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Abstract

Vascular Endothelial Growth Factor (VEGF) is essential for angiogenesis and endothelial func-

tion. Proteomic analysis of Human Umbilical Vein Endothelial Cells (HUVEC) identified Heat

Shock Protein 27 (Hsp27) as a major VEGF-regulated protein. Hsp27 is implicated in actin orga-

nization, cell survival and migration, and is a potential mediator of these VEGF functions in the

endothelium. Studies of pharmacological inhibitors indicated that VEGF-stimulated Hsp27 serine

82 (S82) phosphorylation was resistant to p38 mitogen-activated protein kinase inhibition and me-

diated by Protein Kinase C (PKC). VEGF activated Protein Kinase D (PKD), and this effect was

inhibited by small interfering (si)RNAs targeting selected PKC isoforms. PKD2 siRNA inhibited

VEGF-induced Hsp27 S82 phosphorylation, and PKD2 immunoprecipitated from VEGF-treated

cells selectively phosphorylated Hsp27 at S82. Hsp27 siRNAs markedly inhibited VEGF-induced

cell migration, increased apoptosis and reduced tubulogenesis. Furthermore, inhibition of PKC

but not p38 kinase inhibited VEGF-stimulated cell migration. Overexpression of S82A and S82D

Hsp27 mutants using adenoviral vectors (Ad) had no significant effect on migration. However,

VEGF reduced Hsp27 oligomeric size, and Ad-overexpressed S82D Hsp27 also formed smaller

oligomers than wild-type Hsp27. These findings identify a VEGF/PKC/PKD/Hsp27 S82 pathway,

indicate a role for PKD and HSP27 in VEGF-induced endothelial migration, and also suggest a

specific role for Hsp27 S82 phosphorylation in regulation of Hsp27 oligomerisation.

Further proteomic analysis of HUVECs identified Stomatin-Like Protein 2 (SLP2) as a major com-

ponent of anti-phosphotyrosine immunoprecipitates. The function of SLP2 is little understood.

VEGF did not alter the amount of anti-phosphotyrosine-associated SLP2, and further investiga-
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tions suggested that SLP2 may not be directly tyrosine phosphorylated. SLP2 was localized to

mitochondria and co-immunoprecipitated with Prohibitin, a protein implicated in mitochondrial

function. However, siRNA-mediated SLP2 knockdown did not affect mitochondrial membrane

potential, apoptosis or migration of endothelial cells, and the function of this protein remains

unknown.
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Chapter 1

Introduction

The vascular circulation is an internal transport system that has evolved in large multicellular or-

ganisms to supply tissues with nutrients, remove waste products, and to carry substances generated

by one tissue to other parts of the body. It consists of the transport fluid, blood, which is pumped

around the blood vessels or vasculature by the heart.

The vasculature consists of five main types of vessel: the arteries, arterioles, capillaries, venules

and veins (Pocock and Richards 2006). Blood leaving the heart initially enters the elastic great

arteries, which help to smooth the pulsed blood flow generated by the heart, before passing through

muscular arteries and arterioles, key resistance vessels containing smooth muscle which constrict

and dilate to target blood to areas of need and to regulate blood pressure. Blood then enters

capillaries – thin-walled vessels that are the site of most substance exchange between the blood

and underlying tissues, before returning to the heart via the venules and veins.

Most vessels apart from capillaries are composed of three distinct layers (tunicae) separated by

elastic laminae: the intima, media and adventitia, although the width and exact composition of

these layers varies between vessels. The innermost, blood-contacting layer is the tunica intima,

composed of a layer of endothelial cells on their basement membrane and a thin layer of connective

tissue. The tunica media, separated from the intima by the internal elastic lamina, is composed

of smooth muscle cells arranged in a circular layer, and extracellular matrix components such
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as elastin and collagen, and may be innervated for the regulation of vascular tone. The tunica

adventitia, separated from the media by the external elastic lamina, consists of loose connective

tissue and longitudinally-arranged smooth muscle cells, and may also contain other components

such as capillaries to supply nutrients to the vessel itself.

Capillaries are composed of a single layer of endothelial cells on their basement membrane with

some supporting cells (pericytes) attached on the tissue-facing side. As the blood passes through

the capillary lumen, a small quantity of fluid crosses the capillary wall by filtration to contribute

to the interstitial fluid that bathes cells. This fluid can be returned to the capillary by absorption

when the blood pressure in the capillary (controlled by upstream arterioles) is sufficiently low, the

rest enters the lymphatic system, where it is known as lymph.

This thesis is primarily concerned with the effects of Vascular Endothelial Growth Factor (VEGF)

on endothelial cells, particularly those related to VEGF-stimulated intracellular signalling, with a

focus on the role of Heat Shock Protein 27 (Hsp27) and its functions. After a discussion of the

biology of the endothelium, including its role in blood vessel formation and pathology, the effects

of VEGF on endothelial cells will be considered along with the signalling mechanisms involved,

before considering Hsp27 function and signalling with particular reference to endothelial cells.

An overview of the biology of some enzymes and cytokines relevant to the results of this thesis is

also given.

1.1 Structure of the endothelium

Endothelial cells are asymmetric, polarised cells with a blood-contacting apical/luminal surface

facing the vessel lumen, and a basolateral/abluminal surface facing the basement membrane and

tissues. Some cellular components are unevenly distributed, and the apical and basolateral surfaces

express distinct proteins (Muller and Gimbrone 1986).
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1.1.1 Cell junctions and basement membrane

ECs are connected to one another by three types of junction commonly found in other epithelia:

tight, adherens and gap (reviewed by Dejana 2004). All junction types present consist of a trans-

membrane protein on one cell interacting homotypically with another molecule of the same protein

on an adjacent cell. Other proteins bind the cytoplasmic tail of the transmembrane molecule, link-

ing it directly or indirectly to the actin cytoskeleton.

Tight junctions (TJs) form a belt around the endothelial cell, the zonula occludens, and act as a

barrier to the transport of substances across the endothelium via the paracelluar route (between

cells). TJs also have fence-like properties, restricting the diffusion of membrane components and

allowing the maintenance of differing compositions of the apical and basolateral plasma mem-

brane. The key transmembrane proteins of TJs are the claudins, although occludin, junctional

adhesion molecules (JAMs) and nectins may also be present. Endothelial cells express claudins 1,

5 and 12.

Adherens junctions (AJs) also form a belt around endothelial cells, the zonula adherens, and pro-

vide mechanical strength to cell-cell contacts but are also involved in signalling EC–EC contact.

Cadherins, the key transmembrane proteins involved, are indirectly linked to the actin cytoskeleton

by binding to intracellular catenins. All ECs express vascular endothelial (VE)-cadherin, which is

only present on a few cell types and is the main cadherin present in EC AJs (reviewed by Vestwe-

ber 2008). VE-cadherin associates with vascular endothelial growth factor receptor 2 (VEGFR2)

in confluent cells, regulating endothelial cell survival (Carmeliet et al. 1999a, discussed later).

Neuronal (N)-cadherin is also known to be expressed in ECs, but does not localise to adherens

junctions in endothelial cells and is unlikely to be involved in EC–EC adhesion but may be in-

volved in adhesion to other cell types such as pericytes. E-cadherin is also expressed in brain ECs.

Ca2+ binds to the extracellular domain of cadherins, and is required for their structural integrity

and ability to bind homotypically to an adjacent cell.
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Catenins, including β-catenin, plakoglobin/γ-catenin and p120, are able to bind to the cytoplasmic

tail of VE-cadherin, and link it to the actin cytoskeleton. Catenins can translocate to the nucleus

and regulate transcription, allowing EC–EC contact to influence gene expression. Sequestering

of β-catenin by VE-cadherin in juxtaposed endothelial cells is thought to be involved in contact

inhibition of cell growth.

Gap junctions do not form a belt, but exist as fluid-filled channels (connexons) which form direct

links between the cytoplasm of adjacent ECs, allowing the passage of ions and small molecules,

so aiding cell–cell communication. Connexons are composed of individual protein subunits called

connexins (Cx) – ECs express Cx43, Cx40 and Cx37, forming channels around 20 nm in diameter.

ECs also form gap junctions with underlying smooth muscle cells.

Platelet endothelial cell adhesion molecule (PECAM, also known as CD31), a transmembrane

immunoglobulin-like molecule which can participate in homophilic or heterophilic interactions, is

concentrated at EC–EC junctions. Although not part of a defined junctional complex, PECAM is

important in EC–EC adhesion. PECAM staining is often used as a marker for endothelium.

The endothelium, as for other epithelia, rests on a basement membrane produced by the endothelial

cells themselves (Kramer et al. 1984). The basement membrane is usually continuous but may be

discontinuous, and encloses ECs in a sheath in intact vessels. Pericytes are enclosed within the

basement membrane, smooth muscle cells are not. All basement membranes consist primarily of

type IV collagens, laminins, nidogens (entactins) and heparan sulphate proteoglycans (HSPGs)

such as perlecan, with lower amounts of other components such as thrombospondin, fibronectin

and vitronectin (reviewed by Hallmann et al. 2005). The basement membrane may influence cell

behaviour by binding growth factors such as VEGF (via HSPGs), and through the binding of

integrins to components such as laminins.

ECs are tethered to their basement membrane by discrete structures called focal adhesions, which

are linked to the actin cytoskeleton. The key transmembrane proteins present in focal adhesions

and responsible for cell–matrix adhesion are integrins, heterodimeric proteins of one α and one
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β subunit. Key integrins expressed by endothelial cells include the collagen receptors α1β1 and

α2β1, fibronectin receptors α4β1 and α5β1, laminin receptors α3β1, α6β1 and α6β4, and vit-

ronectin receptors αvβ3 and αvβ5 (Silva et al. 2008).

Focal adhesion formation is initiated by binding of integrins to an extracellular substrate, leading

to clustering of integrins at a particular location in the cell membrane and subsequent activation of

the cytoplasmic tyrosine kinase focal adhesion kinase (FAK, reviewed by Romer et al. 2006; Mitra

et al. 2005). Integrin-dependent signalling is an important stimulator of endothelial cell survival

(Brooks et al. 1994), and loss of integrin attachment to the extracellular matrix leads to anoikis of

ECs – detachment-induced apoptosis of normally adherent cells (Brooks et al. 1994, reviewed by

Michel 2003).

1.1.2 Endothelial heterogeneity

The properties of the endothelium vary with location in the vascular network (e.g. arterial ver-

sus venous or capillary endothelium) and the requirements of the organ being supplied, result-

ing from tissue-specific endothelial differentiation (reviewed by Aird 2007). Endothelium can

be broadly classified based on morphology and permeability as continuous, fenestrated or dis-

continuous. Most capillary endothelia are continuous, and do not permit unregulated passage of

plasma proteins or other macromolecules across the endothelium. The porosity of the endothelial

barrier can be increased by the presence of small holes in the endothelial cell body (fenestrae)

or, in discontinuous endothelium, large gaps between endothelial cells. These features are not

present on all endothelium, however. For example, fenestrae in the kidney glomerulus allow the

increased fluid transport rate required for blood filtration, whereas the discontinuous endothe-

lium of liver sinusoids or lymph node high endothelial venules allow passage of large volumes

of plasma constituents across the endothelium, improving nutrient absorption by hepatocytes and

blood screening by lymphocytes respectively. In contrast to these permeability-increasing adapta-

tions, ECs of the cerebral circulation show reduced permeability to ions and hormones due to the
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nature of the tight junctions between cells and lack of fenestrations, so forming the blood-brain

barrier (Brightman and Reese 1969).

Endothelial heterogeneity may be due to either environmental/extrinsic factors, or developmental

programming/intrinsic factors. Local variations in factors such as associating cells, blood flow,

cytokine concentrations, or extracellular matrix components can also alter the properties of the en-

dothelium. Some differences in gene expression observed in freshly isolated ECs were lost during

cell culture (Lacorre et al. 2004), indicating the importance of local factors, whereas other differ-

ences were maintained (Chi et al. 2003), indicative of programming, possibly due to epigenetic

factors.

1.2 Physiological roles of the endothelium

1.2.1 Blood/tissue gatekeeper and transport role

The endothelium is the barrier between the blood and the tissues, and actively regulates the pas-

sage of materials across it. Many blood-borne substances (e.g. nutrients) must physically cross

the endothelium to reach their destination cell from their site of synthesis, although signalling

molecules may instead cause the endothelium to produce a second molecule released basolaterally

which can then contact the target.

Substances can cross the endothelium from the blood to the tissue or vice versa by either the

paracellular route, travelling through the junctions between endothelial cells, or the transcellular

route, travelling through the endothelial cell body itself. Permeability can be either selective as in

receptor-mediated transcytosis, non-selective e.g. by creating holes in endothelial junctions or the

EC body, or semi-selective. The relative contribution of the different trans-endothelial pathways

to the transport of specific substances in vivo depends on the region of the vascular tree in question

and the nature and concentration of the substance.

The endothelium contains a number of structures which increase the permeability of the endothe-
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lial cell body, the presence or function of which can be regulated by various cytokines (reviewed by

Mehta and Malik 2006). These structures include caveolae, fenestrations and vesicular-vacuolar

organelles (VVOs).

Caveolae (literally, ‘little caves’) can often be observed as flask-shaped invaginations of the plasma

membrane, but may also be present wholly within the cytosol, appearing as spherical vesicles 60–

70 nm in diameter (reviewed by Gratton et al. 2004). Caveolae form from lipid rafts, specialised

sections of the plasma membrane rich in cholesterol and sphingolipids, and contain an abundance

of receptors for trans/endocytosis (e.g. LDL, albumin) and signalling (e.g. eNOS, Ca2+ channels,

VEGFR2) (Sonveaux et al. 2004). The defining constituent of caveolae is caveolin-1, a transmem-

brane protein with cholesterol-binding and scaffolding abilities responsible for the sequestration

of cholesterol and receptors into caveolae. ECs derived from caveolin-1-null mice do not contain

caveolae (Razani et al. 2001). The abundance of caveolae in ECs is thought to reflect the need for

high levels of transcytotic transport.

Fenestrae are small pores, around 70 nm in diameter and sealed with a diaphragm, which form a

continuous channel through an endothelial cell and increase the transport rate of water, ions and

small molecules. The diaphragm is a bike wheel-like structure containing plasmalemma protein-

1, composed of a central knob with radiating spokes, and may function in pore selectivity e.g. by

acting as a size filter (Stan et al. 1999; Stan 2007).

VVOs are large organelles forming a continuous channel through the body of an endothelial cell

(a trans-endothelial channel). VVOs contain caveolin-1 and appear to be formed from intercon-

nected vesicles (Feng et al. 1996, 2002), suggesting formation by caveolae fusion, although other

vesicular systems (e.g. clathrin-coated vesicles) may contribute.

1.2.2 Control of vascular tone

Vascular tone is the degree of contraction of vascular smooth muscle present in the vessel wall,

and influences both blood distribution and overall blood pressure, with relaxation of vSMC re-
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sulting in vasodilation. Regulation of vascular tone is important in arterioles, which control blood

distribution, but not in capillaries which do not contain smooth muscle.

Vascular tone can by adjusted by direct actions on vascular smooth muscle cells (vSMCs), e.g. by

cytokines or autonomic nervous stimulation. However the effects of many blood-borne cytokines,

and haemodynamic factors such as shear stress, are mediated by the endothelium. ECs produce

a number of important substances acting directly on vSMCs, the production of which can be

modulated by various vasoactive cytokines acting on the endothelium. Some of the vasoactive

cytokines which function by adjusting endothelial production of these second messengers include

VEGF, acetylcholine, histamine, serotonin, thrombin, angiotensin and adrenaline. Blood flow

(shear stress) also modulates EC production of vasoactive substances. Thus ECs integrate a variety

of signals, adjusting the output to vSMCs as appropriate.

Endothelial-synthesised vasodilators include nitric oxide (NO), prostacyclin (PGI2) (both re-

viewed by Moncada 2006) and endothelial-derived hyperpolarising factor (EDHF). Endothelial-

synthesised vasoconstrictors include endothelin-1 and thromboxane A2. NO and PGI2, which

are also synthesised by non-endothelial cells, additionally inhibit proliferation of vSMCs, instead

maintaining them in a quiescent, contractile phenotype. NO and other factors also affect other cell

types, including the endothelium itself and platelets. Platelet-related effects of NO and PGI2 are

discussed later.

1.2.3 Haemostasis

Interactions between platelets, the endothelium, and plasma proteins are the basis of haemostasis,

the prevention of blood loss from damaged vessels by formation of a localised clot or thrombus.

The haemostatic response involves two interlinked processes – platelet aggregation, leading to the

formation of a platelet plug, and blood coagulation, stabilising the plug as a clot – which serve to

seal the injured site. The response is initiated by the binding of blood-borne coagulation factors

and platelets to tissue-resident proteins including fibrous collagens, von Willebrand factor (vWF)
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and tissue factor. These event initiate platelet activation (including thromboxane A2 synthesis)

and aggregation, and also activate a proteolytic cascade leading to generation of thrombin, the key

effector protease. Thrombin cleaves the plasma peptide fibrinogen to fibrin monomers, which then

polymerise and bind aggregated platelets together, stabilising the clot.

Unwanted thrombosis is an important event in a number of diseases, and blockage of key blood

vessels by a clot can lead to stroke or myocardial infarction. Undamaged endothelium forms

an anti-thrombotic surface, expressing a number of anti-coagulant species. The anti-coagulant

properties of endothelium are important in prevention of thrombus formation in the absence of

injury, and in localising the clotting process to the site of injury (reviewed by Arnout et al. 2006).

1.2.4 Inflammation and immunity

Inflammation is the acute response of an area of the body to tissue damage or infection, charac-

terised by increased blood flow to the affected area (manifested as redness and heat), and increased

tissue oedema as fluid enters the tissues (pain and swelling). Inflammation brings plasma proteins

(e.g. complement) and immune cells to the affected region, where they leave the blood and enter

the tissues to engage antigen.

On pathogen recognition, tissue-resident immune cells produce a variety of cytokines to initiate

the inflammatory response, some of which bind to and activate the endothelium, such as histamine

and in particular tumour necrosis factor-α (TNFα) and interleukin-1 (IL-1). On activation, the

endothelium switches from a non-adhesive to an leukocyte-adhesive surface by displaying new

leukocyte adhesion molecules on its surface, secretes various cytokines and chemokines, and in-

creases its permeability to aid extravasation of both cells and plasma proteins (Kuldo et al. 2005,

reviewed by Pober and Sessa 2007).

Activated endothelium is a major source of the chemokine interleukin-8 (IL8/CXCL8), responsible

for recruiting neutrophils to the site of injury, and later produces the monocyte chemoattractant

CCL2 (MCP-1).
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The main adhesion molecules known to be newly expressed on activated endothelium and partic-

ipating in leukocyte binding are the selectins and the cell adhesion molecules (CAMs) (reviewed

by Ley and Reutershan 2006). Selectins are lectins which bind to a modified trisaccharide (sialyl-

Lewisx) present in leukocyte glycoproteins such as P-selectin glycoprotein ligand-1. CAMs are

immunoglobulin family members, containing a number of Ig-like domains, and bind to integrins

present on leukocytes. The best studied CAMs involved in leukocyte adhesion are Intercellular

CAM-1 and Vascular CAM-1, both of which are upregulated on activated endothelium. A num-

ber of other CAMs are also able to bind leukocytes, including PECAM-1, ICAM-2, and mucosal

addressin cell adhesion molecule-1 (MAdCAM-1).

1.3 Formation and remodelling of the vasculature

1.3.1 Overview

Blood vessel formation is a central physiological process during development and growth, but

occurs only in specific situations in adult life. During development, a complex vascular network

is produced from a single fertilised cell. Post-natal growth requires an expansion of the vascular

network to supply growing organs. In adulthood, vessel growth is required during wound healing,

the menstrual cycle and exercise-induced muscle enlargement.

Angiogenesis is also a key process in the pathogenesis of several chronic diseases, particularly

ocular disorders and cancer. Vascularisation of tumours is required for tumour growth and pro-

gression to life-threatening metastatic cancer, and therapies targeted against the pro-angiogenic

effects of VEGF to decrease blood vessel growth are now in routine clinical use for some cancers.

The major processes involved in blood vessel growth are termed vasculogenesis and angiogenesis

(reviewed by Fischer et al. 2006). Vasculogenesis refers to the de novo formation of a primitive

vascular network by aggregation and differentiation of endothelial precursor cells to ECs, whereas

angiogenesis refers to the remodelling of an existing vascular network and involves growth of new
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vessels, pruning and remodelling of existing vessels, and recruitment of pericytes. A major dis-

tinction between these processes is that during vasculogenesis ECs are produced by differentiation

of distinct non-EC precursor cells, whereas during angiogenesis ECs are produced by proliferation

of other pre-existing ECs. Vasculogenesis was thought to be restricted to early embryonic devel-

opment, but recent evidence suggests that endothelial differentiation from bone marrow-derived

stem cells occurs in the adult (discussed in section 1.3.2.2).

Arteriogenesis, the conversion of capillaries into larger arteries by recruitment of vSMCs and

enlargement of the vessel lumen is also involved in remodelling vessel networks to meet tissue

demands. Arteriogenesis can also occur in pathological situations, such ischaemic heart disease, to

produce a ‘biological bypass’, or collateral artery, around an occluded coronary artery. Endothelial

cells play a key role in vascularisation, forming the initial tubular structures and directing the

subsequent recruitment of perivascular cells – pericytes or smooth muscle cells – which stabilise

newly-formed vessels.

1.3.2 Vasculogenesis

Vasculogenesis consists of the differentiation of mesodermal cells to endothelial precursor cells

(angioblasts), followed by subsequent angioblast differentiation to endothelial cells, in combina-

tion with the development of an initial vessel network, the primary vascular plexus. This initial

network is subsequently expanded and remodelled by angiogenesis.

Vasculogenesis occurs in two separate locations in the embryo during development – the extraem-

bryonic tissues (i.e. those not forming part of the foetus at birth, such as the yolk sac), and inside

the embryo itself. The first clear evidence of blood vessel development in the embryo is observed

in the yolk sac after the onset of gastrulation (around E7.5 in mice), where mesodermal cells mi-

grate to the yolk sac and form aggregates which subsequently differentiate to blood islands, with

the outermost cells giving rise to angioblasts and then endothelial cells, and the inner cells form-

ing haematopoetic precursors and then primitive erythrocytes and other blood cells. Blood islands
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then fuse to form an initial vessel network, the primary vascular plexus, and so vessels are formed

with blood already inside of them. The major steps of vasculogenesis are shown in figure 1.1.

Figure 1.1: Processes involved in vasculogenesis (from Risau and Flamme 1995)

The haemangioblast is defined as the immediate precursor of haematopoetic stem cells and an-

gioblasts, and so is able to give rise to both blood and endothelial cells. Migration of mesoderm-

derived haemangioblasts into the yolk sac or dorsal aorta followed by their aggregation and bi-

directional differentiation are thought to result in the formation of blood islands and intra-aortic

haematopoetic precursors, where cells expressing blood and endothelial markers are tightly asso-

ciated.

For a long time, the haemangioblast was assumed to exist but had not been identified in living
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animals. Supporting evidence for the existence of a haemangioblast includes the close proximity

of blood and endothelial cell differentiation in blood islands, and the presence of common cell

surface markers in ECs and haematopoetic stem cells, some of which are later downregulated

in one or other cell type (e.g. VEGFR2 is lost from haematopoetic stem cells). More recent fate-

mapping studies suggest that some but not all embryonic ECs derive from haemangioblasts (Vogeli

et al. 2006).

1.3.2.1 Endothelial arterial/venous fate

ECs belonging to arteries and veins differ in their protein expression, indicating that the expression

of some proteins is restricted during development to ECs destined to become either arteries or

veins. Proteins exhibiting lineage restriction include the Ephs and ephrins, and neuropilins.

Ephrins are cell surface-expressed ligands which bind to Eph receptor tyrosine kinases, forming a

bi-directional signalling complex, with signals transduced in both the ephrin- and Eph-expressing

cells (Kuijper et al. 2007). Ephrin B2 is predominantly expressed in arterial ECs whereas its

receptor, EphB4, is expressed mainly in venous ECs (Wang et al. 1998), although this distinction

is lost during tissue culture (Korff et al. 2006). Upregulation of ephrinB2 and downregulation of

EphB4 in arterial endothelium is under the control of the Notch pathway.

EphrinB2-null and EphB4-null mice show impaired vasculogenesis and angiogenesis (Adams

et al. 1999; Gerety et al. 1999). Vascular morphogenesis requires bi-directional ephrinB2 sig-

nalling, as mice expressing a truncated form of ephrinB2 lacking the cytoplasmic domain, but not

the full-length form, showed similar vascular defects to ephrinB2-null mice (Adams et al. 2001).

Endothelial cell-specific ephrinB2 knockout mice show identical defects to ephrinB2-null mice

(Gerety and Anderson 2002), indicating that endothelial ephrinB2 is required for normal vascular

development.

Neuropilins (NRPs), co-receptors for several heparin-binding growth factors including VEGF (dis-

cussed below), also display arterio-venous restriction. In the adult vasculature, NRP1 is found only
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on arterial ECs, whereas NRP2 is only found on venous ECs (Yuan et al. 2002). NRP expression

is an earlier marker of arterial and venous ECs than the ephrin/Eph distinction, and segregation of

NRP1 and NRP2 expression occurs in chick embryo blood islands before the onset of flow (Her-

zog et al. 2005). So whereas blood flow and associated pressure may alter protein expression in

ECs, the artery/vein decision also has a strong genetic component.

Certain members of the Notch pathway such as Notch3 and Dll4 are expressed in arterial but

not venous ECs (Eichmann et al. 2005). The Notch pathway (reviewed by Roca and Adams

2007) is a conserved signalling mechanism for communicating between adjacent cells, and is

an important regulator of arterial versus venous endothelial differentiation. Notch receptors are

heterodimers with a transmembrane and extracellular subunits, and mammalian Notches bind to

the ligands Delta-like ligand (Dll) and Jagged, transmembrane proteins expressed by an adjacent

cell. On ligand binding, the extracellular domain of Notch is proteolytically cleaved and, bound

to its ligand, is endocytosed by the ligand-expressing cell. Notch is then cleaved again at the

membrane by γ-secretase, releasing the intracellular domain which enters the nucleus to modify

gene expression. Thus both the Notch-expressing and the ligand-expressing cell receive signals

from the interaction.

1.3.2.2 Post-natal vasculogenesis

Vasculogenesis involves the formation of vessels from non-EC precursor cells, and was until re-

cently thought to be confined to the embryo, with all post-natal vessel growth believed to occur

via angiogenesis. Peripheral blood-isolated cells expressing CD34 (commonly used as a marker

for haematopoetic stem cells) and the VEGF receptor VEGFR2 were able to integrate into sites

of neovascularisation in a hindlimb ischaemia model, producing spindle-shaped cells which lost

haematopoetic markers (CD45) but gained typical endothelial properties, such as production of

NO in response to acetylcholine and VEGF (Asahara et al. 1997). These cells, termed endothelial

progenitor cells (EPCs), were incorporated directly into nascent capillaries, but did not integrate
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into quiescent vessels, suggesting that a population of blood-borne cells expressing haematopoetic

markers homed specifically to the injured site, differentiated to endothelial or endothelial-like cells

and incorporated into a new vessel.

In addition to its role in promoting differentiation of EPCs to ECs, VEGF also increases the con-

centration of CD34+ cells in the blood, termed EPC mobilisation from the bone marrow (Asahara

et al. 1999). These mobilised cells integrated into newly growing vessels in a corneal injury model,

and the greater mobilisation of EPCs was suggested to have led to greater incorporation of EPCs

into the newly forming vessels and the subsequent higher levels of neovascularisation occurring

in the VEGF-treated animals. Ischaemia and Granulocyte-Macrophage CSF were also observed

to mobilise EPC-like cells from the bone marrow (Takahashi et al. 1999a), and these effects may

occur in conjunction with those of VEGF (e.g. via ischaemia-enhanced production of VEGF).

However it should be noted that VEGF and other cytokines are pro-survival and mitogenic factors

for ECs, and may affect non-EPC targets such as other ECs, which may contribute to increased

vessel growth without the involvement of EPCs.

While impressive improvements in blood flow have been observed with stem cells in animal mod-

els, clinical trials in humans have shown much more modest effects (Abdel-Latif et al. 2007).

These difficulties may be related to underpowered trials, but may also be ascribed to a lack of

understanding of which cells to use. At the time of writing there is no agreement about the defini-

tion of an EPC, and researchers have been using different protocols to purify their cells, probably

resulting in studying different cell populations which may have distinct properties. A number of

EPC markers have been proposed, including presence of CD31, CD34, CD133, and VEGFR2, and

absence of CD45.

Another fundamental question about EPCs concerns their mode of action. Large therapeutic ben-

efits have been observed in animal models with only a small degree of incorporation of cells into

growing vessels. Even more surprisingly, benefits have in some cases been observed within hours

of cell administration, too rapidly for differentiation and incorporation into new tissue, suggesting
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a paracrine effect – that is, the EPCs release factors which act on the target tissue (e.g. endothelial

cells) and have a beneficial effect.

The very existence of EPCs continues to be questioned. It does appear that circulating endothelial

progenitors are not normal ECs sloughed off from the endothelium – they proliferate far more

rapidly than sloughed ECs (Lin et al. 2000). However, a number of ‘EPC’ markers are expressed

on immature circulating cells with multiple possible fates, rather than on endothelial-restricted

cells.

1.3.3 Angiogenesis

Angiogenesis involves a number of distinct steps (reviewed by Fischer et al. 2006; Adams and

Alitalo 2007, summarised in figure 1.2), beginning with dilation of the parent vessel and increased

trans-endothelial permeability due to increased fenestration and a loosening of EC–EC junctions.

Extravasation of plasma proteins such as fibronectin provides a scaffold for endothelial cells to mi-

grate on. Increased expression and secretion of proteases such as matrix metalloproteases (MMPs)

degrades the endothelial basement membrane and stromal extracellular matrix, removing a tether

that holds the ECs in place and freeing a path for subsequent migration. Protease-mediated lib-

eration of matrix-sequestered growth factors may also be important. Natural inhibitors of MMPs,

termed tissue inhibitors of metalloproteases (TIMPs), are present throughout the tissues localising

MMP action. Other non-MMP proteases, such as urokinase- or tissue-type plasminogen activator

may also be important at this stage.

Released from the basement membrane and with a cleared path, endothelial cells proliferate and

migrate under the influence of a chemoattractant gradient. During migration, ECs fuse to form

solid cords and later acquire a lumen, behaving in a tentacle-like fashion as they reach out to

contact other sprouts. If all cells in a sprout behaved in a similar manner without co-ordination, this

sort of behaviour would not be possible, and capillary integrity would not be maintained. Instead, a

sprouting capillary is organised as a blind-ended tube consisting of a tip cell, which lacks a lumen,
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Figure 1.2: Sprouting angiogenesis
The main cytokines influencing the different processes are shown to the right of each step.
Further details are given in the text.

and a number of stalk cells, which contain a lumen. Proliferation of endothelial cells in either the

stalk or tip (stalk in mouse retina: Gerhardt et al. 2003, tip in zebrafish: Siekmann and Lawson

2007) extends the length of the capillary as it grows, whereas the direction of growth is determined

by a tip cell which projects many filopodia and responds to gradients of chemoattractant such as

VEGF (Lawson and Weinstein 2002; Gerhardt et al. 2003). This manner of growth is similar to

that used by nerves, with a nerve growth cone performing the role of the tip cell.

Newly-formed endothelial tubes are susceptible to regression via apoptosis of the constituent en-

dothelial cells on withdrawal of soluble pro-survival factors. Coverage of these nascent vessels

with peri-endothelial cells stabilises the new vessels, adding structural support and stimulating

ECM deposition, inhibiting further endothelial proliferation and migration, and preventing vessel

regression on reduction of angiogenic growth factor concentrations (Jo et al. 2006). VSMCs and

pericytes both act as peri-endothelial cells, depending on the vascular bed. VSMCs are present
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in arteries and veins, on the outer side of the endothelial basement membrane, whereas pericytes

cover capillaries, venules and arterioles, and are in direct contact with the ECs themselves. The

origins of peri-endothelial cells are complex and appear to depend on the identity of the newly

vascularised tissue.

The lymphatic system is formed by sprouting from the wall of the embryonic cardinal vein, in

a process termed lymphangiogenesis. Cells in the wall of the cardinal vein begin to express the

transcription factor Prox1, leading expression of VEGF receptor 3 and subsequent VEGF-C-driven

lymphangiogensis (Makinen et al. 2007).

In addition to the formation of additional blood-carrying vessels by sprouting and intussusception,

angiogenesis involves the remodelling of the vasculature into large and small vessels via appro-

priate circumferential growth, branching, and vessel regression. Remodelling converts a uniform

vasculature into one adapted to the needs of the tissue, and is in part regulated by local haemody-

namic factors such as shear and wall stretch.

1.3.3.1 Angiogenic factors and signalling

In addition to Vascular Endothelial Growth Factors (VEGFs, discussed in detail later), important

angiogenic roles have been defined for other growth factors including angiopoietins (Ang)-1 and

2, fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF), Ephs/ephrins, and

Notch and its ligands. Indeed, any cytokine or other molecule which affects any of the multiple

processes involved in angiogenesis is potentially pro- or anti-angiogenic. The complex, highly

choreographed interplay between a number of different factors is responsible for formation of the

mature vasculature.

Angiopoietin-1 (Ang1) is a ligand for the endothelial receptor Tie2 (also called tek). Mice lacking

either Tie2 (Dumont et al. 1994; Sato et al. 1995) or Ang1 (Suri et al. 1996) died during gestation

with vascular defects including reduced vessel branching, indicating a requirement for Ang1 in

remodelling. The endothelial cells in Ang1-null mice did not associate with pericytes and showed
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very high levels of vascular leakage. In contrast, mice overexpressing Ang1 formed vessels that

were resistant to leakage induced by inflammatory agents and VEGF (Thurston et al. 1999). The

anti-leakage role of Ang1 may persist in quiescent adult vessels, as overexpression of Ang1 in

adult mice prevented large scale vascular leakage due to VEGF overexpression (Thurston et al.

2000). Ang1 is expressed by cultured pericytes (Sundberg et al. 2002), strengthening the associa-

tion between ECs and pericytes. Disruption of this interaction, leading to a loss of pericyte cover-

age, would then cause a loss of pericyte-produced vessel stabilisation signals, leading to vascular

leakage and vessel regression. Ang1 binding to Tie2 may also directly promote vessel-stabilising

pathways – Ang1 alters EC junctional proteins in cultured ECs (Gamble et al. 2000).

Ang2 is a Tie2 antagonist, so acting as a competitive inhibitor of Ang1, stimulating matrix degra-

dation and increased permeability (Maisonpierre et al. 1997). In the early stages of angiogenesis,

when the mother vessel must be disrupted to allow endothelial proliferation and migration, Ang2

is required to overcome Ang1-induced vessel stabilisation, and allow VEGF-induced permeability

increases. In the later stages of angiogenesis, when endothelial tubes have formed a circuit and

recruited pericytes, Ang1 stabilises EC-pericyte interactions.

PDGF-B binds to a receptor tyrosine kinase, PDGFR-β. Expression of PDGF-B by endothelial

cells is involved in recruitment of vSMCs and pericytes to endothelial tubes (Hellstrom et al.

1999). Mice lacking PDGF-B or PDGFRβ develop blood vessels with reduced perivascular cell

coverage, which is completely lacking in some regions. Microaneurysms and haemorrhage are

observed, presumably due to the inability of the uncoated vessel to withstand blood pressure,

leading to structural failure.

Fibroblast growth factor (FGF) was the earliest pro-angiogenic factor to be identified (Shing et al.

1984). The fibroblast growth factor (FGF) family contains three angiogenic members: FGF1

(acidic FGF), FGF2 (basic FGF), and FGF4, of which FGF2 is the best studied. FGF2-null mice

are viable whereas knockout of FGFR1, a receptor tyrosine kinase which is the major receptor

for FGF2, is lethal during gastrulation, before the onset of vasculogenesis (Yamaguchi et al. 1994;
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Deng et al. 1994). Expression of a truncated FGFR1 by adenovirus infection of embryos at E9 (af-

ter vasculogenesis begins) resulted in abnormal vascular development (Lee et al. 2000), indicating

that FGF signalling also plays a post-gastrulation role in vascular development. FGF2 lacks export

sequences, indicating that FGF2 may not be a secreted factor, and how it promotes angiogenesis

is not clear, although FGF2-stimulated VEGF production may be involved.

Ephrins and Ephs, mentioned above as markers of arterio-venous identity, are also involved in an-

giogenesis. EphrinB2-null, EphB4-null and EphB2/B3 double-null mice showed defective vascu-

lar formation (Adams et al. 1999; Gerety et al. 1999). Although expressed on other sites, ephrinB2

is required in the endothelium for normal angiogenesis (Gerety and Anderson 2002). Pericytes and

vSMCs lacking ephrinB2 do not properly cover newly-formed vessels leading to lethality due to

vascular leakage (Foo et al. 2006), and indicating a role for ephrinB2 in perivascular cell coverage.

Notch signalling is involved in regulating tip cell formation, with Notch pathway mutants resulting

in inappropriate and excessive tip cell formation and angiogenic sprouting, suggesting that Notch

signalling is required to maintain non-tip endothelial cells as stalk cells. Disruption of Dll4/Notch

signalling by deletion of Notch1 or one allele of Dll4 in endothelial cells led to increased tip

cell formation, and vessel sprouting and branching in the mouse retina, whereas activation of

Notch signalling with soluble jagged1 resulted in reduced tip cell formation and vessel branching

(Hellstrom et al. 2007). Similar findings have been reported in zebrafish (Siekmann and Lawson

2007; Leslie et al. 2007), and the regulation of tip cell formation and angiogenic sprouting by

Notch may be important in turning off VEGF-induced EC migration once a sprout has connected

with another sprout to make a vessel circuit. A simple mechanism for tip-cell mediated inhibition

of further tip cell formation via Notch would involve enhanced expression of Dll4 in a tip cell,

leading to Notch activation in adjacent cells, preventing these adjacent cells from becoming tip

cells. However, Hellstrom et al. (2007) reported that Dll4 did not appear concentrated in tip cells,

but was distributed evenly within the angiogenic sprout.
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1.4 VEGF

Vascular endothelial growth factor (VEGF) was initially characterised as a vascular endothelial

cell-specific mitogen, purified from medium conditioned by bovine pituitary follicular cells (Fer-

rara and Henzel 1989). When purified and sequenced, it was realised that VEGF was the same

substance as the previously identified vascular permeability factor, which had been shown to in-

crease fluid leakage through capillaries (Senger et al. 1983; Keck et al. 1989; Leung et al. 1989).

Since these initial findings it has been shown that VEGF-A165, the substance characterised in these

early studies, is a member of a wider family encompassing a number of related genes, which have

multiple effects on endothelial and other cells, and play a central role in blood vessel development.

The pro-angiogenic role of VEGF has attracted clinical interest for its possible uses in gene ther-

apy to improve the blood supply to ischaemic tissues (therapeutic angiogenesis) and as a target for

anti-angiogenic drugs that prevent tumour vascularisation. In addition to its roles in blood vessel

development during embryogenesis and post-natal growth, VEGF also has roles in adult angio-

genesis during wound healing, the menstrual cycle and exercise-induced muscle enlargement, and

in vascular maintenance (Maharaj and D’Amore 2007). A historical discussion of the discovery

of VEGF and its functions is given by Ribatti (2005).

1.4.1 The VEGF gene family

VEGFs are secreted disulphide-linked glycoproteins, with an approximate molecular weight of

40 kDa. There are currently five members of the mammalian VEGF gene family: VEGFs A, B,

C, D and placental growth factor (PlGF), with additional VEGF-like proteins in parapoxvirus and

snake venom, termed VEGFs E and F respectively (Wise et al. 1999; Ogawa et al. 1998; Takahashi

et al. 2004; Holmes and Zachary 2005). The first discovered and most intensively studied is the

prototypical isoform, VEGF-A. VEGF-A binds to two different cell surface receptors, VEGFR1

and VEGFR2, and some VEGF-A isoforms also bind to other cell-surface molecules, neuropilins

(NRPs) 1 and 2. Binding to VEGFRs and NRPs is thought to be responsible for the biological

48



activities of VEGF-A. An additional VEGF receptor, VEGFR3, is also expressed, and the various

VEGFs vary in which receptor combination they bind to. Some VEGFs also bind to heparin

sulphate proteoglycans, and this may be required for their activity. The receptor binding specificity

of the VEGFs is shown in table 1.1.

Table 1.1: Summary of transmembrane receptor binding by VEGF family members

VEGFR1 VEGFR2 VEGFR3 NRP1 NRP2

VEGF-A + + - + +

VEGF-B + - - + nd

VEGF-C - + + + +

VEGF-D - + + + +

PlGF + - - + nd

VEGF-E - + + + +

VEGF-F + + - - nd

Key: + binds, - does not bind, nd no data found. Not all splice variants of each VEGF bind
to the same receptors. VEGF-C and VEGF-D bind VEGFR2 with high affinity after proteolytic
processing. References and further details are given in the text discussing each family member.

1.4.1.1 VEGF genes and their role in vascular development

The roles of the VEGFs in mouse development have been examined using gene disruption. Ta-

ble 1.2 details the phenotypes corresponding to deletion of specific VEGF-related genes. In a

number of studies, the coding region of the studied VEGF gene was replaced by a detectable re-

porter gene such as β-galactosidase but the gene promoter was retained, so that in heterozygous

(+/-) mice which express both the studied VEGF and the reporter gene, the time at which the gene

is activated during development could be monitored.

VEGF-A is composed of a number of splice variants, all of which bind to VEGFR1 and VEGFR2

and some (including VEGF-A165) bind to neuropilins (further discussed below). The major

VEGF-A isoforms VEGF-A165, VEGF-A121 (Larcher et al. 1998) and VEGF-A189 are pro-

angiogenic when expressed in vivo.
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Heterozygous VEGF-A deletion was lethal at E11–12, resulting in impaired vasculogenesis and

angiogenesis in both the embryo and yolk sac (Carmeliet et al. 1996; Ferrara et al. 1996). Lethal

haploid insufficiency is extremely rare and indicates the importance of VEGF-A concentration, not

just its presence, in embryonic vascular development. Endothelial cells were still formed, even

in VEGF-A-null embryos, although their development appeared delayed with reduced numbers

observed in the dorsal aorta (Carmeliet et al. 1996). Mild overexpression of VEGF-A (2–3-fold

by removal of DNA coding for the 3’ untranslated region of VEGF-A mRNA) causes vascular

defects and is also embryonic lethal (Miquerol et al. 2000), further indicating the importance of

the correct VEGF concentration during vascular development. Of therapeutic importance, VEGF-

A-null embryonic stem cells did not form the usual tumours when injected into mice, indicating

a role for VEGF-A in cancer (Ferrara et al. 1996). The importance of VEGF-A production by

endothelial cells themselves was shown in an EC-specific VEGF-A knockout (Lee et al. 2007). A

third of these mice died in utero, and around 10% died shortly after birth.

This thesis concentrates on work with VEGF-A, the biology of which is discussed in more detail

below. Isoform-specific VEGF-A knockout mice are discussed in section 1.4.2.2.

VEGF-B binds to VEGFR1 and NRP1 (Olofsson et al. 1998), can heterodimerise with VEGF-A,

and is angiogenic in vivo, promoting capillary growth into a subcutaneous matrigel plug (Silvestre

et al. 2003). VEGF-B knockout mice are healthy and fertile (Bellomo et al. 2000; Aase et al.

2001). Both knockout studies noted that VEGF-B appears to have a role in cardiac development,

but the reported phenotypes differed. Bellomo et al. (2000) reported that one month-old VEGF-

B-null mice have smaller hearts than wild-type mice, while Aase et al. (2001) reported that the

electrocardiogram PQ interval was slightly extended, which they attributed to an atrial conduction

defect. They further reported that VEGF-A-induced angiogenesis was normal in an ocular model.

VEGFs-C and D bind to both VEGFR2 and VEGFR3 (Joukov et al. 1996; Achen et al. 1998).

Proteolytic cleavage of VEGFs C and D is required to allow receptor binding and biological ac-

tivity – partly processed forms bind to VEGFR3, whereas in humans fully processed forms also
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bind to VEGFR2 (Joukov et al. 1997; Stacker et al. 1999). However, mouse VEGF-D binds to

VEGFR3 only (Baldwin et al. 2005). VEGF-C and D are pro-angiogenic in in vivo assays (Cao

et al. 1998; Marconcini et al. 1999).

VEGF-C knockout is embryonic lethal, with most embryos dying at E15.5–17.5 (Karkkainen et al.

2004). In heterozygous animals, expression was first observed at E8.5 in the jugular region of the

cardinal vein, from which endothelial cells sprout to form lymphatic sacs – these sacs later give

rise to the lymphatic vasculature. Although heterozygous mice were viable and did belatedly

form lymphatic vessels, these vessels contained fewer cells than normal and were functionally

abnormal. In VEGF-C-null mice, oedema was observed from E12.5 onwards, and was severe at

E15.5, further indicating the lack of a functional lymphatic vasculature leading to inability to drain

tissue fluid and return it to the circulation. Application of VEGF-C to explants from VEGF-C-null

mice caused migration of endothelial cells expressing prox1 (a lymphatic endothelial marker)

towards the VEGF-C. Arteries and veins were morphologically normal in both heterozygous and

knockout mice, indicating a lymphatic-specific role for VEGF-C. In agreement with this knockout

data, Jeltsch et al. (1997) reported that overexpression of VEGF-C in mice resulted in proliferation

and enlargement of the lymphatic vasculature but not circulatory vasculature, further confirming

the role of VEGF-C as a lymphatic endothelial growth factor.

VEGF-D-null mice are viable and appear healthy (Baldwin et al. 2005). Given the similarities

in receptor binding between VEGFs C and D, lymphangiogenesis in VEGF-D-null mice was ex-

amined. No vascular or lymphatic defects were observed, and no noticeable oedema was present,

indicating that any key developmental roles of VEGF-D are compensated by another molecule,

possibly VEGF-C. However, VEGF-D does appear to play a role in lymphangiogenesis, and ec-

topic expression of VEGF-D in the skin of transgenic mice under the control of the keratin 14

gene promoter induced the growth of lymphatic vessels in the dermis, whereas blood vessels were

unaffected (Veikkola et al. 2001). VEGF-D may be less important in mice than humans, given that

mouse VEGF-D lacks VEGFR2 binding capacity.
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Originally isolated from a placental cDNA library (Maglione et al. 1991), the human PlGF gene

is alternatively spliced to produce three isoforms, PlGFs 1, 2 and 3, whereas mice only express a

single PlGF form analogous to human PlGF2. PlGF1 binds to VEGFR1 but not NRP1 whereas

PlGF2 binds to both VEGFR1 and NRP1 (Park et al. 1994; Migdal et al. 1998).

PlGF expression can be observed from E10.5 in developing mice, and PlGF-null mice are viable,

fertile and appear healthy, with little noticeable effect on normal vascular development – however,

VEGF-A was upregulated in PlGF-null mice, and may compensate (Carmeliet et al. 2001). PlGF

appears to have a particular role in pathological angiogenesis. Vascularisation of ES cell-derived

tumours was substantially reduced when the host mouse or the implanted cells lacked PlGF, and

PlGF-deficient mice showed reduced angiogenesis into ischaemic regions of the retina and my-

ocardium (Carmeliet et al. 2001). Tumour cells overexpressing PlGF promote angiogenesis when

injected into mice (Hiratsuka et al. 2001), and these findings coupled with the data from PlGF-null

mice indicate that mouse PlGF can promote angiogenesis in certain situations.

PlGF has little apparent effect when administered directly to cultured endothelial cells (although

it does stimulate tissue factor production, Clauss et al. 1996), but enhances VEGF-stimulated re-

sponses in some ECs (Park et al. 1994) but not others (Carmeliet et al. 2001) – this difference

was suggested to be due to saturating PlGF production by the ECs in the second study. VEGF-

stimulated proliferation, survival and migration was impaired in capillary ECs derived from PlGF-

null mice, as was VEGF-stimulated increases in capillary permeability, whereas endothelial re-

sponses to FGF2 and permeability responses to histamine were unaffected (Carmeliet et al. 2001).

Normal VEGF responses could be restored in the PlGF-null cells/mice by addition of exogenous

PlGF. Together, it appears that PlGF is important for full EC responses to VEGF, but EC-produced

PlGF may be adequate in most circumstances.

Given its minimal direct effect on endothelial cells, PlGF had been proposed to increase VEGF-

stimulated angiogenesis by occupying soluble VEGFR1 thus preventing VEGF sequestration.

This mechanism is unlikely, as no difference in embryonic VEGF concentrations was observed
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in PlGF2-null mice (Carmeliet et al. 2001). PlGF potentiation of VEGF responses may be involve

formation of VEGF/PlGF heterodimers or VEGFR1/VEGFR2 heterodimers (Autiero et al. 2003).

Although disruption of other members of the VEGF family also have negative effects on blood

vessel development, none are as dramatic as those for VEGF-A, and VEGF-A appears to be the

most important member of this family in vasculogenesis and angiogenesis in vertebrates. The

remainder of this section will concentrate on the biology of VEGF-A.

1.4.2 VEGF-A

Mature VEGF-A is a dimer (Mr approx 46 kDa for the VEGF-A165 homodimer), consisting of

two polypeptides linked by two disulphide bonds in a cysteine knot motif. This motif was re-

vealed by the crystal structure of a protein corresponding to residues 8–109 of VEGF, present in

all VEGF-A splice variants, which shows monomers associating in a head-to-tail conformation

(Muller et al. 1997). The cysteine knot is an eight cysteine residue ring composed of one in-

terchain and three intrachain disulphide bonds per monomer, and is also found in other growth

factors including PDGF. The cysteine knot disulphide bonds stabilise the structure of VEGF and

are necessary for dimerisation and biological activity. Point mutation of these cysteine residues

results in monomeric VEGF-A, which biologically inactive (Claffey et al. 1995). As discussed

later, dimerisation is important for the ability of VEGF to cross-link its receptors and so induce a

downstream signal.

VEGF-A is secreted from the cell, and a 26-residue N-terminal signal sequence present in the ma-

ture VEGF-A protein is cleaved on secretion. Comparison of VEGF purified from cell-conditioned

media (glycosylated at Asn75) or synthesised by E. coli (non-glycosylated) showed similar in vivo

angiogenic activity of the two VEGFs, indicating that glycosylation is not required for VEGF bi-

ological activity (Walter et al. 1996), but promotes efficient secretion (Claffey et al. 1995).
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1.4.2.1 Ischaemia-stimulated VEGF-A production

Hypoxic cells increase the expression of VEGF-A165 (Shweiki et al. 1992), so promoting blood

vessel growth towards themselves. VEGF-A expression is regulated by intracellular oxygen con-

centrations due to the presence of a hypoxia response element (HRE) upstream of the VEGF-A

promoter, which binds hypoxia inducible factor-1 (HIF-1). Under normal intracellular oxygen

concentrations, the α subunit of HIF-1 is hydroxylated on key proline residues by prolyl hydrox-

ylases, which use molecular oxygen as the rate-limiting substrate (Epstein et al. 2001, reviewed

by Kaelin and Ratcliffe 2008). Hydroxyproline-HIF-1α is recognised by a the von Hippel-Lindau

protein component of a ubiquitin ligase, and is degraded by the ubiquitin/proteasome pathway.

Under low oxygen concentrations (i.e. during hypoxia), HIF-1α is not hydroxylated on proline,

accumulates and forms heterodimers with HIF-1β which translocate to the nucleus. This complex

binds to the HRE in the VEGF promoter, increasing VEGF transcription in response to hypoxia.

HIF-1α-null mice die at E10.5, with substantial vascular malformations and vascular regression

observed, indicating substantial EC death (Kotch et al. 1999). Hypoxia-induced increases in

VEGF mRNA expression are strongly reduced in HIF-1α-null embryonic stem cells (Carmeliet

et al. 1998), indicating the importance of HIF-1 signalling in hypoxia-stimulated VEGF synthesis.

Hypoxia can also increase the production of VEGF protein by stabilisation of its mRNA (Ikeda

et al. 1995). Increased VEGF-A transcription and mRNA stabilisation provide a system by which

hypoxic tissues increase VEGF-A production and secretion, so attracting new blood vessel growth

(Shweiki et al. 1992).

VEGF-A mRNA expression is increased in HIF-1α-null embryos (Kotch et al. 1999), suggesting

that HIF-1α has essential VEGF-independent roles in embryonic development (as HIF-1α-null

mice express VEGF but still die), and further suggesting that a non-hypoxia-driven pathway also

operates to increase VEGF expression in tissues requiring improved local vascularisation. In cul-

tured cells, reduced glucose concentrations in culture medium led to increased VEGF mRNA

expression (Kotch et al. 1999), suggesting that glucose deficiency as well as oxygen deficiency
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may contribute to increased VEGF expression by ischaemic tissues.

A review of the various transcription factors involved in regulation of VEGF-A expression is given

by Pages and Pouyssegur (2005).

1.4.2.2 VEGF-A splice variants and their role in vascular development

1.4.2.2.1 VEGF-A structural elements and their roles

The human VEGF-A gene is organised as eight exons separated by seven introns, and undergoes

alternative splicing (Tischer et al. 1991). A number of variants have currently been identified:

VEGF-A121 (equivalent to mouse VEGF-A120), VEGF-A145, VEGF-A148, VEGF-A165 (equiv-

alent to mouse VEGF-A164), VEGF-A183, VEGF-A189 (equivalent to mouse VEGF-A188), and

VEGF-A206 are generated by alternative splicing of exons 6 and 7, where the subscript refers

to the number of amino acids present in each secreted polypeptide, excluding the signal peptide

which is cleaved on secretion (Robinson and Stringer 2001). The first isoform to be identified, and

the most intensively studied and apparently biologically most important isoform is VEGF-A165.

Recently a number of ‘b’ isoforms of VEGF-A have been identified, containing a region encoded

by an alternate exon 8 and producing isoforms with an identical number of amino acids as the

variants listed above but causing an alteration in the six carboxy-terminal amino acids (Harper and

Bates 2008). For example, VEGF-A165b results from alternative exon 8 splicing of VEGF-A165

(Bates et al. 2002). VEGF-A165b has been proposed to act as an anti-angiogenic isoform. Cell

culture studies indicate that VEGF-A165b is a weak agonist of VEGFR2, probably because it is

unable to bind NRP1 (Kawamura et al. 2008). Overexpression of VEGF-A165b in vivo has been

shown to inhibit angiogenesis, but the biological or pathological role of endogenous VEGF-A165b

or other ‘b’ isoforms is currently unclear.

Figure 1.3 indicates the derivation of the splice variants from the VEGF-A gene.

VEGF-A165 can be cleaved by the extracellular protease plasmin, generating an N-terminal 110 aa
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Figure 1.3: VEGF-A splice variants
Protein sequences for human VEGF-A isoforms containing the indicated number of amino
acids (on left of sequence) were retrieved from the SwissProt database and aligned with
ClustalX2. Residues are coloured according to Blossum62 score, with darker colours in-
dicating better conservation. Black vertical lines indicate exon boundaries, the red vertical
line indicates the boundary between the N-terminal signal sequence and mature secreted pro-
tein. Exon boundaries were determined via Ensembl. The SwissProt database accession
numbers for the protein sequences used for alignment were: 121 aa isoform, P15692-7; 145,
P15692-6; 148, P15692-5; 165, P15692-4; 165b, P15692-8; 183, P15692-3; 189, P15692-2;
206, P15692.

fragment containing the receptor binding domain, and a C-terminal 55 aa fragment containing a

heparin-binding domain (Owens and Keyse 2007).

The VEGF receptor binding domain, or VEGF homology domain (VHD), binds to VEGFRs 1 and

2 (Keyt et al. 1996). It is apparent that dimerisation and receptor-binding activities of VEGF-A are

encoded by this domain, since a protein formed from VEGF-A residues 8–109 (VEGF-A8−109,

encoded by these domains) has been crystallised as a dimer, and in complex with VEGFR1 (Muller

et al. 1997; Wiesmann et al. 1997). Exons 1–5 (encoding residues 1–114, including the entire

receptor-binding domain) are common to all VEGF-A variants, and include the cleavable signal

sequence, glycosylation site, residues essential for VEGF dimerisation, and residues required for

binding to the receptors VEGFR1 and VEGFR2.

The heparin-binding domain is a region rich in basic amino acids, and is responsible for binding
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to heparin and neuropilins (Pellet-Many et al. 2008). This region is encoded by VEGF-A exons 6,

7 and 8, regions which are not common to all VEGF-A variants, and as a result NRP and heparin

binding varies between splice variants. Of the common splice variants, VEGF-A165 lacks exon 6,

VEGF-A121 lacks exons 6 and 7, and VEGF-A189 contains all exons including all of VEGF-A165

and VEGF-A121, although lacking part of exon 6 present in VEGF-A206 (see figure 1.3).

VEGF-A165 binds to NRP1 and NRP2 whereas VEGF-A121 has been reported to bind to neither

(Soker et al. 1998; Gluzman-Poltorak et al. 2000), implicating VEGF-A exon 7 in NRP binding.

Regions of exon 8 are also important in NRP1 binding as VEGF-A165b, differing from VEGF-

A165 only in the six amino acids at the extreme C-terminus and encoded by exon 8, does not bind

NRP1 (Kawamura et al. 2008). A recent study also reported that VEGF-A121 may, in fact, bind

NRP1 via its exon 8 domain, but does not appear to promote VEGFR2/NRP1 complexation (Pan

et al. 2007). VEGF-A145, lacking exon 7 but containing part of exon 6 not present in VEGF-

A121, also weakly binds NRP1 implicating exon 6 in NRP1 binding (Kawamura et al. 2008). Thus

regions of all exons of the heparin-binding domain contribute to NRP binding. The general roles

of VEGF-A exons/domains are indicated in figure 1.4.

Figure 1.4: Roles of VEGF-A domains

The isolated heparin-binding domain binds to heparin, whereas the isolated receptor-binding do-

main (VHD) shows little heparin-binding activity (Owens and Keyse 2007). Residues from exons

6, 7 and 8 are all likely to contribute to heparin binding. Neither VEGF-A121 nor VEGF-A165b
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bind heparin, indicating a requirement for exons 6 or 7, and exon 8 respectively (Kawamura et al.

2008). The same paper showed that both VEGF-A145 (lacking exon 7) and VEGF-A165 (lacking

exon 6) bind to heparin, indicating that residues from either region in combination with exon 8

can suffice for heparin binding, although stronger binding requires both exons.

In addition to differences in heparin and NRP1 binding, the biological activity of the splice variants

also varies and it is likely that modulation of the VEGF splice variant produced (and possible het-

erodimerisation between VEGF isoforms) allows cells to fine-tune VEGF-A-dependent responses.

For example, VEGF-A165 is reported to be 100-fold more potent as an EC mitogen than VEGF-

A121 (Keyt et al. 1996) but these isoforms are similarly potent EC chemoattractants (Pan et al.

2007). VEGF-A165b is reported to anti-angiogenic, inhibiting VEGF-A165-activated endothelial

cell processes such as proliferation, migration and arterial vasodilation (Bates et al. 2002). Given

that the receptor-binding domain is identical in all VEGF-A splice variants, it is likely that dif-

ferences in heparin and NRP binding contribute to the differences in biological activity between

variants. Possible reasons for this include modulation of VEGFR activity or VEGF binding by

heparin-containing species or NRPs as a result of NRP complexation with VEGFR2, or effects

on VEGF protein distribution. Variation in the conformational change induced in VEGFRs (and

hence VEGFR activation) on binding different VEGF-A variants may also contribute.

Differences in heparin binding are thought to contribute to differences in the diffusability of the

VEGF-A splice variants. VEGF-A was recovered from the conditioned medium of cells trans-

fected with cDNAs encoding the 121 and 165 isoforms, indicating that these forms were secreted

and soluble, but not from medium conditioned by cells expressing the 189 and 206 aa VEGF-A

variants (Houck et al. 1991). This appears to be because the longer isoforms bind strongly to hep-

arin, and are sequestered by cell-surface HSPGs, whereas the 165 aa isoform binds more weakly

and the 121 aa isoform doesn’t bind to heparin at all (Houck et al. 1992). Extracellular matrix-

sequestered VEGF can be cleaved by extracellular proteases such as plasmin, releasing a soluble

bioactive fragment (Park et al. 1993).
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Differences in heparin binding by VEGF-A splice variants, leading to differences in diffusability

(lower binding isoforms diffusing further) may be important in producing a VEGF gradient to

attract angiogenic sprouts, explaining the need for multiple splice variants. Ruhrberg et al. (2002)

reported that VEGF-A binding to heparin produced the appropriate VEGF-A concentration gra-

dient for proliferating endothelial cells to correctly form blood vessels – lack of heparin binding

VEGF-A forms caused proliferating ECs to be incorporated into an existing vessel increasing its

diameter, rather than forming correctly branched vessels.

1.4.2.2.2 Functional role of VEGF-A splice variants: knockout studies

A number of studies have used gene disruption in mice to determine the specific functional roles

of the various VEGF-A splice variants. Mice are known to express at least three VEGF-A splice

variants: VEGF-A120, VEGF-A164 and VEGF-A188 (Breier et al. 1992), murine versions of the

main three isoforms produced by most VEGF-A-expressing cells (Robinson and Stringer 2001).

Stalmans et al. (2002) generated mice expressing single VEGF-A splice variants, by replacing the

VEGF-A genomic sequence with a fused cDNA containing the relevant exons. All heterozygous

mice were apparently normal. VEGF-A120 mice (i.e. expressing only VEGF-A120) died within

two weeks of birth due to heart failure resulting from impaired myocardial angiogenesis (this de-

fect was also observed by Carmeliet et al. 1999b). VEGF-A164 mice were apparently normal and

fertile. Some VEGF-A188 mice died in utero, but the majority survived but with impaired growth

and fertility. Retinal vessel development was normal in VEGF-A164 mice, but was impaired in

both VEGF-A188 mice and most severely in VEGF-A120 mice, with the major defects occurring in

arterial vessels. Thus VEGF-A164 appears to be sufficient for mouse development, and is likely to

mediate the major biological functions of VEGF-A during embryogenesis and post-natal growth.

That the most severe defects were observed in VEGF-A120 mice, a non-heparin binding and freely

diffusable form, suggests that sequestration of VEGF-A in the extracellular matrix may be im-

portant to its functions, possibly required for the correct establishment of VEGF-A concentration
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gradients as mentioned above.

Apparently the only VEGF-A isoform required for normal retinal angiogenesis, VEGF-A164 may

also be the only VEGF-A isoform required for normal bone vascularisation and angiogenesis.

Bone vascularisation was apparently normal in mice expressing only VEGF-A164 but not VEGF-

A120 or VEGF-A188, with the most severe defect observed in VEGF-A120-expressing mice (Zelzer

et al. 2002; Maes et al. 2002, 2004).

VEGF-A165 (often simply referred to as VEGF) is highly expressed and diffusible. It is believed to

be the most biologically potent form of VEGF-A, is the only VEGF-A splice variant required for

apparently normal mouse development, and is responsible for mediating most of the key biological

functions of VEGF-A in endothelial cells. As a result, it is the most intensively studied member

of the entire VEGF family and its effects on vascular endothelial cells are the topic of this thesis.

1.4.3 Receptors for VEGFs

Three signal-transducing cell surface receptors for VEGFs have been identified, termed VEGFR1,

VEGFR2 and VEGFR3. In addition, HSPGs (containing heparin, abundant on the endothelial

surface) and NRPs are also able to bind to various VEGF isoforms.

1.4.3.1 Overview of VEGF receptor structure

VEGFR1, 2 and 3 have a similar structure, composed of an N-terminal extracellular region of

seven immunoglobulin (Ig)-like domains (six in VEGFR3, with domain 5 replaced by a disul-

phide bridge), a single pass transmembrane domain, a tyrosine kinase catalytic domain which is

interrupted by a short region termed the kinase insert region, and a C-terminal tail (reviewed by

Roskoski 2008). VEGF receptors are believed to act as classical receptor tyrosine kinases (RTKs),

with a VEGF dimer bound to a dimerised receptor leading to transautophosphorylation of the re-

ceptor tyrosine residues, producing binding sites for SH2 domain-containing proteins and leading

to initiation of signalling cascades.
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The role of individual VEGF receptors has been analysed by overexpressing individual VEGF re-

ceptors in cells which otherwise did not detectably bind or respond to VEGF-A165 (for example the

porcine aortic endothelial cell line (PAE), Waltenberger et al. 1994). The downstream signalling

components of VEGF signalling pathways appear to be present in these cells, and overexpression

of the appropriate VEGF receptors in these cells causes the transfected cells to respond to VEGF

in a similar way to primary endothelial cells (i.e. by proliferation, migration etc). Data from

these kind of experiments indicates that VEGFRs 1–3 have distinct roles in biological signalling.

Heterodimers of the VEGF receptors have been reported, for example VEGFR1 with VEGFR2

(Autiero et al. 2003) and VEGFR2 with VEGFR3 (Dixelius et al. 2003), which might also have

distinct roles and this may provide a method for fine-tuning VEGF-stimulated signalling.

Co-crystallisation of the extracellular domains of VEGFR1 with VEGF-A8−109 shows that VEGF-

A binding occurs via the second and third Ig-like domains (numbered from the outermost, N-

terminal regions) (Wiesmann et al. 1997). Analysis of deletion mutants of the VEGFR2 extra-

cellular domain, in which a protein lacking Ig-like domains 1,4 and 5 bound VEGF with similar

affinity to a protein containing domains 1–5, indicates that VEGFR2 IgG-like domains 2 and 3 are

primarily responsible for VEGFR2 binding to VEGF-A (Fuh et al. 1998). VEGFR1 and 2 bind

in the groove between the monomers of dimeric VEGF, with contacts on both monomers (Muller

et al. 1997; Wiesmann et al. 1997).

Ig-like domains 2 and 3 may also be the only extracellular domains essential for VEGFR2 down-

stream signalling. Chimeric receptors composed of the extracellular region of VEGFR2 and intra-

cellular and transmembrane regions from VEGFR3 transduced VEGF-stimulated mitogenic sig-

nals, even when VEGFR2 Ig-like domains 4–7 were missing (Fuh et al. 1998).

Evidence for the involvement of the various VEGF binding molecules in mouse development is

discussed below. The role of these receptors in VEGF-stimulated signal transduction is discussed

in section 1.4.4.2.
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1.4.3.2 VEGFR2

VEGFR2, also known as kinase domain receptor (KDR) in humans or foetal liver kinase-1 (Flk-

1) in mice, binds VEGF-A165 with a dissociation constant (Kd) of 0.6 nM (comparable to other

growth factors and their receptors), resulting in VEGF-A165-stimulated tyrosine phosphorylation

of VEGFR2 (Millauer et al. 1993; Quinn et al. 1993). VEGFR2 binds to VEGF-A, fully processed

VEGFs C and D, and VEGF-E.

VEGF-A165 stimulates autophosphorylation of VEGFR2 on tyrosine residues Y951 and Y996

in the kinase insert domain, Y1054 and Y1059 in the catalytic domain, and Y1175 and Y1214

in the C-terminal tail (Dougher-Vermazen et al. 1994; Takahashi et al. 2001; Matsumoto et al.

2005). VEGFR2 does not appear to become phosphorylated on Ser or Thr residues in in vitro

kinase assays (Takahashi et al. 2001). Phosphorylation of the kinase domain residues Y1054 and

Y1059 enhances VEGFR2 tyrosine kinase activity, and is required for phosphorylation of cellular

substrates (Dougher and Terman 1999).

VEGFR2 is expressed in endothelial cells and their progenitors (Millauer et al. 1993; Quinn et al.

1993; Yamaguchi et al. 1993), and was thought to be specific for endothelial cells but has more

recently been identified on other cell types including neurons and their progenitors (Yang and

Cepko 1996; Nishijima et al. 2007).

VEGFR2-null mice die in utero at E8.5–9.5 due to a massive defect in vasculogenesis, whereas

heterozygous mice were fertile and apparently normal (Shalaby et al. 1995). In knockout animals,

no blood vessels were observed in either the embryo or yolk sac, and yolk sac blood islands were

not formed. VEGFR2-null mice contained cells expressing early endothelial markers including

VEGFR3 and tie2, but not the later endothelial marker tie1, and no recognisable endothelial cells

were present, indicating an essential early role of VEGFR2 in endothelial differentiation. Interest-

ingly, VEGF-A knockout mice do form some endothelial cells as discussed earlier, showing that

some roles of VEGF-A in endothelial development can be compensated to some extent, possibly
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by another VEGFR2 ligand such as VEGF-C. VEGFR2-null mice also developed few committed

haematopoetic progenitor cells, indicating a role for VEGFR2 in blood development. VEGFR2

has been reported as a marker which defines the haemangioblast (Yamaguchi et al. 1993), the

blood island precursor which forms endothelial and blood cells in the yolk sac, explaining the

connection between loss of blood and endothelial cells in VEGFR2-deficient mice.

The importance of VEGFR2 tyrosine phosphorylation for blood vessel development was shown by

studies where a Y1173F (equivalent to human Y1175F) point mutation was introduced into mice

(Sakurai et al. 2005). These mice die at E8.5–E9.5 from a large scale vascular defect similar to that

observed for VEGFR2-null mice, with no blood vessels, endothelial cells or blood vessels formed.

Mutation of another VEGFR2 site, Y1212 (equivalent to human Y1214), had no effect and these

mice were fertile and apparently normal. Thus VEGF-induced phosphorylation of specific sites

on VEGFR2 is essential for VEGF activity, presumably because key signalling molecules bind to

specific sites on VEGFR2 to activate downstream pathways.

PAE cells transfected with VEGFR2, with previously undetectable VEGF-A165 binding, undergo

VEGF-A165-stimulated increases in proliferation and migration (Waltenberger et al. 1994), in-

dicating that VEGFR2 is the only receptor required for these responses. VEGFR2 is believed

to be responsible for the majority of VEGF-A-stimulated signalling in endothelial cells (further

discussed in section 1.4.4.2).

1.4.3.3 VEGFR1

VEGFR1, also called Fms-like tyrosine kinase-1 (Flt-1, where Fms is the macrophage colony

stimulating factor receptor), binds VEGF-A165 with a Kd around 20 pM, substantially lower than

that of VEGFR2 (De Vries et al. 1992; Waltenberger et al. 1994). VEGFR1 binds to VEGFs A and

B and PlGF, and can be alternatively spliced to give a soluble, secreted 110 kDa form which also

binds VEGF, so preventing VEGF binding to its cell surface receptors and acting as an antagonist

(Kendall and Thomas 1993). When expressed in PAE cells, VEGFR1 undergoes VEGF-A165-
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dependent tyrosine phosphorylation, but to a much lesser extent than VEGFR2 (Waltenberger

et al. 1994), suggesting that VEGFR1 is a weaker tyrosine kinase than VEGFR2. VEGF-A165

stimulates VEGFR1 phosphorylation at Y794, 1169, 1213, 1242, 1327 and 1333 (Ito et al. 1998,

reviewed by Olsson et al. 2006) although the extent of phosphorylation of some of these residues

is apparently minor, not occurring on every VEGF-stimulated receptor-expressing cell, and is

disputed.

VEGFR1-null mice die in utero, apparently from a vascular defect, with lethality occurring around

E8.5 (Fong et al. 1995). Endothelial cells are present, but these are not correctly assembled into

functional vessels with endothelial cells in the interior of blood islands and the dorsal aorta, indi-

cating that while VEGFR-1 is not required for endothelial cell differentiation it is necessary for

vascular organisation. Blood cells were also formed. This is in contrast to the defect in VEGFR2

mice, where endothelial and blood cells were not formed (Shalaby et al. 1995).

Increased numbers of endothelial precursor cells are present in VEGFR1-null mice, due to in-

creased commitment of mesenchymal stem cells to the (haem)angioblast lineage (Fong et al.

1999a). Using chimeric mice generated from mixtures of VEGFR1-null and wild-type embry-

onic stem cells in various proportions, the same study showed that when diluted the progeny of

VEGFR1-null cells formed parts of apparently normal blood vessels, indicating that endothelial

expression of VEGFR1 may not be required for an EC to participate normally in vessel formation.

VEGFR1 tyrosine kinase activity is not required for normal vascular development. Hiratsuka et al.

(1998) deleted exons encoding the C-terminus of VEGFR1 in mice, so preserving the extracellular

and transmembrane regions but removing the intracellular tyrosine kinase domain. Mice homozy-

gous for the deletion were viable and fertile, and blood vessel development was unaffected. In

contrast, the existence of VEGFR1 at the plasma membrane appears important. Around half of

mice lacking both the tyrosine kinase and transmembrane domains of VEGFR1 (so only produc-

ing the soluble form) die in utero exhibiting vascular defects, whereas the other half survive to

adulthood (Hiratsuka et al. 2005) – on another genetic background, the surviving proportion was
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increased.

Overall, the primary embryonic role of VEGFR1 appears to be to regulate the production of en-

dothelial precursors, mediated by VEGFR2 as discussed above. An explanation for the VEGFR1

mutant phenotypes is that in the embryo VEGFR1 binds to VEGF and acts as a VEGF sink (decoy

receptor), so preventing excessive VEGFR2 signalling and endothelial precursor production. In

agreement with this possibility, the vast majority of VEGFR1 expressed in normal mouse embryos

is soluble rather than membrane associated (Carmeliet et al. 2001). Soluble VEGFR1 lacking ei-

ther the tyrosine kinase domain or the transmembrane domain can still sequester VEGF away from

VEGFR2, allowing normal vascular development. The sequestering of VEGF near the cell mem-

brane (where VEGFR2 receptors are located) may be particularly important, explaining why mice

expressing only soluble VEGFR1 forms show reduced survival, although it is not clear why this

should be more important in some individuals than others. Alternatively VEGFR1/2 heterodimeri-

sation, or phosphorylation/protein binding to non-tyrosine kinase intracellular regions of VEGFR1

may be important.

Although VEGFR1 is a weaker VEGF-A165-stimulated tyrosine kinase than VEGFR2 and is

not essential for many VEGF-A165-induced responses of cultured endothelial cells (Waltenberger

et al. 1994), VEGFR1 does bind other members of the VEGF family (PlGF2 and VEGF-B) and

may be required for some non-embryonic effects of VEGF-A in ECs or other cell types. Deletion

of the VEGFR1 tyrosine kinase domain prevented PlGF-stimulated angiogenesis in mice (Hirat-

suka et al. 2001) and VEGF-A165- and PlGF-stimulated monocyte migration (Hiratsuka et al.

1998), indicating that classical tyrosine kinase activity of VEGFR1 may be important in some

circumstances.

1.4.3.4 VEGFR3

VEGFR3, also called Fms-like tyrosine kinase 4 (Flt4) does not bind VEGF-A, but binds VEGF-C

and VEGF-D (Joukov et al. 1996; Achen et al. 1998).
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VEGFR3-null mice have an abnormally underdeveloped vasculature and die in utero around E12

(Dumont et al. 1998). Endothelial cells and erythrocytes were formed in these mice, and angio-

genesis appeared normal as intersomitic vessels were present. The primary defect seemed to be

in the remodelling of blood vessels, with a number of uniformly sized vessels present in the head

rather than the usual branched network. Heterozygous mice were apparently normal, and LacZ

expression indicated that whereas VEGFR3 was expressed in aortic, venous and blood island en-

dothelial cells in the embryo, expression was restricted to the lymphatic endothelium in newborn

and adult mice, a restriction that had been observed previously (Kaipainen et al. 1995). Trans-

genic expression of chimeric membrane-bound VEGFR3 lacking the intracellular domains in skin

cells prevented lymphatic development in the skin, whereas blood vessel development was normal

(Makinen et al. 2001). Thus the chimeric VEGFR3 suppresses lymphangiogenesis but not angio-

genesis, presumably due to competition with endogenous VEGFR3 for its ligands, and indicating

a critical role for VEGFR3 signalling in the lymphatic system.

Although likely to play a role in the developing and adult lymphatic system, death of VEGFR3-

null mice appeared related to blood vessel defects occurring before the development of lymphatic

problems (Dumont et al. 1998). The fact that VEGF-C-null mice die from lymphatic defects later

in development, at E15.5–17.5 (discussed above) may be because another VEGFR3 ligand such

as VEGF-D compensates for VEGF-C during early blood vessel development, but is insufficient

in later lymphatic development.

