
Bringing Security Home:
A process for developing secure and usable systems

Ivan Flechais

Department of Computer Science
University College London

Gower Street
UK – London WC1E 6BT

(+44) 207 679 3642

i.flechais@cs.ucl.ac.uk

M. Angela Sasse
Department of Computer Science

University College London
Gower Street

UK – London WC1E 6BT
(+44) 207 679 7212

a.sasse@cs.ucl.ac.uk

Stephen M. V. Hailes
Department of Computer Science

University College London
Gower Street

UK – London WC1E 6BT
(+44) 207 679 3432

s.hailes@cs.ucl.ac.uk

ABSTRACT
The aim of this paper is to provide better support for the
development of secure systems. We argue that current
development practice suffers from two key problems:

1. Security requirements tend to be kept separate from
other system requirements, and not integrated into any
overall strategy.

2. The impact of security measures on users and the
operational cost of these measures on a day-to-day
basis are usually not considered.

Our new paradigm is the full integration of security and usability
concerns into the software development process, thus enabling
developers to build secure systems that work in the real world.
We present AEGIS, a secure software engineering method which
integrates asset identification, risk and threat analysis and context
of use, bound together through the use of UML, and report its
application to case studies on Grid projects. An additional benefit
of the method is that the involvement of stakeholders in the high-
level security analysis improves their understanding of security,
and increases their motivation to comply with policies.

1. INTRODUCTION
“Effective security is at odds with convenience” [14]. This
statement reflects a common point of view among security experts
and software providers. The effectiveness of a security
mechanism, however, depends on both users and technology
“doing the right thing”. The usability of security mechanisms is
not just a question of improving interfaces to security tools, but
designing security to work with the real-world tasks users
perform, and within the physical and social context of that
interaction [18].
Recent research on usability and security has focussed on user
problems and needs (e.g. [6], [20], [21]). There is compelling

evidence that system developers deserve at least as much
attention. According to CERT [1], the number of security
vulnerabilities in systems is increasing rapidly (from 2437 in 2001
to 4129 in 2002). A recent survey [4] of similar products from
different providers found that the least secure product carried a 6
times higher business risk than the most secure one, highlighting
the fact that the security quality of a product can vary drastically
depending on who designed and implemented it.
It is self-evident that developers play a key role in the provision
of usable and effective security. But to make the right decisions
during the design and implementation process, developers need a
development method that helps them to identify and represent
security and usability requirements in the design from the outset.
Such a method must be lightweight, compatible with notations
and tools already in use, and lead to secure systems that work in
practice. To answer this need, we have developed AEGIS
(Appropriate and Effective Guidance for Information Security), a
secure software engineering method that integrates security
requirements elicitation, risk analysis and context of use, bound
together through the use of UML.
In section 2, we discuss in detail what type of support software
developers need to build secure systems. In section 3, we present
the detailed stages of AEGIS, and in section 4 we report on case
studies where AEGIS has been applied.

2. ISSUES IN DEVELOPING SECURE
SOFTWARE
Since the advent of the software engineering process, developers
have been required to balance a number of requirements in
building systems (e.g. functionality, efficiency, time-to-market,
modularity, scalability, extensibility). Over the past few years, the
rapid evolution of wide area networked systems has created
additional security concerns. Recent research on usability of
security points out that systems must be designed to make it easy
for intended users to “do the right thing” when it comes to
security [12]. The number and complexity of issues that
developers of secure systems have to consider has increased such
that many find it difficult to cope. Following good software
engineering practices is, in many cases, not enough.

Building secure systems necessitates:
1. Following a systematic process of software engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NSPW ’03, August18-21, 2003, Ascona, Switzerland.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1688435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Carrying out a risk assessment on which to base
security decisions [10], [19].

3. Up-to-date knowledge of security threats and
countermeasures.

4. Devising security mechanisms that are effective in the
real world, i.e. that are usable by the intended users in
their specific context of use [18].

The problem is that existing design methods for secure systems do
not address all of these goals and do not provide enough support
for the developers to realistically achieve them.
One method that does address all principles is the one by Abrams
[5], which aims to integrate security engineering into the
evolutionary acquisition process. The method follows a
prototyping and pragmatic risk-based security design approach. It
also relies on regular input from various stakeholders such as
users and developers, as well as an understanding of the context
in which the system operates.

