
An Astrobiological Study of High

Latitude Martian Analogue

Environments

A thesis submitted for the Degree of Doctor of

Philosophy

By

Claire Rachel Cousins

University College London

Department of Earth Sciences

April 2010



1

I, Claire Rachel Cousins confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm that this

has been indicated in the thesis.



Abstract

2

ABSTRACT

The search for life on Mars is in part reliant on the understanding of Martian

environments, both past and present, in terms of what life may inhabit these

environments, how this life may be preserved in the rock record, and how this

rock record may be detected during future missions to Mars. In particular, the

upcoming European Space Agency mission ‘ExoMars’ has the primary aim to

identify evidence of past or present life on Mars, and the work presented here is

carried out within this context.

Volcanism is a geological process common to both Earth and Mars, and this work

sought to conduct a multidisciplinary astrobiological study of terrestrial volcanic

and associated hydrothermal environments that exist geographically at high

latitudes. Specifically, subglacial basaltic volcanic environments were explored in

terms of phylogenetic diversity, preservation of biosignatures, and habitability

under Martian conditions. Additionally, these and other volcanic environments

were utilised in the development and testing of the Panoramic Camera – an

instrument that will form an integral component of the ExoMars rover

instrument suite.

Results presented within this thesis demonstrate that subglacially erupted lavas

provide a habitat for a diverse bacterial community, and that when such a

community is subject to present-day Martian analogue conditions, survivability

is significantly enhanced when a simulated subglacial volcanic system (i.e. heat

and ice) is present. However, the generation of bioalteration textures – a

biosignature common to glassy basaltic lavas – appears to be less common in

subglacially-erupted lavas than their oceanic counterparts. Lastly, this work

demonstrates the ability of the ExoMars PanCam in the detection of

astrobiological targets, and shows the importance of utilising Martian analogue

terrains both for biological studies, and also for testing rover instrumentation in

preparation for upcoming missions.
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CHAPTER 1

INTRODUCTION

This thesis is focused upon a central theme of utilising terrestrial environments

as analogues of those environments believed to have existed on Mars, either in

the past or at this present day. This is done with the aim of furthering our

understanding of the theoretical habitability of Martian environments based on

experimental and observational geomicrobiology, and of helping to develop and

test actual Martian rover instrumentation that will be used to search for

evidence of life on Mars. This work therefore is strongly multi-disciplinary, and

this chapter will introduce the key concepts, techniques, and existing work that

are relevant to this thesis.

Astrobiology as a subject in its own right is discussed first within the context of

Mars, and this section will review the scientific understanding of why Mars in

particular is of such significant interest in astrobiological exploration. This

includes the similarity between the Earth and Mars, existence of liquid water,

and the potential range of habitable environments where Martian life could

survive. The environments studied in this work are specifically associated with

volcanism, a process widespread across Earth and Mars, and indeed many other

locations in the Solar System, As such, volcanic environments of relevance to

Mars are reviewed here in the depth.
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1.1. Astrobiology

1.1.1 The Science of Astrobiology

The field of astrobiology aims to determine the origin, evolution, and distribution

of life throughout the Universe. As a result of this considerably broad scope, it is

an inherently interdisciplinary subject, drawing from the well-established

sciences of biology, geology, chemistry, planetary science and astronomy.

Research at the interface of these scientific fields provides the astronomical and

planetary context in which habitable conditions form, the geological conditions

that allow life to arise, and the ecological and biological interactions that make

survival and evolution possible. Despite our advancing understanding of the

planetary bodies both within, and outside, our solar system, to our knowledge

the existence of life remains an entirely unique feature of Earth, and will remain

so until the unambiguous detection of either extinct or extant life on another

planetary body. One of the main drivers for recent astrobiological research has

been the discovery of life thriving in environments previously considered entirely

hostile to life, and that these so-called ‘extreme’ environments are analogous to

those identified on other planetary bodies. Mars in particular is notable in its

apparent similarity to some of these extreme environments on Earth, and as a

result has been of considerable astrobiological focus. Habitable environments

that are hypothesised to have existed on Mars include impact-induced

hydrothermal systems (Newsom et al. 2001); deep subsurface volcanic

environments (Boston et al. 1992); endolithic environments (Walker & Pace

2007); subglacial volcanoes (Chapman 2003); saline lakes (Mancinelli et al.

2004), and permafrost (Gilichinsky et al. 2007).

Until human space exploration becomes widely feasible, rover-based exploration

of Mars will remain the most important activity for understanding the detailed

geological and biological history of the planet. Some of the most significant and

conclusive discoveries in planetary exploration have resulted from in-situ

analysis using instrumentation onboard landers. The very first successful lander

mission to Mars was the USSR Mars 3 mission (landed 1971). This was swiftly

followed by the NASA Viking landers (landed 1976), which were famous for their

on-board biological experiments. The NASA Pathfinder mission followed (landed

1997), and this pioneered the use of rover technology. Missions since have, like

Viking, had an underlying astrobiological objective. The NASA Mars Exploration
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Rovers (MER) Spirit and Opportunity (landed 2004) are one of the most

successful missions to date, and have revealed a great deal about the planet’s

geological history and potential for past habitability. Rather than carrying out

direct biological experiments as Viking did, these rovers were designed to be

‘geologists’, and through gathering geological evidence of the planets

environmental history, they provide data to assess the potential for life on Mars

through the identification of habitable conditions. Likewise, the recent NASA

Phoenix polar lander (landed 2008) was sent to detect and analyse water ice in

situ at the Martian surface, and to assess whether Mars contains the essential

ingredients for life, but not to directly search for evidence of life itself. The ESA

Beagle2 lander (launched 2003) was a UK-led mission which aimed to carry out

the next direct search for life since the Viking mission. Sadly this mission was

lost, and the search for life on Mars now lies with the next two missions planned

for Mars within the coming decade: The NASA Mars Science Laboratory

(planned launch 2011), and the ESA ExoMars mission (planned launch 2018).

Both these missions have life detection as part of their key scientific objectives.

1.1.2 Mars habitability past and present

One of the primary reasons why Mars is of particular astrobiological interest is

the widespread evidence suggesting past, or even present, habitable conditions.

Water in particular is widely regarded to be the most significant factor regarding

the habitability of any given environment, and there is a large amount of data

that appears to show water was both widespread and plentiful on Mars in the

past, leading to the formation of huge fluvial networks within the most ancient

(Noachian) Martian terrains (Baker et al. 1991; Carr 1996, Carr 1987). This

water is now absent from the Martian surface, giving rise to the dry and dusty

surface environment that we see today. Presently, most water is locked away as

ice at the poles, although a considerable quantity is believed to also exist within

the subsurface, forming an extensive global cryosphere (Mitrofanov 2005, and

references therein; Hiesinger et al. 2000; Carr 1987). In particular, the Phoenix

lander sent back images showing polygonal ground, highly characteristic of

permafrost terrains (Smith et al. 2009; Mellon et al. 2008a,b), and also close up

images of ice deposits just several centimetres below the surface (Smith et al.

2009).
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In addition to geomorphological evidence of past liquid water, the results of the

hyperspectrometers OMEGA (on board the ESA Mars Express obiter) and

CRISM (on board the NASA Mars Reconnaissance Obiter) currently orbiting

Mars have revealed a large diversity in surface mineralogy and lithology

(Mustard et al. 2008; Bibring et al. 2005). Hydrated minerals on Mars have now

been defined into three distinct hydrated mineral terrains. First and oldest are

the phyllosilicates, which are found in early Noachian terrains (Mustard et al.

2008; Bibring et al. 2006). These are predominantly Fe, Mg and Al- rich

phyllosilicates that often occur as alternating lithologies (Loizeau et al. 2007).

Secondly are the sulphates, notably gypsum and kieserite amongst others

(Gendrin et al. 2005; Bibring et al. 2005). These span the Late Noachian and

early Hesperian terrains, and it has been suggested they indicate a change from

neutral pH conditions to more acidic environments (Bibring et al. 2006). In

contrast are the recently discovered deposits of hydrated silica on Mars, thought

to be the youngest of the three hydrated mineral lithologies and potentially

indicative of non-acidic conditions (Milliken et al. 2008). Likewise, small isolated

deposits of carbonates in the Nili Fossae region have been detected (Ehlmann et

al. 2008a). These carbonates, believed specifically to be magnesite, are thought to

have formed via hydrothermal alteration of olivine rich ultramafic rocks

(Ehlmann et al. 2008a). These mineral terrains are discussed in further detail in

the following sections.

1.1.2.1 Phyllosilicates

The oldest of these hydrated mineral terrains, the phyllosilicates, are layer

silicates, which commonly form from the hydrous alteration of volcanic material

(Stroncik & Schmincke 2002). The OMEGA instrument aboard Mars Express has

detected mineralogically diverse phyllosilicates on the Martian surface in

association with Noachian terrains (Poulet et al. 2005; Bibring et al. 2006). Here,

Fe/Mg smectites and montmorillonite-type minerals have been identified

(Bibring, et al. 2007; Poulet et al. 2005), and nontronite is particularly common

(Bibring et al. 2006). In the Mawrth Vallis region, smectites including

montmorillonite and nontronite have been identified, and are thought to form

part of a large phyllosilicate rich geological unit (Loizeau et al. 2007). These

phyllosilicates have been described in detail, and reveal a complex aqueous

history of early Mars that may be indicative of long-term aqueous alteration of
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basaltic/igneous material (Bishop et al. 2008; Poulet et al. 2005). It has also been

noted that the formation of these clay minerals could have occurred within the

subsurface, through hydrothermal alteration, a scenario which would not require

a warm and wet early Mars to have existed over long time-scales (Bibring et al.

2006). Such subsurface aqueous alteration is commonly seen within basaltic lava

edifices and hyaloclastite lavas that were erupted beneath an overlying glacier or

ice cap, resulting in low temperature hydrothermal circulation and widespread

phyllosilicate formation beneath the ice (Smellie 2007).

1.1.2.2 Sulphates

Sulphates have been identified in layered terrains on Mars by OMEGA and are

thought to either be evaporates, forming from Fe and Mg- rich briney lakes, or

the result of hydrothermal sulphur rich fluids circulating through volcanic ash

deposits (Gendrin et al. 2005). Analysis by the Mars Exploration Rovers (MER)

at Meridiani Planum and Gusev crater have yielded a great deal of information

on the nature of sulphates on Mars. In particular, Jarosite was identified at

Meridiani (Klingelhofer et al. 2004) and subsequent work suggests other iron

sulphate minerals may also be present (Lane et al. 2004). Additionally, kieserite

and gypsum have been identified by the OMEGA instrument at several locations

on Mars (Bibring et al. 2005; Gendrin et al. 2005). Sulphates are found across

Earth and are commonly formed through volcanic activity (such as alteration of

volcanic rocks by acidic fumaroles) or evaporitic processes (Martinez-Frias et al.

2006). In acidic environments, sulphates can be precipitated abiotically, but

microbes are often involved in the process, as is seen in hydrothermal settings

and acid mine drainage environments (Bishop et al. 2004a). Additionally,

sulphate minerals such as gypsum have been found to act as a microhabitat on

Earth, particularly for photosynthetic organisms that exploit its translucent

nature. Cyanobacterial communities have been found to be living within

evaporitic sediments of the Abu Dhabi Sabkha, where the algae mats present

within gypsum and halite contribute to the reflectance spectra observed (Howari

2006). Sulphate formation however is more common in acidic water conditions,

and doesn’t necessarily require a long term presence of liquid water, as clays do

(Poulet et al. 2005).
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1.1.2.3 Opaline Silica and Carbonate

The most recently discovered of these hydrated minerals is opaline hydrated

silica, detected by CRISM (Milliken et al. 2008), and also identified by the MER

Spirit at Gusev Crater (Rice et al. 2010; Squyres et al. 2008). Opaline silica

commonly forms in hot spring systems, where the eruption of silica

supersaturated hot spring fluids at the surface gradually produces siliceous

sinters over time. Additionally to this, opaline silica can form via hydrothermal

weathering of basaltic rock, stripping the mafic minerals away leaving behind a

silica-rich crust (Schiffman et al. 2006). Silica sinters are known to be excellent

bio-preservers on Earth, and the discovery of hydrated silica on Mars could have

important implications for the detection of Martian biosignatures potentially

similar to those commonly found in hot spring sinters on Earth (Preston et al.

2008; Goryniuk et al. 2004). Likewise the discovery of carbonates holds promise

for the detection of microfossils within putative hydrothermal carbonate deposits

(e.g. Allen et al. 2000).

1.1.3 Martian analogue environments on Earth

There are many terrestrial environments that are considered plausible

analogues of potentially habitable environments on other planetary bodies,

either in the past or at the present day (e.g. Cavicchioli 2002). These terrestrial

environments provide us with a working model of potential astrobiological

targets. The astrobiological study of any analogue environment needs to

encompass several interdisciplinary lines of research. Firstly, it is important to

understand how the environment is created and sustained – that is, what

geological processes and climatic conditions have produced the observed

conditions, and crucially, what makes this particular environment habitable.

Secondly, and perhaps of most interest, is discovering what lives in these

environments, and identifying any evidence that this life leaves behind in the

geological record (biosignatures). Lastly, in order to achieve this identification, it

is necessary to be able to detect evidence of these environments on the planetary

surface itself.

Table 1.1 outlines several potential lines of enquiry when researching any given

Martian analogue environment, focusing principally on what lives there, how it

lives there, and how it may be detected. It is noted that such lines of enquiry,
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together with the vast majority of Martian analogue research (including that

described in this thesis), relies upon the assumption that Martian life would be

based upon the same biochemical structures and pathways that are fundamental

to terrestrial life. Whilst this may seem to be an overly Earth-centric viewpoint,

there is reason to believe this is likely to be the case. During the first ~1 billion

years of Solar System history, impacts were commonplace, and as such any

developing or developed life forms could feasibly be transported between Earth

and Mars (in both directions), a process known as lithopanspermia (Mileikowsky

et al. 2000). Even without any early cross contamination between the two

planets, the early environments of both planets (within which life had originated

at least on Earth) may have been similar enough to lead to the generation of life

based on the same biomolecular template (McKay & Stoker 1989). Lastly, the

search for life on another planet cannot be purely serendipitous, instruments and

techniques need to be designed and tested to look for specific biosignatures, a

process which is reliant upon the only example of life currently available, that on

Earth.

Table 1.1. Potential lines of enquiry associated with Martian analogue research. Those
subjects that are underlined are explored in this thesis.

Line of enquiry Description or example
Environmental
characterisation

Geological formation, physiochemical properties,
local climatic factors and processes,

(bio)geochemical cycling

Phylogenetic diversity Identification of bacterial and archaeal community
(e.g. diversity and composition) indigenous to the

environment, microbial ecology

Isolation of
microorganisms

Cultivation of microorganisms to understand their
physiology and survival in extreme environments

and under Martian conditions

Metabolic pathways Identification of chemosynthetic pathways that
could be sustained on Mars

Biosignatures Formation, identification, and interpretation of
isotopic, molecular, morphological, and

spectroscopic indicators of life or biological
processes

Environment
simulations

Simulated microcosms under Martian conditions to
test the viability of analogue life and habitats
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Table 1.1 Continued
Line of enquiry Description or example

Rover-based detection
of habitable

environments

Using rover instrumentation to identify targets
within which to look for signs of past or present life

Rover-based detection
of life

Using rover instrumentation to detect evidence of
past or present life, such as organic biomolecules

Obiter-based detection
of habitable

environments

Using orbital images, mapping, and spectroscopic
data to identify regions on Mars that may have

been/may still be able to support life

The surface of Mars today is characterised by conditions that are highly

unfavourable to life. The lack of liquid water, high solar UV radiation and

presence of chemical oxidants in the Martian soil render the surface unsuitable

for even the most extreme forms of life that we know of. As a result, if life were

to survive on present day Mars, it would presumably reside within the Martian

subsurface, protected from the surface extremes. Terrestrial environments that

have received considerable attention as proxies for past or present Martian

habitats include the Antarctic Dry Valleys (Walker & Pace 2007; Wierzchos et al.

2005; Nienow et al. 1988), the Atacama Desert (Navarro-Gonzalez et al. 2003),

evaporite environments (Edwards et al. 2006; Rothschild 1990), acid mine

drainage systems (Amils et al. 2007), the deep subsurface (Chapelle et al. 2002;

Stevens & McKinley 1995), and hydrothermal/hot spring systems (Varnes et al.

2003; Rathbun & Squyres 2002). These environments have shown a promising

array of resilient microbial communities that thrive under harsh environmental

conditions, and this encourages the idea that life may have resided on Mars in

the past. In particular, a large percentage of Mars is considered to be volcanic in

nature. As a result, it is important to identify and understand volcanic

environments in terms of their habitability and potential for microbial

colonisation. Volcanic environments on Earth have been explored extensively in

terms of biodiversity and chemical cycling, such as hydrothermal vents

(Harmsen et al. 1997), hot springs (Kvist et al. 2007; Ellis et al. 2005), and deep

sea lava flows (Edwards et al. 2003).
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1.2 Volcanism and Associated Environments

Volcanism provides a way for a planet to release internal heat, which has been

left over from its formation, generated by radioactive elements, and tidal

stresses, and as such is a process seen throughout the Solar System (Wilson

2009). Volcanism on Earth is exceptionally varied, with volcanic activity

accompanying regions of tectonic plate movement, be it where plates converge at

subduction zones, or at mid-ocean ridges where new crust is formed. Plate

tectonic activity has resulted in volcanism that is diverse both in its setting, and

particularly in its chemistry and resulting mineralogy. Mars on the other hand

lacks any similar plate tectonic system, and volcanism is limited to localised

regions of significantly high heat flow, comparable to hot-spot volcanism seen at

Hawai’i or Iceland for example. As a consequence, volcanism on Mars is largely

unevolved chemically, dominated by ultramafic – basaltic – basaltic andesite

lavas (McSween et al. 2009; Wyatt et al. 2003). Figure 1.1 shows on a Total

Alkali-Silica (TAS) plot (Le Bas et al. 1986) of the broad classification of Martian

rocks, based on in-situ data from the MER and Pathfinder rover missions, orbital

data from the Gamma-Ray Spectrometer (GRS) and Thermal Emission

Spectrometer (TES) on the Mars Odyssey and Mars Global Surveyor orbiters

respectively, and laboratory data from Martian meteorites. The plot shows that

the composition of the Martian crust is largely basaltic, ranging between

unevolved picritic compositions to basaltic andesites.

Figure 1.1. Total Alkali-Silica (TAS) plot for in-situ (MER, Pathfinder) and orbital (GRS,
TES) Martian rock elemental oxide measurements (McSween et al. 2009).
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Volcanic environments on Earth that are used as Martian analogues in this work

are restricted to firstly terrestrial volcanoes that are considered similar to those

believed to exist on Mars, and secondly to volcanically-driven hydrothermal

environments. Subglacial basaltic volcanoes and associated lava flows are

focused on in particular, and are described in further detail below. Hydrothermal

systems are widespread on Earth, and those that are associated with basaltic

volcanism were of particular interest.

1.2.1 Subglacial volcanism on Earth

Subglacial volcanism results from the interaction between intrusive magma and

an overlying glacier. On Earth it is a common feature of volcanically active high

latitude terrains, but also sporadically at low latitudes coupled with high

elevation. Examples of widespread volcano – ice interaction today include those

found in Iceland (Bourgeois et al. 1998), British Columbia (Edwards et al. 2002),

and Antarctica (Smellie & Skilling 1994). Geomorphological products indicative

of basaltic subglacial volcanism include tuyas and moberg ridges. Tuyas form as

a result of central vent eruptions into an overlying thick ice sheet (Bourgeois et

al. 1998), whilst moberg ridges result from a series of fissure eruptions beneath

the ice, forming long ridges following the strike of the rift. These eruptive

features display a distinctive elevated topography in contrast to the surrounding

terrain due to the restrictive role of the ice into which the lava was erupted,

preventing the lateral flow of lava away from the eruptive centre. Subsequent

retreat of ice reveals these distinctive volcanic landforms. The importance of

subglacial volcanoes in astrobiology principally lies in the fact that subglacial

eruptions on Earth often generate large volumes of meltwater that can be stored

and transported beneath the overlying glacier (Wilson & Head 2002), and

therefore may have provided a haven for life on Mars.

The birth of subglacial volcanic environments begins with the initial eruption of

basaltic magma into an overlying glacier or ice cap. The eruption of this magma

can be in the form of a sill, dyke or large voluminous intrusion. Quite often, the

force of this eruption will fracture the ice before any melting has taken place

(Wilson & Head 2002), but eventually about two thirds of the heat content of a

subglacial lava flow will be used to melt the surrounding glacial ice (Head &

Wilson 2007). After this initial intrusion of magma, conductive heat flow will
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melt surrounding ice, whilst the low temperatures of the ice will begin solidifying

the magma, eventually forming a solid, glassy crust as part of pillow lava

formation. Convection plays a large role in the transfer of heat from the magma

body to the overlying ice (Höskuldsson & Sparks 1997). As the magma flow

diminishes, the growth of the lava edifice ceases but the overlying ice continues

to melt due to the convective transfer of heat through the liquid water interface

between the magma and the ice (Head & Wilson 2002). Additionally, subglacial

hydrothermal systems in between eruptions may continually melt the base of the

glacier, sustaining a subglacial caldera lake (Björnsson 2002). Over time, a

subglacial edifice can grow within this subglacial lake during eruptions,

consisting of pillow basalts, hyaloclastite beds and palagonite tuffs (Smellie &

Skilling 1994). Figure 1.2 below summarises these environments. If the edifice

becomes large enough to break through the ice, a cap rock of horizontal subaerial

lava is deposited. Alternatively, if the eruption is smaller, perhaps the result of a

fissure, entirely subglacial hyaloclastite ridges or pillow mounds will form. These

edifices will then remain beneath the glacier until exposed and eroded.

Figure 1.2. Subglacial volcanic processes, products, and environments; a) cartoon of an
emergent subglacial volcanic eruption that becomes subaqueous as the eruption
progresses and meltwater is produced (from Smellie 2007); b) Subglacial volcanic

meltwater environment at Skafá caldera (adapted from Johanesson et al. 2007) whereby
geothermal heat from the dormant subglacial volcano maintains a subglacial lake.

(b

(a)
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1.2.2 Subglacial volcanism on Mars

It is generally observed that due to the existence of large quantities of water ice

at the poles and within the global cryosphere, coupled with widespread active

volcanism, interaction between the two is inevitable throughout the history of

the planet. The likely processes of volcano – ice interactions on Mars have been

described and discussed in depth by Head & Wilson (2002), and involve the

emplacement of sills, dykes, lava flows and large magma bodies into

cryospheric/permafrost like ground or into an existing ice cap, with the process

thought to be much the same on Mars as that observed on Earth.

Whilst volcanism in itself is not necessarily conducive to life, sites of volcano –

ice interaction are favourable for life on Mars for several reasons. Firstly, being

located within the subsurface, localised environments are protected from the

hostile surface conditions. Secondly, the interaction between geothermal heat

flow and an overlying cryosphere or ice cap is highly conducive to the generation

of hydrothermal systems. Squyres et al. (1987) have modelled the effect of lava

intruding into ice-rich ground, and found that such subsurface heat can generate

a significant source of liquid water. Similarly Wilson & Head (2007) have

calculated that during a subglacial eruption on Earth the resulting melted ice

thickness is 6-7 times that of the magma layer thickness. This liquid water can

then cycle via convection through the emplaced lava pile, and into the overlying

ice-rich ground or ice cap, provided that meltwater temperature exceeds 4°C

(Höskuldsson & Sparks 1997). Such geothermally heated convection systems

have been modelled by Travis et al. (2001). Volcanism/cryospheric interaction

and subsequent meltwater generation has been proposed several times as an

alternative explanation to the early ‘warm and wet’ Mars scenario thought to

create the numerous channels and valleys apparently carved by liquid water

(Fassett & Head 2007; Carr & Head 2003). As illustrated by Gulick (1998), much

of the fluvial erosion on Mars is spatially and temporally related to volcanic

activity, further demonstrating the potential importance of volcanic activity on

Mars in the generation of liquid water available to life.

The proposed time-scale for the occurrence of subglacial volcanism on Mars

ranges from the early Noachian, producing the extensive fluvial channels seen in

the ancient cratered terrain (Carr & Head 2003), to as recent as <20 Ka (Hovius
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et al. 2008). Additionally to this are the numerous examples throughout the

Hesperian terrains (e.g. Fassett & Head 2007; Ghatan & Head 2001). Magma–

ice interaction on Mars is thought to be responsible for forming regional

topographic features such as large-scale ground collapse and chaotic terrain,

major outflow channels, mega-lahars, tuyas, and pseudocraters (Head & Wilson

2002). Examples of Martian terrains that are considered analogous to subglacial

volcanic features on Earth are shown in Figure 1.3. Whilst it is impossible to

determine the exact nature of an eruption purely by remote sensing observation,

topographical features have been identified which bear striking similarities to

magma – ice interactions on Earth. These include flat topped tuyas (Head &

Wilson 2007; Ghatan & Head 2002), lava ridges (Ghatan et al. 2003) and related

sedimentary deposits typical of glacial outburst floods caused by geothermally

melted ice (Jökulhlaups). Allen (1979) identified many analogues of terrestrial

subglacial volcanoes in both the northern plains and near the south polar cap of

Mars. Since then, more candidate subglacial volcanoes and regions of volcano –

ice interaction have been identified. Such features include tuyas and moberg

ridges, both of which are commonly seen in Iceland. Many notable examples of

volcano – ice interaction are located close to the South polar ice cap, within the

Dorsa Argentea Formation. Here, certain features have been interpreted as

subglacial volcanoes that potentially erupted into the Herpserian south polar ice

cap (Ghatan & Head 2001). These features are based on their distinct

morphological similarity to terrestrial subglacial eruptions, as well as the

existence of basal meltwater drainage channels extending away from the

volcanoes (Ghatan & Head 2001). Likewise, interior layered deposits (ILD) in the

Vallis Marianas region on Mars, originally proposed to be the result of

lacustrine/fluvial activity, show abundant evidence for a glaciovolcanic origin

(Chapman & Smellie 2007).

More recently, subglacial volcanism has been used to describe larger features,

notably those depicting a fluvial/flood outburst induced morphology. At Abalos

Colles near the north polar ice cap, there is evidence of more recent subglacial

volcanism, possibly within the last 20,000 years, as indicated by the presence of

flat topped ridges and a large, water incised chasm (Hovius et al. 2008). The

formation of the chasm in particular has been compared to Icelandic

Jökulhlaups, with the described analogue for this area being the 1996 Gjalp
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subglacial eruption (Hovius et al. 2008). Importantly, in terms of habitable

environments, it is proposed that a ponding of meltwater would have occurred

here prior to its catastrophic release (Hovius et al. 2008).

Lastly, high Martian obliquity has most likely led to extensive periodic growth of

polar ice caps, increasing the geographical range where subglacial volcanic

environments can develop. Kadish et al. (2008) document the evidence for

tropical mountain glaciation around the Tharsis region, in the form of what has

been interpreted to be terminal moraines, subglacially erupted dykes, sills and

tuya morphologies. Additionally there are other equatorial features, including

the Aromatum Chaos depression, interpreted as a site of crysopheric disruption

caused by the intrusion of a volcanic sill and subsequent melting of the

surrounding ice (Leask et al 2006), and the catastrophic flood deposits in the

Juventae Chasma region and associated outflow channel Maja Valles, which are

inferred to be a result of sub-ice volcanism (Chapman et al 2003). Likewise

Squyres et al (1987) have described Icelandic moberg-like morphology in the

Aeolis Mensae region. Importantly, in terms of environmental habitability, this

means that subglacial volcanic environments are not just restricted to high

latitudes on Mars, increasing the geographical extent of possible habitats.
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Figure 1.3. Putative glaciovolcanic features on Mars (a, b, e, h) and Icelandic examples
(c, d, f, g,); a) Fluvial channel at Cerberus Rupes (MOC, M2101914); b) Tuya-like terrain

in Candor Chasma (HIRISE, PSP_003540_1735); c) Skeiðarársandur glacial outwash
plain (road bridge for scale); d) Hlodufell basaltic tuya, ~5km long (Credit: Prof. John

Smellie, 2006); e) Flat-topped volcano at Abalos Colles, (THEMIS, V10551038; Hovius et
al. 2008); f) Herðubreið flat-topped volcano, ~5km long; g) Jointed lava flow (Credit: Dr.

Dave McGarvie, 2006); h) Columnar jointing near Marte Vallis (HIRISE,
PSP_005917_2020; Milazzo et al. 2009).
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1.2.3 Hydrothermal environments on Earth and Mars

In addition to subglacial volcanism, regions of subaerial hydrothermal activity

are also utilised as a Martian analogue. Hydrothermal environments exist

through the interaction between geothermal heat and water, and are typified by

steep redox gradients, chemical and physical weathering of bedrock, and the

deposition of mineral deposits (Pirajno & Van Kranendonk 2005). Such processes

are controlled largely by the nature of the bedrock (e.g. composition,

permeability), temperature gradients, and availability of water. As such, these

are highly dynamic systems that are exploited by a variety of chemosynthetic

and photosynthetic life, and are a strong contender for the location of early

evolution of life on Earth (Martin et al. 2008; Nisbet & Sleep 2001). This, coupled

with the characteristic mineral deposits that are often preserved in the rock

record, means hydrothermal systems are primary targets for astrobiological

exploration of Mars. Geomorphological evidence for hydrothermal activity on

Mars is typically associated with volcanism (Gulick 1998). Mineral deposits such

as opaline silica (Rice et al. 2010), magnesite (Ehlmann et al. 2008a) and

sulphates (Gendrin et al. 2005) strengthen the case for the existence of

hydrothermal systems. Recently, Schulze-Makuch et al. (2007) reviewed

potential endogenic (tectono-magmatic) hydrothermal activity and it’s

distribution on Mars (Figure 1.4).

Figure 1.4. MOLA- and MOC map of Mars showing sites of putative endogenic
hydrothermal activity (adapted from Schulze-Makuch et al. 2007). White = dominantly

magmatic; grey = dominantly tectonic; yellow = sulphate deposition; blue = phyllosilicate
deposition; green = chloride rich. Dashed line incorporates Tharsis-related activity.

(Image Credit: National Geographic Society, MOLA Science Team, MSS, JPL, NASA).
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This hydrothermal activity is typically associated with magmatic heating of

subsurface ground ice and/or snow, and the plume-driven Tharsis region is

thought to be of particular significance regarding long-lived hydrothermal

activity associated with both tectonic rifting and magmatic episodes (Schulze-

Makuch et al. 2007). This broad area is highlighted on the map in Figure 1.4.

1.3 High Latitude Martian Analogue Localities

For this research, environments and their associated deposits were explored

from three high latitude localities: Iceland (65°N), Svalbard (79°N), and James

Ross Island, Antarctica (65°S). These three localities were chosen due to their

high similarity to Mars, either in terms of present day environment, geology, or

both. Samples for biological and geological laboratory analysis came

predominantly from Iceland, whilst in-situ field testing and analysis was

conducted in Svalbard during the joint NASA/ESA funded Arctic Mars Analogue

Svalbard Expedition (AMASE). Samples from James Ross Island were kindly

loaned by Prof. John Smellie from the British Antarctic Survey. High latitude

environments are particularly advantageous for Martian analogue research due

to their often extensive geological outcrops, lack of vegetation, lack of

anthropogenic disturbance, and their present day exposure to cold, often sub-zero

temperatures and lack of precipitation. Details of these three principle locations

are described briefly below. Specific sites and samples are detailed further in

Chapter 2.

1.3.1 Iceland

The island of Iceland is entirely volcanic, formed by the surface expression of the

Mid Atlantic Ridge and an underlying mantle plume - the Icelandic Hot spot

(Korenga 2004; Sigvaldason et al. 1974). It formed as a result of the rifting

episode that led to the opening of the North Atlantic ~ 60 Ma, with the oldest

rocks in Iceland dating to ~15 Ma (Sigmundsson & Sæmundsson 2008). The

presence of such high levels of volcanism coupled with the high latitude of

Iceland (64 – 66°N) mean many of Iceland’s active volcanoes are overlain by

glaciers. There are numerous examples of past (mostly Pleistocene) and current

subglacial volcanic activity dominating the surroundings, now surrounded by

later Holocene subaerial lava flows. Figure 1.5 shows the position of the main

volcanic systems – note the correlation with the position of the glaciers.
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Geologically, Iceland bears many similarities to proposed Martian volcanism. It

is dominated by basaltic volcanism that is a result of fissure eruptions and

mantle plume activity (Wilson 2009). Many volcanic features identified on Mars

are also seen in Iceland, notably widespread basaltic flows (Keszthelyi et al.

2004) and shield volcanoes. The terrestrial analogues of some features on Mars,

such as pseudocraters (rootless cones), are found predominantly in Iceland

(Fagents & Thordarson 2007), and comparisons have been made between

Martian and Icelandic glaciovolcanism (Chapman & Smellie 2007). Due to the

cold climate of Iceland, weathering is slow, particularly in the interior and NE of

Iceland where rainfall is lower, as little as < 400mm/yr (Einarsson 1984).

Therefore, Iceland is considered here as an ideal analogue for volcanic

environments that have existed on Mars in the past.

Figure 1.5. Map of Iceland showing the location of central volcanoes (yellow) and fissure
systems (green) which together lie in the Icelandic Rift Zone (dashed line). The current
location of the Icelandic hot spot is indicated by the red circle. Arrows show direction of

plate movement. (Adapted from
http://gullhver.os.is/website/hpf/orkustofnun_english/viewer.htm) .

A simplified cross section through volcanic environments in Iceland is shown in

Figure 1.6. Environments that were sampled in Iceland for this study fall

broadly into one of two categories, and more details on specific localities and

samples are given in the following chapter (Chapter 2, section 2.2.2). Samples
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were either from subglacial volcanic environments, including both active

subglacial volcanic hydrothermal systems, and older, now exposed subglacial

volcanic lavas, or from subaerial hydrothermal environments, including hot

spring mineral deposits and basaltic subaerial lavas that have been extensively

altered by recent hydrothermal activity.

Figure 1.6. A simplified cross section through east - central Iceland (approximate
transect shown inset) highlighting different volcanic environments (adapted from

Herrera & Cockell 2007). Blue stars represent the subglacial volcanic and hot spring
environments from this region of Iceland that are used for the work in this PhD.

1.3.2 Antarctica

Antarctic environments experience some of the harshest conditions on Earth,

with continually cold polar temperatures, desiccating winds and seasonal

darkness. Extensive ice sheets exist here, and as such a significant amount of

basaltic volcanism during the Pleistocene has been subglacial (Smellie et al.

2008). James Ross Island, which lies just off the coast of the Antarctic peninsular

(Figure 1.7), consists of such subglacial volcanic sequences, named the James

Ross Island Volcanic Group (JRIVG) – a large Neogene alkaline basaltic volcanic

province that crops out extensively (Smellie 1999; Nelson 1975). The island is a

polygenetic stratovolcano 40–60 km in basal diameter rising to about 1600m.

The island was surrounded by at least seasonally ice-free conditions during

multiple interglacial periods, when seawater was apparently able to percolate

into the lava-fed deltas (Johnson & Smellie 2007). The sequences are also well

dated by the 40Ar/39Ar method (Smellie et al. 2008; 2006). Most of the >50
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eruptions documented were subglacial, producing multiple, voluminous and

geographically extensive lava-fed delta sequences, each composed of subaqueous

hyaloclastite foreset units and subaerial capping lavas (Smellie 2006; Skilling

2002). Samples of these hyaloclastite lavas were kindly provided by Prof. John

Smellie for the analysis of biosignatures in Antarctic subglacially-erupted

basaltic lavas (Chapter 4).

Figure 1.7. Map of James Ross Island, northern Antarctic Peninsula (inset), showing the
locations of the six hyaloclastite deltas selected for study (Johnson & Smellie 2007).
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1.3.3 Svalbard

The archipelago of Svalbard (~77 – 81°N) lies roughly equidistant from the North

Pole and the northernmost coast of Norway (Figure 1.8), and is the most polar of

the Martian analogue environments studied for this PhD. Unlike Iceland, which

is largely volcanic, the islands that make up Svalbard contain a diverse and

complex geological stratigraphy, with representative strata and lithologies from

nearly every geological period, and from a variety of depositional environments.

However, basaltic volcanism has more recently also played a significant role

here, some of which, like Iceland, has been subglacial in nature (Skjelkvale et al.

1989).

Figure 1.8. Physical map (polar projection) showing the location of the Svalbard
Archipelago which lies just south of the polar circle at 80°N (Credit: NOAA). Iceland can

also be seen at the edge of the bottom western corner of the map.

Svalbard was used solely for in situ field testing of the PanCam instrument

(Chapter 7), and this field work was possible through the Arctic Mars Analogue

Svalbard Expedition (AMASE) run by Hans Amundsen (Earth and Planetary

Exploration Services, Expedition Lead) and Andrew Steele (Carnegie Institute,

Science Lead). Localities within Svalbard were selected principally by the

AMASE organisers, whilst PanCam testing was carried out in collaboration with
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Nicole Schmidt (Deutsches Zentrum fur Luft- und Raumfahrt), Arnold Bauer

(Joanneum Research), and Francis Westall (Centre national de la recherche

scientifique). The specific localities for field testing were the Bockfjord Volcanic

Complex, and Wahlenbergfjorden. The sites visited within the Bockfjord Volcanic

Complex include Sverrefjell volcano, Jotun Springs, and Troll Springs (Figure

1.9). As for Iceland, details on these specific localities are given in the following

chapter.

Figure 1.9. Map of the Svalbard archipelago showing the localities of the in situ field
tests carried out with the PanCam instrument. Three separate sites in Bockfjord were
visited: Sverrefjell volcano, Jotun Springs, and Troll Springs. These are shown on the

map inset (Diamonds = Spring sites; Star = volcano), and all lie along a major fault line
(tick on downthrow side). Inset map adapted from Banks et al. (1999).
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1.4 Geomicrobiology

Geomicrobiology encompasses research at the interface of the geosphere and

biosphere, where microbial metabolism and cell surface interactions are

intimately related to the rocks and minerals in their environment (Konhauser

2007). This thesis is focused on the prokaryotic inhabitants of volcanic

environments and the potential biosignatures this life may produce that can be

preserved in the volcanic rock record for future detection.

1.4.1 Assessment and identification of microbial communities

The prevalence of microbial communities in terrestrial environments has only

come to light during the last few decades (Wintzingerode et al. 1997). The

development of molecular-based assessments of communities has shown there to

be an enormous and still largely unexplored microbial biosphere present on

Earth (Pace 1997). Microbial communities have been shown to inhabit almost

every conceivable environmental niche, utilising a wide array of metabolic

pathways and survival strategies. These communities are typically explored

using two principle methods: culture-based and culture-independent techniques.

It is well known that there is a large inconsistency between studies of microbial

diversity based on culture-based and culture-independent techniques, and it has

been estimated that only ~1% of microorganisms observable in nature can be

isolated using standard techniques (Tringe & Rubin 2005; Kirk et al. 2004;

Torsvik et al., 1990). As a result, ecology studies based entirely on culture-based

techniques lead to biased data, producing a highly incomplete picture of the

microbial community in question (Amann et al. 1995). However, due to molecular

phylogenetic techniques now widely available, ecological studies through

cultivation have become superseded by recombinant DNA-based approaches.

That is not to say they have become redundant – isolated microbes provide a

wealth of information regarding morphology, metabolism, and ecological function

(Joseph et al. 2003) but for the purpose of establishing microbial diversity within

an environment, molecular phylogenetic analysis is typically the favoured

approach, and ideally a combination of biomolecular and culture-based

techniques should be employed. One of the most successful and widely used

methods for establishing bacterial and archaeal diversity in any given

environment is the comparable sequence analysis of the 16S rRNA gene (or the
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18S gene for Eukaryotic genomics) – a small subunit of ribosomal DNA that

contains both highly conserved sequence regions and also highly variable

regions, and crucially is present within all living organisms. This combination

makes it ideal for assessing microbial diversity based solely upon genetic data.

The value of such information lies in the ability to objectively assess and

quantify the identification of microorganisms at a variety of taxonomic levels

(typically down to genus level), and also to determine how related

microorganisms are within a specific environment and the broader biosphere.

Whilst the use of 16S rDNA allows a culture-independent assessment of

microbial communities, it relies heavily on the successful and unbiased

extraction of genomic DNA from the environment in question. This however is no

trivial task, and at every stage of the DNA extraction process there is the

opportunity to lose DNA, from the initial collection of the sample, to sample

processing, and during the chemical extraction process itself. In addition, DNA

extraction is often particularly difficult from ‘extreme’ environment samples.

Several pitfalls specific to volcanic environments have been identified by Herrera

& Cockell (2007). These, together with others, are summarised in Table 1.2, and

demonstrate the need for careful consideration when planning a 16S rDNA

study. Problems associated with specific techniques in 16S rDNA analysis are

detailed in Chapter 2, section 2.4).

Table 1.2 DNA extraction pitfalls from volcanic environments (Herrera & Cockell 2007;
Henneberger et al. 2006; Burlage et al. 1998).

Properties hindering DNA extraction

Property Problem
Potential solution

Unworkable levels of DNA
extracted

Increase sample quantity, multiple
sample extractions

Low
biomass Significant contamination

obscures genuine diversity

Limit number of sample processing
stages, carefully controlled
sampling and processing

B
a

s
a

lt
ic

L
a

v
a

Solid
matrix

Microorganisms attached to,
or deep inside rock matrix

Homogenisation and/or sonication of
the sample to release cells

Acidic pH
<4

Protonisation of purine and
pyrimidine bases, increased
adsorption of DNA to clay

particles (see below).

Buffer sample immediately after
collection (ideally >pH 6),

prevention of cell lysis (e.g. by not
freezing after collection).

Clay
content

Adsorption of DNA to
smectite clay particles

Addition of skim milk powder to
extraction solution

H
o

t
s
p

r
in

g
s
o

il
/

fl
u

id

High Fe
and/or Al

oxide

Adsorption of phosphate in
the sugar-phosphate

backbone of nucleic acids

Addition of phosphates to the
extraction solution to compete with

DNA phosphate.
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1.4.2 Microcosms and environmental simulations

Microcosms aim to recreate the natural environmental conditions and

biogeochemical cycles within a small, confined, observable system. Microcosms

can be purposefully biased towards certain metabolic and functional groups, for

example by controlling the pH, temperature, light availability and nutrient flux.

They are different to culture-based techniques which aim to eventually isolate

the culturable portion of the microbial community, either through direct plating

or through enrichment (e.g. Winogradsky columns). Controlled microcosms can

reveal information regarding the ecological roles of different microorganisms,

and their interaction with the environment they inhabit, such as changes in

geochemical gradients and environment composition. Of particular interest to

astrobiology research is the simulation of environments under Martian

conditions. Testing proxy Martian conditions and environments is a key process

to better understanding the potential of habitable environments on Mars in the

past and the present day. Such Martian microcosms have demonstrated the

potential for terrestrial microorganisms and communities to survive near the

Martin surface, although many have shown full exposure to present day Martian

conditions is rapidly detrimental to the viability of terrestrial life.

The majority of previous studies on the survivability of microorganisms under

controlled Martian conditions have focused on pure strains of microorganisms.

One of the first was carried out in the early 1960’s. In that work, Hawrylewicz et

al. (1962) tested the survivability and virulence of pathogenic microorganisms

under vacuum and alternating temperature, and demonstrated that spores and

certain anaerobic organisms can survive under these conditions for a few

months. More recently, Diaz and Schulze-Makuch (2006) devised a method of

establishing the viability of Escherichia coli and Deinococcus radiodurans after

exposure to low temperature, low pressure and UV irradiation, whilst suspended

in a variety of saltwater and freshwater Martian analogue soils and liquids of

varying depths. The number of bacterial colonies that grew afterwards was used

to calculate the viability of the different soils and liquids. Unsurprising D.

Radiodurans fared much better to Martian conditions than E. Coli, but the

survivability rates of both bacteria were greatly increased when protected inside

a microhabitat 5cm below the surface or inside liquid water. However, the

pressure conditions used in these experiments (83.3 kPa) did not match the low
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pressure conditions on Mars (~0.6 mbar) and the authors predict that under such

conditions the bacteria would have to be significantly deeper into the subsurface

to survive. Morozova et al. (2007) exposed methanogenic Archaea to simulated

Martian thermal conditions to establish their survivability (based on cell counts

and methane production). They tested methanogens isolated from Siberian

permafrost and reference methanogens isolated from non-permafrost habitats,

and found a remarkable survivability rate for those isolated from Siberian

permafrost. In contrast, the Martian thermal conditions killed ~99% of the

reference methanogens. These results demonstrate the importance of using

microorganisms from Martian analogue environments for survivability tests and,

as before, suggested greater survivability of microorganisms on Mars below the

surface. Microorganisms isolated from Siberian permafrost have been used in

other survival tests since, and appear to be suitable model organisms for such

experiments.

A recent paper by Smith et al. (2009) utilised Psychrobacter cryohalolentis,

isolated from a subsurface hypersaline cryopeg in Siberian permafrost. These

authors demonstrated that although psychrophilic microorganisms have been

considered to be a major problem regarding planetary contamination, they

showed no tolerance to the Martian environment, even during simulated ‘dust

storm’ scenarios, and identified UV radiation and desiccation to be the primary

lethal factors. However, they noted that if suitable UV shielding was provided,

the chance of survivability would be greater, even more so if the desiccation

factor could be overcome. This has been demonstrated by a previous experiment

on the UV resistance of Antarctic cyanobacteria, that showed if under just 1mm

of rock, cyanobacteria survived for at least 1 day under high Martian UV flux,

and suggests organisms could survive within lithic habitats on Mars providing

there were sufficient water and nutrient supplies (Cockell et al. 2005).

As well as these monoculture studies, there have also been experimental studies

using complex and diverse soil communities. In the spirit of planetary protection,

Foster et al. (1978) used soil samples collected from Cape Canaveral and found

reduced atmospheric pressure had a significant effect in reducing growth of

microbial populations, as determined by colony forming unit (CFU) counts, and

that psychrotolerant microbes showed the greatest resistance. Likewise, Green et
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al. (1971) showed psychrophilic and spore forming microbes could survive if

within a subsurface environment. Far more recently, studies by Hansen et al.

(2009; 2005) presented one of the first studies on whole natural soil communities

to test for survivability, again advocating the use of Siberian permafrost

communities. In particular, their most recent study (Hansen et al. 2009)

highlights the advantage of using whole communities to identify those species

that do and don’t survive the environmental simulation.

1.4.3 Biosignatures

A biosignature is a physical or chemical change to an environment, which is a

direct consequence of biological activity within that environment. Biosignatures

can be of any scale, ranging from atomic (such as isotope fractionation) to global

(such as the presence of oxygen in Earth’s atmosphere). Due to the diversity and

ubiquitous nature of life on Earth, knowledge of biosignatures can be built up

based on observable cause and consequence. This knowledge can then be

extrapolated for searching for life on other planets. Biosignatures can be the

remains of the microorganism itself, identified perhaps by the presence of

organic carbon (such as kerogen), specific organic molecules (such as lipids), or

unique spectroscopic signatures (e.g. those caused by photosynthetic pigments),

or they can be the by-product of the microorganism’s existence, such as trace and

morphological fossils, and localised chemical changes in an environment (e.g.

isotope fractionation). Biosignatures have been recognised as a powerful tool in

the study of planetary biospheres and have since been characterised in terms of

their reliability, or ‘biogenicity’. Most importantly, it is essential to understand

and recognise such biosignatures if they are to be used as positive evidence for

the presence of life elsewhere.

Whilst the potential range of biosignatures within Martian analogue

environments is enormous, one of these is particularly relevant to basaltic

volcanic environments. This is the formation of so-called ‘bioalteration textures’

within basaltic volcanic glass, thought to be the direct result of microbial

colonisation and reworking of these lavas, often down to depths of 500m into the

basaltic oceanic crust (Furnes and Staudigel 1999). This colonisation produces

distinctive tubules, etching and pitting along hydrous alteration fronts in the

volcanic glass, easily identifiable in thin section. The first description of this
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alteration was described by Ross and Fisher (1986), and since then, similar

characteristic textures have been found in oceanic basalts at numerous locations,

including the East Pacific Rise, Mid Atlantic Ridge, Juan de Fuca ridge and

Ontong Java plateau (Fisk et al. 1998; Fisk et al. 2003; Furnes et al. 1996;

Furnes et al. 2007; 2002; 2001; Thorseth et al. 1995; 1992; 2001a; 2003; Torsvik

et al. 1998; McLoughlin et al. 2007; 2009). In these studies, biotic and abiotic

alteration fronts were shown to be distinguishable. Abiotic alteration consists of

palagonitization induced by hydrous alteration, and forms smooth alteration

fronts of yellow palagonite that are continuous along, and parallel to, glass

boundaries. By contrast, biologically mediated dissolution of glass is

characterised by complex, irregularly distributed features (Figure 1.10).

Figure 1.10. Examples of bioalteration texture morphologies in basaltic volcanic glass
(McLoughlin et al. 2009)

In previous studies, the biotic textures have been divided into ‘granular’ and

‘tubular’ types (Furnes et al. 2007). Granular textures consist of micron-sized

coalesced spherical bodies that form irregularly distributed alteration fronts

along glass boundaries and fractures. They are generally the most abundant type

of bioalteration seen in oceanic basaltic lavas (Furnes and Staudigel 1999).

Tubular textures are less common, and form long hair-like or tufted tubules

protruding from fractures or other boundaries (e.g. vesicles) in the glass. Like the

granular texture, the tubules are irregularly distributed, but consist of long

narrow tubes with constant width. The tubes often display branching patterns,

segmentation and irregular swellings (Furnes et al. 2007). Similar textures have

also been identified in ancient oceanic crust sequences spanning the Phanerozoic,

Proterozoic, and Archean (Furnes et al. 2007; 2005; 2004; 2002b; 2001b). More

recently, these advances in the identification and description of bioalteration

textures in seafloor lavas has led to the development of a systematic taxonomic
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nomenclature to allow unambiguous comparisons between bioalteration textures

found in spatially and temporally different lavas (Mcloughlin et al. 2009). This

taxonomic system is intended for the identification of trace fossils within volcanic

glass, specifically in oceanic crust lavas, ophiolites, and greenstone belts only.

However, this limitation largely reflects the current bias of bioalteration studies

towards marine environments, and so it is assumed here that such a taxonomic

system may be used to characterise identical bioalteration trace fossils that occur

in volcanic glass from non-marine environments (i.e. subglacially-erupted lavas).

McLoughlin et al. (2009) have identified five ichnospecies that occur in volcanic

glasses. These species are split across two ichnogenera: Granulohyalichnus

(granular bioalteration), and Tubulohyalichnus (tubular bioalteration) and

represent the different bioalteration morphologies identified to date.

Granulohyalichnus vulgaris is used to identify pitted granular textures widely

seen along glass – palagonite alteration boundaries, and is the only ichnospecies

in the Granulohyalichnus genera. Within the Tubulohyalichnus genera,

ichnospecies have been assigned to identify simple tubular morphologies

(Tubulohyalichnus simplus), branched behaviour (Tubulohyalichnus stipes),

ornamented/segmented morphologies (Tubulohyalichnus annularis) and

spiral/helicoidal bioalteration features (Tubulohyalichnus spiralis).

Bioalteration is potentially a good morphological biosignature for Mars

exploration, either through analysis of meteorite samples or future Mars sample

return missions. Firstly, despite the ubiquity of aqueous alteration in basalt,

there is, so far, no known abiotic mechanism that can reproduce these textures

(Fisk et al. 2006; Walton 2008). Secondly, the textures are distinctive in

themselves (e.g. segmentation, invariant tubule widths, and tubule bifurcation)

and indicative of biological activity through geochemical biosignatures, in

particular negative δ13C signatures (Izawa et al. 2009; McLoughlin et al. 2007;

Staudigel et al. 2006). Thirdly, the identification of DNA lining the inner

surfaces of microborings in fresh lavas provides perhaps the most convincing

support for a biological origin (Furnes et al. 2001a; Torsvik et al. 1998; Giovanoni

et al. 1996). Biogenicity criteria such as these, and others, are given in Table 1.3.

Lastly, the fact that these biosignatures have been found in Archaean rocks on

Earth (Furnes et al. 2004), demonstrates that they can survive the dynamic

tectonic environment on Earth for periods of billions of years. This holds promise
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for their survivability on Mars. The presence of basaltic volcanism on Mars,

coupled with the evidence for aqueous alteration, is permissive for such

biosignatures to form there (Izawa et al. 2009). Phyllosilicates, the major

constituent of palagonite, have also been identified on Mars by the OMEGA

instrument (Poulet et al. 2005). These are indicative of aqueous alteration of

basalt, and there is possibly a high potential for endolithic microorganisms to

alter subaqueous basalt in an early wet Martian environment (Banerjee et al.

2004a,b; 2006; Fisk and Giovannoni 1999a,b). Recent studies have hinted that

this may be the case with the discovery of alteration textures in Martian

meteorites that, in some cases, bear a striking similarity to microborings in

seafloor lavas (Fisk et al. 2006).

Table 1.3. Biogenicity criteria for endolithic microborings from McLoughlin et al. 2007)

Category Description Example

1

A geological context that
demonstrates the syngenicity
and antiquity of the putative
biological remains

a) Microtubes radiate from early re-healed
fractures, but are cross cut by and pre-date
late stage fractures and mineral growth.
b) Endoliths colonise fluid inclusion trails

2
Evidence of biogenic
morphology
and behaviour

a) Fracture with granular alteration front
of spheroidal microborings.
b) Ambient inclusion trails.
c) Etch pits
d) Microtubes with simple branching.

3
Geochemical evidence for
biological processing

a) Microtubes filled with ‘biogenic’ clays or
with C, N, S or P deposits.
b) Carbon isotope fractionation
c) Ca, Fe, Mg or Na depletions in the
matrix surrounding tubules

1.5 Detection of Astrobiological Targets on Mars

Whist exploring extremophilic communities and their biosignatures in Martian

analogue environments on Earth is fundamental to the search for life on Mars,

such work can only be put to practical use if relevant rock targets can actually be

identified using Mars rovers and their on board instrumentation. As such, this

Martian analogue research must be put into context regarding the current

technological and financial capabilities of upcoming astrobiology missions. As it

stands, the exploration of the Martian surface is still entirely restricted to robotic

exploration. However, future plans for Mars sample return missions, and even

more ambitious manned missions, will enable us to analyse Martian rocks using
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sophisticated instrumentation and techniques, as is currently done using the

limited number of Mars samples available through meteoritic in-fall. However,

until such exploration becomes feasible, the search for Martian life will, for at

least the next decade (Mars Science Laboratory in 2013, ExoMars in 2018), be

entirely reliant on robotic exploration. As such, part of this PhD research

investigates optimising the rover’s ability to conduct astrobiological research,

focusing on the detection of geological targets that will be of relevance to the

ExoMars mission specifically.

