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Abstract

What are the current limits of our knowledge of brain activity

underlying vision and can I further this knowledge? In this thesis, I

explore this basic question. I focus on those aspects of visual input

that can be described as basic features of visual perception.

Examples include orientation, color, direction of motion and spatial

frequency. However, understanding how humans visually perceive

the external world is closely related with the study of attention.

Attention, that is, the selection of some aspects of the environment

over others, is one of the most intensively studied areas in

experimental psychology, yet its neural mechanisms remain largely

elusive.

This thesis focuses on three distinct topics at the border of feature-

specific visual perception and feature-specific visual attention. First,

in a series of studies, I explore the influence of heightened

attentional demand to a central task to feature-specific neural

processing in the ignored periphery. I discover that heightened

attentional demand does not influence feature-specific

representations in early visual cortices. Second, I investigate the

influence of feature-based attention on neural processing of early

visual cortices. At the same time, I also probe the influence of a

behavioral decision to deploy feature-specific attention in the

imminent future. I find that feature-based attention operates

independent of other types of attention. Additionally, results

indicate that a behavioral decision to deploy feature-based attention

alone, without visual stimulation present, is able to modulate neural
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activity in early visual cortices. Third, I examine the more complex

feature of facial gender and where in the brain gender

discrimination might receive neural processing. I find that, in an

established network of face-selective brain areas, facial gender is

represented in nearly all areas of that network. Finally, I discuss all

findings in the light of the current state of research, for their

scientific significance and for future research opportunities.
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Preface

Vision has been a central topic of study in neuroscience for over a

hundred years. In particular, the relationship between attention and

visual processing has been studied extensively. Attention modulates

the level of brain activity and behavioral performance associated

with the processing of visual stimuli. In humans many studies have

addressed the neural basis of attentional modulation of visual

perception using non-invasive techniques, like

electroencephalography (EEG) and functional magnetic resonance

imaging (fMRI). However, it has proven difficult to make clear

inferences about the effect of attention on underlying neural

representations of visual stimuli. Difficulties arise mostly due to

methodological restrictions like the limits of spatial and temporal

resolution of non invasive techniques and the complex task of

inferring underlying neural activity from results obtained by these

methods. As a consequence, it remains largely elusive what lies

within the general observation that activity in a neuronal population

associated with visual processing is modulated, often enhanced, by

visual attention. However, it is the nature of this modulation of the

underlying neuronal representation of visual stimuli, which has

fascinated the imagination of many visual neuroscientists.

In this thesis, I explore basic questions about visual processing, in a

variety of paradigms and settings, but always with a central

question in mind: What are the current limits of our knowledge of

brain activity underlying vision and can I further this knowledge?

Naturally, I limit myself to very specific sub-aspects of visual
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processing, namely the representation of irrelevant basic visual

features (like orientation, hue, color or direction of motion) under

differing attentional load conditions, the modulation of visual

processing by feature based attention and the representation of

facial gender information in the brain.

In the next sections I review the research that prompted the

questions addressed in this thesis. I begin with a brief description

on the debate regarding the selection process of visual attention,

followed by a description of load theory, which offers a resolution to

the debate. I follow this with a brief, non-technical, review of

multivariate pattern recognition for fMRI and why this new

methodological approach is highly relevant when studying brain

activity underlying feature-specific processes in the human brain.

This is followed by an outline of the evidence for different types of

attention, with particular focus to the particular instance of feature-

based attention and feature-specific selection. Finally, I describe in

brief the current state of knowledge on face-specific visual

processing and how it relates to this thesis. I close with an outlook

on the specific questions addressed in studies of this thesis. In a

separate chapter I review, in detail, methods and techniques used

throughout the experimental work described in this thesis.
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Chapter I:

General Introduction

I.1 Load Theory

I.1.1 Visual attention

What humans perceive at any given moment is not rigidly

determined by the sensory inputs available. Instead, humans have

the ability to select a subset of the available perceptual information.

In the study of vision, this active process of visual perception has

been labeled visual attention (Treisman, 2004). Before visual

processing was widely examined at the level of brain activity, in the

early days of attention research, visual information processing was

often seen as a simple pipeline of successive stages: information

travelling from one stage to another. In this simplified model visual

attention was commonly described as a filter, acting at one of these

different stages to select information for further processing while

excluding irrelevant or unattended information. With evidence from

neuroscience this pipeline view was, however, soon replaced with a

more complex system allowing for parallel pathways, top-down

feedback and lateral connections. Of course the new, more complex

model, allowed for visual attention to act more flexibly. None the

less, for a long time, one central discussion in studies about visual

attention remained whether any filtering or selection occurred
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“early” or “late” in visual perception. This was of course confusing in

the first place, as to answer the question whether attention acts

‘early’ or ‘late’ depends on how to interpret the words early and

late: for example, as measures of time, of processing order or of

neuroanatomy. At least partly as a consequence of this confusion,

most research focused on answering a slightly more specific

question: whether visual perception is an automatic process. In one

popular view this automatic processing was argued to occur up to a

very high level of detail (i.e. object recognition) and attentional

selection was mainly described as acting ‘late’ - at the level of

memory and response selection (Deutsch and Deutsch, 1963). In

contrast, another popular view held that attentional selection acted

‘early’ - at the level of perception itself (Broadbent, 1958). This

discussion was not trivial as both views were backed up with many

apparently competing behavioral experimental findings. However, at

the time, the actual concepts discussed were mainly of a theoretical

nature, describing psychological models rather than underlying

physiological processes. Over the years and fueled by numerous

experimental results providing equally convincing evidence for early

and late selection, often contradicting each other, the discussion

seemed unsolvable. In fact, as recent as 1993, it was suggested

that the contradictions thrown up by different research studies

about visual attention might never be resolved (Allport, 1993)



16

I.1.2 Does attention act early or late in visual processing

Why is it reasonable to think of visual attention as a process acting

early in visual processing? As an example consider only the earliest

stage of visual information processing: at any given time, only a

fraction of the information received from the retina can be selected

for further processing. Yet, humans have to ability to select a subset

of the available perceptual information. Thus, two fundamental

properties of the visual perception system were generally listed as

relevant for early selection: first, visual perception has limited

capacity for processing information, and second, visual perception is

selective (Broadbent, 1958). A common theoretical interpretation

emerged: it must be that visual attention acted as a filter early in

processing of visual stimuli. This led to the early selection view,

supported by many studies (Broadbent, 1958; Rock and Gutman,

1981; Mack, 1998). Early selection models propose a number of

perceptual inputs competing for a central selective filter. From all

competing inputs a small subset of inputs are selected by this filter

for further processing (i.e. "attending to"). Selected information is

passed along to higher areas. Thus, as a result, unattended

information is filtered out early and does not influence further

processing.

In contrast, according to the late selection view, visual perception

occurs automatic and preattentively. The crucial difference to the

early selection studies is that unattended stimuli are often shown to

influence perception. Thus instead of visual signals being filtered out

early, visual perception is argued to occur automatically for all
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stimuli, making all information available. Then visual attention

selects a subset of already processed information for further

analysis, response planning, memory tasks, etc (Deutsch and

Deutsch, 1963; Treisman and Geffen, 1968; Neill, 1977; Tipper,

1985). Hence, late selection views postulate that perception is an

automatic process, which proceeds on all stimuli regardless of their

task relevance. Attention, according to this view, can only affect

post-perceptual processing stages such as visual selection along

guidelines from higher areas.

The debate has proved to be of surprising longevity, mostly due to

the fact that substantial empirical support has been found for both

theories. Reviewing the literature in 2001, Jon Driver concluded that

both views together resulted in “a rather confusing picture of visual

attention for a long time” (from: A selective review of selective

attention research of the past century, Driver, 2001).

I.1.3 Load theory

Lavie (1995) proposed a theory to elegantly solve this long-standing

debate of early versus late selection. Her original theory was later

expanded to the “Load theory of selective attention and cognitive

control” (Lavie, 1995; Lavie et al., 2004). In this theory attentional

resources are allocated involuntarily to process relevant and

irrelevant stimuli up to a capacity limit, thus the theory combines

aspects of both the early and late selection viewpoints and accounts

for the contradictory results found in earlier research. Consequently,
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Lavie’s load theory allows a reinterpretation of previous

experimental work and gives rise to novel, empirically-testable

predictions. The main components of Lavie’s theory are attentional

load (also named perceptual load) and cognitive control. In this

thesis the terms attentional load and perceptual load are used

interchangeably.

Attentional load is a mechanism that primarily deals with the

amount of visual information at a given time in an attended

situation. Attentional selection occurs up to the capacity limits of

visual attention, thus, the perceptual system does indeed have

limited capacity (as proposed by early selection). However, Lavie’s

theory also proposes that all stimuli, regardless of their relevance to

the task at hand, are processed automatically (as in late selection)

– but only until perceptual capacity is exhausted (Lavie and Tsal,

1994; Lavie, 1995). This results in the interesting proposal that low

attentional load during an attended goal-directed task leaves spare

attentional capacity to ‘spill over’ to goal-irrelevant features. On the

other hand, high attentional load takes up all capacity and thus

decreases distractor processing. Attentional load finds its

counterpart in executive control: an active attentional control

mechanism determining stimulus processing priorities, e.g. between

targets and irrelevant distractors. Cognitive control helps to keep

track of changes, goals or intentions and is acting within the range

of working memory. The cognitive control mechanism keeps priority

of attended stimuli or features and by doing so reduces interference

from distractors. Working memory is one cognitive mechanism to

maintain such prioritization. Importantly, cognitive control under
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high working memory load should have an opposite effect to that

obtained under high perceptual load. An increased condition leaves

no spare working memory capacity to reduce interference (maintain

prioritization) and will therefore lead to increased distractor

processing. Work in this thesis exclusively focuses on the

mechanisms of attentional load.

I.1.4 Evidence for attentional load as proposed in the load

theory

Behavioral studies of attentional load. Load theory maintains that

the attentional load imposed by a task determines the extent of

distractor processing. A review of previous research showed that

evidence of ‘early selection’ was usually found in studies in which

the task involved considerable attentional load, leading to an

exhaustion of perceptual capacity and therefore reduced distractor

interference (Rock and Gutman, 1981; Lavie and Tsal, 1994). On

the contrary, in studies consisting of low load target(s) and

distractor(s) there generally was enough spare capacity for the

irrelevant distractor to be perceived and processed. Thus, in these

studies visual attention was often found to act late, and irrelevant,

unattended, distractors often influenced current perception (i.e.

Hagenaar and van der Heijden, 1986; Lavie and Tsal, 1994).

However, since attentional load was not directly manipulated in any

of the previous studies, it was still conceivable that the

discrepancies in findings could be due to alternative factors.
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Consequently, load theory has been tested empirically by Lavie

herself and others. Numerous experimental paradigms have

empirically tested the influence of attentional resources to

unattended stimuli in the periphery (distractor) while subjects

performed a central task of varying attentional load. Experiments

commonly deprive visual distractor-stimuli of attention by

manipulating attentional load in an unrelated task. The level and

type of load of a goal-directed task drastically influences distractor

processing in humans. High attentional load can severely reduce

distractor processing (Lavie, 1995; Lavie and Fox, 2000; see Lavie

et al., 2004 for full theory and many more examples).

Later on, these insights were exploited to produce most striking

demonstrations of highly demanding attentional tasks exhausting

visual perceptual capacity so effectively, that even most salient

distractors become invisible under high load, but are visible under

low load (Cartwright-Finch and Lavie, 2007). In another example

(for high load only), Simons & Chabris (1999) showed participants a

25 second video clip, in which two teams – one wearing white

shirts, the other black – passed balls between members of the same

team. While participants monitored the white team, counting

passes, a person in a black gorilla suit walked across the screen.

When asked at the end of the clip, participants often failed to report

the gorilla even though it is in plain sight for 9 seconds (Simons and

Chabris, 1999). While the study of Simons & Chabris (1999) lacks a

low load condition to compare, it still remains one of the most

striking demonstrations of the influence of high load on conscious

perception.
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An example of one experimental paradigm that demonstrates the

effects of attentional load on irrelevant distractor processing is

shown in Figure I-1 (Lavie and Cox, 1997; see also Lavie, 2005). In

the task participants made speeded responses indicating whether a

target letter in a ring of letters was one of two pre-specified letters

(X or N) while attempting to ignore distractor letters in the ring and

in the periphery. Under low attentional load all letters of the central

circle were simple circles. The presence of a congruent distractor

(the same letter than the target) outside the circle significantly

increased reaction times as compared to the presence of an

incongruent distractor (Figure I-1 B, red bar). Thus, the authors

concluded that the easy task left spare attentional capacity used to

perceive the distractor, resulting in behavioral interference with the

target identification. However, when the task was transformed into

a high load version, by replacing all symbols of the circle with

random letters, the task became significantly more difficult. Now,

under high attentional load, the effect of congruent vs. incongruent

distractor was not significant anymore (Figure I-1 B, green bar).

Thus, the authors concluded that, under high load, the distractor

letter was not processed anymore due to insufficient processing

capacity.
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Following these early examples of the modulatory role of attentional

load, there is an ever growing body of studies showing that the

processing of irrelevant distractors is reduced under high attentional

load. Experiments span a wide variety from more classical effects

on distractors consisting of color-shape conjunctions to working

memory related measures (Lavie, 1997; Lavie and Fox, 2000;

Jenkins et al., 2003, 2005). More recently high load was additionally

shown to reduce effects of various other measures, including

individual differences in distractibility and, finally, relevant

distractors (Forster and Lavie, 2007, 2008).

Functional imaging studies of attentional load. While the load theory

provided an explanation for many behavioral results, behavioral

studies of visual attention tasks do not establish the underlying

neural mechanisms. Thus, soon after the load theory of attention

was proposed, studies of the underlying neural correlates of

attentional load were carried out. Recent research has produced

many insights about the influence on the guidance of visual

Figure I-1
A – Typical example of an attentional load experiment. Subjects
make speeded responses indicating whether a central target letter in
one of two pre-specified letters (X or N) while attempting to ignore a
peripheral distractor letter.
B - Reaction time difference between different attentional load
conditions.
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attention and its relationship to visual awareness (Rees and Lavie,

2001). Other than behavioral results, functional imaging studies

have the advantage that the effect of load can be (indirectly)

measured on brain activity (as measured by the BOLD signal) of a

distractor rather than a behavioral measure related to a distractor.

Thus, experiments commonly deprive visual stimuli of attention by

manipulating attentional load in an unrelated task to then measure

the influence of this load manipulation on the distractor brain

activity. One of the earliest demonstrations of changes on distractor

processing caused by differing attentional load in an unrelated task,

the so called “load effect”, was the finding of reduced activity

associated with motion processing in human V5/MT when comparing

task-irrelevant moving vs. static distractor dots under high vs. low

load in a central task (Rees et al., 1997). Since then several such

studies established the effect of high attentional load in different

areas of the brain, reaching from the sub cortical level of the lateral

geniculate nucleus (O'Connor et al., 2002), amygdala (Pessoa et al.,

2002) to striate cortex (Schwartz et al., 2005) and higher brain

areas such as the parahippocampal place area (Yi and Chun, 2005)

and V4 (Pinsk et al., 2004). The stimuli used vary from meaningless

checkerboards to meaningful pictures and even meaningful facial

expressions.

Taken together, all these studies show that functionally specialized

regions of visual cortex are less activated by irrelevant distractors

under conditions of high attentional load compared to low load

conditions, consequently implying that processing of irrelevant

visual distractors depends on availability of attention.
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I.1.5 New directions in Load theory research

While many studies demonstrate a striking effect of attentional load

on overall brain activity levels, most do not clarify exactly what

aspect of neuronal activity related to the fMRI signal is altered. This

is especially true for the neural representation of non-target related

stimuli (distractors). Thus, an important open question is which

aspect of neuronal activity is modulated by load. For example,

considering load modulations on distractor activity in early visual

cortex, it remains unclear whether the reduced activity in V1 points

towards the possibility that the distractor was (partly) less

processed or less attended or both (Schwartz et al., 2005). Other

non-exclusive alternatives could be that distractor representations

in that experiment received less feedback from higher areas under

high load, or were less synchronized with other brain areas. The

question of what the observation of a reduction in fMRI signal within

a single area indicates in terms of the underlying neuronal

representations and their coupling with other areas is not easily

answered, since it is unclear what kind of data allow deeper insights

into the information content of neural activity in V1. In the example

of Schwarz et al (2005), the activity modulated by attentional load

arose from stimulation with flickering checkerboards. In this

example, how is the neural representation of the checkerboard-

distractor altered beyond the finding of decreased activity under

high load? Are the high-contrast borders of the checkerboard

represented to a lesser degree? Or did participants process certain
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aspects of the checkerboard less under high load than under low

load? To answer these questions is non-trivial as task requirements

are such that the stimulus remains an irrelevant distractor, thus,

direct behavioral measures are hard to obtain. One potential way to

address this problem is to design the distractor in a way that is

particularly well understood in the terms of its neural architecture

and representation. For the brain areas in question, early visual

cortices, it is well known that activity of neurons are tuned to

elementary features such as color and orientation (Hubel and

Wiesel, 1962, 1968). In fact, the columnar architecture in primary

visual cortex that represents specific features of the visual input is

one of the best studied neuronal architectures in the brain (e.g.

colour, orientation or direction of motion, Mountcastle, 1997).

Further, while in early visual cortex, neuronal responses reflect

elementary features (such as the orientation of edges) in the visual

environment, later in visual processing, visually responsive neurons

show selectivity for particular categories of visual stimuli (e.g.

faces). While the spatial representation in higher areas is mostly

unknown, basic visual features are commonly represented at a

spatial scale of a few hundred microns, with different locations in

visual cortex corresponding to different preferences for such

elementary features (see chapter II for more details). For the

purpose of attentional load research and the question of how the

neural representation of irrelevant distractors is modulated by

different attention load conditions, it might thus prove fruitful to

investigate the effect of load on such a representation of a basic

visual feature in the brain. However, such representations have

been thought inaccessible to non-invasive imaging techniques in
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humans. This is because techniques such as fMRI or EEG in humans

typically record at spatial resolutions far greater than the size of

such columns of brain tissue representing different visual stimulus

features. Hence, differences in elementary features were thought to

be not measurable with functional brain imaging. As a consequence,

there is a gap in our knowledge about the exact qualitative nature

of the influence of visual attention on early visual processing. It

remains elusive how load modulations of early visual cortices

influence the content of processing of these brain areas.

Investigating the representation of a basic visual feature in early

visual cortices under different load modulations might offer an

interesting chance to assess the exact nature of the influence of

attentional load and thereby close this gap.
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I.2 Studying feature-specific processes in the human brain

I.2.1 The representation of basic visual features in the brain

It is well known from electrophysiology research that in the primary

visual cortex (V1) of primates, neurons show preferences in their

response to different visual inputs. One well studied example is the

so called orientation preference of neurons in early visual cortex

(Hubel and Wiesel, 1962, 1968). This phenomenon describes

differences in the response of neurons depending on the orientation

of a line presented as visual input, i.e. a neuron might respond

strongly to a horizontal line, but display a smaller response to a

vertical line (Figure I-3 top). Neurons with different orientation

preferences are systematically mapped across the cortical surface,

with regions containing neurons of similar orientation preferences

separated by approximately 500 μm (Wang et al., 1996, shown in

Figure I-3 a, different colours represent different orientations).

Thus, basic visual features like orientation are represented at a

much finer spatial scale in the cortex than the resolution of a high-

field fMRI image acquired in voxels. A voxel is the cube shaped,

smallest region that an fMRI scanner is able to record activity from.

The difference between a common voxel size of 3x3x3mm

(indicated by the black grid in Figure I-3 a) and cortical regions

showing an orientation preference (indicated by different colours in

Figure I-3 a) is relatively large. It is thus remarkable that fMRI is
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none the less able to measure differences in underlying neural

tissue represented at far smaller size.

I.2.2 The emergence of multivariate analysis for fMRI data

In humans, Blood-oxygen-level dependent (BOLD) fMRI signals are

typically measured at spatial resolutions far greater than the size of

Figure I-2
Top: Electrophysiology recordings
from V1 like in Hubel and Wiesel
(1962). One specific cell is
responding strongest for only one
orientation. The tuning of a single cell
can be expressed with a tuning curve
of that one cell (right).
Right: a) Responses to different
oriented lines are recorded from
many locations across primary visual
cortex (V1). Orientation preferences
of neurons are expressed with
different colours. Neurons with
different orientation preferences are
systematically mapped across the
cortical surface. Similar orientation
tuning neurons group in regions of
500μm width. High field fMRI
resolution of 3x3x3mm is illustrated
with the black grid. b) Irregularities
in the map of similar orientation
tuning result in regions that over-
represent one particular orientation.
These potential biases in the
orientation preference of each voxel
can be simulated with a histogram of
orientation tuning per voxel.
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single cells or even large groups of neurons in brain tissue (i.e.

cortical columns), thus measuring neural representations at or

below the level of large groups of neurons in brain tissue was

traditionally thought inaccessible with fMRI. This belief was further

corroborated by the fact that most fMRI analyses apply pre-

processing steps such as spatial smoothing and spatial

transformations that actively blur the responses recoded at a single

voxel in order to get a better local area estimate. As a consequence,

conventional analysis approaches generally focused on relatively

large areas, often additionally averaging all activity recoded in one

location over all times a particular condition has been recorded, in

order to get a more reliable overall average.

It has recently emerged that fMRI can be used to study fine-grained

neural representations, even when they are encoded at a finer scale

than the resolutions of the measurement technique. By taking into

account subtle biases in the pattern of activity recorded, measured

simultaneously at many locations and at the very limit of spatial and

temporal resolution, subtle biases in the pattern of activity have

been demonstrated to allow the study of processes of the human

brain thought to be represented below the spatial resolution of fMRI

(Haxby et al., 2001; Cox and Savoy, 2003; Mitchell et al., 2003;

Haynes and Rees, 2005b, 2005a; Kamitani and Tong, 2005b,

2005a; Haynes and Rees, 2006; Kamitani and Tong, 2006;

Kriegeskorte et al., 2006; Serences and Yantis, 2006; Haynes et al.,

2007; Serences and Boynton, 2007a; Formisano et al., 2008;

Mitchell et al., 2008; Sumner et al., 2008). As a consequence, by

taking into account the full spatial pattern of brain activity, so called
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‘multivariate’ analysis, it is now generally deemed promising to

study neural representations that have been previously thought

inaccessible to non-invasive imaging techniques in humans.

While multivariate analysis has proven itself as very powerful tool, it

can by no means entirely replace traditional univariate analysis

techniques. On the contrary, both techniques address the same

question by studying fMRI data differently: What can we infer about

the underlying neural representation from an fMRI-signal? Hence,

univariate and multivariate analysis are both complementary and

independent analysis-tools and should both be viewed as fMRI

analysis techniques each in its own right.

Comparing conventional ‘univariate’ analysis with ‘multivariate’

analysis reveals several differences. Conventional analysis often

compares whether the average signal recorded from a voxel or

region of interest (ROI) during one condition is significantly different

from the average signal during a second condition, often by

acquiring many samples of brain activity to maximize statistical

sensitivity. However, multivariate analysis accumulates, from many

voxels (spatial locations), the weak information available at each

single location, instead of focusing on averaged activity.

Additionally, contrasting to most conventional analyses, multivariate

analysis only rarely employs pre-processing steps (such as spatial

smoothing or normalization). This means that, conversely to

univariate analysis, fine-grained spatial information that might carry

information about perceptual states of an individual is not lost. In

its most extreme form that means that multivariate analysis is able
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to decode, quasi-online, estimates of a person's perceptual or

cognitive state (Haynes and Rees, 2005b).

I.2.3 Studying orientation and motion specific processing in

early visual cortices with multivariate analysis

First examples examining basic visual feature processing in early

visual cortices in humans include studies investigating the neural

representation of motion directions and oriented lines (Haynes and

Rees, 2005a; Kamitani and Tong, 2005b, 2005a). In these studies

the authors show that, by using multivariate techniques, different

instances of basic visual features such as different directions of

motion or differently oriented lines result in different spatial

patterns of activity in early visual cortices. Each condition (i.e.

oriented lines tilted 45 degrees to the right versus oriented lines

tilted 45 degrees to the left, Haynes and Rees, 2005a) can be

distinguished from the other significantly above chance as a result

of multivariate analysis. Such results have thus been termed feature

specific ‘decoding’ of brain activity. Previous to these studies,

research on visual feature specific processing in animals resulted in

equally impressive results. Preceded the findings in humans,

examples include imaging of monkey orientation columns (Wang et

al., 1998) and highly detailed imaging of cat orientation columns

(Kim et al., 2000; Kim and Fukuda, 2008).

In humans, further work enabled Kamitani and Tong to demonstrate

feature specific neural patterns not only according to one of two
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stimuli, but also to find specific patterns according to the attentional

selection of one of two overlapping stimuli: in particular two

orientations (Kamitani and Tong, 2005b) and two overlapping

direction of motions (Kamitani and Tong, 2006). More recently

Serences and Boynton (2007) also claimed to have measured the

influence of feature-based attention on unattended stimuli and even

unstimulated areas of visual cortex (Serences and Boynton, 2007a).

In summary, the use of multivariate analysis to decode different

features or basic visual stimuli such as different orientations or

different directions of motion is a very young sub-discipline of vision

research using fMRI. However, it has the potential to widen our

understanding of basic visual processing in the human brain

substantially and, moreover, offers a variety of new directions.

I.2.4 New directions in the study of feature specific

processing in human visual cortex

The emergence of multivariate analysis techniques for fMRI has led

to a number of groundbreaking in-vivo demonstrations of visual

features represented in the human visual cortex. It is interesting to

note that many new findings are facilitated not by using

multivariate analysis alone, but often in conjunction with

conventional, univariate analysis. Beyond the initial findings on

orientation and direction of motion (see above, Haynes and Rees,

2005b, 2005a; Kamitani and Tong, 2005b, 2005a), also other

categories of stimuli were successfully analyzed with multivariate
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analysis, including spatial frequency (Bahrami, 2009, submitted),

joint sensitivity to both color and orientation (Sumner et al., 2008),

color alone and in conjunction with motion (Seymour et al., 2009),

different object categories (O'Toole et al., 2005) and even black and

white natural images (Kay et al., 2008). Thus, for all of the above

stimulus categories it holds true that they are represented in an

anisotropic way in the human cortex. In some cases speculations of

an underlying columnar representation are likely (i.e. for spatial

frequency or color). Following from these and other technical

demonstrations of feature-based specific decoding, new directions

arise: On the one hand side these new opportunities include further

visual stimuli that have so far not been shown to be represented in

a way fMRI analysis can access. Examples could include the

representation of different categories of surfaces or basic shapes

but also slightly more complicated visual stimuli like different types

of places (i.e. outdoor vs. indoor), faces (i.e. male vs. female) or

specific object categories.

Yet, it might be even more fruitful to utilize multivariate analysis as

a dependent measure to differentiate between different types of

brain states. By combing multivariate analysis techniques with basic

psychological questions like afore mentioned load theory, for

example, interesting new insights might be gained. As an

illustration, in such a paradigm multivariate measures might give an

alternate insight into the underlying brain activity of a distractor

under differing load conditions, additionally to a univariate main

effect or interaction. Thus, multivariate analysis might offer further
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insight into how basic visual features are represented under

different attentional conditions.

Another new direction in the application of multivariate techniques

could be the study of the representation of unconsciously processed

stimuli. In this respect, Haynes and Rees (2005) demonstrated that

specific orientation information could be read out from brain activity

with multivariate analysis even though it was rendered invisible to

participants (Haynes and Rees, 2005a). In another study

multivariate analysis revealed that unconsciously perceived

(invisible) faces and houses are still represented in the neural

activity of the fusiform face area and the parahippocampal place

area (Sterzer et al., 2008).

Overall, especially the combination of univariate and multivariate

analysis techniques provides a potentially powerful toolset to

explore new and exciting questions ever getting closer to

understanding the nature of the underlying neural representation of

the BOLD signal.
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I.3 Feature-based Attention

I.3.1 Feature-based attention versus spatial attention

Attention modulates the level of brain activity and behavioral

performance associated with the processing of attended visual

stimuli. When multiple stimuli are simultaneously present in a

scene, they compete for cortical representation and access to

awareness (Desimone and Duncan, 1995; Serences and Yantis,

2006). Thus, selecting which information to attend to in a visual

scene is a crucial aspect of sensory processing. It is widely believed

that, based on current behavioral goals, relevant stimuli are

processed more efficiently than irrelevant stimuli. To achieve an

advantage to stimuli presented at the selected location, an observer

can attend to a particular region of space, commonly referred to as

spatial attention (Moran and Desimone, 1985). Yet, in everyday life,

humans often know more about the defining features of objects

(e.g. “the pink post-it note”) than precise spatial locations (“where

the post-it note is on your refrigerator-door”). In order to achieve

an advantage to stimuli with known features rather than known

location, spatial attention is of little help. Conversely, humans will

attend to a particular visual feature (in the example above the color

pink). This type of selective attention is commonly referred to as

feature-based attention (Treue and Maunsell, 1996; Treue and

Martinez Trujillo, 1999; Martinez-Trujillo and Treue, 2004).
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I.3.2 Effects of Feature-based attention in monkeys

Area V5/MT and its relevance to feature-based attention research.

Feature-based attention on brain activity has, until recently, been

mostly addressed in animal research, typically using

electrophysiological techniques in monkeys. Single-unit studies in

monkeys have shown that attention modulates neuronal signals in a

range of areas in visual cortex (Maunsell and Treue, 2006). A

majority of monkey research on feature-based attention has relied

on analyzing neuronal responses from one specific, motion

sensitive, area in the macaque monkey brain (Allman and Kaas,

1971, Baker et al., 1981). Zeki et al. (1983) later defined an area

selectively responsive to motion in the macaque brain (Zeki, 1983;

Zeki et al., 1991). Zeki labeled this area “V5”. However, around the

same time a similar result was published by another group, and

instead of calling the area “V5”, this motion responsive area was

labeled “MT” for middle-temporal area, due to its cortical

arrangement (Albright et al., 1984). Further research established

both areas as homologous and, thus, for the remainder of this

thesis it is referred to as V5/MT. Soon after the initial discovery of

monkey area V5/MT, it was found to represent different directions

of motion in a columnar architecture (Tootell et al., 1995; Tootell

and Taylor, 1995).

Measuring responses from neurons in motion sensitive area V5/MT,

Treue and Martinez-Trujillo demonstrated that neurons tuned to the

attended feature show an enhancement (gain) of responses and a

suppression of the opposite feature (Treue and Martinez Trujillo,
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1999). This increase and decrease of neuronal activity has been

termed the ‘feature-similarity-gain’ of the response of a particular

neuron or the population response of many neurons. Gain changes

are described as an enhancement of the selectivity of the population

response that emphasizes the attended over an unattended

(Martinez-Trujillo and Treue, 2004). The feature-similarity gain

mechanism modulates the firing rate of neurons tuned to an

attended feature when a neurons receptive field is inside the current

location of spatial attention (Treue and Martinez Trujillo, 1999) and

also when neurons are driven by a stimulus outside the focus of

spatial attention (Martinez-Trujillo and Treue, 2004). As a result,

the two prominent findings from the study of feature-based

attention are the modulation of neurons whose receptive field

overlaps the current spatial focus of attention and the modulation of

neurons that have their receptive field outside the current focus of

spatial attention (Treue and Martinez Trujillo, 1999; Martinez-

Trujillo and Treue, 2004; Bichot et al., 2005; Womelsdorf et al.,

2006). In conclusion, it is widely accepted that feature based

attention is independent of spatial attention: It acts directly on

tuned neurons irrelevant of their retinotopic representation of visual

space (the spatial location they represent) and importantly even if

spatial attention is directed elsewhere.

I.3.3 Feature based attention in humans

Soon after the discovery of a motion sensitive area V5/MT in

monkeys, a counterpart in the human brain was revealed, mainly
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from fMRI-adaptation studies (Heeger et al., 1999; Nishida et al.,

2003; Seiffert et al., 2003). Today, area V5/MT is well established

in the human and monkey brain as a motion responsive area with

two distinct subregions: MT and MST (Dukelow et al., 2001; Huk et

al., 2002). While area MT responds mostly to contralateral motion-

stimulation, MST responds mainly to ipsilateral motion stimuli. Due

to the lack of single cell recoding in humans and the coarse spatial

resolution of non-invasive imaging techniques such as fMRI, the

study of feature-based attention in humans has traditionally been

thought inaccessible (for a rare exception see Saenz et al., 2002).

However, the emergence of multivariate analysis rapidly changed

this view and the neural representation of basic visual features in

humans is now an active area of research (for an early review see

Haynes and Rees, 2006). Moving from the neural representation of

basic visual features to feature-based attention enabled Kamitani

and Tong to find feature specific neural patterns according to the

attentional selection of one of two overlapping orientations

(Kamitani and Tong, 2005b) and direction of motion (Kamitani and

Tong, 2006). Another study measured a behavioral response (the

tilt aftereffect resulting from adaptation to a set of oriented lines)

and feature specific brain activity (of one orientation) and found

reduced activity for an unattended feature as opposed to the

attended feature (Liu et al., 2007). However, importantly, none of

the afore mentioned studies specifically demonstrated the influence

of feature-based attention to spatially unattended areas in humans

- a key aspect for establishing the independence of spatial and

feature-based attention (see Kanai et al., 2006, for another



39

suggestion towards the independence of spatial and feature based

attention).

In 2007, Serences and Boynton demonstrated the independence of

feature-based attention and spatial attention in humans (also see

Saenz et al., 2002; Serences and Boynton, 2007a): They looked for

specific spatial patterns of fMRI signals as a function of feature-

based attentional selection of one of two overlapping motion

directions. The independence of feature-based and spatial attention

was shown by a spread of the influence of an attended feature from

the neural representation of the attended stimuli to neural

representations of unattended stimuli somewhere else in the visual

field. Additionally, their experimental design also allowed restriction

of stimulus evoked activity to one hemisphere only by showing their

stimulus only on one side of the screen. In this setup, the

underlying neural representation of the unstimulated hemifield

showed a measurable modulation according the (feature-based)

attentional selection in the attended visual hemifield (Serences and

Boynton, 2007a). Thus, the result by Serences and Boynton (2007)

is a qualitative replication of earlier findings from monkey single cell

recordings (Treue and Martinez Trujillo, 1999). However, a closer

observation of the distinction of feature-based and spatial attention

as demonstrated by by Serences and Boynton (2007) reveals some

important shortcomings (Kaul and Bahrami, 2008). These

shortcomings are mostly due to possible alternate explanations of

the results (see Chapter VI for details).

In conclusion, the study of feature-based attention in humans

showed promising results pointing towards largely similar

mechanisms of feature-based attention in humans and monkeys.
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However, some details are yet to be proven without the possibility

of alternate explanations.

I.3.4 New directions of the study of feature-based attention

in humans

The combination of a neural property well studied and understood in

electrophysiological terms in monkeys and now accessible with non-

invasive techniques in humans makes the study of feature-based

attention an interesting candidate to further understand the nature

of the underlying neural processes of fMRI recordings. So far, for

attended stimulus representations, it seems that the neural

mechanisms of feature-based attention in humans work similar to

those found in monkeys (Kamitani and Tong, 2006; Liu et al.,

2007). However, new studies could explore the influence of feature-

based attention independent from spatial attention without the

caveats of the aforementioned study by Serences and Boynton

(2007).

Other promising routes in the study of feature-based attention

might be to investigate the interplay of (feature specific) working

memory and feature-based attention. For example, it has recently

emerged that early visual areas can retain specific information

about attended visual features held in working memory, even when

no physical stimulus was present (Harrison and Tong, 2009;

Serences et al., 2009a). Another study established a feature-

specific effect independently for feature-specific working memory
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enhancement and feature-based attention enhancement. Then, the

authors investigated whether, when combined, the effects of

feature-based attention and feature specific working memory

occurred independently of each other or interact. While the

behavioral findings show that both effects can independently

modulate motion perception in humans (Mendoza et al., 2009),

evidence for what happens with the underlying brain activity during

such independent modulations remains elusive.