Although we agree with the principles of this approach
(contextual information about the system, integration into a
software engineering strategy, risk-based security decisions), we
believe that it fails to provide sufficient support for developers.

1. There is no integration with the system design
documents: the results are presented in a security
specification in a separate document, and in a different
notation. This is more than a mere inconvenience:
having a separate specification document means
security requirements are usually “out of sight” when
design decisions are made.

2. The context in which the system operates is not part of
the documentation used throughout the design process.
The system context is reviewed at the
beginning of each new iteration of the
prototype, as opposed to being visible
throughout the whole process.

3. Although the design process provides a
placeholder for risk-driven security design,
there is no particular guidance as to what
factors to take into account when making
such decisions – especially social and
cultural factors.

We introduce a method that builds on [5], but which
can support developers in building effective and
usable security throughout the design process, and is
fully integrated with the existing software
engineering tools and notations.
Appropriate and Effective Guidance in Information
Security (AEGIS) uses context regeneration (based
on contextual design [9]) and risk analysis as tools to
assist developers in representing and addressing
security and usability requirements in system design.
By involving stakeholders in the high-level risk
analysis and selection of countermeasures, their
understanding of the need for security
countermeasures, and their motivation to contribute
to security are likely to be improved [10], [19].

Finally, by using UML, AEGIS provides a uniform basis on
which to discuss and bind the separate areas of usability, risk
management and technical design.

Grid computing
We are currently applying AEGIS to the analysis and design of a
number of Grid projects. The purpose of Grids, such as
Seti@Home [3], is to use the Internet as an infrastructure for
distributed computing. Computing power, storage or results can
all be shared across Grids, lowering the cost of research. In areas
of research that require very large investment (physics, medicine,
astronomy, etc.), the advantages of sharing data and resources are
very attractive. Whereas current computing power can only be
upgraded through the purchase of expensive machinery, Grids
allow completely different concepts of operation to be supported,
such as the remote use of another institution’s specialised
facilities (e.g. supercomputers, a specific observatory, a
specialised laboratory, etc.).
This has led to a number of projects being started to investigate
and create the necessary technology to make Grids a reality.
Because of the nature of Grids and the number of different
environments they aim to operate in, however, there exist a large
number of threats, many of which are not considered in standard
security analyses. This makes the need for security in these
projects paramount to the future success of Grids.

3. AEGIS
AEGIS is a software engineering method for creating secure
systems based on security requirements identification through
asset modelling, risk analysis and context of use.
Based on the spiral model of software development – as seen in
Figure 1 (inspired from [19] and [11]) – AEGIS integrates

Start
 Prototype

#1

Start
Prototype

#2

Start Final
Product

Risk Analysis

Risk Analysis

Risk Analysis

Basic
Concepts

Code Requirement
Validation

Gather
Requirements

 Integration
 and testing
 plan

Initial
Design

Amend
Design

Design validation
& verification

Code

Review

Review
&
Test

Review
&
Test

Identify
Stakeholders

Plan
Project

Settle
Final
Design

Code

Unit Test

Integration
Test

Acceptance
Test

Ship

Figure 1. AEGIS Spiral Model of Software Development

security and usability with the prevailing modelling technique
UML. This ensures that usability, thanks to contextual
regeneration (inspired from the same technique that Zurko et al.
[22] used to successfully design a secure and usable authorisation
system), and security are visible throughout the process.
Evidence from the case studies we have conducted so far suggests
that AEGIS can take place over a series of four design sessions
between developers and stakeholders. Depending on the level of
security needed and experience of the developers, security experts
should be included to assist with identification of threats and
selection/design of countermeasures.
As part of our ongoing review of AEGIS, we are envisaging more
detailed support in the form of checklists/FAQs to address known
security pitfalls, and to help identify appropriate security
mechanisms for specific contexts of use. In the long term, links to
appropriate security patterns [2] should also be added.

3.1 Participants
AEGIS is conducted with three different types of participants:

1. Facilitators
2. Stakeholders (owners, developers, users)

3. Security Experts
Facilitators are in charge of conducting AEGIS. They are
necessary to keep the design sessions on track and to elicit
and document the security requirements.
Stakeholders consist of developers, users and owners. It is
important to have a variety of stakeholders (i.e.
owners/management and all groups of users should be
represented), although for practical purposes the number of
participants in the meetings is best kept to 5-6. The reason
for involving both owners and users is to ensure that:

1. all contexts in which the system is used are
represented, and

2. owners and users become aware of each others’
goals and needs.