1.5.1 Rover instrumentation for Mars

Rover-based instrumentation currently remains the most technologically

suitable method for the in-situ exploration of planetary bodies within our Solar

System, and for Mars specifically has so far been the only source of in-situ data

acquisition. Instrumentation onboard rovers needs to be selected and designed to

fulfil the mission aims and objectives, and a broad multi-instrument approach is

typically undertaken with which to analyse a particular sample or in-situ surface

outcrop. Such instruments from past missions that are specific to

geological/astrobiological investigation are summarised in Table 1.4. These

instruments are designed to complement each other, and are predominantly

focused on identifying mineralogical and chemical species present, and

performing micro – macro imaging to identify lithofacies and potential biogenic

textures. It is noted that the stereoscopic camera (highlighted in grey, Table 1.4)

has been, and still is, an integral part of all missions, providing the initial view

of the surrounding terrain and local geology for both navigational and scientific

objectives. This initial data set is then followed by detailed analysis and

investigation of particular outcrops. Live biological experiments have not been

part of lander instrumentation since the Viking experiments. Instead, the

detailed evaluation of the geology of the terrain is used to reveal the presence of

past or present habitable environments, within which to identify biosignatures.
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Table 1.4. Overview of past and future planned rover/lander instrumentation specific to
geological and astrobiological analysis. (NB: Mission-specific instrument

names/acronyms have been omitted for simplicity).

Instrument Objective Mission
Three biological experiments
utilising carbon assimilation,
radiorespirometry and gas
chromatography

Detection of photosynthetic
life, organic compounds,
respiration, gas release from
biological activity

Viking

Alpha Proton X-Ray
Spectrometer

Elemental chemistry of rocks
and soils

Mars
Pathfinder
Beagle2
MER
Mars Science
Laboratory
(MSL)

Mass Spectrometer
Gas analysis and isotopic
analysis of rocks and soils and
detection of organics

Viking
Beagle2
Phoenix
ExoMars

Stereoscopic camera +
multispectral filter wheels

Visual analysis of surrounding
terrain, multispectral analysis
of rocks and soils

Viking
Mars
Pathfinder
MER
Beagle2
Phoenix
ExoMars
MSL

Mössbauer Spectrometer Study of iron-bearing minerals
Beagle2
MER
ExoMars

Miniature Thermal Emission
Spectrometer / Infrared-
Mapper

Mineralogy of rocks and soils
MER
ExoMars*

Optical microscope Small-scale features of rocks
and soils

MER
ExoMars*
Phoenix
MSL

Raman Spectrometer
Mineralogy of rocks and soils ExoMars

Laser Induced Breakdown
Spectrometer (LIBS)

Elemental chemistry of rocks
and soils

ExoMars*
MSL

X-ray Diffractometer
Mineralogy and elemental
chemistry of rocks and soils

ExoMars
MSL

Life Marker Chip
Antibody micro-array to
directly detect life

ExoMars*

Wet Chemistry Lab
pH, redox potential and
conductivity of soil

Phoenix

Atomic-force microscope
>10nm imaging of soil
particulates

Phoenix

*ExoMars instruments that were originally part of the payload but have since recently
been de-scoped (pending further assessment).
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1.5.2 The ExoMars PanCam instrument

The ExoMars rover will be equipped with a multi-purpose Panoramic Camera

(PanCam) instrument, and will provide wide angle multi-spectral stereoscopic

images of the rover’s surroundings (for a detailed description see Griffiths et al.

2006). The instrument as a whole consists of three individual cameras: two Wide

Angle Cameras (WAC) and one High Resolution Camera (HRC). The WACs

enable stereo colour imaging of the surrounding scene, as well as multispectral

imaging via the integration of a filter wheel (see Figure 1.11), whilst the HRC

allows high resolution imaging of targets identified in WAC images. As currently

implemented, multispectral imaging works by utilising a set of glass filters,

manufactured at specific wavelengths and bandwidths, to record images from the

field of view, from which reflectance values can be obtained. One filter yields one

reflectance value, and the spread of filters produces a spectral profile at each

image pixel. Therefore, the more filters available (currently 12), the more

detailed the spectra will be.

Figure 1.11. Artists impression of the ExoMars Rover (Credit: ESA) together with a
technical drawing of one of the PanCam Wide Angle Camera (WAC) ‘eyes’, based on

Beagle2 heritage (Griffiths et al. 2005). The position of the filter wheel is highlighted.

Two of the main scientific objectives of the PanCam that will utilise this multi-

spectral imaging capability, are firstly the acquisition of geological information

proximal to the rover, and secondly identification of the most suitable locations

for astrobiological investigation. It is noted that the PanCam is not designed to
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be a life-detection instrument in itself, but provides the initial step in identifying

suitable lithologies for further multi-level analysis with the aim to detect

evidence of biological activity (Vago et al. 2005). This site identification will be

heavily dependant upon the surrounding geological terrain and mineralogy

identified by the PanCam, and as a result, the PanCam needs to be carefully

designed to achieve this goal. As the PanCam multispectral imaging capability

is, in part, dependant upon a suitable set of filters, the wavelengths of these

individual filters needs to be optimised to fit the objectives of the ExoMars

mission. The geological filter wavelengths for the PanCam are required to fall in

the 440 – 1000nm range, with a minimum of 12 (and possibly up to 14) filter

spaces available (Andrew Griffiths, pers. Comm.). A notional set of filter

wavelengths has already been allocated for this PanCam, however this filter set

was inherited from Beagle 2, which in turn was adopted from Mars Pathfinder.

Filters for the Imager for Mars Pathfinder (IMP) device were selected with two

main objectives in mind. Firstly, to identify ferric oxides and oxyhydroxides, and

secondly to determine silicate mineralogy present, particularly pyroxenes (Smith

et al. 1997). More recently, this filter set has been largely adopted for the MER

PanCam, again focusing on the detection of iron-bearing silicates, iron oxides

and oxyhydroxides, and also to provide a direct comparison to the IMP results

(Bell et al. 2003). ExoMars on the other hand has a distinct astrobiological focus,

and may encounter an extensive range of hydrated mineral-bearing lithologies.

The result of this is that the notional filter set for the PanCam needs to be

updated, and this is the focus of Chapter 6 of this thesis.

Whilst multispectral imaging at optical wavelengths to near-infrared (400 –

1000nm), can tell us a lot about mineralogy and chemistry, the majority of

distinguishing spectral features occur in the infra-red, with many minerals

exhibiting fairly featureless spectra between 440 – 1000nm. As a result, the

combination of reflectance spectra with other instrumental analysis can provide

a much clearer picture. A multi-instrument approach to astrobiological research

has been shown to greatly improve interpretation, particularly of in-situ analysis

of planetary material (Bishop et al. 2004b; Pullan et al. 2007). The addition of

Raman spectroscopy in particular has been widely advocated for astrobiological

research (Storrie-Lombardi et al. 2001; Wang et al. 1995), as its ability to detect

and discriminate between geological and biological material at the micrometer
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scale has made it a valuable tool (e.g. Sharma et al. 2007; Jorge Villar et al. 2005;

Bishop et al. 2004b; Ellery & Wynn-Williams 2003). As a result it is one of the

instruments planned to be part of ExoMars (Bazalgette et al. 2007; Rull Perez &

Martinez Frias 2006). However, it is limited for ExoMars by it’s current

confinement to a contact instrument, and therefore cannot be used for remote

target selection, and this is where PanCam reflectance spectroscopy has an

advantage. The combination of being able to detect regions or outcrops of interest

from a distance, and then analyse them with a higher degree of confidence close-

up, is a fundamental aspect of planetary rover exploration.

An additional feature that is proposed to be an integral part of the PanCam

instrument is UV laser illumination to produce a native fluorescence response of

organic and geological material (Storrie-Lombardi et al. 2009; 2008; Muller et al.

2009; Griffiths et al. 2008). Likewise, a 365nm LED illumination source is to be

included on the Mars Science Laboratory Mars Hand Lens Imager (Edgett et al.

2009). UV epifluorescence works very simply by illuminating a sample with a

near-UV light source, and recording the wavelength and intensity of the

fluorescence that is emitted back. Many organic molecules exhibit this native

fluorescence, including those created biologically (such as photosynthetic

pigments) and those that exist abiotically, such as polycyclic aromatic

hydrocarbons (PAH). This technique has been shown to easily highlight the

presence of microbial communities within Antarctic sandstones and on the

surface of terrestrial rocks (Storrie-Lombardi 2005), and also the presence of

PAH at low concentrations (Storrie-Lombardi et al. 2008). UV illumination of

minerals can also stimulate a fluorescent response, that although is not

diagnostic per se, can rapidly reveal or highlight the presence of a deposit that

may of interest.

1.6 Thesis summary

1.6.1 Motivation for this work

Astrobiology is, and will remain, an area of science that fascinates both scientists

and the wider community. It aims to tackle some of the most fundamental

questions regarding the existence of life in the Universe, and also the origins of

life on Earth. As such, interest in astrobiology will continue to grow and gather

momentum over the coming decade. Perhaps one of the most important, and
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certainly most achievable, aspects of current astrobiological research is focused

on the in situ detection of Martian life. In order to achieve this goal, much

ground work is still needed to understand not only if and when life existed on

Mars, but also where and how to detect it. The use of Martian analogue

environments and terrains on Earth plays an essential role in answering these

questions, and as a result forms the basic concept around which this thesis is

structured. The potential environments that may have existed on Mars

throughout its history are vast, consequently this work is focused on purely

basaltic environments, specifically those that exist at high latitudes. This

geographical selection means many of these basaltic environments experience

interaction with ice, both during their formation and/or temporally as a result of

seasonal extremes. Despite their applicability to Martian analogue research,

these environments are largely unexplored, providing numerous avenues of

research.

1.6.2 Aims and summary of chapters

The primary aim of this thesis was to utilise terrestrial volcanic environments on

Earth as a basis for astrobiologically-focused Martian analogue research.

Specifically, subaerial hydrothermal systems and subglacial basaltic volcanism

in Iceland and Antarctica were used to assess microbial communities and

develop techniques for the detection of astrobiological targets on Mars using

ExoMars instrumentation. For this work, subglacial volcanism in particular is

explored as a habitable environment on Mars, through the identification of

microbial communities, testing the viability of Martian subglacial volcanic

environments, and lastly assessing the feasibility of biosignatures. Additionally,

subaerial volcanism is used in the development of ground-truthing techniques

applicable to the development of the ExoMars PanCam instrument. The

following is a brief summary outlining the contents of this thesis.

Chapter 2 details the core methodologies used throughout this research. This

includes standard analytical techniques and methods that are common to more

than one chapter. A fundamental component of this research was the successful

sampling of geological and environmental samples from Iceland. Sampling

methods and field descriptions of specific sampling locations are described here.
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Chapter 3 details the identification and analysis of the Prokaryotic community

residing within subglacially erupted pillow basalts and hyaloclastites situated

within the cold and dry volcanic highlands of central Iceland. 16S rDNA clone

libraries of the bacterial and archaeal communities present within these lavas

were constructed, and the relationship between the community diversity and

environmental parameters is assessed. Specifically, there is a clear difference in

bacterial diversity between different lava lithologies, with hyaloclastite

supporting a significantly more diverse community than pillow lava.

Chapter 4 focuses on the identification and occurrence of biosignatures within

subglacially erupted lavas from Antarctica. Specifically bioalteration textures

are assessed, and the large scale environmental controls on their formation are

described. Such biosignatures are thought to be ideal for Martian exploration,

where basaltic lavas, including some that have undergone past aqueous

alteration, are widespread. The results of this work challenge that idea by

showing the formation of bioalteration textures is sensitive to the local aqueous

alteration environment, and the presence of basalt and aqueous conditions does

not necessarily result in the production of bioalteration. The work in this chapter

is published in the International Journal of Astrobiology 8 (1), 37 – 49 (2009),

entitled “A Comparative Study of Endolithic Microborings from a Transitional

Subglacial – Marine Environment”.

Chapter 5 details the experimental assessment of the habitability of subglacial

volcanic environments exposed to present day surface Martian conditions. This

was a culture-based test of viability, focused on the in-situ microbial community

within subglacially erupted pillow lava. It is noted that this lava is from the

sample outcrop as that used for 16S rDNA analysis described in Chapter 3, and

so provides a direct comparison between the culturable, and non-culturable

microbial community. It is shown that simulated subglacial volcanic

environments provide adequate shielding from the external surface extremes,

and viability within these systems is high.

Chapter 6 details work using both subglacial and subaerial lavas, as well as

hydrothermal samples, to assess the potential of multispectral imaging and UV

illumination in the detection of astrobiological targets on Mars. Astrobiological
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targets include hydrated minerals, and fossilised and extant biological material

present in volcanic environments. In relation to this analysis, a new set of

geological filters for the ExoMars PanCam instrument is devised and tested,

with the aim to improve the astrobiological capability of the PanCam for the

mission objectives of ExoMars – to uncover evidence of past or present life within

the Martian subsurface. The bulk of this work has been submitted to

Astrobiology, entitled “Astrobiological Considerations for the Selection of

Geological Filters on the ExoMars PanCam Instrument”. Additionally, the UV

component of this work is published in Astrobiology 9 (10), 953 – 964 (2010),

entitled “Laser Induced Fluorescence Emission (L.I.F.E.): Searching for Mars

Organics with a UV-Enhanced PanCam”.

Chapter 7 develops the work detailed in Chapter 6, and presents results from

testing the new geological filters in situ at Martian analogue field localities in

Svalbard, as part of AMASE. Martian analogue terrain imaged using a replica of

the ExoMars PanCam included ultramafic volcanics, hot spring carbonates, and

iron oxide rich lithologies. Through such field testing it is shown that PanCam

image and spectral data can identify past habitable terrains based on their

mineralogy and lithological characteristics, but both fossil and extant life

biosignatures largely remain undetected.

Chapter 8 integrates the results from the preceding chapters, demonstrating the

essential role that interdisciplinary studies can play in helping to answer the

fundamental questions in science, in this case, the question of whether life

exists, or did once exist, on Mars. In particular, the importance of Martian

analogue studies is discussed, based on the results of this work, with subglacial

volcanic environments being explored specifically. Lastly, future work is

proposed, as a natural progression of the work conducted for this PhD.

A list of all published conference abstracts and journal publications is given in

Appendix D.
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CHAPTER 2

MATERIALS AND METHODS

Astrobiology is a highly multidisciplinary field, and as such it requires the use of

a wide variety of laboratory methods, exploiting well developed techniques from

the fields of microbiology, geology, and chemistry. This chapter provides a

description of the sampling localities, general methods, and analytical techniques

used throughout the course of this research. Novel methods and experimentation

devised specifically for this PhD are described in the relevant chapters. The

following techniques described in this chapter were used to implement the

following:

1) Asceptically obtain geological samples for biological analysis: microbiological

techniques employed such as culturing, and particularly direct extraction and

amplification of DNA, are sensitive to potential contaminants from the sampling

equipment, surrounding environment, the person sampling, and the laboratory

itself, and as such precautions to avoid such contamination are described.

2) Identification of the culturable and unculturable prokaryotic communities

within basaltic lava: culturing techniques were used to isolate microorganisms,

whilst DNA-based techniques were used to characterise the uncultured

component of the prokaryotic community, particularly in relation to how

different basaltic lithologies affect community composition and diversity.

3) Basic characterisation of mineralogy and lithology of geological samples: to

provide context for geological samples used in more detailed experimentation

and in particular the development and testing of the PanCam instrument. For

this, a combination of transmission light and Scanning Electron Microscopy,

Raman spectroscopy, and Energy Dispersive X-ray analysis were used.
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2.1 Laboratory Materials

2.1.1 Sterilization

All glassware, reagents, culture media, water, and solutions were sterilised by

autoclaving at 121°C for 20 minutes, or by filtration through a 0.22µm Millipore

filter connected to a syringe. Geological equipment such as hammers and chisels

were sterilised with Vircon prior to fieldwork, and subsequently flame sterilised

immediately before sample collecting in the field with 70% ethanol. Any

remaining equipment and labware (e.g. plastic 96-well plates, cryogenic vials)

were purchased pre-sterilised.

2.1.2 Solutions and Reagents

The following solutions and reagents were used in the various protocols specific

to the isolation of microorganisms and their subsequent genetic identification,

and the DNA-based assessment of prokaryotic communities through the

extraction of environmental genomic DNA and construction of clone libraries.

Unless stated, all solutions were made using deionised and distilled water

(dH2O).

A) Isolation of microorganisms on Pillow Basalt Agar:

 Pillow basalt solution: finely crushed pillow basalt was suspended in

distilled and deionised water at a concentration of 0.25g rock ml-1. This

solution was sterilized by autoclaving prior to addition to agar.

B) Genomic DNA extraction from microbial isolates:

 TE Buffer 10mM Tris HCl (pH 8)

1mM EDTA (pH 8)

 10% Sodium Lauyl Sulphate (SDS)

 70% Ethanol

 CTAB Solution 0.7M NaCl

10% Hexadecyltrimethyl ammonium bromide

(CTAB)

 5M NaCl

C) Production of chemically competent E.coli

 1M Calcium Chloride (CaCl2)
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 75mM Calcium Chloride plus 15% Glycerol (CaCl2, 15% glycerol)

 0.5M Magnesium Chloride (MgCl2)

D) Screening recombinant bacterial colonies for cloning

 X-gal (5-bromo-4-chloro-3indoyl-βD-galactopyranoside): X-gal dry powder

was dissolved in dimethyl sulphoxide (DMSO) to create a 40mg/ml stock

solution, which was then added to molten, autoclaved agar media (~50°C) to

a final concentration of 80µg/ml. Both X-gal and DMSO were purchased from

Sigma.

 IPTG (Isopropyl β-D-1-thiogalactopyranoside: A 200mM stock solution

(Sigma) was added to molten, autoclaved agar media (~50°C) to a final

concentration of 0.5mM.

 Ampicillin: Ampicillin dry powder was dissolved in dH2O to produce a

stock solution of 50mg/ml, which was filter sterilized through 0.22µm

Millipore filters, and stored at -20°C. This was added to molten, autoclaved

agar media (~50°C), and to autoclaved LB broth, to a final concentration of

100µg/ml.

E) Agarose gel electrophoresis

 10 X TBE 108.0 g l-1 Tris (hydroxymethyl) methylamine

50 g l-1 Orthoboric Acid

7.4 g l-1 EDTA

 Hyperladder I (Bioline)

 Ethidium Bromide (used at a concentration of 00.1µl/ml

2.1.3 Bacterial strains and plasmids

 E. coli strain JM107 was used to make chemically competent cells

suitable for the transformation step in cloning.

 pGEM T-Easy plasmid vector (Promega) was used for ligation reactions

 pUC19 plasmid used as a control for transformation
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2.2 Sampling of Environments

Samples from Icelandic environments formed the bulk of the work detailed in

this thesis, and therefore sampling techniques and conditions are described in

this section in detail. Field sampling took place on four separate trips between

September 2006 and February 2008. Sample types included basaltic lavas,

hydrothermal soil and mud, hydrothermal spring fluids, silica sinter deposits,

and biomats. A list of Icelandic samples used for the research documented in this

thesis is given in Table 2.1. Samples were collected for one of two objectives.

Firstly to produce a representative set of geological Martian analogue or

astrobiologically relevant material (e.g. basaltic lavas and hot spring deposits

respectively), and secondly to conduct a microbiological study into an extreme

volcanic environment that could be utilised as a Martian analogue. These

Icelandic samples were used for the work detailed in Chapters 3 and 5 (both

microbiological based study), and Chapter 6 (geological based study).

In addition to those chapters, Chapters 4 and 7 utilised non-Icelandic samples or

localities, and the relevant details are briefly described here. For Chapter 4,

basaltic hyaloclastite lava samples from Antarctica were kindly provided by Prof.

John Smellie, who collected the samples during three field seasons led by the

British Antarctic Survey. These samples had not been collected under any

particularly notable conditions, and have since remained in storage at the BAS

main headquarters in Cambridge, UK. Chapter 7 describes work conducted on

location in Svalbard, and as such there are no specific sampling details that need

be described here. However, details on specific Svalbard sites themselves that

were used for PanCam testing are given further on in this section.

2.2.1 Sampling protocols and field techniques

The main issue when collecting, transporting, and storing samples was

eliminating contamination, especially in the field. Contaminants can be from a

number of sources, including wind blown material from other parts of the

environment, humans, animals, equipment, and in the laboratory. Two methods

were used to sample geological and hydrothermal material aseptically from

different environments:
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 Hammering: using a sterile hammer, specific sections of rock could be

broken off whilst minimising contamination. These were then

immediately transferred to sterile Whirlpak bags and sealed.

 Falcon tubes: soft sediments and fluids were either scooped into 50ml

Falcon tubes using a flame-ethanol sterilised metal spatula, or

transferred via sterile 10ml pipette.

All samples were kept as cold as possible and were untouched during the trip

and transport. They were transported in the hold of the airplane back from

Keflavik to London, where they were then stored at either -20C or 4°C at UCL

until use.

2.2.2 Sampling Locations

2.2.2.1 Iceland

Sampling and fieldwork sites in Iceland were selected based on their relevance to

the scientific objective of this PhD, and also in terms of logistics. Two main

regions of Iceland were selected, the first in the Southwest on the Reykjanes

Peninsular, and secondly the northern branch of the Icelandic Rift Zone. Whilst

the Reykjanes Peninsular is advantageous in terms of logistical accessibility, the

relatively warm and wet climate of this region caused by the Gulf Stream was

not regarded here as a suitable ‘extreme’ environment from which to conduct a

microbiological study. Therefore samples from this region of Iceland were

collected for geological analyses only (see Table 2.1). In contrast, the northern

branch of the Icelandic Rift Zone lies in the cold and dry Icelandic interior. The

existence of this volcanic desert is largely due to frequent volcanic activity during

the last ice age, which resulted in numerous high elevation subglacially-erupted

volcanic edifices, and since then, laterally widespread subaerial lava flows. The

high elevation terrain produced by past, and currently active volcanism, coupled

with the high latitude geographic position of Iceland, has resulted in the growth

of substantial glaciers on top of these volcanoes. The overall effect of these

factors is a rain shadow that extends northwards across the Icelandic interior

(see Figure 1.6 in Chapter 1). This area therefore was deemed as a suitable

locality within which to research microbial life with relevance to past volcanic

habitats that may have existed on Mars.
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As noted in the Introduction chapter of this thesis, subglacial basaltic volcanism

was an environment of particular interest. As such subglacial volcanoes, both

active and extinct, were sampled. In total, six areas in Iceland were selected for

sampling: Askja, Geysir, Helgafell, Namafjall, Krysuvik and Kverkfjoll, which

are described below. In general, three of these sites were selected for the

sampling of subglacial basaltic lavas (Askja, Helgafell, Kverkfjoll), whilst the

remaining three are hydrothermal fields where samples collected included lavas

that had undergone extensive hydrothermal alteration (Namafjall and

Krysuvik), and mineral deposits (Geysir). Hydrothermal samples were also

collected from Kverkfjoll, but due to time constraints this site was ear-marked

for potential future investigation, and plans for this are detailed at the end of

this thesis in the Discussion (Chapter 8).

Figure 2.1. Satellite map of Iceland showing the approximate position of the Icelandic
Rift Zone (black dashed line) and sampling locations (red stars) in the two principle

regions: the Southwest peninsular and the Neo-volcanic zone, indicated by the blue boxes
which are shown in Figures 2.2a and b respectively.
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Figure 2.2. a) Map showing localities Krysuvik, Helgafell, and Geysir; and b) localities
along the Neo-volcanic zone: Kverkfjoll, Askja, and Namafjall. White areas are largely

Pleistocene subglacial lava flows; dark and mid-grey regions depict Holocene lava flows,
with the mid-grey flows being the most recent; and spotted regions show areas of high

geothermal heat. Light grey shows lakes, rivers and glaciers. Contour lines are on a scale
of 1:500 000. (Adapted from

http://gullhver.os.is/website/hpf/orkustofnun_english/viewer.htm).
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A) Askja

Askja is a large caldera 45 km2 in area, and forms part of the Dyngjufjoll volcanic

complex which lies on the Neo-volcanic zone. The oldest parts of the complex

were produced predominantly by basaltic magmatism, much of which was

subglacial, forming an elevated topography of hyaloclastite and pillow basaltic

lavas (Sigvaldason 1968), with an aerial extent of ~400km2, and a maximum

elevation of 1516m (Sigvaldason 2002). There is a main 8km diameter caldera,

thought to be the result of ring and linear fissure subglacial eruptions towards

the end of the last glaciation. Additionally a smaller inner 4.5km diameter

caldera was formed during a rhyolitic 1875 Plinian eruption (Brown et al. 1991),

and is now filled with water (Figure 2.3a). Askja was sampled due to the

extensive exposures of largely unweathered subglacial basaltic lava flows,

including both pillow basalt piles and hyaloclastite ridges.

B) Geysir

The Geysir geothermal area lies east of the western volcanic rift zone in

Haukadalur, located in South Iceland. Numerous hot springs exist here,

including the Geysir hot spring (now no longer erupting) and the famous

Strokkur geysir. Volcanic activity in this region has been absent in the last

10,000 years, and it is thought the geothermal system is driven by volcanic

intrusions from a now extinct central volcano (Pasvanoglu et al. 2000). All the

boiling hot springs and fumaroles in the area are located within highly altered

basalts, and springs and mud pots are found within the main hot spring area

(Figure 2.3b). Extensive deposits of silica sinter exist around most of the alkaline

hot springs, both as silica crusts around active springs or geysirs, and also as

loose, broken deposits on hillsides. It is these loose samples of sinter that were

collected for study.

C) Helgafell

Helgafell is a monogenetic subglacial fissure eruption (a ‘tindar’) which formed

during the last glaciation in the Pleistocene. It is thought to have erupted

beneath ~500m of overlying ice, and consists predominantly of hyaloclastite

along with occasional pillow basalts and feeder dykes (Schopka et al. 2006). It is

now surrounded by extensive Holocene subaerial basaltic lava flows (Figure

2.3c).
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D) Krysuvik

Krysuvik, located on the Reykjanes Peninsular, is a small hot spring field with

hot spring streams, fumaroles and mud pots, surrounded by subglacially erupted

lava ridges. Hydrothermal activity is high, with high temperature fumaroles

rapidly weathering surrounding lavas (Figure 2.3d). In addition, the springs

themselves are saturated with silica, and opaline silica crusts can be found

coating most lavas close to the streams generated by the springs.

E) Namafjall

The Namafjall geothermal field is ~3–4 km2 in size (Saemundsson 1991) and lies

on the Krafla fault swarm 9km south of the Krafla caldera (Larsen et al. 1979).

Namafjall is a high temperature solfatara field, consisting of numerous sulphur

depositing hot springs and fumaroles, boiling mud pots and hydrothermally

altered lava and soil. Intercalated hyaloclastites and lava flows predominate the

lithology in this area (Gudmundsson & Arnorsson 2002), many of which have

experienced significant levels of weathering and alteration by acid fog (sulphur

dioxide). Such lavas were sampled at this site due to their extensive sulphate

deposits.

F) Kverkfjoll

Kverkfjoll is a partially subglacial central volcano, on the northern margin of

Vatnajokull. It consists of two calderas, positioned geographically at right angles

to each other, of which the northernmost caldera is only partially covered by the

glacier (Hoskuldsson et al. 2006). This central volcano is also located almost

directly above the Icelandic hot spot (Sigvaldason et al. 1974), which coupled

with its position in the neo-volcanic zone, results in very high heat flow and

intensive thermal activity (Olafsson et al. 2000). Extensive volcanism during the

Pleistocene has resulted in numerous NE trending pillow basalt and

hyaloclastite ridges (Figure 2.3e), formed during subglacial fissure eruptions.

The retreating of Vatnajokull since the last ice age has since exposed these

ridges, making them available for sampling.
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Figure 2.3. Photographs of Icelandic localities where sampling took place. Localities
where lava samples were collected are on the left, localities where hydrothermal samples
were collected are on the right. a) Askja caldera looking west. In the foreground the small

explosion crater ‘Viti’ can be seen. The main lake is the crater lake Öskjuvatn (formed
during a 1875 Plinian eruption; b) A typical silica rich spring at Geysir, surrounded by

sinter deposits; c) Helgafell viewed looking NW, surrounded by post-glacial Holocene lava
flows; d) Krysuvik hydrothermal field looking NW; e) Subglacial basaltic lava flows

outcropping north of Kverkfjoll; f) Frozen hydrothermal field at Namafjall.

(a) (b)

(c) (d)

(e) (f)
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Table 2.1. Table of all samples collected from Iceland used in the work for this PhD (NB: Elevation not available for some sites)

Name GPS/Elevation Month Site Description Sample type Chapter

Askja

ASK004
65° 03.264’ N

016° 39.635’ W
960m

July Small hyaloclastite ridge Medium-grained hyaloclastite 3. Bacterial diversity of lavas

ASK009
65° 92.528’ N

016° 36.207’ W
805m

July
Pillow basalt pile between basal

hyaloclastite and a jointed lava flow
above.

Multiple samples of glassy,
largely unweathered pillow

basalt lava

3. Bacterial diversity of lavas
5. Viability of a subglacial
volcanic habitat on Mars

Geysir

GY1
Sinter deposit with 1mm thick
pink, black and yellow bands

GY2

64° 18.825'N
20° 18.178'W

Sept.
Silica supersaturated hot spring

system, numerous deposits of silica
sinter

Silicified biomat with fibrous
mat structure preserved

6. Development of geological
filters on ExoMars PanCam

Helgafell

HF003
64° 0.349'N

21° 51.478'W
149m

Nov. Monogenetic hyaloclastite edifice Fine grained hyaloclastite
6. Development of geological
filters on ExoMars PanCam

Krysuvik

KR003
63° 53.630'N
22° 4.123'W

Nov.
Solfatara field with fumaroles, hot
springs and silica sinter deposits

Hyaloclastite with a surface
layer of opaline silica

6. Development of geological
filters on ExoMars PanCam

Kverkfjoll

KV2
64° 51.245'N
16° 26.941'W

734m
July

Subglacially erupted basalt pillow
lava mounds

Vesicular pillow basalt
6. Development of geological
filters on ExoMars PanCam

KV4/6
64° 41.122'N
16° 40.562'W

1691m
July

Glacial solfatara and hot springs
associated with active subglacial

volcanism

Hot spring sediment and
hydrothermal glacial meltwater

8. Discussion – future work

Namafjall

NAL
65° 38.441'N
16° 49.056'W

Feb.
Solfatara field with numerous

fumaroles and heavily altered lava
Extensively altered basaltic lava

6. Development of geological
filters on ExoMars PanCam
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2.2.2.2. Svalbard

Whilst all samples were acquired from Icelandic environments, in-situ field

testing was conducted on site in Svalbard, and the specific sites where this was

carried out are detailed here. As mentioned in Chapter 1 (section 1.3.3) sites

were located firstly in Bockfjord (Figure 2.4), and secondly at Wahlenbergfjord

(see Table 2.2). Bockfjord is home to the Bockfjord volcanic complex, and contains

several Quaternary eruptive centers and hot spring activity, all located along a

fault thought to represent the opening of the Arctic Basin and the Greenland Sea

(Skjelkvåle et al. 1989). These volcanoes are composed of primitive alkali basaltic

lavas, including abundant xenoliths from the upper mantle and lower crust. In

particular, Sverrefjell volcano (Figure 2.4a) is unique in that it is exceptionally

rich in these xenoliths, the vast majority of which are lherzolitic, and comprise

15 – 20% of the lava. In addition, the formation of Sverrefjell is thought to have

been affected, at least in part, by glacial interaction, signified by outcrops of well

formed pillow lavas and an abundance of volcaniclastic material (Skjelkvåle et al.

1989). The presence of the upper mantle xenoliths means that in terms of

mineralogy, the Sverrefjell lavas are particularly rich in olivine. In addition,

hydrothermally-deposited carbonates are also abundant, deposited in lava

fractures and vesicles, and have been previously documented as a suitable

analogue for the carbonate globules in Martian meteorite ALH84001 (Treiman et

al. 2002), particularly in their zonation of ankerite, siderite, and magnesite.

Sverrefjell is located between two calcareous springs: Troll Springs to the south

and Jotun Springs to the north (Figures 2.4b and c respectively). These springs

are the northernmost documented continental hot springs in the world (Jamtveit

et al. 2006; Banks et al. 1999). Troll Springs in particular is surrounded by large

carbonate terraces, which extend over an area of 50 x 100m (Skjelkvåle et al.

1989), and are believed to be sourced entirely by sub-permafrost glacial

meltwater, with the underlying Marble Formation being the likely source of

spring Ca and CO2 contents (Jamtveit et al. 2006). In contrast, Jotun Springs is

significantly smaller, consisting of convex upwards mounds of carbonate instead

of the large terraces seen at Troll.

Lastly, Wahlenbergfjord lies on the island of Nordaustlandet, the second largest

island in the Svalbard archipelago. Little work has been conducted regarding the
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geology of this island, and the vast majority of it is permanently ice covered.

However, a brief geological overview of the area shows it to consist largely of

sand and siltstones (Harland et al. 1998).

Figure 2.4. a) Field sites in Bockfjord (photo credit: Kjell Ove), looking west; b) Aerial
view of Troll springs, main spring highlighted (Hammer et al. 2005); c) Jotun Springs

Table 2.2. Table of sites in Svalbard where in-situ field testing of the PanCam
instrument was conducted in August 2009 (Chapter 7).

Name
GPS and
Elevation

Description

Sverrefjell
(BOCK01)

79° 26.247'N
13° 20.473'E

63m

Outwash plain of a steep river-cut valley on the
eastern flank of Sverrefjell volcano

Sverrefjell
(SV01)

79° 26.047'N
13° 19.494'E

182m

Volcaniclastic breccia outcrop on the
northeastern flank of Sverrefjell volcano

Jotun Springs
(JS02)

79° 27.358'N
13° 17.255'E

55m

Warm carbonate depositing hot springs with
small, shallow terraces

B
o
ck

fj
o
rd

Troll Springs
79° 23.316'N
13° 26.461'E

33m

Warm carbonate depositing hot springs with
large, well developed terraces containing colour
banding

Wahlenbergfjorden
79° 41.647'N
21° 0.651'E

9m

Iron oxide rich highly friable quartz sandstones
and siltstones within a narrow river-cut gorge

Jotun Springs
Troll Springs

Sverrefjell
(a)

(b) (c)

6m
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2.3 Cultivation and Identification of Microorganisms

Isolation of microorganisms in vitro is essential to provide the physiological and

metabolic information required to place those microorganisms identified purely

through molecular techniques into context. In addition, and with relevance to

this work, microbial cultivation also allows the identification of those

microorganisms that are presently viable. Cultivation of the microbial

community from some natural environments typically has a low success rate. As

such, growth media need to be carefully selected, firstly to encourage high levels

of growth, and secondly to maximise diversity, particularly amongst the slower

growing organisms that can be easily out-competed. Therefore a balance needs to

be struck whereby enough nutrients are supplied to enable the growth of

sufficient biomass, but also not in such high supply that only a small number of

different phylotypes are isolated. Here, two different types of media were used

for the isolation of bacteria from Icelandic pillow basalt (Chapter 5), one which

attempts to emulate the basaltic lava environment, utilising a method modified

from that typically used for soil extract agar (Burlage et al. 1998), and the other

which is more universal to the isolation of environmental bacteria, but at quarter

strength due to the oligotrophic nature of the basaltic lava environment.

Additionally, standard laboratory media specific to the growth of E.coli were also

used for recombinant-based molecular techniques.

2.3.1 Media for isolation of microorganisms

The following media were used for the isolation of microbial communities from

basaltic lava samples:

 Half strength Czapek-Dox Agar (CZD): 12.5g l-1 CZD broth (Difco)

2% agar

(CZD broth ingredients: Saccharose 30 g l-1

Sodium nitrate 3.0 g l-1

Dipotassium phosphate 1 g l-1

Magnesium Sulphate 0.5 g l-1

Potassium chloride 0.5 g l-1

Ferrous sulphate 0.01 g l-1)

 Pillow Basalt Agar (PBA): 50µl ml-1 of pillow basalt solution

2% agar
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Media for growth of E.coli:

 Luria Bertani (LB) Miller modification broth and agar (2%) were used for

the growth of newly transformed and recombinant E.coli cells.

(Difco LB broth ingredients: Tryptone 10 g l-1

Yeast Extract 5 g l-1

Sodium Chloride 10 g l-1)

 Nutrient Broth (NB) was used for the preparation of chemically

competent cells

(Difco NB ingredients: Beef Extract 3 g l-1

Peptone 5 g l-1)

Addition of other reagents:

Following autoclaving media were cooled to ~55°C before selective reagents (such

as pillow basalt solution, see section 2.1.2) were added. For preventing fungal

growth, Nystatin (Sigma) was used at a final concentration of 20µg/ml.

2.3.2 Preparation of chemically competent cells

Chemically competent E.coli were prepared for transformation reactions, and are

so-called due to their ability to take up extracellular DNA from the surrounding

environment. An overnight culture of E.coli was made by inoculating 5ml

nutrient broth (NB) with E.coli strain JM107 and incubating overnight at 37°C

shaking at 180 rpm. The following morning, this 5ml culture was poured into

20ml NB media pre-warmed to 37°C, which also contained 20mM MgCl2. This

was incubated for 1 hour at 37°C shaking at 180rpm. The culture was chilled on

ice until cold and centrifuged for 10 minutes at 5000rpm at 4°C. The resulting

pellet was kept on ice, and resuspended in 2ml ice cold sterile 75mM CaCl2

containing 15% glycerol. This suspension was split into 100µl aliquots into pre-

chilled 1.5ml vials, followed by storage at -80°C.

2.3.3 Microbial isolation from Icelandic samples

Pillow basalt agar (PBA) plates were inoculated by sprinkling crushed pillow

basalt (<3mm particulate size) onto the surface of the set agar plate. The plates

were incubated at 20°C. Plates were spiked with Nystatin, to limit fungal

growth. Sterile control plates were made for the pillow basalt solution
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supplemented agar, and stored amongst the experimental plates to check for any

sources of laboratory airborne contamination. Pure isolates were obtained by

sub-culturing individual colonies two or three times on fresh media.

For storage, pure isolate colonies were removed from the surface of the agar

plate with a sterile loop and suspended in 1ml 70% glycerol in sterile cryogenic

vials, and stored at -80°C.

2.3.4 Extraction of genomic DNA from cultivated isolates

Identification of the isolates cultivated from Iceland pillow basalt was achieved

through characterisation of the 16S rDNA gene from genomic DNA extracted

from each isolate. The method is adapted from Bailey (1995) and was used to

obtain DNA from ~20mg cultured cells. The pure culture was taken straight from

the agar plate and placed into a sterile 1.5ml Eppendorf tube. The cells were

resuspended in 500µl lysis buffer (20 µg/ml proteinase K in 0.5% SDS) and

incubated at 55°C for 30 minutes, with gentle inversions every 10 minutes. 100µl

5M NaCl and 80µl CTAB (pre-warmed to 65°C) were added and the solution

incubated at 65°C for 10 minutes. Following incubation the tube was removed to

room temperature and 680µl of isoamyl alcohol: chloroform (1:24) added (shaking

vigorously). This was centrifuged at 13000 x g for 10 minutes, and the top

aqueous layer removed into a fresh tube. DNA was then precipitated by adding

0.6 volumes of isopropanol and incubating at 4°C overnight. The solution was

centrifuged at 13000 x g for 10 minutes to pellet DNA, which was then washed

twice with 70% ethanol. DNA was then resuspended in 200µl TE buffer and

stored at -20°C.

DNA fragments were separated by gel electrophoresis in 1% (w/v) TBE agarose

gel containing Ethidium Bromide at a concentration of 1µl/100ml. DNA bands

were visualised and photographed under UV light. For quantification, DNA

concentration was measured using a Nanodrop Spectrophotometer.

2.3.5 Polymerase chain reaction (PCR) amplification

PCR allows the exponential replication of a particular gene sequence, in this case

the 16S rDNA gene. The genomic DNA double helix is effectively ‘unravelled’

(melted) into two single strands, which provide the template from which to
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replicate the DNA. Primers (short, single strand DNA sequences) specific to this

region of DNA attach to conserved regions at both ends of the 16S rDNA gene,

and serve as the starting point from which the polymerase enzyme can build the

remaining complimentary strand of DNA through the addition of nucleotides,

eventually producing a duplicate set of DNA (Steffan & Atlas 1991). This process

is performed repeatedly, exponentially increasing with every cycle. PCR

amplification was performed in a Techne TC-512 thermo-cycler. All reactions

were carried out as 50µl reactions, each containing 5µl PCR Buffer (10x stock),

0.5µl each of dNTP mix (10mM stock), Taq DNA Polymerase, forward and

reverse primers (10nmole stock) and Bovine Serum Albumin (10mg/ml stock),

42µl molecular grade water, and 1µl sample template DNA. Bovine Serum

Albumin (BSA) was added to stabilise taq DNA polymerase in the PCR reaction,

and was found to produce a significantly greater yield of PCR product. Bacterial

primer pairs 27F and UN1492R were used, the sequences of which are given in

Table 2.3 further on in this chapter.

The PCR program was as follows: initial denaturation step of 95°C for 4 minutes,

then 25 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 72°C for 1 minute, a

final extension of 4 minutes at 72°C with a final hold at 10°C.

2.3.6 Purification and cloning of PCR products

16S rDNA PCR products (total 40µl) were loaded into a 1% agarose gel stained

with Ethidium bromide, the correct bands excised with a clean scalpel, and

extracted using the QIAquick Gel Extraction Kit (Qiagen) according to the

manufacturers instructions. Purified PCR products were eluted in 50µl of sterile

dH2O.

Sequencing of the purified PCR products directly using primers 27F and

UN1492R proved unsuccessful, and so the PCR products from each isolate were

ligated into the pGEM plasmid vector supplied with the pGEM T-easy vector kit

(Promega) for cloning and subsequent sequencing. Ligation was carried out

following manufacturers instructions as follows: a ratio of 2µl PCR product was

ligated to 1µl plasmid (pGEM) with the addition of 5µl Buffer, 1µl T4 ligase and

1µl molecular grade water (final volume 10µl). This was incubated at 4°C

overnight and stored at -20°C if not being used for transformation immediately.
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For transformation, 2µl ligation was added to 50µl JM107 chemically competent

cells and incubated on ice for 30 minutes. The cells were heat shocked at 42°C for

45 seconds, incubated on ice for 2 minutes, then 450µl LB broth added. The

transformation reactions were incubated at 37°C shaking sideways at 180rpm for

1.5 hours. After incubation 50µl and 100µl were spread onto pre-prepared LB

agar plates supplemented with 100µg/ml amplicillin, 80mg x-gal and 0.5mM

IPTG for blue/white screening of recombinants. Control fresh competent cells

were also plated out as a negative control, and pUC19 plasmid DNA was used as

a positive control. The plates were incubated at 37°C overnight. A single

randomly selected white recombinant colony was picked with a sterile pipette tip

and transferred to 5ml LB broth supplemented with 100µg/ml amplicillin. This

was incubated overnight with shaking at 180rpm at 37°C. Growth was verified

by visual identification of turbidity, and 1.5ml of culture was centrifuged at

13,000rpm in a microcentrifuge to pellet cells. The plasmid was purified from the

cells using the Qiaquick mini-prep kit, following the manufacturers instructions,

and the resulting plasmid DNA was eluted in 50µl sterile dH2O.

2.3.7 Sequencing of the 16S rDNA gene

DNA sequencing was carried out by Wolfson Institute for Biomedical Research

(University College London) using a Beckman Coulter CEQ2000XL Sequencer.

12µl of plasmid obtained from the mini-preps at a concentration between 50 –

100ng/µl was sequenced using vector specific sequencing primers M13-20

(GTAAAACGACGGCCAG) and M13-R (CAGGAAACAGCTATGAC), both from

Invitrogen.

Phylogenetic tree construction for cultured isolates was conducted using software

available on the Ribosomal Database Project website

(http://rdp.cme.msu.edu/treebuilder), which uses the Weighbor weighted

neighbor-joining tree building algorithm. Sequence reads from each end of the

16S rDNA gene insert were typically 550bp long, and as such were not able to

overlap to generate contig sequences of the insert, which being originally

amplified with primers 27F and UN1492R were typically ~1.5kb in length.

Therefore, trees were built using sequence reads (trimmed to equal length of

~400bp) that covered the variable regions V7, V8, and V9. A 16S rDNA insert

can be ligated into a plasmid vector in either direction, and so each sequence was
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assessed to identify the sequence read (M13-20 or M13-R) that covered the

correct variable regions. Additionally, sequence data for the closest relatives of

the cultured isolates identified from BLASTn were also included in the trees for

context, and these, together with the isolate sequences, were aligned using the

ClustalW multiple alignment tool (in BioEdit) and trimmed accordingly. Trees

generated by RDP were then plotted using the Interactive Tree of Life (Letunic

& Bork 2007; Ciccarelli et al. 2006).

2.4 Phylogenetic Analysis of the Microbial Community

To obtain a more comprehensive understanding of the microbial community

present within a given environment, it is necessary to identify those members of

the community that are unable to be isolated through traditional cultivation

techniques, especially considering this can constitute >99% of the entire

microbial population (Tringe & Rubin 2005; Torsvik et al. 1996). One of the most

widely employed methods for doing this is the extraction of microbial community

DNA directly from the environmental sample itself. Whilst this side-steps the

requirement to isolate individual microorganisms, such techniques are not

without their pitfalls. In particular, DNA extraction methods are unlikely to

successfully obtain genomic DNA from all members of the microbial community,

especially where cells adhere to mineral surfaces, or are particularly resistant to

lysing. As such, it is important to be aware that whilst environmental DNA

extraction is without a doubt an incredibly useful approach, it does not by any

means provide a complete picture of microbial diversity.

2.4.1 Genomic DNA extraction from environmental samples

Basaltic lava samples were carefully crushed with a flame sterilized hammer

inside multiple layers of sterile Whirlpak bags surrounded by a thick layer of

paper tissue ‘padding’ to prevent splitting of the bag upon contact with the

hammer (Hirsch et al. 1995). Rock fragments were transferred to a fresh

Whirlpak bag and a repeat of the above crushing method was carried out if

necessary. In general, hyaloclastite lavas were much more friable than pillow

basalts and were therefore easier to process. The resulting rock powder was used

for DNA extractions, whilst any remaining larger fragments were reserved for

culturing. The Powermax soil DNA Isolation kit (MoBio Laboratories) was used

to extract total community DNA from pillow lava (ASK009) and hyaloclastite
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(ASK004, see Table 2.1 for a brief description of samples). DNA extraction was

carried out following the manufacturers instructions. A volume of 15ml

Powerbead solution was combined with 5g crushed lava in a PowerMax bead

solution tube and vortexed for 1 minute. 1.2ml SDS-based solution (solution C1)

was added and the tube vortexed for 30 seconds. The tubes were then attached to

the vortex horizontally and vortexed continually for 10 minutes. This was

followed by centrifugation at 2500 x g for 3 minutes at room temperature and the

supernatant was transferred to a fresh tube. 5ml of solution C2 was added to

precipitate non-DNA organic and inorganic material. After 10 minutes

incubation at 4°C tubes were centrifuged for 4 minutes at 2500 x g and the

supernatant transferred to a fresh collection tube. This step was repeated with

solution C3 to remove any residual non-DNA material. 30ml of solution C4 – a

high concentration salt solution – was added to the supernatant and the tube

inverted twice. The entire solution was centrifuged at 2500 x g for 2 minutes

through a spin filter column containing a silica membrane to which the DNA was

able to bind. The spin filter containing the now bound DNA was washed by

centrifuging through 10ml ethanol solution (solution C5) at 2500 x g for 3

minutes. The spin filter was centrifuged again for 5 minutes to remove any

residual ethanol. The spin filter was then placed in a new collection tube and 5ml

solution C6 (a sterile elution buffer) added to the silica membrane. This was

centrifuged for 3 minutes at 2500 x g, the spin filter discarded and the eluted

DNA stored at -20°C.

2.4.2. PCR amplification

As with identification of cultured isolates, PCR is used here for environmental

DNA to amplify the 16S rDNA gene. However, whereas PCR for isolate DNA

amplifies 16S rDNA from just one organism, environmental DNA is a mix of

DNA from all the different members of the community. This difference has

several affects. Firstly, the risk of contamination is greater, as the very nature of

PCR amplification means even the smallest quantity of contamination can easily

be exponentially increased (Wintzingerode et al. 1997), and amongst mixed

community DNA such contamination could potentially be more difficult to

identify. Typical contaminants usually exist as aerosols within pipettes or the lab

environment, or occasionally from Themus aquaticus – the microorganism from

which the polymerase enzyme used in PCR is obtained. Running a negative



Chapter 2 – Materials and Methods

74

control alongside sample PCRs is a simple way to check for contamination.

Secondly, PCR is widely observed to produce an artificial bias towards the more

dominant members of the community, reducing diversity, and providing an

inaccurate view on microbial community composition. Polz & Cavanaugh (1998)

reviewed such issues and demonstrated that significant caution needs to be

upheld when conducting a PCR-based ecological study. However, as detailed in

their work, such problems can be avoided by reducing the number of PCR cycles,

pooling multiple reactions, and increasing the quantity of template DNA. Lastly,

whilst such methods may allow the identification of the unculturable community,

they are still constrained by what we know from those organisms that have been

isolated. This is particularly true of the so-called ‘universal’ primers used to

amplify 16S rDNA, which are designed based on what are considered to be

conserved regions of the gene (and therefore technically applicable to all Bacteria

for example), but are widely believed to miss many members of the community

that are perhaps more genetically diverse (Baker et al. 2003; Wintzingerode et al.

1997). This is especially true for the archaea of which there are significantly less

cultured representatives (Kolganova et al. 2002)

PCR amplification of the 16S rDNA gene from the community Bacterial and

Archaeal genomic DNA was carried out as described in section 2.3.5, using the

Bacterial primer pairs 27F and UN1492R, and Archaeal primer pairs Arch21F

and UA1492R (Table 2.3). These Bacterial and Archaeal primers span almost the

entire length of the 16S rDNA gene, and therefore cover all variable regions (V1

– V9). Reactions were carried out in multiples of three, which were then pooled

to firstly help minimise any amplification bias produced during PCR, and

secondly to produce a higher yield of PCR product without increasing the number

of cycles. PCR products were purified as detailed previously in section 2.3.6.

Table 2.3. Oligonucleotide primer pairs used for amplification of bacterial and archaeal
16S rDNA genes from environmental and isolate DNA.

Primer
pair

Primer sequence 5’ – 3’ Target Position
(E.Coli)

Reference

27F
UN1492R

AGTTTGATCCTGGCTCAG
GGTACCTTGTTACGACTT

Bacteria 8 – 27
1492 -
1510

Lane et al.
1991

Arch 21F
UN1492R

TTCCGGTTGATCCYGCCGGA
GGTACCTTGTTACGACTT

Archaea 8 – 21
1492 -
1510

DeLong
(1992)
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2.4.3 16S Clone library construction and analysis

Ligation and transformation reactions were carried out as detailed in section

2.3.6, with a total of 8 media plates for each transformation reaction to maximize

the number and variability of recombinant clones. Randomly selected white

recombinant colonies were picked from the overnight transformation LB agar

plates using a sterile pipette tip, and inoculated into 3 ml of LB broth containing

100µg/ml ampicillin. Cultures were incubated overnight with shaking (180rpm)

at 37°C. Overnight cultures were checked for growth by visual identification of

turbidity, and 2 ml of culture was centrifuged at 13,000 rpm for 10 minutes to

pellet cells. The cell pellet was resuspended in 500µl 70% glycerol, of which 450µl

went into -80°C stocks and the remaining 50µl was transferred to a sterile 96-

well plate (Sterilin), also stored at -80°C. In total, 96 recombinant colonies were

picked for each environmental sample in question, for both bacterial and where

relevant, archaeal communities.

For sequencing, 50µl of each glycerol stock clone was sent within 96-well plates

on dry ice via courier to the NERC Biomolecular Analysis Facility (NBAF)

sequencing facility at Edinburgh (http://genepool.bio.ed.ac.uk/), where they were

sequenced with primers M13-20 and M13-R. Sequence data were edited and

aligned using BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html), and each

sequence was submitted to the CHECK_CHIMERA program of the Ribosomal

Database Project (RDP, http://rdp8.cme.msu.edu/cgis/chimera.cgi?su=SSU) (Cole

et al. 2003) for chimeric sequences. For alignment, the ClustalW alignment tool

was used to align sequences between 600 – 700bp in length, covering variable

regions V1 – V4. Environmental clone sequences were compared with database

sequence data deposited in GenBank using the Basic Local Alignment Search

Tool (BLAST) (www.ncbi.nlm.nih.gov/blast) to search the nucleotide database

nr/nt for highly similar nucleotide sequences using the megablast algorithm

(Morgulis et al. 2008; Altschul et al. 1990), and also the RDP classifier

(http://rdp.cme.msu.edu/classifier/classifier.jsp, Wang et al. 2007) to identify

clones, usually at the genus level. Bootstrap cut-off values used were >80%

(default), but classification was typically at 100% confidence. Phylogenetic tree

construction for clones was conducted using software available on RDP, which

uses the Weighbor weighted neighbor-joining tree building algorithm
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(http://rdp.cme.msu.edu/treebuilder). Trees were drawn using the Interactive

Tree of Life version 1.6.1. (Letunic & Bork 2007).

2.5 Analytical Techniques

The following section describes analytical techniques and instrumentation that

were used for providing background mineralogical and geochemical context for

samples used for both microbiological and experimental work.

2.5.1 Thin Sectioning and petrographic analysis

Standard geological thin sections provide the quickest and simplest way to

identify rock mineralogy and rock texture, and these were prepared by Mr. Sean

Holding at UCL. Rock samples were sawn to produce a flat surface, which was

then attached to a glass slide by epoxy resin and dried for 1 hour. The sample

was then sawn further and ground down to a width of 30 microns. The thin

sections were left uncovered and diamond polished. Thin section images were

taken using a Leica microscope with either 10x, 20x, or 40x objectives using a

high quality 35mm exposure film.

2.5.2 Scanning Electron Microscope (SEM)

Scanning electron microscopy allows detailed micron-scale topographic imaging,

whereby a beam of electrons interacts directly with the sample. In addition to

topographic information, this interaction also results in the generation of x-rays

and backscattered electrons, which provide information on elemental

composition and relative atomic number respectively. A Jeol Scanning Electron

Microscope (JSM-6480LV) with combined Energy Dispersive X-Ray Spectrometer

(EDS) and back scatter electron (BSE) detector was used to image and analyse

thin sections and rock fragments. Diamond polished thin sections were carbon

coated whilst rock fragments/chips were mounted onto an aluminium stub with

epoxy resin and silver cement, then gold coated prior to analysis. An accelerating

voltage of 15kV was typically used, and EDS elemental analysis was quantified

against a cobolt standard.

2.5.3 Raman spectroscopy

Raman spectroscopy was used in Chapter 6 to provide identification of

mineralogical species within geological samples. Raman spectroscopy provides
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information regarding molecular structure, via the interaction between a focused

beam of monochromatic light (laser) at a pre-defined wavelength, and the three-

dimensional atomic structure of the material. It is beneficial firstly due to its use

on untreated samples, and secondly due to its largely non-destructive nature.