1.4.3.5 Neuropilins

Neuropilins (NRPs, reviewed by Pellet-Many et al. 2008) are transmembrane glycoproteins that

bind some VEGFs, and class 3 semaphorins, secreted proteins involved in directing the growth

cones of growing axons. Two neuropilin genes are known, NRP1 and NRP2, which like VEGFR1

can produce either a transmembrane receptor or, by alternative splicing, soluble forms (sNRP1

and 2) composed of the extracellular region only. The b1 and b2 domains of NRPs bind to VEGF
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regions encoded by exons 7 and 8. NRP1 binds to VEGFs B–E, PlGF2 (and mouse PlGF), and

some isoforms of VEGF-A (including VEGF-A165, Soker et al. 1998), whereas NRP2 binds to

some VEGF-A isoforms (including VEGF-A165), and VEGFs C and D (Gluzman-Poltorak et al.

2000). Both NRP1 and 2 are expressed in vascular endothelial cells, but in the adult vasculature

NRP1 is mainly expressed by arterial ECs whereas NRP2 is expressed by venous and lymphatic

ECs (Yuan et al. 2002). Cultured HUVECs, however, do express NRP1.

The transmembrane receptor forms of NRP1 and 2 have a short cytoplasmic domain which has

been shown to interact with an intracellular PDZ domain-containing protein, synectin. NRPs have

no known signalling role acting alone, but are believed to act as co-receptors for VEGF, with the

signal transduced through the plasma membrane by VEGFR2, and semaphorins, with the signal

transduced by transmembrane receptors known as plexins. However, neuropilin expression is not

essential and not sufficient for VEGFR2-dependent signalling, and expression of VEGFR2 without

neuropilins is sufficient to confer VEGF responsiveness, at least in porcine aortic endothelial cells

(Waltenberger et al. 1994).

Most work regarding NRPs in VEGF signalling and function has focused on NRP1. NRP1 com-

plexes with VEGFR2 in endothelial cells, and in some reports complex formation is VEGF-

dependent. Soker et al. (1998) reported that co-expression of NRP1 with VEGFR2 enhanced

VEGF binding and VEGF-stimulated migration of porcine aortic endothelial cells over that ob-

served in cells expressing VEGFR2 alone, while cells expressing NRP1 alone did not respond to

VEGF.

The potentiation of VEGF-stimulated cell signalling by NRP1 could occur via a number of mech-

anisms, such as stabilisation of the VEGF/VEGFR2 signalling complex at the cell surface so in-

creasing the duration of VEGFR2 signalling, or by transducing signals directly (e.g. via synectin)

which feed in to VEGFR2 signalling. Hypothetically, synectin-mediated inhibition of a protein

tyrosine phosphatase could also enhance VEGFR2-stimulated signalling.

NRP1-null mice die in utero around E12.5–13.5, showing multiple cardiovascular defects with
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sparse capillaries in the yolk sac and some major vessels in the brachial region incorrectly

branched, incomplete or not formed at all (Kawasaki et al. 1999). Nervous defects were also

observed, with nerves following incorrect paths, due to a blockade of semaphorin 3-mediated

signalling (Kitsukawa et al. 1997).

The vascular and neural effects of NRP1 were delineated by producing mice deficient in NRP1

specifically in the endothelium, or mice expressing mutant NRP1 specifically unable to bind

Sema3A but able to bind VEGF-A165 (Gu et al. 2003). Endothelial-specific NRP1-null mice

died in utero, displaying abnormalities in major arteries and reduced vessel branching at E12.5.

In contrast, mice expressing a mutant NRP1 which binds VEGF-A but not Sema3A are born live,

but exhibit nervous system defects and die soon after birth. Together these data indicate that en-

dothelial expression of NRP1, but not Sema3A binding to NRP1, is required for normal vascular

development, while Sema3A binding to NRP1 plays a restricted role in neurogenesis. However,

the precise contribution of VEGF binding to NRP1 in vascular development is not yet known.

NRP2-null mice are viable, with no apparent cardiovascular defects but a reduced number of

small lymphatic vessels (Chen et al. 2000; Yuan et al. 2002). The major defect appears to be

neural, with abnormal guidance of cranial and spinal nerves. NRP1/NRP2 double knockout mice

die in utero at E8, earlier than for single NRP1-null mice (Takashima et al. 2002), suggesting that

NRP2 may compensate to a certain extent for NRP1 during early cardiovascular development.

NRP1/NRP2 double-null mice display a severe cardiovascular abnormalities with large avascular

areas in the yolk sac and embryo, and reduced connections between blood vessel sprouts. This

severe phenotype, similar to that observed for VEGF-A-null and VEGFR2-null mice, may reflect

insufficient VEGF-A/VEGFR2 signalling as NRP-mediated potentiation of the VEGF-A signal is

lost.
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1.4.3.6 Heparan sulphate proteoglycans

Several VEGF isoforms including VEGF-A165 contain a heparin binding domain, and so are able

to bind to HSPGs. HSPGs are transmembrane proteins abundant on the surface of endothelial cells,

where the covalently-linked heparan sulphate moiety (similar to the mast cell-produced polysac-

charide mixture heparin) binds to the plasma protein antithrombin III and accelerates its action

to inactivate thrombin, so limiting the extent of thrombus formation during the clotting cascade.

HSPGs are highly negatively charged, and bind to strongly positive regions on a variety of secreted

growth factors including VEGFs.

The heparin binding domain of VEGF-A is not present in some isoforms such as VEGF-A121 and

differences in heparin binding, as well as NRP1 binding, have been suggested to account for some

of the differences between VEGF-A splice variants. Additionally, HSPG binding is important in

angiogenesis in establishing a VEGF concentration gradient (discussed in section 1.4.2.2.1).

A number of earlier studies reported the importance of the heparin-binding domain for VEGF

biological activity, but these usually failed to distinguish between effects of heparin binding and

neuropilin binding. Heparin binding itself does not appear essential for VEGF biological activity,

at least in cell-based studies. VEGF-A164 mutants which showed a substantially reduced affinity

for heparin due to mutation of specific Arg residues in the heparin binding domain showed sim-

ilar abilities to bind VEGFR1 and VEGFR2 and stimulate tissue factor expression and ex-vivo

angiogenesis as wild-type VEGF-A164 (Krilleke et al. 2007). A complete loss of heparin-binding

ability may have more dramatic effects. Heparin has been reported to affect the interaction of

VEGF-A165 with VEGFR2 (Tessler et al. 1994), and to increase VEGF-A165-stimulated tubulo-

genesis (Ashikari-Hada et al. 2005), although these effects were relatively small.
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1.4.4 Biological functions of VEGF-A165 in the endothelium and the key signalling

pathways involved

1.4.4.1 Angiogenic and non-angiogenic roles of VEGF

Experimental disruption of VEGF or VEGF receptor genes in mice clearly demonstrates the im-

portance of VEGF signalling in vascular formation as discussed previously. VEGF-A165 protein

(hereafter referred to as VEGF) promotes angiogenesis in vivo in a number of models, including

the corneal micropocket assay (Connolly et al. 1989; Morbidelli et al. 1997), chick chorioallan-

toic membrane assay (Wilting et al. 1993) and rat mesenteric assay (Norrby 1996), and implanted

VEGF-expressing tumour cells attract blood vessels (Ferrara et al. 1993), suggesting that VEGF

signalling is rate limiting for angiogenesis in a number of situations.

Tubulogenesis – the angiogenesis-like formation of endothelial tubes from cultured ECs – occurs

in ECs cultured on matrigel, a mixture of growth factors and basement membrane components

(Kubota et al. 1988). VEGF increases angiogenesis/tubulogenesis in a cell/tissue culture-based

assays including EC co-culture with fibroblasts (Jia et al. 2001a) and capillary outgrowth from

aortic rings (Nicosia et al. 1994).

The angiogenic effect of VEGF alone is difficult to assess in vivo, and in assays involving other

cell types which may produce various factors (e.g. the aortic ring assay). I was unable to locate

studies in defined in vitro systems (e.g. tubule formation by cultured ECs on 2-D or 3-D collagen)

which demonstrated an angiogenic effect of VEGF alone, although VEGF is clearly able to pro-

mote tubulogenesis in the presence of other factors such as serum (Pepper et al. 1992; Ilan et al.

1998) and may be sufficient for angiogenesis in vivo. However, VEGF alone can directly stimu-

late a number of processes required for angiogenesis in cultured endothelial cells, including EC

proliferation, migration and cell survival, and EC production of known vasodilators. VEGF also

promotes vascular permeability and vasodilation in vivo. These pro-angiogenic roles of VEGF,

and the mechanisms underlying them, are further discussed below.
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In addition to its established role in the developing vascular system in the embryo, VEGF also

functions in adult angiogenesis (Maharaj and D’Amore 2007). VEGF is required for angiogenesis

during the menstrual cycle (Ferrara et al. 1998) and wound healing (Nissen et al. 1998). VEGF is

also involved in pathological angiogenesis, such as tumour vascularisation – pathological angio-

genic effects of VEGF are discussed later.

VEGF also affects a number of non-angiogenic physiological processes. Monocytes express

VEGFR1, and VEGF acts as a monocyte chemoattractant (Barleon et al. 1996; Hiratsuka et al.

1998). Coupled with its role in increasing vascular permeability, these activities suggest a role for

VEGF in inflammation – indeed monocyte-produced VEGF may be a key factor promoting influx

of plasma proteins into injured sites.

VEGF stimulates endothelial release of NO and prostacyclin, which in vivo would subsequently

act to cause vasodilation and reduce blood pressure, and also inhibit platelet aggregation (Wheeler-

Jones et al. 1997; Laitinen et al. 1997). It has been proposed that low levels of VEGF protect the

adult vasculature partly via NO and prostacyclin production (Zachary et al. 2000). Common side

effects of anti-VEGF therapies (e.g. Bevacizumab, discussed in section 1.4.5) include bleeding,

oedema, unwanted clotting and especially hypertension (Kamba and McDonald 2007), suggesting

that VEGF does indeed play a role in protecting the adult vasculature. Furthermore, most mice

with an endothelial-specific VEGF knockout survive to birth but show progressive endothelial

degeneration with half dying before 25 weeks of post-natal life (Lee et al. 2007). Taken together,

these findings indicate an important continuing role for VEGF-A in adult vascular homeostasis.

A role for VEGF in neuroprotection (and other aspects of the nervous system including axonal

outgrowth, Sondell et al. 2000) has been noted. While this may partially occur via regulation

of neural vascularisation or maintenance of the neural vasculature, VEGF acts as a direct pro-

survival factor for cultured neurons (Oosthuyse et al. 2001), and loss of VEGF isoforms showed a

defect similar to that observed in patients with amyotrophic lateral sclerosis (ALS), an adult-onset

motor neuron disease. Furthermore, virus-mediated overexpression of VEGF in muscles of mice
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with experimental ALS reduced disease symptoms and improved survival (Azzouz et al. 2004),

suggesting that VEGF-dependent neuroprotection is biologically relevant.

1.4.4.2 Principles of VEGF signal transduction

The basic paradigm for VEGF receptor signal transduction is thought to be the same as for other

receptor tyrosine kinases (RTKs) such as the receptors for PDGF, FGF, epidermal growth fac-

tor, insulin-like growth factor, insulin, and nerve growth factor (reviewed by Olsson et al. 2006,

summarised in figure 1.5). VEGF dimers bind to receptor molecules at the cell surface, pro-

moting receptor dimerisation and activation, bringing the tyrosine kinase domains of the receptor

monomers into contact and leading to transautophosphorylation of the receptor at Tyr residues –

that is, one receptor molecule phosphorylates the other and vice versa. Other proteins contain-

ing phosphotyrosine binding motifs (e.g. SH2 domains) are then able to bind the VEGF receptor,

and either diffuse to other cellular locations or recruit other enzymes to transduce the downstream

signal.

Evidence is emerging that this view of VEGF signalling may not be entirely accurate. VEGF pref-

erentially binds to pre-dimerised VEGFR2 (Fuh et al. 1998), implying that it is the conformational

change in the receptor dimer on VEGF binding rather than VEGF-induced receptor dimerisation

per se that is responsible for initiation of the downstream signal.

In common with other RTKs, VEGFR2 is ubiquitinated and internalised into endosomes on VEGF

binding – this internalisation does not terminate its signalling (Duval et al. 2003; Lampugnani et al.

2006, reviewed by Mukherjee et al. 2006). Endosomal VEGFR2 may be degraded by a lysosomal

pathway (resulting in the observed reduction in VEGFR2 protein levels on prolonged stimulation

with VEGF, Ewan et al. 2006; Mittar et al. 2009), or could be dephosphorylated and recycled to

the cell membrane. Significant proportions of both VEGFR1 and VEGFR2 have been reported to

be present in the Golgi apparatus and endosomes respectively in unstimulated cells (Mittar et al.

2009; Gampel et al. 2006), and translocate to the cell surface on VEGF stimulation suggesting
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Figure 1.5: Model for the initiation of VEGF-stimulated signalling
Schematic illustration of the initiation of intracellular signalling as a consequence of VEGF
binding to VEGFR2. Progression through the images is represented by thick black arrows.
Thin black arrows indicate recruitment of another molecule. Thin red arrows indicate a phos-
phorylation event, with the added phosphate shown with a blue P. VEGF binding to VEGFR2
leads to autophosphorylation of VEGFR2 on tyrosine residues. Other proteins such as the
adapator shown associate with phosphorylated VEGFR2 and may themselves become phos-
phorylated, providing new binding sites for other downstream signalling proteins such as
those shown in red and green. These may also phosphorylate each other and diffuse to new
cellular locations, initiating further signalling pathways.
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that in addition to continual recycling, VEGF receptors may be stored in intracellular pools until

needed.

The notion of VEGF as a molecule which acts purely by being released from cells and binding

extracellularly to its receptor has also been challenged by work indicating that endothelial cells

themselves produce VEGF, and that an autocrine intracellular VEGF signalling loop is required

for endothelial survival and vascular maintenance (Lee et al. 2007).

VEGFR2, rather than VEGFR1, appears to be the key receptor transducing biologically-relevant

VEGF signalling in endothelial cells. VEGF-stimulated proliferation and migration of PAE cells

expressing VEGFR2 but not of cells expressing VEGFR1 (Waltenberger et al. 1994). siRNA-

mediated knockdown of VEGFR2 was sufficient to reduce activation of major VEGF-regulated

signalling pathways (Kou et al. 2005). Mutated forms of VEGF with reduced binding for the dif-

ferent VEGF receptors has also been used to probe the signalling mediated by different receptors.

VEGFR2-specific ligands, but not VEGFR1-specific ligands, stimulated increases in endothelial

survival (Gerber et al. 1998b), migration, permeability and in vivo angiogenesis (Gille et al. 2001),

tubulogenesis in cultured ECs (Yang et al. 2001), and changes in gene expression (Yang et al.

2002).

It is possible that VEGFR1 signalling enhances VEGFR2-mediated responses as, in a number of

the studies mentioned above, the response to a VEGFR2-specific ligand was substantially lower

than that for wild-type VEGF. This enhancement does not appear to be critical for VEGF angio-

genic signalling, at least during embryogenesis, as the tyrosine kinase domain of VEGFR1 is not

required for mouse development (Hiratsuka et al. 1998), indicating that RTK-type signalling by

VEGFR1 is redundant for developmental angiogenesis. It is possible that non-RTK signalling

by VEGFR1 may be important, such as phosphorylation of VEGFR1 by VEGFR2-activated ki-

nases or VEGFR2 itself leading to recruitment of signalling proteins to VEGFR1. RTK-type

signalling by VEGFR1 does appear to be important in some circumstances – vascular perme-

ability increases stimulated by VEGF-F (which binds to VEGFR1 and weakly to VEGFR2, but
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not to NRP1 or VEGFR3) are strongly reduced in mice lacking the VEGFR1 tyrosine kinase do-

main (Takahashi et al. 2004). However, in the same study VEGF-stimulated vascular permeability

was much less affected, suggesting that VEGFR1-mediated signals are less important for native

VEGF. Overall, it appears that in endothelial cells VEGFR2-mediated signals are essential for

most VEGF-stimulated biological processes, whereas VEGFR1-mediated signals are redundant

but may increase the VEGF response in some processes.

Tyrosine phosphorylation of multiple SH2 domain-containing proteins is observed in response to

VEGF treatment of ECs (Guo et al. 1995). Originally identified in the non-receptor tyrosine ki-

nase src, SH2 domains bind to particular regions of proteins containing phosphorylated Tyr (pY)

residues (Machida and Mayer 2005). Some of these SH2 domain-containing proteins may bind

to pY on the VEGF receptor and be directly phosphorylated by the kinase domain of VEGFR2,

whereas others may be phosphorylated by other enzymes as both enzyme and substrate associate at

the VEGF receptor complex. Some of the pY-containing proteins are adaptor proteins, not catalyti-

cally active themselves but becoming phosphorylated on tyrosine residues and allowing other SH2

domain-containing proteins to join the VEGF receptor complex. For example, the adaptor proteins

Grb2, Nck, Shc and Sck have been shown to be recruited to tyrosine-phosphorylated VEGFR2 and

become tyrosine phosphorylated themselves (Kroll and Waltenberger 1997; Ratcliffe et al. 2002).

Others are enzymes, directly activating signalling cascades. Some of these signalling cascades are

activated in many cell types in response to a wide variety of stimuli, and it is likely that it is the

spectrum of pathways activated, their degree of activation, and the spatio-temporal characteris-

tics of activation of a combination of pathways that are specific to an individual cytokine and are

required to elicit a particular cellular response.

1.4.4.3 Major VEGF-activated signalling cascades

The enzymes discussed below are important nodes in many signalling pathways activated by

VEGF in endothelial cells. These pathways are summarised in figure 1.6.
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Figure 1.6: VEGF-activated signalling pathways
Schematic illustration of some of the major intracellular signalling pathways activated by
VEGF in endothelial cells. See text and abbreviations for further details.

Phospholipase Cγ (PLCγ) is an SH2 domain-containing protein which binds directly to VEGFR2

pY1175, becoming tyrosine phosphorylated and activated. Adenovirus-mediated overexpression

of a VEGFR2 Y1175F mutant prevented PLCγ activation (Takahashi et al. 2001). Activated

PLCγ generates diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3) from the membrane

lipid phosphatidylinositol-4,5-diphosphate (PIP2). IP3 releases Ca2+ from intracellular stores such

as the endoplasmic reticulum, whereas DAG goes on to activate protein kinase C (PKC) isoforms

and subsequently the Raf1-MEK-ERK mitogen-activated protein kinase cascade (Takahashi et al.

1999b, 2001; Gliki et al. 2001). This method of ERK activation is unusual – ERK activation by

other RTKs occurs via binding of the adaptor protein Grb2 to the RTK, leading to activation of

the guanine exchange factor Son of Sevenless, activation of Ras followed by activation of Raf1.

PKCδ has been reported to be involved in ERK activation in vascular endothelial cells (Gliki et al.

2001). PKC is also involved in activation of protein kinase D (PKD). The PKC and PKD families
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and their role in vascular endothelial cells is further discussed in sections 1.6.2 and 1.6.3.

Phosphoinositide 3’-kinase (PI-3-K) is another important signalling protein in vascular endothelial

cells. VEGF stimulates tyrosine phosphorylation of the regulatory (p85) subunit of PI-3-K, releas-

ing the catalytic p110 subunit (Thakker et al. 1999). p85 associates directly with VEGFR2, with

phosphorylation of Y801 and Y1175 of VEGFR2 appearing necessary for this interaction (Dayanir

et al. 2001). p110 phosphorylates the membrane lipid phosphatidylinositol-4,5-bisphosphosphate

(PIP2) to phosphatidylinositol-3,4,5-trisphosphosphate (PIP3). Akt/PKB directly binds PIP3 via its

pleckstrin homology (PH) domain, so being recruited to the plasma membrane. Phosphoinositide-

dependent kinase 1 (PDK1) also contains a PH domain and is similarly recruited to the membrane,

where it phosphorylates and activates another kinase, Akt. Although there are multiple isoforms

of PI-3-K, only p110α forms are required for angiogenesis (Graupera et al. 2008).

Src (also termed c-Src) is a tyrosine kinase involved in a variety of cellular processes. Src is

covalently linked to a fatty acid, which targets it to the cytoplasmic face of the plasma membrane in

a conformation in which the SH2 domain is bound to a C-terminal pY residue. During activation,

the C-terminal pY residue is dephosphorylated, releasing the SH2 domain. Full activation occurs

when the src SH3 domain binds to the proline-rich region of an activating ligand. Src has been

shown to associate with VEGFR2 on VEGF stimulation of ECs (He et al. 1999).

VEGF increases cytosolic Ca2+ concentrations, causing an initial spike and then maintaining a

lower but elevated plateau (Brock et al. 1991; Gliki et al. 2001), and this process can be inhibited

by an antibody directed against the extracellular domain of VEGFR2 (Cunningham et al. 1999).

The initial spike is due to IP3-mediated release of Ca2+ from intracellular stores such as the endo-

plasmic reticulum, whereas the elevated plateau is probably dependent on extracellular Ca2+ entry

through plasma membrane Ca2+ channels (Gliki et al. 2001; Jia et al. 2004). Overexpression of

inactive transient receptor potential cation channel 6 inhibited VEGF-stimulated increases in in-

tracellular Ca2+ concentration in microvascular ECs (Hamdollah Zadeh et al. 2008), indicating

this may be the key plasma membrane Ca2+ channel family activated by VEGF.
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VEGF increases endothelial production of the vasoactive molecules NO (van der Zee et al. 1997;

Laitinen et al. 1997) and PGI2 (Wheeler-Jones et al. 1997). NO plays an important role in VEGF-

specific angiogenic pathways, as NOS inhibitors blocked VEGF- but not FGF-stimulated angio-

genesis (Ziche et al. 1997). VEGF induces sustained eNOS activation in ECs via PI-3-K depen-

dent Akt-catalysed phosphorylation of eNOS at S1177, the same site phosphorylated in response

to shear stress (Dimmeler et al. 1999). Phosphorylation of this site renders eNOS active at resting

Ca2+ concentrations. VEGF also promotes long-term NO production by inducing expression of

both eNOS and the high-activity isoform iNOS (Kroll and Waltenberger 1998). Short-term (less

than 10 mins after VEGF administration) NO production is independent of PI-3K, and may involve

VEGF-stimulated Ca2+ mobilisation (Gelinas et al. 2002). VEGF-stimulated PGI2 production in

ECs involves PKC- and ERK-mediated activation of cytosolic phospholipase 2, and also required

intracellular Ca2+ (Gliki et al. 2001; Wheeler-Jones et al. 1997).

It should be noted that differing reports exist in the literature regarding the involvement of par-

ticular enzymes in various signalling and functional responses, and this may be related to the

importance and/or activation status of different enzymes in different assays and cell types. Many

earlier studies relied on the use of a single inhibitor to demonstrate the involvement of a partic-

ular protein in a signalling pathway, and more recent large-scale target screening has shown that

many inhibitors previously assumed to be specific have multiple targets, and with greater effects

on ‘off-target’ enzymes greater than that on the ‘specific’ target (Davies et al. 2000; Bain et al.

2003, 2007). However even when studies have used the same inhibitors, cell type, assay and end-

point, conflicting results have been obtained, for example, in work regarding the involvement of

PI-3-K in VEGF-stimulated cell migration (discussed below). It is difficult to say why this is so,

but differences in cell batch or source, culture techniques, culture substrate (e.g. coating used for

cultureware) and other factors frequently not reported in papers may be important.

In complex processes such as cell migration, a large number of specific actions are required to

produce a coordinated biological response. The signalling in such multi-faceted processes is likely
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to be complex, and inhibition or loss of any of the factors involved would retard the response if the

inhibition was complete enough to make the affected factor rate-limiting for the overall response.

The better-characterised signals impinging on each response are discussed below, concentrating

on cell migration and survival.

1.4.4.4 Cell migration

Endothelial cell migration is a multi-faceted process, driven by actin polymerisation at the leading

edge of the cell (Lee et al. 1996) and involving cycles of adhesion and release from the extracel-

lular matrix, and requires activation of multiple signal transduction pathways. In culture, VEGF

acts as a chemoattractant for ECs (Rousseau et al. 1997; Jia et al. 2004) and PAE cells transfected

with VEGFR2 (Waltenberger et al. 1994). Protrusion of the leading edge of the cell via actin poly-

merisation, coordinated lengthening and shortening of the cell via actin filaments (stress fibres),

and formation and release of focal adhesions are thought to be responsible for the migration of

endothelial cells towards VEGF (Rousseau et al. 2000a). The effect of the enzymes discussed in

this section on VEGF-stimulated migration is illustrated in figure 1.7. In vivo, endothelial cells are

surrounded by extracellular matrix and must proteolytically digest a path to allow subsequent cell

movement. VEGF induces expression of both matrix metalloproteases (MMPs) and plasminogen

activators, both of which may contribute to this process (Lamoreaux et al. 1998; Pepper et al.

1991).

Endothelial cells interact with the extracellular matrix (ECM) via focal adhesions, which are also

connected to the EC actin cytoskeleton. VEGF stimulates src-mediated phosphorylation of focal

adhesion kinase (FAK) at Y861 and its subsequent recruitment to focal adhesions (Abu-Ghazaleh

et al. 2001). Activation of focal adhesion kinase (FAK) is required for VEGF-driven chemotaxis,

and requires Hsp90 (Rousseau et al. 2000b). Hsp90 associates directly with the intracellular do-

main of VEGFR2, and this association is required for FAK activation (Le Boeuf et al. 2004). This

same study also implicated Hsp90 in RhoA-mediated FAK activation in response to VEGF. Cells
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Figure 1.7: Involvement of some signalling pathways in VEGF-stimulated cell migration
Summary of some of the signalling pathways discussed in the text as contributing to VEGF-
stimulated endothelial cell migration

from FAK-null mice show an increased number of focal adhesions but reduced motility (Ilic et al.

1995), suggesting that FAK may be particularly important in the disassembly of focal adhesions

required for ECM de-adhesion during migration. NO also interferes with focal adhesion forma-

tion (Goligorsky et al. 1999), and VEGF-stimulated EC migration required phosphorylation of

eNOS at S1177 (Dimmeler et al. 2000), indicating that NO may be important in the release of

cell/substrate de-adhesion.

In addition to effects at focal adhesions, VEGF activates a number of modulators of the actin

cytoskeleton which are involved in the actin remodelling required for cell migration. The adaptor

protein IQGAP1 associates with phosphorylated VEGFR2 and activates the small GTPase Rac1

by inhibiting its intrinsic GTPase activity (Yamaoka-Tojo et al. 2004). Rac1 has been shown

in fibroblasts to induce formation of lamellipodia. WAVE2 is also involved in VEGF-induced

actin reorganisation, and endothelial cells lacking WAVE2 showed severely reduced lamellipodia

formation in response to VEGF (Yamazaki et al. 2003).

Two other adaptor proteins, TSAd and Shb, are reported to associate with VEGFR2 and promote

endothelial cell migration (Holmqvist et al. 2004; Matsumoto et al. 2005). SiRNA-mediated Shb

knockdown reduced VEGF-induced phosphorylation of FAK and PI-3-K, and these effects may

be responsible for the effects of Shb loss on migration
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p38 MAPK has been implicated as a key enzyme in control of the actin cytoskeleton, the effects

of which have been suggested to be mediated by phosphorylation of the small heat shock protein

Hsp27 (discussed later). Overexpression of constitutively active MEK6, an upstream activator of

p38 MAPK, in HUVECs activated p38 MAPK, induced lamellipodia and stress fibre formation and

increased endothelial cell migration even in the absence of growth factor stimulation (McMullen

et al. 2005). In the same study, co-transfection of cells with inactive p38α or unphosphorylatable

Hsp27 prevented the MEK6-induced increase in migration.

p38 MAPK activity has been implicated in migration of ECs stimulated by VEGF or oestrogen.

VEGF-induced HUVEC migration in transwell assays was inhibited by pre-treatment with the

pharmacological p38 MAPK inhibitor SB203580 (Rousseau et al. 1997; McMullen et al. 2004) or

adenovirus-mediated overexpression of inactive p38 MAPK (McMullen et al. 2004). Oestrogen-

dependent migration of bovine aortic endothelial cells was reduced by overexpression of inactive

p38 MAPK, inactive MAPKAPK2 or p38 MAPK inhibition by SB203580 (Razandi et al. 2000).

Taken together, it seems that p38 MAPK may be a general cytoskeletal regulator and its involve-

ment in migration may not be specific to VEGF signalling.

1.4.4.5 Cell survival

1.4.4.5.1 Overview of apoptosis

Apoptosis is a controlled, ATP-dependent process where the cell follows a particular death pro-

gramme to die without rupture of the cell, thus preventing uncontrolled release of cytokines, en-

zymes and other cellular constituents which could adversely affect neighbouring cells. In vivo,

apoptotic cells can then be phagocytosed intact by neighbouring cells (e.g. immune cells).

Characteristic hallmarks of apoptosis include cytoplasmic shrinkage, membrane blebbing, cleav-

age of DNA into 50–200 kb sections, appearance of phosphatidylserine in the outer leaflet of the

plasma membrane, and caspase-mediated protein degradation (Saraste and Pulkki 2000). Effec-

tor caspase-mediated events are responsible for the hallmarks of apoptosis, such as activation of
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endonucleases (DNA fragmentation) and cleavage of nuclear envelope proteins (nuclear conden-

sation).

Apoptosis can proceed via two distinct modes: the extrinsic and intrinsic pathways, which both

ultimately lead to activation of effector caspases, including the key apoptosis inducer, caspase 3

(reviewed by Green 2005, and Chaudhuri and Paul 2006). The intrinsic apoptotic pathway is reg-

ulated by the balance between the pro- and anti-apoptotic proteins of the Bcl2 family. Activation

of the intrinsic pathway involves proteolytic cleavage of cytosolic proteins Bid or Bim, which then

insert into the mitochondrial membrane and bind to Bax or Bak. Bax/Bak then dimerises and pro-

motes release of various proteins from the mitochondria into the cytosol, including cytochrome C

(CytC), which induces oligomerisation of apoptosis protease activation factor-1 (APAF1), leading

to activation of procaspase-9 and caspase-3.

The extrinsic apoptotic pathway involves the binding of extracellular ligands to TNF-family trans-

membrane receptors such as TNFR1 and Fas (also termed APO1/CD95). These receptors contain

intracellular motifs termed death domains (DD) which interact with DDs on other proteins, and

ligand binding to clustered receptors leads to recruitment of intracellular DD-containing proteins,

e.g. Fas-associated DD protein (FADD) and TRADD (discussed later) resulting in the formation

of a death-inducing signalling complex (DISC) and activation of procaspase-8 and caspase 3.

An additional Fas-mediated pathway has also been described, in which death-domain associated

protein (daxx), rather than FADD, moves from the nucleus to the cytosol and binds to clustered Fas

(Salomoni and Khelifi 2006). The mechanism by which daxx binding to Fas induces apoptosis is

unclear, but may involve the interaction of daxx with the kinase Ask1, which has been implicated

in sustained activation of p38 MAPK and JNK associated with apoptosis.

A number of anti-apoptotic proteins normally hold apoptosis in check. Bcl2, Bcl-XL and A1

inhibit Bax/Bak dimerisation and unwanted CytC release. Various inhibitor of apoptosis (IAP)

proteins also directly inhibit caspases. The kinase Akt inhibits cytC release from mitochondria

(Kennedy et al. 1999), and phosphorylates and inhibits the apoptosis-promoting forkhead tran-
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scription factor FKHRL1 (Brunet et al. 1999) and Bad, preventing it from binding and so inacti-

vating pro-survival Bcl2 family members (Datta et al. 1997).

1.4.4.5.2 VEGF stimulation of EC survival

VEGF is a survival factor for endothelial cells in culture, inhibiting apoptosis due to serum with-

drawal (Gerber et al. 1998b), and also acts as a survival factor for newly-formed capillaries in vivo.

Exposure of premature babies to hyperoxia causes retinal capillary regression via a reduction in

VEGF expression (Alon et al. 1995; Meeson et al. 1999). In some vascular beds the continued

presence of circulating VEGF in the adult is required to maintain endothelial health, for example

administration of an anti-VEGF antibody caused death of kidney endothelium and associated re-

nal dysfunction (Sugimoto et al. 2003), and a kidney podocyte-specific VEGF knockout caused

peri-natal lethality (Eremina et al. 2003).

The fenestrated endothelium found in kidney vessels may be a special case – a general loss of

capillaries on treatment with anti-VEGF therapies has not been reported. Retinal capillaries are

resistant to the anti-VEGF aptamer Pegaptanib unless an anti-PDGF receptor antibody (which

reduced pericyte coverage of vessels) was also administered (Jo et al. 2006), suggesting that cov-

erage of vessels with peri-endothelial cells protects against VEGF withdrawal.

As discussed earlier, endothelial-produced VEGF is required for vessel maintenance, including

maintenance of vessels covered with peri-endothelial cells (Lee et al. 2007). Interestingly, ex-

ogenous VEGF administration is unable to compensate for loss of endothelial-produced VEGF in

endothelial survival, suggesting that an intracellular VEGF signalling loop may be important.

In common with other growth factors, activation of Akt is critically involved in VEGFR2-mediated

survival effects on vascular endothelial cells (Gerber et al. 1998b). VEGF additionally promotes

expression of a number of anti-apoptotic proteins including Bcl2, A1, and the IAPs survivin and

X chromosome-linked IAP (Gerber et al. 1998a; Tran et al. 1999). The pro-survival effects of

VEGF on apoptotic signalling pathways are summarised in figure 1.8.
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Figure 1.8: VEGF modulation of apoptosis signalling
Summary of apoptotic signalling, showing the anti-apoptotic effects of VEGF described in
the text. Black arrows indicate the transition between steps in the pathways. Red diamond-
tipped lines indicate inhibition of an apoptotic step by the indicated regulatory protein. VEGF
either activates or increases the expression of various apoptotic modulators (indicated with
plus-tipped blue lines), so inhibiting apoptosis. The dashed black arrow indicates that the
mechanism by which Daxx stimulates apoptosis is not understood.

VEGF-dependent endothelial cell survival is dependent on VEGFR2, PI-3-K, and the adherens

junction components VE-cadherin and β-catenin. Truncation of the cytoplasmic domain VE-

cadherin prevented its interaction with β-catenin and also prevented VEGF-induced cell survival

by reducing activation of PI-3-K and Akt (Carmeliet et al. 1999a). These data indicate that VEGF

promotes survival in ECs with intact adherens junctions (i.e. cells that have made contact with

another cell) but not in single isolated cells.

1.4.4.6 Proliferation

Transit through the cell cycle G1/S-phase checkpoint and subsequent DNA synthesis and mitosis

requires the activity of cyclin-dependent kinase 4, which is activated by binding to cyclin D1.
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Although control of the cell cycle is complex, the ERK and Akt pathways are commonly in-

volved (reviewed by Shaw and Cantley 2006). Mitogenesis of many cells is regulated by the

Raf1/MEK/ERK pathway, leading to activation of a number of transcription factors including c-

myc and subsequent increased expression of cyclin D1. The PI-3-K/Akt pathway is another com-

mon regulator of the cell cycle, acting via glycogen synthase kinase 3 (GSK3). In unstimulated

cells, GSK3 phosphorylates cell cycle regulators cyclinD1 and c-Myc, preventing DNA synthesis.

Activated Akt phosphorylates and inhibits GSK3, allowing S-phase entry.

VEGF increases the proliferation of cultured ECs (Ferrara and Henzel 1989; Leung et al. 1989),

though there is debate as to how effective a mitogen VEGF is.

Adenovirus-mediated overexpression of a VEGFR2 Y1175F mutant or microinjection of an anti-

pY1175 antibody prevented VEGF-induced PLCγ tyrosine phosphorylation and DNA synthesis

whereas overexpression of Y801F or Y1214F VEGFR2 mutants had no effect (Takahashi et al.

2001). Inhibitor studies showed that VEGF-stimulation of primary endothelial cell proliferation

was blocked by inhibitors of MEK (Wu et al. 2000; Takahashi et al. 1999b; Yu and Sato 1999).

PKC inhibition prevented HUVEC proliferation induced by VEGF but not EGF or FGF (Wu et al.

2000; Takahashi et al. 1999b). Treatment of ECs with PKC-activating phorbol esters was sufficient

to stimulate DNA synthesis in the absence of VEGF (Takahashi et al. 1999b), suggesting that PKC

activation may be of central importance in VEGF-stimulated proliferation. Together, these data

suggest that PLCγ activation by VEGFR2 leads to cell proliferation via PKC-mediated activation

of the Raf1/MEK/ERK cascade.

Data on the involvement of PI-3-K/Akt in proliferation is contradictory. Takahashi et al. (1999b)

reported that two structurally distinct PI-3-K inhibitors, wortmannin and LY294002, did not effect

VEGF-stimulated DNA synthesis in HUVECs. In contrast, Yu and Sato (1999) also working

in HUVECs showed that VEGF-stimulated proliferation was inhibited by both wortmannin and

LY294002. The reason for these differences is not clear. Similarly some studies have reported

reductions in VEGF-stimulated ERK phosphorylation by PI-3-K inhibitors, suggesting that PI-3-
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K may be involved in ERK regulation, whereas other studies using the same cell type and inhibitors

showed no effect.

1.4.4.7 Vascular permeability

Enhancement of fluid leakage from capillaries was one of the first activities ascribed to VEGF

(Senger et al. 1983, 1990). VEGF induces multiple permeability-enhancing changes in endothe-

lial cells (reviewed by Bates and Harper 2002), and the most important adaptation depends on

the affected vascular bed and other stimuli present. VEGF induces the formation of endothelial

structures such as fenestrae (Roberts and Palade 1995; Esser et al. 1998b) and vesiculo-vacuolar

organelles (Feng et al. 1996).

VEGF also increases paracellular permeability (Roberts and Palade 1995), adjusting the properties

of endothelial cell–cell junction proteins. VEGF promotes phosphorylation of the tight junction

proteins occludin and zonula occludens 1 (Antonetti et al. 1999), and other junctional components

such as VE-cadherin and PECAM (Esser et al. 1998a). It is likely that these phosphorylations are

involved in regulation of endothelial junction integrity.

Inhibitors of PI-3-K, PKC, ERK and eNOS reduced the VEGF-stimulated increase in permeability

of capillaries to FITC-labelled dextran (Aramoto et al. 2004). Reduction of VEGF-stimulated

albumin permeability by inhibitors of eNOS and PKC has also been shown by other groups (Wu

et al. 1999; Murohara et al. 1998). Src is also involved, and VEGF-induced vessel permeability

and angiogenesis was prevented in src-null mice (Eliceiri et al. 1999).

1.4.4.8 Vasodilation

VEGF increases vasodilation of arteries, mediated at least in part by NO and PGI2 production and

the subsequent effect of these two mediators on vascular smooth muscle (Ku et al. 1993; Li et al.

2002). Thus, the signalling pathways discussed above that are responsible for NO production

(Akt, Ca2+) are also important in VEGF-stimulated vasodilation (Aramoto et al. 2004). The
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importance of VEGF-mediated vasodilation has been shown in clinical trials of the anti-VEGF

antibody Becavizumab, which causes an increase in blood pressure (Jain et al. 2006).

1.4.5 VEGF, angiogenesis and disease

VEGF is a key stimulator of angiogenesis, and is a target of both pro- and anti-angiogenic thera-

peutic strategies.

Angiogenesis and VEGF have a key role in cancer progression. Tumour cells from a variety of

sources produce VEGF (Senger et al. 1983), and an anti-VEGF monoclonal antibody was shown

to reduce tumour vascularisation and growth when injected into mice (Kim et al. 1993). With-

out attracting blood vessel growth, tumours are unable to grow to a problematic size due to the

limitations of obtaining nutrients via diffusion. The discovery of VEGF launched a huge effort to

develop anti-VEGF therapies for the treatment of cancer, with a variety of agents produced includ-

ing anti-VEGF antibodies, VEGF receptor tyrosine kinase inhibitors and aptamers. Bevacizumab

(Avastin), a humanised anti-VEGF-A monoclonal antibody, received FDA approval in 2004 for

treatment of colorectal cancer. A phase III trial showed that Bevacizumab slowed tumour growth

and improved survival when used in combination with other chemotherapeutic agents (Hurwitz

et al. 2004), and other trials have shown varying degrees of efficacy of Bevacizumab with differ-

ent cancers (Jain et al. 2006).

There is considerable debate as to the mechanism of action of Bevacizumab. One proposed mode

of action is that VEGF inhibition ‘normalises’ the tumour vasculature and reduces its permeability,

thus having the dual effect of reducing oedema and interstitial fluid pressure, and producing a less

chaotic and tortuous tumour vasculature, both of which allow more effective penetration of the

tumour mass by cytotoxic drugs.

Anti-VEGF therapies do not cause a complete block on tumour angiogenesis, probably because

other tumour-produced pro-angiogenic factors are also able to promote angiogenesis. Cells over-

expressing VEGFs B and C (Salven et al. 1998), D and PlGF (Donnini et al. 1999) have been
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isolated from tumours. Non-VEGF family factors such as FGF may also contribute. Addition-

ally, anti-VEGF therapies can only reduce VEGF concentrations, not entirely eliminating it. As a

result, anti-VEGF therapies tend to be used in combination with other drugs for cancer therapy.

VEGF-mediated angiogenesis is also involved in eye disease. Blood vessel growth in normal eyes

is minimised, as the vessels interfere with vision. However growth of blood vessels into the eye

with advancing age, and the leakage of fluid from these vessels, in particular in the retinal region

around the optic nerve (the macula), termed wet age-related macular degeneration, is a common

cause of blindness in older people. VEGF is synthesised by retinal epithelial cells (Adamis et al.

1993), and is overexpressed in retinopathies (Aiello et al. 1994).

Anti-VEGF therapies Pegaptanib (Macugen) and Ranibizumab (Lucentis) are FDA-approved

for the treatment of age-related macular degeneration, working in part by preventing VEGF-

stimulated blood vessel growth in the retina (Ciulla and Rosenfeld 2009). Pegaptanib (discovery

and development reviewed by Ng et al. 2006) is an RNA aptamer – a oligonucleotide designed to

bind proteins for a therapeutic purpose, whereas Ranibizumab is a fragment of the same antibody

that Bevacizumab was developed from. Pegaptanib binds specifically to VEGF-A165, whereas

Ranibizumab and Bevacizumab bind to all VEGF-A isoforms. In clinical trials, both Pegaptanib

and Ranibizumab have been shown to slow the onset of macular degeneration and in some pa-

tients improve visual performance (Gragoudas et al. 2004; Rosenfeld et al. 2006; Brown et al.

2006, reviewed in Ciulla and Rosenfeld 2009).

As discussed earlier, VEGF-reducing therapies suffer from a number of intrinsic problems due to

loss of VEGF-dependent vascular protection, including bleeding, oedema, unwanted clotting and

hypertension (Kamba and McDonald 2007).

In other pathologies, a pro-angiogenic strategy might be useful. Atherosclerosis leads to build-

up of deposits on artery walls, narrowing the lumen of vessels and increasing their chance of

blockage. Atherosclerosis of the coronary or cerebral arteries may lead to life-threatening events

such as myocardial infarction or stroke. Stimulation of collateral vessel growth to bypass a vessel
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narrowing is of major interest in treating conditions such as angina and peripheral vascular disease,

and preventing heart attack.

VEGF may have a role in collateral growth under normal and ischaemic conditions (Rissanen et al.

2005; Clayton et al. 2008), and adenovirus-mediated overexpression of VEGF in skeletal muscle

promotes capillary enlargement (Rissanen et al. 2003). However, in trials virus-mediated VEGF

expression had little effect on patient outcomes in a variety of ischaemic diseases (for example

Stewart et al. 2009, reviewed by Yla-Herttuala et al. 2007). This may be due to a number of

factors, including insufficient VEGF delivery to the region of interest (largely countered using

adenovirus vectors), inability to establish an appropriate spatially patterned concentration gradient

(including effective VEGF concentrations), or other required angiogenic factors becoming limiting

or out of balance when excess VEGF is present.

The possibility of conferring VEGF-expressing abilities on a benign tumour or cancerous cell,

or increasing plasma VEGF concentrations resulting in undesirable angiogenesis or oedema, is a

concern with strategies involving VEGF gene therapy.

1.5 Hsp27

Heat shock protein 27 (Hsp27) is a small heat shock protein implicated in a wide variety of cel-

lular processes including cell migration and apoptosis. Phosphorylation of Hsp27 contributes to

regulation of its structural organisation and functional properties, and can be stimulated by VEGF

in endothelial cells. Thus Hsp27 is a potential mediator of VEGF-stimulated chemotactic and pro-

survival signalling. Hsp27, its properties and role in the vasculature have been reviewed by Ferns

et al. (2006).

After an initial description of the heat shock response, the phosphorylation of Hsp27 and its role

in modulating Hsp27 is function is discussed, followed by the evidence for the involvement of

Hsp27 in biological functions, particularly migration and survival, and the involvement of Hsp27
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in disease.

1.5.1 Heat shock, the heat shock response and Hsps

1.5.1.1 Cellular consequences of heat shock

An increase in the ambient temperature experienced by an organism beyond the normal range ex-

perienced can disrupt protein structure and enzyme function, leading to a number of metabolic

problems such as misfolding of proteins during synthesis (reviewed in Liberek et al. 2008). Mis-

folded proteins may be insoluble and precipitate within a cell, as hydrophobic sections of the pro-

tein (such as the internal residues of a globular protein) remain external in the misfolded protein

and subsequently interact with other externally hydrophobic, misfolded proteins. A number of hu-

man diseases are due to abnormal protein folding including Creutzfeldt-Jakob disease, Parkinson’s

disease, Huntington’s disease and Alzheimer’s disease (Chiti and Dobson 2006). These diseases

are neurodegenerative – the protein aggregates accumulate in the brain or nervous system. In these

conditions, β-sheet-containing protein monomers stack up to form a fibril, termed a cross-beta fil-

ament or protofilament. A number of these filaments twist together to form amyloid fibrils, the

constituent of the deposits found in these diseases.

1.5.1.2 The heat shock response

To counteract potential problems of protein misfolding during heat and other cellular stresses,

cells have developed the heat shock response (HSR). The HSR is an evolutionarily conserved

metabolic programme whereby an organism experiencing environmental stress such as heat shock

– an increase in cellular temperature above that normal for the organism – rapidly increases the

synthesis of a subset of proteins which help protect the cell from the environmental insult. Some of

these proteins act as molecular chaperones – binding to external hydrophobic regions of misfolded

proteins and aiding in their refolding. Others promote the degradation of proteins which cannot be

correctly folded. Others directly protect the cell from apoptosis by interacting with the component

91



of the apoptotic pathways. Some proteins involved in the HSR perform more than one of these

roles.

The HSR is the primary mechanism for dealing with misfolded proteins in the cytosol (Wester-

heide and Morimoto 2005) – a second mechanism, the unfolded protein response, handles mis-

folded proteins in the endoplasmic reticulum (Ron and Walter 2007). Despite the name, the HSR

can be triggered by a variety of environmental stresses and although inducible, many of the pro-

teins upregulated in the heat shock response are also present in unstressed cells and perform roles

in normal cellular metabolism.

The HSR is primarily controlled by the transcription factor HSF1. A variety of cellular stresses

(not just heat shock) causes HSF1 to trimerise, enter the nucleus and act as a transcription factor,

binding to heat shock elements in the promoters of genes involved in the HSR and increasing their

transcription. On heat shock, fibroblasts derived from wild-type or heterozygous mice rapidly

increased the expression of the HSR proteins Hsp70 and Hsp27, but HSF1-null mice did not

(McMillan et al. 1998). The details of how HSF1 is activated in response to cellular stress are

not fully established, but may be related to the release of HSF1 from complexes with chaperone

proteins when these chaperones are required by unfolded proteins, leaving HSF1 free to trimerise.

Other factors in addition to HSF1 are involved in activating the HSR, as increases in expression of

some genes are still observed in HSF1-null cells (Trinklein et al. 2004).

The protective nature of proteins upregulated in the heat shock response is believed to be respon-

sible for thermotolerance: the phenomenon whereby an initial mild heat shock followed by a

recovery period at normal temperature protects cells from a later severe heat shock which is lethal

to non-preshocked cells. This is presumably because the initial heat shock induces the heat shock

response, increasing the level of the protective proteins, which then protected the cell from the

second heat shock. Cells which had not previously been exposed to a heat shock had lower start-

ing levels of the protective proteins and were unable to synthesise them rapidly enough under the

severe environmental conditions to protect the cell. HSF1-null fibroblasts, which do not induce
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the HSR, do not exhibit thermotolerance (McMillan et al. 1998). As the heat shock response is

able to protect against various environmental stresses, its manipulation has attracted interest in

the treatment of conditions such as ischaemia-reperfusion injury. The involvement of Hsp27 in

thermotolerance is discussed in section 1.5.2.2.

1.5.1.3 Heat shock proteins

Although all known organisms from bacteria to animal cells exhibit a heat shock response, exactly

which proteins are upregulated varies between organisms. Some of the key proteins recognised to

be transcriptionally upregulated during the heat shock response are termed the heat shock proteins

(Hsps). Currently, two main classifications of mammalian Hsps have been recognised – the high

molecular weight Hsps and the small Hsps (Lanneau et al. 2008).

The high molecular weight Hsps are ATP-dependent chaperones and include three major families:

Hsp90, Hsp70 and Hsp60. Some members of these families are constitutively expressed, whereas

others are inducible on heat shock. Although all display chaperone activity, the roles of these

families are overlapping but distinct. Hsp90 associates with a variety of signalling-related proteins

such as VEGFR2 (Le Boeuf et al. 2004) and eNOS, and is required for the activity of these

proteins. Hsp70 has a variety of roles including aiding folding of newly translated proteins and

assisting protein translocation across membranes.

Small Hsps are ATP-independent chaperones that form large oligomers (heat shock granules) in

cells. Structurally, small Hsps contain an N-terminal region, a conserved 80–100 aa α-crystallin

domain, and a C-terminal region. Current members of the mammalian small heat shock pro-

tein family are Hsp27/HspB1, HspB2, HspB3, α-A crystallin/HspB4, α-B crystallin/HspB5,

Hsp20/HspB6, HspB7, Hsp22/HspB8, HspB9, HspB10 (Taylor and Benjamin 2005) and HspB11

(Bellyei et al. 2007). Hsp27, α-B-crystallin, Hsp20 and Hsp22 are widely expressed and heat-

inducible, other members are restricted in their expression sites (e.g. to muscle, eye lens or testis)

and so are unlikely to play general cellular roles. Hsp27 and α-B-crystallin (reviewed by Arrigo
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et al. 2007) are the most-studied and best-characterised small Hsps.

Amino acid sequence alignment of human small Hsps reveals a reasonable degree of amino acid

identity between most members in the α-crystallin domain (figure 1.9). Across many species, the

amino acid sequence of the α-crystallin domain is variable at most positions, but always forms a β-

sheet sandwich structure, composed of two layers of three and five antiparallel strands (Haslbeck

et al. 2005).

Heat shock of vascular endothelial cells was reported to increase the synthesis of proteins with

molecular weights of 99, 85, 72, 45 and 27 kDa, as determined by leucine radiolabelling (Darbon

et al. 1990) and, although not identified in this study, the 27 kDa protein likely to be the small

heat shock protein Hsp27. Later studies using proteomic analysis showed that ECs constitutively

express a number of Hsps including Hsp27, Hsp90 and various members of the Hsp60 and Hsp70

families, and that expression of a number of these proteins (including Hsp27) was increased by

cellular stresses including heat shock (Portig et al. 1996; Dreher et al. 1995; Wagner et al. 1999).

1.5.2 Hsp27 as a conserved small Hsp

Hsp27 (HspB1, mouse homologue known as Hsp25) is a highly conserved member of the mam-

malian small heat shock protein family, and constitutively expressed in a wide variety of human

tissues including endothelial cells (Piotrowicz et al. 1995). Highly similar proteins are expressed

in a variety of mammalian species, Xenopus and zebrafish, although the closest related proteins

in lower organisms such as nematode worms and yeast, while similar to each other, are distinct

from Hsp27 (figure 1.10). Human Hsp27 was originally cloned by Hickey et al. (1986), mouse

Hsp25 was cloned by Gaestel et al. (1993). Hsp27 protein expression and phosphorylation is in-

creased on heat shock (Arrigo and Welch 1987). The heat-induced increase in Hsp27 expression

is HSF1-dependent, but basal expression is HSF1-independent (McMillan et al. 1998).

The C-terminal half of Hsp27 contains a large α-crystallin domain of approximately 100 aas. This

domain is involved in protein-protein interactions, binding to another α-crystallin domain in a
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Figure 1.9: Amino acid sequence alignment of human small heat shock proteins
Reference protein sequences for human small heat shock proteins (HspB1–HspB11) were
retrieved via Entrez Gene and aligned with Clustal X2. Residues are coloured according
to Blossum62 score, with darker colours indicating better conservation. The first and last
residues of the α-crystallin domain in Hsp27 (as reported in the RefSeq record) are indicated
with a dollar sign ($). The RefSeq database accession numbers for the protein sequences
used for alignment were: Hsp27 NP 001531.1; HspB2 NP 001532.1; HspB3 NP 006299.1;
α-A-crystallin NP 000385.1; α-B-crystallin NP 001876.1; Hsp20 NP 653218.1; HspB7
NP 055239.1; Hsp22 NP 055180.1; HspB9 NP 149971.1; HspB10 NP 077721.2; HspB11
NP 057210.2.
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Figure 1.10: Amino acid sequence alignment of Hsp27 homologues in multiple species
(legend overleaf)
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Figure 1.10: Amino acid sequence alignment of Hsp27 homologues in multiple species
(continued)
Upper: Amino acid sequences for proteins homologous to human Hsp27 were retrieved via
Unigene, supplemented with HspB1 sequences for hamster and rat retrieved via Entrez Gene,
and aligned with Clustal X2. Residues are coloured according to Blossum62 score, with
darker colours indicating better conservation. The first and last residues of the α-crystallin
domain in human Hsp27 (as reported in the RefSeq record) are indicated with a dollar sign ($).
The location of the human Hsp27 phosphorylation sites (S15, S78, S82) are indicated with
an asterisk (*). The RefSeq database accession numbers for the protein sequences used for
alignment were: Human NP 001531.1; Monkey XP 001109274.1; Mouse NP 038588.2; Rat
NP 114176.3; Xenopus NP 001087285.1 ; Zebrafish NP 001008615.1; Fly NP 523827.1;
Worm NP 490929.1; Arabidopsis NP 198893.1; Yeast NP 011747.2. The GenBank acces-
sion number for the non-Refseq hamster sequence was P15991.1.
Lower: ClustalX2 alignment of the worm, Arabidopsis and yeast sequences from above.
These three sequences, though dissimilar to human Hsp27, are similar to one another.

separate molecule and leading to the formation of Hsp27 dimers (discussed in section 1.5.4.1).

1.5.2.1 Role of Hsp27 in development

Hsp25-null mice have been generated by replacement of the coding sequence of mouse HspB1

(Hsp25) with a lacZ reporter gene (Huang et al. 2007). Hsp25-null mice were viable, fertile and

exhibited no apparent morphological abnormalities (monitored for one year after birth), indicating

that any roles of Hsp25 in development are redundant. Examining heterozygous animals, which

express both normal Hsp25 and LacZ under control of the Hsp27 promoter, β-galactosidase ac-

tivity was first observed at E8.5 in the cardiac region, and was evident in the developing vascular

system at E10.5. Generally, Hsp25 was widely expressed in both embryonic and adult mice, in-

creasing during development, with adult expression most prominent in the musculature. High

muscular expression of Hsp25 had previously been reported (Gernold et al. 1993).

Similar to humans, mice contain at least ten small Hsp genes and it is possible that some functions

of Hsp25 may go unnoticed due to compensation by other sHsp proteins. However, Huang et al.

(2007) examined the expression of other sHsps at the mRNA level in a number of muscles, and

other Hsps (e.g. Hsp70, Hsp60, Hsp90) at the protein level in a wider variety of tissues, and did

not observe any differences in expression of other Hsp proteins between Hsp25-null and wild-type
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mice.

1.5.2.2 Involvement of Hsp27 in thermotolerance

Along with other Hsps, Hsp27 expression increases after mild heat shock and is correlated with the

development of a thermotolerant phenotype. The first direct evidence of a protective role for Hsp27

came from work by Landry et al. (1989), who showed dramatically increased survival, determined

by colony forming ability after heat shock, in hamster or mouse cell lines stably overexpressing

human Hsp27 after exposure a heat stress lethal to control transfectants. In this study, whereas

overexpression of Hsp27 under its own promoter (giving both constitutive and heat-inducible

expression) was protective against usually lethal heat shock, transfection with Hsp27 under the

control of an Hsp70 promoter (giving heat-inducible but little constitutive expression) was not,

indicating that elevated Hsp27 protein levels may be required at the time of heat challenge.

This question was addressed by Lavoie et al. (1993a), who transfected the mouse cell line NIH3T3

with a construct containing the human Hsp27 coding sequence fused to a metallothionin promoter,

allowing induction of Hsp27 expression by addition of low concentrations of cadmium chloride

which did not detectably increase expression of other heat shock proteins. Cadmium chloride pre-

treatment of the cells increased survival of a subsequent severe heat shock. Taken together, these

and a number of other studies have shown that overexpression of Hsp27, simulating upregulation

of Hsp27 by sub-lethal heat shock, improves cell survival in response to a normally lethal heat

shock or other cellular stress.

Further evidence of the importance of Hsp27 in thermotolerance comes from studies in a fibroblast

line established from Hsp25-null mouse embryos (Huang et al. 2007). Hsp25-null fibroblasts

developed a lower degree of thermotolerance (less cells survived a severe heat shock after an earlier

mild heat shock) than control cells, indicating that this function of Hsp25 is not fully compensated

for by other heat shock proteins. Fibroblasts from Hsp70-null embryos also showed impaired

thermotolerance similar to those obtained from Hsp27-null embryos. Interestingly, fibroblasts
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derived from Hsp27/Hsp70 double-null embryos showed a further lowering of the thermotolerance

response, beyond that observed with either single knockout with survival similar to that for cells

not previously exposed to mild heat shock (the survival status at birth etc of Hsp27/Hsp70-double

null mice was not reported). Thus it appears that Hsp25 and Hsp70 are key proteins involved

in the quantitatively most important processes in the acquisition of thermotolerance, and seem to

have some distinct functions in thermotolerance acquisition due to the lack of full compensation

of their functions.

In addition to protection against heat-induced cellular injury, enhanced expression of Hsp27 has

been shown in to be protective (i.e. increased viability of cells after stress) against cell death

due to oxidative stress (e.g. H2O2) and TNFα (Mehlen et al. 1996a), radiation, serum starvation

(Garrido et al. 1998), Fas ligand (Mehlen et al. 1996b), and anti-cancer drugs (Garrido et al.

1997). In endothelial cells, overexpression of Hsp27 can protect from apoptosis induced by hy-

poxia/reoxygenation (Kabakov et al. 2003). However, Hsp25-null transformed mouse fibroblasts

showed similar susceptibility to cell death induced by etoposide, which induces double-strand

DNA breaks, X-rays, serum starvation or oxidative stress (Huang et al. 2007). Given the im-

portance of Hsp25 in thermotolerance, it appears that the importance of Hsp27 in survival of

cellular stresses may be dependent on the particular stress employed. Hsp25 does not have a non-

redundant role in protection against all stresses or under basal conditions, although this does not

preclude the notion that increased expression or post-translational modification of Hsp25 might

result in enhanced protection from some of these stresses.

Hsp27 is a multi-functional protein, acting as a molecular chaperone, modulator of apoptosis

signalling and regulator of the actin cytoskeleton (discussed below). While it is likely that these

properties contribute to the protective effect of Hsp27, the relative contribution of each individual

property is unknown and may vary depending on the nature of the cellular stress involved.
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1.5.3 Phosphorylation of Hsp27

Initial studies of heat shock proteins in endothelial cells indicated that heat shock, phorbol es-

ter and arsenite could increase the phosphorylation of an ∼27 kDa protein whose synthesis was

increased on heat shock (Robaye et al. 1989; Darbon et al. 1990; Santell et al. 1992). Phosphory-

lation sites were initially identified by chromatographic examination of tryptic peptides containing

radiolabelled phosphate as S78 and S82 (and possibly S15) in human Hsp27 (Landry et al. 1992),

and S15 and S86 in mouse Hsp25 (Gaestel et al. 1991). The major site of labelled phosphate

incorporation into Hsp27 in arsenite-treated MCF7 human breast cancer cells was S82, which

contained 80% of Hsp27-incorportated phosphate (Landry et al. 1992). A large number of studies

using subsequently-developed phospho-specific antibodies have shown that human Hsp27 is phos-

phorylated at S15, S78 and S82 in response to diverse stress stimuli. S15 and S82 are conserved

sites in all other mammalian Hsp27 proteins, while S78 is not (figure 1.10).

In addition to heat shock, arsenite and phorbol esters, Hsp27 phosphorylation in endothelial cells

can be stimulated by treatment of cells with VEGF (Rousseau et al. 1997), TNFα (Robaye et al.

1989; Kiemer et al. 2002), H2O2 (Barchowsky et al. 1994; Huot et al. 1997), IL-1 (Saklatvala

et al. 1991), thrombin (Santell et al. 1992), oestrogen (Razandi et al. 2000) and fluid shear stress

(Li et al. 1996). Phosphorylation of Hsp27 has been observed in other cell types in response to

diverse stress stimuli including UV irradiation, anisomycin (a protein synthesis inhibitor), and

sorbitol-induced osmotic shock. Cytokines including TGFβ and PDGF (Hedges et al. 1999), and

serum and TGFβ (Zhou et al. 1993) have also been reported to induce Hsp27 phosphorylation in

vascular smooth muscle cells and a hamster fibroblast line respectively. Phosphorylation of Hsp27

occurs rapidly after cell stimulation with all of these agents, with 5–30 min treatments employed

in most studies.
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1.5.3.1 p38 MAPK pathway

p38 MAPK is a protein kinase activated by treatment of cells with many of the stresses and

cytokines listed above as stimulators of Hsp27 phosphorylation, including VEGF, TNFα, IL-

1β, H2O2 and anisomycin. Stress-induced p38 MAPK activation occurs via the upstream ki-

nases MEK3 and 6 which directly phosphorylate p38 MAPK on its activation loop residues

(T180/Y182). MEK3 and 6 are in turn activated by upstream kinases, although the identity of

these is uncertain and may vary depending on the stimulus. Downstream, p38 MAPK phospho-

rylates a number of target proteins, the most relevant for Hsp27 being mitogen-activated protein

kinase-activated protein kinases (MAPKAPKs) 2 and 3, with MAPKAPK2 playing the domi-

nant role. Isoforms of p38 that phosphorylate MAPKAPK2 can be inhibited by the compounds

SB203580 or SB202190, and pretreatment of cells with these compounds prevents MAPKAPK2

phosphorylation and activation. The p38 MAPK/MAPKAPK2 pathway is discussed in more detail

in section 1.6.1.

In vitro, MAPKAPK2 phosphorylates Hsp27 at the sites observed to be phosphorylated in re-

sponse to diverse stimuli in vivo: S15, S78 and S82 for human Hsp27, S15 and S86 for mouse

Hsp25, with S82/S86 being the major phosphorylation sites (Stokoe et al. 1992b). MAPKAPK2

partially purified from arsenite-, sorbitol- or IL-1-treated cells phosphorylated Hsp27 in vitro, and

this were prevented by pre-incubation of the cells with SB203580 (Cuenda et al. 1995), indicat-

ing that in vivo Hsp27 phosphorylation in response to these stimuli was mediated by p38 MAPK,

probably via the p38/MAPKAPK2 pathway. It is likely that MAPKAPK2 can directly phosphory-

late Hsp27 in intact cells, as an overexpressed constitutively active MAPKAPK2 phosphorylated

Hsp27 in the absence of other stimuli (Xu et al. 2006).

A large number of studies have shown that Hsp27 phosphorylation induced by a variety of stimuli

in various cell types is blocked by SB203580. Inhibition of MAPKAPK2 activity and Hsp27

phosphorylation by SB203580 is highly likely to be due to p38 MAPK inhibition, rather than

non-p38 effects of this inhibitor. Eyers et al. (1999) generated fibroblast cell lines expressing an
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inducible SB203580-resistant p38 MAPK, and transiently transfected them with Hsp27. Before

induction, UV- or anisomycin-stimulated Hsp27 phosphorylation at S15 or S78 was inhibited by

SB203580, whereas after induction (i.e. in cells expressing drug-resistant p38 MAPK), Hsp27

phosphorylation was not inhibited by SB203580. Similar results were observed for MAPKAPK2

activity.

The importance of p38 MAPK and MAPKAPK2/3 in Hsp27 phosphorylation was shown in cells

derived from knockout mice. Hsp27-phosphorylating kinases activated by UV, anisomycin or

H2O2 present in normal cardiomyocytes were absent in p38α-null cardiomyocytes (Adams et al.

2000). Some endogenous phosphorylated Hsp25 was detected in cardiac tissue of MAPKAPK2-

null mice, indicating that other kinases may also phosphorylate Hsp27 in vivo, although the in-

creases in Hsp25 phosphorylation stimulated by lipopolysaccharide (LPS) (Kotlyarov et al. 1999)

and arsenite (Shi et al. 2003) were prevented. MAPKAPK3 overexpression can compensate for

the loss of arsenite-stimulated Hsp25 kinase activity in MAPKAPK2-null cells (Ronkina et al.

2007), indicating that MAPKAPK2 and 3 act as stress-stimulated Hsp27 kinases. Together, these

data indicate that p38α and MAPKAPK2/3 mediate stress-induced Hsp27 phosphorylation, and

that MAPKAPK2 appears to be the major stress-activated direct Hsp27 kinase.

Interestingly, the phorbol ester PMA stimulated Hsp27 phosphorylation in p38α-null cardiomy-

ocytes (Adams et al. 2000) indicating that, in contrast to ‘stress’ stimuli, phorbol esters stimulate

a p38α-independent pathway to phosphorylate Hsp27. As MAPKAPK2 was not detectably acti-

vated in PMA-stimulated p38α-null cardiomyocytes (Adams et al. 2000), it is likely that phorbol

ester-stimulated Hsp27 phosphorylation is also independent of MAPKAPK2, suggesting that ad-

ditional enzymes can directly phosphorylate Hsp27 in vivo.

1.5.3.2 PKC

Phorbol esters are known activators of classical and novel PKC isoforms, and the PMA-stimulated

Hsp27 phosphorylation observed in p38α-null cardiomyocytes (Adams et al. 2000) may be medi-
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ated by PKC.

After initial work showing phorbol ester treatment of intact cells stimulated Hsp27 phosphoryla-

tion, the importance of PKC in Hsp27 phosphorylation was called into question by the inability of

long-term phorbol ester treatment (which downregulates PKC isoforms) or the broad-specificity

PKC inhibitor staurosporine to prevent TNFα- and IL-1β-stimulated Hsp27 phosphorylation (Sak-

latvala et al. 1991). Coupled with the discovery of the p38/MAPKAPK2/Hsp27 pathway and its

implication in Hsp27 phosphorylation induced by IL-1 (Freshney et al. 1994) and a variety of

stress stimuli including heat shock, arsenite and osmotic stress (Rouse et al. 1994), interest in a

PKC/Hsp27 pathway appears to have decreased.

In endothelial cells, phorbol ester treatment increased Hsp27 phosphorylation, and long-term phor-

bol ester treatment prevented Hsp27 phosphorylation stimulated by phorbol ester, thrombin or his-

tamine, and reduced IL-1β-stimulated phosphorylation (Santell et al. 1992). Also in endothelial

cells, PKC inhibitors did not prevent H2O2-induced Hsp27 phosphorylation (Barchowsky et al.

1994). These differences were further investigated by Faucher et al. (1993), who showed in

the MCF7 breast cancer cell line that PKC inhibition with the broad-specificity PKC inhibitor

GF109203X substantially reduced phosphate incorporation into Hsp27 induced by phorbol ester

treatment but had no effect on heat shock-induced phosphate incorporation. The importance of

PKC in Hsp27 phosphorylation is therefore stimulus-dependent, indicating the presence of addi-

tional signalling pathways for Hsp27 phosphorylation, but leaving it uncertain whether a PKC-

dependent pathway is physiologically relevant.

Maizels et al. (1998) examined the ability of various recombinant PKC isoforms to phosphorylate

recombinant Hsp25 in vitro. PKCδ and, to a lesser extent, PKCα phosphorylated Hsp25, whereas

PKCs β, ε and ζ caused relatively little phosphorylation. Whether direct phosphorylation of Hsp27

by PKC occurs in vivo is unknown.
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1.5.3.3 Other pathways

In addition to MAPKAPK2/3, MAPKAPK5 (p38 regulated/activated kinase, PRAK) has also been

reported to phosphorylate Hsp27 in response to arsenite (New et al. 1998). However, Shi et al.

(2003) found that while recombinant MAPKAPK5 is activated by p38 in vitro, and can then phos-

phorylate Hsp27, this does not occur in vivo and MAPKAPK5 immunoprecipitated from cells

treated with p38 activators is unable to phosphorylate Hsp27. The same group also showed that

the antibody used by New et al. in their original paper was able to immunoprecipitate an Hsp27

kinase from arsenite-activated mouse embryonic fibroblasts derived from MAPKAPK5-null mice

but not from MAPKAPK2-null mice, suggesting this antibody cross-reacts with MAPKAPK2

and so may give erroneous results. Although MAPKAPK5 is apparently not responsible for p38

MAPK-mediated Hsp27 phosphorylation, it has recently been reported to be involved in forskolin-

stimulated actin re-organisation via direct Hsp27 phosphorylation (Kostenko et al. 2009), suggest-

ing that MAPKAPK5 may be a relevant Hsp27 kinase under some conditions. These studies were

performed with overexpressed proteins, and no evidence on the effect of MAPKAPK5 knockdown

on forskolin-stimulated Hsp27 phosphorylation was presented despite the use of a MAPKAPK5

siRNA in this study.

Akt has been reported to associate with and phosphorylate Hsp27 at S82 but not S15 or S78.

Recombinant Akt phosphorylated Hsp27 in vitro, and co-transfection of HEK293 cells with con-

stitutively active Akt and wild type Hsp27 led to phosphorylation of the transfected Hsp27 at S82

(Rane et al. 2003). The authors proposed a p38/MAPKAPK2- and PI-3-K-dependent model for

Akt activation in their human neutrophil system but did not examine whether PI-3-K inhibition

(e.g. by wortmannin or LY294002) prevented Hsp27 phosphorylation in untransfected cells. An-

other group reported that in a mouse fibroblast line Hsp27 exists in complex with Akt, p38 and

MAPKAPK2, with Hsp27 dissociating from the complex on p38 or Akt activation, but did not

report Akt-stimulated Hsp27 phosphorylation (Zheng et al. 2006). The existence of direct Hsp27

phosphorylation by Akt in human endothelial cells has not been shown.
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Lee et al. (2005) overexpressed various fragments and deletion mutants of mouse Hsp25 and

mouse PKCδ in L929 mouse fibroblasts, showing by co-immunoprecipitation that Hsp25 and

PKCδ interact when both proteins are overexpressed, with the V5 region at the C-terminus of the

PKCδ catalytic domain and the amino acids 90–103 of Hsp25 were responsible for the interaction.

PKCδ mutants mimicking autophosphorylation (S643D or S662D) did not interact with Hsp25

whereas PKCδ forms with these residues mutated to Ala did, and an S15D S86D Hsp25 mutant

did not interact with PKCδ whereas a non-phosphorylatable (S15A S86A) form did, suggesting an

interaction between the unphosphorylated forms of Hsp25 and PKCδ. Immunoprecipitated PKCδ

phosphorylated Hsp25 in vitro at S15 and S86, although whether this phosphorylation occurs in

vivo in the absence of overexpression is unknown.

T143 has been suggested as an additional Hsp27 phosphorylation site. cGMP-dependent protein

kinase (PKG) catalyses phosphate incorporation into a purified Hsp27 S15D S78D S82D (3D)

mutant protein in vitro, but not of a Hsp27 3D + T143E mutant, whereas MAPKAPK2 is un-

able to incorporate phosphate into either (Butt et al. 2001). Treatment of human platelets with a

PKG-activating cGMP analogue induced phosphorylation of Hsp27 without affecting p38 MAPK

activation loop phosphorylation, and PKG was unable to phosphorylate MAPKAPK2 in vitro, in-

dicating that cGMP-activated Hsp27 phosphorylation in platelets is unlikely to occur via the p38

MAPK/MAPKAPK2 pathway. However, there are no reports of T143 phosphorylation in non-

platelets or in response to any other stimuli, and a number of early studies examining Hsp27 after

stimulation by a number of cytokines and stress-inducing stimuli could detect phospho-serine, but

not phospho-threonine or pY in purified Hsp27.

1.5.3.4 VEGF-stimulated Hsp27 phosphorylation

At the outset of this work, the p38 MAPK/MAPKAPK2 pathway was thought to be the major

pathway responsible for Hsp27 phosphorylation in vivo. Rousseau et al. (1997) reported that

VEGF activates p38 MAPK, and that the p38 MAPK/MAPKAPK2 pathway was responsible for
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VEGF-induced Hsp27 phosphorylation, showing that 15 mins VEGF treatment of HUVECs in-

creased the incorporation of radiolabelled phosphate from ATP into Hsp27, and this was prevented

by pre-incubation of the cells for 15 mins with the p38 MAPK inhibitor SB203580 (1 µM). The

sites of phosphorylation were not determined, and quantitative data was not presented. The same

group reported that VEGF-stimulated p38 MAPK activation occurred via VEGFR2 (Rousseau

et al. 2000b).

McMullen et al. (2004) showed that adenovirus-mediated overexpression of an non-activatable

p38α form prevented VEGF-stimulated Hsp27 phosphorylation in HUVECs, suggesting involve-

ment of the p38/MAPKAPK2 pathway. Activation of all p38 isoforms by overexpression of con-

stitutively active MEK6 caused Hsp27 phosphorylation in HUVECs (McMullen et al. 2005). This

activation was prevented by overexpression of kinase-dead p38α, indicating that p38α is the pri-

mary enzyme responsible for MEK6-mediated Hsp27 phosphorylation. In both studies, the phos-

phorylation site recognised by the phospho-Hsp27 antibody used was not indicated.

The mechanism of VEGF-stimulated p38 MAPK activation is controversial. McMullen et al.

(2004) reported that VEGF-stimulated p38 MAPK phosphorylation in HUVECs was reduced by

chelation of extracellular calcium, or adenovirus-mediated overexpression of either kinase-inactive

src or a mutant form of the non-receptor tyrosine kinase Pyk2 which is unable to bind src. In this

study, neither PKC inhibition nor overexpression of an inactive cdc42 mutant prevented VEGF-

stimulated p38 phosphorylation (McMullen et al. 2004). Another study on HUVECs reported that

VEGF-stimulated p38 MAPK phosphorylation was inhibited by the PKC inhibitor GF109203X

(Yashima et al. 2001). A third study showed that overexpression of cdc42 carrying the same mu-

tation as used by McMullen et al. (2004) reduced VEGF-stimulated p38 MAPK phosphorylation

and Hsp27 phosphate incorporation in NIH3T3 cells additionally transfected with VEGFR2, p38,

and (for the Hsp27 data) MAPKAPK2 (Lamalice et al. 2004). Lamalice also showed that VEGF-

stimulated p38 MAPK phosphorylation occurred in cells transfected with wild-type VEGFR2 but

not a VEGFR2 Y1214F mutant.
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The signalling pathways believed at the outset of this thesis to contribute to VEGF-stimulated

Hsp27 phosphorylation are depicted in figure 1.11. During the course of this thesis, it was re-

ported that VEGF is able to activate protein kinase D (PKD) via PKC (Wong and Jin 2005),

and that PKD is able to phosphorylate Hsp27 in vitro at S82 (Doppler et al. 2005), suggesting

a VEGF/PKC/PKD/Hsp27 pathway. Further discussion of the mechanism, regulation and roles

of PKC and PKD is given in section 1.6. The following sections discuss the relevance of Hsp27

phosphorylation to its cellular roles.

Figure 1.11: Pathways contributing to VEGF-stimulated Hsp27 phosphorylation in en-
dothelial cells
Solid arrows indicate signal transduction events. Dashed arrows indicate that, while VEGF
activates Akt and Akt has been reported to phosphorylate Hsp27 at S82, this pathway has not
been shown to operate in endothelial cells. While a number of potential mediators of p38
activation have been suggested, as discussed in the text the actual pathway is uncertain.

