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Ambiguity and Risk for Aversive Events

Dominik R. Bach, Ben Seymour, and Raymond J. Dolan
Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom

In economic decision making, outcomes are described in terms of risk (uncertain outcomes with certain probabilities) and ambiguity
(uncertain outcomes with uncertain probabilities). Humans are more averse to ambiguity than to risk, with a distinct neural system
suggested as mediating this effect. However, there has been no clear disambiguation of activity related to decisions themselves from
perceptual processing of ambiguity. In a functional magnetic resonance imaging (fMRI) experiment, we contrasted ambiguity, defined as
a lack of information about outcome probabilities, to risk, where outcome probabilities are known, or ignorance, where outcomes are
completely unknown and unknowable. We modified previously learned pavlovian CS� stimuli such that they became an ambiguous cue
and contrasted evoked brain activity both with an unmodified predictive CS� (risky cue), and a cue that conveyed no information about
outcome probabilities (ignorance cue). Compared with risk, ambiguous cues elicited activity in posterior inferior frontal gyrus and
posterior parietal cortex during outcome anticipation. Furthermore, a similar set of regions was activated when ambiguous cues were
compared with ignorance cues. Thus, regions previously shown to be engaged by decisions about ambiguous rewarding outcomes are
also engaged by ambiguous outcome prediction in the context of aversive outcomes. Moreover, activation in these regions was seen even
when no actual decision is made. Our findings suggest that these regions subserve a general function of contextual analysis when search
for hidden information during outcome anticipation is both necessary and meaningful.
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Introduction
Many predictions an organism makes about the world contain
uncertainty. In decision making, economists distinguish differ-
ent kinds of uncertainty. Risk refers to situations in which we
know the precise probabilities of each outcome (Bernoulli, 1738).
Decision making under risk is axiomized in expected utility the-
ory to provide the basis of rational choice (von Neumann and
Morgenstern, 1944). These axioms are violated when outcome
probabilities are not known with certainty (that is, they do not
correspond to a point estimate), a situation referred to as ambi-
guity (Ellsberg, 1961).

People tend to avoid outcomes associated with ambiguity
(Becker and Brownson, 1964; Slovic and Tversky, 1974; Larson,
1980; Curley et al., 1986; Pulford and Colman, 2008), where one
critical feature is lack of information about outcome probabilities
(Larson, 1980; Camerer, 1995). It has been suggested that the
amygdala and dorsomedial prefrontal and orbitofrontal cortex
mediate decision making under ambiguity (Hsu et al., 2005).
However, choices based on ambiguous monetary gambles are

also reported to engage lateral prefrontal cortex, anterior insula,
and parietal regions (Huettel et al., 2006). A limitation of both
these studies is that they conflate activity associated with the per-
ception of ambiguity and decisions that ensue from this percep-
tion. Brain activations in these studies might therefore be attrib-
utable to decision making as well as to what has been termed in a
recent neuroeconomic framework the representation process,
that is, the identification and assessment of external and internal
states (Rangel et al., 2008). Furthermore, since both studies used
ambiguous rewarding outcomes, it is not known whether brain
areas activated in these studies also encode ambiguity about aver-
sive outcomes.

The importance of a distinction between outcome prediction
with, and without, choice is embedded in theoretical accounts of
a distinction between pavlovian and instrumental conditioning.
Thus, pavlovian conditioning has often been used to study the
distinction between prediction and control (Dayan and Balleine,
2002). Accordingly, to study the neural basis of ambiguity per-
ception per se, we used a pavlovian conditioning procedure and
provided participants with ambiguous situations in which an
outcome prediction is made, but no actual decision required.
Within this context, we defined ambiguity as “known-to-be-
missing information, or not knowing relevant information that
could be known” (Camerer, 1995; p. 645). This definition of
ambiguity implies the fact that information is hidden from the
observer, and draws distinction with ignorance, in which proba-
bilities of outcomes are unknown, but are also unknowable (un-
less exploration and learning are permitted).
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We degraded previously learned conditioned visual stimuli
(CS�) so that, under the ambiguity condition, they only allowed
a probabilistic prediction of outcome probabilities. These stimuli
were contrasted with the original CS� that conveyed a point
estimate of outcome probabilities. Critically, to distinguish re-
sponses to lack of information alone from lack of information
that could potentially be known (that is, hidden information), we
also included completely novel stimuli that carried no predictive
information, thereby corresponding to a uniform prediction of
outcome probabilities (Fig. 1). Thus, we could identify brain ar-
eas responding to probabilistic prediction of outcome probabil-
ities as opposed to certain outcome probabilities and to com-
pletely unknown outcome probabilities. Our design ensured that
on average, all conditions carried the same outcome probability.