Raman spectra were obtained from untreated samples with a Renishaw InVia

Raman Spectrometer with a Leica microscope attachment, using either 785nm or

514nm laser wavelengths. Spot size was ~10µm using a x50 microscope objective.

Typically spectra were gathered from 10 accumulations using an acquisition time

of 10 – 20 seconds with laser power ranging between 10 – 100% depending upon

fluorescence, sample degradation and clarity of the Raman signal. For

identification of mineral species, Raman spectra acquired from the samples were

compared against the RRUFF database of Raman spectra (http://rruff.info/;

Downs 2006).

2.5.4 Inductively coupled plasma atomic emission spectroscopy (ICP-

AES)

ICP-AES is used to identify elements and their concentrations, and is used here

for water analysis only. Inductively coupled plasma is used to excite atoms

within the sample, causing them to emit light, the wavelengths of which are

characteristic of particular elements. A Horoba JY Ultima 2C ICP-AES was used

in Chapter 5 to identify and quantify the cation concentrations within an

experimental water sample. This was conducted at the Wolfson Laboratory for

Environmental Geochemistry by Mr. Tony Osborn.
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CHAPTER 3

BACTERIAL DIVERSITY OF BASALTIC LAVAS

FROM CENTRAL ICELAND

This chapter forms the first of five central chapters documenting the research

undertaken during this PhD. This work therefore opens by tackling the first in a

series of questions regarding Martian analogue environments on Earth: what life

is presently residing there? Here, the uncultured bacterial community is

explored in a basaltic lava environment that is considered to be analogous to past

volcanic environments on Mars. This was with the aim to explore the three

following objectives specifically:

Firstly, the geological context within which the basaltic environments exist is

detailed, including the formation of this environment, its physiochemical

characteristics, and the local climatic conditions.

The bacterial communities are then explored as a function of lithology. A basaltic

subglacial volcanic eruption commonly produces two lava types of contrasting

texture and mineralogy, formed from the same initial magma source. These are

pillow lavas and hyaloclastite, and the bacterial communities are examined from

each of these lithologies individually.

Thirdly, within pillow lava itself there are a number of different components,

including the chilled unaltered glassy rind, and the interpillow volcaniclastic

deposits, rich in hydrothermal alteration minerals. These two components are

also examined individually with regards to their microbial communities.
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3.1 Colonisation of basaltic lavas

Basalt is the most widespread geological substrate on both Earth and Mars,

often forming as a result of mantle decompression melting, but is also a common

feature of hot spot volcanism (Wilson 2009). Pillow lavas especially are thought

to be the most common volcanic rock on Earth (Fridleifsson et al. 1982), albeit

largely within oceanic environments. Lavas can be erupted within a submarine,

subglacial, or subaerial environmental setting. This produces a variety of

lithologies, which can also vary in their geochemistry. They can be generally

characterised based on their varying silica, alkali (Na and K), magnesium, and

iron contents. Additionally, basalts subjected to aqueous or hydrothermal

processes after emplacement can experience a change in geochemistry, either

through the removal of certain chemical species or the deposition of secondary

minerals. As a result, basaltic lavas form a vast array of different environments

available for microbial colonisation.

Oceanic basaltic lavas exposed at the seafloor have been subject to much

investigation regarding their microbiota over the past few decades. Basaltic

lavas erupted from mid-ocean ridge systems are widely found to be colonised and

altered by a range of bacterial and archaeal chemosynthetic-based microbial

communities. These exploit the redox gradients between reduced species (e.g.

Fe2+) in basalt and oxygenated sea-water (Santelli et al. 2008; Mason et al. 2007;

Lysnes et al. 2004; Edwards et al. 2003; Thorseth et al. 2001). These communities

are believed to be actively involved in the dissolution of basaltic glass

(McLoughlin et al. 2009; Furnes et al. 2007 and references therein), potentially

down to a depth of 500m (Furnes & Staudigel 1999). Additionally, basaltic lava

habitats within the terrestrial deep subsurface have been of great interest in

terms of understanding subsurface ecosystems both on Earth and potentially on

other planets, such as Mars (McKinley & Stevens 2000; Stevens & McKinley

1995).

However, while the colonisation of subaerial basaltic rocks by lichen

communities is well known and relatively well understood (Chen et al. 2000), the

prokaryotic community inhabiting terrestrial basaltic lavas has been largely

unexplored, in basaltic lavas that exist within arctic climates even less so.

Previous work identifying a novel colonisation strategy of cryoptoendolithic
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microorganisms within basaltic lava from Svalbard highlighted the importance

of basaltic lavas in providing a habitat for life within hostile environments (Jorge

Villar et al. 2006). Likewise, recent work by Cockell et al. (2009a; 2009b), and

Herrera et al. (2009) has demonstrated the exploitation of basaltic hyaloclastites

as a suitable volcanic habitat for crypto- and chasmoendolithic life. As a result,

further exploration of basaltic lavas is needed to identify the microbial

communities that inhabit lavas within such harsh environmental settings.

Basaltic lavas within arctic environments have often interacted with ice, due to

the high latitude and increased elevation of the volcanoes that produce them. As

a result, many volcanoes at polar or near-polar locations have been erupted

subglacially (Chapman et al. 2000). This subglacial volcanism produces

lithologies more comparable to those found on the ocean floor than to typical

terrestrial lavas. Specifically, pillow basalts and hyaloclastites are commonly

formed during basaltic subglacial volcanic eruptions (Smellie 2007).

The aim of this work was to explore the prokaryotic diversity of Arctic subglacial

basaltic lavas, with particular emphasis on exploring how microbial diversity

and composition changes with lithology. It has been previously shown that

bacterial diversity can decline with increased climatic severity within high

latitude environments (Yergeau et al. 2007), but little work has been conducted

regarding geological controls on microbial communities, particularly at high

latitudes. Those that have done are typically focused on seafloor environments

(e.g. Santelli et al. 2008; Inagaki et al. 2003), or on basaltic lavas in Hawai’i,

where climatic conditions are temperate to tropical (Gomez-Alvarez et al. 2007).

Specifically, this study centres around the 16S rDNA culture-independent

analysis of prokaryotic communities from pillow basalt and hyaloclastite lava

from the Askja caldera, Central Iceland.

3.2 The basaltic subglacial lava environment

A subglacial basaltic lava edifice on Earth typically consists of a sequence of

pillow basalts and hyaloclastites. Pillow basalt mounds are formed of crystalline

spherical – elongate lava pillows, each with its own glassy rind produced by

quenching of the magma. In between these pillows are cemented fragments of

glass, rock, and hydrothermal mineral deposits, formed via aqueous alteration of

the lava by hydrothermal fluids travelling along pillow boundaries (Bloch &
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Bischoff 1974). Pillows also contain numerous vesicles, formed by trapped gas

within the magma that was unable to escape due to the overlying pressure of the

ice (Hoskuldsson & Sparks 2006). In contrast are hyaloclastite lavas. These

volcaniclastic rocks consist of fragmentary material – shards of glass and scoria

welded together – formed by more explosive eruptions into meltwater beneath

the ice (Smellie & Skilling 1994). The glass is thermodynamically unstable, and

as a result the smallest glass fragments are quickly altered to palagonite, which

generally consists of iron rich phyllosilicates (clay minerals) such as smectite

clays (Stroncik & Schmincke 2002; Thorseth et al. 1991). This forms a matrix

around the surviving glass clasts and lithic fragments, cementing the rock.

These two different lithologies are very different in physical structure and bulk

mineralogy, despite having the same initial melt geochemistry (if they erupted

from the same magma). Meteoric and hydrothermal fluid pathways exploited by

colonising microbes in pillow basalt lavas are predominantly between pillows

and through interconnecting vesicles. Hyaloclastites however are clastic rocks,

and fluid flow here is confined to grain boundaries, fractures and pore spaces

within the rock. It is therefore hypothesised that despite having similar initial

bulk chemistries, and experiencing the same external environment, the

prokaryotic communities inhabiting these lavas will be different as a result of

their differing lithology. Specifically, hyaloclastites may be colonised by a more

soil-like community. This is due to hyaloclastites having a higher palagonite

content. Indeed, previous studies conducted have observed a similarity between

hyaloclastite communities and those of soil. These studies have been carried out

on Icelandic subglacial lavas from south Iceland, on both basaltic hyaloclastite

(Cockell et al. 2009a,b) and rhyolitic obsidian (Herrera et al. 2009; 2008). They

found a high level of prokaryotic diversity present within the lavas, and

represent some of the first studies on subglacially-erupted lavas in Arctic

environments. Importantly, the microbial community present within Icelandic

hyaloclastite from south Iceland shared no similarity with phylogenetic

sequences obtained from seafloor basaltic lavas, and instead found a dominantly

heterotrophic community present, with a distinct lack of chemolithotrophic

microorganisms (Cockell et al. 2009a). As suggested by the authors, this largely

reflects the different environmental conditions experienced by Icelandic
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terrestrial lavas (aerobic, periodic desiccation, solar radiation) compared to deep

sea oceanic environments.

Samples of Pleistocene subglacial lavas were collected in July 2006 from Askja

volcano. These lavas have since been exposed by glacial retreat during the last

10,000 years (Sigvaldason 2002). The terrain here is entirely volcanic and

consists of stretches of volcanic sand, pumice and more recent subaerially -

erupted lavas that surround older subglacially erupted pillow basalts and

hyaloclastites. There is no weather station at Askja, but typically the driest

areas just north of Vatnajökull receive less than 400mm annual precipitation

(Einarsson 1984), and temperatures can range from 4 - 6°C in summer (July),

down to as low as -10 to -12°C in winter (January). Additionally, daylight hours

vary greatly on a seasonal basis due to the near-polar latitude of Iceland. Whilst

Iceland lies just below the Arctic circle, it still experiences almost complete

daylight mid-summer, contrasting with only a few hours of daylight during

winter. Pillow lava and hyaloclastite were collected from two locations ~3km

apart around the Askja caldera rim (Figure 3.1).

Figure 3.1. Aerial view of the Askja caldera eastern rim where sample environments
ASK9 and ASK4 are located. Pale grey terrain is loose rhyolitic pumice, whilst the
topographically high areas are subglacially-erupted lava flows, which underlie the

pumice deposit. To the north is the 1961 basaltic subaerial lava flow, whilst Öskjuvatn
(lake) can be seen to the south-west. ASK9 lies in a steep river-cut gorge. NB:

illumination from the south.

N
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The lavas here contain little macroscopic plant life. Volcanic sands exist in and

around the lava flows and edifices, within which intermittent patches of coarse

Marram grass grow. The oldest lavas – those that were subglacially erupted –

have been subject to very limited epilithic lichen colonisation, typically on north-

facing damp rock surfaces.

Figure 3.2. Map of mean maximum and minimum temperature for July and January
respectively (data available from the Icelandic Meteorological Office, http://en.vedur.is/).

Askja is indicated by the white box on the map, and the representative temperature
range is highlighted on the scale.
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3.2.1 Pillow lava (ASK9)

This pillow pile (P) is located inside a narrow river-cut gorge, on the south facing

slope. It overlies a small section of fine-grained hyalotuff (H) on one corner,

surrounded by a steep scree slope and is overlain by a thin lava flow (L) on top

(Figure 3.3). The pillows themselves were very glassy and show evidence for

hydrothermal alteration along pillow boundaries. This alteration has produced

white, red and yellow coloured mineral deposits (see Figure 3.3). Pillows were all

a similar size (~50 cm across) and all were elongate in shape. The pillows are

fine grained and contain numerous small vesicles, all 0.5 – 2 mm in size, which

are evenly distributed throughout the individual pillows. Multiple lava samples

were collected from glassy, relatively unweathered regions of pillows.

Specifically, samples fall into two broad categories: lava containing quenched

glassy rinds; and hydrothermally altered interpillow material typically

consisting of fragmented glass, volcaniclastics, and hydrothermal mineral

deposits.

Figure 3.3. a) Context field view of pillow basalt outcrop with underlying hyalotuff (H)
and overlying subaerial lava flow. Arrow points to person for scale. (Photo credit: Dr.

Katie Joy 2007); b) typical pillow morphology; c) alteration between pillows.

(b) (c)

PL

H

(a)
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Whilst there was a small outcrop of hyalotuff underlying the pillow basalt, it was

not sampled for assessing microbial diversity. This outcrop lay particularly close

to the water line of the river flowing through the gully. As such, unlike the pillow

basalts higher up, it was possible that the hyalotuff was perhaps seasonally

affected by the river. Even though the outcrop was sampled during summer

when river discharge is generally at it’s highest, it was decided that the low-lying

position of this outcrop was compromised with regards to assessing microbial

diversity from very dry volcanic environments. Additionally, some of the best

pillow samples could be accessed by climbing on top of the hyalotuff, and as such

the outcrop was no-longer considered ‘pristine’.

3.2.2 Hyaloclastite lava (ASK4)

Outcrops of hyaloclastite surround Askja and range from fine grained and well

sorted, to unsorted with coarse glass and lithic fragments. The outcrops

themselves often display clearly defined depositional banding. Patchy orange–

grey colouration can be seen in all outcrops and is a result of low temperature

aqueous alteration of glass resulting in palagonite formation. The hyaloclastites

collected for this study all came from the same isolated outcrop, and consist of 2

– 4mm sized glass fragments within a palagonite matrix. The hyaloclastite

displayed little variation within the outcrop.

Figure 3.4. Context photograph of the hyaloclastite outcrop at Askja (ASK4). Arrow
points north. (Rh = Rhyolitic pumice deposit from 1874 eruption; H = hyaloclastite; L =

1961 lava flow). Bag for scale in far right of the photograph.

Rh

H

L



Chapter 3 – Bacterial diversity of subglacial lavas

86

Representative lava samples from these two sites were selected for

physiochemical and microbiological analysis. Bulk geochemistry of the original

lava melt (glass) was determined with an Energy Dispersive X-ray System

(EDS), and details of structural analysis of the lavas is described in the following

section. For phylogenetic analysis, 96 cloned representatives each for pillow lava

glass, interpillow, and hyaloclastite were sequenced for taxonomic identification.

3.3 Physical and chemical analysis

3.3.1 Macro texture

Figure 3.5 and 3.6 show hand samples of the hyaloclastite, pillow basalt glass,

and interpillow material. Hyaloclastite is considerably more friable than the

pillow basalts, due to its phyllosilicate-rich composition and clastic structure.

Vesicles in hyaloclastite only exist sealed within the larger glass clasts of the

rock, whereas vesicles make up a high proportion of the pillow lavas, even within

and near to, the outer glassy rind. The outer surfaces of interpillow and glassy

pillow lava samples used in this study were devoid of any macroscopically visible

biological colonisation. Glassy rinds of pillows consist of very fresh, unaltered

glass, with no evidence of large scale weathering. Additionally, this glass has not

been palagonitised indicating limited interaction with water. In contrast,

interpillow material shows clear evidence of hydrothermal alteration and

aqueous interaction, with the deposition of secondary minerals and subsequent

alteration of glass, although there were still areas where significant quantities of

fresh unaltered glass remained. Calcite and gypsum deposits are particularly

common, together with sulphur and iron-rich mineral alteration products.

Figure 3.5. a) ASK4 hyaloclastite, with glass and scoria clasts surrounded by a
palagonite-rich matrix; b) ASK9 Pillow Lava ‘Glass’ sample showing the black unaltered

glassy rind; c) ASK9 Pillow Lava ‘Interpillow’ sample showing vesicular fresh glass
fragments welded with hydrothermal minerals. Scale bar = 1cm.

(a) (b) (c)
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Figure 3.6. Digital microscope images of all three environments highlighting their
morphological and mineralogical differences. a) ASK4 hyaloclastite; b) ASK9 pillow

basalt glass; c) ASK9 interpillow. Scale bar 1mm.

3.3.2 Micro structure

3.3.2.1 Thin section analysis

Petrographic thin sections were made of the ASK9 Pillow Lava and ASK4

Hyaloclastite. Unfortunately, a thin section could not be produced for the ASK9

Interpillow material due to difficulties in making the thin section and limited

sample quantity. Petrographic and Back Scatter Electron (BSE) analysis of the

lava thin sections show a different mineralogy and texture between the

hyaloclastite and pillow basalt. ASK4 hyaloclastite has coarse 1 – 5 mm sized

lithic fragments (fine grained lava and scoria) and numerous angular to sub-

angular sideromelane (basaltic glass) clasts >1mm cemented by a fine yellow –

orange – brown coloured palagonite matrix. Under BSE it can be seen that the

larger of these sideromelane clasts are very vesicular, all with nearly-spherical

vesicles (Figure 3.7). ASK9 pillow lava is highly vesicular, with numerous

rounded to irregular vesicles across a range of sizes (typically >4mm). The pillow

lava itself consists of an incredibly fine-grained matrix, containing small

plagioclase laths (70%), and occasional small anhedral olivines and pyroxenes,

all indicative of rapid cooling of the lava. There are no phenocrysts present.

Lastly, despite the widespread occurrence of bioalteration textures in oceanic

basaltic lavas (see Chapter 1, Section 1.4.3), none were identified in these pillow

lavas and hyaloclastites. All palagonite-glass alteration boundaries were smooth

and consistently banded, typical of abiotic aqueous alteration (Furnes et al.

2007). Likewise, textural studies of hyaloclastites from southern Iceland revealed

a distinctive lack of tubular bioalteration textures emanating from

glass/palagonite boundaries, although ‘pitted’ bioalteration weathering textures

have been identified (Cockell et al. 2009a; Thorseth et al.1992).

(b) (c)(a)
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Figure 3.7. Petrographic (a, b, c, d, f) and BSE (e) thin section images of lavas ASK4
(left-hand side) and ASK9 (right-hand side). ASK4 hyaloclastite containing angular to

sub-rounded vesicular basaltic glass (sideromelane) clasts ‘G’, lithic clasts, all
surrounded by palagonite ‘P’; ASK9 pillow basalt showing numerous vesicles ‘V;

surrounded by a black, very fine-grained groundmass ‘GM’. In (f) the groundmass can be
seen to consist of many small, randomly orientated plagioclase feldspar laths.

3.3.2.2 Porosity

The amount and nature of porosity of the lavas also varied. Estimates of

porosity were undertaken utilising two simple methods. A saturation-based

method was carried out whereby the lava sample was submerged in 20ml water

for 36 hours with regular agitation to release trapped air and allow full

saturation of the lava with water. The remaining water was then removed and

measured, and used to calculate porosity (see Appendix B, Equation 1).
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Following this, the saturated sample was weighed, and the difference between

saturated and dry weight was used to calculate porosity based on sample volume.

Values obtained via this method are likely to represent the minimum porosity, as

water from surface vesicles is easily lost. In addition, estimated 2D porosity was

done digitally using lava thin section images from three scales: x1 (scanned thin

section), x4 (petrographic light microscope image), and x60 (BSE image). Digital

images were processed using ImageJ software (http://rsbweb.nih.gov/ij/) which

calculated the percentage of area consisting of vesicles within the rock thin

section. Due to the 30µm thickness of the thin section, any pore spaces <30µm

will not be accounted for. Vesicles in hyaloclastite only exist sealed within the

larger glass and lithic clasts of the rock, whereas pillow basalt and interpillow

material remain highly vesicular throughout, with vesicles commonly up to 3mm

in size. Porosity measurements of the lavas are shown in Table 3.1. Overall,

ASK9 pillow basalt has a slightly higher interconnected porosity (24.9% (±0.17)

for the pillow lava, 24.4% (±0.47) for interpillow material) in comparison to ASK4

hyaloclastite (22.7% ±0.36), as determined by 3D saturation and evaporation

tests. Porosity estimations by 2D digital image analysis give a greater

percentage of porosity for ASK9 pillow basalt (31.9% (±4.0)) compared to the 3D

estimation. This can be related to the fact that the digital analysis accounts for

all pore spaces, including those that are entirely sealed and therefore not

interconnected. Conversely, the digital image analysis of ASK4 hyaloclastite

gives a considerably lower porosity value, as the majority of pore spaces within

the lava are too small to be identified digitally, existing as numerous fine

fracture and crystal boundary networks within the lava. This difference in

internal structure and porosity of the lavas may play a role in influencing the

colonising prokaryotic community.

Water is one of the most important constituents of an environment. As such, the

moisture content of lavas ASK4 and ASK9 was determined gravimetrically.

Representative samples were weighed, dried at 50°C until constant weight was

achieved (after 4 days), then weighed again to determine water loss through

evaporation. It was found that ASK4 hyaloclastite had more than twice the

moisture content than ASK9 pillow lava. ASK9 had a moisture content of 0.65%

(ASK9 Interpillow 0.71%), compared with 1.94% for ASK4. This is perhaps

unsurprising when considering the far greater clay content of the hyaloclastite.
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When exposed to the atmosphere, smectite clays are able to adsorb or lose water,

depending upon the localised humidity, leading to expansion and shrinkage of

the rock. Repeated over time, this expansion and shrinkage produces surface

cracks and flaking of the rock, allowing more water to enter the lava (Bell 2000).

Due to the seasonal extremes experienced by lavas in Central Iceland, it is likely

seasonal shrinkage and expansion plays an important role in shaping the

physical microenvironment inside the lavas. During winter months here, water

saturation will be highest as a result of constant snow cover, and evaporation

greatest during late spring-early summer. The moisture contents are very low,

and are comparable to the moisture contents of Antarctic Dry Valley soils (Fell et

al. 2006; Cowan et al. 2002). This is largely due to the fact that these

environments are solid rocks, not unconsolidated soils, which due to their greater

surface area have the ability to hold and adsorb more water. This is an

important factor when considering the conditions that exist within these extreme

microenvironments.

Table 3.1. Porosity estimates based on 3D experimental and 2D digital quantification;
and moisture content determined gravimetrically. Error is standard deviation.

Porosity (%) 2D
measurements

Lava Porosity (%) 3D
Measurement

(Saturation) Scale %

Moisture
content

(%)

22.3 x 1 3*

22.8 x 4 1.2* 1.94

ASK4
hyaloclastite

23 x 60 2.1*

Mean 22.7 (±0.36) 2.1 (±0.9)

25 x 1 36

25 x 4 28 0.65

ASK9 pillow
basalt

24.7 x 60 31.7

Mean 24.9 (±0.17) 31.9 (±4.0)

ASK9
Interpillow

24.9
24

24.2
N/A 0.71

Mean 24.4 (±0.47) N/A
*Digital porosity measurements for ASK4 is believed to be inaccurate due to numerous
small pore spaces (<30µm) that are indistinguishable from the surrounding matrix in
thin section.

3.3.3 Geochemistry

The melt geochemistry of the pillow basalt (ASK9) and hyaloclastite (ASK4) is

broadly the same, with little distinction between the two. Both the lavas can be

classified as basaltic andesites on a Total Alkali – Silica (TAS) plot (Figure 3.8),
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which is typical of basaltic ‘Icelandite’ (Jonasson 2005). Additionally, both lie on

the line between tholeiitic and calc-alkalic lavas. For a table of all measurements

see Table 1 in Appendix A.

Figure 3.8. a) TAS classification diagram (Le Bas et al. 1986) showing the composition of
ASK4 and ASK9 lavas (normalised oxide wt.%). Both lavas lie between basalt and

basaltic andesite compositions, consistent with Basaltic Icelandite. Data is also shown for
typical Basaltic Icelandite and Icelandic lavas (Jonasson 2005); b) Field plot of the Askja

lavas (in yellow) on a TAS of Martian rock composition (McSween et al. 2009) for
comparison (for a larger version of this plot see Chapter 1, Figure 1.1.)

Pore water pH was measured by adding 2.5ml dH2O to 1g of crushed rock, and

measuring the pH of this slurry (Brady & Weil 2002). This yielded pH values of

8.35 (±0.35) and 7.65 (±0.07) for the pillow lava and interpillow material

respectively, and a pH of 7.35 (±0.05) for the hyaloclastite. The pore-water

aqueous environment that may transiently exist within the lavas therefore is

neutral – slightly alkaline. It is likely that such aqueous conditions exist during

initial snow melt influx into the lavas following the winter months, and also

during snow-free seasons when rainfall occurs throughout summer and autumn.
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3.4 Phylogenetic Analysis

Molecular taxonomic assessment was conducted using genomic DNA extracted

directly from 5g of each of the lavas (see Chapter 2, section 2.4). Analysis of the

communities present shows there to be a significant difference regarding

bacterial diversity. Archaeal diversity was also investigated for all three lavas,

and only appeared to exist within the hyaloclastite, but the number of clones was

limited for reasons explained in the following section (3.4.1). For the bacteria,

290 individual environmental 16S rDNA clones were sequenced in total, (96

clones per lava) yielding sequences ~700bp long. Sequences trimmed to equal

length and covering variable regions V1 – V4 were used to construct phylogenetic

trees, and identify the dominant phylotypes within the lava community. Of all

these sequences, 273 could be identified (using BLASTn) as similarly

uncultivated microorganisms from a variety of environments, most of which are

either Antarctic, lithic, or hot spring environments. However, many of these (57)

shared less than 95% similarity, and some even as low as 86 – 88%. Likewise,

comparison with isolated microorganisms showed low percentages, typically

between 80 – 95%. Overall, 9 different bacterial phyla (including four

subdivisions of the Proteobacteria) were identified from the bacterial community

within both types of lava. These are all shown in a phylogenetic tree in Figure

3.9, along with their closest environmental and cultured relatives. Individual

clone IDs are for the different lava lithologies as follows: bacterial clones from

ASK4 hyaloclastite are prefixed with ‘ASK4B-’ followed by a number, clones from

ASK9 pillow basalt are prefixed with ‘ASK9G-’ or ‘ASK9IP-’ for the glassy

component of the lava and interpillow material respectively, again followed by a

number. Additionally, a small number of archaeal clones were sequenced for the

ASK4 hyaloclastite, and these are prefixed with ‘ASK4A-’ followed by a number.

Collectively, the phylogenetic tree shows the basaltic lava environment of central

Iceland to be diverse, particularly considering the cold and dry nature of the

environment. Clones that could not be identified at the phylum level using the

RDP taxonomy classifier appear to broadly fall within the Chloriflexus and

Firmicutes groups when displayed in a tree (Figure 3.9). These groups can be

seen more clearly in the relevant lava-specific trees detailed further on in this

chapter. The exception to this is two clones from the ASK9 Interpillow material

(ASK9IP 48 and 84), which exist as a small clade of their own, falling closest to
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the Verrucomicrobia and Planctomycetes. The composition and diversity of the

different lava environments are discussed individually in the following sections.

In addition to the phylogenetic tree in Figure 3.9, the prevalence of

Actinobacteria within all the lava environments means this particular phylum is

explored in more detail, and an additional tree for this phyla only is shown in

Figure 3.17 at the end of this section.

Figure 3.9. Phylogenetic tree of all clones from all three lava environments and
representative Bacterial species. Different phyla are distinguished by colour:

Actinobacteria = Dark blue; Chloroflexus = Red; Proteobacteria = Black; Deinococcus-
Thermus = Cyan; Cyanobacteria = Lime green; Acidobacteria = Purple; Firmicutes =

Yellow; Bacteroidetes = Green; Verrucomicrobia = Pink; Planctomycetes = Blue;
Unknown = Grey. Clades containing three or more clones are collapsed here for clarity.

Black, grey, and white circles next to collapsed clades represent clones from either just 1,
or any combination of 2 and 3 lava environments respectively. Desulfurobacterium

atlanticum is used as the outgroup.
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3.4.1 Bacterial diversity of ASK4 hyaloclastite

Environmental clones identified from the hyaloclastite lava show the highest

level of phylogenetic diversity of the three lava environments. As previously

found in basaltic lava environments, Actinobacteria dominate, and make up 32%

of the total community. Other dominant phyla contribute to the community in

fairly equal portions, consisting of Bacteroidetes (13%), Acidobacteria (10%),

Cyanobacteria (5%), Planctomycetes (9%), and Verrucomicrobia (9%). Notably,

an additional 10% consisted of unclassified Bacteria that could not be identified

at the phylum taxonomic level using the RDP classifier. Lastly, the remaining

12% consist of α- β- δ- and γ-Proteobacteria (between 1 – 3% each), Deinococcus-

Thermus (2%), and one clone in the candidate phylum TM7 (1%), of which there

are no cultured representatives. This top-level composition is highly comparable

to that identified for hyaloclastite lava from the south of Iceland, which were also

dominated by Actinobacteria (33%), Bacteroidetes (12%), Proteobacteria (28%),

Acidobacteria (14%) and Verrucomicrobia (5%) (Cockell et al. 2009b).

Figure 3.10 shows a plot of the number of ASK4B hyaloclastite clones against the

environment from which their most similar relatives were identified from, using

BLASTn. Individual environments are displayed here in distinctive

environmental groups. It is apparent that the majority of these closest relatives,

all of which are also uncultured, come from cold and dry environments. In

particular is the prevalence of Antarctic and Arctic environments, the

individuals of which match 21 and 13 of the ASK4B clones respectively. As

mentioned, phylotypes from the hyaloclastite are comparable to those identified

from hyaloclastite in South Iceland by Cockell et al. (2009a,b), and this is also

indicated here, with nine ASK4B clones having closest similarity to uncultured

individuals from ‘Terrestrial basaltic lavas, Iceland’. For details of the closest

environmental relative for each and every clone, see Table 2 in Appendix A. Also

shown in this plot are the number of phyla represented by these different

individuals within the environment types. The plot shows the number of phyla

covered by the ASK4B clones and their environmental relatives, which in some

cases is as high as 4 or 5 different phyla, signifying a similarity in phylotype

composition between the ASK4B community and those residing in other cold or

arid environments. However, it is noted that such interpretation is heavily
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reliant upon where such previous studies have been conducted (for example, a

closer relative may exist in an as-yet unexplored environment).

Figure 3.10. Representative environments of BLASTn closest relatives of the ASK4B
Hyaloclastite bacterial clones. Where clones from environmental types span more than

one phylum, this is indicated by [#], which also gives the number of phyla.

Table 3.2 below gives a representative sample of the ASK4B clones and details of

their closest relatives. For a full list of all clones and their closest relatives, see

Table 2 in Appendix A. Similarity percentages between the clones and known

cultured species is typically low, with the highest similarity between clone

ASK4B_16 and the cyanobacterium Nostoc calcicola (97%), and the lowest

similarity between clone ASK4B_84 and δ-proteobacterium Desulfovibrio

vulgaris (80%).
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Table 3.2. Selected BLAST database closest environmental isolate/clone relatives and closest species based on 16S rDNA similarity (%) with the
ASK4B Hyaloclastite environmental clones. For a full list of all clones see Appendix A.

Closest relative Closest cultured species relative

ID (Accession #) (%) Sampling environment ID (Accession #) (%)

Actinobacteria

Uncultured (EU883162) 96 Endostromatolites, Haughton impact crater,
Devon Island, Canada

Actinomadura glomerata (AJ293704) 85

Uncultured (FJ592818) 99 Fumarole within a hyperarid, high-elevation
landscape on Socompa Volcano, Andes

Sporichthya polymorpha (X72377 ) 92

Bacteroidetes

Uncultured (EU335841) 96 Mineral soils in Miers Valley, Antarctica Flavobacterium ferrugineum (AM230484) 88
Uncultured (FJ895072) 98 Hyper-arid polar desert Segetibacter koreensis (AB267478) 94

Proteobacteria

Uncultured (GQ128065) 99 Meadow Soil from Tibetan Plateau Rhodoplanes cryptolactis (AB087718) 95
Uncultured (EU373912) 92 Sediment bacteria, Mediterranean Sea Geopsychrobacter electrodiphilus (AY187304) 82

Deinococcus-Thermus

Uncultured (FJ895086) 99 Hyper-arid polar desert Truepera radiovictrix (DQ022077) 91

Acidobacteria

Uncultured (EF464954) 96 Soils of Northern Victoria Land, Antarctica Chloracidobacterium thermophilum (EF531339) 93
Uncultured (GQ495424) 99 Terrestrial volcanic rocks, Iceland Chloracidobacterium thermophilum (EF531339) 81

Verrucomicrobia

Uncultured (AB374368) 97 Endolithic community, ‘White rock’ Switzerland Prosthecobacter vanneervenii (AJ966883) 84
Uncultured (GQ495404) 98 Terrestrial volcanic rocks, Iceland Xiphinematobacter brevicolli (AF217462) 86

Cyanobacteria

Uncultured (FJ891015) 98 Hyperlithic community in quartz, hyper-arid
core of the Atacama Desert

Arthrospira platensis (EF432320) 90

Planctomycetes

Uncultured (EF464902) 98 Soils of Northern Victoria Land, Antarctica Pirellula staleyi (AF399914) 90
Uncultured (GQ396898) 99 Recently de-glaciated soil Pirellula staleyi (AF399914) 84

Unclassified

Uncultured (EU644222) 100 Terrestrial volcanic rocks, Iceland Gloeobacter violaceus (BA000045) 79
Uncultured (EF632950) 93 Aquatic environments in high altitude Andean

Altiplano
Phycisphaera mikrensis (AB474364) 81
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With regards to evolutionary relationships, the phylogenetic tree in Figure 3.11

shows many of the ASK4B clones to be either deeply branching or distantly

related to many known species of Bacteria. Particularly interesting are those

clones that appear most closely related to representative species of the

Firmicutes and Chloroflexi groups. These clones could not be classified at the

phylum level by the RDP classifier, and their closest species relatives have a low

level of similarity, between 80 – 82%. The tree is particularly useful in

identifying clones that are highly similar with little to no genetic variation, and

as such are likely to be multiple representatives of the same species within the

hyaloclastite environment. The level of diversity is relatively high, and typically

no more than two or three clones share this level of similarity. Examples of those

that do can be found within nearly all phyla, including the Bacteroidetes

(ASK4B_80, _27, and _75), Cyanobacteria (ASK4B_10 and _49), Planctomycetes

(e.g. ASK4B_88, _31, and _83), and Proteobacteria (e.g. ASK4B_13 and_17).

Whilst there are many clades of ASK4B clones that appear phylogenetically

distinct from known species and genera, there are at least some which can be

closely associated with cultivated bacteria, the physiology of which is often well

known. Clone ASK4B_16 for example shares high similarity (97%) with the

cyanobacterium Nostoc calcicola. Cyanobacteria species within the genus Nostoc

are distinctive in their ability to remain desiccated for months or even years,

with full metabolic recovery following re-hydration (Dodds et al. 1995). In

addition, they are able to withstand repeated freeze-thaw cycles, and can fix

atmospheric nitrogen (Dodds et al. 1995). As such they are found in polar

environments (e.g. Jungblut et al. 2009; Hawes et al. 1992), and are clearly well

adapted to the Icelandic hyaloclastite lava environment. The species with the

next highest similarity is the Proteobacterium Rhodoplanes cryptolactis, which is

the closest cultured match for three of the ASK4B clones (ASK4B_19, _5, _89), at

94 – 95%. Interestingly this species is a type of photolithotrophic thermotolerant

purple non-sulphur bacteria common to hot spring environments (Okamura et al.

2007). Therefore this particular species would not necessarily be expected to

inhabit the cold and dry basaltic lava environment. Reasons for this are

discussed further on in this chapter. The remaining closest cultured relatives

had a similarity typically of 90% or less, and as such these species are unlikely to

be representative of their corresponding species indentified in the hyaloclastite.



Chapter 3 – Bacterial diversity of subglacial lavas

98

Figure 3.11. Phylogenetic tree of ASK4 hyaloclastite bacterial clones (ASK4B) and
closest relatives. Collapsed branch represents Actinobacteria (shown in Figure 3.17).

Clones within Chloroflexi and Firmicutes (in grey) were not classified by RDP Taxonomy.
Scale bar represents number of nucleotide position changes, and bootstrap values >60

are shown. Desulfurobacterium atlanticum is used as the outgroup.
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In addition to the bacterial diversity, PCR amplification of ASK4 genomic DNA

with Archaeal-specific primers resulted in a PCR product, suggesting the

presence of an archaeal component to the prokaryotic microbial community.

Archaeal PCR products however were not amplified from either the ASK9 Pillow

Basalt glass or interpillow material. Assuming the PCR amplification procedure

worked well, this may imply the Archaea are only present within the

hyaloclastite, however further PCR reactions using different primer pairs and

conditions would need to be conducted in order to verify this. Unfortunately,

multiple problems arising during transformation reactions in particular have

meant the assessment of this hyaloclastite archaeal community was limited to a

handful of clones. Therefore results are summarised here from the limited

number (12) of environmental clones obtained for this lava. All but one of the

clones fall into the Crenarchaeota, and there is little genetic variation between

these, with all having a closest species match to candidate species

Nitrososphaera gargensis (EU281336), with similarity ranging from 89 – 94%.

The other lies within the phylum Euryarchaeota, with a closest species match

(81%) to the methanogenic archaeon Methanogenium thermophilum

(MEERR16S). These clones and their closest environmental and cultured species

representatives are given in Table 3.3, and are plotted as a phylogenetic tree in

Figure 3.12. Despite the similarity between the ASK4A crenarchaeota clones,

individually they are most similar to environmental clones from four different

environments. These include drained alkaline saline soil, hot springs, and

meadow soil from the Tibetan plateau.

Table 3.3 Archaeal community members from ASK4 hyaloclastite (ASK4A). Sequence
lengths are between 500 – 600bp.

BLASTn closest relative and similarity (%)
RDP Phylum

and Genus
No. of
Clones

Accession
number

Environment (%)

4 FJ784299

1 FJ784306

Drained alkaline saline soil from the
former Lake Texcoco (Mexico)

99

4 AY650015 Non-thermophillic Crenarchaeota from
an acidic, 80°C hot spring in Pisciarelli,
Italy

100

1 GQ127335 Meadow soil from Mount Mila in the
Tibetan Plateau.

99

Crenarchaeota;
(Thermoprotei)

1 EU281336 Moderately thermophillic ammonia-
oxidizing crenarchaeote from a hot spring

93

Euryarchaeota 1 EF690592 Vegetable soil 95
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Figure 3.12. Phylogenetic tree of the 12 archaeal environmental clones from ASK4
hyaloclastite (ASK4A), along with their closest relatives identified with BLASTn

(indicated by an asterisk; see Table 3.3 for details), and representative strains of archaea
from GenBank. Branch colour corresponds to phylum, with blue for Korarchaeota (also
the outgroup), green Euryarchaeota, and pink Crenarchaeota. Bootstrap values >80 are

shown, whilst the scale bar represents number of nucleotide position changes.

3.4.2 Bacterial diversity of ASK9 pillow basalt

The pillow basalt glass and interpillow material have broad similarities

regarding their phylogenetic composition. Again there is a significant abundance

of Actinobacteria species, which constitute 62% and 57% for the glass and

interpillow material respectively, whilst Bacteroidetes contributes to 20% and

18% of the respective communities. Both environments share the same phyla,

but the interpillow material has a slightly higher level of diversity than the
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glass, with two additional phyla: β-Proteobacteria and Acidobacteria. In relation

to the lithic Arctic environment, the communities within the pillow lava are

dominated by known radiation and desiccation resistant taxa, such as those in

the phylum Deinococcus-Thermus, and in particular the numerous (22 for ASK9

glass; 18 for ASK9 Interpillow) clones that were classed as genus Rubrobacter.

The prevalence of these particular taxonomic groups reflects the cold and

desiccating nature of the basaltic lava environment.

3.4.2.1 ASK9 Pillow Basalt ‘glass’ (ASK9G)

Figure 3.13 shows a plot of the number of ASK9G clones against the

environment from which their most similar relatives were identified from, as

identified using BLASTn. It is apparent that the ASK9G clone relatives are most

commonly from extremely cold and/or dry environments, such as a hyper-arid

polar desert (31 clones), McMurdo dry valleys (10 clones), and ancient wall

paintings (11 clones). In comparison with the ASK4B hyaloclastite clones, there

are significantly fewer ‘closest relatives’ from soil environments, which represent

5 clones in total. Representative ASK9G clones and their closest relatives are

given in Table 3.4. The ASK9G clones have the highest number of

representatives from the McMurdo dry valleys than either of the other two lava

environments. These 10 ASK9G clones share 97 – 99% similarity with three

clones from a cryptoendolithic sandstone environment from these dry valleys, the

majority of which are Actinobacteria. This dry valley environment is typified by -

60°C to +3°C temperatures and extremely desiccating conditions (de la Torre et

al. 2003). However, whilst the ASK9G clones are dominated by Actinobacteria

species, the Antarctic cryptoendolith environment is dominated by

cyanobacterial and lichen communities, with Actinobacteria making up only 4%

of the bacterial community (de la Torre et al. 2003).

Unique for the ASK9G clones are the 9 that are similar (92 – 96%) to uncultured

isolates from ‘natural asphalts of the Rancho La Brea Tar pits’. The majority (6)

of these clones were not identified at the phylum level by the RDP classifier,

whilst the remaining 3 were all classified as Actinobacteria. All were related to

environmental tar pit clones from the same sample pit, out of two investigated in

the study (Kim & Crowley 2007). This pit consisted of asphalt-permeated soil,

and was found to be alkaline with a high concentration of salts and metals (Kim
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& Crowley 2007). The closest cultured relatives for these clones were

Sphaerobacter thermophilus (78 – 84%) and Ferrithrix thermotolerans (86%)

respectively. Originally classified as the deepest branching member of the

Actinobacteria, Sphaerobacter thermophilus has since been reclassified within

the Chloroflexi class Thermomicrobia (Hugenholtz & Stackebrandt (2004), and is

characterised as an aerobic thermophile. Likewise, Ferrithrix thermotolerans is

thermophilic and also extremely acidophilic, although this does lie within the

Actinobacterium phylum (Johnson et al. 2009).

Figure 3.13. Representative environments of BLASTn closest relatives to the ASK9
Pillow Basalt ‘glass’ bacterial clones (ASK9G). Where clones from environmental types

span more than one phylum, this is indicated by [#], which also gives the number of
phyla.
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Table 3.4. Selected BLAST database closest environmental isolate relatives and closest cultured species based on 16S rDNA similarity (%) with the
ASK9 Pillow Lava ‘glass’ environmental clones. For a full list of all clones see Appendix A.

Closest novel isolate relative Closest cultured species relative

ID (Accession #) (%) Sampling environment ID (Accession #) (%)

Actinobacteria

Uncultured (AM746696) 99 Rosy discoloration of ancient wall paintings Solirubrobacter soli (AB245334) 91
Uncultured (FJ895053)
Uncultured (AY250873)

Uncultured (FN297994)
Uncultured (FJ895056)
Uncultured (FJ891029)

99
98

93
99
95

Hyper-arid polar desert
Cryptoendolithic communities, McMurdo Dry
Valleys, Antarctica
Roman Carmona tombs
Hyper-arid polar desert
Hyperlithic community, hyperarid Atacama Desert

Ornithinicoccus hortensis (AB098587)
Rubrobacter radiotolerans (AJ243870)

Nitriliruptor alkaliphilus (EF422408)
Patulibacter americanus (AJ871305)
Marmoricola aurantiacus (NR_026507)

97
93

88
92
95

Bacteroidetes

Uncultured (EU196299)
Uncultured (GQ454873)
Uncultured (DQ432304)
Uncultured (DQ346479)

95
93
87
88

Cold perennial springs of the Canadian high Arctic
Soils from the Ross Sea region of Antarctica
Alkaline, hypersaline lakes, Egypt
Compost

Gillisia mitskevichiae (NR_025822)
Cyclobacterium marinum (FLERRDB)
Flexibacter aggregans (AB078038)
Algoriphagus halophilus (NR_025744)

92
88
87
86

Proteobacteria

Uncultured (EF215739) 98 Temperate coastal marine waters Agrobacterium sanguineum (AB062106) 94

Deinococcus-Thermus

Uncultured (FJ895047)
Uncultured (EU883205)

95
98

Hyper-arid polar desert
Endostromatolites, Haughton impact crater, Devon
Island, Canada

Truepera radiovictrix (DQ022077)
Truepera radiovictrix (DQ022077)

93
91

Unclassified

Uncultured (EF157190) 98 Natural asphalts of the Rancho La Brea Tar pits Sphaerobacter thermophilus (AJ420142) 84
Uncultured (EF157223)
Uncultured (EU979018)

96
88

Natural asphalts of the Rancho La Brea Tar pits
Rhizosphere

Ferrithrix thermotolerans (AY140237)
Phycisphaera mikrensis (AB474364 )

86
80
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The phylogenetic tree for ASK9 Pillow Basalt ‘Glass’ (Figure 3.14) shows a clear

grouping between highly similar clones, with typically 4 or 5 clones in each

group, demonstrating the low level of diversity within this environment. Whilst

the majority of clones are grouped in this way, the small clades they form are

often a significant distance from their closest cultured species relatives, and

therefore likely to be representative of new species.

The closest species match to an ASK9G clone is the actinobacterium

Ornithinicoccus hortensis at 97%, which is the closest species match for three

individual clones. In contrast to the typically more extremophillic phylotypes

prevalent within this environment, this species is found in temperate garden soil

environments (Groth et al. 1999), and the particular isolate that shares this 97%

similarity to the ASK9G clones was isolated from compost soil (accession number

AB098587). However, considerably more common to this environment are the 22

clones whose closest species match is the Actinobacterium Rubrobacter

radiotolerans, with similarity ranging from 91 – 95%. This species has

exceptionally high resistance to both radiation and desiccation (Kausar et al.

1997). Likewise, 6 ASK9G clones shared 91 – 93% similarity with the

Deinococcus-Thermus species Truepera radiovictrix, a chemoorganotrophic

radiation resistant strain originally isolated from a 70°C hot spring

(Albuquerque et al. 2005).

Bacteroidetes constitute the second highest proportion of ASK9G clones, with 17

clones classified within this phylum. However despite this, similarity between

these ASK9G clones with both uncultured environmental clones and known

species is typically low. As before, closest uncultured relatives are nearly all from

cold environments, including cold springs in the Canadian high Arctic (5 clones),

and Antarctic soils (5 clones). In contrast to the ASK9G clones in the

Actinobacteria, which have high similarities to uncultured environmental clones,

those from the Bacteroidetes have similarities of 87 – 95%. With regard to closest

cultured relatives, similarities range between 86 – 92%, with the closest

Bacteroidetes species match being Gillisia mitskevichiae (92%), a marine,

heterotrophic bacterium with a wide temperature range for growth of 4 – 31°C

(Nedashkovskaya et al. 2005).
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Figure 3.14 Phylogenetic tree of ASK9 pillow basalt ‘glass’ bacterial clones (ASK9G) and
their closest species relatives. The collapsed branch represents the Actinobacteria, which
are shown in more detail in Figure 3.17.Clones within the Unknown/Chloroflexi group (in

grey) were not classified by RDP Taxonomy. Scale bar represents number of nucleotide
position changes, and bootstrap values >60 are shown. Desulfurobacterium atlanticum is

used as the outgroup.

3.4.2.2 ASK9 Pillow Basalt ‘interpillow’ (ASK9IP)

Regarding the ASK9IP lava, the clones from this environment are, as expected,

largely similar to those from ASK9G. The most notable difference is the slightly

higher level of diversity, with an additional two phyla represented:

Planctomycetes and Acidobacteria. Figure 3.15 shows a plot of the number of

ASK9IP clones against the environment from which their most similar relatives

were identified from, using BLASTn. As with the ASK9 Glass environmental

clones, many of these cover Antarctic and cold soil environments. However, in
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this case, the ASK9 interpillow lava clones are clearly dominated by those most

similar to clones from a ‘Hyper arid polar desert’, with 47 clones covering 13

different accession ID’s and 5 different phyla. This is by far the highest (for all

the above) of the 3 lavas, and suggests this bacterial assemblage may be

comparable to that from the lithic environments from that particular study,

despite the large geographical separation. There are a higher number of ASK9IP

clones with closest relatives from soil environments (9 clones) in comparison to

the ASK9G clones. Table 3.5 gives representative closest species and

environmental relatives for the ASK9IP clones.

Figure 3.15. Representative environments of BLASTn closest relatives to the ASK9
Pillow basalt ‘interpillow material’ bacterial clones. Where clones from environmental

types span more than one phylum, this is indicated by [#], which also gives the number of
phyla.
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Table 3.5. Selected BLAST database closest environmental isolate relatives and closest cultured species based on 16S rDNA similarity (%) with the
ASK9 Pillow Lava ‘interpillow’ environmental clones. For a full list of all clones see Appendix A.

Closest novel isolate relative Closest cultured species relative

ID (Accession #) (%) Sampling environment ID (Accession #) (%)

Actinobacteria

Uncultured (FJ895074) 99 Hyper-arid polar desert Rubrobacter radiotolerans (AJ243870) 95
Uncultured (EU883196)

Uncultured (AM746696)
Uncultured (GQ396849)
Uncultured (FJ895062)
Uncultured (EF465010)

97

99
96
99
96

Endostromatolites, Haughton impact crater, Devon
Island, Canada
Rosy discoloration of ancient wall paintings
Recently de-glaciated soil
Hyper-arid polar desert
Soils of Northern Victoria Land, Antarctica

Conexibacter woesei (NR_028979)

Solirubrobacter soli (AB245334)
Ferrimicrobium acidiphilum (AF251436)
Nocardioides jensenii (AF005006)
Kribbella ginsengisoli (AB245391)

91

90
87
93
92

Bacteroidetes

Uncultured (FJ895060) 99 Hyper-arid polar desert Flavisolibacter ginsengisoli (AB267477) 91
Uncultured (FJ490252) 95 Hyper-arid polar desert Segetibacter koreensis (AB267478) 95

Proteobacteria

Uncultured (EU440412) 95 Endostromatolites, Haughton impact crater, Devon
Island, Canada

Sphingopyxis alaskensis (CP000356) 93

Variovorax sp. enrichment
clone (FJ828944)

97 Airfield in the Greenland Variovorax paradoxus (EU979529) 95

Deinococcus-Thermus

Uncultured (AB374369)
Uncultured (AY250871)

97
100

Endolithic community, White rock Switzerland
Cryptoendolithic communities, McMurdo Dry
Valleys, Antarctica

Truepera radiovictrix (DQ022077)
Truepera radiovictrix (DQ022077)

92
91

Acidobacteria

Uncultured (FJ592780) 99 Fumarole within a hyperarid, high-elevation
landscape on Socompa Volcano, Andes

Chloracidobacterium thermophilum
(EF531339)

81

Planctomycetes

Uncultured (EF651250) 93 Australian vertisol Phycisphaera mikrensis (AB474364) 77

Unclassified

Uncultured (FJ895048) 91 Hyper-arid polar desert Leifsonia antarctica (AM931710) 76
Uncultured (FJ490245) 99 Hyper-arid polar desert Thermodesulfobium narugense

(NR_024789)
77
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Figure 3.16 shows a phylogenetic tree of the ASK9 interpillow bacterial clones

(ASK9IP). Closest and most abundant cultured relatives are again Rubrobacter

radiotolerans, between 92 – 95%, but also Segetibacter koreensis (93 – 95%)

within the Bacteroidetes, accounting for 8 ASK9IP clones. This species was

originally isolated from a Ginseng field in South Korea, and is characterised as

an aerobic chemoheterotroph (An et al. 2007). Radiation resistant Truepera

radiovictrix is again the closest species relative (90 – 92%) to all clones identified

as Deinococcus-Thermus (8 clones).

There is a larger diversity of both Proteobacteria and Bacteroidetes within the

interpillow material than the glassy rind, as represented by the higher number

of OTUs. Conversely, there are fewer clones within the ‘Unknown/Chloroflexi’

group than the pillow basalt glass, with only 2 ASK9IP clones falling within this

clade, compared to 7 ASK9G clones.

The closest environmental relative within the Acidobacteria is one from a

fumarole located within the hyper-arid and high elevation Socompa Volcano in

the Andes, with 99% similarity. The closest species relative to all Acidobacteria

clones was the candidate species Chloracidobacterium thermophilum. This

species is believed to be an aerobic photoheterotroph, which was originally isolated

from hot springs in Yellowstone National Park, USA (Bryant et al. 2007). However,

similarity between the clones and this species is low, between 81 – 82%.
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Figure 3.16. Phylogenetic tree of ASK9 pillow basalt ‘interpillow’ bacterial clones
(ASK9IP) and their closest species relatives. The collapsed branch represents the
Actinobacteria, which are shown in more detail in Figure 3.17. Clones within the

Chloroflexi/Firmicutes group (in grey) were not classified by RDP Taxonomy. Scale bar
represents number of nucleotide position changes, and bootstrap values >60 are shown.

Desulfurobacterium atlanticum is used as the outgroup.

3.4.3 Actinobacteria in the Askja lavas

Actinobacteria are particularly prevalent in both the hyaloclastite and pillow

lava lithologies. As such, this phylum is explored here for all lava environments
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together with closest cultured relatives and representative species is given in

Figure 3.17. Many of these clones grouped to form phylogenetically distinct

clades of their own, some of which contain clones from all three lava

environments, whilst others were closest related to known Actinobacteria

species. Those species that had a high similarity to the Askja clones were

Rubrobacter radiotolerans, Solirubrobacter soli, Patulibacter americanus, and

Ornithinicoccus hortensis. Many of the genetically distinct clades are supported

by high bootstrap values, with two particularly deep branching clades having

bootstrap values of 100.

Figure 3.17. Phylogenetic tree of clones within the phylum Actinobacteria and
representative species. Closest relative species are indicated by an asterisk. Where four

or more clones have a branch length <0.01, the clade is collapsed. Branches in red
indicate clades distantly related to known species of Actinobacteria, one of which is

particularly deep branching (indicated by an arrow). Bootstrap values >98 are indicated
with a blue diamond; values 75 – 90 are indicated with a green diamond. NB: GenBank

accession numbers have been removed for clarity, but for closest relatives these numbers
are the same as in Figure 3.9. Desulfurobacterium atlanticum is used as the outgroup
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A significant proportion of clones from all three lava environments lie within

Rubrobacter, and vary in similarity between Rubrobacter xylanophilus and

Rubrobacter radiotolerans. However, most clones form well defined and often

deep rooted clades distantly related to well known environmental Actinobacteria.

These are highlighted in red in the phylogenetic tree. Actinobacteria are often

found to dominate in dry mineral soil environments (e.g. Babalola et al. 2009),

and their predominance within the bacterial communities of these three lavas

might be expected. Likewise, a large number of Actinobacteria were identified in

lavas from South Iceland (Cockell et al. 2009b), and it has been suggested that

the ability to form branching hyphae make Actinomycetes particularly suitable

for colonising rock substrates (Cockell et al. 2009b). Further investigation into

the potentially high Actinobacterial diversity within unexplored environments

such as these basaltic lavas may reveal an array of distinct evolutionary groups

within this phylum. This highlights the importance of investigations into

extreme and hostile environments which can contribute to the growing

understanding of microbial life on Earth, as well as being applicable to possible

life on Mars.

3.5 Variation in Community Composition and Diversity

This study has revealed the Arctic basaltic lava environment at Askja to sustain

a microbial community that is diverse and also well adapted, as suggested by

clone similarity to a wide range of comparable cold and dry environments.

3.5.1 Phylum composition within the lavas

To provide the phylogenetic context for the bacterial communities within the

lavas, the phylum composition of the lava environments collectively are briefly

described below, along with broad characteristics of each respective phylum.

