is

not possible.

5.1.2 The Stochastic Dynamical Model

In analogy to the previous chapters we replace the mean-field rate equations with

a master equation incorporating stochastic fluctuations. For heterogeneous chemical

reactions where two atoms or molecules from different chemical species A and B react
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and form molecules of the chemical species type C the master equation takes the form

dP ({NA}, {NB}, {NC}; t)
dt

=

ῑA
∑
i

(
P (..., NAi − 1, ..., {NB}, {NC}; t)− P ({NA}, {NB}, {NC}; t)

)
+

ῑB
∑
i

(
P ({NA}..., NBi − 1, ..., {NC}; t)− P ({NA}, {NB}, {NC}; t)

)
+

ῑC
∑
i

(
P ({NA}, {NB}, ..., NCi − 1, ...; t)− P ({NA}, {NB}, {NC}; t)

)
+

κ̄AB
V

∑
i

(
(NAi + 1)(NBi + 1)P (..., NAi + 1, ..., NBi + 1, ..., NCi − 1, ...; t)−

NAiNBiP ({NA}, {NB}, {NC}; t)
)

+

λ̄A
∑
i

(
(NAi + 1)P (..., NAi + 1, ..., {NB}, {NC}; t)−

NAiP ({NA}, {NB}, {NC}; t)
)

+

λ̄B
∑
i

(
(NBi + 1)P ({NA}, ..., NBi + 1, ..., {NC}; t)−

NBiP ({NA}, {NB}, {NC}; t)
)

+

λ̄C
∑
i

(
(NCi + 1)P ({NA}, {NB}, ..., NCi + 1, ...; t)−

NCiP ({NA}, {NB}, {NC}; t)
)

+

ζ̄A
∑
〈ij〉

(
(NAi + 1)P (..., NAi + 1, NAj − 1, ..., {NB}, {NC}; t)−

NAiP ({NA}, {NB}, {NC}; t) +

(NAj + 1)P (..., NAi − 1, NAj + 1, ..., {NB}, {NC}; t)−

NAjP ({NA}, {NB}, {NC}; t)
)

+

ζ̄B
∑
〈ij〉

(
(NBi + 1)P ({NA}, ..., NBi + 1, NBj − 1, ..., {NC}; t)−

NBiP ({NA}, {NB}, {NC}; t) +

(NBj + 1)P ({NA}, ..., NBi − 1, NBj + 1, ..., {NC}; t)−

NBjP ({NA}, {NB}, {NC}; t)
)
+
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ζ̄C
∑
〈ij〉

(
(NCi + 1)P ({NA}, {NB}, ..., NCi + 1, NCj − 1, ...; t)−

NCiP ({NA}, {NB}, {NC}; t) +

(NCj + 1)P ({NA}, {NB}, ..., NCi − 1, NCj + 1, ...; t)−

NCjP ({NA}, {NB}, {NC}; t)
)
,

(5.42)

where {NX} := {NX1 , NX2 , NX3 , ....NXimax
}, with imax the maximum number of lattice

sites i, is the set denoting the number of particles of type X at lattice site i and

P ({NA}, {NB}, {NC}; t) the probability distribution for the total number of particles.

The Poisson initial condition on each lattice site reads

P ({NA}, {NB}, {NC}; t = 0) = e−n̄A(0)−n̄B(0)−n̄C(0)
∏
i

n̄A(0)NAi n̄B(0)NBi n̄C(0)NCi

NAi !NBi !NCi !
,

(5.43)

with the initial average occupation numbers per lattice site n̄A(0) n̄B(0) and n̄C(0) for

the A, B and C particles, respectively. The master equation (5.42) is equivalent to the

Schrödinger-like equation

d

dt
|Ψ(t)〉 = −H[

+
aAi ,

−
aAj ,

+
aBk ,

−
aBl ,

+
aCm ,

−
aCn ]|Ψ(t)〉, (5.44)

with the many-body wave function

|Ψ(t)〉 :=
∑

{NA},{NB},{NC}

P ({NA}, {NB}, {NC}; t)
∏
i

(
+
aAi)

NAi (
+
aBi)

NBi (
+
aCi)

NCi |{0}〉,

(5.45)

and the Hamiltonian-like operator

H[
+
aAi ,

−
aAj ,

+
aBk ,

−
aBl ,

+
aCm ,

−
aCn ] =

∑
M∈{A,B,C}

∑
i

(
+
aMi
−1i)(ῑM1i − λ̄M

−
aMi

)−

κ̄AB
V

∑
i

( +
aCi −

+
aAi

+
aBi

) −
aAi
−
aBi +∑

M∈{A,B,C}

ζ̄M
∑
〈ij〉

(
+
aMi
− +

aMj
)(
−
aMi
− −aMj

).

(5.46)
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The expectation values of operators O(t) are obtained via

〈O(t)〉 =

∫ ∏
i DψiDψ

∗
iO({ψ̄}) exp

(
−S({ψ̃}, {ψ})

)
∫ ∏

i DψiDψ
∗
i exp

(
−S({ψ̃}, {ψ})

) . (5.47)

The Doi-shifted action S̃ for the chemical reaction A+B −→ C in the continuum limit

is given by

S̃[ψA, ψ̃A, ψB, ψ̃B, ψC , ψ̃C ] :=

∫
dDx

(
− nA(0) + nA(0)(ψ̃A(x, 0)− nA(0))−

nB(0) + nB(0)(ψ̃B(x, 0)− nB(0))−

nC(0) + nC(0)(ψ̃C(x, 0)− nC(0)) +∫ tT

0

dt
(
ψ̃A(x, t)

∂ψA(x, t)

∂t
+ ψ̃B(x, t)

∂ψB(x, t)

∂t
+

ψ̃C(x, t)
∂ψC(x, t)

∂t
+

H̃[ψA(x, t), ψ̃A(x, t), ψB(x, t), ψ̃B(x, t), ψC(x, t), ψ̃C(x, t)]

)
,

(5.48)

with the Doi-shifted Hamiltonian H̃ in the continuum limit

H̃[ψA(x, t), ψ̃A(x, t), ψB(x, t), ψ̃B(x, t), ψC(x, t), ψ̃C(x, t)] =

− ψ̃A(x, t)(ιA − λAψA(x, t))− ψ̃B(x, t)(ιB − λBψB(x, t))−

ψ̃C(x, t)(ιC − λCψC(x, t)) +

κABψA(x, t)ψB(x, t)
(
ψ̃A(x, t)ψ̃B(x, t) + ψ̃A(x, t) + ψ̃B(x, t)− ψ̃C(x, t)

)
−

ψ̃A(x, t)ζA∆ψA(x, t)− ψ̃B(x, t)ζB∆ψB(x, t)− ψ̃C(x, t)ζC∆ψC(x, t).

(5.49)

In order to be able to proceed we untangle the pseudo-quadratic term ψ̃A(x, t)ψ̃B(x, t)

that appears in the above expression (5.49) according to a Gaussian integral transfor-

mation. An n-dimensional Gaussian transformation with linear term reads∫
Dne exp

(
−eTAe + bTe

)
=

√
πn

| det A|
exp

(
1

4
bTA−1b

)
, (5.50)
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where A is a symmetric n× n matrix and b and e are two n-dimensional vectors with

functional dependence. From the form of the action integral (5.48) together with (5.49)

it follows that

κABψA(x, t)ψB(x, t)ψ̃A(x, t)ψ̃B(x, t)
!

=
1

4

a4a1 − 2a2b1b2 + a1b
2
2

| a1a4 − a2
2 |

, (5.51)

with

A =

(
a1 a2

a3 a4

)
(5.52)

We choose a1 = a4 = 0 and a2 = 1. In addition, we have

4κABψA(x, t)ψB(x, t)ψ̃A(x, t)ψ̃B(x, t)
!

= −2b1b2, (5.53)

from which it follows that

b1 = i
√

2κABψA(x, t)ψB(x, t)ψ̃A(x, t),

b2 = i
√

2κABψA(x, t)ψB(x, t)ψ̃B(x, t). (5.54)

Furthermore, we have

−2e1e2
!

= −1

2
ηA(x, t)ηB(x, t), (5.55)

which leads to

e1 =
ηA(x, t)

2
,

e2 =
ηB(x, t)

2
. (5.56)

The pseudo-quadratic term in the Doi-shifted Hamiltonian (5.49)

e−κAB
R R

ψ̃A(x,t)ψ̃B(x,t)ψA(x,t)ψB(x,t)dDxdt, (5.57)

can be replaced by a term proportional to∫
Dη P [η]ei

√
2κAB

R R (
ψ̃A(x,t)ψA(x,t)ηA(x,t)+ψ̃B(x,t)ψB(x,t)ηB(x,t)

)
dDxdt, (5.58)

with the Gaussian probability distribution

P [η] = e−
1
2

R R
ηA(x,t)ηB(x,t)dDxdt. (5.59)
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The above procedure leads to a Doi-shifted action S̃ being linear in ψ̃A and ψ̃B. Thus,

one can integrate out over ψ̃A(x, t), ψ̃B(x, t) and ψ̃C(x, t) in (5.47). One obtains

〈O[ψA, ψB, ψC ]〉 ∝
∫

DψADψBDψCDηADηB O[ψA, ψB, ψC ]×

δ[FA]δ[FB]δ[FC ]δ[FA0 ]δ[FB0 ]δ[FC0 ]P [η]

∝
∫

DηADηB O[ψ̄A, ψ̄B, ψ̄C ]P [η],

(5.60)

where the fluctuating unknown functions ψ̄A(x, t), ψ̄B(x, t) and ψ̄C(x, t) have to solve

the following set of coupled nonlinear complex stochastic differential equations

FA[ψ̄A(x, t),x, t] ≡ −∂ψ̄A(x, t)

∂t
+ ζA∆ψ̄A(x, t)− κABψ̄A(x, t)ψ̄B(x, t)−

λAψ̄A(x, t) + ιA + i

√
κABψ̄A(x, t)ψ̄B(x, t)

2
ηA(x, t) = 0,

(5.61)

FB[ψ̄B(x, t),x, t] ≡ −∂ψ̄B(x, t)

∂t
+ ζB∆ψ̄B(x, t)− κABψ̄A(x, t)ψ̄B(x, t)−

λBψ̄B(x, t) + ιB + i

√
κABψ̄A(x, t)ψ̄B(x, t)

2
ηB(x, t) = 0,

(5.62)

FC [ψ̄C(x, t),x, t] ≡ −∂ψ̄C(x, t)

∂t
+ ζC∆ψ̄C(x, t) + κABψ̄A(x, t)ψ̄B(x, t)−

λCψ̄C(x, t) + ιC = 0, (5.63)

FA0 [ψ̄A(x, 0),x, 0] ≡ ψ̄A(x, 0)− nA(0) = 0, (5.64)

FB0 [ψ̄B(x, 0),x, 0] ≡ ψ̄B(x, 0)− nB(0) = 0, (5.65)

FC0 [ψ̄C(x, 0),x, 0] ≡ ψ̄C(x, 0)− nC(0) = 0. (5.66)

In the literature, the stochastic noises ηA(x, t) and ηB(x, t) are often referred to as

“complex white Gaussian noises”. This terminology needs further explanation. We

have that

ηA(x, t) =
1√
2

(
<
(
η(x, t)

)
+ i=

(
η(x, t)

))
, (5.67)

ηB(x, t) =
1√
2

(
<
(
η(x, t)

)
− i=

(
η(x, t)

))
, (5.68)
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where <
(
η(x, t)

)
and =

(
η(x, t)

)
are real Gaussian noises. Equations (5.67) and (5.68)

indicate that one noise is the complex conjugate of the other. The stochastic noises

ηA(x, t) and ηB(x, t) have vanishing mean value, vanishing auto-correlations but non-

zero cross-correlations

〈ηA(x, t)〉P[η] =

〈
1√
2

(
<
(
η(x, t)

)
+ i=

(
η(x, t)

))〉
P[η]

= 0

〈ηB(x, t)〉P[η] =

〈
1√
2

(
<
(
η(x, t)

)
− i=

(
η(x, t)

))〉
P[η]

= 0,

〈ηA(x, t)ηA(x′, t′)〉P[η] =
1

2

(
〈<
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] + 〈i<

(
η(x, t)

)
=
(
η(x′, t′)

)
〉P[η]+

〈i=
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] − 〈=

(
η(x, t)

)
=
(
η(x, t)

)
〉P[η]

)
= 0

〈ηB(x, t)ηB(x′, t′)〉P[η] =
1

2

(
〈<
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] − 〈i<

(
η(x, t)

)
=
(
η(x′, t′)

)
〉P[η]−

〈i=
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] − 〈=

(
η(x, t)

)
=
(
η(x, t)

)
〉P[η]

)
= 0,

〈ηA(x, t)ηB(x′, t′)〉P[η] =
1

2

(
〈<
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] − 〈i<

(
η(x, t)

)
=
(
η(x′, t′)

)
〉P[η]+

〈i=
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] + 〈=

(
η(x, t)

)
=
(
η(x, t)

)
〉P[η]

)
= δ(D)(x− x′)δ(t− t′),

〈ηB(x, t)ηA(x′, t′)〉P[η] =
1

2

(
〈<
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] + 〈i<

(
η(x, t)

)
=
(
η(x′, t′)

)
〉P[η]−

〈i=
(
η(x, t)

)
<
(
η(x′, t′)

)
〉P[η] + 〈=

(
η(x, t)

)
=
(
η(x, t)

)
〉P[η]

)
= δ(D)(x− x′)δ(t− t′). (5.69)

In the Doi-Peliti formalism the average particle density for molecules of species A,

B and C, respectively, involved in the heterogeneous chemical reaction A + B → C,

can be calculated by choosing the operator O[ψ̄A, ψ̄B, ψ̄C ] in equation (5.60) to be the

fluctuating unknown function itself

〈ψ̄X(x, t)〉 =

∫
DηADηBψ̄X(x, t)P [η(t)]∫

DηADηBP [η(t)]
, X ∈ {A,B,C}. (5.70)

Let us now continue with a more complex situation, namely chemical reaction networks.
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5.2 Hydrogen-Oxygen Network

In this section we consider the simple reaction network of the following chemical reac-

tions:

H +H −→ H2

H +O −→ OH

H +OH −→ H2O

O +O −→ O2

Although photodestruction in the reverse chemical reactions H2O → H + OH and

OH → H + O is known to play a role we will not concern ourselves with the reverse

chemical reactions. The above chemical reaction network is of specific interest to

molecule production in interstellar space.

5.2.1 The Mean-Field Dynamical Model

The evolution of the average density of reactants and reaction products 〈n(x, t)〉 on

a grain surface in the mean-field model is governed by the following set of coupled

non-linear first order ordinary differential equations:

∂〈nH(x, t)〉
∂t

= ζH∆〈nH(x, t)〉+ ιH − λH〈nH(x, t)〉 − 2κHH〈nH(x, t)〉2 −

κOH〈nH(x, t)〉〈nO(x, t)〉 − κHOH〈nH(x, t)〉〈nOH(x, t)〉,

∂〈nO(x, t)〉
∂t

= ζO∆〈nO(x, t)〉+ ιO − λO〈nO(x, t)〉 − κOH〈nH(x, t)〉〈nO(x, t)〉 −

2κOO〈nO(x, t)〉2

∂〈nOH(x, t)〉
∂t

= ζOH∆〈nOH(x, t)〉+ ιOH − λOH〈nOH(x, t)〉 −

κHOH〈nH(x, t)〉〈nOH(x, t)〉+ µOHκOH〈nH(x, t)〉〈nO(x, t)〉

∂〈nH2(x, t)〉
∂t

= ζH2∆〈nH2(x, t)〉+ ιH2 − λH2〈nH2(x, t)〉+ µHHκHH〈nH(x, t)〉2,

∂〈nO2(x, t)〉
∂t

= ζO2∆〈nO2(x, t)〉+ ιO2 − λO2〈nO2(x, t)〉+ µOOκOO〈nO(x, t)〉2,

∂〈nH2O(x, t)〉
∂t

= ζH2O∆〈nH2O(x, t)〉+ ιH2O − λH2O〈nH2O(x, t)〉+

µH2OκHOH〈nH(x, t)〉〈nOH(x, t)〉, (5.71)
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where the constants µ give the fraction of reaction products that are not released into

the gas-phase upon formation but rather stay on the surface of the grain. As we will

see in the following paragraphs, again, the above set of evolution equations resembles

—in its form— the stochastic constraint equations in the Doi-Peliti formalism.

5.2.2 The Stochastic Dynamical Model

We define N as the set of the molecule numbers of all chemical species

N := {{NH}, {NO}, {NH2}, {NOH}, {NH2O}, {NO2}}, (5.72)

and {NX} := {NX,1, NX,2, NX,3, ..., NX,imax} with imax the maximal number of lattice

sites. The symbol P (N) := P (N; t) defines the probability to find a certain number

of X particles at lattice site i, NX,i. The master equation for the hydrogen-oxygen

network in the single spatial site model reads

dP (N)

dt
=
∑
i

∑
X∈[H,O,OH,H2,O2,H2O]

ῑX
(
P (...NX,i − 1, ...,N− {NX})− P (N)

)
+

∑
i

∑
X∈[H,O,OH,H2,O2,H2O]

λ̄X
(
(NX,i + 1)P (...NX,i + 1, ...,N− {NX})−

NX,iP (N)
)
−

∑
i

∑
X∈[H,O]

κ̄XX
(
NX,i(NX,i − 1)P (N)−

(NX,i + 2)(NX,i + 1)P (...NX,i + 2, ..., NXX,i − 1, ...,N− {NX} − {NXX,i})
)
−∑

i

∑
X∈[OH,O]

κ̄HX
(
NH,iNX,iP (N)−

(NH,i + 1)(NX,i + 1)×

× P (...NH,i + 1, ..., NX,i + 1, ..., NHX,i − 1, ...,N− {NH} − {NX} − {NHX,i})
)

+∑
X∈[H,O,OH,H2,O2,H2O]

ζ̄X
∑
〈ij〉

(
(NX,i + 1)P (..., NX,i + 1, NX,j − 1, ...N− {NX})−

NX,iP (N) +

(NX,j + 1)P (..., NX,i − 1, NX,j + 1, ...N− {NX}; t)−NX,jP (N)
)

(5.73)
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To my knowledge this is the first time that this particular master equation has been

explicitly worked out and employed in the Doi-Peliti formalism. If one attempted to

include reverse chemical reactions in the model, for example H2O → H+O, one would

have to add the following terms on the right-hand-side of the above master equation

ς̄H2O

∑
i

(
(NH2O + 1)×

× P (..., NO,i − 1, ..., NOH,i − 1, ..., NH2O + 1, ...N− {NO}{NOH} − {NH2O})−

NH2OP (N)
)
, (5.74)

with ς̄H2O the separation rate coefficient. Again, the initial conditions correspond to

Poissonian distributions at each lattice site. We proceed with the master equation

(5.73) and identify the Hamiltonian-like operator in the equivalent Schrödinger-like

equation according to the Second Quantised Representation. The Hamiltonian-like

operator reads

H[
+
a,
−
a] =

∑
i

∑
X∈[H,O,OH,H2,O2,H2O]

(
+
aX,i −1i)(j̄X1i − λ̄X

−
aX,i)−

∑
i

∑
X∈[H,O]

κ̄XX(
+
a

2

X,i

−
a

2

X,i −
+
aXX,i

−
a

2

X,i)−

∑
i

∑
X∈[OH,O]

κ̄HX(
+
aH,i

+
aX,i

−
aH,i

−
aX,i −

+
aHX,i

−
aH,i

−
a X, i) +

∑
X∈[H,O,OH,H2,O2,H2O]

ζ̄X
∑
〈ij〉

(
+
aX,i −

+
aX,j)(

−
aX,i −

−
aX,j). (5.75)

The field-shifted action integral in the Coherent State Representation is derived ac-

cording to the procedures introduced in the Chapter 2 and, for the hydrogen-oxygen

chemical reaction network, takes the following form

S̃ =

∫
dDx

( ∑
X∈[H,O,OH,H2,O2,H2O]

(−nX(0) + nX(0)(ψ̃X(x, 0)− nX(0))) +

∫
dt
( ∑
X∈[H,O,OH,H2,O2,H2O]

ψ̃X(x, t)
∂ψX(x, t)

∂t
+ H̃[ψY (x, t), ψ̃Y (x, t)]

))
,

(5.76)
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with the Doi shifted Hamiltonian

H̃[ψY (x, t), ψ̃Y (x, t)] =
∑

X∈[H,O,OH,H2,O2,H2O]

−ψ̃X(x, t)(jX − λXψX(x, t)) +

∑
X∈[O,H]

κXX(2ψ̃X(x, t) + ψ̃2
X(x, t)− ψ̃XX(x, t))ψ2

X(x, t) +

∑
X∈[OH,O]

κHX(ψ̃H(x, t)ψ̃X(x, t) + ψ̃H(x, t) + ψ̃X(x, t)− ψ̃HX(x, t))ψH(x, t)ψX(x, t)−

∑
X∈[H,O,OH,H2,O2,H2O]

ψ̃X(x, t)ζX∆ψX(x, t). (5.77)

Since there appear pseudo-quadratic terms in the above shifted Hamiltonian we have

to resort to the Reverse Standard Field Theory Representation of a Langevin-type

stochastic differential equation. We employ the Gaussian transformation as described

below ∫
Dne exp

(
− eTAe + bTe

)
=

√
πn

| det A|
exp

(
1

4
bTA−1b

)
. (5.78)

For the particular reaction network under consideration the vectors e and b are 6-

dimensional vectors and the matrix A is 6 × 6 dimensional. Their respective entries

are

b =



i2
√
κHHψ̃H(x, t)ψH(x, t)

i2
√
κOOψ̃O(x, t)ψO(x, t)

i
√

2κHOψH(x, t)ψO(x, t)ψ̃H(x, t)

i
√

2κHOψH(x, t)ψO(x, t)ψ̃O(x, t)

i
√

2κHOHψH(x, t)ψOH(x, t)ψ̃H(x, t)

i
√

2κHOHψH(x, t)ψOH(x, t)ψ̃OH(x, t)


, (5.79)

e =



ηH,1(x,t)√
2

ηO,1(x,t)√
2

ηH,2(x,t)

2
ηO,2(x,t)

2
ηH,3(x,t)

2
ηOH(x,t)

2


, A =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


, (5.80)

with ηH1(x, t) and ηO1(x, t) real Gaussian noises and the other noises

ηH,2 :=
1√
2

(
<(ηH,2(x, t)) + i=(ηH,2(x, t))

)
= η∗O,2(x, t),

ηH,3 :=
1√
2

(
<(ηH,3(x, t)) + i=(ηH,3(x, t))

)
= η∗OH(x, t). (5.81)

205



where <(ηH,2(x, t)), =(ηH,2(x, t)), <(ηH,3(x, t)) and =(ηH,3(x, t)) are real Gaussian

noises, that is,

〈ηH,1(x, t)〉P[η(x,t)] = 〈ηH,2(x, t)〉P[η(x,t)] = 〈ηH,3(x, t)〉P[η(x,t)]

= 〈ηO,1(x, t)〉P[η(x,t)] = 〈ηO,1(x, t)〉P[η(x,t)] = 〈ηOH(x, t)〉P[η(x,t)] = 0,

〈ηH,1(x, t)ηH,1(x′, t′)〉P[η(x,t)] = 〈ηO,1(x, t)ηO,1(x′, t′)〉P[η(x,t)]

= 〈ηH,2(x, t)ηO,2(x′, t′)〉P[η(x,t)] = 〈ηH,3(x, t)ηOH(x′, t′)〉P[η(x,t)] = δ(x− x′)δ(t− t′),

(5.82)

and all other cross correlations are zero.