A final possible new direction for the study of feature-based

attention in humans could present itself in the testing of theoretical

models of attention. One interesting example is the recently

published normalization theory of attention (Reynolds and Heeger,

2009). The normalization theory is especially interesting as it unifies

many seemingly conflicting attentional models of the past including

studies of spatial attention and feature-based attention studies and

the concept of the feature-similarity-gain. So far, it has only been

tested in the spatial attention domain (Herrmann et al., 2009), but

if it could be corroborated in the feature-based attention domain

too, this would significantly strengthen the model and our

understanding of attention in general.
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I.4 Face processing in the human brain

I.4.1 Studying higher order stimuli in the human brain

Visual perception has been studied at multiple levels of

neuroanatomy and with a wide variety of stimuli. In general, the

more complex visual stimuli become, the higher up in the

anatomical hierarchy of brain areas we have to look to find brain

activity specific for that type of stimulus (for review see Grill-

Spector and Malach, 2004). For example, afore mentioned were

basic visual features such as orientation, spatial frequency, color or

direction of direction of motion which have been directly or

indirectly shown to modify brain activity in very early steps of visual

processing: spatial frequency, orientation and color as early as the

LGN and V1 or direction of motion a little later, usually in V3a and

V5/MT but also as early as V1 and V2 (most recent basic visual

feature specific fMRI results include for example Singh et al., 2000;

Kamitani and Tong, 2005b; Bartels et al., 2008; Sumner et al.,

2008; Bahrami et al., 2009; Seymour et al., 2009).

Yet, especially humans are adept and specialized in far more than

the perception of basic visual features. In everyday life, humans are

surrounded by objects, other humans, animals, etc in complex

surroundings like indoors, in motion, underground, etc. As humans

we have developed an extremely versatile vision apparatus allowing

us to accurately perceive all these complex settings. The wealth of

studies of neuronal correlates of the perception of higher order

stimuli is immense and has resulted in a number of remarkable
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findings (for review see Grill-Spector and Malach, 2004). Most

prominent stimuli-selective findings include object-selective areas

(Malach et al., 1995; Grill-Spector et al., 1998), face selective areas

(Puce et al., 1995; Kanwisher et al., 1997; Ishai et al., 2000; Grill-

Spector et al., 2004) and place selective areas (Aguirre et al., 1998;

Epstein and Kanwisher, 1998; Ishai et al., 1999) amongst others.

While all these categories must be studied separately, there may be

general organizational principles: for objects, for example, studies

indicate that object-selective cortex encode objects according to a

hierarchy, with stimulus-based representations in posterior regions

and subjective representations in anterior regions (Haushofer et al.,

2008). In this thesis, however, object-specific studies focus on face

perception.

I.4.2 Neuronal correlates of face perception in humans and

monkeys

Humans are experts in face perception. With seemingly endless

capacity humans can distinguish individual faces with high precision

(Diamond and Carey, 1986). This made face perception a naturally

interesting topic for neuroscience and indeed, much about the

neural correlates of face perception is well studied: In both humans

and monkeys, fMRI studies reveal a network of cortical regions that

show increased blood flow when participants view images of faces,

compared with other stimuli (for a recent review see Tsao and

Livingstone, 2008).
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Face processing is thought to be distinct from non-face object

processing because it is said to be more ‘holistic’: faces are

represented as non-decomposed wholes, rather than as a

combination of independently-represented component parts (eyes,

nose, mouth), and the relations between them (Farah et al., 1998).

Faces are unique in the high degree to which they are processed

holistically (but see Gauthier and Tarr, 2002 for other categories of

holistic stimuli). A straightforward assumption about the neural

correlates of face perception was that there must be a specific

mechanism or area facilitating this unique, holistic processing. Puce

et al. (1995) was first to demonstrate such a face-selective area,

the fusiform gyrus, FG, often also labeled fusiform face area, FFA,

with fMRI in humans, corroborated shortly after by other highly

convincing results (Puce et al., 1995; Kanwisher et al., 1997). While

fMRI signals are an indirect measure of brain activity, direct

evidence towards the involvement of another occipital-parietal area

comes from repetitive transcranial magnetic stimulation (TMS)

targeted at the right inferior occipital gyrus, IOG, also labeled

occipital face area, OFA (Pitcher et al., 2007). In humans, the FG

and the IOG together are sometimes referred to as first stages in

face-processing models (Haxby et al., 2000; Calder and Young,

2005). Recent results from single-cell recordings in monkeys

substantiate the view of at least one highly face-specific area in

monkeys: Tsao and colleagues demonstrated direct evidence

towards a ventral temporal face area nearly exclusively selective to

face-processing in the brain of monkeys (Tsao et al., 2003; Tsao et

al., 2006). They found this area containing visually responsive

neurons which were strongly face selective (97% of neurons)
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indicating that a dedicated cortical area exists to selectively support

(holistic) face processing. While the existence of this area does not

undermine the proposed existence of a cortical network of face

processing areas, its exclusiveness poses a challenge to a more

modular view of face and object processing in humans. For

example, Haxby et al. argued that objects and faces are coded in a

large network of areas and also via the distributed profile of

neuronal activity across the network of areas with much of the

ventral visual pathway involved and not confined to a single area

alone (Haxby et al., 2000; Haxby et al., 2001). Over the years

many human fMRI studies of face perception concluded that faces

are processed in a distributed network of brain areas rather that in

one or two single, specialized areas (Haxby et al., 2000; Ishai et al.,

2005; Fox et al., 2008; Ishai, 2008). The emergence of multivariate

techniques in fMRI research might help answer some of these

seemingly contradictory results by providing a new approach to

study specific features of face processing.

I.4.3 The core and extended network of face processing

Many human imaging studies of face perception converge on the

conclusion that faces are processed in a distributed network of brain

areas (Haxby et al., 2000; Ishai et al., 2005; Fox et al., 2008;

Ishai, 2008). A “core system” has been proposed, comprising of

three regions that mediate the analysis of invariant facial features:

the (FG), the inferior occipital gyrus (IOG) and the posterior

superior temporal sulcus (STS) (Ishai et al., 2005; Gobbini and
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Haxby, 2007). Additionally, the “extended system” includes regions

that mediate the processing of changeable aspects of faces, such as

mood and expression. The extended system includes limbic regions,

such as the amygdala (AMG) and insula (Ishai et al., 2004; Ishai et

al., 2005); the inferior frontal gyrus (IFG) (Ishai et al., 2005), and

regions of the reward circuitry, especially the nucleus accumbens

and medial orbitofrontal cortex (OFC) (Aharon et al., 2001; Ishai,

2007).

Many regions of the core and extended systems display greater

brain activity when specific aspects of face processing are required

by task demands. For example, the FG/FFA and IOG are more

active in processes that require the identification of individuals

(Puce et al., 1995; Kanwisher et al., 1997; Ishai et al., 2000; Grill-

Spector et al., 2004). Gaze direction and speech related movements

seem to be processed in STS (Puce et al., 1998; Calder and

Nummenmaa, 2007). The amygdala and insula are implicated in

processing faces with emotional context and facial expressions

(Breiter et al., 1996; Vuilleumier et al., 2001; Ishai et al., 2004;

Ishai et al., 2005), the IFG is activated during the processing of

semantic aspects (Ishai et al., 2000; Leveroni et al., 2000) and

finally the OFC is processing facial beauty, sexual relevance and

reward value (Aharon et al., 2001; O'Doherty et al., 2003; Kranz

and Ishai, 2006; Ishai, 2007).
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I.4.4 Specific brain responses to features of faces

More recently, another fMRI study further illustrated the functional

division of labor between different parts of the proposed core face

network (FG, IOG and STS) and offered an interesting solution for

the perceived discrepancy between single-unit recordings and fMRI

measurements. Using stimuli consisting of face parts and the

configuration of those parts the IOG and the STS was sensitive to

the presence of face parts but not their spatial configuration as a

face (Liu et al., 2009). However, the FG was sensitive to both kinds

of information and only in the FG was the response to configuration

and part information correlated across voxels. Thus the FG may

contain a unified (holistic) representation of faces including both

kinds of information. However, while the idea that the IOG

conducted an earlier stage of face processing than the FG was

consistent with its location posterior to the FG, more importantly, it

implied connectivity between the different face-selective regions in

the human ventral visual pathway. It thus supported the notion of a

distributed face network for different (sub-) functions of face

processing and, additionally, a highly specialized area for face

processing.

One obvious function of face processing in humans must be the

discrimination of facial gender, a very common task in everyday

face perception. However, although gender is a fundamental

characteristic of faces, conventional fMRI data analyses have not

localized a region within the face network specialized for the

discrimination of gender. Investigating fMRI adaptation to facial
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gender and race, one study showed the strongest adaptation effects

outside the face network, in the cingulate gyrus, while the same

subjects showed only weak adaptation effect in regions of the core

face network (Ng et al., 2006). Another study, looking specifically at

gender-related face processing, found differences in brain activity

related to sexual preference of the participants (Kranz and Ishai,

2006). In this fMRI study, forty hetero- and homosexual men and

women viewed or rated the attractiveness of male and female faces,

in order to test whether they would respond more to their sexually-

preferred faces. A significant interaction was found between

stimulus gender and the sexual preference of participants in the

thalamus and medial orbitofrontal cortex: Heterosexual men and

homosexual women responded more to female faces, whereas

heterosexual women and homosexual men responded more to male

faces. However, importantly, despite the large number of subjects

and corresponding statistical power, no face-gender difference was

found in early regions of the (core) face network. Thus, it remains

elusive whether or where the representation of facial gender is

localized in the human brain.

I.4.5 New directions in feature specific face perception

research

Conventional univariate analysis leaves an incomplete picture about

the representations of specific features of face processing in the

human brain. However, feature specific brain activations have been

successfully distinguished with multivariate pattern analysis. Thus,
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the study of such feature specific representations of faces is a

potential new direction for fMRI studies of face processing;

especially face perception as such has already been shown to result

in a distributed spatial pattern of activity (Haxby et al., 2001).

Instead of searching for a specific function of face processing, one

very recent study rather looked at distinctive fMRI patterns during

the performance of different face-related tasks (Chiu et al., 2009).

Applying multivariate analysis showed that regions of the core

network (FG and IOG) showed task-specific modulation during race

vs. gender categorization. In this study, a differential spatial pattern

of activity was found depending on whether participants performed

a race discrimination task (caucation vs. asian) or a gender

discrimination task (female vs. male). While stimuli remained

constant, the two task instructions alone were sufficient to modulate

the spatial activity pattern in IOG and FG such that the two tasks

could be told apart from each other significantly more often than

chance performance. Yet, the setup of different tasks was not ideal

to infer specific functions of face processing; still this study

illustrated that different attentional conditions sufficed to modulate

activity in these areas feature specifically – thus these features

might be represented somehow in these areas. Further research

might simply measure the brain pattern response to different races

or gender and compare these to fully answer this question.
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I.5 Summary and outlook

In this thesis, I investigate basic questions about visual processing,

with one central question in mind: What are the current limits of our

knowledge of brain activity underlying vision and can I further this

knowledge? I selectively reviewed the research that prompted

specific experimental questions addressed in this thesis, starting

with the longstanding debate regarding the selection process of

visual attention (early or late) and its potential solution by load

theory. But load theory does not answer questions about the

specifics of how distractor brain activity is modulated by different

attentional load conditions. However, the study of feature specific

brain activity (with the help of multivariate analysis) might offer a

chance to explore one such specific aspect of brain activity. In

chapter III, IV and V, I combine load theory with multivariate

analysis to explore the specific question whether attentional load

alters the representation of basic visual features in early visual

cortices.

Following load theory and the study of basic visual features in

humans, I outline the evidence of the independence and importance

of feature-based attention. Accordingly, chapter VI presents an

experimental paradigm to test my hypothesis that the influence of

feature based attention in early visual cortices is far more

pronounced than previously thought.

Finally, I describe face specific processing in the human brain and

evidence towards both the specific involvement of single areas and
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a wide-spread face responsive network. In view of this, chapter VII

presents a study about the distribution facial gender information in

the human brain.

However, before the experimental sections, chapter II first reviews,

in detail, methods and techniques used throughout the experimental

work described in the subsequently presented studies.
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Chapter II:

General Methods

This chapter describes MRI techniques that form the methodological

basis to all chapters presented in this thesis. I give a brief, non-

technical, overview about the general background and function MRI

and functional MRI (fMRI). I follow with a detailed description of

fMRI data-analysis with statistical parametric mapping (SPM) plus

functional area localization with retinotopic mapping. Multivariate

analysis is covered in the final section of this chapter.

II.1 Functional MRI

II.1.1 A brief overview of the physics of MRI

When placed in a uniform magnetic field (B0 field), spins of

unpaired atomic nuclei (mainly protons) contained in any object (for

example a participant’s brain) align parallel to the B0. Additionally,

the B0 field, in combination with proton angular momemtum, forces

the spinning protons to revolve, or precess, around the axis of this

magnetic field at a frequency proportional to the strength of the B0

(known as the resonance frequency). The direction of the

precessing around the main field direction of the B0 is random for

all nuclei resulting the overall transverse magnetization (TM) to be

zero. Applying a perpendicular radio frequency pulse to the B0 at

the resonance frequency causes nuclei to absorb this energy and

their spins to move away from their equilibrium positions. As a
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direct result, the current local magnetization is not perfectly aligned

anymore (to the B0), but tilted towards the newly applied radio

frequency magnetic field. After the radio frequency pulse, protons

relax again and realign with the UFM - this realignment process

emits energy. In an MRI scanner this emitted energy is recorded in

a receiver coil surrounding the object scanned (Squire and

Novelline, 1997).

II.1.2 Formation of images using MRI

To create an image with MRI, tissue differences have to be

distinguishable on the basis of their spatial location, in other words

their X, Y and Z components in space. In most modern MRI

scanners this problem is solved by a multitude of methods.

Assuming the B0 alignment forms a Z-axis, the TM will be tilted in

the XY plane (towards the radio frequency magnetic field).

Resolution along the z-axis is created by exciting the sample only

one slice at a time, by combining the frequency gradient with a

radio frequency pulse of a particular frequency and bandwidth.

Heavily depending on the type of image acquired, common slice

thicknesses lie between 0.75-5mm with varying distances between

these slices (usually zero to 1mm). Within each slice the X and Y

components are mainly determined with the help of gradient coils.

Gradient coils are resistive electromagnets powered by

sophisticated amplifiers. They permit rapid and precise

modifications to their magnetic field strength and direction.

Combined with the large B0, gradients coils produce a systematic

modification (a linear gradient) in the magnetic field. Orthogonal
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gradients can be combined freely and form the basis for additional

components of the coordinate system. The magnitude of the

gradient allows encoding of position along one axis (the x-axis).

Phase encoding enables encoding of position in a second dimension

(along the y-axis). As a result, discrete increases in the frequency

encoding and phase encoding gradients divide each slice into small

cubes, called voxels (volume elements). All the protons in a voxel

experience the same frequency and phase encoding, and the signal

from a voxel is the sum of the signal for all the protons in that

voxel.

Contrast in each image voxel is created by the differences in signal

intensity from different tissues. The largest contribution to the

signal comes from hydrogen atoms in the water components of

tissue (or other biological fluids: i.e. blood has a high hydrogen

concentration). Thus, signal intensity depends in part on the density

of hydrogen atoms. Different properties of the relaxation times of

different tissues combined with varying echo and repetition times of

the radio frequency pulses result in a multitude of possibilities for

image acquisition. Most commonly used are so called T1-weighted

MRI sequences which provide good contrast of white and gray

matter in the brain. T1-images are the most commonly used clinical

scans. For functional MRI image series, however, T2*-weighted MRI

images are generally acquired. T2* images provide the highest

contrast for different levels of blood oxygenation levels. Echo-planar

imaging (EPI), allows extremely rapid acquisition of whole T2*-

weighted brain images. While many MRI sequences can only acquire

partial data per slice per RF pulse, EPI sequences acquire an entire
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slice-data-set after each RF pulse. As a result, an image of a

complete slice (along the z-axis) can often be acquired in less than

100ms. This means that acquisition time is far lower for EPI, making

it very suitable for recording dynamic information, like in functional

MRI. Each single data point acquired during a 2D MRI sequence

contains information about the entire slice. Voxels are reconstructed

by summing information from many such data points, each of which

can be thought of as points in spatial frequency space (k-space),

and each of which contain information about the entire slice. All the

fMRI experiments in this thesis use EPI sequences of T2*-weighted

images and focus on blood-oxygen-level depended (BOLD) signal

changes.

In modern fMRI experiments, the researcher predetermines the

number of slices along with the slice thickness, inter-slice distance

and the in-plane resolution. The number of slices times the time it

takes to acquire each slice results in a total acquisition time per

volume - also called TR. The TR is generally seen as the temporal

resolution of an fMRI experiment as any voxel is covered exactly

once per volume, or once every TR.

II.1.3 The BOLD signal

In general, neuronal activity and increased local glucose metabolism

are tightly coupled to a local increase in blood flow. fMRI measures

neural activity indirectly by detecting changes in regional blood flow

as indicated by blood oxygenation levels. The MRI signal is sensitive
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to the oxygenation state of haemoglobin as deoxyhaemoglobin is

more paramagnetic than oxyhaemoglobin (Pauling and Coryell,

1936). Paramagnetic substances have a more rapid transverse

relaxation time, and a shorter T2* time constant, resulting in a

reduced T2* weighted MRI signal. Thus deoxyhaemoglobin produces

a smaller MRI signal than oxyhaemoglobin. It is generally accepted

that this is what principally underlies the BOLD signal (Logothetis et

al., 2001). It was first discovered in mice that blood with more

deoxyhaemoglobin will produce a reduced signal relative to highly

oxygenated blood (Ogawa et al., 1990); subsequently in human

visual cortex (Kwong et al., 1992). BOLD contrast is determined by

the balance between supply, determined by blood flow and blood

volume, and demand, determined by the surrounding tissue's rate

of glucose metabolism, and consumption of oxygen. Local increases

in neural activity lead to increased glucose metabolism and

increased oxygen consumption (Vanzetta and Grinvald, 1999). As

the rise in oxygen uptake is smaller than the rise in blood flow to

activated brain regions (Fox and Raichle, 1986), there is an overall

increase in blood oxygenation levels lasting for several seconds.

This overcompensation is the basis for the increased BOLD signal

seen when neural activity increases. This increase in BOLD contrast,

caused by the decrease in deoxyhaemoglobin and measured in

fMRI, is delayed in time with respect to the neural activity. Typically

the BOLD signal peaks 4-8 seconds after the onset of neural

activity. The rise and subsequent return to baseline of the BOLD

signal is known as the haemodynamic response function (HRF).
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II.1.4 Neural correlates of the BOLD signal

The precise relationship between the underlying neural activity and

BOLD is under active research (e.g. Logothetis et al., 2001;

Logothetis and Wandell, 2004). Especially, the specific cellular and

molecular mechanisms underlying the BOLD signal are still a matter

of debate. Most importantly, it remains unclear whether the BOLD

signal is mainly correlated to spiking activity of neurons (output) or

synaptic activity (input).

From a physiological point of view, it is widely believed that

increased blood flow follows directly from increased synaptic

activity, as blood flow increases in proportion to glucose

consumption (Fox and Raichle, 1986) and glucose metabolism is

linked to synaptic activity (Rothman, 1998). Thus, the

hemodynamic response might primarily reflect the neuronal input to

the relevant area of the brain and its processing there rather than

the long-range signals transmitted by action potentials to other

regions of the brain (Logothetis and Wandell, 2004). As a direct

result this would mean that in situations when input into a particular

area plays a primarily modulatory role, fMRI experiments may

measure activation that does not correlate well with single-unit

measurements.

However, in order to truly quantify the neural basis of the BOLD

signal, one promising possibility is the direct comparison of

electrophysiological studies and fMRI studies. For example, a

comparison of single unit data from monkey V5/MT (a motion
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responsive cortical area) with human fMRI measurements from

V5/MT (the human homologue) showed that neuronal firing and

BOLD responses increased linearly with increasing motion coherence

(Rees et al., 2000). This is consistent with the two measures being

well correlated. Furthermore, simultaneous recording of multi-unit

activity (MUA) and local field potential (LFPs) from microelectrodes

placed in monkey primary visual cortex while measuring BOLD

contrast responses using fMRI (Logothetis et al., 2001) has broadly

shown good correlation between these measures, indicating a high

correlation with output spiking activity. However, for the whole

brain this correlation was variable and highly dependent on the

brain area considered. On average, LFPs correlated slightly more

than MUA with the BOLD response. MUA represents the spiking

activity of neurons near (~200μm) the electrode tip, while LFPs

reflect synchronized dendritic currents averaged over a larger

volume of tissue (reflecting inputs and intracortical activity), and

they often (but not always) correlated with output spiking activity.

In conclusion this suggests that the BOLD response probably

reflects components of both spiking output and synaptic input

activity. Further research will be necessary to determine this issue

in more detail.

II.1.5 Limitations of BOLD dependent fMRI

Limitations on the spatial and temporal resolution of fMRI are of a

physiological nature, imposed by the spatio-temporal properties of

the HRF amongst other factors (Friston et al., 1998b; Logothetis,
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2008). The BOLD signal originates in red blood cells in capillaries

and veins surrounding the activated neural tissue, and thus is an

indirect measure of tissue oxygenation and neural activation; thus

the maximum spatial resolution obtainable with the BOLD signal is

dependent on the local structure and density of the vasculature in a

particular brain region. Due to local differences in these factors, the

overall magnitude of the fMRI signal could potentially be misleading

when comparing differences between brain regions. Additionally, the

fMRI signal may not distinguish excitation from inhibition. Still, in a

recent review Nikos Logothetis concludes: “fMRI is currently the

best tool we have for gaining insights into brain function and

formulating interesting and eventually testable hypotheses, even

though the plausibility of these hypotheses critically depends on

used magnetic resonance technology, experimental protocol,

statistical analysis and insightful modeling” (Logothetis, 2008).

II.2 fMRI Analysis - Preprocessing

In all experiments presented in this thesis, Statistical Parametric

Mapping software (SPM, www.fil.ion.ucl.ac.uk/spm) was used to

perform the analyses. SPM is a software package implemented in

MatLab that allow preprocessing of fMRI data into a form that can

then undergo statistical analysis with SPM to look at the effect of

experimentally manipulated variables. fMRI data analysis with SPM

can be dissected into discrete steps. Here, I selectively describe

steps common to all of the experiments presented in this thesis. I
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divide this description in two logical elements: preprocessing and

statistical analysis.

II.2.1 Spatial realignment

FMRI data is commonly acquired in a number of sessions

(sometimes also called runs or scans). Experiments in this thesis

usually have around 10 sessions per subject, each lasting around 3-

5 minutes. Every session consists of a number of scan volumes. A

common starting point for analysis of fMRI studies is to manually

discard the first few image volumes from each session to allow for

magnetic equilibration effects.

What follows is the first preprocessing step: spatial realignment.

During a scan, head motion causes changes in signal intensity of a

voxel over time, due to participants moving their head in space.

Despite head restraints, most subjects will move their heads at least

a few millimeters. Realignment involves applying an affine rigid-

body transformation to align each scan with a reference scan

(usually the first scan or the average of all scans) and resampling

the data using tri-linear interpolation. The 6 parameters of the rigid-

body transformation, representing adjustments to pitch, yaw, roll,

and in X, Y, Z position, are estimated iteratively to minimize the

sum of squares difference between each successive scan and the

reference scan (Friston et al., 1995). However, even after

realignment significant movement related signals persist (Friston et

al., 1996). This is due to non-linear effects, including movements
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between slice acquisitions, interpolation artifacts, non-linear

distortion of magnetic field and spin excitation history effects, which

cannot be corrected using an affine linear transformation. These

non-linear movement related effects can be estimated and

subtracted from the original data by including the estimated

movement parameters from the realignment procedure in the

design matrix during the model estimation stage (see below) of the

analysis (Friston et al., 1996). At the end of spatial realignment, all

data is commonly saved in the space of the reference scan, the

resampled format.

II.2.2 Spatial Coregistration

Following spatial realignment within sessions, a second crucial step

is to ensure that all sessions relevant to a particular study are

analyzed in the same anatomical space. For any subject-specific

analysis techniques it is important that every session is co-

registered with the same anatomical space. This is true for all

functional scans, but also for structural scans or region-of-interest

(ROI) mask images. In most studies of this thesis, the mean

functional image of the main experiment (created during

realignment) was used to establish a common space for all other

images to get co-registered to. The warping parameters that map

any other image onto this mean image space are modeled as a 12-

parameter affine transformation, where the parameters constitute a

spatial transformation matrix. The parameters are estimated

iteratively, within a Bayesian framework, to maximize the posterior
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probability of the parameters being correct. The posterior

probability is the probability of getting the given data, assuming the

current estimate of the transformation is true, times the probability

of that estimate being true (Ashburner and Friston, 1997). Finding

this solution involves jointly minimizing the sum-of-squares

differences between the image to be coregistered and the mean

functional image, and the prior potentials, which are used to

incorporate prior information about the likelihood of a particular

warp. In the case of multiple images in another space in need of

coregistration (i.e. another function scan), the estimated warp can

be applied to any number of the other images.

II.3 fMRI Analysis – statistical parametric mapping

The approach used by SPM for analysis of fMRI data is based on the

conjoint use of a General Linear Model (GLM) and Gaussian Random

Field (GRF) theory to test hypotheses and make inferences about

spatially extended data through the use of statistical parametric

maps. The GLM is used to estimate parameters for the variables

that could explain the BOLD signal time series recorded in each and

every voxel individually. The resulting statistical parameters

determined at each and every voxel are then assembled into three-

dimensional images – Statistical Parametric Maps (SPM), that can

then be contrasted with one another. Gaussian Random Field theory

is used to resolve the problem of multiple comparisons that occurs

when conducting statistical tests across the whole brain. The voxel
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values of the SPM are considered to be distributed according to the

probabilistic behavior of Gaussian fields, and ‘unlikely’ excursions of

the SPM are interpreted as regionally specific effects, caused by the

experimentally manipulated variables.

II.3.1 General Linear Model

The general linear model is used in SPM to partition the variance in

the observed neurophysiological response into components of

interest, i.e. the experimentally manipulated variables, confounds

and error, and to make inferences about the effects of interest in

relation to the error variance. For each voxel the GLM explains

variations in the BOLD signal time series (Y) in terms of a linear

combination of explanatory variables (x) plus an error term (ε):

Yj = xj1β1 + xj2β2 + …… + xjlβl + ..…. + xjLβL + ε

The β parameters reflect the independent contribution of each

independent variable, x, to the value of the dependent variable, Y,

.i.e. the amount of variance in Y that is accounted for by each x

variable after all the other x variables have been accounted for. The

errors, ε, are assumed to be identically and normally distributed.

The GLM can also be expressed in matrix formulation:

Y = Xβ + ε
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Where Y is a vector of J BOLD signal measurements (one per image

volume) at a particular voxel (Y = [1…j…J]) and β is the vector of

the parameters to be estimated (β=[ β1… βj… βJ]. X is the design

matrix containing the variables which explain the observed data.

The matrix has J rows, one per observation, and L columns, one per

explanatory variable (x) (also referred to as covariates or

regressor). The regressors, which form the columns of the design

matrix (and have one value of x for each time point j), are created

for each explanatory variable manipulated in the experiment (the

experimental conditions) by placing delta functions at the time

points corresponding to the events of interest and convolving this

vector with the haemodynamic response function. The HRF is

modeled in SPM with a multivariate Taylor expansion of a mixture of

gamma functions (Friston et al., 1998b; Friston et al., 1998a).

Movement parameters, calculated during realignment, can be

including in the model as additional regressors to account for

movement artifacts which are not corrected by realignment itself.

Temporal confounds must also be eliminated from the data. Prior to

fitting the model a high pass filter is applied to the data to eliminate

drifts in the magnetic field and the effects of movement. A low pass

filter is applied to eliminate the effects of biorhythms such as

respiration or heart rate. The cut off of this filter is typically 128

seconds. Due to the serial acquisition of the fMRI data time-series

successive time points will be correlated. To account for this

temporal auto-correlation an autoregressive model of order 1 +

white noise is fitted to the data. The β parameters (often referred to

simply as ‘betas’) for each voxel are then estimated by multiple
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linear regression so that the sum of the squared differences

between the observed data and the values predicted by the model

is minimized.

II.3.2 T and F-statistics

Inferences about the relative contribution of each explanatory

variable (x), each represented by one column in the design matrix,

can be made by conducting T or F-tests on the parameter

estimates. The null hypothesis that the parameter estimates are

zero is tested by an F-statistic, resulting in an SPM(F). To compare

the relative contribution of one explanatory variable compared to

another one can contrast or subtract the parameter estimates from

one another, and test whether the result is zero using a t-statistic,

resulting in an SPM(t). The t-statistic is calculated by dividing the

contrast of the parameter estimates by the standard error of that

contrast. To make inferences about regionally specific effects the

SPM(t) or SPM(F) is thresholded using height and spatial extent

thresholds specified by the user.

II.4 Visual Area Localization

The human visual cortex consists of multiple subregions: primary

visual cortex V1 (also sometimes referred to as striate cortex) and
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extrastriate regions V2 and V3 as well as a number of higher level

visual areas. The response properties of neurons contained in these

regions are often well studied and, in most cases, differ drastically

from area to area. Precise delineation of the borders of early visual

areas is of crucial importance to the success of fMRI studies of

human vision. In addition, it is often necessary to localize

activations in the occipital cortex to specific early visual areas.

However, there is wide inter-subject anatomical variability of early

visual areas which precludes the assignment of visual area borders

based on stereotactically normalised coordinates (Dougherty et al.,

2003). Thus, unless a more accurate method is used, voxels

representing adjacent visual areas (with very different neuronal

response properties) will often be incorporated into a single ‘visual’

region of interest or visual activations will be mislocalized.

Fortunately, early visual cortical areas are retinotopically organized,

that is, their neurons respond to stimulation of limited receptive

fields whose centers are organized to form a continuous mapping

between the cortical surface and the contralateral visual field. This

consistent organization can be utilized to accurately determine the

boundaries between early visual cortical areas using fMRI (Engel et

al., 1994; Sereno et al., 1995).

II.4.1 Anatomy of visual areas

Within each hemisphere, human area V1 occupies a roughly 4- by

8-cm area located at the posterior pole of the brain in the occipital

lobe. A large fraction of area V1 falls in the calcarine sulcus. From
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posterior to anterior cortex, the visual field representation shifts

from the centre (fovea) to the periphery. The midline of V1

represents the horizontal meridian, while the boundary of V1 and V2

represents the vertical meridian (both dorsally and ventrally). The

local representation of the visual field on the cortical surface

changes its orientation at the boundaries between V1 and V2 (and

V2 and V3). Therefore, the spatial extent of activations elicited by

visual stimuli representing the horizontal and vertical meridians can

be used to functionally define these borders. This technique is called

meridian mapping, and is a rapid method of retinotopic mapping.

Figure II-1 illustrates meridian mapping. Participants were

stimulated with flashing checkerboards along the vertical meridian

(VM) or the horizontal meridian (HM, Figure II-1A). This produced a

differential activation profile around the occipital pole: “stripes” of

activity related to either the vertical or horizontal meridian can be

observed in either an inflated or flattened view. Figure II-1B depicts

such activity overlaid onto an inflated right hemisphere occipital

pole (medial-occipital view). Once the visual borders are delineated

manually the so-defined visual areas V1, V2 and V3 can be overlaid

onto an uninflated view of the same cortex (gray matter view,

Figure II-1C). While meridian mapping is very fast, it provides poor

information about eccentricity encoding within visual areas, and is

not typically able to accurately define V4. To overcome these

limitations usually requires the use of phase encoded retinotopic

mapping methods (using a rotating wedge and expanding ring

stimulus to generate a spatiotemporal pattern of stimulation of the

visual field). In this thesis meridian mapping was used in all studies
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as the relevant experimental questions did not require

accurate eccentricity information and were limited to V1 to V3.

A standard protocol to identify the boundaries V1, V2 and V3,

includes flickering checkerboard patterns, displayed either at the

horizontal or vertical meridian, alternated with rest periods for

about 10-20 epochs of about 15-30s over two sessions. Delineating

Figure II-1
Meridian mapping procedure illustrated on an actual participants brain
(S1, Chapter 5). A: Stimulation with flashing checkerboards along the
vertical meridian (VM) or the horizontal meridian (HM) leads to a
differential activation profile in the occipital pole. B: Overlaid onto an
inflated 3D-reconstruction of the right hemisphere (medial-occipital
view) are activity peaks for stimulation from A –HM activity in yellow and
VM activity in cyan. The horizontal stimulus activated the midpoint of the
calcarine sulcus and the vertical stimulus the gyri on either side of it.
This alternating pattern of activation by horizontal and vertical meridian
stimulation can be used to map the boundaries of early visual areas. The
borders of visual cortices V1, V2 and V3 are displayed in green, purple
and pink. Additionally the orientation and position of a fictive ‘smily’
illustrates position and eccentricity distribution in these retinotopic
cortical areas. C: Once mapped, the overlay of the regions onto a white-
matter-3D plot illustrates how V1 lies along the calcerine sulcus, flanked
by ventral and dorsal parts of V2 and V3.
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the borders between visual areas using activation patterns from this

meridian localizers (illustrated in figure II-1) results in mask

volumes for each region of interest (left and right V1, V2 dorsal, V2

ventral, V3d, and V3v).

II.5 Multivariate Pattern Recognition for fMRI

In recent years, multivariate pattern decoding (MVPD) has proven

itself as a powerful tool in the analysis of fMRI data. By taking into

account subtle biases in the pattern of activity recorded, measured

simultaneously at many locations, subtle biases in the pattern of

activity have been demonstrated to allow the study of processes of

the human brain thought to be represented below the spatial

resolution of fMRI (Haxby et al., 2001; Cox and Savoy, 2003;

Mitchell et al., 2003; Haynes and Rees, 2005b, 2005a; Kamitani

and Tong, 2005b, 2005a; Haynes and Rees, 2006; Kamitani and

Tong, 2006; Kriegeskorte et al., 2006; Serences and Yantis, 2006;

Haynes et al., 2007; Serences and Boynton, 2007a; Formisano et

al., 2008; Mitchell et al., 2008; Sumner et al., 2008). As a direct

consequence, it is now generally deemed promising to study neural

representations that have been previously thought inaccessible to

non-invasive imaging techniques in humans.

As an essential part of this thesis, I developed and implemented a

set of MatLab functions that form a toolbox for MVPD. The toolbox

consists of two basic parts: pre-analysis and classification. In the

process of developing this MVPD-toolbox I have tried multiple
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algorithms to actually perform classification starting with simple

Linear Discriminant Analysis (LDA) to more sophisticated Support-

Vector-Machines (SVM), but I finally settled on spare logistic

regression (SLR, Yamashita et al., 2008). SLR has the invaluable

advantage to have a built-in procedure for voxel selection that

makes voxel preselection, beyond predefining specific areas of the

brain spatially, unnecessary. In the following I briefly describe the

components of the two basic parts of the toolbox; for the actual

MatLab-functions please refer to the appendix.

II.5.1 Pre-analysis for MVPD

Before actually classifying two or more different conditions of an

fMRI experiment from each other, a few simple steps have to be

performed. However, after realignment these differ from

conventional analysis are thus explained in brief.

Firstly, the hemodynamic delay of the BOLD signal (see above) has

to be adjusted for. In general, this can be either be done by

convolving the entire timecourse of each participants scans with an

HRF, or by convolving the condition onsets. In this thesis I have

always applied the latter using a simple step-function to

approximate the time-delay in the BOLD signal. The exact timing of

this step-function was dependent on each study’s individual TR, but

was usually between 6-8 seconds.
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Secondly, a critique of early MVPD studies was that it might be

possible for voxels to be autocorrelated across entire sessions due

to technical details of the image reconstruction of fMRI in general.

To avoid such problems ‘leave-one-out cross-validation’ has become

the standard method to evaluate classification accuracy (Pereira et

al., 2009). Thus, in all experiments of this thesis I have applied a

leave-one-out cross-validation between all sessions recorded.

Thirdly, in order to evaluate the probability that classification is

driven by over-fitting of arbitrary patterns of spatial correlations in

the data that have nothing to do with the conditions analyzed, a

shuffle-control test was carried out for all experiments (Mur et al.,

2009). In this test the assumption that classification is driven by

chance is tested: if it were true, similar results should be obtained if

labels indicating the experimental condition for each example vector

were shuffled randomly. To test this, a separate analysis is

performed in which labels of the test examples are re-shuffled for

each round of the cross-validation procedure for each experiment of

this thesis. The resulting distribution of classification accuracy

characterizes the expected distribution of accuracy under null

hypothesis.

Fourth, as a general rule for any classical MVPD algorithms, results

become less reliable when the number of input-features is higher

than the number of input-vectors. This phenomenon is sometimes

described as overfitting (Cristianini, 2000). In fact, some influential

implementations of classification algorithms (e.g. the LDA-function

“classify” in MatLab) do not accept such unbalanced pairs at all.