Acidobacteria (ASK4B; ASK9IP): This relatively new phylum contains few

cultured representatives but are believed to be ubiquitous in a number of soil

environments (Quaiser et al. 2003). The ecological characteristics are poorly

understood, although a clear relationship has been identified between pH and

abundance of acidobacteria (Jones 2009).
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Bacteroidetes (ASK4B; ASK9G; ASK9IP): Bacteria of this phylum are, like the

Proteobacteria, believed to be prevalent in the natural environment, especially

those that are aquatic (O’Sullivan et al. 2006; Stevens et al. 2005). However, they

have also been identified in Arctic environments, such as tundra soil (Nemergut et al.

2005), where they can dominate the population (Mannisto et al. 2009) .

Cyanobacteria (ASK4B): Members of the photosynthetic Cyanobacteria are well

known for their proposed importance in the early evolution of life on Earth, and

are found in a vast array of environments. These range from both extreme niches

in Antarctica (Cowan 2009), to producing expansive algal blooms in temperature

lakes (Kolmonen et al. 2004). This phylum was found only within the

hyaloclastite, representing an important phototrophic component to the

microbial community.

Deinococcus-Thermus (ASK4B; ASK9G; ASK9IP): Bacteria within the group

Deinococcus are well known for their high resistance to ionizing radiation,

ultraviolet radiation, oxidizing agents, and desiccating conditions (Griffiths &

Gupta 2007). Existing within all three lava types, they were particularly

prevalent in the ASK9 pillow lava.

Planctomycetes (ASK4B; ASK9IP): Species within this phylum represent on of

the main lines of decent in the Bacterial domain. Originally believed to only exist

in aquatic environments, Planctomycetes have since been identified in numerous

environments, including tundra soils (Buckley et al. 2006).

Proteobacteria (ASK4B; ASK9G; ASK9IP): The phylum Proteobacteria presently

comprises the largest and most diverse group of Bacteria, with representatives

displaying a huge range of physiology (Dworkin & Falkow). As such, it is

unsurprising this group was present in all three lava environments. However,

despite the prevalence of Proteobacteria within the biosphere, they still only

constituted a small component of the community, ranging between 2 – 9%.

TM7 (ASK4B): Candidate phylum TM7 is characterised purely by sequence data

alone, as there are currently no cultured representatives, and was proposed after

studies of forest soil and reactor sludge (Hugenholtz et al.2001).
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Verrucomicrobia (ASK4B): Members of this phylum are widely distributed in soil

and aquatic habitats, and are thought to form a close evolutionary relationship

with the Planctomycetes and Chlamydiae, (Lee et al. 2009).

3.5.1 Comparison of communities between the different lava lithologies

Figure 3.18 and Table 3.6 summarise the composition and diversity indices

between the different lava lithologies. It is apparent from this study that the

ASK4 hyaloclastite lava supports a markedly more diverse bacterial community

than the pillow basalt, despite the common external environment. This is

reflected in firstly the number of OTUs (>97% similarity), and secondly the

diversity indices for each of the lavas (given in Table 3.6). Shannon’s diversity

index values corroborate well with the graph in Figure 3.18 below and also the

number of OTUs, whereby the index is highest for the ASK4 hyaloclastite (4.07)

and lowest for the ASK9 Pillow lava glass (2.99). In comparison the Simpson

Index values give the impression of incredibly high diversity for all the lavas,

with little difference between the three environments. However, it is worth

bearing in mind the true species richness of the pillow lava may not be fully

represented if other phylotypes exist at especially low numbers.

Figure 3.18. Stacked bar charts showing the distribution of Bacterial phylotypes
between the three lava environments. ASK9G = ASK9 Glass; ASK9IP = ASK9

Interpillow; ASK4B = ASK4 Hyaloclastite (n=92 for ASK9G, n=93 for ASK9IP and n=88
for ASK4B).
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Table 3.6. Phylogenetic distribution of genotypes between the different lavas. OTUs and
diversity indices (for diversity indices see Equations 2 and 3 in the Appendix B) were
calculated using MOTHUR (Schloss & Handelsman 2005) at a cut-off value of 97%.

ASK9 Pillow Basalt
Glass

(ASK9G)
Interpillow
(ASK9IP)

ASK4B
Hyaloclastite

Number of OTUs >97% similarity 30 41 64
Alpha diversity index
Shannon’s index 2.99 3.42 4.07
Simpson’s index (1-D) 0.94 0.97 0.99
Phylum Distribution
Actinobacteria 58 52 27
Bacteroidetes 18 17 11
β-Proteobacteria 0 3 2
Deinococcus-Thermus 6 8 2
Acidobacteria 0 5 9
Verrucomicrobia 0 0 8
Cyanobacteria 0 0 4
δ-Proteobacteria 0 0 3
Planctomycetes 1 1 8
TM7 0 0 1
α-Proteobacteria 2 3 3
γ-Proteobacteria 0 0 1
Unclassified 7 4 9
Total no. phyla 5 7 12
Total no. clones 92 93 88

One particularly interesting find is the identification of Cyanobacteria within the

hyaloclastite and its complete absence from both the pillow basalt glass and

interpillow material. Cyanobacteria are known to be found in extreme and often

desiccating environments, such as the Antarctic Dry Valleys. It has previously

been suggested that Cyanobacteria can act as opportunists in such extreme

environments, producing a temporary population during optimum colonisation

conditions (Pointing et al. 2009). This has been suggested for observed

cyanobacterial populations from a hyper-arid polar desert in Antarctica (Pointing

et al. 2009), and it is also noted that many of the Askja environmental clones

have closest genetic similarity with clones from this particular study (see Figures

3.10, 3.13, and 3.15). As such, this result suggests the potential lithological

control on phototrophic colonisation.

In relation to this is the often high level of similarity between the ASK9 pillow

basalt clones to those from cryptoendolithic communities from the Antarctic dry

valleys. However, the high-level structure of these two environments is very
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different. The cryptoendolith communities from the dry valleys were highly

dominated by phototrophs, both lichen and cyanobacterial (de la Torre et al.

2003), although it is noted this may, in part, reflect sampling bias towards

observable ‘green bands’ within the sandstone. In contrast the ASK9 pillow

basalt glass and interpillow lavas were dominated by Actinobacteria, and no

cyanobacterial groups were identified. Five bacterial phyla are believed to

contain members capable of chlorophyll-based phototrophy: Cyanobacteria,

Proteobacteria, Chloroflexi, Firmicutes, and Chlorobi (Bryant et al. 2007; Bryant

& Frigaard 2006). A small number of α-proteobacteria were found in these lavas

(and the ASK4 hyaloclastite), but this group constituted only 2 – 3% of all clones.

This group encompasses many phototrophic genera, but the lack of classification

to any species or genera means it is not possible to confidently infer these clones

to represent phototrophic bacteria. Additionally, the majority were classified

with the RDP classifier as Spingomonadales, members of which are

chemoheterotrophs, not phototrophs (Dworkin & Falkow). It has been previously

suggested that photosynthesis is potentially the main (or even only) source of

primary productivity in such Antarctic cryptoendolith environments (Nienow &

Friedmann 1993). Despite the similarity in environmental conditions (i.e. cold,

desiccating, lithic), the absence of any bacteria clearly capable of photosynthesis

suggests the communities within the pillow lava environment do not soley rely

on phototrophic primary production. Likewise, whilst the ASK4 hyaloclastite did

contain cyanobacteria, these only constituted 5% of the total community.

To estimate the level to which the environmental clones had represented the true

bacterial diversity of the three lava environments, rarefaction curves were

calculated using MOTHUR (Schloss & Handelsman 2005), and are given in

Figure 3.19. These curves show the number of new OTUs (at any given sequence

similarity/taxonomic level) that are found with increased sampling of that

particular community. The more diverse the community, the more sampling

required to identify new individuals. These curves were calculated for each of the

lavas, using OTUs defined at three levels of sequence similarity (cut-off values),

whereby >97% represents species, >95% represents genus, and >80% represents

phylum (Schloss & Handelsman 2005; Stackebrandt & Goebel 1994). It can be

seen from these plots that the bacterial community in the ASK4B hyaloclastite

lava displays a much higher level of diversity than the ASK9 pillow lava. For
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both the ‘glass’ and ‘interpillow’ components of the ASK9 pillow lava

environment, diversity at the phylum level (>80%) largely plateaus off at around

at sample number of ~30 (Figures 3.19a and b), suggesting the phylum

composition of these lavas has been well represented by the number of clones

sampled. For all three lava environments, diversity of OTUs with >97%

similarity appears diverse, and implies that further sampling would be beneficial

towards revealing the composition and diversity of all these environments. This

is especially true for the ASK4 hyaloclastite, which at a cut-off level of >97%, lies

closest to the theoretical maximum out of all three lava environments (Figure

3.19c).

Figure 3.19. Rarefaction curves for the three lava environments calculated using the
MOTHUR program (Schloss & Handelsman 2005) for three cut-off values of sequence
similarity which roughly correlate to taxonomic classification: >97% (species), >95%
(genus), and >80% (phylum). Appearance of new OTUs is plotted against number of

individual sample sequences (clones). Plots (a-c) also show the line for the theoretical
maximum (dashed line), whereby each new sample (clone) represents one new OTU. Plot
(d) shows all lavas for comparison, for the cut-off of >97% (solid line) and >80% (dashed) .
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Regarding sources of inoculum, there are several pathways by which Bacteria

and Archaea can colonise these lavas. The most prevalent of these is likely to be

wind transportation, as the open expanse of the volcanic desert in this region

enables airflow across significant distances with little interruption or redirection,

and the surrounding terrain to the north and south a relatively rich in

vegetation and geothermal biomass. An additional source lies within snow, which

covers the lavas for much of the winter. The subsequent snowmelt runoff could

provide a mechanism of transporting microorganisms or their spores between

proximally located environments. A particularly interesting find is the

identification of the Askja clones as most related to a number of thermophiles

and other species that are typical of hot spring environments. There were

multiple cases of this from all three environments, with 14 clones in total being

most similar to cultured species found in hot springs, 8 of which are from the

ASK4 Hyaloclastite (ASK4B). These species are Thermoleophilum album (3

clones), Chloroflexus aurantiacus (1 clone), Rhodoplanes cryptolactis (2 clones),

Ferrithrix thermotolerans (6 clones), Acidothermus cellulotytiacus (1 clone), and

Thermodesulfobium narugense (1 clone). This association is surprising, as whilst

hot spring environments are often considered ‘extreme’, the abundance of liquid

water and warm-hot temperatures is conflicting to the cold and dry environment

within the basaltic lava. A potential explanation may lie with the existence of

hydrothermal activity in and around the Askja volcanic complex. Particularly

around the caldera lake and within the explosion crater ‘Viti’ (~3 – 5km away)

there are several high temperature fumaroles and hot springs that are a

potential source of microorgansisms that get inadvertently transported to the

surrounding lava flows. Such species adapted to warm springs would perhaps

not be expected to survive the lava environment, but whilst these bacteria are

the closest cultured relatives to the relevant clones, their similarity is low,

typically 84 – 86%.

The exception to this are the 2 ASK4B clones which share 94 and 95% similarity

to the Proteobacerium Rhodoplanes cryptolactis. This species is a thermotolerant

phototrophic purple nonsulfur bacteria, originally isolated from hot springs in Japan

(Okamura et al. 2007). With the exception of this species, the broadly low level of

genetic similarity between the clones and these hot spring species suggests one

of two possibilities. Firstly that these microorgansisms find themselves within a
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different environment, and so adapt according to environmental selection

pressures, evolving into new, genetically distinctive bacteria. Alternatively, these

clones represent as yet undiscovered genera or species that may be closely

related to hot spring microorganisms, but are completely unconnected to the hot

spring environments around Askja, with the existence of both merely due to

coincidence. Conducting further phylogenetic surveys would perhaps shed light

on this issue. Specifically, identification of the communities within the nearby

Askja hot springs would identify any potential source bacteria, along with

temporal sampling of the lavas to ascertain the long-term inhabitants of the

lavas.

3.5.3 Lithological controls on colonisation

There are several possible environmental factors that could affect the differing

microbial diversities of the hyaloclastite and pillow basalt. As seen in section 3.3,

the lavas have very different textures, and vary in moisture content. In addition,

they are likely to be subject to differing micro-climate variations with regards to

sunlight, rainfall, and temperature. Any combination of these could contribute to

the observed differences in microbial colonisation of these rocks. However,

although no data is available or was collected for the individual lava localities, it

is likely that differences in the external environment of these lavas is small, and

it is proposed that it is the lithology that forms the dominant control over

bacterial colonisation and population development. Despite the lavas having the

same melt major geochemistry from which they formed (basaltic Icelandite), they

have evolved into texturally and mineralogically different rocks fitting with their

respective lava lithologies. As a result, their mineralogy, like their structure, is

likely to be a controlling factor on the inhabiting microbial community.

With regards to habitability, the hyaloclastite lava appears to support a wider

range of microbial life than the pillow lava, based on the diversity of phylotypes

and additional identification of Archaea. Hyaloclastite is commonly the most

porous and least dense rock amongst volcaniclastic rocks, depending on the

extent of lithification (Frolova 2008). Their unconsolidated nature in comparison

to other volcaniclastic lithologies results may be an important factor in their

overall habitability and accessibility for colonising microorganisms. Additionally,

this particular hyaloclastite sample had a moisture content almost 3 times



Chapter 3 – Bacterial diversity of subglacial lavas

119

higher than that of the pillow lava, which may make this lithology more

conducive to habitation. As identified by Cockell et al. (2009a), microorganisms

would perhaps extract essential nutrients more easily from palagonite than from

a solid crystalline matrix. The large surface area of the smectite clays making up

the palagonite will provide more reactive surfaces from which microorganisms

can obtain energy and vital nutrients. Additionally, the lack of strong Si – O

bonds within clays means the breakdown of the mineralogical structure is far

easier than it is for larger more structured crystals (Cockell et al. 2009a).

Likewise, the amorphous nature of volcanic glass has been previously suggested

as a positive factor in the leaching of nutrients by microorganisms, in comparison

to crystalline lava.

Interestingly within the ASK9 pillow lava, the interpillow material was more

diverse than the pillow glassy rind. There was little difference between these two

with regards to moisture content, but the pore water pH of the interpillow

material was more neutral (pH 7.67), similar to the hyaloclastite pore water pH.

However, the interpillow is more mineralogically diverse than the glass, through

the deposition of secondary hydrothermal minerals. This would potentially widen

the range of substrates available for microbial growth. It is widely known that

the essential ‘building blocks’ of life consist of a small group of major elements –

the so-called CHONPS (Carbon, Hydrogen, Oxygen, Nitrogen, Phosphorous,

Sulphur) elements (Da Silva & Williams 2001). In addition however are other

elements that make up a small but essential part of a bacterial cell: Potassium,

Magnesium, Calcium and Iron (Da Silva & Williams 2001). Sulphur, Calcium,

and Iron are common to hydrothermally-deposited minerals, such as gypsum

(CaSO4), calcite (CaCO3), iron oxide (Fe2O3), whilst Magnesium is a common

constituent of smectite clays. As such, the lack of diverse mineralogical species

within the pillow lava glass may be a significant contributor to the reduced

bacterial diversity within the ASK9 pillow basalt glass. The work detailed here

therefore would benefit from extensive characterisation of the mineralogy of all

three lava environments (especially the hyaloclastite and interpillow), to

establish the mineralogical (and associated elemental) differences between these

environments.



Chapter 3 – Bacterial diversity of subglacial lavas

120

3.6 CONCLUSIONS

This work sought to identify the prokaryotic composition and diversity within

basaltic lavas of contrasting lithology. In doing so the following were revealed:

 Basaltic pillow lava and hyaloclastites from the cold and dry volcanic

highlands of Central Iceland host a bacterial community that is highly

comparable to those previously found within other comparable extreme

environments, such as the Antarctic dry valleys, polar deserts, and

ancient wall paintings.

 A significantly more diverse bacterial community was found to inhabit the

hyaloclastite lava than the pillow lava. Within the pillow lava itself, the

interpillow material had a marginally more diverse community than that

of the glassy rind.

 Actinobacteria dominated the bacterial community for all three lava

environments, particularly within the pillow basalt.

 A limited number of archaea were identified within the hyaloclastite but

not the pillow lava. Future work should explore this archaeal community

further.
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CHAPTER 4

BIOALTERATION IN CONTINENTAL

ANTARCTIC BASALTIC LAVAS

As shown, basaltic lavas can be a habitat for a diverse prokaryotic community. In

relation to understanding Earth environments as a proxy for life detection on

Mars, it is just as important to recognise how the inhabitants of such basaltic

environments leave behind evidence of their previous or current existence in the

rock record through the production of biosignatures. These biosignatures, being

indirect evidence for life, need to be well understood if they are to be used as

support for the existence of life on another planetary body, in terms of their

generation, preservation, potential for contamination, and external controls. This

chapter will present results relating to a putative biosignature that is

widespread in basaltic lava environments, so-called ‘bioalteration textures’ found

in basaltic volcanic glass. The work described here is divided into two principle

sections:

Firstly, bioalteration textures from terrestrial Antarctic lavas are described and

classified based on their ichnotaxonomy. This is the first identification of these

biosignatures within Antarctic lavas, and is also one of the few from continental

environments specifically (as opposed to oceanic).

Secondly, the unique environmental conditions that these lavas were subjected

to meant that the effect of alteration fluid source and composition (in this case

marine vs. freshwater) had on the generation of these biosignatures could, for

the first time, be identified.
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4.1 Bioalteration and Detection of Life on Mars

Bioalteration textures in basaltic lavas have been identified in numerous

seafloor environments, and have been widely advocated in their use as a suitable

biosignature for Mars (Banerjee et al. 2006; 2004a,b; Fisk et al. 2006; Fisk and

Giovannoni 1999a,b) and the early Earth rock record (e.g. Banerjee et al. 2006),

and as a result much of the research has focused on proving the biogenic origin of

these structures (see Chapter 1, section 1.4.3). However, little is known

regarding the formation, environmental controls, and distribution of these

biosignatures. These are fundamental parameters, and need to be understood if

bioalteration is to be used as a reliable biosignature in Martian exploration. This

lack of understanding is partly due to the limited environments that have been

explored. Even though bioalteration textures have been extensively identified

and described, work has been restricted almost entirely to basaltic lavas from the

sea floor, or ophiolite lavas preserved in the rock record (Staudigel et al. 2008;

Furnes et al. 2007). However, extensive aqueous alteration of basalt also occurs

in continental freshwater environments, such as those created through

subglacial volcanism. Such continental lavas have received little attention, but

are important if we are to understand the potential of bioalteration as a

biosignature in Martian exploration. This is particularly relevant as subglacial

volcanism is a process widely believed to have occurred on Mars (see Chapter 1,

section 1.2.2). This work therefore is focused on the identification of bioalteration

within continental glaciovolcanic basaltic lavas from Antarctica. These lavas are

not only an ideal geological analogue to Martian lavas, due to their subglacial

origin, but the Antarctic climate today is widely perceived to be an excellent

environmental analogue to conditions on Mars. Here, bioalteration textures in

Antarctic lavas are described, and the importance of environmental controls on

the formation and occurrence of these biosignatures is demonstrated.

4.1.1 Controls on the formation of bioalteration

The environmental controls on the formation of bioalteration textures are poorly

understood. Changes in fluid flux, nutrient supply and local temperature are all

believed to be important controls on bioalteration in sea floor lavas (Furnes et al.

2007; Furnes et al. 2001a), as are the salinity and nutrient content of the

circulating fluids (McLoughlin et al. 2007). The next step in the study of

biomediated processes is to understand better the environmental controls that
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affect the distribution and occurrence of bioalteration. The freshwater

environment in particular has been overlooked, as typically found in subglacial

volcanic settings. Alteration fluids forming as a result of subglacial eruptions

will differ significantly from those in an oceanic setting, whilst the basaltic host

lithologies remain essentially the same (i.e. basaltic hyaloclastites and pillow

lava). It is therefore important to identify whether or not bioalteration textures

always reliably form in basaltic glasses that exist within any type of aqueous

environmental setting, or if there is in fact any fundamental environmental

control on their formation.

4.1.2 Utilising a transitional subglacial – marine environment

This work contains the first petrographic description of bioalteration textures

within Antarctic hyaloclastites, and aims to provide an insight into how the local

environment affects the occurrence of bioalteration textures within basaltic

sequences that have experienced both freshwater (subglacial) and marine

conditions. Basaltic subglacial eruptions result in similar lithologies to those

erupted on the sea-floor at mid-ocean ridges, due to similar processes of rapid

lava quenching upon contact with cold water or ice and the subsequent formation

of abundant glass (Staudigel and Schmincke 1984; Jones 1969). As a result,

subglacial and marine volcanic sequences have the potential to host comparable

microbial activity. In this study, a sequence of Antarctic lava-fed deltas erupted

under well-constrained environmental conditions (Smellie et al. 2008; Smellie

2006) was studied to identify the major environmental controls on any

bioalteration textures found.

These Antarctic sequences from James Ross Island (see Figure 1.7, Chapter 1)

were initially erupted subglacially, but some have been interpreted to be later

affected by percolating marine water as sea level fluctuated (Johnson and

Smellie 2007). In this study, the authors used Na, K, and Ca concentrations to

identify the presence of marine alteration of zeolites (phillipsite and chabazite),

and therefore sea-water percolation through that particular hyaloclastite delta.

By identifying and quantifying the bioalteration in a series of lavas from the

same volcanic province under these well-known, but variable, environmental

conditions, the major controls that determine the distribution and abundance of

endolithic microbial activity in basaltic glass can be more confidently identified.
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4.2 Description of Bioalteration in James Ross Island

Hyaloclastites

These results for James Ross Island hyaloclastites are the first evidence for

bioalteration textures in basaltic glass from Antarctic lavas, and they are also

the largest dataset obtained for a subglacial lava sequence anywhere.

4.2.1 Morphology and Ichnotaxonomy

54 thin sections of hyaloclastite from five lava-fed deltas selected from the James

Ross Island Volcanic Group (JRIVG) were analysed petrographically with a

transmission light microscope and by scanning electron microscopy (SEM), to

identify bioalteration textures that were comparable to those previously

described from oceanic basalts. Morphological and textural data were used to

firstly identify the ichnotaxa present within the Antarctic lavas based on

taxanomic nomenclature from McLoughlin et al. (2009), and secondly to establish

the biogenicity of these microborings based on the biogenicity criteria proposed

by McLoughlin et al. (2007).

The bioalteration textures in the lavas are almost entirely tubular, consistent

with a relatively low temperature alteration environment (Furnes et al. 2007).

Granular alteration is consistently uncommon (but present), although it is the

most widespread form of bioalteration in oceanic lavas, even at low

temperatures. Textural identification of bioalteration was based on comparisons

with published examples of characteristic features of biologically mediated

dissolution of glass (Staudigel et al. 2008; Furnes et al. 2007 and references

therin). It is noted in particular the restriction of bioalteration to glass

boundaries, cracks and vesicles (i.e. places where liquid water can circulate); the

association with palagonite formation (and therefore water); and most

importantly, the characteristic ‘tubular’ appearance and other distinctive

morphological features (segmentation, bifurcation, irregular pathways, constant

microtubule width of ~2–20µm) of the bioalteration tubules, which closely

resemble previously published examples from sea-floor lavas and are thought to

be indicative of biological behaviour (Staudigel et al. 2006). Examples are shown

in Figure 4.1. When viewed under SEM, the edges of glass clasts and fractures

also display irregular pitting and etching patterns (see Figure 4.2a) which are
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clearly distinguishable from the smooth alteration boundary that characterised

‘normal’ abiotic alteration.

Figure 4.1. Examples of bioalteration textures (a, c, d, e and f) and abiotic alteration (b)
seen in the JRIVG hyaloclastites (M = microborings, F = fresh glass, P = palagonite, Z =

zeolite). Arrows in photograph (c) indicate bifurcation.
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Figure 4.2. a) Bioalteration ‘pitting’ and ‘etching’ into glass boundaries under SEM.
These features clearly extend from the fracture into the adjacent glass; b) abiotic

alteration for comparison.

Based on the observed bioalteration textures in the James Ross Island lavas,

four ichnospecies can be identified, three from the ichnogenera

Tubulohyalichnus, and one from the ichnogenera Granulohyalichnus. All three

ichnospecies belonging to Tubulohyalichnus were unambiguously identified

according to the taxonomic criteria outlined by McLoughlin et al. (2009). The

first, Tubulohyalichnus simplus, is by far the most common, and is characterised

by simple tubular structures that extend into the glass away from fractures,
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vesicle walls, and the margins of the glass clasts. These tubules nearly always

occur in dense clusters, and form pathways that range from gently curvilinear to

highly irregular (Figures 4.3a and 4.1e respectively). These ichnofossils are

highly comparable to those seen in oceanic lavas, and it is also noted

Tubulohyalichnus simplus is also the most abundant ichnofossil species of this

ichnogenera within previously described lavas (McLoughlin et al. 2009). Secondly

identified is the ichnofossil Tubulohyalichnus annularis. This ichnofossil species

is not seen in all the Antarctic lava samples, but it is by no means identified as

an isolated case. These tubular structures are similar to Tubulohyalichnus

simplus in terms of basic morphology and distribution, but they have the

addition of clear segmented structures along the length of the tubule (Figure

4.3b). The final ichnospecies within the Tubulohyalichnus genera is

Tubulohyalichnus stipes (Figures 4.3c and 4.1c). This ichnospecies is defined by

the branching structure of the tubules, where the branch diameters are the same

as the tubule they are originating from. Their overall morphology and

mineralogical relationship to the glass/palagonite is identical to that of

Tubulohyalichnus simplus, although as with Tubulohyalichnus stipes, this

ichnospecies is much less abundant. Lastly, Granulohyalichnus vulgaris was

identified in only a few lavas, and was the least abundant of all the ichnospecies.

In oceanic lavas this ichnofossil is especially common, much more so than any

ichnofossils from the Tubulohyalichnus genera, but this does not appear to be

the case in any of the James Ross Island hyaloclastite lavas. Where

Granulohyalichnus vulgaris does appear, it is poorly developed and occurs only

in very sporadic and isolated patches along fractures within glass clasts.

Individual pits here however are fairly regular, with the majority being 0.5 - 1µm

in size (Figure 4.3d). This size range is consistent with the size range attributed

to this particular ichnofossil species, and furthermore is comparable to their

oceanic counterparts where the most common pit size is ~0.5µm (Furnes et al.

2007).
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Figure 4.3. Transmission light microscope (a-c) and back-scatter electron (d) images
depicting the ichnofossil taxonomic classifications identified in the JRIVG subglacial
hyaloclastites, a) Tubulohyalichnus simplus; b) Tubulohyalichnus annularis, arrows

show segmentation within tubules; c) Tubular bioalteration classified as
Tubulohyalichnus stipes for its branching structure, and the individual branches as

Tubulohyalichnus annularis, where arrows show annulations along the length of the
tubule. Also noted in this image is an example of Tubulohyalichnus simplus exhibiting a
looped structure; d) Granulohyalicnus vulgaris, showing granular pitting extending out

from the palagonite (P) into the glass (G).
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4.2.2 Biogenicity

The bioalteration textures observed in the James Ross Island hyaloclastites fulfil

two out of three biogenicity criteria described by McLoughlin et al. (2007):

1. “a geological context that demonstrates the syngenicity and antiquity of

the putative biological remains”. The hyaloclastite bioalteration textures

are restricted to areas previously exposed to external water. They are

associated exclusively with vesicles, fractures and sideromelane clast

boundaries.

2. “evidence of biogenic morphology and behaviour”. The hyaloclastite

bioalteration textures display evidence of branching, segmentation, spiral

pathways and a consistent tubule width. These morphological features

can also be confidently identified using established ichnotaxa.

Additionally, evidence for a biological origin of such tubular bioalteration

textures, based on morphology, is evaluated by Walton (2008). Here, Walton

discusses and refutes the possible abiotic alternatives for these bioalteration

textures, such as skeletal crystals, healed fractures and ambient inclusion trails.

The third biogenicity criteria that was not fulfilled: “Geochemical evidence for

biological processing”, was due to unknown collection and storage conditions of

these samples. The lavas were originally collected by Prof. John Smellie for

volcanological purposes, before being loaned for this work, and as such were not

collected or stored in a way conducive for biologically-focused geochemical

analysis. Many of the most convincing proofs for a biogenic origin of bioalteration

textures are from lavas collected in-situ from oceanic crust. These studies

combine geochemical analysis with DNA staining to demonstrate the presence of

biological activity within these textures (e.g. Torsvik et al. 1998), and some

studies even collected the samples aseptically (e.g. Fisk et al. 2003). Therefore, as

the James Ross Island lava thin sections were not collected under controlled and

documented conditions, it was decided any biogeochemical observations would

not be reliable, particularly if they were to be used in proving the biogenicity of

morphological features. Additionally, the thin sections had already been carbon

coated for previous work by Prof. Smellie, and any naturally occurring biological

carbon signal within these structures would already be compromised. However,

the morphological, behaviourable, and contextual evidence show a high degree of
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consistency with published examples, and are therefore interpreted here to be

genuine bioalteration textures.

4.3 Bioalteration vs. Environment

To estimate the modal percentage of microborings, a semi-quantitative method

was devised whereby the fraction of microborings that have affected the

available alteration boundaries (grain boundaries, cracks and vesicles) was

visually estimated for suitable basaltic glass clasts (sideromelane clasts) in each

thin section. Results are recorded as numbers varying from 0 (absent) to 10 (all

boundaries affected), which are termed here ‘bioalteration values’. Example thin

section images of bioalteration values 0, 5 and 10 are shown in Table 4.1. A

typical thin section contains between 35 and 50 suitable clasts. Any clasts that

were completely palagonitised were omitted from the assessment, as it has been

widely reported that such microborings are not observed within palagonite itself,

possibly because they have been destroyed by the alteration process (Furnes and

Staudigel 1999). Of all these lavas (53), 20 of the samples are from marine-

altered hyaloclastite; the remainder are believed to have only experienced

freshwater (i.e. glacial meltwater) conditions. In total, over 2500 individual

measurements were made. For each thin section, the mean bioalteration value

was calculated from all sideromelane clasts analysed within the thin section. To

avoid bias in the results, thin sections were analysed blind and in a random

order. Additionally, a random selection of thin sections were later analysed a

second time, and results compared to verify the initial estimation. Results of

these mean bioalteration values for each thin section are presented in Table 4.2.
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Table 4.1. Example bioalteration values used to determine the extent of bioalteration
within the JRIVG hyaloclastites. A bioalteration value represents the visually estimated

fraction of all alteration boundaries within a sideromelane clast that shows textural
evidence of bioalteration. Bioalteration values range from 0 to 10, and examples of values

0, 5, and 10 are shown.

4.3.1 Bioalteration vs. aqueous environment

Mean bioalteration values for all the thin sections were processed using a K-

means clustering algorithm using 3 clusters to divide the data into absent,

present, and abundant bioalteration values. A K-means algorithm aims to

cluster data into groups (of a pre-defined number) whilst minimising intra-

cluster variance. The percentage of these individual clusters that consisted of

marine and glacially-altered lavas was used to identify any correlation between

bioalteration and alteration environment (Figure 4.4). The value of using

statistical cluster analysis of large geobiological data sets of this nature is

discussed in Storrie-Lombardi & Fisk (2004).
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The individual lava deltas analysed (see Chapter 1, Figure 1.7 for names) range

from entirely subglacial, subglacially erupted followed by marine alteration, and

entirely marine. One delta (Dobson Dome; delta names after Smellie et al. 2008)

experienced only freshwater conditions whilst a second (Lachman Crags main)

was probably wholly marine emplaced. Another three deltas (Forster Cliffs,

Patalamon Mesa main and Tumbledown Cliffs) were initially emplaced in a

glacial setting (i.e. freshwater alteration) but subsequently were affected by

marine incursions (Johnson and Smellie 2007). The Dobson and Lachman deltas

were selected to act as possible controls (or ‘end-members’) to help interpret the

deltas that experienced both freshwater and marine conditions. The deltas range

in age from < 80 ka to 5.15 Ma, thus giving the potential to identify any age-

related effects on bioalteration. Much of the alteration probably took place

shortly after initial emplacement, while the permeable hyaloclastite pile was

cooling and the pore fluids were still relatively warm, but the marine alteration

may have taken place at somewhat cooler temperatures, long after volcanic

activity (Johnson & Smellie 2007).

Figure 4.4 shows the clustering of the data as revealed by K-means analysis. A

clear division between the three groups can be seen, and is taken to be

representative of differing levels of bioalteration: ‘absent/low’, ‘present’ and

‘abundant’. The percentage of the two different environments (marine and

glacial) for each group clearly shows a strong trend of increasing bioalteration

with a marine environment, and decreasing bioalteration with a glacial

environment. The overall trend is that bioalteration is typically higher in

hyaloclastite samples that experienced marine conditions than those that simply

experienced freshwater (meltwater) conditions. Additionally, a t-test value (a test

of whether the means of two groups are statistically different from each other) of

p<0.0001 was calculated for the data, strongly suggesting this observed pattern

is not simply a result of chance.
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Figure 4.4. Plot of K-means clustering of the mean bioalteration values obtained on
samples from James Ross Island hyaloclastite. The algorithm shows three distinct

clusters representative of increasing bioalteration values. Filled symbols are for samples
that experienced marine conditions. Crosses only experienced freshwater conditions.

Grey stars represent the centroid for each cluster. Dark blue, pink and black represent
the different clusters assigned by the algorithm – the dashed field line has been added to

clearly show the parameters of these clusters. The ‘abundant bioalteration’ group is
dominated by marine altered hyaloclastites, whereas the ‘low - absent bioalteration’
group is dominated by hyaloclastites altered by freshwater (glacial meltwater). The

middle group ‘bioalteration present’ is represented almost equally by both environments.

The semi-quantitative analysis demonstrates a relationship between

bioalteration extent and alteration fluid source: seawater-affected samples

generally show a much higher level of bioalteration compared with samples

affected only by freshwater (glacial meltwater). The latter are characterised by

extremely low bioalteration values. If bioalteration values <1 are taken to

represent no bioalteration present at all, then 76% of glacial hyaloclastite can be

interpreted as lacking in bioalteration. In comparison, only 26% of marine-

altered hyaloclastites have values <1. Thus, glacially-derived meltwater does not

appear to strongly promote bioalteration. Conversely, there appears to be no

difference between the types of microbial textures found in either freshwater or

marine altered lavas, pointing towards a common method by which the microbes

dissolve or etch the glass, regardless of alteration fluid.
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There are three main factors that could possibly explain the relationship

between alteration fluid composition and the abundance of microborings. Firstly,

the microbial biomass of seawater is significantly higher than that of glacial

meltwater. During a subglacial eruption, the primary source of microbes is the

overlying glacial ice. As a lava-fed delta eruption progresses, microbes might

enter via meltwater pathways, fractures in the ice and from subaerial exposure

of the delta top. Other (non-delta-forming) glaciovolcanic eruptions may remain

entirely subglacial (e.g. eruptions that cease at the pillow volcano or tindar-

forming stages (Smellie 2007). Secondly, seawater is more nutrient rich than

glacial meltwater, and combined with the basaltic glass substrate, may provide

ideal conditions for microboring formation.

4.3.2 Bioalteration vs. elevation and age

Parameters such as elevation and age may be directly related to the alteration

environment, since the lava-fed deltas on James Ross Island are known to have

undergone a history of initial freshwater alteration followed by marine alteration

(Johnson and Smellie 2007) and they vary in age by up to 6 Myrs (Smellie et al.

2008), thus giving the deltas varying time to be altered by percolating fluids.

Samples were normalised relative to the elevation of the surfaces that separate

marine from freshwater alteration (identified by Johnson and Smellie (2007) for

each delta). These normalised elevations are given in Table 4.2. In addition, one

delta (Dobson) only experienced freshwater conditions, whilst another (Lachman

main) was probably marine emplaced; these two deltas were used as controls for

distinguishing marine from freshwater bioalteration effects. There is a relatively

strong correlation between those samples with low bioalteration values (<2) that

were affected only by freshwater, and marine-affected samples showing

significantly higher values (Figure 4.6), with only 15 % of samples contradicting

this observation. Note that the marine—freshwater transition may be a zone

several metres thick rather than a precise elevation. The elevations used here

(from Johnson and Smellie 2007) may only be accurate to within ± 5-10 m, and

the presence of “marine-affected” samples with apparently anomalous values

close to the transition surface may be simply an artefact of the artificially

“precise” elevation used in the calculations (e.g. three supposedly marine-affected

samples from the Forster Cliffs delta showing low bioalteration values; Figure

4.5).
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Figure 4.5. Plot showing sample elevation and bioalteration values, for James Ross
Island hyaloclastites. Elevation is sample height (in metres) relative to the upper surface
reached by seawater during later marine influxes (shown as vertical line at 0 m; surface
identified by Johnson and Smellie 2007). Samples below that surface experienced marine

conditions after an initial freshwater environment, whilst higher samples experienced
only freshwater conditions. The elevation of the marine surface is not precisely

determined in all deltas (John Smellie, pers. comm.), an uncertainty indicated here
schematically by the grey band. Outside of the grey band only 6 samples out of 53 (11 %)

plot “anomalously”, and the dataset shows clearly that marine samples typically have
significantly higher bioalteration values compared with those at higher elevations that

experienced only freshwater conditions.

Depth is thought to be one of the most important controls of bioalteration in

oceanic lavas, whereby bioalteration decreases with depth due to elevated

temperatures and lack of fluids (Furnes et al. 2001a; Fisk et al. 2003; Furnes and

Staudigel 1999). The greater intensity of bioalteration in the JRIVG

hyaloclastites occurs in the marine-affected samples, which probably took place

at lower temperatures. However, our results suggest that the frequency of

microborings in our samples is predominantly controlled by the type of alteration

fluid.

Intuitively, hyaloclastites that are older have had a longer residence time and

thus might have had more time or opportunities to be altered by endolithic

microorganisms. However, there appears to be no obvious relationship between

delta age and intensity of bioalteration. Figure 4.6 shows bioalteration values

plotted against delta age. Only the youngest delta (Dobson; < 80 ka) shows the

least effects of bioalteration so the possibility that insufficient time has elapsed
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for bioalteration to occur cannot be completely discounted in this case, but it is

also noted that this delta has also only existed within a glacial environment. All

the other deltas however show similar, widely varying levels of bioalteration

values.

Figure 4.6. Plot of bioalteration values against age (i.e. emplacement age of the host
lava-fed delta; ages from Smellie et al. 2008). Although the youngest delta (Dobson

Dome) shows very limited signs of bioalteration, there is overall no obvious relationship
between bioalteration intensity and sample age.

It is possible that it is simply the intensity of aqueous (abiotic) alteration

experienced by the glass that promotes the development of bioalteration

textures. If the thickness of palagonite rims on glass fragments and amount of

zeolite formation within the hyaloclastite are interpreted as a measure of the

intensity of aqueous alteration, then comparison of the datasets for the two

different environments suggests that there is no correlation with intensity of

bioalteration and extent of palagonitisation. The marine altered samples do not

contain more secondary minerals than the glacially (freshwater) altered lavas.

This observation is consistent with that of Johnson and Smellie (2007), who

suggested that the majority of the alteration (of original glass and filling pore

spaces) took place relatively soon after delta emplacement under freshwater

conditions, with subsequent marine conditions mainly simply modifying the

zeolite (and palagonite) compositions and filling any remaining pore spaces and

fractures. This further implies the formation of bioalteration textures in this

volcanic province is controlled largely by the aqueous chemistry and origin of the
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alteration fluids. Alternatively, it is always a possibility that these bioalteration

textures are not in fact biogenic, and are an entirely, but as yet unrecognised,

type of abiotic alteration, although this latter option is unlikely considering the

evidence presented by previous researchers that suggests otherwise (e.g.

McLoughlin et al. 2009).

Figure 4.7 shows a schematic sequence of events that could potentially explain

the observations of freshwater versus seawater bioalteration intensity and

sample elevation. Hyaloclastite is initially altered by glacial meltwater, probably

soon after emplacement when the volcanic pile is still warm. The hyaloclastite is

a coarse-grained lithofacies relatively free of material finer than coarse sand,

which facilitates the entry and circulation of freshwater (glacial meltwater). The

results suggest that only minor bioalteration takes place at this stage. During

interglacial periods, the ice retreats and seawater penetrates the hyaloclastite,

probably along fractures, grain boundaries and any unfilled pore spaces (Johnson

and Smellie 2007). This is probably when the bulk of the microbial community

was introduced, with a consequent increase in intensity of microboring activity.
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Figure 4.7. Diagram of a simplified James Ross Island subglacial lava sequence showing
different stages of fluid alteration and microboring production.

1. Lavas erupt into overlying
ice sheet, producing
hyaloclastite deltas. This
reaches through to the top of
the ice sheet, and is then
capped with subaerial lavas

2. Glacial meltwater circulates
through the cooling lava
sequence, resulting in the
formation of zeolites and
palagonite around and in
between glass fragments. Few
microborings form.

3. Climatic conditions change
and the ice sheet retreats,
replaced by a new sea level.
Sea water percolates through
the lower elevation lavas.
Microbes present in the fluids
create numerous microborings.
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Table 4.2. Mean bioalteration values for hyaloclastites from James Ross Island. Random
re-test means values are also shown. Elevation data is normalised to marine-freshwater

transition zone (value=0)

Sample Age (a)

(Ma.
unless
stated)

Environment
(b)

Elevation
(c)

Number
of glass
clasts

Mean
fraction of
bioalteration
(out of 10)(d)

Standard deviation
of mean
bioalteration value

Notes and re-test values

Dobson Dome

DJ.1733.2 <80 ka Freshwater 220 40 0 0
DJ.1733.2 <80 ka Freshwater 220 27 0.07 0.27
DJ.2103.1 <80 ka Freshwater 199 48 0.03 0.18
DJ.2103.2 <80 ka Freshwater 150 31 0.48 1
DJ.2103.3 <80 ka Freshwater 125 38 0.59 0.87 Re-test mean=0.34
DJ.2103.4a <80 ka Freshwater 100 32 0.38 0.91
DJ.2103.6 <80 ka Freshwater 90 32 0.06 0.25
DJ.2103.7 <80 ka Freshwater 75 26 0.08 0.27
DJ.2103.8 <80 ka Freshwater 66 53 0 0 Re-test mean =0

Forster Cliffs

DJ.1745.6 2.50 Freshwater 0 35 3.39 2.46 On marine-freshwater
transition

DJ.1752.2 2.50 Freshwater 199 28 0.36 0.91
DJ.1753.1 2.50 Freshwater 95 45 0 0
DJ.2056.1 2.50 Freshwater 75 47 0 0
DJ.2056.2 2.50 Freshwater 7 36 0.04 0.19
DJ.2056.5 2.50 Freshwater 199 40 0.13 0.34
DJ.2056.6 2.50 Freshwater 119 35 0.06 0.25
DJ.2056.7 2.50 Freshwater 145 40 0 0
DJ.2056.8 2.50 Freshwater 59 35 0 0
DJ.2102.3 2.50 Freshwater 21 39 0.91 1.25
DJ.2102.4 2.50 Freshwater 27 35 5.91 2.01 Re-test mean=4.8
DJ.2102.6 2.50 Freshwater 19 29 0.48 0.69
DJ.2102.7 2.50 Freshwater 24 29 0.24 0.51 Re-test mean=0.44
DJ.2102.8 2.50 Freshwater 40 50 0 0
DJ.1754.8 2.50 Marine -180 42 6.41 1.36
DJ.1755.9 2.50 Marine N/A 20 8.6 1.14
DJ.2056.4 2.50 Marine -1 41 0.48 1.03 Just below marine-

freshwater transition
DJ.2102.1 2.50 Marine -5 30 1.41 1.04 Just below marine-

freshwater transition
DJ.2102.2 2.50 Marine -4 45 0.83 1.56 Just below marine-

freshwater transition

St. Rita Point (=Forster Cliffs?)

DJ.1961.2 2.50 Freshwater 80 37 0.47 0.76
DJ.1965.5 2.50 Freshwater 80 40 4 2.72
DJ.2001.2 2.50 Freshwater 116 24 0 0
DJ.2004.1 2.50 Marine N/A 48 7.25 1.88 Re-test mean=7.12

Palamon Mesa main

DJ.2073.1 4.16 Freshwater 1 33 1.06 1.31 Just above marine-
freshwater transition

DJ.2073.9 4.16 Freshwater 114 40 0.06 0.25
DJ.2083.1 4.16 Freshwater 57 24 0.29 0.46
DJ. 2083.3 4.16 Freshwater 0 55 0.16 0.37 On marine-freshwater

transition
DJ.2090.1 4.16 Freshwater 10 26 7.56 1.81
DJ.2091.1 4.16 Freshwater 10 28 1.14 1.63 Re-test mean=0.85
DJ.2090.3 4.16 Freshwater 10 27 3.85 2.4
DJ.2982.3 4.16 Marine -20 30 7 1.54 Re-test mean=6.7
DJ.2093.5 4.16 Marine -210 40 0 0 Re-test mean=0

Lachman Crags main

DJ.1714.4 5.06 Marine -43 32 5.06 2.53
DJ. 1714.4 5.06 Marine -43 34 5.35 2.68
DJ.1715.5 5.06 Marine -115 35 0.53 1.07
DJ.1724.1 5.06 Marine -20 45 2.38 2.46

Tumbledown Cliffs

DJ.2132.1 5.15 Freshwater N/A 32 4.31 2.22
DJ.2079.3 5.15 Marine -255 39 3.1 1.87
DJ.2086.6 5.15 Marine -5 32 7.31 2.62
DJ.2113.1 5.15 Marine -155 28 0 0
DJ.2115.1 5.15 Marine -205 41 8.59 1.37 Re-test mean=8.98
DJ.2116.1 5.15 Marine -215 29 4.38 3.28
DJ.2117.1 5.15 Marine -162 43 9.3 0.72
DJ.2136.1 5.15 Marine -5 31 5.16 3
a From Smellie et al. (2008)
b From Johnson & Smellie (2007); samples listed as marine have also previously experienced freshwater alteration
c Pers.comm. John Smellie (2008)
d See test for details of method
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4.4 Implications for Using Bioalteration as a Martian

Biosignature

The principle aim of this study was to firstly expand the range of environments

within which bioalteration is currently explored, and secondly utilise this new

knowledge to infer the suitability of bioalteration as a biosignature for Mars.

The results appear to show that bioalteration is consistently absent from lavas

that have been exposed only to freshwater environments. Whilst there have been

very few bioalteration studies on lavas that have experienced non-marine

alteration conditions, it is apparent that bioalteration textures are largely

restricted to lavas in marine environments. As highlighted in Chapter 3,

subglacially erupted basaltic lavas from Iceland also show a distinct lack of

bioalteration textures, despite evidence for widespread aqueous alteration and

development of palagonite alteration fronts. Putative bioalteration textures have

been identified in Icelandic hyaloclastites by Cockell et al. (2008), but these are

far from the tubular morphologies seen in seafloor lavas and the marine-altered

James Ross Island hyaloclastites. Whilst more studies of this nature clearly need

to be done, the potential for finding bioalteration textures within Martian basalts

that have undergone aqueous alteration is perhaps reduced by this finding. The

terrestrial biosphere is rich and extensive, yet this does not always result in the

formation of biosignatures in terrestrial rocks. As a result, the presence of a

widespread basaltic-lava hosted Martian biosphere may evade detection if the

surrounding aqueous environment is not conducive to the formation of

bioalteration textures. This is particularly relevant when considering putative

subglacially erupted volcanic constructs on Mars (e.g. Chapman 1994; Chapman

and Tanaka 2001; Ghatan and Head 2002; Head and Wilson 2002; Chapman and

Smellie 2007) as astrobiological targets.

4.5 Conclusions and Future work

The study of the bioalteration of volcanic glass has almost exclusively focused on

lavas in an oceanic setting, either associated with spreading ridges or oceanic

plateaux. In contrast this study contributes to the knowledge of bioalteration in a

terrestrial subaqueous setting. The principal conclusions are:
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 The JRIVG hyaloclastites show numerous examples of bioalteration,

particularly the formation of microtubules, which display characteristic

bioalteration texture biogenic features (McLoughlin et al. 2007).

 Semi-quantitative analysis of the intensity of bioalteration shows that

there is much greater presence of bioalteration in samples that

experienced marine conditions. Indeed, bioalteration is minor and is often

absent in samples that were only affected by freshwater. This shows that,

additionally to eruptive setting, the composition of the alteration fluids

exerts an important control on the intensity of bioalteration textures.

 Variables that affect alteration fluids derived from different sources

include microbial biomass, nutrient supply and aqueous chemistry. One

or a combination of these could be the cause of the observed bias of

microboring formation towards marine-affected samples.

 The main limitation of this work is its reliance on the assumption that the

work by Johnson and Smellie (2007) identifying the aqueous environment

within which the hyaloclastite has been subjected to is in fact correct.

Should this particular study be proved wrong, the apparent dichotomy

observed between the presence of bioalteration in marine and freshwater

altered hyaloclastite may come under question.

 Finally, this study shows that it is important to characterise bioalteration

textures in environments other than seafloor lavas to gain a fuller

understanding of their distribution and formation, particularly if such

morphological features are to be used as Martian biosignatures. For

example, if glacial meltwater is generally very poor in microbes, the

chances of detecting exobiology in subglacially erupted Mars glassy rocks

are significantly reduced.

Future work should focus on the collection and interpretation of geochemical

data associated with these biosignatures. Geochemical differences have often

been used for establishing biogenicity (McLoughlin et al. 2007), and may shed

some light as to why there appears to be a marine – freshwater dichotomy.

Likewise, running long-term (e.g. 1 year or longer) incubation experiments

whereby pristine basaltic glass is incubated within fresh- and marine-water

based media enrichments may reveal a preference towards one environment or

another for the generation of bioalteration textures.
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CHAPTER 5

THE VIABILITY OF A SUBGLACIAL VOLCANIC

HABITAT ON MARS: AN EXPERIMENTAL AND

CULTURE - BASED TEST

The preceding chapters have explored environments formed through the

interaction of basaltic volcanism and glacial ice, in terms of their present-day

microbial diversity (Chapter 3), and the potential for biosignature formation

(Chapter 4). This chapter describes experimental work testing subglacial

volcanism as an appropriate Martian analogue environment, with regard to

providing adequate protection from the inhospitable Martian surface, whilst

supplying the key ingredients for life, such as liquid water. This was conducted

along two lines of enquiry.

Firstly, a Mars environment simulation chamber was utilised to replicate as

close as possible the present day Martian environment, including atmospheric

pressure and composition, temperature, and UV flux. A self-contained simplified

subglacial volcanic microcosm was incubated under these environmental

conditions, with the aim to test for bacterial survivability using culture-based

techniques.

Secondly, through the culture-based assessment of bacterial survivability, the

culturable microbial diversity of Icelandic subglacial lava was investigated using

molecular-based methods of identification. This data is used to identify those

isolates that do and don’t survive the Martian environment simulation, and also

to compare the cultured microbes here to those isolated from other similar cold

temperature oligotrophic environments.
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5.1 Testing a Martian analogue environment

Subglacial volcanism is a process thought to have occurred on Mars in many

different locations and during all three major epochs (see Chapter 1, section

1.2.2). The resulting combination of a liquid water source, geothermal heat, and

protection from surface extremes renders these environments potentially viable

habitats. As such, the deposits of these environments left in the geological record

– such as subglacially erupted lavas, Jökulhlaup sediments, and subglacial lake

sediments – could be suitable targets for future life detection missions.

Many previous simulation experiments suggest life on Mars has the greatest

chance of survivability if it resides within the subsurface (see Chapter 1, section

1.4.2), or where there is adequate shielding from UV radiation, such as rock

crevices. However, whilst this eliminates one problem, the issues of liquid water,

energy supply, and nutrient availability remain. Therefore, it is important to

investigate and test environments where these requirements are potentially met,

such as the conditions created through subglacial volcanism. The aim of this

work was to test the hypothesis that subglacial volcanic environments are indeed

habitable under simulated Martian conditions. In this experiment, the main

environmental factors of present day Mars were implemented: high UV flux, low

atmospheric pressure, CO2 dominated atmosphere, and subzero temperatures. It

was hypothesised that the microbial community indigenous to the subglacial

lava would be sufficiently protected against the above mentioned Martian

conditions by the presence of a constant heat source from below and an overlying

ice layer.

This was an entirely culture-based study, for two reasons. Firstly, culturing

provides a simple, rapid assessment of the viable microbial community within an

environment, so direct comparisons between the simulated environment and the

associated untreated sample and negative control could be taken as an indication

of survivability. Secondly, identifying the culturable diversity of subglacial

basaltic lavas is complementary to the purely molecular analysis detailed in

Chapter 3. For this purpose, pillow basalt samples from the same locality (ASK9)

were used in these experiments. The natural bacterial communities present

within these Arctic basalts are considered here as suitable model organisms
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firstly for their adaption to oligotrophic lava habitats, and also for their ability to

thrive in cold, dry and highly seasonal environments.

5.2 Experimental Set up and Sample Processing

A subglacial volcanic microcosm (SVM) was devised that aimed to recreate the

aspects of a subglacial volcanic environment that were identified as being

conducive to the habitability of these systems. This included a heat source (from

below) and water-ice (above). The aim was to create a Martian environment that

was as realistic as possible. However, the absence of any detectable active

subglacial volcanic systems on Mars today means there are no measured

physical and chemical parameters from which to base this simulated

environment upon. However, the presence of widespread subglacial volcanic

activity on Earth has resulted in numerous studies on both extinct and active

systems, and it is these upon which the experimental set up here is based. More

detail on subglacial volcanic environments can be found in Chapter 1, section

1.2.1).

5.2.1 Experimental set-up

Subglacially erupted pillow lava from Askja was used for this study. To minimise

any effect of contamination, the subglacial volcanic microcosm (SVM) and its

components were confined within a sterilised Nalgene container (Figure 5.1). The

only thing not sterilised prior to the experiment assembly was the lava sample

(~5cm x 3cm) and its indigenous microbial community. The lava was submerged

and frozen into the base of simulated glacial ice, made from sterile distilled and

deionised water, inside the container. Prior to freezing, the lava was gently

agitated to aid the removal of air bubbles trapped within lava vesicles, so not to

interfere with the controlled Martian conditions. It was hypothesised that the

temperature difference between the underlying heat pad and overlying ice would

result in an intermediate layer of liquid meltwater around the lava, and

temperature measurements were taken from this region throughout the

experiment. Figure 5.1 shows the presence of a thermocouple at the lava-ice-heat

pad interface. As the only way to measure the temperature here was to place a

thermocouple directly into the experiment, the thermocouple was also sterilised

by autoclaving. The temperature here was recorded every 10 minutes.
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To ascertain the importance of heat + ice for the creation of a habitable

environment, an additional ‘negative control’ was run. This used a comparable

sample of subglacial lava (collected from the same outcrop), and this was

completely exposed to the same Martian conditions, without the presence of heat

and ice. This was not expected to show significant, or indeed any, signs of

survival. Finally, untreated lava provided the original culturable community

from which the results of the subglacial volcanic microcosm (SVM) and negative

control could be compared. This untreated lava sample was not exposed to any

Martian conditions, and the microorganisms that were cultured were taken to

represent the natural cultivable indigenous community. It is noted that whilst

using an entire microbial community in a microcosm/environmental simulation

is more realistic, natural spatial variation of bacterial species between multiple

samples of lava will undoubtedly exist. However, all lava samples used were

collected at the same time, stored under the same conditions, and processed in

the same manner to help avoid any sampling bias. Additionally, the phylogenetic

analysis of the ASK9 Pillow Lava (Chapter 3, section 3.4.2) provides the broad

taxonomic context for the bacteria isolated for this study, and it is likely that two

similar samples of ASK9 Pillow Lava from the same outcrop will be inhabited by

a bacterial community of a similar phylogenetic composition, particularly at the

phylum level.