The average density of the chemical species X on the grain surface is given

by

〈ψX(x, t)〉 =

∫
Dηψ̄X(x, t)P [η(x, t)]∫

DηP [η(x, t)]
, (5.83)

where X ∈ [H,O,H2, O2, OH,H2O] and the measure is the following

Dη := DηH,1DηH,2DηH,3DηO,1DηO,2DηOH . (5.84)

The probability distribution P [η(x, t)] reads

P [η(x, t)] := exp

(
−1

2

∫ ∫ (
η2
H,1(x, t) + η2

O,1(x, t)+

ηH,2(x, t)ηO,2(x, t) + ηH,3(x, t)ηOH(x, t)) dDxdt
)
.

(5.85)
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The unknown fields ψ̄X(x, t) have to satisfy the stochastic constraint equations for the

hydrogen-oxygen chemical reaction network:

∂ψ̄H(x, t)

∂t
= ζH∆ψ̄H(x, t) + jH − λHψ̄H(x, t)− 2κHHψ̄

2
H(x, t)−

κOHψ̄H(x, t)ψ̄O(x, t)− κHOHψ̄H(x, t)ψ̄OH(x, t) +

i

(
√

2κHHψ̄H(x, t)ηH,1(x, t) +

√
κOHψ̄H(x, t)ψ̄O(x, t)

2
ηH,2(x, t)+√

κHOHψ̄H(x, t)ψ̄OH(x, t)

2
ηH,3(x, t)

)
,

(5.86)

∂ψ̄O(x, t)

∂t
= ζO∆ψ̄O(x, t) + jO − λOψ̄O(x, t)− κOHψ̄H(x, t)ψ̄O(x, t)− 2κOOψ̄

2
O(x, t) +

i

(
√

2κOOψ̄O(x, t)ηO,1(x, t) +

√
κOHψ̄H(x, t)ψ̄O(x, t)

2
ηO,2(x, t)

)
,

∂ψ̄OH(x, t)

∂t
= ζOH∆ψ̄OH(x, t) + jOH − λOHψ̄OH(x, t)− κHOHψ̄H(x, t)ψ̄OH(x, t) +

µOHκOHψ̄H(x, t)ψ̄O(x, t) + i

√
κHOHψ̄H(x, t)ψ̄O(x, t)

2
ηOH(x, t), (5.87)

∂ψ̄H2(x, t)

∂t
= ζH2∆ψ̄H2(x, t) + jH2 − λH2ψ̄H2(x, t) + µHHκHHψ̄

2
H(x, t), (5.88)

∂ψ̄O2(x, t)

∂t
= ζO2∆ψ̄O2(x, t) + jO2 − λO2ψ̄O2(x, t) + µOOκOOψ̄

2
O(x, t), (5.89)

∂ψ̄H2O(x, t)

∂t
= ζH2O∆ψ̄H2O(x, t) + jH2O − λH2Oψ̄H2O(x, t) +

µH2OκHOHψ̄H(x, t)ψ̄OH(x, t), (5.90)

where the constants µ indicate that only a fraction of the chemical reaction products

will stay on the surface of the grain. Furthermore, we have the additional constraints

that the inital populations of the chemical species X have to coincide with the inital

values of the unknown fluctuating fields ψ̄X(x, 0) for each X.

5.3 Conclusions and Outlook

General theory of ordinary differential equations states that for any simple fixed point

—that means that there is no zero eigenvalue for the linearised system— of a system

of nonlinear differential equations the phase space portrait close to the fixed point

remains qualitatively the same as for the linearised form of the equations provided
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the fixed point is not a centre —see, for example, [28]. As we have encountered in the

previous analysis non-simple fixed points will occur under certain conditions. In such

cases, small effective changes in eigenvalues alter the evolution and result in altered

phase portraits.

Under certain circumstances, the steady state solution of the system of mean-

field evolution equations for the heterogeneous chemical reaction of type A+B −→ C,

equations (5.2), (5.3) and (5.4), can be an unstable fixed point. This leads to

the conclusion that, in practice, it is not possible to choose the initial conditions

in numerical calculations in a way such that the late-time value of the evolution

equations reaches the steady state value.

In analogy to the numerical investigations for the heterogeneous chemical reac-

tion of type A+A −→ C it is reasonable to start analysing the set of equations arising

from the consideration of a chemical reaction network in the single-spatial site model

and take values for the rate coefficients according to the M1 and M2 data. Since the

mean-field rate equations do not form a stable system under all circumstances it is not

clear whether the corresponding stochastic constraint equations will exhibit difficulties

for particular choices of parameters. Special attention should be paid to the stability

and convergence of the numerical evaluation of the constraints. Furthermore, under

interstellar conditions, the rate coefficients for the various species involved in the

heterogeneous chemical reactions can differ significantly in the order of magnitude.

Thus, one is faced with a situation involving stochastic differential equations that are

stiff.
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Chapter 6

Heterogeneous Nucleation of

Aerosols

This chapter is concerned with nucleation processes that take place on pre-existing

particles that are assumed to be spherically symmetric. We study the formation of

clusters on the seed and consider the Fletcher theory and the Becker-Döring theory

where distinct choices of the rate coefficients in the evolution equations lead to qualita-

tively different behaviour in the development of the mean cluster concentrations on the

surface of the seed particle. In the mean-field framework, we confront the theoretical

predictions for the nucleation current with experimental observations and comment on

the limitations of the methods. We proceed to develop a stochastic dynamical frame-

work on the lines of calculations undertaken in the previous chapters. Nucleation is a

fluctuation-driven phenomenon: each cluster has to overcome a free energy barrier if it

is to grow into a droplet, and furthermore, local fluctuations in cluster populations can

be instrumental in driving such a sensitive process forward. An analogy to a chemical

reaction network can be made —cfr. Chapter 5— when one formulates the process of

cluster formation as a nucleation ladder:

monomer +monomer � dimer

monomer + dimer � trimer

monomer + trimer � tetramer
...

momomer + (imax − 1)−mer � (imax)−mer.

Monomers are independent molecules and i-mers are clusters of higher orders that

consist of i molecules. We use this analogy to implement the same techniques on
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heterogeneous nucleation processes as introduced to treat surface chemistry in small

systems and derive an alternative stochastic framework according to the Doi-Peliti

formalism to replace the traditional mean-field evolution equations, namely, the

Becker-Döring rate equations (6.16).

We concentrate our investigations on one-component systems. The pre-existing

particles or surfaces are assumed to be electrically neutral and insoluble to the

nucleating fluid, i.e. we exclude the exchange of molecules between the surface of the

seed and the vapour phase. Under normal circumstances it is safe to assume that

there are many more monomers than clusters of higher orders in the vapour phase.

Therefore, we only consider the gain of monomers to a cluster. In addition, we also

assume that only monomers can be broken apart from a cluster of higher order. In the

sequel, if not otherwise stated, evolution equations of any kind are solved assuming

zero initial conditions. For cluster size we understand the order of the cluster i, that

is (in terms of the Classical Nucleation Theory), the number of monomers in a cluster,

and not the radius of a cluster r(i).

6.1 Mean-Field Heterogeneous Nucleation Theory

In this section, we present the Standard Nucleation Theory, the Fletcher Theory, and

the Becker-Döring Model in the mean-field framework and develop the means to in-

clude the evolution of clusters according to diffusion processes on the surface of the seed

particle in addition to the evolution of clusters due to the attachment of molecules to

the cluster directly from the vapour phase. We compute the mean cluster populations

and the nucleation current making several distinct assumptions on the form of the rate

coefficients. Furthermore, we summarise the results of a specific experiment investi-

gating heterogeneous nucleation on small seed particles and compare the theoretical

predictions of the most realistic model for the rate coefficients with the experimental

data with and without modifications of one of the input parameters, namely, the sur-

face tension between the vapour and the liquid phase, that is the surface tension at

the gas-cluster interface.

6.1.1 Fletcher Theory

In the standard heterogeneous nucleation theory, a critical cluster is formed on a

pre-existing surface —the seed particle. If the seed particles are assumed to be

spherically symmetric a critical cluster takes the form of a cap-shaped part of a
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Figure 6.1: Cluster formation in classical heterogeneous nucleation theory. On a pre-
existing seed particle — indicated by the red sphere with a radius of Rseed— monomers
—illustrated by the blue spheres— can form clusters with radii r(i) that are attached
to the surface of the seed with a contact angle θ. The symbol i gives the number of
monomers forming a cluster.

sphere attached to the curved surface of the seed —see Figure 6.1. There are several

drawbacks of the Fletcher model. Foremost, the physical properties of a microscopic

entity are assumed to be the same as the ones of a macroscopic quantity —the

capillarity approximation. The assumption of a continuum model of the geometry

is a bad approximation especially for small cluster sizes. Another limitation of the

Classical Nucleation Theory is that there are no interactions of particles around the

considered nuclei included in the model. Furthermore, the contact angle, that is the

angle between the tangents to the solid surface (seed particle) and the liquid surface

(cluster) and the surface tensions between the contact interfaces are taken to be

constant for all clusters regardless of their sizes. Keeping these limitations in mind,

we continue with our calculations in the Fletcher model.
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Figure 6.2: Completely wetted seed surface. The surface of the seed particle (red
sphere) with radius Rseed is completely wetted by a cluster (blue sphere) with radius
r(i) and with a contact angle θ. In contrast to a monolayer, this is an asymmetric
configuration.

We define the contact angle θ as the angle between the tangent to the pre-

existing surface and the tangent to the cluster surface at the intersection point of the

two surfaces —see Figure 6.1. The contact angle can be related to the surface tension

between liquid (cluster) and solid (seed), σl,s [Nm−1], the surface tension between

vapour (surrounding gas phase) and liquid (cluster), σv,l [Nm−1], and the surface

tension between vapour (surrounding gas phase) and solid (seed), σv,s [Nm−1]. This

relation is contained in Young’s Equation:

cos θ =
σv,s − σl,s

σv,l
. (6.1)

The nucleation current in the Fletcher model, JFletcher, —see [18]—, is the rate at

which critical clusters are formed per unit surface area of the seed particles. Its form

stems from an Arrhenius Ansatz and reads

JFletcher = K∗ exp

(
−4G

∗

kT

)
[m−2s−1]. (6.2)

The symbol 4G∗ [m2kgs−2] denotes the formation free energy or nucleation barrier

of the critical cluster, T [K] is the temperature of the surface of the seed and k
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[m2kgs−2K−1] the Boltzmann constant. The factor K∗ is a kinetic pre-factor and is

obtained via

K∗ = Z∗gdvi∗Fletcher〈Cmon,ads〉 [m−2s−1], (6.3)

where Z∗ is the Zeldovich non-equilibrium factor for heterogeneous nucleation pro-

cesses, gdvi∗Fletcher the growth rate of the critical cluster [s−1] and 〈Cmon,ads〉 [m−2] the

mean concentration of the surface-adsorbed monomers. The latter two expressions will

be determined later on. The Zeldovich factor is defined as

Z∗ :=

√
− 1

2πkT

(
∂24G(i)

∂i2

) ∣∣∣∣
i=i∗

[1], (6.4)

where 4G(i) is the formation free energy of a cluster of size i. The Zeldovich factor

can be calculated in the following way

Z∗ := Z∗homf(r∗Fletcher, Rseed, θ),

Z∗hom :=
vl
√
σv,l

2πr∗2Fletcher
√
kT

,

f(r∗Fletcher, Rseed, θ) := 2

(
2 +

(1−X cos θ)(2− 4X cos θ − ((cos θ)2 − 3)X2))

(1− 2X cos θ +X2)
3
2

)− 1
2

,

(6.5)

with vl [m3] the volume of a single molecule in the liquid phase and σv,l the sur-

face tension of the vapour-liquid interface and X := Rseed(r
∗
Fletcher)

−1. The factor

f(r∗Fletcher, Rseed, θ) takes into account the special geometry of a seed particle with ra-

dius Rseed. The Zeldovich factor for heterogeneous nucleation processes reduces to the

one for homogeneous nucleation processes if either cos θ = −1 or Rseed(r
∗
Fletcher)

−1 = 0.

The Fletcher critical cluster radius is given by

r∗Fletcher :=
2vlσv,l
kT ln(S)

[m], (6.6)

where S > 1 [1] stands for the vapour phase saturation ratio defined as the fraction

of the vapour pressure relative to the saturated vapour pressure. The above equation

is also known as the Kelvin equation in homogeneous nucleation theory. The form of

the radius of the heterogeneous critical cluster and of the radius of the homogeneous

critical cluster coincide at the same temperature and vapour concentration since, at the

critical cluster size i∗Fletcher, the liquid under the curved surface of the droplet (cluster)

is in equilibrium with the vapour phase and the chemical potentials in all phases are
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equal in equilibrium. In the Fletcher theory, the mean concentration of the adsorbed

monomers on the surface of the pre-existing particle can be estimated via

〈Cmon,ads〉 ≈
j

l
[m−2]. (6.7)

where j [m−2s−1] is the source rate coefficient, that is, the mean rate with which

monomers are adsorbed onto the surface of the seed, and l [s−1] the evaporation rate

coefficient, that is, the mean rate with which monomers are evaporated from the sur-

face of the seed. The growth rate of the critical cluster in the Fletcher theory, gdvi∗Fletcher ,

is

gdvi∗Fletcher = j2πr∗2Fletcher (1− cos (Ψ (r∗Fletcher, Rseed, θ))) [s−1], (6.8)

where the cosine in terms of the contact angle θ, and the radii r and Rseed reads

cos Ψ[r, Rseed, θ] =
Rseed cos θ − r√

r2 +R2
seed − 2rRseed cos θ

. (6.9)

The formation free energy of the critical cluster is given by

4G(r∗Fletcher) = 4Ghom(r∗Fletcher)g(r∗Fletcher, Rseed, θ), (6.10)

with

4Ghom(r∗Fletcher) =
4πσv,lr

∗2
Fletcher

3
,

g(r∗Fletcher, Rseed, θ) =
1

2

(
1 +

(
1−X cos θ√

1 +X2 − 2X cos θ

)3

+

X3

(
2− 3

X − cos θ√
1 +X2 − 2X cos θ

+

(
X − cos θ√

1 +X2 − 2X cos θ

)3
)

+

3X2 cos θ

(
X − cos θ√

1 +X2 − 2X cos θ
− 1

))
. (6.11)

The existence of a foreign particle favours nucleation in the sense that the thermody-

namic barrier, that is, the increase in the free energy of a system due to the formation

of a cluster, decreases in value compared to a homogeneous nucleation —see the above

equations and Figure 6.3. Alternatively, the formation free energy can be expressed as

4G(r∗Fletcher) = −i∗Fletcher ln (S)kT + σv,lAv,l(r
∗
Fletcher)− cos θσv,lAl,s(r

∗
Fletcher), (6.12)
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r(i) 
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!G(i) 
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*) 

!G(i*) 

Figure 6.3: The dependence of the formation free energy 4G(i) on the radius of
the cluster of order i. Although the nucleation barrier for homogeneous nucleation is
greater than for heterogeneous nucleation, at the critical cluster size i∗, both nucleation
barriers —for homogeneous nucleation 4Ghom(i) and for heterogeneous nucleation
4G(i∗)— have a maximum.

with i∗Fletcher the heterogeneous critical cluster size in Fletcher theory,

i∗Fletcher = i∗Fletcher;homh(r∗Fletcher, Rseed, θ),

i∗Fletcher;hom :=
4πr∗3Fletcher

3vl
,

h(r∗Fletcher, Rseed, θ) :=

1

4

(
2 + 3

1−X cos θ√
1 +X2 − 2X cos θ

−
(

1−X cos θ√
1 +X2 − 2X cos θ

)3
)
−

1

4

(
X3

(
2− 3

X − cos θ√
1 +X2 − 2X cos θ

+

(
X − cos θ√

1 +X2 − 2X cos θ

)3
))

.

(6.13)

The symbols Av,l(r
∗
Fletcher) and Al,s(r

∗
Fletcher) denote the area at the vapour-liquid in-

terface, that is, the contact area between the gas-phase and the critical cluster, and the

area at the liquid-solid interface, that is, the contact area between the critical cluster

and the surface of the grain particle, respectively. Since the composition and the radius

of the heterogeneous critical cluster are the same as that of the homogeneous critical
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cluster at the same temperature and vapour concentrations, the number of molecules

in a homogeneous critical cluster at the same conditions is greater than the number of

molecules in a heterogeneous critical cluster —cfr. the above equations (6.13). Never-

theless, the maximum of 4Ghom(r∗Fletcher) and 4G(r∗Fletcher) appears at the same value

of the radius r∗Fletcher.

6.1.2 Becker-Döring Theory

In the Becker-Döring theory for heterogeneous nucleation processes, we distinguish

between two different growth and decay processes —see Figure 6.4. In the direct vapour

deposition mechanism, gas molecules can attach themselves to an existing cluster on

the surface of the seed particle and can be evaporated from the cluster back into

the surrounding gas phase. In the surface diffusion mechanism, clusters grow when

molecules that are adsorbed onto the surface of the seed diffuse over the particle surface

and eventually collide with another cluster and build up clusters of higher order. In the

same fashion, molecules can be released from clusters and diffuse on the surface of the

seed. In the sequel, superscripts ”dv” indicate processes taking place according to the

direct vapour deposition mechanism, superindices ”sd” denote processes in the surface

diffusion mechanism. The dynamics of nucleation are normally developed within a

framework of embryo population dynamics, where the numbers of embryos of a given

size in the system evolve according to particular embryonic growth and decay processes.

The Becker-Döring rate equations [2] model the processes of gain and loss of molecules

from clusters as chemical reactions without memory (Markov processes). In the sequel,

we assume that clusters larger than imax do not decay, that is, ddvimax+1 = dsdimax+1 ≡ 0.

The evolution equations for the mean concentrations 〈Ci(t)〉 [m−2] of clusters of order

i read

d

dt
〈Ci(t)〉 =

(
gdvi−1 + gsdi−1(t)

)
〈Ci−1(t)〉 −

(
ddvi + dsdi

)
〈Ci(t)〉 −(

gdvi + gsdi (t)
)
〈Ci(t)〉+

(
ddvi+1 + dsdi+1

)
〈Ci+1(t)〉,

(6.14)

with the index i ∈ [2, ..., imax] and where gdv [s−1] is the growth rate coefficient in

the direct vapour deposition mechanism, gsd(t) [s−1] the growth rate coefficient in the

surface diffusion mechanism, ddv [s−1] the decay rate coefficient in the direct vapour

deposition mechanism and dsd [s−1] the decay rate coefficient in the surface diffusion

mechanism. For the dynamics of the mean concentration of monomers in the mean-field
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framework, the equation of motion is given by

d

dt
〈C1(t)〉 = j− l〈C1(t)〉+ ddv2 〈C2(t)〉 − gdv1 〈C1(t)〉 −

gsd1 (t)〈C1(t)〉+ dsd2 〈C2(t)〉 −
imax∑
i=1

(
gsdi (t)〈Ci(t)〉 − dsdi+1〈Ci+1(t)〉

)
.

(6.15)

The factor of 2 in the surface diffusion terms gsd1 (t)〈C1(t)〉 and dsd2 〈C2(t)〉 in equation

(6.15) arises from the fact that in the surface diffusion approach two monomers collide

in order to form a dimer. However, in the direct vapour deposition approach a molecule

from the gas phase lands on top of a monomer residing on the surface of the seed hence

the coefficient of unity for the terms gdv1 〈C1(t)〉 and ddv2 〈C2(t)〉. The maximum size of

clusters, imax, and hence the maximum number of equations, has to be chosen to be

large enough to exceed the order of the critical cluster i∗ comfortably. Since growth

is more probable than decay for clusters above the critical size, the choice of a cluster

sink boundary condition at imax � i∗ is physically acceptable. The above mentioned

processes are visualised in the schematic 6.5. As an alternative, it is also possible to

formulate the Becker-Döring rate equations (6.14) and (6.15) for populations 〈Mi(t)〉
[1] rather than for concentrations 〈Ci(t)〉 [m−2]. Consequently, we have

d

dt
〈M1(t)〉 = J− L〈M1(t)〉+ Ddv

2 〈M2(t)〉 −Gdv
1 〈M1(t)〉 −

Gsd
1 (t)〈M1(t)〉+ Dsd

2 〈M2(t)〉 −
imax∑
j=1

(
Gsd

j (t)〈Mj(t)〉 −Dsd
j+1〈Mj+1(t)〉

)
d

dt
〈Mi(t)〉 =

(
Gdv

i−1 + Gsd
i−1(t)

)
〈Mi−1(t)〉 −

(
Ddv

i + Dsd
i

)
〈Mi(t)〉 −(

Gdv
i + Gsd

i (t)
)
〈Mi(t)〉+

(
Ddv

i+1 + Dsd
i+1

)
〈Mi+1(t)〉, (6.16)

217



where the index i in the second of the above equations runs from two until the maxi-

mum number of i-mers. The rate coefficients now read

gsdi (t) := g′sdi 〈C1(t)〉 [s−1],

Gsd
i (t) := G′sdi 〈M1(t)〉 [s−1], with: G′sdi =

g′sdi
4πR2

seed

[s−1],

J = j4πR2
seed [s−1],

l = L [s−1],

ddvi = Ddv
i [s−1], and dsdi = Dsd

i [s−1],

gdvi = Gdv
i [s−1]. (6.17)

The next step is to derive explicit expressions for the above rate coefficients, namely

the source rate J or j, the evaporation rate L or l, the growth rates Gi or gi and the

decay rates Di or di in the direct vapour deposition mechanism and in the surface

diffusion mechanism.