Today, many systems are built to minimise the need for
geographic closeness in cooperation – Grid systems being an
example. Whilst these systems can offer many benefits,
communication between different stakeholders is limited to
occasional meetings. In the absence of day-to-day
communication, the number of implicit assumptions made –
e.g. what others are trying to achieve, and how they work –
increase. Another prominent phenomenon we have
encountered is what social psychologists call diffusion of
responsibility: the notion that it is tempting to assume that
someone else will take care of a particular problem [13]. To
counter these tendencies, better education [20] and
motivation [20] are key factors; getting stakeholders together
provides the basis for improving the motivation to behave
securely, and the knowledge of how to do this.
Security Experts must be involved if neither Facilitators nor
stakeholders have any technical security knowledge. Expert
knowledge is best used, however, in the Risk analysis and
security design phase.

3.2 Identifying Assets and Security
Requirements
The foundation of AEGIS is to base every security decision on
knowledge of the assets in the system. Inspired by the work of
Herrmann et al. [15], we use UML syntax to model the system, its
assets, threats and security controls. Figure 2 shows a relationship
diagram of the assets in a system.
During the first design session, the facilitators help stakeholders
build a model of the system, representing various assets and their
relationships.
Facilitators ask participants to state the raison d’être of the
system: who is involved, what is to be achieved, and how;
anything that contributes to achieving the goal is represented as
an asset. Facilitators must pay particular attention to ensuring
that the context in which people are interacting with the system is
represented. This includes the physical and cultural environment,
the particular roles that people must assume and the tasks they
must carry out [9].
Using the model of the assets, security requirements are then
gathered from the stakeholders through scenarios where particular
properties of the security of an asset are compromised. For
example, a requirement for the integrity of a database can be

 1

 0..*

 0.. *

protects

 0.. *

transmits

 0..*

accesses

0..*

 1

processes

controls

 0..*

1

 0..*

executes 1..*
1

cooperates
with

 0..*

 0..*

Figure 2. Relationship Diagram of a System’s Assets

Asset

Operative

Honest Operative

Malicious Operative

Data

Communication Link Security Measure

Application

Station

Processing Node

elicited by asking what would happen if the database were
corrupted or intentionally (maliciously or not) modified. It is
important to record these scenarios for future use and checking.
This can be done by modelling them as abuse cases [16] – use
cases of undesirable events.
For example, Figure 4 shows a model generated in a case study.

3.3 Risk Analysis and Security Design
The second design session focuses on clarifying the asset model
of the system and the security requirements. Dependencies
between the assets of the system must also be identified.
Based on the information gathered in the asset model and the
security requirements, the third session is spent identifying the
risks, vulnerabilities and threats to the system, and the fourth
session selects or designs the appropriate countermeasures. Figure
3 shows the process of risk analysis and security design.
For the risk analysis and security design part of the process, it is
important to ensure that expert knowledge is available in order to
identify risks and countermeasures. AEGIS recommends using a
lightweight risk analysis method that allows the rapid assessment
of human and technical risks and threats, and focuses on building
the system. It is possible, however, to employ more time-
consuming, exhaustive and quantitative methods should it be
appropriate for the project.

1. Determine vulnerabilities
A vulnerability is an area which is susceptible to undesirable
action. There are many kinds of vulnerabilities, which can be
broadly divided into two categories: technical vulnerabilities and
social vulnerabilities. Technical vulnerabilities can include buffer
overflows, protocol timing attacks, message replays, unsecured
access points and so on. Social vulnerabilities consists of people
making mistakes on security administration (forgetting to backup
their files, not rescinding access privileges, leaving computers
unlocked, etc.), deliberately trying to subvert the system for
malicious purposes (more commonly called social engineering.

e.g. convincing an administrator to reset a user’s password by
impersonating the user, getting a user to reveal their password by
impersonating the administrator, activating the fire alarms and
physically accessing a computer in the confusion, etc. [17]). More
information about social vulnerabilities and a technique for
modelling them can be found in [12]. This uses a model adapted
from the domain of industrial safety, and distinguishes between
active failures (at the operator level) and latent failures
(weaknesses in the system). A security breach is a result of the
combination of active and latent failures. Active failures are
categorised into:

• slips (attention failures)

• lapses (memory failures)

• mistakes (rule or knowledge failures) – intended actions
that lead to unintended results

• violations – actions that intentionally breach the
security of the system

Both technical and social vulnerabilities should be considered
equally.