1.5.4 Hsp27 structure and oligomerisation

In common with other members of the small heat shock protein family, Hsp27 is able to form

oligomers and multimers of varying size. sHsp oligomers can either be homomers (i.e. composed

of a single sHsp) or heteromers. Hsp27 can form hetero-oligomers with other sHsps including α-
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B-crystallin (Zantema et al. 1992), Hsp20 (Bukach et al. 2009), and Hsp22 (Benndorf et al. 2001),

although at least two studies have reported that Hsp27 in vivo is mainly a homomer (Zantema et al.

1992; Lambert et al. 1999).

1.5.4.1 Importance of α-crystallin domain for dimerisation

Although the crystal structure of Hsp27 has not been determined, the crystal structure of two

other sHsps, Hsp16.5 from the archaeon Methanococcus jannaschii, and Hsp16.9 from wheat

have been solved (Kim et al. 1998; van Montfort et al. 2001). These structures show that two

sHsp monomers interact to form a dimer, and these dimers are then arranged in higher order

structures to form the oligomer. The oligomer structure of the two sHsps is different with respect

to the number of subunits incorporated and the shape produced (a 24 monomer hollow ball for

Hsp16.5, 12 monomer double ring for Hsp16.9). Other sHsps, whose structures were analysed by

electron microscopy, showed varying oligomeric structures, with α-crystallin forming a number

of different structures (reviewed by Haslbeck et al. 2005).

The α-crystallin domain forms a β-sheet sandwich structure composed of two layers of β sheets

with one β-strand separate from the others. The separate β-strand is able to interact with the β-

sheet sandwich in another sHsp molecule, allowing sHsp monomers to dimerise. The determined

sHsp crystal structures show the N-terminal region as a random coil free to move, seemingly not

taking part in monomer-monomer interactions.

The conserved α-crystallin domain is likely to be responsible for dimer formation between sHsp

monomers. A truncation mutant of the yeast sHsp Hsp26 which lacked the entire N-terminal

domain (consisting of the α-crystallin domain and short C-terminal extension) formed dimers

but not higher order structures (Stromer et al. 2004). Additionally, a hamster Hsp27 deletion

mutant lacking a short N-terminal region (R5–Y23) was unable to form species larger than dimers

(Lambert et al. 1999). Thus it appears that the α-crystallin domain is necessary and sufficient

for dimerisation, a common property of sHsps. Conservation of the α-crystallin domain between
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sHsps allows heterodimerisation, and therefore hetero-oligomerisation.

Hsp25 forms dimers in non-reducing buffers (Miron et al. 1988). The only cysteine residue present

in Hsp27, the α-crystallin domain residue C137 (C141 in Hsp25) is conserved between Hsp27

species homologues (figure 1.10) but not between human sHsps (figure 1.9). A C141A Hsp25

mutant did not form dimers, indicating the importance of this residue for dimerisation, but retained

a number of Hsp25 physiological abilities suggesting large-scale structural changes do not occur

as a result of this mutation (Diaz-Latoud et al. 2005). It is possible that monomer–monomer

interactions are stabilised by the formation of an inter-subunit disulphide bond between these

residues.

1.5.4.2 Involvement of the N-terminal region in higher-order oligomerisation

Deletion of regions of the N-terminal domain of Hsp27 prevents oligomer formation. Lambert

et al. (1999) used a chimeric protein formed by the N-terminal region of hamster Hsp27 (including

S15 and S90 but not the α-crystallin domain) fused to luciferase (a normally monomeric protein)

to examine the role of the N-terminal region of Hsp27 in phosphorylation-sensitive oligomerisa-

tion. The fusion protein formed oligomers, with a modal size of ∼400 kDa, when expressed in

a fibroblast line. On arsenite treatment, the average size of the fusion protein species decreased

with an increase in the amount of small (probably monomeric) species. Taken together with the

inability of N-terminal deletion mutant proteins to form large oligomeric species (Stromer et al.

2004), these data indicate that the N-terminal region is involved in Hsp27 oligomer formation,

and phosphorylation of Hsp27 disrupts this interaction causing a reduction in the size of Hsp27

oligomers.

Two different studies of hamster Hsp27 deletion mutants indicated that deletion of small N-

terminal regions encoded by residues 5–23 (Rogalla et al. 1999) or 18–30 (Theriault et al. 2004)

prevented oligomerisation, with the second study showing that mutants lacking residues 1–14 and

28–79 formed similar sized oligomers to wild-type Hsp27, indicating that these residues are dis-
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pensable for oligomer formation. Residues 15–27 (corresponding to human Hsp27 residues 14–

26) contain the conserved WDPF sequence (residues 16–19 in human Hsp27), and this sequence

is thought to be important in dimer–dimer interactions within the Hsp27 oligomer.

Theriault et al. (2004) also proposed a model for the organisation of Hsp27 oligomers, extrap-

olating from the crystal structure of M. jannaschii Hsp16.5. In their model, Hsp27 forms two

12-mer rings, one on top of the other, which would have a predicted molecular weight of 27 kDa

x 24 subunits = 648 kDa, similar to that observed for wild-type Hsp27 in a number of studies.

Residues around the conserved WDPF sequence are proposed to be the important N-terminal re-

gion for oligomerisation. However two different groups have reported that the number of subunits

incorporated into the Hsp27 oligomer varies with protein concentration (Ehrnsperger et al. 1999;

Theriault et al. 2004). Additionally, Hsp27 appears to have a range of sizes when purified from

cells (although this could be an artifact), and other sHsps appear have oligomeric structures quite

different to that of Hsp16.5 (Haslbeck et al. 2005), so the general applicability of the Theriault

structure is unknown.

1.5.4.3 Influence of phosphorylation on oligomeric structure

In unstressed growing HeLa cells, Hsp27 is predominantly unphosphorylated and exists in a high

molecular weight complex, with an average size around 500 kDa as determined by gel filtra-

tion chromatography, although considerable variation in size was observed (Arrigo and Welch

1987; Arrigo et al. 1988). Gel filtration-purified high molecular weight non-phosphorylated Hsp27

oligomers displayed reasonably uniform circular structures approximately 15 nm in diameter when

analysed by electron microscopy (Arrigo and Welch 1987; Benndorf et al. 1994; Rogalla et al.

1999).

Heat shock (Zantema et al. 1992) or treatment of cells with Hsp27 phosphorylation-inducing stim-

uli, including PMA, TNFα, IL-1β and arsenite (Kato et al. 1994), caused a reduction in the average

size of Hsp27 oligomers as assessed by sucrose density-gradient centrifugation. The same au-
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thors showed that radiolabelled phosphate-containing Hsp27 was mainly present in smaller Hsp27

species (also observed by Rogalla et al. 1999). Ehrnsperger et al. (1999) showed that Hsp25

phosphorylated in vitro by MAPKAPK2 formed smaller species than untreated Hsp25, strongly

indicating that phosphorylation status rather than some other modification is responsible for the

difference in Hsp27 oligomeric size. Taken together these data suggested that phosphorylation of

Hsp27 may cause oligomer dissociation.

The effect of phosphorylation on the oligomeric structure of Hsp27 has been further examined by

overexpressing Hsp27 phosphorylation site mutants in intact cells, and fractionating the cells to

determine the molecular weight of Hsp27-containing species. In the discussion that follows, a 3X

Hsp27 mutant consists of a protein identical to wild-type Hsp27 but with the three MAPKAPK2-

phosphorylated serine residues mutated to X (a particular amino acid). Similarly, a 2X Hsp25

mutant has S15 and S86 mutated to X, and a 2X hamster Hsp27 mutant has S15 and S90 mutated

to X.

Lavoie et al. (1995) analysed the effect of phosphorylation on the molecular size of human Hsp27

overexpressed in CHO cells by non-denaturing gel electrophoresis, showing that arsenite induced

a decrease in the oligomeric size of wild-type Hsp27 but did not affect the size of a 3G Hsp27

mutant. In the absence of arsenite simulation, the wild-type and 3G Hsp27 forms ran at similar gel

positions. Another study reported that whereas wild type Hsp27 exists as a range of sizes in intact

cells, the 3A Hsp27 mutant exists as large multimers but not small species (Hollander et al. 2004).

Direct comparisons between Hsp27 wild type, 3A and 3D mutants using gel filtration indicated

that whereas wild-type Hsp27 formed a range of species (700 kDa – monomers), 3A Hsp27 formed

large species only (>200 kDa) whereas 3D Hsp27 formed only small species (<200 kDa, although

the precise size varied between studies) (Mehlen et al. 1997a; Bruey et al. 2000b). A hamster

2A Hsp27 mutant displayed a similar size distribution to endogenous Hsp27 in untreated hamster

CCL39 cells, whereas a 2D mutant had a similar size distribution to endogenous Hsp27 in arsenite-

treated cells, as analysed by SDS-PAGE analysis of glutaraldehyde cross-linked Hsp27 and density
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gradient centrifugation (Lambert et al. 1999). Another study also reported that a 2A hamster

Hsp27 mutant transfected into NIH3T3 mouse fibroblasts formed large oligomers similar to those

formed when cells were transfected with wild type Hsp27, whereas a 2E mutant formed only small

species, probably dimers (Theriault et al. 2004).

Where studies have shown a lack of influence of phosphorylation on oligomeric structure, method-

ological differences may be responsible. For example, Knauf et al. (1994) reported that in vitro-

phosphorylated Hsp25 (by MAPKAPK2) elutes at a similar position, approx 700 kDa, to unphos-

phorylated Hsp25 using gel filtration chromatography. However, some of these authors contributed

to a later paper (Ehrnsperger et al. 1999) which found that phosphorylated Hsp25 formed smaller

oligomers than unphosphorylated Hsp25, ascribing the differing results in the earlier work to the

presence of a contaminating phosphatase in the in vitro Hsp25 preparation.

Overall, a number of studies have shown that chromatographed Hsp27 exists in two forms, large

and small, with less Hsp27 at intervening sizes indicating that two major oligomeric forms exist

rather than a continuum of sizes. Phosphorylation of Hsp27 results in a decrease in oligomer size.

Mutants mimicking phosphorylated Hsp27 (D/E) form small species, whereas mutants contain-

ing unphosphorylatable residues (G/A) form large species whose size cannot be decreased by a

number of stimuli causing deoligomerisation of wild-type Hsp27. In some studies (e.g. Rogalla

et al. 1999) mutant Hsp27 consisting of a single phospho-mimicking form of Hsp27 was present

entirely as small or large species, whereas in other studies phospho-mimicking mutants showed

a increased formation of smaller species but were also present as large species, indicating that

phosphorylated Hsp27 tends to occur in smaller species but is not exclusively present in them.

Much of the work on the involvement of phosphorylation on Hsp27 oligomerisation has involved

overexpressing mutant forms of Hsp27 or analysing Hsp27 after in vitro phosphorylation. Vertii

et al. (2006) used MAPKAPK2-null cells, and inhibitors of p38 and MAPKAPK2, to examine

the importance of phosphorylation on Hsp25 oligomerisation without the requirement for Hsp27

overexpression. Arsenite-stimulated Hsp25 S86 phosphorylation was reduced by SB203580 pre-
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treatment and completely prevented in MAPKAPK2-null mouse embryonic fibroblasts. In un-

treated cells, Hsp25 existed as a mixture of large species (modal size approx 250 kDa) and smaller

species (<70 kDa) as assessed by gel filtration chromatography, and produced a laddered pattern

after glutaraldehyde cross-linking and SDS-PAGE. Arsenite treatment of wild-type cells reduced

the predominant size of Hsp25 oligomers to the smaller species, whereas arsenite treatment of

MAPKAPK2-null cells did not noticeably affect either the glutaraldehyde cross-linked Hsp25 pat-

tern or the distribution of Hsp25 obtained by gel filtration. These data indicate that MAPKAPK2 is

necessary for the arsenite-induced dissociation of Hsp25 oligomers, and suggests more generally

that phosphorylation is required for small heat shock oligomer dissociation.

1.5.4.4 Role of individual phosphorylation sites

The involvement of the individual phosphorylation sites of Hsp27 has also been examined by

site-directed mutagenesis. Arsenite treatment reduced the oligomer size of overexpressed wild-

type hamster Hsp27 and an S15A mutant, but had little effect on an S90A mutant (Lambert et al.

1999). The same authors showed that an S15E S90A Hsp27 mutant formed large oligomers (modal

size approx 600 kDa by glycerol gradient centrifugation) whereas an S15A S90E mutant predom-

inantly formed small species (modal size ∼40 kDa, probably representing dimers).

Rogalla et al. (1999) extended some of the findings of Lambert et al. (1999) to human Hsp27,

by examining the role of individual phosphorylation sites in Hsp27 oligomerisation using gel

filtration chromatography. Wild type Hsp27 existed almost entirely as a high molecular weight

species (400–700 kDa). A 3D mutant existed entirely as small species (<200 kDa), whereas an

S78D S82D double mutant existed as two distinct populations, with similar amounts of the larger

species and the smaller species. An S15D mutant contained a majority of large species and a

low proportion of small species. Similar results were obtained when the wild-type and mutant

proteins were examined by electron microscopy. After in vitro phosphorylation, Hsp27 existed

with roughly equal amounts of Hsp27 present in large and small species. Taken together, the work
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of Lambert et al. and Rogalla et al. indicates that S82 phosphorylation is likely to be the critical

event in Hsp27 deoligomerisation. In human Hsp27, phosphorylation of S15 also contributes

significantly to oligomer dissociation.

In summary, it is clear that phosphorylation of Hsp27 reduces the size of the oligomers formed. It

is believed that the phosphorylation-regulated alterations in oligomerisation state, rather than phos-

phorylation itself, are important in regulation of Hsp27 functional properties. Distinct oligomeric

species may have distinct functions (discussed below), so allowing the function of Hsp27 to be

regulated in part by phosphorylation-inducing stimuli.

1.5.5 Physiological roles of Hsp27

Hsp27 has been implicated in a variety of physiological processes, including acting as a molecular

chaperone, regulating the actin cytoskeleton (with related roles in cell migration), and inhibiting

apoptosis. The mechanisms behind these properties are now examined, using evidence from en-

dothelial cells where available. Information discussed in this section is summarised in figure 1.12.

1.5.5.1 Molecular chaperone

Molecular chaperones are proteins that assist the folding of other molecules, or the assembly of

other macromolecular structures, but do not participate in the final complete structure. Chaperones

are known to be involved in protein folding under both normal and abnormal cellular conditions.

As discussed earlier, heat shock and other cellular stresses often lead to the production of mis-

folded proteins, which must be either refolded into their correct shape or destroyed. For this

reason, many molecular chaperones concerned with protein folding are upregulated on heat shock

(i.e. are heat shock proteins).

Hsp27, Hsp25 and α-B-crystallin reduced the rate of thermally-induced aggregation of citrate

synthase and α-glucosidase as determined by light scattering, indicating that these proteins are

molecular chaperones, whereas addition of IgG or lysozyme had no effect (Jakob et al. 1993). Ad-
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ditionally, the rate of reactivation of citrate synthase and α-glucosidase was substantially higher in

the presence of Hsp25 or Hsp27 than in the presence of IgG. Taken together, this study indicates

that Hsp27 prevents aggregation of proteins during heat shock, and promotes refolding of dena-

tured proteins in vitro. The presence of MgATP did not enhance the effects of Hsp27, implying

that Hsp27 is an ATP-independent molecular chaperone.

1.5.5.1.1 Interaction with ATP-dependent chaperones

Ehrnsperger et al. (1997) examined the interplay between Hsp25 and other molecular chaperones

in protein folding during heat shock. The presence of Hsp25 delayed the thermally-induced irre-

versible inactivation of citrate synthase but had little effect on the loss of citrate synthase activity,

indicating that citrate synthase was being preserved as inactive intermediates. Addition of Hsp70

and ATP to heat shock-induced citrate synthase/Hsp25 complexes at normal cellular temperatures

caused a greater reactivation of citrate synthase than addition of a control protein (IgG) or Hsp70

in the absence of ATP. These data suggest that the presence of both Hsp70 and ATP increases the

reactivation of citrate synthase complexed with Hsp25 in vitro, probably by Hsp70-mediated re-

folding of citrate synthase, when normal cellular conditions return. Several more proteins (which

were not identified) from heat shocked cells were found to bind to Hsp25-sepharose beads than

from non-heat shocked cells, suggesting that after heat shock, a number of proteins adopt a (prob-

ably partially denatured) conformation that can be bound to Hsp25, and so may be trapped in the

Hsp25 reservoir.

The ability of Hsp27 to act as a molecular chaperone in vivo was demonstrated by Bryantsev

et al. (2007), who showed that refolding of a luciferase-GFP protein in heat-shocked L929 cells

was enhanced in cells overexpressing Hsp27 or Hsp70, and this effect was reduced in cells co-

expressing Bag1, a negative regulator of Hsp70. These data indicate that Hsp27 chaperone activity

is dependent on Hsp70 activity, consistent with Ehrnsperger et al. (1997) and with the idea of

Hsp27 as a substrate ‘holder’ for Hsp70.
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Hsp27 is a cytosolic protein in unstressed cells, but rapidly translocates to the nucleus on heat

shock and associates with large structures, before slowly returning to the cytosol (Arrigo and

Welch 1987; Kato et al. 1993). Proteasome components co-localise with nuclear Hsp27 (Bryant-

sev et al. 2007), leading to the suggestion that nuclear Hsp27 may contain a pool of unrefoldable

substrate molecules destined for degradation. The basis of the nuclear translocation is unknown,

but may be passive diffusion of small Hsp27 species through nuclear pores. p38 MAPK inhibitors

did not prevent Hsp27 translocation on heat shock, indicating that p38-mediated Hsp27 phos-

phorylation is not required, however a 3A Hsp27 mutant (forming large species) also did not

translocate (Bryantsev et al. 2007). Cells overexpressing Hsp27 showed enhanced proteasomal

degradation of ubiquitinated proteins after cellular stress (Parcellier et al. 2003). Hsp27 interacted

with both a ubiquitinated protein (IκB) and the proteasome, suggesting that Hsp27 may directly

promote proteasomal degradation of ubiquitinated proteins, although whether this mechanism is

applicable to many different proteins is unknown. Speculating, it is possible that Hsp27 promotes

proteasomal degradation of unrefoldable proteins, although how Hsp27 distinguishes between re-

foldable and non-refoldable proteins is not clear.

Chaperone activity is believed to be a common property of sHsps, which are thought to act

as a reservoir for unfolded proteins similar to that observed for Hsp27, preventing their irre-

versible aggregation and allowing time for favourable cellular conditions to return when ATP-

dependent chaperones can refold these trapped proteins (reviewed by Liberek et al. 2008). The

heat-stimulated increase in the synthesis of chaperone proteins such as Hsp27 is believed to con-

tribute to thermotolerance, and also explains why overexpression of small heat shock proteins

simulates thermotolerance. The presence of chaperones in larger quantities than normal at the

onset of severe cellular stress, due to a previous mild stress, increases the capacity to cope with

misfolded proteins, reducing problems due to protein aggregation.
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1.5.5.1.2 Influence of phosphorylation/oligomerisation

A number of studies have examined which molecular species is responsible for the chaperone

activity of Hsp27. Hsp25 or Hsp27 phosphorylated in vitro by MAPKAPK2 slowed thermally-

induced citrate synthase aggregation and reduction-induced insulin B chain precipitation less ef-

fectively than the corresponding wild-type protein (Rogalla et al. 1999). In contrast, Knauf et al.

(1994) reported that purified Hsp25 either phosphorylated in vitro by MAPKAPK2 or remaining

unphosphorylated showed a similar retardation of thermally-induced aggregation of α-glucosidase

and a similar enhancement of reactivation of urea-denatured α-glucosidase. However, this was the

same paper which stated that phosphorylation of Hsp25 had no effect on Hsp25 oligomerisation,

and may have been contaminated by a phosphatase (discussed on page 112).

An Hsp27 3D mutant (composed of small species) was much less effective in retarding heat-

induced citrate synthase aggregation and accelerating its refolding than wild-type Hsp27, whereas

an S15D mutant and an S78D S82D double mutant (mainly larger species) had a similar effect to

wild type Hsp27 as determined by light scattering (Rogalla et al. 1999). In contrast, Theriault et al.

(2004) reported that wild-type hamster Hsp27, and S15A S90A and S15E S90E mutants reduced

thermally-induced citrate synthase aggregation to a similar degree. The apparent differences in the

results may be related to the Hsp27/denatured substrate molar ratio. When eqimolar concentrations

of Hsp27 and substrate were examined by Theriault et al. (2004), similar to those used by Rogalla

et al. (1999), wild-type hamster Hsp27 and a 2A mutant reduced citrate synthase aggregation to

a greater degree than a 2E mutant. However, at higher molar ratios (greater molar excesses of

Hsp27), differences between wild type and mutant Hsp27 forms were not observed.

The studies described above were performed using in vitro thermal denaturation/renaturation of

particular proteins. Intact fibroblasts overexpressing 3D Hsp27 were much more effective at re-

covering luciferase activity (by correctly refolding luciferase) after heat shock than cells overex-

pressing wild-type, 3A or 3G Hsp27 forms (Bryantsev et al. 2007). Heat shock seems to cause a

somewhat different Hsp27 response to phosphorylation-stimulating cellular stresses. As discussed
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earlier heat shock causes transit of Hsp27 into the nucleus and its appearance in large structures,

whereas phosphorylation causes a reduction in oligomeric size. 3A Hsp27 was unable to translo-

cate into the nucleus, and this may be the key factor in this system.

On balance, it appears that larger Hsp27 species may be more effective as molecular chaperones in

vitro than smaller species, but that during heat shock in cells Hsp27 must also dissociate to enter

the nucleus. A model for sHsp chaperone function is described in Haslbeck et al. (2005). Accord-

ing to this model, under basal conditions sHsps exist in large oligomers (in dynamic equilibrium

with individual subunits entering and leaving the oligomer) which is in a low-affinity substrate

binding state. On heat shock, the oligomer remains together but subunits adopt a high-affinity

state and bind denatured substrate molecules. Dimers can enter and leave the oligomer in either

state, in a dynamic equilibrium. The denatured substrates are refolded by ATP-dependent chaper-

ones such as Hsp70.

If Hsp27 is an important trap to prevent protein aggregation, it seems unlikely that the immediate

phosphorylation-associated decrease in Hsp27 oligomeric size observed after heat shock and other

cellular stresses acts to reduce the ability of Hsp27 to bind denatured proteins, as this would im-

mediately impair the cell’s defences against protein aggregation. It is possible that this does occur

if another role of Hsp27 is initially more important (e.g. related to actin cytoskeleton stabilisation

or apoptosis). Alternatively, perhaps de-oligomerisation is necessary for initial protein binding

before Hsp27 monomers come together again, holding bound substrates in multimers. In support

of this idea, the N-terminal region of yeast Hsp26 is required for denatured substrate binding,

which may be inaccessible to larger substrates in oligomerised Hsp27 given the involvement of

this region in oligomerisation (Haslbeck et al. 2004).

1.5.5.2 Actin modulation

Monomeric actin (also termed globular actin, G-actin) self-assembles into polymeric, double he-

lical chains termed actin filaments (F-actin, reviewed by Mounier and Arrigo 2002). Although
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joining of the initial few subunits (termed nucleation) is slow, subsequent actin polymerisation

is rapid. At constant length, actin filaments lose subunits from the end closest to the nucleation

site (the pointed end or minus end), and add subunits at the barbed end (also known as the plus

end). Various proteins regulate the formation of the actin cytoskeleton including capping proteins

which bind to and block polymerisation at one end of the filament, actin severing proteins which

introduce breaks into an actin filament, and nucleating proteins, which catalyse the assembly of

the initial few actin monomers to begin a filament. Actin forms multiple structures within the cell,

including a filament network under the plasma membrane (the cortical web) which connects to

membrane proteins giving structure to the plasma membrane, and thick bundles of actin filaments

called stress fibres. Actin drives extension of parts of the cell, pushing the cell membrane forward

into space via structures including filopodia, laemellipodia and pseudopodia.

Hsp27 has been reported to interact with actin in two distinct ways: as a barbed end capping protein

which inhibits actin filament polymerisation, and as a stabiliser of pre-existing actin filaments

(reviewed by Mounier and Arrigo 2002).

1.5.5.2.1 Inhibition of actin polymerisation

A 25 kDa protein purified from turkey smooth muscle, subsequently identified as Hsp27, was

shown to act as a capping protein of the barbed end of actin filaments and an inhibitor of in vitro

actin polymerisation (Miron et al. 1988, 1991). Benndorf et al. (1994) separated Hsp25 purified

from tumour cells into phosphorylated monomeric, and unphosphorylated monomeric and poly-

meric fractions by chromatography and sucrose gradient centrifugation, and examined the effect

of these species on in vitro actin polymerisation. Unphosphorylated monomeric Hsp25 reduced

actin polymerisation in a dose-dependent manner, and inhibition plateaued (at around 90%) at

a 1:1 ratio of unphosphorylated Hsp25 monomers to actin monomers, whereas phosphorylated

monomeric and polymeric Hsp25 had little effect on actin polymerisation.

The unphosphorylated monomeric Hsp25 preparation used by Benndorf et al. (1994) contained
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some Hsp25 dimers, but these dimers are unlikely to be able to inhibit actin polymerisation –

Miron et al. (1988) reported that chicken Hsp27 dimerises in non-reducing buffers (probably via

disulphide bond formation via the single cysteine present in Hsp27, C137 in humans), and un-

der these conditions Hsp27 does not inhibit actin polymerisation. Unphosphorylated monomeric

Hsp27 microinjected into intact cells impaired the reformation of actin stress fibres after heat

shock, whereas phosphorylated monomeric Hsp27 did not (Schneider et al. 1998), indicating that

unphosphorylated monomeric Hsp27 can act as an inhibitor of actin polymerisation in vivo. Hsp27

does not appear to be either an actin nucleating protein as it does not affect the lag time of in vitro

actin polymerisation (unpublished results reported in Miron et al. 1991) or an actin filament sev-

ering protein as microinjected monomeric Hsp27 (phosphorylated or unphosphorylated) did not

itself cause a reduction in actin stress fibres (Schneider et al. 1998).

Wieske et al. (2001) identified peptides derived from Hsp27 that inhibit actin polymerisation in

vitro. One peptide included the S15 residue in human Hsp27, and a phosphorylated form of this

peptide was less able to inhibit actin polymerisation, suggesting that phosphorylation at S15 may

reduce the actin capping activity of Hsp27. It is unknown whether these peptides are important in

the in vivo effects of intact Hsp27 on actin structures in vivo.

Hsp27 affects actin polymerisation-driven processes in endothelial cells. Untransfected BAECs

formed broad laemellipodia when migrating into a cell-free area which stained strongly for Hsp27

along the leading edge (Piotrowicz et al. 1998). BAECs stably overexpressing human wild-type

Hsp27 were more elongated, projecting further into the cell-free area than control cells, whereas

3G Hsp27-expressing cells projected less into the cell-free area with reduced laemellipodia for-

mation. Those projections which did form did not appear to be enriched in Hsp27 at their tips.

Similar results were observed with another actin polymerisation-driven process, pinocytosis, in

hamster fibroblasts. Cells stably overexpressing wild-type Hsp27 showed enhanced pinocytotic

activity compared to control cells, whereas cells overexpressing a non-phosphorylatable Hsp27

showed reduced pinocytotic activity (Lavoie et al. 1993b).
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The reduction in laemellipodia formation or pinocytosis in cells overexpressing non-

phosphorylatable Hsp27 may be due to inhibition of actin polymerisation by unphosphorylated

Hsp27. The enrichment of Hsp27 at the leading edge of cells undergoing actin polymerisation

suggests that Hsp27 inhibits actin polymerisation by capping the growing (plus/barbed) end of

actin filaments, rather than by chelating all actin monomers – actin is a highly abundant protein

and monomer chelation would require vast quantities of Hsp27. The need for a large amount of

Hsp27 per actin monomer to effectively inhibit in vitro actin polymerisation probably reflects the

ability of filament nucleation to occur anywhere, not the case in vivo.

Quite where the actin-capping unphosphorylated monomeric Hsp27 comes from is not entirely

clear, as unphosphorylated Hsp27 is present in large oligomers. However as discussed previously,

Hsp27 usually exists as a range of species, with phosphorylated species or mutant mimics gen-

erally smaller but also present in large oligomers, conversely indicating that naturally occurring

small unphosphorylated species are likely to exist. Additionally, Hsp27 oligomers have been

reported to be in dynamic equilibrium, with subunits entering and leaving the oligomer even

when unphosphorylated. Thus a pool of unphosphorylated small Hsp27 species is likely to be

present in the cell. It is also possible that some small phosphorylated Hsp27 species that are sub-

sequently dephosphorylated bind to and cap actin rather than immediately re-incorporating into

an oligomer. The monomeric requirement for the actin-capping species is harder to understand,

given that Hsp27 dimerises via its α-crystallin domain. How this interaction is disrupted is not

clear, although a dynamic equilibrium between monomers and dimers may also play a role.

1.5.5.2.2 Stabilisation of actin filaments

In addition to a plus end capping activity, Hsp27 also acts to stabilise actin filaments from dis-

ruption. Lavoie et al. (1993a) reported that disruption of actin stress fibres by cytochalasin D

was reduced in cells stably overexpressing Hsp27, and recovery of stress fibres after removal

of cytochalasin D was enhanced. Cytochalasin D-induced reduction in cellular growth was also
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reduced in Hsp27 overexpressing cells. Later work showed that although overexpression of wild-

type Hsp27 in cell lines protected stress fibres against dissociation in response to cytochalasin D

or heat shock, overexpression of human 3G Hsp27 had no effect (Lavoie et al. 1995; Guay et al.

1997). Similarly, only wild type Hsp27 increased the rate of stress fibre reappearance. Over-

expression of wild-type but not non-phosphorylatable Hsp27 also prevented H2O2-induced actin

fragmentation in hamster fibroblasts (Huot et al. 1996). Mounier and Arrigo (2002) proposed a

model for the protection of the actin cytoskeleton by Hsp27, in which Hsp27 coats actin microfil-

aments preventing the action of actin severing proteins which are also activated during the stress

response.

In HUVECs, H2O2 induces accumulation of stress fibres, rather than the actin fragmentation ob-

served in fibroblasts, and this can be blocked by SB203580 (Huot et al. 1997). This difference

may be related to the high level of Hsp27 expression in ECs, as fibroblasts overexpressing Hsp27

showed a similar response to H2O2 as seen in HUVECs. VEGF also induced accumulation of

stress fibres in HUVECs, which could be blocked by pre-incubating the cells with SB203580

(Rousseau et al. 1997). In both cases, the effects of SB203580 were ascribed to prevention of

p38 MAPK-mediated phosphorylation of Hsp27, although no direct evidence of the involvement

of Hsp27 in stress fibre formation was provided. Heat shock of endothelial cells caused associa-

tion of Hsp27 with actin stress fibres (Loktionova et al. 1996), suggesting that Hsp27 may stabilise

stress fibres under adverse cellular conditions in ECs. Direct analysis of actin filament stabilisation

by Hsp27 in ECs, e.g. by cytochalasin D-mediated disruption, has not been reported.

In summary, it appears that phosphorylated Hsp27 species stabilise actin filaments, preventing

filament disintegration (in cell lines) and allowing stress fibre formation (in ECs).

1.5.5.3 Migration and invasion

Cell migration is an actin polymerisation-driven process (section 1.4.4.4), and roles of Hsp27

in actin modulation are probably important in migration. Rousseau et al. (1997) first proposed
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the involvement of Hsp27 in VEGF-stimulated endothelial cell migration, showing that the p38

MAPK inhibitor SB203580 prevented VEGF-induced HUVEC migration and Hsp27 phosphory-

lation, and suggested that changes in Hsp27 phosphorylation may be involved in VEGF-stimulated

migration. However they did not show a relationship between Hsp27 and migration.

More direct evidence for the involvement of Hsp27 in endothelial migration was given by manip-

ulation of the amount of Hsp27 present inside cells. Overexpression of wild type Hsp27 enhanced

serum-stimulated HUVEC migration in a wound healing assay, whereas overexpression of an un-

phosphorylatable Hsp27 mutant inhibited migration (Piotrowicz et al. 1998). In a similar assay,

oestrogen-stimulated BAEC migration is reduced by overexpression of a non-phosphorylatable

Hsp27 mutant, which also reduced oestrogen-stimulated tubulogenesis on matrigel (Razandi et al.

2000). In smooth muscle cells, expression of a 3A Hsp27 mutant inhibits PDGF-stimulated mi-

gration in a transwell assay whereas overexpression of wild-type Hsp27 has no effect on migration

(Hedges et al. 1999). Reduction of Hsp27 in cells also affects cell migration – siRNA-mediated

knockdown of human Hsp27 reduced migration of HeLa cells in response to the chemokine

CXCL12 in a transwell assay (Rousseau et al. 2006).

A large number of studies have used the inhibitor SB203580 to implicate p38 MAPK in the migra-

tion of various cell types in response to a number of stimuli. In endothelial cells, VEGF-stimulated

migration of HUVECs was reduced by SB203580 or by overexpression of inactive p38 MAPK

(Rousseau et al. 1997; McMullen et al. 2004), and oestrogen-stimulated migration of BAECs was

reduced by overexpression of inactive p38 MAPK, inactive MAPKAPK2 or p38 MAPK inhibition

with SB203580 (Razandi et al. 2000). Hsp27, with its role in actin dynamics, is believed to be an

effector of p38 MAPK regulation of the actin cytoskeleton. Consistent with this idea, transwell

endothelial cell migration induced by expression of a constitutively active form of the p38 MAPK-

activating enzyme MEK6 was reversed by overexpression of unphosphorylatable p38 MAPK or

unphosphorylatable Hsp27 (McMullen et al. 2005).

A current model for the involvement of Hsp27 in VEGF-stimulated endothelial cell migration, and
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cell migration in general, is that described by Rousseau et al. (2000a). Under basal conditions,

unphosphorylated Hsp27 caps actin filaments, preventing their elongation. VEGF or another stim-

ulus leads to activation of p38 MAPK, which phosphorylates and activates MAPKAPK2, which

directly phosphorylates Hsp27 at S15, S78 and S82. Phosphorylation of Hsp27 monomers inhibits

their actin capping activity, allowing actin polymerisation to occur. At the leading edge of cells,

where Hsp27 is enriched, enhanced actin polymerisation results in the formation of laemellipodia

which pushes the leading edge of the cell forwards. Elsewhere in the cell, increased actin poly-

merisation results in formation of stress fibres, which are observed rapidly after VEGF treatment

of endothelial cells and are also required for migration. Phosphorylated Hsp27 may be required to

stabilise these stress fibres to allow prolonged migration, and may also assist in stabilising newly

formed filaments at the leading edge. Interactions of Hsp27 with other cytoskeletal-regulating pro-

teins may also contribute – for example, interaction with the protein hydrogen peroxide-inducible

clone 5 has been suggested to regulate actin in SMCs, and hic5 is also expressed in ECs (Jia et al.

2001b; Srinivasan et al. 2008).

Although this model offers an explanation for the functions of Hsp27 in migrating endothelial

cells, it does not appear to hold in all experimental situations. NIH3T3 cells stably overexpress-

ing wild-type hamster Hsp27 showed reduced migration in a wound-healing assay and invasion

on matrigel (Lee et al. 2008). Further analysis using phosphorylation site mutants indicated that

overexpression of a 2A Hsp27 mutant enhanced migration whereas a 2E mutant inhibited migra-

tion. These results seem to contradict those observed in other studies and predicted by the model

discussed above. However Lee et al. (2008) suggested that, in their model, overexpression of

Hsp27 results in excessively strong adhesion of cells to the substrate by increased focal adhesion

formation and reduced expression of the matrix metalloprotease MMP2, so retarding migration.

The effect of Hsp27 overexpression on cancer cell invasion appears to vary with cell type. TGFβ-

stimulated invasion of PC3 prostate cancer cells in gelatin was reduced by Hsp27 or MAPKAPK2

siRNAs, and cells overexpressing non-phosphorylatable (3G) Hsp27 were less invasive than cells
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overexpressing wild-type Hsp27 (Xu et al. 2006). In this study, overexpression of the non-

phosphorylatable form of Hsp27 substantially reduced TGFβ-stimulated expression of MMP2,

which was postulated as the cause of the reduced invasion. However, the inability to remove

Hsp27 caps on actin filaments discussed above may also contribute.

The extent to which adhesion or actin polymerisation effects dominate in the response to Hsp27

overexpression may depend on the cell type and degree of overexpression. Reduction of endoge-

nous Hsp27 in endothelial cells may be informative as to the in vivo role of Hsp27 in these cells.

1.5.5.4 Protection from apoptosis

As discussed elsewhere, increased Hsp27 expression protects cells against heat and other cel-

lular stresses, and this protection may involve the chaperone, actin-protective, and glutathione-

modulating properties of this protein (glutathione-related effects discussed in section 1.5.5.5.1).

Hsp27 has also been reported to directly interact with various members of apoptosis signalling

pathways, and this is believed to be an important part of the protective roles of Hsp27 (reviewed

by Concannon et al. 2003, Lanneau et al. 2008). For context, an overview of apoptosis signalling

is given in section 1.4.4.5. Little work on the involvement of Hsp27 in endothelial apoptosis has

been reported, with most data obtained from cell lines.

1.5.5.4.1 Extrinsic/caspase 8 pathway

Initial evidence for the involvement of Hsp27 in apoptotic cell death comes from work by Mehlen

et al. (1996b), who showed that cell death and apoptosis-related changes (DNA laddering and

morphological changes such as nuclear breakup and cell shrinkage) due to antibody-mediated

crosslinking of Fas were dramatically reduced in mouse L929 cells overexpressing human Hsp27.

After 18 h exposure to a high concentration of antibody, almost all control cells were dead whereas

less than 10% of Hsp27 overexpressing cells were dead.
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Charette et al. (2000) examined the role of Hsp27 on Fas-mediated apoptosis. Hamster Hsp27

interacted with daxx when both proteins were overexpressed in 293 cells. In a pulldown assay

using GST-Fas, less daxx was pulled down from lysates from cells overexpressing daxx and Hsp27

than lysates from cells expressing daxx alone, indicating that Hsp27 reduced the binding of daxx to

Fas, probably by binding directly to daxx. A S15E S90E (2E) hamster Hsp27 form was similarly

effective to wild-type Hsp27 in inhibiting the Fas/daxx interaction, whereas a S15A S90A (2A)

Hsp27 mutant was less effective. In 293 cells overexpressing both daxx and Ask1, in order to

enhance daxx-dependent apoptosis, overexpression of wild-type Hsp27 or the 2E mutant reduced

the nuclear-to-cytoplasmic translocation of daxx and apoptosis, whereas overexpression of the

2A mutant had little effect. Overall, it appears that phospho-mimicking Hsp27 binds to daxx,

preventing its translocation to the cytoplasm and its interaction with activated Fas and Ask1, so

reducing apoptosis. How Hsp27 does this, given that daxx is nuclear in healthy cells and Hsp27

is cytoplasmic, is unclear. Perhaps Hsp27 interferes with a signalling pathway involved in daxx-

mediated apoptosis in two separate ways, inhibiting the plasma membrane-to-nucleus signalling

required for daxx translocation, and/or binding to any cytoplasmic daxx. Another possibility is

that a very small amount of Hsp27 may be present in the nucleus. The authors pointed out that

the effect of Hsp27 on Fas-mediated apoptosis depends on the relative contribution of the daxx

and FADD-dependent pathways, which is likely to be stimulus and time dependent, as Hsp27

apparently had little effect on FADD-mediated apoptosis.

1.5.5.4.2 Intrinsic/caspase 9 pathway

Hsp27 inhibits the intrinsic apoptotic pathway at a number of points. Hsp27 overexpressed in

U937 cells co-immunoprecipitates with procaspase 3 and inhibits its cleavage and activation by

caspase 9 (Pandey et al. 2000b). Additionally, immunodepletion of Hsp27 resulted in loss of

caspase 3 protein, further suggesting an association between Hsp27 and caspase 3. Less caspase

3 was present in Hsp27 IPs from cells exposed to ionising radiation and other DNA damaging

stimuli, leading the authors to suggest a model whereby Hsp27 associates with and so inhibits
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caspase 3 activity. Apoptosis-inducing stimuli disrupt this interaction during caspase 3 activation.

Association of Hsp27 and procaspase 3, causing inhibition of caspase 3 cleavage and activation,

has also been reported in monocytes (Voss et al. 2007).

Garrido et al. (1999) showed that overexpression of human Hsp27 in U937 leukaemia cells reduces

cell death and apoptosis induced by the drug etoposide, which produces double-stranded breaks

in genomic DNA leading to p53-mediated apoptosis. Hsp27 overexpression prevented cleavage

(activation) of caspases 2, 3, 8 and 9 but did not affect the mitochondria-to-cytosol redistribution

of cytC; cytC-stimulated activation of caspases 3 and 9 in cellular extracts was also blocked by

immunodepletion of Hsp27. These results suggest that the anti-apoptotic effect of Hsp27 is due to

inhibition of cytC-mediated activation of caspase 9.

Using the same cell type and model Bruey et al. (2000a) demonstrated that Hsp27 co-

immunoprecipitated with cytC, suggesting a direct association of the two proteins. Neither APAF1

nor caspases 3 and 9 were present in Hsp27 IPs, nor were other heat shock proteins tested (Hsp60,

Hsp70, Hsp90). The amount of cytC and procaspase 9 present in APAF1 immunoprecipitates

of cytC-treated cell extracts was reduced in Hsp27 overexpressing cells. Taken together, these

results indicate that Hsp27 binds to cytC released from mitochondria, preventing its association

with APAF1 and subsequent activation of caspase 9 activation.

Analysis of cells transfected with Hsp27 containing various deletion mutations indicated that re-

gions in both the N-terminal and α-crystallin domains, and the single cysteine residue of Hsp27

(C137), are essential for association of cytC with Hsp27, and for Hsp27-mediated protection

against etoposide-induced apoptosis (Bruey et al. 2000a). In contrast amino acids 15–51 (which

includes the WDPF region required for oligomerisation) and 141–205 are relatively unimportant.

C137 is required for Hsp27 dimerisation (discussed above), and so it is unlikely that monomers

are the cytC-interacting Hsp27 species.

Paul et al. (2002) reported that Hsp27 interferes with staurosporine-induced release of cytC from

mitochondria of L929 fibroblasts. This contradicts work detailed above which found no effect of
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Hsp27 on cytC release. After comparing cell lines expressing differing amounts of Hsp27, the

authors ascribed this difference to the need for a higher level of Hsp27 expression, not achieved

in the earlier studies, for inhibition of cytC release than is necessary for inhibition of procaspase 3

activation via binding to released cytosolic cytC.

The mechanism by which Hsp27 prevents cytC release is unknown, but appeared to be upstream

of mitochondrial activation. The pro-apoptotic protein Bid is an activator of Bax, which forms

pores in the outer mitochondrial membrane causing cytC release. Bid and Bax are normally cy-

tosolic, and redistribute to mitochondria during activation of the intrinsic apoptotic pathway. HeLa

cells expressing antisense Hsp27 showed accelerated staurosporine-induced loss of Bid from the

cytosol, suggesting that Hsp27 may affect signals prior to the involvement of mitochondria. How-

ever a control antisense (scrambled)-expressing cell line was not used (Paul et al. 2002). Another

study reported that Hsp27 overexpression in a renal epithelial cell line inhibited ATP depletion-

induced Bax activation and cytC leakage from mitochondria, whereas siRNA-mediated Hsp27

knockdown increased Bax activation (Havasi et al. 2008).

Damage to actin microfilaments can be an activator of the intrinsic apoptotic pathway, and actin

filament-stabilising properties of Hsp27 may contribute to reduction of cytC release from mito-

chondria. Phalloidin prevented actin damage and apoptosis induced by cisplatin, and overexpres-

sion of Bcl2 prevented cisplatin-induced apoptosis but not actin damage (Kruidering et al. 1998),

indicating that actin damage is upstream of cytC-related events in cisplatin-stimulated apoptosis.

Cytochalasin D-induced actin depolymerisation, mitochondrial cytC release and caspase activation

in L929 fibroblasts, and this could all be prevented by pre-treatment of the cells with phalloidin

(Paul et al. 2002). Furthermore, L929 fibroblasts strongly overexpressing Hsp27 showed resis-

tance to cytochalasin D-mediated cytC release (Paul et al. 2002), indicating that Hsp27-mediated

actin stabilisation may contribute to the anti-apoptotic properties of Hsp27.

Actin stabilisation is unlikely to be the only property of Hsp27 leading to reduced mitochondrial

cytC release. In etoposide-treated L929 fibroblasts, where F-actin disruption is not noticeable,
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Hsp27 still inhibited cytC release (Paul et al. 2002). Furthermore, phalloidin only partially pro-

tected against staurosporine-induced apoptosis.

In summary, Hsp27 inhibits the intrinsic pathway machinery by inhibiting cytC release from mi-

tochondria, preventing the interaction of cytosolic cytC with APAF1, and inhibiting procaspase

3 activation by caspase 9. Stabilisation of the actin cytoskeleton contributes to inhibition of mi-

tochondrial cytC release induced by some stimuli but is relatively unimportant for others. The

most important mechanism for apoptosis inhibition may vary depending on the apoptotic stimulus

employed.

1.5.5.4.3 Effect on Akt signalling

The protein kinase Akt is an important inhibitor of the intrinsic apoptotic pathway, and is activated

via the PI-3-K pathway by a number of cytokines including VEGF. Amongst other targets, Akt

phosphorylates and so inhibits the activity of the pro-apoptotic molecules procaspase 9 and Bad,

so promoting cell survival (discussed in section 1.4.4.5).

Overexpression of Hsp27 decreased Bax activation and increased survival of a renal cell line ex-

posed to ATP depleting agents (Havasi et al. 2008). PI-3-K inhibitors prevented the increased

survival obtained due to Hsp27 overexpression, suggesting that Akt activity is required for Hsp27-

dependent survival effects, at least under the circumstances examined. Whether Hsp27 anti-

apoptotic effects act via Akt, or whether Akt activity is required in a permissive role, is not clear.

In some cell types (not ECs), Akt has been reported to associate with Hsp27 in a complex that also

contains MAPKAPK2 and p38 (Rane et al. 2001; Zheng et al. 2006), and may directly phosphory-

late Hsp27 (discussed in section 1.5.3.3). Wild-type and 3A Hsp27 associated with Akt-GST in a

pulldown assay, whereas Akt-phosphorylated recombinant Hsp27 (phosphorylated at S82) and 3D

Hsp27 did not (Rane et al. 2003). The same group suggested Hsp27 acts as a scaffolding protein,

bringing together MAPKAPK2 and Akt, and is required for MAPKAPK2-dependent Akt phos-

phorylation. Hsp27 overexpression may promote complex formation and MAPKAPK2-mediated
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Akt activation, leading to pro-survival signals. The general applicability of this mechanism has

not been demonstrated.

1.5.5.5 Other cellular roles of Hsp27

1.5.5.5.1 Protection against oxidative stress

Hsp27 has been reported to improve cellular protection against oxidative stress by increasing in-

tracellular levels of glutathione (GSH). GSH is a thiol-containing tripeptide (Glu-sCys-Glu, where

sCys is the modified thiol-containing amino acid selenocysteine) which can reduce oxidants such

as H2O2 chemically and enzymatically and has a role in protecting the cell against oxidative

stress. Overexpression of small Hsps including Hsp27 raises cellular levels of GSH (Mehlen

et al. 1996a), and siRNA-mediated Hsp27 knockdown reduces cellular GSH levels (McCollum

et al. 2006). Chemical depletion of GSH prevents Hsp27-induced apoptosis protection against

both H2O2 and TNFα (which causes intracellular H2O2 generation) (Mehlen et al. 1996a). The

Hsp27-mediated glutathione increase may be a pro-survival mechanism important in protection

against death-inducing agents which act via oxidant generation.

1.5.5.5.2 Growth

Hsp27 has been implicated in controlling the proliferation of ECs in culture. BAECs overexpress-

ing wild-type Hsp27 proliferate more rapidly than controls and reach senescence earlier, whereas

those overexpressing 3G Hsp27 proliferate at a similar rate (Piotrowicz et al. 1995). The earlier

senescence may be a consequence of increased proliferation rate. It therefore appears that ex-

cessive small Hsp27 species may be responsible for the effect on growth rate. Why this effect

occurs is not clear, but it may be related to Hsp27 regulated genes (see below) or increased nu-

trition via increased pinocytosis. Alternatively, it may be an artifact of improved survival of the

transfection/antibiotic selection by Hsp27-expressing cells. In contrast, overexpression of Hsp27

reduces the proliferation rate of murine embryonic stem cells, whereas antisense-mediated Hsp27
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reduction enhances proliferation (Mehlen et al. 1997b). In these cells, Hsp27 was postulated to be

involved in growth arrest and differentiation of immature cells. Hsp27 expression increases dur-

ing embryonic development, correlating with cell differentiation (Huang et al. 2007). It is possible

that Hsp27 differentially affects growth rate in mature and immature cells.

1.5.5.5.3 Modulation of protein expression

Many mRNAs corresponding to pro-inflammatory genes and cytokines contain AU-rich elements

(AREs) in their 3’ untranslated region, and these elements are involved in rapid degradation of the

mRNA with related effects on mRNA lifespan and therefore protein expression. The pathway for

degradation of ARE-containing mRNAs is incompletely understood, but involves association of

AUF1 with the ARE and recruitment of other proteins to the complex including Hsp70, followed

by subsequent proteasomal degradation of AUF1 and mRNA degradation (Laroia et al. 1999,

summarised in Sinsimer et al. 2008). MAPKAPK2, via p38 MAPK, has been reported to increase

the stability of ARE mRNAs, so leading to increased inflammatory gene expression, and this

required MAPKAPK2 catalytic activity (Winzen et al. 1999; Lasa et al. 2000, discussed further in

section 1.6.1.2).

SiRNA-mediated Hsp27 knockdown inhibited IL-1-activated induction of the pro-inflammatory

genes IL-6, IL-8 and COX2 in HeLa cells (Alford et al. 2007). The effect of Hsp27 knockdown

appeared to be at least partly mediated by a more rapid degradation of these mRNAs, but Hsp27

did not appear to regulate the stability of large numbers of mRNAs indicating Hsp27 may be

specifically involved in regulation of inflammatory pathways.

Alford et al. (2007) also reported that IL-1- and TNFα-stimulated activation of p38 and MAP-

KAPK2 (and of other enzymes including JNK and IκB kinase) was reduced by Hsp27 knock-

down. Interestingly, this suggests that Hsp27 may also regulate its own phosphorylation. Given

the involvement of p38/MAPKAPK2 in regulating the stability of mRNA, the authors suggested

that the Hsp27 siRNA-induced reduction in inflammatory gene expression may have occurred via
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effects on the activity of MAPKAPK2.

While Hsp27 may affect ARE mRNA stability via alterations in MAPKAPK2 activity, it may also

have more direct effects. Hsp27 has recently been identified as a direct ARE binding protein, and

has been found in an AUF1-containing complex (Sinsimer et al. 2008). Surprisingly, shRNA-

mediated knockdown of Hsp27 increased the half-life of TNFα mRNA, or a reporter mRNA con-

taining the TNFα ARE – this is the opposite of that expected from the studies mentioned above.

Furthermore, an shRNA-mediated 63% reduction in Hsp27 protein levels extended TNFα mRNA

half-life 10-fold, whereas a 90% knockdown of AUF1 increased half-life 4-fold. In another study,

overexpression of 3E Hsp27 increases the half-life of a COX2-based reporter transcript (Lasa

et al. 2000), suggesting that phosphorylation of Hsp27 may be a target of MAPKAPK2-mediated

mRNA stablilisation.

Whatever the mechanism, it appears that Hsp27 can affect protein expression via affects on mRNA

stability, and this effect may be important in inflammation. It may also be a reason for the rapid

transit of Hsp27 to the nucleus after heat shock.

1.5.6 Role of Hsp27 in disease

1.5.6.1 Charcot-Marie-Tooth disease

Charcot-Marie-Tooth disease (CMT) is a heterogeneous neurodegenerative condition charac-

terised by wasting and weakness of peripheral muscles, often accompanied by peripheral sensory

nerve loss and skeletal deformities (Pareyson 2007). Distal hereditary motor neuropathy (dHMN)

is similar to CMT affecting motor but not sensory neurons, although there may be a continuum

between the two diseases.

Mutations in the Hsp27 gene associate with type 2 (axonal, rather than type 1 myelin-related)

CMT, and have also been reported in dHMN sufferers (Evgrafov et al. 2004; Houlden et al. 2008).

Most mutations are in the α-crystallin domain, and none occur at or immediately adjacent to
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known Hsp27 phosphorylation sites. Neuronal cells overexpressing Hsp27 carrying an S135F

mutation (also observed in some CMT patients) survived less well than either control cells or cells

overexpressing wild type Hsp27 (Evgrafov et al. 2004).

Although Hsp27 mutations may occur in some CMT2 patients, genetic analysis revealed that

most CMT2 sufferers did not harbour mutations in any of the genes previously reported to be

associated with CMT2 – indeed, of 61 affected patients, no-one carried a mutation in the Hsp27

gene (Bienfait et al. 2007). In a later study, 7 out of 145 affected families had mutations in the

Hsp27 gene (Houlden et al. 2008).

The low incidence of Hsp27 mutations in CMT sufferers may reflect the heterogeneous nature

of the disease, with many pathologies giving rise to similar symptoms, and Hsp27 mutation may

define a disease subset. The nature of the involvement of Hsp27 in neuropathy is unknown but

may be related to its ability to modify the cytoskeleton. Overexpression of S135F Hsp27 prevented

normal assembly of neurofilament light protein into filaments, whereas wild-type Hsp27 did not

have this effect (Evgrafov et al. 2004). Other properties of Hsp27 may also be involved, such

as loss of apoptosis protection. Additionally, Hsp27 dysfunction may exacerbate protein folding

problems caused by another protein defect.

1.5.6.2 Cancer

Hsp27 biology is of interest in cancer. Examining cells of differing tumourigenicity, Garrido et al.

(1998) observed that Hsp27 expression was absent in tumour cells which formed rapidly regress-

ing tumours, but was substantial in tumour cells which formed slowly regressive tumours. Im-

plantation of Hsp27-lacking tumour cells into rats caused small tumours which regressed rapidly,

whereas implantation of tumour cells overexpressing Hsp27 caused large, prolonged, slowly re-

gressing tumours to form (Garrido et al. 1998). In nude (non-immunocompetent) mice, no dif-

ference was observed in tumour formation between Hsp27-null and Hsp27-overexpressing cells,

which was substantial in both cases.
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Garrido et al. (1998) proposed that this difference between nude mice and immunocompetent rats

was due to Hsp27 overexpression reducing immune cell-mediated clearance of tumours, possibly

by reducing tumour cell apoptosis and so reducing the release of antigenic tumour cell debris.

Indeed, anti-apoptosis effects may underlie Hsp27-mediated increases in tumourigenicity – over-

expression of Hsp27 also increases the resistance of tumour cells to anti-cancer drugs (Garrido

et al. 1997, 1998).

In addition to survival roles, Hsp27-overexpression increases the invasiveness of prostate cancer

cells, and cells overexpressing a 3G Hsp27 mutant showed reduced invasion (Xu et al. 2006,

previously discussed on page 125).

Hsp27 expression is high in a number of cancer cells (Calderwood et al. 2006), suggesting that

Hsp27 overexpression may aid tumour progression and may therefore be an attractive target for

cancer treatments. Given the relatively normal Hsp27-null mouse (Huang et al. 2007), reasonably

few side effects might be expected for anti-Hsp27 therapies, although many subtle or pathology

defence-related effects of Hsp27 may have been missed in Hsp27 knockout mice.

1.5.6.3 Ischaemia-reperfusion injury

Ischaemia-reperfusion injury (I-R) is tissue damage occurring on reperfusion of an ischaemic area,

particularly the heart (Liem et al. 2007). Ischaemic preconditioning, where mild ischaemia and

recovery subsequently protects against severe ischaemia resulting in reduced cell death and tissue

damage, is reminiscent of thermotolerance. A variety of proteins are induced during ischaemic

pre-conditioning, and are protective against the later, more severe insult. Induction of VEGF has

been reported to be particularly important in protection of neurons (Nishijima et al. 2007).

Hsp27 overexpression protects against simulated I-R in endothelial cell cultures (Kabakov et al.

2003), myocyte cell cultures (Martin et al. 1997; Vander Heide 2002), and a Langendorff perfused

heart model (Hollander et al. 2004). Overexpression of hemagglutinin-tagged human Hsp27 in

mice reduced the kidney and liver damage occurring on hepatic I-R (Park et al. 2009; Chen et al.
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2009).

In the Langendorff study, hearts from mice overexpressing either wild-type human Hsp27 or a

non-phosphorylatable mutant were less affected by simulated ischaemia-reperfusion injury and

recovered better than hearts from control animals, suggesting that phosphorylation of Hsp27 may

not be required in the protection from I/R injury. Indeed, the non-phosphorylatable mutant did

appear to give improved protection against the associated oxidative stress than the wild-type form.

It should be noted that a significant amount of endogenous Hsp25 appeared to be present in the

control hearts, and that Hsp27 is not the native form of this protein present in mice. It is likely that

Hsp27 protects against I-R via its roles as a chaperone and in direct regulation of apoptosis.

1.6 p38 MAPK/MAPKAPK2 and PKC/PKD activation and sig-

nalling

1.6.1 p38 MAPK and MAPKAPK2

Mitogen-activated protein kinases (MAPKs) are protein Ser/Thr kinases activated by two phos-

phorylations in the activation loop in a TXY motif, and include the ERKs (motif TEY), JNKs

(TPY) and p38 MAPKs (TGY) (reviewed by Raman et al. 2007). These phosphorylations are per-

formed by a dual specificity MAP kinase kinase (MEK), which itself is activated by an upstream

MEK kinase, forming a classical three step MAPK cascade.

p38 MAPK (p38, also originally termed cytokine suppressive anti-inflammatory drug binding pro-

tein (CSBP) or reactivating kinase) was discovered in 1994 by a number of separate groups as a

MAPK (phosphorylated on Thr and Tyr, inhibited in vitro by Ser/Thr or Tyr kinases) activated by

cellular stresses, distinct from ERK and JNK on the basis of activation stimuli, substrate and in-

hibitor specificity, and homologous to the yeast kinase HOG1 (Han et al. 1994; Rouse et al. 1994;

Freshney et al. 1994; Lee et al. 1994). p38 was activated in cells by cellular stresses which did not

activate ERK, and in vitro did not phosphorylate the JNK substrate c-Jun. p38 was identified as the
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target of pyridinyl imidazole compounds such as SB202190 and SB203580, which block produc-

tion of TNFα and IL-1β in lipopolysaccharide-stimulated monocytes (Lee et al. 1994), and these

compounds have since been used extensively to implicate p38 in a variety of physiological pro-

cesses. Importantly for this thesis, these early studies also identified p38 as able to phosphorylate

and activate the Hsp27 phosphorylating kinase MAPKAPK2.

Since its initial discovery, a number of p38 isoforms have been identified, encoded by sep-

arate genes. The p38 MAPK family currently consists of the originally identified p38

(p38α/stress-activated protein kinase (SAPK) 2a/MAPK14), p38β (sometimes termed p38β2,

SAPK2b/MAPK11), p38γ (SAPK3/MAPK12) and p38δ (SAPK4/MAPK13) – SAPK1 is JNK.

Some isoforms have a number of splice variants – p38α is known to have four: CSBP2 (MAPK14

isoform 2, the originally identified p38), CSBP1, Mxi2 and Exip. Where p38 has been overex-

pressed (without denoting a subtype), CSBP2 is the form referred to. p38α, β, γ and δ (and a

previously identified p38β1 isoform) have been overexpressed in a human cell line to examine

their relative properties (Kumar et al. 1997; Goedert et al. 1997). All isoforms apart from β1

were activated by TNFα, IL-1, sorbitol (inducing osmotic stress) and ultraviolet irradiation. In

vitro, p38α (CSBP2) and β strongly phosphorylated MAPKAPK2 and 3, and were inhibited by

SB202190 and SB203580, whereas p38γ and δ were poor kinases for MAPKAPK2 and 3, and

were insensitive to SB202190 and SB203580.

MAPKAPK2 was originally characterised as a protein Ser/Thr kinase which, after dephosphory-

lation, could be reactivated in vitro by ERK (Stokoe et al. 1992a), and was subsequently shown

to phosphorylate Hsp27 and Hsp25 in in vitro kinase assays at the same sites (S15, S78 and S82

for Hsp27, S15 and S86 for Hsp25) as had been reported to be phosphorylated in vivo in response

to cytokines and heat shock (Stokoe et al. 1992b). In vitro phosphorylation of S82/S86 by MAP-

KAPK2 was more rapid than phosphorylation at the other sites. p38 was shown to be involved in

Hsp27 phosphorylation stimulated by arsenite, IL-1 and sorbitol in human cells using SB203580

(Cuenda et al. 1995). Given that SB203580 doesn’t directly inhibit MAPKAPK2 (Kumar et al.
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1999), it is likely that a p38–MAPKAPK2–Hsp27 pathway exists in vivo.

Other MAPKAPK2-like enzymes exist, and MAPKAPK2 is considered to form a family with

MAPKAPK3 and MAPKAPK5 (reviewed by Gaestel 2006). MAPKAPK3 appears very similar

to MAPKAPK2 in terms of activation and substrate specificity, and is able to phosphorylate Hsp27

at the same sites as MAPKAPK2 (McLaughlin et al. 1996; Clifton et al. 1996). In these studies,

MAPKAPK3 contributed less to SB203580-sensitive phosphorylation of downstream substrates,

which is likely to reflect generally lower levels of MAPKAPK3 expression. MAPKAPK5 is not

activated in response to classical p38 activators such as arsenite and sorbitol, does not phosphory-

late Hsp27 and appears functionally distinct to MAPKAPKs 2 and 3 (Shi et al. 2003).

1.6.1.1 Activation mechanism of p38 and MAPKAPK2

As for other MAPKs, activation of p38 MAPK requires phosphorylation at the activation loop

residues (T180/Y182 in human p38α). Mutation of either of these residues to unphosphorylatable

mimics prevents p38 activation induced by arsenite (Doza et al. 1995) or UV (Raingeaud et al.

1995) in intact cells. Pyridinyl imidazole inhibitors bind to the ATP binding site of p38, inhibiting

enzymatic activity but not preventing p38 activation loop phosphorylation by its upstream kinases

(Young et al. 1997; Kumar et al. 1999). MEK3 and MEK6 (also termed SKK3) have been identi-

fied as the major upstream kinases of p38 isoforms. MEK3 and 6 are activated by cellular stresses,

and overexpression of constitutively active MEK3 or MEK6 in intact cells stimulated phosphory-

lation of overexpressed p38α (Raingeaud et al. 1996). p38α, β, γ and δ are phosphorylated in

vitro by MEK6, p38α, γ and δ but not p38β are phosphorylated by MEK3 (Enslen et al. 1998;

Goedert et al. 1997). Some phosphorylation of p38α, but not β or γ, was also observed in vitro

by the JNK kinase MEK4.

The activation of p38 by MEK isoforms has been examined by the generation of MEK-null mice

(Brancho et al. 2003), although it was not clear from the methods of this study whether all p38

isoforms were being assayed, or just p38α. Mice lacking MEK3 or MEK6 were apparently nor-
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mal, whereas MEK3/6 double-null died around E11 exhibiting placental defects similar to that

observed for p38α-null mice (see below). TNFα stimulated p38 activation loop phosphorylation

and kinase activity in fibroblasts isolated from MEK3-null or MEK6-null embryos, but not in fi-

broblasts from MEK3/6 double-null embryos. UV-stimulated p38 activation was still observed at

a reduced level in MEK3/6 double-null fibroblasts, but was largely abolished by siRNA-mediated

MEK4 knockdown in these cells. Thus either MEK3 and 6 are required for TNFα-stimulated p38

activation, and either MEK3, 4 or 6 is required for UV-stimulated p38 activation. MEK3 and 6

appear mutually redundant.

Upstream activation of MEK3/6 is unclear - a wide variety of kinases have been reported to phos-

phorylate MEKs 3 and 6, including Ask1, TGFβ activated kinase 1 (TAK1), MEKK3 and others

(Raman et al. 2007). Scaffolding proteins including OSM and JIP2 may also be involved in re-

cruiting the a p38/MEK complex to upstream activators. In common with other MAPKs, p38

activity can be influenced by dual-specificity phosphatases which dephosphorylate MAPK activa-

tion loop residues reducing MAPK activity. Overexpression of the dual-specificity phosphatase

MKP1 inhibited UV-induced p38α activity in intact cells (Raingeaud et al. 1995), and siRNA-

mediated downregulation of MKP1 in endothelial cells prolonged TNFα-stimulated p38 activation

(Wadgaonkar et al. 2004).

MAPKAPK2 is a phosphorylation-regulated enzyme, and dephosphorylation completely prevents

its ability to phosphorylate Hsp27 in vitro. Although MAPKAPK2 is phosphorylated on a number

of sites in arsenite-stimulated cells, the key regulatory sites in human MAPKAPK2 are T222 and

T334, and replacement of these residues with Glu renders the enzyme constitutively active (Engel

et al. 1995; Ben-Levy et al. 1995).

MAPKAPK2 contains nuclear localisation and nuclear export signals. In unstimulated cells,

MAPKAPK2 is present mainly in the nucleus, and forms a complex with p38. This complex may

be important for the mutual stability of the two enzymes – MAPKAPK2 protein levels are strongly

reduced in p38α-null fibroblasts, whereas MAPKAPK2 mRNA expression is little affected (Sudo
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et al. 2005). Conversely, p38α protein expression is reduced in MAPKAPK2-deficient tissues, the

extent of which is tissue-dependent (Kotlyarov et al. 2002). On activation, the p38α/MAPKAPK2

complex translocates to the cytosol, and this appears to be at least partially dependent on MAP-

KAPK2 phosphorylation at T334 (Engel et al. 1998; Ben-Levy et al. 1998).

1.6.1.2 Knockout mice

p38α-null mice died in utero around E10.5, whereas heterozygotes were apparently normal (Allen

et al. 2000; Adams et al. 2000). Lethality in p38α-null mice was due to lack of intermingling

of embryonic and maternal blood vessels in the placenta. Mixing diploid embryonic stem (ES)

cells from one embryo with tetraploid ES cells from another results in mice in which cells from

both embryos contribute to certain extra-embryonic tissues, but the embryo proper (and so result-

ing mouse) is formed only from ES cells contributed by the diploid embryo (Ihle 2000). Using

this method, rescue of the placental defect by mixing p38α-null diploid ES cells with wild-type

tetraploid ES cells allowed birth of apparently normal p38α-null mice (Adams et al. 2000), indi-

cating that p38α is required for correct development of the placenta but not for the rest of the em-

bryo. UV, anisomycin (a protein synthesis inhibitor) and H2O2 failed to activate MAPKAPK2 or

Hsp27-phosphorylating kinases in a p38α-null cardiomyocyte line, whereas these stimuli strongly

activated MAPKAPK2 and Hsp27-phosphorylating kinases in cardiomyocytes from heterozygous

mice (Adams et al. 2000). These data indicate that stress-stimulated MAPKAPK2 activation oc-

curs via p38α and not other p38 isoforms or other enzymes, at least in cardiomyocytes, although

the expression of other p38 isoforms was not determined.

In contrast, p38β-null mice are apparently normal, with unimpaired anisomycin-induced MAP-

KAPK2 activation and lipopolysaccharide-stimulated TNFα production (Beardmore et al. 2005).

Mice lacking either p38γ or p38δ, or double-null mice lacking both isoforms, are viable, fertile

and apparently healthy (Sabio et al. 2005). Given that stress-induced MAPKAPK2 activation can

be blocked by SB203580, which does not inhibit p38γ or δ, these results indicate that p38α is
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likely to be the only enzyme responsible for stress-induced activation of MAPKAPK2.

MAPKAPK2-null mice are viable, fertile and apparently healthy, but showed reduced lipopolysac-

charide (LPS)-stimulated release of inflammatory cytokines with TNFα release reduced by 90%

compared to wild-type mice (Kotlyarov et al. 1999). The role of MAPKAPK2 in TNFα

production appears to be due to phosphorylation of downstream targets by MAPKAPK2, as

adenovirus-mediated overexpression of wild-type but not kinase-inactive MAPKAPK2 restored

LPS-stimulated TNFα production in MAPKAPK2-deficient cells (Kotlyarov et al. 2002). The

involvement of MAPKAPK2 in TNFα production is probably due to the presence of AU-rich

elements in the TNFα mRNA. p38-medited MAPKAPK2 activity has been implicated in sta-

bilisation of ARE-containing mRNAs, and loss of MAPKAPK2 would therefore be expected to

reduce TNFα mRNA lifetime and so protein expression (Winzen et al. 1999, discussed in sec-

tion 1.5.5.5.3).

Mice deficient in either MAPKAPK3 or MAPKAPK5 are viable and fertile, and exhibit no alter-

ations in LPS-stimulated cytokine release (Ronkina et al. 2007; Shi et al. 2003). The similarity of

MAPKAPK2 and 3, and compensation between these isoforms, may mask some of the effects of

MAPKAPK2 and 3 in these mice. Indeed, reductions in LPS-induced TNFα secretion, arsenite-

stimulated Hsp25 phosphorylation and p38α protein expression in MAPKAPK2-null cells could

be rescued by overexpression of MAPKAPK3 (Ronkina et al. 2007). However, MAPKAPK2/3-

double null mice are also viable, fertile and overtly normal although they display greater reductions

in LPS-induced TNFα secretion and p38α protein expression (Ronkina et al. 2007). Together,

these data indicate that MAPKAPK2 and 3 are very similar enzymes, without separate known

substrates, and that MAPKAPK2 is the major enzyme in most tissues due to a higher expression

level.
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1.6.1.3 Activation of p38 and MAPKAPK2 in ECs

TNFα, IL-1β and H2O2 all activated p38 MAPK in HUVECs, with strong kinase activity detected

5–20 mins after stimulus addition (Huot et al. 1997). Interestingly, H2O2-stimulated p38 MAPK

and MAPKAPK2/3 activity was biphasic, with an initial increase followed by a decline at around

20 mins and then a second phase of increased activity, declining after 40 mins. TNFα, IL-1β and

H2O2 also activated a kinase able to phosphorylate Hsp27 in vitro, assumed to be MAPKAPK2

as H2O2-stimulated Hsp27 phosphorylation was blocked by the p38 MAPK inhibitor SB203580.

VEGF also activated p38 MAPK in HUVECs, with maximal kinase activity detected after 5–

15 mins stimulation (Rousseau et al. 1997). The mechanism of VEGF-stimulated p38 MAPK

activation in ECs is discussed in section 1.5.3.4.

1.6.2 Protein kinase C

Protein kinase C was originally identified as a Ser/Thr kinase activated by the membrane lipids

phosphatidylserine (PS) and diacylglycerol (DAG), phorbol esters and Ca2+ (Takai et al. 1979).

Phorbol esters (such as phorbol 12-myrisate 13-acetate, PMA) are artificial tumour-promoting

compounds that are non-hydrolysable analogues of the physiological PKC activator DAG. While

both phorbol esters and DAG activate PKC, prolonged treatment with phorbol esters but not DAG

induces downregulation of PKC via an increased rate of PKC protein degradation (Rodriguez-Pena

and Rozengurt 1984; Young et al. 1987; Issandou and Rozengurt 1989).

Since these early findings, a variety of PKC isoforms have been discovered and mammalian iso-

forms have been classified into three subcategories: classical/conventional, novel, and atypical

(reviewed by Mellor and Parker 1998). The classical isoforms α, βI, βII and γ are activated by

PS, DAG and Ca2+ (βI and βII are splice variants). The novel isoforms δ, ε, θ and η (eta) are

activated by PS and DAG but not Ca2+. The atypical isoforms ζ (zeta) and ι (iota, referred to as

λ (lambda) in mice) are activated by PS but are insensitive to DAG and Ca2+. These categories

can be partially distinguished by inhibitor sensitivities – the compounds GF109203X (bisindolyl-
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maleimide I) and Gö6983 inhibit all PKC isoforms with reduced effectiveness against atypical

PKCs, whereas Gö6976 is often used as an inhibitor of the classical PKC isoforms (Toullec et al.

1991; Martiny-Baron et al. 1993).

PKCs are composed of a number of domains as shown in figure 1.13. In the absence of stimulation,

PKC activity is prevented by an autoinhibitory regulatory region containing a pseudosubstrate

sequence – proteolytic separation of the regulatory region from the catalytic domain renders PKC

constitutively active. The regulatory region also contains a cysteine-rich C1 domain, and may

contain a C2 domain. C1 domains are responsible for DAG, phorbol ester and PS binding (Colon-

Gonzalez and Kazanietz 2006). Classical and novel PKC isoforms have two C1 domains, termed

C1A and C1B, whereas the atypical C1 domain is unable to bind phorbol esters or DAG. Other,

non-PKC proteins also contain C1 domains (for example PKD, discussed below) and so are able to

bind to DAG and phorbol esters. C2 domains in classical PKC isoforms are responsible for Ca2+

binding, and act as Ca2+-dependent phospholipid-binding domains. In novel PKCs, C2 domains

bind neither Ca2+ nor phospholipids, and their function is unclear.

Figure 1.13: PKC domains and cofactors (adapted from Newton 2001)

Activation of PKC is a multi-step process involving phosphorylation, lipid binding and transloca-

tion, and is best understood for classical and novel PKCs. As for other AGC family kinases, PKC

is phosphorylated at three sites termed the activation loop, the turn motif and the hydrophobic site

(Newton 2003). Additional isoform-specific phosphorylations at other sites may also occur. Phos-

phorylation at the activation loop threonine residue unmasks the catalytic site and is performed
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by PDK1, the same phosphoinositide-activated enzyme that is involved in Akt activation as men-

tioned previously. The turn motif and hydrophobic site are believed to be autophosphorylation

sites.

The current model for PKC activation is as follows. PKC associates with the membrane after syn-

thesis and is phosphorylated, perhaps constitutively, at the activation loop by PDK1. Subsequent

autophosphorylations allow the pseudosubstrate sequence to bind, which maintains mature PKC

in an inactive conformation, and causes translocation to the cytosol. Cytokine-mediated activation

of phospholipase C leads to production of DAG and inositol-1,4,5-triphosphate (and subsequently

intracellular Ca2+ release). PKC then translocates to the membrane, assisted by Ca2+-bound C2

domains in classical PKC isoforms, and interacts with membrane-embedded DAG via the C1 do-

main. DAG-bound C1 domains interact with PS, and result in removal of the pseudosubstrate

sequence from the active site, producing catalytically active PKC. A variety of other molecules,

including phosphatases and scaffolding proteins, influence PKC localisation and activity.

PKC has been implicated in a wide variety of cellular processes in many cell types, including

VEGF-stimulated processes in endothelial cells as discussed previously. Mice lacking PKCα

(Braz et al. 2004), PKCβ (Leitges et al. 1996), PKCγ (Abeliovich et al. 1993), PKCδ (Miyamoto

et al. 2002), PKCε (Castrillo et al. 2001), PKCθ (Sun et al. 2000), PKCζ (Leitges et al. 2001),

and PKCι/λ (Soloff et al. 2004) have been produced. With the exception of the PKCι/λ knockout,

all these mice are viable, with some defects in restricted contexts such as the immune system. The

general health of these mice suggests that substantial functional redundancy exists between PKC

isoforms.

PKCs α, δ, and ε have previously been shown in this laboratory to translocate to the membrane

in VEGF-stimulated HUVECs, suggesting that they are activated in response to VEGF treatment,

and expression but not translocation of PKCζ was also detected (Gliki et al. 2001). Other groups

have also used antibodies to detect PKCs α, β, δ, ε and ζ in HUVECs, with Yamamura et al.

(1996) additionally detecting PKCη and PKCθ, and Wang et al. (2002) detecting PKCη. PKCα
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and β2 were reported to translocate to the membrane in VEGF-treated BAECs, whereas PKCδ

and ε did not. The isoforms activated by VEGF may be endothelial cell type-specific.

1.6.3 Protein kinase D

Protein kinase D is a more recently identified family of PKC-activated protein Ser/Thr kinases

(reviewed by Rozengurt et al. 2005, cardiovascular aspects reviewed by Avkiran et al. 2008). The

protein kinase D (PKD) family of enzymes comprises three members, PKD1 (also termed PKCµ,

Valverde et al. 1994; Johannes et al. 1994), PKD2 (Sturany et al. 2001), and PKD3 (also termed

PKCν (nu), Hayashi et al. 1999). An alignment of the human PKD isoform amino acid sequences

is shown in figure 1.14. All three PKDs contain two cysteine-rich motifs similar to the PKC C1

domain, a pleckstrin homology (PH) domain and a catalytic domain. The majority of work on the

activation mechanism of PKDs has been performed on PKD1.