Rate Coefficients: Power Law Model

The following investigations are based on the determination of the free parameters

of the equations (6.14) and (6.15) as introduced in [3], namely the rate J at which

monomers attach themselves onto the surface of the seed particle, the rate L at

which monomers evaporate from the surface of the seed particle, the rate Di at which

monomers are lost from a cluster of size i ≥ 2 and the rate G′i at which monomers

attach themselves onto a cluster of size i ≥ 2. In [3] the direct vapour deposition

mechanism was ignored, hence

Gdv
i = Ddv

i ≡ 0,

G′i := G
′sd
i , and Di := Dsd

i ,

for all orders i. Let us summarise the assumptions of the model for the rate coefficients

in the Becker-Döring theory presented in [3].

Definition. We define a dimensionless size parameter χ which is proportional to the

surface area of the seed particle.

Assumptions.

218



• We assume that χ
!

= 1 gives the system with a nominal mean monomer population

of unity.

• We assume that the evaporation rates L and Di are independent of the surface

area of the seed particle and hence independent of the size parameter.

• Furthermore, we assume that

J(χ) = J0χ [s−1], (6.18)

with

J0 := J(χ)|χ=1 [s−1]. (6.19)

Considering the dynamics in absence of any dimer production we obtain that

〈M1〉 ∼ JL−1, from which it follows that L = J0. Therefore, we have

J(χ) = Lχ. (6.20)

• The growth rates G′i are assumed to be independent of the cluster size that is

G′i ≡ G′ [s−1] ∀i. (6.21)

We define

G′0 := G′(χ)|χ=1. (6.22)

We assume that

G′(χ) = G′0χ
−1. (6.23)

From

Gi(χ; t) = G′i(χ)〈M1(t)〉 (6.24)

and together with the assumption that G0
!

= 1 we conclude that

G(χ; t) = χ−1〈M1(t)〉 [s−1]. (6.25)

• Let i∗ be the critical size of a cluster. From the assumption Di∗ = G′i∗〈M1〉 it

follows that

Di∗ = 1 ∀χ. (6.26)

We choose

Di =

(
i∗

i

)c
, (6.27)
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where c is a constant to be freely determined.

For clusters of size i < i∗ the probability of a decay process is high whereas for

clusters of size i > i∗ the probability of growth is high. This is illustrated in Figure

6.6 and Figure 6.8. To the left of the intersection point between the graphs of the

growth rates G′i and the decay rates Di the probability for loss of monomers from

the cluster is higher than to the right of the intersection point, i.e. the probability

for growth of a cluster is higher on the right of the intersection point than it is to

the left of the intersection point. For greater values of the critical cluster size i∗ the

intersection point shifts further to the right. For greater values of the constant c the

curve of the loss rate coefficient Di gets steeper.

The mean-field evolution equations (6.16) with the particular choice of the rate

coefficients take the form

d

dt
〈M1(t)〉 = L (χ− 〈M1(t)〉)− 2

(
〈M1(t)〉2

χ
−
(
i∗

2

)c
〈M2(t)〉

)
−

imax−1∑
j=2

(
〈M1(t)〉〈Mj(t)〉

χ
−
(

i∗

j + 1

)c
〈Mj+1(t)〉

)
− 〈M1(t)〉〈Mimax(t)〉

χ
,

d

dt
〈Mi(t)〉 =

〈M1(t)〉〈Mi−1(t)〉 − 〈M1(t)〉〈Mi(t)〉
χ

+(
i∗

i + 1

)c
〈Mi+1(t)〉 −

(
i∗

i

)c
〈Mi(t)〉,

d

dt
〈Mimax(t)〉 =

〈M1(t)〉〈Mimax−1(t)〉 − 〈M1(t)〉〈Mimax(t)〉
χ

− (6.28)(
i∗

imax

)c
〈Mimax(t)〉.

In [3] the model constants were chosen such that i∗ = 2 and c = 2, and the maximum

order of i-mers was taken to be 4. We proceed by performing a stability analysis

for a system of four mean-field evolution equations. The above equations (6.28) for
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imax = 4, i∗ = 2 and c = 2 reduce to

d

dt
〈M1(t)〉 = L(χ− 〈M1(t)〉)− 2〈M1(t)〉2 + 〈M1(t)〉〈M2(t)〉

χ
−

− 〈M1(t)〉〈M3(t)〉+ 〈M1(t)〉M4(t)〉
χ

+
4〈M3(t)〉

9
+
〈M4(t)〉

4
+ 2〈M2(t)〉,

d

dt
〈M2(t)〉 =

〈M1(t)〉2 − 〈M1(t)〉〈M2(t)〉
χ

+
4〈M3(t)〉

9
− 〈M2(t)〉,

d

dt
〈M3(t)〉 =

〈M1(t)〉〈M2(t)〉 − 〈M1(t)〉〈M3(t)〉
χ

+
〈M4(t)〉

4
− 4〈M3(t)〉

9
,

d

dt
〈M4(t)〉 =

〈M1(t)〉〈M3(t)〉 − 〈M1(t)〉〈M4(t)〉
χ

− 〈M4(t)〉
4

. (6.29)

In analogy to the analysis undertaken in Chapter 5, we solve the stationary mean-field

equations arising from (6.29). We undertake numerical investigations in MAPLE 11

for L = 100s−1 and χ = {103, 102, 101, 100, 10−1, 10−2, 10−3} and for L = 1s−1 and χ =

{103, 102, 101, 100, 10−1, 10−2, 10−3}. We obtain five steady state solutions for each order

of i-mer but in each case only one of these steady state solutions is real and positive

which is a necessary condition for a physically meaningful solution to the stationary

equations. These strictly positive steady state solutions m̊ := (M̊1, M̊2, M̊3, M̊4)T are

given in Tables 6.1 and 6.2. The linearised mean-field evolution equations take the

form
d

dt
v(t) = J

∣∣
m̊

v(t) + w, (6.30)

where

v(t) := m(t)− m̊,

J
∣∣
m̊

:=


−L− 4M̊1+M̊2+M̊3+M̊4

χ
2− M̊1

χ
4
9
− M̊1

χ
1
4
− M̊1

χ
2M̊1−M̊2

χ
−1− M̊1

χ
4
9

0
M̊2−M̊3

χ
M̊1

χ
−M̊1

χ
− 4

9
1
4

M̊3−M̊4

χ
0 M̊1

χ
−M̊1

χ
− 1

4

 ,

w :=


L(χ− M̊1)− 2M̊1(M̊1+M̊2+M̊3+M̊4)

χ
+ 4M̊3

9
+ M̊4

4
+ 2M̊2

M̊1(M̊1−M̊2)
χ

+ 4M̊3

9
− M̊2

M̊1(M̊2−M̊3)
χ

+ M̊4

4
− 4M̊3

9
M̊1(M̊3−M̊4)

χ
− M̊4

4

 . (6.31)

We shift the constant vector w in order to obtain a system of equations that are

homogeneous in v(t). The eigenvalues of the Jacobian matrix J
∣∣
m̊

which are calculated

in MAPLE 11 are real and negative for the above mentioned choices of L and χ.
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Therefore, in contrast to the heterogeneous chemical reaction of type A+B −→ C, the

strictly positive steady state solution is a stable node1. The numerical calculation of

solutions to the mean-field evolution equations for an order of four i-mers —equation

(6.29)— for L = 100s−1 and χ = {103, 102, 101, 100, 10−1, 10−2, 10−3} as well as for

L = 1s−1 and χ = {103, 102, 101, 100, 10−1, 10−2, 10−3} was undertaken in a programme

written in the computer language C. As expected the mean-field equilibrium values

for late times and the mean-field steady state values coincide.

In a next step, we analyse under which conditions the power law model for the

rate coefficients fulfills the convergence behaviour that one expects from physical

considerations. For all orders of i-mers it should hold —for the steady state solution

〈Mi〉ss as well as for the dynamical solution 〈Mi(t∞)〉 at late times t∞, that is, the

time when equilibrium has been reached — that

lim
imax→∞

〈Mi(imax)〉ss = 〈M̄i〉ss ≡ constant ∀i,

lim
imax→∞

〈Mi(imax; t∞)〉 = 〈M̄i(t∞)〉 ≡ constant ∀i, (6.32)

and

lim
i→imax

〈Mi〉ss = 〈Mimax〉ss,

lim
i→imax

〈Mi(t∞)〉 = 〈Mimax(t∞)〉. (6.33)

We solve the Becker-Döring rate equations with the rate coefficients according to the

assumptions mentioned in 6.1.2 —see equations (6.28)— for J = 1000s−1 and L =

100s−1 as well as for J = 10s−1 and L = 1s−1 and for the following three choices of

model parameters:

• Model 1: G′ = 0.1s−1, Di =
(
i∗

i

)c
where c = 2 and i∗ = 2;

• Model 2: G′ = 0.1s−1, Di =
(
i∗

i

)c
where c = 5 and i∗ = 2;

• Model 3: G′ = 0.1s−1, Di =
(
i∗

i

)c
where c = 2 and i∗ = 10.

1It is important to note that one cannot conclude stability for the stochastic evolution equations
from the system of mean-field evolution equations even when the deterministic part of the stochastic
equations is identical to the mean-field evolution equations as it was the case for the heterogeneous
chemical reactions. The addition of a stochastic noise term to a deterministic ordinary differential
equation can stabilise an unstable system. Similarly, the addition of a noise term can destabilise
a stable system of ordinary differential equations. Since the solutions to the mean-field evolution
equations and the solutions according to the Doi-Peliti formalism have to coincide in the deterministic
regime we can at least test the stability of the stochastic constraint equations in the deterministic
regime by comparison.
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For Model 1 and Model 2 we repeat the numerical computations for a maximum order

of i-mers imax ∈ [5, 10, 15, 20, 25, 30] whereas for Model 3 we repeat the numerical

computations for a maximum order of i-mers imax ∈ [15, 20, 25, 30]. We list the mean

late-time i-mers populations 〈Mi(t∞)〉 in Tables E.1, E.2, E.3, E.4, E.5, E.6, E.7,

E.8, E.9, E.10, E.11, E.12 in the appendix and visualise the results of our findings in

the following Figures: in Figures 6.10, 6.12, and 6.14 we plot the dependence of the

mean late-time monomer population on the maximum order of i-mers for Model 1,

Model 2 and Model 3, respectively. Figures 6.11, 6.13, and 6.15 show the dependence

of the mean late-time cluster populations on the order of i-mers for a maximum

order of imax = 30 for Model 1, Model 2 and Model 3, respectively. The convergence

behaviour according to (6.32) is represented in Figures 6.10, 6.12, and 6.14 and the

convergence behaviour according to (6.33) is reflected in Figures 6.11, 6.13, and 6.15.

For Model 1 and Model 2, the convergence with regards to (6.32) is slow whereas

for Model 3 we observe only a marginally small change in the dependence on the

maximum number of i-mers. It seems that this particular convergence behaviour

depends on the choice of the value of the critical cluster employed in the expression

of the decay rate. The convergence behaviour according to (6.33) is well reflected in

Figure 6.15 although there is an indistinguishable difference in the mean late-time

cluster populations for a choice of J = 1000s−1 compared to the mean late-time cluster

populations with J = 1s−1. The respective changes in the value of the mean late-time

cluster populations for Model 1 and Model 2 are large for smaller cluster sizes and

almost negligible for larger cluster sizes.

Furthermore, we investigate the consequences of the choice of model parameters

regarding the nucleation current. The dynamical nucleation current or dynamical

nucleation rate in the Becker-Döring model is defined as

JBD,dyn(t∞) ≡ d

dt
〈Mimax+1(t)〉

∣∣∣∣
t∞

=
((

Gdv
imax

+ G
′sd
imax
〈M1(t)〉

)
〈Mimax(t)〉

) ∣∣∣∣
t∞

,

(6.34)

where it is assumed that clusters of order imax do not decay, that is Ddv
imax+m =

Ddv
imax+m ≡ 0 for all m ∈ N. The dynamical nucleation current for Model 1, Model

2 —where imax ∈ [5, 10, 15, 20, 25, 30]— and Model 3 —where imax ∈ [15, 20, 25, 30]—

are listed in Tables 6.3, 6.4, 6.5. One observes that in Model 1 and Model 2 the

difference in percentage, 4, between the nucleation current computed for imax ≡ k

and the nucleation current computed for imax ≡ k + 5 for the same model constants

is much greater for L = 1s−1 than for L = 100s−1. Although the difference between

JBD,dyn(L = 100s−1) and JBD,dyn(L = 1s−1) is great for Model 1 and Model 2 this is
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not the case for Model 3. A convergence of the nucleation rate with regards to the

maximum order of i-mers is evident for Model 1 and Model 2 for any choice of rate co-

efficients whereas for Model 3 the convergence is insignificant. The difference between

the nucleation currents in Model 1 and Model 2 for fixed rate coefficients is rather

small whereas the difference in the nucleation currents between Model 1 and Model 3

as well as Model 2 and Model 3 is large. The qualitative behaviour of the models with

regards to the nucleation current depends, again, on the size of the critical cluster.

Rate Coefficients: Fletcher Theory

The particular form of the rate coefficients which we consider in this part of the thesis

stems from the Fletcher theory and can be determined from the kinetic gas theory.

The rate coefficient j, the source rate, gives the monomer flux per unit area and unit

time. It takes the form

j =
pS√

2πmkT
[s−1m−2], (6.35)

where p is the saturation vapour pressure ([Nm−2]), S is the vapour phase saturation

ratio, m is the molecular mass of a gas molecule ([kg]), k the Boltzmann constant

([m2kgs−2K−1]) and T the temperature ([K]). The evaporation rate l determines the

process of evaporation of molecules back into the vapour phase and is given by

l = ν exp

(
− L

kT

)
[s−1], (6.36)

where ν is the vibration frequency ([s−1]) and L the latent heat per molecule ([Nm]).

The symbol gdvi denotes the growth rate in the direct vapour deposition mechanism

([s−1]) for a cluster of size i, the symbol ddvi+1 the decay rate by direct emission of a

monomer to the vapour phase ([s−1]) for a cluster of size i + 1. In order to employ

a more realistic model for the rate coefficients one has to assign a radius r(i) to each

cluster of any order i. The form of the radius r(i) is derived from the assumption

that the volume of the cap-shaped liquid phase Vcap is equal to the total volume of all

molecules in the cluster combined

Vcap
!

= ivl. (6.37)

where vl denotes the volume of a single molecule in the liquid phase and i is the number

of monomers in the cluster. We are aware of the error that arises from the packaging

problem, that is, the over-estimation of the volume of the cluster, but in the Fletcher

theory this is neglected. For a planar seed particle without boundaries, the volume of
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the cap is simply

Vcap =
π

3
r3(2− 3 cos θ + cos3 θ). (6.38)

One can determine the radius r(i) of an i-mer employing the approximation for the

volume of the cluster (6.37) and solve for r(i)

r(i) = 3

√
3ivl

π(2− 3 cos (θ) + cos (θ)3)
. (6.39)

Special cases for different values of the contact angle are summarised in Table 6.6. For

the computation of the rate coefficients it is important to know the form of the surface

areas of the contact interfaces which, for a planar seed, are given by

Av,l = 2πr2(1− cos θ),

Al,s = πr2 sin2 θ. (6.40)

In the case of a spherically symmetric seed particle, the volume of the cluster (in fact,

the cap of the spherically symmetric cluster attached to the surface of the seed) can

be obtained via

Vcap =
π

3
r3
(
2− 3 cos Ψ[r, Rseed, θ] + cos3 Ψ[r, Rseed, θ]

)
−

π

3
R3
seed

(
2− 3 cosφ[r, Rseed, θ] + cos3 φ[r, Rseed, θ]

)
. (6.41)

The cosines can be expressed in terms of the contact angle θ, and the radii r and Rseed,

cos Ψ[r, Rseed, θ] =
Rseed cos θ − r√

r2 +R2
seed − 2rRseed cos θ

,

cosφ[r, Rseed, θ] =
Rseed − r cos θ√

r2 +R2
seed − 2rRseed cos θ

. (6.42)

The homogeneous case corresponds to Rseed = 0 or θ = π. Note that

r∗Fletcher = r(i∗Fletcher). (6.43)

Unfortunately, it is not possible to give an explicit expression for r(i) on these terms.

However, combining equations (6.41) and (6.37) one can numerically determine the

value of the radius of the cluster, r(i) := r(i, vl, Rseed, θ), which depends on the number

of monomers in the cluster i, on the volume of the monomer in the liquid phase vl, on

the radius of the seed Rseed and on the contact angle θ. We calculate the growth rate
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in the direct vapour deposition mechanism in the following way:

gdvi = jAv,l(r(i)) [s−1], (6.44)

where the cap area at the vapour-liquid interface is given by

Av,l(r(i)) = 2πr(i)2 (1− cos (Ψ(r(i), Rseed, θ))) [m2]. (6.45)

The loss rate in the direct vapour deposition mechanism is determined via the expres-

sion

ddvi+1 =

(
gdvi exp

(
4Gi+1 −4Gi

kT

)) ∣∣∣∣
S=1

[s−1], (6.46)

where the formation free energy of a cluster of order i takes the form

4Gi = σv,l (Av,l(r(i))− Al,s(r(i)) cos θ)− ikT ln(S) [Nm], (6.47)

with the cap area at the liquid-solid interface

Al,s(r(i)) = 2πR2
seed (1− cos (Φ(r(i), Rseed, θ))) [m2], (6.48)

and with σv,l the surface tension of the vapour-liquid interface ([Nm−1]). We base

equation (6.46) on the requirement of detailed balance in the saturated equilibrium

between vapour and liquid phase, that is when the saturation ratio is taken to be equal

to one. The derivation of the rate coefficients in the surface diffusion mechanism follows

that of the rate coefficients in the direct vapour deposition mechanism except that the

growth rate coefficient in the surface diffusion mechanism depends on the unknown

mean adsorbed monomer concentration, namely,

gsdi (t) = g′sdi 〈C1(t)〉 [s−1], (6.49)

where the constant factor g′sdi is determined by the number of molecules in a circular

region around the cluster, times the vibration frequency leading to jumps, times an

exponential function containing the activation energy for surface diffusion:

g′sdi = 2πRseedδ sin (Φ(r(i), Rseed, θ))ν exp

(
− E

kT

)
[m2s−1], (6.50)

where δ is the average jumping distance ([m]), and E is the energy of the surface

diffusion process ([Nm]) [63]. The decay rate in the surface diffusion mechanism can
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be obtained via

dsdi+1 =

(
g′sdi j

l
exp

(
4Gi+1 −4Gi

kT

)) ∣∣∣∣
S=1

[s−1], (6.51)

which is again derived from a detailed balance argument. The form of the rate coef-

ficients as derived above can be inserted into the Becker-Döring rate equations (6.14)

and (6.15) which are then solved numerically. Alternatively, one can consider the sta-

tionary Becker-Döring equations for the steady state mean concentration of the i-mers,

〈Ci〉ss,

0 = j− l〈C1〉ss + ddv2 〈C2〉ss − gdv1 〈C1〉ss −

gsd1 (t)〈C1〉ss + dsd2 〈C2〉ss −
imax∑
j=1

(
gsdj (t)〈Cj〉ss − dsdj+1〈Cj+1〉ss

)
0 =

(
gdvi−1 + gsdi−1(t)

)
〈Ci−1〉ss −

(
ddvi + dsdi

)
〈Ci〉ss −(

gdvi + gsdi (t)
)
〈Ci〉ss +

(
ddvi+1 + dsdi+1

)
〈Ci+1〉ss. (6.52)

The above equations can be solved subject to the boundary conditions 〈C1〉ss =

〈C1〉kin ≡ constant and 〈Cimax+1〉ss = 0. The resulting steady flux of clusters in

size space was calculated by Becker and Döring [2] to be equal to

JBD,kin(〈C1〉kin) =
(gdv1 + g

′sd
1 〈C1〉kin)〈C1〉kin

1 +
∑imax

j=2

∏j

i=2
ddvi +dsdi

gdv
i

+g′sd
i
〈C1〉kin

. (6.53)

The mean monomer concentration can, again, be estimated via

〈C1〉kin ≈ jl−1. (6.54)

The above expression (6.53) may be referred to as the kinetic Becker-Döring nucle-

ation current. We explicitly note that JBD,kin is a function of a specified monomer

concentration.

From the condition
d

dt
〈Ci(t)〉 = 0 ∀i ∈ {1, imax}, (6.55)

where the mean concentrations 〈Ci(t)〉 are understood to be the ones employed in

(6.14) and (6.15) we derive an expression for the dynamical nucleation current in the
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Becker-Döring model equivalent to the form (6.34), namely,

JBD,dyn(t∞) =
((

gdvi + g
′sd
i 〈C1(t)〉

)
〈Ci(t)〉 −

(
ddvi+1 + dsdi+1

)
〈Ci+1(t)〉

) ∣∣∣∣
t∞

. (6.56)

The full Becker-Döring equations are in fact non-linear equations for the cluster con-

centrations, and the steady state solution referred to above is obtained in terms of

a given monomer concentration. In a system undergoing heterogeneous nucleation,

the monomers are in fact a participating species with a freely variable population.