Simulation of Martian conditions was achieved with a Mars environmental

chamber situated at the Planetary and Space Sciences Research Institute, Open

University. The chamber was set up to maintain a pressure of 8 mbar, a Martian

atmosphere composition, and UV radiation at -30°C. For UV, a xenon-arc lamp

(Muller 450 W lamp, model XBO450W) was used, and generated light with

wavelengths >350nm. The Martian atmosphere consisted of Carbon Dioxide with

2.7% Nitrogen, 1.6% Argon, 0.13% Oxygen, and 0.07% Carbon Monoxide, and

this was flushed through the chamber before depressurisation. Due to the

presence of water ice in the subglacial volcanic environment simulation,

humidity was effectively uncontrolled due to effects of sublimation throughout

the experiment, which was observed to result in small crystals of ice forming on

the inside wall of the chamber. The chamber was connected to a temperature

controller, which was able to maintain a constant temperature of the heat pads

at around 40°C. The heat pads could not be sterilised so were placed externally
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at the base of the Nalgene container. The experiment was incubated in the these

Martian analogue conditions for 7 days.

Figure 5.1. Experimental set up of the SVM within the Martian environmental chamber
with hypothesised meltwater accumulation at the base of the ice. For the negative

control, the same set up was used but without the addition of ice and a heat source. Red
circles indicate those parts of the experiment/chamber that the temperature could be

measured from. The internal diameter of the chamber is ~12 cm.

Figure 5.2. Photograph of the Mars chamber used for this experiment, showing all
environmental parameters.
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Table 5.1. Environmental conditions in the Mars chamber and on the surface of present
day Mars (adapted from Hansen et al. 2009).

Parameter Mars Chamber Present-day Mars

Temperature °C -30 -123 to +25
Pressure (mbar) ~8 6.7 – 9.9

UV radiation >350nm >200nm
Gas composition (%)

CO2

N2

Ar
O2

H2O
CO

95.5
2.7
1.6
0.13

Unknown
0.07

95.3
2.7
1.6
0.13
0.02
0.07

5.2.2 Sample processing and test for survivability

After incubation, the experiment (still within the container) was removed from

the chamber, packed in ice and immediately transported back to UCL. Due to the

steep thermal gradient created from -30°C (freezer) to +40°C (heat pads), a 3.5cm

layer of meltwater existed at the heat – ice interface, within which was the lava,

and subsequently the overlying ice layer had been reduced to a thickness of

5.5cm (see Figure 5.3). A core was made through the ice layer using a flame

sterilised and heated metal spatula, through which the meltwater was pipetted

into six 10ml aliquots. The overlying ice layer was removed by lifting it out using

the embedded thermocouple.

Figure 5.3. Subglacial Volcanic Microcosm a) before; and b) after Mars incubation. NB:
Lid was on for transport only.
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The test for habitability of the SVM was based on the ability to culture

organisms from the pillow basalt sample after exposure to the above defined

Martian environmental conditions, and also from the meltwater created during

the experiment. The lava sample was homogenized for culturing (as described in

Chapter 2, section 2.3.3), but this unfortunately meant any spatial

heterogeneities in survivability of the microbial community within the sample

were lost. Culturing was carried out on two different types of solid media –

Pillow Basalt Agar (PBA), and ½ strength Czapek-Dox Agar agar (½ CZD). Low-

nutrient media were used to encourage the growth of slower growing organisms,

and also to encourage a higher level of diversity (Hirsch et al. 1995). PBA was

used in an attempt to simulate the oligotrophic basaltic environment as much as

possible, and details of this medium are described in Chapter 2, section 2.3.1. It

is noted that agar itself can provide additional nutrients that the basaltic

component may be lacking, particularly organic carbon. CZD media is used for

the cultivation of organisms that can utilise inorganic nitrogen (in the form of

sodium nitrate) as their nitrogen source. In particular, actinomycetes are

effectively isolated using this medium. Actinomycetes are common to soil

environments where water availability is reduced, and as such would be

expected to exist in the Icelandic lava environment. Indeed, the work detailed in

Chapter 3 showed Actinobacteria to form a dominant part of the prokaryotic

community in pillow lava from Askja, and this is consistent with previous work

by Cockell et al. (2009b). Additionally, the presence of nitrate can prevent the

growth of the more rapidly growing bacteria, therefore allowing a wider diversity

of slower growing bacteria to grow.

Lava fragments were used to directly inoculate the plates (Cockell et al. 2009b)

in order to limit any artificial selection against any organisms through aqueous

buffer dilution techniques, particularly exopolymer-forming organisms (Hirsch et

al. 1995). Approximately 50 – 100mg of crushed lava was used per plate, with

fragments >2 mm in size. Lava fragments were scattered onto freshly made agar

surfaces, as the thin film of water present provides an aqueous contact between

the media and lava surface (Hirsch et al. 1995), although bias may be introduced

if there are lava surfaces that remain completely unconnected from the agar

surface or associated water film. Colonies from the SVM, negative control, and

untreated lava typically took between 1 – 6 weeks to grow at ~20°C. For isolates
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from the pillow lava, data is quantified as colony forming units (CFU) as a

function of the number of lava fragments used to inoculate each media plate.

This is because the number of colonies that grow are, in part, dependant upon

the number of individual lava fragments present, which invariably differs from

plate to plate. More fragments lead to an increased surface area of lava from

which colonies can emerge, as such the data is quantified as the number of CFU

per 100 fragments of lava (i.e. the percentage of lava fragments that exhibit

colony growth). It is important to be aware however that the inoculation bias

introduced through using lava fragments means ultimately whilst the

enumerations are expressed in a seemingly ‘quantitative’ way, the results are

largely qualitative, as the number of faces of lava in contact with the agar is

variable. The meltwater samples however, being aqueous, were simply

quantified as CFU per 100 µl.

Pure isolates were obtained by repeatedly picking and re-streaking individual

colonies onto fresh media plates. For taxonomic identification, DNA was

extracted from these isolates (see Chapter 2, section 2.3.4) and the 16S rDNA

amplified via PCR using universal Bacterial primers 27F and UN1492R (for

reaction conditions see Chapter 2, section 2.3.5). PCR products were then cloned

and sequenced (see Chapter 2, section 2.3.6 and 2.3.7). Isolates are named

according to the conditions that the lava from which they were cultured was

subjected to. As the lava came from Askja volcano, the untreated lava isolates

are prefixed with ‘ASK’, whilst isolates from the experimental Mars chamber

environment are prefixed with either ‘MCASK’ for lava isolates, ‘MCMW’ for

meltwater isolates, and ‘MCEX’ for isolates from the negative control exposed

lava.

5.3 Physical and Chemical Properties

Physiochemical properties (temperature, pH, and dissolved elemental

composition) of the Subglacial Volcanic Microcosm (SVM) were measured before,

during, and/or after incubation. Physiochemical properties relating to the

basaltic lava itself (porosity, geochemistry etc.) have already been detailed in

Chapter 3 (section 3.3), and therefore are not repeated here.
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5.3.1 Temperature

Thermal conditions within the SVM changed throughout the duration of the

experiment within the chamber (Figure 5.4). The temperature of the solid ice and

outside the chamber was maintained at a steady -30°C throughout the

experiment, whilst the temperature of the meltwater varied between 3 and 5.3°C

during the middle four days of the incubation. During the first day of the

incubation, heating (and eventually melting) at the base of the ice layer can be

seen, controlled by cyclic heating of the underlying heat pads which were

maintained at ~40°C. This produced a steady rise in temperature from -5°C at

the start of the incubation to a relatively stable average temperature of +3.9°C

(±0.7°C) for the next four days. During the last 36 hours, the temperature

suddenly drops and is sustained at ~2°C lower than before. This change

coincided with the replacement of the UV light, which had been temporarily

removed for several hours, and is most likely due to a minor unidentified

technical fault as the UV lamp was re-connected. It is noted that at the Martian

surface, and in many other previous Mars simulation experiments, daily freeze-

thaw temperature fluctuations are present. These cycles have been previously

shown to have an effect on survivability (Hansen et al. 2009; Hawrylewicz et al.

1965), but unfortunately the technological ability to implement this was not

available for this experiment. However, the meltwater temperature during the

majority of the SVM experiment run does lie within the temperature range

measured for Skaftá subglacial caldera lake in Iceland (Figure 5.4), which was

found to be 4.7°C in the top 90 m of the water column, underlain by 10 m thick

water mass with a temperature of ~3.5°C (Johannesson et al. 2007). As such,

where temperature is concerned the environmental conditions created within

this Martian analogue microcosm are comparable to those measured from the

equivalent terrestrial environment that the microcosm was designed to imitate.
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Figure 5.4. Real-time temperature graph of the meltwater layer within the Subglacial
Volcanic Microcosm (SVM). Temperature was measured every 10 minutes for the full 7

day incubation. For comparison, the red and blue dashed lines indicate the upper (4.7°C)
and lower (3.7°C) temperatures measured from Skaftá caldera lake (Johannesson et al.

2007). Black dashed lines indicate the beginning and end of this relatively stable
temperature duration, whilst the blue shaded region indicates the steady melting at the

base of the ice layer before reaching a stable average of 3.9°C.

5.3.2 Chemistry

After 7 days of incubation the pH of the meltwater had increased in acidity,

changing from the starting pH of 7.7 to pH 5.3. As with the temperature

measurements, this is very similar to the pH of naturally occurring subglacial

caldera lakes beneath Vatnajokull, Iceland, which have a measured pH of

between 4.8 – 5.3 (Stefansson et al. 2008; Johannesson et al. 2007; Gaidos et al.

2004). This change in the SVM can be attributed to the low temperature leaching

of pillow lava constituents within the meltwater layer during the 1 week

incubation, since a measurable increase or introduction of dissolved elements is

observed (Table 5.2). The initial starting ‘glacial ice’ water, being sterilised

dH2O, was very pure, with little to no measureable dissolved elements present.

After 1 week incubation, the meltwater showed a clear increase (in order of

highest concentration) of Na+, Ca2+, SO42-, Mg2+, Si4+, K+ and Al3+ dissolved

cations. Fe and P were also measured but these were not identified in either the

starting ‘glacial’ water or the resulting meltwater layer. Elements that have a

high degree of mobility during water-rock interactions, such as Na, Ca and Mg

show some of the highest enrichments compared to the dH2O (Figure 5.5). These

elements are sourced from the dominant mineralogy of the pillow lava, notably
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feldspars, pyroxenes and olivines, and as a result they also constitute a large

percentage of the lavas geochemistry.

As with the pH and temperature measurements for the meltwater, the chemical

composition of the meltwater is comparable with that measured for natural

subglacial caldera lakes, with the exception of Si concentration. Skaftá caldera

lake is again the most similar, with elevated levels of Na, Ca and SO42- and small

concentrations of K in the water. Low levels of K commonly exist within low

temperature fluids due to the ubiquitous formation of K-rich clays from the

hydrous weathering of feldspars. Figure 5.5 shows the similar pattern of element

al concentrations between the SVM meltwater and both Skaftá and Grimsvotn

subglacial caldera lakes. The most notable difference is the significantly high

level of Si in Skaftá lake compared with the low level of Si in the experimental

simulation (Table 5.2). The solubility of Si is strongly dependent upon the

temperature of the solution, whereby increasing temperature increases Si in the

solution. The low Si concentration (4.32 mg/l) of the meltwater from the SVM is

likely to be due to the constantly low temperature of this meltwater throughout

incubation (2 – 5°C) and the lack of hydrothermal input present within natural

systems, that can introduce warmer, silica-charged fluids into the lake system.

Grimsvotn caldera lake chemistry is similar regarding elevated Na levels, but on

the whole this lake is very low in dissolved ions. It is noted that Si is not

included in the plot in Figure 5.5, firstly due to the large quantity of Si in Skaftá

lake which obscures the relative similarity of the other element concentrations

when plotted on such a graph, and secondly because no dissolved Si values are

available for Grimsvotn lake.
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Table 5.2. Measured pH (mean), temperature (mean), and dissolved element
concentration (in mg/l) from the dH2O ‘glacial’ water and meltwater after 1 week

incubation. For comparison, data is given for Skaftá lake (Johannesson et al. 2007). *pH
was measured at room temperature.

Figure 5.5. Dissolved element composition of the dH2O ‘glacial’ water, SVM meltwater,
and Skaftá and Grimsvotn caldera lake. NB: Silica has been excluded for clarity.

5.4 Simulated Martian Conditions and Survivability

After the experiments, bacteria were cultured from basaltic pillow lava that had

experienced two differing conditions: a subglacial volcanic microcosm (SVM), and

full exposure to present day Martian conditions (negative control). The colony

numbers reflect these conditions, and broadly demonstrate the increased

microbial survivability (and therefore environment habitability) in subglacial

‘Glacial’ ice Meltwater layer Skaftá

pH 7.7* 5.3* 5.22
Temp (°C) -5.0 3.9 (±0.7) 3.5 - 4.7

Al 0.02 0.05 -
Ca 0 12.37 31.2
Fe 0 0 -
K 0.09 1.63 1.59

Mg 0 9.26 1.57
Na 0.18 29.6 16.2
P 0 0 -

SO42- 0 10.46 15.79
Si 0.05 4.32 60.49
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volcanic systems in comparison to the negative control. Table 5.3 gives specific

details regarding the basaltic lava colony growths following incubation in the

Mars chamber, and also from the original lava prior to any experimentation

(untreated), on the two different types of media. Whilst the terms ‘colony’ and

‘CFU’ are used here, the method of inoculation (using lava fragments directly on

the agar surface) means they aren’t necessarily ‘colonies’ by the traditional

definition, whereby a colony has arisen from a single bacterial cell. Also given

are the number of lava fragments used to inoculate the media plates, as the CFU

enumeration was unsurprisingly found to increase with the number of lava

fragments (Figure 5.6). As such, the enumeration of CFU and survivability is

presented here as a function of lava fragments, and these results are also given

in Table 5.3.

Figure 5.6. Number of CFU plotted against number of lava fragments for each test:
Untreated, Subglacial Volcanic Microcosm (SVM) and Negative control, for both media
types combined. Linear trendlines are shown and the respective R2 values are given.
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Table 5.3. Colony growths on media plates inoculated with lava or meltwater after 30 days incubation at 20°C. Shown are the total number of
CFU (C) and lava fragments (F) from each plate, and the Mean and Standard Deviation (σ) calculated from these numbers. Numbers in bold are used to

assess survivability, detailed in Table 5.4 below.

PBA (nutrient poor) ½ CZD (nutrient rich)
PLATE # Description of colonies F C (C/F)*100 Description of colonies F C (C/F)*100

1 118 62 52.5 86 55 63.9

2 124 35 28.2 104 58 55.8

3 60 38 63.3 44 36 81.9

4 49 22 44.9 97 43 44.3

5

Numerous pink, green, brown, orange,
yellow and white small flat colonies, all

emerging from lava fragments

94 23 24.5

Flat brown and white colonies
extending 2-4mm out from lava

fragments, solid yellow colonies, cream
coloured gloopy colonies.

Pale pink-orange, white ‘fungal’ 111 67 60.4

U
n

tr
e

a
te

d

Mean
σ

89
33.7

36
16.2

42.7
16.4

88.4
26.5

51.8
12.3

61.2
13.7

1 32 9 28.1 65 26 40

2 54 12 22.2 41 19 46.3

3 79 7 8.86 18 8 44.4

4 95 20 21.1 87 34 39.1

5

Many small, pale grey – white flat
colonies surrounding lava fragments.
Significantly less variation in colour
and morphology than the equivalent

plates from the untreated lava 52 11 21.2

Large ( >5mm) gloopy cream and
orange colonies surrounding lava

fragments. Smaller, pale pink – brown
flat colonies.

106 43 40.6

S
V

M
:
L

a
v

a

Mean
σ

62.4
24.7

11.8
5.0

11.8
4.9

63.4
35.1

26
13.5

42.1
3.1

1 0 61 61

2 0 12 12

3 0 48 48

4 13 42 42

5

Limited colony growth, those colonies
that do grow are pale and small.

NA*

0
0
0
13
7 7

Numerous small (1mm) firm green-
grey colonies on all plates, plus a few

cream colonies. Bright pink and
orange colonies on most plates. All

colonies are small (1-2mm).

NA*

5 5S
V

M
:

M
e

lt
w

a
te

r

Mean
σ NA*

4
5.9

4
5.9

NA*
33.6
2.4

33.6
2.4

1 124 2 1.61 43 1 2.3

2 96 1 1.04 112 3 2.7

3 85 0 0 78 0 0

4 102 0 0 56 0 0

5

No colony growth across all but two
plates, which have 1 - 2 small white

colonies extending from lava.

71 0 0

Low colony counts, with two plates
lacking any growth. Colonies appear to
be either cream or bright orange-pink,

all are small (~1mm).

90 2 2.2

N
e

g
a

ti
v

e

c
o

n
tr

o
l

Mean
σ

95.6
19.8

0.6
0.9

0.53
0.75

75.8
27.3

1.2
1.3

1.44
1.33

*SVM meltwater plates were inoculated with 100µl of meltwater from the experiment
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Table 5.4. Mean CFU expressed as a % of growth per 100 lava fragments or 100µl of
meltwater (see Table 5.3 for raw data). Survivability is calculated as the percentage of

the total mean CFU % from the untreated lava (taken to represent 100%) from both
media plates combined.

Experiment
Agar

media
Mean CFU %
(both media)

Survivability %

BA
Untreated

½ CZD
52 100

BA
SVM Lava

½ CZD
31.2 60

BASVM
Meltwater ½ CZD

18.8 36.2

BANegative
Control Lava ½ CZD

0.98 1.9

Figure 5.7 plots the mean CFU % given in Table 5.4 above for both types of

media individually, calculated as a percentage of growth per 100 lava fragments

of 100µl of meltwater (relevant to the SVM experiment only). In all cases there

are more CFU from the more nutrient-rich ½ CZD media plates than the BA

plates.

Figure 5.7. Mean (n=5) CFU from each of the untreated lava, simulated subglacial
volcanic system (SVM), and negative control. Values are specific to the different agar

mediums used: PBA (grey) and ½ CZD (blue). Error bars represent standard deviation.
*CFU % is the number of CFU as a function of the number of lava fragments, expressed

as a percentage, or in the case of ‘SVM Meltwater’, the number of CFU per 100µl.
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When looking at survivability percentage, it is evident that lava incorporated

into a simulated subglacial volcanic microcosm (SVM) is considerably more

habitable than lava that has been fully exposed to Martian environmental

conditions (the negative control). Here, the number of colonies grown amounts to

just 1.9% of those grown from the original untreated lava. In contrast, the lava

from the SVM is markedly higher, with CFU count equating to 60% of the

original untreated lava colonies. In addition, bacteria were found to be present in

the SVM meltwater component of the environmental simulation, although the

number of colonies cultured here are almost half that from the lava itself, and

potentially signifies the passive movement of microorganisms from the lava into

the meltwater layer. In the following sections, the type and number of colony

growths from each experiment are described and discussed in more detail.

5.4.1 Isolates from untreated lava

Many bacterial colonies were cultured from the untreated pillow lava on both

½CZD and PBA. These could be seen emanating from individual rock fragments

across the surface of the agar plate (see Figure 5.8). Individual colonies ranged

from white, green, pink, yellow and orange in colour (Figure 5.8 and 5.9). A

greater diversity of slow-growing microorganisms were cultured from PBA, but

some of these were impossible to sub-culture. Colonies grew much faster on

½CZD agar and were easy to sub-culture onto fresh plates, but their

morphological diversity was much lower.

Figure 5.8. Untreated lava ‘colonies’ on PBA after 40 days growth. Scale bar = 2mm
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Figure 5.9. Pure isolates from untreated lava plates; a) ASK9-F; b) ASK9-K; c) ASK9-G;
d) ASK9-E; e) ASK9-C; f) ASK9-L. All are isolated from ½CZD media, with the exception

of (e) which was isolated from PBA.

(a) (b)

(c) (d)

(e) (f)
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5.4.2 Isolates from the Subglacial Volcanic Microcosm (SVM)

After 10 days, extensive colony growths were seen growing from the pillow lava

fragments inoculating ½CZD agar. These included large orange, pink, white and

yellow bacterial colonies (Figure 5.10). On the PBA colonies were much smaller

and appeared to be of just one type, typically creamy white in colour and all

extending out from the individual rock fragments. The first visible colonies

appeared on two out of the 5 meltwater plates after 1 week of incubation on

½CZD agar. Colonies were all <1mm in size and appeared to be of the same type,

all a pale green-grey colour. After 20 days incubation small pale pink colonies

appeared.

Figure 5.10. Cultures on ½CZD media from subglacial pillow basalt from the Subglacial
Volcanic Microcosm; a) meltwater after 40 days incubation; b) isolate MCASK9-D; c)

isolate MCASK9-E.

5.4.3 Isolates from the exposed Martian environment

It was hypothesised that the negative control would not be conducive to the

survivability of microorganisms after exposure to Martian conditions.

Inoculation of both PBA and ½ CZD agar plates with pillow lava fragments failed

to produce any colony growths after 20 days. However, after 30 days a few

isolated colonies had grown on 2 out of 6 plates (Figure 5.11). This is lower than

the original number of isolates, and those that survived the Subglacial Volcanic

Microcosm. The pillow lava used for these experiments has many vesicles and

cracks, and it is possible that the surviving microbes were those that existed

within micro-shelters and managed to survive temporary Martian exposure. It is

noted that the presence of an overlying layer of rock, even a few millimetres, can

sufficiently protect from UV radiation (Cockell et al. 2005). This will be

particularly relevant to those microbes residing within the vesicles, cracks and

other pore spaces within the rock. However, it is possible that if the lava was left

(a) (b) (c)
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in there longer, the combination of low pressure and a Martian atmosphere

would eventually sterilise the rock, and demonstrates the need for longer

duration experiments to test this.

Figure 5.11. PBA (a – c) and ½CZD (d – e) media inoculated with negative control pillow
basalt a) after 38 days incubation; b) after 17 days incubation; c) close up images of lava

fragments showing a distinct lack of colony growths. Arrows indicate the few isolated
culture growths: I = MCEX-A., II = MCEX-B

5.5 Identification of Cultures

A total of 23 aerobic isolates were identified from their partial 16S rDNA

sequence from the untreated lava, Subglacial Volcanic Microcosm, and negative

control combined. Of these, 10 could be identified as a particular species (≥99%

similarity), whilst others shared genetic similarity to uncultured environmental

clones, many of which are originally cultured from cold, dry environments.

Details of identification at the genus level are given in Table 5.5. Typically,

partial sequences of ~550bp were used, as due to the large size of the insert

(~1500), forward and reverse end sequences did not overlap.

(a) (b)

(c)

I
II

(d) (e)
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Table 5.5. Identification of isolates as determined by RDP taxonomic classification,
using sequences covering variable regions V7, V8, and V9. All taxonomic identifications
have a bootstrap cut-off value >80% (default setting). Taxanomic identification at the

family or order level are given in brackets where genus identification was not possible.
Isolates from PBA media are highlighted with an asterisk, and ½CZD with †.

Experiment Isolate
Sequence

Length (bp)
Phylum; Genus

ASK-A* 660 Bacteroidetes; Hymenobacter
ASK-B† 576 γ-Proteobacteria; Pseudomonas

ASK-C* 590 β-Proteobacteria; Herbaspirillum
ASK-D* 528 Bacteroidetes; Hymenobacter
ASK-E† 579 Actinobacteria; Streptomyces

ASK-F* 569 Bacteroidetes; Hymenobacter
ASK-G† 508 Actinobacteria; Arthrobacter
ASK-H* 628 Actinobacteria; Aeromicrobium
ASK-I† 480 α-Proteobacteria; Roseomonas
ASK-J* 577 Actinobacteria; Arthrobacter
ASK-K† 628 Actinobacteria; Streptomyces
ASK-L† 548 Actinobacteria; Arthrobacter

Untreated
Lava

ASK-M* 558 Firmicutes; Paenibacillus
MCASK-A† 588 β-Proteobacteria; Massilia
MCASK-C† 548 α-Proteobacteria; Rhizobium
MCASK-D† 467 β-Proteobacteria; Herbaspirillum
MCASK-E† 567 Bacteroidetes; Hymenobacter
MCMW-B† 530 β-Proteobacteria; Massilia
MCMW-C† 578 α-Proteobacteria; Roseomonas
MCMW-D† 577 β-Proteobacteria; Massilia

Subglacial
Volcanic

Microcosm

MCMW-E† 569 β-Proteobacteria; Massilia
MCEX-A† 568 β-Proteobacteria; MassiliaNegative

control MCEX-B† 606 Actinobacteria; Rubrobacter

5.5.1 Untreated lava isolates

Of the colonies observed on the ½ CZD and BA plates combined, 13 of these were

successfully sub-cultured and isolated for 16S rDNA identification, and represent

4 different phyla: Actinobacteria (6 isolates), Bacteroidetes (3 isolates),

Proteobacteria (3 isolates), and Firmicutes (1 isolate). Nearly all were comparable

to bacteria previously isolated from cold environments, and are consistent with

the phyla identified in the pillow lava in Chapter 3.

Of the six Actinobacteria, isolates were found based on their partial 16S rDNA

sequence to be closely related to a variety of species, with 99 – 100% similarity.

Two isolates were most closely related to a species of Streptomyces (100% and

99%). The first isolate displayed a 100% similarity with one that had been

identified from soil in Antarctica. Specifically, the closest cultured relative of this

isolate is Streptomyces himgiriensis (100%), a novel species isolated from the cold
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desert of the Himalayas (Singla et al. 2003). The second Streptomyces isolate

(99%) is most closely related to one identified in agricultural soil (Wirth & Ulrich

2002), and whose closest cultured species relative is Streptomyces bottropensis

(99%), a bacterium known to be a pathogen of potato plants (Takeuchi et al.

1996). Three isolates were identified as Arthrobacter tecti (98 – 99%), a gram-

positive bacterium originally isolated from ancient deteriorated mural paintings

(Heyrman et al. 2005). Lastly, the final Acinobacteria isolate had the highest

similarity (94%) to an uncultured clone from a Rocky Mountain endolithic

microbial ecosystem (Walker & Pace 2007), and the closest cultured match was

that of gram positive bacterium Aeromicrobium alkaliterrae (96%), a novel

species first isolated from alkaline (pH 10.0) soil (Yoon et al. 2005).

Actinobacteria are common to soil environments, particularly in environments

where water availability is limited, and this is demonstrated in the nature of the

environments where the closest matches for the Askja pillow lava isolates have

been cultured or identified from. Notably Actinobacteria have also been

previously identified in basaltic hyaloclastite lavas from South Iceland (Cockell

et al. 2009a), and dominated the pillow lava bacterial community detailed in

Chapter 3.

Three isolates belong to the phylum Bacteroidetes, all of which are Hymenobacter

species (class Sphingobacteria). Isolates belonging to the genus Hymenobacter

have been previously isolated from a wide range of environments, many of which

could be considered extreme or oligotrophic. They are gram negative obligate

aerobic chemoheterotrophic bacteria, often observed to have red – yellow colony

colouration due to carotenoid pigments (Dworkin & Falkow 2006). This is

consistent with the colony colour of the three isolates which ranged from dark

orange (ASK9-A), to bright orange (ASK9-D), to bright pink (ASK9-F, see Figure

5.8a). Of these three isolates, one had a closest match (99%) at the species level

as gram-negative bacterium Hymenobacter gelipurpurascens (Buczolits et al.

2006), whilst the other two isolates were most closely identified (98%) with

unclassified Hymenobacter species from Arctic sea water (Zeng et al. 2007). In

particular, it is noted Hymenobacter gelipurpurascens grows optimally at low

temperatures, with growth observed at 4°C, but not 37°C (Buczolits et al. 2006).

Other species of Hymenobacter have been isolated from the continental Antarctic

soils and irradiated pork (Dworkin & Falkow 2006).
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Three isolates were Proteobacteria, one from the γ-Proteobacteria, which matched

most closely (99%) to the species Pseudomonas stutzeri isolated from deep sea

sediment in the South Pacific. The bacterium Pseudomonas stutzeri has been

described as a gram negative heterotrophic species, which utilises denitrification

as a respiratory pathway in anaerobic conditions (Yu et al. 2009). It has however

been reported to have a wide range of growth temperatures, ranging from 4 –

45°C, and likewise exhibits a huge physiological and biochemical diversity. As

such, this species has been found in a large variety of natural environments

(Lalucat et al. 2006). With relevance to this work, Pseudomonas stutzeri is known

to produce siderophores, which are required to utilise otherwise insoluble Fe3+

from basaltic substrates (Dr. Karen Olsson-Francis, pers. comm.). The second

isolated Proteobacteria falls within the β-Proteobacteria, and was identified

(98%) as an uncultured species belonging to the Herbaspirillum genus that had

been identified during a genetic inventory of the NASA Mars Science Laboratory

(MSL) spacecraft assembly clean room (Le Duc et al. 2009). The closest cultured

species match for this isolate is Aquaspirillum autotrophicum (96%). This species

is interesting within the context of this work as it’s facultatively

chemolithoautotrophic, characterised by its ability to oxidize hydrogen utilising

CO2 as its sole carbon source (Arango & Schlegel 1978), and as such could be

considered to be one of the more applicable model organisms out of those isolated

from the Askja pillow lava to assess the habitability of Martian environments.

Lastly, the third isolate belongs to the α-Proteobacteria, and matched most

closely in species to Roseomonas aquaticica. It has been previously noted that

Roseomonas species occur in a vast range of environments, and this particular

species is so-called due to its isolation from drinking water in Spain (Gallego et

al. 2006).

Finally, one Firmicutes species was isolated, and shared most similarity (97%) to

Paenibacillus borealis, a nitrogen fixing, facultative anaerobic bacterium that

stains gram negative and also spore forming (Elo et al. 2005). However,

Paenibacillus is closely related to Bacillus species, and as such are in fact gram

positive.

Overall, the isolates from the untreated pillow lava from Askja, central Iceland,

largely reflect the cold, oligotrophic nature of this environment, as seen in the
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predominance of Actinobacteria and Hymenobacter species, which constitute 77%

of the species identified. Additionally, even with such a small proportion of the

microbial community identified, it is possible to infer potential microbial

ecological functions within the basaltic lava. For example, Paenibacillus borealis

has the capability to fix nitrogen into the system, providing a source of organic

nitrogen to microorganisms, and therefore in turn a supply of ammonium, and

lastly nitrate, that can be utilised by denitrifiers like Pseudomonas stutzeri.

Likewise, siderophore production by Pseudomonas stutzeri could potentially

release bioavailable iron into the near surroundings. Another point to note is the

dominance of chemotrophic metabolic pathways – there is a complete lack of

phototrophic species identified, despite the almost constant day light hours

during summer months in Iceland. This potentially reflects the harsh conditions

that exist externally at the lava surface, highlighting the preference for a

chasmo- or endolithic lifestyle within these environments. Likewise, the 16S

rDNA phylogenetic survey (Chapter 3) revealed a lack of likely phototrophs

within the pillow lava (Chapter 3, section 3.4.2). These observations are in

contrast to the 16S rDNA metagenomic study by Herrera et al. (2009) and

Cockell et al. (2009a,b) which identified phototrophic microorganisms from both

hyaloclastite lavas and rhyolitic lavas from Iceland. However, they only

constituted a minor proportion (6 – 7%) of the entire community. Additionally,

the lavas from both these previous studies were from south-west of Iceland,

where the external environment is typically less extreme than the Icelandic

interior, due to the influence of the Gulf Stream bringing warmer temperatures

and significantly more rainfall that that experienced by the lavas at Askja (see

Chapter 3: section 3.1 for a more detailed environmental description), and as

such could be a controlling factor in this observed difference.

5.5.2 Isolates from the Subglacial Volcanic Microcosm (SVM)

Of the 16 colonies cultured from both the meltwater and lava components of the

microcosm, only 8 were able to be isolated for identification (4 lava, 4 meltwater).

These are detailed in Table 5.5. Of these, only one (MCASK-E) belonged to the

phylum Bacteroidetes, and is closely related to a Hymenobacter chitinivorans

(99% similarity), species isolates from the Antarctic Dry Valleys (Hirsch et al.

1998). As with Hymenobacter gelipurpurascens, this species is strongly

pigmented (Buczolits et al. 2006), and the deep orange pigmentation of this
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isolate can be clearly seen in Figure 5.9c. Hymenobacter species were also

isolated from the untreated lava, and is one of two genera that were identified

from both the untreated lava and experimental simulation.

Three of the SVM lava and meltwater isolates were identified broadly as β-

Proteobacteria Massilia species, all of which had a common isolation

environment of environmental sands and sediments (Table 5.6). A fourth

Massilia species identified from a genetic inventory of the NASA Phoenix

mission clean assembly rooms was isolated, potentially signifying the

preferential selection of more hardy microorganisms through the environment

simulation. Likewise, a fifth Massilia species isolate most closely matches to that

isolated from anaerobic petroleum contaminated soils (Kasai et al. 2005), even

though the isolate was cultured in anaerobic conditions.

Roseomonas aquatica was isolated from the meltwater component of the SVM

(100% similarity match), and also represents one of the few isolates common to

the untreated lava isolates. These pale pink microorganisms are strictly aerobic

(Gallego et al. 2006), and their survivability could be due to dissolved oxygen

that may have been present within the ice, or any remaining air trapped within

the vesicular lava. Although care was taken to thoroughly saturate the lava with

the dH2O prior to freezing at the beginning of the experiment, the porous nature

of this lava could result in small pockets of air entering the experiment.

Lastly, a Rhizobium species was isolated from the lava component of the SVM.

This isolate shares 100% similarity with Rhizobium giardinii, an aerobic,

nitrogen fixing bacterium. The isolation of this particular species from the SVM

lava is somewhat unexpected, as Rhizobium species are well known to form an

endosymbiotic nitrogen fixing relationship with legumes (Amarger et al. 1997),

and as such would not be expected from an environment that is characteristically

dry, cold, and generally free of macroscopic vegetation. Therefore, this particular

isolate may represent a potential contaminant. This could be from the

environment itself (e.g. wind-blown from it’s natural environment), during

experimental set up, or lab contamination.
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5.5.3 Isolates from the negative control

Out of the 4 colonies that grew from the negative control lava on the ½ CZD

media, 2 of these were able to be sub-cultured into pure isolates for

identification. Both are distantly related, representing two different phyla –

Proteobacteria (MCEX-A) and Actinobacteria (MCEX-B) – but both share similar

attributes as regards to their ability to withstand harsh environments. The

closest relative of MCEX-A is an uncultured Massilia species identified from a

genetic inventory carried out on the spacecraft assembly clean room for the

NASA Phoenix lander (Le Duc et al. 2009). This bacterium was able to survive

the simulated Martian conditions for one week within its natural habitat of

basaltic lava. This would potentially have implications regarding the issue of

planetary protection for Mars, for two reasons. Firstly because the Phoenix

mission landed at a site that required the mission to be classed as a Category IVc

(Smith et al. 2008), the highest planetary protection category for a mission not

returning samples to Earth, and secondly because Phoenix identified evidence of

water ice deposits at the near surface (Smith et al. 2009). However, it should be

noted that whilst conditions within the Mars chamber were designed to be as

realistic as possible, -30°C is at the upper limit of the Martian surface

temperatures measured at the Phoenix landing site, where the temperature

ranged between -80°C in the early morning to a maximum of -30°C in the

afternoon. This difference in temperature may have an effect on the survivability

of this bacterium.

Isolate MCEX-B was identified as having a 97% match to Rubrobacter

radiotolerans, an extremely radiation tolerant gram positive bacterium (Kausar

et al. 1997). This suggests why this particular organism was one of the few that

survived exposed conditions during the Mars chamber incubation, as one of the

more destructive environmental factors within this environment is the UV

radiation. This organism was also widely identified during the 16S rDNA

phylogenetic survey of ASK009 pillow lava (Chapter 3). It has also been

previously shown that radiation resistance is a consequence of desiccation

resistance (Mattimore & Battista 1996), an attribute that would also have been

extremely beneficial within the Mars chamber where atmospheric pressure was

lowered to 8mbar. Despite exhibiting high radiotolerance, Rubrobacter

radiotolerans is not phylogenetically closely related to Deinococaceae, members of
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which, such as Deinococcus radiodurans, also exhibit radiotolerance and have

often been used as model organisms in previous Mars simulation studies (Diaz &

Schulze-Makuch 2006).

Phylogenetic trees of all the isolates and their closest relatives are shown in

Figure 5.12. The trees were plotted (see Chapter 2, section 2.3.7 for program

details) using equal length trimmed sequences of ~400bp encompassing the 16S

rDNA variable and hyper-variable regions V7, V8 and V9, which correspond to

E.coli positions of 1116 – 1155, 1241 – 1293, and 1433 – 1464 respectively (Baker

et al. 2003). It is clear from this that the Actinobacteria and β-proteobacteria

phyla are considerably more dominant within isolates from all experiments

combined, and specifically that the β-proteobacteria largely include isolates from

the SVM, whilst the Actinobacteria are almost entirely represented by the

untreated lava isolates. It can be seen in Figure 5.12 that many isolates exhibit

little genetic variation, such as SVM isolates MCMW-B, -D and -E, and

untreated lava isolates ASK9-G, -J, and -L. Therefore it is likely they represent

the multiple isolates of the same species, despite the fact they were

morphologically dissimilar enough to warrant individual sub-culturing. This is

noticeable in Figure 5.9 where isolate ASK9-G exhibits pink colouration (Figure

5.9c), whilst ASK9-L is distinctively white (Figure 5.9f), although they do both

exhibit the same ‘gloopy’ texture.



Chapter 5 – The viability of a subglacial volcanic habitat on Mars

168

Table 5.6. BLAST database closest environmental isolate relatives and closest cultured species based on 16S rDNA similarity (%) with the ASK009
and Mars Chamber isolates.

Closest relative (BLASTn) Closest cultured species relative (BLASTn)
Isolate

ID (Accession #) (%) Sampling environment ID (Accession #) (%)

ASK-A Hymenobacter sp. BSw20462 (EF639389) 98 Arctic Sea Water Hymenobacter chitinivorans (Y18837) 97
ASK-B Pseudomonas stutzeri strain hyss62

(FJ613315)
99 Deep sea sediment of the southwest

Pacific
Pseudomonas stutzeri (FJ613315) 99

ASK-C Uncultured Herbaspirillum sp.
(GQ129875)

98 'JPL-SAF' spacecraft assembly clean
room during MSL mission

Aquaspirillum autotrophicum (AB074524) 96

ASK-D Hymenobacter gelipurpurascens (Y18836) 99 Antartica soils and sandstone Hymenobacter gelipurpurascens (Y18836) 99
ASK-E Streptomyces sp. ZS1-9 (FJ842685) 100 Antarctica Streptomyces himgiriensis (AY370772.1) 100
ASK-F Hymenobacter sp. BSw20462 (EF639389) 98 Arctic Sea Water Hymenobacter chitinivorans (Y18837) 97
ASK-G Arthrobacter tecti (AJ639829) 99 Deteriorated mural paintings Arthrobacter tecti (AJ639829) 99
ASK-H Uncultured actinobacterium clone

EPLS012 (EF522201)
96 A Rocky Mountain endolithic

microbial ecosystem
Aeromicrobium alkaliterrae (AY822044) 96

ASK-I Uncultured alpha proteobacterium
FL10C12 (AY145635)

99 Vents at Mammoth Hot Springs,
Yellowstone National Park

Roseomonas aquatica (AM231587) 99

ASK-J Arthrobacter tecti (AJ639829) 98 Deteriorated mural paintings Arthrobacter tecti (AJ639829) 98
ASK-K Streptomyces sp. So10 (AJ308575) 99 Agricultural soil Streptomyces bottropensis (GQ258687) 99
ASK-L Arthrobacter tecti (AJ639829) 99 Deteriorated mural paintings Arthrobacter tecti (AJ639829) 99
ASK-M Paenibacillus borealis (AJ011321) 97 Norwegian humus Paenibacillus borealis (AJ011321) 97

MCASK-A Uncultured Massilia sp. (FJ191781) 99 Genetic inventory of 'KSC-PHSF'
spacecraft assembly clean room
during Phoenix mission

Massilia timonae (NR_026014) 99

MCASK-C Rhizobium sp. (DQ499515) 100 Illinois prairie Rhizobium giardinii (EU288739) 100
MCASK-D Uncultured bacterium (AB161315) 99 Unsaturated, anaerobic, petroleum

contaminated soil
Massilia timonae (EU274637) 99

MCASK-E Hymenobacter chitinivorans (Y18837) 99 Antartica soils and sandstone Hymenobacter chitinivorans (Y18837) 99
MCMW-B Uncultured bacterium (AY527790) 98 Subsurface sediment contaminated

with uranium and nitrate
Massilia brevitalea (EF546777) 98

MCMW-C Roseomonas aquatica (AM231587) 100 Drinking water Roseomonas aquatica (AM231587) 100
MCMW-D Uncultured bacterium (FM209301) 98 Negev Desert sand Massilia brevitalea (EF546777) 98
MCMW-E Uncultured bacterium (GQ340264) 98 Marathonas Reservoir, Greece Massilia brevitalea (EF546777) 97

MCEX-A Uncultured Massilia sp. (FJ192248) 98 'KSC-PHSF' spacecraft assembly
clean room during Phoenix mission

Massilia timonae (NR_026014) 98

MCEX-B Uncultured bacterium (AM746686) 99 Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans (U65647) 97
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Figure 5.12. Phylogenetic tree for all isolates, along with their closest relatives. D.
radiodurans is used as the outgroup. Bootstrap values >80 are shown. Scale bar:

estimated number of substitutions per nucleotide position
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5.6 Factors Affecting Survivability

5.6.1 Survivability vs. phylotype

The stacked bar chart in Figure 5.13 shows the composition of the phyla and

genera for the microorganisms isolated from the untreated lava, SVM, and

negative control. Firstly, it is clearly evident that the decrease in the number of

isolates from each experiment is accompanied by a decrease in diversity for both

phyla and genera. The β-Proteobacteria are the only phyla to be cultured from all

three experiments (notably all isolates are similar to those identified in NASA

spacecraft clean rooms), whilst Bacteroidetes, γ- and α-proteobacteria were

present in the untreated lava and the SVM only. Interestingly, the

Actinobacteria were present in the untreated lava and negative control, but not

the SVM. Actinobacteria are relatively resistant to desiccating environments,

and their absence from the SVM could be a result of the aqueous nature of the

environment, which may have allowed other bacteria to dominate. Likewise,

Paenibacillus species are sporulating, and therefore suited to long-term survival

in adverse conditions, but this isolate was only cultured from the untreated lava.

Hymenobacter, Roseomonas, and Massilia were the only genera present in both

the SVM and the untreated lava. As such, there is a lack of consistency within

the culturable isolates between the SVM and untreated lava and negative

control, which highlights the disadvantage in utilising a solely culture based

study as opposed to a more thorough molecular-based approach. However, whilst

DNA and/or lipid biomarker based taxonomic analysis would provide a more

thorough investigation of species-specific survival, the persistence of these

biomolecules in the environment after the death of a microorganism would not

provide any clear evidence on species viability.

Another additional factor that may lead to an inconsistency in isolate genera

between the untreated lava and Mars chamber incubations is that of potential

contamination. For example, it would perhaps be expected that if Rubrobacter

radiotolerans was isolated from the negative control lava, it should theoretically

be isolated from the untreated lava as well, but the results clearly show this not

to be the case, and therefore one might suspect that such isolates are

contamination if they were not part of the original cuturable community. As with

any biological-based experiment there is the potential for contamination at all

stages, whether in the components of the experiment themselves, whilst in the
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Mars chamber, or during microbial isolation. As such, throughout the

experiment every care was taken to avoid the introduction of contaminants,

including appropriate sterilisation of all non-biological components, placing

sterile repeat agar media plates amongst those inoculated with lava or

meltwater to check for air-borne contamination, and the final assessment of the

isolate 16S rDNA identity that may point to potential contaminants. Notably the

most likely laboratory contaminants do not appear to be present, such as E.coli,

or Staphylococcus, and airborne contaminants can probably be ruled out due the

lack of growth on the control sterile agar plates, and the observation that

bacterial growth on the inoculated plates is restricted to lava fragments only.

Similarly the use of low-nutrient culture media (as opposed to more common

nutrient-rich media such as LB or Nutrient Broth) will also limit the growth of

potential contaminants such as E.coli. The phylogenetic assessment of the

isolates suggest they are genuine environmental isolates. Firstly, the vast

majority are comparable with microorganisms cultured from similarly cold, dry,

or otherwise extreme environments. Secondly, the cultured isolates are

consistent with bacteria isolated from hyaloclastite lava from south Iceland,

some of which are also identifiable as Streptomyces, Firmicutes, and

Paenibacillus (Cockell et al. 2009b).

Figure 5.13. Stacked bar chart showing a) the isolate phyla; and b) the isolate genera
from all three experiments. Genus colour coding corresponds to that for phyla, with

thicker lines forming boundaries between genera.
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Interestingly, all of the bacteria cultured from the SVM were gram-negative, and

not gram-positive as is usually found from Mars simulation studies (Hansen et

al. 2009) and has often been attributed to the tolerance of gram-positive bacteria

to desiccation and radiation (Miyamoto-Shinohara et al. 2000; Nicholson et al.

2000). For comparison, the untreated lava isolates consisted of both gram-

negative and gram-positive bacteria in largely equal measure, potentially

suggesting an environmental selection for gram-negative bacteria within the

SVM, although given the relatively small number of isolates this could be

entirely coincidental. This absence of gram-positive bacteria here is related to

the absence of Actinobacteria from the SVM isolates, especially given their

prevalence in the untreated lava. The two isolates identified from the negative

control are, like the untreated lava, representative of both gram negative and

gram positive equally. Nevertheless, it has previously been noted that the

survivability of gram-negative bacteria under Martian conditions has so far been

largely overlooked, and as such needs more attention in future studies (Hansen

et al. 2009).

5.6.2 Survivability and the lava environment

The results of this series of experiments demonstrate the suitability of subglacial

volcanic environments as a theoretical haven for life on Mars. The protection

from the harsh surface conditions by the ice layer, and perhaps most crucially

the presence of a meltwater layer at the rock-ice interface creates suitable

conditions for the survival of a naturally existing microbial population.

Additionally the lava itself is likely to have provided some degree of protection,

through the existence of numerous cavities and vesicles. The near-arctic

environment of the original microbial community also suggests much of the

microbial population would have resided within these cavities as a means of

protection against the cold, dry Icelandic environment. This natural preference

to the rock interior (as opposed to dependence on surface conditions) may also

have played a role in the survivability of this community under Martian

conditions, both as part of a Subglacial Volcanic Microcosm, but also the fully

exposed negative control experiment.

It was hypothesised that the negative control lava would emerge from the Mars

chamber completely sterilised, showing the benefit of having heat and ice as part



Chapter 5 – The viability of a subglacial volcanic habitat on Mars

173

of the volcanic environment. However, two isolates were cultured from the fully

exposed lava. This is still much lower than both the original number of isolates

and those that survived the subglacial volcanic environment, and can most likely

be attributed to the duration of exposure to Mars conditions. However, it is most

likely that if the lava was left in there longer, the combination of low pressure

and a Martian atmosphere would eventually sterilise the rock completely.

5.7 Conclusions and Future Work

The key factor in the experiment carried out here was to test the combined effect

of heat and ice on the survivability of an indigenous basaltic bacterial

community, the result of which showed that subglacial volcanic environments on

Mars could potentially be viable systems. As such, the geological deposits from

such volcanic environments could be fruitful targets for astrobiological missions

such as ExoMars, and this is explored in detail later in Chapter 8.

With regards to limitations of this experimental work, there are a number of

changes/additions that could be implemented to improve the validity of the

results. In particular, the addition of more control experiments would provide

further context for CFU quantification. These could include a SVM under Earth

conditions, and also a truly ‘negative’ control whereby a pillow lava sample

would be sterilised (by autoclaving and UV sterilisation), and tested for growth.

With regards to isolation of bacteria from the lava, increased sample size or

multiple experimental runs would allow for the employment of other isolation

techniques. Such suitable techniques include the use of liquid media, and

extraction of bacteria from the lava into an aqueous buffer, which could then be

plated onto solid media. Likewise, increased sample size would also allow for the

use of a wider variety of media types, maximising the diversity of bacterial

phylotypes. Finally, devising a method of colony enumeration that would produce

truly quantitative colony enumerations (such as extracting bacteria from the

lava into an aqueous buffer, of which serial dilutions could then be made) would

further validate and constrain (or potentially disprove, though unlikely given the

clear trends in survivability) the results.

There are a multitude of experiments that could follow on from the initial

experiment described here, incorporating and controlling new and existing
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variables, whilst still retaining the focus on a subglacial volcanic environment.

These are briefly described below:

 An important factor is that of organics within these environments. In

natural subglacial volcanic systems organic material would be introduced

to the subsurface system via subaerial in-fall and subsequent

incorporation into the ice (Gaidos et al. 2004). In the experiment described

in this chapter, the source of organics would have been solely from the

pillow basalt and its resident microbial community. Using snow melt or

actual glacial ice would introduce a second source of organics into the

system, which would benefit the heterotrophic members of the population.

Likewise, measuring total and dissolved organic carbon from the lava and

meltwater respectively would provide another level of characterising

these environmental simulations.

 Regarding the detection of life from such environments, it is necessary to

test biosignature survival under Martian conditions. In particular,

experiments would be conducted to assess the degradation of biomolecules

such as lipids and DNA in subglacial volcanic deposits that may be

preserved in the geological record, including lavas (hyaloclastite and

pillow basalt), Jokulhlaup sediments, and subglacial caldera lake

sediments.

 Lastly, as mentioned previously, longer duration incubations would

provide a clearer picture regarding not just survivability of a microbial

community, but also how this community develops over time, regarding

environmental selection of particular groups of microorganisms, and a

preference of particular metabolic pathways. Ideally, multiple

experiments that can be assessed over time, together with duplicates to

validate particular findings, would greatly enhance microcosm

experiments such as these.
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CHAPTER 6

DEVELOPMENT AND TESTING OF THE

GEOLOGICAL FILTERS ON THE EXOMARS

PANCAM INSTRUMENT

Following on from the previous chapters which centred around characterising a

volcanic Martian analogue environment (specifically, subglacial volcanism) in

terms of microbial diversity, biosignatures, and habitability, the next two

chapters will focus on the detection of these environments (and others) on Mars

using rover instrumentation. In particular, the PanCam instrument is currently

in development for inclusion on the European Space Agency ExoMars mission,

and the work described here contributes to the development of this instrument.

Firstly, several alternative geological filter sets were designed to replace the set

currently planned for the ExoMars PanCam instrument – that adopted from the

Beagle2 PanCam. This was conducted with the aim to detect past habitable

environments in the Martian geological record, a primary goal of the ExoMars

mission.

Secondly, laboratory testing of these new filter sets were conducted under

controlled conditions on a selection of predominantly volcanic Martian analogue

material from Iceland, with the primary focus being the detection of hydrated

mineral deposits (and therefore evidence of liquid water) and biosignatures

(evidence of life) likely to be present in geological Martian analogue samples.

These criteria were used to identify the advantages of the new filter sets.

Thirdly, the addition of a UV illumination source is currently being considered

for inclusion on PanCam. Here, initial testing was conducted along side the

laboratory testing of filters on Martian analogue samples, to assess the benefit of

a UV illumination source in the detection of astrobiological targets.
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6.1 Formulating a new Geological Filter set for the

ExoMars PanCam Instrument

6.1.1 An astrobiological objective

The ability to detect environments on Mars that may have once been habitable is

fundamental to any astrobiologically-focused mission. This is highlighted in the

scientific objectives of both the NASA Mars Science Laboratory mission (launch

due 2013), and the European Space Agency (ESA) ExoMars mission (launch due

2018). ExoMars aims, primarily, to find evidence for past or present life on Mars

via a drill that can reach depths of 2m into the subsurface. Prime astrobiological

targets will be those that display evidence for the existence of past liquid water

in the geological record. As such, hydrated minerals on Mars therefore are of

particular interest to the ExoMars mission, as they are essential in establishing

the history of liquid water on the planet, which in turn is directly related to the

search for past or present Martian life. Minerals with OH or H2O as part of their

chemical structure require aqueous conditions to form, but do not necessarily

need liquid water to remain stable in their current environment after formation

(Bishop 2005). It is this knowledge that has driven the need to explore terrains

rich in hydrated minerals, with the aim of identifying evidence for habitable

environments on Mars.

6.1.2 Selection of new geological filter wavelengths

As the PanCam multispectral imaging capability is largely dependent upon a

suitable set of 12 pre-selected ‘geological’ filters, the wavelengths of these

individual filters needs to be chosen to fit the objectives of the ExoMars mission.

The geological filter wavelengths for the PanCam are required to fall in the 440 –

1000nm range, with a minimum of 12 (and possibly up to 14) filter spaces

available. A notional set of filter wavelengths has already been allocated for this

PanCam, however this filter set was inherited from Beagle2 (Figure 6.1), which

in turn was adopted from Mars Pathfinder.
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Figure 6.1. Filter wavelengths used in the Beagle2 camera, originally adopted from
Pathfinder. Points below 400nm and above 1000nm are noise signals.
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Filters for the Imager for Mars Pathfinder (IMP) device were selected with two

main objectives in mind. Firstly, to identify ferric oxides and oxyhydroxides, and

secondly to determine the silicate mineralogy present, particularly pyroxenes

(Smith et al. 1997). More recently, this filter set has been largely adopted for the

MER PanCam, again focusing on the detection of iron-bearing silicates, iron

oxides and oxyhydroxides, and also to provide a direct comparison to the IMP

results (Bell et al. 2003). ExoMars on the other hand has a distinct

astrobiological focus, and may encounter an extensive range of hydrated mineral-

bearing lithologies. As a consequence, the notional filter set for the PanCam

needs to be revised.

The ability to detect regions or outcrops of interest remotely is a fundamental

aspect of planetary rover exploration, as the selection of high priority targets

proximal to the rover is essential to maximise the science output of the operation

during finite rover operations. However, whilst multispectral imaging at optical

to near-infrared wavelengths (400 – 1000nm) can tell us a lot about mineralogy

and chemistry, the majority of distinguishing spectral features occur in the

infrared, and therefore out of the PanCam range of detection. As a result, the

combination of reflectance spectra with other instrumental analysis can enhance

the ability of the PanCam in identifying mineralogy and lithology. The

MicrOmega instrument can provide additional detailed spectral information in

the 0.85 – 2.6µm region, helping to confirm many of the mineralogical features

identified with PanCam. Additionally, the Raman instrument will be able to
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provide accurate mineral identification (Wiens et al. 2005), and will provide vital

data to complement the PanCam’s multispectral capabilities. However, these

instruments are currently envisaged to work on the micro-scale as contact

instruments for drill samples, and as such are not remote surveying tools,

therefore target selection will be based solely upon PanCam image and spectral

data.