Materials and Methods
Design and participants
The study used a pavlovian conditioning paradigm within a single facto-
rial design with four levels (CS�, risk, ambiguity, and ignorance).
Twenty healthy right-handed participants (10 male, 10 female, mean
age � SD: 27.4 � 5.8 years) were recruited from the general population
and given monetary compensation of £40 for participation. Handedness
was controlled with the Edinburgh Handedness Inventory (Oldfield,
1971) (mean � SD: 83.6 � 23.2). All participants gave written informed
consent, and the study was approved by the local ethics committee.

Independent variable
There were four levels for the independent variable “condition,” which
varied on each trial in an event-related design. (1) A perceptually distinct
CS� served as internal baseline condition and signaled the absence of the
UCS on this trial. (2) In the risk condition, one of three previously
learned compound CS�’s, signaling three different CS–UCS contingen-
cies, was presented with a white frame indicating that no additional noise
was added. CS–UCS contingencies were 0.25, 0.50, and 0.75 respectively.
(3) In the ambiguity condition, noise was added to the previously learned
compound CS� by randomly flipping its four information bits at a noise
rate of 20% per bit. Thus, participants were unable to generate a point
estimate of outcome probabilities, although a probabilistic prediction
was possible by taking into account the second-order distribution of
underlying risky CS�. This condition was signaled to participants by a
gray frame around the CS�. Each of 16 possible stimuli appeared at least
once, while their frequencies were determined by the noise rate. After the
expectancy period, together with the UCS, the original underlying CS�
was shown on the screen. UCS contingency of ambiguous cues was de-
termined by the UCS contingency of the underlying risky cue. Critically,
occurrence of the underlying CS�, and thus the frequency of electric
shocks, was identical between the risk and the ambiguity condition (Fig.
2 F). (4) In the ignorance condition, a completely new set of CS� was
presented, which had the same internal structure and CS–UCS contin-
gency as the ambiguity stimuli. However, different symbols were used,
and the internal pattern of each stimulus was reversed from left to right.

Thus, it was not possible to predict the outcome
of these stimuli, and each single stimulus did
not occur often enough to fully learn outcome
contingencies.

Stimuli
CS. CS� stimuli in all conditions consisted of
four pieces (i.e., information bits) that could
take two different states. In one stimulus set, a
combination of four rectangles was used that
could be either yellow or blue. In the other set,
each of four geometrical symbols could be ei-
ther a circle or a triangle (Fig. 2 B). The use of
these two stimulus sets was balanced across par-
ticipants, so that one half received the colored
rectangles as risk/ambiguity stimuli and the
dark green symbols as ignorance stimuli, and
vice versa for the other half. A white frame in-

dicated the risk, or noiseless, condition, and a gray frame (40%) the
ambiguity, or noise, condition (Fig. 2C,D). No frame was presented in
the ignorance condition (Fig. 2 E). A light blue rectangle without frame
served as CS� in both stimulus sets (Fig. 2 A). All stimuli were presented
on a black background, randomly either above or below the screen
center.

UCS. As unconditioned stimulus, participants received an aversive 500
Hz train of electrical pulses (square wave, individual pulse duration: 200
�s, total duration: 500 ms, individually adjusted current, mean � SD:
14.3 � 4.3 mA), delivered via pediatric ECG electrodes (DENIL10026,
Spes Medica) to the left hand. Stimulation intensity was determined
before the experiment started and was set slightly below the pain toler-
ance. After the procedure was explained to participants, discomfort and
pain thresholds were roughly assessed with ascending stimulation inten-
sity. Random stimulus intensities were then delivered around the pain
threshold to establish a stimulus-percept function. The random proce-
dure was repeated after the experiment. There was no change in percep-
tion of the stimuli between the preexperiment and postexperiment mea-
surements ( p � 0.70).

Experimental procedure
Pavlovian fear conditioning. After participants arrived in the laboratory,
the task was fully explained and the UCS level was determined as de-
scribed above. Participants then engaged in a pavlovian learning task to
condition the different CS–UCS contingencies (CS�: no UCS, CS�:
0.25, 0.50, and 0.75). They were not informed about the nature of the
learning task; however, instructions included a statement that “after
some symbols, electric stimulation will be more frequent than after oth-
ers.” Pavlovian conditioning was conducted in the scanner environment
with the scanner running to ensure an identical context between learning
and the subsequent critical experimental paradigm. Each of the four CS
(CS� and three CS�) occurred 20 times in pseudorandomized order.