Similar to novel PKCs, PKD is activated by phosphorylation, PS and DAG/phorbol esters, but

unlike PKCs is not downregulated by long-term phorbol ester treatment (Johannes et al. 1995;

Van Lint et al. 1995). Additionally, the PKD catalytic domain is more similar in sequence to

Ca2+/calmodulin-dependent protein kinases (CaMKs) than PKC, and PKD1 does not phosphory-

late a variety of synthetic peptides phosphorylated by PKC (Valverde et al. 1994). PKDs are now

considered a subset of the CaMK family rather than the PKA/PKG/PKC family.

A major event in PKD activation is phosphorylation of the activation loop serine residues, in the

motif SFRRS (S738/742 in human PKD1, S744/748 in mouse PKD1). A PKD1 S744E/S748E

double mutant was constitutively active, and the activity of this enzyme was only slightly in-

creased by phorbol ester stimulation, whereas an S744A/S748A double mutant was incapable of

phorbol ester-stimulated activation (Iglesias et al. 1998). Mutation of either of the activation loop

Ser residues to Glu resulted in intermediate PKD activity. PKD activation loop phosphorylation

occurs in intact cells as determined by a phospho-specific antibody directed against phospho-

S744/748 (Waldron et al. 2001). The small enhancement of activity by phorbol esters of a PKD
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Figure 1.14: Alignment of amino acid sequences of human PKD isoforms
Reference protein sequences for human PKD1, PKD2 and PKD3 were retrieved from the
RefSeq database and aligned with ClustalX2. Residues are coloured according to Blossum62
score, with darker colours indicating better conservation. The S738, S742 and S910 phos-
phorylation sites of human PKD1 are indicated with an asterisk (*). The RefSeq database
accession numbers for the protein sequences (all human) used for alignment were: PKD1,
NP 002733.2; PKD2, NP 001073349.1; PKD3, NP 005804.1.
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phosphorylated activation loop mimic indicates that activation loop phosphorylation plays a much

greater role in the control of PKD activity that the permissive, maturation-type role in PKC acti-

vation.

Activation loop phosphorylation is performed by an upstream kinase rather than autophosphory-

lation, as inactive PKD is still phosphorylated at the activation loop (Waldron et al. 2001). PKC

inhibitors such as GF109203X blocked PKD activation loop phosphorylation in intact cells, but

had no effect on purified PKD activity in vitro (Zugaza et al. 1997; Matthews et al. 1997). As these

inhibitors do not directly affect PKD, their effects indicate that PKC phosphorylates PKD at the

activation loop in vivo. PKC inhibitors prevent PKD activation loop phosphorylation in response

to a wide range of stimuli, indicating that PKC may be a common upstream activator of PKD.

Overexpression of constitutively active PKCδ or PKCε increased PKD activation loop phospho-

rylation in the absence of stimulation, whereas overexpression of PKCζ had no effect (Storz et al.

2004). Immunoprecipitated PKCδ directly phosphorylated the PKD activation loop residues in

vitro (Storz et al. 2004), and immunoprecipitated PKCε directly phosphorylated a peptide consist-

ing of residues surrounding the activation loop of PKD1 in vitro (Waldron and Rozengurt 2003).

In the model presented by Rozengurt et al. (2005), novel PKC isoforms and PKD translocate to

the membrane and bind PS and phospholipase C-produced DAG. PKC is activated and phospho-

rylates PKD at the activation loop, resulting in PKD activation and removal of the requirement of

DAG/PS binding for activity. Activated PKD can then translocate away from the membrane and

phosphorylate downstream substrates. Exactly which novel PKC is responsible for PKD activation

loop phosphorylation may depend on the upstream stimulus.

PKD becomes phosphorylated at a variety of other non-activation loop sites, which may be in-

volved in PKD activation or regulation. PKD is autophosphorylated at S916 (S910 in human

PKD1), and PKD catalytic activity correlates well with S910 phosphorylation (Matthews et al.

1999). As a result, S910 phosphorylation has been used as a surrogate for PKD activity in many

studies.
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PKD has been implicated in a wide variety of cellular processes in a number of cell types. At the

outset of this thesis, there were no reports of VEGF-stimulated PKD activation, and little data on

the role of PKD in endothelial cells. During the course of this thesis, PKD1 and 2 were reported to

be expressed in endothelial cells. PKD1 and 2 have been implicated in VEGF-stimulated endothe-

lial cell proliferation, migration and angiogenesis using siRNA-mediated PKD knockdown (Wong

and Jin 2005; Qin et al. 2006; Hao et al. 2009b). PKD1 has further been implicated in phospho-

rylation of histone deacetylases (HDAC) 5 and 7, mediators of angiogenic gene expression (Ha

et al. 2008a,b; Wang et al. 2008).

1.7 Biology of TNFα, IL-1 and H2O2

TNFα, IL-1 and H2O2 are stimulators of Hsp27 phosphorylation in endothelial cells. As these

factors were used experimentally in this thesis, some details of their biological effects and activated

signalling pathways are given below.

1.7.1 TNFα

Originally described as a factor which reduced tumour size in vivo and promoted death of tu-

mour cells in culture (Carswell et al. 1975), tumour necrosis factor α (TNFα, reviewed by Pober

and Min 2006; Bradley 2008) is an important pro-inflammatory cytokine with multiple effects on

endothelial cells, promoting leukocyte recruitment to injured sites by inducing expression of E-

selectin, ICAM-1 and VCAM-1 expression on nearby endothelium, and stimulating release of IL-8

and CCL2 (Pober et al. 1987; Mackay et al. 1993; Kuldo et al. 2005). TNFα stimulates COX2

expression, leading to prostacyclin production associated vasodilation and increased endothelial

permeability.

The importance of TNFα in defence against infection was shown in mice lacking TNFα (Marino

et al. 1997) or its receptor TNFR1 (Pfeffer et al. 1993; Rothe et al. 1993), which are viable

but showed impaired clearance of bacterial infections and other immunological abnormalities.
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While TNFα stimulation of immune cell activity is important for effective pathogen clearance,

inappropriate/excessive TNFα production may lead to unwanted immune cell activity and tissue

damage (Beutler et al. 1985; Pfeffer et al. 1993).

1.7.1.1 TNFα signalling

TNFα stimulates a wide variety of intracellular signalling in endothelial cells, including activation

of NF-κB, p38 MAPK, JNK, ERK and PI-3-K/Akt (Modur et al. 1996, reviewed by Madge and

Pober 2001). In contrast, VEGF does not appear to activate JNK or NF-κB (Mechtcheriakova

et al. 2001). Both TNFR1 and 2 are expressed in HUVECs, but TNFα-stimulated increases in

expression of E-selectin, ICAM-1 and VCAM-1 are predominantly mediated by TNFR1 (Mackay

et al. 1993; Slowik et al. 1993). Indeed, inflammatory responses to TNFαwere blocked in TNFR1-

and TNFR1/2-null mice, but not in mice lacking only TNFR2 (Peschon et al. 1998).

The intracellular domain of TNFR1 (but not TNFR2) contains sequence motifs termed death do-

mains (DD), which interact with death domains on other proteins. On ligand binding, TNFR1

displaces silencer of death domain signalling (SODD) and binds another DD-containing pro-

tein, TNFR-associated DD protein (TRADD). Recruitment of FADD directly to TRADD initiates

TNFα-stimulated apoptosis via activation the extrinsic pathway (procaspase 8). Healthy ECs (and

many other cell types) are usually resistant to TNFα-induced apoptosis, presumably because they

are adapted to respond to macrophage-generated TNFα during inflammation.

TRADD may also bind a protein kinase (receptor interacting protein-1, RIP-1) and a ubiquitin

ligase (TNFR-associated factor 2, TRAF2). Activated TRAF2 recruits and activates apoptosis

signalling kinase-1 (Ask1), which phosphorylates MEKs 3, 4 and 6, which in turn phosphorylate

and activate JNK and p38 MAPK (Ichijo et al. 1997; Nishitoh et al. 1998). Ask1 appears to be

important for the sustained p38 MAPK activation associated with apoptosis, but not essential for

p38 activation by short-term stimulation of TNFα (Saitoh et al. 1998).

The TRADD/RIP-1/TRAF2 complex also activates the transcription factors AP-1 and NF-κB.
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AP-1 activation occurs via JNK, which phosphorylates the AP-1 subunit c-Jun. NF-κB (reviewed

by Hayden and Ghosh 2008) is usually bound by the protein inhibitor of κB (IκB), which masks

nuclear localisation signals in NF-κB, so maintaining it in the cytosol. TNFR1 activation leads to

phosphorylation and activation of IκB kinase (IKK), which phosphorylates IκB, leading to IκB

ubiquitination and degradation. Unbound NF-κB is then free to enter the nucleus and activate gene

expression. TNFα-stimulated transcription of many pro-inflammatory genes, including E-selectin,

ICAM-1, VCAM-1, CXCL8 and CCL2 is under the control of NF-κB and AP-1.

1.7.2 IL-1

Interleukin-1 (IL-1) classically refers to two distinct gene products, IL-1α and IL-1β, which have

virtually identical effects in many cells including endothelial cells (Pober et al. 1987). IL-1 is

an important cytokine in inflammation, with endothelial and systemic effects similar to those de-

scribed above for TNFα (reviewed by Dinarello 2009). IL-1 activates endothelium, increasing

leukocyte adhesion to ECs (Bevilacqua et al. 1985; Nawroth et al. 1986), via increased endothe-

lial expression of leukocyte-binding adhesion molecules E-selectin, ICAM-1 and VCAM-1, and

stimulation of endothelial production of neutrophil and monocyte chemoattractants CXCL8 and

CCL2 (Kuldo et al. 2005).

Binding of IL-1 to its receptor IL-1R1 results in recruitment of recruitment of the adaptor molecule

MyD88 and activation of IL-1R-associated kinase (IRAK), followed by recruitment of TRAF6.

This signalling complex subsequently activates key signalling proteins including p38 MAPK,

JNK (and so AP-1) and NF-κB. The importance of IL-1 for inflammatory responses has been

demonstrated in mice lacking IL-1R1, which showed enhanced susceptibility to bacterial infec-

tion (Labow et al. 1997).
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1.7.3 H2O2

Hydrogen peroxide (H2O2) is implicated in multiple functions in endothelial cells (reviewed by

Cai 2005). H2O2 is a reactive molecule, oxidising the thiol (–SH) groups of susceptible cysteine

residues in proteins (e.g. leading to disulphide bond formation) and reacting with other macro-

molecules such as DNA.

H2O2 was originally thought to be a purely pathological molecule, contributing to oxidant-induced

cellular damage termed oxidative stress. Whereas high concentrations (mM) of H2O2 are toxic to

many cells, and are produced along with other reactive oxygen species (ROS) to damage cells

during the immune cell oxidative burst, lower concentrations (nM–µM) are now believed to be an

essential component of normal intracellular signalling.

H2O2 is generated by reaction of superoxide (O−
2 ) with water, catalysed by superoxide dismutase

(SOD). O−
2 is produced by NADPH oxidase (Nox), which catalyses the reaction NADPH + 2O2→

NADP+ + H+ + 2O−
2 . However, H2O2 itself can form reactive radicals which damage protein – in

the presence of iron (such as that in many enzymes), H2O2 is degraded non-enzymatically to water

and oxygen radicals, including the hydroxyl radical, by the Fenton reaction. H2O2 is reduced to

water and oxygen by peroxidases including catalase, glutathione peroxidase and peroxiredoxins,

and can be sequestered by antioxidants (reducing agents) including glutathione and vitamins C

and E.

H2O2-stimulated cellular signalling occurs by modification of some protein cysteine residues,

which may lead to a loss of catalytic activity in enzymes or change of structure and so function in

other proteins. In endothelial cells, H2O2 has been implicated as a mediator of growth, prolifer-

ation, apoptosis, barrier function, actin organisation, and production of vasoactive mediators and

inflammatory cytokines (Cai 2005).

A number of cytokines increase intracellular H2O2 concentrations including TNFα and in ECs,

VEGF (Kamata et al. 2005; Ushio-Fukai et al. 2002; Lin et al. 2003). Antioxidants and other
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ROS-manipulating strategies have been shown to reduce signalling and impede responses to TNFα

(Saitoh et al. 1998; Kamata et al. 2005) and in ECs, to VEGF (see below). Although antioxidants

may also affect levels of non-H2O2 ROS, overexpression of catalase reduced serum-induced EC

proliferation (Zanetti et al. 2002). This effect is presumably mediated by reductions in H2O2

signalling, with the extra catalase limiting H2O2 diffusion. Given the apparent importance of

H2O2 in responses to various cytokines, it is likely that exogenous administration of H2O2 to

cultured cells ‘feeds in’ to the various cellular signal transduction pathways at the point where it

is endogenously involved.

Whether H2O2 feeds in to pathways activated by other cytokines such as TNFα or activates distinct

pathways may depend on the dose of H2O2 administered. High doses (500 µM) of H2O2 sufficient

to induce EC apoptosis stimulate PKD activation loop phosphorylation in ECs, whereas TNFα

does not (Zhang et al. 2005b), indicating that H2O2 is unlikely to feed in to the TNFα pathway to

activate PKD. It is possible that H2O2 feeds in to another pathway, or stimulates cellular damage-

activated pathways. However, distinct signalling mechanisms may also operate specific to H2O2.

H2O2 acts as an endothelial-derived hyperpolarising factor inducing vSMC relaxation, as EDHF-

mediated relaxation of aortic rings in organ baths was completely prevented by addition of catalase

to the bathing solution (Matoba et al. 2000). Given the importance of H2O2 in the vessels studied,

it is likely that H2O2 has a specific receptor in vSMCs, which may be coupled to the cellular

machinery via a distinct signalling pathway.

VEGF increases O−
2 generation by activating the NADPH oxidase catalytic subunit gp91phox, and

the small GTPase Rac was required for this activation (Ushio-Fukai et al. 2002). The same study

showed that inhibition or downregulation of gp91phox, or inhibition of Rac reduced VEGFR2

phosphorylation and VEGF-stimulated proliferation and migration of HUVECs. Furthermore,

whereas VEGF-stimulated angiogenesis was reduced in vivo, sphingosine-1-phosphate-induced

angiogenesis was unaffected. These findings indicate that gp91phox-mediated O2 formation is

involved in VEGF-stimulated angiogenesis, probably via cross-talk with VEGFR2-mediated sig-
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nalling, and that the angiogenesis blockade observed was not due to overall inhibition of angio-

genic machinery. Another group has also reported that VEGF increases intracellular H2O2 con-

centrations, and that the antioxidant N-acetyl cysteine reduced VEGF-stimulated tubulogenesis

(Lin et al. 2003).

H2O2 initiates a variety of signalling pathways in ECs, including activation loop phosphorylation

of PKD (Zhang et al. 2005b) and activation of p38 MAPK (Huot et al. 1997). H2O2-stimulated

p38 MAPK activation loop phosphorylation was reduced by the inhibitor KN93, a finding which

was interpreted as implicating CaMKII (Nguyen et al. 2004), although it is possible that another

KN93 target may be responsible. Ask1, a mediator of TNFα and IL-1β-stimulated p38 MAPK

activation, has also been implicated in activation of p38 by H2O2. The reduced forms of thiore-

doxin and glutaredoxin have been reported to associate with Ask1, maintaining it in an inactive

state (Saitoh et al. 1998). Treatment of cells with TNFα or H2O2 results in oxidation of thiore-

doxin and glutaredoxin, activation of Ask1 and so p38 as previously discussed. H2O2-induced

activation of Ask1 has also been observed in endothelial cells, although treatments shorter than

30 mins treatment were not examined (Zhang et al. 2005a).

1.8 Aims of the thesis

The overall goal of this thesis is to increase the understanding of VEGF signalling in endothelial

cells, more specifically to:

• Analyse VEGF-stimulated endothelial signalling using proteomics, and examine the role of

any up/downregulated proteins identified in VEGF-stimulated endothelial processes such as

migration and apoptosis

• Examine the role of PKC and PKD in the VEGF-stimulated p38-independent phosphoryla-

tion of Hsp27

• Analyse the involvement of Hsp27 and its phosphorylation in VEGF-stimulated endothelial
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cell migration and apoptosis
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Chapter 2

Materials and Methods

A description of each experimental procedure used in this thesis is given below. Information

regarding the principle underlying each method was obtained from Wilson and Walker (2005)

and/or product literature as appropriate.

2.1 General materials

Recombinant human forms of VEGF-A165 (mature secreted 165 aa form lacking signal sequence,

expressed in insect Sf21 cells, referred to in experimental details as VEGF) and PlGF-1 (mature

129 aa form lacking signal sequence, expressed in E. coli) were from R&D Systems. Recombi-

nant human forms of TNFα (mature cleaved 17 kDa form, expressed in yeast, activity 100 U/ng)

and IL-1β (mature 17 kDa form, expressed in E. coli) were from Sigma. H2O2 and phorbol 12-

myristate 13-acetate (PMA) were from Sigma. Enzyme inhibitors listed in table 2.1 were obtained

from Merck Biosciences, apart from dibutyryl cAMP, forskolin, IBMX, SQ22536 and sodium or-

thovanadate which were from Sigma. 2-D electrophoresis-specific reagents were obtained from

GE Healthcare. Primers were from MWG. siRNAs were from Ambion or Dharmacon as indi-

cated. Gateway molecular biology reagents were from Invitrogen. Protease inhibitor cocktail was

CompleteTM from Roche. Primary antibody suppliers and dilutions are given in table 2.2. Sup-

pliers of other key materials are given in the relevant method below. All other chemicals were
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obtained from Sigma or VWR.

2.2 Human cell culture

2.2.1 Primary cells

Human umbilical vein endothelial cells (HUVECs, TCS CellWorks) or human coronary artery

endothelial cells (HCAECs; TCS CellWorks) were grown in cell cultureware (Falcon, Becton

Dickinson) coated with gelatin (Sigma) in a humidified 37◦C, 5% CO2 incubator. Cells were

maintained in endothelial growth medium (EGM, Lonza), consisting of endothelial basal medium

(EBM; Lonza) supplemented with gentamicin sulphate (30 µg/ml) and amphotericin-B (15 ng/ml),

epidermal growth factor, and bovine brain extract (Singlequots; Lonza) and 10% v/v foetal bovine

serum (FBS; Autogen Bioclear). Cells were passaged by trypsinisation. Unless otherwise stated,

experiments were performed on confluent HUVECs or HCAECs at passage 2–5 that had been

incubated overnight in EBM containing 1% v/v FBS prepared as a dilution of the EGM medium

(low serum EBM, also referred to as serum deprivation) prior to the addition of factors and other

treatments.

2.2.2 Cell lines

Human embryonic kidney (HEK) 293A cells (293; Invitrogen) were grown in cell cultureware in a

37◦C, 5% CO2 incubator. Cells were maintained in DMEM (Invitrogen) supplemented with 10%

v/v FBS, 1% v/v penicillin-streptomycin (Sigma), and passaged by trypsinisation.

2.3 Adenovirus production

A series of adenoviruses were generated using the Gateway system (Invitrogen) to examine the

effect of both wild-type and phosphorylation site-mutated Hsp27 on endothelial cell functions.
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Table 2.2: Primary antibodies used in this study

Target Manufacturer Host Dilution

ERK 1/2 total CST Rabbit 1:2000

ERK 1/2 phospho-T202/Y204 CST Rabbit 1:1000

Hsp27 phospho-S15 AB Rabbit 1:500

Hsp27 phospho-S78 Upstate Mouse 1:1000

Hsp27 phospho-S82 CST Rabbit 1:500

Hsp27 total CST Mouse 1:2000

Hsp27 total polyclonal Stressgen Rabbit 1:3000

PKCα CST Rabbit 1:1000

PKCδ BD Mouse 1:500

PKCε BD Mouse 1:1000

PKCζ Santa Cruz Mouse 1:3000

PKD phospho-S738/S7421 CST Rabbit 1:500

PKD phospho S9102 CST Rabbit 1:500

PKD total CST Rabbit 1:500

PKD2 Bethyl Rabbit 1:2000

MAPKAPK2 CST Rabbit 1:1000

p38α (total) BD Mouse 1:4000

p38 MAPK phospho-T180/Y182 BD Mouse 1:1000

P-Tyr (4G10) Upstate Mouse 1:2000

P-Tyr (RC20) BD Biotinylated 1:2000

SLP2 Proteintech Rabbit 1:2000

Prohibitin 1 Neomarkers Mouse 1:1000

V5 Invitrogen Mouse 1:4000

Manufacturers: CST, Cell Signalling Technology; BD, Beckton Dickinson Transduction
Labs; AB, Affinity Bioreagents. Dilution is that most commonly used for western blotting.
The residue numbering quoted for the P-PKD antibodies is correct for human PKD1. The
phospho-PKD S738/S742 antibody is expected to cross-react with PKDs 1, 2 and 3 whereas
the phospho-PKD S910 and total PKD antibodies were expected to be PKD1 specific based
on sequence analysis performed by the manufacturer proprietory (Dr. Robert Somogyi, CST,
personal communication). This analysis could not be as the immunising peptide sequence
was proprietory. The PKD2 antibody has been shown by the manufacturer not to cross-react
with either PKD 1 or 3 in lysates from cells over-expressing these isoforms.
The phospho-p38 antibody is expected to cross-react with all p38 MAPK isoforms due to full
antigen conservation. The total p38α antibody was raised against human p38α residues which
are 48–65% conserved in the other three p38 isoforms, cross reactivity was not experimentally
tested by the manufacturer (Dr. Martin Gueldenagel, BD, personal communication).
The anti-pY antibody antibody used was 4G10 unless stated.
Anti-PKC antibodies are quoted by the manufacturer not to cross-react with endogenous lev-
els of other PKC isoforms.

1Listed by CST as S744/S748 in mouse PKD1
2Listed by CST as S916 in mouse PKD1
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In addition to an adenovirus expressing wild-type Hsp27 protein, three viruses encoding phos-

phorylation site mutants of Hsp27 were produced, with S15, S78 or S82 replaced with either a

phospho-mimicking residue (negatively-charged aspartate) or an unphosphorylatable residue (ala-

nine, lacks a hydroxyl group for phosphate attachment). A LacZ control virus, synthesising V5-

tagged β-galactosidase, was also produced. The side chain structures of serine, alanine, aspartate

and phosphorylated serine are shown in figure 2.1 for comparison. A schematic diagram of the

mutant Hsp27 forms produced by the viruses is shown in figure 2.2. The full amino acid sequence

of the protein synthesised by each Hsp27 virus is given in table 2.3.

The rationale and methods used to produce the viruses is detailed below. Generation of the vectors

for the wild-type Hsp27 adenovirus was performed with Dr. Izabela Piotrowska, who also helped

design the primers used for mutagenesis and advised on the entire procedure.

Figure 2.1: Comparison of the amino acid side chain structures of serine, phospho-
serine, alanine and aspartate

2.3.1 Background

2.3.1.1 Normal adenovirus biology

Adenoviruses are non-enveloped viruses with a linear double-stranded DNA genome (reviewed

by Berk 2007; Russell 2000). There are over 50 human serotypes of adenovirus, differentiated

on the basis of antibody recognition of variable regions of their capsid proteins – Ad2 and Ad5
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Figure 2.2: Hsp27-expressing viruses produced in this thesis
Schematic diagram of the Hsp27 forms expressed by the generated viruses. Yellow highlight
indicates Ser→Asp (phospho-mimic) mutation, red cross indicates Ser→Ala (unphosphory-
latable) mutation.

are the most commonly studied. Adenoviruses infect a wide variety of organisms and cell types,

and in humans can cause a variety of ailments including respiratory problems, conjunctivitis and

infantile gastroenteritis.

Adenovirus infection proceeds through binding of the fibre protein of the viral capsid to the ex-

tracellular domain of the coxsackie/adenovirus receptor (CAR), expressed on the surface of many

cells including endothelial cells (Carson et al. 1999). The adenovirus is internalised into an early

endosome via integrin- and clathrin-mediated endocytosis. The virus exits the early endosome and

is transported to the nucleus, where viral DNA is injected through a nuclear pore. Virus DNA can

be detected in the nucleus 1–2 h after infection. The adenovirus genome does not integrate into

that of the host cell but the genes are episomally expressed.

The adenoviral genes are expressed in two distinct phases, early and late, separated by viral DNA

replication. The first phase begins with the expression of the early 1 (E1) genes, which code for

gene regulatory proteins required for expression of the remaining adenoviral genes. After synthesis

of viral components assembly occurs, packaging virus DNA into its protein coat. The host cell is

subsequently lysed, releasing virus particles for the next round of infection.
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Table 2.3: Amino acid sequences of Hsp27 forms produced by adenoviruses

Virus Amino acid sequence

27 WT MTERRVPFSLLRGPSWDPFRDWYPHSRLFDQAFGLPRLP
EEWSQWLGGSSWPGYVRPLPPAAIESPAVAAPAYSRALS
RQLSSGVSEIRHTADRWRVSLDVNHFAPDELTVKTKDGV
VEITGKHEERQDEHGYISRCFTRKYTLPPGVDPTQVSSSL
SPEGTLTVEAPMPKLATQSNEITIPVTFESRAQLGGPEAA
KSDETAAK

S82A MTERRVPFSLLRGPSWDPFRDWYPHSRLFDQAFGLPRLP
EEWSQWLGGSSWPGYVRPLPPAAIESPAVAAPAYSRALS
RQLASGVSEIRHTADRWRVSLDVNHFAPDELTVKTKDG
VVEITGKHEERQDEHGYISRCFTRKYTLPPGVDPTQVSSS
LSPEGTLTVEAPMPKLATQSNEITIPVTFESRAQLGGPEAA
KSDETAAK

S82D MTERRVPFSLLRGPSWDPFRDWYPHSRLFDQAFGLPRLP
EEWSQWLGGSSWPGYVRPLPPAAIESPAVAAPAYSRALS
RQLDSGVSEIRHTADRWRVSLDVNHFAPDELTVKTKDG
VVEITGKHEERQDEHGYISRCFTRKYTLPPGVDPTQVSSS
LSPEGTLTVEAPMPKLATQSNEITIPVTFESRAQLGGPEAA
KSDETAAK

S15A S78A MTERRVPFSLLRGPAWDPFRDWYPHSRLFDQAFGLPRLP
EEWSQWLGGSSWPGYVRPLPPAAIESPAVAAPAYSRALA
RQLSSGVSEIRHTADRWRVSLDVNHFAPDELTVKTKDGV
VEITGKHEERQDEHGYISRCFTRKYTLPPGVDPTQVSSSL
SPEGTLTVEAPMPKLATQSNEITIPVTFESRAQLGGPEAA
KSDETAAK

The wild-type Hsp27 sequence was obtained from the RefSeq database, accession number
NP 001531.1. S15, S78, S82 (or replacement residues) are highlighted in red bold italics.
The β-galactosidase protein produced by the lacZ virus has the V5 epitope, sequence GK
PIPNPLLGLDST, attached to its C-terminus, with the molecular weight of the combined
β-galactosidase/V5 tag approximately 120 kDa.

2.3.1.2 Adenoviral vectors

Adenoviruses were chosen as the delivery vehicle for the Hsp27 constructs as they are able to infect

a wide variety of cell types, whether dividing or not, producing strong expression of constructs

inserted into their genome, and have previously been used to overexpress proteins of choice in

HUVECs (de Martin et al. 1997; Riccioni et al. 1998; Rosnoblet et al. 1999). Additionally, Hsp27

has been overexpressed in primary vascular cells using adenoviruses (Martin et al. 1999; Hedges

et al. 1999). The vector used in this study is E1 and E3 deleted, and so is unable to synthesise

virus proteins, which are under control of viral transcription factors encoded by the E1 region,
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and is therefore unable to produce additional virus particles to infect other cells. A sequence of

interest inserted into the adenovirus genome will be expressed provided it is coupled to appropriate

sequences to initiate translation by host cell enzymes. Expression levels vary with time, initially

increasing and then reducing as the viral genome is diluted by cell division.

2.3.1.3 Overview of Gateway system and vectors

Gateway is a cloning technology from Invitrogen which allows a DNA fragment to be inserted

into a universal entry vector (pENTR/D-TOPO), and then rapidly transferred into pre-designed,

application-specific destination vectors.

The entry vector (pENTR-D/TOPO, figure 2.3) is supplied linearised with a 4 nt overhang adjacent

to conjugated topoisomerase I from Vaccinia virus. Introduction of a blunt-ended PCR fragment

with a 5’ CACC sequence (complementary to the vector overhang sequence, and also generating

a Kozak sequence required for later translation in mammalian cells) will undergo topoisomerase-

catalysed recombination and insertion into the pENTR vector. The vector contains a kanamycin

resistance gene for selection of positive transformants (the inserted sequence is not expressed in

E. coli due to the presence of transcription termination sites). Once present in the entry vector,

the sequence of interest can be transferred to any destination vector via enzyme catalysed recom-

bination between the attL1/L2 sites in the entry vector and the attR1/R2 sites in the destination

vector.

The pAd/CMV/V5-DEST destination vector (figure 2.3) produces replication-incompetent E1-

and E3-deleted Ad5 adenovirus containing the sequence of interest when transfected into 293

cells. These cells provide the essential E1 adenoviral gene products in trans (Graham et al. 1977),

allowing synthesis of viral proteins. When infected into mammalian cells, the inserted sequence

is transcribed via the human cytomegalovirus (CMV) promoter, giving high level expression.

This destination vector adds a C-terminal tag to the inserted sequence if a stop codon is not present

in the insert and the reading frame is maintained from insert into vector sequence. The tag consists
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Figure 2.3: Gateway vector maps
Maps of the entry and destination vectors used in this thesis, taken from the rele-
vant Invitrogen manuals (Entry vector, pENTR directional TOPO cloning kits; destina-
tion vector, pAd/CMV/V5-DEST and pAd/PL-DEST gateway vectors; available at www.
invitrogen.com). Detail of all the vector components is provided in these manuals,
some elements are discussed in the text.

of part of the attL2 and R2 recombination sites from the pENTR/pAd vectors and the V5 epitope.

The V5 tag can then be used for immunoprecipitation, affinity purification, immunofluorescent mi-

croscopy and other techniques, but may affect the function of the protein. If the inserted sequence

includes an in-frame stop codon, as do all the Hsp27 inserts used in this thesis, this sequence is

not added.

The pAd/CMV/V5-DEST vector contains an ampicillin-resistance gene for selection of positive

transformants. The ccdB gene, the product of which interferes with DNA gyrase and is cytotoxic

to cells not expressing the ccdA gene product (Couturier et al. 1998) such as the TOP10 E. coli

used for transformation, is also included but is lost from the destination vector when recombination

occurs with the entry vector. Thus transformed cells containing unrecombined destination vector

are not viable and colonies from such cells were not observed.

2.3.2 Preparation of Hsp27 cDNA

Total RNA was purified from HUVECs using the RNeasy kit (Qiagen) according to the manu-

facturer’s instructions. Single-stranded complementary DNA (cDNA) was prepared from mRNA

with the superscript II kit (Invitrogen) using the included oligo dT primers according to the man-
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ufacturer’s instructions.

2.3.3 Generation of modified Hsp27 cDNA by PCR

Hsp27 wild-type cDNA was selectively amplified by PCR using the entry primers detailed in ta-

ble 2.4. The forward primer contains the CACC sequence required for integration into pENTR/D-

TOPO immediately N-terminal to the start codon. The reverse primer includes a stop codon to

prevent addition of the in-frame V5 tag. Only the coding sequence of Hsp27 was enclosed by

the primers used – the 5’ and 3’ untranslated regions were not amplified and so did not form

part of the final virus-produced Hsp27 mRNA. As the Hsp27 siRNA used in this study binds to

the 3’ untranslated region of Hsp27 mRNA (figure 2.4), this allows siRNA-mediated knockdown

of endogenously-produced Hsp27 without affecting virus-produced Hsp27, a potentially useful

feature.

1 µl of cDNA was amplified with 2.5 U cloned Pfu polymerase (Stratagene) and 20 pmol of each

primer in MasterAmp pre-mixed PCR buffer D with ammonium sulphate (Epicentre Biotechnol-

ogy). Reactions were carried out in thin-walled PCR tubes (final volume 50 µl) on a Dyad DNA

Engine thermocycler (MJ Research). Amplification parameters (35 cycles) were 5 min initial melt,

94◦C; melting 1 min, 94◦C; annealing 1 min, 55◦C; extension 2 mins (+ 5 s/cycle), 72◦C; final

extension 10 mins, 72◦C.

Table 2.4: Nucleotide sequences of Hsp27 entry primers

Direction Sequence (5’→3’)

Forward CACCATGACCGAGCGCCGCGTCCCC

Reverse TTACTTGGCGGCAGTCTCATCGGATTTTG

CACC sequence added before start codon to produce forward primer is highlighted in red
italics, incorporated Kozak sequence is underlined.
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Figure 2.4: Hsp27 siRNA binding site
Wild-type Hsp27 mRNA sequence (RefSeq database accession number NM 001540.2) illus-
trating the binding site of the Hsp27 siRNA used in this study (black, underlined). The Hsp27
mRNA sequence is contiguous, but has been divided into three sections (top to bottom: 5’
untranslated region; coding region; 3’ untranslated region) for illustration purposes. The start
and stop codons are coloured green and red respectively.

2.3.4 Agarose gel electrophoresis and recovery of DNA

Amplified PCR product (or other sample) was mixed with 6x loading buffer (Fermentas) and

run on a 1% agarose gel containing 200 ng/ml ethidium bromide at 120 V, using TAE running

buffer (40 mM tris-acetate, pH 8.3; 1 mM EDTA, Eppendorf). Separation was monitored by the

migration of bromophenol blue and xylene cyanol, which have apparent sizes of 4000 bp and

300 bp respectively. After adequate separation, the gel was photographed under UV illumination

using the Genetools package (Syngene) and the band of interest was excised and added to a pre-

weighted tube. DNA was recovered from the gel piece using the Qiaquick Gel Extraction Kit

(Qiagen) and eluted into 50 µl water. The concentration of the DNA was determined by absorbance

at 260 nm on a Biophotometer (Eppendorf).
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2.3.5 TOPO cloning into pENTR/D-TOPO entry vector

TOPO cloning was performed as described in the manufacturer’s instructions for chemical trans-

formation. 20 ng of gel-purified PCR product was added to 1 µl (17.5 ng) pENTR/D-TOPO vector

with 1 µl of provided salt solution in a final volume of 6 µl. The reaction was mixed and incubated

at room temperature for 5 mins, and 4 µl was used to transform competent TOP10 E. coli.

2.3.6 Transformation and growth of competent E. coli

One-shot chemically competent TOP10 Escherichia coli bacteria (Invitrogen) were used for all

transformations. TOP10 express Dam methylase (required for site-directed mutagenesis), and do

not express the ccdA gene (making them susceptible to ccdB-mediated death, relevant for the

pAd/CMV/V5-DEST vector). A vial of TOP10 bacteria was thawed on ice and the plasmid for

transformation was added and gently mixed. After a further 30 min incubation on ice, the bacteria

were heat-shocked in a water bath at 42◦C for 30 s and placed on ice. 250 µl SOC medium

(Invitrogen) was added and the cells were incubated for 1 h at 37◦C with shaking to allow protein

production from the plasmid antibiotic resistance gene. The entire culture was plated on to pre-

warmed 10 cm dishes containing LB agar (Sigma) and either 100 µg/ml kanamycin (Invitrogen,

for pENTR) or 100 µg/ml ampicillin (Sigma, for pAd) as appropriate for the plasmid used for

transformation. Plates were dried at 37◦C for 30 mins before inversion and continued incubation

overnight. The next morning, individual colonies were picked and transferred into 14 ml round-

bottomed tubes containing 3–7 ml LB broth (Sigma) and the appropriate antibiotic (concentrations

as for LB agar). Cells were grown overnight at 37◦C with shaking, then used in the next procedure

or stored at 4◦C.

2.3.7 Plasmid DNA minipreps

Preparation of plasmid DNA was performed by an alkaline lysis technique modified from Sam-

brook et al. (1989). This method is based on the limited lysis of bacteria by SDS and denatura-
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tion of DNA by NaOH, followed by the renaturation of plasmid (which is held together during

denaturation due to supercoiling) but not genomic DNA, which is much slower to renature and

precipitates.

Bacteria from a 1.5 ml overnight culture were pelleted by centrifugation (16000g, 1 min), the su-

pernatant was discarded and the cells resuspended in 100 µl ice-cold solution A (25 mM Tris-HCl

pH 8; 50 mM glucose; 10 mM EDTA) and transferred to 1.5 ml tubes. 200 µl solution B (200 mM

NaOH; 1% w/v SDS, freshly diluted from separate concentrated stock solutions) was added and

the tube was rapidly inverted to lyse the cells and release the plasmid DNA. 150 µl solution C (3 M

potassium acetate; 2 M acetic acid) was added to neutralise the NaOH from solution B and termi-

nate the lysis. Samples were incubated on ice for 3 mins, before precipitated material was pelleted

by centrifugation (16000g, 5 mins, 4◦C) and the supernatant transferred to a fresh tube. DNA

was precipitated by addition of approximately 0.7 volumes (350 µl) isopropanol and pelleted by

centrifugation (16000g, 20 mins, 4◦C). The supernatant was discarded and the pellet was washed

with 70% v/v ethanol, centrifuged (16000g, 5 mins, 4◦C), and the supernatant was discarded. The

pellet was air-dried at room temperature to evaporate remaining ethanol (around 5 mins), and was

resuspended in TE (10 mM Tris-HCl pH 8, 1 mM sodium EDTA) containing 1 mg/ml RNase

A (Sigma). These basic minipreps were used for certain procedures, e.g. diagnostic digests for

screening of mutants.

For other procedures such as sequencing and cloning, protein and other contaminants were re-

moved by proteinase K treatment and phenol-chloroform extraction using phase-lock heavy gel

(Eppendorf). Phase-lock gel eases phenol-chloroform extractions by holding the lower organic

phase under the gel whereas the upper aqueous phase remains above the gel, and was used accord-

ing to the manufacturer’s instructions. Briefly, 10 µl of 1% v/v proteinase K (Invitrogen) in TE

was added to the basic miniprep and incubated at 37◦C for 15 mins. The miniprep was then made

up to a total volume of 100 µl with TE, and added to a pre-centrifuged phase-lock gel tube. An

equal volume of phenol-chloroform-isoamyl alcohol (25:24:1, Sigma) was added and the tube was
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thoroughly mixed by inversion before separation of the layers by centrifugation (16000g, 5 mins,

room temperature). Remaining phenol was removed by adding 100 µl chloroform-isoamyl alcohol

(24:1, Fluka), mixing and centrifugating as before. This wash was repeated once and the aque-

ous upper layer containing the plasmid DNA was transferred to a separate tube. DNA was then

precipitated with isopropanol and washed with 70% v/v ethanol as earlier, before resuspension in

water.

2.3.8 DNA sequencing

Sequencing was performed by either Cogenics or by the Advanced Biotechnology Centre, Im-

perial College London. The primers used for sequencing are detailed in table 2.5. The protein

sequence coding for the Hsp27 variant present in the plasmid was verified by manually check-

ing the chromatogram supplied by the sequencing service using the Sequencher software package

(Gene Codes).

Table 2.5: Nucleotide sequence of primers used for sequencing

Primer Target strand Sequence (5’→3’)

A Forward GCAGCAGCTGGCCAGGCTACGTG

B Reverse CACGTAGCCTGGCCAGCTGCTGC

C Forward GCTTCACGCGGAAATACACGCTGC

D Reverse GCAGCGTGTATTTCCGCGTGAAGC

Forward primers sequenced the sense strand, reverse primers sequenced the antisense strand

2.3.9 Site-directed mutagenesis of Hsp27-pENTR

2.3.9.1 Strategy

Wild-type Hsp27 in pENTR was mutated with the Quickchange II kit (Stratagene). This method

is based on amplification of the template (unmutated) plasmid with primer pairs containing the

desired nucleotide sequence alteration (one forward, one reverse, both containing the sequence
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alteration). These primers anneal imperfectly to the template DNA due to sequence mismatch

between the mutated template plasmid and the mutation-containing primers, but well enough to

allow PCR replication of the plasmid. The unmutated template plasmid was originally derived

by miniprep from cells, and so is methylated. The template plasmid is digested by Dpn I, which

cleaves at GATC only when methylated on N6 of adenine (e.g. by DNA adenine methylase, Dam).

The mutated plasmid produced by PCR is unmethylated, and so is preserved. The mutated plasmid

can then be transformed into competent cells and replicated as normal.

A primer pair covering nucleotide residues 38–73 of the coding region of Hsp27 was used for

mutation of S15, and a primer pair covering nucleotide residues 219–256 was used for S78 or S82

mutations. For mutation of both S15 and S78, two rounds of mutagenesis was performed, firstly

introducing the S15 mutation, followed by transformation of competent cells, bacterial growth and

miniprep. The S15-mutated plasmid was then used as template DNA for primers containing the

S78 mutation. The primers used for mutagenesis are listed in table 2.6, and their binding sites in

Hsp27 are shown in figure 2.5.

Table 2.6: Nucleotide sequence of primers used for mutagenesis

Mutation introduced Sequence (5’→3’)

S82A CAGCC(GGGCGC)TCAGCCGGCAACTCGCCA
GCGGGGTC

S82D CAGCC(GGGCGC)TCAGCCGGCAACTCGACA
GCGGGGTC

S78A CAGCC(GGGCGC)TCGCCCGGCAACTCAGCA
GCGGGGTC

S15A GGCCCCGCCTGGGACCCCTTCCGCGACT(G
GTATC)G

Forward primer only shown, reverse primer is reverse complement of forward primer. Re-
striction site for screening enclosed in brackets. Differences between nucleotide sequence of
primer and wild-type Hsp27 sequence (mismatches) highlighted with red bold italics.

To facilitate screening of colonies produced after transformation for the presence of the desired

mutation, additional silent mutations were incorporated into each primer (indicated in table 2.6).
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These mutations deleted a restriction site (Kpn I for the S15 primer, Pau I for the S78/S82 primer)

but did not alter the amino acid sequence of produced protein, making use of codon redundancy.

To screen colonies for the presence of a mutation, plasmid minipreps were digested with the

appropriate restriction enzyme, and the size of the fragments produced determined by agarose

gel electrophoresis. Loss of the restriction site (resulting in a larger DNA fragment) indicated

that the colony was likely to contain Hsp27 cDNA mutated at the appropriate site. Figure 2.5

shows the location of the deleted restriction sites, and figure 2.6 shows the origin of the restric-

tion fragments used for screening. Presence of the mutation (and absence on undesired mutations

from the Hsp27 coding sequence) was verified by DNA sequencing before recombination into

pAd/CMV/V5-DEST.

2.3.9.2 Mutagenesis procedure

Site-directed mutagenesis was performed using the Quickchange II kit (Stratagene) according to

the manufacturer’s instructions except where indicated. Nucleotide sequences of primers used

for PCR are shown in table 2.6. Sites of primer binding and restriction sites for screening are

shown in figure 2.5. PCR reactions, containing 30 ng wild-type pENTR-Hsp27 template plasmid

and 10 pmol of each primer, were performed in a final volume of 50 µl. Cycling parameters (22

cycles) were 1.5 mins initial melt, 95◦C; melting 1 min, 95◦C; annealing 1.5 mins, 55◦C; extension

5 mins, 68◦C; final extension 10 mins, 68◦C. 1 µl Dpn I was added directly to the cooled sample

and digestion was allowed to proceed at 37◦C for 1–2 h. 2 µl of the cooled sample was used to

transform TOP10 E. coli, which were plated onto kanamycin-containing agar plates as before to

select for the presence of the p-ENTR plasmid.

2.3.9.3 Screening procedure

Colonies from mutagenesis reactions were picked and grown as before, and plasmid DNA was

recovered in a basic miniprep. Minipreps (2 µl) from an S15 mutation reaction were screened
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Figure 2.5: Mutagenesis primer binding sites
Wild-type Hsp27 DNA sequence (RefSeq database accession number NM 001540.2) used
for illustration, with amino acid translation under each codon. Primer annealing sites are
underlined in green. Restriction sites (Kpn I in S15 primer, Pau I in S78/S82 primer) used for
analysis in blue box. Potential mutation site (codons for S15, S78, S82, and silent mutation
in restriction sites) highlighted in red.
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Figure 2.6: Origin of restriction fragments used for screening of mutants
Schematic illustration of the origin of the restriction fragments used for screening colonies
for successful mutation of Hsp27 in pENTR. The restriction sites are shown with red arrows,
with the sequence and the enzyme cutting that sequence indicated. The second Pau I (6
base cutter) site, which is within the Sgs I (8 base cutter) site, is underlined. The blue area
represents Hsp27 coding sequence, the black line represents vector sequence. The relative
positions of S15, S78 and S82 residues are indicated.

using a Sgs I/Kpn I double digestion in buffer tango (10 U Kpn I, 2.5 U Sgs I), S78 or S82 mutants

were screened using Pau I digestion in buffer red (2.5 U Pau I). The indicated quantity of each

enzyme was used per digestion in a final volume of 10 µl, and was allowed to proceed for 1–2 h

before analysis by agarose gel electrophoresis. In each case, the presence of a single large fragment

of the appropriate size (approximately 3000 bp) indicated successful mutagenesis, two fragments

indicated unsuccessful mutagenesis. All restriction enzymes and buffers were from Fermentas.

2.3.10 Cloning into pAd/CMV/V5-DEST destination vector and DNA maxiprep

Hsp27 with the desired mutations was cloned from the pENTR/D-TOPO entry vector into the

pAd/CMV/V5-DEST destination vector (Invitrogen) according to the manufacturer’s instructions

supplied with the destination vector. Briefly, 0.25 µl pENTR plasmid was mixed with 1 µl

pAd/CMV/V5-DEST vector and made up to a final volume of 8 µl with TE, pH 8. 2 µl clonase II

enzyme mix (Invitrogen) was added to initiate recombination, which was allowed to proceed at

room temperature overnight. Recombination was terminated by addition of 1 µl proteinase K and

incubation at 37◦C for 10 mins. 3 µl of the mixture was transformed into TOP10 E. coli and grown

overnight on ampicillin-containing selective plates. The following day, colonies were picked and

grown in ampicillin-containing broth. At the end of the day, around 20 µl of this starter culture

was used to inoculate 150 ml of ampicillin-containing broth, and the culture was grown overnight
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at 37◦C with vigorous shaking. The following day, plasmid DNA was purified from the 150 ml

culture using the HiSpeed Plasmid Maxi kit (Qiagen). DNA was eluted in 750 µl DNase-free

water and quantified by absorbance at 260 nm. Presence of the appropriate mutation and absence

of other mutations in the coding sequence of Hsp27, and the orientation of the Hsp27 sequence in

the vector, was verified by DNA sequencing and manual examination of aligned chromatograms

for all pAd plasmids using Sequencher 4.7 (Gene Codes).

2.3.11 Preparation of low-titre adenoviral stock

20 µg of pAd maxiprep was digested with 8 µl Pac I (New England Biolabs) using the supplied

buffer in a final volume of 200 µl at 37◦C for 2 h to linearise the pAd plasmid and expose the viral

inverted terminal repeat (ITR) sequences, as recommended by the Gateway manuals. Enzyme and

other contaminants were removed by phenol-chloroform extraction as before, and the cut plasmid

was resuspended in 50 µl water.

Fugene 6 (Roche) was used to transfect 293 cells with the cut pAd plasmid, according to the

manufacturer’s instructions. 6 µl Fugene 6 was mixed with 3 µg cut pAd plasmid in a total

volume of 350 µl DMEM, and incubated at room temperature for 30 mins to allow the lipid-DNA

complexes to form. The entire mixture was then added to a 10 cm dish of 293 cells (around 70%

confluent) in complete DMEM, and cells were left for 10–14 days without changing the media

until cytopathic effects were observed.

Once all cells had rounded up and half had detached from the dish, still adherent cells were re-

moved from the dish by squirting with a pipette to produce a suspension, which was transferred

to a 50 ml tube. Virus was released from the 293 cells using three freeze-thaw cycles to lyse

the cells: 30 mins at -70◦C, 5–10 mins at 37◦C. The virus-containing supernatant was clarified

by centrifugation (3000g, 15 mins), and then stored at -70◦C or used immediately to produce a

high-titre viral stock.
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2.3.12 Preparation of high-titre adenoviral stock

Small quantities of separate lacZ-expressing and GFP-expressing adenovirus were provided for

amplification by Dr. David Holmes and Dr. Birger Herzog (both Ark Therapeutics) respectively.

The lacZ virus had been produced by the above method from the pAd/CMV/V5-GW/lacZ plasmid

supplied by Invitrogen, whereas the backbone of the GFP virus was different. For each virus, 6 x

15 cm dishes of 293 cells (90% confluent) were used to produce the high-titre stock, with around

500 µl low-titre virus stock used to infect each dish. Cells were harvested once all cells had

rounded up and half had detached from the plate, which took around 3 days. Cells were squirted

off the dish as before and pelleted by centrifugation (500g, 5 mins). The supernatant was discarded

and the cell pellet was resuspended in 8 ml sterile PBS. The cells were freeze-thawed 4 times as

before, and the supernatant clarified and transferred to a fresh tube containing 4.4 g of caesium

chloride. The virus solution was used to dissolve the CsCl, producing a final concentration of

3.3 M. The CsCl/virus mixture was transferred to an Optiseal centrifuge tube (Beckman) and

centrifuged in a Ti 70.1 rotor for 18 h at 60000 rpm (240000g) at 10◦C. The virus particles gave

a discrete band, which was collected by piercing the Optiseal tube with a needle and withdrawing

the virus. The virus was then mixed with an equal concentration of sterile 2x freezing buffer (final

concentrations: 5 mM Tris-HCl pH 8; 50 mM NaCl; 0.05% w/v BSA; 25% glycerol) and stored

in aliquots at -70◦C. Around 3 ml of each virus was obtained after addition of storage buffer.

Viral titre was determined using the QuickTiter Adenovirus Titer Immunoassay kit (Cell Bio-

labs) according to the manufacturer’s instructions. This method involves detection of viral coat

protein production in 293 cells by immunostaining. All reagent incubations and concentrations

were those recommended in the kit instructions. Briefly, 293 cells were plated in 24-well plates

at 2.5x105 cells/ml, 1 ml/well. One hour after plating cells, 100 µl of virus at various dilutions

(10−4–10−6) was added to each well in duplicate. The cells were allowed to grow for 2 days

for virus production to occur before the cells were fixed in methanol, blocked with BSA, incu-

bated in anti-hexon antibody and then alkaline phosphatase-conjugated secondary antibody. Virus-
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containing cells were visualised by incubation in diaminobenzidine tetrahydrochloride (DAB) so-

lution for 10 mins, and stored in PBS at 4◦C. 10–100 stained cells were counted per field, with 5

random fields assessed per well. Virus titres obtained ranged from 2–8 x 1010 ifu/ml.

2.4 Electrophoresis and gel staining

2.4.1 Preparation of cell lysates for western blotting or 2-D analysis

For experiments without the use of inhibitors, serum-deprived cells were washed twice with warm

EBM and incubated in a 37◦C, 5% CO2 incubator for the required time with either 25 ng/ml

(600 pM of dimer) recombinant human VEGF-A165, 100 U/ml (2 ng/ml) TNFα or other reagents

as indicated.

For the examination of the effects of enzyme inhibitors, serum-deprived cells in 6-well plates

were washed twice with warm EBM and pre-incubated for 30 mins in warm EBM containing the

appropriate inhibitor. To begin treatment, concentrated VEGF or other reagents were then added

to the inhibitor-containing medium to the final concentration desired. The contents of each well

was mixed by gentle pipetting and the cells were returned to the incubator for the required time

period.

To stop treatment, cells were placed on ice, washed twice with ice cold PBS and either lysed in

RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM disodium EDTA, 1% v/v Igepal

CA-630, 0.5% w/v sodium deoxycholate, 0.1% w/v SDS, protease inhibitor cocktail) or for 2-D

blots, in 2-D buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS, protease inhibitor cocktail) after an

additional wash in tris-sucrose (10 mM Tris-HCl pH 7.4, 0.25 M sucrose). Lysis was allowed to

continue on ice for 30 mins, after which time the lysates were clarified by centrifugation at 16000g

for 30 mins. The supernatant was transfered to a fresh tube and the lysates were stored at -70◦C

for further analysis.

For downregulation of PKCs with phorbol esters, cells at 50–80% confluence were washed with
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EBM and then incubated in low serum EBM containing 200 ng/ml (324 nM) PMA for 28 h. Cells

were then washed twice with EBM and incubated with the appropriate factors in EBM as detailed

above for other experiments.

2.4.2 Glutaraldehyde-mediated protein cross-linking

Glutaraldehyde-mediated cross-linking of proteins in cell lysates was performed as described by

Lambert et al. (1999). After appropriate treatment, cells were lysed in ice-cold buffer H (25 mM

HEPES pH 7.2; 3.3% v/v glycerol; 1 mM EDTA; 1 mM DTT) supplemented with protease in-

hibitors. Samples were sonicated for 5 s with a probe sonicator using medium power settings

to disrupt cell membranes. Lysates were clarified by centrifugation (10 mins, 16000g, 4◦C) and

supernatants were transferred to a fresh tube. 7 µl buffer H containing various amounts of glu-

taraldehyde, was added to 28 µl clarified lysate to give the desired final glutaraldehyde concentra-

tion (spanning 0–0.3% v/v), and samples were incubated at 30◦C for 30 mins to allow cross-linking

to occur. Cross-linking was terminated by adding an equal volume (35 µl) of Quench (1 M Tris

pH 7.2; 10% w/v SDS; 10 mM EDTA) to the lysates. Lysates were stored at -70◦C until analysis.

2.4.3 SDS-PAGE and western blotting

SDS-PAGE separates proteins migrating through a gel under the influence of an electric field.

Coupled with antibody detection steps, the relative abundance of a particular protein in two lysates

can be determined. SDS-PAGE was performed using either tris-glycine homemade gels (BioRad

mini protean II system), or precast bis-tris gels (Invitrogen NuPAGE system).

2.4.3.1 Principle of western blotting

Heating of cell lysates with SDS- and DTT-containing sample buffer denatures proteins, reducing

protein disulphide bonds to thiol groups and covering the protein with SDS molecules, forming

a negatively-charged complex. Under the influence of an electric field, proteins migrate through
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a gel whose pore size is determined by the concentration of acrylamide and cross-linker in the

gel. Larger proteins are retarded more than smaller proteins, resulting in a separation of proteins

largely based on molecular size. During transfer, the protein/SDS complex is transferred out

of the gel onto a protein-binding membrane under the influence of an electric field. For antibody

detection, protein-binding sites on the membrane are blocked by incubating with a protein solution

such as milk, and a protein of interest is then specifically bound with an antibody. This primary

antibody is then detected with a secondary antibody conjugated to an enzyme, often a peroxidase.

A liquid substrate is then added, which in the presence of the peroxidase enzyme emits light in a

chemiluminescent reaction, and this light is detected using photographic film. Western blotting is

often described as a semi-quantitative technique, with the amount of protein originally present in

the lysate proportional to the amount of peroxidase enzyme bound to protein on the membrane,

and so the amount of light generated and area and intensity of the band present on the film. For

routine western blotting, samples were not protein assayed before loading, instead equivalent areas

of cell coverage were lysed in equal amounts of buffer, and equal volumes were loaded. Blotting

with a total antibody, usually total ERK, was used to visually confirm comparable protein loading.

2.4.3.2 Homemade gels

For one-dimensional blots, 4x sample buffer (250 mM Tris HCl pH 6.8, 400 mM DTT, 8%

w/v SDS, 40% v/v glycerol, trace bromophenol blue) was added to the cell lysates prepared in

RIPA buffer to a final concentration of 1x. The samples were then boiled for 4 mins and sub-

jected to SDS-PAGE using homemade gels (BioRad). Standard resolving gels contained 10%

w/v acrylamide-bis solution, 375 mM Tris-HCl pH 8.8, 0.2% w/v SDS, 0.05% w/v APS, 0.05%

v/v TEMED, stacking gels were composed of 4% w/v acrylamide-bis solution, 125 mM Tris-

HCl pH 6.8, 0.1% w/v SDS, 0.1% w/v APS, 0.1% v/v TEMED. Tris-glycine running buffer

(25 mM Tris base, 192 mM glycine, 0.1% w/v SDS) was used. Samples were wet transferred

on to Immobilon-P (Millipore) overnight at 30 V, 4◦C, or 0.36 A, 4◦C for 1h 30, using a transfer

buffer of 25 mM Tris base, 192 mM glycine, 20% v/v methanol.
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2.4.3.3 Precast gels

The Invitrogen Novex system, including running and transfer buffers, was used for pre-cast gels.

Samples in RIPA buffer were adjusted to 1x LDS sample buffer (Invitrogen), 50 mM DTT, before

heating at 80–90◦C for 10 mins. Samples were cooled and subjected to SDS-PAGE on NuPAGE

bis-tris gels, using MOPS running buffer before semi-dry transfer to Immobilon-P for 1 h at 35 V.

Transfer buffer was made up to 20% methanol.

2.4.3.4 Blocking, antibody incubation and detection

Membranes were blocked in 5% w/v non-fat milk (5% w/v BSA for anti-pY) in PBS-T (0.1%

v/v Tween 20 in PBS) for 1 h at room temperature and then incubated in primary antibody at the

required concentration (listed in table 2.2) in blocking solution for either 2 h at room temperature

or overnight at 4◦C. Membranes were washed four times for 5 mins with PBS-T and incubated

in horseradish peroxidase-conjugated secondary antibody (Swine anti-rabbit or goat anti-mouse,

1:10000–1:30000 dilution in blocking solution, Dako) for 1 h at room temperature before be-

ing washed as before. Bands were detected by a chemiluminescent procedure (ECL plus, GE

Healthcare) and Hyperfilm ECL (GE Healthcare) following the manufacturer’s protocols. Blots

were scanned on an ImageScanner (GE Healthcare) and band intensities were quantified with the

ImageJ gels module (National Institues of Health, rsb.info.nih.gov/ij/).

2.4.4 Protein assay

To determine the protein concentration of lysates in 2-D buffer, a modified Bradford assay was

used essentially as described by Ramagli (1999), with the variation that results were determined

as the absorbance ratio 595 nm/450 nm to improve assay linearity (Zor and Selinger 1996).

5 µl of clarified sample was diluted with 20 µl of 0.01 M HCl (freshly diluted from the concen-

trated acid), and mixed in a 96-well plate with 200 µl of a 25 % v/v solution of Bradford reagent
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concentrate (BioRad). The absorbance of each well at 595 nm and 450 nm was determined. Sam-

ples containing 0–5 µg ovalbumin, assayed in the same 96-well plate, were used to construct a

(linear) standard curve of protein concentration against the ratio of absorbances at 595nm/450nm.

The protein concentration of unknown samples was determined by comparing to the standard

curve.

2.4.5 Two-dimensional gel electrophoresis

2-D electrophoresis is a protein separation technique coupling isoelectric focusing (1st dimension)

to SDS-PAGE (2nd dimension). In all 2-D gel images shown, the acidic region of the gel (low pI)

is on the left, and the high molecular weight region is at the top.

2.4.5.1 Principle of isoelectric focusing

The isoelectric point (pI) of a protein is the pH at which that protein has no net charge. Proteins

are composed of many amino acids with ionisable entities such as the amino and carboxyl groups.

On the peptide backbone, only two of these groups are available for ionisation, at the N- and C-

termini, and so the majority of ionisable groups in a protein occur on amino acid side chains (e.g.

carboxyl groups on Asp and Glu, and amino groups on Lys and Arg), with the effect that the pI of

a protein is determined by its amino acid sequence (the identity of the protein) and the presence of

any modifications such as phosphate groups.

Each individual ionisable group acts as a weak acid or base, and whether or not the group is

charged depends on the ambient pH – when pH is lower than the pKa for that group, the majority

of the group is in its protonated (more positive) form, and when ambient pH is higher than the pKa

for that group, the majority of group is in its deprotonated (more negative) form. Overall, when

the pH is lower than the pI for the protein, the net charge on the protein is positive and when the

pH is higher than the pI, the net charge is negative.

Isoelectric focusing occurs in an immobilised pH gradient under the influence of a high voltage,
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with the low pH region at the anode and the high pH region at the cathode. If a protein is at a pH

that is lower than its pI, and so the net charge on the protein is positive, the protein will migrate

through the pH gradient towards the cathode. As the protein migrates, and the ambient pH becomes

higher, the protein releases more protons as the acid-base equilibrium for each ionisable group

shifts, with the result that the net charge on the protein becomes less positive. With continued

migration, the protein reaches a pH at which the net charge on the protein has reduced to zero,

and the protein has now focused at its isoelectric point. This process is schematically illustrated in

figure 2.7.

Figure 2.7: Principle of isoelectric focusing
Schematic representation of isoelectric focusing of a protein with a pI of 6. At pH 4, the
net charge on the protein is positive due to the protonated amino group, causing migration
towards the cathode through increasing ambient pH. At pH 8, the net charge on the protein
is negative due to the deprotonated carboxyl group, causing migration towards the anode
through decreasing ambient pH. At pH 6, the net charge on the protein is zero, and the protein
no longer migrates. The direction of migration of each molecular species is indicated with an
arrow, and the charged group responsible is highlighted with a red box.

2.4.5.2 Isoelectric focusing procedure

Lysates were prepared in 2-D buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS). Immediately

before running the first dimension, the samples were adjusted to 7 M urea, 2 M thiourea, 4%

w/v CHAPS, 0.5% v/v IPG buffer (GE Healthcare), 1% w/v DTT, trace bromophenol blue (final

concentrations). Samples were then loaded onto immobiline drystrips (GE Healthcare), overlayed

with mineral oil and isoelectric focusing incorporating a 10 hr rehydration step was carried out
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overnight on an IPGphor (GE Healthcare) according to the manufacturer’s instructions. Focused

IEF strips were then equilibrated and run in the second dimension on homemade (tris-glycine) or

precast (NuPAGE bis-tris; Invitrogen) gels.

2.4.5.3 Second dimension: homemade gels

Focused IEF strips were equilibrated in SDS equilibration solution (50 mM Tris HCl pH 8.8, 6 M

urea, 30% v/v glycerol, 2% w/v SDS, trace bromophenol blue) containing 1% (65 mM) w/v DTT

for 15 mins, and then in SDS equilibration solution containing 2.5% (140 mM) w/v iodoacetamide

for a further 15 mins. Strips were placed on top of a self-cast polyacrylamide slab gel and sealed

with agarose sealing solution (1x running buffer containing 0.5% w/v agarose, trace bromophenol

blue).

For 24 cm IPG strips, SDS-PAGE was conducted using the Ettan Dalt 6 system (GE Healthcare)

using 1x tris-glycine running buffer in the lower chamber and 2x tris-glycine running buffer in

the upper chamber, as recommended by the manufacturer. Gels contained 10% w/v acrylamide,

375 mM Tris-HCl pH 8.8, 0.2% w/v SDS, 0.1% w/v APS, 0.017% v/v TEMED. For 7 cm IPG

strips, SDS-PAGE was conduced using 10% resolving gels, without a stacking gel, with buffers

and recipes as described in section 2.4.3.2. In both cases, SDS-PAGE continued until the bro-

mophenol blue tracking dye just ran off the gel.

2.4.5.4 Second dimension: precast gels

Focused IEF strips were equilibrated in 1x LDS loading buffer (Invitrogen) containing 1% w/v

DTT for 15 mins, followed by 1x LDS loading buffer containing 2.5% w/v iodoacetamide for a

further 15 mins. Strips were then placed on top of a pre-cast NuPAGE bis-tris gel and sealed with

agarose sealing solution (1x MOPS running buffer containing 0.5% w/v agarose, trace bromophe-

nol blue) according to the manufacturer’s instructions.

For 2-D western blots, proteins were transferred to Immobilon-P and processed as described for
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western blotting of one dimensional gels (section 2.4.3.2).

2.4.6 Silver staining

Silver staining of polyacrylamide gels was carried out essentially as described by Yan et al.

(2000). On completion of electrophoresis, gels were fixed in 40% v/v ethanol, 10% v/v acetic acid

overnight. Gels were then incubated for 30 mins in sensitiser (30% v/v ethanol, 1.2 M sodium

acetate, 0.2% w/v sodium thiosulphate), washed 3 x 5 mins in water and impregnated with silver

(0.25% w/v silver nitrate) for 20 mins. After 2 x 1 min washes with water, the gel was incubated

in developer (0.25 M sodium carbonate, 0.02% v/v formaldehyde) until spots appeared. Staining

was terminated by incubating the gel for 10 mins in stop solution (40 mM sodium EDTA). After

washing in water (3 x 5 mins), the gel was shrunk for at least 30 mins in 50% v/v methanol and

scanned.

2.4.7 Coomassie staining of PVDF membranes

Coomassie staining of proteins on PVDF membranes was performed as described by Dunn

(1999). Membranes were shaken in stain (0.2% w/v Coomassie brilliant blue R250 (Sigma), 45%

methanol, 10% glacial acetic acid) for 2 mins, and then destained in 45% methanol, 10% glacial

acetic acid, until the background was acceptable. Membranes were air dried and scanned.

2.4.8 Difference gel electrophoresis (DIGE)

2.4.8.1 Overview of DIGE method

In this thesis a two-dye DIGE method was used, involving covalently labelling the proteins in two

lysates to be compared with separate fluorescent dyes. The samples are then pooled and run on the

same gel, and the gels are imaged with a fluorescent scanner to detect the two dyes (summarised

in figure 2.8).

182



Figure 2.8: Summary of the difference gel electrophoresis method
Schematic diagram of the DIGE procedure as used in this study. Equal quantities of each
of two test protein samples is mixed with a reactive dye containing either a Cy3 or Cy5
fluorophor. During a labelling reaction, the dyes covalently link to amine groups on lysine
residues of proteins in the sample. The labelled samples are then mixed to produce a pooled
sample and undergo 2-D electrophoresis on a single gel. The gel is then imaged for Cy3
and Cy5 separately using a fluorescent scanner. Spot matching between the two samples is
simple as the any protein present in both samples will migrate to the identical positions on
the gel, giving overlapping spots which are individually detectable. A computer program
then compares the intensity of the two spots, determining any differences between the two
samples.

Most proteins present in the pooled mixture will be composed of some protein from one sample

(e.g. Control, Cy3 labelled) and some from the other sample (e.g. VEGF-treated, Cy5 labelled).

Because the dyes are very similar in structure and molecular weight and have a similar effect

on the molecular weight of the labelled protein, a particular protein in the Cy3-labelled (control)

sample runs to an identical position in the 2-D gel as the same protein from the Cy5-labelled

(VEGF-treated) sample. A comparison of the relative abundance of that protein in the two samples

is then made by comparison of the ratio of Cy3 fluorescence to Cy5 fluorescence in the spot.

Comparison of multiple samples from each treatment group, ideally combined with statistical

testing, determines whether the protein is changed by the treatment employed.

DIGE analysis was performed as recommended by the manufacturer (GE Healthcare) using a two-

dye minimal labelling protocol. Salient points are indicated below.
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2.4.8.2 CyDye labelling of protein sample

CyDye labelling involves covalently attaching one fluorescent dye (a CyDye) to one protein sam-

ple, and another fluorescent dye to a second protein sample. CyDyes contain a fluorophor, either

Cy3 or Cy5, and an NHS ester group that reacts with primary amines such as those on lysine

groups in proteins. During the labelling reaction the dye is limiting, with the manufacturer re-

porting that ≈1–2% of lysine residues in a sample are labelled, and double labelling of individual

protein molecules does not occur.

Labelling of protein samples with CyDyes (GE Healthcare) was performed according to the man-

ufacturer’s minimal labelling protocol. Samples were lysed in DIGE buffer (10 mM Tris-HCl,

7 M Urea, 2 M Thiourea, 4% w/v CHAPS, pH 8.5 at 4◦C), clarified, re-adjusted to pH 8.5 (when

ice cold) and protein assayed. 50 µg of each sample was mixed with 1 µl of working CyDye

solution (400 pmol/µl in dimethylformamide) and the labelling reaction was allowed to proceed

on ice in the dark for 30 mins. Labelling was quenched by the addition of 10 µl of 10 mM lysine

(excess free amine groups binds remaining unreacted dye). Control and treated samples produced

in a single experiment were labelled with different CyDyes, and which dye was assigned to the

control sample was varied between experiments to avoid dye bias. Labelled samples were then

immediately prepared for 2-D electrophoresis.

2.4.8.3 2-D separation and imaging of CyDye-labelled samples

The entire labelling reaction from two samples labelled with different CyDyes (a VEGF-treated

sample labelled and a matched control sample from the same lysis) were mixed to produce a

pooled sample. The pooled sample was then made up to 450 µl with 2-D buffer and adjusted to

0.5% v/v IPG buffer, 1% w/v DTT, trace bromophenol blue, and separated by 2-D electrophoresis

using 24 cm pH 3–10 IEF strips and 10%acrylamide gels as described in section 2.4.5. Gels still in

their glass cassettes were removed for the gel tank, rinsed in distilled water and the glass cassette

was air dried. Gel-cassette assemblies were sequentially scanned by a Typhoon 8600 variable
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mode imager (GE Healthcare), using excitation wavelengths of 532 nm for Cy3 and 633 nm for

Cy5. Initial low-resolution scans were assessed in ImageQuant (GE Healthcare) and Typhoon

photomultiplier tube voltages were adjusted so that maximum signal from each gel was 30000–

70000, thus preventing image saturation (which occurs at 100000) but maximising sensitivity.

Final images were acquired at 100 µm pixel size.

2.4.8.4 DIGE gel analysis

DIGE gels were analysed using DeCyder software (GE Healthcare) as recommended by the man-

ufacturer. Matched scans (Cy3, Cy5) from each individual gel were analysed using the DeCyder

differential in-gel analysis (DIA) module to automatically detect spots, normalise total Cy3 and

Cy5 signals within the gel, and remove artifacts such as edge effects and dust. Spots detected in

gels during DIA were then matched automatically to other gels containing independent protein

samples of the same treatment duration using the DeCyder biological variation analysis (BVA)

module. Automatic matching was adjusted manually where necessary to ensure accurate spot

matching between gels.

Spots with a mean volume change of at least 10%, and matched between at least two of the three

gels analysed at each time point, were considered to be changed. Rigorous statistical analysis was

not available via DeCyder as this requires a Cy2-labelled internal standard to be run on each gel.

At the time these experiments were performed, access to a Cy2-detecting imager was not available.

2.5 Mass spectrometry-based methods

Mass spectrometry (MS) is an analytical technique that separates analytes (e.g. peptides) by mass-

to-charge ratio (m/z), so allowing determination of the mass of the analytes. MS analysis of

peptides obtained from a protein allows identification of that protein and is commonly used to

identify unknown proteins from polyacrylamide gels. The principles and techniques of the MS

methods used are described below.
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2.5.1 Principle of peptide mass fingerprinting

Peptide mass fingerprinting as used in this study consists of excising a spot of (hopefully) pure

protein from a polyacrylamide gel, digesting the protein with trypsin, and determining the masses

of the intact tryptic peptides produced, giving a peptide mass fingerprint for the unknown protein.

Masses of the peptides are determined by MS using matrix-assisted laser desorption and ionisation,

and a time-of-flight detector (MALDI-TOF). The MALDI ionisation method converts the tryptic

peptides (M) to singly charged ions (MH+) by gas-phase transfer of protons from a UV-absorbing

matrix without fragmentation of the peptide. As all ions formed are non-fragmented and singly-

charged, separation occurs solely by peptide mass. The actual masses of the detected peptides are

determined by calibrating the MS with peptides of known mass.

Trypsin cuts polypeptides immediately C-terminal to Arg or Lys residues except where the next

residue is Pro (Olsen et al. 2004). Due to this site specificity, if the sequence of a protein is

known the peptides it will produce on trypsin digestion can be deduced, and the masses of these

peptides (calculated from the peptide sequences) give a theoretical peptide mass fingerprint for

that protein. A computer program (Mascot was used in this thesis) can then compare the peptide

mass fingerprint obtained from the gel-excised, unknown protein with the theoretical peptide mass

fingerprints of known proteins in a sequence database. Mascot scores the ‘goodness’ of fit of

the experimental data to each protein in the database based on the number of peptides matches

obtained, the difference in observed and database-calculated masses of matches, and the search

settings (e.g. mass tolerance) employed. A significance threshold, at p<0.05, is assigned to prevent

spurious matches, with a match classed as significant if there is less than a 5% chance that a set of

masses would produce a score (match) equally good in a database of equal size by matching to a

random protein. A protein is classed as positively identified if it is the top match and has a score

above the significance threshold, with other hits below the significance threshold.
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2.5.2 Principle of tandem mass spectrometry

To identify post-translational modifications of protein sequences, some tryptic digests were anal-

ysed by tandem mass spectrometry (MS/MS). Peptide mass fingerprinting does not provide any

direct information regarding the internal composition of each peptide, and it can be problematic to

identify post-translational modification sites. For example, if a peptide is observed via MALDI-

TOF MS that differs by the appropriate mass from a predicted tryptic peptide, it may be assumed

that the peptide is phosphorylated. However, if the peptide contains multiple Ser, Thr and Tyr

residues, it would not be possible to say which residue was phosphorylated. Due to this limitation

another approach, MS/MS is more useful in identifying the sites of post-translational modifica-

tions.

In MS/MS, peptides are initially separated by the first mass spectrometry stage, and then individual

peptides are fragmented by collision with an inert gas (collision-induced dissociation), and the

fragments are then separated and detected by a second mass spectrometry stage, so determining

the mass of the fragments produced. Computer software is able to reconstruct the peptide and

determine its sequence by comparing the masses of fragments produced, and the presence of post-

translational modifications such as phosphorylation.

Fragmentation of tryptic peptides can occur at a variety of sites in the peptide backbone and

side chains, but is especially useful for peptide identification if it occurs at the peptide bond.

Fragmentation-induced cleavages of different peptide bonds of the parent ion leads to the genera-

tion of the b- and y-ion series. In the b-ion series, the peptide charge is retained on the N-terminal

fragment and in the y-ion series the charge is retained on the C-terminal fragment.

Tandem MS of peptides is usually performed coupled to an initial chromatographic step to sepa-

rate the peptides, which then enter the mass spectrometer, more concentrated and more pure, as

they elute off the column. Ionisation occurs via electrospray ionisation (ESI), rather than the ma-

trix/laser method used in MALDI. ESI involves rapid drying of a droplet of peptide in the presence
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of an acid (usually methanoic acid), resulting in protonation of the peptide.

2.5.3 Preparation and tryptic digestion of gel plugs

After excision from the gel, stained spots were reduced and alkylated in a Progest Investigator

(Genomic Solutions) following a procedure provided by the manufacturer. Briefly, gel plugs were

washed twice (hydrated with 25 mM ammonium bicarbonate (ABC), dehydrated with acetoni-

trile), reduced with 10 mM DTT in ABC (35 mins, 50◦C) and then alkylated with 100 mM iodoac-

etamide in ABC (45 mins, room temperature), washed twice as before and dried in a speedvac.

The dried plugs were rehydrated for 10 mins in the presence of 20 ng/µl (0.75 µM) modified

pig trypsin (Trypsin Gold, Promega) in 40 mM ammonium bicarbonate, covered with 40 mM

ABC/10% v/v acetonitrile to avoid dehydration, and digestion was allowed to proceed overnight

at 37◦C.

2.5.4 MALDI-TOF MS

1 µl droplets of each tryptic digest were spotted onto a steel target plate then covered with a 1 µl

droplet of matrix solution (α-cyano-4-hydroxycinnamic acid, half-saturated, in 33% v/v acetoni-

trile, 0.1% v/v trifluoroacetic acid) and allowed to dry. Samples were analysed in a MALDI-TOF

(Autoflex, Bruker Daltonics) mass spectrometer in positive ionisation mode. Roughly 120 shots

were averaged to give each spectrum. External calibration of mass spectra was conducted using

a mixture of standard peptides covering the range m/z = 1046–2465, followed where possible

by internal calibration using trypsin autolysis peptides (m/z = 842.50, corresponding to peptide

VATVSLPR; 1045.56, peptide LSSPATLNSR; 2211.10, peptide LGEHNIDVLEGNEQFINA

AK). The monoisotopic masses of the MH+ ions were used to search the NCBI non-redundant

protein sequence database via the Mascot peptide mass fingerprint interface (Matrix Science,

www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=PMF). For

database searching, carbamidomethyl modification of cysteine was selected as a fixed modification
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(due to modification of cysteine by iodoacetamide, +57.03 Da –CH2CONH2), whereas oxidation

of methionine sulphur (+15.99 Da) was selected as a variable modification. Mass tolerance was

100 ppm (equivalent to a 0.1 Da error at 1000 Da) and one missed tryptic cleavage was allowed.