Therefore 〈C1〉kin will, in general, differ from jl−1. To allow for this, we could solve

the equations iteratively, using the steady state Becker-Döring solution, or alterna-

tively, simply perform a numerical solution of the time-dependent non-linear differ-

ential equations, and identify an equilibrium at late times. The largest cluster size

under consideration must satisfy imax > i∗, and one therefore has to solve imax equa-

tions for the unknown i-mer concentrations 〈Ci(t)〉. Having done this, we obtain

the dynamical Becker-Döring nucleation current. Notice that the difference between

JBD,dyn and JBD,kin corresponds to the difference between a self-consistent, and an

estimated monomer concentration, respectively. One should expect, however, to find

that JBD,kin(〈C1(t∞)〉) = JBD,dyn(t∞). In a next step we employ the model of the rate

coefficients according to Fletcher theory in order to compare the theoretical predic-

tions with experimental results in terms of the different expressions for the nucleation

current.
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Figure 6.4: Becker-Döring model. Monomers are attached to the surface of the seed
particle (red sphere) with an adsorption rate j and are evaporated into the surrounding
gas phase with a desorption rate l. In the direct vapour deposition mechanism, clusters
(blue sphere) are growing due to the gain of monomers from the gas phase with a
growth rate gdv and are decaying due to the loss of monomers from the clusters into the
surrounding gas phase with a loss rate ddv. In the surface diffusion mechanism, clusters
are growing due to the attachment of monomers that are diffusing on the surface of
the grain with a growth rate gsd and are decaying due to the loss of monomers from
the cluster onto the surface of the seed with a decay rate dsd.
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Figure 6.5: Schematic of the Becker-Döring model. Clusters are formed due to the gain
and loss of monomers in the direct vapour deposition mechanism with growth rate gdv

and decay rate ddv and in the surface diffusion mechanism with growth rate gsd and
decay rate dsd. Monomers are gained from the gas-phase at a rate j and lost to the
gas-phase at a rate l.
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Figure 6.6: This graph shows the dependence of the growth and loss rate coefficients
on the order i of i-mers for G′(χ) ≡ χ−1 = 1, Di =

(
2
i

)c
for fixed critical cluster size

i∗ = 2. The lines are are a guide to the eye.
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Figure 6.7: This graph is a zoom of 6.6. The lines are are a guide to the eye.
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Figure 6.9: This graph is a zoom of 6.8. The lines are are a guide to the eye.
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χ M̊1 M̊2 M̊3 M̊4

103 9.8146× 102 5.9247× 102 4.7404× 102 3.7780× 102

102 9.8146× 101 5.9247× 101 4.7404× 101 3.7780× 101

101 9.8146× 100 5.9247× 100 4.7404× 100 3.7780× 100

100 9.8146× 10−1 5.9247× 10−1 4.7404× 10−1 3.7780× 10−1

10−1 9.8146× 10−2 5.9247× 10−2 4.7404× 10−2 3.7780× 10−2

10−2 9.8146× 10−3 5.9247× 10−3 4.7404× 10−3 3.7780× 10−3

10−3 9.8146× 10−4 5.9247× 10−4 4.7404× 10−4 3.7780× 10−4

Table 6.1: Strictly positive steady state values for monomers, dimers, trimers and
tetramers for L = 100s−1 used as fixed points in the stability analysis for the power
law model.

χ M̊1 M̊2 M̊3 M̊4

103 5.9763× 102 2.7669× 102 1.9098× 102 1.3466× 102

102 5.9763× 101 2.7669× 101 1.9098× 101 1.3466× 101

101 5.9763× 100 2.7669× 100 1.9098× 100 1.3466× 100

100 5.9763× 10−1 2.7669× 10−1 1.9098× 10−1 1.3466× 10−1

10−1 5.9763× 10−2 2.7669× 10−2 1.9098× 10−2 1.3466× 10−2

10−2 5.9763× 10−3 2.7669× 10−3 1.9098× 10−3 1.3466× 10−3

10−3 5.9763× 10−4 2.7669× 10−4 1.9098× 10−4 1.3466× 10−4

Table 6.2: Strictly positive steady state values for monomers, dimers, trimers and
tetramers for L = 1s−1 used as fixed points in the stability analysis for the power law
model.
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imax JBD,dyn(c = 2) [s−1] 4 in % JBD,dyn(c = 5) [s−1] 4 in %

5 3.64466 4.36925
10 3.46729 5.12 4.14573 5.39
15 3.31253 4.67 3.94876 4.99
20 3.17386 4.37 3.77347 4.65
25 3.04869 4.11 3.61616 4.35
30 2.93496 3.88 3.47396 4.09

Table 6.3: Mean-field nucleation rate JBD,dyn according to the Becker-Döring rate
equations for the model parameters G′ = 0.1s−1, Di =

(
i∗

i

)c
s−1, J = 1000s−1 and

L = 100s−1 and for fixed critical cluster size i∗ = 2. The symbol 4 denotes the
difference in percent in the nucleation currents as defined in the main text.

imax JBD,dyn(c = 2) [s−1] 4 in % JBD,dyn(c = 5) [s−1] 4 in %

5 7.01426×10−1 7.96141×10−1

10 4.45478×10−1 57.45 5.0358×10−1 58.10
15 3.31166 ×10−1 34.52 3.73061×10−1 34.99
20 2.65218×10−1 24.87 2.98056×10−1 25.16
25 2.21978 ×10−1 19.48 2.49009×10−1 19.70
30 1.91307×10−1 16.03 2.14287×10−1 16.20

Table 6.4: Mean-field nucleation rate JBD,dyn according to the Becker-Döring rate
equations for the model parameters G′ = 0.1s−1, Di =

(
i∗

i

)c
s−1, J = 10s−1 and L = 1s−1

and for fixed critical cluster size i∗ = 2. The symbol4 denotes the difference in percent
in the nucleation currents as defined in the main text.

imax JBD,dyn(J = 1000s−1) [s−1] JBD,dyn(J = 10s−1) [s−1]

15 2.31387×10−5 2.31296×10−5

20 2.29579×10−5 2.29461×10−5

25 2.29576×10−5 2.2943×10−5

30 2.29576×10−5 2.29402×10−5

Table 6.5: Mean-field nucleation rate JBD,dyn according to the Becker-Döring rate
equations for the model parameters G′ = 0.1s−1, Di =

(
i∗

i

)c
s−1 for fixed constant c = 2

and a critical cluster size i∗ = 10 and, in the case of JBD,dyn(J = 1000s−1) [s−1],
with J = 1000s−1 and L = 100s−1 and, in the case of JBD,dyn(J = 10s−1) [s−1] with
J = 10s−1 and L = 1s−1.
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Figure 6.10: Dependence of the mean late-time monomer population according to the
mean-field framework on the maximum order of i-mers with the model parameters
G′ = 0.1s−1, Di =

(
i∗

i

)c
where c = 2 and i∗ = 2 and for J = 1000s−1 and L = 100s−1

as well as for J = 10s−1 and L = 1s−1. The lines are are a guide to the eye.
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Figure 6.11: Dependence of the mean late-time cluster populations according to the
mean-field framework on the order of i-mers with the model parameters G′ = 0.1s−1,
Di =

(
i∗

i

)c
where c = 2 and i∗ = 2 and for J = 1000s−1 and L = 100s−1 as well as

for J = 10s−1 and L = 1s−1. The maximum order of i-mers was chosen to be 30. The
lines are are a guide to the eye.
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Figure 6.12: Dependence of the mean late-time monomer population according to the
mean-field framework on the maximum order of i-mers with the model parameters
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lines are are a guide to the eye.
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θ r(i) Av,l Al,s

0◦ ∞ undefined ∞
90◦ 3

√
3ivl
2π

2πr(i)2 πr(i)2

180◦ 3

√
3ivl
4π

4πr(i)2 0

270◦ 3

√
3ivl
2π

2πr(i)2 πr(i)2

360◦ ∞ undefined undefined

Table 6.6: List of the values of the radii of i-clusters, r(i), of the vapour-liquid surface
areas Av,l and of the liquid-solid surface areas Al,s for special choices of the contact
angle θ for a planar seed particle without boundaries.

6.1.3 Comparison with Experimental Data

In the following, we compare the theoretical predictions according to the Fletcher

and Becker-Döring framework to data obtained in an experiment undertaken at the

University of Vienna. The results of the experiment which was completed in collabo-

ration with the University of Helsinki were published in [67]. Organic vapour, namely

n-propanol, condensed on molecular ions as well as on charged and uncharged inor-

ganic nanoparticles, namely tungsten oxide (WOx) particles. The activation of the

pre-existing seed particles was triggered by heterogeneous nucleation. Vapour super-

saturation was achieved by adiabatic expansion in a thermostated expansion chamber

of a Size Analyzing Nuclei Counter (SANC). Droplet growth was observed by the Con-

tact Angle Mie Scattering detection method (CAMS). For each vapour saturation ratio

S the fraction of activated particles relative to the total number concentration was de-

termined, and was used to create a nucleation-activation probability curve depending

on the vapour supersaturation ratio for seed diameters ranging from 0.9nm to 4nm.

The smaller the size of the seed the higher was the vapour supersaturation needed

for the activation of the particles. Each nucleation-activation probability curve can

be used to extract the corresponding onset saturation ratio, which is the vapour sat-

uration ratio where 50% of particles of a specific size are activated. Accordingly, one

can plot the onset saturation ratio as a function of the seed particle mobility diameter

and compare the experimental data to the theoretical prediction within the Fletcher

framework.

We concentrate on the data representing the neutral tungsten oxide seed particles2. In

Table 6.7 we give the values of the parameters used in the calculations according to

the experimental set-up. The small contact angle indicates that the seed particle was

2Note that one has to be careful concerning the monodispersion of the particles.
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totally wettable to the vapour phase —see Figure 6.2. It has been claimed [67] that the

Fletcher theory predicts the observed onset activations for neutral particles accidingly

well — see Table 6.9. We would like to reconsider this statement in terms of the nu-

cleation current. This proposed reconsideration is driven by the observation that the

standard Fletcher theory based on the capillarity approximation leads to disparities

between the value of the critical cluster size obtained from theoretical considerations

compared to the experimental estimation.

The First Heterogeneous Nucleation Theorem [64] together with the nucleation-

activation probability curve provides the means to determine the number of molecules

in the nucleating cluster. Since the First Heterogeneous Nucleation Theorem is derived

from general statistical mechanical considerations, this calculation is independent of

the model used to describe the cluster. If one knows the dependence of the nucleation

rate on the saturation ratio at constant temperature, the first nucleation theorem gives

a method for determining the difference in the number of molecules if there is a cluster

in the critical volume in the liquid phase compared to the same volume being filled

with vapour, that is one can determine i∗.

The number of molecules in the critical cluster as obtained in this fashion will, in the

sequel, be called the experimental critical cluster size. In the particular experiment

presented in [67] the experimental critical cluster size i∗exp was between twenty and

twenty-five. If one calculates the critical cluster size as predicted by the Fletcher the-

ory, i∗Fletcher —cfr. equation (6.13)—, one finds higher values as the experimental data

imply —see Table 6.9.

The quantity that is most often measured in experiments is the nucleation probability,

Pnucl, that is, the probability with which one critical cluster forms on the surface of a

seed particle in a chosen time period, the experimental activation time texp. For the

calculations we assumed3 that texp = 10−3s. The nucleation probability is defined as

Pnucl := 1− exp
(
−4πJexpR2

seedtexp
)
. (6.57)

From equation (6.57) one can determine the nucleation rate, expressed per unit area

of the seed particle surface and per unit time, taking Pnucl = 0.5 so that

Jexp := − ln(0.5)

4πR2
seedtexp

[m−2s−1]. (6.58)

3Dr Paul Winkler: private communication
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The temperature chosen in the experiment was T = 275K. A detailed list of

the experimental quantities and their specific values are given in Table 6.7 and Table

6.8. The onset saturation ratio, that is, the saturation ratio at which half of the

particles of a certain size are activated, was found to be S |Pnucl=0.5= 2.62 for neutral

WOx clusters with a radius of Rseed = 1× 10−9m. For neutral WOx seeds with radius

Rseed = 2 × 10−9m the saturation ratio at Pnucl = 0.5 was S = 1.574. The molecular

volume in the liquid phase calculates as vl = mρ−1 where m is the molecular mass and

ρ the liquid density. Since the seed particle was totally wettable, the contact angle θ

was taken to be θ ≈ 0.3◦. Note that the assumption of a constant contact angle made

in the Fletcher theory is more justified for clusters of sizes i > i∗ than for clusters of

smaller sizes.

Comparison of the Fletcher nucleation current, and the kinetic Becker-

Döring nucleation current with experimental data

The Fletcher critical cluster size and onset supersaturation (6.43) are calculated for two

particular sizes of seed particles —see Table 6.9— and compared with experimental

data. The radius of the experimental critical cluster r(i = i∗exp) is obtained using

the experimental critical cluster size i∗exp which is inserted into equation (6.41). The

disparity between model and experimental critical cluster sizes is large, even though

the onset supersaturations are in reasonable agreement.

Calculations of the nucleation current according to the Fletcher theory and the kinetic

Becker-Döring model can be found in Table 6.10. For a seed radius of value Rseed = 1nm

we choose the largest cluster size to be imax = 135 and for a seed radius of value

Rseed = 2nm we assume imax = 820. We observe that the agreement between the

experimental nucleation current Jexp —equation (6.58)— and the Fletcher nucleation

current JFletcher —equation (6.2)— is better for a smaller seed radius than for the bigger

seed particle. The Fletcher nucleation current JFletcher and the kinetic Becker-Döring

nucleation rate in the steady state

J dv
BD,kin(〈Cdv

1 〉kin) =
gdv1 〈Cdv

1 〉kin

1 +
∑imax

j=2

∏j

i=2
ddvi
gdv
i

, (6.59)

are of the same order of magnitude. Clearly, neither is an acceptable description of

the data for both seed radii. We shall now attempt to address this by modifying the

capillarity approximation.
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The heterogeneous nucleation current for the modified direct vapour depo-

sition mechanism

In order to remove the disparity between the experimental and theoretical critical clus-

ter size we modify parameters such that the critical cluster size as predicted by Fletcher

theory, i∗Fletcher —see equation (6.13)—, coincides with the experimental critical cluster

size i∗exp:

i∗Fletcher = i∗exp = 25. (6.60)

The simplest way to proceed is to alter the surface tension between the vapour phase

and the droplet which we will call the effective surface tension σeff and which is

given in Table 6.11. As a consequence of imposing the condition i∗Fletcher = i∗exp we

have r(i = i∗exp) = r(i = i∗Fletcher) = r∗Fletcher where r∗Fletcher is given by equation

(6.6). All other physical and experimental parameters are unchanged. We recalculate

the nucleation currents for the various models used in the last subsection with the

assumed value imax = 30 and summarise the results in Table 6.12. The Becker-Döring

equations are solved with zero initial conditions. Now the modified Fletcher theory

overpredicts the nucleation current —compare with Table 6.10— yet the result for

the bigger seed particle is closer to the experimental nucleation current than in the

unmodified theory.

The difference —as given in Table 6.10— in the values of the kinetic nucleation

current J dv
BD,kin(〈Cdv

1 〉kin) for the direct vapour deposition mechanism —see equation

(6.59)— and the dynamical nucleation current for the direct vapour deposition

mechanism

J dv
BD,dyn(t∞) = gdvimax〈C

dv
imax

(t)〉
∣∣∣∣
t∞

, (6.61)

arises due to the estimation of the monomer concentration by the ratio jl−1 —see

equation (6.54). This can be illustrated by considering the ratio

F (Rseed) :=
J dv
BD,kin(〈Cdv

1 〉kin)

J dv
BD,kin(〈Cdv

1 (t∞)〉)
=
〈Cdv

1 〉kin

〈Cdv
1 (t∞)〉

. (6.62)

We have F (Rseed = 1nm) = 1.16 × 104 and F (Rseed = 2nm) = 8.86 × 104. If one

recalculates the nucleation rate J dv
BD,kin taking the late-time value of the mean monomer

concentration 〈Cdv
1 (t∞)〉 according to the solution of the dynamical Becker-Döring rate

equations (6.14) —with g′sdi = dsdi ≡ 0— instead of using the estimation for the mean
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monomer concentration in the steady state (6.54), one finds that

J dv
BD,kin[〈Cdv

1 (t∞)〉] = J dv
BD,dyn(t∞), (6.63)

as expected. The Fletcher nucleation current JFletcher clearly overestimates the true

nucleation current in the same way as the kinetic Becker-Döring nucleation rate J dv
BD,kin,

and for the same reason, namely the overestimation of the monomer concentration.

Using J dv
BD,dyn the disparity with respect to experimental data is reduced, and the

correct tendency for a change in seed radius is obtained.

The heterogeneous nucleation current for the combined modified direct

vapour deposition mechanism and surface diffusion mechanism

Due to the difference of several orders of magnitude between the constant growth rate

coefficients g
′sd
i and the decay rate coefficients dsdi , problems in the numerical evaluation

of the evolution equations (6.14) and (6.15) arise. In order to avoid these numerical

difficulties we employ an estimate of the mean monomer concentration in the combined

modified direct vapour deposition mechanism and surface diffusion mechanism at late

times to solve the Becker-Döring rate equations (6.14) and (6.15) iteratively in the

following way. The iteration for the mean monomer concentration 〈Csd,dv
1 (t∞)〉 at late

times t∞ is performed according to

[〈Csd,dv
1 (t∞)〉m+1]in =

(
[〈Csd,dv

1 (t∞)〉m]out[〈Csd,dv
1 (t∞)〉m]in

) 1
2
, (6.64)

where [〈Csd,dv
1 (t∞)〉m]in is the input value and [〈Csd,dv

1 (t∞)〉m]out the output value in

the m-th iteration step. The above estimate for the mean monomer concentration at

late times is inserted into the expression for the rate coefficients

gsdi = g
′sd
i [〈Csd,dv

1 (t∞)〉m]in, (6.65)

and the system of Becker-Döring rate equations (6.14) and (6.15) is solved. In the

zeroth iteration step the mean monomer concentration at late times is estimated to be

[〈Csd,dv
1 (t∞)〉0]in = jl−1. (6.66)

The iteration procedure is terminated when

[〈Csd,dv
1 (t∞)〉m]out

[〈Csd,dv
1 (t∞)〉m]in

≈ 1. (6.67)
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In our calculations, this point is reached when m = 4 at which

[〈Csd,dv
1 (t∞)〉m]out

(
[〈Csd,dv

1 (t∞)〉m]in

)−1

= 1±O(10−4). (6.68)

The nucleation current from the full Becker-Döring rate equations for both the sur-

face diffusion and the direct vapour deposition mechanisms can be obtained using the

expression (6.34). In Table 6.14 we compare the dynamical Becker-Döring nucleation

current as computed for the direct vapour deposition mechanism, J dv
BD,dyn, according

to equation (6.34) where g′sdimax ≡ 0 with the dynamical Becker-Döring nucleation cur-

rent as computed for both mechanisms, J sd,dv
BD,dyn, according to equation (6.34) where

g′sdimax 6= 0. One observes that the nucleation current that was calculated taking both

the direct vapour deposition and the surface diffusion mechanism into account is gen-

erally an order of magnitude less than the nucleation current that results from the

consideration of the direct vapour deposition mechanism only. This is a slightly un-

expected result but might be understood by considering that the inclusion of surface

diffusion allows both the additional growth, but also additional decay of adsorbed clus-

ters. The additional decay can potentially reduce the nucleation rate since the wider

kinetic scheme reduces the concentration of clusters on the surface:

〈Cdv
i (t∞;Rseed = 1nm)〉

〈Csd,dv
i (t∞;Rseed = 1nm)〉

>
〈Cdv

i (t∞;Rseed = 2nm)〉
〈Csd,dv

i (t∞;Rseed = 2nm)〉
> 1 ∀i ∈ [1, imax], (6.69)

which can be seen in Figures 6.16 and 6.17. In Figure 6.16 the dependence of the

mean cluster concentrations on the order of i-mers for a seed particle with radius

Rseed = 1nm is plotted for the direct vapour deposition mechanism as well as for

the combined direct vapour deposition mechanism and surface diffusion mechanism.

Figure 6.17 shows the same quantities for a seed particle with radius Rseed = 2nm.

The plots in 6.16 and 6.17 can be confronted with the curves in Figures 6.11, 6.13,

and 6.15 where the dependence of the mean late-time cluster concentrations on the

order of i-mers was depicted graphically for a power law model of the decay rate

coefficient. The convergence behaviour of the mean late-time cluster concentration in

the limit (6.33) according to the modified rate coefficients model is followed nicely as

indicated by the curves in Figures 6.16 and 6.17 and, in a sense, more accurately than

in Figures 6.11, 6.13, and 6.15. Examples of values of specific mean late-time cluster

concentrations are given in Table 6.13.

It can be concluded from the relatively small change in the nucleation current

that surface diffusion processes do not play an essential role, at least for the het-
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erogeneous nucleation conditions studied in the experiments. A reason for this may

be the observation that the linear dimension of a single molecule is of the same

order of magnitude as the radius of the seed particle and that very quickly after a

heterogeneous nucleus has started to grow, there is little seed surface left for additional

adsorbed monomers to diffuse on.
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liquid density1 ρ [kgm−3] 1047.94− 0.835978T
saturation vapour

pressure1 p [Nm−2] 133.322× 1031.52− 3.46
T
×103−7.52×log T−4.29×10−11T+1.3T 2×10−7

surface tension1 σv,l [Nm−1] (25.26− 0.0777(T − 273.15))× 10−3

molecular mass1 m [kg] 1.0054× 10−25

latent heat1 L [Nm] 60.11(1.1840×106−1.285T×103

6.022
)× 10−26

vibration
frequency1 ν [s−1] 8.8495575× 1011

average jump
distance2 δ [m] 10−10

activation energy
for surface E [Nm] L

10

diffusion2

Table 6.7: Table of experimental data. Data indicated by index 1 are taken from [67]
and index 2 from [41].

constants in SI units Rseed = 1nm Rseed = 2nm

θ 5.24×10−3

p 535.96
S |P=0.5 2.62 1.67
m 1×10−25

k 1.38×10−23

T 275
ν 8.85×1011

L 8.29×10−20

δ 1×10−10

E 8.29×10−21

σ 2.5×10−2

j 2.87×1025 1.83×1025

l 290.57

Table 6.8: List of values for constants as implied by the experimental set-up (Winkler
et al, 2008) and theoretical estimates (Määttänen et al, 2007) and (Seki & Hasegawa,
1983).
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[SI units] Rseed = 1nm Rseed = 2nm

Sexp 2.62 1.67
SFletcher 2.71 1.87
i∗exp 25 25

i∗Fletcher 130 814
r(i = i∗exp) 1.2×10−9 2.06×10−9

r(i = i∗Fletcher) 1.69×10−9 3.17×10−9

Table 6.9: List of calculated quantities: the experimental onset saturation ratio Sexp,
the onset saturation ratio as obtained from Fletcher theory SFletcher, the experimental
critical cluster size i∗exp, the size of the critical cluster as given by Fletcher theory
i∗Fletcher, the radius of a cluster evaluated for the experimental critical cluster size
r(i = i∗exp), the radius of a cluster evaluated for the size of the critical cluster as given
by Fletcher theory r(i = i∗Fletcher) —equivalent to the Fletcher radius r∗Fletcher— for
two particular radii of the seed particle Rseed.

nucleation rate [m−2s−1] Rseed = 1nm Rseed = 2nm

Jexp 5.52×1019 1.38×1019

JFletcher 6.32×1017 3.61×10−8

J dv
BD,kin(〈Cdv

1 〉kin) 2.0×1018 9.05×10−8

Table 6.10: List of the calculated nucleation currents in the various models: the exper-
imental nucleation current Jexp, the Fletcher nucleation current JFletcher, the kinetic
Becker-Döring nucleation rate J dv

BD,kin(〈Cdv
1 〉kin) for two particular radii of the seed

particle Rseed.