However, others algorithms (e.g. SVM) are said to be relatively
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robust against this problem as long as the imbalance is not too

skewed (Cristianini, 2000; Carl, 2004). In the context of MVPD for

fMRI data the number of input vectors is determined by the number

of volumes per condition. For example, in a study comparing 2

conditions, where each condition appeared once per session for 8

volumes and 10 repetitions of sessions are recorded, this means

that there are 80 vectors per condition. Due to the leave-one-out

procedure this would result in 10 pairs of 144 training and 16 test

vectors. Thus, in this simple example, it would not be advantageous

to consider more than 144 input features. The input features that

form fMRI data, however, are voxels. An entire brain volume at a

resolution of 1.5mm2 inplane and about 30-40 slices per volume can

have more than 500000 voxels. Thus, before classification, the

number of voxels to consider has to be dramatically reduced. In

general, this is mainly achieved by limiting classification to certain

regions of interest (ROI) in the brain. These ROIs can be either

spatially or functionally defined (e.g. by meridian mapping),

however, ROI definition has to be independent of the main

experiment (Kriegeskorte et al., 2009). However, even small ROIs

often consist of several hundreds to thousands of voxels which is

why in general a further voxel-selection becomes necessary. This

further voxel selection is often achieved by thresholding all voxels in

an ROI by an experimental contrast. However yet again, to avoid

circularity in the analysis, this contrast must be independent of the

experimental conditions tested (Kriegeskorte et al., 2009). For this

reason, MVPD studies using LDA or SVM often either ignore this final

selection step (and thus risk overfitting) or use an irrelevant

contrast for thresholding. Another common method is to sort voxels
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on the basis of independent criteria, however it is truly important

that these sorting criteria are truly independent – a fact that was

dramatically demonstrated by a recent study and subsequent

comments on its non-independent sorting criteria amongst other

methodological errors (Grill-Spector et al., 2006; Baker et al.,

2007; Simmons et al., 2007). In this thesis, all MVPD results are

obtained by with an SLR algorithm (Yamashita et al., 2008).

Different to manual sorting or thresholding, SLR employs a unique

method termed automatic relevance detection (ARD) for voxel

selection (see below).

Finally, before classification, vectors that are classified are generally

normalized. The individual options for normalization vary greatly

from study to study: Normalization generally entails either z-scoring

or simply mean-correcting per scan, either all extracted vectors per

scan or each scan as an entity. The difference is that in the first

case only vectors actually used for classification influence the

normalization, while in the second case other information might

influence the normalization (e.g. baseline-blocks). Depending on the

experimental paradigm both outcomes might be desirable.

However, for experiments in this thesis, only vectors actually used

during classification have been normalized by z-scoring.

II.5.2 SLR and ARD

SLR is a Bayesian extension of logistic regression that combines an

innovative strategy for adaptive, yet unbiased voxel selection with
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conventional linear discriminant analysis. Conversely to sub-optimal

solutions like sorting or thresholding, SLR selects voxels solely on

the basis of the training-set for each cross-validation, a process

termed automatic relevance detection (ARD) which is guaranteed

independent of the test data. Yamashita et al (2008) first presented

SLR for fMRI multivariate analysis, which contains ARD as an

essential part, and demonstrated the superiority of the SLR

algorithm when compared to other MVPD algorithms (Yamashita et

al., 2008). In this thesis, all MVPD results are obtained with the SLR

algorithm as presented by Yamashita and colleagues.

During ARD, within every iteration of the cross-validation, SLR

carries out a number of nested cross-validations inside the training

set: the training set is divided randomly in two sections of specified

proportion; for a randomly selected subset of the voxels, the linear

classifier is trained with one section of the data and tested with the

other and the selected voxels are weighted proportional to the

accuracy of this classification. This procedure is carried out 500

times while voxels accumulate weights. By the end of the nested

cross-validation, the assigned weight of each voxel is taken as a

relevance factor indicating how informative the voxel is for

classification. Voxels with the highest relevance are then selected

for the actual classification of test data. Importantly, this voxel

selection algorithm depends entirely on the training set and is

completely ignorant about and independent of the test set. Once the

voxels are selected, the training and test data from the selected

voxels are then passed on to a conventional linear classifier

(Yamashita et al., 2008).
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In all studies of this thesis, classification accuracy is averaged

across the cross-validations for each ROI in each participant. Then,

statistical significance of the results is evaluated across all

participants for each ROI using a student’s t-test. To adjust for

multiple comparisons due to multiple ROIs, these results are then

Bonferroni-corrected.

II.6 Conclusion

This chapter has described conventional and multivariate fMRI

analysis and visual area localization, the methods that were used in

all of the experiments presented in this thesis. I have presented a

summary of the physics of fMRI, the physiological basis of the BOLD

signal and the statistical basis of SPM. In addition, I have discussed

the physiological basis of retinotopic mapping. However, for

practical reasons the precise use of these methods sometimes

varied across experiments and each experiment utilized additional

methods. Therefore each experimental chapter in this thesis has a

methods section describing these points in more detail.



76

Chapter III:

Effects of attentional load on orientation

selective processing

III.1 Introduction

Attentional load describes a selection mechanism that depends on

the availability of processing resources. Whereas low attentional

load during an attended, goal-directed, task leaves spare attentional

capacity to ‘spill over’ to process goal-irrelevant distractor stimuli,

high attentional load takes up all capacity and thus decreases

distractor processing (Lavie et al., 2004). Numerous experimental

paradigms have empirically tested the influence of attentional load.

Experiments commonly manipulate attentional load in a primary

task and then measure the influence of this attentional load

manipulation on task-irrelevant distractor stimuli. Studying

paradigms like this, high attentional load has been found to severely

reduce task-irrelevant, distractor related behavioral measures

(Lavie, 1995; Lavie and Fox, 2000), as well as to reduce task-

irrelevant, distractor related neural activity (Rees et al., 1997;

O'Connor et al., 2002; Pessoa et al., 2002; Pinsk et al., 2004;

Schwartz et al., 2005). One of two possible results are generally

reported in such studies of distractor related neural activity: Either

a simple main effect of reduced distractor activity under high load
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(i.e. Schwartz et al., 2005 for checkerboard representations in early

visual cortices), or an interaction effect between the distractor

presence (vs. absence) and low (vs. high) load (i.e. Rees et al.,

1997 for activity to motion vs. static dots in V5/MT). However, in

both cases it remains unclear what the reduced activity (the

reduced difference in activity) in a brain area actually means for the

underlying representation of the distractor stimuli. It could be that

the distractor related activity underwent modulations in neural firing

rate, tuning curves of individual neurons could be modulated or the

area in question could have received less feedback input. Thus, the

question ‘what aspects of activity are modulated’ remained elusive.

III.1.1 Objectives

With the experiment presented in this chapter, I investigate one

specific aspect of distractor related activity under attentional load

manipulation: basic visual feature-specific processing. Basic visual

features, like colour, orientation or direction of motion, are some of

the best studied neuronal architectures in the brain (Mountcastle,

1997) with most of these features represented in a columnar

architecture in early visual cortices. For orientation, for example,

neurons with different orientation preferences are systematically

mapped across the cortical surface of primary visual cortex, with

regions containing neurons of similar orientation preferences

separated by approximately 500 μm (Hubel and Wiesel, 1962,

1968; Wang et al., 1996). For orientation amongst other visual

features, it has recently emerged that fMRI can be used to study
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fine-grained neural representations or different orientations, even

though they are encoded at a finer scale than the resolutions of

fMRI (Haynes and Rees, 2005a; Kamitani and Tong, 2005b; Haynes

and Rees, 2006). These (orientation-) specific studies employed

multivariate pattern decoding (MVPD), a technique allowing the

study of orientation processing in the human brain by taking into

account subtle biases in the spatial pattern of activity (see Chapter I

and II for a detailed description of multivariate pattern decoding

and its application in fMRI studies).

In this experiment, I sought to investigate whether orientation-

specific distractor processing depended on attentional demands in

an unrelated task. I report results from early visual cortices V1, V2

and V3. To measure the orientation-specific signal associated with

(distractor related) brain activation, the accuracy of multivariate

pattern classification of brain activation patterns was used as an

indicator of the quality of the representation of orientation. This

experiment thus sought to establish whether and how the feature

selective processing of orientation direction in early visual cortex is

modulated by attentional load.

III.1.2 Hypothesis

Here, I combined elements of experimental designs previously

investigated. The distractor stimuli were identical to Haynes & Rees

(2005); the central load task is identical to Schwartz et al (2005).

Accordingly, my first hypothesis was to replicate behavioral effects
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of varying load for the central task as previously reported.

Additionally, I also sought to replicate the univariate main effect of

reduced brain activity for the peripheral distractor in early visual

cortices (Schwartz et al., 2005).

Secondly, I sought to replicate successful multivariate pattern

decoding of neural representations of oriented stimuli (Haynes and

Rees, 2005a). Extending the general predictions of load theory to

feature-specific processing, I hypothesized that there would be a

reduced representation of orientation-specific signals (as measured

by multivariate classification accuracy) under high load (compared

to low load). This result would extend load theory validity to

feature-specific neural processing. Fourth, I predicted that the

multivariate decoding of load (high vs. low rather than left vs. right)

would be significantly less successful than the classification of

orientation – potentially even not significantly different for chance.

This is due to the assumption that multivariate pattern decoding of

visual features is likely to rely on biased voxels whose signals reflect

activity of neurons in early visual areas tuned to elementary

features such as colour and orientation. Since load is not such an

elementary feature it should classify significantly worse or not at all.

Finally, as a fifth hypothesis, I predicted that it would be possible to

generalize from one set of orientation training data (under one load

condition) to a second orientation data set taken from the other

experimental condition (the other load condition). I intended to test

this generalization on training with low, and testing with high, data

and vice versa. My hypothesis was that it would be possible to
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generalize from low to high load and vice versa, as (orientation-)

biased voxels should remain the same across conditions.

III.2 Methods

III.2.1 Participants

Eight healthy participants (4 male, mean age 24.1 years) gave

written informed consent to participate in the study, which was

approved by the local ethics committee. All subjects had normal or

corrected to normal vision.

III.2.2 Stimulus

During the main fMRI experiment, participants performed a visual

detection task on a continuous rapid successive visual presentation

(RSVP) of coloured crosses (one cross every 750 ms) that was

shown in a fixed central location at fixation. This RSVP stream

consisted of cross-shaped stimuli with two different orientations

(upright or upside-down) and six different colours in random order

(Figure III-1 B). Participants were required to monitor the

occurrence of infrequent (7.5%) pre-specified targets within this

rapid central letter stream, and to respond by a button-press to

each detected target. Behavioural responses were collected with a

standard MRI-button box.
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Figure III-1
Example stimuli used in the experiment.
A) Shown are two examples of stimuli used in the main experiment
(during the experiment only one stimulus was shown at a time).
Stimuli consisted of oriented lines that were continuously contrast
reversed at a frequency of 4Hz. Orientated lines comprised an annulus
shaped field with a radius between 4° and 8°. At fixation the load task
is performed by the subject.

B) The load task consisted of a visual detection task on a continuous
rapid successive visual presentation (RSVP) of colored crosses (one
cross every 750 ms). Subjects were required to detect infrequent
(7.5%) pre-specified targets: red crosses of either orientation (low
load, easy task) or a combination of yellow upright or inverted green
crosses (high load, difficult task).
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The low-load (colour) task required a key-press for any red cross

irrespective of its orientation whereas the high-load (conjunction)

task required a key-press for any upright yellow cross or upside-

down green cross. Items that were targets in one condition also

appeared with the same frequency as task-irrelevant stimuli in the

other condition (i.e. high-load targets appeared as distractors under

low-load instructions, or vice versa). Consequently, only the task

instructions distinguished the high-load and low-load conditions for

the central task. The rapid succession of stimuli and unpredictability

of targets in this RSVP task ensured that participants always

monitored items at central fixation, during both task conditions.

Based on prior, identical usage of this task at the centre of gaze

(Schwartz et al., 2005) I anticipated that detecting red targets

would be a low-load task that can be solved on the basis of a single

‘pop-out’ colour feature, whereas monitoring for crosses with a

particular colour and orientation in the rapid central stream should

be a high-load task requiring high attentional resources in order to

discriminate the specific conjunction of features. In addition to the

central task, visual stimuli comprised a ring shaped annulus with a

radius between 4° and 8°, made up of alternating black/white

diagonal stripes reversing contrast at 4Hz Figure III-1 A).

III.2.3 Procedure

Participants lay supine in the scanner and viewed visual stimuli that

were projected from an LCD projector (NEC LT158, refresh rate 60
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Hz) onto a screen viewed via a mirror positioned within the MR head

coil. Stimuli were presented using MATLAB (Mathworks Inc.) and

COGENT 2000 (www.vislab.ucl.ac.uk/Cogent/index.html). Complete

darkness was achieved in the scanning environment by manually

masking the fMRI projection screen, head coil and internal bore with

matt black card. This eliminated discernable non-retinotopic

luminance cues, ensuring that the only source of visual stimulation

during experimental runs was the experimental stimulus.

All participants were scanned for a total of 4 to 6 runs, alternating

the orientation and difficulty of the central task in a manner that

was counterbalanced within each run and across participants. Each

block started with the appearance of the central fixation spot for

10s including a short reminder of the task to come for 3 seconds,

followed by a 30s long lasting block of the load task at central

fixation with the flickering annulus surrounding the central task. The

last 10s of each block were used to give participants a short rest

and only comprised a fixation cross. Participants were instructed to

concentrate on the central task/ fixation cross for the duration of

the entire run. Between each run the screen was masked to prevent

scattered light from the projector illuminating it.

III.2.4 Scanning

The main experimental task lasted 400s split into 8 parts of 50

seconds each. Hence, each experimental fMRI scan comprised each

of the four task conditions twice (low/ high load combined with left/
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right oriented lines), resulting in 8 trials per scan. Additionally to

the experimental sessions, to identify the boundaries of primary

visual cortex (V1) and extra-striate retinotopic cortical areas V2 and

V3, standard retinotopic mapping stimuli were presented twice to

each participant. During these runs participants solely have to fixate

on a central fixation cross. Retinotopic mapping runs lasted for 165

image volumes. In total, 6 to 8 scanning runs of 165 to 310 image

volumes were acquired per participant.

Imaging Parameters. A 3T Siemens Allegra system acquired T2*-

weighted Blood Oxygenation Level Dependent (BOLD) contrast

image volumes using a descending sequence every 1.3s. Each

volume comprised 20 3-mm-thick slices, positioned on a per

participant basis to give coverage of the occipital lobe with an in-

plane resolution of 3x3 mm. To maximize signal to noise in early

visual cortex an occipital head coil was used.

III.2.5 Analysis

Data preprocessing. Data were preprocessed using Statistical

Parametric Mapping software (SPM5, www.fil.ion.ucl.ac.uk/spm).

After discarding the first seven image volumes from each run to

allow for T1 equilibration effects, functional image volumes were

realigned to the first of the remaining volumes and co-registered to

the individual participants’ structural scans. Experimental data and

retinotopic mapping data were not spatially smoothed. Data were
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high-pass filtered (cut-off – 128s) to remove low-frequency signal

drifts.

Visual Area Localization. To identify the boundaries of primary visual

cortex (V1) and extra-striate retinotopic cortical areas V2 and V3,

standard retinotopic mapping procedures were used (Sereno et al.,

1995). Checkerboard patterns, displayed either at the horizontal or

vertical meridian, were alternated with rest periods for 16 epochs of

26s over two scanning runs. Mask volumes for each region of

interest (left and right V1, V2 dorsal, V2 ventral, V3d, and V3v)

were obtained by delineating the borders between visual areas

using activation patterns from the meridian localisers. I followed

standard segmentation and cortical flattening in MrGray (Teo et al.,

1997; Wandell et al., 2000) to determine the borders between the

ROIs on a flattened cortical representation.

Univariate analysis. Initially, I used a standard univariate approach

to determine whether there were any differences in activation

comparing the different types of distractor (left or right tilted) and

different levels of attentional load in the central task (low or high

load). This was achieved by creating a standard SPM5 univariate

first level analysis (see Chapter II: General Methods) defining 4

box-car regressors for the 4 experimental conditions. The resulting

beta-images, one for each box-car regressor, represent brain

activity effect size at each particular voxel in percentage units of the

whole brain mean, convolved by the standard hemodynamic

response (HDR) function. The standard approach is to then

formulate a contrast within SPM. However, in order to compare the
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4 experimental conditions precisely per ROI, I calculated the mean

of all voxels of all beta-images within a given ROI of each condition.

This procedure allowed me to reduce the entire dataset acquired to

4 values, one for each experimental condition (Figure III-3), per

ROI, per participant.

In detail, data were collected in 4 scans of 4 blocks for each subject,

blocks were separated by rest. Each scan contained each condition

exactly once in pseudo-randomized order, fulfilling a completely

balanced design. For each subject we first averaged over all voxels

in a ROI, in all volumes of a block. Then we averaged these block-

values across scans, resulting in 4 values of mean brain activity per

subject.

Due to the necessity that all 4 values are relative to the same mean

brain activity per subject, a repeated measures ANOVA, where each

subject is a new repetition, was used to compare for differences of

brain activity between conditions.

Finally, I compared high vs. low load brain activity, collapsing

across orientation. This represents a simplified version of the above

procedure, reducing the entire dataset into two groups rather than

four. Pairs of conditions were always defined as values from the

same subject and, thus, tested with a paired t-test.

Multivariate pattern classification. Pattern classification was

performed using Sparse Logistic Regression (SLR, see Chapter II:

General Methods). For determining classification accuracy, only
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classification with unseen and independent-test data was

considered. Thus, test data sets in different iterations were always

independent from the training data sets used. The actual

classification was repeated n times, where n was determined by the

number of independent blocks (n-fold-cross-validation).

Classification accuracies were averaged across these n data

assignments. Note that these n iterations are completely

independent of each other and there was no iterative learning or

similar techniques applied. Much care was taken to ensure

independence of training and testing vectors at all times.

Multivariate pattern classification was initially used to predict the

orientation of the irrelevant flickering distractor annulus. This left

vs. right orientation classification was repeated for low and high

load, strictly keeping data from the two conditions separate,

resulting in separate results for MVPD under low and high load. We

then tested for a significant difference from chance (50%) with a

simple Student’s t-test independent for low and high load.
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After predicting orientation (left vs. right), MVPD was repeated, now

attempting to classify load (high load vs. low load). In other words,

instead of classifying left vs. right tilted orientations in one load

condition, I attempted to classify left vs. left (and right vs. right)

tilted orientations in different load conditions. Significant difference

form chance (t-test, as above) in this classification step was thus a

test of load decoding in early visual cortex.

Figure III-2
Behavioral Results. The left panel shows mean reaction times averaged
across participants for successful detection of target crosses.
Separate colors denote low (blue) and high (red) load conditions
during the central RSVP task (see fig 1).
The right panel shows mean correct hits across participants for target
crosses.
Both differences are highly significant and present in every
participantupright or inverted green crosses (high load, difficult task).
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Finally, I repeated the entire multivariate analysis to test for the

ability to generalize from feature classification in one load condition

to test data taken from a different experimental condition. This

generalization decoding performance was computed using training

on data from low load orientation data (left vs. right under low load)

and testing on high load orientation data (left vs. right under high

load), or vice versa. The same was repeated for the second part of

the MVPD analysis, attempting to generalize from left vs. left

training (different load conditions) to right vs. right-test data, and

vice versa.

III.3 Results

III.3.1 Behavioral results

For both tasks, performance was always above chance, confirming

adherence to the task requirements. The central task was

significantly harder for the high-load than low-load condition in all

participants. I initially examined Reaction Times (RT) across

participants comparing the RTs of low load condition with the RTs of

high-load condition with a paired, two-tailed t-test. Mean detection

latencies for central target crosses were significantly slower in the

high-load versus low-load condition [mean Reaction Time high:

650ms; low: 528ms; t(25) = 6.8, P < 0.001] (Figure 1-3, right).
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I also analyzed hit rates of correctly detected crosses in both

conditions. Again I discovered a significant difference between high

and low load condition. Hit rates significantly decreased in the high

load condition [mean Hit Rate high: 79.8%; low: 97.4%; t(25) = -

15.4, P < 0.001] (figure 1-3, left).

Finally, I examined the error rates (incorrect target responses or

false alarms, not including missed responses) using a similar paired

t-test. I found a significant difference between the two conditions.

False alarms significantly increased during the high load task [mean

error rate high: 31.3%; low: 16.6%; t(25) = 8.1, P < 0.001].

Figure III-3
Univariate analysis. Shown is the mean univariate effect size across
subjects under the four different experimental conditions (colors). Mean
effect sizes are obtained from beta images for each condition separately
from unsmoothed data. Errorbars denote SEM across subjects. An ANOVA
revealed no significant differences between any of the conditions and no
significant interactions.
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Performance was always reliably above chance on either task,

confirming adherence to the task requirements. Taken together, this

behavioral data confirms that participants successfully paid

attention to the central task and that central attentional load was

effectively varied by my task manipulation.

III.3.2 Univariate Results

I analyzed the mean univariate effect sizes across participants

under the four different experimental conditions (Figure III-3). A

repeated measurements (RM-) ANOVA revealed no significant main

effects or interactions between the mean signal of the

representation of the task-irrelevant annulus V1. However, in V2

and V3 there was significantly lower activity under high (vs. low)

load. In both V2 and V3 there was also a significant interaction of

load and orientation. [RM-ANOVA: V1Load: F(1,7) = 1.5, p = 0.26;

Orientation: F(1,7) = 0.0334, p = 0.86; Load x Orientation: F(1,7)

= 0.486, p = 0.508; V2: Load: F(1,7) = 10, p = 0.0157;

Orientation: F(1,7) = 0.0762, p = 0.791; Load x Orientation: F(1,7)

= 9.64, p = 0.0172; V3: Load: F(1,7) = 10.1, p = 0.0156;

Orientation: F(1,7) = 0.146, p = 0.714; Load x Orientation: F(1,7)

= 15, p = 0.00609].
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Next, I calculated the main effect of load again separately,

collapsing across the orientation of the distractor annulus. Figure

III-4 shows the difference between the mean activity under high

load from the mean under low load. The underlying values were

then compared using a paired t-test for significant differences

between low and high load pairs (pair defined as from the same

scan-run). The result confirmed the ANOVA findings: mean effect

size of BOLD signal was significantly higher under low load than

under high load in early visual cortices V2 and V3 [V1: Low load:

0.9, High load: 0.84, t(15) = 1.2, P = 0.24402; V2: Low load: 0.33,

High load: 0.2, t(15) = 2.8, P = 0.013276; V3: Low load: 0.29,

High load: 0.11, t(15) = 2.8, P = 0.013826].

Figure III-4
Univariate Low mean effect size minus High mean effect size. Similar to
Figure 3 values are obtained from beta images, however here the mean
of all values collected under high load is subtracted from the mean of
values collected under low load, collapsing across orientations. A ttest
revealed significantly reduced activity under high load for V2 and V3,
replicating previous BOLD activity findings at similar eccentricity of the
distractor (Schwartz et al., 2005, Fig 7 and 8).
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III.3.3 Multivariate classification results

Figure III-4 shows the decoding accuracy (mean across

participants) for visual areas V1 to V3, obtained with Sparse Logistic

Regression (SLR). The y-axis depicts mean accuracy of classification

across participants, while different colors along the x-axis indicate

decoding from different experimental conditions in visual areas V1

Figure III-5
Decoding accuracy (mean across subjects) is shown for visual areas
V1 to V3, obtained with Sparse Logistic Regression (SLR, see General
methods).
Different colors indicate decoding for different comparison: leftward
vs. rightward orientation decoding was highly successful, compared
to chance, under both low load (dark blue bars) and high load (light
blue bars) conditions. However, ttests between the two conditions
revealed no significant differences in any area. I then attempted to
decode Load on trials from one orientation only. This comparison,
however, proved non-significantly different from chance (yellow bars,
collapsed across rightwards only and leftwards only decoding).
Errorbars denote SEM across subjects.
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to V3. Decoding leftward vs. rightward orientation was highly

successful, compared to chance, under both low load and high load

[V1: Low Load: 88.2%, t(7) = 11, P < 0.01; High Load: 89.4%,

t(7) = 15, P < 0.01; V2: Low Load: 86.6%, t(7) = 11, P < 0.01;

High Load: 91%, t(7) = 13, P < 0.01; V3: Low Load: 86.3%, t(7) =

9.4, P < 0.01; High Load: 90.9%, t(7) = 13, P < 0.01].

Next, I attempted to decode Load (low vs. high) on blocks from one

orientation only. This comparison, however, proved substantially

less successful compared to orientation classification, with

prediction accuracy in all cases and ROIs very close to chance.

However, although SLR decoding revealed a weak result across

participants, it was still significantly different from chance in V1 and

V2 for an uncorrected t-test, classifying low load vs. high load on

data from one orientation only [same orientation (collapsed): V1:

52.7%, t(15) = 2.3, P = 0.038; V2: 54.2%, t(15) = 2.8, P = 0.013;

V3: 51.2%, t(15) = 0.76, P = 0.46].

Next, I compared low and high load condition results across

participants using uncorrected t-tests to determine whether there

were significant differences in classification accuracy comparing

different attentional load conditions. These t-tests between these

two conditions revealed no significant differences in any area [t-

test, Low Load 88.2%, High Load 89.4%, t(7) = -0.57, P = 0.59;

V2: Low Load 86.6%, High Load 91%, t(7) = -1.9, P = 0.11; V3:

Low Load 86.3%, High Load 90.9%, t(7) = -2.2, P = 0.07].
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Generalization Results. Given training data of a pair of experimental

conditions (i.e. left under low load vs. right under low load), I then

tested how well this data set can be used to decode data from a

different pair of experimental conditions (i.e. left vs. right, both

under high load). This generalization decoding performance was

computed using training on data from low load orientation data (left

vs. right under low load) and testing on high load orientation data

(left vs. right under high load), and vice versa. In both these out-of-

load-generalization-decoding cases the resulting accuracy was

significantly above chance [t-test, V1: training with low Load:

87.7%, t(7) = 11, P < 0.01; High Load: 88.7%, t(7) = 9.8, P <

Figure III-6
Generalization performance of SLR training. Shown in the figure are SLR
decoding accuracies (mean across subjects) for visual areas V1 to V3 for
test data different to the training data. Different colors indicate different
combinations of generalization. Generalization is highly successful,
compared to chance, under both load conditions (t test, all areas) with
no significant differences between the two (paired t test, all areas).
Generalization was unsuccessful for the attempt to generalize low vs.
high decoding from different orientations (t test, all areas). Errorbars
denote SEM across subjects.
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0.01; V2: Low Load: 88.7%, t(7) = 9.5, P < 0.01; High Load:

89.4%, t(7) = 12, P < 0.01; V3: Low Load: 87.3%, t(7) = 8.8, P <

0.01; High Load: 89.3%, t(7) = 11, P < 0.01]. Overall, out-of-load-

decoding results were very similar, and not significantly different, to

results of decoding within-load [t-test, training low load, Testing:

V1: Within load condition: 88.2%, Out of load condition: 89.4%,

t(7) = 0.32, P = 0.75; V2: Within load condition: 86.6%, Out of

load condition: 91%, t(7) = -0.97, P = 0.36; V3: Within load

condition: 86.3%, Out of load condition: 90.9%, t(7) = -0.6, P =

0.56]. The same is true for training with high load data, testing on

low load data [paired t-test, training high load: V1: Within load

condition: 88.2%, Out of load condition: 89.4%, t(7) = 0.31, P =

0.76; V2: Within load condition: 86.6%, Out of load condition:

91%, t(7) = 0.89, P = 0.4; V3: Within load condition: 86.3%, Out

of load condition: 90.9%, t(7) = 1.4, P = 0.2].

The same generalization approach applied to the prediction of low

vs. high load (Training on leftwards orientations and testing on

rightwards orientations, and vice versa) did not yield any results

significantly different from chance [t-test collapsed across

Orientations, V1: 48.5%, t(15) = 0.57, P = 0.58; V2: 47.9%, t(15)

= -0.12, P = 0.9; V3: 48.4%, t(15) = 0.5, P = 0.6].
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III.4 Discussion

In the current study, I tested a number of hypotheses. Combining

elements of experimental designs previously investigated (Haynes

and Rees, 2005a; Schwartz et al., 2005), I was able to replicate a

number of previous results, namely a behavioral manipulation with

the central load task, a difference in distractor related brain activity

across early visual cortices due to this load manipulation and

successful decoding of peripheral oriented lines with MVPD. My third

hypothesis was that there would be a reduction in MVPD-accuracy

under high load, analogous to the reduced mean brain activity.

However, orientation-classification under high load and low load was

statistically indistinguishable. My fourth hypothesis was that there

would be a significantly reduced ability to classify different load

conditions instead of different orientations, and indeed results of

load-prediction were below 55% accuracy. Yet, comparing high vs.

low load classification still proved robust enough for a significant

different from chance in V2 and V3. My final hypothesis proved

entirely correct: it was possible to generalize from a training data in

one load condition to test data taken from another load condition.

Retinal input was identical in both load conditions due to equal

number of blocks of left and right tilted lines in the distractor

annulus and a visually identical central task. Thus, differences

between visual stimulation between experimental conditions were

highly unlikely to account for any of my findings.



98

Behavioral findings confirmed that the attentional load manipulation

in the central task was effective. It was much more difficult

(attention demanding) to perform the task in the high-load

condition than in the low-load condition for every participant. This

replicates behavioural results and demonstrates a successful load

manipulation (Schwartz et al., 2005).

A repeated measures ANOVA comparing brain activity evoked in

early visual area V1 by peripheral orientations did not reveal any

differences in brain activation comparing the activity evoked by

task-irrelevant left tilts and right tilts (i.e. different visual features).

However, the insignificant trend in V1 toward reduced overall brain

activity elicited by the task-irrelevant peripheral distractor became

significant in areas V2 and V3. This finding is consistent with

previous findings using slightly different peripheral distractor stimuli

(oriented lines vs. checkerboards) but the same central load task

(Schwartz et al., 2005, Fig 7C). Like in the present study, Schwartz

et al. (2005) show an increasing reduction in BOLD signal under the

influence of load from V1 to V3 at a similar stimulus eccentricity.

The same RM-ANOVA also revealed no significant differences

between the different orientations. This is consistent with studies

that report an inability to find feature-specific differences for

oriented stimuli in visual cortex using conventional univariate

analysis (Haynes and Rees, 2005a; Kamitani and Tong, 2005b;

Haynes and Rees, 2006).

Multivariate analysis allowed accurate classification of the neural

representation of one of two orthogonal orientations significantly
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above chance. These results replicate recent results (Haynes and

Rees, 2005a) with overall improved accuracy. Leftwards vs.

rightwards distractor orientations under low and high load classify

approximately equal in V1 to V3, with an accuracy of about 9 in 10

volumes classified correctly. Given the noisy nature of the BOLD

signal, the lack of preprocessing steps compared to standard

univariate analysis and previous results with only a minimal central

task (Haynes and Rees, 2005a) the accuracy of decoding observed

here is remarkable.

Since decoding was performed identically for high and low load

conditions, it was feasible to compare the accuracy of different

decoding results. However, comparing MVPD results from low and

high load did not reveal any significant differences between the load

conditions. This was surprising given the strong and successful

behavioral manipulation of the central load task (Fig III-2) and the

univariate reduction in overall BOLD signal (Fig III-4). Yet, it seems

that differences in the task-irrelevant distractor representation are

either not present or not measured by MVPD. Load theory predicts

neural signals associated with task-irrelevant distractors (in our

case the orientated lines) will be reduced when attentional

resources are taken up by another task (in our case under high

load). Thus, I hypothesized that classification accuracy revealed by

MVPD should fall under high central load, especially having

successfully replicated a behavioral modulation and a main effect of

load for brain activity in early visual cortex. Yet, the results are not

consistent with this hypothesis: high and low load decoding were

indistinguishable. The overall accuracy was very high with
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accuracies around 90%. Thus, it could be that classification in both

cases reached a performance ceiling obscuring any small differences

between the load conditions. The noisy nature of the BOLD signal

may simply not allow any higher classification than about 90%

explaining the null finding for the main effect of load for decoding.

However, taking into account the strong behavioral modulation, the

task being substantially more difficult under high load, this option

seems unlikely.

MVPD was only marginally successful in decoding load from early

visual cortex with accuracies only around 54% (Fig 5, yellow bars).

Note that the one load-value reported is collapsed across results,

however, all decoding-analysis was always performed on two

conditions at a time (only results are collapsed for load, no

collapsing happened during the actual analysis). Across all

observations these relatively low accuracies were significantly

different from chance in V1 and V2. Although I hypothesized that

decoding accuracies should be significantly reduced or not

significant at all, the result revealed statistically robust decoding of

load in V1 and V2. This is particularly surprising as load decoding

failed in V3, which means that these decoding results cannot be

explained by a main effect in brain activity (which is significantly

reduced in V3). However, disregarding the low accuracies, in case of

V1 and V2, MVPD was sensitive enough to decode load significantly

different from chance.

A number of possibilities could potentially account for the null-

finding for a difference in decoding between different load conditions
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and the somewhat surprising successful decoding of load in V1 and

V2. It is important to understand the basis by which MVPD is

deciding between different conditions, which is ultimately the voxel

selection upon which any classification is based on. Here we used

MVPD using ARD-SLR (automatic relevance detection for sparse

logistic regression, for details, see Chapter II: General Methods).

Studying the results for this experiment, it becomes clear that

voxels selected relevant for classification are a poor representation

of mean brain activity of the entire ROI. This is true for orientation

classification (mean brain activity undistinguishable but decoding

highly successful) and load classification (mean brain activity

significantly different in V2 and V3 but decoding significantly

different from chance in V1 and V2). Hence, the relevant voxels

must reflect a different aspect of the data altogether. The location

of a voxel decides which underlying neural activity it represents. For

orientation, it has been suggested that an unequal distribution of

orientation columns results in biased voxels distributed randomly

across early visual cortex (Haynes and Rees, 2005a; Kamitani and

Tong, 2005b; Haynes and Rees, 2006). However, a small number of

invidividual MRI voxels might also capture a biased sample of

orientation columns explained by a larger scale retinotopic radial

bias rather than an anisotropic distribution of orientation columns

alone (Sasaki et al., 2006). However, recent advances on single

voxels corroborate and extend the claim towards an anisotropic

distribution further by demonstrating voxel-based tuning functions

to different orientations (Serences et al., 2009b). Consequently, it

seems highly likely that voxels selected in our study (by ARD) also

represent orientation biases for the two orientations we tested.
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Thus, I conclude that, for our study, there are spatial areas in early

visual cortex that, locally, show a clear and reproducible main effect

for orientation that can be extracted by a spatial resolution of

3x3x3mm. These local differences are, however, not distinguishable

when looking at the mean of all voxels. Consequently, voxels with

increased activity must be counteracted by voxels with decreased

activity. Comparing results from Serences et al (2009), orientation-

biased voxels show roughly equal increase/ decrease of activity at

90 degrees (see Serences et al., 2009b, Figure 5). Therefore, voxels

selected during orientation decoding are likely to be tuned voxels,

increasing activity for their preferred orientation while decreasing

activity for their anti-preferred direction.

Furthermore, in the case of load prediction, it seems logical that the

strong main effect of mean brain activity in early visual cortex is

only very weakly reflected in a spatial manner that our voxel

selection grid (3x3x3mm) was able to extract. Potentially, load

could still be spatially realized, but too densely, in early visual

cortex. More likely, though, it is not at all a spatially localized effect.

That would in turn mean that the load effect of mean activity is due

to changes in overall activity rather than driven by single voxels,

thus, voxels are not tuned to attentional load in an unrelated central

task. This conclusion goes slightly against our surprising result of

statistically robust load classification, which, therefore, remains

unexplained. It is, nevertheless, only possible to classify load in

fewer than 54% of all tested volumes.
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As a final analysis, I successfully classified orientation from one load

condition when training the MVPD algorithm with data from the

other load condition and vice versa (Fig III-6). Results were just as

high as during within load classification. This result is yet another

indicator of the chosen voxels actually being biased by presented

orientation, reliably across different conditions and independent to

load in the central task. In contrast to this, voxels producing

significantly above chance (V1 and V2) decoding for load conditions

using one orientation only, did not generalize to load decoding with

data from the other orientation (Fig III-6, yellow bars). This

indicates that the chosen voxels in this case, most likely, were not

biased to the decoded feature of low or high load. Again this further

corroborates the argument that load seems not spatially distributed

in early visual cortex. For a future analysis, it could be potentially

beneficial to train the MVPD algorithm with data from different

conditions that overlap in one feature that is tested for. This

conjunction multivariate analysis could potentially help to identify

biased voxels more clearly as interferences might even out and

there could, potentially, be more training examples.

Overall, studies of perceptual load generally find decreased

behavioral, perceptual and physiological measures of unrelated

distractors (Lavie, 1995; Rees et al., 1997; Lavie and Fox, 2000; for

review see Driver, 2001; for load theory see Lavie et al., 2004).