All hits quoted were above the statistical significance threshold set by Mascot.

2.5.5 Tandem mass spectrometry (ESI-MS/MS)

Some gel spots were excised from 2-D gels and sent for external tandem MS analysis using the

pick-n-post service from Alphalyse. For in-house tandem MS, tryptic digests were dried to ≈5 µl

with a speedvac, and made up to 20 µl by addition of 0.1% HPLC-grade methanoic acid. Tan-

dem MS, including a coupled reverse-phase chromatographic separation using a C18 column,

was performed by Mark Crawford (Centre for Molecular Medicine, Department of Medicine,

UCL), using an LTQ XL Orbitrap (Thermo Scientific). Protein and post-translational modifica-

tion identification was performed by Mark Crawford using the Mascot database (Matrix Science,

www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS).

2.6 Small interfering RNA (siRNA) transfection

2.6.1 Principle of siRNA-mediated protein knockdown

RNA interference (RNAi) is a technique for reducing the abundance of specific mRNAs in a cell

and thus reducing the amount of the encoded protein present, and is now widely used to knock

down genes (Gewirtz 2007). Briefly, dsRNA is degraded to short (21–23 nt) fragments by an

endonuclease, Dicer, which are then incorporated into a large multiprotein complex, RISC (RNA-

induced silencing complex). Any cellular RNA complementary to the incorporated RNA fragment

is recognised by RISC and degraded.

Endogenously, RNAi is used by micro RNAs (miRNAs) – short hairpin RNAs which are processed

by dicer and RISC after transcription – to regulate transcript amounts (Asirvatham et al. 2009)
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and may also help protect against certain viruses by degrading their dsRNA genome, but can be

hijacked for experimental purposes by administration of dsRNAs similar to the dicer products.

These sequences, termed siRNAs, can directly integrate into RISC resulting in downregulation of

complementary mRNA.

SiRNAs (and other nucleic acids) are negatively charged and are not readily taken up by most

cells. SiRNAs can be introduced into cells by binding with a cationic liposome-like reagents such

as oligofectamine, which can then cross the cell membrane so carrying the siRNA into the cell

(Akhtar and Benter 2007).

2.6.2 Experimental details

Duplex siRNAs targeting the genes of interest were obtained from Ambion (Silencer range, un-

modified) or Dharmacon (On-target plus range, includes a chemical modification to reduce off-

target effects) (see table 2.7 for sequences), and their effects were compared with the appropriate

non-targeting, negative control siRNA (Ambion negative control siRNA #1, or Dharmacon siCon-

trol non-targeting siRNA). 1 µM siRNA in warm OptiMem (Invitrogen) was incubated with 5%

v/v oligofectamine (Invitrogen) for 25 mins to allow the siRNA/oligofectamine complexes to form.

Confluent HUVECs in 6-well plates and maintained in EGM were washed with OptiMem and in-

cubated for 4 h in OptiMem containing the complexed siRNA (final siRNA concentration 200 nM,

1 ml/well) to allow transfection to occur. The medium in each well was adjusted to 10% v/v FBS

and then replaced with EGM the following day. For experiments requiring serum deprivation,

the media was changed in the evening to low serum EBM and the cells were incubated in this

medium overnight; otherwise the cells were left in EGM for a further night. Under both proce-

dures, further experiments were then performed as described in the text 48 h (unless stated) after

the addition of the siRNA. Knockdown was confirmed by western blotting using appropriate anti-

bodies, and quantified with ImageJ. For functional studies, where cells are removed from the plate

(e.g. for flow cytometry or migration assays), knockdown was assessed by lysing cells transfected
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in parallel with the experimental cells, and analysing these lysates via western blotting.

Table 2.7: Nucleotide sequences of siRNAs used in this study

Target Manufacturer Sense strand sequence (5’→3’)

Control A not provided by manufacturer

Hsp27 A GUUCAAAGCAACCACCUGUtt

PKCα A GGCUUCCAGUGCCAAGUUUtt

PKCδ A GGCCAAAAUCCACUACAUCtt

PKCδ (B) A GGCUACAAAUGCAGGCAAUtt

PKCε A GGAAAUAAAAGAACUUGAGtt

PKD1 A GGAAGAGAUGUAGCUAUUAtt

PKD2 A GGAAAUUCCGCUGUCAGAAtt

Control Dh UGGUUUACAUGUCGACUAAuu

SLP2 (A) Dh UGUUAGACCGGAUCCGAUAuu

SLP2 (B) Dh AUGAGGAACUUGAUCGAGUuu

MAPKAPK2 (A) Dh CCACCAGCCACAACUCUUUuu

MAPKAPK2 (B) Dh GGCAUCAACGGCAAAGUUUuu

p38α1 Dh GGAAUUCAAUGAUGUGUAUuu

UCUCCGAGGUCUAAAGUAUuu

GUAAUCUAGCUGUGAAUGAuu

GUCCAUCAUUCAUGCGAAAuu

Manufacturer: A, Ambion (silencer range); Dh, Dharmacon (on-target plus range). The
control siRNA used was always from the same manufacturer and range as the experimental
siRNA. A letter in brackets designates one of multiple seperate siRNAs targeting this same
protein.

1The p38 siRNA is a smart pool reagent, composed of the four different siRNAs listed, but the total concen-
tration of siRNA used was still 200 nM.

2.7 Immunoprecipitation-based methods

Immunoprecipitation is the antibody-mediated capture of a protein from solution. Antibody di-

rected against the a target protein of interest binds to its target in a cell lysate. This primary anti-

body is then bound by a secondary reagent, inert beads conjugated to Staphlococcus protein A or

G, which bind to the constant region of antibodies. These beads are large, and are separated (along

with their complexed antibody/target protein) from the remainder of the cell lysate by centrifuga-
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tion. Other proteins bound to the target protein, such as endogenous cellular binding partners,

may be co-purified with the target protein and appear in the immunoprecipitate, depending on the

stability of these interactions.

2.7.1 Immunoprecipitation

Serum-deprived cells in tissue culture dishes were washed in serum free medium and treated with

appropriate factors. To stop treatment, cells were washed twice in ice-cold PBS and lysed by

scraping the cells in triton buffer (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 4 mM EDTA, 1% v/v

Triton X100, protease inhibitor cocktail, phosphatase inhibitor cocktail: 10 mM sodium fluoride;

10 mM β-glycerophosphate; 1 mM sodium orthvanadate). Lysis was allowed to continue on

ice for 30 mins, after which the lysate was clarified by centrifugation (30 mins, 16000g, 4◦C)

and the insoluble material removed. The lysate was then pre-cleared by incubating with beads

(protein A/G plus agarose, Santa Cruz) for at least 1 h followed by antibody binding overnight at

4◦C. For Hsp27 IPs, a polyclonal antibody to total Hsp27 (Stressgen) was used. The following

day, the lysates were further incubated with beads for 1 h at 4◦C to bind the primary antibody.

Immunoprecipitates were then washed three times with the immunoprecipitation lysis buffer and,

if the sample was to be analysed by 2-D electrophoresis, a further two washes were performed

with 10 mM Tris-HCl pH 7.4. The IP complex was then either dissociated by incubation in 2-D

buffer for 30 mins, by boiling in 1x SDS-PAGE sample buffer for 4 mins, or processed for an

immune complex kinase assay. Samples were stored at -70◦C until used.

2.7.2 Immune complex kinase assay

Immune complexes were washed and resuspended in 90 µl kinase buffer (4 mM MOPS, 4 mM

MgCl2, 2.5 mM β-glycerophosphate, 1 mM EGTA, 0.4 mM EDTA, 50 µM DTT, pH 7.2) con-

taining 3 µg recombinant Hsp27-GST fusion protein (Upstate), and the mixture was allowed to

equilibrate to room temperature for 5 mins. The kinase reaction was started with the addition of
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10 µl of 100 µM ATP, and an aliquot was immediately removed, mixed with an equal volume of

2x SDS-PAGE sample buffer and boiled to terminate the reaction (reaction time = 0). The reaction

was allowed to proceed at room temperature, and aliquots were removed at various time points

and boiled in SDS-PAGE sample buffer to produce a time course. Samples were stored at -70◦C

until analysis.

2.7.3 Immune complex dephosphorylation assay

Phosphate was removed from some immunoprecipitated proteins using alkaline phosphatase (AP,

calf intestinal phosphatase, New England Biolabs). Immune complexes were washed in 10 mM

Tris-HCl pH 7.4 and resuspended in 40 µl 1x supplied phosphatase buffer, with equal volumes

then aliquoted into three separate tubes. One tube was spiked with AP to a final concentration of

10 U/µl, and an equivalent volume of 1x phosphatase buffer was added to the other two. Mock

(to control for any effect of heating) and AP samples were incubated for 30 mins at 37◦C to allow

dephosphorylation to occur, whereas the third tube (IP) was left on ice. Reactions were terminated

by addition of an equal volume of 2x SDS-PAGE sample buffer and stored at -70◦C until analysis.

For analysis of alkaline phosphatase-dephosphorylated samples on 2-D gels, proteins in SDS-

PAGE sample buffer were precipitated with the 2-D clean-up kit (GE Healthcare) and resuspended

in 2-D buffer.

2.8 Immunofluorescent staining and microscopy

Staining of permeablised cells with fluorophor-conjugated probes such as antibodies allows the

imaging of the location of the fluorophor (and so target protein) with a cell. The imaged fluorophor

can be localised to a single plane using laser illumination on a confocal microscope, reducing

image blurring due to excitation of fluorophor above or below the plane of focus.

Cells were grown on gelatin-coated glass cover slips (15 mm diameter) in 24-well plates. After
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treatment, medium was removed and cells were fixed for 10 mins in 4% v/v formaldehyde in

PBS, permeablised for 6 mins in 0.2% v/v Triton-X100 in PBS, blocked for 1 h, and incubated in

primary antibody. Blocking and antibody incubations were performed in 1% w/v BSA in PBS-

T. Polyclonal antibodies against Hsp27 (Stressgen) and SLP2 (Proteintech Group) were used at

1:2000 for 1–2 h at 37◦C. Cells were then incubated in secondary antibody (Alexa 488-conjugated

donkey anti-rabbit, Invitrogen) at 1:1000 for 1 h at room temperature. Cells were washed 3 times

with PBS between each solution, but not before addition of fix. Coverslips were inverted and

mounted on glass slides with fluorescence mounting medium (Dako).

For Mitotracker Red staining, cells were incubated in 400 nM Mitotracker Red CMXRos (Invitro-

gen) in EGM for 30 mins to allow the dye to accumulate in mitochondria. Medium was removed,

cells were washed once with EGM to remove free dye and cells were then fixed in 4% formalde-

hyde as normal.

For antigen competition experiments with the SLP2 antibody, 1 µg SLP2 antibody was pre-mixed

with 100 µg SLP2-GST fusion protein (Proteintech) in 500 µl blocking solution for 1 h at room

temperature. An aliquot of this solution was then used as the primary antibody for immunostain-

ing, maintaining an equivalent SLP2 antibody concentration.

Confocal images were taken with a a x40 oil-immersion objective on an upright Nikon Eclipse

E1000 microscope running LaserSharp 2000 software (BioRad). The excitation and emission

maxima of fluorophors used in this thesis are given in table 2.8.

2.9 Flow cytometry

Flow cytometry determines the properties of individual cells, including size and the absence or

presence (abundance) of particular fluorescent compounds associated with the cells, and can be

used to sort cells into populations defined by these parameters. Staining cells with fluorophor-

conjugated probes such as antibodies allows the determination of the proportion of cells analysed
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Table 2.8: Fluorophors used in this study

Probe Fluorophor Absorption (nm) Emission (nm)

CyDye Cy3 Cy3 532 580

CyDye Cy5 Cy5 633 670

Donkey anti-rabbit Alexa 488 495 519

Annexin V Fluorescein 488 518

TMRM TMRM 549 573

Mitotracker Red Mitotracker Red 579 599

The mitotracker red variant used was CMXRos. Approximate absorption and emission max-
ima are indicated (solvent-dependent). Fluorophors were from Invitrogen, apart from the
CyDyes which were from GE Healthcare and Annexin V-fluorescein which was from Roche.

that express the antigen, and the degree of expression.

After appropriate treatment (described below), cells were washed with HEPES-buffered saline so-

lution (HBSS, Lonza) and detached by trypsinisation, which was terminated by addition of trypsin

neutralising solution (Lonza). Cells were washed by dilution in PBS and pelleted by centrifugation

at 250 g, 5 mins. The supernatant was removed and cells were resuspended in appropriate buffer

as described and kept on ice. Flow cytometry was performed using a FACS Calibur (Beckton

Dickinson) via the CellQuest Pro interface program, with at least 10,000 cells counted per sample.

The excitation and emission maxima of fluorophors used are given in table 2.8. Excitation of all

fluorphors was via a 488 nm argon laser.

2.9.1 TMRM mitochondrial potential assay

2.9.1.1 Assay principle

The mitochondrial matrix is negatively charged with respect to the cytosol, due to the pumping of

protons from the mitochondrial matrix into the intermembrane space during oxidative phospho-

rylation. This difference in charge between the cytosol and mitochondrial matrix, referred to as

the mitochondrial membrane potential (∆ψm), is important for mitochondrial functions including

ATP generation and import of Ca2+ (Duchen et al. 2003).
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The membrane-permeable cationic fluorescent dye tetramethylrhodamine methyl ester (TMRM)

distributes across membranes and is accumulated in mitochondria. When allowed to establish an

equilibrium in cells by addition of low concentrations to the culture medium, TMRM accumulation

is an indicator of ∆ψm (Davidson et al. 2007). Accumulation of the similar dye tetramethylrho-

damine ethyl ester (TMRE) has previously been used to assess mitochondrial membrane potential

by flow cytometry (Hajek et al. 2007).

2.9.1.2 Procedure

TMRM was kindly donated by Dr. Sean Davidson, Hatter Institute, UCL. Confluent HUVECs in

12-well plates treated with or without siRNA for 3 days were incubated in EGM containing 25 nM

TMRM for 2 h at 37◦C to allow dye equilibration. Cells were washed with PBS and trypsinised.

Trypsin was neutralised with trypsin neutralising solution (Lonza), mixed with PBS and pelleted

by low speed centrifugation (200g, 5 mins). The cell pellet was resuspended in 500 µl of 0.5%

serum in PBS. Samples were stored on ice and were analysed by flow cytometry within one hour.

Geometric mean fluorescence of the sample cells was determined by flow cytometry using the FL2

channel (585±21 nm).

2.9.2 Apoptosis assay

2.9.2.1 Assay principle

During early stages of apoptosis, the phospholipid phosphatidylserine (PS) translocates from the

inner to the outer leaflet of the plasma membrane (Bevers et al. 1999) and the cell shrinks, while

the plasma membrane itself remains intact, preparing the cell for removal by phagocytic cells.

At later times, the plasma membrane becomes leaky, allowing free fluid exchange, and caspase-

dependent DNA fragmentation occurs.

PS present on the surface of the cell can be bound by the Ca2+-dependent protein annexin V.

When added as an external Ca2+-containing solution, fluorescein-conjugated annexin V binds
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to apoptotic cells expressing PS on their surface, tagging these cells with fluorescein. PS is not

present on the surface of healthy cells and so is not accessible to the fluorescein-annexin V reagent,

and so these cells are not tagged with fluorescein. Tagged and untagged cells, and so apoptotic and

healthy cells, can be distinguished by flow cytometry. The DNA stain propidium iodide (PI) can

enter cells and stain DNA only when the plasma membrane has become leaky, so staining cells in

the later stages of apoptosis. Cells staining with PI only, but not annexin V, are classed as necrotic

– plasma membrane degradation has occurred without PS translocation.

2.9.2.2 Procedure

HUVECs treated with or without siRNAs for 2 days were incubated overnight in M199 basal

medium (Invitrogen), with or without 25 ng/ml VEGF, to induce apoptosis. The following day,

conditioned medium was removed into a 15 ml tube. Cells were washed with HBSS, the wash was

removed and added to the same 15 ml tube, and cells were trypsinised. Trypsin was neutralised

with trypsin neutralising solution (Lonza), and detached cells were removed and added to the

15 ml tube. The empty well was then washed with HBSS which was added to the 15 ml tube.

Washes and medium used for overnight incubation were saved to ensure maximum recovery of all

detached cells. As a further wash, the 15 ml tube was topped up with PBS. Cells were pelleted by

low speed centrifugation (200g, 5 mins) and the supernatant was discarded. The cell pellet was

resuspended in 50 µl of binding buffer containing 1 µl of fluorescein-conjugated annexin V and

1 µl propidium iodide (PI), all sourced from the Annexin V-FLUOS staining kit (Roche). Cells

were incubated in staining solution for 10 mins at room temperature, after which time binding was

terminated by addition of 450 µl of ice-cold binding buffer. Samples were stored on ice and were

analysed by flow cytometry within one hour. Fluorescein fluorescence was determined using the

FL1 channel (530±15 nm), and PI uptake was detected with the FL2 channel. Cell debris formed

a discrete population with very low forward scatter (FSC, measure of particle size) and side scatter

(SSC, measure of particle granularity), and this material was removed from analysis by gating. At

least 10000 gated cells were analysed per sample.
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Later re-analysis of data from control samples stained with annexin V only or PI only performed in

parallel with experimental samples indicated that the electronic compensation required to remove

fluorescein interference from the FL2 (PI) channel was inadequate, making the PI staining data un-

reliable and so this was not used in analyses. PI interference in the FL1 (fluorescein) channel was

not observed in control samples stained with PI only, and so the fluorescein data was deemed reli-

able and was used for analysis. Additionally, a subsequent experiment using correct compensation

parameters produced the same results with regards to total annexin V staining as the inadequately

compensated experiments.

2.10 Cell migration assay

Cell migration towards a chemoattractant was assessed with a transwell assay, in which cells in one

chamber migrate through pores in a membrane towards the chemoattractant in another chamber.

HUVECs in EGM were trypsinised and resuspended in EBM at 3x105 cells/ml. In some exper-

iments, cells were incubated at this stage for 30 mins in the presence of enzyme inhibitors with

mixing every 5–10 mins. Uncoated cell culture inserts (8 µm membrane pore size; Falcon, Bec-

ton Dickinson) were inserted into a 24-well plate, and 750 µl EBM with or without 25 ng/ml

VEGF was added to the lower chamber. Cell suspensions were then added to the upper chamber

(0.5 ml, 1.5x105 cells/well) and incubated at 37◦C for 4 h. Unmigrated cells were removed by

scraping the upper side of the membrane with a cotton bud, and the cells were fixed and stained

with the Reastain Quick Diff kit (Reagena) and mounted onto glass slides. Nuclei of migrated

cells were counted in four fields, one from each quadrant of the insert, at x100 magnification using

an eyepiece indexed graticule. The mean count was used as the count for that insert.
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2.11 Collagen tubulogenesis assay

Collagen I solution in M199 medium was prepared by mixing PureCol (Nutracon) with 10x M199

medium (Invitrogen) and 0.1 M NaOH in the ratio 8:1:1. The solution was neutralised with a few

drops of 0.5 M NaOH, assessed by medium colour change, and 750 µl was added to each well of

a 12-well plate and incubated at 37◦C for 1 h to solidify.

Meanwhile, HUVECs were trypsinised and resuspended in EBM containing 0.5% FBS (prepared

as a dilution of EGM) at 1.5x105 cells/ml. For some experiments, cells were incubated for 30 mins

at 37◦C in the presence of inhibitors. 500 µl of cell suspension was added to a well containing set

collagen, and some samples were spiked with VEGF to a final concentration of 25 ng/ml. Plates

were returned to the incubator for 24 h to allow tubulogenesis to occur, after which the adhered

cells were washed with PBS, fixed in 4% formaldehyde in PBS, washed three times with PBS and

stored in PBS at 4◦C.

For quantification of tubulogenesis, a single phase-contrast micrograph just off centre of each well

was digitally acquired. Using ImageJ, lines were drawn over the tubes and the area of these lines

(proportional to the total length of tubes visible in the micrograph) was determined. Tubes were

defined as at least two connected cells forming an elongated structure, and the line was drawn

from the tip of one end of the tube to the tip of the other end, as shown in figure 2.9.

2.12 Database sources and sequence analysis

All DNA, mRNA and protein sequences used for sequence analysis were retrieved from the RefSeq

database, and were located by searching Entrez Gene, limiting results to RefSeqs. Accession

numbers given are for the RefSeq database.

Protein sequence alignments were performed using Clustal 2.0.10 via the ClustalX2 program using

the default settings. Alignments were imported into JalView, where sequences were coloured for
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Figure 2.9: Tubulogenesis quantification method
Two original images are shown on the left, with the tubes traced on the right. The area (length)
of the traced lines in the right hand images would then be used for quantification of tubule
length.

similarity, using the Blossum62 symbol comparison matrix (Henikoff and Henikoff 1992).

Web addresses and references for all sequence analysis tools used in this thesis are given in ta-

ble 2.9.

2.13 Statistical analysis

In order to compare between treatment groups composed of multiple individual experiments, nor-

malisation of data was required. Without normalisation, problems arise such as comparing the

same western blot exposed to film for varying times gives different raw quantification values, and

large raw values from a particular experiment will dominate when results are averaged across a

number of experiments.

As analysis of variance (ANOVA) methods require treatment groups for comparison to have equal

variances, it was not possible to normalise replicate experiments by correcting data within an

experiment to a control sample – this leads to the variability of the control group being zero.
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Instead, individual response values within an experiment were expressed as a proportion of the

total response observed across all treatments within an individual experiment, giving proportion

data. For example, raw results are control 10, treatment A 60, treatment B 30, then proportion data

is control 0.1, A 0.6, B 0.3 (proportions of 10 + 60 + 30). The response produced by a particular

treatment group was then the mean of the individual proportion data values from a number of

experiments. To aid viewing, the proportion data was normalised (before determining the mean

response for that treatment to preserve variation in the data) by dividing the entire dataset by the

mean proportion of a selected control treatment group, so that the mean of this group would be 1.

If the example data were group means, this would give control 1, A 6, B 3. Data was then said

to be a proportion of that control group. Where required for some ANOVA analyses, proportion

data was logarithmically transformed before analysis to equalise variances and prevent the residual

error term of ANOVA increasing in line with mean data value. This normalisation method was

agreed with Dr. Glenn Baggott (School of Biological and Chemical Sciences, Birkbeck College)

as the most appropriate treatment for the data.

Statistical analysis was performed via Prism (GraphPad) on normalised data by either one- or

two-way ANOVA as appropriate, with Bonferroni’s test for multiple comparisons used to locate

differences. Statistical significance was accepted at a family error rate p<0.05. The specifics of

each statistical analysis performed are indicated in the appropriate figure legend, with the adjusted

p values.

Error bars on graphs represent the standard error of the mean (SEM) unless stated. For clarity, in

most figures only a single error bar is shown (e.g. bar in a bar graph represents the group mean,

error bar above that bar represents the SEM). However in all cases the an identical error bar below

the mean is possible, and in reality all data are mean ± SEM, although the other error bar is not

shown.
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Chapter 3

Results: Proteomic analysis of VEGF treatment

of HUVECs

In an attempt to find new VEGF-regulated proteins, VEGF signalling in endothelial cells was

analysed using proteomics. At the outset of this work, no proteomic analysis of VEGF-treated

endothelial cells had been published. Here, several proteomic approaches are described which

aimed to generate an overall quantitative picture of changes in endothelial protein expression and

phosphorylation in response to VEGF.

3.1 Overview of proteomics

The proteome is the totality of proteins expressed in a defined biological system, such as a cell

or organelle. Unlike the genome, the proteome varies with time and external influences such as

stimulation by cytokines, as expression of various proteins increases and decreases. Proteomics,

analysis of the proteome, involves separation of proteins from often complex mixtures, and their

identification by mass spectrometry-based approaches.

A large number of proteins can be analysed and, in theory, any protein of interest can be identi-

fied, increasing the likelihood of novel and unexpected findings. Comparative proteomics, aimed

at locating differences in protein expression or modification between treatments, as opposed to
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cataloguing cellular proteins, can be performed in different ways, but always includes the fol-

lowing elements: production of protein mixtures that differ in treatment, cell type or some other

influence being investigated; separation of the proteins in this mixture; detection of these proteins;

location of proteins exhibiting differences between treatments; and subsequent identification of

these proteins of interest.

In this chapter, protein mixtures were separated by two-dimensional electrophoresis, on the basis

of isoelectric point (pI) and then molecular weight, and then detected by silver staining. Proteins

of interest were then excised from 2-D gels, digested to peptides with trypsin, and the masses

of these peptides were then determined by MALDI-TOF mass spectrometry, to give a peptide

mass fingerprint for the protein. These fingerprints were then compared with databases of known

protein sequences to identify the protein spots cut from the gel. A fuller description of peptide

mass fingerprinting principles is given in section 2.5.

3.2 Analysis of whole-cell lysates by 2-D electrophoresis and silver

staining

To identify changes in protein expression or modification in response to VEGF treatment of en-

dothelial cells, whole-cell lysates were prepared from confluent, serum-deprived human umbilical

vein endothelial cells (HUVEC) after treatment with 25 ng/ml VEGF for different times. Proteins

in the cell lysates were separated by 2-D electrophoresis using a linear pH range of 3–10 in the first

(isoelectric focusing) dimension and a 10% acrylamide gel in the second (SDS-PAGE) dimension.

Gels were then silver stained. Figure 3.1 shows typical 2-D gels obtained using this approach with

samples treated with or without VEGF for 10 mins.

In several independent experiments, spots A and B (figure 3.2) appeared different between gels

from control cells and cells treated with VEGF for 10 mins as determined by visual inspection,

spot A increasing and spot B decreasing in response to VEGF. Quantification of spots A and B by
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Figure 3.1: Analysis of whole-cell lysates by 2-D electrophoresis and silver staining
Confluent, serum-deprived HUVECs were treated with either 25 ng/ml VEGF or no addition
(control) for 10 mins. Lysates were separated by 2-D electrophoresis and gels were silver
stained. Representative 2-D gels obtained using this method are shown, with the axes of
separation indicated (pI, isoelectric point; MW, molecular weight). The boxed area of the gel
refers to figure 3.2A.
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densitometry showed that VEGF induced an increase in the amount of spot A as a proportion of

the total amount of spots A and B from 0.17 to 0.65 (figure 3.2B). Both spots were identified as

forms of Heat Shock Protein 27 (Hsp27) (figure 3.2C). The increase in the more acidic form of

Hsp27 (spot A) over the more basic form (spot B) without apparent change in molecular weight

is consistent with VEGF causing phosphorylation of this protein, although other modifications

could also be responsible for the observed spot pattern. VEGF regulation of Hsp27 is the topic of

chapters 4 and 5.

No other consistent differences between control or VEGF-treated samples were found in silver-

stained 2-D gels following treatment times of 5 mins, 10 mins, 30 mins, 1 h, and 24 h, in at least

two independent experiments for each time point. Representative gels obtained from HUVECs

treated with VEGF for 24 h are shown in figure 3.3.

3.3 Analysis of whole-cell lysates by difference gel electrophoresis

The second proteomic approach taken to quantitatively identify VEGF regulated changes in pro-

tein expression or modification used difference gel electrophoresis (DIGE). The DIGE method,

described in section 2.4.8, involves covalently labelling the two samples to be compared with sep-

arate fluorescent dyes. The samples are then mixed and run on the same gel, and the gels are

imaged with a fluorescent scanner.

DIGE has two major advantages over analysing samples using separate silver-stained gels de-

scribed in section 3.2. Firstly, it avoids the need to locate the same protein spot on two different

gels when comparing two protein samples as both samples are pooled and run on the same gel, as

these spots overlap. The second major advantage over silver staining is the linear dynamic range

(range over which the increase in protein abundance is proportional to the increase in detected

signal) is much higher for fluorescence detection than for silver staining. Therefore, quantitation

and the ability to detect small differences between protein samples is improved.
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Figure 3.2: VEGF induces an acidic shift in the isoelectric point of Hsp27 consistent
with phosphorylation (continued overleaf)
A. Confluent, serum-deprived HUVECs were treated with either 25 ng/ml VEGF (V) or no
addition (control, C) for 10 mins. Lysates were separated by 2-D electrophoresis and gels
were silver stained. The area of the gel indicated by the box in figure 3.1 is shown from four
independent experiments. The two circled spots, labelled A and B, were noticed as different
between gels from control- and VEGF-treated samples. Spots A and B are circled in each
gel, and were identified as equivalent between separate gels by comparison with the relative
positions of other nearby spots, indicated with arrows. Two of these spots are indicated on
all gels to aid comparison. Spots A and B from one gel containing a VEGF-treated sample
were picked and identified via peptide mass fingerprinting, both spots were Hsp27 (see part
C overleaf). Cell treatments and 2-D gels were performed in conjunction with Dr. Ian Evans,
Department of Medicine, UCL.
B. The intensity of staining of spots A and B from the gels shown in part A was quantified
using ImageJ gels module, and data is expressed as the mean intensity (± SEM) of spot A as
a proportion of the combined intensity of spots A and B, from four independent experiments.
* Proportion of staining present in spot A was significantly higher in samples treated with
VEGF than in control samples (p<0.001 by unpaired t-test).
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Figure 3.3: Effect of 24 h VEGF treatment on spot pattern obtained by 2-D elec-
trophoresis and silver staining
Confluent, serum-deprived HUVECs were treated with either 25 ng/ml VEGF or no addition
(control) for 24 h. Lysates were separated by 2-D electrophoresis and gels were silver stained.
Gels shown are representative of six independent experiments. No consistent differences were
observed between gels corresponding to VEGF-treated cells and those from control cells.
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Confluent, serum-deprived HUVECs were treated with VEGF for 5 mins, 10 mins, and 24 h, and

compared with time-matched controls. The number of proteins detected to change consistently

on VEGF treatment by more than 10% was 2, 7, and 11 respectively, and no protein changed by

more than 50% (three independent experiments per time point). Gels indicating the altered spots

are shown in figure 3.4.

The gels were then silver stained, spots were picked and an attempt was made to identify the

altered proteins via via MALDI-TOF mass spectrometry. None of the proteins were identified,

possibly due to insufficient protein. Running preparative gels (>1 mg protein loaded per gel) to

gain enough protein for mass spectrometry-based identification resulted in messy gels with poor

spot resolution, and it was not possible to confidently locate the spots on the preparative gels which

corresponded to those of interest from the DIGE gels. This method was not pursued further in this

thesis.

3.4 Analysis of the phospho-tyrosine proteome

An alternative strategy to identify changes in proteins relevant for VEGF signalling is to analyse

changes in the phospho-tyrosine (pY) proteome. This has the advantage that the potential number

of proteins undergoing change is considerably smaller than in the total cellular proteome, and it

was hoped that when scaling up to preparative gels adequate spot resolution would be maintained.

VEGF activates receptor protein tyrosine kinases and is known to increase tyrosine phosphoryla-

tion of a number of cellular components important in VEGF signalling such as VEGFR2, ERK,

p38, src, PI-3-K, and phospholipase Cγ. The availability of good antibodies to pY also increased

the likelihood of specifically isolating tyrosine phosphorylated proteins.
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Figure 3.4: Consistent effects of VEGF treatment detected by DIGE (continued over-
leaf)
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Figure 3.4: Consistent effects of VEGF treatment detected by DIGE (continued from
previous page)
Serum-deprived, confluent HUVECs were treated for either 5 mins, 10 mins or 24 h, with
25 ng/ml VEGF or no addition (Control) and lysed. One sample (either control or VEGF)
was labelled with Cy3 and the other with Cy5 using the dye manufacturers minimal labelling
protocol – which dye was assigned to which treatment group was varied between experiments.
50 µg of protein, determined by modified Bradford assay, was separated by 2-D electrophore-
sis and gels were imaged using a Typhoon fluorescent imager. Three independent experiments
were performed for each time point, and for each time point spots were matched between gels
(1 gel per experiment) and analysed for up- or down-regulation of spot abundance on VEGF
treatment using DeCyder software. Representative gels are shown for each time point, and
spots determined to increase or decrease by at least 10% on VEGF treatment are circled in
red. The number of spots determined to vary by greater than 10% at 5 mins, 10 mins, and
24 h, was 2, 7, and 11 respectively.

3.4.1 Whole cell lysates

Initially, samples were separated by either SDS-PAGE (figure 3.5) or 2-D electrophoresis (fig-

ure 3.6) and blotted with anti-phosphotyrosine antibodies to ensure that VEGF-induced tyrosine

phosphorylation could be observed.

Treatment with VEGF for 10 mins induced phosphorylation of a number of proteins as detected

by immunoblots of 1-D gels (figure 3.5A). The detection of tyrosine-phosphorylated proteins and

VEGF-induced increases in tyrosine phosphorylation was improved by pre-treatment of cells with
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the tyrosine phosphatase inhibitor sodium orthovanadate (figure 3.5B).

Figure 3.5: SDS-PAGE analysis of VEGF-induced tyrosine phosphorylation using whole
cell extracts
A. Confluent, serum-deprived HUVECs were treated for 10 mins with 25 ng/ml VEGF (V)
or no addition (C), and then lysed. Whole cell extracts were blotted and probed with 4G10
anti-phosphotyrosine antibody. Arrows indicate increases in tyrosine phosphorylation with
VEGF treatment. Positions of molecular weight markers (in kDa) are given on the left of the
blot.
B. Confluent, serum-deprived HUVECs were pre-incubated with either 1 mM sodium ortho-
vanadate (O) or no inhibitor (Ctrl). After 30 mins, cells were exposed to 25 ng/ml VEGF (V)
or no addition (C) for either 5 or 20 mins before lysis as indicated. Whole cell extracts were
blotted and probed with 4G10 anti-phosphotyrosine antibody. Results are representative of
three independent experiments.

VEGF-induced tyrosine phosphorylation was also examined by anti-pY blots of two-dimensional

gels. This proved to be more problematic than the 1-D gel-based analysis, with the only consistent

change observed being an increase in the phosphorylation of an≈40 kDa protein within 5–10 min,

although no difference was observed after 30 mins (figure 3.6). A number of the changes observed

in the one-dimensional gels could not be seen on the 2-D gels. The lack of resolution available on

the 7 cm IEF strips used may have contributed to this problem.

3.4.2 Phospho-tyrosine immunoprecipitates

To identify proteins tyrosine-phosphorylated in response to VEGF, pY-containing proteins were

immunoprecipitated from VEGF-treated HUVECs. Tyrosine-phosphorylated proteins could be
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Figure 3.6: 2-D analysis of VEGF-induced tyrosine phosphorylation using whole cell
extracts
Confluent, serum-deprived HUVECs were treated with no addition (Control) or 25 ng/ml
VEGF for either 5, 10, 30 or 60 mins as indicated, and then lysed. Whole cell extracts were
separated by 2-D electrophoresis (pH 3–10 IEF strip used), blotted and probed with 4G10
anti-phosphotyrosine antibody. Positions of molecular weight markers (in kDa) are given on
the left of the blot. Results are representative of two independent experiments. The only clear
and consistent change observed between control and VEGF treatment is circled.
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immunoprecipitated with either the 4G10 or RC20 antibodies (figure 3.7). It is likely that the

immunoprecipitated proteins are genuinely tyrosine phosphorylated as alkaline phosphatase treat-

ment of the immunoprecipitates dramatically reduced the number of tyrosine-phosphorylated pro-

teins detected in the protein extracts. As previously observed for analysis of whole cell lysates

(figure 3.5B), orthovanadate pre-treatment of cells before lysis enhanced the degree of tyrosine

phosphorylation (figure 3.7).

Figure 3.7: Analysis of phospho-tyrosine immunoprecipitates with 1-D gels
Serum-deprived, confluent HUVECs were incubated for 30 mins with 1 mM sodium ortho-
vanadate or no addition (control), and then exposed to 25 ng/ml VEGF (V) or no addition (C)
for 15 mins before lysis. Tyrosine-phosphorylated proteins were immunoprecipitated with
either 4G10 or RC20 anti-pY antibodies, or a non-targeting control antibody of the same
host species and isotype as the 4G10 antibody (-ve). Immunoprecipitates were washed and
for 30 mins were either incubated with alkaline phosphatase at 37◦C (AP), with no addition
at 37◦C (M), or on ice (I), after which proteins were then extracted by boiling with SDS-
PAGE sample buffer. Extracts were immunoblotted and probed with the immunoprecipitat-
ing antibody. The mock (M) samples were included to control for any alkaline phosphatase-
independent effects of a 30 min, 37◦C incubation. Left and right -ve lanes are samples un-
treated and treated with alkaline phosphatase respectively. Results are representative of two
independent experiments. Positions of molecular weight markers (in kDa) are indicated.
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Often, the resolution of 1-D gels is insufficient to give a distinct band of pure protein, hindering

peptide mass fingerprinting-based identification of proteins, and so, with the aim of identifying

new targets, pY immunoprecipitates were analysed by 2-D gel electrophoresis followed by silver

staining. In an initial experiment where HUVECs were pre-incubated with orthovanadate and then

treated with VEGF for 15 mins, no consistent differences between control- and VEGF-treated

samples were observed. However, the major problem was that very few strongly staining spots

were detected, with other very faint spots clearly containing insufficient protein for MALDI-TOF

analysis. It was decided to concentrate on methodological modifications, increasing the amount

of cells used for immunoprecipitation and varying the amount of antibody used, with the intention

to revisit control/VEGF comparisons once a settled method was obtained. Judging by intensity of

the silver-stained spots obtained, and attempted peptide mass fingerprinting, it was not possible

to obtain enough pY-containing proteins to allow MS analysis, and so control/VEGF comparisons

using silver stained gels was not pursued further.

Instead, methodological alteration experiments were used to try to identify pY-containing proteins

from IPs of VEGF-treated cells, so that any novel findings could be pursued by western blotting.

A typical 2-D gel obtained is shown in figure 3.8. A number of proteins were identified from

the gel via peptide mass fingerprinting, including stomatin-like protein 2 (SLP2). At the time this

experiment was performed, SLP2 had not been reported to be present in endothelial cells, and very

little was known about it. SLP2 and its role in endothelial cells is the topic of chapter 6.

3.5 Discussion

This chapter aimed to identify novel VEGF-regulated proteins using proteomic methods. Analysis

of whole cell lysates by 2-D electrophoresis and silver staining, combined with peptide mass

fingerprinting, identified Hsp27 as a VEGF-regulated protein, but did not reveal any other clear

differences between VEGF-treated and control samples despite examination of a number of time

points between 5 mins and 24 h. Difference gel electrophoresis (DIGE) revealed a number of
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Figure 3.8: Proteins identified in phosphotyrosine immunoprecipitates
Serum-deprived, confluent HUVECs from 6 x 15 cm dishes were treated for 15 mins with
25 ng/ml VEGF before cells were lysed and phosphotyrosine-containing proteins were im-
munoprecipitated with the 4G10 antibody. Extracts were separated by 2-D electrophoresis
using a pH 3–10 IEF strip, and gels were silver stained. Spots were picked and identified
via peptide mass fingerprinting. Matched peptides, the number of separate peptides obtained
from the tryptic digest of that spot that matched the identified protein; % coverage, proportion
of protein sequence covered by the matched peptides. In other gels, myosin was positively
identified in the region shown by the arrow. Spot pattern is representative of four independent
experiments.
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consistent differences between whole-cell lysates prepared from VEGF-treated or control cells.

It was not possible to obtain sufficient protein for MS-based identification from the DIGE gels

themselves, nor was it possible to accurately match preparative gels, containing large amounts of

protein, with the DIGE gels, so the protein spots determined to be different in the DIGE gels were

not identified.

VEGF treatment reproducibly increased protein tyrosine phosphorylation as determined by im-

munoblots of one-dimensional gels, but these changes were not apparent on 2-D gels. An anti-pY

antibody immunoprecipitated more proteins from VEGF-treated cells than from control cells, and

the immunoreactivity of the IPed proteins towards anti-pY antibodies could be reduced by alkaline

phosphatase treatment, indicating that the IPed proteins were likely to be tyrosine phosphorylated.

Proteomic analysis of anti-pY IPs by 2-D electrophoresis and silver staining did not reveal major

proteins in the expected positions when compared to the same IPs separated by SDS-PAGE and

probed with an anti-pY antibody. However, a little-known protein, SLP2, was identified as a major

component of anti-pY IPs, despite the lack of a major band at that molecular weight when the IPs

were analysed by blotting with anti-pY antibodies.

VEGF treatment of endothelial cells is known to alter the phosphorylation status of a number of

proteins in the short term, and alter the expression of proteins in both the short and longer term.

Analysis of whole cell lysates revealed an acidic shift in Hsp27, demonstrating that 2-D separation

allows the separation of post-translationally modified variants of a protein, and the identification

of protein phosphorylation. Probable reasons for the lack of detection of proteins expected to be

different between VEGF-treated and control samples is the low abundance of the VEGF-regulated

proteins in the cell, and lack of adequate reproducibility in spot matching between gels and subse-

quent quantification of spot intensity, causing changes in more abundant proteins to go unnoticed.

Certain proteins, including cytoskeletal proteins such as actin and tropomyosin, metabolic en-

zymes such as enolase and triose phosphate isomerase, and chaperones such as Hsp60 and Hsp70,

are highly abundant in cells and were easily identified by proteomic analysis of whole cell lysates
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(data not shown). Many enzymes involved in signalling – those proteins likely to be affected by

short-term VEGF treatment – are much lower abundance. This problem of differences in protein

copy number within the cell, known as the dynamic range of protein expression, is a major chal-

lenge for proteomics-based techniques (reviewed by Corthals et al. 2000). Protein amplification

systems, such as PCR for nucleic acids, are not available.

Others have also had difficulty with the dynamic range of protein expression. Analysis of the

yeast proteome using high-resolution 2-D electrophoresis and MS identification failed to detect

low abundance proteins, with the authors calculating that when using a 40 µg protein load, no

proteins expressed lower than 50,000 copies per cell were detected (Gygi et al. 2000). Increasing

the sample protein load to 500 µg allowed detection of proteins expressed at 1,000 copies per cell,

but despite the use of narrow pH range IEF strips (1 pH unit) to try to maintain adequate spot

resolution, resulted in many overlapping spots – that is, proteins migrating to the same position

on the gel. When very large protein loads (50 mg, far beyond the capacity of 2-D electrophoresis)

were separated by 1-D electrophoresis followed by multiple chromatographic steps, identification

of low abundance proteins was improved. The authors suggested pre-fractionation techniques

were necessary to obtain sufficient quantities of low-abundance proteins from large amounts of

starting material. These simplified mixtures could then be analysed by 2-D electrophoresis.

Hsp27 is highly abundant in endothelial cells, and a large proportion of the protein is phosphory-

lated after VEGF treatment, allowing this effect to be observed in whole cell lysate analyses. To

examine less abundant proteins, it was attempted to increase protein loading on analytical gels.

While this was successful to a certain extent, experiments showed that increasing protein loading

beyond around 200 µg reduces spot resolution on a 2-D gel, with vertical and especially hori-

zontal streaking of abundant proteins becoming a particular problem, often leading to distortions

in the 2-D pattern. Streaking occurs as highly abundant proteins become insoluble as they are

concentrated in the same position on a gel. Matching spots between gels with poor spot patterns,

and overlapping spots, became a problem at higher sample loads. A similar matching problem
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occurred when trying to match analytical gels, with low protein loads and good spot resolution –

used to identify differences, and preparative gels with high protein loads – to give enough protein

for peptide mass fingerprinting.

The gel-gel spot matching problem was reduced using DIGE, where a control and VEGF-treated

sample were run in the same gel. The sensitivity of DIGE appeared similar to silver staining when

comparing DIGE gels later stained with silver. Using a fluorescent imager and automated spot

detection enhanced the detection of low abundance proteins. The linear dynamic range of silver

staining – the range over which observed stain intensity is proportional to the amount of protein

present in a resolved spot – is reported to be around 200-fold (Lopez et al. 2000), whereas the

dynamic range of the DIGE method is limited only by the characteristics of the fluorescent scan-

ner used, in this study quoted by the manufacturer as 100,000-fold although lower than this in

practice. The improved staining proportionality inherent in fluorescence-based methods allowed

smaller differences in protein expression to be determined when compared to manual visual ex-

amination of separate silver-stained gels. However, between-gel spot matching is still required

to compare replicate samples, and the spots still needed to be silver stained and matched to the

scanned fluorescent image to allow picking of the spots for MS-based identification.

Even when using the DIGE method to analyse whole-cell lysates, the number of proteins identified

as different between control and VEGF-treated samples was lower than expected when compared

to published literature, and the average total number of spots detected per sample was around 700.

While it is unsurprising that changes in low abundance signalling molecules were not observed,

higher abundance proteins also appeared to show little change. Using whole cell lysates, 2-D

electrophoresis and silver staining to analyse the effect of 24 h VEGF stimulation on HUVEC,

Pawlowska et al. (2005) reported a number of changes in high abundance proteins such as heat

shock proteins and structural proteins, and also members of the protein synthetic systems. In-

creased expression of both Hsp27 and SLP2 were also reported. None of these changes in protein

expression were confirmed by western blotting. The difference between Pawlowska’s data and
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that presented here may be related to cell culture conditions used – not adequately detailed in

Pawlowska’s paper. Cells used for proteomic analysis in this chapter were treated at confluency,

minimising the degree of cell proliferation that would occur on VEGF stimulation. Internal feed-

back signalling within confluent cells may have prevented upregulation of proteins involved in

protein synthetic pathways, for example.

Analysis of more dynamic cell systems than confluent HUVEC cultures, such as endothelial

cells migrating in response to a VEGF gradient, may have been more appropriate, although a

number of the VEGF-induced changes would have been in lower abundance signalling proteins.

Bohman et al. (2005) studied immortalised endothelial cells undergoing VEGF-induced tubulo-

genesis within a collagen I matrix. Cells were retrieved from the gel using collagenase, with in-

hibitors of protein synthesis, proteolysis, and protein phosphatases to fix the cell state, and whole

cell extracts were analysed by 2-D electrophoresis and fluorescent staining. Over 120 proteins

were observed to change during tubulogenesis, a number of which were involved in cytoskeletal

regulation and metabolism, which the authors attributed to the elongation of the endothelial cells

as they form tubes. Hsp27 protein expression was reported to be downregulated after 16 h ex-

posure to VEGF during tubulogenesis, and this was confirmed by western blotting. Comparing

the Hsp27 results with those of Pawlowska et al. (2005) indicates that the expression of Hsp27,

and probably many other proteins, in response to VEGF treatment is dependent on the cell culture

system used.

Some proteins have been reported to undergo a large percentage increase in phosphorylation af-

ter VEGF stimulation – ERK phosphorylation has been reported to increase 5-fold (Gliki et al.

2001) – suggesting that a spot corresponding to the phosphorylated form of this protein should

be observed on a 2-D gel and increase by a similar amount. The highest observed percentage

increase in any protein spot using the DIGE method was less than 50%, suggesting that known

changes (e.g. in phosphorylation of some proteins) were not being observed. This is probably due

to low protein abundance, where even the DIGE method was insufficiently sensitive to detect these
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proteins in a separated whole cell lysate. Only a small proportion of a cellular protein is usually

phosphorylated after growth factor stimulation, with the result that the phosphorylated form is too

low in abundance to observe, whereas reproducibility of the experiment is insufficient to detect

the small percentage decrease in the unphosphorylated form of the protein. Again, the apparently

large proportion of Hsp27 that is converted to the phosphorylated form was unusual and aided

detection of this change.

Development of a cost-effective, reproducible, quantitative, MS-compatible staining technique

with substantially improved sensitivity would certainly aid 2-D gel-based analyses of cell sig-

nalling. However, even if such a stain was available, it is likely that the spot pattern given by

whole-cell lysates would be extremely complex, with many spots overlapping, requiring specific

proteome fractions to be examined to simplify the 2-D spot pattern.

Variants of the pre-fractionation approach employed in this chapter, using anti-pY immunoprecip-

itation to isolate likely proteins of interest, have been used before to successfully analyse tyrosine

phosphorylation occurring on epidermal growth factor (EGF) stimulation of HeLa cells (Pandey

et al. 2000a; Steen et al. 2002) and to profile pY-containing proteins in cancer cells (Rush et al.

2005).

Tyrosine-phosphorylated proteins were immunoprecipitated, but when analysed on a 2-D gel and

detected by silver staining, no differences were apparent between IPs from VEGF-treated and

control cells. The absence of some proteins, such as the VEGF receptors, can be attributed to the

known problems in analysing membrane proteins on 2-D gels – lysis buffers compatible with iso-

electric focusing are often insufficiently harsh to solublise hydrophobic proteins. Common ionic

detergents used in cell lysis buffers such as SDS and deoxycholate are incompatible with IEF and

lead to heavy streaking of the spot pattern – only weaker non-ionic or zwitterionic detergents can

be used, which are not as efficient as solublising transmembrane and other hydrophobic proteins

(Rabilloud et al. 1997).

However, a number of proteins usually resident in the cytosol and known to be tyrosine phos-
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phorylated in response to VEGF, such as mitogen-activated protein kinases, were not observed in

2-D-separated pY IPs, and despite clear differences in the degree of protein tyrosine phosphoryla-

tion observed in 1-D anti-pY blots of anti-pY IPs after 5 and 20 mins VEGF treatment, no obvious

difference was observed in the intensity of spots in these same samples when analysed by 2-D

electrophoresis.

Insufficient starting quantities of protein could have been a problem, as tyrosine phosphorylation is

relatively rare compared to phosphorylation of serine and threonine. Olsen et al. (2006) reported

that pY accounted for less than 2% of phosphorylated residues in EGF-stimulated HeLa cells.

Six 15 cm dishes of cells (around 6 x 107 cells) were used for each 2-D-separated pY IP. This

is comparable to other proteomic studies analysing pY immunoprecipitates by silver staining:

Pandey et al. (2000a) used 5 x 109 suspension cells/sample, but Steen et al. (2002) used 1 x 108

adherent cells/sample, similar to my work.

Judging by silver stained gels, the vast majority of protein present in anti-pY IPs was the im-

munoprecipitating antibody. The number of cells used for immunoprecipitation could have been

increased to get more protein onto the gel, but the presence of larger quantities of immunoprecip-

itating antibody in the IP would have led to major problems with streaking – this was observed

when larger quantities of antibodies were used in a trial experiment (data not shown). The domi-

nance of the immunoprecipitating antibody in the protein composition of the IP could be reduced

by improved titering of the antibody – using just enough antibody required to IP the maximum

amount pY proteins from the VEGF-treated cells.

Both Pandey et al. (2000a) and Steen et al. (2002) used a beads-conjugated pY antibody for im-

munoprecipitation, preventing contamination of the immunoprecipitate with antibody, with Steen

additionally using the pY mimic phenyl phosphate to elute the IPed proteins from the antibody,

which helped to ensure the pY dependence of the antigen-antibody interaction. Both studies used

two different anti-pY antibodies to improve precipitation of pY-containing proteins, separated the

resultant IPs using 1-D electrophoresis and silver stained the gels to detect proteins. In my hands,
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in trial experiments an agarose-conjugated anti-pY antibody recovered less protein when com-

pared to an unconjugated antibody when eluting directly with 2-D lysis buffer (data not shown),

possibly due to incomplete elution of proteins from the IPing antibody, and so the unconjugated

antibody approach was adopted. Other lysis buffers were avoided to prevent introduction of vari-

ability and protein losses from the precipitation/resuspension procedure that would be required to

transfer the proteins to 2-D compatible buffers.

As the major problem was lack of pY-containing proteins being detected by silver staining, and

not excess proteins causing overlapping spots, it may have been advantageous to use more cells,

a conjugated antibody, eluted by heating in SDS-PAGE sample buffer, and separating IPs using

1-D gels. This approach may also have circumvented other known problems of 2-D gels such as

insolubility of hydrophobic proteins and poor separation of large proteins, such that tyrosine phos-

phorylation of the VEGF receptors may have been observed. The ability to distinguish between

multiple forms of the same protein, e.g. mono- and di-phosphorylated forms, would have been

lost.

Using silver staining to detect pY IPed proteins may reduce the apparent effect of VEGF on the

amount of protein present in 2-D-separated pY IPs when compared to control IPs. The spot pattern

on distinct 2-D gels tended to develop at slightly different rates, probably due to differences in the

contact individual gels had with the various staining solutions, and so required different amounts

of time in developing solution to achieve an acceptable spot pattern. It is possible that control

gels, having less immunoprecipitated protein present on them, were developed for longer than

gels containing VEGF-treated samples, thus giving the false impression that similar amounts of

protein were present in pY IPs from control and VEGF-treated cells. This would not be an issue

using 1-D analysis of pY IPs, where separate samples are run on the same gel.

Using DIGE technology rather than silver staining to analyse pY immunoprecipitates on may

improve detection of minor treatment-induced differences in tyrosine phosphorylation. However

the DIGE normalisation method, which corrects for differences in the fluorescence intensity of
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the two (or more) dyes used, assumes the majority of protein spots in each sample are of equal

abundance, and corrects the fluorescence intensity of each dye to make this so. With drastically

different protein samples, such as might be expected in VEGF-treated and control pY IPs, this

would be invalid and would distort the results.

Gel and staining issues can be circumvented entirely by separating proteins using chromatographic

techniques such as high performance liquid chromatography (HPLC), allowing large protein loads

and dilute samples to be analysed with on-line protein identification. Coupling 2-D chromatog-

raphy (charge-based separation via strong cation exchange, followed by hydrophobicity-based

separation of these fractions via reversed phase chromatography) with an electrospray ionisation

tandem mass spectrometer (ESI-MS/MS), in the LC-MS/MS configuration, allows proteins eluted

off the column to be automatically identified (Link et al. 1999). This procedure has been used to

identify almost 1500 proteins in yeast in a complex mixture (Washburn et al. 2001), but does not

provide any quantitative information regarding protein expression.

With the advancement of mass spectrometry, development of isotope-based techniques now allow

labelling of different samples, with either a heavy or a light variant, before mixing and analysis

of the samples in the same LC-MS/MS run – a similar strategy to DIGE labelling for gel-based

analyses (reviewed by Ong and Mann 2005). Quantification is based on the proportionality of

a particular peptide-derived MS peak to the amount of peptide present in the analysed mixture.

Three major strategies that have been employed are termed isotope-coded affinity tag (ICAT, Gygi

et al. 1999a), stable isotope labelling by amino acids in cell culture (SILAC, Ong et al. 2002), and

isobaric tag for relative and absolute quantification (ITRAQ, Ross et al. 2004).

The original ICAT reagents included a biotin group, either a heavy or light linker (8 Da difference

in molecular weight due to deuterium/hydrogen differences), and a iodine-containing thiol-reactive

group to bind cysteine residues. Two protein mixtures for comparison are labelled with either

heavy or light ICAT reagent, the samples are then pooled and digested to peptides. Labelled

peptides are isolated via the biotin group using an avidin column, and then separated and identified
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by LC-MS/MS. The biotin-avidin capture method has been changed in other variants of the ICAT

technique. Due to the small difference in mass, differently labelled peptides co-elute from the

chromatography stage, and the ratio of that peptide (and therefore protein) in the original samples

is determined by the size of the peptide peak produced during the first MS stage. The identity of

the protein is determined by producing a peptide sequence tag using the MS/MS stage.

The SILAC strategy uses media deficient in a particular essential (i.e. media-derived) amino acid

for cell growth. The media is supplemented with isotopically distinct versions of the absent amino

acid, such that cells grown in the medium will incorporate the included isotope variant of the

supplemented amino acid. Variation of amino acids in this way was reported not to influence

tested cell behaviours such as proliferation. Protein samples were produced and separated by 1-

D electrophoresis. Bands of interest were digested to peptides, and quantified by tandem MS.

Quantification occurs at the first MS stage, as for ICAT. LC-MS/MS could be used rather than

1-D gels, band excision and MS/MS. The SILAC method avoids the need for the labelling and

purification techniques used in ICAT, is not limited to cysteine-containing peptides (Ong et al.

2002 used deuterated leucine, although other amino acids could be used, perhaps in combinations,

or a single amino acid but multiple isotopic variants), but is only suitable for cultured cells.

ITRAQ reagents consist of an amine-reactive group (NHS ester, same as used in DIGE), a balance

group and a reporter group. The reporter group of distinct ITRAQ reagents varies in mass, but the

balance group also varies in mass such that the overall mass of all ITRAQ reagents is identical.

Labelling and separation is similar to ICAT – peptides are labelled on lysine or N-terminal amine

groups with a particular ITRAQ reagent, and are separated and initially analysed by LC-MS. Un-

like ICAT and SILAC, labelled peptides corresponding to different experimental groups produce

seemingly identical ions in the first MS stage. Ions are then sent for fragmentation and analysis in

the second MS stage. On fragmentation, ITRAQ-labelled peptides yield the original unmodified

peptide, which is used for identification of the protein, the reporter group, and the balance group.

The reporter groups from the distinct peptides, which have split from their balance group, now
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have different masses to each other, are resolved in the MS/MS spectrum and can be used for

quantification. At the time of writing, at least four distinct ITRAQ reagents were available.

ICAT, SILAC and ITRAQ can all be coupled to an LC-MS/MS separation and quantification ap-

proach and can be automated, allowing large scale quantification of many proteins in a sample. The

SILAC method additionally avoids bias introduced by differences in labelling efficiency between

samples. Lower abundance proteins are more likely to be observed using MS-based quantifica-

tion rather than 2-D gels. Despite these advantages, all MS-based quantification methods suffer

from certain drawbacks. Expensive equipment and expertise is necessary for successful analysis

of complex protein mixtures. A major issue is that any unlabelled peptides, or peptides that are

too hydrophobic or don’t ionise well will be invisible to MS-based quantitative methods. Leucine-

based SILAC and cysteine-based ICAT are expected to label and therefore detect around 50%

and 20% of tryptic peptides respectively (Ong et al. 2002). Any post-translational modifications

occurring in the region of a protein covered by an undetectable peptide will not be observed. In

contrast, the position of a spot on a 2-D gel is based on the entire sequence of the protein, and so a

modification anywhere in the protein will be resolved if the molecular weight or pI are sufficiently

altered. Resolution on a 2-D gel often gives a pure protein, allowing less advanced (therefore

cheaper and more available) mass spectrometers to be used for protein identification.

In addition to MS-based examinations of the proteome, antibody arrays are an emerging technique

for examining changes in protein expression and modification. Antibody arrays (reviewed by

Spisak et al. 2007), consisting of immobilised antibodies directed against a large number of pro-

teins, are effectively a simultaneous immunoblot for a number of proteins of interest. This method

may be useful for profiling the effect of a particular event such as cytokine/receptor interaction

on a number of known signalling pathways and cellular systems, and has been used to examine

protein phosphorylation (Gembitsky et al. 2004). However, the number of antibodies included in

such an array is relatively small at around 200, and due to this limitation it is less that entirely

novel findings will result as the antibodies present on the chip will be determined by the expected
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results. The recognition of non-target proteins by such a large number of antibodies is also an

unresolved problem with this emerging technology.

As discussed above, one of the major problems in proteomics is the ability to analyse low abun-

dance proteins. Due to their repetitive structure and the availability of amplification techniques

such as PCR, nucleic acids are far more amenable to analysis than proteins, and microarrays have

been well used to examine changes in gene expression. Analysis of VEGF-induced changes in the

endothelial expression of approx 18,000 genes were analysed in this laboratory using microarray

technology (Liu et al. 2003). However, it is well established that changes in gene expression cor-

relate poorly with changes in protein expression, probably due to differences in protein turnover,

and variation in the importance of post-transcriptional control of protein expression (Gygi et al.

1999b, reviewed by Greenbaum et al. 2003). Proteins are the key effectors of the cell, and it is

their expression that is important. Therefore any microarray hit must be followed up with west-

ern blotting to examine the effect on protein levels. Similarly, the absence of a microarray hit

does not mean that the expression of that protein was not affected by the experimental condition.

Importantly, microarrays will give no information on post-translational modifications occurring

to proteins, such as protein phosphorylation, which can have a major impact on protein and cell

function.

Proteomics directly examines protein levels, is able to detect activity-altering effects such as post-

translational modifications and, via immunoprecipitation, protein-protein interactions, and can be

used to specifically study defined cellular compartments such as the proteins present in a specific

organelle.

The sheer number of expressed proteins, and their multiple post-translationally modified variants,

is a major challenge for all proteomic strategies. For signalling studies, protein phosphorylation is

an important post-translational modification, leading to changes in the activity or interactions of

the affected protein, with subsequent effects on cellular behaviour. Characterisation of how protein

phosphorylation changes in response to a stimulus such as VEGF administration would probably
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give new insights into the signalling pathways involved. Purification of phospho-proteins would

retain proteins of interest while simplifying the subset of proteins to be analysed.

As discussed above, while antibody-based approaches have been successful for purification of

pY-containing proteins, the majority of protein phosphorylations occur on serine and, to a lesser

degree, threonine. Other strategies for purification of pS and pT-containing proteins include metal

affinity columns and chemical modification of phosphate groups.

Oda et al. (2001) chemically replaced phosphate groups in peptides with a thiol-containing group,

which was then coupled to biotin. Avidin-based affinity chromatography was then used to purify

biotinylated peptides, which were identified by MS/MS. Zhou et al. (2001) chemically modified

each phosphate group to include a thiol group, which was then used for phospho (thio) peptide

purification based on binding to an iodoacetyl-containing resin – a similar reaction to thiol modi-

fication after IEF by reaction with iodoacetamide. The thiol group was then chemically removed,

regenerating the phosphate group. The protein mixture had previously been been alkylated with

iodoacetamide to prevent cysteine-based purification. Both of these methods require multi-step

chemical reactions which may not go to completion and may produce undesirable side reactions.

The Oda biotin method produced less clear MS spectra than was obtained from non-biotinylated

peptides and could not purify pY-containing peptides, whereas the Zhou reversible method re-

covered only 20% of the available phosphopeptides. Clearly it is important that phospho-peptide

recovery is quantitative when comparing two samples.

Immobilised metal affinity chromatography (IMAC) has been used for some time to purify phos-

phopeptides from a protein digest, based on the binding of the negatively-charged phosphate group

to positively-charged metal ions such as Fe3+ in the column (Andersson and Porath 1986). How-

ever, other non-phosphorylated negatively-charged peptides (such as those containing Asp or Glu)

also bind to the column. Indeed all peptides contain a negatively-charged carboxyl group at their

C-terminus. Ficarro et al. (2002) improved the IMAC strategy by reacting tryptic peptides with

methanol to produce methyl esters, thus removing the charge on carboxyl groups. This approach
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was reported to produce a large increase in the specificity of the IMAC method.

The specificity of the IMAC approach was enhanced by using titanium dioxide rather than the orig-

inal Fe3+ as the affinity medium (Larsen et al. 2005). In a comprehensive study, Olsen et al. (2006)

combined SILAC, phosphopeptide enrichment via TiO2 columns, multi-dimensional chromatog-

raphy and on-line tandem MS to determine the temporal phosphorylation of 6600 phosphorylation

sites on more than 2000 proteins in response to EGF stimulation of HeLa cells, illustrating the

power of this multi-faceted approach.

In summary, in addition to improved identification and quantification of differences in lower abun-

dance proteins, and selective purification of important protein subsets such as phosphoproteins, the

analysis of dynamic cell systems such as endothelial cells migrating in response to a VEGF gra-

dient can be expected to yield significant insights in the signalling pathways activated by VEGF

stimulation of endothelial cells.
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Chapter 4

Results: VEGF regulation of Hsp27 phosphory-

lation

Analysis of VEGF signalling in HUVECs by 2-D electrophoresis led to the identification of a

shift in Hsp27 from a more basic to a more acidic form, consistent with phosphorylation, after

10 mins treatment (figure 3.2). The fact that this shift was the major observable change noticed

during short-term VEGF treatments aimed at investigating early signalling events indicated that

Hsp27 was likely to be a major target of early responses to VEGF, and prompted investigation

into its role in VEGF signalling and biological functions. This chapter describes studies intended

to delineate the mechanisms involved in VEGF regulation of Hsp27 phosphorylation, chapter 5

describes studies into the role of Hsp27 in endothelial cell responses to VEGF.

4.1 Initial characterisation of VEGF-stimulated Hsp27 phosphory-

lation

4.1.1 VEGF stimulates phosphorylation of Hsp27 at serine residues 15, 78 and 82

Hsp27 had previously been reported to be phosphorylated at S15, S78 and S82 via the p38 MAPK

pathway (discussed in section 1.5.3). Initial experiments were performed to characterise VEGF-
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stimulated Hsp27 phosphorylation in the cell system used in this study, and to identify which sites

are phosphorylated.

Using antibodies directed specifically to the various phosphorylation sites of Hsp27 it was de-

termined that, in confluent serum-deprived HUVEC cultures, VEGF induces phosphorylation of

Hsp27 at S15, S78 and S82 (figure 4.1). Treatment of cells with 25 ng/ml VEGF for different

times, and for 10 mins at different concentrations, indicated that maximal Hsp27 phosphorylation

was obtained 10–20 mins after VEGF addition, and with 5–100 ng/ml VEGF (figures 4.1 and

4.2). Unless stated, a VEGF concentration of 25 ng/ml was used for the remainder of the study,

previously used in this and other laboratories to produce biological effects in endothelial cells,

including HUVECs (for example, Gliki et al. 2001; Jia et al. 2004). This concentration of VEGF

stimulated strong phosphorylation of the activation loop residues of protein kinase D (discussed

in section 4.4) and p38 MAPK (figure 4.2).

SU5614, an inhibitor of VEGFR2 tyrosine kinase activity, reduced the VEGF-stimulated phospho-

rylation of Hsp27 at S15 and S82, and of PKD at S738/742 and S910, whereas H2O2-stimulated

phosphorylation of Hsp27 was unaffected (figure 4.3), indicating that VEGF-stimulated phospho-

rylation of Hsp27 and PKD is likely to occur via VEGFR2.

4.1.2 2-D pattern of Hsp27 phospho-forms

2-D-separated lysates from HUVECs treated with VEGF for 10 mins showed a marked increase

in the abundance of an acidic form of Hsp27, presumably a phosphorylated form (figure 3.2).

Three approaches were used to determine what this acidic form of Hsp27 actually was – direct

analysis of immunoprecipitated Hsp27 by tandem mass spectrometry, removal of phosphate from

immunoprecipitated Hsp27 with alkaline phosphatase, and 2-D analysis of Hsp27 using phospho-

specific antibodies.
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Figure 4.1: Time course of VEGF-induced Hsp27 phosphorylation
A. Confluent, serum-deprived HUVECs were treated with 25 ng/ml VEGF for the indicated
times before lysis. Samples were then immunoblotted and probed with phospho-specific
antibodies to the S15, S78 and S82 phosphorylations of Hsp27, phospho-p38 MAPK and
phospho-ERK.
B. Quantification of band intensities from time course blots from (A). P-S15 and P-S82 data
are means of three independent experiments, and error bars (SEM) are shown. P-S78 and
P-p38 data are means of two independent experiments, error bars are not shown.
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Figure 4.2: Effect of varying VEGF dose on phosphorylation of Hsp27, PKD and p38
MAPK
Serum-deprived, confluent HUVECs were treated for 15 mins with the indicated concentra-
tion of VEGF. Cells were then lysed, and samples were immunoblotted with the indicated
antibodies. Results are representative of three independent experiments for P-S82, and two
experiments for P-S15, P-S78, P-p38, and PKD P-S738/742 and P-S916.

4.1.2.1 Analysis of Hsp27 immunoprecipitates with tandem mass spectrometry

Hsp27 could be specifically immunoprecipitated from HUVEC lysates (figure 4.4), allowing fur-

ther analysis of purified Hsp27 by subsequent procedures.

Hsp27 was immunoprecipitated from VEGF-treated HUVECs and separated on 2-D gels and both

the acidic and basic spots (migrating similarly to spots A and B in figure 3.2A) were analysed

by tandem mass spectrometry, a technique capable of identifying post-translational modifications.

The tryptic peptides obtained, and the majority phosphorylation status, are indicated in figure 4.5A

and B. Example tandem MS spectra for the peptide including the S82 residue are shown in fig-

ure 4.5C.
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Figure 4.3: VEGF-stimulated phosphorylation of Hsp27 and PKD is inhibited by the
VEGFR2 kinase inhibitor SU5614
A. Confluent, serum-deprived HUVECS were pre-incubated with either 5 µM SU5614 (SU)
or solvent alone (0.1% DMSO, Ctrl) for 30 mins followed by 15 mins treatment with 25 ng/ml
VEGF (V), 100 µM H2O2 (H), or no addition (C). Cells were then lysed, blotted, and probed
with the indciated antibodies. The dotted line indicates that the Ctrl and SU samples, which
were produced in the same experiment, were on separate membranes but blotted, probed and
developed at the same time.
B. Quantification of the effect of SU5614 on phosphorylation of Hsp27 at S15 and S82. Val-
ues are given as a proportion of the phosphorylation in the Control V sample, and are means±
SEM from three independent experiments. Results were assessed by two-way ANOVA with
differences located by Bonferroni’s test for multiple comparisons. ˆ significantly reduced
compared to Control/VEGF (p<0.05). * significantly reduced compared to Control/VEGF
(p<0.001).

235



Figure 4.4: Hsp27 can be immunoprecipitated from HUVECs
HUVECs were treated for 48 h with anti-Hsp27 siRNA (+) or a control siRNA (-), and Hsp27
was immunoprecipitated. IPs were analysed by immunoblotting using a total Hsp27 antibody.
Lys, lysate; Beads, Protein A/G beads only (no immunoprecipitating antibody); IgG, control
rabbit IgG. Lysate loaded was a small proportion of the input lysate used in the immunopre-
cipitations. Arrows indicate expected Hsp27 band. Data is from a single experiment.

Multiple instances of the same S82-containing tryptic peptide were identified from both spot A

and spot B. In spot A, the S82 residue was phosphorylated in 5 out of 7 instances, whereas in

spot B the S82 residue was phosphorylated in 1 out of 17 instances. Multiple instances of an

S15-containing tryptic peptide were also identified from spots A and B. In spot A, the S15 residue

was phosphorylated in 0 out of 6 instances, and in spot B the S15 residue was phosphorylated

in 0 out of 6 instances. The presence of phosphate at S78 could not be determined as tryptic

peptides covering this residue were not identified. No other phosphorylated peptides, or other

post-translational modifications, were identified from either spot. MS analysis of Hsp27 therefore

indicated that the acidic spot (A) was phosphorylated on S82 but not S15, whereas the basic spot

was unphosphorylated on both S82 and S15.

236



Figure 4.5: Hsp27 peptides identified via tandem mass spectrometry indicate the acidic
form contains a phosphorylation at S82 (continued overleaf)
A. HUVECs were treated with VEGF for 15 mins, after which Hsp27 was immunoprecipi-
tated. The IP was separated by 2-D electrophoresis and gels were silver stained. Two spots
(A and B) were observed displaying the expected pattern for phosphorylated Hsp27 as pre-
viously observed in 2-D western blots and other immunoprecipitates, and corresponded to
spots A and B from figure 3.2.
B. Spots A and B from part A were excised from the gel, digested with trypsin and analysed
by tandem mass spectrometry. The identified peptides are enclosed in brackets and under-
lined, and are shown in the context of their position in the human Hsp27 protein reference
sequence (Refseq accession NP 001531.1). S15, S78 and S82 are highlighted in red, and S82
is additionally indicated with an asterisk (*). The peptide containing S82 was phosphorylated
in spot A and unphosphorylated in spot B.
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4.1.2.2 2-D analysis of Hsp27 immunoprecipitates with alkaline phosphatase treatment

While useful for determining specific phosphorylation sites, the tandem MS approach was unable

to determine the presence of phosphate throughout the entire Hsp27 protein as the S78 phospho-

rylation site was not covered by identified tryptic peptides. Additionally, phosphate-containing

peptides are often difficult to detect via MS-based methods, and the phosphate groups may be

unintentionally lost during peptide fragmentation resulting in detection of an unphosphorylated

peptide. To address these issues, alkaline phosphatase (AP) was used to remove phosphate groups

from Ser, Thr and Tyr residues of proteins in Hsp27 immunoprecipitates. Phosphorylation results

in an increase in the acidity of a protein, and treatment of a protein with AP should therefore

reduce the acidity (increase the pI) of a protein that is already phosphorylated, without affecting

the pI of an unphosphorylated protein. To discern whether a shift had actually occurred, samples

treated with and without AP were run on separate 2-D gels and also in the same gel (figure 4.6).

In Hsp27 IPs from VEGF-treated cells, AP treatment eliminated Hsp27 phosphorylation at S78

and S82 as assessed by western blotting with a phospho-specific antibody (figure 4.6A). When

analysed by 2-D electrophoresis, immunoprecipitated Hsp27 was present as two major spots. After

AP treatment, IPed Hsp27 was present as a single spot, presumably representing unphosphorylated

Hsp27, which had the same pI as the more basic spot from non-AP-treated Hsp27 IPs as indicated

by the larger size of the basic spot but not the acidic spot in the blot of the mixed samples compared

to the blot of non-AP-treated Hsp27 (figure 4.6B). Thus AP treatment did not affect the pI of the

basic spot, indicating that this form is likely to be unphosphorylated, but increased the pI of the

acidic spot to the same as that of the basic spot, indicating that the acidic form is phosphorylated.

4.1.2.3 2-D analysis of whole cell lysates using anti-Hsp27 phospho-specific antibodies

Western blotting data indicated that Hsp27 is phosphorylated at three different sites in response to

VEGF treatment (figures 4.1, 4.2 and 4.3). To determine the relative abundance of the different

phosphorylations produced, extracts of cells exposed to VEGF for 15 mins were analysed by 2-D
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Figure 4.6: Effect of alkaline phosphatase treatment on 2-D spot pattern of an Hsp27
immunoprecipitate
Hsp27 was immunoprecipitated from confluent HUVECs treated for 15 mins with 25 ng/ml
VEGF (V) or no addition (C) . The IPs were resuspended and divided into three aliquots.
One aliquot (AP) was mixed with alkaline phosphatase to remove phosphate groups before
quenching with concentrated SDS-PAGE buffer, whereas another remained on ice after im-
munoprecipitation before mixing with SDS-PAGE buffer (IP). The samples were then anal-
ysed as detailed below:
A. IPs were separated by 1-D electrophoresis, blotted and probed with the indicated antibod-
ies. Representative of four independent experiments.
B. IPs from VEGF-treated cells were precipitated and resuspended in 2-D buffer, proteins
were separated by 2-D electrophoresis, blotted and probed with the indicated antibodies. IP,
Immunoprecipitate only; AP, alkaline phosphatase (AP)-treated immunoprecipitate only; IP +
AP, both AP-treated and untreated immunoprecipitates were mixed and run on the same 2-D
gel. The position of the two major Hsp27 species present are indicated. Data is representative
of two independent experiments.
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electrophoresis and probed with phospho-specific antibodies to Hsp27 (figure 4.7). Blots with total

Hsp27 antibodies reproduced the pattern observed by staining 2-D gels (compare figure 3.2A with

figure 4.7), but an additional acidic, low abundance spot, marked X, was observed after VEGF

treatment.

None of the phospho-specific antibodies reacted with the basic spot B, consistent with it being

unphosphorylated Hsp27. The major form of Hsp27 produced after 15 mins VEGF treatment,

labelled A, co-migrated with the major phospho-S82-reactive spot, whereas the minor form of

Hsp27 produced after VEGF treatment, labelled X, co-migrated with the major phospho-S78-

reactive spot.

Due to the lack of S15 data, it was not possible using the results in figure 4.7 to determine whether

the Hsp27 present in spot A was phosphorylated at S15. To address this question, HUVECs were

pre-treated with the p38 MAPK inhibitor SB203580, which was observed in other experiments

to dramatically reduce VEGF-induced phosphorylation at S15 and S78 but not S82 (described in

section 4.2 and thereafter). SB203580 treatment did not alter the pI of the acidic form of Hsp27

present in lysates of VEGF-treated cells, or noticeably adjust the ratio between spots A and B

(figure 4.8A), despite a strong reduction in S78 phosphorylation. These data suggest that the

major component of spot A is Hsp27 mono-phosphorylated at S82.