To ensure learning, skin conductance responses (SCRs) were recorded
in a subsample of 14 participants, while in the remaining 6 participants,
SCR was not recorded due to a technical failure. Recordings were made
on thenar/hypothenar of the left hand using 8 mm Ag/AgCl cup elec-
trodes (EL258, Biopac Systems). Constant voltage was provided by an
integrated skin conductance preamplifier (AT64, Autogenic Systems).
The signal was converted to an optical pulse (minimum resolution 7 Hz),
digitally converted with 100 Hz sampling rate (Micro1401, Cambridge
Electronic Design), and recorded (Spike2, Cambridge Electronic De-
sign). Further analysis was performed in Matlab (Version 7.1., Math-
Works). The signal was temporally filtered with a bidirectional Gaussian
kernel of 0.5 s full duration at half maximum and high-pass filtered with
a first order Butterworth filter and a cutoff frequency of 0.0159 Hz,
corresponding to a time constant of 10 s. After visual inspection for
artifacts, anticipatory conditioned reaction was calculated as mean SCR
during CS presentation, corrected for 1 s baseline before stimulus onset.
Learning was modeled using a simple Rescorla–Wagner rule (Rescorla
and Wagner, 1972), assuming a learning rate of � � 0.3 and initial
outcome prediction values of 0.5 for all four CS. For each individual
participant, a trial-by-trial general linear model was then fitted, using

Figure 1. Examples for outcome prediction after risky, ambiguous, or ignorance cues, visualized by a second-order distribution
of outcome probabilities. In the risk condition, prediction of outcome probability corresponds to a point estimate (left). In
ambiguous trials, outcome probabilities can be predicted using a second-order distribution, thus rendering outcome predictions
probabilistic. Ignorance cues convey no information about outcomes, the outcome probability could therefore have any value, and
its prediction corresponds to a uniform distribution.
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predicted outcome, variance of the outcome
distribution, and prediction error on the last
trial as regressors. Beta estimates of these mod-
els were analyzed on the group level using one-
sample t tests. Responses to CS� and CS� were
additionally averaged across trials and analyzed
in a one way ANOVA model using the GLM
approach in SPM 12.0 (SPSS).

Scanning. After the pavlovian conditioning,
the concept of noisy reception was explained as
well as the occurrence of completely new sym-
bols in the ignorance condition (see instruc-
tions in supplemental methods). During the
scanning experiment, 45 stimuli for the risk,
ambiguity, and ignorance conditions were pre-
sented in pseudorandomized order. Fifteen in-
terspersed CS� served as internal baseline (that
is, as null events) to allow recovery of blood
oxygen level-dependent (BOLD) signal in re-
gions of interest.

Intratrial procedure
At the beginning of each trial, a CS was pre-
sented for 5.2 s (Fig. 3). Participants were tasked
to indicate the position of the CS (above or be-
low the screen center) with a button press as
quickly as possible, while between responses,
they held down a resting button. After the CS
disappeared, the outcome was signaled at the
center of the screen by a lightning-style sign to
indicate shock (which was delivered concur-
rently) or with the words “no shock.” In the
ambiguity condition, the original “risky” CS�
was shown in place of the ambiguous CS�. Af-
ter 0.5 s, these signs disappeared and 0.7 s later,
a fixation cross was shown during the intertrial
period. The intertrial interval was jittering be-
tween 4.8 s and 7.8 s resulting in a mean trial
onset asynchrony of 12.7 s.

Image acquisition
Images were acquired on a 3 T Allegra head
scanner (Siemens Medical Systems) with a head
coil for RF transmission and signal reception.
Field maps were acquired with a standard man-
ufacturer’s double echo gradient echo field map
sequence (TE, 10.0 and 12.46 ms; TR, 1020 ms;
matrix size, 64 � 64), using 64 slices covering
the whole head (voxel size, 3 � 3 � 3 mm).

For functional images, we used BOLD signal-
sensitive T2*-weighted transverse single-shot
gradient-echo echo-planar imaging (EPI; flip
angle �, 90°; bandwidth BW, 3551 Hz/pixel;
phase-encoding (PE) direction, anterior–pos-
terior; bandwidth in PE direction BWPE, 47.3
Hz/pixel; TE, 30 ms; effective TR, 2600 ms). The
manufacturer’s standard automatic 3D-shim
procedure was performed at the beginning of
each experiment. Each volume contained 40
slices of 2 mm thickness (1 mm gap between
slices; field of view, 192 � 192 mm 2; matrix
size, 64 � 64). BOLD sensitivity losses in the
orbitofrontal cortex and the amygdala due to susceptibility artifacts were
minimized by applying a z-shim gradient moment of �0.4 mT/m � ms, a
slice tilt of �30°, and a positive PE gradient polarity (Weiskopf et al.,
2006, 2007). In two scanning sessions, 377 and 382 functional whole-
brain volumes were acquired. The first 4 volumes, or 10.4 s, of each
session were discarded to obtain steady-state longitudinal magnetiza-
tion. Each session was concluded by 8 volumes, or 20.8 s, without stimuli.