[SI units] Rseed = 1nm Rseed = 2nm

σexp 2.51×10−2 2.51×10−2
σeff 1.79×10−2 1.63×10−2

i∗exp = i∗Fletcher 25 25

r(i = i∗exp) = r(i = i∗Fletcher) = r∗Fletcher 1.2×10−9 2.06×10−9

Sexp 2.62 1.67
SFletcher 1.94 1.47

Table 6.11: List of calculated quantities in the modified model: the experimental
surface tension σexp, the effective surface tension σeff ; the experimental critical cluster
size i∗exp; the size of the critical cluster as given by Fletcher theory i∗Fletcher, the radius
of a cluster evaluated for the experimental critical cluster size r(i∗exp), the radius of
a cluster evaluated for the order of the critical cluster as given by Fletcher theory
r(i = i∗Fletcher), and the Fletcher radius r∗Fletcher for two particular radii of the seed
particle Rseed; the experimental onset saturation ratio Sexp, and the onset saturation
ratio as obtained from Fletcher theory SFletcher,
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nucleation rate [m−2s−1] Rseed = 1nm Rseed = 2nm

Jexp 5.52×1019 1.38×1019

JFletcher 1.79×1029 4.81×1029

J dv
BD,kin(〈Cdv

1 〉kin) 3.32×1029 1.62×1030

J dv
BD,dyn(t∞) 2.87×1025 1.83×1025

J dv
BD,kin(〈Cdv

1 (t∞)〉) 2.87×1025 1.83×1025

Table 6.12: List of the calculated nucleation currents in the various modified models:
the experimental nucleation current Jexp, the Fletcher nucleation current JFletcher,
the kinetic Becker-Döring nucleation rate J dv

BD,kin(〈Cdv
1 〉kin), the nucleation rate at

late times as derived from the dynamical Becker-Döring rate equations J dv
BD,dyn(t∞),

and the kinetic Becker-Döring nucleation current obtained with the late-time mean
monomer concentration as calculated from the dynamical Becker-Döring rate equa-
tions J dv

BD,kin(〈Cdv
1 (t∞)〉), for two particular radii of the seed particle Rseed.

concentrations [m−2] Rseed = 1nm Rseed = 2nm

〈Cdv
1 (t∞)〉 7.1×1017 8.51×1018

〈Csd,dv
1 (t∞)〉 2.21×1016 2.08×1017

〈Cdv
25 (t∞)〉 1.12×1017 3.15×1017

〈Csd,dv
25 (t∞)〉 4.85×1015 9.73×1015

〈Cdv
30 (t∞)〉 1.87 ×1016 5.22×1016

〈Csd,dv
30 (t∞)〉 8.28×1014 1.68×1015

Table 6.13: Late-time mean cluster concentrations in the mean-field framework com-
puted employing the modified parameters according to the direct vapour deposition
mechanism 〈Cdv

1 (t∞)〉 and according to the combined direct vapour deposition mecha-
nism and surface diffusion mechanism 〈Csd,dv

1 (t∞)〉 for two different values of the radius
of the seed particle Rseed.

nucleation rate [m−2s−1] Rseed = 1nm Rseed = 2nm

J dv
BD,dyn(t∞) 2.87×1025 1.83×1025

J sd,dv
BD,dyn((t∞) 1.52×1024 1.16×1024

Table 6.14: List of the calculated nucleation currents in the modified models as derived
from the dynamical Becker-Döring rate equations in the direct vapour deposition mech-
anism, J dv

BD,dyn(t∞), and J sd,dv
BD,dyn(t∞) as derived from the dynamical Becker-Döring rate

equations for the combined mechanism (direct vapour deposition and surface diffusion
mechanism) for two particular radii of the seed particle Rseed.
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Figure 6.16: Dependence of the mean late-time cluster concentrations on the order of
i-mers with regards to the mean-field framework for the modified model parameters
according to the direct vapour deposition mechanism and according to the combined
surface diffusion and direct vapour deposition mechanism. The maximum order of
i-mers was chosen to be 30. The lines are a guide to the eye.
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Figure 6.17: Dependence of the mean late-time cluster concentrations on the order of
i-mers with regards to the mean-field framework for the modified model parameters
according to the direct vapour deposition mechanism and according to the combined
surface diffusion and direct vapour deposition mechanism. The maximum order of
i-mers was chosen to be 30. The lines are a guide to the eye.
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6.2 Stochastic Theory

The Becker-Döring birth and death equations (6.16) are inter alia based on the assump-

tion that cluster growth processes take place at a rate which is proportional to the prod-

uct of the mean concentrations of clusters. This assumption is justified as long as the

cluster populations are large. However, if populations are small fluctuations and cor-

relations are important. In order to develop a model beyond the mean-field approach,

that is the Becker-Döring rate equations (6.16), we consider the evolution of the proba-

bility distribution W ({M}; t) —where {M} := {M1,M2,M3, ...,Mimax−1,Mimax}— of

the system containing Mi i-mers at time t. In [3] a master equation for the nucleation

based on the surface diffusion mechanism was presented, namely,

dW ({M}; t)
dt

= JW (M1 − 1, ...; t)− JW ({M}; t) +

L(M1 + 1)W (M1 + 1, ...; t)− LM1W ({M}; t) +

G′1(M1 + 2)(M1 + 1)W (M1 + 2,M2 − 1, ...; t)−G′1M1(M1 − 1)W ({M}; t) +

imax−1∑
i=2

G′i(M1 + 1)(Mi+1)W (M1 + 1, ...,Mi + 1,Mi+1 − 1, ...; t) +

G′imax(M1 + 1)(Mimax + 1)W (M1 + 1, ...,Mimax + 1; t)−
imax∑
i=2

G′iM1MiW ({M}; t) +

D2(M2 + 1)W (M1 − 2,M2 + 1, ...; t)−D2M2W ({M}; t) +

imax∑
i=3

Di(Mi + 1)W (M1 − 1, ...,Mi−1 − 1,Mi + 1, ...; t)−

imax∑
i=3

DiMiW ({M}; t). (6.70)

In the same way as we have assumed for the traditional Becker-Döring equations

(6.16), in the above master equation, one ignores the gain and loss of dimers, trimers,

etc. and rather considers the gain and loss of monomers only. The processes of growth

under consideration are:

(a) 1 + (i − 1) → i: monomer attachment to a cluster of size i − 1 from the surface

of the seed with rate coefficient G′i−1;

(b) 1 + i→ (i+ 1): monomer attachment to a cluster of size i from the surface of the
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seed with rate coefficient G′i.

The decay processes under considerations are:

(c) i→ (i− 1) + 1: monomer loss from a cluster of size i onto the surface of the seed

with rate coefficient Di;

(d) (i + 1)→ i + 1: monomer loss from a cluster of size i + 1 onto the surface of the

seed with rate coefficient Di+1.

In addition, one has the following processes:

(e) the adsorption of monomers from the surrounding gas-phase onto the surface of

the pre-existing particle with rate coefficient J;

(f) the evaporation of monomers from the surface of the seed into the surrounding

gas-phase with rate coefficient L.

In [3] deviations from the mean-field behaviour were observed in the numerical

calculations for the nucleation current for a certain region in the parameter space of

the power law model for the rate coefficients with the particular choice c = 2 and

i∗ = 2 which we have called Model 1 earlier. Yet, for numerical reasons the maximum

order of i-mers was very small, namely imax = 4. Concerning the deviations in the

results of the master equation approach compared to the results of the mean-field

Becker-Döring rate equations our aim is to provide the full dynamical stochastic

model which could be extended to higher orders of i-mers without too much cost of

computational effort.

We extend the master equation (6.70) presented in [3] by formulating a master

equation that comprises both the surface diffusion mechanism as well as the direct

vapour deposition mechanism and derive the system of stochastic differential constraint

equations and the path integral average in the Doi-Peliti formalism according to the

techniques presented in Chapter 2 and Chapter 5.
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The full master equation replacing the set of Becker-Döring rate equations reads

dW ({M}; t)
dt

= JW (M1 − 1, ...; t)− JW ({M}; t) +

L(M1 + 1)W (M1 + 1, ...; t)− LM1W ({M}; t) +

imax−1∑
i=1

Gdv
i (Mi + 1)W (...,Mi + 1,Mi+1 − 1, ...; t) +

Gdv
imax

(Mimax + 1)W (...,Mimax + 1; t)−
imax∑
i=1

Gdv
i MiW ({M}; t) +

G′sd1 (M1 + 2)(M1 + 1)W (M1 + 2,M2 − 1, ...; t)−G′sd1 M1(M1 − 1)W ({M}; t) +

imax−1∑
i=2

G′sdi (M1 + 1)(Mi + 1)W (M1 + 1, ...,Mi + 1,Mi+1 − 1, ...; t) +

G′sdimax(M1 + 1)(Mimax + 1)W (M1 + 1, ...,Mimax + 1; t)−
imax∑
i=2

G′sdi M1MiW ({M}; t) +

Dsd
2 (M2 + 1)W (M1 − 2,M2 + 1, ...; t)−Dsd

2 M2W ({M}; t) +

imax∑
i=3

Dsd
i (Mi + 1)W (M1 − 1, ...,Mi−1 − 1,Mi + 1, ...; t)−

imax∑
i=3

Dsd
i MiW ({M}; t) +

Ddv
2 (M2 + 1)W (M1 − 1,M2 + 1, ...; t)−Ddv

2 M2W ({M}; t) +

imax∑
i=3

Ddv
i (Mi + 1)W (...,Mi−1 − 1,Mi + 1, ...; t)−

imax∑
i=3

Ddv
i MiW ({M}; t). (6.71)

The terms indicated in yellow colour in the above equation (6.71) describe the change

in the monomer population due to monomers that are gained from the surrounding

gas-phase of the seed particle. The terms highlighted in green colour give the change

in the monomer population due to the monomers that are evaporated from the surface

of the seed particle into the surrounding gas-phase of the grain. The subsequent terms
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shown in blue colour specify the aggregation of an i-mer on the surface of the grain

particle with a monomer gained from the surrounding gas-phase of the seed. The terms

pictured in cyan colour detail the association of an i-mer and a monomer that are both

diffusing on the surface of the grain. The following terms in equation (6.71) characterise

the situation where an i-mer splits into an (i− 1)-mer and one monomer. Either only

the (i − 1)-cluster stays on the surface of the seed particle and the monomer escapes

into the surrounding gas-phase of the grain (red colour) or both resulting clusters stay

on the surface (magenta colour). The inital condition of the probability distribution

W ({M}; t) reads

W ({M}; t ≡ 0) = exp

(
−

imax∑
i=1

M̄i(0)

)(∏
Mi

Mi!

)−1

M̄1(0)M1 × ...× M̄imax(0)Mimax ,

(6.72)

where M̄i(0) is the initial mean number of i-mers. Note that, in contrast to the studies

concerning heterogeneous chemical reactions, in this part of the thesis we consider a

single lattice point from the start. Following the mathematical techniques of the Doi-

Peliti formalism and in analogy to past procedures we reformulate the master equation

(6.70) as a Schrödinger-like equation

d

dt
|Ψ〉HN =

(
(
+
a1 −1)(J− L

−
a1) +

imax−1∑
i=1

Gdv
i

−
ai

+
ai+1 +Gdv

imax

−
aimax −

imax∑
i=1

Gdv
i

+
ai
−
ai +

G′sd1

(
(
−
a1)2 +

a2 −(
+
a1)2(

−
a1)2

)
+

imax−1∑
i=2

G′sdi
−
a1
−
ai

+
ai+1 +

G′sdimax
−
a1
−
aimax −

imax∑
i=2

G′sdi
+
a1
−
a1

+
ai
−
ai

imax∑
i=2

Dsd
i

+
a1

+
ai−1

−
ai +

imax∑
i=2

Ddv
i

+
ai−1

−
ai −

imax∑
i=2

(
Ddv

i + Dsd
i

) +
ai
−
ai

)
|Ψ〉HN , (6.73)

where |Ψ〉HN is the many-body wave function which is defined as

|Ψ〉HN :=
∑
{Mi}

(
imax∏
i=1

+
a
Mi

i

)
W ({M}; t)|0〉, (6.74)
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with
+
a denoting the creation operator and

−
a denoting the corresponding annihilation

operator. The summation is taken over all orders of i-mers up to the maximum or-

der of unstable configurations. The Hamiltonian in the coherent state representation

HHN [{ϕ(t)}, {ϕ∗(t)}] —cfr. (2.37)— reads

−HHN [{ϕ(t)}, {ϕ∗(t)}] =

(ϕ∗1(t)− 1)(J− Lϕ1(t)) +
imax−1∑
i=1

Gdv
i ϕi(t)ϕ

∗
i+1(t) + Gdv

imax
ϕimax(t)−

imax∑
i=1

Gdv
i ϕ
∗
i(t)ϕi(t) +

G
′sd
1 (ϕ2

1(t)ϕ∗2(t)− (ϕ∗21 (t)ϕ2
1(t)) +

imax−1∑
i=2

G
′sd
i ϕ1(t)ϕi(t)ϕ

∗
i+1(t) +

G
′sd
imax

ϕ1(t)ϕimax(t)−
imax∑
i=2

G
′sd
i ϕ∗1(t)ϕ1(t)ϕ∗i(t)ϕi(t) +

imax∑
i=2

Ddv
i ϕ
∗
i−1(t)ϕi(t) +

imax∑
i=2

Dsd
i ϕ
∗
1(t)ϕ∗i−1(t)ϕi(t)−

imax∑
i=2

(
Dsd

i + Ddv
i

)
ϕ∗i(t)ϕi(t), (6.75)

with ϕ(t) the eigenvalue function of a coherent state vector which is a right eigenstate

of the annihilation operator and ϕ∗(t) the complex conjugate of ϕ(t). The Doi-shifted

action S̃HN [{ϕ(t)}, {ϕ̃(t)}], that is, the action with the following substitution ϕ∗i(t)→
ϕ̃i(t) + 1 for all orders i of the i-mers is given by

S̃HN [{ϕ(t)}, {ϕ̃(t)}] =

∫ tT

0

dt

(
imax∑
i=1

ϕ̃i(t)
d

dt
ϕi(t) + H̃HN [{ϕ(t)}, {ϕ̃(t)}]

)
+ S̃0,

(6.76)

with S̃0 the part of the action incorporating the initial conditions, namely,

S̃0 := −
imax∑
i=1

(
M̄i(0) + M̄i(0)

(
ϕ̃i(0)− M̄i(0)

))
. (6.77)

After some rearranging of the terms, the Doi-shifted Hamiltonian H̃HN [{ϕ(t)}, {ϕ̃(t)}]
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takes the form

−H̃HN [{ϕ(t)}, {ϕ̃(t)}] = ϕ̃1(t)(J− Lϕ1(t)) +
imax−1∑
i=1

(ϕ̃i+1(t)− ϕ̃i(t))
(
Gdv

i ϕi(t)−Ddv
i+1ϕi+1(t)

)
−

Gdv
imax

ϕimax(t)ϕ̃imax(t) +
imax−1∑
i=1

(ϕ̃i+1(t)− ϕ̃1(t)ϕ̃i(t)− ϕ̃1(t)− ϕ̃i(t))
(
G′sdi ϕ1(t)ϕi(t)−

Dsd
i+1ϕi+1(t)

)
−

G′sdimaxϕ1(t)ϕimax(t) (ϕ̃1(t)ϕ̃imax(t) + ϕ̃1(t) + ϕ̃imax(t)) . (6.78)

We want to disentangle the terms in the Doi-shifted Hamiltonian (6.78) that are pseudo-

quadratic in the Doi-shifted complex conjugates of the eigenvalue functions, namely,

−ϕ̃1(t)

(
ϕ1(t)

imax∑
i=1

G′sdi ϕ̃i(t)ϕi(t)−
imax∑
i=1

Dsd
i+1ϕ̃i(t)ϕi+1(t)

)
. (6.79)

Therefore, in analogy to Chapter 5 where we considered the hydrogen-oxygen reaction

network, we make use of the Gaussian transformation∫
Dne exp

(
−eTAe + bTe

)
=

√
πn

| det A|
exp

(
1

4
bTA−1b

)
, (6.80)

where A is a symmetric (imax × imax) matrix and b and e are two imax-dimensional

vectors. The entries of the two vectors b and e and the matrix A read as follows:

A =



1 0 0 0 0 0 · · · 0

0 0 1 0 0 0 · · · 0

0 1 0 0 0 0 · · · 0

0 0 0 0 1 0 · · · 0

0 0 0 1 0 0 · · · 0
...

...
...

...
...

...
...

...


, (6.81)
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b =



i2α1(t)ϕ̃1(t)

i
√

2α2(t)ϕ̃2(t)

i
√

2α2(t)ϕ̃1(t)

i
√

2α3(t)ϕ̃3(t)

i
√

2α3(t)ϕ̃1(t)
...

i
√

2αimax−1(t)ϕ̃imax−1(t)

i
√

2αimax−1(t)ϕ̃1(t)

i
√

2αimax(t)ϕ̃imax(t)

i
√

2αimax(t)ϕ̃1(t)



, e =



η1,1(t)√
2

η2(t)
2

η1,2(t)

2
η3(t)

2
η1,3(t)

2
...

ηimax−1(t)
2

η1,imax−1(t)

2
ηimax (t)

2
η1,imax (t)

2



, (6.82)

where we defined

αi(t) := αi[ϕj(t)] =
√

G′sdi ϕ1(t)ϕi(t)−Dsd
i+1ϕi+1(t), (6.83)

with Ddv
imax+1 = Dsd

imax+1 ≡ 0. The noise η1,1(t) is a real white Gaussian noise whereas

the other noises are defined as

η1,j(t) :=
1√
2

(<(η1,j(t)) + i=(η1,j(t))) = η∗j(t) j ∈ [2, imax], (6.84)

with <(η1,j(t)) and =(η1,j(t)) being real white Gaussian noises. Accordingly, the auto-

correlations and cross-correlations read

〈η1,k(t)〉P[η] = 〈ηj(t)〉P[η] = 0,

〈η1,1(t)η1,1(t′)〉P[η] = 〈η1,j(t)ηj(t
′)〉P[η] = δ(t− t′), (6.85)

where j ∈ [2, imax] and k ∈ [1, imax] and with P [η] the Gaussian probability distribu-

tion

P [η] := exp

(
−1

2

∫
dt

(
η2

1,1(t) +
imax∑
j=2

η1,j(t)ηj(t)

))
. (6.86)

All other cross-correlations are vanishing.

According to the Doi-Peliti formalism, the expectation values are computed via the

path integral average:

〈O(t)〉 =

∫
DηO[ϕ̄i(t)]P [η(t)]∫

DηP [η(t)]
, (6.87)
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where the measure Dη is given by

Dη := Dη1,1

imax∏
j=2

Dη1,jDηj. (6.88)

The unknown fields ϕ̄i(t) are solutions to the following constraint equations

dϕ̄1(t) =

(
J− Lϕ̄1(t)−

imax∑
i=1

α2
i[ϕ̄k(t)]− α2

1[ϕ̄k(t)]−Gdv
1 ϕ̄1(t) + Ddv

2 ϕ̄2(t)

)
dt+

i
√

2α1[ϕ̄k(t)]dW1,1 +
i√
2

imax∑
j=2

αj[ϕ̄k(t)]dW1,j, (6.89)

and for j ∈ [2, imax]

dϕ̄j(t) =
(
Gdv

j−1ϕ̄j−1(t)−Gdv
j ϕ̄j(t)−Ddv

j ϕ̄j(t) + Ddv
j+1ϕ̄j+1(t)+

α2
j−1[ϕ̄k(t)]− α2

j[ϕ̄k(t)]
)

dt+
i√
2
αj[ϕ̄k(t)]dWj. (6.90)

The above set of constraint equations consists of imax coupled ordinary stochastic

differential equations. The symbols dW1,j and dWj are the Wiener increments corre-

sponding to the Gaussian noises. Furthermore, we have for i ∈ [1, imax] that

ϕ̄i(0) ≡ M̄i(0), (6.91)

where M̄i(0) is the value of the mean initial i-mer population.

In the following paragraphs we will consider processes according to the surface

diffusion mechanism only, hence Gdv
i ≡ 0, Ddv

i ≡ 0, G′sdi ≡ G′i and Dsd
i ≡ Di In

contrast to the nucleation current obtained from the dynamical mean-field theory

JBD,dyn(t∞) =


(G′i〈M1(t)〉〈Mi(t)〉 −Di+1〈Mi+1(t)〉)

∣∣∣∣
t=t∞

: i ∈ [1, imax − 1]

G′imax〈M1(t)〉〈Mimax(t)〉
∣∣∣∣
t=t∞

: i = imax,

(6.92)
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the nucleation current derived in the dynamical stochastic theory reads

JDP (t∞) =



(G′i〈ϕ1(t)(ϕi(t)− 1)〉 −Di+1〈ϕi+1(t)〉)
∣∣∣∣
t=t∞

: i = 1

(G′i〈ϕ1(t)ϕi(t)〉 −Di+1〈ϕi+1(t)〉)
∣∣∣∣
t=t∞

: i ∈ [2, imax − 1]

G′imax〈ϕ1(t)ϕimax(t)〉
∣∣∣∣
t=t∞

: i = imax.

(6.93)

Note that in the expression for JBD,dyn(t∞), equation (6.92), we have the product of

averages whereas in the expression for JDP (t∞), equation (6.93), we have the average of

products. Furthermore, in the formula for the stochastic nucleation current, equation

(6.93), we account for the fact that having a single monomer on the surface of the seed

can not give rise to a nucleation current. In the Doi-Peliti formalism the stochastic

average is determined by the path integral expression (6.87). This path integral average

will be used to compute the mean i-mer populations 〈ϕi(t)〉 in the dynamical stochastic

framework —cfr. (6.89), (6.90) and (6.87)— as well as the stochastic nucleation current

JDP (t∞) —cfr. (6.93).

6.3 Comparison between Mean-Field and Stochas-

tic Model

6.3.1 Constant Rate Coefficients

For convenience, we choose the source rate to be equal to the evaporation rate, J =

L ≡ constant, and the growth rate to be equal to the loss rate, G′ = D ≡ constant.