Reflectance spectra between the region 440 – 1000nm of hydrated minerals from

the publically available USGS spectral library splib06a (Clark et al. 2007) and

splib04 (Clark et al. 2003) were used to select potential new geology filter

wavelengths for the ExoMars PanCam. Minerals were chosen based on the

identification of hydrated mineral groups on Mars, and are shown in Table 6.1.

These alternative filter sets, plus the Beagle2 (B2) filter set (which is currently

selected for the PanCam) were tested on their ability firstly to successfully

discriminate between multiple spectra from hydrated mineral groups, and

secondly, detect hydrated minerals present in untreated Martian analogue rocks

from Iceland.

For statistical filter selection (described below), the USGS spectra were required

to have evenly spaced spectral points, and as such the raw spectral data were re-

binned to produce data points every 10nm. It is noted the samples used by Clark

et al. (2007; 2003) to generate their mineral spectra are not compositionally 100%

pure, and often have other minor mineral fractions present. As such, these

powdered mineral reflectance spectra are taken as an ideal spectrally pure ‘end

member’. Another important factor is the variation between one sample

spectrum to another within the database, for example the spectra for different

samples of jarosite will vary slightly. Ideally, multiple sample spectra would be

utilised in the formulation of the new filter set to eliminate any bias towards one

arbitrarily chosen sample. However, there is a lack of consistency within the

sample spectra available for any given mineral, e.g. there are 9 samples

available for jarosite but just 2 for gypsum available. Therefore, a single

representative sample spectrum was used for each mineral (specified in the text)

to use in the generation of a new filter set to prevent any skew towards a

particular mineral. Sample spectra were chosen based on the purity of the

sample and lack of noise. An alternative method – whereby data is averaged
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from all the available samples for a particular mineral – was also considered.

However, it was decided that using a genuine mineral spectrum was better than

using a modelled spectrum for the selection of filters.

Table 6.1. Hydrated mineral reflectance spectra used for PanCam filter selection.

Mineral group Mineral (USGS
Sample Reference)

Proposed time period on Mars
(from Bibring et al. 2006 and

Milliken et al. 2008)

Nontronite (SWa-1.a)Phyllosilicates

Montmorillonite (CM27)

Early – mid Noachian

Gypsum (SU2202)

Kieserite (KIEDE1)

Sulphates

Jarosite (JR2501)
Alunite (HS295)

Late Noachian - Hesperian

Hydrated silica Opaline silica (TM8896) Late Hesperian, possibly
Amazonian

The three new filter sets were devised as follows:

Filter set F1-12: Firstly, 12 optimal wavelengths that most accurately

reproduced a specific mineral spectrum were calculated for all the selected

hydrated minerals individually (e.g. the best 12 points for jarosite, the best 12 for

gypsum, and so on). This filter selection used a brute force approach to search

through the possible wavelength selections between 440 and 1000nm, using

10nm increments. Additionally, Two of these 12 wavelengths were always fixed

at 440 and 1000nm. The suitability of a wavelength selection was calculated

firstly by interpolating the points between the 12 randomly chosen wavelengths

to obtain a full set of data (i.e. a complete spectrum). Then, the absolute

difference in reflectance (residual) was calculated between the actual spectrum of

the mineral (Ra), and the spectrum estimated (Re) using the current wavelength

selection at each respective 10nm spaced point (λ). The summation of these

absolute distances is then used as the ‘error score’ for that particular wavelength

selection and mineral (σm):
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where λ increments in steps of 10nm. The lower the error score, the better the

wavelength selection, producing the optimal set of 12 wavelength points for each

mineral. In addition, spectral features were visually identified from all available

USGS spectra for each hydrated mineral in question – such as ferrous and ferric

iron absorption bands, and O-H or H2O absorption bands (Figure 6.2a). These

data combined were then used to subjectively decide on a suitable filter set,

named ‘F1-12’.

Filter set F2-12: 12 optimal wavelengths were calculated for the selected

minerals collectively (all normalised to the same starting value, shown in Figure

6.2b). This used the same computational method described above, but calculated

the 12 best wavelengths for all minerals together (rather than individually). To

find the best wavelength selection for this mineral set, the error scores for each

mineral were summed into an overall error score (σ) for each combination of

wavelengths assessed:

This generated filter set ‘F2-12’ and was not adjusted further.

Filter set F3-12: The third filter set created had evenly spaced filters every

50nm (with the exception of the first two filters, which have 60nm spacing) and

was not biased towards any pre-determined set of minerals.

These three new filter sets, and the original Beagle2 (B2) filters, were principally

tested on Martian analogue samples, to evaluate their suitability in the detection

of hydrated minerals on Mars. One of these filter sets was then selected for field

testing in Svalbard during AMASE, described in the following chapter.
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Figure 6.2. a) Spectra of montmorillonite (CM20 – CM27), opal, and gypsum (SU2202
and HS333) with OH and H2O absorption bands at 950 and 1000nm respectively; b)

USGS spectra (Clark et al. 2007) of the minerals used to statistically calculate new filter
selections for ‘F1-12’ and ‘F2-12’ . For specific USGS sample numbers, see Table 6.1.

6.1.3 Description of the new geological filter sets

The new filter sets differ principally to the B2 filters in that they lack a

concentration of filters towards the NIR end of the spectrum, with a broader

range of filters within the visible. Filter set F1-12 was chosen, in part,

subjectively based on the ability to detect a variety of hydrated minerals known

to exist at the Martian surface, but also iron oxides and oxyhydroxides, which

have previously been shown to also be of astrobiological interest (Bishop et al.

1998). The spectral region between 440-1000nm is dominated by Fe excitational

and charge transfer bands (Bishop 2005a), and therefore is particularly sensitive

to iron-bearing mineralogy (Farrand et al. 2008). As a result, distinctive spectral

features are particularly evident in Fe-bearing hydrated minerals such as

jarosite and nontronite, as well as silicates pyroxene and olivine and a range of

iron oxides such as haematite and goethite. Ferric absorption bands exist at

480nm, 650nm and 950nm, whilst a ferrous absorption band also in the 950nm

region can often obscure that produced by ferric iron (Stewart et al. 2006). Whilst

nontronite and jarosite share these similar Fe-absorption bands, nontronite has

a distinctive kink around 650nm that is not present in the jarosite spectrum. For

these reasons, filters within this filter set were placed so as to be sensitive to

such diagnostic features. In addition, estimated filter bandpasses were also

accounted for. For the B2 filters, bandpasses had already been previously

assigned (Griffiths et al. 2006), and these were used in the re-sampling of sample

(a)

(b)
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data based on the full-width-at-half-maximum (FWHM) values. For the new

filter sets, estimated bandpasses were assigned, based on those chosen for the B2

filters. These are shown in Table 6.2. Multispectral data was averaged within the

range covered by the FWHM bandpass for each filter.

Table 6.2. Filter centre wavelengths (λ) and estimated filter bandpasses at FWHM for 
B2 and the proposed filter sets. The ‘B2’ filter set is a duplicate of that from the Beagle2
PanCam (Griffiths et al. 2006); ‘F1-12’ was subjectively formulated; F2-12 was calculated

statistically; and F3-12 has filters regularly spaced every 50nm. All data are in nm.

B2 F1-12 F2-12 F3-12

λ Bandpass λ Bandpass λ Bandpass λ Bandpass

440 22 440 22 440 22 440 22
480 28 500 30 470 26 500 30
530 32 560 27 510 30 550 29
600 21 600 21 560 27 600 21
670 17 650 18 600 21 650 18
750 18 700 17 660 18 700 17
800 20 730 18 720 17 750 18
860 34 770 19 760 18 800 20
900 42 820 25 830 27 850 32
930 32 860 34 880 38 900 42
965 29 930 32 950 30 950 30
1000 28 1000 28 1000 28 1000 28

The filter centre wavelengths and their estimated bandpasses at FWHM are

shown in Figure 6.3, together with the position of iron and water/hydroxyl bands

that are common to the hydrated minerals used in this study. Note the lateral

extent of these bands is estimated. It can be seen that the B2 filters miss a Fe3+

absorption band at 650nm, and the jarosite and nontronite emission bands at

720 and 760nm. Overall, five of the B2 filters fall directly (i.e. their centre

wavelength, 2 filters) or partially (i.e. coverage by their bandpass, 3 filters)

within these spectral bands. Likewise, only five of the F3-12 filters fall within

the spectral bands (three of these by their centre wavelength). In comparison, six

of the new F1-12 filters fall within the spectral bands (three of these by their

centre wavelength), whilst computer-generated filter set F2-12 is best with seven

filters falling within the spectral absorption/emission bands (four by their centre

wavelength). We also note that although the new filter sets are primarily based

on hydrated mineral spectra, the distribution of filter wavelengths are still well

placed to detect spectral features that the original Pathfinder/Beagle2 filters

were designed to detect. For example, the near-UV to visible ferric absorption

edge from 440 – 750nm is now covered by 6 filters with F1-12 and F3-12 (1 more
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than the Pathfinder/B2 set), and 7 filters with F2-12. Additionally, the

wavelengths diagnostic of different pyroxene compositions (930 and 1000nm) are

still covered by all the new filter sets.

Figure 6.3. Plot of filters and estimated filter bandpasses for Beagle2 (B2) and new filter
sets, together with the absorption bands for ferric or ferrous iron (grey, solid line) and

water (blue, dashed line), and also the emission peaks for nontronite and jarosite around
700nm (pink, dash-dot line). Also shown are the hydrated mineral spectra used to

calculate filter set F1-12 and F2-12.

The effect different filter wavelengths can have on an observed PanCam

spectrum is demonstrated using the USGS spectra for nontronite and jarosite.

Figure 6.4 shows a close up of particularly diagnostic spectral features for

nontronite and jarosite, sub-sampled to three of the filter sets (B2, F1-12 and F3-

12). Here, it can be seen that the B2 filter set does not fully represent key

diagnostic spectral points for the mineral nontronite, where the Fe3+ absorption

feature at 650nm falls between B2 filters 600nm and 670nm. Likewise, the main

peak at ~700nm for jarosite is missed by the B2 filters. Additionally, having

filters spaced at regular intervals (filter set F3-12) can miss these points. In both

minerals, filter set F1-12 more closely represents the original mineral spectrum,

especially for jarosite. In either case, filter sets F1-12 and F3-12 both outperform

B2. For nontronite, the difference between F1-12 and F3-12 is relatively small,

with filter set F1-12 producing a slightly better match than F3-12. In this
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example, the key difference between the two sets is the filter at 560nm for F1-12,

and 550nm for F3-12. The other filter wavelengths in the range under

observation (520 – 680nm) are the same. For jarosite the difference is

particularly evident, as the current B2 filters completely miss a significant peak

at ~710nm, whilst filter set F3-12 partially misses it. Filter set F1-12 however

closely matches the spectrum.

Figure 6.4. Reflectance spectra of nontronite (SWa-1.a) and jarosite (JR2501) showing
the effect of the different filter sets on diagnostic features. Filter sets shown are the
existing ‘B2’ filters, compared with ‘F1-12’ and ‘F3-12’ filter sets. Arrows highlight

spectral features that are missed by particular filters.

6.2 Detection of Astrobiological Targets in Martian

Analogue Samples

Establishing and understanding the spectra of Martian analogue material was

conducted with the aim to conduct realistic testing of the PanCam filter sets, and

also for ground-truthing. For this work, a variety of Martian analogue samples

that were believed to encompass hydrated minerals were used to test the new

geological filters. These samples are from environments that are directly related

to volcanic activity.
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6.2.1 Martian analogue rocks

Geological samples from Iceland were used to test the old Beagle 2 (B2) and new

filter sets. Table 6.3 provides more detail on the location and nature of the

samples used in this study, and Figure 6.5 shows images of some of these

samples. These included subglacial basaltic lavas, subaerial basaltic flows,

hydrothermally altered lavas, and hot spring precipitates. These Martian

analogue samples were used in their natural state, in contrast to comparable

studies that use homogenised, powdered mineral fractions (Bishop et al. 2004a;

Bishop et al. 2004b). The benefit of using raw samples has been highlighted by

Harloff & Arnold (2001). Previous to that, Yon & Pieters (1988) noted the most

appropriate analogue to outcropping rock on a planetary surface is not a

powdered sample, but a rough bulk sample surface. As such, raw geological

samples are used for this work, to best simulate the nature of geological outcrops

that may be encountered during the ExoMars mission. Contextual information

was also gathered on mineralogy, chemistry, and morphological features using

Raman spectroscopy, Scanning Electron Microscopy (SEM) and Energy

Dispersive X-Ray Spectrometer (EDS) analysis (see Chapter 2, section 2.5 for

details).

Figure 6.5. Martian analogue samples used for testing different filter sets. a) GY2 –
silicified biomat; b) GY1 – silica sinter; c) KH – hyaloclastite with opaline silica coating;
d) NAL – acid fumarole weathered lava; e) HH – hyaloclastite; f) NBO – acid weathered

lava. Scale bar = 1cm. A description of samples is given in Table 6.3 below.
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Table 6.3. Description and original location of the samples used in this study.

Sample Location Description

NBO

A weathered Holocene basalt lava that has
undergone solfataric interaction with acidic
fumaroles and hydrothermal fluids, leaving
behind dark orange coloured mineral deposits
inside vesicles and depressions in the rock
surface.

NAL

Namafjall
solfatara field

A Holocene basaltic lava that has undergone
extensive high temperature solfataric alteration
via fumaroles, producing white, grey, yellow
and red mineral deposits on the surface.

HH Helgafell
A Pleistocene subglacially erupted basaltic
hyaloclastite with 0.5 – 3mm sized glass
fragments in a palagonite-rich matrix.

KH Krysuvik

A Pleistocene subglacially erupted basaltic
hyaloclastite with 1 – 10mm sized glass and
scoria fragments in a fine palagonite matrix.
This hyaloclastite has interacted with hot
spring fluids, which have deposited a 1 – 4mm
thick opaline silica crust on the surface of the
lava.

GY1
Silica sinter deposit ‘geyserite’ exhibiting
different coloured 1 – 2 mm thick layers of
black, red and yellow coloured deposits.

GY2 Geysir Silicified biological material, including a
silicified microbial hot spring biomat that still
retains it’s clear fibrous structure and silicified
macroscopic biological material.

KV007 Kverkfjoll
A Pleistocene subglacially erupted highly
vesicular pillow basalt lava.

LL Myvatn
A Holocene subaerial lava with extensive
epilithic lichen colonisation.

6.2.2 Multispectral imaging

For multispectral imaging, all samples were illuminated with a Solex solar lamp

at an average distance of 60 cm, although this varied slightly depending on the

size of the sample. Still-capture imaging was carried out at a distance of 1 meter

from the sample, at the Mullard Space Science Laboratory, by a Foculus

FO432SB camera (1.4Mpixles, 8- bits/pixle greyscale, 15° field of view lens,

exposure time 1 ms to 65 s). As with the ExoMars PanCam, this camera has a

1024 x 1024 pixel CCD which responds to wavelengths between 400 – 1000nm.

The camera was interfaced with one of two CRI Varispec liquid crystal tunable

filters (LCTF) – one covering the visible (wavelength range of 400 – 750nm;

bandpass of 20nm) and the other covering the near infrared (wavelength range of
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650 – 1100nm; bandpass of 10nm). Images were taken with the filters every

10nm. Figure 6.6 shows an example experimental set up and all the components.

Figure 6.6. Experimental set up for PanCam – style multispectral imaging.

For testing the ability of the proposed UV laser addition (Storrie Lombardi et al.

2009; 2008; Muller et al. 2009; Griffiths et al. 2008) to the PanCam instrument in

detecting astrobiological targets, samples were also imaged with the Foculus

camera interfaced with the flight-spare Beagle2 filter wheel. UV illumination

was achieved using either a 365nm Nichia single LED (NSHU590B) or a 375nm

Nichia laser diode (NDU1113E). Colour images of fluorescence were taken with a

commercial digital camera. The LED working distance illumination ranged from

10cm to 30cm, whilst laser working distance illumination was fixed at 2.6m.

Figure 6.7 shows example experimental set ups for UV illumination and

imaging.

Images were processed with ImageJ software (http://rsbweb.nih.gov/ij/), and an

example multispectral image is shown in Figure 6.8. Relative reflectance spectra

(T/C) were calculated by dividing the brightness values measured for the target

(T) sample/region of interest by that measured from a white calibration target

(C) in the background of each image. The size of the regions from which spectra

were extracted varied from 10 x 10 pixels to 200 x 200 pixels, depending upon the

size of the feature in question. The new geological filter sets were used to

Camera

LCTF

Solar lamp

White
calibration
target

Sample
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produce 12-point spectra for Martian analogue samples by re-sampling the

multispectral data to match the proposed filter wavelengths

Figure 6.7. Experimental set up for UV illumination using a) LED+Foculus+B2 filter
wheel; b) Laser+Digital camera. In (b), the laser is housed at the top of a 2m long tube,

channelling the laser down.

Figure 6.8. Example image of sample NBO as seen with a 590nm filter. In the
background is the white calibration target. White squares indicate the regions where

reflectance values are measured, e.g. the altered lava (pale grey), unaltered lava (dark
grey), and ‘whole’ measurement (incorporating both components). These are calibrated

using reflectance from the white calibration target (indicated by the black squares). Scale
bar = 1cm.

Laser

Sample

CameraSample

Camera

B2 Filter
wheel

LED

(a) (b)
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6.2.3 Martian analogue PanCam reflectance spectra

The new filter sets were used to model 12-point spectra for Martian analogue

samples by re-sampling the multispectral data to match the proposed filter

wavelengths. In addition, the data were averaged within the range covered by

the FWHM bandpass for each filter. The filter sets were tested on whether or not

they were able to capture spectral features that could potentially lead to the

identification of particular mineral species or assemblages within the rocks.

Spectral parameters, such as those used to identify spectral variability within

MER PanCam multispectral images (e.g. Farrand et al. 2008; 2006), were also

used to investigate the suitability of particular filter sets. Different filter sets

will have different filter wavelengths covering a particular spectral feature, such

as the 440 – 700nm absorption edge, or the 900nm absorption band. Where there

is not a filter centred at the specific band in question, the nearest filter is used,

and so is representative of how spectral parameter data will appear with the

different filter sets. Six geological samples were tested (Table 6.3), and the

spectra for each respective filter set for these samples are shown in Figure 6.9.

Where relevant, spectra for different coloured regions (and therefore potentially

different mineralogy) on the rock are shown, highlighting the spectral variation

across a naturally heterogeneous geological sample. Filter sets were tested on

their ability to either detect, or miss, key spectral features present within the

complete rock spectrum, the results of which are detailed in Table 6.4 and

discussed for individual samples in more detail below. In particular, the

detection of different hydrated minerals (including phyllosilicates, sulphates, and

opaline silica) is the primary focus. Overall, all the filter sets were able to detect

hydrated minerals and other spectral features in at least 4 out of the 6 samples,

and the specific samples varied with the different filter sets.
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Figure 6.9. Martian analogue sample spectra modelled for: column (A) Beagle2; (B) F1-
12; (C) F2-12; (D) F3-12 filter sets. Spectra are either for the whole sample, or specific

coloured regions, as indicated on individual plots. The full spectrum (grey) underlies the
modelled ‘PanCam’ spectrum (black). Grey bands overlying the spectra highlight spectral

features (e.g. absorption bands, reflectance peaks/plateaus) that correspond to those in
Table 6.4. Larger versions of these plots, together with their relevant mineral spectra,

are given in Appendix C.
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Hyaloclastite sample HH is rich in phyllosilicates, which exist as palagonite

alteration rinds around basaltic glass clasts. The spectral features of this rock

suggest a significant nontronite component, with characteristic Fe absorption

features at 480, 680, and 950nm. The absorption features observed at ~460nm

and ~950nm can be attributed to the presence of Fe3+, whilst the shifting of the

absorption from 650nm (more typical for nontronite) to 680nm is indicative of a

change from Fe3+ to Fe2+ (Stewart et al. 2006). Of the four filter sets, this sample

spectrum is best reproduced by sets B2 and F3-12, in terms of the number of

spectral features covered (Table 6.4). The new filter set F1-12 misses two

spectral features: 480nm and 950nm, whilst F2-12 misses features at 680nm and

800nm. However, although the B2 filters only miss one spectral feature (the kink

at 680nm), this absorption is a key distinguishing feature of the nontronite

spectrum. A notable difference observed between the HH and a typical

nontronite spectrum (e.g. SWa – 1) is the reduced reflectance peak at ~800nm in

the HH spectrum. This could be due to the reflectance being measured from the

rough surfaces of raw samples, which has been shown to decrease band depths in

comparison to homogenised particulate sample spectra (Harloff & Arnold 2001).

Additionally, the regions from which the spectra were extracted will exhibit

small-scale mineralogical heterogeneities, which will all contribute to the

spectral profile. Like nontronite, montmorillonite is a common constituent of

palagonite, and linear mixing of 40% nontronite with 60% montmorillonite

decreases the peak at 800nm, and therefore is a possible contributor to the bulk

mineralogy, although without confirmatory mineralogical data this is purely

speculative at this stage. Under SEM, a typical texture can be seen for the

hyaloclastite, consisting of angular glass fragments with palagonite rinds around

areas of aqueous alteration – in this case, vesicles within the glass clast (Figure

6.10). The main constituents of palagonite are Fe-rich smectite clays, and where

aqueous alteration is extensive, as in hyaloclastite lavas, palagonite forms a

significant constituent of the lava. As a result, the spectrum of the rock will be

dominated by clays such as montmorillonite and nontronite. The detection of

phyllosilicates is highly relevant for an astrobiologically mission. Phyllosilicate

terrains on Mars are thought to represent the most habitable past environments,

and therefore are most likely to hold clues to the planet’s biological history

(Bibring et al. 2006). As a result, the ability of the ExoMars PanCam to identify

such phyllosilicate minerals is imperative to the mission objectives.
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Figure 6.10. SEM image of the hyaloclastite (P = palagonite; G = glass; V = vesicle).

Sample NAL is a subaerial basaltic lava that is covered in extensive sulphur-rich

alteration products due to acid-fumarole weathering, producing distinctively

different colour regions on the rock surface. The spectra of the different regions

on this rock are suggestive of the iron sulphate jarosite (KFe3(SO4)2(OH)6), and

the aluminium sulphate alunite (KAl3(SO4)2(OH)6), for ‘Yellow’ and ‘Red’ regions

respectively (Figure 6.9). The ‘Yellow’ region produces a spectrum that has a

steep ferric absorption edge between 440 – 700nm, culminating in a peak at

710nm. This is followed by a broad absorption centred around 950nm, which is

characteristic of Fe3+. The ‘Red’ region has spectral features synonymous with

those often seen for alunite, including a steep gradient between 440-700nm, and

particularly an absorption feature at 950nm – 1000nm. Pure alunite is typically

white (Hunt et al. 1971), but in this case it exists as red deposits on the surface of

the lava. This red colouration is due to the partial replacement of Al3+ with Fe3+

(Hunt et al. 1971), which is represented by the broad absorption feature between

800 and 900nm. The spectrum also has a well defined absorption feature

between 950 – 1000nm which can be attributed to OH stretching vibrations that

exist further into the NIR, the first band existing at 1010nm (Hunt et al. 1971).

Although jarosite is also a hydrated sulphate, it doesn’t exhibit any OH bands

until further into the infra-red spectrum (Clark 1990). All these spectral features

for both the ‘Yellow’ and ‘Red’ regions were best captured with the new filter sets

G

V

P
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F1-12 and F2-12, whilst both the B2 and F3-12 filter sets miss the peak at

710nm in the ‘Yellow’ spectrum (Figure 6.9). BSE analysis of NAL in thin section

(Figure 6.11) demonstrate the high degree of alteration this lava has

experienced. Mineral deposits can be seen inside lava vesicles, and these are

typically a mix of iron and aluminium sulphates, but also amorphous (opal-a)

silica. This silica component was not detected through multispectral imaging,

potentially due to its confinement within vesicles and resulting absence from the

rock surface. Silica deposits are characterised firstly by their elemental

chemistry, and secondly their intricate botryoidal features and laminations

within the deposits (Figure 6.11b). Iron-rich regions can also be found distributed

throughout the lava, identified by it’s bright white appearance in BSE.

Figure 6.11. BSE images of a) mineral-filled vesicle and b) botryoidal amorphous silica

deposits in sample NAL. Table below displays representative values as oxide wt.%.

SiO2 FeO Al2O3 SO3 CaO K2O Total*

1. Opal-a 92.7 - - - - - 92.67
2. Alunite/Jarosite 31.7 29.5 16.4 1.9 0.5 1.4 81.48
3. Iron oxide 6.3 72.4 - 1.5 - - 80.22
*Low total values likely to be a result of water content, sample porosity, or both

Sample NBO, like sample NAL, is an acid-weathered basaltic lava, with orange

coloured deposits filling the vesicles that are surrounded by unaltered basalt.

The spectrum of these ‘Orange’ deposits is highly similar to the ‘Yellow’ mineral

deposit in sample NAL, exhibiting a main peak at 720nm, and absorption

features at 480 and 950nm (Figure 6.9). As with the NAL deposits, these

features imply the presence of jarosite, which is entirely consistent with the

geological setting of this lava. This is confirmed with Raman analysis (Figure

6.12, below). Unlike the deposits in sample NAL, all filter sets appear to

represent this spectrum fully, although the B2 and F3-12 filter sets only

1. Opal-a
Botryoidal texture

2. Alunite/jarosite

Laminated
texture

(a) (b)

3. Iron-
sulphate
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partially capture the 720nm peak. The ‘Black’ spectrum corresponds with the

unaltered basalt component of the lava surface, and as such exhibits a relatively

low-albedo spectrum. There is a small absorption band in an otherwise flat and

featureless spectrum at 900nm, which is representative of the presence of low-Ca

pyroxene (Farrand et al. 2008), and this is detected by all four filter sets.

Figure 6.12. Raman spectrum of the orange deposits on sample NBO, and jarosite for
comparison.
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Sample KH is a hyaloclastite lava with a hot-spring deposited opaline silica crust

(1 – 4mm thick) on the surface. Additionally, this crust is inhabited by

chasmolithic lichen communities, and as such have an influence on the observed

spectrum. The spectra of this white crust is consistent with that of opal,

exhibiting a smooth arcing spectrum, although the hydration feature at 950nm is

not present (Figure 6.9). The additional presence of the lichens has the effect of

creating a slight absorption feature at 670nm, indicative of chlorophyll a (Bishop

et al. 2004b). This feature is particularly strong in the ‘Lichen’ spectrum, along

with a steep H2O absorption between 900 – 1000nm. All the filter sets

represented these spectral features, from both the ‘White’ and ‘Lichen’ regions

(Table 6.4).

Samples GY1 and GY2 are both hot spring silica sinters. GY1 is characterised by

several different coloured layered regions, ranging from black, red, yellow, and

white (Figure 6.5b), with these components ranging from 1 – 10mm in size. The

spectrum of the ‘White’ region has a generally flat morphology, with a small

absorption at 950nm, comparable to the spectral features of opal-CT, where the

950nm absorption feature can be attributed to OH-. This 950nm absorption is
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captured by all the filter sets except F1-12 (Table 6.4). The spectra of the other

coloured regions of sample GY1 however are less indicative of its true

mineralogy. Raman analysis of the ‘Red’ and ‘Yellow’ sinter components

identifies these regions as haematite and sulphur respectively (Figure 6.13), yet

this is not revealed by multispectral imaging.

Figure 6.13. Raman spectra for GY1 R3 and GY1 R4 showing the presence of haematite
and sulphur respectively

These mineral components are 1 – 2mm in size, and are therefore well within the

limits of the Foculus camera resolution (100 – 200 µm/pixel). Figure 6.13 shows

the F2-12 filter spectra for these two regions. The spectral features are more

consistent with those for the sulphate alunite (Figure 6.14). These two spectra

exhibit differences in features that suggest perhaps a minor influence of their

true mineralogy, such as the flatter profile of ‘GY1 Yellow’ between 600 – 830nm

(sulphur has a flat profile between 500 – 1000nm), and the absorption between

440 - 560nm which is a feature typically seen for haematite. However, these

features are by no means diagnostic, and highlight potential problems of

remotely identifying small mineralogical targets within an otherwise

heterogeneous rock sample.

Like GY1, sample GY2 also formed as part of a silica sinter, but it exhibits a

different spectral profile to that seen for the white region of GY1. GY2 is a

silicified biomat with a dominantly Si composition (as determined by EDS), yet

this is not represented within the spectral features, which exhibit a steep

gradient between 440-700nm, followed by a plateau between 700-950nm, and an

absorption feature between 950 – 1000nm. As with the small sulphur and
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haematite mineral deposits in GY1, these spectral features are suggestive of

alunite, despite their silica-rich composition. This alunite component most likely

exists as a fine particulate coating on the surface of the sinter deposit

(discernable from hand specimen), therefore preventing the silica mineralogy

from influencing the observed spectrum. Likewise, the biological origin of this

deposit appears to have no impact on the observed spectra, even though

morphological microfossils can be easily identified as a significant structural

component (Figure 6.15).

Figure 6.14. F2-12 spectra for GY1 regions ‘Red’ and ‘Yellow’, which have a Raman
spectrum of haematite and sulphur respectively. Alunite is also shown for comparison.
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Figure 6.15. BSE image of GY2 silica sinters, showing preserved biological structures
within the silica matrix, a) silicification of branching dendritic structures that extend up

vertically from the base of the sinter; b) detailed cellular structures.
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Opaline silica deposits have the potential to provide information on past life on

Mars, but the reflectance spectra of the silica sinter samples from Geysir

provided little evidence of their hot-spring origin. As with sample KH, all filter

sets included the key spectral morphologies of the GY2 spectrum.

Table 6.4. Ability of the Beagle2 and new filter sets to detect specific spectral features in
the Martian analogue rock spectra, displayed in Figure 6.9. Detection is classed as either

positive (+) or negative (-).

Sample and
description

Colour
Region

Feature (nm) B2 F1-12 F2-12 F3-12

440 – 700 (Ferric
absorption edge)

+ + + +

470 (Fe3+) + - + -

680 (Fe2+) - + - +
950 (Fe3+) + - + +

HH
Hyaloclastite

Whole
sample

800 (Peak) + + - +

440 – 700 (Ferric
absorption edge)

510 (Fe)

+

+

+

+

+

+

+

+

710 (Peak) - + + -
Yellow

950 (Fe3+) + + + +
440 – 700 (Ferric
absorption edge)

+ + + +

750 (Peak) + + + +
850 (Fe3+) + + + +

NAL
Acid
weathered
basalt

Red

950 - 1000 (OH-) + + + +
670 (Chlorophyll) + + + +

White
800 (Peak) + + + +

670 (Chlorophyll) + + + +

KH
Silica
encrusted
hyaloclastite

Lichen
900 – 1000 (H2O) + + + +

GY1
Geysirite

White
950 (OH-) + - + +

700 (spectral
plateau)

- + + +GY2
Silcified
biomat

Whole

950 - 1000 (OH-) + + + +
440 – 700 (Ferric
absorption edge)

+ + + +

480 (Fe3+) + + + +
600 (Start of Fe3+

absorption)
+ + + +

750 (Peak) + + + +

NBO
Acid
weathered
basalt

Orange

950 (Fe3+) + + + +
900 (Low-Ca

pyroxene)
+ + + +

POSITIVE 22 22 23 23
NEGATIVE 3 3 2 2
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Finally, spectral parameter plots were used to group Martian analogue spectra

into spectral groups based on particular spectral features, such as the steepness

of an absorption slope, or the depth of an absorption band (listed in Table 6.5).

These plots are often used to define spectral variability within Martian rocks,

and therefore potential lithological variability (Farrand et al. 2008; 2006).

Likewise, such plots can be used to identify the distribution of a particular

mineralogical feature across a Martian scene (Rice et al. In Press). Therefore, the

selection of particular filter wavelengths may affect the ability of PanCam to

correctly identify different lithologies/mineral species.

Table 6.5. Spectral parameters used to assess the different filter sets (adapted from
Farrand et al. 2006). All data are in nm; ‘R’ denotes reflectance.

Parameter
Filter

Set

Representative
filter

wavelengths
Description

B2 440 – 670 (R670 – R440)/(670 – 440)

F1-12 440 – 700 (R700 – R440)/(700 – 440)
F2-12 440 – 660 (R660 – R440)/(660 – 440)

440 – 700
Slope

F3-12 440 – 700 (R700 – R440)/(670 – 440)
B2 930 – 1000 (R1000 – R930)/(1000 – 930)

F1-12 940 – 1000 (R1000 – R940)/(1000 – 940)

F2-12 950 – 1000 (R1000 – R950)/(1000 – 950)

920 – 1000
Slope

F3-12 950 – 1000 (R1000 – R950)/(1000 – 950)
B2 900 1 – (R900/[(0.429*R860)+(0.571*R930)])

F1-12 930 1 – (R930/[(0.500*R860)+(0.500*R1000)])
F2-12 880 1 – (R880/[(0.583*R830)+(0.417*R950)])

900 Band
Depth

F3-12 900 1 – (R900/[(0.500*R850)+(0.500*R950)])

B2 480 1 – (R480/[(0.556*R440)+(0.444*R530)])
F1-12 500 1 – (R500/[(0.500*R440)+(0.500*R560)])

F2-12 470 1 – (R470/[(0.571*R440)+(0.429*R510)])

470 Band
Depth

F3-12 500 1 – (R500/[(0.455*R440)+(0.545*R550)])

Figure 6.16 highlights the dependence of spectral parameter values on the filter

wavelengths. Two outliers are evident in this plot, one for NAL Red and one for

GY2 rock spectra. These are both spectral parameter values produced by the F1-

12 filter set, highlighting the influence filter wavelengths have on the observed

parameter values, and subsequent interpretation. In this case, the variation lies

within the 900nm band depth values, and most likely signifies the lack of a filter

at 900nm (filters lie either side at 860nm and 930nm). The remaining filters for

each of the rocks tend to cluster within the same region, particularly for NBO

Orange. NBO Black has the highest band depth at 900nm, and could be
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interpreted as the presence of low-Ca pyroxene in the unaltered basalt lava. NAL

Yellow and NBO Orange have the next highest 900nm band depths, coupled with

particularly steep 440 – 700nm gradients, both indicators of iron-bearing

mineralogies, such as the jarosite known to be in NBO Orange.

Figure 6.16. Spectral parameter plot of 900nm* band depth vs. 440 – 700nm slope for
the Martian analogue rock spectra. *Band depth is represented by different filter

wavelengths dependant upon the filter set, detailed in Table 6.5.

Figure 6.17 plots the slope between 440 – 700nm against that for 920 – 1000nm.

The rock spectra are well defined in this plot, which plots iron content (steepness

of the 440 – 700nm slope) against water content (920 – 1000nm slope).

Representative minerals from the USGS spectral database are also plotted for

comparison. A linear mixing line between minerals jarosite and alunite is shown,

and it can be seen that samples NAL Yellow, NBO Orange, and GY2 lie either at

the end, or along this line. Unsurprisingly, the water-rich KH Lichen has the

steepest 920 – 1000nm spectral slope, followed by the GY2 spectra which is

dominated by spectral features consistent with alunite, as described previously.

There is little difference between the spectra for samples KH White, GY1 White,

and HH, which cluster in a similar region to Opaline silica, consistent for KH

White and GY1 White, but not HH. The exception to this is the division between
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the four filter sets for GY1 White into two distinct groups, with one group (filter

sets F2-12 and F3-12) plotting close to the values for both opaline silica and KH

White, and the other group (F1-12 and B2) plotting outside this cluster with a

significantly steeper 920 – 1000nm absorption.

Figure 6.17. Spectral parameter plot of 920 – 1000nm slope vs. 440 – 700nm slope for
the Martian analogue rock spectra. The dashed line represents the path of a linear mix

between jarosite and alunite.

In Figure 6.18, both the absorption bands at 470nm and 900nm are indicators of

the presence of iron-bearing mineralogies, and those rock spectra that exhibit

absorptions at both these wavelengths fall into the grey shaded region of the

plot. Unlike the plots in Figures 6.16 and 6.17, sample HH plots in a different

region to samples KH White and GY1 White, indicating the different

mineralogical composition of this rock.
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Figure 6.18. Spectral parameter plot of 470nm* band depth vs. 900nm* band depth for
the Martian analogue rock spectra. The shaded area represents spectra that have both a

470nm and 900nm absorption. *Band depth is represented by different filter
wavelengths dependant upon the filter set, detailed in Table 6.5.

This study was conducted with two aims: firstly to produce several alternate

geological filter sets to replace the current Beagle2/Pathfinder filter

wavelengths, and secondly to present initial results from the testing of these

putative filter sets on raw, Martian analogue rock samples. It is apparent that a

concentration of filters towards the NIR end of the spectrum, as with the B2

filter set, is not beneficial in the detection hydrated minerals by PanCam, either

in pure form, or as a component in heterogeneous rock samples. As a result, the

new proposed filter sets F1-12 and F2-12 have more filters in the visible (see

Table 6.2). The third new filter set also explored - ‘F3-12’ - has filters spaced at

regular intervals every 50nm. The benefit of this filter set is that the even spread

of spectral points is not biased towards any particular group of minerals, and so

theoretically makes the PanCam equally suited to detecting any given mineral or

lithology it comes across. However, whilst much is still unknown as regards to

the lithology and mineralogy of the Martian surface, ExoMars will be focused

particularly on regions where hydrated minerals are likely to predominate. The

aim of positioning these points so that they favour certain mineral groups is to
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enhance the detection of these specific minerals in keeping with the mission

objectives. The effectiveness of this can be seen in Figure 6.4.

The filter set that was generated statistically (F2-12) based on a set of seven

different hydrated minerals, proved one of the most effective filter sets at

identifying hydrated minerals in the Martian analogue rocks, and also from the

mineral data set from the USGS spectral database. This suggests that this

particular method of filter wavelength assignment is successful at selecting a

suitable set of geological filters. As such, there is the potential to utilise this

method using a much wider set of mineral spectral data before the PanCam filter

wavelengths are finalised. It is noted that several USGS spectra often exist for

one mineral, some of which exhibit slightly different spectral profiles. For this

work just one representative sample spectrum of each of the hydrated minerals

was used for the filter selection, and it is important to be aware that the

selection of different examples of mineral spectra (e.g. montmorillonite) may

have an effect on the filter wavelengths chosen. Additionally, our knowledge of

the mineralogical diversity of the Martian surface is increasing, and as such,

future PanCam geological filter selection and testing will need to incorporate a

much wider range of minerals and analogue samples. Another factor is the

mineralogy of the selected ExoMars landing site (still to be finalised). The

availability of CRISM and OMEGA data allows the characterisation of the bulk

mineralogy of a potential landing site, and as such could be used to heavily

influence the PanCam filter wavelengths. For example, if such orbital

spectrometer data showed there to be extensive and rover accessible clay-bearing

geological units, the PanCam filters may be more useful if they were optimised to

detect phyllosilicate minerals only. Such focused target selection would benefit

from potentially more diagnostic PanCam spectra, but may significantly reduce

the ability of PanCam to undertake perhaps more opportunistic science and any

subsequent unexpected discoveries. The generation of a range of filter sets, each

biased towards a specific mineral group or spectral feature(s), could be tested in

their ability to fulfil their function (e.g. unambiguously detect phyllosilicates),

and also how detrimental they may be in the detection of other mineral

assemblages.
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The need to expand on spectral ground-truthing data sets was recently

highlighted by Poulet et al. (2009). As with natural outcrops that are likely to be

encountered on Mars, these rock samples display large and small scale

mineralogical/lithological heterogeneities, only some which were clearly

distinguished with PanCam-style 12-point spectra, as in sample NBO where the

spectral data was clearly able to distinguish between the ‘Orange’ jarosite

component from that of the surrounding unaltered basalt (Figure 6.9). Likewise,

the lichens in sample KH were spectrally distinct from the surrounding silica

crust. However, detecting heterogeneity was a problem for the silica sinter

samples – deposits that would have a particular astrobiological relevance.

Opaline silica deposits have the potential to provide information on past life on

Mars, but the reflectance spectra of the silica sinter samples from Geysir

provided little evidence of their hot-spring origin. If similar silica deposits formed

through hot spring sinter development on Mars - a process so commonly seen in

volcanically active regions on Earth - there is a possibility for the discovery of

morphological, mineralogical and chemical biosignatures within these

precipitates (e.g. Preston et al. 2008; Schulze-Makuch et al. 2007; Goryniuk et al.

2004). As a result, identifying spectral features that may hinder the remote

detection of such deposits is an important step in identifying astrobiological

targets at the Martian surface. This is also true of the small mineralogical

variations within sample GY1, the spectra of which did not correspond to the

presence of haematite or sulphur as detected by Raman. Haematite has been

previously documented to be an effective inorganic barrier to UV radiation

(Clark 1998), and has also been shown to be present at the Martian surface by

the MER Opportunity (Klingelhofer et al. 2004), and as such is one of the many

minerals that could be expected to be found around the ExoMars landing site.

6.3 UV Detection of Astrobiological Targets

UV illumination was tested as a potential addition to the ExoMars PanCam,

with the aim to assess the feasibility of UV illumination in the detection of

astrobiological targets through an epifluorescence response that could be

detected with PanCam imaging. Previous field testing has shown UV

illumination and imaging to be useful in the detection of life in extreme

environments (Weinstein et al. 2008). UV illumination of Martian analogue

samples is shown here to be useful, and sometimes essential, in detecting both
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hydrated mineralogy and extant photosynthetic communities within lavas, the

results of which are detailed in the following sections.

6.3.1 Detection of gypsum

UV illumination of a basaltic lava successfully led to the detection the calcium

sulphate gypsum (CaSO4.2H2O), occurring as hydrothermal deposits within a

subglacially-erupted pillow basalt (sample KV007). Small gypsum deposits were

detected by UV induced epifluorescence emanating from vesicles inside the lava.

Illumination of the outside lava surface failed to show any presence of surface

fluorescence. This activity was bright blue-green-white and confined within the

boundaries of individual small depressions in the basalt. Figures 6.19 a+b show

the visible fluorescence when excited by the 365nm LED penlight at a working

distance of 10 cm. Foculus-captured images at a distance of 2m through the

flight-spare Beagle2 green filter were obtained with both Solex illumination

(Figure 6.20a) and with 375nm laser illumination (Figure 6.20b) with 150 second

total exposure time for the fluorescence image. Fluorescence and Solex images

are combined in Figure 6.20c to show the position of the fluorescence within the

lava vesicles, which are clearly distinguishable from the surrounding lava

matrix. Figure 6.21 shows the detailed morphology of the gypsum precipitations

inside the vesicles. Raman spectroscopic analysis (785 nm excitation) shows the

deposits are attributed to gypsum (Figure 6.22). VIS-NIR (440 – 1000nm)

multispectral imaging of KV007 however produces a reflectance spectrum that

bears similarities with that of USGS gypsum reflectance (sample SU2202). The

main distinguishing feature is the slightly increased albedo of the gypsum

deposits in comparison with the surrounding basaltic lava matrix, but is by no

means diagnostic. In contrast, the UV epifluorescence response is significantly

clearer.
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Figure 6.19. a + b) Digital camera captured image of sample KV007 under natural light
(a) and showing the native epifluorescence emitted from gypsum deposits (b) when

excited with 375nm laser illumination at a distance of 10 cm; c + d) Foculus captured
image of the epifluorescence produced by 365nm illumination as seen through a 530nm
filter with 75s exposure (c) and 440nm filter with 100s total exposure (d). Scale bar 1cm.

Figure 6.20. Magnified Foculus captured image of KV007 epifluorescence at a distance
of 2m through the green filter. a) with Solex illumination; b) with 375nm laser

illumination and 150s total exposure; c) images ‘a’ and ‘b’ combined to show the position
of the fluorescence within the lava vesicles. Scale bar 1cm.

(a) (b) (c)

(a) (b)

(c) (d)
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Figure 6.21. KV007 gypsum epifluorescence, (a + b) close up natural light images of the
gypsum (G) deposits inside the vesicles of the lava; c) green – blue fluorescence under

365nm illumination of the area highlighted in (a). Scale bar 1mm.

Figure 6.22. Raman spectrum of KV007 vesicle deposits using 785nm laser excitation.
All peaks are diagnostic of gypsum.
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The individual deposits are small (1-3 mm in size), and restricted to the upper

inside surfaces of vesicles in the top 14mm of lava (Figures 6.19 and 6.20). Their

presence shows these lavas experienced aqueous alteration, most likely when the

lavas were still warm and recently erupted beneath a glacier. Central Iceland,

north of Vatnajökull, is characterized by an expansive volcanic desert consisting

predominantly of basaltic lava flows and basaltic sands. As a result, the lavas

evaluated here have undergone little weathering and biological colonization since

their time of eruption during the Pleistocene. Hence, the gypsum deposits in this

sample provide evidence of previous hydrothermal alteration that originally

deposited this hydrated mineral. Uncovering evidence of past aqueous activity

such as this will be one of the primary aims of the ExoMars rover. Discovery of a

gypsum deposit similar to this sample would document evidence of liquid water

within a lava, a finding that opens up the possibility of endolithic subsurface

micro-habitats on Mars where life might once have survived.

The detection of in-situ gypsum on Mars would be important for both

astrobiology (identifying past aqueous environments) and Martian geology

(understanding hydrothermal alteration), and the addition of UV illumination

facilitates this process. Gypsum not only provides evidence of past aqueous

activity, but also acts as an extremophile habitat in itself. Gypsum deposits at

the Haughton Impact crater in the Canadian High Arctic, have been found to

contain endolithic cyanobacteria communities residing within cleavage planes of

gypsum crystals as a way of protecting themselves against desiccation and UV

radiation (Parnell et al. 2004). Likewise, fungal and cyanobacteria endolithic

communities were found inhabiting gypsum crusts on the surface of sandstone

boulders on the Antarctic Peninsula, again providing protection against UV

radiation, desiccation and low temperatures (Hughes & Lawley 2003). The fact

that this survival strategy has been identified in both polar regions on Earth

points towards a commonly exploited microhabitat in environments that are cold,

desiccating, and subjected to high UV flux. Similar survival strategies could have

evolved on Mars in the past. During exploration of the Mars regolith rapid

location of such gypsum deposits using UV epifluorescent imaging would

enhance mission control sample selection capability and facilitate close analysis

of these samples by other ExoMars organic experiments. Due to the relative

brightness of the fluorescence emitted by the gypsum compared to the non-
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fluorescing host rock, deposits only millimetres in size were detectable from a

distance of ~2 meters (Figure 6.20b). The reflectance spectrum of gypsum is

dominated by spectral features attributed to water – a key component of the

gypsum crystal structure (Hunt et al. 1971). However, these features exist

predominantly in the NIR, the first beginning just after 1000nm. As a result, as

with other hydrated minerals, these water bands are out of the PanCam spectral

range. In this respect, the detection of gypsum in the vesicles of subglacial pillow

lava (KV007) was initially reliant upon UV illumination to produce the observed

fluorescence signal in the visible, before confirmation with Raman spectroscopy.

It has been previously suggested that sulphate minerals such as gypsum should

be key astrobiological targets on Mars (Rothschild 1990; Parnell et al. 2004;

Aubrey et al. 2005; Aubrey et al. 2006; Parnell et al. 2007; Schulze-Makuch et al.

2007). They have been shown to preserve organic compounds, such as amino

acids, for geologically significant periods of time. These amino acids and their

degradation products are thought to have been preserved at the time of gypsum

deposition as part of the original evaporite. It has been postulated that such

organic matter could be preserved within the resulting geobiological assemblage

for billions of years in Mars basalts (Aubrey et al. 2006).

6.3.2 Detection of photosynthetic communities

Lastly, UV illumination of extant lichen communities produced biological

epifluorescence in the visible (Figures 6.23 and 6.24). Basalt sample LL was

extensively colonized by multiple lichen communities exhibiting significant

differences in visible wavelength coloration (Figure 6.24). Likewise, chasmolithic

lichens produced a similarly bright response under UV illumination.

Figure 6.23. KH chasmolithic lichens illuminated with a) solar lamp and b) 365nm
fluorescence, both seen through a 560nm filter. Lichen colonies stand out from the

surrounding silica much more clearly when their fluorescence is imaged. Scale bar = 1cm.

(a) (b)
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These lichens experience seasonal freeze-thaw cycles and extensive light loss

during wintertime snow coverage followed by excessive summertime UV

exposure. The samples collected all produced strong, easily detectible yellow –

green epifluorescence signals against the non-fluorescing basalt surface when

illuminated with 365 nm light (Figure 6.24). Digital extraction of the blue

channel data in the original image permits rapid visual discrimination of yellow

and yellow-green fluorescence signals of distinct microbial consortia against the

non-fluorescing rock surface (Figure 6.24e). Epilithic lichen communities

including those inhabiting Arctic and Antarctic polar environments are often

comprised of a fungal host and a resident cyanobacteria or algal photosynthetic

symbiote (Sun and Friedmann 1999; Friedmann and Sun 2005; Sun and

Friedmann 2005). These complex microbial consortia contain a wide variety of

photosynthetic and UV-screening pigments that, when excited as individual

molecular species, are known to fluoresce following near-UV illumination.

However, pigments that provide UV screening for the lichen community produce

a significant absorption feature for both the incoming excitation light and any

fluorescence response. As a result, lichen communities exhibit wide variation in

intensity and coloration of a reflectance or fluorescence signal.

The inclusion of UV illumination in standard multi-spectral imaging provides an

additional means of remote spot targeting on nearby rock outcrops, as well as

providing a simple survey tool for material obtained by the ExoMars drill. In

particular, the combination of such a light source with all the PanCam cameras

provide not only multispectral detection, but also high resolution colour imaging

of the fluorescence response using the HRC. The rapid, non-destructive, and

simple nature of this method makes it an advantageous search tool to be used in

conjunction with PanCam multispectral imaging and potentially other

instruments on board ExoMars, such as MIMA infra-red mapping of targets, or

remote Raman-LIBS (if included in the final payload). Raman-LIBS analysis

however, is carried out as a spot analysis on a predetermined region of the rock,

meaning any spatial heterogeneities across the rock surface may be missed. As a

result, while PanCam multispectral imaging does not provide the same level of

precise data acquisition, it plays a crucial role in the selection of these specific

target areas. This is demonstrated with the UV detection of gypsum deposits

within sample KV007 (Figures 6.19 and 6.20). An additional benefit is that if
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UV illumination is to be incorporated into the PanCam instrument, a wider

range of filters in the visible will be advantageous to the detection of the

fluorescence from organic and inorganic material.

Figure 6.24. a + b) Image of KH chasmolithic lichens under normal light (a) and the
area in the white box as seen under 365nm illumination (b) NB: blue in the image is not

fluorescence but reflectance of the 365nm LED penlight off the sample (image 6cm
across). c – e) Image of LL epilithic lichens under normal light (c) and under 365nm

illumination (d). Image e) shows image (d) with the blue channel removed to show just
the fluorescence signal. Scale bar 1cm. In both cases the lichens exhibited a detectible

fluorescence against the non-fluorescing rock substrate they colonise.

6.4 Conclusions and Future Work

The work described in this chapter has shown that there are many

considerations that need to be accounted for when optimising instrument

hardware for an astrobiologically-focused mission such as ExoMars. Significantly

more work is needed however in firstly the testing of potential new geological

filters, and secondly the collection of Martian analogue spectral data, for the

purposes of ground truthing Martian data in the years to come. Further work

(a)

(b)

(c)

(d)

(e)
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and suggested improvements are detailed here, in relation to the conclusions

that can be drawn from this work.

Whilst more extensive testing of the new filter sets is needed on a much wider

range of samples, it is apparent from this initial study that filter set F2-12

appears more suitable for the detection of astrobiological targets than the other

filter sets explored, particularly B2 and F1-12. This filter set was created by

testing a novel filter selection methodology that was based entirely on the

spectral properties of relevant minerals, and had no subjective input. This

method could be easily expanded to incorporate firstly a wider assemblage of

mineral spectra, especially the inclusion of carbonate minerals, and secondly

multiple spectral data of the same mineral. This particular filter set was selected

for field-testing in Svalbard, the details of which are documented in the next

chapter.

Future imaging of Martian analogue rocks should incorporate a wider range of

realistic analogue samples. In particular, once the landing site for ExoMars has

been selected, the focus should be predominantly on rocks that are the closest

analogues to those expected to be encountered on the mission. Imperative to this

future testing is the additional collection of contextual data to fully characterise

the mineralogical and textural features of each sample in question. For the work

described here this utilised Raman spectroscopy, SEM, and EDS analysis, but

more extensive work should also include X-ray diffraction and measured

reflectance spectra (using a spectrometer). Lastly, this work would also be

greatly improved through the detailed characterisation of the sample surface,

such as quantifying mineral heterogeneity and surface roughness.

The addition of a UV laser to the PanCam instrument has so far proven to be

useful in identifying features of interest that may otherwise be missed by normal

PanCam imaging, and likewise further testing this using more samples will

again show more conclusively whether or not this is the case.

As well as collecting and interpreting PanCam data from Martian analogue rock

samples, the issue of dust cover remains a major problem for the remote

identification of rock mineralogy. Previous studies (e.g. Mustard & Hays 1997;
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Johnson et al. 2002) have attempted to tackle this issue, but mostly with regard

to basaltic lava with dust coatings. Therefore, PanCam studies involving a wider

variety of rock targets with carefully controlled dust coatings will help the future

interpretation of Martian PanCam data. Such studies can be used in conjunction

with spectral mixing models to identify the spectral end members within a

heterogeneous, dust-covered rock (Parente et al. 2009; Poulet et al. 2007) . Linear

mixing can be used to model spectra, which can then be coupled with actual

laboratory data to validate the suitability of such models in the interpretation of

PanCam data.

Finally, in contrast to the MER mission, where the rovers were designed to be

‘field geologists’, ExoMars has a highly specific scientific objective, and the

question of whether instruments such as PanCam should be finely tuned to meet

this objective at the expense of making unexpected discoveries is one that needs

to be carefully explored.
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CHAPTER 7

TESTING FILTER SET ‘F2-12’ ON MARTIAN

ANALOGUE TARGETS IN SVALVARD

After testing new filter wavelengths on samples within controlled laboratory

conditions (Chapter 6), one of these filter sets – F2-12 – was tested in the field

combined with a simulated PanCam instrument mast and camera in Svalbard

during the 2009 AMASE (Arctic Mars Analogue Svalbard Expedition) field

campaign. AMASE is a joint NASA – ESA funded annual expedition to Svalbard

which aims to provide planetary scientists with an ideal Martian analogue

environment for field testing rover instrumentation, and also sample collecting

and astrobiologically-focused research. This field deployment allowed for the in-

situ testing of the new selected filter set on a range of Martian analogue

environments, with the overall aim to establish the suitability of this filter set

for the ExoMars mission. This testing was carried out with the following

objectives:

Firstly, to deploy the PanCam at a range of field localities that have particular

astrobiological significance, and acquire a full data set of multispectral images of

geological and biological targets within a natural setting and with mission-

realistic protocols. Biological targets included both extant and fossilized life,

whilst geological targets ranged from sites with a large lithological and

mineralogical diversity, to those that are highly analogous to Martian terrains.