Whole-brain anatomical scans were acquired using a modified driven
equilibrium Fourier transform (MDEFT) sequence with optimized pa-
rameters as described previously (Deichmann et al., 2004). One hundred
seventy-six sagittal partitions were acquired with an image matrix of
256 � 224 (read � phase) and twofold oversampling in read direction
(head/foot direction) to prevent aliasing (isotropic spatial resolution 1
mm; �, 15°; TR/TE/TI, 7.92 ms/2. 4 ms/910 ms; BW, 195 Hz/pixel). Spin
tagging in the neck was performed to avoid flow artifacts in the vicinity of
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Figure 2. Stimulus set 1 (left) and 2 (right) each of which were used on half of the participants to exclude condition effects due
to simple graphical differences. A, CS� that was unchanged throughout the experiment, both in the preceding learning task and
at test. B, Three CS� that were used in the preceding learning task with different CS–UCS contingencies of 0.25, 0.50, and 0.75
as indicated. C, Risk condition used the three original CS� cues and was signaled by a white frame around the original CS�. D,
Example for an ambiguous stimulus, derived from stimulus C by flipping one of its information bits. The ambiguity condition was
signaled by a gray frame around the degraded CS�. E, Example for a novel stimulus, corresponding to stimulus D by exchanging
colors and geometric symbols, and reversing its information bits from left to right. F, All 16 possible ambiguous cues from set 1
(similarly for set 2 with geometric symbols instead of color bars). Each cue was surrounded by a gray frame (omitted in the figure).
For each cue, its frequency during the whole experiment is indicated as well as the probability of electric shock after this cue,
averaged over the whole experiment. Both frequency and shock probability were determined by the chance that this cue was
derived from any of the three underlying risky cues, given a noise rate of 0.2 per information bit.

1650 • J. Neurosci., February 11, 2009 • 29(6):1648 –1656 Bach et al. • Passive Prediction of Ambiguity and Risk



blood vessels. The flip angle of the tagging pulse was chosen to be 160° to
account for B1 losses in the neck. Special RF excitation pulses were used
to compensate for B1 inhomogeneities of the transmit coil in superior/
inferior and anterior/posterior directions. Images were reconstructed by
performing a standard 3D Fourier Transform, followed by modulus cal-
culation. No data filtering was applied in k-space or in the image domain.

Image analysis
Images analyzed with statistical parametric
mapping (SPM 5; Wellcome Trust Centre for
Neuroimaging; www.fil.ion.ucl.ac.uk/spm) on
Matlab (version 7.1., MathWorks). EPI images
were generated off-line from the complex
k-space raw data using a generalized recon-
struction method based on the measured EPI
k-space trajectory to minimize ghosting. They
were then corrected for geometric distortions
caused by susceptibility-induced field inhomo-
geneities. A combined approach was used
which corrects for both static distortions and
changes in these distortions due to head motion
(Andersson et al., 2001; Hutton et al., 2002).
The static distortions were calculated for each
subject from a field map that was processed us-
ing the FieldMap toolbox as implemented in
SPM5. Using these parameters, the EPI images
were then realigned and unwarped, a procedure
that allows the measured static distortions to be
included in the estimation of distortion changes
associated with head motion. The motion-
corrected images were then coregistered to the
individual’s anatomical MDEFT image using a
12-parameter affine transformation, and nor-
malized to the Montreal Neurological Institute
(MNI) T1 reference brain template (resampled
voxel size 2 � 2 � 2 mm). Normalized images
were smoothed with an isotropic 8 mm full-
width-at-half-maximum Gaussian kernel. The
time series in each voxel were high-pass filtered
at 1/128 Hz to remove low-frequency con-
founds. We modeled the presentation of cues
for each trial type as a separate boxcar regressor
convolved with a canonical hemodynamic re-
sponse function. In fear conditioning studies,
phasic responses to CS� onset are often ob-
served in the amygdala (see, for example,
Büchel et al., 1998; Labar et al., 1998) and occur
early rather than late during CS� presentation
(Cheng et al., 2007). To assess such responses,
we modeled cue onset with a stick function,
thus enhancing sensitivity for early responses to
cue onset, and analyzed responses to CS� �
CS� and to the shock probability. In both
models, outcome onset and outcome valence
(shock or no shock) were included as additional
regressors. To account for serial acquisition of
different slices in one volume, time derivatives
for each regressor were included into the
model.

Position of cue (and thus, the type of motor
response), response latency, motor speed, and
the correctness of response were normalized for
each participant, convolved with a hemody-
namic response function, and, together with
their time derivatives, orthogonalized with re-
spect to each other and included into the model
as regressors of no interest. Further regressors
of no interest were movement parameters de-
rived from the realignment procedure and cor-
rection regressors for variance caused by the
cardiac cycle (Glover et al., 2000). Statistical