The growth rate and decay rate coefficients are chosen to be equal to G′ = D =

10s−1 in the sequel. When deriving the i-mer population according to the mean-field

Becker-Döring rate equations —equations (6.16)— as well as according to the Doi-Peliti

formalism —equations (6.89), (6.90) and (6.87)— we see that the tendency indicated in

(6.32) is confirmed in Figure 6.18 where we plot the mean late-time cluster populations

〈Mi(t∞)〉 according to the mean-field theory and the mean stochastic late-time cluster

populations 〈ϕi(t∞)〉 against the cluster order i for specific values of the maximum

order of the clusters, namely, imax ∈ [2, 4, 6, 8, 10]. There is no noticeable difference

between the values of 〈Mi(t∞)〉 and 〈ϕi(t∞)〉. Furthermore, one observes that, for

fixed i, the values of the mean late-time cluster population of the same order i are

greater for a larger number of unstable clusters in the systems, that is, for fixed i we
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find

〈Mi(t∞)〉
∣∣∣∣
imax=k

> 〈Mi(t∞)〉
∣∣∣∣
imax=m

, (6.94)

where k > m. Furthermore, the convergence behaviour (6.33) is verified in Figures

6.19, 6.20, 6.21, 6.22 which show the dependence on the order of clusters i of the

mean late-time cluster populations as derived from the Becker-Döring rate equations,

〈Mi(t∞)〉, and —except for Figure 6.22— of the mean late-time cluster populations

as given by the Doi-Peliti formalism, 〈ϕi(t∞)〉, for the specific values of the rate

coefficients J = L ∈ [1000s−1, 100s−1, 10s−1, 1s−1] with a maximum number of unstable

clusters imax = 2 —Figure 6.19—, imax = 4 —Figure 6.20—, imax = 6 —Figure

6.21—, and imax = 8 —Figure 6.22. Figure 6.22 demonstrates linear behaviour of the

mean late-time cluster population with regards to the order of clusters for large values

of the source rate coefficient and of the evaporation rate coefficient, whereas for small

values of the rate coefficients this is no longer the case. Nevertheless, for decreasing

values of J and L the mean late-time cluster populations decrease for all orders i. Un-

fortunately, due to the larger number of the non-linear coupled stochastic differential

equations (6.89) and (6.90), instabilities occur during the numerical evaluation of the

constraint equations. Therefore, it is not possible for the particular choice of imax to

determine a meaningful value for the mean late-time cluster populations according to

the Doi-Peliti formalism. Although in Figures 6.19, 6.20, 6.21 we give the path integral

average 〈ϕi(t∞)〉, the same instabilities force us to take the average for the larger

number of imax over only 100 realisations of the noises which is a crude estimate for

the true value of the mean late-time cluster population. Even for such a small number

of generated paths it takes several attempts to compute the path integral average

with a configuration where no extreme spike occurs in the evolution that distorts the

calculations. Despite the errors that arise in the value of the stochastic mean late-time

cluster populations due to the small number of solutions to the stochastic constraints

that are employed in the path integral average, it is clear from all three Figures 6.19,

6.20, 6.21 that for J = L ∈ [1000s−1, 100s−1] the stochastic results and the mean-field

results coincide. However, for J = L ∈ [10s−1, 1s−1] one observes a deviation from the

solutions to the traditional Becker-Döring rate equations: the stochastic mean late-

time cluster populations are greater than their mean-field counterparts for each order

of cluster i and for all maximum numbers of unstable cluster imax under consideration.

For a large source rate coefficient and a large evaporation rate coefficient, that

is, for J = L = 1000s−1, we notice only a small change in the mean late-time

monomer population with regards to a change in the maximum order of clusters in
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both frameworks as illustrated in Figure 6.23. For a choice of J = L = 100s−1, the

mean late-time monomer population increases for increasing value of imax in both

frameworks. In general, the mean late-time monomer population which is given by

solving the Becker-Döring rate equations increases for increasing value of the source

rate. In Figure 6.24 we observe the same overall behaviour —the increase in the mean

late-time monomer population for increasing value of imax— however, the stochastic

mean late-time monomer populations for J = L = 10s−1 and J = L = 1s−1 agree and

are greater than the respective mean-field solutions.

In Figure 6.25 we plot the mean late-time monomer population according to

the mean-field framework and to the stochastic framework versus the logarithm of

the source rate for different maximum orders of i-mer populations, imax ∈ [2, 4, 6].

After the threshold of the stochastic regime is reached —which is independent of the

maximum order of unstable clusters— the decrease in 〈ϕi(t∞)〉 with regards to a

decreasing source rate slows down compared to the decrease in 〈Mi(t∞)〉.

As a result of our calculations of the mean late-time cluster populations we

identified the deterministic regime for values of J = L ∈ [1000s−1, 100s−1] and the

stochastic regime for values of J = L ∈ [10s−1, 1s−1]. Although the mean late-time

cluster populations for J = L = 100s−1 as derived from the Becker-Döring rate

equations and the mean late-time cluster populations for J = L = 100s−1 as computed

by the Doi-Peliti formalism give the same values, this is not true for the nucleation

current. For J = L = 1000s−1 the stochastic nucleation rate

JDP (t∞) :=

∫
DηG′imaxϕ̄1(t)ϕ̄imax(t)P [η(t)]∫

DηP [η(t)]
, (6.95)

where the probability distribution is given by (6.86) and the fields ϕ̄1(t) and ϕ̄imax(t)

are solutions to (6.89) and (6.90) and the mean-field nucleation rate JBD,dyn(t∞) —cfr.

equation (6.34)— coincide —see Table 6.15— whereas for J = L = 100s−1 there is a

slight deviation. At the threshold between the deterministic regime and the stochastic

regime, the value of the stochastic nucleation current seems to be slightly smaller

than the value of the mean-field nucleation current. In general, the nucleation rate

decreases with increasing maximum order of clusters imax for fixed rate coefficients

which can be seen in Figure 6.26 where the rate coefficients were chosen to be J = L ∈
[1000s−1, 100s−1]. Furthermore, the nucleation rate computed with J = L = 1000s−1 is

greater than the nucleation rate with J = L = 100s−1 —see Table 6.15.

Since the spikes in the fluctuating solutions to the constraint equations go quadratically
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into the computation of the stochastic nucleation current one can have a situation in

which it is reasonable to determine a mean population according to the Doi-Peliti

formalism yet one might not be able to allocate a value to the nucleation current as

illustrated in Figures 6.27 and 6.28. Figure 6.27 shows the evolution of the stochastic

mean monomer population for a source rate of J = L = 10s−1 with imax = 4 averaged

over 100 realisations of the noises. Although the number of paths employed in the path

integral average is small it is clear that the solution fluctuates around a specific steady

state which can be visually estimated. However, due to the extreme spikes in the

evolution of the respective stochastic nucleation current —presented in Figure 6.28—

it is not even possible to estimate a certain value. The more paths are generated to

be employed in the path integral average the more likely it is to produce a path with

an extreme spike that can even drive the evolution to explosion. A rigorous method to

stabilise the evolution for any choice of parameters is not apparently available.
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Figure 6.18: Mean late-time cluster populations according to the mean-field theory
〈Mi(t∞)〉 and according to the stochastic theory 〈ϕi(t∞)〉 for a maximum number
of Becker-Döring equations of imax ∈ [2, 4, 6, 8, 10] for the following choice of rate
coefficients: G′ = D = 10s−1 and J = L = 1000s−1. The lines are a guide to the eye.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

m
ea

n 
la

te
-ti

m
e 

clu
st

er
 p

op
ul

at
io

n

i

mean-field framework, J=L=1000s-1

stochastic framework, J=L=1000s-1

mean-field framework, J=L=100s-1

stochastic framework, J=L=100s-1

mean-field framework, J=L=10s-1

stochastic framework, J=L=10s-1

mean-field framework, J=L=1s-1

stochastic framework, J=L=1s-1

Figure 6.19: Mean late-time cluster populations according to the mean-field theory
〈Mi(t∞)〉 and according to the stochastic theory 〈ϕi(t∞)〉 for a maximum number
of Becker-Döring equations of imax = 2 for the following choice of rate coefficients:
G′ = D = 10s−1 and J = L ∈ [1000s−1, 100s−1, 10s−1, 1s−1]. The lines are a guide to
the eye.
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Figure 6.20: Mean late-time cluster populations according to the mean-field theory
〈Mi(t∞)〉 and according to the stochastic theory 〈ϕi(t∞)〉 for a maximum number
of Becker-Döring equations of imax = 4 for the following choice of rate coefficients:
G′ = D = 10s−1 and J = L ∈ [1000s−1, 100s−1, 10s−1, 1s−1]. The lines are a guide to
the eye.
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Figure 6.21: Mean late-time cluster populations according to the mean-field theory
〈Mi(t∞)〉 and according to the stochastic theory 〈ϕi(t∞)〉 for a maximum number
of Becker-Döring equations of imax = 6 for the following choice of rate coefficients:
G′ = D = 10s−1 and J = L ∈ [1000s−1, 100s−1, 10s−1, 1s−1]. The lines are a guide to
the eye.
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Figure 6.22: Mean late-time cluster populations according to the mean-field the-
ory 〈Mi(t∞)〉 for a maximum number of Becker-Döring equations of imax = 8
for the following choice of rate coefficients: G′ = D = 10s−1 and J = L ∈
[1000s−1, 100s−1, 10s−1, 1s−1]. The lines are a guide to the eye.
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Figure 6.23: Dependence of the mean late-time cluster populations according to the
mean-field theory 〈Mi(t∞)〉 and of the mean late-time cluster populations according to
the stochastic theory 〈ϕi(t∞)〉 on the maximum order of i-mers, imax, for the following
choice of rate coefficients: G′ = D = 10s−1 and J = L ∈ [1000s−1, 100s−1]. The lines
are a guide to the eye.
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Figure 6.24: Dependence of the mean late-time cluster populations according to the
mean-field theory 〈Mi(t∞)〉 and of the mean late-time cluster populations according to
the stochastic theory 〈ϕi(t∞)〉 on the maximum order of i-mers, imax, for the following
choice of rate coefficients: G′ = D = 10s−1 and J = L ∈ [10s−1, 1s−1]. The lines are a
guide to the eye.
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Figure 6.25: Dependence of the mean late-time monomer populations according
to the mean-field theory 〈Mi(t∞)〉 and of the mean late-time cluster populations
according to the stochastic theory 〈ϕi(t∞)〉 on the rate coefficients J = L ∈
[1000s−1, 100s−1, 10s−1, 1s−1] and for G′ = D = 10s−1 and imax ∈ [2, 4, 6]. The lines are
a guide to the eye.
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Figure 6.26: Dependence of the nucleation current according to the mean-field theory
JBD,dyn(t∞) and of the nucleation current according to the stochastic theory JDP (t∞)
on the maximum order of i-mers, imax, for the following choice of rate coefficients:
G′ = D = 10s−1 and J = L ∈ [1000s−1, 100s−1]. The lines are a guide to the eye.

imax JBD,dyn(t∞) JDP (t∞) JBD,dyn(t∞) JDP (t∞)
J = L = 1000s−1 J = L = 1000s−1 J = L = 100s−1 J = L = 100s−1

2 4.82104 4.8 3.71473 3.55
4 2.3965 2.4 1.79056 1.7
6 1.58476 1.59 1.1363 1.1
8 1.17845 1.17 0.811414 0.79

Table 6.15: Dependence of the nucleation current according to the mean-field theory
JBD,dyn(t∞) and of the nucleation current according to the stochastic theory JDP (t∞)
on the maximum order of i-mers, imax, for the following choice of rate coefficients:
G′ = D = 10s−1 and J = L ∈ [1000s−1, 100s−1].
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Figure 6.27: The mean late-time monomer population according to the stochastic
theory 〈M1(t∞)〉 for a maximum order of imax = 4 averaged over 100 realisations
of the noises and for the following choice of rate coefficients: G′ = D = 10s−1 and
J = L = 10s−1.
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Figure 6.28: The nucleation current according to the stochastic theory JDP (t∞) for a
maximum order of imax = 4 averaged over 100 realisations of the noises and for the
following choice of rate coefficients: G′ = D = 10s−1 and J = L = 10s−1.
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6.4 Conclusions and Outlook

In this chapter, we have analysed in some detail the influence of the form of the rate

coefficients on the mean cluster concentrations and, in the same way, on the nucleation

currents in the Becker-Döring model. The particular choice of the decay coefficients in

the direct vapour deposition mechanism and in the surface diffusion mechanism based

on the Fletcher theory was characterised by arguments arising from considerations of

detailed balance. At this point it is important to emphasize that this is still only an

estimate of the true physical properties of the system in accordance with the following

statement taken from [55]:

”One of the most debated points in the nucleation theory is the method of determination

of the emission coefficients. These coefficients are specified commonly by deriving the

so-called equilibrium or constraint equilibrium distributions with respect to cluster sizes

and applying the principles of detailed balancing to thermodynamic non-equilibirum

states....Such an approach is, however, highly questionable...In application to thermo-

dynamic non-equilibrium states such distributions are artificial constructs; they are not

realized in nature. Moreover, the principle of detailed balancing holds for equilibrium

but not for non-equilibrium states.”.

In addition, a more detailed analysis of the dependence of the value of the nucleation

current on the maximum order of clusters in the Becker-Döring theory with a choice

of rate coefficients according to the Fletcher theory might give valuable insight into

the accuracy of the model.

As we have observed from our own calculations —where we compared the theoretical

nucleation currents obtained from the Fletcher theory and the Becker-Döring theory

to the respective values determined in experiments—, in order to obtain a more

realistic value of the true nucleation current it is necessary, even in deterministic

systems, to modify the form of the rate coefficients and approach a microscopic

statistical-mechanical treatment of the physical processes. The same line of argument

was pointed out in [54]:

”It follows as one of the consequences of the preceding analysis that the clusters of

critical sizes have properties that are widely different, in general from the properties

of the newly evolving macroscopic phases. By this reason, also the properties of sub-

and supercritical clusters will depend, in general, both on supersaturation and cluster

size. In order to develop, consequently, an appropriate description of the course of

the phase transitions, one has to develop a method to establish the dependence of

composition of clusters of arbitrary sizes on mentioned parameters. The change in the

composition of the clusters in dependence of their sizes leads to a size-dependence of
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almost all thermodynamic... and kinetic parameters... determining the course of the

phase transition... Note that this size dependence is connected with changes of the bulk

properties of the clusters.”.

Furthermore, more attention needs to be paid on the numerical implemention

of the constraint equations in the Doi-Peliti formalism. We have seen that for the

simple assumption of constant rate coefficients, stability issues arise in the numerical

evaluation of the stochastic differential equations already for a very small maximum

order of i-mers, that is, for a small set of coupled constraint equations. Therefore,

a stochastic treatment of physically realistic situations as presented in the preceding

section —where we studied the traditional Becker-Döring rate equations by employing

the Fletcher model in order to derive expressions for the rate coefficients— is, for the

time-being, not possible. Further analytical as well as further numerical investigations

are needed to be able to extend the formalism to configurations of interest to

researchers working in the experimental sciences.
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Chapter 7

Concluding Remarks

The main focus of this thesis was, besides some deterministic investigations concerning

several models for heterogeneous nucleation processes, to provide a stochastic frame-

work that allows for the inclusion of statistical fluctuations in classical, many-body

systems which is of great importance for systems with low densities.

The particular systems analysed in this thesis were single chemical reactions in

interstellar surface chemistry, complex networks of heterogeneous chemical reactions

and heterogeneous nucleation processes in aerosol science.

In order to take into account statistical fluctuations in the description of the time evo-

lution of the populations in the above systems we employed mathematical techniques

based on ideas from Quantum Field Theory. The comparison of the late-time results of

the Doi-Peliti formalism with the explicit steady state solution employed to determine

the mean numbers of chemical species involved in heterogeneous binary chemical

reactions led to a revision of the well-known solutions to the stationary master

equation with interesting new insights into the validity of the steady state solutions.

Furthermore —for specific choices of the model parameters traditionally used in

astrochemistry— it was possible to identify a threshold between the deterministic

regime, where the solutions to the mean-field evolution equations and the results of the

dynamical stochastic methods coincide, and the stochastic regime, where one observes

significant deviations from the predictions of the mean-field theory. The extension

of the numerical exploitation of the Doi-Peliti formalism to higher space dimensions

was found to be fruitful and further projects in this direction seem promising. A

generalisation of the methods to more complex systems as chemical reaction networks

or heterogeneous nucleation processes was carried out. However, open problems remain

in the numerical evaluation of the evolution equations of the complex, fluctuating

variables. Concerning the determination of the mean-field nucleation currents in

nucleation theory several models for heterogeneous nucleation processes were presented
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and compared with experimental data. The various theoretical predictions and the

experimental observations were found to be in bad agreement.

The main challenges in possible extensions and improvements of the work pre-

sented in this thesis are the following:

Stability Analysis for Stochastic Differential Equations

The set of coupled, non-linear stochastic partial differential equations with multiplica-

tive noise that arise as constraint equations in the procedure of evaluating the path

integral average which makes it possible to determine expectation values such as the

mean particle density of certain chemical species or the nucleation rate of aerosols

are at the heart of the Doi-Peliti formalism. Due to their complex nature, especially

when considering realistic chemical reaction networks or the nucleation ladder for a

large number of unstable clusters, there are hardly any rigorous results available to

study the stability of the equations analytically in the sense of methods of dynamical

systems. Such rigorous mathematical results are essential for making the outcome of

numerical endeavours more reliable. As we have seen in Chapter 3, the analysis of

the time-independent solutions to the master equation provide strong support for the

correctness of the numerical results. However, the occasional occurrence of paths that

exhibit extreme spikes needs further attention if the Doi-Peliti formalism is ever to be

employed for complex classical many-body systems. Besides these obvious drawbacks

the hope remains that stochastic frameworks such as the Doi-Peliti formalism can suc-

cessfully bridge the gap between the macroscopic and the microscopic characteristics,

between high and low densities, between the deterministic regime and the stochastic

regime.

Models for Rate Coefficients

Another great challenge is to find models that describe the properties of microscopic

entities such as the characteristics of clusters in nucleation processes more accurately.

The form of the rate coefficients in both the surface chemical reaction processes as

well as the heterogeneous nucleation processes, might be understood more as estimates

than as a correct description of the physical properties of the system. This is a task

that is relevant for experimental and theoretical physicists to the same extent. The

lack of experimental data limits the possibilities to analyse the predicitions of a specific

model critically. More collaborations between scientists working on the development of

the various theories and researchers designing and conducting experiments are highly
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desirable.
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Appendix A

List of Equations

Arrhenius Equation

The Arrhenius equation gives the dependence of the rate constant R of chemical reac-

tions on the temperature T and activation energy E

R(T,E) = A(T ) exp−
E
kT , (A.1)

with k the Boltzmann constant, and A a pre-factor that, in general, has only a weak

dependence on the temperature compared to the exponent. It can be understood in the

following way: R is the number of collisions which result in a reaction per second, A is

the total number of collisions per second that lead to a reaction or not. The exponent

gives the probability that any given collision will result in a reaction.

Fokker-Planck Equation

The Fokker-Planck equation is an approximate description for any Markov process

whose individual jumps are small. The Fokker-Planck equation is also known by the

names of the generalised diffusion equation, Smoluchowski equation, or second Kolgo-

morov equation. It is a special type of a master equation and can be written as

∂P (y, t)

∂t
= −∂(A(y)P (y, t))

∂y
+

1

2

∂2(B(y)P (y, t))

∂y2
. (A.2)

The range of y is continous (−∞,∞). The terms A(y) and B(y) are differentiable real

functions where B(y) > 0. The term A(y) is called transport term, convection term or

drift term. The term B(y) is called diffusion or fluctuation term. The Fokker-Planck

equation gives definite expressions for higher moments.
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Langevin Equation

The Langevin equation is a special type of a stochastic differential equation:

dv(t)

dt
= −γv(t) + L(t), (A.3)

where L(t) is independent of v(t) and rapidly varying in time. This stochastic variable

is determined via the average over an ensemble of many systems in the following way

〈L(t)〉 = 0,

〈L(t)L(t′)〉 = Γδ(t− t′). (A.4)

The first term in the Langevin equation is the damping average force term. The

Langevin equation defines v(t) as a stochastic process provided that an initial condition

is added. It gives a treatment of Brownian motion. The Fokker-Planck equation gives

the same values for the first and second moments of v as the Langevin equation. But the

two equations are not really equivalent because their higher moments do not agree. In

contrast to the Fokker-Planck equation the Langevin equation does not specify higher

moments. One needs an additional condition such as imposing a Gaussian white noise.

Markov Process

A Markov process is a stochastic process such that for any set of n successive times

t1 < t2 < ... < tn

P (yn, tn|yn−1, tn−1; ...; y1, t1) = P (yn, tn|yn−1, tn−1), (A.5)

where P is the conditional probability density at tn, that is the probability density for

y to take the value yn at time tn given that its value at tn−1 is yn−1. The conditional

probability density at time tn is not affected by any knowledge of the values at earlier

times.

Master equation

A master equation

∂P (y, t)

∂t
=

∫ (
Ty→y′P (y′, t)− Ty′→yP (y, t)

)
dy′, (A.6)

where Ty→y′∆t is the probability for a transition during a short time ∆t, is a differential

version of the Chapman-Kolgomorov equation. The Chapman-Kolgomorov equation or
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Smoluchowski equation is defined as

P (y3, t3|y1, t1) =

∫ ∞
−∞

P (y3, t3|y2, t2)P (y2, t2|y1, t1)dy2, (A.7)

and gives the transitional densities of a Markov sequence. This identity must be obeyed

by the transition probability of any Markov process. Note that time ordering is essen-

tial.

The master equation is valid for the transition probability of any stationary Markov

process. The first term in (A.6) gives the gain due to transitions from states y′ whereas

the second term describes the loss due to transitions into states y′. We have used the

discrete version of the master equation in this thesis:

dP (m; t)

dt
=
∑
n

Tn→mP (n; t)−
∑
n

Tm→nP (m; t), (A.8)

where Tn→m represents the transition amplitude or propagator from a microstate n to

a microstate m and P (m; t) is the probability to find the system in state m.

Poisson Distribution

The Poisson distribution is a discrete probability distribution where events occur at a

known average rate and independently of the time since the last event

P (a, b) =
abe−a

b!
, (A.9)

where a ∈ R+ is the expected number of occurences that occur during a given time

interval and b is the number of occurences of an event (success in trial). This can be

applied to systems with a large number of possible events, each of which is rare.

Verhulst Equation

The deterministic Verhulst equation reads

dP (t)

dt
= rP (t)

(
1− P (t)

K

)
, (A.10)

with P (t) the population at time t, r the growth rate and K the carrying capacity.