Secondly, following the acquisition of the PanCam field data sets, they are

processed and interpreted with the view to assess the ability of PanCam to

identify evidence of past or present environment habitability, and also any

biosignatures that may be present.
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7.1 Instrument Specifications and Operation

For the 2009 expedition, ExoMars instruments selected to attend AMASE were

PanCam, MicrOmega (IR spectrometer), RAMAN (Raman spectrometer), and

WISDOM (ground penetrating radar). This was the first time the PanCam

instrument had multispectral capability during AMASE based testing of

PanCam, and this was used to provide colour panoramic shots, as well as

multispectral imaging of specific targets for the generation of reflection spectra.

Filter set F2-12 was selected for testing during AMASE due to its ability to

detect relevant minerals in laboratory samples. The PanCam used during

AMASE was designed to be as close as possible to the current specifications for

the ExoMars PanCam, consisting of two Wide Angle Cameras (WACs) separated

by distance of 50cm between their optical axes. Between these is the High

Resolution Camera (HRC). The PanCam mast and its individual components is

shown in Figure 7.1 below. The left and right WAC filter wheels together

contained 12 narrowband (10nm bandpass) geology filters (centre wavelengths

from filter set F2-12) and 6 wideband (100nm bandpass) Red, Green and Blue

filters, for multispectral and colour stereo imaging respectively, making a total of

18 filters (Table 7.1).

Figure 7.1. The PanCam instrument used for field testing in Svalbard during AMASE.
The whole instrument consists of 2 x wide angle cameras (WAC), 2 filter wheels (FW),

and 1 high resolution camera (HRC). The HRC also has RGB external filters (not shown).

Left WAC
Right WAC

HRC

Left FW

Right FW
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Table 7.1. Filter characteristics for the AMASE camera filters

Filter
Position

Centre Wavelength
(nm)

Band pass
(nm)

Filter
category

Left 1 460 Colour - Blue
Left 2 550 Colour - Green

Left 3 660

~ 100

Colour - Red
Left 4 440
Left 5 470

Left 6 510
Left 7 560
Left 8 600

Left 9 660

10 - 40 Geology (VIS)

Right 1 460 Colour - Blue

Right 2 550 Colour - Green
Right 3 660

~ 100

Colour - Red
Right 4 720

Right 5 760
Right 6 830
Right 7 880

Right 8 950
Right 9 1000

10 - 40 Geology (NIR)

The filter wheels were manufactured and interfaced with the WACs at

Aberyswyth University, whilst the PanCam PanTilt unit and HRC were

constructed at the Deutsches Zentrum für Luft- und Raumfahrt (German

Aerospace Centre). The WACs used for this field testing are two commercial

monochrome cameras, and simulated the ExoMars PanCam WAC specifications.

The HRC allows for magnification and increased resolution of selected targets

identified in WAC Images. A commercial monochrome camera with the correct

payload optical specifications was used. The specifications for the AMASE WACs

and HRC are given in Table 7.2.

The principal aim of this work was to test the ability of the new geological filter

set (F2-12) for the detection of astrobiological targets in a field Martian analogue

terrain, as part of a realistic instrument set up and field deployment in an

essentially uncontrolled environment. It is noted that this filter testing was

carried out in conjunction with technical testing of the WACs and HRC, details of

which are not described here unless relevant. Four field localities in Svalbard

were selected by AMASE leaders (Dr. Andrew Steele and Dr. Hans Amundsun)

based on their relevance to astrobiological field testing. These sites are described

individually for context in the following sections.
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Table 7.2. AMASE PanCam WAC and HRC demonstrator specifications.

Parameter WAC demonstrators

Pixels 1024 x 768 (horizontal x vertical)
Focal Length 8mm
FoV 34° x 26°
Aperture f/4
Focus Fixed (optimised for 2.4m), with a range of 1.2m – infinity
Filters 6 RGB (3 per eye) and 12 geological filters (6 per eye)

HRC demonstrator
Pixels 1280 x 960
Focal Length 70mm
FoV 5° x 4°
Focus Manual, with range 0.9m - infinity
Filters RGB (external to the camera)

Calibration of multispectral images was achieved using a payload-design

PanCam Calibration Target (PCT), courtesy of Dr. Dave Barnes at Aberystwyth

University. The calibration target is 5cm in diameter, and consists of red, green,

blue, yellow and two greyscale calibration targets for colour imaging, and a

central white target for calibrating multispectral data. Central to the whole

target is a 10mm high gnomon, although this was not used in any part of the

PanCam testing. The PCT was positioned with a tripod so to represent the

current placement on the rover top deck (Figure 7.2). Calibration of multispectral

images used for the generation of geological spectra was carried out using two

methods. The first was done by placing a larger version (~10cm in width) of the

PCT in the actual scene being imaged by PanCam, providing direct

normalisation of each filter where the white calibration is subject to the same

localised illumination conditions and exposure time as the targets within the

image. Normalisation here is the same as was done with the laboratory set up

(Chapter 6, section 6.2.2). Although not realistic to true rover instrument

operation, it produced a reliable method of normalisation whilst saving time, or

in some instances, where the ground was too unstable to place the PCT at the

required distance and height using the tripod. The second method was realistic

to actual PanCam operations, whereby the PCT was imaged prior to imaging of

the surrounding scene or outcrop. The downside of this method is that the

exposure times and local illumination conditions are slightly different to those

experienced by the imaged targets. Whilst nothing can be done about different

illumination, the exposure time can be accounted for by calculating the measured

brightness per millisecond (ms) for both the PCT and target of interest, i.e.
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dividing the brightness values by exposure time (in ms). Image processing and

the calculation of PanCam spectra was again carried out with ImageJ (details in

Chapter 6, section 6.2.2). Error bars on the following plots within this chapter

represent the standard deviation of the mean for all the pixels averaged within

the defined region from which the target spectra were calculated.

The following sections describe the science results from PanCam imaging at

several different sites visited during AMASE. The four sites include geological

and biological material, and range from volcanic to sedimentary deposits, and

both extinct and extant life. Typically, one site/target scene would take 1 day to

acquire a complete PanCam image set for both the WAC and HRC science

objectives.

Figure 7.2. a) Position of the PanCam Calibration Target (PCT) to represent the
currently proposed position on the rover top deck ~1.2m from the WACs; b) WAC RGB
composite image of the PCT (beneath Macbeth Colour Checker); c) HRC monochrome

(green filter) image of the PCT, from the same set up as (b).

7.2 PanCam Analysis of Astrobiological Targets

Science results are described within the context of the field sites individually, as

different sites were suitable for different objectives, summarised in Table 7.3. It

is noted that the interpretation of PanCam spectra from heterogeneous rock

targets is often a challenging task, as there are multiple effects that can impact

(a) (b)

(c)
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on the overall spectral morphology. These include the effect of light interaction

between one mineral grain and another, weathering state, roughness of the rock

surface, grain size, degree of heterogeneity, shadowing effects, composition, and

surface particulates. As such, PanCam spectra can not always be clearly

matched with that from a pure mineral spectral library (such as the USGS

spectral library and the JPL spectral library). IMP and Pancam data from the

Mars Pathfinder and MER missions respectively have led to significant

advancement in deciphering PanCam spectra, including direct matching of

spectral features (i.e. spectral profile) with mineral library spectra (e.g. Rice et

al. In Press; Bibring et al. 2007; Bishop et al. 2004), experimental petrology

(Singletary & Grove 2008), and computerised spectral unmixing and clustering

to identify spectral end-members (e.g. Parente et al. 2009; Farrand et al. 2008;

2006). Likewise, the availability of CRISM and OMEGA hyperspectral data has

led to similar methods of interpretation, where linear spectral mixing models are

used to infer mineral composition and dust contamination (e.g. Poulet et al.

2007). Such algorithm-based analysis is beyond the scope of this chapter,

therefore the interpretation of PanCam spectra here is limited solely to matching

diagnostic spectral features. One of the major issues, as well as those variables

mentioned above, is that strong spectral features largely occur well into the

infra-red, and outside the range detected by the PanCam, meaning spectral

features are often subtle, or heavily dominated by those minerals that do have

strong spectral features within the Vis-NIR region. Little to no work has so far

been conducted on the interpretation of PanCam data for the ExoMars mission,

particularly for geological multispectral data, and as such this work represents

the initial study in this area.

Table 7.3. Summary of the four PanCam test sites during AMASE field deployment. For
a map of these sites see Chapter 1, Figure 1.9)

Site Description Science focus Data set

Sverrefjell
Basaltic volcano

with hydrothermal
alteration

Detection of lithological
diversity and past

habitability

WAC/filters
HRC

Jotun Springs
Carbonate springs

with biomats
WAC/filters

Troll Springs
Carbonate springs
with large terraces

Detection of extant and
extinct biosignatures

WAC/filters

Wahlenbergfjord
Iron-rich quartz

sandstones
Detection of iron oxide

mineralogy
WAC/filters

HRC
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7.2.1 Sverrefjell: lithological diversity and past habitability

Sverrefjell volcano is a basaltic subglacially-erupted volcano typified by large

pillow lavas overlain by glass and palagonite rich hyaloclastite and volcanic

breccia. This volcano is unique in the world for its significant mineralogical

similarity to Martian geology, with olivine rich primitive basaltic lava

containing later hydrothermal deposits of carbonate and phyllosilicate minerals

(see Introduction for more detail). There were two main objectives for PanCam

imaging at this locality. The first was to test the PanCam in the identification of

this mineralogical and lithological diversity, and the second was to identify

evidence suggestive of past environmental habitability.

Two sites at Sverrefjell were utilized for PanCam imaging of volcanic terrains

(Figure 7.3) The first (BOCK01) is an outwash deposit consisting of a number of

boulders and rocks that have been sourced from the volcano above. In addition to

volcanic material, the outwash deposit also contains lithologies from surrounding

terrains. Such a site is typical of one that would be suitable for rover exploration,

and provides easy access to otherwise unreachable outcrops further up the

volcano. The second site (SV01) is focused on an outcrop located a few hundred

meters up the volcano, and provides in-situ outcrop imaging to complement that

carried out at the outwash plain below.

Figure 7.3. Sverrefjell Volcano in Bockfjord. The outwash plain (BOCK01) and the in-
situ outcrop (SV01) are indicated.

At BOCK01, imaging was undertaken on an outwash deposit which consisted of

a number of loose boulders and rocks of diverse lithology. Such a site is typical of

BOCK01

SV01
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that suitable for rover exploration (i.e. low angle slopes, multiple approach

routes to target boulders), and provides easy access to representative lithologies

of otherwise unreachable outcrops further up the volcano. Rocks consist of

basaltic lava sourced from the volcano, basement metamorphic rocks through

which the volcano erupted, and glacial till deposits consisting of exotic rocks from

further away. These rocks are randomly distributed. Notable is the large

compositional diversity between the rocks, which range from ultramafic (mantle

xenoliths) to felsic silica rich rocks (gneiss), with a variety of secondary

alteration minerals present from both hydrothermal deposition and mineral

weathering. A reconnaissance survey of the outwash deposit led to the

identification of the following targets of interest (identified in Figure 7.4 below):

Basaltic lava (X): a very fine-grained, vesicular lava containing large (4 – 10cm

diameter) bright green olivine-rich mantle derived xenoliths, often of lherzolitic

composition (Skjelkvåle et al. 1989).

Weathered xenolith (S): mantle xenolith, such as those from the Basaltic lava

described above, that has been since weathered out of the lava and undergone

mild serpentinisation, turning the once green xenolith into a pale green-white

rock.

Magnesite (M): bright white – pale yellow carbonate deposit. Specifically, the

carbonate is magnesite from hydrothermal alteration of the ultramafic rocks

(Treiman et al. 2002).

Altered basalt lava (FeB): small, angular lava fragment with a hard, dark red

surface coating indicative of oxidized iron-rich mineralogy.

Weathered basalt (SiB): small, angular highly vesicular lava fragment with a

hard pale grey – white surface coating. Likely to be a silica crust where the mafic

minerals have been stripped away by weathering, as opposed to hydrothermal

deposition as the vesicles remain empty throughout the lava and through the

crust.

Vesicular basalt (VB): Highly vesicular lava free of any visible mantle

xenoliths. The vesicles themselves are round, ~5mm in diameter, and exist as a

clear ‘swirling’ flow-banding texture.

Gneiss (G): Quartz and plagioclase feldspar rich gneiss with clear compositional

segregation from darker hornblende and mica rich regions. Sourced from the

basement rocks through which Sverrefjell volcano itself erupted. Similar
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gneissose and granulitic rocks occur as xenoliths within the Sverrefjell lava

flows, sometimes alongside mantle xenoliths such as those described in the

basaltic lava target ‘X’ above.

For initial testing of PanCam’s multispectral capabilities with the new filter set

F2-12, these rocks were arranged into a representative scene within the WACs

field of view (single frame). As a positive control, sample ‘NBO’ was also

incorporated into the scene. This rock is a basaltic lava with jarosite deposits

within the vesicles and on the surface (for more details see Chapter 6, section

6.2.1), and was used for this first test site to identify any anomalous filter or

camera behavior. The PanCam was positioned at a distance of 4.70m from the

center of the target scene, and images were taken using the stereo RGB filters

and geology multispectral filters (18 images in total). For the generation of

PanCam spectra, the calibration target placed within the rock scene was used. A

WAC colour composite image using the RGB colour filters is shown in Figure 7.5.

Figure 7.4. Digital photograph of rock targets, and positive control sample ‘NBO’.
Shortened identification labels for the targets are shown in brackets. Scale bar = 10cm.

(X) Xenolith
Basalt

(FeB) Iron
coated basalt

(M)
Magnesite

(S)
Serpentinized

xenolith

NB
O

(SiB) Silica
coated
basalt

(VB) Vesicular
basalt

(G) Gneiss
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Colour data from the RGB composite (Figure 7.5) allows the clear distinction of

broadly different rock types within the scene, and it is evident a contrast in rock

composition exists between the dark and light rocks. Particularly notable is the

unusual green colouration of the clasts present within the xenolith basalt, which

are absent from the other rocks. Mineralogical distinction between the lighter

colour rocks is not possible at this stage, although clear compositional

segregation characteristic of gneiss can be seen, suggesting this rock is rich in

quartz and feldspar. One particularly noticeable anomaly can be seen with the

red colour grass. Whilst the majority of chlorophyll reflectance in the visible is

between 500 – 600nm, between 700 – 750nm the reflectance increases 5 fold (the

vegetation ‘red edge’), and this is partially detected by the Red colour filter

which, due to it’s bandpass and centre wavelength, has a coverage of 610 –

710nm. Such high reflectance, even if partially detected, appears to mask the

true visible green reflectance, leading to incorrect colour representation.

Figure 7.5. Left WAC RGB colour composite image of the BOCK01 rock targets at a
distance of 4.70m from the WAC optical axis.

The addition of multispectral imaging using the F2-12 geology filters provides

clarity between the more similar coloured rocks, and also provides initial

compositional and mineralogical identification for particular targets. PanCam

reflectance spectra were obtained for the above rocks from the 12 multispectral
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images. Figure 7.6a below shows the PanCam spectra of these targets. Spectral

variability can be related to lithological diversity (Farrand et al. 2006), and it is

apparent from the overal morphology of the different target spectra that this

terrain hosts a number of different rock types. When only the basaltic rock

spectra are shown (Figure 7.6b), the 880nm absorption band is present in all

spectra except one – target SiB. This particular target, although basaltic lava,

has a silica-rich crust, which lacks the Fe3+ absorption at 880nm.

The positive control sample “NBO” spectrum correctly shows the spectral

features of jarosite, exhibiting a steep ferric absorption edge between 440 –

720nm, a large absorption at 880nm, and a peak at 720nm. No anomalous

features are present. Similar to the “NBO” spectrum is the “FeB” spectrum – a

weathered basaltic lava that has a red-orange crust visible on the surface. The

dark red colour in the RGB composite suggests this crust is most likely rich in

iron oxide, and the subsequent multispectral data reveals this to have the

spectral features of haematite, with absorptions at 510 and 880nm, and

reflectance peaks at 720 and 950 – 100nm.

Figure 7.6. a) PanCam spectra of all the target and control rocks from the scene at 4.70
m, error bars represent standard deviation; b) PanCam spectra of just the basaltic rocks,

with error bars removed for clarity. The 880nm absorption band is shown in grey.
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The ‘S’ (serpentinite) and ‘X’ (xenolith) have almost identical spectra until after

760nm, where the dunite has a much increased absorption compared to the

serpentinite. The shallower absorption at 880nm in the serpentinite suggests a

loss of iron. In addition, the serpentinite has a possible absorption at 1000nm

which is potentially the beginning of a hydration feature further into the

infrared, although this feature is not seen in a pure serpentine USGS mineral

spectrum. Figure 7.7. shows the PanCam spectra of ‘S’ and ‘X’ together with the

spectra (sub-sampled to F2-12 filter wavelengths) for the minerals diopside,

augite, olivine, serpentine (USGS spectral library), and the rock pyroxenite (JPL

spectral library). These minerals are all commonly found in mantle xenoliths

such as these, yet at first glance there appears to be little similarity between

these mineral spectra and that of the ‘S’ and ‘X’ targets. The rock targets exhibit

well defined spectral features including the inflection at 560nm, peak at 720nm,

and absorption at 880nm, which are highlighted by grey bands in the plot. The

USGS and JPL spectra that share these particular characteristics are pyroxenite

and augite, but their spectra do not match consistently between 440 – 1000nm.

Figure 7.7. PanCam spectra of BOCK01 targets ‘X’ and ‘S’, plus library spectra re-
sampled to PanCam filter wavelengths of minerals and rocks analogous to the targets.
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Figure 7.8 shows the spectra of ‘S’ and ‘X’ that, in particular wavelengths, have

spectral profiles that are highly similar to those minerals mentioned above.

Target ‘S’ especially is clearly characteristic of the pyroxene augite between the

region of 440 – 720nm (Figure 7.8a), yet between 720 – 880nm the spectrum is

consistent with diopside (Figure 7.8b). Linear mixing between these two

minerals does not however produce any satisfactory spectral model that matches

target ‘S’. The situation is similar for target ‘X’ (Figure 7.8c), where the spectrum

between 440 – 760nm is comparable to that measured for the rock pyroxenite

(JPL spectral library), but the same as for olivine (USGS spectral library)

between 720 – 830nm (although it is noted this particular match is only between

3 wavelengths). Hand specimen analysis of these particular xenoliths show them

to comprise ~75% olivine, ~15% augite and ~10% diopside, and so the bias of the

PanCam spectrum towards pyroxene minerals could be due to their stronger

spectral features (particularly augite) dominating the overall spectrum, masking

the olivine signal.

Figure 7.8. Partial PanCam spectra of BOCK01 targets ‘S’ and ‘X’ that match mineral
library spectra (re-sampled to PanCam filter wavelengths): a) 440 – 720nm match

between ‘S’ and Augite; b) 720 – 880nm match between ‘S’ and Diopside; c) 440 – 760nm
match between ‘X’ and Pyroxenite; d) 720 – 830nm match between ‘X’ and Olivine.
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The ‘SiB’ basalt has a silica rich crust where the mafic minerals have been

stripped away by weathering processes. The spectrum of this crust is consistent

with silica, and shares spectral similarities to the quartz rich gneiss, particularly

in the infra-red (720 – 1000nm). In the visible the ‘SiB’ spectrum has a higher

absorbance than target ‘G’, which is consistent with that observed for USGS

spectral of minerals opal and quartz, suggesting the silica rich crust on target

SiB is to some degree structurally amorphous, compared to the entirely

crystalline silica in the quartz-rich gneiss (G). This thin (1 – 2mm) crust on SiB

also masks any spectral signature of the basaltic lava underneath, highlighting

the limitation of PanCam multispectral data to the very surface of the target.

Similar to the SiB target spectra is that for the carbonate target ‘M’, which

differs spectrally only in that it has a steeper slope between 440 – 600nm than

SiB, a difference which is consistent for magnesite and opal respectively. Finally,

the spectrum of rock target “VB” (vesicular basalt) shares spectral features in

the visible with Ca-rich pyroxene augite, such as the reflectance peak captured

by the 560nm filter.

At the second site SV01 (Figure 7.3), PanCam imaging focused on an in situ

outcrop of a basaltic volcaniclastic breccia. This outcrop site is complementary to

the PanCam work carried out at site BOCK01, an outwash plain at the base of

the volcano, which consists of loose rocks brought down from the outcrops

situated at higher elevations at the volcano, such as this one. The outcrop itself

contains a few xenoliths like the ones at BOCK01, but these are typically more

weathered. In addition, loose rocks were present on the outcrop, which is also

surrounded by scree, and it is presumed these loose rocks are sourced from

further up the volcano. The WAC RBG colour composite (Figure 7.9) reveals a

consistently dark, predominantly mafic composition outcrop, with isolated loose

boulders of white – grey rocks and the occasional light brown rock. Particularly

clear is the unidirectional fabric dipping at nearly 45°, which is potentially

consistent with deposition of volcaniclastic sediments either in liquid water, a

process common to subglacial basaltic volcanism, or alternatively as pyroclastic

flows. The similarity between the angle of dip and the slope of the volcano

suggests the outcrop was deposited in-situ and hasn’t been subjected to any later

disturbance except localised weathering. Additionally the profile shape of the

outcrop follows the trend of both the internal fabric and slope of the volcano.
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Figure 7.9. WAC RGB colour composite of the outcrop at Sverrefjell volcano, at a
distance of 3 – 5 m. HRC target† footprints are also shown.

†
Targets in outcrop SV01 were named in the field after crew members on board R/V

Lance

The WAC images themselves are not able to resolve any small scale lithological

structure or mineralogical variation that might be present within the loose

boulders/larger clasts that exist in an around the outcrop. Some of these rocks

are clearly compositionally different to the main volcaniclastic outcrop due to

their significantly higher albedo and light colour. The initial WAC colour data

suggest either silica, carbonate, or perhaps even sulphate rich lithologies. High

resolution imaging of targets within the WAC field of view enables a significantly

higher level of scientific interpretation than that possible from just the WAC

data alone. With regards to assessing the habitability, the HRC colour data

allows for the preliminary identification of fine-scale mineralogy and lithology,

and as such an initial interpretation of the deposition environment. Figure 7.10

is an HRC image of target Marianne†, and both confirms and resolves the

sedimentary fabric seen in the WAC RGB image. These layered structures

within this volcaniclastic deposit are likely depositional structures, and

potentially (but by no means conclusive) evidence of deposition within a body

liquid water. Figure 7.11 shows HRC images of the targets Gunnar† and Otto†,

Gunnar

Otto

Marianne
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with magnified images of the target rocks themselves inset. It is apparent from

these images that both target rocks are also volcaniclastic like the main outcrop,

and display dark, basaltic clasts surrounded by a mineral matrix. Both rocks

lack any discernable internal structure, such as layering or sorting, and as such

can be classified as massive, unsorted sedimentary rocks.

Figure 7.10. ‘Marianne’ HRC image of layering structures within the outcrop. NB –
image has been brightened to clearly display structure. Scale bar = 10cm.

As shown in Figure 7.11a, these basaltic clasts are small, ranging in size from 1-

10mm, and are surrounded by a pale orange-brown fine-grained matrix. Such

lithological features are consistent with a phyllosilicate-rich volcanic breccia,

such as hyaloclastite, where basaltic glass has altered to palagonite through the

interaction with low temperature hydrothermal fluids. Palagonite is commonly

rich in smectite clays such as nontronite and montmorillonite. It is also noted

that the massive nature of this clastic rock is not consistent with the

surrounding outcrop, which show a clear depositional fabric in the HRC image,

suggesting this rock is either a large xenolith entrained during deposition, or a

loose rock sourced from a different part of the volcano. Figure 7.11b differs from

the example in Figure 7.11a in that the clasts are significantly larger, suggesting

the clasts are crystalline basalt, as opposed to basaltic glass. The white mineral

deposits, which appear to be cementing the basaltic clasts together, could be
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either carbonate or silica rich (or both), and again likely to be the result of

hydrothermal alteration.

Figure 7.11. HRC target images showing two different lithologies. a) ‘Otto’ - small dark
clasts supported by a finer pale orange-brown matrix; b) ‘Gunnar’ - large angular dark

clasts cemented by a pale mineral matrix. Scale bar is for the main HRC image.

(b)

10 cm

(a)

10 cm
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Multispectral analysis of these targets supports many of the inferences made

using the WAC and HRC images. Figure 7.12 shows PanCam spectra of targets

Gunnar, Otto, and Marianne. It is evident that Marianne has a spectrum highly

similar to that of target ‘VB’ at site BOCK01 (vesicular basaltic lava), and this is

in agreement with the WAC and HRC colour images which both show this target

to be almost black in colour and therefore likely to be basaltic in composition.

There is a significant reflectance peak at 560nm which is also seen in the ‘VB’

basaltic spectrum (Figure 7.6b). Otto has a spectrum similar in profile to

Marianne, but it has an overall higher albedo and has a 440 – 660nm ferric

absorption edge nearly 3 times steeper than Marianne, suggesting a higher iron

content. This is consistent with the dark orange colour of this target, clearly seen

in the HRC image (Figure 7.10a). Lastly, Gunnar was identified in the HRC

images as a volcanic breccia cemented by either carbonate or silica. Multispectral

analysis of Gunnar is consistent with this observation, although due to a lack of

spectral features it is difficult to say which out of the two is more likely. Opaline

silica does exhibit an absorption in the NIR followed by the beginning of a

reflectance at 950 – 1000nm, both features which are seen in the Gunnar

spectrum, suggesting that at the very least opaline silica may be present within

this rock. However this by no means rules out the possibility of carbonate being

present as well.

Figure 7.12. PanCam spectra of SV01 targets (shown in Figure 7.9).
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Multispectral data acquisition at Sverrefjell volcano using the F2-12 filter set

has correctly identified the wide range of lithological diversity at BOCK01 and

SV01. Spectral parameters can be used to define spectrally-distinct groups,

which can be used to infer broad lithological diversity (Farrand et al. 2006). As

filters within the PanCam spectral range are most sensitive to Fe oxide

absorption bands, spectral parameters that relate to these features are used

here. Figure 7.13 shows 440 – 660nm slope plotted against 880nm band depth

(relative to adjacent filters) for all targets at BOCK01 and SV01. It can be seen

that these targets fall into four broadly distinct groups, which can be classified

(based on field/hand specimen identification) into basalt, Fe-rich silicates/oxides,

carbonate, and quartz/silica rich groups. It is noted these spectral parameters

cannot be used to identify specific mineralogical species per se, but simply

provide a way to distinguish between those targets that a spectrally distinct and

those that are spectrally similar. However, such information is potentially useful

in the selection of remote targets for the ExoMars rover to approach for analysis

with contact instrumentation (e.g. Raman, IR). With limited rover lifetime and

resources, it might be of more scientific value to select one target from each of

the four groups, and so get a more representative view of the lithological

diversity, and therefore ultimately past environments and geological processes at

that site. It is evident from the plot that the targets from BOCK01 and SV01

mostly correspond well to each other, with Marianne plotting with the Basalt

(VB) from BOCK01, suggesting the volcaniclastic outcrop at SV01 is indeed

broadly basaltic in composition with little evidence for secondary mineral

deposition or extensive weathering. Otto plots most closely to the iron-rich

silicates and oxides from BOCK01, and, together with the HRC image data, this

suggests this rock is potentially rich in smectite clays. Gunnar plots closest to

the silica-rich BOCK01 targets ‘G’ and ‘SiB’, and not the carbonate ‘M’, which

could lead to the conclusion that the basaltic clasts in Gunnar are cemented by

silica, not carbonate. However, field analysis of Gunnar show the white mineral

cement to be predominantly carbonate, highlighting the potential for PanCam

spectral data to be misleading in the absence of contextual or more conclusive

information. The inclusion of a remote Raman-LIBS system, as opposed to just a

contact Raman, would be one such way of clarifying the mineralogy.
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Figure 7.13. 440 – 660nm slope vs. 880nm band depth spectral parameter plot for
PanCam targets for BOCK01 (black points) and SV01 (blue points) at Sverrefjell volcano.

Mean error bars are shown bottom right hand corner.

One major issue with the PanCam analysis of the targets at Sverrefjell is the

lack of multiple data sets from any one target. Targets vary greatly in size, and

some targets are only big enough to obtain one measurement, such as the target

‘M’ at BOCK01, or target Gunnar at SV01. This will also be true of PanCam

analysis of Martian terrains, and the acquisition of extensive multiple data sets

from the MER rovers Spirit and Opportunity has been accomplished through the

steady gathering of multispectral images across entire traverses (e.g. Farrand et

al. 2007; 2006) with over 60,000 (as of 2006) PanCam images having been

acquired since the rovers’ landing in January 2004 (Bell et al. 2006). This data

set has allowed for a thorough statistical analysis of the PanCam spectra

acquired (Farrand et al. 2008). Clearly gathering a similarly extensive data-set

was not possible during the Svalbard testing of PanCam, and is one particular

objective that could be easily achieved through short-term deployment at any

lithologically diverse site (Martian analogue or otherwise) and should be a focus

of future PanCam testing.

With regards to the detection and assessment of past environmental habitability

at Sverrefjell, PanCam data has detected, through both multispectral data and
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colour imaging, a number of features that could be interpreted as evidence for a

past habitable environment which could be approached for more extensive rover

investigation. A particular example is the detection of potentially

hydrothermally-deposited carbonate and silica. Hydrothermal systems are

widely known to be firstly a likely occurrence on Mars in the past (e.g. Abramov

& Kring 2005; Rathbun & Squyres 2002; Gulick 1998; Griffith & Shock 1995),

and secondly a high priority environment within which to search for evidence of

past life (Newson et al. 2001; Farmer & Des Marais 1999; Walter & Des Marais

1993). Additionally, hydrothermal carbonate and silica deposits on Earth

commonly preserve morphological fossils (Konhauser et al. 2001; Allen et al.

2000; Hofmann & Farmer 2000; Cady & Farmer 1996), organic compounds

(Preston et al. 2008; Zhang et al. 2004; Westall et al. 2000), and geochemical

biosignatures (Oehler et al. 2006). Such targets would be significant finds on

Mars and would no doubt be a clear priority for the ExoMars mission. Although

PanCam spectral data were not able to clearly identify the white minerals as

either silica or carbonate, both minerals have important implications for past

habitability. Carbonates especially are thought to indicate more clement

conditions, with neutral – alkaline pH and a steady supply of liquid water

(Ehlmann et al. 2008a). Silica also could be indicative of a neutral-alkaline (in

this case, silica depositing) aqueous environment (Wang et al. 2008; Yen et al.

2008), such as that seen at Geysir, Iceland. However, it could also be the result of

highly acidic gases weathering the basaltic lava (McAdam et al. 2009; Squyres et

al. 2008; Schiffman et al. 2006), an environment that may not be considered as

favorable to life. This particular issue currently surrounds the interpretation of

the silica deposits identified on Mars by the rover Spirit, the answer of which

could potentially have a significant effect on the past habitability of the area

around Gusev Crater (Squyres et al. 2008; Yen et al. 2008).

In addition to the carbonate and/or silica deposits, the suggestion of possible

smectite clays suggest past aqueous activity at this outcrop. As with carbonate

minerals, phyllosilicates are suggestive of habitable conditions with the presence

of long term liquid water and neutral – alkaline pH values (Poulet et al. 2009;

Poulet et al. 2005), and phyllosilicate terrains in particular are recognised as

priority targets for missions ExoMars and MSL. One notable result of the

multispectral data is the lack of clear hydration features for any of the targets
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(e.g. Figure 7.6), even those likely to be hydrated minerals, such as opaline silica

or carbonate. The hydration feature is a small, but distinctive indicator of past

liquid water activity, and it would be highly advantageous for an astrobiology

mission such as ExoMars to have the ability to detect it. The laboratory testing

detailed in the previous chapter (Chapter 6) demonstrated the filter wavelengths

in F2-12 were suitable for the detection of this hydration feature in a number of

Martian analogue samples (GY2, GY1), yet it is not detected at either BOCK01

or SV01.

In addition to the mineralogical indications of habitability, there is also evidence

of depositional bedding structures within the volcaniclastic sediments at SV01.

For such depositional structures to occur, these sediments would have need to

have flowed unidirectionally. Within the volcanic context of Sverefjell, this is

likely to be either as a pyroclastic deposit, or through deposition within a body of

liquid water (hydroclastic). It is clear that at least part of the eruption at

Sverrefjell was influenced by liquid water, as large pillow basalt lavas outcrop

mid-way up the volcano. Therefore it is entirely possible that the volcanic

breccia, and particularly the phyllosilicate – rich target ‘Otto’, were erupted in

close association with a significant source of liquid water. Likewise, the

alternative scenario – a pyroclastic flow – would require some degree of

explosivity. Such deposits are fairly typical for intermediate – acidic composition

volcanoes, or where volatiles such as water are able to interact with the lava.

Either way, such a basaltic breccia is indicative of the presence of liquid water.

7.2.2 Jotun and Troll Springs: detection of biosignatures

Two warm, carbonate depositing springs were used to test the PanCam detection

of biosignatures. The first, Jotun Springs (Chapter 2, Figure 2.4), consists of

warm springs containing extensive photosynthetic microbial mats which follow

the path of the spring over shallow (1 – 3cm deep) carbonate terraces. The

second, Troll Springs, has large (20 – 50cm deep) well developed terraces, many

with extinct, mineralized biomats on the surface, providing a contrast to the

extant life at Jotun.

At Jotun Springs, imaging was carried out at the main spring and associated

run-off over shallow carbonate terraces deposited by the spring water.



Chapter 7 – Testing PanCam filters in Svalbard

235

Distinctive colour variations can be seen between both the different biomat

communities (principally green and pink) and also the mineral precipitates

(white and orange). The objective at this site was to utilise PanCam

multispectral imaging of bacterial biomats growing on the surface of carbonate

terraces to distinguish between a variety of photosynthetic pigments known to be

present within these different biomats. In the following section, all

photosynthetic pigment absorption wavelengths come from Viscarra Rossel et al.

(2006). In addition, the clear lateral distribution of the pigmented biomats made

this a suitable site for utilising 2D spectral mapping. A RGB colour composite

image from the right WAC is shown in Figure 7.14. Regions from which spectra

are measured are also indicated.

Figure 7.14. Right WAC RGB colour composite image of Jotun Springs. The regions
from which multispectral measurements are made are shown.

The PanCam spectra (Figure 7.15) of both the pigment rich biomats and mineral

precipitate crusts show distinctive spectral absorption features relating to both

photosynthetic features and mineral chemistry. The green biomat shows strong

absorptions for both carotenoid pigments (400 – 500nm, detected with filters 440,

470, and 510nm) and especially the 670nm chlorophyll absorption feature which

is detected by the 660nm filter. These absorption features are also present in the

pink biomat spectrum, although they are not as pronounced. There are two
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distinct bacteriochlorophyll a absorption bands at 800nm and 860nm, but these

fall between filters 760, 830, and 880nm, and so there is a possibility these

pigments would not be detected by PanCam. However, the PanCam spectra for

the green and pink biomats in particular show a strong absorption at the 880nm

filter, which may be due to the influence of this pigment (highlighted with a ‘?’).

The mineral precipitate/crust spectra are broadly representative of carbonate,

but are interspersed with shallow absorptions which correspond to

photosynthetic pigments, such as between filters 440 – 510nm, and at 600nm

(white crust only), and again at 880nm (currently unknown cause). This

detection of photosynthetic pigments is potentially representative of biomats that

exist either beneath the mineral crust or in between mineral grains, as such

photosynthetic pigments would easily affect an otherwise featureless carbonate

spectra. Although if this indeed the case it is anomalous that the strong

chlorophyll absorption at 660nm is not present, in either the orange or white

mineral crust. One particularly notable feature in the white crust exists at

760nm. This sharp absorption is not present in either the extant green or pink

biomats, but does appear in the orange mineral crust. This absorption, together

with the shallow feature at 600nm in the white crust, is suggestive of the

pigment bacteriochlorophyll a, which absorbs at both these wavelengths,

principally at 760nm. Lastly, there is a strong absorption in all spectra at

1000nm, which could either be water, or bacteriochlorophyll b which absorbs at

1020nm. Although the geological filters were able to detect a number of

photosynthetic pigments within the extant biomats at Jotun Springs, they are

not well placed to distinguish between different photosynthetic pigments within

a pigment group – for example between chlorophyll a and chlorophyll b.
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Figure 7.15. PanCam spectra from Jotun Springs. Individual spectra have been offset
for clarity by 0.05 increments. Grey bands show absorption of photosynthetic pigments.
CT = Carotenoids; CF = Chlorophyll a & b; BC = Bacteriochlorophyll. The beginning of

either an H2O, or Bacterochlorophyll b absorption can also be seen.

Simple 2D spectral mapping was carried out to test how PanCam multispectral

imaging could be used to show the spatial distribution of a target of interest.

This was calculated using MATLAB, and worked on the principle of highlighting

only those pixels that represented a particular spectral feature characteristic of

the target. To calculate this, first the image was normalized relative to the white

calibration target. This involved adjusting the image threshold to remove all

pixels with a brightness value greater than that of the white calibration target

mean value, then renormalizing all the remaining pixel values by dividing them

by the mean calibration target value (i.e. the same value used to normalize the

PanCam spectra). This converted the pixel values so that they matched the

values used to plot the target PanCam spectra. Of these remaining pixels, only

those with brightness values that are equal to the value in the PanCam target

spectrum, or within the region bound by the average standard deviation, remain.

This is done for three images of the relevant filters that depict the spectral

feature of interest, and only those pixels that match the values of the spectrum

all three images remain.
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Figure 7.16. Spectral mapping of targets at Jotun Springs: a) 560nm WAC image; b)
map showing distribution of ‘Green’ and ‘Pink’ biomats and ‘White’ precipitate; c)WAC

RGB composite, arrows depict similar coloured regions distinguished by spectral
mapping (see text for detail); d)‘White’ distribution; e)‘Pink’ distribution; f)‘Green’

distribution.

Figure 7.16 shows the spatial surface distribution of the spectrum that

distinguishes the green and pink biomats, and the white carbonate precipitate. It

is evident the green biomat dominates the spring, and on the whole is confined to

the running spring water (7.16f). The pink biomat is less widespread, but

contrary to the green biomat this is restricted to regions that lie just above the

water line of the spring (7.16e). Where the spectral maps are particularly useful

is the distinction between areas of similar colour but different composition, for

example, the pink biomat and the orange mineral precipitate. In the RGB

composite (7.16c) this orange precipitate appears as a streak across the

otherwise white-grey carbonate deposit (marked with a black arrow). Just below

this however is a pink-orange region (marked with a white arrow), which from

the colour image alone is difficult to identify as either the pink biomat or the

orange precipitate. The spectral mapping however shows this to be

predominantly the pink biomat. In comparison to the biomats, the white mineral

precipitate is less well represented in these spectral maps, being limited to

isolated groups of pixels or small ‘islands’ within the spring.
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One problem with this method of spectral mapping is that it relies on pixel

matching between the different filter images. This was an issue with the data-set

acquired with the instrument set up used for this field testing, as the filter wheel

was designed to be manually turned between each image. This manual switching

of filters meant unavoidable small changes in position were made to the

PanCam, and as such single-camera images are not perfectly matched.

Therefore, individual images need to be translated so to align pixels. A far bigger

problem is if a spectral feature falls across filters between the left and right

WAC, as the separation between these two cameras results in each camera

viewing the target at a different angle, meaning it is not possible to match pixels

even through translation. For the targets mapped in Figure 7.16 above, the

respective defining spectral features were produced by the filters on the left

WAC only, so in this instance, this problem did not arise. It is also noted that

this method relies on the absolute brightness values for each pixel, and so

regions in the image that do contain the target, but for some reason (e.g. they are

in shadow) have a lower or higher albedo (outside of the allowed error) will not

be recognised.

Troll Springs, like Jotun, is a carbonate depositing spring, but here there are

extensive and well developed very large carbonate terraces consisting of both

currently forming terraces and old carbonate terrace deposits. Warm spring

water feeds a large shallow pool, from which small side streams and run-off flows

branch off, depositing the terraces downslope. Thick green and green-yellow

biomats fill the pools that form in the terraces. Where old spring flows used to

run there are dried out and/or mineralised biomat structures encrusted on the

outside walls of the terraces where the spring water used to flow. Additionally to

the extant biomats in the terrace pools, endolithic cyanobacteria exist within the

dried out carbonate terraces themselves, occupying pore spaces within the

carbonate. The objective at this site was to identify any multispectral signature

of firstly the carbonate mineralogy, secondly the extinct fossilized life on the

terrace surfaces, and lastly the cryptoendolithic cyanobacteria.
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Figure 7.17. a) Troll Spring carbonate terraces in the foreground (~1m in width); b)
cryptoendolithic cyanobacteria colonising the carbonate (scale bar = 1cm); c) PanCam
spectrum of the carbonate terrace, with spectral features consistent with those for the

carbonate magnesite.

The PanCam spectrum of the carbonate terrace at Troll Springs (Figure 7.17c) is

consistent with that of the carbonate magnesite, with spectral kinks at 600 and

880nm, but contains no evidence of either active photosynthetic pigments from

the cryptoendolithic cyanobacteria, or the fossilised biomats. Without any active

biological pigmentation present, the detection of these fossils with PanCam

spectra alone was not possible. This is consistent with the multispectral imaging

of sample GY2 in Chapter 6, section 6.2.3), which showed that silicified biomats

(in contrast to the calcified biomats at Troll Springs) had no impact on the

PanCam spectra. Likewise, even though cryptoendolithic life is present

millimeters below the surface of the carbonate terrace, this is still too deep to

have any impact on the observed remote spectrum. Cryptoendolithic life in

particular has often been used as an analogue for survival strategies for life on

Mars (Hughes & Lawley 2003; Fike et al. 2003; Walker & Pace 2007; Wynn-

Williams & Edwards 2000; McKay et al. 1992), particularly where a rock

thickness of only a few millimeters has been demonstrated to be a highly
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effective barrier against UV radiation (Cockell et al. 2005). This PanCam

deployment at Troll springs therefore has shown that the PanCam instrument

alone should not be used as a reliable life-detection system. However, the

unambiguous detection of carbonate, coupled with the characteristic terrace

morphology of the deposits, provides clear evidence of a past habitable

environment that should be approached for further rover investigation.

7.2.3. Wahlenbergfjord: detection of iron oxide deposits

Iron oxide is an abundant constituent of the Martian regolith (Chevrier & Mathé

2007; Morris et al. 2006), and as such it was imperative that the PanCam was

tested at a site that contained iron oxide mineralogy. At Wahlenbergfjorden,

there are extensive outcrops of quartz sandstone with later goethite mineral

deposition, producing a distinctive red – yellow – pink colouration of the

sandstone, although there are regions that have remained unaffected, which are

typically paler in colour. The outcrops occasionally display clear cross bedding

features, which are often cross-cut by bands of iron oxide deposits, indicating

these deposits occurred post deposition. The objectives at this site were to

identify the iron oxides present within these rocks, and to use PanCam to

quantify the relative distribution of goethite/iron oxide throughout the outcrop

stratigraphy.

The WAC RGB colour composite image in Figure 7.18 below shows clearly the

red – pink – grey – beige colouration of the outcrop. In addition, cross bedding

features are also easily identified in the lower portion of the outcrop, whilst

distinctive weathering textures in the top half of the outcrop can also be seen. It

is difficult to infer from the WAC image alone whether the colour variations

correspond with structural or depositional units, although a HRC image of the

outcrop region around Target 3 (Figure 7.19) confirms one region of colour

variation to clearly cross-cut the other structures present in the outcrop. Little is

known about the formation and deposition environment of this outcrop (pers.

comm. Dr. Andrew Steele), therefore without any reliable palaeoenvironment

contextual information, the interpretation of the PanCam images is focused

solely on the detection of iron oxide within this outcrop, and not to formulate any

ideas regarding the past environmental habitability of this site.
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Figure 7.18. Right WAC RGB composite of the outcrop and the target areas that spectra
are calculated from (white boxes). Cross bedding can be seen in the outcrop below the

dashed line. The yellow box shows the area a stratigraphic section (Figure 7.21) is taken,
and the blue box shows the footprint of the HRC image shown in Figure 7.19.

Figure 7.19. HRC image of Target 3 (indicated by black box) and surrounding outcrop,
showing the yellow goethite deposits (general lineation trend highlighted by yellow
dashed line and arrow) cross-cutting the underlying rock structure (lineation trend

highlighted by white dashed line and arrow). Scale bar = 10cm.
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The PanCam spectra of three targets (shown in Figure 7.20) are representative

of the mineralogy present in the outcrop. The target 1 and target 2 spectra are

consistent with quartz – the dominant mineralogy of the sandstone outcrop.

Target 3 on the other hand is representative of goethite (an iron oxide), with

absorptions between 440 – 510nm, at 660nm, and between 800 – 950nm, and a

pronounced peak at 760nm. The 440 – 510nm absorption can be also seen in the

Target 1 spectrum. This is in agreement with field observations and the RGB

colour composite image (Figure 7.18), where it is apparent that the Target 2

region is considerably paler in colour (white – grey) and lacking in any of the red-

pink colouration seen in the rest of the outcrop, and as such it produces a purely

quartz spectrum.

Figure 7.20. PanCam spectra of targets shown in Figure 7.18, showing a Fe2+ absorption
band at 500nm and Fe3+ absorption bands at 650 and 880nm. The reflectance peak at

760nm is also characteristic of goethite.

When these targets are plotted onto the spectral parameter plot (Figure 7.21)

previously shown for the Sverrefjell targets, they also plot in similar regions

relating to their mineralogy and composition. Target 2, the region of sandstone

lacking any visible deposition of goethite, plots closest to the quartz/silica group
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Figure 7.21. 440 – 660nm slope vs. 880nm band depth spectral parameter plot for
geological targets: Black = BOCK01, Blue = SV01, Red = Wahlenbergfjorden, Green =

Troll Springs. Mean error bars are shown top right hand corner.

The stratigraphic section and associated band depth plots in Figure 7.22 can be

used to give an indicator of how iron oxide content varies throughout the outcrop.

The 880nm band depth can be used as an indicator of iron oxide (Farrand et al.

2006), with increasing band depth correlating with increasing iron oxide content.

The initial spectral analysis of the outcrop (Targets 1, 2, and 3; Figure 7.20)

suggest the presence of goethite in particular, with goethite spectral features

varying in intensity from strong (Target 3), to weak (Target 1), to almost non-

existent (Target 2), as shown in Figure 7.19. Therefore, the band depths of the

features that are particularly strong for goethite (510mn and 660nm) are used

here as an indicator of specifically goethite distribution throughout the outcrop.

It is evident from the RGB WAC image alone that the red colouration (and

therefore possibly iron oxide concentration) of the outcrop varies from dark

red/purple – to yellow – to grey. From the 880nm band depth profile, it can be

seen that the band depth gradually increases with depth down the outcrop. In

particular, the top three units A, B, and C, have no absorption at this filter

wavelength at all, potentially suggesting no to little iron oxide content. This is

further implied by the lack of red colouration within these units, which are
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typically grey – beige in colour, especially units B and C. The 510nm band depth

measurements also display this overall trend, with the lowest band depths also

occurring within these top three units. The biggest 510nm band depth occurs at

unit F, a yellow band that cross-cuts the cross bedding in units E and G (also the

same region that contains Target 3 – see Figure 7.19), suggesting this yellow

band has relatively higher levels of goethite. Goethite is considered a

mineralogical marker for aqueous alteration on Mars due to the presence of

hydroxide within its mineral structure (Morris et al. 2008). Notably, goethite

forms part of a complex mineral assemblage identified by Spirit at Columbia

Hills, and one which has been interpreted to represent acidic aqueous processes

resulting in extensive alteration (Ming et al. 2006). As such, iron oxide minerals

such as goethite can be used as clear indicators of past environmental conditions.
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Figure 7.22. Stratigraphic section through the outcrop at Wahlenbergfjord, showing
individual units distinguished based on colour and/or texture, bound top and bottom by
the solid black line. Dashed white lines mark boundaries between the different units,

and red boxes indicate regions spectral measurements are made. Spectral band depths
indicative of iron oxide mineralogy are plotted on the left (Yellow = 880nm; Grey =

660nm; Blue = 510nm). All band depths above the black dashed line (at zero) have an
absorption at the respective wavelengths, and therefore are likely to contain iron oxide.

Scale bar = 10cm.

7.3 Conclusions and Future Work

The results of this field test show that PanCam multispectral imaging can be

used successfully to identify targets of astrobiological interest, and as such will

play a key role during the ExoMars mission. In addition to mineral deposits,

PanCam was also able to detect a variety of extant life via the identification of
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different photosynthetic pigments, although morphological fossils and

cryptoendolithic communities within carbonate deposits had no observable affect

on the reflectance spectra obtained. This demonstrates the limitation of the

astrobiological application of PanCam to principally the detection of past

habitable environments, and not for use as a reliable life detection too in itself.

Field-testing rover instrumentation undoubtedly has numerous drawbacks:

lighting conditions are uncontrolled and variable, targets are unexpected, and

data collection is often slowed by difficult environmental conditions or

instrument failure. However, the uncontrolled nature of field testing allows for a

much more rigorous investigation on the suitability of the instrument

components, such as the geological filters, both in terms of instrument operations

and interpretation of PanCam data.

Perhaps the most unrealistic aspect of this field testing in Svalbard is the lack of

a homogenous dust (i.e. Martian regolith) coating rock surfaces and collecting

within rock crevices. Whilst the lithology and mineralogy of the outcrops imaged

with the PanCam may be highly analogous to Martian geology, the presence of

Martian dust would no doubt obscure and alter many of the key spectral features

produced by the outcrops. It was this Martian dust which led to inclusion of the

Rock Abrasion Tool (RAT) on the MER rovers (Sqyures et al. 2003). However, it

is not particularly practical to place a Martian analogue dust coating on large

field outcrops, particularly where lithologies are type localities or rarely found

worldwide, an issue not uncommon in Svalbard. Therefore, this aspect of ground

truthing and instrument testing is purely restricted to the laboratory.

Lastly, such field testing will help to develop PanCam surface operations. For

example, the issue of how spectral resolution (i.e. how accurately or clearly the

spectrum represents a particular mineral/lithology) varies with distance from an

outcrop needs to be carefully explored. Constraining the number of pixels need to

produce an accurate spectrum from a mineralogically distinct area of an outcrop

needs to be tested, so to quantifiably determine the limits of the PanCam’s

capability when it comes to remote target selection. Such tests do not need to be

conducted in Svalbard, and could be easily carried out in numerous UK localities

with good outcrop exposures and limited vegetation.
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CHAPTER 8

DISCUSSION

This final chapter discusses the research documented in the previous chapters,

and explores the implications of these findings within the wider context.

Additionally, data leading to the generation of ideas that were considered too

speculative to include in the core chapters of this thesis are detailed here. The

aim of this PhD was to utilise Martian analogue environments that existed

geographically at high latitudes, to further our understanding of the possibility

for life to have existed on Mars, and the potential for finding evidence of such

life. Through understanding the microbiology, biosignatures, and geology of

selected environments it is hoped this goal has, in part, been achieved.

First, the core theme of this PhD is assessed – utilising volcanic environments at

high latitudes for astrobiological research. The wide range of environments and

habitats that exist in these settings is summarised as a whole.

Secondly, subglacial volcanic environments are discussed in detail with regards

to their habitability. The previous chapters demonstrated such systems to be

highly viable and to contain diverse prokaryotic communities. Therefore, such

environments on Mars are discussed, exploring issues relating to their

colonisation, ability to support metabolic pathways, and potential for

biosignature preservation.

Thirdly, implications of this work for the ESA ExoMars mission are reviewed,

with reference to the work conducted towards the development of the ExoMars

PanCam instrument in particular.

Lastly, the final section of this chapter outlines areas favoured for further

research – in particular focusing on astrobiologically relevant studies of active

subglacial volcanic systems in Iceland.
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8.1 High Latitude Volcanic Environments

The primary focus of this research has been the utilisation of basaltic volcanic

environments at high latitude, as a suitable analogue for Martian environments,

both in the past and at this present day. A wide variety of such volcanic

environments were sampled for both geological and biological investigation. The

samples analysed from these environments have helped in the development of

the ExoMars PanCam instrument, identified an environmental control on

biosignature development in basaltic volcanic glass, and shown that basaltic

lavas in cold and dry environments provide a habitat for a diverse array of

prokaryotic communities, and, finally, that these communities may be able to

survive in putative subglacial volcanic environments on Mars.

Many of these environments are specific to Iceland, where sampling took place.

These environments are displayed in Figure 8.1, and demonstrate the range of

conditions that exist within active and extinct volcanic terrains at high latitude.

The unique Arctic climate means these environments are all affected and

modified by seasonal extremes, with near constant sub-zero temperatures,

combined with snow cover during winter months. Each environment is typified

by its own specialised physiochemical regime. The work in this thesis

demonstrates such terrains can play an important role in Martian analogue

research. In particular, the study of bacterial diversity within basaltic

subglacially-erupted lavas revealed the community to be highly comparable to

those residing in well-known and previously studied analogues, such as the

Antarctic dry valleys. Many of these earlier studies have been in relation to

quartz sandstone or marble lithologies, which are not currently believed to exist

on Mars due to lack of tectonic activity. The basaltic lava environment of central

Iceland however is directly comparable to Mars in the geological sense.

Therefore, there is a huge potential for these environments, and their microbial

communities, to be utilised more extensively as a proxy for Martian research.

These environments are also significantly easier to access and sample than their

counterparts in Antarctica, meaning more time and money can be devoted to the

research itself as opposed to complicated logistics. As such, these Icelandic

environments should be exploited for future work in the field of astrobiology,

both for biologically and geologically focused research.
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Figure 8.1. Google Earth areal view of the different environments sampled (localities
shown by stars) in north Iceland for this work. A simplified diagrammatic cross section of

these environments is given in Chapter 1 (Figure 1.6).

Volcanic desert: positioned in the Vatnajokull
rain shadow, this region receives very little
precipitation. Fresh and weathered hyaloclastites
and pillow basalt ridges from Pleistocene subglacial
eruptions are surrounded by Holocene lava flows,
producing the ‘inverted topography’ common to
regions that have experienced subglacial volcanic
activity

Subglacial volcanic zone:
volcanic caldera overlain by
Vatnajokull ice cap.
Hydrothermal activity is
present at the glacier
surface. High levels of
precipitation in winter and
seasonally affected by
temperature causing changes
in melt-water flux.

Vegetated zone:
geothermal fields lie
amongst Holocene
basaltic lava flows.
Seasonally effected
by high snowfall in
winter creating ice
covered solfatara
fields.