Taken together, the results presented in this section from tandem MS, alkaline phosphatase treat-

ment and phospho-specific antibodies indicate that that Hsp27 is predominantly unphosphorylated

in unstimulated cells. The major quantitative change in Hsp27 after 15 mins treatment with VEGF

is phosphorylation at S82 to produce mono-phosphorylated Hsp27. Even after VEGF stimulation

for 15 mins, around half of Hsp27 present in HUVECs apparently remains unphosphorylated.
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Figure 4.7: 2-D pattern of Hsp27 from VEGF-treated versus control-treated cells
Serum-deprived HUVECs were treated with 25 ng/ml VEGF or no addition (control) for
15 mins before lysis, 2-D separation using a linear pH 4–7 gradient, and immunoblotting with
the indicated antibodies. An anti-phospho S15 antibody was also used but failed to produce
a clean signal at the correct molecular weight. All blots are from the same VEGF-treated
cell extract apart from the upper blot which is labelled control. After chemiluminescent
detection, the membranes used for the S78 and S82 blots were coomassie stained and scanned.
The images of the stained membranes were aligned with the corresponding blot (solid black
lines along the edge of the blots and membranes), and then the strongly coomassie staining
spot on the membranes (circled red) was used to align the membranes from the S78 and
S82 membranes, and therefore blots, with each other. Dotted lines have been added to aid
comparison between spot positions. Spots visible on the total Hsp27/VEGF-treated blot are
labelled A, B, and X: A and B correspond to spots A and B observed on 2-D gels in figure 3.2,
spot X was not identified from 2-D gels and is a different, more acidic form. Results are
representative of two independent experiments.
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Figure 4.8: Effect of SB203580 on Hsp27 2-D spot pattern
Serum-deprived HUVECs were incubated for 30 mins with 5 µM SB203580 or solvent alone
(0.1% v/v DMSO, Control), then treated with or without 25 ng/ml VEGF for 15 mins and
lysed.
A. Lysates from VEGF-treated cells were separated by 2-D electrophoresis and blotted with
a total Hsp27 antibody. Membranes were coomassie stained and used to align the blots as in
figure 4.7. Mix indicates that the Control and SB203580 samples were mixed and run on the
same 2-D gel.
B. The same lysates analysed in part (A) were immunoblotted and probed with the indicated
antibodies. V+SB, SB203580 pre-treated and then VEGF-treated; V, VEGF-treated, no in-
hibitor; C, no inhibitor or VEGF.
Data is representative of two independent experiments.
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4.2 A p38 MAPK-independent pathway contributes to VEGF-

stimulated phosphorylation of Hsp27 at S82

Hsp27 has previously been reported to be phosphorylated at S15, S78 and S82 via the p38 MAPK

pathway in response to various stimuli. The involvement of this pathway in VEGF-stimulated

Hsp27 phosphorylation was examined using two approaches: pharmacological inhibition of p38

MAPK, and siRNA-mediated knockdown of p38α and MAPKAPK2.

4.2.1 p38 MAPK inhibition

Initially, the role of the p38 MAPK pathway in VEGF-stimulated Hsp27 phosphorylation was ex-

amined using the p38 inhibitors SB203580 and SB202190. SB203580 at 1 µM blocked phospho-

rylation of Hsp27 at S15 and S78, and completely prevented phosphorylation of MAPKAPK2,

the downstream target of p38 MAPK reported to be responsible for directly phosphorylating

Hsp27 (figure 4.9A). However S82 phosphorylation was less affected by SB203580, and doses of

SB203580 up to 25 µM caused little additional inhibition (figure 4.9A). Similar experiments with

a second, structurally-related pyridinyl imidazole-based inhibitor, SB202190, produced similar

results. VEGF-induced phosphorylation of S82 was only partly inhibited by SB202190, whereas

phosphorylation of S15 and S78 was blocked (figure 4.9B).

To determine whether the resistance of Hsp27 S82 phosphorylation to p38 MAPK inhibition

was common to stimuli other than VEGF, phosphorylation induced by VEGF was compared to

that induced by another p38 MAPK activator, tumour necrosis factor-α (TNFα). While VEGF-

stimulated phosphorylation of S82 was only partially reduced by 5 µM SB203580 or SB202190,

S82 phosphorylation induced by 100 U/ml TNFα was fully inhibited (figure 4.10A).

VEGF was then compared with a variety of stimuli previously demonstrated to induce Hsp27

phosphorylation: hydrogen peroxide (H2O2, 100 µM), TNFα (100 U/ml), interleukin-1β (IL-1β,

10 ng/ml), and the phorbol ester phorbol myristate acetate (PMA, 10 nM). All agents stimulated
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Figure 4.9: SB203580 does not completely inhibit VEGF-stimulated Hsp27 S82 phos-
phorylation
A and B. SB203580 (SB, A) and SB202190 (SB2, B) dose responses. Confluent, serum-
deprived HUVECS were pre-incubated with the indicated concentrations of inhibitor or sol-
vent alone (0.1% DMSO, C) for 30 mins followed by 15 mins treatment with 25 ng/ml VEGF
or no addition (C). Cells were then lysed and immunoblotted using the indicated antibodies.
The upper band of the MAPKAPK2 blot corresponds to the phosphorylated (active) form of
MAPKAPK2, as reported on the manufacturer’s antibody data sheet. SB203580 data repre-
sentative of two independent experiments, SB202190 data from a single experiment.

245



phosphorylation of Hsp27 at S82, and that stimulated by H2O2, TNFα, and IL-1β was blocked by

SB203580, but S82 phosphorylation induced by VEGF or PMA was resistant to p38 MAPK inhi-

bition (figure 4.10B). In a separate experiment, 10 µM anisomycin (a protein synthesis inhibitor)

also induced Hsp27 S82 phosphorylation, which was abrogated by SB203580 (figure 4.10C). The

abilities of H2O2 and TNFα to induce Hsp27 phosphorylation at S15, S78 and S82, are shown in

figures 4.13 and 4.16 respectively. The effects of 5 µM SB203580 on VEGF- or H2O2-stimulated

phosphorylation of Hsp27 at all three residues are quantified in figure 4.13.

Figure 4.10: SB203580 differentially affects Hsp27 phosphorylation induced by VEGF
and either TNFα, H2O2, IL-1β or anisomycin
A. Comparison of the effect of SB203580 and SB202190 on Hsp27 S82 phosphorylation
stimulated by VEGF and TNFα. Confluent, serum-deprived HUVECS were pre-incubated
with either 5 µM SB203580 (SB), 5 µM SB202190 (SB2) or solvent alone (0.1% DMSO,
Control) for 30 mins followed by 15 mins treatment with 25 ng/ml VEGF, 100 U/ml TNFα,
or no addition (C). Cells were then lysed, blotted, and probed with the indciated antibodies.
Data is from a single experiment.
B. Comparison of the effect of p38 MAPK inhibition on Hsp27 S82 phosphorylation induced
by various stimuli. Confluent, serum-deprived HUVECs were pre-incubated for 30 mins
with either 5 µM SB203580 or solvent alone (0.1% DMSO, Control) followed by 15 mins
treatment with either 25 ng/ml VEGF (V); 10 nM PMA (P); 100 U/ml TNFα (T); 10 ng/ml
IL-1β (I); 100 µM H2O2 (H); or no addition (C). Cells were then lysed, blotted, and probed
with the indicated antibodies. Data is from a single experiment.
C. Comparison of the effect of p38 MAPK inhibition on Hsp27 phosphorylation stimu-
lated by VEGF and anisomycin. Confluent, serum-deprived HUVECs were pre-incubated
for 30 mins with either 5 µM SB203580 (SB) or solvent alone (0.1% DMSO, Control) fol-
lowed by 15 mins treatment with either 25 ng/ml VEGF (V); 10 µM anisomycin (A) or no
addition (C). Cells were then lysed, blotted, and probed with the indicated antibodies. Data
is representative of two independent experiments.
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4.2.2 Knockdown of p38α and MAPKAPK2

Taken together, results from experiments using p38 MAPK inhibitors indicated that a p38 MAPK-

independent pathway is involved in Hsp27 S82 phosphorylation stimulated by VEGF and PMA,

whereas p38 MAPK appears to mediate VEGF-stimulated Hsp27 phosphorylation at S15 and

S78, and all Hsp27 phosphorylations stimulated by TNFα, H2O2 and IL-1β. However, it was

possible that a non-p38 target may be responsible for SB203580-dependent reductions in Hsp27

phosphorylation. Although regarded as a highly specific inhibitor of p38 MAPK (Davies et al.

2000), SB203580 is known to have p38-independent effects including activation of Raf (Eyers

et al. 1999). In this study SB203580 consistently increased ERK phosphorylation (probably via

Raf activation), and frequently led to increased phosphorylation of p38 MAPK itself (data not

shown). Additionally, p38 MAPK has a number of isoforms and MAPKAPK2 is homologous to

MAPKAPK3.

To determine whether the p38α/MAPKAPK2 pathway was the SB203580 target responsible for

VEGF-induced phosphorylation of Hsp27 at S15 and S78, p38α and MAPKAPK2 protein expres-

sion was reduced in HUVECs with siRNAs. Representative blots demonstrating effective knock-

down of p38 MAPK and MAPKAPK2 and the effect of these knockdowns on VEGF-induced

Hsp27 phosphorylation are shown in figure 4.11A, with quantified data presented in figure 4.11B.

Knockdown of p38α substantially reduced VEGF-stimulated phosphorylation of S15 and S78

(by 51% and 77% respectively), but only slightly affected VEGF-stimulated S82 phosphorylation

(18% reduction). In contrast, TNFα-stimulated phosphorylation of all three residues was strongly

decreased by p38α knockdown, with reductions of 56% at S15, 75% at S78, and 40% at S82.

Knockdown of MAPKAPK2 showed a similar pattern, with VEGF-stimulated phosphorylation

of S15 and S78 reduced by 76% and 85% respectively and S82 phosphorylation little affected,

whereas TNFα-stimulated phosphorylation of all three residues was markedly reduced (by 77% at

S15, 90% at S78, and 60% at S82). Thus the p38α–MAPKAPK2 pathway appears largely respon-

sible for VEGF-induced phosphorylation of Hsp27 at S15 and S78, and plays a smaller role in
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phosphorylation of S82, whereas it is the major pathway stimulated by TNFα for phosphorylation

of Hsp27 at all three residues.

Figure 4.11: siRNAs directed against p38α or MAPKAPK2 do not reduce VEGF-
induced phosphorylation of Hsp27 at S82 (continued overleaf)
A. HUVECs were transfected with 200 nM siRNA targeting p38α, MAPKAPK2 (MK2,
siRNA A), a non-targeting siRNA (Control), or transfection reagent alone (Mock). After
48 h, serum-deprived cells were treated for 15 mins with 25 ng/ml VEGF (V) or 100 U/ml
TNFα (T) or no addition (C) and lysed. Cell extracts were immunoblotted and probed with
the indicated antibodies. Results are representative of five independent experiments. Quan-
tification of the effect of the siRNAs on Hsp27 is shown in part B overleaf, and quantification
of the effect of the siRNAs on p38α and MAPKAPK2 protein expression is given in fig-
ure 4.12B. The dotted line indicates that lanes were digitally removed from the blot, but all
lanes shown were from the same blot, and all individual blots were performed in parallel on
the same samples.

In addition to the effects on their intended target proteins, the siRNA targeting p38α reduced

MAPKAPK2 protein expression by 83%, and two different siRNAs targeting MAPKAPK2 re-

duced p38α protein expression by 45% and 41% (figure 4.12), whereas neither the p38α siRNA

nor the MAPKAPK2 siRNAs reduced total ERK expression.
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Figure 4.11: siRNAs directed against p38α MAPK or MAPKAPK2 do not markedly
reduce VEGF-induced phosphorylation of Hsp27 at S82 (continued)
B. Quantification of results from part A (five independent experiments). Results were anal-
ysed by two-way ANOVA using Bonferroni’s test for multiple pair-wise comparisons. * sig-
nificantly different to Control/VEGF (p<0.001). ˆ significantly different to Control/TNFα
(p<0.001). Mean knockdown of target protein achieved by siRNAs, compared to control
siRNA: p38α 97%; MAPKAPK2 92%. Neither the MAPKAPK2 siRNA nor the p38α siRNA
significantly affected Hsp27 protein levels.
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Figure 4.12: p38α siRNA reduces MAPKAPK2 protein levels, and MAPKAPK2 siRNA
reduces p38α protein levels
Quantification of effects of siRNAs on p38 and MK2 protein levels, using results from fig-
ure 4.11A (five independent experiments). Data from an additional siRNA against MAP-
KAPK2, MK2 B, which was used in the same experiments and analysed on the same blots as
those in figure 4.11, is included. MK2 B data was not included in data in figure 4.11B due to
superior knockdown achieved by the MK2 A siRNA, and showed the same trend as that seen
with MK2 A siRNA but to a lesser degree. Results were analysed by one-way ANOVA us-
ing Bonferroni’s test for multiple pair-wise comparisons. * significantly reduced compared to
control siRNA (p<0.001). ˆ significantly reduced compared to both MK2 siRNAs (p<0.001).
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4.3 Protein kinase C mediates VEGF-stimulated Hsp27 phosphory-

lation at S82

Experiments detailed in section 4.2 indicated that a p38 MAPK/MAPKAPK2-independent path-

way was involved in VEGF-stimulated phosphorylation at S82, and prompted investigation into

the intracellular enzymes involved in this pathway. Previous data from this and other laborato-

ries has shown that protein kinase C (PKC) isoforms play a major role in VEGF signalling (see

section 1.4.4), and work in this study showed that S82 phosphorylation induced by the PKC acti-

vator PMA was resistant to p38 MAPK inhibition (figure 4.10B), indicating that PKC may be an

important mediator of Hsp27 S82 phosphorylation.

The involvement of protein kinase C in the SB203580-resistant phosphorylation of Hsp27 S82

was initially examined using pharmacological inhibitors. GF109203X (bisindolylmaleimide I)

is a broad-spectrum PKC inhibitor, inhibiting classical and novel PKC isoforms but with reduced

effectiveness against the atypical PKCs, whereas Gö6976 is commonly used as a selective inhibitor

of the conventional/classical PKC isoforms α, β1, β2, and γ (Martiny-Baron et al. 1993). The

effect of these PKC inhibitors alone and in combination with SB203580 on the VEGF- and H2O2-

stimulated phosphorylation of Hsp27 was examined, and compared with the effect of SB203580

alone (figure 4.13).

As expected, SB203580 alone completely blocked H2O2-stimulated phosphorylation of Hsp27 at

S15, S78 and S82, and strongly inhibited VEGF-induced phosphorylation at S15 and S78, but only

partially reduced S82 phosphorylation (40% reduction). Both GF109203X and Gö6976 inhibited

VEGF-stimulated phosphorylation at S82 without causing a statistically significant inhibition of

of S15 and S78 phosphorylation, with GF109203X causing the greater reduction in S82 phos-

phorylation (76% reduction versus 62% reduction for Gö6976). When added in combination,

SB203580 and GF109203X together reduced S82 phosphorylation to below control levels (96%

reduction), whereas a comparatively large proportion of VEGF-induced S82 phosphorylation was
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Figure 4.13: PKC is involved in phosphorylation of Hsp27 (caption overleaf)
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Figure 4.13: PKC is involved in phosphorylation of Hsp27 (continued)
HUVECs were pre-incubated with either 5 µM SB203580 (SB), 3 µM GF109203X (GF),
1 µM Gö6976 (Go), solvent alone (Control), or the indicated combinations of inhibitors,
followed by treatment for 15 mins with 25 ng/ml VEGF (V), H2O2 (100 µM, H) or no ad-
dition (C). Lysates were immunoblotted and probed with phospho-specific antibodies against
Hsp27 as indicated. Results are given as the mean (± SEM) proportion of the phosphoryla-
tion induced by Control V, and were analysed by two-way ANOVA with Bonferroni’s test for
multiple pair-wise comparisons. Representative blots are incorporated into each figure, dot-
ted lines indicate that the samples for combinations of inhibitors were run on a separate gel
run at the same time as that containing the other samples, due to insufficient lanes on the gel.
* significantly different to Control/VEGF (p<0.05); ˆ significantly different to Control/H2O2

(p<0.05). Total Hsp27 levels were similar in all samples. Cell treatments for these experi-
ments was performed in conjunction with Dr. Ian Evans, Department of Medicine, UCL. Dr.
Evans also carried out the P-S78 blots contributing to this figure.

not prevented by a Gö6976/SB203580 combination (27% S82 phosphorylation remaining).

Neither PKC inhibitor significantly inhibited phosphorylation in response to H2O2 at any residue,

though surprisingly GF109203X increased phosphorylation at S15 and S78 more than 2-fold

above the level induced by H2O2 alone without significantly affecting S82 phosphorylation. Con-

trol levels of phosphorylation were also increased by GF109203X at the same residues. The

SB203580/GF109203X combination caused no more inhibition of H2O2-induced phosphoryla-

tion at all three residues than SB203580 alone.

The influence of different concentrations of GF109203X and Gö6976 on VEGF-stimulated Hsp27

phosphorylation was also examined. The effect of 1 µM and 6 µM GF109203X, and 0.2 µM

and 3 µM Gö6976 on VEGF-induced Hsp27 phosphorylation at S78 and S82 was similar to that

observed with 3 µM GF109203X and 1 µM Gö6976, the standard doses used in this study (fig-

ure 4.14). Greater inhibition of Hsp27 phosphorylation was observed at much higher inhibitor

concentrations (15 µM GF109203X and 10 µM Gö6976), although p38 MAPK phosphorylation

was little affected even at these concentrations.

In contrast to the effect of PKC inhibition on Hsp27 S82 phosphorylation, inhibition of the PI-

3-K and ERK signalling cascades had little effect on phosphorylation of Hsp27, and when used

in combination with SB203580 did not appear to reduce Hsp27 S82 phosphorylation further than

observed with SB203580 alone (figure 4.15).
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Figure 4.14: Effect of different PKC inhibitor concentrations on VEGF-induced phos-
phorylation of Hsp27 and PKD
Confluent HUVECs were pre-incubated for 30 mins with the indicated concentration of in-
hibitor (GF109203X or Gö6976), followed by 15 mins treatment with 25 ng/ml VEGF. Cells
were then lysed, blotted and probed with the indicated antibodies. C, no VEGF or inhibitor
(solvent alone: 0.5% v/v DMSO.)

4.3.1 Effect of PKC reduction on VEGF-induced Hsp27 phosphorylation

Together, results using kinase inhibitors indicated that PKC plays a major role in VEGF-stimulated

phosphorylation of Hsp27 at S82, whereas H2O2 and TNFα stimulate Hsp27 phosphorylation

via p38 MAPK. The involvement of PKC in VEGF-stimulated Hsp27 phosphorylation was also

addressed using two methods to reduce PKC isoforms in cells: long term phorbol ester treatment,

and PKC siRNAs.
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Figure 4.15: Inhibition of MEK or ERK has little effect on VEGF-stimulated Hsp27 S82
phosphorylation
HUVECs were pre-incubated with either 5 µM SB203580 (SB), 3 µM Gö6983 (G), 3 µM
GF109203X (GF), 100 nM wortmannin (Wt), 10 µM U0126 (U), 10 µg/ml BAPTA-AM (B),
or solvent alone (Control), or the indicated combinations of inhibitors, followed by treatment
for 15 mins with 25 ng/ml VEGF (V), TNFα (100 U/ml, T) or no addition (C). Lysates
were immunoblotted and probed with the indicated antibodies. Results are from a single
experiment, but lack of effect of wortmannin, U0126 and BAPTA-AM (not in combination
with SB203580) on Hsp27 S82 phosphorylation was also observed on at least two other
occasions.

4.3.1.1 Phorbol ester-mediated PKC downregulation

Long-term treatment with phorbol esters, pharmacological analogues of the PKC activator dia-

cylglycerol, has been used for many years as a way of downregulating the protein levels of con-

ventional and novel subfamilies of PKC. Levels of atypical PKCs (which are not activated by

diacylglycerol) and protein kinase D (Rennecke et al. 1996), are unaffected by this treatment.

Treatment of HUVECs with phorbol-12-myristate-13-acetate (PMA) for 28 h resulted in the

loss of all detectable PKCα and PKCδ from the cells, and markedly reduced PKCε levels (fig-

ure 4.16A). VEGF-stimulated phosphorylation of Hsp27 at both S15 and S82 was strongly re-

duced by long-term PMA treatment (94% reduction in S15 phosphorylation, 84% reduction in

S82 phosphorylation). TNFα-induced phosphorylation of S15 was also reduced by PMA, al-

though by a smaller degree than that induced by VEGF (60% reduction), and TNFα-stimulated
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phosphorylation of S82 was not affected by PMA. Thus, long-term treatments with PMA prevent

phosphorylation of Hsp27 S82 induced by VEGF but not TNFα, again suggesting the importance

of PKC in VEGF-stimulated phosphorylation at this residue. Possible reasons for the the effect of

long-term PMA treatments on VEGF-stimulated S15 phosphorylation as discussed later.

Short-term PMA treatments (15 mins), aimed at activating rather than down-regulating PKC, in-

duced phosphorylation of Hsp27 at S82 but not S15, indicating the importance of PKC in VEGF-

induced phosphorylation of S82 but not S15 (figure 4.20B, third lane from left). PMA-stimulated

S82 phosphorylation could not be blocked by SB203580, further suggesting the presence of a

PKC-dependent, p38 MAPK independent pathway for phosphorylation of Hsp27 at S82.

4.3.1.2 Isoform-specific PKC knockdown

To examine the importance of individual PKC isoforms on VEGF-induced Hsp27 phosphoryla-

tion, three major PKC isoforms previously shown by this laboratory to translocate in HUVECs

after VEGF stimulation, PKCs α, δ, and ε (Gliki et al. 2001), were separately knocked down

in HUVECs using siRNA. Representative blots of the effect of PKC knockdowns on VEGF-

stimulated Hsp27 phosphorylation are shown in figure 4.17, with the quantified effect on Hsp27

phosphorylation presented in figure 4.18.

The PKC siRNAs affected Hsp27 expression, with PKCα siRNA increasing Hsp27 expression

by 43% and the other PKC siRNAs having smaller effects (14% increase in Hsp27 by the PKCδ

siRNA, 6% decrease by the PKCε siRNA). It was also observed that knockdown of any of the

three PKC isoforms examined also caused changes in the expression of the other two isoforms

(figure 4.19), further complicating interpretation of results with these siRNAs.

Consistent effects on Hsp27 phosphorylation were observed. When correcting the results with

anti-Hsp27 phospho-specific antibodies to total Hsp27 protein expression (figure 4.18A), PKCα

and δ siRNAs reduced phosphorylation at S15 (48% and 49% reductions respectively) and S78

(50% and 49% reductions) by similar amounts, whereas PKCε knockdown had no significant ef-
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Figure 4.16: Phorbol ester-mediated PKC downregulation blocks VEGF-induced phos-
phorylation of Hsp27 at S82
A. Representative blots showing the effect of long-term treatment with phorbol ester on
Hsp27 phosphorylation induced by VEGF and TNFα. Confluent HUVECs were treated for
28 h with either vehicle (0.1% DMSO, control) or 200 ng/ml (324 nM) phorbol-12-myristate-
13-acetate (PMA), and subsequently treated for 15 mins with either no addition (C), 25 ng/ml
VEGF (V) or 100 U/ml TNFα (T). Samples were then lysed and immunoblotted with anti-
bodies as indicated. S78 data from a single experiment.
B. Quantification of results for Hsp27 S15 and S82 phosphorylation in control and PMA-
treated cells (n=4), analysed by two-way ANOVA with Bonferroni’s test for multiple com-
parisons. * Significantly different to control VEGF (p<0.001). ˆ Significantly different to
control TNFα (p<0.01).
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fect on these phosphorylation sites. At S82, siRNAs against PKCα PKCδ and PKCε reduced

phosphorylation by 32%, 25%, and 41% respectively. Without correcting signals obtained with

phospho-specific antibodies to total Hsp27 expression (figure 4.18B), PKCα and δ siRNAs re-

duced phosphorylation at S15 (26% and 42% reductions respectively) and S78 (29% and 41%

reductions) by similar amounts, whereas PKCε knockdown had no significant effect. At S82,

siRNAs against PKCδ and PKCε reduced phosphorylation by 14% and 41% respectively, whereas

an siRNA against PKCα had no significant effect. Both methods of analysing the results indicate

a greater role for PKCε in VEGF-stimulated phosphorylation of S82 than phosphorylation of S15

or S78. A double knockdown of both PKCδ and PKCε did not apparently increase the reduc-

tion in VEGF-dependent PKD or Hsp27 phosphorylation when compared to the best-performing

single knockdown (results not shown). Overall, knockdown of PKCα or PKCδ reduces VEGF-

stimulated Hsp27 phosphorylation at S15 and S78, whereas the PKCε siRNA has a greater effect

against S82.

4.4 Involvement of protein kinase D in VEGF-induced Hsp27 phos-

phorylation

4.4.1 PKD/PKCµ is phosphorylated in response to VEGF

While this work was in progress, it was shown that purified protein kinase D (PKD, also known

as PKCµ) is able to phosphorylate an Hsp27-GST fusion protein at S82 but not S15 in an in

vitro kinase assay (Doppler et al. 2005). Activation of protein kinase D is reported to involve

transphosphorylation of the activation loop (S738/742) by an upstream kinase, thought to be PKC,

and subsequent autophosphorylation at S910. Although S910 autophosphorylation may not be

strictly required for activation, it is reported to correlate well with catalytic activity (section 1.6.3).

The potential role of PKD in VEGF-stimulated Hsp27 phosphorylation was examined. VEGF is

able to induce phosphorylation of PKD at the activation loop and at the C-terminal site S910, with
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Figure 4.17: Effect of PKC knockdown on VEGF-stimulated phosphorylation of Hsp27
and PKD
HUVECs were incubated with 200 nM of the indicated siRNA (labelled on bottom of blot)
for 48 h to knock down target proteins. Cells were then treated for 15 mins with 25 ng/ml
VEGF (V) or no addition (C) and lysed. Lysates were immunoblotted and probed with the
indicated antibodies. The effect of the siRNAs on Hsp27 phosphorylation is quantified in
figure 4.18. UT, untransfected; Ctrl, control siRNA.
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Figure 4.18: Effect of PKC knockdown on Hsp27 phosphorylation (continued overleaf)
Quantification of the effects of PKC siRNAs on VEGF-stimulated Hsp27 phosphorylation,
with results derived as described in figure 4.17. Blots were probed with phospho-specific
antibodies targeting the indicated Hsp27 residue. Values are means ± SEM, and the number
of independent experiments represented is: S15, 7; S78, 5; S82, 8. Statistical analysis via one-
way ANOVA with Bonferroni’s test for multiple pair-wise comparisons. Mean knockdown
achieved by the siRNAs: PKCα 82%, PKCδ 90%, PKCε 76%
A. Phospho-Hsp27 data expressed as a ratio of the mean total Hsp27 signal for that siRNA to
correct for the apparent increase in Hsp27 expression caused by the PKCα siRNA. * p<0.001
compared to control siRNA.
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Figure 4.18: Effect of PKC knockdown on Hsp27 phosphorylation (continued)
B. Data presented in (A) not corrected to total Hsp27 levels. * p<0.001 compared to control
siRNA, apart from P-S78 control siRNA vs PKCα siRNA and P-S82 control siRNA vs PKCδ
siRNA, both p<0.01.

maximal phosphorylation of both sites occurring with 25 ng/ml VEGF after 10–20 mins (figure 4.2

and data not shown). VEGF-stimulated phosphorylation of PKD at S738/742 apparently occurred

via VEGFR2 as it was blocked by the VEGFR2 tyrosine kinase inhibitor SU5614 (figure 4.3).

4.4.2 VEGF-stimulated PKD phosphorylation occurs via protein kinase C and not

via p38 MAPK

VEGF-induced PKD phosphorylation was examined using the broad-spectrum PKC inhibitor

GF109203X and the inhibitor of conventional/classical PKCs, Gö6976. 3 µM GF109203X
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Figure 4.19: Effect of PKC knockdown on PKC protein expression
Quantification of the effects of PKC siRNAs on PKC expression, with results derived as de-
scribed in figure 4.17. Blots were with antibodies reported not to cross-react with other PKC
isoforms (indicated). Values are means ± SEM from five independent experiments. Statisti-
cal analysis via one-way ANOVA with Bonferroni’s test for multiple pair-wise comparisons.
* p<0.05 compared to control siRNA, ** p<0.01 compared to control siRNA, *** p<0.001
compared to control siRNA.

262



fully inhibited VEGF-induced phosphorylation of S738/742 and partially reduced phosphoryla-

tion at S910, whereas 1 µM Gö6976 and 5 µM SB203580 had no effect on either residue (fig-

ure 4.20A). Higher concentrations of GF109203X increased the degree of inhibition observed at

S910, whereas concentrations of Gö6976 up to 10µM had little effect on VEGF-induced phospho-

rylation at either residue (figure 4.14). Concentrations of SB203580 up to 25µM had no effect on

VEGF-stimulated phosphorylation at either S738/742 or S910 (figure 4.9A), and use of SB203580

in combination with either GF109203X or Gö6976 did not result in greater inhibition at either

S738/742 or S910 than observed with the PKC inhibitor alone (figure 4.20A).

The involvement of the p38 MAPK pathway in PKD phosphorylation was further examined us-

ing the p38-activating stimuli H2O2, TNFα and IL-1β. These three stimuli all failed to induce

S738/742 phosphorylation of PKD at concentrations sufficient to induce phosphorylation of Hsp27

at S82 (figure 4.10B). At higher concentrations, H2O2 did stimulate PKD phosphorylation, and this

phosphorylation was not blocked by SB203580 (figure 4.20B). Interestingly, these higher H2O2

concentrations led to further increased p38 phosphorylation, but were associated with reductions

in Hsp27 phosphorylation at both S15 and S82. Together, these data suggest that p38 MAPK

activation is insufficient for PKD phosphorylation, and that high H2O2 concentrations activate an

additional non-p38-mediated signalling pathway leading to PKD phosphorylation.

Overall, data from kinase inhibitors suggests that VEGF induces PKD phosphorylation via a non-

classical PKC or PKCs, and that the p38 MAPK pathway is not involved. Additionally, studies

with p38-activating stimuli indicate that PKD phosphorylation is not a consequence of Hsp27

phosphorylation.

4.4.3 Involvement of PKC isoforms in Hsp27 and PKD phosphorylation

To determine which PKC isoforms are responsible for the observed effects of the PKC inhibitors

on VEGF-stimulated PKD phosphorylation, the amounts of PKCα, PKCδ, and PKCε present in

HUVECs were separately reduced with siRNA. Knockdown of PKCδ and PKCε reduced S738/742
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Figure 4.20: VEGF stimulates phosphorylation of protein kinase D by a PKC-dependent
mechanism
A. VEGF-dependent phosphorylation of PKD is blocked by GF109203X but not Gö6976.
HUVECs were pre-treated for 30 mins with either solvent alone (0.2% DMSO, Control),
5 µM SB203580 (SB), 3 µM GF109203X (GF), 1 µM Gö6976 (Go) or the indicated combi-
nations of inhibitors, before 15 mins treatment with either no addition (C), 25 ng/ml VEGF
(V) or 100 µM H2O2 (H). Immunoblots of lysates were probed for phospho-PKD (S738/742)
and phospho-PKD (S910). Results are representative of three independent experiments.
B. H2O2 activates PKD at high concentrations. HUVECs were pre-treated for 30 mins with
either solvent alone (0.1% DMSO, Cont) or 5 µM SB203580 followed by 15 mins treatment
with either no addition (C), 25 ng/ml VEGF (V), 50 nM PMA (P), or the indicated concentra-
tion of H2O2 (Hx, where the subscript is the concentration of hydrogen peroxide used in mM).
Immunoblots of lysates were probed with the antibodies indicated. Results are representative
of two independent experiments.
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phosphorylation by 57% and 25% respectively, whereas PKCα knockdown had no effect (fig-

ure 4.21, see figure 4.17 for representative blots). In contrast, none of the PKC siRNAs tested

significantly reduced VEGF-stimulated phosphorylation at S910, although the mean reduction by

the PKCε siRNA was 37%. A second, distinct siRNA targeted against PKCδ reduced VEGF-

stimulated PKD phosphorylation at S738/742 to a similar degree to the original PKCδ siRNA

(figure 4.22).

4.4.4 Importance of PKD in VEGF-induced Hsp27 phosphorylation

As VEGF stimulates PKD activation loop phosphorylation via PKC, and PKC is involved in the

VEGF-induced SB203580-resistant phosphorylation of Hsp27 at S82, PKD is a potential medi-

ator of VEGF-stimulated phosphorylation of S82. The importance of PKD in VEGF-stimulated

phosphorylation was assessed using siRNA-mediated knockdown. Both PKD1 and PKD2 pro-

tein were detected in HUVECs by western blotting, and so both isoforms were examined. As

the PKD2 siRNA reduced Hsp27 expression by a mean of 25%, densitometry results obtained

with phospho-specific Hsp27 antibodies were expressed as a ratio of the total Hsp27 protein levels

obtained using that particular siRNA.

PKD2 knockdown reduced VEGF-stimulated S82 phosphorylation occurring in the absence and

presence of SB203580 by 34% and 70% respectively when compared to the inhibitor-matched con-

trol siRNA (figure 4.23). While tending to be lower than that seen with the control siRNA, PKD1

knockdown did not significantly affect VEGF-induced S82 phosphorylation. Neither PKD siRNA

affected VEGF-stimulated phosphorylation of Hsp27 at S15 or S78 in the absence of SB203580,

and phosphorylation at these residues in the presence of SB203580 was too low to quantify. Ex-

pression of p38 MAPK and MAPKAPK2 was not affected by either PKD siRNA.

Use of the PKD siRNAs also helped to clarify the specificity of the PKD antibodies used in this

study. The total PKD antibody, expected to be specific for PKD1 (personal communication with

Cell Signalling Technology), recognised two bands of approximately 115 kDa, the upper of which
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Figure 4.21: Effect of PKC siRNAs on VEGF-induced PKD phosphorylation
Quantification of the effects of PKC siRNAs on VEGF-stimulated PKD phosphorylation,
with results derived as described in figure 4.17. HUVECs were incubated for 48 h with
200 nM of a non-targeting control siRNA (Control), or siRNAs targeting the indicated PKC
isoform, and then treated for 15 mins with 25 ng/ml VEGF. Lysates were blotted and probed
with phospho-specific antibodies to PKD phosphorylated at S738/742, or S910. The PKD
residue represented is given in the upper right corner of each graph. Data is presented as
mean signal obtained from the blot ± SEM, and the numbers of independent experiments
represented are: S738/742, 8; S910, 4. Statistical analysis was via one-way ANOVA with
Bonferroni’s test for multiple pair-wise comparisons. * p<0.05 compared to control siRNA,
** p<0.001 compared to control siRNA. Mean knockdown of target protein achieved by the
siRNAs: PKCα 82%, PKCδ 87%, PKCε 77%.
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Figure 4.22: Two different PKCδ siRNAs reduce VEGF-stimulated phosphorylation of
PKD
HUVECs were incubated with 200 nM siRNA for 48 h to reduce specific PKC isoforms, and
then treated for 15 mins with 25 ng/ml VEGF (V) or no addition (C). Lysates were blotted and
probed with the indicated antibodies. Ctrl, negative control siRNA; α, ε, siRNAs targeting
these PKC isoforms; δ A, δ B, two different siRNAs targeting PKCδ (δ A is the siRNA used in
all other PKCδ knockdown experiments in this thesis). Results are from a single experiment.
The dotted line indicates that lanes were digitally removed from the blots, but all lanes shown
are from the same blot.

was reduced by the PKD1 siRNA and the lower of which was reduced by the PKD2 siRNA. As the

sequence-predicted molecular weights of unmodified PKD1 and PKD2 are 102 kDa and 97 kDa

respectively, it was deduced that the total PKD antibody cross-reacts with PKD1 and PKD2, with

the upper recognised band being PKD1 and the lower being PKD2. The signal derived from blots

probed with the PKD2 antibody gave a single band at approximately 115 kDa, which was reduced

by the PKD2 siRNA but not by the PKD1 siRNA, indicating that this antibody is likely to be

specific for PKD2.

VEGF-induced phosphorylation of PKD detected by the P-PKD S738/742 antibody was reduced

64% by the PKD1 siRNA and 81% by the PKD2 siRNA, indicating that this antibody recog-

nises both PKD1 and PKD2. In contrast, VEGF-induced phosphorylation of PKD detected by

the P-PKD S910 antibody was reduced 85% by the PKD1 siRNA, but was unaffected by the
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Figure 4.23: Effect of PKD knockdown on VEGF-induced Hsp27 and PKD phosphory-
lation (continued overleaf)
A. HUVECs were incubated for 48 h with 200 nM of a non-targeting siRNA (Control) or
siRNAs targeting PKD1 or PKD2 as indicated. Cells were then pre-treated for 30 mins with
5 µM SB203580 (+SB) or solvent alone (0.1% v/v DMSO, -SB), then further treated for
15 mins with 25 ng/ml VEGF (V) or no addition (C). Cells were lysed, blotted and probed
with the indicated antibodies.

268



Figure 4.23: Effect of PKD knockdown on VEGF-induced Hsp27 and PKD phosphory-
lation (continued)
B. Upper: Quantification of the effect of PKD siRNAs on Hsp27 S82 phosphorylation. Re-
sults are means ± SEM from three independent experiments. In the three experiments anal-
ysed, the PKD2 siRNA reduced Hsp27 expression by a mean of 23%. To correct for this
change in Hsp27 expression, the densitometry-quantified S82 phosphorylation result was di-
vided by the corresponding result for total Hsp27, and the S82 phosphorylation/total Hsp27
ratio was used for graphing and statistical analysis. Statistical analysis via two-way ANOVA
with Bonferroni’s test for multiple pair-wise comparisons. * p<0.01 compared to control
siRNA -SB, ˆ p<0.001 compared to control siRNA +SB. Mean PKD2 knockdown was 90%
compared to control siRNA, PKD1 knockdown was not be assessed due to the lack of a
PKD1-specific antibody and the proximity of the PKD1- and PKD2-reactive bands in the
total PKD blot, but the upper (PKD1) band detected in the total PKD blot was visually con-
firmed as substantially reduced in each experiment.
Lower: Quantification of the effect of PKD siRNAs on PKD phosphorylation. Results are
derived from the same samples used for the Hsp27 S82 data, using only data from cells treated
with VEGF in the absence of SB203580. Statistical analysis via one-way ANOVA with
Bonferroni’s test for multiple pair-wise comparisons. * P-S738/742: p<0.001 for control
siRNA vs PKD1 or PKD2 siRNAs. * P-S910: p<0.01 for control siRNA vs PKD1 siRNA.
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PKD2 siRNA (27% increase, non-significant), indicating that this antibody recognises PKD1 but

not PKD2. These results are unsurprising given the high conservation of residues surrounding

the activation loop phosphorylation sites, but low conservation of residues around the C-terminal

phosphorylation site (figure 1.14).

4.4.5 Effect of siRNAs used in this study on non-target proteins

While siRNAs are designed to specifically reduce expression of a target gene, other genes may also

be affected, complicating results. Recent studies reported that siRNAs targeting PKD2 and PKCε

reduce expression of VEGFR2 (discussed below). To examine the possibility that the siRNAs used

in this study may be affecting expression of other key proteins related to Hsp27 phosphorylation,

the effect of these siRNAs on a variety of targets was examined. The siRNAs targeting PKD1,

PKD2 and PKCε all reduced VEGFR2 expression (figure 4.24). Other siRNAs may have also

slightly affected expression of some other proteins examined, although the consistency of these

effects was not examined further.

4.4.6 Protein kinase D2 is able to directly phosphorylate Hsp27 at S82 only

Results from PKD siRNAs indicated that PKD2 is involved in VEGF-stimulated phosphoryla-

tion of Hsp27 S82 but not S15 or S78. Although data using phospho-specific antibodies to PKD

showed that VEGF stimulated PKD phosphorylation, the effect of VEGF on PKD kinase activity

was not examined using these experiments. To study the ability of VEGF to activate PKD2, and

determine whether PKD2 is able to directly phosphorylate Hsp27 at S82, PKD2 was immunopre-

cipitated from VEGF-treated cells and mixed with recombinant Hsp27-GST fusion protein in vitro

in an immune complex kinase assay.

PKD2 immunoprecipitated from HUVECs treated for 15 mins with VEGF phosphorylated recom-

binant Hsp27 at S82 in vitro in a time-dependent manner (figure 4.25). PKD2 immunoprecipitated

from cells not treated with VEGF also phosphorylated Hsp27 at S82 but the rate of phosphory-
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Figure 4.24: Effects of siRNAs on expression of selected proteins
A. HUVECs were treated for 48 h with 200 nM of the indicated siRNA, and were then lysed,
blotted and probed with the indicated antibodies. siRNA abbreviations are: -A, Ambion
non-targeting siRNA (control for all siRNAs used in this experiment except p38α and MAP-
KAPK2); 27, Hsp27 siRNA; -D, Dharmacon non-targeting siRNA (control for p38α and
MAPKAPK2 siRNAs); 38, p38α siRNA. Data is from a single experiment, PKCε effect on
VEGFR2 is representative of two independent experiments.
B. HUVECs were treated for 48 h with 200 nM siRNA targeting PKD1 (1), PKD2 (2), or a
non-targeting control siRNA (C), and were then lysed, blotted and probed with the indicated
antibodies. The total PKD doublet is indicated with an arrow. Samples from four indepen-
dent experiments (A–D) are shown on the same blot for comparison. Insufficient lysate was
available to run the total PKD blot for the date C, control siRNA sample – this lane is empty.
This sample was blotted for total ERK and VEGFR2, as indicated.
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lation was lower. Immunoprecipitated PKD2 did not phosphorylate Hsp27 at either S15 or S78.

These data indicate PKD2 is able to phosphorylate Hsp27 at S82 in vitro, and that the Hsp27-

phosphorylating activity of PKD2 is increased after VEGF stimulation. Similar experiments were

not performed for PKD1 due to the lack of a PKD1-specific antibody.

Figure 4.25: Protein kinase D2 can phosphorylate Hsp27 in a VEGF-dependent manner
Confluent HUVECs were treated for 15 mins with either 25 ng/ml VEGF (V) or no addition
(C). Cells were lysed and PKD2 was immunoprecipitated and incubated with Hsp27-GST
and ATP in an immune complex kinase reaction. At the indicated times, an aliquot of the
reaction mixture was removed and the reaction was quenched. Aliquots were subjected to
immunoblotting with the indicated antibodies. B, beads only control (no immunoprecipitating
antibody); I, control non-targeting IgG antibody. The band detected by the P-S15 antibody
does not increase with ATP incubation time, and therefore does not apparently represent
Hsp27 S15 phosphorylation by immunoprecipitated PKD. Results are representative of two
independent experiments.

4.5 PKC mediates VEGF-stimulated Hsp27 S82 phosphorylation in

Human Coronary Artery Endothelial Cells

The role of PKC in VEGF-stimulated Hsp27 phosphorylation was also examined in Human Coro-

nary Artery Endothelial Cells (HCAEC). In initial studies, VEGF stimulated phosphorylation of

Hsp27 and PKD in a concentration-dependent manner (figure 4.26A). Treatment of HCAEC with

25 ng/ml VEGF for 15 mins induced phosphorylation of Hsp27 at S15, S78 and S82; PKD at
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S738/742 and S910; ERK1/2; and p38 MAPK, and these phosphorylations were inhibited by the

VEGFR2 kinase inhibitor SU5614 (figure 4.26B). The VEGFR1 ligand PlGF1 did not increase

phosphorylation of any molecule examined.

Figure 4.26: Initial characterisation of VEGF-induced phosphorylation of Hsp27 and
PKD in human coronary artery endothelial cells
A. Effect of different VEGF concentrations on phosphorylation of Hsp27 and PKD. Serum-
deprived, confluent HCAEC were incubated with the indicated concentrations of VEGF for
15 mins, before subsequent lysis and immunoblotting with the indicated antibodies. Results
are from a single experiment.
B. Effect of the VEGF receptor tyrosine kinase inhibitor SU5614 on phosphorylation of
Hsp27 and PKD. Serum-deprived, confluent HCAEC were incubated for 30 mins in the pres-
ence of 5 µM SU5614 or solvent alone (0.1% DMSO, control). Cells were then treated for
15 mins with no addition (C), 25 ng/ml VEGF (V) or 25 ng/ml PlGF1 (Pl) before lysis and
blotting with the indicated antibodies. Results are from a single experiment.

The effects of inhibition of p38 MAPK and PKC on VEGF-induced phosphorylation of Hsp27

and p38 MAPK in HCAEC are shown in figure 4.27. GF109203X strongly reduced PKD phos-

phorylation at S738/742 and partially inhibited PKD phosphorylation at S910, whereas Gö6976

and SB203580 had no apparent effect on PKD phosphorylation.

SB203580 abrogated TNFα-stimulated phosphorylation of Hsp27 at S15, S78 and S82 and VEGF-

induced phosphorylation at S15 and S78, but had little effect on VEGF-stimulated S82 phos-
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phorylation. An SB203580/GF109203X combination dramatically reduced VEGF-stimulated

Hsp27 S82 phosphorylation, and an SB203580/Gö6976 combination also strongly reduced VEGF-

stimulated S82 phosphorylation, but to a lesser extent than the SB203580/GF109203X combina-

tion.

In summary, in HCAEC similar to the results from HUVECs, VEGF-induced Hsp27 S15 and S78

phosphorylation is blocked by p38 MAPK inhibition, whereas S82 phosphorylation is resistant to

p38 MAPK inhibition, and a PKC-mediated pathway is likely to be responsible for p38 MAPK-

independent S82 phosphorylation.

Figure 4.27: Effect of p38 and PKC inhibition on VEGF-stimulated Hsp27 phosphory-
lation in HCAEC
HCAECs were pre-incubated with solvent alone (0.1% v/v DMSO, Control), 5 µM SB203580
(SB), 3 µM GF109203X (GF), 1 µM Gö6976 (Go), or the indicated combinations of in-
hibitors. Cells were then treated for a further 15 mins treatment with 25 ng/ml VEGF (V),
100 U/ml TNFα (T), or no addition (C) and lysed. Lysates were analysed by western blotting
with the indicated antibodies. Results are representative of two independent experiments.
The dotted line indicated that lanes were digitally removed from the blot, but the remaining
lanes were from the same membrane. The gap between lanes indicate that samples were from
different membranes (due to a lack of available lanes), but were from the same experiment.
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4.6 Discussion

As reported in chapter 3, alteration in the 2-D spot pattern of Hsp27 was a major observable change

induced in the HUVEC proteome by 10 mins VEGF treatment, consistent with VEGF stimulating

phosphorylation of Hsp27. Hsp27 is a highly abundant protein in HUVECs, and changes in a num-

ber of other early signalling proteins known to be phosphorylated in response to VEGF treatment

(e.g. ERK, PI-3-K) were not detected on silver stained gels (section 3.2).

At the outset of this thesis, VEGF-stimulated phosphorylation of Hsp27 in endothelial cells had

been reported to occur via a p38 MAPK/MAPKAPK2-mediated pathway (Rousseau et al. 1997),

similar to the Hsp27-phosphorylating pathway activated by ‘stress’ stimuli such as H2O2, TNFα,

IL-1, osmotic stress, anisomycin and others. In this chapter it has been shown that VEGF-

stimulated Hsp27 S82 phosphorylation occurs via a PKC- and PKD-dependent pathway and is

relatively independent of p38 MAPK, differing from the findings of Rousseau et al. (1997). In

contrast, a p38 MAPK-dependent pathway is responsible for VEGF-stimulated phosphorylation

of Hsp27 at S15 and S78, and for TNFα- and H2O2-stimulated phosphorylation at S15, S78 and

S82. VEGF also stimulates a PKC-dependent, p38 MAPK-independent pathway to phosphorylate

Hsp27 at S82 in HCAEC, indicating that this pathway is not restricted to HUVECs.

4.6.1 The major Hsp27 form produced after VEGF stimulation is phospho-S82

Hsp27

Blots with phospho-specific antibodies indicated that 15 mins VEGF treatment of HUVECs causes

Hsp27 phosphorylation at S15, S78 and S82. Western blots of 2-D gels showed that Hsp27 occurs

as two major 2-D-resolvable forms in VEGF-stimulated endothelial cells. Alkaline phosphatase

treatment indicated that the basic form is likely to be unphosphorylated whereas the acidic form

is phosphorylated. Analysis of Hsp27 by blotting with phospho-specific antibodies or by tandem

mass spectrometry indicated that the acidic form is phosphorylated at S82, but not at S15 or S78.
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Furthermore, 2-D western blot analysis of SB203580-treated HUVECs indicated that the relative

amount of Hsp27 present in the acidic (phosphorylated) form was not altered by p38 MAPK in-

hibition, which prevents S15 and S78 phosphorylation but not S82 phosphorylation (discussed

below), suggesting that the majority of the VEGF-increased acidic form of Hsp27 is phosphory-

lated at S82 only. Detection of unphosphorylated S82-containing peptides from the acidic Hsp27

form may have been generated by spontaneous dephosphorylation of an originally phosphorylated

peptide, known to occur during MS procedures, or may have been due to the presence of Hsp27

phosphorylated at another residue.

Overall, it appears that the major new form of Hsp27 produced after 15 mins VEGF stimulation is

mono-phosphorylated at S82, with around half of Hsp27 apparently remaining unphosphorylated.

While this pattern may be characteristic of the treatment times employed in these experiments,

time course studies showed that VEGF-stimulated Hsp27 phosphorylation at S15 and S78 did not

alter substantially between 10–20 mins VEGF treatment and was reduced outside these times, sug-

gesting that 15 mins VEGF treatment should induce approximately maximal phosphorylation at all

three Hsp27 residues. Other studies have shown that anisomycin, heat shock and lipopolysaccha-

ride cause much larger changes in Hsp27 phosphorylation, with almost all Hsp27 converted into

phosphorylated forms (Saklatvala et al. 1991; Landry et al. 1992; Kotlyarov et al. 1999). VEGF

may activate p38 MAPK/MAPKAPK2 to a lesser extent when compared to these stimuli. In agree-

ment with this work, data from this thesis showed that p38 MAPK is more highly phosphorylated

after anisomycin treatment than after VEGF treatment, which is reflected in greater anisomycin-

stimulated phosphosphorylation of Hsp27 at S15 and S78 than was induced by VEGF.

Interestingly, the major spot detected by the P-S78 antibody was more acidic than the major spot

detected by the P-S82 antibody, suggesting that P-S78-containing Hsp27 is multiply phosphory-

lated whereas P-S82-containing Hsp27 contains fewer phosphate groups (probably one, at S82).

The absence of Hsp27 mono-phosphorylated at S78 may be due to a requirement for Hsp27 to

be phosphorylated at S82 before S78 phosphorylation can occur, possibly due to opening up of
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dimerised Hsp27 to allow enzyme access to other residues. Alternatively, the particular phos-

phorylation pattern observed may be characteristic of the VEGF treatment time used for the 2-D

studies (15 mins), with shorter or longer treatment times altering the degree of phosphorylation on

S15, S78 and S82.

4.6.2 VEGF stimulates a p38/MAPKAPK2-independent pathway to phosphoryla-

tion Hsp27 at S82

A number of groups have reported inhibition of Hsp27 phosphorylation in response to stress stim-

uli, such as TNFα and H2O2, by inhibition of the p38 MAPK/MAPKAPK2 pathway (discussed in

section 1.5.3), and in this chapter the p38 MAPK inhibitor SB203580 abrogated Hsp27 phosphory-

lation at S15, S78 and S82 induced by these stimuli. While SB203580 prevented VEGF-stimulated

phosphorylation of S15 and S78 in HUVECs, it was surprising that it showed relatively little effect

on S82 phosphorylation. This is in contrast to the findings of Rousseau et al. (1997), also working

in HUVECs, who reported that SB203580 largely prevented VEGF-stimulated incorporation of

phosphate into Hsp27.

In this study SB202190, structurally related to SB203580, displayed a similar pattern of activity to

SB203580. Additionally, siRNA-mediated knockdown of either p38α or MAPKAPK2 inhibited

VEGF-stimulated phosphorylation of S15 and S78, and TNFα-stimulated phosphorylation at all

three phosphorylation sites, but had no effect on VEGF-stimulated S82 phosphorylation.

In vitro, MAPKAPK2 phosphorylates S82 at a far higher rate than S78 or S15 based on the incor-

poration of radioactive phosphate into Hsp27 in an immune complex kinase assay (Stokoe et al.

1992b), and it is possible that the dose of SB203580 used in this study (5 µM) is too low to inhibit

p38 sufficiently to prevent S82 phosphorylation. However, the phosphorylation of S82 by H2O2,

TNFα and IL-1β (which stimulate Hsp27 S82 phosphorylation to a similar degree to VEGF) is

almost completely blocked by SB203580. Indeed phosphorylation of Hsp27 by the protein synthe-

sis anisomycin (10 µM), which induces phosphorylation of p38 MAPK and Hsp27 S78 to a much
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greater extent than VEGF, and therefore is likely a stronger activator of p38 MAPK, is completely

inhibited by 5 µM SB203580. SB203580 doses up to 25 µM and longer pre-incubation times with

this inhibitor could not further reduce VEGF-stimulated S82 phosphorylation, suggesting its lack

of effect is not due to insufficient dose. Furthermore, 1 µM SB203580 was sufficient to fully pre-

vent the VEGF-induced phosphorylation of the downstream effector of p38 MAPK, MAPKAPK2

(the upper band in figure 4.9A), suggesting that the dose of SB203580 employed in these experi-

ments (5 µM) is likely to be sufficient to prevent p38-mediated activation of MAPKAPK2. These

data also suggest that MAPKAPK2 is unlikely to be involved in the p38-independent phosphory-

lation of S82. Overall, doses of SB203580 sufficient to inhibit MAPKAPK2 phosphorylation and

Hsp27 phosphorylation by TNFα, H2O2 and IL-1β only partially reduce VEGF-stimulated Hsp27

S82 phosphorylation, indicating that VEGF activates a p38/MAPKAPK2-independent pathway

which causes phosphorylation of Hsp27 at S82.

A number of isoforms of p38 MAPK and MAPKAPK2 exist (discussed in section 1.6.1).

SB203580 is an inhibitor of the α and β isoforms of p38, but γ and δ forms of this protein also

exist and a lack of effect with this inhibitor does not preclude the involvement of these additional

forms. Indeed, p38δ mRNA is present in HUVECs, and overexpressed p38δ was activated by

VEGF (Yashima et al. 2001). However, the same authors showed that p38δ appeared to be acti-

vated more strongly by TNFα than by VEGF, as determined by an immune complex kinase assay

of the transcription factor ATF2. As TNFα-induced Hsp27 phosphorylation can be completely

blocked by SB203580, this suggests that p38δ may not be important in Hsp27 phosphorylation

in HUVECs. Indeed, p38α appeared to be the major p38 MAPK isoform activated by VEGF

stimulation of HUVECs as siRNA-mediated p38α knockdown abrogated p38 MAPK activation

loop phosphorylation as detected by an antibody which cross-reacts with all p38 MAPK isoforms.

MAPKAPK3 may be involved in Hsp27 phosphorylation, but MAPKAPK2 and MAPKAPK3

are reported to be very similar, and the activity of both MAPKAPK2 and MAPKAPK3 can be

prevented by SB203580 in response to a variety of stress stimuli (Clifton et al. 1996).
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TNFα-stimulated phosphorylation of Hsp27 occurred via p38α and MAPKAPK2, as siRNAs

against these proteins reduced TNFα-stimulated Hsp27 phosphorylation, and this is in agree-

ment with the isoforms previously reported to be involved in Hsp27 phosphorylation (Adams

et al. 2000; Ronkina et al. 2007). Indeed, phosphate incorporation into Hsp27 induced by UV,

anisomycin and H2O2 was completely absent in p38α-null cardiomyocytes (Adams et al. 2000),

indicating that p38α is essential for Hsp27 phosphorylation induced by these stimuli and other

enzymes are unable to compensate. In contrast, the phorbol ester PMA stimulated Hsp27 phos-

phorylation in p38α-null cardiomyocytes, clearly indicating that a p38α-independent pathway,

which can be activated by PMA but not by ‘stress’ stimuli exists, at least in cardiomyocytes.

Expression of p38α and MAPKAPK2 appeared to be interdependent. p38 MAPK knockdown

significantly reduced MAPKAPK2 expression, and two different MAPKAPK2 siRNAs strongly

reduced p38α expression, suggesting this is unlikely to be due to an off-target effect of the MAP-

KAPK2 siRNA. The co-regulation of p38 MAPK and MAPKAPK2 protein expression has been

previously reported (Sudo et al. 2005; Kotlyarov et al. 2002, discussed in section 1.6.1.1).

4.6.3 PKC and PKD are involved in VEGF-stimulated, p38 independent phospho-

rylation of Hsp27 at S82

4.6.3.1 PKC inhibitors

Despite the known ability of phorbol esters and other PKC activators to induce Hsp27 phospho-

rylation, the involvement of PKC in Hsp27 phosphorylation appears to have been largely ignored

after two findings: phorbol ester-induced PKC downregulation was shown to be ineffective in

preventing Hsp27 phosphorylation induced by various stimuli including TNFα and, in HUVECs,

interleukin-1 (Saklatvala et al. 1991), and MAPKAPK2 was shown to phosphorylate Hsp27 at a

greater rate than PKC in vitro (Gaestel et al. 1991; Stokoe et al. 1992b).

The ability of PMA to stimulate Hsp27 phosphorylation in p38α-null cardiomyocytes (Adams
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et al. 2000) suggested that PKC may mediate a p38-independent Hsp27-phosphorylating pathway.

In agreement with this interpretation, in this chapter PMA stimulated Hsp27 S82 phosphorylation

which was not prevented by SB203580. Interestingly, PMA only slightly increased phosphoryla-

tion of Hsp27 at S15 and S78 and had little effect on p38 MAPK activation loop phosphorylation,

suggesting that the PMA-activated pathway stimulated Hsp27 phosphorylation at S82 specifically.

In this chapter, an inhibitor screen identified the broad specificity PKC inhibitor GF109203X as

able to reduce VEGF-induced phosphorylation of Hsp27 at S82. When cells were pre-incubated

with a combination of SB203580 and GF109203X, VEGF-induced S82 phosphorylation was al-

most completely blocked, indicating the additional pathway to phosphorylate Hsp27 involves

PKC. The PKC involved in VEGF-stimulated S82 phosphorylation is unlikely to be an atypi-

cal isoform, as long-term PMA treatment (which does not downregulate the non-phorbol ester

binding atypical isoforms) prevented phosphorylation of S82 induced by VEGF, but did not af-

fect the ability of TNFα to cause phosphorylation of this residue. An SB203580/GF109203X

combination was more effective than SB203580 in combination with the inhibitor of conventional

PKC isoforms, Gö6976. Higher doses of both compound caused a greater degree of inhibition of

VEGF-stimulated S82 phosphorylation, although whether this was due to more complete inhibi-

tion of target PKC isoforms or inhibition of other enzymes was not clear. However the standard

concentrations used in this chapter (3 µM GF109203X, 1 µM Gö6976) were comparable to those

used in published literature and identical to those previously used to treat HUVECs in this labora-

tory (Gliki et al. 2001).

At the standard doses used, GF109203X and Gö6976 did not affect p38 MAPK activation loop

phosphorylation, nor did they reduce Hsp27 phosphorylation stimulated by TNFα or H2O2, indi-

cating that they do not affect the p38/MAPKAPK2 pathway. However, long-term PMA treatment

did reduce VEGF-stimulated phosphorylation at S15. This inhibition of VEGF-stimulated S15

phosphorylation after long-term PMA treatment may not be occurring via reductions in PKC ac-

tivity, as PKC inhibition by GF109203X did not reduce S15 phosphorylation, and short-term PMA

280



treatments did not cause an increase in S15 phosphorylation. In addition to PKCs, other proteins

also contain C1 domains and so are able to bind to and be influenced by phorbol esters (Colon-

Gonzalez and Kazanietz 2006), leading to non-PKC effects of PMA administration.

A C1 domain-containing proteins may regulate the activity or expression of components of the p38

pathway. However, VEGF-stimulated S15 phosphorylation is more affected that TNFα-stimulated

phosphorylation, suggesting a component upstream of p38 regulated by VEGF but not TNFα may

be important. SiRNA-mediated downregulation of PKCε has recently been reported to reduce

VEGFR2 expression and so VEGF-stimulated signalling (Rask-Madsen and King 2008, discussed

below), and PMA-stimulated downregulation of PKCε and so VEGFR2 (or other VEGF signalling

components) may contribute to the prevention of VEGF-stimulated Hsp27 phosphorylation by

previous long-term PMA treatments.

Despite the involvement of PKC in VEGF-stimulated Hsp27 S82 phosphorylation, a p38 MAPK-

dependent pathway also apparently contributes to phosphorylation of this residue. 10 µM

GF109203X, the maximum dose used without a noticeable effect on VEGF-stimulated p38 ac-

tivation loop phosphorylation, inhibited Hsp27 S82 phosphorylation to a lesser extent than an

SB203580/GF109203X combination. Additionally, SB203580 and SB202190 consistently re-

duced VEGF-stimulated phosphorylation at S82, although the extent of this reduction was vari-

able between experiments but always much lower than that the reduction observed with TNFα or

H2O2-induced phosphorylation and was apparently little increased at higher inhibitor concentra-

tions. The involvement of p38 MAPK in VEGF-stimulated Hsp27 S82 phosphorylation is unsur-

prising given that VEGF activates both PKCs and p38 MAPK, and the ability of p38 MAPK to

phosphorylate S82.

4.6.3.2 PKC siRNAs

SiRNA-mediated downregulation of PKCα, δ or ε affected VEGF-stimulated Hsp27 phosphory-

lation. The results from these experiments are difficult to interpret, due to the effect of siRNAs
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on other proteins including VEGFR2 and other PKC isoforms – knockdown of any of the PKCs

significantly affected the expression of other PKC isoforms.

After almost all the experiments described in this chapter had been performed, Rask-Madsen and

King (2008) reported that knockdown of PKCε by two different siRNAs (both different in se-

quence to the PKCε siRNA used in this thesis) reduced VEGFR2 expression and VEGF-stimulated

phosphorylation of VEGFR2, ERK and Akt, and VEGF-stimulated DNA synthesis in BAECs. My

subsequent experiments indicated that the PKCε siRNA used in this study also strongly reduced

VEGFR2 expression, complicating the interpretation of the effects of the PKCε siRNA on VEGF-

stimulated responses.

Rask-Madsen and King (2008) also reported that separate knockdown of PKCs α, δ and ε did not

affect the expression of the other two PKC isoforms, and it is possible that the effects of PKC

knockdown on the expression of other PKCs observed in this thesis were specific to the particular

siRNAs used (e.g. via direct effects on non-target enzymes).

The influence of the PKCα siRNA in particular varied depending on whether or not the phospho-

Hsp27 signal was corrected to total Hsp27 protein levels, which were apparently increased by the

PKCα siRNA, although total protein normalisation before blotting was not performed (loading

control total ERK appeared similar across all siRNAs). Hsp27 performs multiple cellular roles in-

cluding a chaperone function, and is likely to be present in large quantities in the cytoplasm in case

of need. The majority of Hsp27 in the cell may not have any signalling function, and so correc-

tion to total Hsp27 levels may be misleading, with the absolute quantity of phosphorylated Hsp27

being important for downstream signalling and/or cellular activity rather than the proportion of

cellular Hsp27 phosphorylated.

The results with the PKCδ siRNA are somewhat surprising given that PKCδ is apparently re-

sponsible for PKD activation (discussed below) – a reduction in PKCδ protein levels sufficient

to reduce PKD activation after VEGF treatment apparently had only a minor effect on VEGF-

stimulated Hsp27 S82 phosphorylation, but a greater effect on VEGF-stimulated phosphorylation
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of Hsp27 at S15 and S78. S15 and S78 do not conform to the believed PKD consensus phos-

phorylation site motif (Doppler et al. 2005), and were not detectably phosphorylated by immuno-

precipitated PKD2 in an in vitro kinase assay. It is likely that the involvement of PKCα and/or

PKCδ in phosphorylation of these sites is independent of PKD, either via direct phosphorylation

of Hsp27 or by regulation of another Hsp27-phosphorylating kinase or an Hsp27 phosphatase.

The effect of siRNA-mediated PKC isoform knockdown on p38 MAPK phosphorylation was not

examined in detail, but various doses of the PKC inhibitors GF109203X up to 15 µM and Gö6976

up to 5 µM apparently had little effect on p38 MAPK phosphorylation. However, inhibition of

VEGF-stimulated p38 MAPK activation loop phosphorylation by GF109203X has been reported

previously (Yashima et al. 2001). PKCs may be involved in p38 MAPK-independent regulation of

MAPKAPK2 activity, or may directly phosphorylate Hsp27. Direct phosphorylation of Hsp25 at

S15 and S86 by PKCδ in an in vitro kinase assay has previously been reported (Lee et al. 2005).

The lack of effect of PKCδ knockdown on VEGF-stimulated Hsp27 S82 phosphorylation may

be related to the knockdown rather than knockout characteristics of siRNA-mediated protein re-

duction. For an effect to be observed, knockdown must reduce the quantity of an enzyme suf-

ficiently for its activity to become rate limiting for the pathway. For enzymes controlled post-

transcriptionally, e.g. by phosphorylation, this may be difficult to achieve as a large pool of enzyme

may be present in the cell with activation of only a proportion of the total cellular pool required

to transmit a maximal signal to downstream targets. A partial reduction in PKCδ protein levels

may have only a minor effect on the VEGF-induced increase in PKCδ enzyme activity, as this

enzyme is subject to post-transcriptional control mechanisms (e.g. activation by diacylglycerol)

rather than pure transcriptional control.

Thus although PKCδ was reported to mediate VEGF-stimulated ERK phosphorylation (Gliki et al.

2001), in my studies PKCδ knockdown did not noticeably affect VEGF-stimulated ERK phospho-

rylation, perhaps due to spare capacity in the system and insufficient knockdown, or compensation

by other enzymes.
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Other potential reasons for the lack of effect of PKCδ knockdown on VEGF-stimulated S82 phos-

phorylation include compensation by the p38 MAPK/MAPKAPK2 pathway and compensation of

by other PKC enzymes. In addition to the analysed effects of PKCα, PKCδ and PKCε, western

blotting indicated that PKCζ is expressed in the HUVECs used in this study. Previous work on

HUVECs using the same cell source and culture conditions in this study also detected PKCζ but

did not detect translocation of this isoform in response to VEGF treatment (Gliki et al. 2001).

PKCs α, β, δ, ε, η, θ, and ζ have been detected in HUVECs by western blotting (Yamamura et al.

1996).

ERK and Akt are important kinases in endothelial cells, and their effects were examined in initial

inhibitor screens. Akt has been reported to phosphorylate Hsp27 in vitro (Rane et al. 2003), with

VEGF-stimulated Akt activation occurring via activation of PI-3-K (Gerber et al. 1998b). The PI-

3-K inhibitors wortmannin (100 nM) and LY294002 (50 µM), which prevent VEGF-stimulated

Akt activation, had no effect on VEGF-stimulated Hsp27 S82 phosphorylation, when used either

alone or in combination with SB203580. The MEK1/2 inhibitor U0126 (10 µM), which com-

pletely prevents VEGF-stimulated phosphorylation of ERK1/2, was also ineffective alone or in

combination with SB203580. Thus VEGF-stimulated Hsp27 phosphorylation is apparently inde-

pendent of ERK and Akt.

4.6.3.3 PKD

While the work in this thesis was under way, a purified recombinant preparation of PKD (the exact

PKD form used was unclear) was shown to phosphorylate Hsp27 at S82 but not S15 in an in vitro

kinase assay (Doppler et al. 2005). Activation of PKD has been reported to involve transphospho-

rylation of its activation loop serine residues (S738 and S742 in human PKD1) by upstream novel

PKC isoforms (Waldron et al. 2001), leading to autophosphorylation at a C-terminal phosphory-

lation site (S910 in human PKD1) (Matthews et al. 1999).

The PKD family contains three enzymes, PKD1, PKD2 and PKD3. siRNA-mediated knockdown
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of PKD2 reduced VEGF-stimulated Hsp27 S82 phosphorylation, indicating the involvement of

PKD. In the presence of SB203580, PKD2 knockdown further reduced VEGF-stimulated S82

phosphorylation, indicating that PKD2-mediated phosphorylation of S82 occurs via a p38 MAPK-

independent pathway.

PKD1 knockdown did not cause a statistically significant reduction in VEGF-stimulated Hsp27

S82 phosphorylation in my hands, but a co-worker in the laboratory (Dr. Ian Evans) did observe a

reduction albeit to a lesser extent than for PKD2 knockdown (data not shown, reported in Evans

et al. 2008), and data presented in this chapter shows a trend for a reduction in S82 phospho-

rylation. Possible reasons for this discrepancy between investigators are variations in the degree

of PKD1 knockdown obtained (which was not measured due to the blotting antibody detecting a

doublet) and variation in the amount of PKD1 versus PKD2 expression in the specific cells used,

through differing cell batches or culture conditions such as degree of confluence or ‘completeness’

of serum withdrawal before treatment. Expression of PKD1 and PKD2 is apparently similar based

on blotting with the total PKD antibody, but the recognition of the two isoforms by the antibody

may vary.

The greater effect observed with PKD2 knockdown rather than PKD1 knockdown could be caused

by a number of factors – better knockdown of PKD2 than PKD1, better ability of PKD2 to compen-

sate for PKD1 loss than vice versa (or better ability of another enzyme e.g. PKD3 to compensate

for PKD1 loss than PKD2 loss), or a functional distinction between PKDs giving a greater quanti-

tative role for PKD2 in S82 phosphorylation, e.g. more PKD2 than PKD1 is activated in response

to VEGF, or PKD2 but not PKD1 may associate with a scaffolding molecule which promotes

PKD2/Hsp27 interactions.

Recently two papers by the same group reported that PKD2 knockdown by two different siRNAs

reduced VEGFR2 expression in HUVECs, whereas PKD1 knockdown had no effect (Hao et al.

2009a,b). The siRNA sequences used in these studies were not reported, but were from a different

manufacturer and so may be distinct to that used in this thesis. While my experiments indicated
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that PKD2 knockdown did indeed reduce VEGFR2 expression, the PKD1 siRNA caused a far

greater reduction in VEGFR2 expression. As others observed no effect of PKD1 knockdown (Hao

et al. 2009a,b), it is possible that the effect is specific to the siRNA sequence used in this study.

The effects of PKD siRNAs on VEGFR2 expression may contribute to the effects of these siRNAs

on VEGF-stimulated Hsp27 S82 phosphorylation, making it difficult to determine the contribu-

tion of PKD to VEGF-stimulated cellular signalling. However, the PKD1 siRNA had little effect

on VEGF-stimulated Hsp27 phosphorylation despite a marked reduction in VEGFR2 expression.

While this lack of effect is somewhat surprising, explanations are possible. Perhaps activation

of only a small percentage of VEGF receptors is sufficient for maximal VEGF-stimulated Hsp27

phosphorylation, or becomes sufficient through some compensatory signalling or amplification

mechanism when VEGFR2 expression is low.

The PKD family also contains PKD3, reported to be ubiquitously expressed, of a similar size to the

other PKDs, activated by phorbol esters and predicted to be recognised by the S738/742 antibody

(PKD3 does not have a serine residue corresponding to S910 in PKD1). Overexpression of PKD3

rescued phorbol ester-stimulated Hsp27 S82 phosphorylation in PKD-null cells (Liu et al. 2007,

discussed below). Although I did not examine PKD3 in this thesis, a co-worker (Dr. Ian Evans)

detected PKD3 in HUVECs via western blotting (reported in Evans et al. 2008), and another group

has also reported that PKD3 is expressed in HUVECs (Hao et al. 2009a). Further investigation

into the role of this isoform in endothelial cells, and the possibility that it also phosphorylates

Hsp27, is warranted.

In the presence of both PKD2 siRNA and SB203580, 30% of VEGF-stimulated S82 phosphoryla-

tion was not prevented, substantially more than that not prevented by an SB203580/GF109203X

combination. This may be due to incomplete knockdown of PKD2, compensation of PKD2 func-

tion by another PKD isoform such as PKD1, or the existence of a PKC-mediated but PKD indepen-

dent pathway such as direct phosphorylation of Hsp27 by a PKC isoform. Incomplete inhibition

of p38 MAPK is possible but less likely given the effectiveness of SB203580 against S15 and S78,
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and S82 phosphorylation induced by other stimuli.

Originally characterised as an inhibitor of novel PKC isoforms, Gö6976 has been reported to in-

hibit mouse PKD/PKD1 kinase activity (Gschwendt et al. 1996; Rybin et al. 2009), and has been

used as a human PKD1 inhibitor in endothelial cells (Hao et al. 2009a). However it is not clear

whether Gö6976 inhibits other PKD isoforms in addition to PKD1 such as PKD2 and PKD3.

An SB203580/Gö6976 combination was less effective in inhibiting VEGF-stimulated Hsp27 S82

phosphorylation than an SB203580/GF109203X combination, possibly due to incomplete PKD

inhibition by Gö6976 (e.g. due to insufficient concentration or lack of PKD2/PKD3 inhibition

by Gö6976) but more complete inhibition of upstream PKCs by GF109203X. However, 1 µM

Gö6976 strongly inhibited reported PKD-dependent events in ECs, including production of some

inflammatory cytokines and phosphorylation of various proteins including Hsp27 (at S82), and

histone deacetylases (HDACs) 5 and 7, indicating that 1 µM Gö6976 is likely to be sufficient to

inhibit PKD in ECs (Hao et al. 2009a; Ha et al. 2008a,b). A PKC-dependent but PKD-independent

pathway for VEGF-stimulated Hsp27 S82 phosphorylation, such as direct phosphorylation of

Hsp27 by non-classical PKCs, may also exist and contribute to the differences in inhibition by

the SB203580/GF109203X and SB203580/Gö6976 combinations.

In this thesis, PKD1 S910 phosphorylation was unaffected by Gö6976 but reduced by

GF109203X, suggesting on the surface that Gö6976 may be present in insufficient dose to in-

hibit PKD1. However, Rybin et al. (2009) have recently re-examined the relationships between

PKD phosphorylation and activity, and their results (discussed below) indicate that considerably

higher doses of Gö6976 are required to inhibit phosphorylation of S910 than are required to inhibit

phosphorylation of exogenous substrates. Therefore, lack of inhibition of PKD S910 phosphory-

lation does not indicate that Gö6976 is an ineffectual PKD inhibitor. It is likely that PKD1 was

inhibited by the Gö6976 dose used in this study, which was the same dose used by Hao et al.

(2009a) to inhibit PKD1.

While this thesis was in progress, the importance of PKD in Hsp27 S82 phosphorylation was re-
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ported by two other groups (Liu et al. 2007; Yuan and Rozengurt 2007). Phosphorylation of Hsp27

at S15 or S78 was not examined in either study. Liu et al. (2007) generated PKD knockouts of the

B-lymphocyte cell line DT40, which normally expresses PKDs 1 and 3 but not PKD2. Knockout

of both PKD isoforms completely prevented phorbol ester-stimulated Hsp27 S82 phosphorylation,

suggesting that PKC-mediated Hsp27 S82 phosphorylation may occur entirely via PKD isoforms.

Liu et al. (2007) also reported functional redundancy between PKD isoforms – knockout of ei-

ther PKD1 or PKD3 did not fully inhibit Hsp27 S82 phosphorylation, and expression of tagged

PKD3 in PKD1/PKD3 double knockout cells rescued phorbol ester-stimulated S82 phosphory-

lation. Clearly, the situation in human endothelial cells, which express PKD2 and may express

different PKC isoforms to DT40 cells, may be different. Additionally, phorbol ester-stimulated

Hsp27 S82 phosphorylation appeared lower in PKD1-null cells than in wild-type lymphocytes,

although quantification was not reported, suggesting that functional redundancy between PKD

isoforms may not be complete.

Yuan and Rozengurt (2007) described Neurotensin-stimulated phosphorylation of Hsp27 S82 via

a PKC and PKD1/2-dependent pathway in the PANC-1 adenocarcinoma cell line, similar to the

work presented in this chapter. Their paper showed that while Neurotensin-stimulated S82 phos-

phorylation occurred via PKC/PKD, anisomycin-stimulated S82 phosphorylation occurred solely

via p38 MAPK, agreeing with the results presented here showing that different stimuli use dif-

ferent pathways to stimulate Hsp27 S82 phosphorylation. Similar to this study, Yuan and Rozen-

gurt (2007) also showed that siRNA-mediated PKD1 or PKD2 knockdown reduced Hsp27 S82

phosphorylation, with a greater reduction in S82 phosphorylation observed when the p38 MAPK

inhibitor SB202190 was also used. Yuan and Rozengurt (2007) observed a still greater reduction

in Neurotensin-stimulated Hsp27 S82 phosphorylation when both PKD1 and PKD2 siRNAs were

used in combination, in the presence of SB202190.