The solution of the Verhulst equation is given by

P (t) =
KP (0)ert

K + P (0)
(
ert − 1

) . (A.11)
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The limit of the solution for late times is

lim
t→∞

P (t) = K. (A.12)

White Gaussian Noise

White Noise:

A continuous time random process is a white noise process if and only if its mean func-

tion is zero for all times and the autocorrelation function is the Dirac delta function

times a finite constant.

Gaussian Noise:

A Gaussian noise is a statistical noise that has a probability density function of a Gaus-

sian distribution, that is, the values that the noise can take are Gaussian-distributed.

A Gaussian Distribution or Normal Distribution is a family of continuous probability

distributions defined by the mean µ and variance σ2, σ > 0. The probability density

function reads

P (y) =
(
σ
√

2π
)−1

e
−(y−µ)2

2σ2 (A.13)

The Central Limit Theorem states that the mean of any set of variates with any distri-

bution having a finite mean and variance tends to the normal distribution, that is, data

which are influenced by many small and unrelated random effects are approximately

normally distributed.

Wiener Process

A Wiener process is a continuous time stochastic process W (t) characterised by the

following properties:

W (0) = 0 (A.14)

W (t)−W (s) is Gaussian (A.15)

increments for non-overlapping time intervals are independent (A.16)
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Appendix B

Continued Fractions of Bessel

functions

In [5] the authors stated that the continued fractions formula of the reduced form of

the non-vanishing off-diagonal elements of the matrix M′′ —see equation (30) in [5]—

in the inifinite limit could be expressed in the continued expression expansion of the

ratio of two modified Bessel functions of the first kind, namely

Iν(z)

Iν−1(z)
=

z

2ν

(
1− Iν+1(z)

Iν−1(z)

)
=

z

2ν

(
1 +

Iν+1(z)

Iν(z)

z

2ν

)−1

=


2ν

z
+

1

2(ν + 1)

z
+

1

2(ν + 2)

z
+

1

2(ν + 3)

z
+ ...



−1

, (B.1)

where ν := LA
KAA

+ N and z := 2
√

JA
KAA

. In the above calculation we have used the

following relation twice:

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z). (B.2)
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On the other hand, one can derive in an analogous manner:

Iν(z)

Iν+1(z)
= − z

2ν

(
1− Iν−1(z)

Iν+1(z)

)
= − z

2ν

(
1− Iν−1(z)

Iν(z)

z

2ν

)−1

= −


2ν

z
+

1

2(ν − 1)

z
+

1

2(ν − 2)

z
+

1

2(ν − 3)

z
+ ...



−1

. (B.3)

Since (B.2) is valid for all ν ∈ C one can perform the following substitution ν → −ν
so that

I−ν(z)

I−ν+1(z)
=

= −


2(−ν)

z
+

1

2(−ν − 1)

z
+

1

2(−ν − 2)

z
+

1

2(−ν − 3)

z
+ ...



−1

.(B.4)

The above continued fractions expansion is equivalent to the continued fractions ex-

pansion (B.1) so that we have

Iν(z)

Iν−1(z)
=

I−ν(z)

I−ν+1(z)
. (B.5)

The above equivalence means that it is possible to express the continued fractions

formula of the reduced form of the non-vanishing off-diagonal elements of the matrix

M′′ in infinite limit by either of the two ratios of the modified Bessel functions of the first

kind. Therefore, the full solution of the stationary master equation is a superposition

of two Bessel functions as derived by methods of generating functions.
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Appendix C

Numerical Schemes

In this part of the appendix we illustrate the various numerical schemes that we em-

ployed to numerically evaluate the constraint equations (3.199) and (3.200) to the path

integral (2.64) in Chapter 3. In the following we refer to the following definitions:

Xn := Φ(tn) in discretised time tn,

4n := tn+1 − tn,

4Wn := Wtn+1 −Wtn

δ

δ[f(x)]
F[f(x)] : functional derivative

with n = 0, .., N .

Family of implicit Euler methods

A family of implicit Euler methods is given by

Xn+1 = Xn +

(
αâ[Xn+1] + (1− α)â[Xn]

)
4n +

(
βb[Xn+1] + (1− β)b[Xn]

)
4Wn,

â[Xn] = a[Xn]− βb[Xn]
δb[Xn]

δXn

.

The impliciteness parameters are α, β ∈ [0, 1].

Simplified weak Taylor scheme, order 2.0

The simplified order 2.0 weak Taylor scheme is defined as follows
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Xn+1 = Xn + a[Xn]4+ b[Xn]4Wn +
1

2
b[Xn]

δb[Xn]

δXn

(
(4Wn)2 −4n

)
+

1

2

(
δa[Xn]

δXn

b[Xn] + a[Xn]
δb[Xn]

δXn

+
1

2

δ2b[Xn]

δX2
n

b2[Xn]

)
4Wn4n

+
1

2

(
a[Xn]

δa[Xn]

δXn

+
1

2

δ2a[Xn]

δX2
n

a2[Xn]

)
42
n.

Family of Predictor-corrector methods, order 1.0

The family of predictor-corrector methods of order 1.0 with predictor are presented by

Xn+1 = Xn +

(
αâ[X̂n+1] + (1− α)â[Xn]

)
4n +

(
βb[X̂n+1] + (1− β)b[Xn]

)
4Wn,

â[Xn] = a[Xn]− βb[Xn]
δb[Xn]

δXn

,

and the predictor

X̂n+1 = Xn + a[Xn]4+ b[Xn]4Wn,

where α, β ∈ [0, 1].

Implicit strong Runge-Kutta method, order 1.0

The general formula for the implicit order 1.0 strong Runge-Kutta scheme is given by

Xn+1 = Xn + a[Xn+1]4+ b[Xn]4Wn +
1

2
√
4n

(
b[X̂n]− b[Xn]

)(
(4Wn)2 −4n

)
,

X̂n = Xn + α4n + b[Xn]
√
4n,

where the parameter α ∈ [0, 1].
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Appendix D

Binary Recombination of type

A + A→ A In The Single Spatial

Site Model

D.1 Mean Field Model For Vanishing Source Rate

The mean-field equation describing the evolution of the average population of molecules

of type A, 〈NA(t)〉 for vanishing source rate and for positive LA and positive KAA

d〈NA(t)〉
dt

= −KAA〈NA(t)〉2 − LA〈NA(t)〉, (D.1)

is solved by

〈NA(t)〉 =
〈NA(0)〉LA

LA exp (LAt) +KAA〈NA(0)〉(exp (LAt)− 1)
. (D.2)

In the mean-field framework, the late time limit of the average molecule population

approaches zero.
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D.2 Stochastic Model For Vanishing Source Rate

In a stochastic framework, equation (D.1) can be replaced by the following master

equation for a single lattice site:

dP (NA; t)

dt
= LA(NA + 1)P (NA + 1; t)− LANAP (NA; t) +

KAA(NA + 1)NAP (NA + 1; t)−KAANA(NA − 1)P (NA; t),

(D.3)

for NA ≥ 1. Following the procedure of the Doi-Peliti formalism one derives the

stochastic constraint equation:

dΦA(t)

dt
= −KAAΦ2

A(t)− LAΦA(t) + i
√

2KAAΦA(t)η(t) (D.4)

with:

〈η(t)〉 = 0

〈η(t)η(t′)〉 = δ(t− t′) (D.5)

for the eigenvalue functions of the coherent state vectors, ΦA(t). The exact solution to

equation (D.4), whose path integral average gives the mean number of A molecules on

the surface of the grain particle, reads:

ΦA(t) =
ΦA(0)e(KAA−LA)t+i

√
2KAAW (t)

1 +KAAΦA(0)
∫ t

0
e(KAA−LA)s+i

√
2KAAW (s)ds

(D.6)

The modulus of the exact solution to the stochastic equation (D.4) has a lower bound

as can be seen from the following calculation:

|ΦA(t)| =

∣∣∣∣∣ΦA(0)
e(KAA−LA)tei

√
2KAAW (t)

1 +KAAΦA(0)
∫ t

0
e(KAA−LA)sei

√
2KAAW (s)ds

∣∣∣∣∣
=

∣∣∣∣∣ΦA(0)
e(KAA−LA)t

1 +KAAΦA(0)
∫ t

0
e(KAA−LA)sei

√
2KAAW (s)ds

∣∣∣∣∣
≥ |ΦA(0)| e(KAA−LA)t

1 +
KAA|Φ(0)|

(
e(KAA−LA)t−1

)
KAA−LA

, (D.7)
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with
∣∣∣ei√2KAAW (s)

∣∣∣ = 1 and

∣∣∣∣1 +KAAΦA(0)

∫ t

0

e(KAA−LA)sei
√

2KAAW (s)ds

∣∣∣∣
≤ 1 +KAA

∣∣∣∣ΦA(0)

∫ t

0

e(KAA−LA)sei
√

2KAAW (s)ds

∣∣∣∣ . (D.8)

The late-time behaviour of the modulus can be obtained by means of the rule of

L’Hôspital and is given by

lim
t→∞
| ΦA(t) |≥ 1− LA

KAA

. (D.9)

From the numerical calculations it can be seen that the bound 1− LA
KAA

corresponds to

the late-time value 〈ΦA(t∞)〉 for an appropriate choice of LA and KAA, for example,

values that comply with the M1 data. Indeed, one can observe from the numerical

implementation that the late-time behaviour of the solution 〈ΦA(t)〉 is independent of

the initial condition ΦA(0) which can also be seen from the exact solution (D.6).
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Appendix E

Heterogenous Nucleation: Tables

In this part of the appendix, we list the mean late-time i-mer populations derived from

the traditional Becker-Döring rate equations where the rate coefficients were taken

according to the power law model.

c = 2, i∗ = 2 c = 5, i∗ = 2

〈M1(t∞)〉 9.78132 9.73785
〈M2(t∞)〉 5.92276 5.11332
〈M3(t∞)〉 4.8343 4.63237
〈M4(t∞)〉 4.33566 4.53405
〈M5(t∞)〉 3.72615 4.48687

Table E.1: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 1000s−1 and L = 100s−1 and with imax = 5.
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c = 2, i∗ = 2 c = 10, i∗ = 2

〈M1(t∞)〉 5.79144 5.22315
〈M2(t∞)〉 2.65265 1.93199
〈M3(t∞)〉 1.8784 1.61724
〈M4(t∞)〉 1.54574 1.55414
〈M5(t∞)〉 1.21114 1.52425

Table E.2: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 10s−1 and L = 1s−1 and with imax = 5.
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c = 2, i∗ = 2 c = 5, i∗ = 2

〈M1(t∞)〉 9.6186 9.54397
〈M2(t∞)〉 5.78445 4.96301
〈M3(t∞)〉 4.7172 4.48758
〈M4(t∞)〉 4.27997 4.39062
〈M5(t∞)〉 4.05895 4.36258
〈M6(t∞)〉 3.93166 4.35249
〈M7(t∞)〉 3.85154 4.34826
〈M8(t∞)〉 3.79755 4.34628
〈M9(t∞)〉 3.75469 4.34527
〈M10(t∞)〉 3.60478 4.34382

Table E.3: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 1000s−1 and L = 100s−1 and with imax = 2.

c = 2, i∗ = 2 c = 5, i∗ = 2

〈M1(t∞)〉 5.09974 4.46062
〈M2(t∞)〉 2.15525 1.48613
〈M3(t∞)〉 1.4707 1.20987
〈M4(t∞)〉 1.21816 1.1551
〈M5(t∞)〉 1.09844 1.13941
〈M6(t∞)〉 1.03229 1.13378
〈M7(t∞)〉 9.91768 ×10−1 1.13142
〈M8(t∞)〉 9.64754 ×10−1 1.13032
〈M9(t∞)〉 9.42048×10−1 1.12976
〈M10(t∞)〉 8.73532 ×10−1 1.12895

Table E.4: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 10s−1 and L = 1s−1 and with imax = 2.
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c = 2,i∗ = 2 c = 5, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 9.46999 9.3682 101

〈M2(t∞)〉 5.65555 4.82755 3.99999×10−1

〈M3(t∞)〉 4.59736 4.35722 3.59978×10−2

〈M4(t∞)〉 4.16465 4.26134 5.75594×10−3

〈M5(t∞)〉 3.94617 4.23362 1.4332 ×10−3

〈M6(t∞)〉 3.82043 4.22364 5.07622×10−4

〈M7(t∞)〉 3.74134 4.21946 2.37397×10−4

〈M8(t∞)〉 3.68831 4.21751 1.37125×10−4

〈M9(t∞)〉 3.65098 4.21651 9.2329e×10−5

〈M10(t∞)〉 3.6237 4.21596 6.91902×10−5

〈M11(t∞)〉 3.60315 4.21565 5.57223×10−5

〈M12(t∞)〉 3.58727 4.21546 4.69204×10−5

〈M13(t∞)〉 3.57472 4.21534 4.0191×10−5

〈M14(t∞)〉 3.56359 4.21526 3.34226×10−5

〈M15(t∞)〉 3.49792 4.21507 2.31387×10−5

Table E.5: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 1000s−1 and L = 100s−1 and with imax = 15.

c = 2, i∗ = 2 c = 10, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 4.70135 4.03102 9.99963
〈M2(t∞)〉 1.8791 1.25185 3.99969×10−1

〈M3(t∞)〉 1.2426 9.99063×10−1 3.59938×10−2

〈M4(t∞)〉 1.01209 9.49226×10−1 5.7551×10−3

〈M5(t∞)〉 9.04075×10−1 9.34968×10−1 1.43294×10−3

〈M6(t∞)〉 8.44841×10−1 9.29857×10−1 5.07512×10−4

〈M7(t∞)〉 8.08786×10−1 9.2772×10−1 2.37338×10−4

〈M8(t∞)〉 7.85162×10−1 9.2672×10−1 1.37088×10−4

〈M9(t∞)〉 7.68815×10−1 9.2621×10−1 9.23021×10−5

〈M10(t∞)〉 7.57017×10−1 9.25931×10−1 6.91691×10−5

〈M11(t∞)〉 7.48215×10−1 9.2577×10−1 5.57047×10−5

〈M12(t∞)〉 7.41467×10−1 9.25673×10−1 4.69051×10−5

〈M13(t∞)〉 7.3614×10−1 9.25612×10−1 4.01776×10−5

〈M14(t∞)〉 7.31043×10−1 9.25572×10−1 3.34111×10−5

〈M15(t∞)〉 7.04406×10−1 9.25475×10−1 2.31305×10−5

Table E.6: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 10s−1 and L = 1s−1 and with imax = 15.
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c = 2, i∗ = 2 c = 5, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 9.33349 9.20757 101

〈M2(t∞)〉 5.53754 4.70447 3.99999×10−1

〈M3(t∞)〉 4.48782 4.23887 3.59978×10−2

〈M4(t∞)〉 4.05934 4.14401 5.75597×10−3

〈M5(t∞)〉 3.84324 4.11658 1.43325×10−3

〈M6(t∞)〉 3.71895 4.10671 5.07706×10−4

〈M7(t∞)〉 3.64081 4.10257 2.37526×10−4

〈M8(t∞)〉 3.58842 4.10064 1.37324×10−4

〈M9(t∞)〉 3.55157 4.09965 9.26363×10−5

〈M10(t∞)〉 3.52463 4.09911 6.96784×10−5

〈M11(t∞)〉 3.50434 4.0988 5.65318×10−5

〈M12(t∞)〉 3.48867 4.09861 4.83464×10−5

〈M13(t∞)〉 3.47631 4.09849 4.29066×10−5

〈M14(t∞)〉 3.46638 4.09841 3.90994×10−5

〈M15(t∞)〉 3.4583 4.09836 3.63183×10−5

〈M16(t∞)〉 3.45162 4.09832 3.42026×10−5

〈M17(t∞)〉 3.44603 4.0983 3.24972×10−5

〈M18(t∞)〉 3.44132 4.09828 3.09073×10−5

〈M19(t∞)〉 3.43695 4.09827 2.86974×10−5

〈M20(t∞)〉 3.40051 4.09822 2.29579×10−5

Table E.7: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 1000s−1 and L = 100s−1 and with imax = 20.
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c = 2, i∗ = 2 c = 10, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 4.43042 3.74083 9.99952
〈M2(t∞)〉 1.69764 1.10133 3.99961×10−1

〈M3(t∞)〉 1.09554 8.65165×10−1 3.59926×10−2

〈M4(t∞)〉 8.8061×10−1 8.18815×10−1 5.75487×10−3

〈M5(t∞)〉 7.80804×10−1 8.05573×10−1 1.43291×10−3

〈M6(t∞)〉 7.26395×10−1 8.0083×10−1 5.07563×10−4

〈M7(t∞)〉 6.9341×10−1 7.98847×10−1 2.3745×10−4

〈M8(t∞)〉 6.71859×10−1 7.97919×10−1 1.37275×10−4

〈M9(t∞)〉 6.56978×10−1 7.97446×10−1 9.26014×10−5

〈M10(t∞)〉 6.46255×10−1 7.97187×10−1 6.96508×10−5

〈M11(t∞)〉 6.38265×10−1 7.97038×10−1 5.65086×10−5

〈M12(t∞)〉 6.32146×10−1 7.96947×10−1 4.83261×10−5

〈M13(t∞)〉 6.27352×10−1 7.9689×10−1 4.28882×10−5

〈M14(t∞)〉 6.23526×10−1 7.96853×10−1 3.90824×10−5

〈M15(t∞)〉 6.20421×10−1 7.96829×10−1 3.63023×10−5

〈M16(t∞)〉 6.17866×10−1 7.96812×10−1 3.41874×10−5

〈M17(t∞)〉 6.15738×10−1 7.968×10−1 3.24827×10−5

〈M18(t∞)〉 6.1394×10−1 7.96791×10−1 3.08934×10−5

〈M19(t∞)〉 6.12142×10−1 7.96785×10−1 2.86843×10−5

〈M20(t∞)〉 5.9863×10−1 7.96764×10−1 2.29472×10−5

Table E.8: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 10s−1 and L = 1s−1 and with imax = 20.
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c = 2, i∗ = 2 c = 5, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 9.20734 9.0598 9.99999
〈M2(t∞)〉 5.42882 4.59184 3.99999×10−1

〈M3(t∞)〉 4.38708 4.13067 3.59978×10−2

〈M4(t∞)〉 3.96258 4.03675 5.75597×10−3

〈M5(t∞)〉 3.7487 4.0096 1.43325×10−3

〈M6(t∞)〉 3.62576 3.99983 5.07706×10−4

〈M7(t∞)〉 3.54851 3.99574 2.37526×10−4

〈M8(t∞)〉 3.49674 3.99382 1.37324×10−4

〈M9(t∞)〉 3.46032 3.99284 9.26367×10−5

〈M10(t∞)〉 3.43371 3.99231 6.9679×10−5

〈M11(t∞)〉 3.41367 3.992 5.65329×10−5

〈M12(t∞)〉 3.39819 3.99181 4.83483×10−5

〈M13(t∞)〉 3.38598 3.99169 4.29103×10−5

〈M14(t∞)〉 3.37618 3.99162 3.91073×10−5

〈M15(t∞)〉 3.3682 3.99157 3.63367×10−5

〈M16(t∞)〉 3.3616 3.99153 3.42504×10−5

〈M17(t∞)〉 3.35609 3.99151 3.26363×10−5

〈M18(t∞)〉 3.35143 3.99149 3.13588×10−5

〈M19(t∞)〉 3.34747 3.99148 3.03284×10−5

〈M20(t∞)〉 3.34406 3.99147 2.94833×10−5

〈M21(t∞)〉 3.34112 3.99146 2.87782×10−5

〈M22(t∞)〉 3.33855 3.99145 2.81714×10−5

〈M23(t∞)〉 3.3363 3.99145 2.7581×10−5

〈M24(t∞)〉 3.33417 3.99145 2.66308×10−5

〈M25(t∞)〉 3.31115 3.99143 2.29576×10−5

Table E.9: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 1000s−1 and L = 100s−1 and with imax = 25.
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c = 2, i∗ = 2 c = 10, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 4.22855 3.52578 9.9994
〈M2(t∞)〉 1.56609 9.94102×10−1 3.99951×10−1

〈M3(t∞)〉 9.90559×10−1 7.70688×10−1 3.59914×10−2

〈M4(t∞)〉 7.87536×10−1 7.27004×10−1 5.75461×10−3

〈M5(t∞)〉 6.93964×10−1 7.14539×10−1 1.43283×10−3

〈M6(t∞)〉 6.43204×10−1 7.10076×10−1 5.07529 ×10−4

〈M7(t∞)〉 6.12534×10−1 7.08211×10−1 2.37432 ×10−4

〈M8(t∞)〉 5.92543×10−1 7.07338 ×10−1 1.37264 ×10−4

〈M9(t∞)〉 5.78763×10−1 7.06893×10−1 9.25934×10−5

〈M10(t∞)〉 5.68847×10−1 7.0665×10−1 6.96448×10−5

〈M11(t∞)〉 5.61465×10−1 7.06509×10−1 5.65042×10−5

〈M12(t∞)〉 5.55816×10−1 7.06424×10−1 4.83232×10−5

〈M13(t∞)〉 5.51394×10−1 7.06371×10−1 4.28875×10−5

〈M14(t∞)〉 5.47865×10−1 7.06336×10−1 3.90862×10−5

〈M15(t∞)〉 5.45003×10−1 7.06313×10−1 3.63169 ×10−5

〈M16(t∞)〉 5.42649×10−1 7.06297×10−1 3.42317×10−5

〈M17(t∞)〉 5.40689×10−1 7.06285×10−1 3.26183×10−5

〈M18(t∞)〉 5.39039×10−1 7.06277×10−1 3.13415×10−5

〈M19(t∞)〉 5.37637×10−1 7.06271×10−1 3.03115×10−5

〈M20(t∞)〉 5.36435×10−1 7.06267×10−1 2.94668×10−5

〈M21(t∞)〉 5.35397×10−1 7.06264×10−1 2.8762×10−5

〈M22(t∞)〉 5.34494×10−1 7.06261×10−1 2.81556×10−5

〈M23(t∞)〉 5.33703 ×10−1 7.0626×10−1 2.75655×10−5

〈M24(t∞)〉 5.32896×10−1 7.06258×10−1 2.66157×10−5

〈M25(t∞)〉 5.24951×10−1 7.06251×10−1 2.29444×10−5

Table E.10: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 10s−1 and L = 1s−1 and with imax = 25.
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c = 2, i∗ = 2 c = 5, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 9.09016 8.92307 9.99999
〈M2(t∞)〉 5.32815 4.48816 3.99999×10−1