2. Assess cost and likelihood of attack in context
This step is necessary to establish how damaging an attack on the
asset (utilising the vulnerability) will be, and how likely it is to
happen in the context of use.
John Adams states that ‘risk is subjective. It is a word that refers
to a future that exists only in the imagination’ [8]. He also shows
that any risk compensation affects the risk being compensated for
and that subsequent behaviours can create different risks [7].
Adams illustrates this with evidence that seat-belt legislation has
reduced the number of injuries in car passengers, but has
increased the number of injuries to pedestrians. This is because
seat belts provide the driver with an added sense of safety and
their behaviour becomes less risk averse as a result. Assessing
risk is therefore a complex endeavour which, as Blakely et al. [10]
state would benefit from adopting a structure which allowed the

sharing of information.
Quantitatively evaluating risks and
damages, such as the ALE (Annualised
Loss Estimate – a product of the
probability of the risk occurring and
the financial damage it would incur
[10]), allows an easily used and shared
measure for risk and damages. Another
example of a widely used quantitative
risk measurement is the security metric
accompanying CERT vulnerability
disclosures [1], which is based on a
number of factors including the impact
of the vulnerability being exploited, the
ease with which it can be exploited, the
number of systems at risk, etc.
One problem with this is that only
easily financially estimated assets can
make use of this. Non-tangible assets
such as reputation, goodwill, staff
morale, etc. cannot be assigned a

Unacceptable Cost

 Benefit too small

Acceptable
Cost

1. Determine
Vulnerabilities

4. Assess Cost and
Benefit of Countermeasures

in Context

Figure3. Risk Analysis and Secure Design Process

2. Assess Cost and
Likelihood of Attack in

Context

5. Compare Cost and
Likelihood of Attack to

Cost of Countermeasures

3. Select
Countermeasures

meaningful quantitative financial cost, and this does not take
account of non-financially motivated attackers
Furthermore, the usefulness of sharing quantitative ratings (such
as the CERT security metric) – thereby reusing some of the
acquired knowledge in the field – is currently badly affected by
their lack of contextual information. Without this information, it
is impossible to know whether the value has any use in a given
environment. By modelling context as well as risk we hope to
provide a starting point to the meaningful sharing of risk
knowledge in computer security.
We currently use qualitative ratings as a means of ascertaining the
importance of a particular security requirement because the
relative importance of different assets is often sufficient to make
decisions in research projects such as the Grid ones. These
generally take the form of ‘high’, ‘low’ or ‘medium’ as ratings of
importance. Particularly important ratings are generally labelled
as ‘essential’. In other application areas, such as the financial
sector, quantitative ratings can also be added.
In this step, it is important to seek accurate knowledge in order to
achieve an informed decision and both quantitative and
qualitative measurements should be used where most appropriate.
Since risk is ultimately subjective, a consensus should be reached
with security experts and stakeholders, based on available
information – which can include existing risk assessments, field
experience, numbers of past incidents, environment of the asset,
dependencies between assets, etc.
When determining the cost of a potential attack, one method of
assessing this is to run through the security requirement document
and confirm the ratings of importance. This information can then
be correlated with other sources, such as legal requirements, know
replacement costs (for replaceable assets), industry standards and
brand impact so as to gather a good picture of the cost of an
attack. This process is also useful to validate the initial security
requirements and any changes should be reflected in the
requirement documentation.

3. Select countermeasures
This section is the first stage of an iterative process of identifying
the most cost-effective countermeasures.
Once assets and the risks they face have been identified, the next
step is to determine how to address these risks. From the
information gathered thus far, a clear picture should emerge as to
which parts of the system are most at risk, either due to a very
high likelihood of attack, or due to the estimated crippling cost of
a successful attack. Attention must be given to the most likely and
damaging risks first.
For example, all other factors being equal, it would be more
important to secure a salary database residing on an Internet
connected workstation (seen as high risk) than it would the same
database on an unconnected workstation (with a lower risk from
the internet). This does not mean that no attention should be paid
to the second salary database, because although it has a lower
risk, it still holds very valuable data.
Expert advice should be used in order to identify as quickly as
possible the most likely countermeasures. It can be proposed to
employ:

1. no countermeasure

2. deterrence, prevention, detection and reaction to attacks,
3. transfer of liability and responsibility (through

insurance or third party intervention).
Returning to our example, in order to secure the high-risk salary
database some countermeasures might include disconnecting the
workstation from the Internet and locking it in a room to which
only two people have the key (prevention). Other alternatives
might be to install access control and intrusion detection
mechanisms allowing the audit of whoever accessed the machine
(detection), making misuse a punitive offence (deterrence and
reaction), allowing only a limited number of MAC addresses to
connect to the machine (prevention), getting a third party to
secure the database and maintain it’s security (transfer of
liability), etc.