The role of PKD in VEGF-stimulated S82 phosphorylation appears to involve direct phosphory-

lation: PKD2 immunoprecipitated from VEGF-treated cells directly phosphorylated recombinant
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Hsp27 at S82 but not S78 or S15 in vitro. It is not precluded that the PKD2 antibody immunopre-

cipitated another direct Hsp27 kinase such as MAPKAPK2. However, also given that Hsp27 S82

is a consensus phosphorylation site for PKD (Doppler et al. 2005), and that PKD2 knockdown

reduces VEGF-stimulated Hsp27 phosphorylation, it is likely that direct phosphorylation does

occur. A co-worker, Dr. Ian Evans, also showed that purified recombinant PKD1 directly phos-

phorylated Hsp27 in vitro at S82 (shown in Evans et al. 2008). Direct phosphorylation of Hsp27

S82 but not S15 by PKD was initially reported by Doppler et al. (2005). Selective phosphoryla-

tion of Hsp27 at S82 only via activation of PKD rather than p38 MAPK provides a mechanism of

producing Hsp27 phosphorylated at S82 only. As discussed above, results from blotting of 2-D

gels indicated that S82-mono-phosphorylated Hsp27 is the major form of Hsp27 obtained after

VEGF treatment, and the p38 MAPK pathway does not appear to be responsible for most S82-

phosphorylated Hsp27. Thus PKC/PKD-mediated phosphorylation of Hsp27 may be a major in

vivo mechanism responsible for Hsp27 phosphorylation.

Interestingly, PKD activation does not necessarily seem to lead to Hsp27 phosphorylation. 100 µM

H2O2 did not detectably increase phosphorylation of PKD at the activation loop or of PKD1 at

S910, but stimulated Hsp27 phosphorylation. Higher doses of H2O2 (500 µM, 2.5 mM) stimu-

lated PKD activation loop phosphorylation to a similar degree to VEGF, and p38 MAPK phos-

phorylation to a much greater degree, but Hsp27 phosphorylation was less than that observed at

lower H2O2 doses. Furthermore, the Hsp27 phosphorylation caused by H2O2 doses able to de-

tectably stimulate PKD phosphorylation was almost completely inhibited by SB203580. Thus

H2O2-stimulated PKD phosphorylation (and presumably PKD activity) has little effect on Hsp27

phosphorylation.

In contrast to these results, Waldron and Rozengurt (2000) showed that 100 µM–10 mM H2O2

caused increased phosphate incorporation into PKD in 3T3 fibroblasts – higher H2O2 doses caused

greater phosphate incorporation within a particular time. In HeLa, a 10 min treatment with 10 µM

H2O2 stimulates PKD activation loop phosphorylation (Storz et al. 2004). In BAEC, 30 mins
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treatment with 100 µM H2O2 or 5–60 mins with 500 µM H2O2 induced phosphorylation of PKD

at the activation loop (Zhang et al. 2005b), whereas TNFα had no effect.

The reason for the inability of lower concentrations of H2O2 to induce PKD activation in this chap-

ter is unclear. The variability of H2O2-stimulated Hsp27 phosphorylation was generally higher

than observed with other treatments (the main reason for using TNFα rather than H2O2 in later

experiments), despite trying multiple batches of H2O2 and always freshly preparing the working

solution by dilution from the manufacturer-supplied concentrated stock solution immediately be-

fore use. It is possible that the time and dose of H2O2 used in this study were too low to activate

PKD – activation loop phosphorylation was observed at higher H2O2 doses. Alternatively, expres-

sion of catalase, which breaks down H2O2, may be higher in the HUVECs used in this study than

in BAEC or other cell types.

4.6.4 VEGF stimulates PKD activation loop phosphorylation via PKCδ

Knockdown of either PKCδ or PKCε, two novel PKC isoforms, reduced VEGF-stimulated phos-

phorylation of the PKD activation loop (S738/742 in PKD1). This data agrees with data from

inhibitor studies – GF109203X, but not the inhibitor of classical PKC isoforms Gö6976, com-

pletely blocked VEGF-induced phosphorylation of PKD at S738/742, and long-term phorbol ester

treatment prevented the VEGF-stimulated increase in phosphorylation at these residues. The ef-

fects of PMA on VEGF-stimulated PKD phosphorylation could be due to either direct effects of

the phorbol ester on PKD, or phorbol ester receptor (e.g. PKC)-mediated effects, but are not due

to downregulation of PKD as total PKD levels are unaffected by PMA treatment. As discussed

earlier, these results do not necessarily indicate the involvement of PKCε in VEGF-stimulated

PKD phosphorylation as PKCε knockdown reduces VEGFR2 expression.

The lack of effect of PKCα siRNAs on VEGF-stimulated PKD activation loop phosphorylation

in this study is in contrast to previous work in bovine aortic endothelial cells which showed that

overexpression of a dominant negative PKCα construct blocked VEGF-induced PKD phosphory-
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lation, whereas a dominant negative PKCδ construct had no effect (Wong and Jin 2005). The same

authors also showed that 100 nM Gö6976 completely blocked VEGF-induced PKD activation loop

phosphorylation. In this study, does of Gö6976 up to 5 µM had no effect on PKD phosphorylation

either at the activation loop or at the C-terminal site (S910 in PKD1). The variations between data

presented in this thesis and Wong and Jin (2005) may be due to differential PKC isoform expres-

sion between endothelial cell types obtained from different species and vascular beds. However in

this thesis, GF109203X but not Gö6976 blocked VEGF-induced PKD activation loop phosphory-

lation in human coronary artery endothelial cells. Wong and Jin (2005) also reported that PKCα

(and PKD) siRNAs reduced VEGF-stimulated ERK phosphorylation in HUVECs, whereas previ-

ous work with HUVECs in this laboratory, using the same culture medium as used in this thesis,

showed that the classical PKC inhibitor Gö6976 had no effect on VEGF-induced ERK phosphory-

lation (Gliki et al. 2001). For unknown reasons, the work of Wong and Jin (2005) shows a greater

role for PKCα than has been observed in data from this laboratory.

The involvement of novel PKC isoforms, rather than classical PKCs such as PKCα, in PKD acti-

vation loop phosphorylation has been widely reported in a number of other cell types (Rozengurt

et al. 2005). Using dominant negative approaches, PKCδ (and not PKCε or PKCζ) has been re-

ported to be the PKC isoform responsible for PKD activation loop phosphorylation in thrombin-

or angiotensin II-stimulated vSMCs (Tan et al. 2003, 2004).

4.6.5 Complications in interpretation of PKD activation data

While activation loop phosphorylation is reported to be an initial step in PKD activation, phospho-

rylation of a C-terminal site (S910 in PKD1) has been reported to be due to autophosphorylation of

PKD and to correlate well with PKD kinase activity (Matthews et al. 1999), and has been widely

used as a surrogate marker for PKD activity. Surprisingly, given its effect on activation loop phos-

phorylation, PKCδ knockdown was ineffective in preventing S910 phosphorylation, which was

non-significantly reduced by the PKCε siRNA. Differences in PKD isoform specificity between
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the PKD phospho-specific antibodies, and recent studies re-examining the involvement of PKD

phosphorylation in its activity, may help explain this apparent discrepancy.

4.6.5.1 Isoform specificity of PKD antibodies

The PKD antibodies used in this thesis, while raised against PKD1 peptides, are not all specific for

this isoform. PKD2 has a very similar molecular weight to PKD1 and although the immunising

antigens used to raise these antibodies are proprietary, the P-PKD S738/742 antibody is expected

to cross-react with PKD2 and PKD3 (Dr. Robert Somogyi, Cell Signalling Technology, personal

communication), which is unsurprising given the high degree of amino acid sequence homology

around these residues (figure 1.14). This cross-reactivity appeared to occur in practice, with both

PKD1 and PKD2 siRNAs able to reduce the VEGF-increased signal detected by blotting with this

antibody. The reason only a single band is detected when blotting VEGF-treated HUVECs with

this antibody, rather than the doublet produced due to cross-reactivity of the total PKD antibody

with PKD1 and PKD2, may be because on activation both PKD1 and PKD2 undergo a mobility

shift to a similar apparent electrophoretic mobility.

In contrast, the residues at the extreme C-terminus of PKD1 are not well conserved between PKD1

and PKD2, and an equivalent serine residue does not appear to be present in PKD3 at all (fig-

ure 1.14), suggesting that this antibody may be PKD1 specific. Although again the immunising

peptide was not reported, the manufacturer expected this antibody to be PKD1 specific based on

comparison of PKD isoform amino acid sequences (Dr. Robert Somogyi, Cell Signalling Tech-

nology, personal communication). Indeed, the signal obtained from VEGF-treated cells with the

S910 antibody was affected by siRNA directed against PKD1 but not PKD2, suggesting that this

antibody may well be specific for PKD1.
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4.6.5.2 Function of PKD phosphorylation sites

The distinction between S738/742 as PKC-phosphorylated sites and S910 as an autophosphoryla-

tion site reflecting PKD activity may be too simplistic. Rybin et al. (2009) have recently examined

the influence of mouse PKD phosphorylation on its ability to phosphorylate known substrates.

Agreeing with work presented here, the authors showed that 5 µM Gö6976 did not inhibit PMA-

stimulated PKD1 S916 phosphorylation in cardiomyocytes, but additionally showed that this con-

centration of Gö6976 prevented phosphorylation of the cAMP response element binding protein

(CREB) at S133, a phosphorylation the same group had previously reported was performed by

PKD (Ozgen et al. 2008).

Rybin et al. (2009) used in vitro kinase assays to show that PKD1 S916 phosphorylation had

a lower [ATP] requirement than phosphorylation of substrate proteins such as CREB, and sug-

gested that S916 phosphorylation may occur via an intramolecular mechanism rather than the in-

termolecular mechanism used for PKD-mediated phosphorylation of substrate proteins, although

the relative importance of this mechanism in vivo was not addressed. Thus, lack of inhibition

of PKD S910 phosphorylation does not indicate that Gö6976 is an ineffectual PKD inhibitor, al-

though which isoforms are inhibited and how fully is not clear. Low PKD2/PKD3 inhibition by

Gö6976 may partially explain the difference between the effect of SB203580/GF109203X and

SB203580/Gö6976 combinations on VEGF-stimulated Hsp27 S82 phosphorylation.

The same paper showed that an S744A/S748A PKD1 mutant autophosphorylates on S916 but

overall the entire enzyme incorporates relatively little phosphate, does not undergo a mobility

shift and is unable to phosphorylate the exogenous substrates CREB and cardiac troponin I (cTnI),

clearly dissociating S916 phosphorylation from PKD kinase activity towards its substrate proteins.

Basal autophosphorylation may explain why in some experiments S910 phosphorylation was de-

tected in the absence of cytokine stimulation and/or the presence of PKC inhibitors in a band of

slightly higher mobility than observed in VEGF-stimulated PKD (figure 4.20A, for example).
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Uncoupling of S738/742 and S910 phosphorylation may partially explain why in work presented

in this chapter, PKCδ knockdown reduces PKD activation loop phosphorylation but does not af-

fect PKD S910 phosphorylation. Alternatively PKCδ and PKCεmay phosphorylate different PKD

isoforms, with PKCε-mediated phosphorylation making the major contribution to PKD1 phospho-

rylation (detected by the S910 antibody) and PKCδ mainly phosphorylating PKD2. A variety of

other schemes could also explain the observed effects of PKC siRNAs on PKD phosphoryla-

tion, such as PKCδ phosphorylating all PKD isoform activation loops, and PKCε contributing to

transphosphorylation of other sites including PKD1 S910.

Rybin et al. (2009) also reported that overexpression of S916A PKD1 substantially increased phor-

bol ester-stimulated phosphorylation of PKD substrates (including Hsp27 S82) and so is catalyti-

cally active, but did not become phosphorylated at S748 after phorbol ester stimulation, indicating

that S916 phosphorylation is required for S748 phosphorylation, and S916 phosphorylation may

occur via autophosphorylation. Phosphorylation of the other activation loop serine, S744, was

unaffected in the S916A mutant, and was reported to correlate well with PKD1 kinase activity (in

the absence of inhibitors such as Gö6976), although this residue may also be autophosphorylated.

Thus the phosphorylation of S738 and S742 may diverge – the P-PKD S738/742 antibody used in

this thesis has been reported to primarily recognise S738 phosphorylation in PKD1, and diverges

from the signal produced by a new S742-specific antibody (Rybin et al. 2009).

The major method used by Rybin et al. (2009) was overexpression of a PKD enzyme in intact cells,

followed by its immunoprecipitation and kinase activity analysis by in vitro kinase assays. Clearly,

the loss of normal cell structure and regulatory proteins may affect the results obtained. Although

a particular phosphorylation is possible in vitro, the prevalence of that pathway in vivo may be less

clear. However these data indicate potential reasons for uncoupling of phosphorylations at S738,

S742, S910, and uncoupling of these phosphorylations from PKD1 kinase activity.

Overall, it appears that the signal detected by the S738/S742 antibody correlates well with total

PKD activity (including both PKD1 and PKD2 activity) in the absence of PKC inhibitors, and the
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signal detected by the S910 antibody may reflect PKD1 activity in the absence of PKC and PKD

inhibitors. When PKCs are inhibited or downregulated (e.g. by siRNAs), other mechanisms may

come into play, such as PKD activation loop autophosphorylation, which may reduce the observed

effect of these treatments.

4.6.6 Summary

VEGF activates PKC-, PKD- and p38 MAPK-dependent pathways to stimulate phosphorylation of

Hsp27 at S82. The apparently major PKD-dependent pathway occurs partly by VEGF-stimulated

PKCδ activation leading to activation of PKD2, which then can directly phosphorylate Hsp27 at

S82 but not at other residues. Identification of the VEGF/PKCδ/PKD2/Hsp27 S82 pathway does

not preclude the possibility that other PKD isoforms may also phosphorylate Hsp27 at S82, or that

another PKC-mediated pathway may also be involved in Hsp27 phosphorylation. A summary of

the signalling pathways involved in Hsp27 phosphorylation is shown in figure 4.28.

Activation of the PKC/PKD pathway by VEGF generates S82 mono-phosphorylated Hsp27, the

major Hsp27 form produced after VEGF stimulation. S82 mono-phosphorylated Hsp27 may per-

form a different cellular role to S15/S78/S82 triply-phosphorylated Hsp27, for example by inter-

acting with different proteins, causing p38 MAPK-mediated signalling to activate certain Hsp27-

dependent cellular processes whereas PKD-mediated signalling may activate a different subset of

Hsp27-dependent process. Work examining the functional role of Hsp27 and its phosphorylation

site variants in endothelial cells is detailed in chapter 5.

295



Figure 4.28: Proposed model for Hsp27 phosphorylation
Schematic diagram of the signalling pathways involved in Hsp27 phosphorylation stimulated
by VEGF, PMA, TNFα and H2O2. Black arrows indicate signal transmission, red arrows
indicate direct phosphorylation of Hsp27. Dashed red arrows indicate potential direct phos-
phorylation pathways not demonstrated in this thesis.
TNFα and H2O2 cause phosphorylation of Hsp27 at S15, S78 and S82 by activation of a
pathway involving p38α and MAPKAPK2. Published work indicates that various cellular
stresses including anisomycin, osmotic shock, UV irradiation and heat shock promote Hsp27
phosphorylation in other cell types via the p38 MAPK-mediated pathway.
VEGF also stimulates phosphorylation of Hsp27 via p38α/MAPKAPK2, but phosphorylates
Hsp27 by a pathway involving PKC. PKCδ activates PKD2, which directly phosphorylates
Hsp27 at S82. VEGF also causes PKC-dependent phosphorylation of PKD1, and this and
other enzymes may be involved in VEGF-stimulated PKC-dependent Hsp27 phosphorylation.
PKC may also directly phosphorylate Hsp27 at S82. PMA activates PKC but not p38α,
resulting in phosphorylation of Hsp27 at S82 only.
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Chapter 5

Results: The role of Hsp27 in VEGF-regulated

functions in endothelial cells

Chapter 4 detailed evidence for the involvement of a p38-independent pathway mediated by PKC

and PKD in VEGF-stimulated phosphorylation of Hsp27 at S82. In this chapter, the cellular role

of Hsp27 was examined, concentrating on the PKC–Hsp27 pathway and the importance of S82

phosphorylation in VEGF-stimulated functions in ECs.

5.1 Overexpression of mutant and wild-type Hsp27 with adenovirus

To assess the importance of S82 phosphorylation in Hsp27 function, a number of adenoviruses

were generated. In addition to a virus causing overexpression of wild-type Hsp27, three viruses

expressing Hsp27 forms with mutations in phosphorylation sites were produced. Phosphorylat-

able serine residues were mutated to either aspartate (negatively charged, to mimic phosphory-

lation) or alanine (to prevent phosphorylation). The three separate mutant-expressing viruses

produced Hsp27 forms containing the mutations S82A (prevents S82 phosphorylation); S82D

(mimics S82 phosphorylation); or S15A S78A (prevents S15 and S78 phosphorylation). The

Hsp27-expressing viruses were designed so that, if desired, endogenous Hsp27 could be reduced

using Hsp27 siRNA, and replaced with the selected virus-encoded Hsp27 form. The Hsp27 forms
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produced are schematically illustrated in figure 2.2. Viruses causing expression of β-galactosidase

(referred to as the LacZ virus, same virus backbone as the Hsp27 viruses), and green fluorescent

protein (GFP, different virus backbone to the other viruses) were also generated to use as controls

for side effects of virus infection and protein overexpression.

On infection of HUVECs, all Hsp27-expressing viruses caused a multiplicity of infection (MOI)-

dependent increase in Hsp27 expression in either the presence or absence of Hsp27 or control

siRNA (figure 5.1A and data not shown). Immunoblots using phospho-specific antibodies directed

against Hsp27 showed VEGF-treated cells infected with all Hsp27-expressing viruses had a higher

than normal level of phosphorylation at S15, S78 and S82 unless a residue had been mutated to

aspartic acid or alanine, where the detected level of phosphorylation of that residue was similar to

that observed in LacZ-infected cells (figure 5.1B).

5.2 Cellular distribution of Hsp27

Firstly, I investigated whether VEGF might affect the overall cellular distribution of Hsp27 in

endothelial cells. The influence of VEGF treatment on Hsp27 cellular location was examined by

immunofluorescent staining. Treatment of HUVECs with VEGF for 5–60 mins did not produce

a noticable shift in the location of Hsp27 staining, which remained predominantly cytoplasmic

throughout (figure 5.2). The amount of Hsp27 present in the nucleus was much lower than in

the cytoplasm. Additionally, Hsp27 was apparently excluded from certain cytoplasmic bodies of

unknown identity.

5.3 VEGF-induced changes in Hsp27 quaternary structure

Hsp27 can self-associate into large oligomers, the size of which correlates with phosphorylation

status (discussed in section 1.5.4). Some properties of Hsp27, such inhibition of actin polymerisa-

tion, may be restricted to particular oligomeric forms of the protein, and as such oligomerisation
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Figure 5.1: Overexpression of Hsp27 using adenoviruses
A. HUVECs were incubated with transfection reagent alone (Mock) or the indicated siRNA
for 24 h, after which cells were incubated with adenovirus encoding wild-type Hsp27 at
the indicated multiplicity of infection (MOI) for a further 48 h. Cells were then lysed and
samples were immunoblotted and probed with the indicated antibodies. Data are from a
single experiment.
B. HUVECs were incubated with adenovirus at an MOI of 20 (in the absence of siRNA)
for 48 h, before cells were starved overnight and treated with (V) or without (C) 25 ng/ml
VEGF. After 15 mins, cells were lysed and samples were immunoblotted and probed with the
indicated antibodies. Representative of three independent experiments. Virus abbreviations
are: UI, uninfected (no virus added); GFP, green fluorescent protein-expressing virus; Z,
LacZ virus; WT, wild-type Hsp27 virus; S82A, S82D, S15A S78A, Hsp27 virus with this
mutation (numbered serine residue is mutated to the indicated amino acid). V5 antibody
detects the V5 epitope tag present on the modified β-galactosidase variant produced by the
lacZ virus.
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status may be an important regulator of Hsp27 cellular function (section 1.5.4).

Glutaraldehyde-mediated protein cross-linking was used to examine VEGF-stimulated alterations

in Hsp27 quaternary structure. Glutaraldeyde cross-linked Hsp27 gave a distinctive laddering

pattern when analysed by SDS-PAGE, with more Hsp27 present in the higher molecular weight

species at increased glutaraldehyde concentration (figure 5.3). In the presence of glutaraldehyde,

the proportion of Hsp27 present in high molecular weight forms was reduced after 15 mins VEGF

treatment when compared to control cells (figure 5.3), suggesting that VEGF leads to a reduction

in the size of Hsp27 oligomers.

Figure 5.3: VEGF reduces the size of glutaraldehyde cross-linked Hsp27 oligomers
Serum-deprived HUVECs were treated with 25 ng/ml VEGF (V) or no addition (C) for
15 mins before cells were lysed and the extract was aliquoted. Separate aliquots of the same
extract were treated for 30 mins using the indicated concentration of glutaraldehyde. After
quenching, samples were separated and blotted, and Hsp27 was detected using a polyclonal
anti-Hsp27 antibody. Position of molecular weight markers (in kDa) is given up the side of
the blot. The experiment was performed in duplicate with respect to treatment and glutaralde-
hyde concentration (adjacent lanes on the blot). Results are representative of two independent
experiments.

To determine the involvement of phosphorylation in the VEGF-stimulated reduction in Hsp27

oligomeric size, HUVECs were pre-treated with a combination of SB203580 and GF109203X,

shown in chapter 4 to prevent VEGF-stimulated Hsp27 phosphorylation at S15, S78 and S82.

This inhibitor combination prevented the VEGF-induced reduction in Hsp27 oligomeric size (fig-

ure 5.4).
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Figure 5.4: Pre-treatment of HUVECs with a combination of SB203580 and GF109203X
prevents the VEGF-stimulated reduction in the size of glutaraldehyde cross-linked
Hsp27 oligomers
Serum-deprived HUVECs were incubated in EBM containing 5 µM SB203580 and 3 µM
GF109203X (SB+GF +) or solvent alone (0.2% v/v DMSO, SB+GF -) for 30 mins, and then
treated with 25 ng/ml VEGF (V) or no addition (C) for 15 mins before cells were lysed
and the extract aliquoted. Separate aliquots of the same extract were treated for 30 mins
using the indicated concentration of glutaraldehyde. After quenching, samples were separated
and blotted, and Hsp27 was detected using a polyclonal anti-Hsp27 antibody. Results are
representative of two independent experiments.

To examine whether phosphorylation at S82 is an important determinant of Hsp27 oligomeric size,

wild-type and mutant forms of Hsp27 were overexpressed in HUVECs using adenoviruses. Virus-

produced Hsp27 showed a laddered pattern after glutaraldehyde cross-linking and SDS-PAGE and

co-migrated with Hsp27 from uninfected cells (figure 5.5, long exposure), indicating that virus-

produced Hsp27 forms similar oligomeric species to that seen with endogenous Hsp27. High

molecular weight Hsp27 species were less prominent in extracts from cells overexpressing the

S82D mutant than those overexpressing wild-type Hsp27, or the S82A or S15A+S78A mutants

(figure 5.5).
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Figure 5.5: Hsp27 with an S82D mutation forms smaller cross-linked oligomers than
unmutated Hsp27
HUVECs were treated for 24 h with siRNA against Hsp27 to reduce the level of endoge-
nous Hsp27 protein present, before infection with adenovirus leading to overexpression of a
normal or mutant form of Hsp27, or β-galactosidase. After 48 h, cells were lysed and the
extract was aliquoted. Separate aliquots of the same extract were treated for 30 mins using
the indicated concentration of glutaraldehyde. After quenching, samples were separated and
blotted, and Hsp27 was detected using a polyclonal anti-Hsp27 antibody. Position of molec-
ular weight markers (in kDa) is given up the side of the blot. Adenovirus abbreviations are:
UI, uninfected (no virus added); Z, LacZ virus; WT, wild-type Hsp27 virus; A, Hsp27 virus
with S82A mutation; S82D, Hsp27 virus with S82D mutation; X, Hsp27 virus with S15A
S78A mutation. The rightmost blot is a longer exposure of the 0.03% gluaraldehyde blot on
the left. Results are representative of three independent experiments.
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5.4 Role of Hsp27 in VEGF-stimulated cell migration

5.4.1 Hsp27 knockdown reduces VEGF-stimulated HUVEC migration

The involvement of Hsp27 in cell migration was examined by depleting Hsp27 in HUVECs with

siRNA and assessing the ability of these cells to migrate towards VEGF in a transwell assay. VEGF

caused a ∼11-fold increase in HUVEC migration, which was reduced 38% by Hsp27 knockdown

(figure 5.6B). The Hsp27 knockdown caused a large reduction in the amount of both total and

VEGF-induced phospho-Hsp27 in these cells (figure 5.6A).

5.4.2 VEGF-stimulated HUVEC migration is dependent on PKC but not p38

MAPK

Results from chapter 4 showed that Hsp27 phosphorylation can occur via at least two distinct

pathways – involving either p38 MAPK or PKC/PKD. Previous work has indicated a key role for

p38 MAPK and p38 MAPK-mediated Hsp27 phosphorylation in VEGF-stimulated cell migration.

It was therefore important to investigate the role of p38 MAPK and PKC/PKD in VEGF-stimulated

HUVEC migration.

The p38 MAPK inhibitor SB203580 had little effect on VEGF-stimulated HUVEC migration at

doses up to 25 µM (figure 5.7), 25 times that required for complete inhibtion of MAPKAPK2 phos-

phorylation (figure 4.10A). Knockdown of either p38α or MAPKAPK2 did not reduce VEGF-

stimulated migration (figure 5.8). Similar degrees of knockdown inhibited TNFα-induced Hsp27

phosphorylation (figure 4.11B).

The broad-spectrum PKC inhibitor GF109203X markedly reduced VEGF-stimulated HUVEC

migration (79% reduction), while SB203580 used in the same experiments had no effect (fig-

ure 5.9A).

To check the consistency of the results of p38 and PKC inhibition, the effects of a second p38
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Figure 5.6: Hsp27 knockdown reduces HUVEC migration in response to VEGF
A. Representative blot showing Hsp27 knockdown achieved by the Hsp27 siRNA. 48 h after
transfection with either Hsp27 siRNA A (Hsp27) or a non-targeting control siRNA (Control),
cells were treated for 15 mins with 25 ng/ml VEGF (V) or no addition (C), before lysis and
immunoblotting with the indicated antibodies.
B. Quantification of the effects of siRNA-mediated Hsp27 knockdown on VEGF-stimulated
cell migration. 48 h after transfection with the either a non-targeting siRNA (Control) or
an siRNA targeting Hsp27, HUVECs were trypsinised and added to the upper chamber of a
transwell migration assay chamber. 25 ng/ml VEGF (V) or no addition (C) was added to the
lower chamber and the cells were allowed to migrate at 37◦C. After 4 h, the inserts were fixed,
stained and the number of migrated cells was assessed by counting. Results are mean± SEM
from nine independent experiments, analysed by two-way ANOVA with Bonferronis test
for multiple pair-wise comparisons. * p<0.001 compared to Control/VEGF-treated. Mean
Hsp27 knockdown achieved by the siRNA was 91%.
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Figure 5.7: SB203580 does not inhibit migration towards VEGF
HUVECs were pre-incubated in suspension with either solvent alone (0.5% v/v DMSO, Ctrl)
or the indicated concentration of SB203580. Migration was assessed in a transwell assay
towards 25 ng/ml VEGF for 4 h, before cells were fixed, stained and counted. In one treatment
group (5 both), 5 µM SB203580 was also added to the lower chamber to negate any possible
diffusion of inhibitor away from the cells. Data are from three independent experiments.
One-way ANOVA indicated no significant effect of any tested dose of SB203580.

Figure 5.8: Knockdown of p38α or MAPKAPK2 does not reduce VEGF-stimulated
migration
HUVECs were pre-treated for 48 h with siRNAs targeting p38α, MAPKAPK2 (siRNA A,
MK2 A), a non-targeting control siRNA (Ctrl) or transfection reagent alone (Mock). Cells
were trypsinised and migration was assessed in a transwell assay using 25 ng/ml VEGF (V)
or no addition (C) as the chemoattractant. Results are means ± SEM of three independent
experiments. Mean knockdown of target protein achieved by siRNAs, compared to control
siRNA: p38α, 93%; MAPKAPK2, 88%. Analysis of VEGF-stimulated migration by one-
way ANOVA indicated no significant effect achieved by any siRNA compared to the control
siRNA.
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MAPK inhibitor, SB202190, and a second broad-spectrum PKC inhibitor, Gö6983, were as-

sessed in the same experiment. The broad-spectrum PKC inhibitor Gö6983 reduced VEGF-

stimulated migration to a similar extent to GF109203X, whereas neither of the p38 MAPK in-

hibitors SB202190 and SB203580 reduced migration (figure 5.9B).

The PKD/classcial PKC inhibitor Gö6976 reduced VEGF-stimulated migration by 60%, similar

to the reduction observed with GF109203X when used in the same assays (figure 5.10).

To determine which PKC isoforms are involved in VEGF-stimulated migration, PKCα, PKCδ,

and PKCε were knocked down in cells with siRNA. PKCα knockdown reduced migration by

44%, whereas reduction of PKCδ increased migration by 55%, and PKCε knockdown had no

significant effect (figure 5.11).

The involvement of protein kinase D in VEGF-stimulated migration was also examined using

siRNA. PKD1 knockdown reduced VEGF-stimulated HUVEC migration by 42%, whereas PKD2

knockdown reduced migration by 47% (figure 5.12).

5.4.3 Effect of overexpression of Hsp27 mutants on migration

Both siRNA-mediated Hsp27 knockdown and inhibition of enzymes involved in Hsp27 phospho-

rylation reduced VEGF-stimulated HUVEC migration. To address the role of Hsp27 phosphory-

lation in VEGF-stimulated migration, HUVECs were infected with adenoviruses to overexpress

either wild-type Hsp27 or an Hsp27 form with a selected phosphorylation site mutation.

The viruses were designed with the intention of reducing endogenous Hsp27 with siRNA and

replacing the lost Hsp27 by adenovirus-mediated expression of the mutant Hsp27 form. While it

was possible to knock down endogenous Hsp27 and overexpress adenovirus-synthesised Hsp27,

initial experiments indicated that infection with any of the produced adenoviruses, including a

LacZ control virus, caused a marked reduction in the migration of siRNA-treated HUVECs, and

this reduction was dependent on virus MOI (Figure 5.13A illustrates the effect of the LacZ control
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Figure 5.9: Inhibition of PKC but not p38 blocks VEGF-induced migration
A. HUVECs were trypsinised, resuspended and incubated in suspension in the presence of
5 µM SB203580, 3 µM GF109203X, or solvent alone (0.1% v/v DMSO, Control). Migra-
tion was assessed in a transwell assay using 25 ng/ml VEGF (V) or no addition (C) as the
chemoattractant. After 4 h, cells were fixed, stained and counted. The number of migrated
cells is expressed as a proportion of that observed in the Control/VEGF group, and are means
± SEM from three independent experiments. Differences were assessed by two-way ANOVA
with Bonferronis test for multiple pair-wise comparisons. * significantly different to Control
V (p<0.001).
B. HUVECs were trypsinised, resuspended and incubated in suspension in the presence of
5 µM SB203580, 5 µM SB202190, 3 µM GF109203X, 3 µM Gö6983 or solvent alone
(0.1% v/v DMSO, Control). Migration was assessed in a transwell assay using 25 ng/ml
VEGF (V) or no addition (C) as the chemoattractant. After 4 h, cells were fixed, stained and
counted. Results are mean number of migrated cells observed from duplicate inserts. Data is
from a single experment.
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Figure 5.10: The inhibitor of conventional PKCs, Gö6976, reduces VEGF-stimulated
HUVEC migration to the same extent as the broad-spectrum PKC inhibitor GF109203X
HUVECs were trypsinised, resuspended and incubated in suspension in the presence 3 µM
GF109203X, 1 µM Gö6976, or solvent alone (0.1% v/v DMSO, Control). Migration was
assessed in a transwell assay using 25 ng/ml VEGF (V) or no addition (C) as the chemoat-
tractant. After 4 h, cells were fixed, stained and counted. The number of migrated cells is
expressed as a proportion of that observed in the Control/VEGF group. Data are means ±
SEM from three independent experiments for Control and Gö6976 (error bars shown). Only
two of these experiments included GF109203X, and so error bars are not shown for this com-
pound. Differences were assessed by two-way ANOVA with Bonferronis test for multiple
pair-wise comparisons. * significantly different to Control V (p<0.001).

Figure 5.11: Knockdown of PKCα and PKCδ has opposing effects on VEGF-stimulated
HUVEC migration
HUVECs were pre-treated for 48 h with siRNAs targeting the indicated PKC isoform, or a
non-targeting control siRNA (Control). Cells were trypsinised and migration was assessed
in a transwell assay using 25 ng/ml VEGF (V) or no addition (C) as the chemoattractant.
Results are means ± SEM of three independent experiments. Mean knockdown of target
protein achieved by siRNAs, compared to control siRNA: PKCα, 82%; PKCδ, 90%, PKCε,
76%. Differences were assessed by two-way ANOVA with Bonferroni’s test for multiple
pair-wise comparisons. * significantly different to Control siRNA V (p<0.01).
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Figure 5.12: Effect of PKD knockdown on VEGF-induced cell migration
HUVECs were pre-treated for 48 h with siRNAs targeting the indicated PKD isoform, or with
a non-targeting control siRNA (Control). Cells were trypsinised and migration was assessed
in a transwell assay using 25 ng/ml VEGF (V) or no addition (C) as the chemoattractant.
Results are means ± SEM of three independent experiments. The PKD2 siRNA reduced
PKD2 expression by a mean of 86%, PKD1 knockdown was not quantitatively assessed due
to the lack of a PKD1-specific antibody, but the upper band of a total PKD blot was strongly
reduced in lysates prepared in parallel to each experiment. Differences were assessed by two-
way ANOVA with Bonferroni’s test for multiple pair-wise comparisons. * significantly lower
than Control siRNA, VEGF treated group (p<0.001). There was no significant effect by the
siRNAs on non-VEGF-stimulated migration.

virus on siRNA-transfected cells). In contrast, there did not appear to be an MOI-dependent effect

of virus infection on the migration of HUVECs not treated with siRNA (figure 5.13B). In the

light of these results, it was decided to concentrate on the effect of Hsp27-expressing viruses on

HUVECs without prior siRNA transfection.

Wild-type Hsp27 or various mutant forms of Hsp27 (S82A; S82D; S15A+S78A) were overex-

pressed in HUVECs using adenovirus, and migration was assessed.

Overexpression of wild-type Hsp27 showed a trend towards increased migration in both the pres-

ence and absence of VEGF chemoattractant when compared to that observed with LacZ virus-

infected cells, but this was not significant (figure 5.14A). Overexpression of either S82A, S82D or

S15A S78A Hsp27 showed a trend towards reduction in both unstimulated and VEGF-stimulated

migration, but these effects did not reach significance.
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Figure 5.13: Comparison of the presence or absence of siRNA on the migration of HU-
VECs infected with adenovirus
A. HUVECs were transfected with a negative control siRNA for 24 h before the addition of
LacZ adenovirus at the indicated MOI for a further 48 h. Cells were then trypsinised and
migration was assessed in a transwell assay towards 25 ng/ml VEGF for 4 h, after which the
cells were fixed, stained and counted. C, uninfected cells without VEGF chemoattractant;
UI, uninfected cells with VEGF chemoattractant. Results are from a single experiment, but
very little migration was observed in three additional experiments using Hsp27 siRNA and
the various Hsp27 viruses at MOI 20.
B. HUVECs were infected with either LacZ (Z) or Hsp27 wild type-expressing (27) aden-
ovirus at the indicated MOI. After 48 h, cells were trypsinised and migration was assessed in
a transwell assay towards 25 ng/ml VEGF for 4 h, after which the cells were fixed, stained
and counted. C, uninfected cells without VEGF chemoattractant; UI, uninfected cells with
VEGF chemoattractant. Results are from a single experiment.

311



Figure 5.14: Effect of adenovirus-mediated overexpression of Hsp27 forms on migration
A. HUVECs were infected with the indicated adenovirus for 48 h at MOI of 20. Cells were
then trypsinised and migration was assessed in a transwell assay towards 25 ng/ml VEGF
(V) or no addition (C) for 4 h, after which the cells were fixed, stained and counted. Results
are expressed as a proportion of the migration observed in the LacZ infected cells towards
VEGF, and are mean ± SEM from six independent experiments. UI, uninfected; WT, wild
type Hsp27 adenovirus; S..., Hsp27 adenovirus with the indicated mutation. Results were
analysed by two-way ANOVA, with Bonferroni’s test for multiple pairwise comparisons. No
viruses significantly affected basal or VEGF-stimulated migration compared to LacZ virus.
B. Representative blot indicating the degree of overexpression caused by the viruses. Lysates
prepared from cells infected in parallel with those used for the migration assays were im-
munoblotted and probed with an antibody to total Hsp27. Labels are as for part (A), but LacZ
virus is represented by ‘Z’.
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5.5 Involvement of Hsp27 in apoptosis

The importance of Hsp27 in apoptosis induced by serum starvation was examined using annexin

V staining to bind the membrane phospholipid phosphatidylinositol, usually present in the in-

ner leaflet of the plasma membrane but translocated to the outer membrane during apoptosis, so

becoming accessible to annexin V-based stains.

When included in the starvation medium, VEGF reduced the proportion of annexin V-positive

cells by 38% in cells treated with a control siRNA and 23% in cells treated with an Hsp27 siRNA

(figure 5.15a). Hsp27 knockdown increased the proportion of annexin V-stained cells by 36% in

the absence of VEGF, and by 68% in the presence of VEGF.

Adenovirus-mediated expression of Hsp27 mutant forms was not used as an approach to examine

the role of Hsp27 phosphorylation in apoptosis as initial experiments indicated that all viruses

used (including the LacZ control virus) caused a strong resistance to apoptosis induced by serum

starvation when compared to untransfected cells (figure 5.16). Work in this laboratory by other

investigators found similar effects using other adenoviruses produced in the same way as the ones

used in this study. In other experiments where virus-infected cells had been incubated overnight

in 1% serum-containing medium, such as those involving VEGF treatment and lysis, it was con-

sistently noted that virus-infected cells appeared more confluent, with less floating cells, than un-

infected control cells (data not shown), possibly a manifestation of the same apoptosis-inhibiting

effect.

5.6 Involvement of Hsp27 in VEGF-mediated tubulogenesis

The role of Hsp27 in tubulogenesis, the formation of tube-like structures composed of endothelial

cells, was assessed in a cell culture system using siRNA-mediated knockdown of Hsp27. In cells

treated with a control siRNA, VEGF increased tubulogenesis more than 2-fold above control levels

(figure 5.17). Hsp27 knockdown reduced tubulogenesis in the absence of VEGF by 77%, and by
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Figure 5.15: Hsp27 knockdown increases endothelial cell apoptosis in response to serum
starvation (continued overleaf)
HUVECs were incubated with 200 nM siRNA targeting Hsp27, a non-targeting control
siRNA, or transfection reagent alone (Mock) for 2 days. The medium was then changed
and cells were incubated overnight in M199 basal medium in the presence (V) or absence
(C) of 25 ng/ml VEGF to induce apoptosis. Live and dead cells were then harvested by
trypsinisation and stained with fluorescein-conjugated annexin V. The proportion of stained
and unstained cells was determined by flow cytometry.
A. Representative raw histograms illustrating the proportion of cells that are unstained and
stained with annexin V. The x-axis represents annexin V staining intensity (detected on the
FL-1 channel), the y-axis represents number of cells with that staining intensity. In each
graph, the unstained cells are the leftmost population, the annexin V-stained cells are the
rightmost population.
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Figure 5.15: Hsp27 knockdown increases endothelial cell apoptosis in response to serum
starvation (continued)
B. Quantitative data from apoptosis assays. Results are presented as the percentage of an-
nexin V-positive cells, as a proportion of that observed in the control siRNA/no VEGF sam-
ple, and are given as mean ± SEM from four independent experiments. Data were analysed
by two-way ANOVA with Bonferroni’s test for multiple pair-wise comparisons. From the
two-way ANOVA, the main effect of both siRNA (Mock, Control or Hsp27) and treatment
(C or V) were significant (p<0.001) but the interaction term was not. * significantly lower
than Control C (p<0.01), VEGF also increased survival in the presence of Hsp27 siRNA
(p<0.05). ˆ significantly higher than Control C (p<0.01). $ significantly higher than Control
V (p<0.001). Mean Hsp27 knockdown achieved by the siRNA was 93%.

Figure 5.16: Adenovirus infection dramatically reduces endothelial cell apoptosis in
response to serum starvation
HUVECs were infected with the indicated adenovirus at MOI 20 and then cultured for 2 days.
Cells were then incubated in M199 basal medium overnight to induce apoptosis. Pictures of
the cells were taken with an inverted light microscope using a x10 objective.
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45% in VEGF treated cells.

As shown in chapter 4, Hsp27 phosphorylation can occur via the p38 MAPK or PKC pathways.

The importance of these two pathways for tubulogenesis was studied using pharmacological in-

hibitors. The broad-spectrum PKC inhibitor GF109203X reduced VEGF-stimulated tubulogenesis

to the levels observed in unstimulated cells, whereas the p38 MAPK inhibitor SB203580 had no

significant effect (figure 5.18). In agreement with the SB203580 data, knockdown of neither p38α

nor MAPKAPK2 significantly reduced tubulogenesis in either VEGF-treated or control cells (fig-

ure 5.19).

Due to the lack of a significant effect of the Hsp27-expressing viruses on migration, and the marked

anti-apoptotic effect observed on virus infection, the adenoviruses were not used to examine tubu-

logenesis.

5.7 Discussion

Data reported in chapter 4 indicated that a p38 MAPK-independent, PKC/PKD-mediated

pathway contributes to VEGF-stimulated phosphorylation of Hsp27 at S82, whereas the p38

MAPK/MAPKAPK2 pathway alone largely mediated VEGF-stimulated phosphorylation of

Hsp27 at S15 or S78, and TNFα- and H2O2-stimulated Hsp27 phosphorylation at S15, S78 and

S82. In this chapter, the role of Hsp27 in VEGF-stimulated cell activities was examined, with

the aim of determining the biological relevance of PKC/PKD-mediated S82 phosphorylation for

Hsp27 function.

Knockdown of Hsp27 via siRNA suppressed VEGF-stimulated HUVEC migration and tubuloge-

nesis, and increased endothelial apoptosis in response to serum starvation, indicating that Hsp27

is involved in these VEGF-stimulated EC functions. An S82D Hsp27 mutant formed smaller

oligomers than wild type Hsp27, similarly suggesting that S82 phosphorylation mediates the

VEGF-stimulated reduction in Hsp27 oligomer size. However, overexpression of wild type or
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Figure 5.17: Effect of siRNA-mediated Hsp27 knockdown on VEGF-induced tubuloge-
nesis
HUVECs were incubated for 48 h in the presence of an siRNA against Hsp27 or a non-
targeting, control siRNA. Cells were then trypsinised and plated on to a collagen gel. VEGF
(V, to a final concentration of 25 ng/ml) or no addition (C) was added to the cell suspension,
and cells were incubated overnight at 37◦C. The following day, pictures were taken of each
well using an inverted light microscope and the length of the tubules present in each image
was quantified.
A. Representative images of tubulogenesis on collagen in the presence of the siRNAs.
B. Quantification of the effect of Hsp27 siRNA on VEGF-induced tubulogenesis. Data is
expressed as total tube length as a proportion of the Control siRNA/no VEGF group. Results
are means ± SEM from three independent experiments. Differences between siRNAs were
analysed by two-way ANOVA with Bonferroni’s test for multiple pair-wise comparisons. In
the two-way ANOVA, the main effects of siRNA and VEGF treatment were both significant,
whereas the interaction term was not. * p<0.001 versus Control/C; ˆ p<0.05 versus Con-
trol/C; $ p<0.01 versus Control/V. Mean knockdown of target protein achieved by the Hsp27
siRNA was 93%.
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Figure 5.18: Inhibition of PKC but not p38 MAPK reduces VEGF-induced tubulogene-
sis
HUVECs were trypsinised and incubated in suspension for 30 mins in the presence of the in-
dicated inhibitor, either 5 µM SB203580 (SB), 3 µM GF109203X (GF) or solvent only (0.1%
DMSO, Control), before plating on to a collagen gel. VEGF (V, to a final concentration of
25 ng/ml) or no addition (C) was then added to the cell suspension, and cells were incubated
overnight at 37◦C. The following day, pictures were taken of each well and the length of the
tubules present in each picture was quantified.
A. Representative images of tubulogenesis on collagen in the presence of the inhibitors.
B. Quantification of the effect of Hsp27 siRNA on VEGF-induced tubulogenesis. Data is
expressed as total tube length as a proportion of the Control siRNA/no VEGF group. Results
are means ± SEM from three independent experiments. Differences were analysed by two-
way ANOVA with Bonferroni’s test for multiple pair-wise comparisons. * significantly higher
than Control/C (p<0.01). ˆ significantly lower than Control/V (p<0.01).
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Figure 5.19: Effect of knockdown of p38α and MAPKAPK2 on VEGF-induced tubulo-
genesis
HUVECs were incubated for 48 h in the presence the indicated siRNA. Cells were then
trypsinised and plated on to a collagen gel. VEGF (V, to a final concentration of 25 ng/ml) or
no addition (C) was added to the cell suspension, and cells incubated were overnight at 37◦C.
The following day, pictures were taken of each well using an inverted light microscope and
the length of the tubules present in each image was quantified.
A. Representative images of tubulogenesis on collagen in the presence of the siRNAs.
B. Quantification of the effect of p38α and MAPKAPK2 siRNAs on VEGF-induced tubu-
logenesis. Data is expressed as total tube length as a proportion of the Control siRNA/no
VEGF group. Results are means ± SEM from three independent experiments, and were
analysed by two-way ANOVA with Bonferroni’s test for pair-wise comparisons. No signif-
icant differences were observed between siRNAs either with or without VEGF treatment.
Mean knockdown of target protein achieved by siRNAs, compared to control siRNA: p38
88%, MK2 87%
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mutant Hsp27 did not significantly alter VEGF-stimulated HUVEC migration when compared to

a control virus. Inhibition of p38 MAPK or siRNA-mediated knockdown of p38α or MAPKAPK2

did not affect VEGF-stimulated migration or tubulogenesis, whereas inhibition or knockdown of

PKC or PKD isoforms did alter VEGF-stimulated migration and tubulogenesis. Overall, it appears

that PKC/PKD are more important mediators of VEGF-stimulated EC migration and tubulogenesis

than p38/MAPKAPK2, although at least part of the involvement of PKC/PKD may be independent

of Hsp27.

5.7.1 Cellular localisation of Hsp27

Hsp27 was observed to be distributed throughout the cytosol, although was apparently excluded

from some cytoplasmic organelles. A greater portion of Hsp27 appeared to be present around the

nucleus compared to the cell periphery, although this may be an artifact of a relatively thick optical

section, as the cell is thinner at the edge than around the nucleus. No dramatic change in cellular

localisation was observed after VEGF treatment. Time restrictions meant that examination of the

influence of Hsp27 phosphorylation status using the Hsp27 phosphorylation site mutants was not

performed.

Hsp27 has been reported to associate with actin filaments in ECs after heat shock (Loktionova

et al. 1996), and to be present in the nucleus or cytoplasmic granules after heat shock (Arrigo and

Welch 1987; Kato et al. 1993) in non-endothelial cells. While subtle changes in Hsp27 localisation

may have occurred after VEGF treatment, large-scale changes were not observed. Hsp27 did not

noticeably form filamentous structures, indicating that most Hsp27 is not associated with actin

filaments either before or after VEGF treatment. It is possible that the use of confluent cells in

these immunostaining experiments reduced any Hsp27 redistribution that may occur on VEGF

stimulation of single cells, such as that leading to cell migration.
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5.7.2 Role of phosphorylation in Hsp27 oligomerisation

Phosphorylation has previously been reported to influence the oligomeric size of Hsp27 (discussed

in section 1.5.4.3). Data presented in this chapter shows that VEGF stimulation causes a reduction

in the oligomeric size of Hsp27, and this can be prevented by pre-incubation of the cells with

a combination of SB203580 and GF109203X, shown in the previous chapter to prevent VEGF-

stimulated Hsp27 phosphorylation at S15, S78 and S82. Overexpressed S82D Hsp27 formed

smaller oligomers than wild-type Hsp27, suggesting that S82 phosphorylation alone may be suffi-

cient for VEGF-stimulated deoligomerisation of Hsp27. The reduction in oligomeric size observed

in the S82D mutant was not due to the requirement of the S82 serine residue for maintenance of

oligomeric structure as an S82A mutant formed large oligomers similar to wild-type Hsp27.

Hsp27 oligomers were observed in cells overexpressing S82D Hsp27. While some of the detected

oligomer may be endogenous Hsp27, the degree of overexpression produced suggests that S82D

Hsp27 itself also oligomerises. This finding is consistent with previous data on human Hsp27

showing that overexpressed wild type Hsp27 exists almost entirely as large species whereas an

S78D S82D double mutant was present predominantly as smaller species but with some larger

species also present (Rogalla et al. 1999).

In gel filtration studies, Hsp27 has consistently been reported to exist as two distinct populations

of differing oligomeric size. Phosphorylation or phosphorylation-mimicking mutations result in

an increase in the proportion of Hsp27 present as the smaller species. The two distinct populations

observed in gel filtration studies are not clearly differentiated by the glutaraldehyde cross-linking

method employed in this thesis, although the pattern observed with unmutated Hsp27 was broadly

similar to that noted by Lambert et al. (1999). The proportion of Hsp27 present in large or small

species, or whether Hsp27 exists as two discrete populations with regard to oligomeric size in ECs

is not clear.

Human or hamster Hsp27 phosphorylated in vitro by MAPKAPK2, or containing
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phosphorylation-mimicking mutations at all MAPKAPK2-phosphorylated serine residues (i.e.

S15D S86D hamster Hsp27/S15D S78D S82D human Hsp27), has been reported to consist al-

most entirely of smaller species (Lambert et al. 1999; Rogalla et al. 1999). In the same studies,

Hsp27 with phosphorylation-mimicking mutations at S78 and S82 (S86 in hamster Hsp27) forms

a greater proportion of smaller species than Hsp27 with a phosphorylation-mimicking mutation at

S15, suggesting that phosphorylation of S82 is more important than S15 for Hsp27 deoligomeri-

sation.

Results from the previous chapter indicate that the majority of Hsp27 is unphosphorylated at

S15 and S78, both before and after VEGF stimulation of HUVECs. The lack of formation of

triply-phosphorylated Hsp27 is probably responsible for the partial reduction in Hsp27 oligomeric

size observed after VEGF stimulation. Examination of the effect of SB203580 alone would have

helped to exclude a significant role of S15 and S78 phosphorylation in the VEGF-induced reduc-

tion in Hsp27 oligomeric size.

The possibility that overexpression of S82A Hsp27 prevented VEGF-induced reductions in Hsp27

oligomeric size was not examined. VEGF stimulation modestly increased S82 phosphorylation

of overexpressed wild-type Hsp27, whereas the total amount of Hsp27 present was strongly in-

creased. Thus after VEGF stimulation, a lower proportion of Hsp27 is phosphorylated in Hsp27-

overexpressing cells than in uninfected cells, which is likely to lead to greater difficulties in de-

tecting VEGF-stimulated reductions in Hsp27 oligomerisation due to a higher background of un-

phosphorylated oligomeric Hsp27.

Overall the data obtained in this thesis support a role for phosphorylation status in modulation of

Hsp27 oligomeric size, and indicate that the S82 phosphorylation occurring in VEGF-stimulated

ECs is sufficient to reduce the size of VEGF-stimulated oligomers. The role of deoligomerisation

in the function of Hsp27 in VEGF-stimulated cell functions is unclear, although effects on actin

migration and chaperone functions are possible. For example, larger Hsp27 species are more

effective molecular chaperones than smaller species (discussed in section 1.5.5.1.2).
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5.7.3 Examination of VEGF-stimulated EC migration

5.7.3.1 Role of Hsp27

Although knockdown studies indicated a role for Hsp27 in VEGF-stimulated HUVEC migration,

the role of Hsp27 phosphorylation is unclear. Overexpression of Hsp27 did not detectably increase

migration in the absence or presence of VEGF, and overexpression of Hsp27 phosphorylation site

mutants also had no significant effect on VEGF-stimulated migration, although a noticeable trend

towards inhibition was seen with all mutants examined.

With the caveat that these effects did not reach statistical significance, the inhibitory effects of

mutant Hsp27 adenoviruses suggest that prevention of phosphorylation, either at S82 or at both

S15 and S78, inhibits VEGF-stimulated migration. However, they suggest that constitutively en-

hanced S82 phosphorylation, in so far as this is the effect of the S82D phospho-mimetic mutant,

also inhibits the migratory response to VEGF. Since VEGF causes transient changes in Hsp27

phosphorylation, the effects of adenoviral Hsp27 site mutants suggests that constitutive blockade

of enhancement of phosphorylation, or Hsp27 phosphorylation state cycling, may disrupt the role

of Hsp27 in endothelial migration and other cell functions. The dynamic regulation of Hsp27

phosphorylation status is likely to be important in mediating VEGF-regulated cell movement.

Phosphorylation of Hsp27 has been proposed to release Hsp27 from capped actin filaments, allow-

ing further actin polymerisation and lammelipodium extension, processes associated with migra-

tion (Rousseau et al. 2000a), and the inhibitory effect of the non-phosphorylatable Hsp27 mutants

on migration is consistent with such a mechanism. The inhibitory effect of the S82D mutant may

be due to an inability to stabilise newly formed actin filaments by capping them – transient capping

may be important during migration. Alternatively, S82D Hsp27 may prevent directional migration

by allowing excess actin polymerisation at the rear of the cell. Another possibility is that lack

of large oligomeric chaperone-capable Hsp27 is sensed by the cell by some mechanism, which

causes an emergency shut-down of non-essential cellular processes such as migration.
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Stable overexpression of wild type Hsp27 was previously shown to enhance serum-stimulated HU-

VEC migration in a wound healing assay, whereas overexpression of an unphosphorylatable Hsp27

mutant inhibited migration (Piotrowicz et al. 1998). In a similar assay, oestrogen-stimulated

BAEC migration is reduced by overexpression of a non-phosphorylatable Hsp27 mutant (Razandi

et al. 2000), although a control for overexpression is apparently absent in the second study. In

transwell assays similar to that used in this thesis, overexpression of unphosphorylatable Hsp27

inhibited PDGF-stimulated migration of vSMCs, although overexpression of wild-type Hsp27 had

no effect (Hedges et al. 1999). Together these findings support the conclusion that Hsp27 phos-

phorylation plays an important role in migration of endothelial and other cell types.

Strong expression of endogenous Hsp27 in the HUVECs used in this thesis may have prevented

any larger effects of overexpressed Hsp27 on migration, with sufficient endogenous wild-type

Hsp27 present to fulfil the role of Hsp27 in migration. Transduction of HUVECs with control (lacZ

or GFP) adenoviruses was consistently observed to increase Hsp27 expression though the effect

was modest, suggesting that increased Hsp27 expression is a general consequence of adenoviral

transduction in HUVECs. Attempts to increase the contribution of virus-encoded Hsp27 to VEGF-

stimulated EC migration in this thesis were frustrated by a virus-induced reduction in cellular

migration in siRNA treated cells. Attempts to rescue the Hsp27 siRNA-mediated reduction in

VEGF-stimulated migration by overexpression of wild-type Hsp27 were also thwarted for the

same reason. The basis of migration inhibition by an siRNA/virus combination is unclear, but

may involve activation of cellular protective responses by siRNA transfection, which alters the

effect of virus transduction on cellular behaviour.

Even in the absence of siRNA, the adenoviral vector may have significantly altered the migratory

response of HUVECs, possibly altering the response to VEGF. Ramalingam et al. (2000) reported

that transduction of HUVECs with adenovirus lacking the E1 region but containing the E4 region

(such as the E1/E3-deleted vector used in this thesis) affected stromal-derived factor 1-stimulated

migration. Migration induced by other stimuli was not examined. However, adenovirus vectors
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produced by the same system as used in this thesis have been used by others to implicate various

proteins in VEGF-stimulated HUVEC migration (Ha et al. 2008b).

5.7.3.2 Role of p38 MAPK

Inhibition of the p38/MAPKAPK2 pathway by p38 MAPK inhibition using pharmacological

agents, or by knockdown of p38α or MAPKAPK2 using siRNAs, had no effect on VEGF-

stimulated EC migration. However under the same conditions SB203580 or knockdown of p38α

or MAPKAPK2 inhibited TNFα-stimulated Hsp27 phosphorylation (data presented in previous

chapter), indicating the inhibitor and siRNAs were functional.

p38 MAPK has been suggested to be an important component of migratory signalling pathways

in response to VEGF (Rousseau et al. 2000a), and other stimuli. In transwell assays, VEGF-

stimulated HUVEC migration was inhibited by pre-treatment of cells with SB203580 (Rousseau

et al. 1997; McMullen et al. 2004), or overexpression of kinase inactive p38 MAPK (McMullen

et al. 2004). Overexpression of constitutively active MEK6, the upstream activator of p38 MAPK,

increased HUVEC migration in the absence of other stimuli, and this could be prevented by co-

expression of kinase-inactive p38 MAPK (McMullen et al. 2005).

Some of the differences between the results obtained in this thesis and that obtained by other

groups may be due to methodological differences, including wound healing-type assays rather

than transwell-type assays, and differences in specific cell type examined. However, Rousseau

et al. (1997) and McMullen et al. (2004) used similar techniques to those employed in this thesis.

The reason for the difference in results is unclear, particularly as Rousseau et al. (1997) and Mc-

Mullen et al. (2004) also found that SB203580 strongly inhibited VEGF-stimulated incorporation

of phosphate into Hsp27. Culture conditions, the source of endothelial cells and other factors dis-

cussed in the previous chapter may contribute to these differences, though they do not appear to

adequately account for the discordance between my findings and previously published work.

In vivo, p38α (or its splice variants) are not essential for normal embryonic development (Adams
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et al. 2000), and so cannot be essential for the VEGF-stimulated EC migration which occurs

during vascular development. SB203580 has been reported to inhibit p38 MAPK isoforms p38α,

β and β2 (Kumar et al. 1997; Goedert et al. 1997), and it is possible that a role of p38α in EC

migration is compensated by p38β or β2 during development. p38β-null mice (lacking expression

of p38β and β2, which are alternatively spliced forms of the same gene) are apparently normal

(Beardmore et al. 2005), although p38α may compensate. Generation of p38α/β double null mice

has not been reported. However, MAPKAPK2 activity was completely blocked in cells derived

from p38α-null mice (Adams et al. 2000), indicating that p38 MAPK/MAPKAPK2-mediated

phosphorylation of Hsp27 is unlikely to be important in developmental EC migration in vivo.

Overall these data indicate that p38 MAPK may not be essential for vascular development or

VEGF-stimulated migration, agreeing with the results presented in this thesis.

5.7.3.3 Role of PKD

GF109203X (or Gö6983) and Gö6976 caused similar reductions in VEGF-stimulated migra-

tion, suggesting that an enzyme inhibited by the more selective Gö6976 (i.e. a PKD or classical

PKC isoform) may be primarily responsible. SiRNA-mediated knockdown of either PKD1 or

PKD2 inhibited VEGF-stimulated migration by over 40%. As PKD2 knockdown reduced VEGF-

stimulated Hsp27 S82 phosphorylation by less than 40% and PKD1 knockdown had no significant

effect on Hsp27 phosphorylation, the effect of the PKD1 siRNA (and possibly both PKD siRNAs)

on migration is unlikely to be mediated solely via inhibition of VEGF-stimulated Hsp27 S82 phos-

phorylation, and may be independent of effects on Hsp27.

Other groups have also reported the involvement of PKD1 and 2 in EC migration. siRNA-mediated

knockdown of PKD1 (Qin et al. 2006, transwell assay) or overexpression of an S738A/S742A

PKD1 double mutant (Qin et al. 2006, transwell) or kinase-dead PKD1 (Ha et al. 2008b, wound

healing) inhibits VEGF-stimulated HUVEC migration in the indicated assays. Knockdown of

PKD2 has also been reported to inhibit serum-stimulated HUVEC migration in a transwell assay
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(Hao et al. 2009b).

As mentioned above, it is unlikely that the major influence of PKD1 on migration is via effects

on Hsp27 phosphorylation. PKD1 has been shown to mediate VEGF-stimulated phosphory-

lation of histone deacetylases (HDACs) 5 and 7 in ECs. In wounding assays, overexpression

of an S259A/S498A HDAC5 double mutant inhibited VEGF-stimulated HUVEC migration (Ha

et al. 2008b), whereas overexpression of an S178A/S344A/S479A HDAC7 triple mutant inhibited

VEGF-stimulated migration of bovine and human aortic ECs (Wang et al. 2008; Ha et al. 2008a).

Thus inhibition of VEGF-stimulated HDAC phosphorylation may be at least partially responsible

for the reduction in VEGF-stimulated HUVEC migration caused by PKD1 knockdown.

To my knowledge, the involvement of PKD2 in VEGF-stimulated migration has not been reported

elsewhere, and the mechanism by which PKD2 knockdown reduced HUVEC migration in this

thesis is unknown. As PKD2 knockdown alone (in the absence of SB203580) reduced VEGF-

stimulated Hsp27 S82 phosphorylation, it is plausible that effects on Hsp27 phosphorylation are

relevant to the effects of PKD2 knockdown on migration. PKD2 knockdown has also been re-

ported to reduce the expression of growth factor receptors including VEGFR2 and FGFR1 (Hao

et al. 2009b), and this may contribute to the reduction in VEGF-stimulated migration by the PKD2

siRNA. Reduction of VEGFR2 expression is unlikely to be the major reason for the reduction in

migration given that the PKD1 siRNA reduced migration considerably more than the PKD2 siRNA

but caused no additional inhibition of migration.

5.7.3.4 Role of PKC

In this thesis, the effect of PKC knockdown on VEGF-stimulated migration was isoform-specific.

PKCα knockdown reduced migration, whereas PKCδ knockdown enhanced VEGF-stimulated

migration and PKCε knockdown had little effect. The effects of Gö6976 and GF109203X probably

result from inhibition of PKD1, PKD2 and PKCα, knockdown of which reduced VEGF-stimulated

migration, although effects on other PKCs and non-PKC enzymes may contribute.
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Previous results of isoform-specific PKC manipulation are consistent with those obtained in this

thesis. Exactly how PKCα and PKCδ affect EC migration has not been examined, but PKC

isoforms have been implicated in regulation of a number of cytoskeletal mediators (Larsson 2006).

Antisense-mediated reduction of PKCα expression reduced HUVEC migration in the presence of

serum in a wound healing assay (Wang et al. 2002), and overexpression of PKCα in rat capillary

ECs increases basal and hepatocyte growth factor-stimulated migration in a transwell assay (Har-

rington et al. 1997). Together, these data indicate that PKCα plays a pro-migratory role and that

PKCα activity may be limiting in EC migration, although the involvement of PKCα in VEGF-

stimulated EC migration was not directly addressed.

In a wound healing assay, overexpression of PKCδ in ECV immortalised ECs inhibits migration

in the presence of VEGF, but not in the presence of serum (Shizukuda et al. 1999), suggesting that

PKCδ inhibits VEGF-stimulated migration specifically. The authors hypothesised that a VEGF-

stimulated, NO-mediated decrease in PKCδ activity, first observed after 8 h of VEGF stimulation,

may contribute to VEGF stimulated migration (i.e. PKCδ activity is anti-angiogenic), and overex-

pression of PKCδ prevents this decrease and subsequent migration. In the transwell assays used

in this thesis VEGF-stimulated migration occurs for only 4 h, although it is possible that PKCδ

deactivation kinetics vary between transwell and wounding assays, possibly due to a greater need

for cell detachment or breaking of cell-cell contacts or lack of a VEGF gradient in wound healing

assays.

At first glance, the effects of the PKD siRNAs (which reduce migration) and the PKCδ siRNA

(which inhibits PKD activation loop phosphorylation and so PKD activity, but increases migration)

appear contradictory. However, the reduction in active PKD (after VEGF stimulation) obtained by

PKCδ and PKD siRNAs may differ. As shown in the previous chapter, PKCδ knockdown reduced

PKD activation loop phosphorylation by 57%, whereas PKD activation loop phosphorylation was

reduced 64% by the PKD1 siRNA and 81% by the PKD2 siRNA. The actual reduction in VEGF-

generated active PKD1 caused by the PKD1 siRNA may be greater than 64% as the signal detected
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by the PKD P-S910 antibody, apparently PKD1 specific, was reduced by 85% in PKD1 siRNA-

treated cells. If, for example, an 80% reduction in activation of either PKD1 or PKD2 is required

for migration to be affected, then PKCδ knockdown would be insufficient to inhibit pro-migratory

signals downstream of PKD (which would be affected by direct PKD knockdown), but may inhibit

other anti-migratory processes which are not mediated by PKD. In short, the effects of the PKC

siRNAs on migration may not occur via effects on PKD activity.

If the VEGF/VEGFR2 interaction is critical for VEGF-stimulated migration, the lack of effect

of the PKCε siRNA on migration suggests that the reduction in VEGFR2 expression observed in

cells treated with the PKCε siRNA is insufficient to retard VEGF-stimulated cell migration, and

so may not impact upon functionally relevant VEGF-stimulated cell signalling. The decrease in

VEGFR2 expression caused by the PKCε siRNA make it likely that the effects obtained with the

PKCε siRNA detailed in the previous chapter (e.g. on PKD activation loop phosphorylation and

Hsp27 S82 phosphorylation) may therefore indicate genuine effects of PKCε in VEGF-stimulated

signalling rather than an indirect effect via VEGFR2 expression.

5.7.3.5 Proposed model for VEGF-stimulated HUVEC migration

Overall, the results obtained in this chapter indicate that Hsp27, PKCα, PKD1 and PKD2 are

required for VEGF-stimulated HUVEC migration, whereas PKCδ appears to act primarily as an

inhibitor of migration. It is unknown whether the effects of these enzymes are specific to VEGF-

stimulated migration, or apply more generally to migration induced by other stimuli such as serum.

While PKD2 may act partially via effects on Hsp27 phosphorylation, the effects of PKCα and

PKD1 are likely to be largely independent of Hsp27. p38 MAPK does not appear to have a major

role in VEGF-stimulated HUVEC migration. These relationships are summarised in figure 5.20.
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Figure 5.20: Proposed model for VEGF-stimulated migration via PKD/Hsp27
Schematic diagram of the PKC/PKD signalling pathways involved in VEGF-stimulated mi-
gration. Clearly a large number of proteins regulate a complex cellular event such as mi-
gration, only the enzymes experimentally examined in this thesis are illustrated. PKCα and
PKCδ activate and inhibit VEGF-stimulated migration respectively (inhibition of migration
by PKCδ is indicated with a diamond-tipped line). PKCδ and other PKCs may also affect
migration via PKDs. PLCγ, though not directly examined in this thesis, is well established
as a mediator of PKC activation. p38 MAPK/MAPKAPK2 does not appear to be important
for VEGF-stimulated EC migration.

5.7.4 Role of Hsp27 in apoptosis

Virus-mediated overexpression of Hsp27 has previously been reported to reduce HUVEC apop-

tosis in a hypoxia–reoxygenation cell culture model (Kabakov et al. 2003). In this thesis, Hsp27

knockdown increased EC apoptosis induced by serum starvation. Hsp27 knockdown apparently

increased EC apoptosis equally in the presence or absence of VEGF – that is, VEGF reduced apop-

tosis similarly in cells with and without Hsp27 knockdown. These data suggest that either Hsp27

knockdown was insufficiently complete to noticeably affect the VEGF-stimulated component of

survival of serum starvation, or Hsp27-mediated survival pathways are not substantially affected

by VEGF.

Hsp27 may have a role in VEGF-stimulated protection against apoptosis induced by methods other

than serum starvation, e.g. using Fas ligand. Knockdown of Hsp27 sufficiently to impact upon a

signalling role may be difficult to achieve given the abundance of Hsp27 in ECs, as it is possible

that only a small fraction of this multi-functional protein is involved in signalling.

In this thesis, adenovirus transduction of HUVECs largely prevented apoptosis due to serum star-

vation, precluding the use of Hsp27-overexpressing viruses to examine the role of Hsp27 phospho-

rylation sites in protection against serum starvation-induced apoptosis. Transduction of HUVECs
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with E1- E4+ adenovirus has previously been reported to prolong EC viability in the absence of

serum, and this effect appeared dependent on sequences encoded by the E4 region as E1- E4- ade-

noviruses did not cause an increase in the survival of transduced ECs (Ramalingam et al. 1999).

While differences in the proportion of annexin V-stained cells between treatments have been at-

tributed to effects of the treatments on apoptosis, effects on cell proliferation may also play a role.

VEGF is a mitogen, and as the incubation time in the assay is similar to the doubling time of HU-

VECs (24–30 h, batch specific, as quoted by the supplier), VEGF-stimulated cell division could

produce additional cells. These extra cells may die rapidly via apoptosis due to insufficient growth

factor stimulus or some other factor, contributing to the number of apoptotic cells and giving the

impression that VEGF has a lower survival effect than it does in reality. Alternatively, these extra

cells may take some time to enter apoptosis, contributing to the number of live cells at the time

the assay is terminated and giving the impression that VEGF promotes cell survival more strongly

than in reality. Hsp27 knockdown may also have an effect on proliferation, causing similar ef-

fects. Separation of proliferation and apoptosis effects could have been performed by incubation

of cells in the presence of modified nucleotides to inhibit cell proliferation during serum starvation,

although arresting DNA synthesis may have led to alterations in cellular apoptosis rates. Alter-

natively a more rapid method for inducing apoptosis could have been used to avoid proliferation

effects. However this assay has previously been used in a form similar to that used in this thesis to

examine VEGF-stimulated HUVEC survival (Jia et al. 2004).

Overall, it appears that both VEGF and Hsp27 protect against serum starvation-induced HUVEC

apoptosis, but Hsp27 does not appear to be essential (at least in large quantities) for VEGF-

stimulated protective pathways.

5.7.5 Role of Hsp27 in tubulogenesis

Hsp27 knockdown reduced VEGF-stimulated tubulogenesis on 2-D collagen gels, and it is likely

that reductions in migration and apoptosis contribute to this effect. Similar to the results obtained
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for migration, blockade of the p38 MAPK pathway by SB203580 or knockdown of either p38α

or MAPKAPK2 had no effect on VEGF-stimulated tubulogenesis, whereas PKC inhibition via

GF109203X prevented VEGF-stimulated tubulogenesis.

The ability of Hsp27 knockdown or PKC inhibition to reduce VEGF-stimulated tubulogenesis

is unsurprising given the effects of these approaches on migration and apoptosis. Interestingly,

Hsp27 knockdown reduced basal tube formation (in the absence of VEGF), whereas GF109203X

did not. Qualitatively, it appeared that Hsp27 siRNA-treated cells were more prone to die during

the procedure resulting in fewer cells available for tubulogenesis, suggesting that apoptosis plays

a significant part in this assay, at least in the effects of the Hsp27 siRNA.

Similar to the results obtained for VEGF-stimulated migration, reduction of p38 MAPK sig-

nalling did not significantly affect VEGF-stimulated tubulogenesis. SB203580 has been reported

to slightly reduce tube formation in 3-D collagen gels by bovine skeletal muscle endothelial cells

stimulated by a VEGF/hepatocyte growth factor combination (Yang et al. 2001). However as dis-

cussed above, p38α does not play an essential role in embryonic development and angiogenesis

(Adams et al. 2000).

Tube formation in this assay was poor in that tubes were not particularly ‘tube-like’, although

the assay was reproducible. Using a similar procedure, Dr. Dan Liu has shown more convincing

tube formation in 2-D collagen assays (reported in Liu et al. 2008). Tube appearance is further

improved on matrigel (Ha et al. 2008b), although the effect of VEGF may be further clouded by

the addition of other factors and additional serum.

5.7.6 Summary

Hsp27 is involved in EC survival, and VEGF-stimulated migration and tubulogenesis. VEGF stim-

ulates phosphorylation of Hsp27 predominantly at S82, which reduces Hsp27 oligomeric size and

may affect its functional properties. Overexpression of wild-type Hsp27 or a number of Hsp27

phosphorylation site mutants did not significantly affect VEGF-stimulated migration, though ex-
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pression of all phosphorylation site mutants showed a trend for reduced migration. PKC and PKD

are involved in VEGF-stimulated migration, but at least part of the role of these enzymes on migra-

tion appears to be independent of Hsp27. The stress-activated p38 MAPK/MAPKAPK2 pathway

does not appear to be important for VEGF-stimulated EC migration or tubulogenesis.
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Chapter 6

Results: SLP2 in endothelial cells

6.1 Introduction

Stomatin-like protein 2 (SLP2) became of interest in this thesis when it was identified in a pro-

teomics screen as a major component of phospho-tyrosine immunoprecipitates derived from HU-

VECs (see section 3.4.2).

Human SLP2 was originally identified from erythrocyte membranes as a ≈40 kDa peripheral

membrane protein with amino acid sequence homology to previously identified stomatin and SLP1

due to the presence of a consensus sequence RX2 (L/I/V) (S/A/N) X6 (L/I/V) DX2TX2WG (L/I/V)

(K/R/H) (L/I/V) X (K/R) (L/I/V) E (L/I/V) (K/R), where X is any amino acid (Wang and Morrow

2000). Since then another human stomatin homologue, SLP3, has been discovered, and SLP2

has been proposed to belong to a larger family including stomatin, the stomatin-like proteins and

others, collectively termed slipins (Green and Young 2008). Stomatin itself is a 31 kDa trans-

membrane protein, lack of which is associated with erythrocyte abnormalities and the condition

overhydrated hereditary stomatocytosis, a form of anaemia (Stewart 1997). However, stomatin-

null mice have normal red blood cells, suggesting lack of stomatin is not the cause of this condition

(Zhu et al. 1999). Stomatin and SLP3 have been reported to be involved in regulation of ion chan-

nels. MEC2, a homologue of stomatin, is involved in ion channel-mediated mechanosensation
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(Huang et al. 1995), and SLP3 is essential for touch sensation in mice (Wetzel et al. 2007).

An alignment of the protein sequences of human stomatin, SLP1, SLP2 and SLP3 is shown in

figure 6.1A. It is clear that there are substantial differences between stomatin and the stomatin-

like protein sequences. SLP2 does not contain the N-terminal hydrophobic domain believed to

be a membrane-spanning domain in stomatin, SLP1 and SLP3, and is not a transmembrane pro-

tein (Wang and Morrow 2000). Additionally, greater amino acid identity occurs between SLP2

homologues present in organisms as diverse as flies, nematodes and plants than between human

stomatin and stomatin-like proteins (compare figures 6.1A and B). While BLAST did not detect

homologous sequences in the yeast S. cerevisae or the bacterium E. coli, a later more comprehen-

sive analysis indicates that SLP2 homologues are present in some bacteria and archaea (Green and

Young 2008). The conservation of SLP2 itself throughout evolution, and its divergence from other

members of the stomatin/SLP family suggests that SLP2 may have a distinct role from those of

stomatin, SLP1 and SLP3.

At the time of my identification of SLP2 in endothelial cells, very little was known about SLP2

– literature searches for phrases such as ‘stomatin-like protein 2’, ‘SLP2’, or the gene name

‘STOML2’ in PubMed retrieved very few papers referring specifically to SLP2 – these papers

identified the presence of SLP2 but did not examine its functional role.

At that time, SLP2 protein had been identified in a variety of human tissues, including heart, brain,

placenta, lung, liver, skeletal muscle, kidney and pancreas – all tissues examined, indicating a wide

tissue distribution (Wang and Morrow 2000). SLP2 had also been identified via proteomic analysis

of caveolae/lipid raft-enriched HUVEC fractions (Sprenger et al. 2004). Tyrosine phosphorylation

of SLP2 at Y124 had been observed via tandem mass spectrometry in the lymphoma cell line SU-

DHL-1, although this phosphorylation was not observed in another lymphoma cell line, Karpas

299, in the same study (Rush et al. 2005).