parametric maps were generated from linear contrasts of interest (ambi-
guity � risk, ambiguity �ignorance) in each participant. A second level
random effect analysis (RFX) was then performed using one-sample t
tests on contrast images obtained in each participant for each compari-
son of interest (df � 19). To identify areas that show an enhanced re-
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Figure 3. A, Study design. After an initial pavlovian conditioning task with one CS� and three CS� indicating three different
outcome contingencies of 0.25, 0.5, and 0.75, these CS� were degraded in an ambiguity condition to resemble the original CS�
but allow no accurate prediction of outcomes. This was explained to participants as “noisy reception” and indicated by a gray
frame. The original cues were shown in a risk condition as indicated by a white frame. In an ignorance condition, completely novel
stimuli served as control. Additionally, the CS� was interleaved and served as internal baseline. B, Intratrial timeline. Each cue
was shown for 5.2 s, during which participants had to respond to its position on the screen (above or below the screen center).
Then, the outcome was indicated for 0.5 s and delivered. In ambiguous trials, the underlying original CS� was shown together
with the outcome indication. ITI, Intertrial interval.
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sponse to ambiguity compared with both other conditions, a conserva-
tive conjunction analysis was performed on the second level, testing
against conjunction null (Friston et al., 2005; Nichols et al., 2005). We
report clusters with a voxel-level threshold of p � 0.001 (uncorrected). In
regions of interest for which we had prior hypotheses (posterior inferior
frontal gyrus/sulcus, anterior insula, posterior parietal cortex, orbito-
frontal and dorsomedial prefrontal cortex, and amygdala), results were
small-volume corrected for familywise error within a sphere of 15 mm
diameter around peak coordinates as reported by Huettel et al. (2006)
and Hsu et al. (2005), and reported at a voxel-level threshold of p � 0.05.
For the conjunction analysis, small-volume correction was performed on
peak coordinates from main contrasts. BOLD responses outside of re-
gions of interest are reported at a cluster-level threshold of p � 0.05,
whole-brain corrected for familywise error.

Behavioral data analysis
The effect of the condition factor on reaction time measures and task
performance was analyzed in a one-way factorial design, using GLM
procedures in SPSS 12.0.

Results
Pavlovian conditioning
During pavlovian conditioning, anticipatory skin conductance
responses (conditioned reactions, CR) were greater for the CS�
than for the CS� (F(1,12) � 22.9; p � 0.001). Predicted outcome
was significantly correlated with CR (t(13) � 2. 4; p � 0.05),
showing that participants learned the CS–UCS contingencies. Af-
ter conditioning, we tested for typical brain responses associated
with conditioned stimuli. By modeling phasic responses to pre-
dictive cue onset we observed enhanced activity in left amygdala
for the contrast of CS� (i.e., risky cues) compared with CS�,
surviving small-volume correction with a sphere of 15 mm diam-
eter around peak coordinates reported previously for phasic
amygdala responses in fear conditioning (Morris and Dolan,

2004). Across the three CS�, activity in the ventral striatum
showed a linear increase with increasing probability of negative
outcome, surviving small-volume correction with a sphere of 15
mm diameter around peak coordinates reported for representa-
tion of outcome probability (Tobler et al., 2007) (additional in-
formation can be found in supplemental Table 1, available at
www.jneurosci.org as supplemental material).

Behavioral responses to the concurrent task
During the critical phase of the experiment, participants were
tasked to respond to the position of the cue, to provide a broad
measure for attention. Thus, we were able to test whether our
experimental manipulation influenced cognitive processes re-
lated to a concurrent task. There was no effect of the condition
factor on mean and variance of overall reaction times or response
latency, or on task performance ( p � 0.30 for all ANOVAs).

BOLD responses to contrasts of interest
Our critical contrasts of interest related to the postlearning pe-
riod and involved evoked responses to presentation of ambigu-
ous and risky, and ambiguous and ignorance cues, respectively.
Enhanced differential responses to ambiguous compared with
risky stimuli were found bilaterally in posterior inferior frontal
gyrus (pIFG), extending into middle frontal gyrus (MFG), and
bilaterally in the posterior superior parietal lobule (pPAR) in
Brodmann area 7 (Table 1, Fig. 4A,B). All of these clusters sur-
vived small-volume correction around peak coordinates as re-
ported by Huettel et al. (2006). Additional clusters that survived
whole-brain correction were found in occipitotemporal cortex
including higher visual areas. We did not observe any activation
that was greater for risky than for ambiguity cues.

Table 1. BOLD responses to contrasts of interest

Brain regions
Brodmann area of
local maxima Hemisphere

Voxel
number

Voxel t
score

Montreal Neurological Institute brain
template coordinates of local maxima

Ambiguity � risk
Posterior inferior frontal gyrus 44, 45 Right 50 4.53 52, 14, 14; 58, 10, 26

44, 9 Left 147 4.87 �52, 10, 26; �42, 2, 30
Posterior superior parietal lobule 7 Right 44 4.41 34, �50, 50; 30, �58, 44

7 Left 93 4.97 �26, �54, 46
Middle frontal gyrus 9 Right 15 4.22 40, 10, 30
Fusiform gyrus, inferior temporal gyrus, and parahippocampal gyrus* 19 Right 536 5.97 32, �56, �8; 30, �68, �10;

44, �54, �4
Fusiform gyrus and middle temporal gyrus* 37 Left 188 5.41 �44, �58, 0; �52, �60, 2;