4. Cost-benefit assessment in context
This next stage in the countermeasure selection process
determines what the cost of the proposed countermeasures will be,
and weighs it against the benefits that they bring.
Cost of countermeasures in context
Cost in this section not only addresses financial issues, but also
refers to the effort a user will expend in deploying the
countermeasures. The context refers to the environment in which
the attack can occur and in which the countermeasures are
deployed. It is very important for the facilitator to gather
information from the users in order to identify the projected costs
associated with a particular countermeasure. Scenarios and use
cases can again be used to document this activity.
For example, if a system forces a user to change his password
whilst he is simultaneously being urged to achieve a production
task for which he needs the system, the cost will be very high
both in terms of loss of productivity and in frustration of the user.

Benefit of countermeasures
Benefit in this section refers to whether the controls actually
reduce the risk, as well as establishing whether they provide any
advantages to the user. It is important to put the control in context
with the other security controls as well as the rest of the system.
Taking the previous example, the benefit of forcing a password
change may not be particularly evident in the face of the potential
problems. It may be that a different or additional countermeasure
would be more beneficial. A different countermeasure - such as a
physical authentication token - or an additional countermeasure -
such as user training in selecting passwords - would provide
additional benefits to the user, at the cost of greater financial
expenditure and the potential creation of different risks (such as
having the token stolen).

5. Compare cost and likelihood of attack against cost of
countermeasures in context
This is the final stage in the countermeasure selection process,
where the actual decision to adopt a countermeasure is made
depending on its benefits versus its cost.
Owners in the project should be involved at this stage – these
include owners and developers. This is to establish whether the
vulnerability poses sufficient risk and potential damage to justify
the cost of the countermeasures.

Thanks to the information gathered so far about the various
countermeasures proposed, a clear picture should be evolving as
to the impact of a particular countermeasure. If the cost proves to
be unacceptable, or the risk still too great, the process of selecting
countermeasures (step 3) should be started again. Otherwise, time
and money permitting, a new cycle (step 1) should be started to
conduct a new determination of the vulnerabilities taking the new
countermeasures into account. If no further controls have been
added, the assessment is over.

The final output of the risk analysis and security design phase is a
design document detailing the architecture of the system together

with all the countermeasures which have been agreed upon
(including training and staff motivation as well as technical
measures), the necessary user behaviour these countermeasures
depend on, and the workload this adds to users. In addition to this,
the documentation generated in this process can be built upon and
used to support future iterations.

4. CASE STUDIES
One of the projects that we have documented as a case study is
EGSO (European Grid of Solar Observations).
The purpose of EGSO is to provide a Grid making the solar
observations of a number of different observatories and
institutions available to customers.
We evaluated AEGIS by looking at:

1. whether developers are aware what workload the design
imposes on users

2. whether developers’ knowledge of security is improved,

such as their understanding of vulnerabilities, threats,
risks and how to address them

3. whether developers’ and users’ awareness of, and
motivation to, apply security have increased

Provider to
Client

Broker to Provider
QueryBroker to

Broker

Client

Command Line
API

Web-based forms.
(GUI)

Workstation

Scientist

Server

Broker

confidentiality : nil
integrity : v. high
availability : v. high

Routing Metadata

confidentiality : med

Cache

confidentiality : high
integrity : high
availability : v. high

Provider to
Broker

Server

Solar Data

confidentiality : med
integrity : essential
availability : v. high

Solar Metadata

confidentiality : med
integrity : essential
availability : v. high

Provider

confidentiality : nil
integrity : v. high
availability : v. high

Programs

confident. : med-low
integrity : high

Hardware

availability : low

Service Execution
Manager

Compute
Interface

(User Activity)