However, here we found that orientation specific biases in brain

activity of early visual cortex are independent of differential

attentional load in a central task, even though the overall mean

brain activity is decreased. Thus, as a result of the combination of



104

these two results and at least of the feature orientation, perception

of a distractor that is decreased due to high attentional load in an

unrelated task is not reduced due to the fact that basic features of

the distractor are less clearly represented in early visual cortex. Any

differences in perception must therefore be due to another factor as

feature representation as measured by MVPD is unaffected by load

in an unrelated task.

III.5 Conclusion

The differences in MVPD and univariate analyses results highlight

the complimentary nature of the two. Strengths of the MVPD

method lie in distributed feature-specific analysis: i.e. different

orientations are known to be represented in different neuronal sub-

populations in early visual cortex (Hubel and Wiesel, 1968),

resulting in an uneven spatial pattern that can be accessed

successfully by MVPD. Strengths of univariate analysis methods lie

in large scale, overall BOLD changes: i.e. load, unknown to have

different underlying neuronal sub-populations, is well-known to

reduce distractor activity in early visual cortices (Lavie, 2005;

Schwartz et al., 2005) and led to a significant reduction of the BOLD

signal in the present study.

Load theory predicts that the task irrelevant representation of the

distractor (in this case orientations) should be significantly reduced

when attentional resources are more bound to another task. Like

previous fMRI experiments we identified a reduction in the
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distractor related BOLD activity. However, we did not observe any

significant differences in the underlying feature representation as

measured by MVPD. Since this result is reported in conjunction with

a qualitative replication of previous findings, it can help

understanding about the underlying biological basis of the influence

of attention on processing, especially feature specific, in the brain.

From results of this study we conclude that any differences due to

attentional load in an unrelated task of perception of orientation in a

distractor are not due to the representation of orientation in early

visual cortex as measured by MVPD.

A simple possibility to criticize any wider claims of results reported

in this chapter is that the effect observed is purely restricted to the

biological representation of orientation. Only a qualitative replication

including another basic feature representation (e.g. colour or

direction of motion) is able to dismiss this criticism. Therefore, the

next chapter will explore if the observed result is restricted to

orientation or can be extended to other features known to be

represented in early visual cortex.
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Chapter IV:

Effects of attentional load on motion selective

processing I

IV.1 Introduction

Classification accuracy for orientation of an unattended, irrelevant

distractor remained unchanged under high (versus low) attentional

load in a central task (chapter III). Thus, attentional load in a

central task did not affect the representation of orientation of an

irrelevant distractor. Yet, there is an ever growing body of studies

showing that processing of irrelevant distractors is reduced under

high attentional load. Such experiments span an incredibly wide

variety from the classical effects on distractors consisting of color-

shape conjunctions (for example: Lavie, 1997), to measures of

BOLD signals in visual cortex of basic visual features (Rees et al.,

1997), or face specific BOLD and even working memory related

measures (Jenkins et al., 2003, 2005). More recently high load was

additionally shown to reduce effects of individual differences in

distractibility (Forster and Lavie, 2007) and the effect of high load

was shown to also extend to relevant distractors (Forster and Lavie,

2008). Taking into account this vast body of studies the result of

chapter III was not predicted by load theory. But to further

understand this unexpected result, it is important to understand if

the result observed in chapter III is specific to the stimulus used, to
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the analysis performed or if it could indeed be generalized to other

types of visual features and their neural representations.

IV.1.1 Objectives

Here, I present an experimental paradigm designed to closely

match the one presented in chapter III. However, instead of

measuring BOLD signal associated with the basic visual feature of

orientation, I investigated the effect of load to the basic visual

feature of direction of motion. This was achieved by replacing the

oriented distractor stimuli with a field of dots moving in one of two

possible directions. Thus, the visual feature orientation is replaced

with the feature motion direction which, similar to orientation, has

been shown previously to be distinguishable with multivariate

pattern recognition applied to BOLD contrast signals from visual

cortex (Kamitani and Tong, 2005a).

For direction of motion, neurons in the middle-temporal area

(V5/MT) of monkeys are selectively responsive to the direction of

motion (Zeki, 1983; Albright et al., 1984; Zeki et al., 1991). Further

research established that monkey area V5/MT represents different

directions of motion in a columnar architecture (Tootell et al., 1995;

Tootell and Taylor, 1995) and there is evidence that this might also

be true for humans, mainly from fMRI-adaptation studies (Heeger et

al., 1999; Nishida et al., 2003; Seiffert et al., 2003). Therefore, just

like orientation and the early visual cortex, area V5/MT (alongside
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V1 to V3) was an obvious area to study the effect of varying

attentional load.

IV.1.2 Hypothesis

The experiment presented here sought firstly to successfully decode

the direction of motion of unattended random moving dots.

Secondly, I sought to replicate the behavioral load effect of the

central task again just as seen in Chapter III.

Further, for the difference between attentional load conditions, my

goal for the experiment presented here was to identify any effects

of central attentional load brain activity associated with irrelevant

(distractor) motion. Thus, my third hypothesis was to find a

differential representation of feature specific signal (motion direction

left-upwards vs. right-upwards) in neural activity of early visual

cortices V1-V3 and area V5/MT under high load (compared to low

load). Note that, due to the high similarities to the experiment

presented in chapter III, failure to observe such central-load-

depended differences in results from multivariate pattern decoding

(MVPD) of (motion direction specific) distractor activity would,

however, be less surprising than before.

Finally, my last hypothesis was that it would be possible to predict

load (instead of motion direction) from early visual cortices,

analogous to the same experimental question in chapter III.



109

IV.2 Methods

IV.2.1 Participants

Eight healthy participants (6 male, mean age 28 years) gave written

informed consent to participate in the study, which was approved by

the local ethics committee. All participants had normal or corrected

to normal vision. One participant had to be excluded from the

analysis due to her paying no attention during the central load task

and consequently failing to comply with the task requirements,

another participant was excluded due to excessive head movements

during scanning.

IV.2.2 Stimulus

Participants performed a visual detection task similar to that

described in chapter III. In brief, a continuous rapid successive

visual presentation (RSVP) of colored crosses (one cross every 750

ms) was shown at fixation in the centre of the screen (Figure IV-1).

This RSVP stream consisted of cross-shaped stimuli with two

different orientations (upright or upside-down) and six different

colors in random order (Figure IV-1 B). Participants were required

to monitor the occurrence of infrequent (14%) pre-specified targets

within this rapid central letter stream, and to respond by a button-

press to each detected target. Reaction times (RT) were collected as

behavioral responses with a standard MRI-button box. Different to

the central task in Chapter III the length of every experimental
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block within each run was decreased to 17 seconds. Accordingly,

the frequency of targets was slightly increased to allow a minimum

of two targets per block. Both changes were tested behaviorally

before scanning and did not change the efficiency of the load task.

The low-load (color) task required a key-press for any red cross

irrespective of its orientation, whereas the high-load (conjunction)

task required a key-press for any upright yellow cross or upside-

down green cross. Items that were targets in one condition also

appeared with the same frequency as task-irrelevant stimuli in the

other condition (i.e. high-load targets appeared as distractors under

low-load instructions, or vice versa). Thus, only task instructions

distinguished the high-load and low-load conditions for the central

task.

Before the first and after each experimental block, the RSVP task

was replaced by a small fixation spot on the same medium gray

background used during the experiment. These rest blocks were 3

seconds long before the first block and lasted 17 seconds between

experimental blocks.

During experimental blocks, in addition to the cross task, the visual

stimuli comprised an annulus shaped field with a radius between 3°

and 10°. This field contained 100% coherently moving black dots

(for maximum contrast) on a medium gray background (Figure IV-1

A). During the experimental conditions there were always exactly

1400 dots visible, moving either 45° tilted or -45° tilted upwards

(further referred to as left-upwards and right-upwards movement).

Dot lifetime was limited to 350ms to ensure that it was easy for
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participants to keep fixation on the central task. Each dot moved at

a constant velocity of 5° per second. At the end of its lifetime or

when a dot reached the border of the stimulus it was immediately

replaced by a new dot in a random location. The field of moving

dots is further referred to as irrelevant distractor since it was

completely irrelevant to the central task and participants were

instructed only to attend to the central task.

IV.2.3 Procedure

Participants lay supine in the scanner and viewed visual stimuli that

were projected from an LCD projector (NEC LT158, refresh rate 60

Hz) onto a screen viewed via a mirror positioned within the MR head

coil. Stimuli were presented using MATLAB (Mathworks Inc.) and

COGENT 2000 (www.vislab.ucl.ac.uk/Cogent/index.html). Complete

darkness was achieved in the scanning environment by manually

masking the fMRI projection screen, head coil and internal bore with

matt black card. This eliminated discernable non-retinotopic

luminance cues, ensuring that the only source of visual stimulation

during experimental runs was the experimental stimulus.

All participants were scanned for a total of 8 (n = 2) or 10

experimental scans (n = 6). Each scan consisted of four

experimental blocks alternating every combination of motion

direction and difficulty of the central task in a manner that was

counterbalanced across runs and participants. Compared with the

stimuli described in experimental chapter one, the timing of each
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block was slightly altered. Each scan started with the appearance of

the central fixation spot for 7s including a short reminder of the task

to come, followed by a 17s long block of the load task at central

fixation with the motion stimulus (irrelevant distractor) surrounding

the central task. Then 17s of rest were used to give participants a

short rest before the next experimental block. Participants were

instructed to concentrate on the central task/ fixation cross for the

duration of the entire run.

Each experimental run lasted 104 volumes resulting into 136

seconds, split into 4 blocks of 34s seconds each (17 seconds task,

17 seconds rest). Hence, each experimental fMRI run comprised

each of the four task conditions once (low/ high load combined with

left-upwards and right-upwards movement).

IV.2.4 Scanning

Imaging Parameters. A 3T Siemens Allegra system acquired T2*-

weighted Blood Oxygenation Level Dependent (BOLD) contrast

image volumes using a descending sequence every 1.3s. Each

volume comprised 20 slices with a slice thickness of 3mm,

positioned on a per participant basis to give coverage of the

occipital lobe with an in-plane resolution of 3x3 mm. To maximize

signal to noise in early visual cortex an occipital head coil was used.
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Figure IV-1
Example stimuli used in the experiment
A) Stimuli used in the main experiment consisted of a random dot field
moving either left-upwards or right-upwards at an angle of 45 degree. At
fixation an attentional load task, identical to the load task described in
chapter III, is performed by the subject.

B) The load task RSVP as performed in the main experiment. Subjects
were required to detect red crosses either upright or inverted (easy task,
low attentional load) or the yellow upright and an inverted green crosses
(difficult, conjunction task, high attentional load). See Methods for
further details.
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Identification of ROIs. To identify the boundaries of primary visual

cortex (V1) and extra-striate retinotopic cortical areas V2 and V3 on

a participant by participant basis, standard retinotopic mapping

stimuli were presented twice to each participant (Sereno et al.,

1995). For V1 to V3, I followed standard segmentation and cortical

flattening in MrGray (Teo et al., 1997; Wandell et al., 2000) to

determine the borders between the ROIs on a flattened cortical

representation (see Chapter III for details). Finally, to identify

motion sensitive area V5/MT, an MT-localizer sequence was applied

twice per participant. During these scans participants solely had to

fixate on a central fixation cross while, alternating, 15 volumes long

intervals of expanding and contracting moving dots and 15 volumes

long intervals of static dots were displayed. These moving dots were

eccentricity matched to the conditions of moving dots during the

main experiment. Individually thresholded contrasts of moving vs.

static dots formed the basis for the definition of an 8mm diameter

sphere coving peak activity. The overlap of this sphere and gray

matter, as determined by SPM5 segmentation, formed the basis for

V5/MT definition. Both, retinotopic mapping runs and V5/MT

localizer runs lasted for 205 image volumes.

In total, 12 to 14 scanning runs of 104 to 205 image volumes were

acquired per participant.
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IV.2.5 Analysis

Data preprocessing. Data were preprocessed using Statistical

Parametric Mapping software (SPM5, www.fil.ion.ucl.ac.uk/spm5).

After discarding the first three image volumes from each scan to

allow for T1 equilibration effects, functional image volumes were

realigned to the mean of the remaining volumes. Following that the

structural of each participant was and co-registered with the

individual participants’ realigned data. All data was also high-pass

filtered (cut-off 128s) to remove low-frequency signal drifts. For

multivariate analysis experimental data was not further

preprocessed. However, for further univariate analysis with SPM5 a

copy of the data was spatially smoothed with a kernel of full width

half maximum of 5mm and normalized to standard Talairach space

(Tournoux, 1988).

Univariate analysis with SPM5. Data from the main experiment was

further analyzed using a general linear model (GLM). We used a

GLM containing boxcar waveforms representing each of our

experimental conditions, convolved with a canonical hemodynamic

response function (HRF). In all contrasts reported, low and high

load contain equal numbers of trials from experimental conditions.

First level analysis was performed setting up T-contrasts between

the different conditions (regressors) for each participant

individually. First level contrasts were set up for the spatially

normalized data and then further analyzed on the group level with a

second level analysis step, setting up a t-test for individual

contrasts between all participants.
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With the first, realigned only, data set I proceeded identically to

Chapter III: Data from 8-10 scans of 4 blocks for each participant

was first averaged over all voxels in a ROI, in all volumes of a block.

Then I averaged these block-values across scans, resulting in 4

values of mean brain activity per participant. Finally, I compared

different conditions of brain activity, i.e. high vs. low load collapsing

across orientation, with paired t-tests.

Multivariate pattern classification. Pattern classification was

performed using Sparse Logistic Regression (SLR, see Chapter II:

General Methods). For determining classification accuracy, only

classification with unseen and independent-test data was

considered. Thus, test data was always independent from the

training data. The actual classification was repeated n times, where

n was determined by the number of independent blocks (n-fold-

cross-validation). Classification accuracies were then averaged

across these n data assignments.

Similar to previous applications of MVPD (Kamitani and Tong,

2006), multivariate pattern classification was used here, to predict

the direction of motion displayed in the distractor annulus. After

predicting direction of motion, MVPD was repeated, this time round

attempting to classify load (similar to Chapter III). After repeating

MVPD for each participant, I tested for an overall significant

difference from chance (50%) with a simple student’s t-test.
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Different from methods described in Chapter III, I introduced two

crucial new elements into the analysis. Firstly, inspired by the

generalization result for orientation decoding (Chapter III, Figure

III-6), I pooled training data from both load conditions, instead of

keeping training data for low and high load strictly independent.

Thus, I trained the SLR algorithm with double the number of

upwards-left versus upwards-right examples, irrespective of the

load condition of the central task. During testing, however, I kept-

testing data strictly separate for low and high load, resulting in two

different decoding results achieved upon the same training data. To

test for the validity of this procedure I also produced the results

with independent training & test data (identical to Chapter III).

Secondly, many recent publications report multivariate results

based on averaged vectors across multiple volumes (Kamitani and

Tong, 2005b, 2005a, 2006; Serences and Boynton, 2007a;

Serences et al., 2009b). Others report classification results only on

single volumes (Haynes and Rees, 2005b, 2005a, 2006, Chapter

III). To compare these two approaches I first ran the entire MVPD

analysis with single volumes (also called single TRs, Fig. IV-6) and

then repeated the analysis with time-averaged volumes from entire

blocks of 15 volumes (Block averages, Fig. IV-7).
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IV.3 Results

IV.3.1 Behavioral results

In both load conditions, performance was always above chance,

confirming adherence to the task requirements. RSVP together with

the unpredictability of targets ensured that participants always

Figure IV-2
Shown are behavioral results of performance during the load task. Mean
reaction times of subjects for successful detection of target crosses are
shown on the left. Mean correct hits across subjects for target crosses
are displayed on the right. Separate colors denote low (dark blue) and
high (light blue) load conditions in the central task. Both differences are
highly significant (P< 0.001) and present in every subject. Errorbars
indicate standard error of the mean (SEM) across scans (8-10 per
subject).
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monitored items at central fixation during both task conditions. I

examined Reaction Times (RT) across participants comparing the RT

of low load conditions with the RT of high-load conditions with a

paired, two-tailed t-test. Mean detection latencies for central target

crosses were significantly slower in the high-load versus low-load

condition [mean reaction time high load high: 640ms; low load:

536ms; t(46) = 7.9, P < 0.001] (Figure IV-2, right).

I also tested hit rates of correctly detected crosses in both

conditions. Again I discovered a significant difference between high

and low load condition. Correct responses significantly decreased in

the high load condition [mean correct responses high load: 78.5%;

low load: 91.4%; t(46) = -3.4, P < 0.001] (figure IV-2, left).

Finally, I examined the error rates (incorrect target responses or

false alarms, not including missed responses) using a similar paired

t-test. I found a significant difference between the two conditions.

False alarms significantly increased during the high load task [M ER

high: 35.4%; low: 18.7%; t(46) = 4.5, P < 0.001].

Together, these findings confirm that attentional load was

effectively manipulated by the central task.
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IV.3.2 Univariate Results

I examined the contrast of all blocks containing (irrelevant) motion

vs. rest blocks. This contrast produced very clear activation in visual

cortices and V5/MT on an individual participant basis at T = 4.73, p

< 0.05 (Family wise error (FEW) corrected, exemplar participant

Figure III-3). This pattern roughly repeats for each participant,

however visual inspection of a random effects analysis on the group

level (n=6), at a conservative T = 5.21, p <0.001 (uncorrected),

shows no voxels at all above this threshold. At a more liberal

Figure IV-3
Exemplar single subject functional data normalized and superimposed
on a standard, normalized SPM structural. A random effects comparison
at T= 4.73, p < 0.05 (Family wise error (FWE) corrected, no voxel
threshold) reveals areas activated by the comparison of all blocks
containing motion vs. rest blocks. Bilaterally, motion responsive V5/MT
is visible (right V5/MT indicated with crosshair). Additionally, early
visual cortices around the occipital pole show noticeable activity,
demonstrating higher activity during experimental (task + motion)
blocks than during rest blocks.
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threshold (T = 3.144, p <0.01 (uncorrected)), activity in visual

cortices V1 to V3 and V5/MT bilaterally becomes clearly visible,

echoing the single participant results on the group level. Figure IV-3

also shows a small activity patch around the right central sulcus

which may reflect button pressing with the left hand during the

experimental conditions (vs. no button pressing during rest).

I continued examining the result of the contrast low load motion vs.

high load motion, in other words the main effect of low load (vs.

high load) in the context of motion. This was done for each ROI, V1

to V3 and V5/MT, separately. All ROIs were pre-defined according to

Figure IV-4
The graph is showing the difference in mean activity in each area
comparing high and low load, averaged across scans and subjects.
Values are the mean brain activity of high load blocks subtracted from
the mean low load activity. While activity is significantly reduced under
high load for V1 to V3, there is no activity difference in V5/MT. Errorbars
indicate standard error of the mean (SEM).
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activity as measured by independent localizer scans (see Methods

for details). Ignoring the direction of the distractor motion, I

calculated the value of mean brain activity for low load experimental

blocks and high load experimental blocks for each participant. Thus

for each participant I had a pair of brain activity values reflecting

mean brain activity of low load and high load blocks. With a null-

hypothesis of no differences between these two conditions, a paired

t-test revealed significant differences between low and high load

pairs. In V1 to V3 motion-related activity from low load blocks is

significantly higher than activity in high load blocks. However, no

such activity difference could be found in V5/MT [V1: Low load:

0.59, High load: 0.35, t(11) = 3.0, P = 0.01; V2: Low load: 0.63,

High load: 0.34, t(11) = 4.3, P < 0.01; V3: Low load: 0.7, High

load: 0.37, t(11) = 4.9, P < 0.01; MT: Low load: 0.95, High load:

0.96, t(11) = -0.18, P = 0.86]. Figure IV-4, illustrates these

findings in form of a difference plot between BOLD signal from low

load blocks minus activity from high load blocks. To double check

this surprising lack of load related activity differences in V5/MT, I

visually inspected a random effects analysis on the group level at an

extremely liberal threshold of T = 1.44, p <0.1 (uncorrected)).

However, even then, V5/MT bilaterally showed no differences of low

vs. high load motion, while early visual cortices clearly showed

differential activity.

Thus, the main task (motion blocks) compared to rest blocks nicely

activated brain areas related to the perception of motion (V1-V3

and V5/MT, Figure IV-3). In areas V1 to V3 there was additionally a

motion-related activity difference between low and high load blocks
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with activity decreasing under high load. However V5/MT does not

show this difference in motion related activity (Figure IV-4). Thus,

the same irrelevant motion perceived under either low load or high

load produced no activity difference in bilateral V5/MT, but it does in

V1 to V3.

Figure IV-5
Decoding accuracy (mean across subjects) for visual areas V1 to V3 and
MT, obtained with Sparse Logistic Regression (SLR). Different colors
indicate separate decoding performance for different test-comparisons:
leftward vs. rightward orientation decoding was highly successful,
compared to chance, under both low load (dark blue bars) and high load
(light blue bars) conditions. In both conditions, training data (left vs.
right) was pooled across load conditions to increase power of training.
Paired t-tests between the two orientation decoding results revealed no
significant differences in any area.
Load decoding (yellow bars), decoding low vs. high load rather than
different directions of motion, proved significantly different from chance
in areas V2, V3 and MT. Similarly to direction of motion results, training
data was pooled, this time across motion directions, to increase training
power. The reported result is the mean of separate testing for both (high
vs. low with either left or right upwards moving dots). Errorbars denote
mean of subject-specific SEMs.
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IV.3.3 Multivariate classification result

In this chapter, I report classification results obtained with the same

SLR- MVPD analysis strategy as presented in Chapter III. Figure IV-

5, Figure IV-6 and Figure IV-7 show decoding accuracies for areas

V1 to V3 and V5/MT. The y-axis depicts mean accuracy of

classification across participants, while different colors along the x-

axis indicate decoding from different experimental conditions in the

different visual areas. In Figure IV-5 and Figure IV-6 the training

data was pooled to increase training power (see Chapter III). Thus,

results obtained for low and high load are obtained from exactly the

same voxel selection, only tested with volumes from either

condition separately. To be sure this procedure was not falsifying

results Figure IV-7 contains the same decoding outcome obtained

without pooling of training data. Finally, for results of Figure IV-6

and Figure IV-7B, the input into the SLR algorithm was block

averaged volumes rather than single volumes (see Methods).

In Figure IV-5 training and testing was performed on single

volumes. Under both high load and low load, decoding left-upwards

versus right-upwards direction of motion was successful

(significantly different from chance) in V1 to V3. In V5/MT

prediction accuracy was markedly reduced and close to chance.

Decoding motion direction under low load was unsuccessful and only

just significantly different from chance under high load [ V1: Low

Load: 61.8%, t(5) = 2.7, P = 0.04; High Load: 64.8%, t(5) = 5.3,

P < 0.01; V2: Low Load: 67.8%, t(5) = 4.4, P < 0.01; High Load:

67.7%, t(5) = 5.8, P < 0.01; V3: Low Load: 66.6%, t(5) = 5.5, P <
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0.01; High Load: 66.4%, t(5) = 6.7, P < 0.01; MT: Low Load:

51.3%, t(5) = 0.54, P = 0.6; High Load: 52.9%, t(5) = 3.2, P =

0.03]. Decoding load proved successful (significantly different from

chance) in V2, V3 and MT [Load decoding (collapsed): V1: 52.6%,

t(11) = 2.1, P = 0.06; V2: 54.4%, t(11) = 3.6, P < 0.01; V3:

56.1%, t(11) = 4.5, P < 0.01; MT: 54.2%, t(11) = 3.3, P < 0.01].

Finally I compared low and high load decoding results for a

difference in decoding performance. However, no visual area

showed any significant difference between the two load conditions [

V1: Low Load 61.8%, High Load 64.8%, t(5) = -0.68, P = 0.52; V2:

Figure IV-6
Decoding block averages (mean across subjects) for visual areas V1 to
V3 and V5/MT, identical to Figure IV-6 but with block averages instead
of single volumes. Errorbars (mean of subject-specific SEMs) remarkably
increase demonstrating a far higher volatility in the results (outlier
results 33% of subjects). Yet, nearly all motion direction decoding
accuracies increase due to block averaging (5,1% increase on average,
one exception: V1, high load). In contrast to that, load decoding (yellow
bars) accuracies decrease leaving load decoding statistically
indistinguishable from chance in all ROIs.
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Low Load 67.8%, High Load 67.7%, t(5) = 0.039, P = 0.97; V3:

Low Load 66.6%, High Load 66.4%, t(5) = 0.059, P = 0.96; MT:

Low Load 51.3%, High Load 52.9%, t(5) = -0.62, P = 0.56].

In Figure IV-7 training and testing was performed on block

averages. This means each experimental block of 19.5 seconds (15

volumes) was averaged to one block-average-volume. Applying this

technique, overall decoding accuracy increased by an average of

5.1% for motion direction decoding. However, together with the

overall accuracy of decoding the volatility in the results also

increased (see increase errorbars in Figure IV-7). Motion direction

decoding was successful in high and low load in V1 to V3,

unsuccessful in MT (likely to be due to increased SEM). Load

decoding was unsuccessful in all ROIs [V1: Low Load: 69%, t(5) =

5.4, P < 0.01, High Load: 60.6%, t(5) = 2.7, P < 0.05; Orientation

(collapsed): 55.9%, t(11) = 2, P = 0.07; V2: Low Load: 72.9%,

t(5) = 3.7, P < 0.05; High Load: 75.2%, t(5) = 3.2, P < 0.05;

Orientation (collapsed): 53.8%, t(11) = 1.9, P = 0.09; V3: Low

Load: 69.8%, t(5) = 2.8, P < 0.05; High Load: 70.6%, t(5) = 3.8, P

< 0.05; Orientation (collapsed): 55.9%, t(11) = 1.6, P = 0.15; MT:

Low Load: 58.8%, t(5) = 1.3, P = 0.25; High Load: 63.8%, t(5) =

2.4, P = 0.06; Load (collapsed): 52%, t(11) = 0.53, P = 0.61].

Differences between low and high load motion decoding were not

significant [V1: Low Load 69%, High Load 60.6%, t(5) = 1.6, P =

0.17469; V2: Low Load 72.9%, High Load 75.2%, t(5) = -0.4, P =

0.70711; V3: Low Load 69.8%, High Load 70.6%, t(5) = -0.13, P =

0.89909; MT: Low Load 58.8%, High Load 63.8%, t(5) = -0.51, P =

0.63271].
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To ensure that pooling of training data was a valid methodological

step and did not falsify results or decrease differences between high

and low load, I repeated the entire analysis with completely

separate training and testing for high and low load. Visually

inspection of the results (Figure IV-8) reveals that all results have

decreased decoding accuracy (about 6-10% lower), but also that

the overall results largely remained the same. Single volume

decoding (Figure IV-8 A) was still successful in V1 to V3 for high

and low load, with the exception of low load classification in V1

which was also lowest in the corresponding result in Figure IV-6.

Decoding was unsuccessful in MT [V1: Low Load: 52.1%, t(5) =

0.73, P = 0.49; High Load: 58.1%, t(5) = 4.7, P < 0.01; V2: Low

Load: 57.9%, t(5) = 2.5, P < 0.05; High Load: 59.9%, t(5) = 2.7, P

= 0.04; V3: Low Load: 59.6%, t(5) = 3.5, P < 0.01; High Load:

61.1%, t(5) = 3.5, P < 0.05; MT: Low Load: 53.8%, t(5) = 1.6, P =

0.17; High Load: 50.4%, t(5) = 0.28, P = 0.79]. There was no

significant difference between high and low load [V1: Low Load

52.1%, High Load 58.1%, t(5) = -2.3, P = 0.07; V2: Low Load

57.9%, High Load 59.9%, t(5) = -0.77, P = 0.47; V3: Low Load

59.6%, High Load 61.1%, t(5) = -0.49, P = 0.64; MT: Low Load

53.8%, High Load 50.4%, t(5) = 2.4, P = 0.059].
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For block average decoding the data appeared visually comparable

to training with pooled data (Figure IV-7), however due to the

Figure IV-7
SLR Decoding accuracy (mean across subjects) for visual areas V1 to
V3 and MT. Here, training for decoding was only performed with data
from one load condition at a time (separate training & testing).
Different colors indicate separate decoding performance for leftward
vs. rightward orientation decoding in low (dark blue) or high load (light
blue). Errorbars denote mean of subject-specific SEMs. Overall, results
confirm trends observed from results with pooled training (Figure IV-
6,IV-7), albeit with decreased decoding performances (about 6-10%
lower), likely owing to less accurate training due to lack of power (only
half as many training volumes). For details see Discussion.
A: Training and testing on single volumes (TRs), analog to Figure IV-6.
Even though accuracies are reduced, decoding was still successfully
different from chance in high load (V1-V3) and low load (only V3).
Differences between low and high load decoding remained non-
significant.
B: Training and Testing on block averages, analog to Figure IV-7. Due
to the increased volatility (note large errorbars) and the decreased
overall performance, no result was significantly different from chance
anymore.
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increased SEM no result is significantly different from chance

anymore but decoding high load decoding in MT [V1: Low Load:

53.5%, t(5) = 0.72, P = 0.50; High Load: 61.5%, t(5) = 1.4, P =

0.217; V2: Low Load: 60%, t(5) = 0.88, P = 0.42; High Load:

64.2%, t(5) = 1.9, P = 0.12; V3: Low Load: 55.2%, t(5) = 1.1, P =

0.31; High Load: 59.4%, t(5) = 1.3, P = 0.26; MT: Low Load:

52.5%, t(5) = 0.49, P = 0.65; High Load: 63.8%, t(5) = 3.5, P =

0.02]. All differences between low and high load are not significant

[V1: Low Load 53.5%, High Load 61.5%, t(5) = -1, P = 0.36; V2:

Low Load 60%, High Load 64.2%, t(5) = -0.46, P = 0.66 V3: Low

Load 55.2%, High Load 59.4%, t(5) = -0.58, P = 0.59; MT: Low

Load 52.5%, High Load 63.8%, t(5) = -1.8, P = 0.14].

IV.4 Discussion

Behavioral results. Even though it was slightly altered from Chapter

III, the central task was attentionally more demanding for the high-

load than low-load condition for all participants. The behavioral

results confirmed that central attentional load was effectively varied

by our task manipulation. Furthermore, the similarity of the

behavioral measures to the findings obtained in previous

applications of the task (Schwartz et al., 2005, chapter III) strongly

suggested that the slight alterations to the task did not change the

effectiveness of the load manipulation.

Load effects on fMRI brain activity. The simple contrast of all motion

vs. baseline nicely confirmed previous results of activity in early
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visual cortices and in V5/MT (Sereno et al., 1995; Tootell et al.,

1995; Tootell and Taylor, 1995; Tootell et al., 1996) (Figure IV-3).

However, more interestingly, motion-distractor related activity was

decreased under high load in early visual cortices V1 to V3.

However, for the motion sensitive area V5/MT this was not true

(Figure IV-4). Instead, there was no difference for activity evoked

by the task irrelevant distractor motion under the high and low load

in V5/MT. Even though there were many differences to experimental

paradigms of other studies that studied distractor activity under

differing load conditions (O'Connor et al., 2002; Jenkins et al.,

2003; Lavie, 2005; Schwartz et al., 2005), this apparent lack of

decreased activity under high load in V5/MT was surprising. One

previous study specifically studied the representation of task

irrelevant motion under load (Rees et al., 1997) and found a

decrease of activity in V5/MT for motion (vs. no motion) under low

load (vs. high load). However, a close comparison between the

present and previous studies revealed the crucial difference that the

experimental design reported here lacked a condition with the

central task under high and low load and static dots instead of

moving dots - a ‘task-only, no-motion’ condition. It was therefore

impossible to replicate the exact interaction effect reported in Rees

et al. (1997). Consequently, this, to some extent unexpected,

result could be fully explained with an additional experiment

including such additional no-motion conditions. Chapter V will

explore such an experiment. For this study, however, without a

task-only, no-motion condition, we found there were no differences

in V5/MT activity comparing motion related activity under high and

low load.



131

Another possibility not easily dismissed is that motion, as presented

in our stimuli, might have elicited more eye movements in one of

the two load conditions. These eye-movements, if they occurred,

might explain some of the effects observed. Motion is known to

attract tracking eye movements and, therefore, eye movements

offer an easy general criticism. Behavioral results did not indicate

eye movements and, in fact, the rapid successive visual

presentation task required constant monitoring of the crosses and,

thus, does not allow for eye movements. Yet, only a replication of

the experiment that includes eye tracking could truly eradicate this

possibility. Again, chapter V explores this possible criticism by

measuring eye-movements.

Methodological MVPD aspects. Taking the spatial pattern of activity

in visual cortex into consideration, multivariate analysis allowed

accurate classification of the neural representation of one of two

motion directions. This was true despite the fact classification was

performed on an ignored distractor containing the decoded feature.

Classification was successful in early visual cortices V1-V3 with

single volumes and with block averages, in V5/MT only with block

averages. Inspired by the successful generalization results of

orientation data in Chapter III (decoding high load on low load

training data and vice versa), I pooled training data for the results

presented here. However, I also performed training and testing

separately (Figure IV-7) to be sure the result was truly comparable

to those presented in the previous chapter. Overall, results remain

largely comparable. However, likely due to the two-fold increased
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number of training data, results from pooled training data looked

more stable and were less volatile. Even when pooling training data,

the study presented here still had fewer training examples than

previously published results on attended motion which often include

multiple scanning sessions per participant (Kamitani and Tong,

2005a, 2006; Serences and Boynton, 2007a). By pooling training

data, I successfully increased training data without increasing

scanning time. I therefore conclude that pooling training data, at

least in this case, was a highly beneficial idea. More generally, I

conclude that more training data leads to a more accurate voxel-

selection and, in turn, to a more accurate decoding performance.

In this chapter, I have repeated the entire MVPD analysis twice,

once with single volumes for training and testing and once with

block averaged volumes. Even though not identical, both methods

independently replicated very similar results. The block average

method (Figure IV-6) seemed slightly superior in terms of actual

accuracy but was also subject to higher volatility. The single volume

method (Figure IV-7) was more robust, less volatile, but also

slightly less accurate in the results. I speculate that with more data

the block average technique would slowly become more consistent,

additional to the benefit that it produced higher de facto

classification accuracies. Further research has to yet determine this

question in full detail. However, for this study, both methods were

valid and comparable albeit single volume decoding seemed the

more conservative approach.
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Load decoding. I attempted to decode high vs. low load, however,

MVPD was only marginally successful in decoding load from early

visual cortex and V5/MT from single volumes (Figure IV-6, yellow

bars). Additionally, when decoding from block averages, load

decoding was less accurate and not significantly different from

chance, even though decoding results for motion direction were

more accurate (Figure IV-7, yellow vs. blue bars). Considering that

decoding from single volumes seemed the more conservative

approach, these two results leave an incoherent picture about

whether load can or cannot be decoded by MVPD. My fourth

hypothesis for the experiment presented in this Chapter was that

load was decodable (similar to chapter III). With orientation data

MVPD was sensitive enough to decode load significantly different

from chance, in case of V1 and V2, even though the actual

accuracies were less than 5% different from chance. For data from

this chapter a similarly perplexing result emerged for MVPD with

single volumes: V2, V3 and V5/MT show low accuracies but were

significantly different from chance when examining the group result

of all participants. Again the main effect of overall brain activity in

an ROI seemed orthogonal for this prediction (main effect present in

V1-V3, but not in V5/MT). Therefore, potentially, load could be

spatially distributed in early visual cortex. Against this conclusion,

however, stands the non-significant finding of load-prediction on

block averages and a lack of a biologically plausible explanation

(like a columnar organization for orientation of direction of motion).

Thus, even combining results from Chapter III and IV, load

decoding remains an unsolved phenomenon.
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Even so, one thing this load-decoding result does represent was

further evidence for my conclusion that voxels selected during

MVPD were a poor representation of the overall BOLD signal. This

appeared true irrelevant whether there was a BOLD main effect

(V1-V3) or not (V5/MT).