�28, �68, �10
Ambiguity � ignorance

Posterior inferior frontal gyrus and middle frontal gyrus 44, 46, 9 Right 605 5.47 42, 16, 24; 58, 16, 16; 44, 4, 28
Posterior inferior frontal gyrus 46 Right 69 4.82 36, 32, 8; 34, 24, 4
Posterior inferior frontal gyrus and middle frontal gyrus 9 Left 232 5.26 �52, 8, 30; �44, 6, 30; �48, 6, 38
Posterior superior and inferior parietal lobule 7 Right 86 4.48 30, �58, 44; 30, �64 , 50
Occipital cortex* 18, 37, 17 Bilateral 4229 8.31 �30, �82, �8; 32, �46, �14;

10, �88, 6
Middle temporal gyrus and precuneus* 19 Left 173 5.27 �34, �82, 20; �28, �76, 38

Conjunction: (ambiguity � risk) and (ambiguity � ignorance)
Posterior inferior frontal gyrus 9 Right 10 4.0 54, 14, 14
Middle frontal gyrus 44 Right 26 4.17 44, 12, 30
Posterior inferior frontal gyrus 9 Left 69 4.26 �50, 8, 26
Posterior superior parietal lobule 7 Right 3 3.68 30, �60, 44
Fusiform gyrus and parahippocampal gyrus* 19, 37 Right 566 4.77 28, �70, �14; 38, �52, �14;

30, �56, �8
Fusiform gyrus and lingual gyrus* 18, 19 Left 344 5.29 �28, �68, �10; �20, �74, �12;

�26, �80, �8

All clusters are reported at a voxel-level significance threshold of p � 0.001, small-volume corrected with p � 0.05 for familywise error (FWE) in regions of interest for a 15 mm sphere around peak coordinates as reported by Huettel et al.
(2006), and cluster-level corrected with p � 0.05 for FWE outside regions of interest (marked *).
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Our second contrast of interest involving ambiguous com-
pared with ignorance stimuli revealed a set of clusters similar to
the above contrast. Specifically, we observed pIFG clusters ex-
tending into middle frontal gyrus (MFG) on the right (Fig. 4C,D).
The contrast also showed enhanced posterior parietal responses
in the right hemisphere. All of these clusters survived small-
volume correction around peak coordinates as reported by Huet-
tel et al. (2006). Additional clusters that survived whole-brain
correction were found in occipitotemporal regions. We did not
observe activations that were stronger in response to ignorance
than to ambiguity cues.

To identify brain areas that showed a greater response to am-

biguous than to both risky and ignorance
cues, we performed a conjunction analysis.
This analysis revealed enhanced responses
in bilateral pIFG, extending into right
MFG. A small cluster in right pPAR also
showed conjoint responses across both
contrasts (Figs. 4E,F, 5). All of these clus-
ters survived small-volume correction
around peak coordinates from individual
contrasts. Additionally, occipitotemporal
areas, including visual areas, responded to
ambiguous cues and survived whole-brain
correction.

In an exploratory analysis, ignorance
and risk were contrasted. No activations
were observed that were significantly
greater to ignorance than to risk cues. Ce-
rebral responses in the primary visual cor-
tex were greater for risk than for ignorance
cues and are summarized in supplemental
Table 2 (available at www.jneurosci.org as
supplemental material).

Discussion
The present study examined neural re-
sponses to perception of ambiguity in the
absence of choice. We show that within
posterior inferior frontal gyrus (pIFG) and
posterior parietal cortex (pPAR), two
brain regions previously reported to en-
code decision making about ambiguous
outcomes (Huettel et al., 2006) respond to
the perception of ambiguity in the absence
of decision making. As our paradigm in-
volved negative outcomes, namely painful
electric shocks, it appears brain regions
previously associated with ambiguity of
reward prediction respond also to ambi-
guity in aversive predictions. Critically,
these responses occur only when a lack of
information in outcome predictions could
potentially be known. That is, neural re-
sponses evoked by ambiguity are not cor-
related with the distribution width of the
outcome prediction, which is highest un-
der complete ignorance, but rather with
the fact that information was hidden from
the observer.

Economic ambiguity as a contextual cue
The lateral prefrontal cortex (LPFC) is im-
plicated in component processes related to

behavioral planning (Lee et al., 2007; Sakagami and Watanabe,
2007; Tanji et al., 2007). Most notably for the present study,
where no actual behavior was required in response to the cues, it
was suggested that the LPFC is involved in maintaining a state
representation in a given environment (Lee et al., 2007). The
LPFC area has also been parsed into functionally specific subre-
gions on a dorsal/ventral (Tanji and Hoshi, 2008) or on an ante-
rior/posterior axis (Koechlin and Summerfield, 2007). In the
present study, LPFC activation was observed in a posterior dorsal
area, the pIFG. It has been suggested that the ventral LPFC is
more involved in processing specific, object-related information,