confidentiality : high

Institution

Institution

Provider to
Provider

Administrator

Backup

Maintenance

Special service

Security admin

Backup

Maintenance

Special service

Security admin

Administrator

Figure 4. EGSO Asset and Security Requirement Model

4.1 Background
We started our case study by conducting three meetings with
stakeholders in order to determine what the aims and
requirements of the project were, and also to establish the current
state of security in the project.
We then arranged a series of design sessions with up to three
stakeholders (two developers and one user/manager) and applied
the AEGIS method.
The initial review uncovered that thanks to the presence of very
competent software engineers in the project, a high standard of
practice was being applied to EGSO. This could be seen in
documented use cases, requirements validation, user interface
design and UML system design. The need for security had been
acknowledged and some use cases, albeit in vague terms,
described the need for some security mechanisms (e.g. the need
for ‘direct access to satellite data in near real-time, perhaps only
with necessary authorisation’).

4.2 AEGIS
In the beginning of the process, a number of previously
undocumented security needs emerged, such as ‘users want their
results to be protected’ and data providers need to protect their
resources from being swamped and attacked.
We also uncovered that ‘no one is in charge of security’. It was
also stated that security had not been considered in depth because
the project was ‘still in (the) early stages (of) going from
requirements to design’. A final comment justified a lack of
concern for security by insisting that functionality was much
more important at this point in time, and that security would be
addressed later.
Evidence of diffusion of responsibility with respect to security
was also present. Assumptions were made that other people or
technologies would take care of some security aspects. For
example, if digital certificates were to be used, the middleware
would ‘take care of the PKI’ (Public Key Infrastructure). Another
example, witnessed to a greater extent in other Grid projects, was
the assumption that the technical support of the institutions
hosting the projects would take care of their security. What
happened in reality is that many institutions isolated Grid projects
from their internal network, but did not make any further efforts
to protect the projects.

4.2.1 Asset Identification
As facilitators, we started by focussing on identifying the major
assets of EGSO. We asked our participants to draw a model of
EGSO, and because of the distributed nature of GRID
applications, we asked for a model that would represent every
different kind of asset, without worrying about modelling the
multiplicity.
The natural inclination was to draw the system isolated from its
environment, and we encouraged the participants to describe
where people were involved in the system and in what kinds of
environments various different parts of the system existed. The
wide range of possible environments for EGSO users led us to
refrain from modelling too much detail, although the
commonalities of the rest of the system were identified.

4.2.2 Security Requirements Elicitation
Once the main assets of the system had been modelled, we set
about identifying security requirements. We started by defining
the concepts of confidentiality, integrity and availability (for other
projects, different concepts might be applicable as well, such as
dependability, accountability, non-repudiation, etc.). We then
looked at specific assets and asked the participants to rate them
(qualitatively) according to these three terms. More specifically,
we asked them to evaluate what the impact would be on the
system should a specific type of attack occur.
For example, this is how we rated the solar data asset:
Availability: What would happen if users were unable to access
this information? The system needs to be ‘robust within reason’.
Identifying levels of acceptability was ‘not something that’s been
clearly defined.’ Availability was therefore rated as being a ‘very
high’ requirement.
Integrity: How important is it for the information held at the
providers to be what users and providers expect it to be? ‘If there
was no data, there would be no system’. Similarly, if the data was
modified in any way so as to mislead, this would be unacceptable.
The Integrity requirement was therefore rated as being ‘essential’.
Confidentiality: Does the Solar Data have to be kept secret from
anyone? ‘Some providers may want to restrict the access to the
data for a period of time’, but ‘they may not want to use EGSO
for that type of data’. The requirement for confidentiality was
rated as ‘medium’.
This proved to be useful for three reasons:

1. Participants had to look systematically at their system
and identify a wide range of security requirements for
every part of the system (many people tend to forget
that requirements other than confidentiality are also
important).

2. It allowed the explicit description of implicit
assumptions, which in turn uncovered problems.

3. The final outcome, although it consisted of qualitative
ratings, allowed the easy identification of the most
important assets in the system

The full asset model, complete with the identified security
requirements can be seen in Figure 4.

4.2.3 Risk Analysis
Although the risk analysis is not complete, we started by
identifying the various dependencies between the assets of EGSO.
This highlighted, for example, that the availability of the solar
data (rated as very high) was completely dependent on a wide
range of factors such as provider administrators, broker
administrators, routing, hardware operation, network links and
their traffic.
Prior to carrying out the AEGIS analysis with EGSO, there had
been a debate about whether or not to use digital certificates. The
perceived cost and complexity of employing certification (based
on little more than word-of-mouth) was driving the discussion,
but the full consequences of either path of action had not been
analysed.
Before even starting the risk analysis, a strong desire to avoid
having to use digital certificates was voiced, illustrating the fact
that accurate knowledge in this area is paramount.