Direction of motion decoding. Taking into account the successful

decoding of motion direction with block averages (Figure IV-7)

results in this chapter successfully replicated previous decoding

results of motion direction (Kamitani and Tong, 2005a; Serences

and Boynton, 2007a). The same is true for early visual cortices V1-

V3 and the decoding with single volumes which was so far only

done on other types of stimuli (Haynes and Rees, 2005b, 2005a;

Haynes et al., 2007, Chapter III). However, surprisingly, decoding

of motion direction was decreased in V5/MT for decoding with block

averages and not significantly different from chance for decoding

with single volumes. This is surprising given that V5/MT is known to

be particularly motion sensitive and has been studied for over two

decades (Zeki et al., 1991; Tootell et al., 1995; Tootell and Taylor,

1995; Heeger et al., 1999). Why does a motion selective area

decode motion worse than early visual cortex? Other studies report

a similar decrease in decoding performance for V5/MT (Kamitani

and Tong, 2006; Serences and Boynton, 2007a, 2007b), thus this

seemed to be a general feature of V5/MT decoding that, so far,

lacks a definite explanation. Kamitani & Tong (2006) speculated

that the decreased performance was due to the spatially smaller

volume of V5/MT (e.g. compared to V1). This, so the argument, left

less chance to find as many biased voxels than in a spatially larger
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area of (i.e.) early visual cortex. Yet, if this explanation would be

true, it is very hard to understand why classification of load (Figure

IV-6, V5/MT yellow bar) was actually slightly better in V5/MT. Thus,

here, this volume-speculation seemed less relevant than previously

speculated. Yet, the volume speculation at least represents one of

only very few actual theories about the meaning of MVPD results

and their interpretation (Bartels et al., 2008). For the finding of

reduced motion decoding in V5/MT, other possible theories might

include: (i) motion selective cells in V5/MT might not be distributed

in an anisotropic fashion, therefore MVPD was highly unlikely to

indentify biased voxels. (ii) motion selective cells in V5/MT might be

distributed but sub-ideal for the resolution I chose to scan with. Or

(iii) motion was a distractor in our study and as such its perception

in V5/MT was actively suppressed which decreased MVPD accuracy.

While I cannot totally rule out any of the above speculations, it

seems unlikely that any single one of them was particular dominant

including the volume argument by Kamitani & Tong (2006). Yet,

they might all be true to some extent, but there was no clear

indication of a single reason being more relevant than another.

Perhaps combinations of all factors lead to slightly noisier data in

V5/MT that simply made it harder to decode motion direction.

Decoding of motion direction was successful under both load

conditions in the central task. However, in none of the MVPD results

was a significant difference between decoding accuracy of high and

low load. In other words, comparing high and low attentional load

conditions, classification accuracies did not differ across conditions

in early visual cortices V1 to V3 and V5/MT. Thus, the neuronal
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representation of motion direction of an irrelevant distractor, as

measured by MVPD of the BOLD signal, in V1 to V3 and V5/MT

remained unchanged by varying attentional load conditions of a

central task. The neural representation of distractor motion

direction, as measured by MVPD, was unchanged when participants

performed a difficult (versus easy) task. Taken alone, this result

was surprising given the strong and successful behavioral

manipulation of the central load task (Figure IV-2) and the main

effect of load in overall BOLD signal of V1 to V3 (Fig IV-5).

However, it is essential to discuss results from this chapter in

conjunction with those from chapter III. In chapter III, the main

result was that MVPD of distractor orientation was highly successful

but remained unchanged under low or high load of the central task.

Here, I investigated another basic feature, direction of motion, also

known to be represented in a columnar architecture in the cortex.

Results in this chapter found unchanged decoding accuracy for the

visual feature direction of motion under high or low load in the

central task, echoing results obtained for orientation. As a

consequence, the speculation that findings of chapter III were

limited to orientation seems less likely. On the contrary, taken

together, I speculate that varying attentional load towards a central

task, does not modulate how basic visual features are represented

in early visual cortex V1-V3 and V5/MT. This was at least true for

the basic visual features orientation and direction of motion as

measured by MVPD of the BOLD signal.
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Immediately the question of why the representation of these basic

visual features was comparable under low and high load becomes

apparent. However, before addressing the question about missing

differences between load conditions it is important to consider how

these successful decoding results were possible at all. To answer

this more general question, I carefully considered what underlies

the results observed, and ultimately, the BOLD signal in the voxel

selection from ARD-SLR is relevant (automatic relevance detection

for sparse logistic regression, for details, see Chapter II: General

Methods). For orientation, I concluded that overall BOLD signal

changes did not directly correspond to multivariate results, thus,

the selected voxels did not reflect trends in the overall BOLD-signal.

Load-decoding results from this chapter further corroborated this

conclusion. Rather, I speculate that selected voxels represent brain

activity that was (strongly) biased towards the basic visual feature

that was tested for (here direction of motion). If this feature was

represented in a biased way in some voxels, these were found by

ARD and, hence, classification was successful. In the context of the

results of this Chapter, some voxels in V1-V3 and MT unequally

represent the motion directions I tested for, leading to a successful

prediction. Why those unbalanced voxels exist can only be

speculated. An anisotropic distribution of feature specific cortical

columns is thought to underlie successful decoding of orientations

(Haynes and Rees, 2005a; Kamitani and Tong, 2005b). And indeed,

for V5/MT there is evidence of a columnar organization of direction

of motion in monkey cortex (Albright et al., 1984; Malonek et al.,

1994; Tolias et al., 2001). Although direction-selective columns

have not been demonstrated in early visual cortical areas of
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monkeys, such columns have been reported in striate and

extrastriate areas of other animals (Shmuel and Grinvald, 1996;

Weliky et al., 1996). For monkeys and humans strong evidence for

the existence of a direction-selective organization of visual motion

processing comes from studies reporting reliable effects of

direction-selective adaptation of the BOLD signal (Tootell et al.,

1995; Nishida et al., 2003; Seiffert et al., 2003). Taken together, it

seems relatively certain that the existence of biased voxels for

motion direction was due to the existence and anisotropic

distribution of direction selective columns in early visual areas and

area V5/MT. This argument might also work vice versa: due to the

fact that we find motion-direction selective voxels with ARD it might

be likely that the underlying neuronal organization of direction of

motion was columnar, or at least organized in a way allowing the

existence of biased voxels.

Coming back to the question why there was no difference in the

decoding performance of MVPD on such biased voxels, it seems that

the bias (i.e. possibly more or less columns of one direction)

present in these voxels was unchanged between the different load

conditions. In other words, those voxels biased by the direction of

motion in the distractor remained equally biased irrelevant of the

central load condition. Additionally, result of this study showed that

varying attentional load in a central task also had a BOLD main

effect in V1-V3 (for orientation and direction of motion) but no

BOLD main effect in MT for the irrelevant distractor. Thus, varying

attentional load in the central task only modulated the overall BOLD

response of the irrelevant distractor, but it did not change the
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feature-specific (i.e direction of motion specific, or orientation

specific) information of an irrelevant distractor contained in

individual voxels.

This result must be considered carefully when trying to gain insights

into the neuronal organization of human early visual cortex. By no

means has it presented conclusive evidence for any specific

neuronal organization; however it still represented a furthering of

our understanding of the nature of attentional effects in the early

visual cortex. For now I conclude that many behavioral measures as

well as overall measures of the BOLD signal decreased under high

load (Lavie and Fox, 2000; O'Connor et al., 2002; Pessoa et al.,

2002; Jenkins et al., 2003; Lavie and de Fockert, 2003; Lavie,

2005; Schwartz et al., 2005; Lavie, 2006; Forster and Lavie, 2007,

2008). However, the underlying, detailed, visual feature specific

representation of an irrelevant distractor might still remain

relatively unchanged by varying attentional load towards a central

task. This speculation would mean that the attentional demands of

a central task might be somewhat irrelevant for this feature specific,

neuronal representation. Considering the similar results for the

basic visual features of orientation and direction of motion, these

results might be replicable with other basic visual features such as

color or maybe even luminance – of course so far limited to feature

specific neural information as read out with MVPD. However, the

underlying neural causes of this conclusion are relatively open and

remain largely speculative.
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IV.5 Conclusion

Experimental results presented in this chapter lead to a number of

conclusions. From the BOLD main effects of brain activity related

with the irrelevant distractor (here coherently moving dots), I found

a surprising lack of reduced activity in area V5/MT under high load.

This was despite a variety of other studies reporting other measures

reduced under high load, behaviorally and in terms of neural

activity. However, the one classic study (Rees et al., 1997) that was

most similar and relevant to my experimental design was actually

reporting an interaction effect rather than a main effect. Therefore,

I conclude that only a further experiment, exactly replicating this

interaction, will be able to clarify whether or not this lack of a main

effect in V5/MT was a non-replication of Rees et al. (1997) or simply

an observation that was not mentioned in this classic study.

From the methodological point of view, I drew three conclusions.

Firstly, for the comparison of MVPD with pooled training data and

training data separately for the two load conditions, I concluded

that it was: a) Beneficial for MVPD to have more training data as

the result became more stable and less volatile. b) In cases analog

to the one presented here, it might be a valid method to pool

training data from multiple conditions to then test them separately.

In general, more training data seemed to lead to a more accurate

voxel-selection and a more accurate decoding performance.

Secondly, I concluded that the use of single volumes for training

and testing in MVPD as well as the use of block averaged volumes

were comparable techniques. Even though not identical, both
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methods replicated very similar results. The block average method

seemed slightly superior in terms of actual accuracy but was also

subject to higher volatility. The single volume method was more

robust and also less volatile in the results but produces slightly less

accurate decoding.

Thirdly, the results for direction of motion decoding but also the

results from load decoding showed that the voxel selection by ARD

was a poor estimate of overall BOLD changes in an ROI. This was a

confirmation of results from chapter III. Rather, I concluded that

ARD selected voxels upon the classified feature only, irrelevant of

the overall trend of brain activity in an area. MVPD was successful

when there were voxels that show selectivity, for example caused

by a columnar cortical architecture. I further speculated that this

argument might be reversible: if biased voxels for a specific feature

can be found, then this feature might imply cortically organization in

a way readily allowing such biased voxels, as for example a feature-

specific anisotropic columnar organization.

From the results of direction of motion decoding under high and low

load, I described successful decoding of the direction of motion in

V1 to V3 and V5/MT. This was in the context of attentional load

being manipulated in a central task and visual feature specific MVPD

measures considered from an irrelevant distractor. Further, I did not

find a load effect between decoding results for high and low load,

similar to what was described in chapter III for orientation. Taking

the results for orientation and direction of motion together, I

speculated that it might be possible for other basic visual features
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of irrelevant distractors to be unchanged by attentional load

conditions in a central task too. Lastly, I concluded that the

underlying neural organization of this indifference of feature specific

distractor activity towards attentional load in a central task remain

largely unknown.
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Chapter V:

Effects of attentional load on motion selective

processing II

V.1 Introduction

This chapter builds closely on findings and conclusions from the

previous two, addressing questions that were opened up during

analysis and interpretation of the results. In chapters III and IV, I

presented results from attentional load paradigms that are not

immediately interpretable in a straightforward way by load theory

(Lavie et al., 2004). In short (for detailed description see chapter I:

General Introduction), load theory describes attentional resources

as limited and concludes that a demanding, high load, task

consumes more attentional resources than an easy, low load task.

Consequently, many studies find measures related to non-task-

relevant stimuli, so called irrelevant distractors, decreased under

high load as fewer attentional resources are available to process

them. The classic load-study describes such effects on distractors

consisting of color-shape conjunctions (Lavie, 1997), but the variety

of measures, including irrelevant distractors, affected by attentional

load is large (for details see chapter I, examples include: Rees et

al., 1997; Pessoa et al., 2002; Jenkins et al., 2003; Lavie and de

Fockert, 2003; Jenkins et al., 2005; Schwartz et al., 2005; Forster

and Lavie, 2007, 2008; Torralbo and Beck, 2008). Conversely, in

chapter III, multivariate decoding accuracy of the basic visual
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feature orientation in early visual cortex remained unchanged by

varied attentional load demands in a central task. Chapter IV

presented a qualitative replication of such a multivariate decoding

result, this time for the basic visual feature of direction of motion.

The counterintuitive result of equal decoding ability under low and

high attentional load (towards a central task) was thus reproduced

with distractors containing two independent, basic visual features.

As a consequence, one of the main conclusions of chapter IV was

attentional load towards a central task is likely to be irrelevant to

the decoding of basic visual features from early visual areas in

general. While showing multivariate decoding results different from

chance under both high load and low load, at the same time,

chapter IV left two critical points unaddressed: a) differences in eye

movements between conditions might have influenced results; b)

early visual areas V1 to V3 showed an (expected) main effect of

decreased distractor-related brain activity under high load, but

V5/MT did not show a significant reduction. In other words, the

previous study did not show a difference in mean activity between

high load motion and low load motion. This is surprising because,

Rees et al (1997) reports an interaction between brain activity

related to motion vs. no motion under low vs. high load (Rees et al.,

1997). However, the two studies were not directly comparable due

to the fact that the experimental design in chapter IV lacked two

“no motion” conditions (under high and low load) and, thus, an

interaction term could not be examined.
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V.1.1Objectives of this study

The present study presents an experimental paradigm building on

the experimental paradigm of chapter IV, but now addressing the

concerns raised above. Firstly, eye movements were recorded

continuously for 4 participants during the fMRI scan. Secondly, the

experimental paradigm was extended by two additional no motion

conditions containing only static dots as a distractor in order to be

better comparable with previous studies (Rees et al., 1997).

V.1.2Hypothesis

My hypotheses for the experiment presented in this chapter were:

Firstly, I hypothesized that I would replicate the main findings from

chapter IV: a main effect of decreased BOLD signals under high (vs.

low) load in V1 to V3, and, for V5/MT, no such significant local

reduction of brain activity. Further, I expected to find multivariate

decoding results parallel to those in chapter IV where no difference

between distractor motion decoding under high load and low load

could be found.

Secondly, I hypothesized that the addition of the “no motion”

conditions would enable me to replicate an interaction of brain

activity related to motion vs. no motion under low vs. high load

(Rees et al., 1997).
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Finally, my last hypothesis was that eye-movements would be near

identical between the different experimental conditions. I will thus

test for any differences between eye-movements during the

different conditions. If no differences should be found, this could be

seen as an indication towards excluding eye-movements as

potential confounding factor.

V.2 Methods

V.2.1Participants

Eight healthy participants (4 male, mean age 28 years) gave written

informed consent to participate in the study, which was approved by

the local ethics committee. All participants had normal or corrected

to normal vision and were new to the task. One subject was

excluded from analysis due to excessive head movements which

made it impossible to coregister all experimental runs.

V.2.2Stimulus

During the main fMRI experiment, participants performed a visual

detection task on centrally presented stimuli identical to the one

described in chapter III and IV. In brief, participants had to respond

either to a single colour or a conjunction of two colours and

orientations depending on instructions. This made the task either

demanding (conjunction task - high attentional load) or relatively



147

effortless (colour task - low load). The irrelevant distractor motion

was identical to that described in chapter IV, 100% coherently

moving dots contained in an annulus shaped region around the

central task. Additionally, two experimental stimuli were introduced,

containing only static dots in the same annulus than before. These

dots remained unchanged during the whole duration of the

experimental block. Combined with two different attentional load

instructions, these static dots resulted in the two new conditions:

static low load and static high load.

V.2.3Procedure

Equipment and software used were identical to those described in

chapter III and IV. Additionally, eye position was continually

sampled for 4 participants at 60 Hz using an ASL 504 LRO infrared

video-based MRI compatible eye tracker (Applied Science

Laboratory, Bedford, MA).

In all participants the block length of every motion and no motion

block was extended to 30 seconds each to match experimental

conditions of a previous study (Rees et al., 1997).

For the 4 participants that had eye movements measured during the

experimental block, the arrangements of blocks within sessions was

altered: These 4 participants were scanned for a total of 48 short

experimental sessions. Each session consisted of exactly one

experimental block preceded and followed by a short rest period.
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This resulted in eight sessions per conditions, each with one

experimental block. Motion direction/ static dots and difficulty of the

central task were counterbalanced across sessions and participants.

Thus, in detail, each session started with the appearance of the

central fixation spot for 8s including a short reminder of the task to

come, followed by a 30s long block of the load task at central

fixation with the motion stimulus/ static dots surrounding the

central task (Figure IV-1 A). The last 20s of each run were used to

give participants a short rest and only comprised a fixation cross.

Each experimental run thus lasted 48 volumes.

The other 3 participants underwent eight sessions containing each

of the six conditions once per session, equally summing up to 48

experimental blocks. Motion direction/ static dots and difficulty of

the central task were counterbalanced within sessions.

V.2.4Eye tracking Analysis

To evaluate the possibility that a difference in eye movements

between different conditions might be able to explain any

differences found in brain activity, I compared the mean and

standard deviation of eye movements along the X and Y axis and

the mean and standard deviation of pupil size. This was done as to

test for differences between the conditions. To this end, I first

divided the X, Y eye position and pupil size values of each run by its

mean (normalization) and then calculated the standard deviation of

these values. Thus, I computed a distribution of 32 standard



149

deviations per experimental conditions (8 runs per condition, per

subject). I evaluated each of these 6 condition specific distributions

for any differences with a separate one-way analysis of variance

(ANOVA). Finally, I specifically tested for a difference between

motion runs under high load and low load with a paired two-sample

t-test.

V.2.5Scanning

Imaging parameters for the main experiment and stimuli for

meridian mapping were identical to those described in chapter III.

To identify motion sensitive area V5/MT, an V5/MT-localizer

sequence was applied. Stimuli and imaging parameters for the

V5/MT localizer were identical to those described in chapter IV.

V.2.6Analysis

Data preprocessing. All data were preprocessed using Statistical

Parametric Mapping software (SPM5,

http://www.fil.ion.ucl.ac.uk/spm). The first 5 volumes of each fMRI

scan were discarded to allow for magnetic saturation effects. The

remaining functional images volumes were realigned to the first

image, and then the structural scan of each participant was co-

registered to their functional data. Functional data of the main

experiment were not spatially smoothed, but data from the

meridian mapping and V5/MT localizer runs were spatially smoothed

with a Gaussian kernel of 5mm full-width half-maximum. Thus, data
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preprocessing, was identical to methods described in chapter III and

IV.

ROI localization

Different to chapter III and IV, I utilized FreeSurfer

(http://surfer.nmr.mgh.harvard.edu) for segmentation and cortical

flattening using each subject’s specific structural image that was

previously coregistered to all functional data. FreeSurfer is thought

to result in much higher quality reconstructions of structural data,

thus we found it prudent to change from previous techniques to this

new, presumably better, 3D-reconstruction software package (for

details see chapter II). Standard meridian mapping procedure was

employed to identify the borders of the visual areas V1, V2 and V3

in the occipital cortex (Sereno et al., 1995). V5/MT was identified

overlaying the contrast motion vs. no motion onto the surface. In

order to extract activity from these ROIs, I created mask volumes

for each ROI. Given the high degree of accuracy of the standard

FreeSurfer segmentation, these mask volumes should contain gray

matter voxels only.

Timecourse analysis and univariate analysis

To compute the percent signal changes in the time course analysis,

I used the mean raw activation of the realigned timecourse

correcting only for slow signal drift typical in fMRI scanning by high-

pass filtering (cut-off – 128s). Each session was then scaled by its

own mean activity during the entire session. This linear

transformation was repeated for each ROI and each subject

separately. Thus, the resulting time series were sorted and



151

averaged in each ROI according to four conditions: motion under

high load; motion under low load; no motion under high load; and

no motion under low load (Since upwards left and upwards right

motion did not result in a differential univariate result, they were

collapsed).

I then used SPM5 to perform a within-participant analysis, using a

voxel-wise general linear model (GLM) that comprised six delayed

boxcar waveforms representing the six experimental conditions.

During this analysis the fMRI time series were high-pass filtered

(cut-off – 128s) and global changes in activity were removed by

proportional scaling of each session. Apart from the new static

conditions, the only difference in comparison to the analysis in

chapter IV was a slight adjustment in the timing variables of the

GLM according to the extended 30 second experimental blocks. The

resulting regressor images (one for each box-car regressor),

represented brain activity effect size at each particular voxel in

percentage units of the whole brain mean, and convolved by the

standard hemodynamic response (HDR) function. For each condition

these regressor-images were averaged, then extracted across all

voxels in each ROI, yielding a single value of percent-signal change.

This value represented the percent-signal change of this ROI,

relative the global brain mean. Thus, this procedure enabled me to

directly compare signal change for each experimental condition in

V1, V2, V3, and V5/MT for each subject. As in chapter IV, I

collapsed across different motion directions to obtain an equal

amount of measurements for all conditions.
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Since all condition values were relative to the same global brain

mean activity per subject, a repeated measurement ANOVA, where

each subject is a new repetition, was used to compare for

differences of brain activity between conditions. Additionally, to

compare results directly to chapter IV, I compared pairs of motion

conditions (motion under high and low load per subject) with a

paired t-test.

Finally, to compare results presented here to reports from a

classical study, I directly tested for an interaction of motion (vs. no

motion) greater under high (vs. low) load (as reported by Rees et

al., 1997). This was done by performing a paired t-test between the

differences of motion (high load) minus static (high load) against

the differences between motion (low load) minus static (low load).

Pairs of differences were always defined as values from the same

subject.

Multivariate pattern classification.

Multivariate pattern analysis was identical to chapter IV, and is thus

only briefly described (for detailed description see chapters II, III

and IV): Unsmoothed, realigned fMRI data from the experimental

runs were adjusted for the lag in hemodynamic response function

by shifting all block-onset timings by 5 volumes (6½ seconds). To

determine classification accuracy, only classification with unseen

and independent-test data was considered. Pattern classification

was performed using a sparse logistic regression (SLR) algorithm

(Yamashita et al., 2008). I pooled training data from both load

conditions. Thus, I trained the SLR algorithm with double the



153

number of upwards-left versus upwards-right examples, irrespective

of the load condition of the central task. During testing, however, I

kept-testing data strictly separate for low and high load, resulting in

two different decoding results achieved upon the same training

data. Significant differences from chance (2 categories = 50%

chance) were tested for with Student’s one-sample t-tests, applying

Bonferroni correction for multiple comparisons across high and low

load and all ROIs examined.

In order to pool multivariate results from chapter IV and results

form this chapter, only the first 10 volumes per block were

considered for multivariate analysis. However, when analyzing the

entire block length instead, results were virtually identical,

confirming that the pattern of decoding accuracies was consistent

throughout the block.

In order to evaluate the probability that the classification was driven

by over-fitting of arbitrary patterns of spatial correlations in the

data, I carried out a shuffle-control test (Mur et al., 2009). If the

assumption that classification is driven by chance were true, similar

results should be obtained if labels indicating the experimental

condition for each example vector were shuffled randomly. To test

this, I ran a separate analysis where labels of the test examples

were re-shuffled for each round of the cross-validation procedure.

The resulting distribution of classification accuracy characterized the

expected distribution of accuracy under the null hypothesis.
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V.3 Results

V.3.1Behavioral results

In both load conditions, performance was always above chance,

confirming adherence to the task requirements. I examined

Reaction Times (RT) across participants comparing the RTs of low

load conditions with the RTs of high-load conditions. Mean detection

latencies for central target crosses were significantly slower in the

high-load versus low-load condition [Reaction Times High Load:

608ms; Low Load: 485ms; t(47) = 4.1, P < 0.001] (Figure V-1,

left). Hit rates significantly decreased in the high load condition

[Correct Responses Low Load: 97.6%; High Load: 86.6%; t(47) = -

12.78, P < 0.001] (Figure V-1, right). There also was a significantly

increased number of false alarms during the high load task [Error

Rate High Load: 31.3%; Low Load: 13.3%; t(47) = 5.3, P < 0.001].

Together, these results indicate that the central task successfully

manipulated load.
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V.3.2Eye tracking results

For four participants, eye tracking data that were sampled

continuously throughout experimental blocks. This part of the

analysis is new in comparison to chapter IV. In depth inspection of

per-block mean and standard deviation of eye position and pupil

size showed that there were no significant differences between

conditions. A separate one-way analysis of variance (ANOVA) for X,

Figure V-1
Shown are behavioral results of performance during the load task. Mean
reaction times of subjects for successful detection of target crosses are
shown on the left. Mean correct hits across subjects for target crosses
are displayed on the right. Separate colors denote low (dark blue) and
high (light blue) load conditions in the central task. Both differences are
highly significant (P< 0.001) and present in every subject. Errorbars
indicate standard error of the mean (SEM) across scans.
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Y positions and pupil size did not show any significant differences

between eye movements obtained from the six experimental

conditions [movement along X axis: Means = (0.1014; 0.1066;

0.1030; 0.0876; 0.1139; 0.0901), F(186) = 0.23, p = 0.95;

movement along Y axis: Means = (0.1619; 0.1696; 0.1767;

0.1683; 0.1837; 0.1590), F(186) = 0.19, p = 0.96; Pupil size,

Means = (0.1778; 0.1816; 0.1558; 0.1646; 0.1630; 0.1663),

F(186) = 0.26, p = 0.94]. Finally, a specific two-sample t-test-

testing for a difference between motion runs under high load and

low load, again, showed no significant differences [movement along

X axis: t(126) = 0.42, p = 0.66; movement along Y axis: t(126) = -

0.34, p = 0.73; Pupil size: t(126) = 1.03, p = 0.3].
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V.3.3 Univariate results

I first plotted the timecourse of raw BOLD signal change for each

subject and in each ROI. Figure V-2 displays the mean timecourse

of raw BOLD signal change. Time zero marks the onset of the 30

second long blocks. In all ROIs the BOLD signal associated with all

Figure V-2
Timecourses of the mean BOLD signal changes from all ROIs. Activity of
blocks of all experimental conditions was averaged over all 7
participants. The Y axis illustrates the percent signal change in
comparison to activity to the session mean within each ROI. The X axis
depicts time in seconds aligned to each block onset. Each stimulus block
was 30 seconds long, indicated by the gray bar. All ROIs showed a clear
increase of BOLD activity shifted by the hemodynamic delay. While, in V1
to V3, activity during the static conditions decreased below the ROI
mean, in V5/MT, such a decrease in activity was only visible for static
under low load.
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conditions reached an initial peak about 6-8 seconds after block

onset, consistent with the timing of the hemodynamic response. For

motion conditions, after the initial activation peak, motion related

activity remains increased and even increases further during the

duration of the block. Contrary, in V1 to V3, activity during the no

motion/ static conditions decreased below the ROI mean after the

initial peak and only reaches a second peak at the end of the block.

However, in V5/MT, such a decrease in activity was visible for static

peripheral dots under low load for a lesser degree; under static high

load activity remained above ROI mean activity during the

experimental block.

To quantify these raw signal changes, I explored mean activity

within each ROI obtained from the estimated regressor images from

the GLM. Importantly, these values represent brain activity effect

size in percentage units of the whole brain mean (different to the

raw timecourse effects in Figure V-2 which represent signal change

in percentage units of the ROI mean). Figure V-3A displays these

mean signal changes for each condition in each ROI. To quantify

differences within these results, I performed a repeated measures

ANOVA. It reveals a significant main effect of motion in all ROIs, as

well as a significant main effect for load in V5/MT [V1: Motion: F(6)

= 33.9, p < 0.01, Load: F(6) = 0.93, p = 0.37, Motion x Load: F(6)

= 0.36, p = 0.57; V2: Motion: F(6) = 79.8, p < 0.01, Load: F(6) =

4.13, p = 0.09, Motion x Load: F(6) = 1.32, p = 0.29; V3: Motion:

F(6) = 110.5, p < 0.01, Load: F(6) = 5.84, p = 0.052, Motion x

Load: F(6) = 3.01, p = 0.13; V5/MT: Motion: F(6) = 10.7, p =
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0.02, Load: F(6) = 38.31, p < 0.01, Motion x Load: F(6) = 1.59, p

= 0.25].

However, more importantly, here the experiment was designed in

order to extend and clarify surprising findings from chapter IV. In

chapter IV, I report a main effect of decreased local brain activity in

V1 to V3, and, for V5/MT, no such significant local reduction of brain

activity. Figure V-3B shows this effect, equivalent to Figure IV-4

(identical color-code): I subtracted activity of motion under high

load from activity from motion under low load. V1 to V3 all show

similar tendencies towards greater activity under low load, however,

this difference is only significant in V2 and V3. In V1 the result is

only significant if Bonferroni correction (n = 4) for multiple

comparisons is not applied. Apart from the result in V1 this is a

qualitative replication of results in V1 to V3 in chapter IV [V1: Low

load motion: 0.54, High load motion: 0.43, t(13) = 1.8, P = 0.18;

V2: Low load motion: 0.54, High load motion: 0.33, t(13) = 3.6, P

< 0.01; V3: Low load motion: 0.33, High load motion: 0.093, t(13)

= 4.1, P < 0.01].
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Figure V-3
A) Shown are mean brain activation values per ROI and experimental
conditions compared to the whole brain mean activation. For each ROI,
the graph plots the mean brain activation during the experimental blocks
of distractor motion under low attentional load (dark blue), distractor
motion under high load (light blue), distractor static dots under low load
(magenta) and distractor static dots under high load (green). Errorbars
denote inter-subject SEM (n = 7).
B) The graph is showing the difference in mean activity in each area
comparing high and low load, averaged across scans and subjects. Values
are the mean brain activity of high load blocks subtracted from the mean
low load activity. While activity is significantly reduced under high load
for V2 to V3 (* = p < 0.01), this difference is only significant in V1 when
not correcting for multiple comparisons (^ = p < 0.05 uncorrected). In
V5/MT there is a significant activity difference in the other direction:
activity under high load as compared to low load is increased. Errorbars
denote inter-subject SEM (n = 7).
C) The graph shows the difference of motion minus static activation
under low load (black) and the same difference under high load (red).
What can be easily observed is a large difference between activity related
to motion and static under low and high load in the central task in all
ROIs. The general trend towards reduced activity under high load
conforms with Load theory (Lavie et al., 2004). In V5/MT this difference
becomes significant (* = p < 0.01), representing a direct replication of
pervious work (Rees et al., 1997). Thus, this resolves the perceived
contradiction from chapter IV. Errorbars denote inter-subject SEM (n =
7).
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For V5/MT, activity in the motion conditions was significantly

decreased under low (vs. high) load. This is a qualitative replication

of results in chapter IV [MT: Low load motion: 0.29, High load

motion: 0.51, t(13) = -4.5, P < 0.01].

Finally, the additional no motion/ static conditions allowed me to

repeat a similar interaction analysis to that previously reported

(Rees et al., 1997). Rees et al. (1997) reported an interaction

between load (low vs. high) and motion (motion vs. static) such

that brain activity for motion (vs. no motion) was increased under

low (vs. high) load in V5/MT. Figure V-3C depicts the difference

between motion and static conditions under high and low load. A

paired t-test reveals that these differences were significantly

different only in V5/MT. Thus, activity of motion (vs. no motion) is

significantly higher under low (vs. high) load. Consequently, I

directly replicated previous results in V5/MT [V1: Motion minus

Static (Low load): 0.77, Motion minus Static (High load): 0.79, t(6)

= -0.09, P = 0.93; V2: Motion minus Static (Low load): 0.68,

Motion minus Static (High load): 0.73, t(6) = -0.3, P = 0.77; V3:

Motion minus Static (Low load): 0.55, Motion minus Static (High

load): 0.57, t(6) = -0.17, P = 0.87; MT: Motion minus Static (Low

load): 0.33, Difference, Motion minus Static (High load): 0.013, t(6)

= 4, P < 0.01].
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V.3.4Multivariate classification result

Like in previous chapters (III and IV), I report classification results

obtained with SLR- MVPD. Figure IV-4 shows decoding accuracies

for areas V1 to V3 and V5/MT from all participants in chapter IV and

V (n = 13). The y-axis depicts mean accuracy of classification

across participants, while different colors along the x-axis indicate

Figure V-4
Decoding accuracy (mean across 13 subjects) for visual areas V1 to V3
and V5/MT, obtained with Sparse Logistic Regression (SLR). Different
colors indicate decoding performance for different test-vectors: left-
upwards vs. right-upwards (distractor-) motion decoding was successful
in most ROIs, compared to chance, under both low load (dark blue bars)
and high load (light blue bars) conditions. Yellow stars indicate results
significantly different from chance after Bonferroni correction: *** = p <
.01, ** = p < .05 (one tailed t-tests). In both conditions, training data
was pooled across load conditions to increase power of training. A
further paired t-test between the two orientation decoding results (per
ROI) revealed no significant differences in any area. Errorbars denote
SEM across subjects.
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decoding from different experimental conditions in the different

visual areas. Training data was pooled to increase training power

(see Methods). Decoding left-upwards versus right-upwards

direction of motion was significantly different from chance in V1 to

V3 under high and low load. However, in V5/MT, prediction accuracy

was closer to and not significantly different from chance. All results

have been Bonferroni corrected for multiple comparisons (2x4 ROIs)

[V1: Low Load: 57.8%, t(12) = 3.3, P = 0.02; High Load: 58.1%,

t(12) = 3.3, P = 0.02; V2: Low Load: 59.7%, t(12) = 3.3, P = 0.02,

High Load: 59.4%, t(12) = 3.2, P = 0.03; V3: Low Load: 60.6%,

t(12) = 4.4, P < 0.01, High Load: 60.3%, t(12) = 3.9, P < 0.01;

V5/MT: Low Load: 51.2%, t(12) = 0.88, P = 1.58, High Load:

51.4%, t(12) = 1.1, P = 1.2]. The difference between the two load

conditions was not significant in any ROI [V1: t(24) = -0.082, P =

0.93; V2: t(24) = 0.082, P = 0.94; V3: t(24) = 0.092, P = 0.93;

V5/MT: t(24) = -0.14, P = 0.89].

For completeness, I repeated the multivariate analysis in this

chapter using only vectors that contained an average of always 3

volumes (TR). This approach closely mirrored other 3TR-averaging

strategies as applied by some recent studies using MVPD (Kamitani

and Tong, 2005a, 2006; Serences and Boynton, 2007a, 2007b).

These studies successfully distinguished between different attended

motion directions, especially also in V5/MT. However here, studying

unattended motion direction, I found no significant improvement in

decoding accuracies using this approach [uncorrected results of t-

tests: V1: Low Load: 61.8%, t(12) = 4.1, P < 0.01, High Load:

55.1%, t(12) = 1.7, P = 0.06; V2: Low Load: 60.4%, t(12) = 2.4, P
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= 0.02, High Load: 62.1%, t(12) = 2.4, P = 0.02; V3: Low Load:

63.3%, t(12) = 2.9, P < 0.01, High Load: 62.1%, t(12) = 3.2, P <

0.01; V5/MT: Low Load: 55.3%, t(12) = 1.4, P = 0.10, High Load:

55.1%, t(12) = 1.2, P = 0.12]. Thus, overall the results from

classification with block averages were highly comparable to single

volume decoding. This closely mirrored similar findings in chapter

IV.

To assess the possibility that classification was driven by stimulus

unrelated spatial correlations in the data (independent from the

direction of motion presented), I carried out a shuffle-control test

Figure V-5
Results from randomly permuting labels for each set of test vectors in
each cross-validation. No ROI shows any above chance prediction. The
results of the permutation test confirm the distribution of classification
accuracy expected under null hypothesis for each ROI.
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(Mur et al., 2009). To do this, I repeated the classification from all

ROIs, but this time with shuffled labels for the test examples. Figure

V-5 depicts the results of this shuffle-control analysis. Training the

classifier using the same training sets but with shuffled labels for

example vectors confirmed the distribution of classification accuracy

expected under null hypothesis. This control analysis strengthened

the main findings, as it reconfirmed the validity of the result and the

independence of the data used to obtain them [Bonferroni corrected

results, V1: Low Load: 49.8%, t(6) = -0.17, P = 4.52, High Load:

50.3%, t(6) = 0.18, P = 3.44; V2: Low Load: 51.3%, t(6) = 1.2, P

= 1.09, High Load: 51.3%, t(6) = 1.3, P = 1.03; V3: Low Load:

49.4%, t(6) = -0.71, P = 5.98, High Load: 51.1%, t(6) = 0.75, P =

1.93; V5/MT:Low Load: 50.3%, t(6) = 0.15, P = 3.54, High Load:

51.8%, t(6) = 1.6, P = 0.669].

V.4 Discussion

The experimental paradigm presented in this chapter is in essence

an extension of the experiment presented in chapter IV. Thus,

where applicable, all findings are directly compared with the

corresponding results from chapter IV.

Behavioral results. Performance in the central task matched

performance during in chapter IV and III. Participants successfully

paid attention to the central task and central attentional load was

effectively varied by our task manipulation, similar to previous

applications of the task (Schwartz et al., 2005).
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Eye-movements were not significantly different between conditions.

Thus, eye tracking results from this chapter made the possibility

that different results between conditions could be explained by

differential eye movement behavior between conditions less likely.

Because participants needed to keep their eyes at fixation in order

to perform the RSVP task, this result was anticipated. However, it is

reassuring to observe that, when measured, there is virtually no

difference between eye movements in the different experimental

conditions.

Univariate results. Our results provide insight into the seemingly

contradictory findings in chapter IV and an earlier study by Rees et

al. (1997). Specifically, chapter IV demonstrated a main effect of

increased V5/MT activity under high load (vs. low load), while, at

the same time, Rees et al. (1997) reports an interaction effect of

decreased motion (vs. no motion) activity under high (vs. low) load.