Figure 4. BOLD responses to ambiguous cues, compared with risky or ignorance cues. Clusters are overlaid on a mean T1-
weighted image from all participants, and displayed at a voxel-level threshold of p � 0.001 (uncorrected) and small-volume
correction with regard to peak coordinates of previous studies as indicated in the methods section. A, Bilateral pIFG responses to
ambiguous compared with risky cues. B, Bilateral pPAR and occipital responses to ambiguous compared with risky cues. C,
Bilateral pIFG responses to ambiguous compared with ignorance cues. D, Right pPAR and bilateral occipital responses to ambig-
uous compared with ignorance cues. E, Bilateral pIFG responses to ambiguous compared with both risky and ignorance cues
(conjunction analysis, testing against conjunction null). F, Right pPAR and bilateral occipital responses to ambiguous compared
with both risky and ignorance cues (conjunction analysis, testing against conjunction null).
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while the dorsal prefrontal cortex is in-
volved in more general functions of mon-
itoring strategic behavior (Tanji and
Hoshi, 2008). A framework for a hierar-
chical anterior/posterior distribution of
functions, the cascade model (Koechlin
and Summerfield, 2007), proposes that
simple stimulus–response relationships
are controlled by premotor regions alone,
while more contextual cues draw on the
posterior prefrontal cortex, with conflict-
ing information drawing on even more an-
terior regions. Within these two accounts
of LPFC subregions, dorsal pIFG activa-
tion noted in the present study, as well as
in the study by Huettel et al., might reflect a representation of a
contextual cue that requires more than mere sensorimotor con-
trol. Although in the experimental task, no behavioral response
to the cues was necessary, in an everyday environment, economic
ambiguity might provide a strong incentive to search for hidden
information during an anticipation period, thus overriding sim-
ple sensorimotor processes. This search could be under the con-
trol of pIFG, even in the absence of an actual decision. This is in
line with a previous study examining a noneconomic context and
showing activity in the same areas during outcome prediction
when contextual cues implied uncertainty (Huettel et al., 2005).
This speculation is also supported by the finding that the pIFG
responds to economic situations requiring further information
search, for example sudden changes in the reward landscape
within a dynamic economic game (Li et al., 2006).

We found a region within pPAR (namely BA 7) activated in
response to ambiguity as opposed to risk and ignorance. This area
shares connections with the prefrontal cortex (Tanji and Hoshi,
2008) which have been suggested to convey integrated sensory
information to executive areas, the strength of which may medi-
ate the effectiveness of executive control (Jung and Haier, 2007).
Parietal areas responsible for sensory integration represent a crit-
ical decision variable in perceptual decision making (Gold and
Shadlen, 2007) and are implicated in valuation of economic
choices (see, for example, Platt and Glimcher, 1999; Dorris and
Glimcher, 2004; Glimcher et al., 2005). The responses we ob-
served in this region can be construed as reflecting value calcula-
tions, and these calculations are necessarily more complex for
ambiguous than for risky or ignorance trials due to the second-
order probability distribution of ambiguous outcomes. However,
since experimental cues differed not only in the information they
conveyed but also in color and shape, pPAR responses could
conceivably reflect these sensory differences. We think this is
unlikely given that differences in these sensory attributes would
be expected to be reflected in differential responses in earlier
stages of processing, such as visual areas in the occipital cortex.

Finally, a competing explanation for different responses be-
tween conditions relates to general attentional differences as, for
example, between risk and ambiguity. However, our behavioral
data indicate no such difference with respect to reaction time
measures and task performance. For additional control, we also
covaried reaction times and task performance out of the BOLD
signal. Finally, we note there is no easy formalization of attention
and in so far as risk and ambiguity embody greater or lesser
requirements for information search then it can be argued that
each of these processes necessarily entail different levels of
attention.

Economic ambiguity and uncertainty of outcome
It has been argued that the critical feature of economic ambiguity
is a lack of information (Ellsberg, 1961). In economic studies, this
is often operationalized as gambles including a second-order dis-
tribution of outcome probabilities (Becker and Brownson, 1964;
Larson, 1980; Curley et al., 1986; Pulford and Colman, 2008),
which implies a probabilistic prediction of outcome probabili-
ties. This key concept of lack of information about outcome
probabilities has been translated as uncertainty of outcomes, or
the distribution width of outcome predictions (Yates and
Zukowski, 1976). In our experiment, any measure of distribution
width of possible outcomes is highest for ignorance and lowest
for the risk condition. Since in many experiments on economic
ambiguity, the second-order outcome is hidden from the ob-
server, an alternative view involves reformulation of economic
ambiguity as “not knowing relevant information that could be
known” (Camerer, 1995; p. 645). This quantity is highest in the
ambiguity condition in our study.