Thus although SLP2 had been cloned and identified in human endothelial cells, and a tyrosine

phosphorylation site identified, the functional and/or signalling roles of SLP2 were completely
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Figure 6.1: Alignment of human SLP2 protein sequence to stomatin family proteins
(legend overleaf)
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Figure 6.1: Alignment of human SLP2 protein sequence to stomatin family proteins
(continued)
A. Reference protein sequences for human stomatin, SLP1, SLP2, and SLP3 were retrieved
from the RefSeq database and aligned with ClustalX2. Residues are coloured accord-
ing to Blossum62 score, with darker colours indicating better conservation. The first and
last residues of the stomatin family consensus sequence RX2 (L/I/V) (S/A/N) X6 (L/I/V)
DX2TX2WG (L/I/V) (K/R/H) (L/I/V) X (K/R) (L/I/V) E (L/I/V) (K/R) are indicated with an
‘S’. The RefSeq database accession numbers for the protein sequences (all human) used for
alignment were: Stomatin, NP 004090.4; SLP1, NP 004800.2; SLP2, NP 038470.1; SLP3,
NP 660329.1.
B. Homologues of the human SLP2 protein sequence from (A) were located using
BLASTp. The top RefSeq hits from common experimental organisms, the fly Drosophila
melanogaster (RefSeq accession NP 611853.2, the nematode worm Caenorhabditis elegans
(NP 492517.2), and the plant Arabidopsis thaliana (NP 200221.1), were aligned to the hu-
man SLP2 sequence using ClustalX2 as in (A). No BLASTp matches were found for S. cere-
visae or E. coli.

unknown at the time SLP2 was identified during work for this thesis. In this chapter work ex-

amining SLP2 tyrosine phosphorylation, and SLP2 function in endothelial cells more generally,

is presented. This data will then be discussed in the context of SLP2 data published during the

course of this thesis.

6.2 SLP2 expression pattern and subcellular localisation of SLP2

As a starting point and to understand whether or not SLP2 is a widely expressed protein, the

expression level of SLP2 in endothelial cells, smooth muscle cells, and a variety of cell lines was

determined by immunoblotting. SLP2 was expressed in all cell types examined, at apparently

similar levels, especially when compared to ERK and PKCα and some coomassie-stained protein

bands, which were used for comparison purposes and displayed clear variations in expression

levels between cell types (figure 6.2).

In initial studies on the sub-cellular localisation of SLP2, immunofluorescent staining of HUVECs

showed a non-uniform distribution throughout the cytosol, in a pattern believed to be mitochon-

drial (data not shown). In subsequent experiments SLP2 staining substantially co-localised with

that of Mitotracker Red, a dye that specifically accumulates in mitochondria (figure 6.3), indicat-

ing that SLP2 is a mitochondrial protein. SLP2 appeared to be present in all mitochondria, in

337



Figure 6.2: SLP2 protein expression in endothelial cells, smooth muscle cells, and a
variety of cell lines
Lysates made from cultures of a variety of cell types were immunoblotted and probed with
antibodies against the indicated target proteins. Equal loading was attempted by matching
total protein loaded (assessed by a Bradford-type assay). After blotting, the membrane was
stained with Coomassie R250 to show total protein loading. Lysates were numbered as fol-
lows: 1 HUVEC; 2 HCAEC; 3 Human coronary artery smooth muscle; 4 ACHN (kidney);
5 A549 (lung) (phosphate lysis buffer); 6 A549 (RIPA lysis buffer); 7 DU145 (prostate); 8
MCF7 (breast epithelium); 9 SKOV3 (ovary); 10 Porcine aortic endothelial cells. Lysates
were protein assayed and supplied by Caroline Pellet-Many, Department of Medicine

that there did not appear to be patches of Mitotracker red-stained structures not stained for SLP2.

Conversely, SLP2 did not occur in regions of the cell that did not accumulate Mitotracker Red.

6.3 SLP2 is present in anti-phosphotyrosine immunoprecipitates

SLP2 was identified by peptide mass fingerprinting as present in anti-pY immunoprecipitates pre-

pared from both unstimulated and VEGF-stimulated HUVECs (figures 3.8 and 6.4). Total protein

staining (e.g. silver staining) of 2-D-separated pY IPs always contained a spot migrating at the

expected position for SLP2. A ≈40 kDa band present in anti-pY immunoprecipitates strongly

reacted with an anti-SLP2 antibody (figure 6.4A), and together these data indicate that SLP2 is
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Figure 6.3: SLP2 is a mitochondrial protein
HUVECs grown on gelatin-coated coverslips were incubated in 400 nM Mitotracker Red in
EGM for 30 mins to stain mitochondria (shown in red). Medium was then removed, and
cells were washed, fixed, permeablised, blocked and incubated with an anti-SLP2 primary
antibody followed by an Alexa fluor 488-conjugated secondary antibody (shown in green).
In some samples, the SLP2 antibody was pre-blocked for 1 h at room temperature by addi-
tion of excess SLP2 recombinant protein before the antibody/blocking protein mixture was
added to the cells. Images were acquired sequentially using a confocal microscope. Cells in
the top row of images (No ab) shows cells without anti-SLP2 primary antibody but including
the secondary reagent; the middle row (SLP2 ab) included both primary and secondary anti-
bodies; and the bottom row (SLP2 ab + blocking protein) are images of cells incubated with
pre-blocked primary and normal secondary antibodies. No adjustments have been made to
the images after acquisition, and the same confocal settings were used to acquire all images.
Blocking protein data is from one experiment, but co-localisation of SLP2 and Mitotracker
Red was observed in three independent experiments.
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indeed present in pY immunoprecipitates of HUVEC.

Figure 6.4: SLP2 is present in anti-phosphotyrosine immunoprecipitates
A. Phosphotyrosine-containing proteins were immunoprecipitated from HUVECs using an
anti-pY monoclonal antibody. IPs were then immunoblotted and probed with antibodies di-
rected against either pY (left) or SLP2 (right). Samples varied in the antibody used during
the immunoprecipitation, and are: B, no primary antibody (protein A/G agarose beads alone);
IgG, negative control antibody; IP, anti-pY antibody. Markers correspond to both blots. The
arrowed band migrates in the expected position for SLP2. Markers correspond to both blots.
Representative of three independent experiments.
B. HUVECs were treated for 48 h with SLP2 siRNA A (+) or a control siRNA (-), and SLP2
was immunoprecipitated. IPs were analysed by immunoblotting with SLP2 antibody. Lys,
lysate; Beads, Protein A/G beads only (no immunoprecipitating antibody); IgG, control rabbit
IgG. Lysate loaded was a small proportion of the input lysate used in the immunoprecipita-
tions. Arrow indicates expected SLP2 band. Data is from a single experiment.

SLP2 could also be immunoprecipitated (figure 6.4B). Despite a number of attempts, it was not

possible to convincingly detect an SLP2-sized band strongly reactive to anti-pY antibody in SLP2
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immunoprecipitates (data not shown). To determine whether the anti-pY antibody immunopre-

cipitates SLP2 in a pY-dependent manner, pY-containing proteins were immunoprecipitated from

lysates spiked with the pY analogue phenyl phosphate. The immunoprecipitation of pY-containing

proteins was reduced in lysates spiked with phenyl phosphate, indicating that spiking inhibits bind-

ing of the anti-pY antibody to pY-containing proteins during immunoprecipitation (figure 6.5).

Phenyl phosphate is acidic, but spiking did not apparently denature antibodies or the SLP2 antigen

as immunoprecipitation of SLP2 by an anti-SLP2 antibody was not affected by spiking (figure 6.5).

Phenyl phosphate spiking strongly reduced the immunoprecipitation of SLP2 by anti-pY antibody,

suggesting that SLP2 is immunoprecipitated by anti-pY antibody in a pY-dependent manner.

6.3.1 SLP2 amino acid sequence analysis and examination of the effect of protein

kinase A effectors on SLP2 2-D spot pattern

The human SLP2 reference protein sequence contains eight tyrosine residues, seven of which are

conserved between human, mouse and zebrafish – these are Y75, Y106, Y117, Y124, Y175, Y282

and Y316 (human sequence numbering, figure 6.6). The other tyrosine residue, human Y113, is

conserved between human and mouse SLP2.

It was believed that phosphorylation of one or more of these tyrosine residues may be responsible

for the presence of SLP2 in anti-pY immunoprecipitates. To determine candidate enzymes that

may be responsible for tyrosine phosphorylation of SLP2, the protein sequence of SLP2 was

analysed using the Scansite 2.0 programme. At medium stringency settings a large number of

hits were produced, but none of the phosphorylation sites predicted were tyrosine residues.

At high stringency Scansite produced only a single hit, predicting a protein kinase A (PKA) phos-

phorylation site at T203. T203 is conserved between human, mouse and zebrafish SLP2 (fig-

ure 6.6) although not present in the BLAST-identified SLP2 homologues listed in figure 6.1B.

These sequence analysis studies prompted examination of the effect of inhibitors and activators

targeting the PKA pathway.
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Figure 6.5: Anti-pY antibodies do not immunoprecipitate SLP2 in the presence of
phenyl phosphate
HUVECs were preincubated with 1 mM sodium orthovanadate for 30 mins, before cells were
treated with (V) or without (C) 25 ng/ml VEGF for 15 mins and lysed for immunoprecipi-
tation. Pre-cleared lysates were mixed with an anti-pY antibody (pY IP) or SLP2 antibody
(SLP2 IP) in the absence (-) or presence (+) of phenyl phosphate (PP, 25 mM final concentra-
tion) and immunoprecipitation was performed. Some of the pre-cleared lysates were heated
in SDS-PAGE sample buffer without immunoprecipitation. Lysates (Lys) and IPs were then
immunoblotted and probed with either anti-pY or anti-SLP2 antibody. Various exposures
of the same SLP2 blot are shown. Positions of molecular weight markers (kDa) are indi-
cated. The arrowed SLP2 band migrates in the expected position for SLP2. The arrowed
non-specific band migrates in the expected position of IgG heavy chain. B, beads only con-
trol IP (no primary antibody used). Representative of two independent experiments. In a
number of additional experiments excluding the anti-SLP2 IP, phenyl phosphate also reduced
the IP of SLP2 by anti-pY.
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Figure 6.6: Alignment of human SLP2 protein sequence to homologues in other species
Protein sequences for SLP2 from human and other indicated species were retrieved from the
RefSeq database, and aligned using ClustalX2. Residues are coloured according to Blos-
sum62 score, with darker colours indicating better conservation. The eight tyrosine residues
present in the human SLP2 sequence are highlighted with an asterisk (*). Analysis of the
human SLP2 sequence by the Conserved Domain Database indicated that the PHB domain
in human SLP2 runs from V41–Q239, the first and last residues are indicated with a red P.
The initial 34 residues of the human sequence (last residue R34, indicated with a red X) were
never identified by mass spectrometry despite peptide mass fingerprints being obtained from
six independent protein samples.
The RefSeq database accession numbers for the protein sequences used for alignment were:
human, NP 038470.1; chimpanzee, XP 520553.2; Rhesus monkey, XP 001091007.1; dog,
XP 531986.2; cow, NP 001033157.1; rat, NP 001026816.1; mouse, NP 075720.1; zebrafish,
NP 957325.1. The chimpanzee, monkey and dog sequences were listed as predicted proteins,
and the zebrafish sequence as a hypothetical protein, but all sequences used were assigned
RefSeq status. Both dog and chimpanzee have a number of predicted isoforms, with various
extensions, insertions and deletions. The isoform most closely matching the human sequence
was used for alignment in each case.
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A number of pharmacological effectors of the cAMP/PKA pathway were tested for their effect

on the SLP2 2-D spot pattern, which was used as an indicator of SLP2 phosphorylation status.

No changes consistent with PKA-mediated phosphorylation were observed (figure 6.7). Although

blots were not aligned exactly, three spots were visible in every blot, with the central spot being

the largest, and comparison of spot patterns was based on the assumption that these three spots are

the same molecular species in each blot. Given this, those changes that were observed seemed to

be in the opposite direction to that expected if PKA phosphorylated SLP2 – the combinations of

Forskolin + IBMX and dibutyryl cAMP + IBMX, expected to activate PKA, appeared to reduce

the leftmost (acidic) spot compared to the large central spot (figure 6.7B). Additionally, a peptide

including SLP2 T203 was identified from anti-pY immunoprecipitates by mass spectrometry, and

was not phosphorylated (figure 6.10). Thus it appears that SLP2 is not basally phosphorylated on

T203, and activators of PKA do not cause a noticeable increase in the acidity of SLP2, suggesting

that PKA activation does not lead to SLP2 phosphorylation.

Many mitochondrial proteins are synthesised in the cytosol and then imported into mitochondria,

often via an N-terminal targeting sequence which is cleaved after import (Neupert and Herrmann

2007). Further computational analysis of the SLP2 protein sequence predicted the presence of a

mitochondrial targeting sequence at the N-terminus of SLP2. TargetP 1.1 predicted the last residue

of the targeting sequence to be R34, and MitoProt II v1.101 predicted the last residue to be A28. In

agreement with these predictions, the first 34 amino acids of SLP2 were not observed in the SLP2

peptide mass fingerprint in five tryptic digests from independent protein samples, regardless of

whether SLP2 was obtained from SLP2 immunoprecipitates or pY immunoprecipitates, whereas

the peptide covering residues N35–R51 was routinely observed (see figure 6.10 on page 349 for

a list of identified peptides). Additionally, the observed isoelectric point of SLP2 on 2-D gels

was ≈ 5.5 (compare with the location of the capZ and prohibitin 1 spots in figure 6.10, with

Scansite-predicted pIs of 5.7 and 5.6 respectively, and β-actin, 41 kDa with a predicted pI of 5.5).

The Scansite pI calculator predicted the pI of full-length SLP2 as 6.9, whereas the predicted pI

of SLP2 lacking the first 34 residues is 5.3 (the calculated pI of the first 34 residues is 12.8).
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Figure 6.7: Influence of cAMP and protein kinase A manipulation on the SLP2 spot
pattern
A. Schematic diagram of the cAMP/PKA pathway, illustrating the sites of action of the PKA
effectors used in (B). Upstream stimuli lead to G-protein activation, which subsequently acti-
vates adenylyl cyclase so producing cAMP. cAMP activates PKA, which is then able to phos-
phorylate downstream proteins. cAMP is removed by phosphodiesterases (PDEs), which
convert it to AMP. Adenylyl cyclase is activated by forskolin and inhibited by SQ22536.
Dibutyryl cAMP is a cAMP mimic which activates PKA but is resistant to degradation by
PDEs. 3-isobutyl-1-methylxanthine (IBMX) is a PDE inhibitor. PKA activity was expected
to be increased by forskolin, dibutyryl cAMP, and IBMX, and reduced by SQ22536.
B. HUVECs were treated for 30 mins with either solvent alone (0.2% v/v DMSO, Control);
10 µM forskolin; 200 µM dibutyryl cAMP; 200 µM IBMX; 100 µM SQ22536; or the indi-
cated combination of treatments. Cells were then lysed, and extracts were separated by 2-D
electrophoresis, blotted, and probed with anti-SLP2 antibody. The acidic region is on the left.
Data is from a single experiment.

345



Together these data suggest that SLP2 contains an N-terminal mitochondrial targeting peptide

which is absent from the mature protein, which is presumably due to its cleavage after SLP2 entry

into mitochondria (figure 6.3).

6.3.2 Effect of cytokines and kinase inhibitors on SLP2 2-D spot pattern and pres-

ence in phospho-tyrosine immunoprecipitates

As it was not possible to identify a consensus sequence for a specific tyrosine kinase using se-

quence analysis programmes, inhibitors targeting a variety of kinases were assayed for their ef-

fects on the SLP2 2-D spot pattern and on the amount of SLP2 recoverable from phosphotyro-

sine immunoprecipitates. Inhibitors targeting src family kinases (PP2), PKC (GF109203X), p38

MAPK (SB203580), and PI-3-K (Wortmannin), and a 30 mins treatment with serum, all failed to

discernibly influence the SLP2 2-D spot pattern (figure 6.8). PP2, GF109203X, SB203580, wort-

mannin, and inhibitors of tyrosine kinases (herbimycin), tyrosine phosphatases (orthovanadate),

MEK (U0126), and VEGFR2 (SU5614) failed to alter the amount of SLP2 detected in anti-pY

immunoprecipitates (figure 6.9A). VEGF treatments of between 10 mins and 21 h duration also

had no effect on the amount of SLP2 in anti-pY immunoprecipitates (figure 6.9B).

6.3.3 SLP2 may not be directly phosphorylated

Although SLP2 was always observed in anti-pY immunoprecipitates, as mentioned above, it was

not possible to detect a band migrating in the position expected for SLP2 by probing SLP2 im-

munoprecipitates with the anti-pY antibody in immunoblots despite several attempts (section 6.3).

It is possible that SLP2 is not directly tyrosine phosphorylated, but is closely associated with a

pY-containing protein, and thus immunoprecipitated by the anti-pY antibody indirectly. That is,

the anti-pY antibody binds to pY-containing protein X, which in turn binds to SLP2.

To examine whether SLP2 is directly tyrosine phosphorylated, SLP2 purified from anti-pY im-

munoprecipitates by 2-D electrophoresis was analysed by tandem mass spectrometry, a technique
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Figure 6.8: SLP2 spot pattern is unaffected by several kinase inhibitors
Confluent HUVECs were incubated for 30 mins in medium containing either 10% v/v serum;
3 µM PP2; 3 µM GF109203X; 5 µM SB203580; 100 nM wortmannin; or solvent alone
(0.1% v/v DMSO, Control). Following lysis, 2-D separation (IEF pH 4–7, acidic on left) and
transfer to membranes, blots were probed with anti-SLP2 antibodies to show the SLP2 spot
pattern.

capable of determining the presence of post-translational modifications including phosphoryla-

tion. Commercial analysis performed by Alphalyse, which included phospho-peptide purification

after trypsin digestion, did not identify any phospho-peptides present in SLP2. In-house analysis

of SLP2 purified from an independent anti-pY immunoprecipitate run on a 2-D gel also failed to

identify any phospho-peptides in SLP2, whereas it was possible to identify an Hsp27 peptide phos-

phorylated at S82 (see section 4.1.2.1) which was analysed at the same time. A peptide covering

SLP2 residues 115–135 and so containing Y124, the SLP2 tyrosine phosphorylation site reported

by Rush et al. (2005), was identified in both analyses and was not tyrosine phosphorylated. The

peptides identified in the in-house analysis are shown in figure 6.10.

Although no phospho-peptides were identified using the tandem mass spectrometry approach de-

scribed above, only three out of the eight human SLP2 tyrosine residues were covered by the

mass spectrometry-identified peptides, leaving open the possibility that a phosphorylated tyrosine
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Figure 6.9: The quantity of SLP2 present in pY immunoprecipitates was not altered by
a panel of treatments and inhibitors
A. HUVECs were incubated for 30 mins with either 1 µM herbimycin (H); 3 µM PP2 (P);
3 µM GF109203X (G); 5 µM SB203580 (S); 10 µM U0126 (U); 100 nM wortmannin (W);
1 mM orthovanadate (O); 5 µM SU5614 (SU); or solvent alone (Ctrl). Cells incubated with
solvent alone or SU5614 were subsequently treated with 25 ng/ml VEGF (V) or no addition
(C) for 15 mins, cells incubated with other inhibitors were not further treated. Cells were
then lysed and phosphotyrosine-containing proteins were immunoprecipitated with an anti-
pY antibody. Equal volumes of immunoprecipitates were then immunoblotted and probed
with anti-SLP2 antibody. The arrowed band migrates at ≈ 40 kDa, the expected molecular
weight of SLP2. B, beads only control (no immunoprecipitating antibody). Results are rep-
resentative of two independent experiments. Apparent differences in the quantity of SLP2
present between immunoprecipitates were not consistent between experiments.
B. Effect of VEGF treatment on recovery of SLP2 by pY immunoprecipitation. HUVECs
were left untreated (C) or incubated for the indicated time with 25 ng/ml VEGF, after which
phosphotyrosine-containing proteins were immunoprecipitated with an anti-pY antibody.
Equal volumes of immunoprecipitates were then immunoblotted and probed with anti-SLP2
antibody. The arrowed band migrates at the expected position for SLP2. B, beads only con-
trol (no immunoprecipitating antibody). Positions of molecular weight markers (kDa) are
indicated. Results are from a single experiment.

348



Figure 6.10: Analysis of SLP2 from phospho-tyrosine immunoprecipitates by tandem
mass spectrometry
Phosphotyrosine-containing proteins were immunoprecipitated from HUVECs using the anti-
pY antibody, and were then separated by 2-D electrophoresis. The gel was silver stained and
the spot corresponding to SLP2 was excised, digested with trypsin and analysed by tandem
mass spectrometry. The identified peptides are enclosed in brackets and underlined, and are
shown in the context of their position in the human SLP2 protein sequence. The tyrosine
residues present in the SLP2 sequence are highlighted in red. The reported tyrosine phospho-
rylation site Y124 and the predicted PKA phosphorylation site T203, which were both con-
tained in identified peptides, are indicated with an asterisk. No phosphorylation or any other
modifications were detected in any of the identified peptides. This analysis was performed
at the same time as the Hsp27 MS/MS analysis presented in figure 4.5, where a phosphory-
lated peptide was identified, indicating the ability of the procedure to identify phosphorylated
peptides when present in a sample.

residue may occur in one of the unidentified sections of the SLP2 sequence. To address this issue,

alkaline phosphatase (AP) treatment of anti-pY immunoprecipitates was used. As described in

section 4.1.2.2, phosphorylation results in an increase in the acidity of a protein. Dephosphoryla-

tion with AP, which removes phosphate groups from Ser, Thr and Tyr residues, should therefore

reduce the acidity of a protein that is already phosphorylated (such as SLP2 from pY IPs), causing

a protein to appear more to the right (basic end) on a 2-D gel. To discern whether a shift had

actually occurred, samples treated with and without AP were run on separate 2-D gels and also in

the same gel (figure 6.11).

Alkaline phosphatase treatment largely eliminated tyrosine phosphorylation as detected by im-

munoblotting with an anti-pY antibody (figure 6.11A). However, AP treatment did not cause the

potentially-phosphorylated SLP2 present in anti-pY IPs to shift to a more basic position, and the

major SLP2 species present in both the IP and AP samples had the same isoelectric point before
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and after AP treatment as shown by the increase in the size of the major SLP2 spot when the IP

and AP-treated samples were run in the same gel (figure 6.11B).

Taken together with the tandem mass spectrometry data, the alkaline phosphatase experiments

suggest that the SLP2 present in anti-pY immunoprecipitates is not directly phosphorylated.

Figure 6.11: Effect of alkaline phosphatase treatment on 2-D spot pattern of an SLP2
immunoprecipitate
SLP2 was immunoprecipitated from confluent HUVECs treated for 15 mins with (V) or
without (C) 25 ng/ml VEGF. The IPs were resuspended and divided into three aliquots.
One aliquot (AP) was mixed with alkaline phosphatase to remove phosphate groups before
quenching with concentrated SDS-PAGE buffer, another mimicked the conditions of alkaline
phosphatase treatment (i.e. addition of alkaline phosphatase buffers and heating) but did not
include the alkaline phosphatase protein (M), and the third remained on ice after immuno-
precipitation before mixing with SDS-PAGE buffer (IP). The samples were then analysed as
detailed below:
A. IPs were blotted and probed with anti-pY antibody.
B. IPs from VEGF-treated cells were precipitated and resuspended in 2-D buffer, proteins
were separated by 2-D electrophoresis, blotted and probed with an anti-SLP2 antibody. IP,
Immunoprecipitate only; AP, alkaline phosphatase (AP)-treated immunoprecipitate only; IP
+ AP, both AP-treated and untreated immunoprecipitates were mixed and run on the same
2-D gel. The position of the major SLP2 species present is indicated.
Results are representative of two independent experiments.

6.4 Analysis of SLP2 immunoprecipitates

If SLP2 itself is not directly tyrosine phosphorylated, SLP2 may be present in anti-pY immunopre-

cipitates because it is associated with a tyrosine phosphorylated protein. In an attempt to identify
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SLP2-associated proteins, SLP2 immunoprecipitates derived from HUVECs were analysed by 2-

D gel electrophoresis. A large number of proteins were present in the SLP2 immunoprecipitate

that were not present in a beads-only control using the same lysate (figure 6.12, circled).

Figure 6.12: 2-D analysis of SLP2 immunoprecipitates
HUVECs were lysed in immunoprecipitation buffer, and SLP2 was immunoprecipitated with
an anti-SLP2 antibody (SLP2 IP). A parallel, control immunoprecipitation was performed
in which no immunoprecipitating antibody was used (i.e. protein A/G-agarose beads alone
were used). Immunoprecipitates were separated by 2-D electrophoresis and gels were silver
stained. The positions of molecular weight markers (kDa) are indicated. A large number of
spots in the circled region are present in the SLP2 IP but not the beads-only control. The
rectangle refers to figure 6.13. Data is from a single experiment.

One of the proteins present in all SLP2 immunoprecipitates analysed but not the beads only control

was identified by MALDI-TOF MS as prohibitin 1 (Phb1, figure 6.13, a representative peptide
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mass fingerprint is given in figure 6.14). Stomatin-like proteins and prohibitins are related proteins

containing a stomatin/prohibitin/flotillin/HflK (SPFH) domain, also termed the prohibitin (Phb)

domain (Browman et al. 2007, discussed later). Comparison of the SLP2, Phb1 and Phb2 amino

acid sequences indicates that Phb1 and not Phb2 was the prohibitin isoform identified in SLP2

immunoprecipitates, as the MS-identified peptides listed in figure 6.14 are present in Phb1 but not

Phb2. Sequence comparison of SLP2 with Phb1 also showed little amino acid identity between

SLP2 and Phb1, making it unlikely that Phb1 is present in SLP2 due to direct immunoprecipitation

(direct recognition by the SLP2 antibody).

Figure 6.13: Prohibitin 1 is present in SLP2 immunoprecipitates
Comparison of the 2-D pattern of three independent SLP2 immunoprecipitates and one beads-
only control, produced as in figure 6.12. The same region of each 2-D gel, corresponding to
the area enclosed by the red rectangle in figure 6.12, is shown. Spots identified by peptide
mass fingerprinting as SLP2 and Phb1 were identified in all three SLP2 immunoprecipitates,
but these spots were not present in the control IP. What are believed to be the same three spots
are indicated in all gels to aid visual comparison – the upper right of these spots was identified
as the actin capping protein capZ in all three SLP2 IPs (sequence-predicted molecular weight
30 kDa and pI 5.6). The positions of SLP2, Phb1 and β-actin are indicated in the leftmost gel.
Molecular weights of SLP2, Phb1 and β-actin (calculated from protein sequence) are 39 kDa,
30 kDa and 41 kDa respectively, and the predicted isoelectric points of Phb1 and β-actin are
5.6 and 5.5. The details of the MALDI-TOF identifications of Phb1 (number of matched
peptides, sequence coverage) are: IP1 9, 36%; IP2 5, 21%; IP3 9, 35%. A representative
spectrum is shown in figure 6.14.

SLP2 IPs immunoblotted with an anti-Phb1 antibody did not contain a strongly-recognised band

migrating at the expected molecular weight for Phb1, despite the fact that Phb1 had been unam-

biguously identified by peptide mass fingerprinting in another aliquot of the same IP sample (data

not shown). The anti-Phb1 antibody did, however, recognise a band of the appropriate molecular
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Figure 6.14: Prohibitin 1 peptide mass fingerprint
A. Peptide mass fingerprint obtained for prohibitin 1 from SLP2 IP 1 in figure 6.13. The
y-axis represents signal intensity, the x-axis represents mass-to-charge ratio (m/z) which, for
the ions produced by MALDI-TOF, is equivalent to mass. Peaks identified as derived from
Phb1 are indicated with arrows. The trypsin autolysis peptides at m/z 842.51, 1045.56 and
2211.10 are indicated with a ‘T’. The graph has been scaled to show the less intense Phb1
peaks, and so some highly abundant trypsin peaks at m/z 800–900 are off the scale.
B. Amino acid sequence of human Phb1, showing the peptides identified using the mass
spectrum from (A). The nine peptides covered 36% of the Phb1 amino acid sequence.
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Figure 6.15: Alignment of human SLP2 and prohibitin protein sequences
Reference protein sequences for human SLP2, prohibitin 1 and prohibitin 2 were retrieved
from the RefSeq database and aligned with ClustalX2. Residues are coloured according to
Blossum62 score, with darker colours indicating better conservation. The RefSeq database
accession numbers for the protein sequences (all human) used for alignment were: SLP2,
NP 038470.1; Phb1, NP 002625.1; Phb2, NP 001138303.1. Phb2 has two transcript variants,
but the proteins produced by these transcript variants are identical.

weight in HUVEC lysates analysed on the same membrane. Immunoprecipitation trials using the

anti-Phb1 antibody were unsuccessful – immunoblots of these IPs with the same anti-prohibitin

antibody used for immunoprecipitation did not recognise a band at the expected position for Phb1

(data not shown).

6.5 Examination of potential functions of SLP2

As the role of SLP2 in endothelial cells was completely unknown, two different siRNAs targeting

SLP2 (SLP2 A and B) were used to address the effects of SLP2 knockdown on various endothelial

cell functions. Given the mitochondrial location of SLP2 (figure 6.3), the role of SLP2 in the

development of mitochondrial membrane potential and apoptosis was of particular interest.

6.5.1 Mitochondrial-related functions

The membrane potential of mitochondria is important in oxidative phosphorylation, and accumu-

lation of the fluorescent dye TMRM can be used as a relative measure of mitochondrial membrane

potential (section 2.9.1.1). Confocal microscopy confirmed that TMRM was accumulated, appar-
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ently in a mitochondrial pattern, by HUVECs incubated for 2 h with 25 nM TMRM, the condi-

tions used for TMRM experiments (figure 6.16A, compare with the Mitotracker Red pattern in

figure 6.3). No consistent differences were observed in the TMRM staining pattern in cells treated

with SLP2 siRNA compared to those treated with control siRNA.

To obtain quantitative data on the amount of TMRM accumulated by HUVECs, TMRM-treated

cells were analysed by flow cytometry. SLP2 knockdown did not significantly affect accumulation

of TMRM, despite 84–89% knockdown of SLP2 (figure 6.17).

6.5.2 Apoptosis

The importance of SLP2 in apoptosis was assessed using annexin V staining of serum-deprived

HUVECs coupled with flow cytometry. The SLP2 A siRNA increased apoptosis by 24% compared

to the control siRNA, whereas cells treated with the SLP2 B siRNA showed a non-significant 10%

increase in apoptosis (figure 6.18). Both siRNAs reduced SLP2 protein levels by similar degrees

(SLP2 A siRNA 91%, SLP2 B siRNA 93%) as assessed by western blotting of parallel samples.

6.5.3 Cell migration

The involvement of SLP2 in migration was also examined using SLP2 knockdown. Neither SLP2

A siRNA nor SLP2 B siRNA significantly affected HUVEC migration in response to VEGF.

6.6 Discussion

SLP2 came to attention during this thesis when it was identified as a major component of HUVEC-

derived pY immunoprecipitates. As virtually nothing was known about SLP2, attempts were made

to determine the reason for the presence of SLP2 in pY IPs, and the role of SLP2 in ECs more

generally.

Results presented in this chapter indicate that while SLP2 is certainly present in pY IPs, SLP2
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Figure 6.16: TMRM specifically accumulates in mitochondria
A. Confluent HUVECs grown on coverslips were incubated for 72 h with SLP2 siRNA B,
a negative control siRNA (control), transfection reagent alone (mock) or were left untrans-
fected. Cells were then incubated with the fluorescent dye TMRM (25 nM for 2 h), before
live cell imaging with an inverted confocal microscope. The staining pattern is similar to
that seen for Mitotracker Red in previous experiments. No differences were evident between
SLP2 siRNA treated groups and controls, or any other groups, when viewing a number of
separate fields. Data is from a single experiment.
B. Western blot indicating the SLP2 achieved by the siRNAs in this experiment.
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Figure 6.17: SLP2 knockdown does not affect accumulation of the mitochondrial
potential-dependent dye TMRM
HUVECs were treated with siRNA for 72 h, followed by incubation with 25 nM TMRM
for 2 h to label mitochondria. Cells were then resuspended in PBS and assessed for TMRM
fluorescence using a flow cytometer.
A. Representative histogram from the CellQuest flow cytometry program, illustrating the ef-
fect of TMRM staining on the fluorescence recorded on the FL2 channel of the flow cytome-
ter. Untransfected cells had been either incubated with TMRM (right panel) or not incubated
with TMRM (left panel) as indicated.
B. Mean TMRM fluorescence of HUVECs treated with the indicated siRNA, as determined
by flow cytometry. UT, untransfected cells; Mock, transfection reagent alone; Control, neg-
ative control siRNA; SLP2 A and B, two different siRNAs targeting SLP2; US, unstained
untransfected cells (no TMRM added). Results are means± SEM of four independent exper-
iments. One-way ANOVA indicated no significant differences (except with unstained cells).
Mean knockdown of target protein achieved by siRNAs, compared to control siRNA: SLP2
A 84%, SLP2 B 89%
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Figure 6.18: Effect of SLP2 knockdown on endothelial cell apoptosis
HUVECs were incubated with 200 nM of two different siRNAs targeting SLP2 (SLP2 A and
SLP2 B), a non-targeting control siRNA, or transfection reagent alone (Mock) for 2 days.
The medium was then changed and cells were incubated overnight in M199 basal medium to
induce apoptosis. Live and dead cells were then harvested by trypsinisation and stained with
FITC-conjugated annexin V. The proportion of stained (apoptotic) and unstained (healthy)
cells was determined by flow cytometry, with 15,000 cells counted per sample. Results are
presented as the proportion of annexin V-positive cells, compared to that observed in the
control siRNA sample, and are given as mean ± SEM from four independent experiments.
Data were analysed by one-way ANOVA with Bonferroni’s test for multiple pair-wise com-
parisons. * SLP2 A siRNA significantly increased the proportion of annexin V-stained cells
compared to the control siRNA (p<0.05). Mean knockdown of target protein achieved by
siRNAs, compared to control siRNA: SLP2 A 91%, SLP2 B 93%

itself may not be directly tyrosine phosphorylated. I also found no evidence that a previously

reported tyrosine phosphorylation site, Y124, was phosphorylated in HUVECs. However, the

amount of SLP2 present in pY IPs was reduced by excess pY analogue, suggesting that SLP2

is present in pY IPs in a pY-dependent manner, possibly via association with a pY-containing

protein. SLP2 appeared to associate with Phb1, but whether this contributed to its presence in

pY IPs is unknown. SLP2 is a mitochondrial protein in HUVECs, and SLP2 maturation may

involve cleavage of an N-terminal mitochondrial localisation peptide. Functionally, an ≈85%

reduction in SLP2 protein levels did not noticeably affect mitochondrial morphology, nor did

it significantly affect the mitochondrial membrane potential or VEGF-stimulated migration of

HUVECs. SLP2 knockdown may have slightly increased apopotosis due to serum starvation,

although the robustness of this effect is questionable as a second SLP2 siRNA had little effect.
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Figure 6.19: SLP2 knockdown does not affect HUVEC migration
HUVECs were pre-treated for 48 h with two different siRNAs targeting SLP2 (SLP2 A and
B), a non-targeting control siRNA (Control) or transfection reagent alone (Mock). Cells were
trypsinised and migration was assessed in a transwell assay using 25 ng/ml VEGF (V) or no
addition (C) as the chemoattractant. Results are presented as the proportion of migration stim-
ulated by VEGF (Control V), expressed as means ± SEM of five independent experiments.
Two-way ANOVA indicated that while the effect of VEGF treatment was significant, the ef-
fect of siRNA was not. Mean knockdown of target protein achieved by siRNAs, compared to
control siRNA: SLP2 A 90%, SLP2 B 93%.

Overall, the role of SLP2 in ECs is unclear from these experiments.

6.6.1 SLP2 is a mitochondrial protein in endothelial cells

SLP2 was originally identified as a peripheral membrane protein in erythrocytes (Wang and Mor-

row 2000). In this chapter, it was shown that SLP2 co-localises with the mitochondrial marker dye

Mitotracker Red, indicating SLP2 is a mitochondrial protein in HUVECs. SLP2 has since been

shown to co-localise with mitochondrial markers in HeLa cells, co-fractionate with mitochondrial

marker proteins and has been detected in extracts of purified mitochondria (Da Cruz et al. 2003;

Hajek et al. 2007; Da Cruz et al. 2008; Wang et al. 2009), strongly suggesting that SLP2 is indeed

a mitochondrial protein. Incubation of isolated mitochondria with various detergent/protease mix-

tures, with subsequent analysis of the susceptibility of SLP2 to proteolysis, suggested that SLP2

was associated with the inner mitochondrial membrane, facing the intermembrane space (Hajek
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et al. 2007; Da Cruz et al. 2008). SLP2 may have a distinct role in red blood cells, as these cells

do not contain mitochondria (Sprague et al. 2007).

Amino acid sequence analysis suggested the presence of a mitochondrial targeting peptide, com-

posed of approximately 34 amino acids at the N-terminus of SLP2. This region was never detected

in a number of mass spectrometric analysis of SLP2, suggesting it could be absent in the mature

protein. Absence of this region would adjust the SLP2 isoelectric point to a similar value to that

observed by 2-D electrophoresis. The pI of SLP2 observed in this study (5.5) was similar to that

observed previously when SLP2 was identified in HUVECs (5.3, Sprenger et al. 2004) and to that

predicted for SLP2 lacking the N-terminal 34 amino acids (5.7), but dissimilar to that predicted

for full-length SLP2 (6.9). While the absence of the 34 N-terminal amino acids from mass spectra

may be due to a technical limitation, such as the inability of hydrophobic peptides generated from

the SLP2 N-terminus to solublise or ionise properly, John et al. (2006) used a number of differ-

ent proteolytic enzymes to generate different peptides from purified, human cell-derived SLP2,

obtaining peptides covering the entire SLP2 sequence apart from the first 34 amino acids.

These first 34 amino acids are highly likely to contain a functional mitochondrial targeting se-

quence, at least part of which is then removed on import by proteolysis. Full-length in vitro

synthesised SLP2 is imported into isolated mitochondria, leading to formation of a smaller SLP2

form suggesting proteolytic processing, and this import and size reduction is prevented by dissi-

pation of the mitochondrial membrane potential (Hajek et al. 2007). The import signal is resident

in the 50 N-terminal amino acids of SLP2 – tagged SLP2 lacking the 50 N-terminal amino acids

was cytoplasmic when expressed in HeLa, whereas a fusion protein composed of the N-terminal

50 amino acids of SLP2 and GFP was mitochondrial as determined by fluorescent microscopy

(Da Cruz et al. 2008).
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6.6.2 Presence of SLP2 in pY immunoprecipitates

SLP2 was reproducibly observed in pY immunoprecipitates and, judging by silver staining of

complete pY immunoprecipitates, appeared to be a major component of these immunoprecipi-

tates. However, the anti-pY antibody did not strongly recognise an SLP2-sized band in SLP2 IPs.

No post-translational modifications were identified in the peptides identified by MS/MS, and en-

zymatic dephosphorylation of pY IPs did not alter the isoelectric point of SLP2. Together, these

data suggest that pY-containing SLP2 is not a major component of SLP2 IPs.

Analysis of the SLP2 protein sequence did not identify a strong tyrosine kinase consensus se-

quence. However, tyrosine phosphorylation sites are difficult to predict, and lack of a predicted

site does not preclude the existence of a tyrosine phosphorylation site. Analysis of the EGF recep-

tor using amino acid sequence analysis tools including that used in this chapter failed to predict five

phosphorylation sites which were subsequently shown by MS/MS to be tyrosine phosphorylated

(Steen et al. 2002).

If SLP2 is not directly phosphorylated on tyrosine residues, it may be present in pY immunopre-

cipitates due to direct recognition of a non-pY-containing region of SLP2 by the anti-pY antibody,

i.e. an off-target effect. This appears unlikely, given that excess phenyl phosphate, a pY analogue,

prevents immunoprecipitation of SLP2 by the anti-pY antibody. However, if phenyl phosphate is

more strongly recognised by the anti-pY antibody than a non-pY-containing region of SLP2, it is

conceivable that immunoprecipitation of SLP2 could be an off-target effect of the antibody which

would still be prevented by excess phenyl phosphate. This possibility cannot be discounted.

SLP2 could be present in pY immunoprecipitates but not be tyrosine phosphorylated itself if it

associates with a pY-containing protein. Given that SLP2 is a major component of pY immuno-

precipitates, it might be expected that a large amount of pY-containing protein might need to be

directly immunoprecipitated to enable such a large quantity of SLP2 to be co-precipitated. How-

ever, SLP2 has been reported to exist in large complexes, both as a homooligomer ((Reifschneider

361



et al. 2006), reported complex size 1800 kDa by variant native gel electrophoresis) and in com-

plex with Mfn2 (Hajek et al. 2007) and prohibitins 1 and 2 (Da Cruz et al. 2008, approximate

size of SLP2 complex 250 kDa by gel filtration). Data not shown in this thesis using glutaralde-

hyde cross-linking (as used for Hsp27 in the previous chapter) suggested that SLP2 may exist in

a high molecular weight complex. As such, a strong association of a large complex containing a

number of individual SLP2 protein molecules with a single pY-containing protein would explain

the observed results - presence of a large amount of SLP2 in pY immunoprecipitates, but little

pY-containing protein in SLP2 immunoprecipitates. Alternatively, the tyrosine phosphorylated

protein associating with SLP2 could be SLP2 itself – that is, a very small proportion of SLP2 is

tyrosine phosphorylated, with a large amount of unphosphorylated SLP2 complexing with it. This

small proportion of pY-containing SLP2 could easily be missed when analysing SLP2 as a whole.

6.6.3 Association of SLP2 with mitochondrial proteins and influence on mitochon-

drial function

A large number of proteins were present in SLP2 immunoprecipitates but not in beads-only con-

trols, indicating that these non-SLP2 proteins associate with the SLP2 antibody in some way, either

directly (i.e. due to non-target recognition by the antibody) or indirectly via SLP2 (true association

with SLP2) or via another protein. Prohibitin 1 was reproducibly identified in SLP2 immunopre-

cipitates via MALDI-TOF MS, but the anti-Phb1 antibody (the same antibody used by Da Cruz

et al. 2008) did not convincingly recognise an appropriate band in SLP2 immunoprecipitates de-

spite recognising prohibitin 1 in lysates. This may be because the Phb1 associated with SLP2 and

so present in SLP2 immunoprecipitates is modified in some way so that it is not recognised by the

monoclonal anti-Phb1 antibody.

Prohibitins (Phbs, reviewed by Artal-Sanz and Tavernarakis 2009) are predominantly mitochon-

drial proteins belonging to the SPFH (stomatin/prohibitin/flotillin/Hflk) family of proteins, which

also includes SLP2. The role of the Phb domain (also called the SPFH domain) is unknown but
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is present in a number of oligomeric lipid raft-associated proteins (that is, protein associate with

membrane subdomains high in cholesterol), suggesting that it may be involved in lipid binding

and/or oligomerisation (Browman et al. 2007). Two prohibitins have been identified in mammals,

Phb1 and Phb2, which associate forming a heterodimer. Multiple heterodimers then associate to

form a large complex at the inner mitochondrial membrane, and this complex is conserved between

yeast and man. Multiple mitochondrial roles have been suggested for prohibitins including main-

tenance of normal cristae morphology, assistance of oxidative phosphorylation enzyme complex

assembly/maintenance, roles in mitochondrial fission, and others (Artal-Sanz and Tavernarakis

2009).

Phb1 and 2 have previously been reported to associate with SLP2 in HeLa cells (Da Cruz et al.

2008). Immunoprecipitates of tagged SLP2 (using the tag for immunoprecipitation) contained

both Phb1 and Phb2, and immunoprecipitated Phb1 contained tagged SLP2. Phb1 was also present

in immunoprecipitates of endogenous SLP2 from mitochondrial lysates, indicating that association

is not due to protein overexpression, although similar results have not been formally demonstrated

for Phb2. Thus it appears from the work of Da Cruz et al. (2008) that SLP2 associates with Phb1

in mitochondria, and overexpression work suggests that Phb2 may also associate with SLP2.

Da Cruz et al. (2008) commented that only a very small fraction of endogenous Phb1 is present in

SLP2 immunoprecipitates, suggesting that the inability to detect Phb1 in the immunoprecipitates

of endogenous SLP2 produced in this thesis may be due to insufficient numbers of cells being

used for immunoprecipitation. However silver-stained 2-D gels indicated that Phb1 appeared to

be a major component of the SLP2 immunoprecipitates prepared in this thesis. Interestingly,

Phb2 has been reported to be a tyrosine phosphorylated protein (at Y248), localising to the inner

mitochondrial membrane of T-cells (Ross et al. 2008), and so SLP2 association with Phb2 could

explain the presence of SLP2 in pY IPs.

In addition to prohibitins, SLP2 has been reported to associate with another inner mitochondrial

membrane protein, mitofusin2 (Mfn2, Hajek et al. 2007), in formaldehyde-treated HeLa cells, with
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formaldehyde cross-linking being used to preserve the interaction. Mfn2 is involved in adjustment

of mitochondrial morphology via mitochondrial fusion and fission, which is thought to be involved

in maintenance of the mitochondrial network and its adaptation to metabolic demand (van der

Bliek 2009). Mfn2 itself, along with Opa1 and Mfn1, is required for mitochondrial fusion, whereas

Drp1 is required for mitochondrial fission.

Despite the apparent association of SLP2 with Mfn2 and Phbs, both implicated in control of mi-

tochondrial morphology, in this thesis siRNA-mediated reduction in endothelial cell SLP2 protein

expression had no obvious effect on mitochondrial morphology. While reduction of SLP2 might

be expected to enhance mitochondrial fragmentation by disrupting Mfn2-dependent fusion, others

have also reported that SLP2 knockdown has no effect on normal mitochondrial morphology in

HeLa cells (Hajek et al. 2007) and mouse embryonic fibroblasts (Tondera et al. 2009).

In addition to normal mitochondrial dynamics, it has recently been shown that mitochondria fuse in

response to some cellular stresses (including cycloheximide, UV radiation and actinomycin D) in

a process termed stress-induced mitochondrial hyperfusion (SIMH). SIMH requires Mfn1, Opa1

and SLP2, and short hairpin (sh)RNA-mediated knockdown of SLP2 causes proteolytic degra-

dation of Opa1 and prevents UV-induced SIMH (Tondera et al. 2009). In the absence of SLP2,

Opa1 is proteolytically cleaved, and overexpression of uncleavable Opa1 allowed SIMH to occur

in SLP2-reduced cells, suggesting that SLP2 protects Opa1 from proteolytic cleavage.

SIMH may be a response to increase ATP production during stress – SIMH-inducing stimuli

caused an increase in mitochondrial ATP production, which did not occur in cells unable to un-

dergo SIMH due to absence of Opa1 or Mfn1, or in cells expressing SLP2 shRNA (Tondera et al.

2009). In unstimulated MEFs in the same study, mitochondrial membrane potential was not dif-

ferent between control and SLP2-reduced cells, although the details of how this was determined

were not clear. In contrast, Hajek et al. (2007) reported that siRNA-mediated reduction of SLP2

protein expression by 95–98% in HeLa cells caused a 19% reduction in geometric mean TMRE

fluorescence (interpreted as a reduction in mitochondrial membrane potential). In this thesis, an
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siRNA-mediated≈90% reduction in endothelial cell SLP2 protein expression did not significantly

alter mean TMRM fluorescence using a similar method to Hajek et al. (2007). This may have been

due to reduced SLP2 knockdown in the primary endothelial cells used in this chapter (Hajek et al.

2007 used a cell line, performing two rounds of siRNA treatment). However SLP2 knockdown by

Tondera et al. (2009) appeared virtually complete, although quantitative data was not presented.

In summary, loss of SLP2 protein appears to lead to proteolysis of mitochondrial proteins including

Phbs, Opa1, and components of the electron transport chain, suggesting that SLP2 is required for

the stability of some of these proteins under normal and/or stress conditions, perhaps in some cases

by stabilising a complex of these proteins.

6.6.4 Role of SLP2 in cell function

Release of cytochrome C from mitochondria is a cardinal event in apoptosis. In this thesis, it was

unclear whether SLP2 reduction had increased EC apoptosis induced by serum starvation, as the

size of the increase varied above and below the statistical significance threshold with two different

siRNAs, despite similar reductions in SLP2 protein expression by the two siRNAs. However any

effect present appeared low.

Tondera et al. (2009) reported that shRNA-mediated SLP2 knockdown increased the apoptosis of

HeLa or MEFs in response to UV irradiation, and suggested that this was due to prevention of

SIMH as cells deficient in Mfn1 were also sensitised to UV or actinomycin D-induced apoptosis.

Serum starvation also caused SIMH and therefore SLP2 knockdown might be expected to sensitise

cells to apoptosis due to loss of SIMH. It is possible that the degree of SLP2 knockdown obtained

in this thesis was insufficient to observe this effect. However, a role for SIMH in protection of

cells from serum starvation-induced apoptosis was not directly demonstrated, and may be less

important in protection against this particular apoptotic trigger in endothelial cells, where other

anti-apoptotic mechanisms may be more important.

SLP2 may have additional functions in other cell types. Red blood cells do not contain mitochon-
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dria (Sprague et al. 2007), but contain SLP2 (Wang and Morrow 2000). Kirchhof et al. (2008)

reported that a small proportion of SLP2 associates (possibly indirectly) with components of the

T-cell receptor, a plasma membrane protein, and SLP2 knockdown reduced the duration of T-cell

receptor signalling. A number of signalling proteins such as PLCγ, and other proteins including

actin were also located in SLP2 IPs. A surprisingly large increase (not quantified) in the amount of

SLP2 present in cell lysates was observed after T-cell stimulation, which may reflect increased mi-

tochondrial density to fuel the needs of the activated T-cell. Overall, it is possible that SLP2 may

have extra-mitochondrial functions, which may reflect its role as a scaffolding protein. In endothe-

lial cells and a number of different cell types examined by others, SLP2 appears mitochondrial,

suggesting SLP2 has a predominantly mitochondrial function in most cells.

SLP2 is overexpressed in a number of cancers (Zhang et al. 2006; Cao et al. 2007; Cui et al.

2007; Dowling et al. 2007), and increased SLP2 expression associates with increased clinical

stage and reduced patient survival (Cao et al. 2007). Antisense SLP2 has been reported to re-

duce proliferation and attachment of the oesophageal cancer cell line KYSE450, and the weight

of tumours formed by injected antisense SLP2-containing KYSE450 cells was dramatically re-

duced compared to control KYSE450 cells (Zhang et al. 2006). SLP2 overexpression may be a

consequence of increased mitochondrial density as an adaptation to the metabolic demands of a

rapidly-dividing cells, or may be due to a mitochondrial stress response such as the overexpression

of SLP2 observed in SIMH. Low-power micrographs suggested that SLP2 is distributed through-

out the cytoplasm of cancer cells, raising the possibility that the role of SLP2 in cancer is unrelated

to its mitochondrial functions.
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Chapter 7

General discussion

VEGF stimulates a number of biological effects, including angiogenesis in vivo and proliferation,

migration and survival of cultured endothelial cells. The research undertaken for this thesis was

initally directed towards identification of novel VEGF-activated signalling pathways in ECs which

might be involved in mediating some of these functions.

7.1 Proteomics for analysis of intracellular signalling

Proteomic analysis of VEGF signalling, by gel separation of proteins followed by detection and

MS-based identification, allowed the examination of post-translational modifications such as phos-

phorylation in addition to alterations in protein expression. Proteomic analysis of whole cell

lysates identified Hsp27 as an abundant protein regulated by short-term VEGF treatments, but

known VEGF-stimulated changes such as phosphorylation of VEGFR2, ERK and p38 MAPK

which were observed via western blotting were not apparent in silver-stained 2-D gels. VEGF is

known to increase protein tyrosine phosphorylation, but no differences were apparent during pro-

teomics comparisons of pY immunoprecipitates from VEGF-treated and control cells. However,

analysis did identify SLP2, a relatively unknown protein not previously reported to be tyrosine

phosphorylated, as a major component of endothelial pY IPs. Further work on Hsp27 and SLP2

is discussed below.

367



A major problem for the proteomic approaches employed was the low abundance of many pro-

teins involved in signalling. Some proteins (e.g. some metabolic enzymes, cytoskeletal proteins

and chaperones) constitute a substantial proportion of total cellular protein, and so dominate when

total protein detection, such as silver staining, is used. Even when examining pY immunoprecip-

itates, a high degree of constitutive tyrosine phosphorylation may have been a problem. Other

intrinsic problems with the 2-D gel/total protein stain approach, such as difficulties in solublis-

ing membrane proteins, difficulties in silver staining quantification, and problems in accurately

matching spots between gels, may have contributed to the lack of identification of subtle changes.

However, more spots were observed using total protein staining techniques than could be iden-

tified using mass spectrometry, and so improved staining sensitivity allowing detection of lower

abundance proteins might by hampered by limited protein identification. Subcellular fractionation

(to focus on a subset of the proteome) and scaling-up protein loading, coupled with a sensitive,

accurate method to determine differences in protein expression would be required to markedly

improve proteomic analysis of intracellular signalling.

7.2 Hsp27

Proteomic analysis identified Hsp27 phosphorylation as a major effect of VEGF stimulation of

cultured ECs. At the outset of this work, Hsp27 had been identified as an actin capping protein

and molecular chaperone, and had been implicated in a variety of roles including protection from

apoptosis. Hsp27 expression increased in response to some cellular stresses in some cell types.

Overexpression of Hsp27 protected cells from certain types of external stress, and had been impli-

cated in survival of some cell types. Hsp27 had also been implicated in the migration of various

cell types including cultured ECs (Piotrowicz et al. 1998). Phosphorylation of Hsp27 in response

to cellular stresses and various cytokines, via a p38 MAPK/MAPKAPK2-dependent pathway had

also been reported, with phosphorylation causing a reduction in Hsp27 oligomeric size and so

possibly influencing its function (Lambert et al. 1999; Rogalla et al. 1999).
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The results presented in chapters 4 and 5 indicated that VEGF rapidly stimulates phosphoryla-

tion of Hsp27 at S15, S78 and S82, with S82 the major phosphorylation site, and also causes a

reduction in the oligomeric size of Hsp27. I determined that Hsp27 phosphorylation occurs via

a PKC/PKD-dependent pathway, which acts in parallel to a p38α/MAPKAPK2-dependent path-

way. Knockdown of Hsp27 suggested that Hsp27 is required for normal endothelial cell responses

including VEGF-stimulated migration, protection from apoptosis and tubulogenesis.

7.2.1 Hsp27 phosphorylation

Stress-induced, p38 MAPK-mediated Hsp27 phosphorylation is well established. A major finding

of this thesis was that VEGF-stimulated Hsp27 phosphorylation also occurs via a PKC/PKD-

dependent pathway, which acts to phosphorylate Hsp27 at S82 but not S15 or S78. Stress stimuli

examined (H2O2, TNFα, anisomycin) did not apparently activate PKD or cause PKC-dependent

Hsp27 phosphorylation.

Whether activation of a PKC-dependent Hsp27-phosphorylating pathway, as opposed to the p38

MAPK-dependent pathway, has a functional relevance is unclear. Presumably, the PKC-dependent

pathway acts to increase the abundance of S82 monophosphorylated Hsp27, the predominant form

of Hsp27 occurring after VEGF stimulation. It is possible that PKC-dependent Hsp27 S82 phos-

phorylation is a non-consequential side effect of VEGF-stimulated activation of PKC, that is to

say PKD or another PKC-dependent enzyme is able to non-functionally phosphorylate Hsp27,

and the extra S82 monophosphorylated Hsp27 has no further effect in the cell, or any effect is

tolerated. Perhaps an evolutionary solution to prevent PKC-dependent S82 phosphorylation, when

PKC was activated for other purposes, was unnecessary. VEGF and other tyrosine kinases use

PKC-mediated pathways for some processes where other stimuli use non-PKC-mediated path-

ways to achieve the same goal, such as activation of ERK, which can occur via PKC or via Ras.

However, S82 appears to be a key residue in terms of Hsp27 oligomerisation, and Hsp25 or Hsp27

mutants mimicking phosphorylation at S82 form smaller oligomers than those mimicking phos-
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phorylation at S15 (Lambert et al. 1999; Rogalla et al. 1999). In this thesis, S82D mutation was

sufficient to cause a reduction in Hsp27 oligomeric size.

Phosphorylation-induced deoligomerisation has been assumed to be an important mechanism of

regulating the function of small Hsps such as Hsp27 (Haslbeck et al. 2005). In most studies, no

distinction has been made between the effect of Hsp27 phosphorylation status, mutation of Hsp27

phosphorylation sites (to phospho-mimicking or phospho-null residues), and effects on Hsp27

oligomerisation status, and so it is not clear whether phosphorylation status or oligomeric size is

the key property of Hsp27 regulating its function. One study that did make a distinction showed

that unphosphorylated monomeric Hsp25 inhibited actin polymerisation whereas phosphorylated

monomeric and unphosphorylated polymeric Hsp25 were ineffective (Benndorf et al. 1994), sug-

gesting that phosphorylation status itself may be important in addition to oligomerisation state.

A number of studies have reported that overexpression of phospho-site mutants of Hsp27 or a

homologue affects Hsp27 or cellular function differently compared to wild-type Hsp27, suggest-

ing that some combination of phosphorylation and oligomerisation does modulate Hsp27 cellu-

lar function. Phospho-mimetic Hsp27 is less effective as a molecular chaperone in vitro than

phospho-null Hsp27 (Rogalla et al. 1999; Theriault et al. 2004). Wild-type Hsp27 interacts with

Akt whereas phospho-mimetic Hsp27 does not (Rane et al. 2003). Overexpression of unphospho-

rylatable Hsp27 inhibits VEGF-stimulated EC migration and PDGF-stimulated vSMC migration,

whereas overexpression of wild-type Hsp27 either increased migration or had no effect (Piotrow-

icz et al. 1998; Hedges et al. 1999). Thus phosphorylation of Hsp27, possibly acting via effects

on oligomeric structure, can modulate Hsp27 activities in vitro, interactions with binding partners

and overall cellular function.

Given the reported importance of phosphorylation for at least some Hsp27 functions, it is possible

that S82-monophosphorylated Hsp27 may have a distinct function to triply-phosphorylated Hsp27,

and so a balance between p38- and PKC-dependent pathways for Hsp27 phosphorylation may be

important in fine-tuning Hsp27-dependent responses. Examining migration in this thesis, mutation
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of S82 to a phospho-mimicking or unphosphorylatable residue had no significant effect, although

S82 monophosphorylated Hsp27 may be important in other functions. Alternatively, PKC/PKD-

mediated phosphorylation and p38/MAPKAPK2-mediated phosphorylation may occur in different

protein complexes or in different cellular locations.

p38 MAPK is strongly activated by stress stimuli, and prolonged activation is associated with

induction of apoptosis. Perhaps S82-phosphorylated Hsp27 is required for VEGF-stimulated cell

functions, but the degree of activation of the p38 MAPK cascade required to give adequate Hsp27

phosphorylation would be high enough to activate other unwanted signalling cascades (e.g. those

leading to apoptosis). Further use of a PKC-mediated pathway would allow generation of sufficient

phosphorylated Hsp27 without the need for high p38 activation.

Whatever the function, both PKC and PKD are involved in VEGF-stimulated Hsp27 S82 phos-

phorylation. Lack of a specific PKD inhibitor, and the incomplete removal of endothelial PKD

using siRNA, prevented firm conclusions as to whether PKC stimulates Hsp27 phosphorylation

solely via PKD. If Gö6976 inhibits all PKDs fully, then the effects of Gö6976 in combination

with a p38 inhibitor would suggest that PKC may also stimulate Hsp27 phosphorylation via PKD-

independent mechanisms. This issue is not clear from the data obtained.

PKC and PKD are required for endothelial migration, but it was not possible to determine the

contribution of these enzymes to Hsp27-mediated effects on cell migration and other functions.

While PKC/PKD knockdown or inhibition affected VEGF-stimulated cell migration, clearly these

enzymes may be important signalling nodes and their manipulation may alter a number of down-

stream pathways in addition to affecting Hsp27. Knockdown of different PKC isoforms had dif-

ferent effects on migration, which were more dramatic than the effects of these knockdowns on

Hsp27 phosphorylation, indicating that the major effects of PKC manipulation on migration are

unlikely to be due to effects on Hsp27 phosphorylation. PKD may also target other migration-

related proteins – in particular, PKD1 knockdown reduced migration to a greater degree than it

reduced VEGF-stimulated Hsp27 S82 phosphorylation.
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p38 MAPK was generally less important in VEGF-stimulated endothelial functions than has previ-

ously been suggested (Rousseau et al. 1997, 2000a). p38 inhibition or knockdown had surprisingly

little effect on VEGF-stimulated migration and tubulogenesis, and p38 contributed only partially

to VEGF-induced phosphorylation of Hsp27, a reportedly major downstream target postulated to

be a key effector of p38 downstream signals. The idea that the p38 MAPK/MAPKAPK2 pathway

regulates key migratory pathways may need to be revisited, as p38 MAPK activity is apparently

not essential for VEGF-stimulated cell migration, as shown in this thesis, or for the plethora of

cellular activities constituting normal mouse embryonic development (Adams et al. 2000). p38

MAPK may be essential for mediating some migratory (and other) signals in response to some

stimuli, with either those signals or those stimuli redundant in development.

7.2.2 Hsp27 function

Hsp27 was shown to be required for VEGF-stimulated EC migration and protection from apopto-

sis. The nature of Hsp27 involvement in apoptosis was not examined in this thesis, but multiple

effects on apoptotic signalling pathways have previously been reported (discussed in chapter 1).

The role Hsp27 plays in VEGF-stimulated EC migration is not clear. While Hsp27 knockdown

reduces migration, in this thesis Hsp27 overexpression did not increase migration in the assay

used, indicating that endogenous Hsp27 is sufficient for optimal migration. In other assays, where

different cellular processes (e.g. adhesion) may be more important, additional Hsp27 may have

led to enhanced migration.

Migration is driven by actin polymerisation, and Hsp27 has been reported to interact with actin

as both a phosphorylation-dependent actin capping protein (capping in the unphosphorylated

monomeric state) and as a stabiliser of intact actin filaments. While previous models have sug-

gested that phosphorylation of Hsp27 causes removal of the Hsp27 cap from actin filaments to

allow further actin extension, this seems unlikely to be the major Hsp27 migratory role impeded

by Hsp27 knockdown – by this model less Hsp27, capping less actin filaments, might be expected
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to increase migration by allowing enhanced actin polymerisation and laemellipodium extension.

Actin capping at the trailing edge of a migrating cell may be important for directional movement,

however. Loss of actin filament stabilisation, resulting in formation of actin filaments that are too

transient to form appropriate structures, could compromise migration and this property may be

more important in the effects of Hsp27 knockdown.

Hsp27 may also affect migration (and apoptosis and other cellular processes) indirectly by reg-

ulating other proteins (e.g. by direct interaction with these other proteins) which in turn affect

downstream processes. For example, Hsp27 may have a specific role in the migration machinery,

or it may have a general effect on cellular well-being, with consequential effects on many cellular

processes.

Given apparent roles in cell migration, apoptosis and other functions, the redundancy of Hsp25

for mouse development and normal cellular behaviour (Huang et al. 2007), is surprising. Indeed,

of those examined the only affected function in Hsp25-null cells was survival of thermal stress

(Huang et al. 2007; migration was not examined by these authors). The relevance of thermal

stress in mammals, which regulate their internal body temperature, is unclear although peripheral

tissues may experience temperature fluctuations. Hsp27 may protect against other stresses which

penetrate the body, such as radiation.

Hsp27 is one of a family of mammalian small Hsps. Any normal cellular roles of Hsp27 may be

fulfilled by one or more of the other sHsps in Hsp25-null mice. If this occurs in practice, why is this

compensation unable to cope with Hsp27 knockdown, leading to the functional effects observed

in this thesis? Perhaps the conditions of cell culture assays (where the effect of the knockdown is

assessed) stress the cells in ways not experienced inside an organism (perhaps siRNA transfection

contributes to this stress), so a survival/damage limitation system not relevant to migration within

an organism is relevant to migration in a culture assay. This interpretation suggests that Hsp27

may not, in fact, be important for cellular functions such as migration under ideal environmental

conditions, and that the effect of Hsp27 on cellular function is a consequence of its chaperone
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activity. Another possible interpretation is that production of Hsp27-compensating proteins occurs

in vivo due to stimulation of a cell by an external signal, which does not occur in cell culture, and

that Hsp27 is important for migration and other cellular functions. Given the reported interactions

of Hsp27 apoptosis- and migration-related proteins, it seems likely that Hsp27 does have a genuine

non-chaperone role in cellular function, although alternatively these interactions may be a result

of promiscuous binding of a chaperone or scaffolding protein, or due to interaction of Hsp27 with

a scaffolding protein.

7.3 SLP2

SLP2 was identified via proteomics as a component of pY immunoprecipitates. At the outset of

this work, very little was known about SLP2 beyond its protein sequence and presence in a number

of cell types. The results presented in chapter 6 indicated that SLP2 is a mitochondrial protein in

ECs, and suggested that rather than SLP2 itself being tyrosine phosphorylated, it may be asso-

ciated with a pY-containing protein. SLP2 knockdown did not significantly alter mitochondrial

membrane potential, cell survival or VEGF-stimulated migration, and did not noticeably affect

mitochondrial morphology.

Recent studies have begun to define the functional roles of SLP2. SLP2 is required for stress-

induced mitochondrial hyperfusion, which may play a role in cellular resistance to certain toxins,

and SLP2 knockdown increases cell susceptibility to UV-induced apoptosis (Tondera et al. 2009).

Loss of SLP2 has also been reported to reduce mitochondrial membrane potential, required for

ATP generation, although others were unable to reproduce this finding (Hajek et al. 2007; Tondera

et al. 2009).

SLP2 associates with Mfn2 and prohibitins – indeed, association with prohibitin 1 was observed

in this thesis – but the role of these associations is unclear. Mfn2 and prohibitins have roles in

mitochondrial dynamics, but while Mfn2 is involved in normal mitochondrial dynamics SLP2 is

not, and SLP2 but neither mitofusin 2 nor prohibitin is involved in SIMH (Tondera et al. 2009).
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SLP2 has been shown to regulate the stability of some mitochondrial proteins including prohibitins

and Opa1, and effects on the stability of these other mitochondrial proteins may contribute to

the effects observed with SLP2 knockdown. For example, absence of SIMH in SLP2-reduced

cells may reflect loss of Opa1 (Tondera et al. 2009). Phb domain proteins have previously been

suggested to form membrane-associated protein scaffolds (Langhorst et al. 2005), and the Phb

domain of podocin binds cholesterol (Huber et al. 2006). Binding of other proteins to SLP2 or

other SLP2-associated proteins may stabilise them during certain cellular conditions, leading to

protection from apoptosis.

The role of tyrosine phosphorylation in SLP2 function is enigmatic. As the majority of SLP2 does

not appear to be tyrosine phosphorylated, SLP2 may be associated with a tyrosine-phosphorylated

protein, which could be a small proportion of SLP2 itself or may be another protein. The Phb do-

main present in SLP2 is also present in other oligomerising proteins, and may itself be involved in

oligomerisation. Potential hetero-oligomerisation between different Phb domain-containing pro-

teins may possibly occur, and so other Phb domain-containing proteins are potential candidates for

tyrosine-phosphorylated proteins associated with SLP2. At least one other Phb domain-containing

protein, prohibitin 2, has been reported to be directly tyrosine phosphorylated. Tyrosine phospho-

rylation of either SLP2 or another protein in complex with SLP2 may regulate the stability of the

entire complex, or may adjust its composition, with associated cellular effects.

7.4 Future work

Due to time and resource constraints, some of the areas of work in this thesis were not fully

developed. Given more time, a number of additional studies would be likely to yield further

insights into some of these areas.
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7.4.1 Analysis of VEGF signalling

It was difficult to analyse signalling proteins using whole cell lysates – these proteins seemed too

low in abundance to be detected within a whole cell lysate. Purification of a subset of interest-

ing proteins, followed by their analysis using methods discussed in chapter 3 such as phospho-

protein/peptide enrichment, is likely to be more beneficial.

Determining the entire repertoire of phosphorylations and/or alterations in protein expression oc-

curring after administration of a particular stimulus, might produce a list of proteins phosphory-

lated in response to the stimulus, but how these proteins are involved in stimulus-induced functions

would not be clear. An alternative approach would be to perform an siRNA screen, assaying for

a functional response or phosphorylation event that is of interest. This approach would iden-

tify the critical control proteins in a particular process, which could then be further investigated.

Given the number of genes in human cells, this would be a major undertaking and would require

a cost-effective high-throughput assay. The subset of siRNAs used could be limited to known

signalling proteins, for example, or known actin binding proteins if migration was being studied,

or some other subset of interest. Suitable high-throughput assays could include western blotting

for a particular protein phosphorylation (if aiming to identify upstream enzymes), coulter counter

proliferation assays, transwell migration assays, the MTT survival assay, and matrigel tubulogen-

esis. Some siRNAs may give insufficient knockdown and some effects may be missed, however

any large effects due to knockdown of key rate-determining proteins would hopefully be observed.

Immunoprecipitation coupled with standard proteomics has been used to identify proteins inter-

acting with the EGF receptor (Pandey et al. 2000a), and a similar IP/gel/mass spectrometry ap-

proach could be adopted for VEGFR2. Overexpression of tagged receptor could also be used.

The stability of the receptor/associated proteins complex might be improved by administration of

glutaraldehyde. Digestion of the entire complex with trypsin could provide peptides representing

all members of the complex, although lysine-containing peptides would be lost if glutaraldehyde

was used. Direct analysis of this peptide mixture by tandem mass spectrometry would avoid the
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problems associated with gel analysis. With a sufficiently advanced mass spectrometer, quantifi-

cation could be performed using stable isotope labelling by amino acids in cell culture (SILAC,

discussed in section 3.5), or in later experiments using western blotting. The functional role of

these interactions could later be examined with siRNA.

7.4.2 Hsp27

Despite the identification of a PKC-dependent pathway contributing to VEGF-stimulated Hsp27

S82 phosphorylation, the role of specific enzymes in VEGF-stimulated S82 phosphorylation is not

clear.

To determine the role of p38-independent Hsp27 phosphorylation in VEGF-stimulated endothelial

cell functions, and determine whether p38-independent pathways contribute to Hsp27 phospho-

rylation at S15 or S78, cells derived from p38-null mice could be used, such as those generated

by Adams et al. (2000). Whether it would be possible to obtain sufficient endothelial cells from

mice is a concern, possibly p38-null mouse embryonic fibroblasts overexpressing VEGFR2 could

be used providing initial experiments indicated that VEGF stimulated a PKC-dependent S82-

phosphorylating pathway. Alternatively, endothelial cells derived from the p38-deficient mice

could be transformed by overexpression of the SV40 antigen and then cultured, similar to the

method Adams et al. (2000) used to produce a cardiomyocyte line. Roles of signal transduc-

tion components implicated in Hsp27 signalling could also be tested using cells derived from

mice lacking the enzyme of interest (e.g. PKD2-null mice). Alternatively, enzyme-null stable cell

lines could be produced in a similar manner to that used by Matthews et al. (2006) to produce

PKD1/PKD3 double null cells. In particular, it would be interesting to know whether PKD is

entirely for responsible PKC-dependent Hsp27 phosphorylation, which could be accomplished by

using PKD1/2/3-triply null cells.

In the cell culture studies performed during this thesis overexpression of wild-type or mutant

Hsp27 had little effect on cellular functions, possibly due to high endogenous expression of Hsp27.
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Attempts to reduce endogenous Hsp27 and re-express a desired Hsp27 from were successful but

the virus/siRNA combination reduced cellular migration, preventing functional analysis of these

cells. To circumvent these problems, and that of incomplete siRNA-mediated knockdown, over-

expression of Hsp27 or mutants in cells completely devoid of Hsp27 (such as the mouse em-

bryonic fibroblasts derived from Hsp25-null mice produced by Huang et al. 2007) could be per-

formed, such that the overall levels of Hsp25 in wild-type/control virus and Hsp25-null/Hsp25

virus-infected cells were similar.

The most important question regarding VEGF-stimulated S82 phosphorylation is the role of this

phosphorylation in an intact organism. Although Hsp25 expression is not required for normal

mouse development, Huang et al. (2007) did not attempt to characterise the effect of Hsp25 ab-

sence on any models of disease. Hsp25/27 may be important in some pathological situations –

Hsp27 overexpression is protective against ischaemia-reperfusion injury, suggesting that endoge-

nous levels of Hsp27 may contribute to protection. Carrying out experiments on Langendorff

perfused heart models similar to that performed by Hollander et al. (2004), using hearts derived

from Hsp25-null mice, would allow examination of this question.

The effect of Hsp25 as a whole in disease models could be determined by crossing available

Hsp25-null mice with a disease model mouse, for example the LDL receptor-null mouse for ex-

amining the potential role of Hsp25 in atherosclerosis. Clearly, mice homozygous for both the

Hsp25 null mutation and the disease-inducing mutation would be required. For examination of

the role of S82 phosphorylation, a mutant knock-in strategy could be employed to generate a

mouse with the wild-type Hsp25 sequence replaced with an S86A Hsp25 sequence.

In terms of the role of Hsp27 in endothelial cells, angiogenic assays such as corneal neovascular-

isation or tumour growth assays would be of interest. Endothelial-specific Hsp25 knockouts (or

endothelial-specific S86A Hsp25 knock-ins) would be useful in angiogenesis-related assays, to

examine whether the endothelial Hsp25 is responsible for any effects. These could be produced

by creating floxed Hsp25 mice, that is Hsp25 flanked by loxP sites, and then crossing these mice
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with mice expressing the Cre recombinase under the control of an endothelial-specific promoter

such as that for VE-cadherin or Tie2.

7.4.3 SLP2

Two major areas of the SLP2 studies warrant further investigation – the role of SLP2 in endothelial

cells and the identity of the tyrosine-phosphorylated protein associated with SLP2 and whether this

association affects the function of SLP2.

Clearly, SLP2-null mice would be useful in determining any non-redundant developmental role of

SLP2. Creating floxed SLP2 mice would, with appropriate breeding, allow subsequent analysis

of the role of SLP2 in individual cell types such as endothelial cells. A quicker, cell culture-

based approach to examine SLP2 function might be to improve the siRNA-mediated knockdown

of SLP2 and then perform functional assays (e.g. apoptosis, mitochondrial membrane potential).

Using hardier cell lines which can survive multiple rounds of siRNA transfection (similar to the

strategy of Hajek et al. 2007), or transducing cells with a lentivirus to continuously produce SLP2

shRNA, may produce greater knockdown and so make functional effects of SLP2 loss clearer.

SLP2 with all tyrosine residues mutated to phenylalanine, a tyrosine mimic lacking the phospho-

acceptor hydroxyl group, would not be directly phosphorylated on tyrosine residues. Analysis

of pY immunoprecipitates derived from SLP2-null or SLP2-reduced cells (e.g. those treated with

SLP2 siRNA) expressing a tyrosine-null SLP2 mutant would allow the contribution of direct SLP2

tyrosine phosphorylation to the appearance of SLP2 in pY immunoprecipitates to be determined.

Searching for other SLP2 associating proteins, yeast two-hybrid screening may be useful. Over-

expression of tagged SLP2 in cells, followed by immunoprecipitation and subsequent proteomic

analysis of the retrieved complexes, may also allow improved specificity in identification of SLP2

interacting proteins, although these interactions would need to be sufficiently stable to survive the

IP procedure. However, a tag may interfere with the interactions between SLP2 and other proteins,

or with SLP2 oligomerisation.
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Examination of the proteome of isolated mitochondria in SLP2-null or SLP2-reduced cells may

allow identification of other proteins stabilised by SLP2 – large-scale loss of abundant proteins due

to proteolysis may well be detected using total protein staining techniques providing quantifica-

tion was sufficiently accurate (e.g. using difference gel electrophoresis or metabolic labelling). A

candidate-based approach, blotting for known mitochondrial membrane proteins, may also iden-

tify SLP2-stabilised proteins. The identity of these proteins may give some insights into the func-

tion of SLP2.
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