Reassuringly, the addition of the two static / no motion conditions

allowed me to replicate both these findings. Activity in V5/MT did

indeed increase under high load (chapter IV, Figure V-3B), however,

when extracting the motion-specific component within this

(increased) activity by subtracting motion unrelated activity

obtained in the static conditions under high and low load, I found a

decrease of motion-specific activity (Figure V-3C). Thus, I replicated

the result of Rees et al (1997). In summary, while activity under

motion high (vs. low) load increased, it increased more under static

high (vs. low) load (activity bars for V5/MT, Figure V-3A). I

conclude that the seemingly contradictory findings in chapter IV and
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Rees et al. (1997) were in fact due to methodological differences.

When the exact methodological approach of both studies was

applied (current chapter), both results, chapter IV and Rees et al.

(1997) are replicated.

In early visual cortices V1 to V3, motion-distractor related activity

was significantly decreased under high load comparing activity in

the motion conditions only. This trend could also be observed in the

ROI-specific timecourses depicted in Figure V-2. To my knowledge

this is the first demonstration that, irrelevant, distractor-motion

related activity in V1 to V3 has been found reduced due to increased

load in a central task. Other studies observing other types of

distractors under differing load conditions, report similar results of

reduced distractor activity in early visual cortices due to increased

load in an attended task (O'Connor et al., 2002; Jenkins et al.,

2003; Schwartz et al., 2005).

Multivariate decoding results. Multivariate pattern analysis allowed

accurate classification of the neural representation of one of two

motion directions from early visual cortices V1 to V3. Previous

studies have reported similar findings for attended motion directions

(Kamitani and Tong, 2005a, 2006; Serences and Boynton, 2007a,

2007b). Here we extend these findings to unattended, irrelevant

motion. This extension is valid under high and low load in the

central task. Comparing high and low attentional load conditions,

decoding accuracies are roughly similar across conditions in early

visual cortices V1 to V3. Thus, in V1 to V3, decoding of BOLD signal

of distractor motion direction was not significantly different when
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participants performed a difficult (versus easy) task at fixation. This

result was found reliably in V1, V2 and V3 and stands in contrast to

the univariate result in these ROIs (significantly decreased activity

under high load). It mirrors results obtained for orientation specific

activity in chapter III and substantially strengthens the conclusion

that overall BOLD signal changes do not directly correspond to the

representation of feature specific activity patterns as measured by

MVPD.

For area V5/MT it was not possible to decode which direction of

distractor motion was present during an experimental block. It is

possible that the current experimental design failed to produce

successful motion direction decoding from V5/MT due to the

differences between previous studies and the current experiment:

While previous studies studied attended motion directions

specifically (Kamitani and Tong, 2005a, 2006; Serences and

Boynton, 2007a, 2007b), our result is based on ignored, irrelevant

motion. Additionally, it seems that even when attending motion

direction specifically, decoding seems to be generally less successful

from V5/MT (compared to V1 to V3, see for example Serences and

Boynton, 2007a, 2007b). Chapter IV also discusses other potential

reasons for this decoding-performance decline (small size of V5/MT;

possible non-anisotropic distribution of motion selective cells in

V5/MT; sub-optimal scanning resolution). For the current chapter,

methodological details in 4 participants could have further impaired

decoding performance due to imprecise coregistration of all runs

(see below). Most likely all the above reasons combined led to the
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non-significantly different from chance motion-direction decoding in

area V5/MT.

Experimental paradigm and analysis. For 5 participants, I changed

my experimental design to 48 single sessions with one experimental

block each instead of 8 sessions of 6 blocks. While this was perfectly

suited to facilitate eye tracking as the eye tracker could be

recalibrated after each session, analysis of fMRI data from these

participants proved more difficult than normal. This was due to the

fact that preprocessing, especially coregistration, of experimental

and localizer scans proved more difficult than expected. One subject

had to be excluded simply due to the fact that, due to head-

movements in-between scans, experimental data seemed

impossible to realign for all 48 experimental scans. Additionally,

MVPD critically depends on the assumption that any voxel contains

the same underlying neuronal population in all volumes. No

smoothing of data is performed. Thus, perfect realignment is

absolutely vital for any result to be meaningful. The current study

consisted of 48 independent, short scans. Within each scan there

was one block of one of the 6 experimental conditions. That meant

that, on average, the same experimental condition would only be

repeated every 6 scans. In hindsight, this experimental design gave

participants the additional opportunity to move 47 times, between

every session, not even considering head-movements within the

scan. Finally, the constant short sessions were reported as very

tiring and demanding, making participants potentially move even

more between scans (i.e. to stretch or in order to stay alert). In

conclusion and retrospectively, given these obstacles it is surprising
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that it was possible at all to analyze 4 out of 5 participants without

any further problems.

V.5 Conclusion

The experimental results presented in this chapter lead to a number

of conclusions. Firstly, I demonstrated that differential eye

movements between different experimental conditions are highly

unlikely to be able to explain any of the results.

For brain activity associated with irrelevant moving dots, I find a

reduction of overall signal strength in V1 to V3. This main effect of

reduced activity under high load in early visual cortices is shown

here for the first time for a motion stimulus. While it is the first

demonstration of reduced motion related BOLD activity under high

load, it mirrors similar results obtained using other distractor stimuli

(O'Connor et al., 2002; Jenkins et al., 2003; Lavie, 2005; Schwartz

et al., 2005). For V5/MT, I qualitatively replicated an interaction

effect of a classic load study (Rees et al., 1997). Thus, I resolved

the perceived discrepancy between this study and results presented

in chapter IV.

From the results of direction of motion decoding under high and low

load, I described successful decoding of the direction of motion in

V1 to V3. This is in the context of attentional load being

manipulated in a central task and visual feature specific MVPD

measures considered from an irrelevant distractor. As in chapter III
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for the basic visual feature of orientation, a load effect within

decoding results for direction of motion remains elusive. Taken the

results for orientation and direction of motion together, I speculate

that other basic visual features of irrelevant distractors to be

unchanged by attentional load conditions in a central task too.

However, I conclude that the underlying neural organization of this

indifference of feature specific distractor activity towards attentional

load in a central task remains largely elusive.

For V5/MT, direction of motion decoding is unsuccessful. I speculate

that it might be due to a number of reasons of which it seems most

likely that direction of motion decoding failed due to the fact that

motion was unattended and irrelevant in the current study.
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Chapter VI:

The independence of feature-based

attentional modulation and the representation

of a behavioral decision in early visual

cortices

VI.1 Introduction

Conscious perception of visual information depends on neural

activity at many levels of the visual system. However, to effectively

process visual information humans have to select a small subset of

stimuli to attend at each point in time. When multiple stimuli are

simultaneously present in a scene, they thus compete for cortical

representation and access to awareness (Desimone and Duncan,

1995; Serences and Yantis, 2006). It is widely believed that

humans resolve this competition by selectively filtering incoming

sensory input, based on current behavioral goals so that relevant

stimuli are processed more efficiently than irrelevant stimuli. To

achieve an advantage to stimuli presented at the selected location,

an observer can attend to a particular region of space, commonly

referred to as spatial attention (Moran and Desimone, 1985).

However, humans often know more about the defining features of

objects (e.g. “the blue car will pass me from behind”) than precise

spatial locations. Consequently, to achieve an advantage for stimuli
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with known features (in the above example a color and a direction

of motion), independent of their spatial location, an observer will

attend to a particular visual feature. This second type of selective

attention is commonly referred to as feature-based attention (Treue

and Maunsell, 1996; Treue and Martinez Trujillo, 1999; Martinez-

Trujillo and Treue, 2004).

Despite its recognized behavioral importance, the neural basis of

feature-based attention has only started to be understood (for an

early example see Motter, 1994). Notably, in monkeys, feature-

based attention amplifies the response of neurons when attention is

directed to the neuron's preferred feature and suppresses responses

when attention is directed to the neuron's nonpreferred feature

(Treue and Martinez Trujillo, 1999; Martinez-Trujillo and Treue,

2004; Maunsell and Treue, 2006). This “feature-similarity gain”

mechanism modulates the firing rate of neurons tuned to an

attended feature when the neuron receptive field is inside the

current location of spatial attention and also when the neuron is

driven by a stimulus outside the focus of spatial attention (Treue

and Martinez Trujillo, 1999; Saenz et al., 2002; Martinez-Trujillo

and Treue, 2004). Thus, it seems that feature based attention is

largely independent of spatial attention.

In humans, the study of feature-based attentional processing in

early visual cortices has previously been thought inaccessible to

non-invasive imaging techniques such as fMRI due to

methodological restrictions, particularly the relatively coarse spatial

resolution and inability to record from single neurons. However, the
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emergence of multivariate pattern decoding (MVPD, see chapter I)

rapidly changed this view and the neural representation of basic

visual features in humans is now an active area of research (for

review see Haynes and Rees, 2006). Moving from the neural

representation of basic visual features to feature-based attention

enabled Kamitani and Tong to find feature specific neural patterns

in the human brain according to the attentional selection of one of

two overlapping orientations (Kamitani and Tong, 2005b) and

direction of motions (Kamitani and Tong, 2006). Building upon

these results, Serences and Boynton (2007) demonstrated specific

patterns of fMRI signals associated with feature based attentional

selection of one of two overlapping motion directions (Serences and

Boynton, 2007a). In that specific study, Serences and Boynton

(2007) further demonstrate the independence of feature based and

spatial attention. They show spread of the influence of an attended

feature from the neural representation of the attended stimuli to

neural representations of unattended stimuli somewhere else in the

visual field. This is a qualitative replication of earlier findings from

monkey single cell recordings but now in humans (Treue and

Martinez Trujillo, 1999; Bichot et al., 2005). Additionally, their

experimental design also allowed restriction of stimulus evoked

activity to one hemisphere only by showing their stimulus only on

one side of the screen. With this paradigm they show that the

underlying neural representation of the unstimulated hemifield

shows a measurable modulation according the (feature-based)

attentional selection (Serences and Boynton, 2007a).
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However, a closer look at the apparent distinction of feature-based

and spatial attention by Serences and Boynton (2007) reveals some

important shortcomings: First, the authors chose to study direction

of motion, a feature known to be represented in the human cortex

in two distinct subregions: MT and MST (Dukelow et al., 2001; Huk

et al., 2002). While area MT responds mostly to contralateral

motion-stimulation, MST responds mainly to ipsilateral motion

stimuli. Thus, the distinction between MT and MST in principle offers

an ideal setup to study hemifield specific stimuli. However, Serences

and Boynton only defined a region they call hMT+, an ROI described

as ‘likely biased in favor of area MT’ (see methods of Serences and

Boynton, 2007a). Thus, the authors specifically do not exclude the

possibility that results and conclusions from hMT+ might be driven

by activity from the (spatially attended) stimulus represented in

MST. Moreover, ‘unattended’ as well as ‘unstimulated’ activity was

measured exclusively from a size and position matched patch of

cortex in the ventral part of each hemisphere. However, if feature-

based attentional influences were truly the explanation of their

results, a modulation of visual cortices entirely unrelated to the

stimulated area (i.e. a dorsal area) could potentially provide a more

convincing demonstration. A further critical shortcoming is that

early visual cortices V2 and V3 did not show any feature-specific

modulations in their activity patterns when a stimulus was present,

but, confusingly, only when stimulation was absent (see significant

results in Serences and Boynton, 2007a Figure 3D and 3E). This is

perplexing as feature based attention might be expected to act

more strongly on an irrelevant stimulus than on no stimulation

(Saenz et al., 2002). Finally, the authors completely fail to
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demonstrate any significantly feature-specific modulations in striate

cortex (V1).

Building on their results concering feature based attention, Serences

and Boynton (2007b) claim to have found the representation of

behavioral choice in human V5/MT (Serences and Boynton, 2007b).

This is done by using an ambiguous motion stimulus that is equally

likely to be perceived in two directions. The ability to decode the

perceived direction of motion (as indicated by the participants) is

interpreted as the ability to decode the behavioral choice of

participants to perceive this (and not the other) direction of motion.

However, Kaul and Bahrami (2008) point out that due to

methodological shortcomings an alternate interpretation of the

result might seem more likely: Instead of behavioral choice,

Serences and Boynton (2007b) might have measured feature based

attentional modulation in the very same hMT+ area that they

showed similar modulations in the first paper (Serences and

Boynton, 2007a). This explanation is also more consistent with

parallel results from monkey-electrophysiology, also using

ambiguous motion stimuli (Williams et al., 2003). Finally, explaining

the results of Serences and Boynton (2007b) with the neural

correlates of feature-based attention rather than behavioral choice

resolves the apparent contradiction between previous results from

monkey electrophysiology (Shadlen and Newsome, 2001; Williams

et al., 2003). Rather than monkey MT, these previous studies find

oculomotor areas (intraparietal sulcus and frontal eye field) show a

high correspondence in their neural response of a motion based

behavioral choice in monkeys – Serences and Boynton specifically



177

do not replicate this finding. As a consequence, it is conceivable that

MVPD applied to BOLD activation induced by the ambiguous moving

dot display by Serences and Boynton (2007b) might have decoded

the attended direction of motion, replicating the earlier findings

rather than indicating the neural correlates of a behavioral choice

(Kaul and Bahrami, 2008). However importantly, these

methodological shortcomings do not rule out the possibility that

early sensory cortices indeed contain a neural substrate of an

imminent behavioral choice, especially not if this choice involves a

tuning of a sensory feature represented in these cortices. In the

case of early visual cortices, basic visual features like orientation or

color are particularly known to have a neural representation in early

visual cortices (Hubel and Wiesel, 1962, 1968; Wang et al., 1998).

VI.1.1 Objectives and hypothesis of this study

This chapter presents a study of feature selective attention and its

dissociation from spatial attention in human early visual cortices. To

get around shortcomings identified in a previous study (Serences

and Boynton, 2007a), I chose to study feature-based attention to

the basic visual feature orientation. My goal is to show the

representation of feature selective attention in early visual cortices,

including striate cortex, preferably without alternate explanations.

As a second goal, I intentionally build my experimental paradigm

such that an actual measure of the behavioral decision in early

visual cortices is possible, again circumventing weaknesses

identified in a previous study (Serences and Boynton, 2007b).
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My hypotheses for this chapter are, firstly, to replicate earlier

findings of orientation-selective attentional modulations of neural

activity patterns in early visual cortices V1, V2 and V3 (Kamitani

and Tong, 2005b). Secondly, to establish the independence of

feature based attention from spatial attention by demonstrating

orientation specific modulations of the neural activity patterns in

entirely unstimulated and stimulus-position unrelated areas of V1,

V2 and V3. Thirdly, to investigate the possibility that the behavioral

decision of attending one of two orientations is present in relevant

early visual cortices before any stimulus is presented.

VI.2 Methods

VI.2.1 Participants

Eight healthy participants (4 male, mean age 27 years) gave written

informed consent to participate in the study, which was approved by

the local ethics committee. All participants had normal or corrected

to normal vision and were new to the task. One participant was

excluded from analysis due to chance-performance in the behavioral

task.
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VI.2.2 Stimulus

During the main fMRI experiment, participants performed a visual

detection task in a circular patch in the lower left or right quadrant

while maintaining fixation centrally at all times (Figure VII-1). The

patch was itself was five degrees of visual angle in diameter and

four degrees removed from the fixation point along a +/-45 degree

angled line. Counterbalanced across participants it was placed either

in the lower left or right quadrant and is henceforth referred to as

the ‘attended patch’. During the main task, full contrast,

overlapping oriented lines at 45° and 135° (1.5 cycles per degree)

were flashed on a gray background at 1.43 Hz (on for 650 ms, off

for 50 ms) with a randomized spatial phase. For the duration of an

entire main task block one of the two orientations would consist of

black lines, the other one of white lines, resulting in a structured

looking black and white plaid. Which orientation appeared in black

or white was chosen at random. Each plaid always appeared on

screen for 650ms, followed by 50ms of black screen followed by

another 650ms of plaid at a random displacement (0-1.5 degrees

displacement at random for each set of lines). Participants were

required to monitor the occurrence of infrequent (14%) pre-

specified targets associated with one of the two sets of oriented

lines of their choosing, and to respond by a button-press to each

detected target (6 targets per block). Targets consisted of one set

of oriented lines decreasing 30% in contrast. This contrast dimming

occurred in both sets of lines in a pseudo-randomized fashion: it

was impossible for a target to be immediately followed by another

target and it was impossible for targets in both lines to occur at the
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same time. Behavioural responses were collected with a standard

MRI-button box, for a response to be counted correct it had to occur

within a 900ms time window placed 200ms after stimulus onset.

Figure VI-1
Experimental stimuli. Each session contained four blocks, each consisting
of an initial 8 second decision period, followed by a 30 seconds lasting
experimental block, followed by a 20 second long rest period. As soon as
the instructions “choose now” came on screen, participants were
instructed to decide, at random, between attending a 45 or 135 tilted
grating during the main task. During the 8 second delay, this decision had
to be held in mind. The main task itself comprised overlapping oriented
lines at 45° and 135° tilt, 1.5 cycles per degree, on a gray background
flashed at 1.43 Hz (on for 650 ms, off for 50 ms) with a randomized
spatial phase, displayed in either the left or right lower quadrant of the
visual field, counterbalanced across subjects. Both gratings contained six
targets: Participants indicated a slight dimming in the attended grating
with a button press while continuously fixating on the central fixation
dot. Eye movements were measured continuously during the
experimental block. Indicated in the blown up representation in the lower
left are the locations of the three size-matched patches localized during
the patch localizer. Dotted lines were not on the screen during
presentation.
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In two separate sessions, participants viewed a reference stimulus

to localize the retinotopic regions corresponding to the stimulated

visual patch and equal size patched in all other quadrants. The

“patch localizer” composed of high-contrast black and white

flickering checkerboard patterns (10 Hz) presented in an each patch

for 16.32 seconds, corresponding to 4 full volumes. Participant

maintained fixation at all times, ensured by performing a counting

task for a randomly disappearing fixation dot. Figure VII-1

illustrates the positions of these patches on screen.

Finally, in 2 additional sessions, standard retinotopic mapping

localization procedures were performed to delineate visual areas on

flattened cortical representations (see chapters III-V for details).

VI.2.3 Procedure

Subjects lay supine in the scanner and viewed visual stimuli that

were projected from an LCD projector (NEC LT158, refresh rate 60

Hz at 1024 X 768) onto a screen viewed via a mirror positioned

within the MR head coil. Stimuli were presented using MATLAB

(Mathworks Inc.) and COGENT 2000

(www.vislab.ucl.ac.uk/Cogent/index.html). Complete darkness was

achieved in the scanning environment by manually masking the

fMRI projection screen, head coil and internal bore with matt black

card. This eliminated discernable non-retinotopic luminance cues,

ensuring that the only source of visual stimulation during

experimental sessions was the experimental stimulus. Eye position
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was continually sampled for all participants at 60 Hz using an ASL

504 LRO infrared video-based MRI compatible eye tracker (Applied

Science Laboratory, Bedford, MA).

All participants were scanned for a total of ten sessions, each

containing four experimental blocks. Each block was preceded with

the appearance of the instructions “Choose now” for two seconds,

followed by a variable four to eight seconds delay interval with only

a central fixation dot on screen. Participants were instructed to

choose, at random, one of the two sets of oriented lines to attend to

during the main task block to follow, then hold that decision in mind

and not change it at any time during the delay period and task. The

main task block lasted 30 seconds. Each block was then followed by

a 20 second long rest period to give participants a short rest. Rest

comprised only a fixation cross. Participants were instructed to

fixate on the fixation cross for the duration of the entire 4 minute

session including rest periods.

VI.2.4 Scanning

A 3T Siemens Allegra system acquired T2*-weighted Blood

Oxygenation Level Dependent (BOLD) contrast image volumes using

a descending sequence every 4.08s. Each volume comprised 40

slices with a slice thickness of 1.5mm, positioned on a per subject

basis to give coverage of the occipital lobe with an in-plane

resolution of 1.5x1.5 mm. To maximize signal to noise in early

visual cortex an occipital head coil was used. Each main
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experimental session lasted 240seconds (59 volumes) split into 4

parts of 60 seconds each. To identify the boundaries of primary

visual cortex (V1) and extra-striate retinotopic cortical areas V2 and

V3, standard retinotopic mapping stimuli were presented in two

sessions lasting 326 seconds each (80 volumes). Finally, the ‘patch

localizer’ consisted of four repetitions of each quadrant plus rest for

5 volume each, summing to 408seconds (100 volumes) each

session.

VI.2.5 Analysis

Behavioral analysis. Subjects decided equally often to attend the 45

or 135 degree oriented lines. Within each block there were 6

targets. For the analysis only experimental blocks with more than 4

correct responses were considered. This led to an exclusion of a

total of 64 out of 320 blocks (20%).

Eye tracking Analysis. The mean and standard deviation of eye

movements were compared along the X and Y axis and the standard

deviation of pupil size. This was done as to evaluate the possibility

that a difference in eye movements between different conditions

might be able to explain any differences subsequently found in brain

activity. To this end, I first divided the X, Y eye position and pupil

size values of each session by their mean (normalization) and then

computed the mean and standard deviation. Any block in which the

session standard deviation was over 2 standard deviations from

overall mean of all participants was further excluded from
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subsequent analysis (5/320 blocks, 1.5% of all blocks). Data from

the remaining sessions, I evaluated for a difference between the

two experimental conditions (45 or 135 degree oriented lines

attended) with a two-sample t-test.

Data preprocessing. All data were preprocessed using Statistical

Parametric Mapping software (SPM5,

http://www.fil.ion.ucl.ac.uk/spm). The first 3 volumes of each fMRI

session were discarded to allow for magnetic saturation effects. The

remaining functional image volumes were realigned to the first

image, and then the structural scan of each participant was co-

registered to their functional data. Three single sessions displayed

increased head movement and, consequently, they were also

excluded from further analysis (12/320 blocks, 3.8% of all blocks).

Functional data of the main experiment were not spatially

smoothed, but data from the meridian mapping and ‘patch localizer’

sessions were spatially smoothed with a Gaussian kernel of 3mm

full-width half-maximum.

ROI localization. FreeSurfer (http://surfer.nmr.mgh.harvard.edu)

was used for segmentation and cortical flattening using each

participant’s specific structural image (previously coregistered to all

functional data). Standard meridian mapping procedures were

employed to identify the borders of the visual areas V1, V2 and V3

in the occipital cortex (Sereno et al., 1995). This was possible in all

but one participant where meridian mapping data were insufficient

to distinguish the borders of V3; consequently I left V3 undefined

for this participant. To extract activity from these ROIs, I created
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mask volumes for each ROI, these mask volumes should contain

gray matter voxels only.

For the patch-specific ROIs, I defined subregions within V1, V2 and

V3 that displayed increased activity for the patch localizer stimulus.

Again, I then created mask volumes for each Patch-ROI.

Timecourse analysis. To compute the percent signal changes in the

time course analysis, I used the mean raw activation of the

realigned timecourse correcting only for slow signal drift typical in

fMRI scanning by high-pass filtering (cut-off – 128s). Each session

was then scaled by its own mean activity during the entire session.

This linear transformation was repeated for each ROI and each

participant separately. The resulting time series were sorted and

averaged in each ROI according the two experimental conditions:

45 degree oriented lines attended vs. 135 degree oriented lines

attended.

Multivariate pattern classification. Multivariate pattern analysis used

in this chapter was identical to previous chapters and is thus only

briefly described (for detailed description see chapter II and III-

VI,): Unsmoothed, realigned fMRI data from the experimental runs

were adjusted for the lag in hemodynamic response function by

shifting all block-onset timings by 2 volumes (8 seconds). To

determine classification accuracy, only classification with unseen

and independent-test data was considered. Pattern classification

was performed using a sparse logistic regression (SLR) algorithm

(Yamashita et al., 2008). Significant difference from chance (2
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categories = 50% chance) was tested for with a Student’s one-

sample t-test, applying Bonferroni correction for multiple

comparisons across all ROIs examined. MVPD was repeated once for

the main experiment and once for the 8 second period preceding

the main experiment in which participants were asked to hold a

decision in mind. Indicated in Figure VII-2 are the timing of the

onsets of volumes during scanning and which volumes contributed

to which result (dark gray for decision period and light gray for

experimental block period). MVPD of subjects decision was only

performed on 7 subjects as one subject applied a predestined logic

to her attended oriented lines (always alternating).

Evaluating the probability that the classification was driven by over-

fitting of arbitrary patterns of spatial correlations in the data, we

carried out a shuffle-control test (Mur et al., 2009). If the

assumption that classification is driven by chance were true, similar

results should be obtained if labels indicating the experimental

condition for each example vector were shuffled randomly. To test

this, we ran a separate analysis where labels of the test examples

were re-shuffled for each round of the cross-validation procedure.

The resulting distribution of classification accuracy characterized the

expected distribution of accuracy under null hypothesis.
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VI.3 Results

VI.3.1 Behavioral results

In both attention conditions; that is, attention to one of the two sets

of oriented lines as chosen at random by the participant,

performance was similar in the subset of sessions and blocks within

those sessions examined (see Methods). Both conditions had a

roughly equal number of blocks: Participants chose to attend the 45

degree oriented lines 121 times, and the 135 degree oriented lines

124 times. Reaction times (RT) across participants of blocks

attending to 45 vs. 135 degree oriented lines were compared with a

paired, two-tailed t-test. [Reaction times 45 degree: 634ms; 135

degree: 629ms; t(245) = 0.47, P = 0.64]. Also, hit rates of

correctly detected targets in both conditions were not significantly

different [Correct responses 45 degree: 92.7%; 135 degree:

93.3%; t(245) = -0.55, P = 0.59].

VI.3.2 Eye tracking results

For all participants, eye tracking data were sampled continuously

throughout experimental blocks. In depth inspection of per-block

mean and standard deviation of eye position and pupil size showed

that most participants held fixation in most blocks. However, all

blocks that displayed more than 2 standard deviations from the

mean of all blocks in X or Y coordinates data were excluded (see

methods). For all blocks considered three independent t-tests for X,
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Y positions and pupil size did not show any significant differences

between eye movements obtained form the two experimental

conditions [movement along X axis: t(70) = -0.77, p = 0.45;

movement along Y axis: t(70) = -0.69, p = -.49; Pupil size: t(70) =

0.23, p = 0.8].

Figure VI-2
Timecourses of the mean BOLD signal changes as a function of
hemisphere and dorsal/ ventral areas (8 participants). Activity from each
patch representation in V1, V2 and V3 averaged. The Y axis illustrates the
percent signal change in comparison to activity to the ROI-session mean.
The X axis depicts time in seconds aligned to each block onset. Each
stimulus block was 30 seconds long, indicated by the gray bar labeled
‘Experimental block’. Preceding each experimental block was an 8 second
long delay period in which participants were required to hold in mind a
desicion between attending to the 45 or 135 degree grating (indicated by
the dark gray bar). Also indicated below the bars are image volumes as
actually recorded during the experiment and as used for MVPD (delayed
by 8 seconds to adjust for hemodynamic lag). The attended (stimulated)
patch showed a clear increase of BOLD activity shifted by the
hemodynamic delay. However no notable changes occur during neither
desicion nor attention periods in any other hemisphere Patches.
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VI.3.3 Timecourse observation

Figure VII–2 shows the timecourse of raw BOLD signal changes for

each participant and in each ROI in units of difference to the ROI-

session mean. Time zero marks the onset of the 30 second long

blocks indicated by the gray bar, preceded by the 8 second decision

period in which participants were required to hold in mind a decision

between subsequently attending to the 45 or 135 degree grating.

The attended (stimulated) patch showed a clear increase of BOLD

activity during experimental blocks, shifted by the hemodynamic

delay. However, no changes occurred during either decision or

attention periods in any other visual quadrant patches. Only a

minimal offset increase at the end of the task was visible. Other

than the expected outcome of increased visual activity at the

location of the stimulus during the stimulated time, comparing the

timecourses for blocks where 45 or 135 degree oriented lines were

attended revealed no obvious differences. As a consequence, any

further univariate analysis between the two conditions was unlikely

to reveal anything further and is thus omitted.

VI.3.4 Multivariate classification result (main task)

All classification results were obtained with SLR- MVPD. Figure VII-3

left illustrates the decoding result for the mask image of the

attended patch from V1, V2 and V3: each representation contained

sufficient feature specific information to predict significantly above
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chance which of two oriented lines (45 or 135 degree tilt) was

attended. [One tailed t-test against 50% chance, Bonferroni

corrected, V1: mean = 59.3%, t(7) = 3.9, P < 0.01; V2: 60.8%,

t(7) = 3.8, P = 0.01; V3: 60.5%, t(6) = 4.5, P < 0.01,].

I followed this procedure to obtain decoding results from every size-

matched patch representation in V1, V2 and V3, both hemispheres,

dorsal and ventral. BOLD activity in all but one patch

representations allowed prediction significantly above chance with

relatively little variation in the overall results [one tailed t-test

against 50%: ipsilateral, ventral: V1: mean = 58.4%, t(7) = 2.3, P

= 0.03, V2: 58.1%, t(7) = 4.6, P < 0.01; V3: 57.4%, t(6) = 4.5, P

< 0.01; contralateral, ventral: V1: 56.4%, t(7) = 3.2, P < 0.01; V2:

56%, t(7) = 4.6, P < 0.01; V3: 55.6%, t(6) = 2.6,, P = 0.02;

contrallateral, dorsal: V1: 52.9%, t(7) = 1.8, P = 0.06; V2: 54.9%,

t(7) = 2.3, P = 0.03; V3: 58%, t(6) = 2.7, P = 0.02]. A one-way

analysis of variance (ANOVA) also showed no significant differences

between results from any of the 9 unattended patch representations

[F(8) = 0.63, p = 0.74]. As a consequence, I therefore averaged

across unattended patches per visual area for all further analyses.
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Figure VII-3 middle shows the overall result of BOLD decoding from

unstimulated and unattended patches. Despite nearly no change in

the BOLD signal when averaged across each ROI (see figure VII-2)

Figure VI-3
Decoding accuracy of main experiment (mean across 8 participants)
obtained with Sparse Logistic Regression (SLR). Different colors indicate
decoding performance form different sub-areas in V1, V2 or V3. Yellow
stars indicate results significantly different from chance: *** = p < .01,
** = p < .05 (one tailed t-tests), errorbars denote SEM across
participants. Left: BOLD-activity patterns from the stimulated patch
predicts significantly above chance which of the two orientations was
attended in V1, V2 and V3. Middle: averaging across unattended patches,
classification accuracy is still significantly above chance in V2 and V3.
Right: Classification accuracy from the remainder of V1, V2 and V3 after
subtracting the entire visual quadrant representation which contained
the attended stimulus and the representations of size matched patches
from all other visual quadrants: Each such reduced representation still
contains enough feature-based information to decode attended grating
orientation significantly above chance. All results are Bonferroni
corrected for multiple comparisons.
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the spatial pattern of representations contained in these patches

still allowed accurate prediction of attended orientation [One tailed

t-test against 50% chance, Bonferroni corrected, V1: mean =

54.6%, t(7) = 2.5, P = 0.066; V2: 55.6%, t(7) = 3.7, P = 0.01;

V3: 59%, t(6) = 9.6, P < 0.01].

Finally, I excluded voxels contained within the mask images from all

unattended patches and the entire representation of the visual

quadrant that contained the stimulus from V1, V2 and V3. Figure

VII-3 right illustrates that, even when excluding all of these

representations, the remaining parts of V1, V2 and V3 still contain

enough pattern information in the BOLD signal to allow decoding

significantly above chance [One tailed t-test against 50% chance,

Bonferroni corrected, V1: mean = 58.1%, t(7) = 3, P = 0.03; V2:

58%, t(7) = 3.6, P = 0.01; V3: mean = 55.3%, t(6) = 3.1, P =

0.03].

To check the possibility that classification was driven by stimulus

unrelated spatial correlations in the data (independent of the

attended orientation), I carried out a shuffle-control test (Mur et al.,

2009). To do this, I repeated the classification from the attended

patches, but this time with shuffled labels for the test examples.

None of the predictions are significantly different from chance. This

control analysis strengthened the main findings, as it reconfirmed

the validity of the result and the independence of the data used to

obtain them [Bonferroni corrected results, V1: mean = 51.9%, t(7)

= 1.1, P = 0.49; V2: 48.4%, t(7) = -1, P = 2.48; V3: 49.2%, t(6)

= -0.79, P = 2.31]. I also repeated the same shuffle control
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analysis also for all other ROIs and obtained highly similar, non-

significant results.

VI.3.5 Multivariate classification result (decision period)

I repeated MVPD, this time focusing only on the 8 second delay

period prior to stimulus onset. At beginning of this delay period

Figure VI-4
Decoding accuracy of decision period preceding the experiment (mean
across 7 participants) obtained with Sparse Logistic Regression (SLR).
Different colors indicate decoding performance from V1, V2 and V3.
Yellow stars indicate results significantly different from chance: * = p <
0.05 (one tailed t-tests), errorbars denote SEM across participants.
BOLD-activity patterns from V1, V2 and V3 allow significant above
chance decoding of which of two orientations a participant will attended
to subsequently. Thus, all these early visual areas contain a
representation of the decision subjects made. This decision is decodable
prior to stimulus onset, is thus independent of stimulus evoked activity.
Since subjects only indicated their decision only after each experimental
block and each decision occurred at random, this prediction result is also
independent of behavioral influences.
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subjects were instructed to decide between subsequently attending

45 or 135 degree tilted oriented lines at random and hold their

decision in mind during the delay. This 8 second delay period

resulted in 2 full imaging volumes from which I attempted to decode

the decision subjects were holding in mind. Note that no stimulus

was visible during this period. Figure VII-4 illustrates the result of

this decision-decoding: successful above chance prediction in all

early visual areas [one tailed t-test against 50%, V1: mean =

57.9%, t(6) = 2, P = 0.048; V2: 61.1%, t(6) = 2.4, P = 0.03; V3:

59.4%, t(6) = 2.3, P = 0.03]. Possibly due to the low number of

example vectors, results showed an increased overall variance

compared to orientation-attention decoding (see figure VII-4).

VI.4 Discussion

Here participants were presented with an initial 8 second decision

period, followed by a 30s experimental block. During the initial

decision period, participants were instructed to decide, at random,

between attending a 45 or 135 oriented lines during the main task

and hold their decision in mind. Then, during the main task

participants detected a slight dimming in the attended oriented lines

– which could be either 45 degree or 135 degree tilted and

appeared in a circular region in one visual quadrant only while all

other visual quadrants only displayed a medium gray background.

Using MVPD, I was able to demonstrate that BOLD activity patterns

within the representation of the stimulated patch contained spatial

activity patterns that could distinguish the two attentional
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conditions significantly better than chance. This replicates a

previous finding that feature-based attention had a modulatory

effect on underlying neural activity in early visual cortices (Kamitani

and Tong, 2005b), but now for stimuli contained entirely within one

quadrant of the visual field.

Further, I found significantly different activity patterns for the two

feature-based attentional conditions across other regions of early

visual areas V1, V2 and V3. This was seen for size-matched regions

in other visual quadrants as well as other areas of early visual

cortices even when completely excluding the stimulated quadrant

plus size matched representations in all other visual quadrants

(Figure VII-3). Attending to a particular specific orientation

(feature) modulated orientation-selective (feature-selective) units

across the entire visual field. This modulation was measured with

fMRI in multiple regions of early visual cortex: V1, V2 and V3.

Finally, investigating a delay period preceding the main task, during

which participants had to hold a decision in mind, I demonstrated

that BOLD activity from early visual cortices during that delay

period were sufficient to decode which orientation a participant will

subsequently attend. Thus, these activity patterns contained a

representation of the behavioral decision that a participant had

made and was about to execute. This result is, to my knowledge,

the first time that a behavioral decision was decoded from early

visual areas without them having received any visual information.
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Visual attention research has mainly focused on spatial attention,

i.e., the attentional selection based on the current region of interest

in the visual field. However, attention can be allocated not only to a

particular region of space, but also to a visual feature, such as a

particular color, orientation or direction of motion. Recordings from

monkey cortex have demonstrated neural correlates of this type of

attention in both the ventral and dorsal visual pathway (Maunsell

and Treue, 2006). Notably, it seems that feature based attention in

monkeys is largely independent of spatial attention as it occurs both

inside the current location of spatial attention and also when a

neuron is driven by a stimulus outside the focus of spatial attention

(Treue and Martinez Trujillo, 1999; Saenz et al., 2002; Martinez-

Trujillo and Treue, 2004).