We failed to identify any brain region responding to uncer-
tainty of outcomes that showed greater responses for ignorance
over ambiguity and at the same time for ambiguity over risk.
Indeed, virtually all neural responses to ambiguity compared
with risk were also evident when ambiguity was compared with
ignorance. Therefore, the critical aspect of ambiguity in our ex-
periment, in terms of observable neural activity, was not uncer-
tainty in itself but the fact that the missing information was hid-
den to the observer and could potentially be revealed. This fits an
interpretation of ambiguity as a contextual cue necessitating fur-
ther search for information before the outcome occurs, i.e., dur-
ing the anticipation period. In contrast, under complete igno-
rance of outcome distributions, an optimal strategy might
involve sampling from outcomes rather than looking for infor-
mation in the environment. This is reflected in phenomena such
as novelty seeking (Wittmann et al., 2008), as opposed to ambi-
guity aversion. The potential to gain knowledge of hidden out-
come information is therefore a critical factor for brain responses
observed here.

One could argue that in the study by Huettel et al. (2006) that
showed similar brain responses as our study, ambiguous gambles
in fact involved a uniform outcome probability distribution, and
that this translates as complete ignorance. The intratrial design of
this experiment however strongly emphasized the fact that prob-
abilities were merely hidden rather than unknown, since they
were revealed after a decision had been made. This is very similar
to our own study where underlying risky cues were shown during
the outcome phase of ambiguous trials, thus emphasizing the fact
that there was information present that could potentially be re-

Figure 5. Parameter estimates for the three conditions risk, ambiguity, and ignorance, contrasted with the CS� that served as
internal baseline. For each participant, estimates were averaged within the clusters displayed in Figure 4, E and F. Values are stated
in arbitrary units (mean across participants � SE).
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vealed, and therefore makes our results on the effect of ambiguity
over ignorance compatible with those of Huettel et al. (2006).

An alternative explanation for these findings relates to the
computational demand which is also highest in the ambiguity
condition compared with both other condition. Both explana-
tions however indicate that uncertainty of outcomes is not the
factor modulating cerebral responses in the present study.
Whether it is also critical for actual economic decisions under
ambiguity cannot be answered within our paradigm.

Ambiguity and the amygdala
In contrast to the present experiment, a previous fMRI study has
suggested that the amygdala and dorsomedial prefrontal and or-
bitofrontal cortex underlie decision making under ambiguity
(Hsu et al., 2005). This is consistent with a framework of the
amygdala as a detector of ambiguity (Whalen, 1998) elaborated
to explain why the amygdala is more activated in response to
fearful (that supposedly do not clearly indicate whether a threat is
present) than to angry faces (Whalen et al., 2001), and why amyg-
dala responses during fear conditioning quickly habituate [sup-
posedly because they reflect uncertainty about CS–UCS contin-
gencies (Büchel et al., 1998)]. Although it is obvious that the
amygdala responds to some kinds of uncertainty [e.g., temporal
unpredictability (Herry et al., 2007)], different forms of uncer-
tainty have not been formally compared with regard to such re-
sponses. The kind of outcome uncertainty described in the afore-
mentioned work is likely to be different from the economic
definition applied in the present study (e.g., the lack of knowledge
about CS–UCS contingencies in fear conditioning paradigms
corresponds to the ignorance and not the ambiguity condition in
the present study). The study by Hsu et al. (2005), although con-
cerned with an economic definition of ambiguity, in fact col-
lapsed different kinds of “ambiguous” situations for analysis of
fMRI data, that is, monetary gambles following a strict economic
definition, but also quizzes, and uninformed gambles against an
informed opponent. Together, the data indicate that there is no
entirely convincing empirical evidence that the amygdala re-
sponds to ambiguity as defined in a strict economic sense, an
inference upheld by our present findings, although such a role of
the amygdala cannot be discounted entirely (Seymour and
Dolan, 2008).

Individual attitudes to risk and ambiguity
The approach taken in the present paradigm entailed dispensing
with any active decisions to study the brain response to percep-
tion of stimuli per se. This makes it difficult to directly infer
participants’ attitudes toward these cues as in terms of formalized
neuroeconomic models that incorporate individual risk and am-
biguity preferences. Previous imaging studies have shown that
neural responses to risky and ambiguous situations might de-
pend on such individual attitudes (Hsu et al., 2005; Huettel et al.,
2006). The present study however was not designed to test such
relations although we acknowledge their likely importance.

Conclusions
Ambiguity is an important aspect of uncertainty in decision mak-
ing. Here, we draw on the definition of ambiguity as a lack of
information that could potentially be known and operationalized
it as a probabilistic prediction of outcomes in a pavlovian condi-
tioning paradigm. In the absence of any decisions, we show that a
network comprising the pIFG and pPAR responds to the percep-
tion of ambiguity as opposed to risk (point estimate of outcome
probabilities) or ignorance (uniform distribution of outcome

probabilities). This corresponds to a network previously been
implicated in decisions involving ambiguity. We conclude that
the critical factor for these responses to ambiguity is anticipation
of an outcome when information about outcome probabilities is
hidden, but potentially knowable. pIFG responses might sub-
serve contextual analysis when search of hidden information is
both necessary and meaningful before the occurrence of an
outcome.
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