During this process, we identified that some users were going to
require a privileged access in order to be able to run resource-
consuming jobs. This conflicted with the stated desire to avoid
having to employ a robust version of access control and
authentication. It soon became apparent that ruling out
certification at this stage would be premature and could possibly
lead to a greater workload on developers and more complex
system.
We anticipate that the rest of the risk analysis will identify a
number of vulnerabilities, mainly in areas of availability of
services and integrity of data. We have already provided a
number of scenarios in which the data that was assumed to be
public could be modified to suit a particular attacker, or where
user software running on provider hardware could be used to
attack the system.

4.2.4 Security Design
Whilst the security design sessions are incomplete, the
identification of the dependencies in the beginning of the risk
analysis highlighted the total dependency on system
administrators and prompted the need for specifying their duties.
This in turn led to some discussions about the stated need for a
low cost buy-in from observatories wishing to participate in the
project, balanced against the current design requirement for their
administrators to actively carry out various security tasks.
Other areas were also identified where policies would have to be
detailed, such as the expansion to different providers, data update
and integrity control, and acceptable use.

4.3 User issues in security decisions
The need to document specific administrative policies has
stemmed from explicitly stating the implied behaviours, duties
and skill levels expected of the administrators of the system. This
analysis has highlighted the need to detail the duties of the
administrators in order to provide ground for both guidance and
security.
Issues that will be raised include the problems users can have with
key management if the need for certification arises, the need to
clarify the specifics of tasks that administrators must perform and
conflicts that may occur if there is no provision for prioritising
administrator tasks (backup, maintenance, security) and
production tasks (special service). We will also highlight the need
for a security culture in which secure behaviour is encouraged,
possibly through the use of incentives and punishment for
transgression.

4.4 Developer knowledge of security
Some statements uncovered during the design sessions illustrated
a confusion and misunderstanding over what securing the project
entailed. For example, backup needs and procedures were initially
seen as an archival problem that should be solved by individual
providers, even though EGSO was intended (among other things)
to be a reliable means of access to the data.
Other evidence of a better understanding of security can be taken
from comments such as how this approach has raised a number of
issues that had never been contemplated, such as the need for
EGSO to trust providers to behave in the expected way as much
as the need for providers to trust EGSO. Also, in the words of one
participant (and paraphrasing an American politician), it was
‘converting the unknown unknowns to known unknowns’.

The process also seems to have changed the attitude of the
stakeholders from an initially held optimistic outlook on security,
to a more searching and deterministic attitude.
Furthermore, developers are happy to use the process and some
have even found it to be useful in gathering functional
requirements and understanding the system.

4.5 Motivation to apply security
In this case study, even without our involvement, the motivation
to apply security existed – what was missing was a systematic
analysis and plan for implementing it. There was isolated
evidence of some initial reluctance by some participants of EGSO
to get involved because of the need to pursue functionality, but
this quickly disappeared as soon as we started.

Since our involvement, some of the points and suggestions that
were made have prompted changes in the design and increased the
resolve that security is a necessary step.

5. SUMMARY
These are the initial results for AEGIS and we are currently in the
process of gathering more detailed results and transcripts from a
number of other case studies.
From the evidence gathered so far, AEGIS has proved to be
approachable, engaging and simple to use. Through the
application of AEGIS, EGSO also identified a number of
problems and instituted a number of key changes:

• No one was explicitly in charge of ensuring the project
was secure

• Little work was done to approach security
systematically

• There was little coordination between the project and
the institutions that run the project regarding security

• We identified and modelled main assets

• We identified and documented security requirements

• We identified many areas which forced the project to
look at their implicit assumptions.

• We identified the need to document policy for a large
number of areas: backup, data update and integrity
checking, administrator duties, expansion of EGSO to
other providers and acceptable use

There is evidence that this process also improved the developers’
and researchers’ knowledge about security. We also believe that
the inclusion of contextual information has highlighted the need
to document and regulate specific duties of human personnel in
the system that other security methodologies would have
overlooked in favour of technical issues.