In humans, Serences & Boynton (2007) proposed that allocating

attention to one or the other of the two superimposed motion-

surfaces, presented in one quadrant of the visual field, produced a

differential pattern of activation across the neural representation of

this patch and a size matched, unattended, patch in the comparable

quadrant in the opposite hemisphere. This was possible for BOLD

representations encoded in the size matched, unattended, patch in

the opposite hemisphere both when a stimulus was present and

absent. However, this study has numerous shortcomings: Firstly, it

seem perplexing that the authors have not corrected for multiple

comparisons across all their t-tests when comparing decoding

results against chance predictions. This is while reporting 8 out of

10 “significant” feature-based-attention results on t-tests with p <

0.05 (Serences and Boynton, 2007a). Added to that, the authors
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did not demonstrate significant feature-based attention effects in

V1, V2 or V3 when a stimulus was present (see significant results in

Serences and Boynton, 2007a Figure 3D). This is surprising as

feature-specific enhancement of an irrelevant stimulus would be

expected to modulate the perception of this irrelevant stimulus in

favor of the attended feature. This phenomenon has been described

as perceptual “tagging” (Saenz et al., 2002) and should have been

measurable in the study by Serences and Boynton (2007a).

However, the authors do report feature based attention effects in

V2 and V3 in the absence of stimulation (see significant results in

Serences and Boynton, 2007a Figure 3E). The combination of

feature-based attention being absent when an irrelevant stimulus

containing the attended features is present, but being present when

a stimulus is absent is difficult to interpret. Thus, until now it had

remained elusive whether early visual cortices V1 to V3 actually

show feature specific modulations. Furthermore, the authors point

out that their area hMT+ might contain voxels of area MST which is

known to represent ipsilateral (i.e. attended) stimulus

representations. Thus, this offers the possibility that results in

Serences and Boynton (2007a) were actually driven by MST voxels.

Therefore, in conclusion, it remains elusive whether early visual

cortices V1 to V3 and area V5/MT actually contain feature based

attention modulations that can be measured with fMRI.

In this experiment, I demonstrated that attending to one of two

overlapping orientations elicits differential BOLD activation patterns

at the spatially attended location, at size-matched locations in other

parts of the visual field and, in fact, at all other locations of the
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visual field as well. This shows that attending to a particular

orientation in one location of the visual field specifically modulates

orientation-selective units across the visual field. The modulating

influence of feature-based attention was present in the attended

area (figure VII-3 left) and multiple unattended areas where the

stimulus was never shown (figure VII-3 middle and right). The most

likely explanation seems that the underlying neuronal population of

early visual cortices, irrelevant of retinotopic location, is modulated

by the attended feature in the absence of stimulation. This result

nicely parallels similar findings in the realm of spatial attention

where response modulations have been observed in the absence of

visual stimuli within the receptive field (Luck et al., 1997;

Womelsdorf et al., 2006). As the stimulus was actually never shown

anywhere else but in a small patch in one visual quadrant, this rules

out the possibility that the measured feature-specific enhancement

reflects some aspect of a irrelevant distractor (perceptual tagging)

(Saenz et al., 2002). Rather, this result strengthens the hypothesis

that a truly spatial-stimulus-independent feature-specific

modulation was measured by MVPD fMRI.

Recently it was argued that the representation of perceptual choice

between two opposite motion directions is contained in the pattern

of BOLD activity of hMT+ (Serences and Boynton, 2007b). This

result was based on using an ambiguous motion stimulus that was

equally likely to be perceived in two directions. Participants were

instructed that one direction was dominant and had to indicate

which motion direction they perceived. Since there actually was no

dominant motion direction present, the decoding of the reported
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direction was interpreted as the ability to decode a behavioral

choice of participants to perceive one (and not the other) direction

of motion. However, subsequently this result was discussed as

questionable (Kaul and Bahrami, 2008) as the experimental

paradigm utilized did not control for the possibility that participants

simply attended more to one direction (particularly because they

were told it was present). In this case, the result by Serences and

Boynton (2007b) would be a replication as it would have measured

feature based attentional modulation in the very same hMT+ area

that the authors showed similar modulations in an earlier study

(Serences and Boynton, 2007a). Kaul and Bahrami (2008) further

determine that this alternate explanation would also eradicate the

perceived differences between the results by Serences and Boynton

(2007b) and monkey studies using similar experimental procedures

(Shadlen and Newsome, 2001; Williams et al., 2003). Thus, it

remains elusive whether area V5/MT is modulated by a behavioral

decision. The same question has never even been addressed for

early visual cortices V1 to V3.

Here, I demonstrated that the behavioral decision of participants

was represented in the BOLD activation patterns in early visual

cortices V1, V2 and V3 (figure VII-4). The decision period preceded

the stimulus presentation and subjects chose freely which

orientation to attend. Thus, I controlled for both stimulus and

behavioral independence. This setup overcame critical issues

pointed out in previous studies (Serences and Boynton, 2007b; Kaul

and Bahrami, 2008). As a result, I demonstrated measuring a

behavioral decision in an early visual area before stimulation began.
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One possible speculation why the modulation of neuronal activity

was measurable in early visual cortices simply has to do with the

fact that the behavioral decision in question was between two

orientations. Considering that orientation is represented in a

columnar fashion across early visual areas (Hubel and Wiesel, 1962,

1968; Wang et al., 1998) it seems to follow logically that these

areas must be somehow involved. While this study noticeably

demonstrates this involvement, further research is necessary to

determine the exact role of early visual cortex modulation due to a

behavioral decision. For example early visual areas might play an

active role in the determination of a behavioral choice, or, early

visual areas receive feedback input, modulating their activity as

soon as a decision has been formed in a higher area, or, alas, a

combination between the two scenarios. A further possibility might

be that a top down priming-bias towards one of the directions might

potentially explain the results for the epoch preceding the main

task..

VI.5 Conclusion

Findings in this chapter help bridging the gap between previous

electrophysiological recordings in monkeys and studies of human

perception. By using functional imaging and MVPD, I demonstrate

that feature-based attention is an important aspect in the early

human visual cortex. The results further strengthens the assumed

independence of feature-based attention from spatial attention in
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humans, an assumption which was recently also proposed in

monkeys (Treue and Martinez Trujillo, 1999; Martinez-Trujillo and

Treue, 2004). Thus they illustrate that feature-based attention is a

highly functional attention system selectively enhancing specific

features in our visual environment resembling the currently

attended set of features. This might potentially occur at the expense

of information about less relevant aspects or features. However,

this study also opens up new questions, for example how

integration of the various types of attention identified so far (e.g.,

spatial and feature-based but also object or surface-based, etc.)

might occur at the level of single neurons as well as at the level of

BOLD activation patterns.

As a second result, this study presents evidence that a behavioral

decision can be measured reliably in an early visual area. It thus

shows an involvement of early visual cortices in behavioral

decisions. Further research should investigate the exact role of this

involvement.

I conclude that results of this study are in exceptional agreement

between with result from comparable studies from single cell

monkey electrophysiology. This demonstrates how both approaches

inform can inform each other and how they can and should be

combined to answer new questions.
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Chapter VII:

Gender specific face processing in the

human brain

VII.1 Introduction

Faces are processed in a distributed network of brain areas (Ishai et

al., 2005; Fox et al., 2008; Ishai, 2008). A “core system” has been

proposed, comprising of three regions that mediate the analysis of

invariant facial features: the fusiform gyrus (FG, also known as

fusiform face area, FFA), the inferior occipital gyrus (IOG, also

called the occipital face area) and the posterior superior temporal

sulcus (STS) (Haxby et al., 2000; Ishai et al., 2005; Gobbini and

Haxby, 2007). Additionally, the “extended system” includes regions

that mediate the processing of changeable aspects of faces, such as

mood and expression. The extended system includes limbic regions,

such as the amygdala (AMG) and insula (Ishai et al., 2004; Ishai et

al., 2005); the inferior frontal gyrus (IFG) (Ishai et al., 2005), and

regions of the reward circuitry, especially the nucleus accumbens

and medial orbitofrontal cortex (OFC) (Aharon et al., 2001; Ishai,

2007).

Different regions of the core and extended systems display greater

brain activity when specific aspects of face processing are required
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by task demands. For example, the FG/FFA and IOG are more

active in processes that require the identification of individuals

(Puce et al., 1995; Kanwisher et al., 1997; Ishai et al., 2000; Grill-

Spector et al., 2004), while tasks emphasizing gaze direction and

speech-related movements modulate STS (Puce et al., 1998; Calder

and Nummenmaa, 2007). The amygdala and insula are implicated

in processing faces with emotional context and facial expressions

(Breiter et al., 1996; Vuilleumier et al., 2001; Ishai et al., 2004;

Ishai et al., 2005), the IFG is activated during the processing of

semantic aspects (Ishai et al., 2000; Leveroni et al., 2000) and

finally the OFC is implicated in the processing of facial beauty,

sexual relevance and reward value (Aharon et al., 2001; O'Doherty

et al., 2003; Kranz and Ishai, 2006; Ishai, 2007).

Although identification of gender is a fundamental, automatic and

effortless aspect of face perception, conventional fMRI data analyses

have not to date identified any regions within the face network

specialized for the discrimination of gender. Investigating fMRI

adaptation to facial gender and race, one study in fact identified the

strongest adaptation effects occurring outside the face network, in

the cingulate gyrus, while the same subjects showed only weak

adaptation effect in regions of the core face network (Ng et al.,

2006). Another study, looking specifically at gender-related face

processing, found no evidence for differential activation associated

with facial gender across the core or extended face networks;

rather, any gender-specific differences were modulated by the

sexual preference of the participants (Kranz and Ishai, 2006). Taken
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together, previous work has shown weak, inconsistent or otherwise

qualified neural responses to the gender of faces.

Importantly, all previous work has used conventional univariate

data analyses of functional MRI data that focus on single locations

(voxels) within the brain. More recently, there has been much

interest in findings that local spatial patterns of fMRI signals encode

considerable more information about visual stimuli **REFS HERE**.

I hypothesized that applying these new and potentially more

sensitive analyses to the data previously collected by Kranz & Ishai

(2006) might now show evidence for more subtle distributed

representations of facial gender in the human brain encoded within

brain areas associated with face processing. I therefore sought to

identify brain regions that exhibited responses specific to the gender

of faces using new multivariate pattern analyses for individual

participants. The goals of these new analyses were to identify brain

areas containing spatial activity patterns across presentation of

faces of one gender versus faces of the opposite gender, such that

they can be used to reliably identify facial gender in different

scanning sessions. To that end, I compared activity patterns within

the core and extended regions of the face network with three

control regions: the cingulate gyrus and two non-cortical control

regions. In addition, I also examined whether successful

classiciation might arise from spatial patterns of fMRI signals in

early visual cortex, suggesting a role for low-level visual properties

rather than a high-level representation of gender. Finally, I carefully

explored the new, multivariate analyses for any evidence that

activation patterns associated with facial gender might vary as a
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function of the participant’s gender (man or woman) and/or sexual

preference (hetero- or homosexual).

VII.2 Methods

Of the methods of the study the data originated from (Kranz and

Ishai, 2006) only those directly relevant to results and analysis in

this Chapter are repeated.

VII.2.1 Participants

Forty normal, right-handed participants (mean age 26 ± 3 years, 10

participants in each of four groups, homosexual and heterosexual

men and women) with normal vision participated in the study. All

participants gave informed written consent for the procedure in

accordance with protocols approved by the University Hospital of

Zurich. Participants were classified as heterosexuals or homosexuals

based on their self-report in a modified version of the Sell

questionnaire (Sell, 1996).

VII.2.2 Stimulus

Stimuli were displayed with Presentation (http://www.neurobs.com)

and projected with a magnetically shielded LCD video projector onto

a translucent screen placed at the feet of the participant.
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Participants viewed grayscale photographs of faces (three runs) and

assessed facial attractiveness (five runs). In each run, 2 epochs of

male and 2 epochs of female faces (both 30 s) alternated with

epochs of phase-scrambled faces (21 s in viewing, 12 s in

attractiveness rating). During an epoch each stimulus was

presented for 3s, with no blank periods between the stimuli. In

total, during the viewing condition, 60 male and 60 female

unfamiliar, famous, and emotional faces were presented. During the

assessment of facial attractiveness, 100 male and 100 female faces

were presented. Faces were optimized for facial attractiveness

ratings, thus they included facial hair, a variety of viewing angles

and moderate size differences. The order of runs was randomized

across participants. Importantly, in each session there was an equal

amount of female and male faces. As participants were not

Figure VII-1
Top: Examples of face stimuli. Each face was presented for 3 sec in
alternating 30 second long blocks of either male or female faces, which
alternated with scrambled faces. Participants viewed the faces (3 runs)
or rated their attractiveness (5 runs). For additional details see (Kranz
and Ishai, 2006). Bottom: Face responsive ROIs from one exemplar
participant. Displayed is the overlay of the contrast “all faces vs.
scrambled faces” onto the participants unflipped anatomical image (left
hemisphere is on the left side). Sections show coronal slices, from
posterior to anterior: IOG, FG, STS, IFG & AMG and INS with show
bilateral activation, in contrast to the medially defined OFC.
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instructed to pay attention to the face gender, any gender

processing was implicit during the two tasks. Figure 1 (top) shows

examples of the stimuli used.

VII.2.3 Procedure

Participants lay supine in a 3T Philips Intera whole-body MR scanner

(Philips Medical Systems, Best, The Netherlands). Changes in the

blood-oxygenation-level-dependent MRI signal were measured with

the sensitivity-encoded gradient-echo echoplanar sequence (35

axial slices, TR = 3000 ms, TE = 35 ms, flip angle = 82°, field of

view = 220 mm, acquisition matrix = 80 × 80, reconstructed voxel

size = 1.72 × 1.72 × 4 mm, SENSE acceleration factor R = 2).

High-resolution, spoiled gradient-recalled echo structural images

were collected in the same session for all the subjects (180 axial

slices, TR = 20 ms, TE = 2.3 ms, field of view = 220 mm,

acquisition matrix = 224 × 224, reconstructed voxel size = 0.9 ×

0.9 × 0.75 mm). These high-resolution anatomical images provided

detailed anatomical information for the region-of-interest (ROI)

analysis.

VII.2.4 Analysis

Data preprocessing. The data were preprocessed using Statistical

Parametric Mapping software (SPM5,

http://www.fil.ion.ucl.ac.uk/spm). The first 5 volumes of each fMRI

scan were discarded to allow for magnetic saturation effects. The
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remaining functional images volumes were realigned to the first

image, then the structural scan of each participant was co-

registered to their functional data. Functional data were not

spatially smoothed.

Timecourse analysis, univariate analysis and ROI localization

To compute the percent signal changes in the time course analysis,

I used the mean raw activation of the realigned timecourse

correcting only for slow signal drift typical in fMRI scanning by high-

pass filtering (cut-off – 128s). Each session was then scaled by its

own mean activity during all blocks of scrambled faces. This linear

transformation was repeated for each ROI and each participant

separately. The resulting time series were then sorted and averaged

in each ROI according to male or female face blocks, thus resulting

in a percent difference plot for faces of each gender in each region

of interest.

I went on using SPM5 to perform a within-participant analysis, using

a voxel-wise general linear model (GLM) that comprised 3 delayed

boxcar waveforms representing the 3 experimental conditions:

female faces, male faces and scrambled faces. During this analysis

the fMRI time series were high-pass filtered (cut-off – 128s) and

global changes in activity were removed by proportional scaling of

each session. Then I computed the contrast of all faces versus all

scrambled faces. Note that for each participant this contrast

contains a balanced number of blocks containing female and male

faces and is thus orthogonal to the experimental question of this

study.
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To identify the different areas of the core and extended systems of

the face network, I overlaid the contrast of all faces vs. all

scrambled faces at a FWE-corrected level of significance of P<.05

onto each individual participants structural image (Figure 1). After

visually identifying all seven regions of the core and extended

systems, the fusiform gyrus (FG, also known as the fusiform face

area, FFA), the inferior occipital gyrus (IOG), the posterior superior

temporal sulcus (STS), the amygdala (AMG), the insula (INS), the

inferior frontal gyrus (IFG) and the medial orbitofrontal cortex

(OFC), a sphere-shaped ROI was defined only for those regions that

displayed activity over the threshold. The peak of the activation

defined the centre of the ROI. To adjust for different sizes of brain

structures I used a sphere with 10mm diameter for FG, IOG, insula,

IFG and medial OFC and an 8mm diameter sphere for STS and the

amygdala. Where face specific activity was not identified at a FEW-

corrected threshold of P<.05, I did not define ROIs. All areas were

collapsed across hemispheres resulting in one ROI per face region.

In addition to the face-responsive ROIs, four size matched, non-

face-responsive control regions were anatomically defined. Control

region one (CTR1) comprised the gray matter of the medial mid-

cingulate closely matching the definition of the cingulate gyrus from

Ng et al (2006). The second (CTR2) and third (CTR3) control

regions represented non-cortical white matter of the corpus

callosum and an area posterior to the pons, covering mostly parts of

the fourth ventricle respectively. Finally, a fourth control region

(OP) represented early visual cortex, comprising a region slightly
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anterior of both occipital poles, medially, covering occipital sections

of the calcarine sulcus of both hemispheres. I hypothesized that

CTR1 would only show significant classification of facial gender

under the alternate hypothesis that the cingulate gyrus contains

gender specific information. CTR2 and CTR3 represented negative

control regions that should not show any classification accuracy for

facial gender and should therefore control for any non-specific

artefacts. Finally, I included early visual cortex (OP) to investigate

the possibility that any successful discrimination of facial gender in

higher visual areas might instead be due to different low-level

image characteristics represented in early visual cortex.

Multivariate pattern classification. Unsmoothed, realigned fMRI data

from the 8 experimental runs were adjusted for the lag in

hemodynamic response function by shifting all block-onset timings

by 3 volumes. Then, data were transformed into “example vectors”

for the classifier (Pereira et al., 2009). The ten volumes of each

block resulted in ten example vectors, containing each voxel in the

ROI. The resulting example vectors were concatenated to form a

matrix whose rows and columns corresponded to category examples

(male or female) and voxels in the ROI, respectively. Data from

each voxel (i.e., each column of the matrix) were then z-normalized

to have zero mean and unit variance. The resulting matrix, together

with a label for each row indicating the stimulus condition was taken

to the next stage.

To determine classification accuracy, only classification with unseen

and independent test data was considered. Thus, test data sets in
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different iterations were always independent of the training data

sets used. I used a leave-one-out cross-validation method to

evaluate the classification accuracy (Mur et al., 2009; Pereira et al.,

2009). Because the data were obtained in 8 separate independent

runs consisting of 20 volumes of each category, each test and

training set consisted of 40 and 280 examples, respectively.

Pattern classification was performed using a sparse logistic

regression (SLR) algorithm (Yamashita et al., 2008). SLR is a

Bayesian extension of logistic regression that combines an

innovative strategy for adaptive, yet unbiased voxel selection with

the conventional linear discriminant analysis. Within every iteration

of the cross-validation SLR carried out a number of nested cross-

validations inside the training set: the training set was divided

randomly in two sections of specified proportion; for a randomly

selected subset of the voxels, the linear classifier was trained with

one section of the data and tested with the other and the selected

voxels were weighted proportional to the accuracy of this

classification. This procedure was carried out 500 times and the

voxels accumulated weights. At the end of the nested cross-

validation, the assigned weight of each voxel was taken as a

relevance factor indicating how informative the voxel was for

classification. Voxels with the highest relevance were then selected

for the actual classification. Supplementary table 2 illustrates the

number of voxels chosen for each ROI. Importantly, this voxel

selection algorithm depended entirely on the training set and was

completely ignorant about and independent of the test set. The
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training and test data from the selected voxels were then passed on

to a conventional linear classifier (Yamashita et al., 2008).

Classification accuracies were averaged across the 8 cross-

validations for each ROI in each observer data assignments. Thus,

for each observer this procedure yielded exactly one prediction

accuracy per ROI, i.e., 40 observations per ROI. I tested for a

significant difference from chance (2 categories = 50% chance) with

a Student’s one-sample t-test, applying Bonferroni correction for

multiple comparisons across ROIs examined. Where Bonferroni

corrected p-values were greater than p = 0.05, they are simply

reported as not significant (n.s.) expect when trending toward

significance. I also repeated testing for a statistical significant

difference with a two-sample t-test against a second null hypothesis

of chance performance as defined by the distribution of

classification accuracy in the three control ROIs, again Bonferroni

correcting the result for multiple comparisons.

Finally, in order to evaluate the probability that the classification

was driven by over-fitting of arbitrary patterns of spatial

correlations in the data, I carried out a shuffle-control test (Mur et

al., 2009). If the assumption that classification is driven by chance

were true, similar results should be obtained if labels indicating the

experimental condition for each example vector were shuffled

randomly. To test this, I ran a separate analysis where labels of the

test examples were re-shuffled for each round of the cross-

validation procedure. The resulting distribution of classification
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accuracy characterized the expected distribution of accuracy under

null hypothesis.

VII.3 Results

VII.3.1 Behavioral results

The behavioral data confirmed that all participants, regardless of

their gender or sexual preference, rated the attractiveness of male

and female faces similarly (Kranz and Ishai, 2006).

VII.3.2 Univariate results

I identified areas of the core and extended systems of the face

network by overlaying the contrast of all faces vs. all scrambled

faces at FWE = .05 onto each individual participants structural

image. Figure 1 shows this contrast for one exemplar participant at

different coronal sections. Figure 2 displays the mean time course

for all ROIs, averaged across participants. Time zero marks the

onset of the 30 second long blocks containing either male or female

faces. Within all areas of the core and extended face network I

found significant responses to face stimuli during the 30 second

presentation, peaking about 6-8 seconds after block onset

consistent with the timing of the haemodynamic response. In

contrast, overall BOLD activity in the control regions (CTR1–3) did

not show evoked responses that corresponded with either the
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onsets or durations of the blocks. BOLD signals in all ROIs were

qualitatively very similar during the presentation of male and female

faces (see Figure 2). To compare any individual differences in BOLD

signal for blocks of female faces vs. blocks of male faces that might

Figure VII-2
Timecourses of the mean BOLD signal changes from all ROIs. Activity of
blocks of female or male faces was averaged over all 40 participants. The
Y axis illustrates the percent signal change in comparison to activity to
scrambled faces. The X axis depicts time in seconds aligned to each block
onset. Each stimulus block was 30 seconds long, indicated by the gray
bar. All ROIs of the core and extended face processing network showed a
clear increase of BOLD activity shifted by the hemodynamic delay. In
comparison, control ROIs, CTR1 to 3, showed no clear activation pattern
in relation to the stimulus blocks. Over all ROIs, activity differences
between blocks consisting of male and female faces were inconsistent
(cyan vs. magenta). Values in black depict the absolute difference
between the two conditions. Across ROIs absolute differences were
between 0.1 to 0.15%, irrespective of timepoint or brain region. Only
CTR3, a non-brain ventricle, showed a dissimilar difference level between
the two conditions, likely to be explained by its increased signal
variance.
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be hidden in these group analyses, I computed the absolute

difference between the two conditions for the entire time course and

each ROI separately. In all ROIs this absolute per-participant

difference between the two face gender conditions was very stable

and was no greater than 0.1% BOLD signal difference at any time

point (black line in Figure 2). A similar value of 0.1% absolute

activity difference was found in the control regions within the brain,

CTR1 and CTR2. Additionally, I computed a Pearson correlation for

each pair of timecourses (male, female) for each ROI and subject,

revealing high correlation between the timecourses of blocks

containing male and female faces in FG, IOG, STS, INS, IFG and

OFC (mean correlation RHO = 0.86) and low correlation between

the same blocks in the amygdala and all control areas (mean

correlation RHO = 49.5) [median RHO per ROI: FG = 0.93; IOG =

0.92; STS = 0.89; INS = 0.77; IFG = 0.8; OFC = 0.85; Amg =

0.65; CTR1 = 0.63; CTR2 = 0.42; CTR3 = 0.28]. Thus, the

univariate analysis revealed highly correlated timecourses to blocks

of male and female faces in FG, IOG, STS, INS, IFG and OFC but a

lesser correlation in the amygdala and control regions.

VII.3.3 Multivariate results

The left panel of Figure 3, left, shows the mean decoding accuracies

(across all 40 participants) for all the ROIs identified as part of the

core and extended face processing system, and all control areas.

Gender could be identified significantly better than chance from

BOLD signals in all three regions of the core network. In the core
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network, the highest accuracy was obtained from the IOG followed

by FG and STS [FG: 53.9%, t(39) = 6, P < 0.001; IOG: 55.2%,

t(39) = 6.6, P < 0.001; STS: 53.2%, t(31) = 4.6, P < 0.001]. In

addition, gender was decoded from BOLD signals significantly better

than chance in three regions of the extended system: Activity

Figure VII-3
Mean decoding performance for male vs. female faces in all ROIs. Left:
Regions of the core (FG, IOG, STS) and extended (IFG, insula, OFC) show
a significant difference from chance performance in predicting the
gender of the presented faces. In the amygdala, however, no significant
gender classification performance was observed. Right: Control regions
consisted of sphere-shaped areas of non-face responsive gray matter,
CTR1, white matter, CTR2, a ventricle, CTR3 and visually responsive
cortex around the occipital pole, OP. No control-ROI shows any above
chance prediction. Additionally, I performed a shuffle-control test (Mur
et al., 2009) with randomly permuting labels for each set of test vectors
in each cross-validation. Like the control ROIs, results of the permutation
test are no significantly different from chance. Together, all control
results confirm the distribution of classification accuracy expected under
null hypothesis.
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patterns from the inferior frontal gyrus (IFG), the insula and the

orbitofrontal cortex (OFC) all permitted decoding of gender greater

than chance [INS: 53.3%, t(29) = 3.3, P < 0.02; IFG: 55.2%, t(34)

= 5.8, P < 0.001; mOFC: 55.2%, t(25) = 5.4, P < 0.001]. In

contrast, BOLD signals from the amygdala (AMG) were not sufficient

to allow for above-chance classification of gender information [Amg:

51.2%, t(21) = 1.4, n.s.].

These data were evaluated collapsing across hemispheres, but it is

well recognized that the ventral visual pathway shows a degree of

functional asymmetry in its responses to faces. To evaluate any

possible differences in hemispheric classification accuracy, I

therefore repeated the analysis in FG and IOG separately for each

hemisphere. When considered separately, right and left FG and IOG

successfully predicted facial gender at similar levels to that seen

when (as above) analyzed together [IOG left: 54.1%, t(37) = 5.5, P

< 0.001; IOG right: 54.5%, t(39) = 5.5, P < 0.001; FG right: 52%,

t(38) = 2.5, P = 0.05; FG left: 53.9%, t(38) = 6.7, P < 0.001].

However, most importantly there were no significant differences

comparing classification accuracies of left and right hemisphere IOG

and FG across all subjects [paired ttest left vs. right: FG: t(37) = -

1.8, n.s.; IOG: t(37) = 0.25, n.s.].

A number of control analyses were performed. Firstly, I attempted

to classify gender information from three control areas that are not

known or highly unlikely to contain gender information (Figure 3,

right). Classification performance was poor in these control ROIs

and did not differ significantly from chance [CTR1: 51.6%, t(34) =
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2.3, n.s.; CTR2: 51.4%, t(34) = 1.6, n.s.; CTR3: 51%, t(34) = 1.5,

n.s.]. Thus our findings of successful classification of facial gender

were specific to the face network.

I also evaluated whether facial gender could be predicted from

patterns of activity in visual cortex. Again, classification

performance was poor and not significantly different from chance

[see Figure 3, right; OP: 52%, t(39) = 2.9, P = 0.07]. This indicates

that successful classification accuracy in regions of the face network

Figure VII-4
Mean decoding performance as a function of the participant’s sexual
preference. The decoding profiles in each group were very similar to the
mean averaged across of 40 participants shown in Figure 2. A separate
ANOVA for each ROI reveals no significant differences between the
groups.
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was not driven by low-level properties of the faces represented in

fMRI signals from early visual cortex.

To evaluate the probability that successful gender classification was

driven by over-fitting of arbitrary patterns of spatial correlations in

the data that were independent of the gender of the faces, I carried

out a shuffle-control test (Mur et al., 2009). I repeated the

classification from all face-responsive ROIs, but this time with

shuffled labels for the test examples. The remaining bars in the left

panel of Figure 3 depict the results of this shuffle-control analysis.

Training the classifier using the same training sets but with shuffled

labels for example vectors confirmed the distribution of classification

accuracy expected under null hypothesis. This control analysis

strengthened the main findings, as it reconfirmed the validity of the

result and the independence of the data used to obtain them. [FG:

49.9%, t(39) = -0.15, n.s., IOG: 50.7%, t(39) = 1.6, n.s., STS:

49.6%, t(31) = -1.1, n.s., INS: 50.3%, t(29) = 0.65, n.s., IFG:

49.9%, t(34) = -0.24, n.s., mOFC: 49.7%, t(25) = -0.55, n.s.,

Amg: 50.1%, t(21) = 0.12, n.s.].

I tested whether decoding the gender of face stimuli depended on

the gender or sexual preference of the participants. Figure 4

displays the decoding results for each group (namely, heterosexual

men, homosexual men, heterosexual women, and homosexual

women) separately. To test for differences between the groups, a

one-way analysis of variance (ANOVA) was performed for each ROI.

However, even when uncorrected for multiple comparisons, all 4

groups of participants showed very similar patterns of classification



220

in all ROIs [group means in brackets (Hetero Men, Hetero Women,

Homo Men and Homo Women), FG: n.s. (54.3, 54.9, 51.3, 55.1);

IOG: n.s. (58.2, 54, 55, 53.8); STS: n.s. (51.5, 51.9, 55.4, 53);

INS: n.s. (53.8, 53.8, 52, 53.1); IFG: n.s. (54.2, 57.4, 54.7, 54.7);

mOFC: n.s. (53.6, 55.2, 56.3, 56.5); Amg: n.s. (51, 51.2, 50.4,

52.7)].

Further, I investigated whether the distribution of gender-

information in the face network varied according to the gender of

Figure VII-5
Decoding performance in different sub-groups of the population of
subjects. Top: male and female participants. Middle: participants
interested in men and participants interested in women. Bottom: homo
and hetero participants. Overall there were no large differences in
decoding performance in any subgroup. A separate student t-test for
each ROI and constellation of groups revealed no significant differences
after correcting for multiple comparisons (see supplementary table 1).
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participants (male vs. female participants), by gender-specific

sexual preference (interested in men vs. women) or by sexual

orientation (homo vs. hetero participants). I compared each pair of

group-results with in each ROI with a two-sample t-test. Results are

Bonferroni-corrected for multiple comparisons. Figure 5 shows

difference graphs obtained by subtracting the results for each of the

subgroup pairs. While the top graph depicts decoding accuracies

between male and female participants, the middle graph shows

decoding accuracies between participants interested in men versus

participants interested in women. Finally the bottom graph displays

accuracies between homo and hetero participants. There were no

significant differences for any group constellations in any ROI (for

detailed statistical test values see Supplementary table 1).

Finally, since the instructions during 3 out of 8 sessions in the

original study were to simply view image of faces and not rate facial

attractiveness, this might conceivably be problematic for the

interpretation of the results as different task demands may affect

face processing. In order to evaluate this possibility, I repeated the

entire analysis for the 5 rating sessions only (excluding the passive

viewing sessions). Supplementary Figure 1 displays the result of

this analysis that replicated the main findings of this study. Thus I

were unable to find any evidence that successful gender-specific

classification was modulated by task performance, at least for

passive viewing and rating tasks. This is consistent with gender

classification being an implicit feature of both tasks.
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VII.4 Discussion

The goal of this study was to identify gender-specific patterns of

activation in the human brain. Using data that were previously

collected for a study identifying the neural correlates of facial

attractiveness (Kranz and Ishai, 2006) across male and female

faces, I mapped face responsive brain areas of the core (fusiform

gyrus (FG), inferior occipital gyrus (IOG) and superior temporal

sulcus (STS)) and extended (amygdala (AMG), insula (INS), inferior

frontal gyrus (IFG) and orbitofrontal cortex (OFC)) face network

(Ishai et al., 2005). I demonstrated that BOLD signals averaged

over these ROIs in response to seeing either female or male faces

was comparable in all of these areas and was not sufficient to

distinguish facial gender. However, using multivariate pattern

analysis, I showed that the local spatial pattern of BOLD signals

from the FG, IOG, STS, INS, IFG and medial OFC all contained

sufficient information to decode gender of observed faces

significantly better than chance. I did not detect, however,

significant gender classification performance in the amygdala, early

visual cortex, and three other control regions. I further confirmed

the specificity of our classification analyses using a shuffle-control

test (Mur et al., 2009). Finally, we did not find any variability in our

ability to classify facial gender according to the demographics of the

study population (specifically, their gender and sexual orientation).

Taken together our findings indicate that, rather than localized to a

single region and despite the fact that I could not find gender-

specific increases in mean levels of brain activity in any single area
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for the face-network, gender information is present in the pattern

information within the core and most regions of the extended face-

network. This result might implicitly herald the possibility that other

aspects of faces might also be identifiable from different regions

within the face network. The present study could not address this

question as only facial gender was manipulated explicitly as a

stimulus property. From our results I conclude that, within the face-

network, gender-information is a highly distributed attribute of

facial perception.

Perception of faces elicits activation within a distributed cortical

network that includes the core and extended regions I focused on in

this study (Haxby et al., 2000; Ishai et al., 2005). Additionally, one

study reported fMRI adaptation effects for facial gender and race

outside this network, specifically in the cingulate gyrus (Ng et al.,

2006). I probed an anatomically defined cingulate gyrus ROI

(CTR1), but did not find any significant gender specific activation

with conventional univariate analysis, or any decoding results

significantly different from chance with multivariate pattern

analysis. However, Ng et al (2006) offered a possible reconciliation

of these two results by pointing out that spatial correlation of

gender specific adaptation effects and evoked activity during face

network localizer sessions was low in their study. More generally, it

should be noted that the present study maximized sensitivity to

detect gender-specific differences within the core and extended face

network by studying regions-of-interest (with appropriate

Bonferroni correction) defined on a per-participant basis according

to individual functional anatomy. Our study therefore cannot
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address the question of whether outside face-sensitive regions there

might exist additional cortical areas that show sensitivity to facial

gender.

I further evaluated whether facial gender could be predicted from

patterns of activity in visual cortex. Classification performance was

comparatively poor and missed significant difference from chance,

however, it was trending towards significance [Figure 3, right]. This

result might indicate a possible influence of low-level stimulus

properties and/or top-down feedback loops affecting the BOLD

signal in early visual cortices during the duration of stimulus blocks.

Assuming the existence of such top-down feedback might also help

explaining the slightly higher classification accuracy results in early

visual cortex as compared to other control regions.

Within the face network, the lateral FG has previously been reported

to play a dominant role within the face network, indicated by

consistent and replicable patterns of activation within this region,

irrespective of face formats, tasks, and experimental conditions

(Kanwisher et al., 1997; Ishai et al., 2000; Grill-Spector et al.,

2004; Kranz and Ishai, 2006). Analysis of effective connectivity

recently revealed that the FG is a major node in the face network

(Fairhall & Ishai, 2007). As the FG provides the major causal input

into the extended system, which processes emotional and social

aspects of face stimuli, and given its pivotal role in face-perception,

one might assume that gender-specific information might be

presented in the FG. Our results, however, suggest that information
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about face gender is a distributed attribute, rather than localized to

one or two regions.

Discriminating the gender of face stimuli is an automatic and

effortless task. Our results suggest that information about face

gender is a distributed attribute, represented in almost all regions of

the face network. Given the evolutional importance of gender

information and its fundamental nature in face processing, it is

plausible that there is no “gender-specific region” in the human

brain, but rather, gender information is a distributed attribute as

our results indicate. This conclusion is further supported by

considering prosopagnosic patients who, despite their profound

inability to recognize faces, exhibit normal patterns of activation in

the FG (Hasson et al., 2003; Rossion et al., 2003), suggesting that

activation in the FG alone is insufficient for face recognition. Taken

together, previous findings and our current result suggest that face

perception depends on integration of information across cortical

regions and, specifically, gender information is a distributed quality

within this network.

Previous studies suggest that, across multiple sensory modalities,

the amygdala is reactive to very simple cues of threat or danger

(Vuilleumier et al., 2003; Whalen et al., 2004). Previous work also

demonstrated that schematic faces including even minimal clues of

threat (i.e. eyebrows in a downward V-shape) (Wright et al., 2002)

are enough to activate threat detection related activity in the

amygdala. Our failure to find evidence for representations of facial

gender in the amygdala cannot rule out the potential presence of
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gender specific information at the level of single neurons, especially

given the established role of the amygdala within the face-network

(Ishai et al., 2004, Ishai et al., 2005). However, as gender

discrimination is not essential for the detection of threat or danger,

is may be reasonable to conclude that gender-specific information

might represented in the amygdala to a lesser degree than in other

regions of the face network.