〈M3(t∞)〉 4.29393 4.03116 3.59978×10−2

〈M4(t∞)〉 3.87318 3.93812 5.75597×10−3

〈M5(t∞)〉 3.66139 3.91123 1.43325×10−3

〈M6(t∞)〉 3.53974 3.90155 5.07705 ×10−4

〈M7(t∞)〉 3.46332 3.8975 2.37526×10−4

〈M8(t∞)〉 3.41213 3.8956 1.37324×10−4

〈M9(t∞)〉 3.37612 3.89463 9.26366×10−5

〈M10(t∞)〉 3.34982 3.8941 6.9679×10−5

〈M11(t∞)〉 3.33001 3.8938 5.65328×10−5

〈M12(t∞)〉 3.31471 3.89361 4.83483×10−5

〈M13(t∞)〉 3.30265 3.8935 4.29103×10−5

〈M14(t∞)〉 3.29297 3.89342 3.91072×10−5

〈M15(t∞)〉 3.28508 3.89337 3.63367 ×10−5

〈M16(t∞)〉 3.27856 3.89334 3.42504×10−5

〈M17(t∞)〉 3.27311 3.89331 3.26363×10−5

〈M18(t∞)〉 3.26851 3.89329 3.13589×10−5

〈M19(t∞)〉 3.2646 3.89328 3.03286×10−5

〈M20(t∞)〉 3.26123 3.89327 2.94842 ×10−5

〈M21(t∞)〉 3.25832 3.89327 2.87824×10−5

〈M22(t∞)〉 3.25578 3.89326 2.8192×10−5

〈M23(t∞)〉 3.25356 3.89326 2.76901×10−5

〈M24(t∞)〉 3.2516 3.89325 2.72595×10−5

〈M25(t∞)〉 3.24986 3.89325 2.68868×10−5

〈M26(t∞)〉 3.24832 3.89325 2.65615×10−5

〈M27(t∞)〉 3.24694 3.89325 2.62727×10−5

〈M28(t∞)〉 3.24569 3.89324 2.59907×10−5

〈M29(t∞)〉 3.2445 3.89324 2.55084×10−5

〈M30(t∞)〉 3.22872 3.89324 2.29576×10−5

Table E.11: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 1000s−1 and L = 100s−1 and with imax = 30.
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c = 2, i∗ = 2 c = 10, i∗ = 2 c = 2, i∗ = 10

〈M1(t∞)〉 4.06949 3.3571 9.99929
〈M2(t∞)〉 1.46476 9.12725×10−1 3.99942×10−1

〈M3(t∞)〉 9.10748×10−1 6.99563×10−1 3.59902×10−2

〈M4(t∞)〉 7.17282×10−1 6.58021×10−1 5.75435×10−3

〈M5(t∞)〉 6.28688×10−1 6.4618×10−1 1.43275×10−3

〈M6(t∞)〉 5.8083×10−1 6.41941×10−1 5.07495×10−4

〈M7(t∞)〉 5.51998×10−1 6.4017×10−1 2.37414×10−4

〈M8(t∞)〉 5.33243×10−1 6.39342×10−1 1.37252 ×10−4

〈M9(t∞)〉 5.20334×10−1 6.38919×10−1 9.2585×10−5

〈M10(t∞)〉 5.11055×10−1 6.38688×10−1 6.96382×10−5

〈M11(t∞)〉 5.04154 ×10−1 6.38555×10−1 5.64986×10−5

〈M12(t∞)〉 4.98876×10−1 6.38474×10−1 4.83183×10−5

〈M13(t∞)〉 4.94747×10−1 6.38424×10−1 4.28831×10−5

〈M14(t∞)〉 4.91454×10−1 6.3839×10−1 3.90821×10−5

〈M15(t∞)〉 4.88784×10−1 6.38368×10−1 3.63131×10−5

〈M16(t∞)〉 4.86588×10−1 6.38353×10−1 3.4228×10−5

〈M17(t∞)〉 4.84761×10−1 6.38342×10−1 3.26148×10−5

〈M18(t∞)〉 4.83222×10−1 6.38335×10−1 3.13381×10−5

〈M19(t∞)〉 4.81916×10−1 6.38329×10−1 3.03085×10−5

〈M20(t∞)〉 4.80796×10−1 6.38325×10−1 2.94646×10−5

〈M21(t∞)〉 4.79828×10−1 6.38322×10−1 2.87631×10−5

〈M22(t∞)〉 4.78987×10−1 6.38319 ×10−1 2.81731×10−5

〈M23(t∞)〉 4.78251 ×10−1 6.38318×10−1 2.76715×10−5

〈M24(t∞)〉 4.77603×10−1 6.38316×10−1 2.72411×10−5

〈M25(t∞)〉 4.7703×10−1 6.38315×10−1 2.68687 ×10−5

〈M26(t∞)〉 4.7652×10−1 6.38314×10−1 2.65436 ×10−5

〈M27(t∞)〉 4.76064×10−1 6.38313×10−1 2.6255×10−5

〈M28(t∞)〉 4.75655×10−1 6.38313×10−1 2.59731×10−5

〈M29(t∞)〉 4.75235×10−1 6.38312×10−1 2.54911×10−5

〈M30(t∞)〉 4.70101×10−1 6.3831×10−1 2.29418×10−5

Table E.12: Mean-field late-time i-mer populations for G′ = 0.1s−1, Di =
(
i∗

i

)c
s−1,

J = 10s−1 and L = 1s−1 and with imax = 30.
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Appendix F

List of Symbols

Vectors are given by small letters in bold font, as in e, matrices by capital letters in

bold font, as in E, and operators in the following font, as in E. The symbol ∗ denotes

both, the complex conjugate of a function, and the value of a function at the critical

cluster size in nucleation theory. The particular meaning will be clear from the context.

|{0}〉: vacuum state

〈.〉: expectation value

〈.〉SG: average in the Stochastic Gauge Theory

∆: Laplace operator

δ
δ[.]

: functional derivative

4n: time increments in the numerical evaluation

A: symmetric matrix in the Gaussian integral transformation

Av,l [m2]: area at the vapour-liquid interface in heterogeneous nucleation the-

ory

Al,s [m2]: area at the gas-phase and cluster interface in heterogeneous nucleation theory

a[.]: drift coefficient in a stochastic differential equation
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+
ai: creation operator at lattice site i

−
ai: annihilation operator at lattice site i

b[.]: diffusion coefficient in a stochastic differential equation

b: vector containing the entangled functions in the Gaussian integral transfor-

mation

C [m]: circumference of ring

|Ci〉: coherent state vector at lattice site i

〈Ci|: dual of the coherent state vector at lattice site i

|{C}〉: the direct product of all coherent state vectors

〈Cx〉ss [m−2]: average concentration of x-mers on the surface of a grain particle

according to the stationary mean-field model

〈Cx(t)〉 [1]: average concentration of x-mers on the surface of a grain particle

according to the dynamical mean-field model

〈Cmon,ads〉 [m−2]: mean concentration of the surface-adsorbed monomers

〈C1〉kin [m−2]: constant boundary condition for the solution of the stationary

Becker-Döring rate equations estimating the mean concentration of the surface-

adsorbed monomers

C: set of complex numbers

c: constant exponent for the decay rate coefficient in the power law model

D: number of dimensions

Df : measure in the space of paths
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Ddv [s−1]: decay rate coefficient in the direct vapour deposition mechanism em-

ployed in the determination of the mean cluster populations

Dsd [s−1]: decay rate coefficient in the surface diffusion mechanism employed in

the determination of the mean cluster populations

dX [m2s−1]: diffusion rate coefficient for molecules of type X in the continuum

limit in D = 1 space dimensions

d1, d2 [m]: grain diameter

df : measure on the real numbers

ddv [s−1]: decay rate coefficient in the direct vapour deposition mechanism em-

ployed in the determination of the mean cluster concentrations

dsd [s−1]: decay rate coefficient in the surface diffusion mechanism employed in

the determination of the mean cluster concentrations

E [J]: energy barrier against the surface diffusion of monomers

Ed [J]: energy barrier against diffusion from one lattice site to another

Ee [J]: energy barrier against evaporation

ei: eigenvectors in the stability analysis of binary heterogeneous chemical pro-

cesses according to the mean-field theory

e: vector containing the auxiliary functions in the Gaussian integral transfor-

mation

Fν : Fock space

F (z): generating function in the stationary master equation approach

G1, G2: independent standard Gaussian random variables
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G(z): generating function candidate in the stationary master equation approach

Gdv [s−1]: growth rate coefficient in the direct vapour deposition mechanism

employed in the determination of the mean cluster populations

Gsd(t) [s−1]: monomer-dependent growth rate coefficient in the surface diffusion

mechanism employed in the determination of the mean cluster populations

G′sd [s−1]: constant growth rate coefficient in the surface diffusion mechanism

employed in the determination of the mean cluster populations

4Ghom [J]: formation free energy of a cluster for homogeneous nucleation pro-

cesses

4G [J]: formation free energy of a cluster for heterogeneous nucleation pro-

cesses

g: stochastic variable with Gaussian distribution

gA: amplitude gauge

gP : phase gauge

gS: step gauge

gdv [s−1]: growth rate coefficient in the direct vapour deposition mechanism em-

ployed in the determination of the mean cluster concentrations

gsd(t) [s−1]: monomer-dependent growth rate coefficient in the surface diffusion

mechanism employed in the determination of the mean cluster concentrations

g′sd [m2s−1]: constant growth rate coefficient in the surface diffusion mechanism

employed in the determination of the mean cluster concentrations

gdvi∗Fletcher [s−1]: growth rate of the Fletcher critical cluster

H: Hilbert space
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H: quasi-Hamiltonian operator

H: quasi-Hamiltionan function

H̃: Doi-shifted quasi-Hamiltonian function

Iν(z): modified Bessel function of the first kind

=(f): imaginary part of f

i: corresponds to
√
−1

i: number of molecules in a cluster

i∗: number of molecules in a critical cluster for heterogeneous nucleation pro-

cesses

imax: number of molecules in the largest unstable cluster in heterogeneous nu-

cleation processes

i∗exp: experimentally determined number of molecules in the critical cluster for

heterogeneous nucleation processes

i∗Fletcher: number of molecules in a Fletcher critical cluster for heterogeneous

nucleation processes

i∗Fletcher;hom: number of molecules in a Fletcher critical cluster for heterogeneous

nucleation processes

JX [s−1]: source rate coefficient for molecules of type X in the continuum limit

in D = 0 space dimensions

J [s−1m−3]: flux of gas-phase species

J [s−1]: mean source rate coefficient for monomer attachment in heterogeneous

nucleation processes employed in the determination of the mean cluster populations
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JFletcher [m−2s−1]: nucleation current in the Fletcher model

Jexp [m−2s−1]: experimental nucleation current

JBD,kin [m−2s−1]: kinetic nucleation current in the Becker-Döring model

JBD,dyn [s−1]: dynamical nucleation current in the Becker-Döring model

JDP [s−1]: stochastic nucleation current according to the Doi-Peliti formalism

jX [m−1s−1]: source rate coefficient for molecules of type X in the continuum

limit in D = 1 space dimensions

j [m−2s−1]: mean source rate coefficient for monomer attachment in heteroge-

neous nucleation processes employed in the determination of the mean cluster

concentrations

KXY [s−1]: reaction rate coefficient for the recombination of molecules of type

X and Y in the continuum limit in D = 0 space dimensions

K∗ [m−2s−1]: kinetic pre-factor

kXY [m1s−1]: reaction rate coefficient for the recombination of molecules of type X

and Y in the continuum limit in D = 1 space dimensions

L [Nm]: latent heat per molecule

LX [s−1]: evaporation rate coefficient for molecules of type X in the continuum

limit in D = 0 space dimensions

LthdX [s−1]: thermal desorption rate coefficient for molecules of type X in the

continuum limit in D = 0 space dimensions

LcrdX [s−1]: cosmic ray desorption rate coefficient for molecules of type X in the

continuum limit in D = 0 space dimensions
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L: lower bound of the late-time value of the modulus of the exact solution to

the first stochastic constraint equation in one space dimension for zero source rate in

the binary heterogeneous chemical reaction process

L: lattice

L [s−1]: mean evaporation rate coefficient for desorption of monomers in hetero-

geneous nucleation processes employed in the determination of the mean cluster

populations

l: lattice constant in the discrete D-dimensional lattice

lX [s−1]: evaporation rate coefficient for molecules of type X in the continuum

limit in D = 1 space dimensions

li: eigenvalues in the stability analysis of binary heterogeneous chemical pro-

cesses according to the mean-field theory

l [m]: tunnelling length

4l [m]: lattice constant in the discrete D = 1-dimensional lattice

l [s−1]: mean evaporation rate coefficient for desorption of monomers in hetero-

geneous nucleation processes employed in the determination of the mean cluster

concentrations

〈Mx〉ss [1]: average population of x-mers on the surface of a grain particle ac-

cording to the stationary mean-field model

〈Mx(t)〉 [1]: average population of x-mers on the surface of a grain particle ac-

cording to the dynamical mean-field model

Mi: occupation number for clusters of order i

{M}: total number of clusters

M̄i(0) [1]: initial mean number of clusters of order i
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M̊i: steady state solutions for clusters of order i in the stability analysis of

heterogeneous nucleation processes according to the mean-field theory

m [kg]: mass of the gas-phase adsorbate

N : number of numerical grid points

Ni: occupation number with multi-index i denoting the location in the lattice

NS [per monolayer]: number of lattice sites

{NX}: total number of adsorbed molecules of chemical species type X

N̊X : steady state solutions for chemical species of type X in the stability anal-

ysis of binary heterogeneous chemical processes according to the mean-field theory

|Ni〉: state vector at lattice site i

〈NX(t)〉 [1]: average population of molecules of type X on the surface of a

grain particle for D = 0 space dimensions according to the dynamical mean-field

model

〈NX〉ss [1]: average population of molecules of type X on the surface of a grain

particle for D = 0 space dimensions according to the stationary mean-field model

〈NX〉ss [1]: average population of molecules of type X on the surface of a grain

particle in D = 0 space time dimensions according to the stationary master equation

〈NX〉sslit [1]: average population of molecules of type X on the surface of a grain

particle in D = 0 space time dimensions according to the stationary master equation

as presented in the standard literature

N: set of the molecule numbers of all chemical species involved in a binary re-

action network

N: set of natural numbers
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〈nX(x, t)〉 [m−1]: average density of molecules of type X on the surface of a

grain particle for D = 1 space dimensions according to the dynamical mean-field

model

n̄X(0) [1]: mean initial occupation number per lattice site for a chemical species of

type X

nX(0) [m−D]: mean initial density of a chemical species of type X in the con-

tinuum limit for D space dimensions

nX [m−3]: gas phase concentration of the chemical species of type X

〈nX(x, t)〉 [m−D]: average density of molecules of type X on the surface of a

grain particle for D space dimensions according to the dynamical mean-field model

O: general observable operator

O: general observable function

O: symbol for higher orders in a series expansion

P : probability distribution for the total number of adsorbed molecules

Peven: probability for an even number of particles

Podd: probability for an odd number of particles

Pnucl: nucleation probability

PX [s−1]: production rate for the average number of molecules of chemical species of

type X in the mean-field framework

P : Gaussian probability distribution for the stochastic noises

PX [s−1]: production rate for the average number of molecules of chemical species of

type X in the stochastic framework
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〈{P}|: projection state

p [Nm−2]: saturation vapour pressure

R [m]: radius of a spherically symmetric grain particle in astrochemistry

Rseed [m]: radius of a spherically symmetric grain particle in aerosol science

R: set of real numbers

<(f): real part of f

r(i) [m]: radius of a cluster

r∗Fletcher [m]: Fletcher critical radius

S[.]: action functional

S̃[.]: Doi-shifted action functional

S̃0[.]: Doi-shifted action functional containing the initial conditions

Sexp [1]: experimentally determined onset saturation ratio

SFletcher [1]: onset saturation ratio obtained from Fletcher theory

S [1]: vapour phase saturation ratio

S [1]: sticking coefficient

s [m−2 monolayer−1]: surface density of lattice sites

T [K]: temperature of the grain surface

Tgas [K]: temperature of the gas-phase

306



τ : time index labelling a time slice

4t [s]: time increment

tE [s]: evaporation time

texp [s]: activation time of clusters in heterogeneous nucleation processes as de-

termined in experiments

tn: discretised time

ttransient [s]: approximate time needed to reach equlibrium

tS [s]: surface diffusion time

t∞ [s]: time after equilibrium has been reached

U1, U2: independent uniformly distributed random variables

Vcap [m3]: volume of the cap-shaped liquid phase in heterogeneous nucleation

theory

vX [ms−1]: speed of the gas-phase species X

vl [m3]: volume of a single molecule in the liquid phase

W (t) [s
1
2 ]: Wiener process in D = 0 space dimensions

W (.; t): probability distribution for cluster microstates

4Wn [s
1
2 ]: Wiener increments in D = 0 space dimensions

w(x, t)[m
1
2 s

1
2 ]: Wiener process in D = 1 space dimensions

4wt,x [m
1
2 s

1
2 ]: Wiener increments in D = 1 space dimensions

X: ratio between radius of seed and Fletcher critical radius
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XY,n: unknown variables in discretised time for chemical species of type Y

4x [m]: separation between numerical grid points

Zhom [1]: Zeldovich factor for homogeneous nucleation processes

Z [1]: Zeldovich factor for heterogeneous nucleation processes

α: implicitness parameter in numerical schemes

β: implicitness parameter in numerical schemes

γ: Gamma function

δ [m]: average jumping distance of monomers on the surface of the grain

δij: Kronecker delta

δ(.): Dirac Delta distribution

δ[.]: functional Dirac delta distribution

ζX [m2Ds−1]: diffusion rate coefficient for molecules of type X in the continuum

limit in D space dimensions

ζ̄X : diffusion rate coefficient for molecules of type X on a discrete lattice

η(t) [s−
1
2 ]: stochastic noise in D = 0 space dimensions

η(x, t) [m−
1
2 s−

1
2 ]: stochastic noise in D = 1 space dimensions

η(x, t) [m−
D
2 s−

1
2 ]: stochastic noise in D space dimensions

Θ(.): Heaviside step function

Θ(., .): coefficients in term of first order in the expansion of Bessel functions
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for small perturbations of the index

θ: contact angle between the tangent to the surface of the seed and the tan-

gent to the surface of the cluster

ιX [m−Ds−1]: source rate coefficient for molecules of type X in the continuum

limit in D space dimensions

ῑX : source rate coefficient for molecules of type X on a discrete lattice

κXY [mDs−1]: reaction rate coefficient for the recombination of molecules of

type X and Y in the continuum limit in D space dimensions

κ̄XY : reaction rate coefficient for the recombination of molecules of type X and

Y on a discrete lattice

λX [s−1]: evaporation rate coefficient for molecules of type X in the continuum

limit in D space dimensions

λ̄X : evaporation rate coefficient for molecules of type X on a discrete lattice

µ: constant indicating the fraction of chemical species remaining on the pre-

existing surface

ν [s−1]: vibration frequency of monomers

νv [s−1]: frequency of vibration of the adsorbed chemical species

ρ [kgm−3]: liquid density

σ [m2]: cross section of the spherically symmetric seed particle

σeff [Nm−1]: effective surface tension between gas-phase and cluster

σexp [Nm−1]: experimentally determined surface tension between gas-phase and

cluster
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σl,s [Nm−1]: surface tension between cluster and seed

σv,l [Nm−1]: surface tension between gas-phase and cluster

σv,s [Nm−1]: surface tension between gas-phase and seed

ς̄X : separation rate coefficient of a chemical species of type X on a discrete lat-

tice

Υ: Gauge variable

Φ(t) [1]: eigenvalue function of the coherent state vector in the continuum limit

in D = 0 space dimensions according to the Doi-Peliti formalism

Φ̄(t) [1]: solution to the stochastic constraint equations in the continuum limit

in D = 0 space dimensions according to the Doi-Peliti formalism

Φ̂(t) [1]: solution to the stochastic constraint equations in the continuum limit

in D = 0 space dimensions according to the Stochastic Gauge Theory

〈Φ(t)〉Y [1]: average density of molecules of type X on the surface of a grain

particle in the continuum limit in D = 0 space dimensions according to the path

integral average for Y realisations of the noise in the Doi-Peliti formalism

〈Φx(t)〉Y [1]: average population of x-mers on the surface of a grain particle ac-

cording to the path integral average for Y realisations of the noise in the Doi-Peliti

formalism

φ(x, t) [m−1]: eigenvalue function of the coherent state vector in the continuum

limit in D = 1 space dimensions according to the Doi-Peliti formalism

φ̄(x, t) [m−1]: solution to the stochastic constraint equations in the continuum

limit in D = 1 space dimensions according to the Doi-Peliti formalism

〈φ(x, t)〉Y [m−1]: average density of molecules of type X on the surface of a

grain particle in the continuum limit in D = 1 space dimensions according to the path

integral average for Y realisations of the noise in the Doi-Peliti formalism
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ϕi: eigenvalue function of the coherent state vector on a discrete lattice with

lattice sites i according to the Doi-Peliti formalism

ϕ∗i : complex conjugate of the eigenvalue function of the coherent state vector

on a discrete lattice with lattice sites i according to the Doi-Peliti formalism

ϕ̃i: Doi-shifted eigenvalue function of the complex conjugate of the coherent

state vector on a discrete lattice with lattice sites i according to the Doi-Peliti

formalism

ϕ̄(t) [1]: solution to the stochastic constraint equations in the continuum limit

according to the Doi-Peliti formalism in D = 0 space dimensions according to the

Doi-Peliti formalism

ψ(x, t) [m−D]: eigenvalue function of the coherent state vector in the contin-

uum limit in D space dimensions according to the Doi-Peliti formalism

ψ̄(x, t) [m−D]: solution to the stochastic constraint equations in the continuum

limit in D space dimensions according to the Doi-Peliti formalism

ψ̃(x, t) [m−D]: Doi-shifted complex conjugate of the eigenvalue function of the

coherent state vector in the continuum limit in D space dimensions according to the

Doi-Peliti formalism

〈ψ(x, t)〉Y [m−D]: average density of molecules of type X on the surface of a

grain particle in the continuum limit in D space dimensions according to the path

integral average for Y realisations of the noise in the Doi-Peliti formalism

ξ: size parameter for the grain surface area

Boltzmann constant:

k := 1.3806504(24)× 10−23 JK−1

Planck constant:

h := 6.62606896(33)× 10−34 Js
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