6. CONCLUSIONS
Although research in the usability of security is ongoing, we
believe there is a need to address the problems developers face
when building secure systems. They require help to overcome the
complexity of applying good security and designing usable
systems at the same time.
In response to this, we have presented AEGIS, a lightweight
approach improving the usability of a secure development method

as well as providing security decision makers with increased
awareness of user context.
Although this method is not necessarily as comprehensive in its
technical coverage of security when compared to other
methodologies, we believe it is the first to actively involve user
information in security decisions.

Our case studies have shown that this method is well received,
useful and approachable, having in many cases resulted in a more
comprehensive and structured approach to security. We are
currently expanding the number of projects we are working with
as a result. As part of our review of AEGIS, we intend to extend
and refine our methods in order to provide more extensive support
for the risk analysis and security design phases.

We envisage future work to involve identifying common security
requirements and linking them to the appropriate security design
patterns [2] as well as improving tool support.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge the contributions of the NSPW 2003
participants and NSPW reviewers, who helped to improve the
earlier version of the paper. Ivan Flechais is funded through an
EPSRC CASE studentship with BT Labs.

8. REFERENCES

 [1] CERT. http://www.cert.org

 [2] Security Patterns. http://www.securitypatterns.org/

 [3] Seti@home. http://setiathome.ssl.berkeley.edu

 [4] @stake. The Security of Applications: Not All Are Created Equal.
http://www.atstake.com. 2002.

 [5] Abrams, M. D. Security Engineering in an Evolutionary
Acquisition Environment. New Security Paradigms Workshop
1998.

 [6] Adams, A. & Sasse, M. A. Users Are Not The Enemy.
Communications of the ACM 1999. Vol. 42, No. 12 December

 [7] Adams, J. Risk. 1995. UCL Press.

 [8] Adams, J. & Thompson, M. Taking account of societal concerns
about risk: framing the problem. Health and Safety Executive.
Research Report 035 2002.
http://www.geog.ucl.ac.uk/~jadams/publish.htm

 [9] Beyer, H. & Holtzblatt, K. Contextual Design : Defining
Customer-Centered Systems. 1998. Morgan Kaufmann
Publishers, Inc.

 [10] Blakley, B., McDermott, E., & Geer, D. Information Security is
Information Risk Management. New Security Paradigms
Workshop 2001. pp 97-104.

 [11] Boehm, B. W. A spiral model of software development and
Enhancement. IEEE Computer 1988. 21(5) , pp 61-72.

 [12] Brostoff, S. & Sasse, M. A. Safe and Sound: a safety-critical
approach to security design. New Security Paradigms Workshop
2001.

 [13] Darley, J. M. & Latané, B. Norms and normative behaviour: field
studies of social interdependence. Altruism and Helping
Behaviour. 1970. New York: Academic Press. J.Macauley &
L.Berkowitz (eds).

 [14] Grygus, A. 2003 And Beyond.
http://www.aaxnet.com/editor/edit029.html. 2003.

 [15] Herrmann, P. & Krumm, H. Object-Oriented Security Analysis
and Modeling. Proceedings of the 9th International Conference on
Telecommunication Systems - Modeling and Analysis 2001. pp
21-32.

 [16] McDermott, J. P. & Fox, C. Using Abuse Case Models for
Security Requirements Analysis. Proceedings of the 15th Annual
Computer Security Applications Conference (ACSAC'99),
Phoenix 1999. pp 55-67. IEEE Computer Society Press.

 [17] Mitnick, K. D. & Simon, W. L. The Art of Deception: Controlling
the Human Element of Security. 2002. Wiley Publishing Inc.

 [18] Sasse, M. A., Brostoff, S., & Weirich, D. Transforming the
'weakest link': a human-computer interaction approach to usable
and effective security. BT Technical Journal 2001. 19 , pp 122-
131.

 [19] Viega, J. & McGraw, G. Building Secure Software. 2002.
Addison-Wesley.

 [20] Weirich, D. & Sasse, M. A. Pretty Good Persuasion: A first step
towards effective password security in the real world. New
Security Paradigms Workshop 2001.

 [21] Whitten, A. & Tygar, J. D. Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0. Proceedings of the 8th USENIX
Security Symposium, August 1999, Washington 1999.

 [22] Zurko, M. E., Simon, R., & Sanfilippo, T. A User Centered,
Modular Authorization Service Built on an RBAC Foundation .
IEEE 1999.