ERP studies suggest that gender specific processing might occur as

early as 45-85ms after the presentation of faces in face perception

as part of coarse visual categorization and boosted around 200ms

by attention-based gender categorization (Mouchetant-Rostaing et

al., 2000). Unfortunately, Mouchetant-Rostaing and colleagues

(2000) did not conduct source localization and so it is not possible

to determine whether the cortical generators of the ERP effects they

observed might correspond to the cortical loci I identified as

encoding facial gender. In addition, the temporal limitation of fMRI

data acquisition prevents us from effectively comparing the two

studies. Yet, due to this temporal limitation I cannot exclude the

possibility that ROI specific gender-discrimination effects as

described in this study might be influenced by various top-down

feedback loops affecting the BOLD signal during the duration of a

stimulus block.

Despite the relative low temporal and spatial resolution, the large

size of our dataset (n=40) was one of the advantages of our study.

Future studies will determine whether cutting-edge high-resolution

data acquisition sequences would enable higher classification
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accuracies in individual subjects. Additionally, future studies might

consider investigating activation patterns not only in sets of ROIs,

but also in a full brain approach where the signatures of cognitive

thought processes might be expressed as 'brain states' with

distributed activation patterns. However, results presented here

should be seen as achieved despite the limitations of the scanning

procedures of the original study. It was reassuring, that, even

without specifically designed task or stimuli and measuring at the

low temporal resolution of fMRI, the neural representations of face

perception in the face network are sufficient to conclude that gender

information is represented in a distributed fashion in the human

brain.

VII.5 Supplemental Material, chapter VII
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Results comparable to those reported in Figure 3 but now generated

only from rating runs. Overall classification accuracies are slightly

lower than in Figure 3, which might reflect the much smaller

quantity of data analysed. However, the pattern of results across

different areas is highly similar to those in Figure 3. This is an

indirect indication that the different tasks (passive viewing vs.

attractiveness rating) of the original study did not influence the

main result other than by strengthening the statistical power

through more training and test examples [FG: 53%, t(39) = 3.4, P

= 0.002; IOG: 54.4%, t(39) = 4.8, P < 0.001; STS: 52.5%, t(31) =

2.3, P = 0.03; INS: 53.2%, t(29) = 2.8, P = 0.009; IFG: 54.1%,

t(34) = 3, P = 0.005; mOFC: 53.8%, t(25) = 2.5, P = 0.02; Amg:

50.9%, t(21) = 0.73, n.s.].

Additionally, we also repeated classification analysis for the three

passive viewing sessions. One of the difficulties with these sub-

analyses is that the number of sessions per subject is substantially

reduced, thus reducing power compared to the main analyses. With

only 3 independent sessions, classification can only be learned on 2

sessions and tested on the third. Two sessions, however, do not

offer a rich enough dataset for the SLR-classifier to generalize

activity patterns specific enough to allow classification. The

uncorrected results for all face-network ROIS were: FG: 51.7%,

t(38) = 2.2, P = 0.03; IOG: 50.5%, t(38) = 0.78, P = n.s.; STS:

50.8%, t(30) = 0.98, P = n.s.; INS: 51.3%, t(28) = 1.3, P = n.s.;

IFG: 50.8%, t(33) = 0.86, P = n.s.; mOFC: 50.7%, t(25) = 0.82, P

= n.s.; Amg: 49.9%, t(21) = -0.11, P = n.s. These results are not

Bonferroni corrected. Thus, classification accuracies are globally low
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for passive viewing, but this is likely to be due to the significantly

reduced sample size.

While we have confidence that this result is likely due to the

significantly reduced sample size, we did not specifically test this

assumption as the original study only contained only three passive

viewing sessions. Thus, whether this reduced classification result for

the three passive viewing sessions were truly non-task-related

remains to be seen in future studies.

Supplementary table 1:

male vs. female
participants:

participants interested in
men vs. participants
interested in women

homo vs. hetero
participants:

IOG (56, 54.5)
t(38) = 0.91, n.s.

(54.7, 53.1)
t(38) = -1.1, n.s.

(53.9, 56.6)
t(38) = 1.7, n.s.

FG (54.4, 56.1)
t(38) = 1.3, n.s.

(53.2, 54.6)
t(38) = -1.1, n.s.

(55, 52.8)
t(38) = -1.8, n.s.

STS (52.4, 54)
t(30) = -1.1, n.s.

(54.2, 51.8)
t(30) = 1.8, n.s.

(52.5, 53.9)
t(30) = -0.99, n.s.

INS (53.4, 53)
t(28) = 0.21, n.s.

(52.7, 53.8)
t(28) = -0.55, n.s.

(53.4, 53)
t(28) = 0.21, n.s.

IFG (54.5, 56.1)
t(33) = -0.88, n.s.

(54.7, 55.7)
t(33) = -0.55, n.s.

(55.9, 54.4)
t(33) = 0.86, n.s.

OFC (55, 55.7)
t(24) = -0.34, n.s.

(56.4, 54.2)
t(24) = 1.1, n.s.

(56, 54.4)
t(24) = 0.79, n.s.

Amg (51.4, 50.9)
t(20) = 0.32, n.s.

(51.4, 51.1)
t(20) = 0.14, n.s.

(51.7, 50.8)
t(20) = 0.5, n.s.

Complete table of statistical values for t-tests between different

subgroups of the subject population. The first two values always

reflect the group means. All t-test results are Bonferroni corrected
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for multiple comparisons. There were no significant differences

between any of the subgroups in any of the ROIs.

Supplementary table 2

Voxels used:
Mean (std)

across subjects

Successful voxels
Mean (std)

across subjects

Voxels per sphere

IOG 28 (4.4) 12 (3.9) 506

FG 32 (4.8) 15 (4.5) 438

STS 28 (6.4) 15 (5.1) 362

INS 30 (5) 16 (3.9) 438

IFG 29 (3.9) 13 (3.8) 438

OFC 28 (4.4) 13 (3.6) 438

Amg 25 (2.6) 13 (2.9) 362

CTR1 35 (5.2) 16 (4.6) 1012

CTR2 28 (3.8) 14 (4.6) 571

CTR3 32 (4.7) 16 (4.4) 438

OP 29 (3.7) 14 (4.7) 362

Complete table of number of voxels used, successful voxels and

voxels per sphere. Successful voxels were defined as voxels that

where used in minimally 3 cross-validations with above chance

outcome.
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Chapter VIII:

General Discussion

VIII.1 Introduction

The experimental studies outlined in this thesis demonstrate that

feature selective processing in the brain can be studied with

multivariate analysis techniques for fMRI even if features are

represented at a lower spatial scale than the resolution of fMRI.

Conceptually the experimental work in this thesis can be split into

three distinct parts: Part one consists of chapter 3, 4 and 5

investigating the influence of varying load on feature-specific

distractor processing. Part two consists of chapter 6 and

investigates the influence of feature-based attention. I measured

the representation of attended visual features in retinotopic areas

where they were present and attended or not present (but still

attended). Finally, part three is presented in chapter 7 and deals

with the representation of facial gender across a network of face

responsive areas. In this chapter, I will recapitulate the main

findings of these three parts, as well as discuss common

shortcomings, strengths and conclusions for each part and, finally,

debate the scientific significance and impact of these studies. To

finish, I provide an outlook on possible future studies.
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VIII.1.1 Feature specific distractor processing under load

In chapter 3, 4 and 5, I utilized a central task to manipulate

attentional load (see figure III-1) while stimulating the periphery

with either distractor oriented lines or distractor moving dots. Using

this experimental paradigm, I was able to replicate a number of

previous results, namely a behavioral (load-) manipulation with the

central load task (Schwartz et al., 2005), a difference in distractor

related brain activity across early visual cortices and MT (for motion

only) due to this load manipulation (Rees et al., 1997; Schwartz et

al., 2005) and successful feature-decoding of two types of oriented

lines or two types of directions of motions (Haynes and Rees,

2005a; Kamitani and Tong, 2005b, 2005a). Apart from these

replications, results showed a significant main effect of decreased

univariate BOLD signal associated with irrelevant (motion- and

orientation-) distractors in areas V1, V2 and V3. Additionally, I

demonstrated generalization of training data in one load condition

to test data taken from another load condition (cross-condition

decoding). This led to the finding that pooling training data from

multiple conditions for the training part of multivariate pattern

decoding (MVPD) can result in more robust and more reliable

decoding accuracies.

Most importantly, in all three chapters my main hypothesis was a

reduction of MVPD accuracy of the visual feature contained in the

distractor under high load (compared to low load). Yet, orientation-

classification under high load and low load in the central task was

statistically indistinguishable; the same was true for classification
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performance for direction of motion. In other words, while taking

the spatial pattern of activity in early visual cortices into

consideration, multivariate analysis allowed accurate classification

of the neural representation of one of two orientations and motion

directions, but MVPD of visual features represented by the distractor

were not significantly different under high load and low load. This

result was not expected and possible reasons for this lack of a

difference are discussed in great detail in the respective chapters

(see especially chapter 3 and 4).

VIII.1.2 Specific shortcomings and strengths of part one

Chapter 3, 4 and 5 all suffer from the same problem: the main

experimental hypothesis was not confirmed and there is a

distinctive lack of a good, new, interpretation of this result. In other

words, even in hindsight a general alternative hypothesis does not

emerge easily. This might be mainly due to the novelty and the

associated lack of experience with the novel and innovative use of

MVPD as a dependent measure. In recent years, MVPD has become

an accepted and frequently used tool in fMRI-data analysis;

however, to my knowledge, so far there are no other studies that

successfully utilize differences in MVPD performance as a dependent

measure to distinguish between two or more conditions. Instead,

MVPD results are more used in a yes/no approach where a

significant result is determined by significantly difference from

chance (i.e. recent results of this nature include Formisano et al.,

2008; Haushofer et al., 2008; Kay et al., 2008; Mitchell et al.,
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2008; Sumner et al., 2008; Yamashita et al., 2008; Harrison and

Tong, 2009; Serences et al., 2009a). Only one study utilizes MVPD

to create voxel-based tuning curves (Serences et al., 2009b) and

compares the effect of different attentional conditions on these

tuning curves. In short, interleaved with a main experiment, the

authors scan separate fMRI sessions in which a single orientation is

presented on each trial, systematically varied over the full 360º of

orientations across trials. Using multivariate classification, each

voxel in early visual areas results in different classification

performance for each orientation. Serences et al (2009)

demonstrated that performance varied systematically across voxels

according to different proportions of underlying orientation selective

neural tissue. However, there are vast differences between

paradigm and analysis in chapter 3, 4 and 5 and Serences et al

(2009) which makes it hard to take results from one study to inform

the other. Consequently, there is a lack of prior results, along with

their interpretations, in order to precisely evaluate the result (or the

lack thereof) presented here.

As an illustration, let me assume the main hypotheses in chapter 3,

4 and 5 would have been fulfilled. It could be argued that significant

differences between high and low load conditions would not

necessarily have been a great deal easier to interpret. Assuming

significant differences in MVPD performance for irrelevant visual

features as a function of central load, what conclusions would this

theoretical result yield? The straightforward explanation of the

result would be that increased attentional load had decreased the

‘perceptual quality’ of a visual feature. Yet this conclusion seems
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somewhat premature as perception of the distractor was not

actually measured (it was irrelevant and ignored). Thus, instead of

a straightforward interpretation, further research would be

necessary. However, what would this theoretical result on its own

mean? Due to the lack of experience with MVPD results of ignored

stimuli this question would potentially still remain elusive. However,

a significant difference would have certainly hinted towards the

possibility that the underlying neural activity of distractors was

modulated not only in quantity (univariate result) but also in

(feature-specific) quality (multivariate result). Yet, returning to

reality and the actually observed null-result of no difference

between decoding accuracies between different load conditions, it is

important to note that this null-result does not exclude the

possibility of a qualitatively altered neuronal representation due to

the different load conditions. Additionally, a null-result of no

significant difference does also not exclude a possible difference

between the underlying neural representations of the visual features

measured in the two load conditions.

However, assuming the results from chapter 3, 4 and 5 are correct

and meaningful, how can be interpreted? In chapter 2, I reviewed

the literature and the accepted hypothesis why multivariate

classification of BOLD data works at all (for detailed discussion see

chapter 2 and 4; Albright et al., 1984; Malonek et al., 1994; Tootell

et al., 1995; Shmuel and Grinvald, 1996; Weliky et al., 1996; Tolias

et al., 2001; Nishida et al., 2003; Seiffert et al., 2003; Haynes and

Rees, 2005a; Kamitani and Tong, 2005b). I concluded that overall

BOLD signal changes did not directly correspond to multivariate
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results, thus, the selected voxels did not reflect trends in the overall

BOLD-signal. Load-decoding results from chapter 3, 4 and 5 further

corroborate this conclusion. Moreover, I speculated that selected

voxels represent brain activity that was (strongly) biased towards

the basic visual feature that was tested for. If the feature was

represented in a biased way in some voxels, these were found by

ARD and, hence, classification was successful. In the context of the

results of chapter 3, 4 and 5, some voxels in V1-V3 and MT

unequally represent either different directions of motion or

orientations. Thus, it seems relatively certain that the existence of

biased voxels is due to the existence and anisotropic distribution of

feature selective columns in early visual areas and area V5/MT.

For the interpretation of the results in chapters 3, 4 and 5 this

creates an interesting scenario: It is possible that load might affect

the overall level of activity (i.e. the neuronal firing rates) without

actually altering the tuning of those neurons. This would explain

why MVPD accuracy was maintained, even under overall reduced

activity levels (firing rates). Hence, those voxels biased by the

direction of motion in or the orientation of the distractor remained

equally biased irrelevant of the central load condition. This result

must be considered carefully when trying to gain insights into the

neuronal organization of human early visual cortex. By no means

has it presented conclusive evidence for any specific neuronal

organization; however it still represented a furthering of our

understanding of the nature of attentional effects in the early visual

cortex. As a consequence, the results of chapter 3, 4 and 5, under
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this new interpretation, add to the understanding of the effects of

attentional load on visual representations in general.

In conclusion, many behavioral measures as well as overall

measures of the BOLD signal decrease under high load (Lavie and

Fox, 2000; O'Connor et al., 2002; Pessoa et al., 2002; Jenkins et

al., 2003; Lavie and de Fockert, 2003; Lavie, 2005; Schwartz et al.,

2005; Lavie, 2006; Forster and Lavie, 2007, 2008). However, the

underlying, detailed, visual feature specific representation of an

irrelevant distractor might remain relatively unchanged by varying

attentional load towards a central task. This speculation would

mean that the attentional demands of a central task might be

somewhat irrelevant for this feature specific, neuronal

representation. Considering the similar results for the basic visual

features of orientation and direction of motion, these results might

be replicable with other basic visual features such as color or maybe

even luminance – of course so far limited to feature specific neural

information as read out with MVPD. However, the underlying neural

causes of this conclusion are relatively open and remain largely

speculative.

VIII.1.3 Scientific novelty and significance

Experiments in chapters 3, 4 and 5 yielded a number of novel

scientific conclusions and significant findings. Firstly, they represent

a structured series of studies with only small changes in

experimental paradigm. Thus, any conclusions derived on the basis
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of all three studies are potentially highly robust and reliable: It thus

seems likely that neural representations of visual features of any

irrelevant peripheral distractor, when measured by MVPD, are not

influenced by the amount of attentional load demanded in a central

task. Chapter 3, 4 and 5 demonstrate this finding for the visual

features of orientation and direction of motion. Consequently,

neural representations of other visual features, such as different

colors or spatial frequencies, might also remain unchanged by

varying attentional load of a central task. However, these

conclusions remain speculative and await formal testing.

Secondly, from results in all three chapters, I conclude that pooling

training data across conditions was highly beneficial for MVPD

reliability and robustness. More general, I conclude that more

training data lead to a more accurate voxel-selection and, in turn,

to a more accurate decoding performance. Thus, future studies

utilizing MVPD to distinguish between two or more conditions

containing the same or similar visual features should consider

pooling training data of both conditions, training on this enlarged

data set, but-testing the different conditions separately.

Thirdly, previous studies have only ever reported similar

multivariate findings for attended motion directions and orientations

(Haynes and Rees, 2005a, 2005b; Kamitani and Tong, 2005a,

2005b, 2006; Serences and Boynton, 2007b, 2007a). Results from

chapter 3, 4 and 5 extend these findings to ignored, unattended

visual features. This extension is valid under high and low load in

the attended task. The finding that MVPD also provides robust
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decoding for unattended stimuli, even under high load is of scientific

significance in so far as it could provide the basis to further MVPD-

studies of unattended stimuli.

Fourth, chapter 4 and 5 demonstrate a previously unreported

significant main effect of decreased BOLD signal associated with an

irrelevant (motion-) distractor in areas V1, V2 and V3. This is while

also replicating previous results of an interaction of decreased

motion (vs. no motion) under high (vs. low) load in V5/MT. Thus,

this finding fills a gap in the knowledge and is therefore of scientific

significance. Taken together with results from orientation (chapter

3) and checkerboards (Schwartz et al., 2005), it seems likely that

increased attentional load in a central task decreases distractor-

related BOLD activity in general. However, again, this conclusion

remains speculative until it is formally tested.

VIII.1.4 Conclusions and future directions from part one

Experimental studies in chapter 3, 4 and 5 of this thesis do not have

a clear cut main conclusion. Various results within the chapters

provide evidence towards conclusions and novel findings (see

above) and the replications of previous studies strengthen the

validity of these previous findings. Yet, the null-result for the main

hypothesis in all three chapters was a disappointment due to the

non-informative character of null-results and the lack of an

alternative hypothesis. However, it seems likely that, the underlying

visual feature specific representation of an irrelevant distractor
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might remain relatively unchanged by varying attentional load

towards a central task, despite overall changing activity levels. This

specific interpretation awaits further testing.

Very recently, the normalization model of attention (Reynolds and

Heeger, 2009) received much international acclaim. The theory

proposed an elegant solution to the well known contradiction

between the interaction between attention and visual stimulus

contrast (see below for details). In search of new interpretations of

the results from part one of this thesis, new theories like this might

promise new insights. However, before jumping to conclusions it is

important to notice that the normalization model of attention makes

specific predictions for the neural representation of attended stimuli.

This stands in contrast to the experimental results of chapter 3, 4

and 5 in which the focus of a participant’s attention was towards a

central task but the results of all three studies were derived from

unattended, irrelevant, distractors. As such, the normalization

theory of attention does so far not make clear predictions towards

the neural representation of irrelevant distractors. A future direction

of this research might thus be to extend and unify existing theories

like the normalization theory of attention (Reynolds and Heeger,

2009) and the load theory of attention (Lavie et al., 2004) to

include aspects of distractor related activity on a feature-specific

level on neural representation.
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VIII.2 The influence of feature-based attention on

unstimulated areas of the visual field

Part two of this thesis comprises chapter 6. It presented a study in

which participants were presented with an initial 8 second decision

period, followed by a 30s experimental block. At the beginning of

the initial decision period, participants were instructed to decide, at

random, between attending either a 45º or 135º oriented lines

during the main task and hold their decision in mind. Then, during

the main task participants attended the chosen set of oriented lines.

The oriented lines appeared in a circular region in one visual

quadrant only while all other visual quadrants displayed nothing but

the medium gray background. Using multivariate decoding, I was

able to demonstrate that BOLD activity patterns within the

representation of the stimulated patch contained spatial activity

patterns that could distinguish the two attentional conditions

significantly better than chance. This replicated a previous finding

that feature-based attention had a modulatory effect on underlying

neural activity in early visual cortices (Kamitani and Tong, 2005b),

however now, for stimuli contained entirely within one quadrant of

the visual field.

Further, I found significantly different spatial activity patterns for

the two feature-based attentional conditions across early visual

areas V1, V2 and V3 even after excluding any areas of cortex that

could potentially be spatially related to the stimulated area. I thus

show that, in humans, attending to a particular specific feature
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(here orientation) specifically modulates feature-selective units

across the entire visual field independent from spatial attention.

This modulation can be measured with fMRI and was found in all of

early visual cortex areas V1, V2 and V3.

Investigating an 8 second period preceding the main task, during

which participants had to hold a decision in mind, I demonstrated

that BOLD activity from early visual cortices during that delay

period were sufficient to decode which orientation a participant

subsequently attended. Thus, these activity patterns contained a

representation of the behavioral decision that a participant had

made and was about to execute.

VIII.2.1 Specific shortcomings and strengths of part two

One previous study has investigated the influence of feature-based

attention using multivariate pattern recognition techniques, but has

some important methodological shortcomings. Serences & Boynton

(2007a) showed that allocating attention to one or the other of the

two superimposed motion-surfaces to a stimulated patch

represented in retinotopic visual areas of the contralateral

hemisphere produced a differential feature-specific pattern of

activation in a corresponding patch in ipsilateral retinotopic cortex

representing an unattended patch, even when the second patch had

received no stimulation (Serences and Boynton, 2007a). The

authors claim to have demonstrated the influence of feature-based

attention. However, as discussed in detail in chapter 6, this study
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has numerous major shortcomings like uncorrected-for multiple

statistical tests, reporting areas without observing any significant

result (notably V1), incoherence of results with stimuli present and

absent and potential mis-definition of area V5/MT. Therefore it

remained elusive whether feature based attentional modulations

could be measured with fMRI in early visual cortices.

In chapter 6, I demonstrated that attending to one of two

overlapping orientations elicits differential BOLD activation patterns

at the spatially attended location, at size-matched locations in other

parts of the visual field and, in fact, at all other locations of the

visual field as well. This showed that attending to a particular

orientation in one location of the visual field specifically modulates

orientation-selective units across the visual field – a much more

general result than that previously demonstrated. The most likely

explanation seems that the underlying neuronal populations in early

visual cortices representing a particular visual feature, irrespective

of retinotopic location, are modulated by feature-based attention.

Moreover, such modulation can be identified even in retinotopic

areas representing parts of the visual field that never receive

stimulation. This result nicely parallels findings in the realm of

spatial attention where anticipatory response modulations have

been observed before stimulus onset (i.e. in the absence) of visual

stimuli within the receptive field (Luck et al., 1997; Womelsdorf et

al., 2006). However, importantly, during stimulation, spatial

attention seems to be limited to the stimulated region (but

potentially spreads across different features), however results from

chapter 6 seems to indicate that feature-based modulation remain
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intact across spatial locations (but are most likely focused on the

attended feature). In the context of chapter 6, this result

strengthens the hypothesis that a truly spatial-stimulus-

independent feature-specific modulation was measured by MVPD

fMRI.

A second potential limitation is very similar to the first one:

Recently it was argued that the representation of perceptual choice

between two opposite motion directions is contained in the pattern

of BOLD activity of hMT+ (Serences and Boynton, 2007b). Thus, as

was the case for the first set of results (above), a potential

shortcoming of (decision-) results in chapter 6 could be that they

could be perceived as not novel, but to replicate a previous finding

with a different set of stimuli. However, as discussed in detail in

chapter 6, the result by Serences and Boynton (2007b) was

subsequently discussed as questionable (Kaul and Bahrami, 2008)

as the experimental paradigm utilized did not control for the

possibility that participants simply attended more to one direction.

Should this be the case, the result by Serences and Boynton

(2007a) would be a replication as it would have measured feature

based attentional modulation in the very same hMT+ area that the

authors showed similar modulations in the earlier study along with

all of it’s own shortcomings as discussed above and in chapter 6

(Serences and Boynton, 2007a). Kaul and Bahrami (2008) further

suggest that this alternate explanation would also eradicate the

perceived differences between the results by Serences and Boynton

(2007b) and monkey studies using similar experimental procedures

(Shadlen and Newsome, 2001; Williams et al., 2003).
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VIII.2.2 Scientific novelty and significance

For the first time, results in chapter 6 show that attending to a

particular specific orientation (feature) specifically modulates

orientation-selective (feature-selective) units across the entire

visual field as measured in multiple regions of early visual cortex:

V1, V2 and V3. The results demonstrate the independence of

feature-based attention from spatial attention parallel to their

independence proposed in monkeys (Treue and Martinez Trujillo,

1999; Martinez-Trujillo and Treue, 2004).

Additionally, results in chapter 6 demonstrate for the first time that

a behavioral decision is represented in early visual areas before

participants receive any visual information. As a consequence, I

provide evidence that feature-based attention influences visual

cortices in association with the formation of a behavioral choice,

even before any attentional selection has occurred. Thus, as

humans form behavioral decisions to attend to this or that feature

(here orientation, but similar effects are likely for color, direction of

motion, shape, facial gender and many more) their earliest visual

cortices may automatically adapt to these decisions independently

of whether the attended feature is presently perceived or in the

focus of visual attention.

Results of this part of my thesis are consistent with key

assumptions in a recently published theory of attention. The
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normalization theory of attention (Reynolds and Heeger, 2009)

elegantly solved the well known contradiction between the

interaction between attention and visual stimulus contrast. In short,

combining manipulations of contrast and attention, studies have

shown that attention causes changes in either “contrast gain” or

“response gain” (for review see Reynolds and Chelazzi, 2004;

Carrasco, 2006). Response gain means that the neural responses

are increased multiplicatively by applying a fixed “response gain”

factor - thus, at any stimulus contrast attention multiplies the

neural response to make it larger. Conversely, contrast gain means

that attention allows lower contrast stimuli to be processed ‘as if’

they would be of higher contrast - thus, attention shifts the neural

responses, rather than multiplying them, so that responses are

larger for some but not all contrasts. Evidence consistent with both

models has been empirically demonstrated by direct recording of

neural responses in animals, and behavioral measurements in

humans (e.g. Ling et al., 2009). Consequently, strong support

exists for both of the models despite their contradictory nature,

resulting in an impasse in the field of visual attention research.

The normalization model of attention elegantly solves the above

contradiction by making the influence of attention dependent on the

size of the stimulus and the spread of the ‘attention field’. The

attention field is a theoretical concept that represents how

attentional feedback signals affect stimulus-evoked responses in

visual cortex. According to the size of the attention field relative to

the size of the stimulus, a switch from contrast to response gain is

predicted. A review of previous research showed that studies
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demonstrating contrast gain may have encouraged subjects

(humans and animals) to utilize a large attention field, while studies

demonstrating response gain may have encouraged a small

attention field.

Importantly, the normalization model of attention builds upon the

assumption of independence between feature-based and spatial

attention. Specifically, the theoretical concept of the attention field

relies on the fact that visual features and spatial location are

orthogonal factors. Notably, for feature-based attention as explored

in chapter 6, the theory predicts that attending to a certain feature

will modulate brain activity regardless of spatial location or

retinotopic representation. Results in chapter 6 demonstrate this

key assumption of the normalization model of attention. As a

consequence, the normalization theory of attention and results

presented in chapter 6, both gain scientific significance by being

mutually supportive.

VIII.2.3 Conclusion from and future directions for part two

Results of chapter 7 are in good agreement with results from

comparable studies from single cell monkey electrophysiology. This

demonstrates how both approaches can inform each other and how

they can and should be combined to answer new questions.

Findings from this study help bridge the gap between previous

electrophysiological recordings in monkeys and studies of human

perception. By using functional imaging and multivariate decoding, I
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demonstrate that feature-based attention modulates spatial

patterns of activity in the early human visual cortex. The results

further demonstrate the independence of feature-based attention

from spatial attention parallel to their independence proposed in

monkeys and humans (Treue and Martinez Trujillo, 1999; Martinez-

Trujillo and Treue, 2004; Reynolds and Heeger, 2009). Thus, our

results illustrate that feature-based attention acts to selectively

enhance specific features in our visual environment resembling the

currently attended set of features. This might potentially occur at

the expense of information about less relevant aspects or features.

However, this study also opens up new questions, for example how

integration of the various types of attention identified so far (e.g.

spatial and feature-based but also object or surface-based

attention, etc.) might occur at the level of single neurons as well as

at the level of BOLD activation patterns.

As a second result, this study presents evidence that a behavioral

decision can be measured reliably in an early visual area. It thus

shows an involvement of early visual cortices in behavioral decisions

without these visual features necessarily visually present at the time

a behavioral decision is formed. While this study noticeably

demonstrates this involvement, further research is necessary to

determine the exact role of early visual cortex modulation due to a

behavioral decision. For example early visual areas might play an

active role in the determination of a behavioral choice, or, early

visual areas receive feedback input, modulating their activity as

soon as a decision has been formed in a higher area, or, alas, a
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combination between the two scenarios. Further research should

investigate the exact role of this involvement.

VIII.3 Facial gender representation in the human brain

Part three of this thesis comprises chapter 7. The study presented

in chapter 7 sought to uncover differential brain responses

associated with viewing the gender of face stimuli. Using data that

was previously collected for a study looking at facial attractiveness

ratings (Kranz and Ishai, 2006), I mapped face responsive brain

areas of the core (fusiform gyrus (FG), inferior occipital gyrus (IOG)

and superior temporal sulcus (STS)) and extended (amygdala

(AMG), insula (INS), inferior frontal gyrus (IFG) and orbitofrontal

cortex (OFC)) face network (Ishai et al., 2005). I demonstrated that

BOLD signals averaged over these ROIs in response to seeing either

female or male faces was comparable in all of these areas and was

not sufficient to distinguish facial gender. However, using

multivariate pattern analysis, I showed that BOLD signals from the

FG, IOG, STS, INS, IFG and medial OFC all contained sufficient

information to decode gender of observed faces significantly better

than chance. In the amygdala and four control regions, however,

significant gender classification performance was not detected. I

explored the data for any differences in gender classification

between different subgroups (home or hetero women and men)

within the participant population. However, I did not find any

significant differences in gender decoding accuracy as a function of

the participant’s gender (men vs. women) or their sexual
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orientation (hetero- vs. homosexual) or between participants

interested in men versus participants interested in women.

VIII.3.1 Shortcomings, strengths and scientific

significance of part three

One potential shortcoming could be a seeming mismatch between

results in chapter 7 and a previous study reporting fMRI adaptation

effects for facial gender and race outside the face network,

specifically in the cingulate gyrus (Ng et al., 2006). To address this

issue, I probed an anatomically defined cingulate gyrus ROI, but did

not find any significant gender specific activation with conventional

univariate analysis or any decoding results significantly different

from chance with multivariate pattern analysis. However, mediating

between the two results, Ng et al (2006) pointed out that spatial

correlation of gender specific adaptation effects and evoked activity

during face network localizer sessions was very low in their study.

A further potential problem lies within the face network literature

itself: The lateral FG has previously been reported to play a very

dominant role within the face network, indicated by consistent and

replicable patterns of activation within this region, irrespective of

face formats, tasks, and experimental conditions (Kanwisher et al.,

1997; Ishai et al., 2000; Grill-Spector et al., 2004; Kranz and Ishai,

2006). An alternate hypothesis concerning gender processing might

therefore have localized gender processing to the FG, thus

strenghening the significance of the FG, alongside the IOG, within
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the face network. However, our results demonstrate that

information about face gender is a distributed attribute, rather than

localized to one or two regions. Unfortunately, the temporal

resolution of fMRI cannot address whether this distribution of facial

gender information occurs through simultaneous activation of the

network or a more cascade-like pattern of activation which could

describe multiple levels of face processing. However, a study by

Fairhall and colleagues (2007) might suggest one possibility: in that

study the authors argued that the FG provides the major causal

input into the extended system, which processes emotional and

social aspects of face stimuli (Fairhall and Ishai, 2007). Accordingly,

in that study emotional faces increased the effective connectivity

between the IOG, FG, and the amygdala, whereas famous faces

increased the effective connectivity between the IOG, FG, and the

OFC. Thus, dynamic alterations in multiple regions of the face

network depend on aspects of the task and face stimuli used.

Discriminating the gender of face stimuli is an automatic and

effortless task. My results demonstrate that information about face

gender is a distributed attribute, represented in almost all regions of

the face network. Given the evolutional importance of gender

information and its fundamental nature in face processing, it is

perhaps plausible that there is no “gender-specific region” in the

human brain, but rather, gender information is a distributed

attribute as our results indicate. This conclusion is further supported

by considering prosopagnosic patients who, despite their profound

inability to recognize faces, exhibit normal patterns of activation in

the FG (Hasson et al., 2003; Rossion et al., 2003), suggesting that

activation in the FG alone is insufficient for face recognition. Taken
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together, previous findings and my current result suggest that face

perception depends on integration of information across cortical

regions and, specifically, gender information is a distributed quality

within this network.

Previously, ERP studies suggested that gender specific processing

might occur as early as 45-85ms in face perception as part of

coarse visual categorization and boosted around 200ms by

attention-based gender categorization (Mouchetant-Rostaing et al.,

2000). Findings from chapter 7 significantly further these initial

insights, despite the low temporal resolution of fMRI and even

without specifically designed task or stimuli.

VIII.3.2 Conclusion and future directions of part three

The principal conclusion of part three of this thesis is that, rather

than localized to a single region, gender information seems to be a

distributed attribute of face perception, represented across the core

and most regions of the extended face-network. Conventional

univariate analysis left an incomplete picture about the

representations of specific features of face processing in the human

brain. Chapter 7 is a demonstration that specific aspects of face

processing can be explored with MVPD. Further research might

measure the brain pattern response to different facial aspects like

race, mood, age, beauty and similar attributes to get a complete

picture of what aspects of face perception is computed in which

regions of the brain.
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Another possible direction for future research could be to combine

insights from chapter 7 with the use of more natural face stimuli

(Fox et al., 2008) to get better insights into the underlying neural

representation of working memory. For example, such a future

experiment could investigate dynamics of free viewing, cued recall

and free recall. One possibility could consist of a distinctive video-

clip with two or more different characters. A possible example could

be a sequence between two characters in two locations of a

standard TV-program. Participants would be required to watch the

sequence multiple times while being scanned with fMRI. Then, in a

further session, subjects could be cued towards attentively

remembering certain aspects of the movie (cued recall). This could

be achieved with specific questions that force subjects to think hard

about a certain character. To avoid visual confounds, cueing could

be visual or auditory. Participants could then be instructed to freely

remember any details of the movie, indicating what they are

remembering during yet another scan (free recall). In a final session

subjects might see a completely new sequence involving the same

characters and places.

Using MVPA and on the basis of findings from chapter 7, I

hypothesise that it would be possible to decode what participants

saw during free viewing to a highly specific level (such as which

character but at least male/female). Then, on the basis of these

brain activation patterns, I hypothesize it could be possible to

discriminate which aspect of the movie (e.g. which character) has

been questioned for during the cued recall session. I further
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hypothesize that it would be possible to predict what subjects freely

recall on the basis of brain activity alone. Finally, I speculate that it

will be possible to predict what subjects saw during the final session

on the basis of brain activity of previous sessions.

Potential results from such a proposed study would contribute to the

understanding of face-specific visual perception, our understanding

about the relationship of viewing vs. remembering (where in the

brain are activation patterns preserved, where not?) and finally our

understanding of freely recalling information. For the last point,

especially, my hypothesis is that specific brain activation patterns

will become eminent before subjects consciously report

remembering a certain person or place.

VIII.4 Final conclusion and closing remarks

In this thesis, I explored basic questions about visual processing,

with one central question in mind: What are the current limits of our

knowledge of brain activity underlying vision and can I further this

knowledge? I have focused my experimental work around a

combination of currently unknown questions about vision that can

be explored, at least in part, with multivariate pattern decoding.

The reason for this partly methodological focus was the heavy time-

investment in the development of the MVPD-toolbox (see chapter

2). The experimental results in this thesis demonstrate that feature

selective processing in the brain can be studied with MVPD. This is
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true despite or especially when features are represented at a lower

spatial scale than the spatial resolution of fMRI. As such, this thesis

is therefore a statement suggesting the independence of MVPD from

conventional fMRI analysis. Both techniques are complementary in

addressing the same question: What can I infer about the

underlying neural representation from an fMRI-signal? Work in this

thesis has shown that in the visual system and beyond fMRI can be

used as a tool to discover an anisotropic distribution of feature-

based processing. As a consequence, MVPD is a powerful tool in

identifying brain structures that compute a certain (visual-) feature.

Having discussed the empirical works described in this thesis, I

think the most useful question for me to ask at this point is: in what

way does the study of feature-specific neural processes makes me

think differently in my understanding of the human brain in general

or the visual system in particular? In my opinion, it seems likely

that there will always remain gaps between the understanding of

single cellular processing to workings of a small neuronal

populations to the ‘activity’ difference recoded in relatively large

spatial areas of the brain, like voxels. The reason is the seemingly

limitless complexity of the human brain, yet it is this seemingly

limitless complexity which makes the human brain so fascinating!

Results in this thesis are directly furthering our understanding of the

neuronal processes underlying BOLD activity in voxels as measured

by fMRI. They are therefore part of many current studies unraveling

the workings of the brain every day a bit further. The study of

neuroscience as a whole will probably never come to a final truth
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about the human brain – however this is probably just another

aspect of being human.
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