10 km
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8.2 Subglacial Volcanic Environments on Mars

It is evident that subglacial volcanic environments on Earth are conductive to

life, be it subglacial caldera lakes (Gaidos et al. 2004) or subglacially erupted

lavas (Chapter 3), and that potential sites of volcano – ice interaction have been

widely identified on Mars. As a result the habitability of such a system within a

Martian setting needs to be considered, and the question of whether or not

indigenous microbial communities could survive such conditions was tested

experimentally (Chapter 5). This research, like others (see Chapter 1, section

1.4.2), has demonstrated increased survivability of a microbial community within

a subsurface environment on Mars.

However, there are a number of other factors relating to the long-term

habitability of these environments on Mars, including the availability of these

systems for colonisation (can life access these systems?), the potential for

metabolic pathways to occur (can life be sustained in these systems?) and the

duration of this habitat (does the environment exist long enough to allow a

community to flourish?). Therefore these issues are briefly discussed here, with

the aim to put the habitability of subglacial volcanic systems into context, in

particular focusing on the key differences likely to exist between terrestrial and

putative Martian systems.

8.2.1 Availability of liquid meltwater

An active volcano – ice system theoretically can provide all the necessary

ingredients for life. The continual release of geothermal heat into an overlying

glacier can sustain a subsurface meltwater environment, whilst the release of

volcanic gases could sustain a variety of chemosynthetic metabolisms. The

presence of this heat flow will also mean a continual convective system will

create a cycling of material through the different environments, removing waste

products from some niches whilst delivering nutrients to others. It is clear that

the presence of liquid meltwater is key to volcano – ice systems being suitable for

life. On Mars, the melting efficiency of water – ice is much reduced due to the low

initial temperature of the ice (Hovius et al. 2008), which perhaps suggests

volcano – ice systems on Mars are not as viable as those on Earth. Indeed there

are locations on Mars interpreted to be the result of subglacial volcanism that

display a distinct lack of evidence for meltwater. Such places include the
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proposed subglacial lava flows at Ascraeus Mons, where rapid re-freezing of a

cold-based glacier would prevent any significant basal melting (Kadish et al.

2008). However, it has been suggested that the temperature of the meltwater is

highly influential on the formation of Jökulhlaups, in terms of higher heat flow

enabling the enlargement of subglacial drainage tunnels (Gudmundsson et al.

1997). The occurrence of Jökulhlaup-like deposits and flows on Mars therefore

suggests subglacial eruptions can potentially produce meltwater temperatures

that are favourable to life.

8.2.2 Initial colonisation

Whilst habitable environments potentially may exist in this subglacial volcanic

setting on Mars, they are most likely to be transient and isolated. On Earth, any

new body of liquid water will be rapidly colonised due to the widespread and

globally connected biosphere (Cockell & Lim 2005). Whilst it remains possible for

pockets of Martian life to exist, as yet there is no evidence for a similarly

extensive biosphere. As a result, the delivering of Martian life to these

environments remains a problem. It can be seen that features indicative of

subglacial volcanic activity often occur in clusters (e.g. Alfaro et al. 2007). This

suggests that their localised habitable environments exist within a close enough

proximity to allow transport of microorganisms between individual

environments. This perhaps is one of the major advantages of a volcano-based

system. On Earth, regions of anomalously high heat flow are rarely isolated to

just one volcano within a volcanic system. This can be clearly seen in Iceland

where Vatnajokull (glacier) overlies 7 individual volcanic centres (see Chapter 1,

Figure 1.5), all of which have formed as a result of either the local lithospheric

rifting or their proximal position to the Icelandic hotspot, or both. As a result, it

is possible to envisage such subglacial systems to be connected via fractures and

channels within the ice, where meltwater (and any microbial life it may carry)

can circulate, distributing microorganisms from one system to another. It has

been observed that rapid vertical transport of hydrothermal fluid occurs beneath

Mýrdalsjökull via faults (Björnsson 2002). This to some extent could potentially

solve the problem of colonisation, in terms of delivering microorganisms to a

newly-formed system from an older one.
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8.2.3 Potential for photosynthesis and chemosynthesis

The vast majority of the terrestrial biosphere is dependant upon photosynthesis,

either directly or indirectly (Varnes et al. 2003). Photosynthesis on Mars however

is hindered by the exposure to UV radiation and by the increased distance to the

Sun, reducing photosynthetically active radiation (PAR) to ~55% that of those

experienced on Earth (Cockell & Raven 2004). If photosynthetic communities

were to exist within a subglacial volcanic system, they would be limited to the

near-surface ice and specifically use blue and green wavelengths due to the high

absorbance of red light within ice (Hawes & Schwarz 2000). Cockell & Raven

(2004) have experimentally shown that the maximum depth within snow-pack at

which the minimum level of PAR can penetrate is 24cm. Additionally, work on

ice-covered lakes in Antarctica has shown there to be benthic photosynthetic

communities residing at ~16m water depth beneath 3.5 – 5m of ice cover (Vopel

& Hawes 2006), which is still far below the depths of many subglacial volcanic

systems, which are typically beneath several hundred meters of overlying ice

(Wilson & Head 2002). At depths of 100m within glacial ice, PAR is entirely

absent (Warren et al. 2002). However, if a volcanic system breaks through the

overlying ice, it is entirely possible a photosynthetic community could thrive in

the surrounding meltwater lake in an early Martian setting, if atmospheric

pressures were high enough to allow liquid water to remain stable at the surface.

After this time however, with the exception of communities that may reside

within the top ~10 – 20m of the glacial surface, subglacial volcanic environments

are not conductive to a photosynthesis-based community. This limits the primary

producers of this environmental setting to chemosynthetic pathways.

On Earth, chemoautotrophs are major contributors for communities residing

within dark, extreme environments, such as deep sea vents (McCollom & Shock

1997). Specifically to Mars, anaerobic chemolithoautotrophs can potentially

inhabit subglacial volcanic environments, through the oxidation of inorganic

compounds and fixation of carbon dioxide as the carbon source (Boston et al.

1992). Numerous chemosynthetic pathways could potentially be exploited due to

the disequilibrium and reduced chemical species that result from the mixing of

high- and low-temperature fluids (Gaidos & Marion 2003). On Earth, the

majority of the chemosynthetic microbial communities residing in present-day

hydrothermal systems are indirectly dependant on photosynthetically produced
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O2. However, ~ 1 – 2% of these communities obtain chemical energy from redox

reactions that are completely independent of photosynthesis (Varnes et al. 2003),

and it is these microorganisms and their metabolic pathways that are potentially

suitable for survivability on Mars, particularly with subglacial hydrothermal

systems. Methanogens (CO2 + 4H2  CH4 + 2H2O), sulphate reducers (SO42- +

2H+ + 4H2  H2S + 4H2O), sulphur reducers (S0 + H2  H2S) and iron reducers

(2Fe3+ + H2  2Fe2+ + 2H+) are typical examples of anaerobic chemosynthetic

microorganisms (Boston et al. 1992; McCollom & Shock 1997; Van Dover 2000).

8.2.4 Habitat duration

Important to the habitability of the volcano – ice system is its ability to be

sustained long enough for life to make use of the variety of environments that

arise, and to be spatially recurrent frequently enough for life to be sustained or

migrated. Under this context, the identification of tuyas and flat topped ridges

holds importance for the duration of such environments. In Iceland, it is thought

that the formation of subglacial tuyas with a subaerial lava cap require repeated

eruptions of magma into the overlying glacier (Gudmundsson et al. 1997), in

order to build up such a sized edifice. This is in contrast to the short-term,

monogenetic eruptions that produce smaller hyaloclastite ridges that remain

entirely subglacial throughout their emplacement. The sustained and localised

heat flow this requires can potentially be achieved on Mars, where the lack of

plate tectonics has resulted in prolonged periods of hot-spot activity in the same

location. Of interest here are the interior layered deposits in the Valles

Marineris region. It has been suggested that the exceptionally large dimensions

of these Martian features in comparison with the much smaller terrestrial

subglacial edifices are a consequence of long-lived polygenetic subglacial

volcanism (Chapman & Smellie 2007). As stated by Chapman & Smellie (2007)

these types of volcanoes would construct a large edifice through a long-lived

thick ice sheet, again demonstrating the potential longevity of these systems.

8.2.5 Biosignatures

After identifying habitable environments on Mars it is important to ascertain

how life inhabiting such an environment will be recognised or preserved in the

rock record for possible discovery during future exploration. Hydrothermal

systems are noted for their ability to preserve detailed microbial fossils,
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particularly within silica and carbonate systems (Preston et al. 2008). However,

this relies on the deposition of mineralised or solute-rich fluids and the

subsequent precipitation of the mineral phases and preservation through

fossilisation of the in situ microbial community. Examples include siliceous

sinter deposits and the fossilisation of microbial biomats forming stromatolite-

like structures (E.g. Konhauser et al. 2001). As seen at Sverrefjell volcano in

Svalbard, PanCam imaging can be used to identify evidence of hydrothermal

mineral deposition, including carbonate and silica, within subglacial lava

lithologies (Chapter 7, section 7.2.1). Identification of such deposits with the

ExoMars rover could therefore be possible, leading to the potential detection of

organics that may be preserved.

An additional possibility is the formation of trace fossils in basaltic glass. These

are widely believed to be formed by the activities of euendolithic microbes to

produce distinctive textures at the glass – palagonite interface (Furnes et al.

2007 and references therein), and it has been previously suggested that such

microfossils would make suitable biosignatures when looking for life on Mars

(Banerjee et al. 2006). However, an abundance of such textures is yet to be found

in pillow lavas and hyaloclastites of a subglacial origin. As shown in Chapter 4,

these biosignatures appear to form readily within an oceanic environment, but

are almost absent when lava flows of the same origin exist only in a subglacial

freshwater setting. Additionally, analysis of hyaloclastite thin sections from

Askja and Helgafell also revealed a distinct lack of these bioalteration textures,

despite the similarity in lithology and aqueous alteration conditions to their

seafloor counterparts. This is, in part, consistent with work carried out by

Cockell et al. (2009), which also concluded that long, filamentous tubular

textures typical of oceanic bioalteration were not found in Icelandic basaltic or

rhyolitic obsidian glass, but that bioweathering instead formed pitted textures at

the edge of glass clasts.

Lastly, evidence for life in volcano – ice systems may be recorded via the

presence of biomolecules within subglacial lavas and Jökulhlaup deposits. Data

from the OMEGA instrument on the Mars Express shows the presence of

phyllosilicate minerals at the Martian surface, and clay minerals such as

montmorillonite and nontronite have been identified (Poulet et al 2005). It has
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been proposed that clay-rich deposits may be suitable sites of organic

preservation on Mars (Ehlmann et al. 2008b). Such minerals are ubiquitous

amongst subglacially erupted basaltic lavas, due to the widespread breakdown of

volcanic glass to palagonite through contact with liquid water. If such deposits

coincide with volcano – ice interaction terrains on Mars, these could be prime

geological formations to search for evidence of life.

8.3 Implications for the ExoMars Mission

One of the overarching aims of Martian analogue research should be the

application to actual astrobiology-focused missions. This can either take the form

of laying the groundwork for site selection, providing ground-truthing datasets to

interpret Martian data, or by directly influencing the design of the mission

instrumentation itself. The latter principally was tackled by the work conducted

for this PhD thesis, whereby focused scientific experimental techniques and

testing were utilised to contribute to the design of the ExoMars PanCam

instrument for the first time in its development.

8.3.1 Developing PanCam for an astrobiology mission

Martian analogue geological and hydrothermal samples proved invaluable in

testing the new geology filter wavelengths devised for the PanCam instrument.

Whilst the new filters were selected based on their ability to detect hydrated

minerals (Chapter 6, section 6.1.2), it was through multispectral imaging of

Martian analogue rocks using these filters that gave the real indication of the

capabilities of PanCam (Chapters 6 and 7). The minerals and biosignatures that

were used to test the ability of the PanCam instrument to be applied to an

astrobiology mission are summarised in Table 8.1. More minerals were positively

identified during laboratory testing than field testing, and is likely due to the

controlled environment and data acquisition within the laboratory. Svalbard

field testing in particular showed the importance of utilising both image and

multispectral data combined to identify mineralogy and lithology. Field testing

results often led to ambiguous identification of minerals, and demonstrates the

limitation in relying on visual and coarse VIS-NIR reflectance data alone to

direct the rover to sites consistent with past habitability. Further focused

development, and especially data acquisition, is required to maximise the

scientific value of the PanCam instrument for an astrobiology mission such as
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ExoMars. This is particularly important if instrumentation such as Raman-LIBS

and the Mars Infrared Mapper (MIMA) are to be limited to contact analysis only,

or removed from the mission entirely.

Table 8.1. All minerals and biosignatures used to aid design and testing of the ExoMars
PanCam instrument. Those that were positively detected (+), not detected (–), or

ambiguously detected (~) by PanCam data alone are as indicated. Those that were only
used for testing UV epifluorescence are indicated by (UV).

Filter Selection Laboratory testing Field testing

Nontronite Nontronite*(~) Olivine (~)
Montmorillonite Montmorillonite*(–) Pyroxene: augite/diopside (+)
Opaline Silica Opaline Silica (+) Serpentinite* (–)

Kieserite Gypsum (UV) (+) Haematite*(+)
Gypsum Alunite* (+) Goethite (+)
Alunite Jarosite (+) Magnesite (+)
Jarosite Sulphur (–) Quartz (~)

Haematite (–) Opaline Silica (~)
Fossilised life (–) Calcite(~)

Photosynthetic pigments (UV) (+) Photosynthetic pigments (+)
Fossilised life (–)

Spectral data from
the USGS spectral

database

Mineral components or deposits
within untreated Martian

analogue samples from Iceland

Mineral components or
deposits within in-situ field

outcrops in Svalbard

*Unconfirmed minerals. The rest have been confirmed by Raman spectroscopy or EDS
analysis, thin section petrography, hand specimen, or previously published work.

Additionally, it was found that PanCam multispectral imaging was unable to

detect extinct biosignatures or extant cryptoendolithic life within rocks. This has

implications regarding remote site and target selection for rover operations, and

is particularly dependant on whether the intention is to search for extinct or

extant life. For example, cryptoendolithic life may not necessarily inhabit

lithologies that are indicative of past habitability. So faced with the option of two

separate sites, one containing a phyllosilicates rich lithology, and the other rich

in a translucent mineral crust such as gypsum or silica, PanCam data alone

could not be relied upon to indicate any preference towards one site or another.

There may be one exception to this conclusion. PanCam imaging at Jotun

Springs revealed spectral characteristics consistent with a variety of

photosynthetic pigments, firstly in the well developed microbial mats, and

secondly in the carbonate precipitate around the edge of the spring, which

exhibited a large absorption at 760nm (Chapter 7, Figure 7.15). This absorption

is consistent with that for bacteriochlorophyll a (Bchl a), and, being surrounded



Chapter 8 - Discussion

258

by extant microbial biomats, it was inferred that this absorption was caused by

actively photosynthesising communities either in between the unconsolidated

carbonate precipitate grains, or perhaps just below the surface. PanCam was

also used for imaging fossil Precambrian (750 – 800Ma) stromatolite structures

for a mission simulation activity undertaken by the whole AMASE team, results

of which have not been described here in this thesis. The PanCam spectrum

exhibited by these stromatolites bears striking similarity to the carbonate

precipitate at Jotun Springs (Figure 8.2). In particular, many of the absorption

features of these two spectra are typical for photosynthetic pigments, especially

the large absorption at 760nm, which is characteristic of Bchl a (absorption lines

shown on Figure 8.2).

Figure 8.2. PanCam spectra of Precambrian stromatolites (‘Stromatolite’) and the
carbonate precipitate at Jotun Springs (‘JS02 White’). Also shown is the spectrum for
Bchl a (Viscarra Rossel et al. 2006), and absorption lines are shown for Bchl a (black),
Bchl e (orange), and Bchl b (dashed green), NB: absorption wavelength for Bchl b is

~1020 – 1040nm, just outside the PanCam spectral range, indicated with a dashed line.

Whereas the carbonate precipitate at Jotun Springs was surrounded by extant

photosynthesising communities, the stromatolites have, since their formation,

been silicified (Knoll 1984) and tectonically overturned by ~90° (pers. comm. Dr.

Andrew Steele), destroying all presence of the active microbial communities that

made them. Therefore, assuming the PanCam spectrum does indeed signify the
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presence of Bchl a, there are two potential explanations: Firstly, that this

pigment is simply present within epilithic communities living on the surface of

the stromatolite unit, or secondly that the pigment is a vestige of the

photosynthetic communities that originally existed within the stromatolite

during formation.

With regards to the first possible cause of this feature, the cold and dry Arctic

environment results in little vegetation or lichens, and inspection of the

stromatolite deposits in the field reveals that there is no significant macroscopic

life on the stromatolites themselves, neither on the surface nor within

cracks/depressions within the rocks. Additionally, if this were the cause, it would

be more likely for the spectrum to have absorption features typical of Chlorophyll

pigments, such as the large Chl a absorption at 660nm. In fact, the spectrum

exhibits a reflectance peak at this wavelength, consistent with Bchl a. Likewise,

this spectral feature was not present during imaging of any other rock targets

from the other PanCam testing sites in Svalbard.

A more exciting, but currently entirely speculative possibility, is that

Bacteriochlorophyll pigments have been preserved within the fossilised

stromatolites. Green sulphur and purple bacteria are a common constituents of

the stromatolite phototrophic microbial community (Konhauser 2007), and

contain bacteriochlorophylls c, d, and e, and bacteriochlorophylls a and b

respectively (Le Olson et al. 2007). The stromatolite formation imaged by

PanCam contains numerous black phosphorite nodules 1 – 4mm in size (Knoll

1984). Such nodules are known to preserve organic matter from the original

microbial community (Konhauser 2007), and these could be the cause of the

strong absorption features seen in the outcrop spectrum. Although these nodules

are small, they are distributed all over the surface of the outcrop, and their

contrast to the otherwise pale grey outcrop may emphasize their spectral

features, particularly as neither silica or carbonate have strong spectral features

of their own in this wavelength range. Controlled spectral analysis and

identification of organics from samples of this stromatolite outcrop could

potentially shed light on this issue.
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8.3.2 Application to future astrobiology missions

Whilst the work conducted here was in relation to the ExoMars mission

specifically, the results and novel methods employed also have relevance to other

planned astrobiology missions. Most notable of these is the NASA Mars Science

Laboratory (MSL) rover ‘Curiosity’, which, like ExoMars, has a clearly defined

life-detection objective. This rover has a stereo camera – the ‘Mastcam’ – which is

also equipped with a filter wheel (Malin et al. (2005). The filter wavelengths for

the ‘geology’ filters are mostly identical to those selected for the MER Pancam

(Bell et al. (2003), and in turn the Imager for Mars Pathfinder (Smith et al.

(1997). Details of filter wavelengths for comparable missions are given in Table 5

in Appendix A. As such, there appears to be no attempt (so far) by the MSL team

to maximise the filter selection for specific astrobiological science objectives, such

as the identification of hydrated mineral terrains. Instead, the Mastcam is still

optimised to detect and distinguish iron oxide mineralogy, as originally

implemented in the Pathfinder mission (Smith et al. 1997). However, in relation

to this it is noted that the MSL rover is equipped with additional instruments for

remote target analysis, including the ChemCam (Wiens et al. 2008) which

provides both elemental data and close-up imaging from remote targets. As such,

the Mastcam is not solely relied upon to provide remote target selection, as may

be the case with the ExoMars mission.

8.4 Future Work

During this work, it became apparent that the microbiology of both extinct and

active subglacial volcanic environments is still largely unexplored, yet exhibits

huge potential in relation to understanding of volcanic terrestrial habitats, and

also in the wider context of the existence and evolution of life elsewhere. One

particular locality was identified somewhat serendipitously during fieldwork in

Iceland in July 2007. However, due to time and equipment constraints, only

limited sampling and data collection was undertaken at the time, and as such

this locality has not formed a main part of this thesis. Here in this section, this

field site is described, and details of potential future work are outlined.
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8.4.1 The Kverkfjoll subglacial caldera

Kverkfjoll is a partially subglacial central volcano, on the northern margin of

Vatnajokull. It consists of two calderas, of which the northernmost caldera is

only partially covered by the glacier (Hoskuldsson et al. 2006). This volcano is

located almost directly above the Icelandic hot spot (Sigvaldason et al. 1974),

which coupled with its position in the neo-volcanic zone, results in very high heat

flow and intensive thermal activity (Olafsson et al. 2000). During fieldwork in

July 2007, the summit of the Kverkfjoll subglacial caldera was visited with the

aim to collect hydrothermal samples from the surface environment of an active

subglacial volcanic system. This environment is geographically isolated, and the

main inputs are from the melting overlying glacial ice and volcanic gases emitted

from the underlying volcanic system, coupled with seasonal snowfall.

Figure 8.3 Map showing the locations of Kverkfjoll sample sites KV004 and KV006.
Dotted line indicates the estimated position of the northern caldera rim.

Four glacial meltwater pools were identified on the western rim of the Kverkfjöll

subglacial northern caldera. This area consists of three geothermal fields, which

going south to north are: ‘Hveradalur’, ‘Hveraskál’ and ‘Hveratagl’. Of these, two

were sampled, Hveradalur and Hveratagl, and the location of these is shown in

Figure 8.3. These environments have formed as a result of high heat flow at

Kverkfjoll, which in isolated pockets has melted the glacier and resulted in

Hveradalur

Hveratagl
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hydrothermal activity. At Hveradalur, one pool was sampled that was isolated

from active volcanic input (such as fumaroles), and resided in an area previously

affected by hydrothermal activity. At Hveratagl, several pools were situated

amongst active fumaroles, vents and springs. These two geothermal sites are

described below in more detail, together with environmental data that was

collected at the time.

8.4.2 Hveradalur

This geothermal field sits near the summit of the Kverkfjöll region and consists

of numerous steep and very active solfataritic gorges surrounded by ice and

altered hyaloclastites. Nearby to the SE of this area are two large glacial

meltwater lakes. Of these, one has been forming since 1953 where it began as a

small, steaming depression within the ice (Thórarinsson 1953). Since then,

another one just to the north has formed more recently, within the last 2 or so

years. These lakes were inaccessible at the time, and so a nearby meltwater pool

of a similar nature was sampled. This was likely to be a product of seasonal

summer melting of the glacier.

Figure 8.4. Contextual photograph of the area around Hveradalur. The blue meltwater
lagoon shown can be seen in Figure 8.3 (northern most lake). (Photo credit Dr. Katie Joy)

The pool sampled was ~12m in length and situated in a ground hollow

surrounded by heavily altered hyaloclastite, basalt and other volcanics. The pool

was bordered on all sides by lavas, and was being fed by a small meltwater

stream originating from a section of ice lying 3-4 meters away. On the bottom

and the margins of the lake were fine to sandy heterogeneous sediments of an

orange – brown colour. These sediments are most likely a combination of

Fumaroles and
steam vents

~ 2 year old glacial
meltwater lagoon
(~ 600 m across)

Lake sampled
(in gully)

NW
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weathered basaltic lavas and hydrothermal soils. Loose rocks within and

surrounding the pool consisted of heavily altered scoriaceous lava. The pH of this

pool was measured to be 6.5, with a temperature of 9.1°C.

8.4.3 Hveratagl

This site lies to the north of Hveradalur and is a single solfatara field bordered

by thick ice on one margin and a steep break in slope on the other. The field

consists of numerous sulphurous fumaroles, iron-rich springs, boiling mud pots

and glacial meltwater pools. Geochemical monitoring work at Kverkjöll has

shown fumarole gases in the Hveratagl geothermal field to be dominantly rich in

CO2, H2S and H2 (Ólafsson et al. 2000). The glacial meltwater forms a shallow

braided river which emerges from a collapsed ice cave and runs through one half

of the field. Nearby, glacial meltwater also forms two isolated small pools, which

were the focus of the sampling in this locality. Like the meltwater pools sampled

at Hveradalur, these pools are likely to be a result of seasonal melting of the

glacier. The formation of soft sediments at the bottom of these pools suggests

these pools form annually in the same location. Both pools were of similar size, ~

1.5m x 80cm, and like the larger ponds described in the upper geothermal field

are lined with a layer of sediment of undetermined thickness along the bottom.

Numerous sulphur depositing fumaroles bordered both pools, and whilst one was

fed with meltwater from nearby ice (Figure 8.5a), the other lay adjacent to the

glacier itself (Figure 8.5b).

8.4.4 Initial Environmental Data

Environmental data collected at these sites consisted of pH, temperature and

redox potential (ORP). These three parameters were chosen because pH and

temperature have a huge effect on an organisms function and so play a major

role in limiting what can live in a particular range of conditions. Redox potential

was chosen due to the fact that areas of hydrothermal activity often have large

differences in oxidation/reduction states and are very chemically and physically

active. Both pools were acidic, with pH ranging between 3.50 (±0.04) and 3.75

(±0.13), and temperatures were warm, between 20.6°C (±0.47) and 11.1°C

(±0.81). However, there was a large difference in oxidation state. The first pool

(Figure 8.5a) was oxidizing, as indicated by an ORP measurement of +375mV

(±3.13). This was additionally verified by the field observation of oxidized iron
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deposits in and around the pool. Conversely, the second pool was very reducing

with a measurement of –291mV (±2.34), indicating a completely anoxic

environment, potentially a result of the continuous stream of volcanic gas

bubbles emerging from the floor of the pool. Due to this difference in redox state,

two very different microbial communities would be expected to inhabit these two

pools, despite their close proximity.

Figure 8.5. Hydrothermal pools at Hveratagl (a) acidic and oxidising, and (b) acidic and
reducing, possibly caused by volcanic gas input (inset).

Based on the initial observations taken during sampling, it can be seen that

solfatara systems that reside within glaciers or ice caps are extremely isolated.

Surface observations suggest the primary inputs into this system are the

overlying glacier, in the form of meltwater, and volcanic gasses emitted via

numerous fumaroles and fissures in the ground. Additionally, surface water in

the form of the pools sampled is continually interacting with the underlying

hydrothermally altered volcanic sediments. There has yet to be any extensive

investigation into solfatara environments within glacial settings and their

associated microbial communities and phylogenetic diversity. Those that have

been conducted include studies at Tramway Ridge, Antarctica (Soo et al. 2009)

and fumaroles in the hyperarid region of the Andes (Costello et al. 2009).

(a)

1.5 m

Sulphurous
fumaroles

(b)

90 cm

Sulphurous
fumaroles
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Therefore it is believed that future studies at the Kverkfjoll geothermal field will

build on these past studies.

8.5 Final Conclusions

The search for life on other planetary bodies must, in part, begin on Earth,

utilising the combination of planetary analogue environments and their

interaction with terrestrial life. This multidisciplinary work has been wide-

ranging, utilising a variety of biomolecular, experimental, and analytical

techniques, but with the overarching focus of contributing to the astrobiological

exploration of Mars. Here, the results of this work are summarised into the

following conclusions:

 Multidisciplinary research centred around a focused objective can expand

our knowledge regarding the search for life on Mars. In particular, such

investigations link traditionally unrelated techniques and lines of

enquiry, and demonstrates the necessity to approach astrobiology

research from different angles.

 Basaltic hyaloclastite and pillow lava provides a habitat for prokaryotic

communities, many of which are chemoheterotrophic, and are genetically

similar to species that are radiation and desiccation resistant. Notably,

hyaloclastite was found to support a more diverse microbial community,

which demonstrates the importance of lithology on the habitability of an

environment.

 The indigenous bacterial communities inhabiting basaltic pillow lava are

able to survive present day Martian conditions for one week, whilst

within a simulated subglacial volcanic environment. In comparison, when

this community was fully exposed to the same Martian conditions,

survivability was low.

 Rubrobacter radiotolerans was identified within basaltic lava through a

16S phylogenetic survey, and was also found to survive exposure to

Martian conditions whilst within the basaltic lava environment. As such,
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this strain could be used as a model organism for future Martian

astrobiology research.

 Whilst bioalteration textures within glass-rich basaltic lavas from the

seafloor are widespread, the same cannot be said of their subglacially-

erupted continental counterparts. This shows for the first time that the

generation of such putative biosignatures is strongly controlled by the

environmental setting. As such, it cannot be assumed that bioalteration

textures will form in basaltic glass merely in the presence of hydrous

alteration.

 Utilising Martian analogue geological samples and environments from

Iceland and Svalbard proved effective at furthering the development and

testing of the ExoMars Panoramic Camera instrument. In particular, the

need to update the technology to meet the requirement to remotely

identify evidence of habitability was addressed. Specifically, this involved

accounting for the many hydrated minerals now known to be present

within the Martian crust.

It is hoped that the findings from the work conducted for this PhD thesis will

contribute on some level to the ongoing search for life on Mars, and that this

work can be explored further through future research.
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APPENDIX

A) Data Tables

Table 1. EDS measurements (as oxide wt.%) from glassy regions of ASK004 hyaloclastite
and ASK009 pillow basalt. For Figure 3.8 all sample values are normalised to 100%.

Sample Na2O MgO Al2O3 SiO2 K2O CaO TiO2 FeO TOTAL

1 2.6 4.8 10.8 48.6 0.0 9.8 2.2 12.9 91.8

2 2.3 4.8 11.5 48.0 0.7 9.7 2.6 14.5 94.1

3 1.6 3.7 9.4 40.5 0.5 9.3 2.5 13.4 80.9

4 2.8 5.0 12.1 49.1 0.0 9.3 2.6 13.6 94.5

5 2.3 5.1 11.6 48.0 0.5 9.9 2.6 12.9 93.0

6 3.1 5.7 12.8 53.8 0.5 9.9 2.4 13.5 101.8

7 2.0 4.6 11.3 47.6 0.0 9.3 2.3 12.8 90.0

8 2.2 4.3 10.3 43.5 0.6 9.2 2.2 13.6 85.9

9 3.1 6.0 12.5 52.2 0.4 10.1 2.5 12.8 99.7

10 2.2 5.0 10.7 46.6 0.6 9.8 2.5 13.3 90.7

11 2.6 5.5 12.9 51.2 0.0 9.8 2.2 13.8 98.0

A
S

K
0

0
4

12 2.3 5.0 11.9 49.6 0.5 9.2 2.1 13.8 94.4

Mean 2.4 5.0 11.5 48.2 0.4 9.6 2.4 13.4 92.9

SD 0.4 0.6 1.0 3.5 0.3 0.3 0.2 0.5 5.5

1 2.9 4.0 11.4 47.5 0.8 8.8 2.0 12.3 89.7

2 3.0 4.2 12.6 48.8 0.7 8.8 2.9 13.2 94.1

3 2.7 3.7 10.7 46.9 0.9 8.6 2.6 12.9 88.9

4 2.5 3.8 11.2 46.7 0.5 8.4 2.3 12.2 87.6

5 2.7 3.7 13.1 46.5 0.0 9.5 2.0 9.6 87.2

6 2.7 3.7 11.3 46.9 0.6 8.1 2.7 12.0 88.1

7 2.8 4.5 11.2 47.4 0.5 8.8 2.7 13.8 91.6

8 2.1 4.5 10.8 46.1 0.0 9.3 2.6 13.0 88.4

A
S

K
0

0
9

9 2.6 5.5 12.1 47.2 0.0 10.3 1.9 10.8 90.4

Mean 2.7 4.2 11.6 47.1 0.4 8.9 2.4 12.2 89.6

SD 0.3 0.6 0.8 0.8 0.4 0.6 0.3 1.3 2.2
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Table 2. Exhaustive list of all closest novel relatives and species relatives for the
ASK4B environmental clones based on BLASTn 16s rDNA similarity

Closest novel relative Closest genus and/or speciesASK4B
Clones ID % Sampling environment ID %

Actinobacteria

ASK4B_2
Uncultured
(FJ592854)

99
Fumarole within a hyperarid, high-
elevation landscape, Andes

Patulibacter americanus
(AJ871305)

92

ASK4B_4
Uncultured
(EU979046)

97 Rhizosphere
Conexibacter woesei
(NR_028979)

88

ASK4B_6
Uncultured
(EU790374)

97 Lascaux cave, France
Patulibacter americanus
(AJ871305)

84

ASK4B_14
Uncultured
(GQ495408)

97 Terrestrial volcanic rocks, Iceland
Patulibacter americanus
(AJ871305)

84

ASK4B_38
Uncultured
(GQ495408)

97 Terrestrial volcanic rocks, Iceland
Patulibacter americanus
(AJ871305)

84

ASK4B_21
Uncultured
(EU883162)

96
Endostromatolites, Haughton impact
crater, Canada

Actinomadura glomerata
(AJ293704)

85

ASK4B_22
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Aeromicrobium ginsengisoli
(AB245394)

92

ASK4B_23
Uncultured
(FJ592818)

94
Fumarole within a hyperarid, high-
elevation landscape, Andes

Sporichthya polymorpha
(X72377)

91

ASK4B_32
Uncultured
(FJ592818)

99
Fumarole within a hyperarid, high-
elevation landscape, Andes

Sporichthya polymorpha
(X72377)

92

ASK4B_36
Uncultured
(GQ396916)

90 Recently de-glaciated soil
Ferrithrix thermotolerans
(AY140237)

86

ASK4B_42
Uncultured
(AJ863185)

97
Soil community associated with Poplar
trees

Thermoleophilum album
(NR_025543)

85

ASK4B_44
Uncultured
(AM935529)

95 Hydrocarbon contaminated soil
Conexibacter woesei
(NR_028979)

89

ASK4B_45
Uncultured
(EU790374)

97 Lascaux cave, France
Patulibacter americanus
(AJ871305)

85

ASK4B_46
Uncultured
(EU883154)

97
Endostromatolites, Haughton impact
crater, Canada

Thermoleophilum album
(NR_025543)

85

ASK4B_47
Uncultured
(AY093463)

94
Methane hydrate-bearing deep marine
sediments

Acidothermus cellulolyticus
(AJ007290)

86

ASK4B_50
Uncultured
(GQ396948)

97 Recently de-glaciated soil
Patulibacter americanus
(AJ871305)

84

ASK4B_52
Uncultured
(EU790374)

97 Lascaux cave, France
Patulibacter americanus
(AJ871305)

85

ASK4B_57
Uncultured
(EU133006)

92 Recently de-glaciated soil
Ferrithrix thermotolerans
(AY140237)

86

ASK4B_58
Uncultured
(EU133006)

97 Soil
Ilumatobacter fluminis
(AB360343)

90

ASK4B_61
Uncultured
(FM209057)

86 Hydrocarbon contaminated soil
Blastococcus saxobsidens
(AJ296064)

84

ASK4B_68
Uncultured
(GQ495419)

98 Terrestrial volcanic rocks, Iceland
Ferrimicrobium acidiphilum
(AF251436)

88

ASK4B_70
Uncultured
(EU132977)

98 Soil
Ferrimicrobium acidiphilum
(AF251436)

86

ASK4B_73
Uncultured
(FJ592851)

98
Fumarole within a hyperarid, high-
elevation landscape, Andes

Patulibacter minatonensis
(AB193261)

93

ASK4B_74
Uncultured
(GQ263179)

99 Simulated waste site
Thermoleophilum album
(NR_025543)

85

ASK4B_79
Uncultured
(EU979046)

96 Rhizosphere
Conexibacter woesei
(NR_028979)

88

ASK4B_85
Uncultured
(FJ895056)

99 Hyper-arid polar desert
Patulibacter americanus
(AJ871305)

92

ASK4B_90
Uncultured
(EF220440)

92 Antarctic terrestrial habitats
Ilumatobacter fluminis
(AB360343)

89

Bacteroidetes

ASK4B_15
Uncultured
(GQ396974)

96 Recently de-glaciated soil Terrimonas lutea (AB192292) 93

ASK4B_18
Uncultured
(FJ490252)

93 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

93

ASK4B_25
Uncultured
(EU335841)

96
Mineral soils in Miers Valley,
Antarctica

Flavobacterium ferrugineum
(AM230484)

88

ASK4B_26
Uncultured
(FJ490262)

96 Hyper-arid polar desert
Flavobacterium ferrugineum
(AM230484)

90

ASK4B_27
Uncultured
(GQ128159)

97 Meadow Soil from Tibetan Plateau
Segetibacter koreensis
(AB267478)

92

ASK4B_43
Uncultured
(FJ895072)

98 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

94

ASK4B_51
Uncultured
(AM168126)

94 Trans himalayan region
Flavisolibacter ginsengisoli
(AB267477)

94

ASK4B_53
H.
roseosalivari
us (Y18834)

94 Antartica soils and sandstone
Hymenobacter
roseosalivarius (Y18834)

94

ASK4B_76
Uncultured
(GQ128159)

97 Meadow Soil from Tibetan Plateau
Segetibacter koreensis
(AB267478)

92
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ASK4B_78
Uncultured
(EF605799)

99 Soil
Flavisolibacter ginsengiterrae
(AB267476)

94

ASK4B_80
Uncultured
(GQ128159)

97 Meadow Soil from Tibetan Plateau
Segetibacter koreensis
(AB267478)

92

ASK4B_75
Uncultured
(GQ128159)

95 Meadow Soil from Tibetan Plateau
Segetibacter koreensis
(AB267478)

92

Proteobacteria

ASK4B_5
Uncultured
(GQ128065)

98 Meadow Soil from Tibetan Plateau
Rhodoplanes cryptolactis
(AB087718)

94

ASK4B_11
Uncultured
(AM409805)

93 Lake sediment, Israel
Thioflavicoccus mobilis
(AJ010126)

93

ASK4B_13
Uncultured
(EU373912)

92 Sediment bacteria, Mediterranean Sea
Geopsychrobacter
electrodiphilus (AY187304)

82

ASK4B_17
Uncultured
(EU373912)

92 Sediment bacteria, Mediterranean Sea
Geopsychrobacter
electrodiphilus (AY187304)

82

ASK4B_19
Uncultured
(EU881166)

97 Forest soil
Rhodoplanes cryptolactis
(AB087718)

95

ASK4B_24
Uncultured
(AM909934)

94
Methanotrophic communities in rice
fields

Polyangium thaxteri
(AJ233943)

92

ASK4B_56
Uncultured
(DQ643704)

98 Soil
Methylibium aquaticum
(DQ664244)

93

ASK4B_89
Uncultured
(GQ128065)

99 Meadow Soil from Tibetan Plateau
Rhodoplanes cryptolactis
(AB087718)

95

ASK4B_91
Uncultured
(DQ643704)

98 Soil
Methylibium aquaticum
(DQ664244)

93

Deinococcus-Thermus

ASK4B_39
Uncultured
(FJ895086)

98

ASK4B_67
Uncultured
(FJ895086)

99

Hyper-arid polar desert
Truepera radiovictrix
(DQ022077)

91

Acidobacteria

ASK4B_1
Uncultured
(DQ139452)

95 Epilithic biofilms in Catacombs
Solibacter usitatus
(AY234728)

91

ASK4B_3
Uncultured
(EF464879)

97
Soils of Northern Victoria Land,
Antarctica

Chloracidobacterium
thermophilum (EF531339)

93

ASK4B_9
Uncultured
(EU335850)

95
Mineral soils in Miers Valley,
Antarctica

Chloroflexus aurantiacus
(AJ308501)*

81

ASK4B_20
Uncultured
(EF188386)

94 Altamira Cave, Spain
Geothrix fermentans
(GFU41563)

81

ASK4B_33
Uncultured
(EU122856)

99 Soil
Geothrix fermentans
(GFU41563)

83

ASK4B_35
Uncultured
(EU335868)

94
Mineral soils in Miers Valley,
Antarctica

Acidobacteriaceae bacterium
(AB245338)

84

ASK4B_41
Uncultured
(EF464954)

96
Soils of Northern Victoria Land,
Antarctica

Chloracidobacterium
thermophilum (EF531339)

93

ASK4B_55
Uncultured
(EU335868)

95
Mineral soils in Miers Valley,
Antarctica

Acidobacteriaceae bacterium
(AB245338)

83

ASK4B_69
Uncultured
(GQ262975)

99 Simulated waste site
Heliobacillus mobilis
(AB100835)*

82

ASK4B_81
Uncultured
(EU122856)

98 Soil
Geothrix fermentans
(GFU41563)

82

ASK4B_86
Uncultured
(GQ495424)

99 Terrestrial volcanic rocks, Iceland
Chloracidobacterium
thermophilum (EF531339)

81

Verrucomicrobia

ASK4B_7
Uncultured
(GQ495404)

99 Terrestrial volcanic rocks, Iceland
Xiphinematobacter brevicolli
(AF217462)

87

ASK4B_12
Uncultured
(GQ495404)

97 Terrestrial volcanic rocks, Iceland
Xiphinematobacter brevicolli
(AF217462)

86

ASK4B_59
Uncultured
(EF188458)

89 Altamira Cave, Spain
Rubritalea sabuli (AB353310
)

84

ASK4B_64
Uncultured
(EF664102)

97 Agricultural soil, Michigan
Prosthecobacter vanneervenii
(AJ966883)

81

ASK4B_65
Uncultured
(AB374368)

96
Endolithic community, White rock
Switzerland

Prosthecobacter vanneervenii
(AJ966883)

84

ASK4B_66
Uncultured
(AB374368)

97
Endolithic community, White rock
Switzerland

Prosthecobacter vanneervenii
(AJ966883)

84

ASK4B_71
Uncultured
(GQ495404)

98 Terrestrial volcanic rocks, Iceland
Xiphinematobacter brevicolli
(AF217462)

86

ASK4B_82
Uncultured
(EU280630)

96 California grassland Opitutus terrae (AJ229246) 92

Cyanobacteria

ASK4B_10
Uncultured
(EF220798)

97 Antarctic terrestrial habitats
Chroococcidiopsis sp.
(DQ914863)

92

ASK4B_16
Nostoc sp.
(EF174228)

97 Pannaria aff. leproloma cyanobiont Nostoc calcicola (AJ630448) 97

ASK4B_30
Uncultured
(FJ891015)

98
Hyperlithic community in quartz,
hyperarid core of the Atacama

Arthrospira platensis
(EF432320)

90

#
#
#

Chloroplast / / / N/A

ASK4B_49
Uncultured
(EF220798)

98 Antarctic terrestrial habitats
Anabaena variabilis
(DQ234826)

91
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# Chloroplast / / / /
# Chloroplast / / / /

Planctomycetes

ASK4B_8
Uncultured
(EF020083)

96 Soil associated with Aspen
Rhodopirellula baltica
(EF589349)

83

ASK4B_31
Uncultured
(EF464902)

98
Soils of Northern Victoria Land,
Antarctica

89

ASK4B_34
Uncultured
(GQ396898)

99 Recently de-glaciated soil 84

ASK4B_54
Uncultured
(GQ396898 )

99 Recently de-glaciated soil 84

ASK4B_83
Uncultured
(EF464902)

98
Soils of Northern Victoria Land,
Antarctica

90

ASK4B_88
Uncultured
(EF464902)

98
Soils of Northern Victoria Land,
Antarctica

Pirellula staleyi (AF399914)

Rhodopirellula baltica
(EF589349)

90

RDP Unknown

ASK4B_28
Uncultured
(EF465024)

98
Soils of Northern Victoria Land,
Antarctica

Phycisphaera mikrensis
(AB474364)

82

ASK4B_29
Uncultured
(EF632950)

93
Aquatic environments in high altitude
Andean Altiplano

Phycisphaera mikrensis
(AB474364)

81

ASK4B_60
Uncultured
(AF507691)

98 Arizona soil
Levilinea saccharolytica
(AB109439)

80

ASK4B_62
Uncultured
(GQ495408)

94 Terrestrial volcanic rocks, Iceland
Thermoleophilum album
(NR_025543)

84

ASK4B_63
Uncultured
(EU644222)

92 Polygonal tundra soils, Siberia
Phycisphaera mikrensis
(AB474364)

82

ASK4B_72
Uncultured
(GQ495395)

100 Terrestrial volcanic rocks, Iceland
Gloeobacter violaceus
(BA000045)

79

ASK4B_84
Uncultured
(EU134889)

93 Soil
Desulfovibrio vulgaris
(AY362360)

80
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Table 3. Exhaustive list of all closest novel relatives and species relatives for the ASK9G
environmental clones based on BLASTn 16s rDNA similarity.

Closest novel relative Closest genus and/or speciesASK9G
Clones ID % Sampling environment ID %

Actinobacteria

ASK9G_1
Uncultured
(FJ895046)

98 Hyper-arid polar desert Conexibacter woesei (NR_028979) 92

ASK9G_2
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_9
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_12
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_13
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

94

ASK9G_14
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 90

ASK9G_16
Uncultured
(FJ895053)

99 Hyper-arid polar desert
Ornithinicoccus hortensis
(AB098587)

97

ASK9G_17
Uncultured
(FJ895051)

98 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

93

ASK9G_18
Uncultured
(AY250873)

97
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(AJ243870)

92

ASK9G_21
Uncultured
(FJ895051)

98 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

92

ASK9G_22
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_25
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

95

ASK9G_26
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 90

ASK9G_27
Uncultured
(AY250865)

99
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Sporichthya polymorpha (X72377) 94

ASK9G_28
Uncultured
(FN297993)

93 Roman Carmona tombs
Acidothermus cellulolyticus
(AJ007290)

86

ASK9G_29
Uncultured
(AY250873)

98
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(AJ243870)

93

ASK9G_30
Uncultured
(FJ895053)

98 Hyper-arid polar desert
Ornithinicoccus hortensis
(AB098587)

97

ASK9G_31
Uncultured
(EF157223)

95
Natural asphalts of the Rancho La
Brea Tar pits

Ferrithrix thermotolerans
(AY140237)

86

ASK9G_33
Uncultured
(EF157223)

96
Natural asphalts of the Rancho La
Brea Tar pits

Ferrithrix thermotolerans
(AY140237)

86

ASK9G_35
Uncultured
(AM746696)

98
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli (AB245334) 91

ASK9G_36
Uncultured
(AM746693)

93
Rosy discoloration of ancient wall
paintings

Ornithinimicrobium kibberense
(AY636111)

93

ASK9G_37
Uncultured
(FJ895046)

99 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_38
Uncultured
(FJ895056)

99 Hyper-arid polar desert
Patulibacter americanus
(AJ871305)

92

ASK9G_39
Uncultured
(AM746696)

99
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli (AB245334) 91

ASK9G_40
Uncultured
(FJ895046)

94 Hyper-arid polar desert Solirubrobacter soli (AB245334) 88

ASK9G_41
Uncultured
(FN297994)

93 Roman Carmona tombs
Nitriliruptor alkaliphilus
(EF422408)

88

ASK9G_42
Uncultured
(FJ895046)

99 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_43
Uncultured
(AY250873)

98
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(AJ243870)

93

ASK9G_47
Uncultured
(FJ891029)

94
Hyperlithic community, hyperarid
Atacama Desert

Marmoricola aurantiacus
(NR_026507)

95

ASK9G_48
Uncultured
(FJ895046)

99 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_49
Uncultured
(EF464818)

96
Soils of Northern Victoria Land,
Antarctica

Rubrobacter radiotolerans
(NR_029191)

93

ASK9G_50
Uncultured
(FJ891029)

95
Hyperlithic community, hyperarid
Atacama Desert

Marmoricola aurantiacus
(NR_026507)

95

ASK9G_51
Uncultured
(AM746685)

98
Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans
(NR_029191)

91

ASK9G_52
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 90

ASK9G_53
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(NR_029191)

95

ASK9G_54
Uncultured
(AM746685)

98
Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans
(NR_029191)

92

ASK9G_55
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91
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ASK9G_59
Uncultured
(AM746693)

94
Rosy discoloration of ancient wall
paintings

Ornithinimicrobium kibberense
(AY636111)

93

ASK9G_60
Uncultured
(AY250887)

98
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(AJ243870)

91

ASK9G_62
Uncultured
(AM746681)

98
Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans
(AJ243870)

92

ASK9G_64
Uncultured
(EF157223)

96
Natural asphalts of the Rancho La
Brea Tar pits

Ferrithrix thermotolerans
(AY140237)

86

ASK9G_65
Uncultured
(AM746681)

98
Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans
(NR_029191)

92

ASK9G_66
Uncultured
(AY250873)

98
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(NR_029191)

93

ASK9G_67
Uncultured
(AY250873)

99
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(AJ243870)

93

ASK9G_69
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

95

ASK9G_70
Uncultured
(AM746685)

95
Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans
(NR_029191)

94

ASK9G_73
Uncultured
(AY250873)

98
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(NR_029191)

93

ASK9G_74
Uncultured
(FJ895046)

99 Hyper-arid polar desert Solirubrobacter soli (AB245334) 91

ASK9G_75
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

91

ASK9G_76
Uncultured
(FJ895051)

100 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

95

ASK9G_80
Uncultured
(AY250873)

98
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Rubrobacter radiotolerans
(AJ243870)

93

ASK9G_83
Uncultured
(AM746693)

97
Rosy discoloration of ancient wall
paintings

Ornithinicoccus hortensis
(AB098587)

93

ASK9G_88
Uncultured
(FJ895046)

98 Hyper-arid polar desert Solirubrobacter soli (AB245334) 90

Bacteroidetes

ASK9G_8
Uncultured
(AM746683)

91
Rosy discoloration of ancient wall
paintings

Flexibacter aggregans (AB078038) 86

ASK9G_11
Uncultured
(GQ454873)

93
Soils from the Ross Sea region of
Antarctica

Aquiflexum balticum (NR_025634) 89

ASK9G_15
Uncultured
(EU196299)

93
Cold perennial springs of the
Canadian high Arctic

Gillisia mitskevichiae (NR_025822) 92

ASK9G_19
Uncultured
(EU196299)

94
Cold perennial springs of the
Canadian high Arctic

Gillisia mitskevichiae (NR_025822) 92

ASK9G_20
Uncultured
(GQ454873)

92
Soils from the Ross Sea region of
Antarctica

Cyclobacterium lianum (DQ534063) 89

ASK9G_24
Uncultured
(DQ346479)

88 Compost Flexibacter aggregans (AB078038) 87

ASK9G_34
Uncultured
(EU369131)

91 Oyster shell Cyclobacterium lianum (DQ534063) 89

ASK9G_44
Uncultured
(DQ346479)

88 Compost Flexibacter aggregans (AB078038) 87

ASK9G_45
Uncultured
(DQ432304)

88 Alkaline, hypersaline lakes, Egypt
Algoriphagus halophilus
(NR_025744)

86

ASK9G_46
Uncultured
(EU196299)

94
Cold perennial springs of the
Canadian high Arctic

Gillisia mitskevichiae (NR_025822) 92

ASK9G_57
Uncultured
(EU196299)

95
Cold perennial springs of the
Canadian high Arctic

Gillisia mitskevichiae (NR_025822) 92

ASK9G_63
Uncultured
(GQ454873)

93
Soils from the Ross Sea region of
Antarctica

Cyclobacterium lianum (DQ534063) 89

ASK9G_68
Uncultured
(DQ346479)

88 Compost Flexibacter aggregans (AB078038) 87

ASK9G_72
Uncultured
(EU369131)

91 Oyster shell Cyclobacterium lianum (DQ534063) 88

ASK9G_77
Uncultured
(GQ454873)

93
Soils from the Ross Sea region of
Antarctica

Cyclobacterium marinum
(FLERRDB)

88

ASK9G_81
Uncultured
(GQ454873)

93
Soils from the Ross Sea region of
Antarctica

Aquiflexum balticum (NR_025634) 89

ASK9G_85
Uncultured
(EU196299)

95
Cold perennial springs of the
Canadian high Arctic

Gillisia mitskevichiae (NR_025822) 92

Proteobacteria

ASK9G_82
Uncultured
(EF215739)

98 Temperate coastal marine waters
Agrobacterium sanguineum
(AB062106)

94

ASK9G_84
Uncultured
(EF215739)

98 Temperate coastal marine waters
Agrobacterium sanguineum
(AB062106)

94

Deinococcus-Thermus

ASK9G_7
Uncultured
(FJ895047)

94 Hyper-arid polar desert 91

ASK9G_32
Uncultured
(EU883205)

98
Endostromatolites, Haughton impact
crater, Devon Island, Canada

91

ASK9G_56
Uncultured
(FJ895047)

95 Hyper-arid polar desert 93

ASK9G_71
Uncultured
(FJ895047)

96 Hyper-arid polar desert

Truepera radiovictrix (DQ022077)

92
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ASK9G_86
Uncultured
(FJ895047)

95 Hyper-arid polar desert 92

ASK9G_10
Uncultured
(FJ895047)

95 Hyper-arid polar desert 92

RDP Unknown

ASK9G_3
Uncultured
(EF157190)

92
Natural asphalts of the Rancho La
Brea Tar pits

Sphaerobacter thermophilus
(AJ420142)

83

ASK9G_4
Uncultured
(EU979018)

88 Rhizosphere
Phycisphaera mikrensis
(AB474364)

80

ASK9G_5
Uncultured
(EF157268)

95
Natural asphalts of the Rancho La
Brea Tar pits

Sphaerobacter thermophilus
(AJ420142)

78

ASK9G_6
Uncultured
(FN298047)

92 Roman Carmona tombs
Sphaerobacter thermophilus
(AJ420142)

84

ASK9G_23
Uncultured
(EF157223)

96
Natural asphalts of the Rancho La
Brea Tar pits

Ferrithrix thermotolerans
(AY140237)

86

ASK9G_58
Uncultured
(EF157190)

92
Natural asphalts of the Rancho La
Brea Tar pits

Sphaerobacter thermophilus
(AJ420142)

84

ASK9G_61
Uncultured
(FN298047)

91 Roman Carmona tombs
Sphaerobacter thermophilus
(AJ420142)

83

ASK9G_78
Uncultured
(EF157190)

93
Natural asphalts of the Rancho La
Brea Tar pits

Sphaerobacter thermophilus
(AJ420142)

84

ASK9G_79
Uncultured
(AY250886)

97
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Sphaerobacter thermophilus
(AJ420142)

84

ASK9G_87
Uncultured
(EF157190)

92
Natural asphalts of the Rancho La
Brea Tar pits

Sphaerobacter thermophilus
(AJ420142)

84
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Table 4. Exhaustive list of all closest novel relatives and species relatives for the
ASK9IP environmental clones based on BLASTn 16s rDNA similarity

Closest novel relative Closest genus and/or speciesASK9IP
Clone ID % Sampling environment ID %

Actinobacteria

ASK9IP_1
Uncultured
(FJ895074)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_2
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Nocardioides jensenii
(AF005006)

92

ASK9IP_4
Uncultured
(FJ895074)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_6
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Nocardioides jensenii
(AF005006)

93

ASK9IP_8
Uncultured
(FJ895074)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

95

ASK9IP_9
Uncultured
(EF465010)

94
Soils of Northern Victoria Land,
Antarctica

Marmoricola aurantiacus
(NR_026507)

92

ASK9IP_11
Uncultured
(EU883196)

97
Endostromatolites, Haughton impact
crater, Canada

Conexibacter woesei
(NR_028979)

91

ASK9IP_14
Uncultured
(AM746696)

99
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli
(AB245334)

91

ASK9IP_16
Uncultured
(AY571811)

99
Hydrocarbon contaminated soil
around Scott Base, Antarctica

Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_17
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Aeromicrobium ginsengisoli
(AB245394)

93

ASK9IP_25
Uncultured
(FJ895074)

98 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_26
Uncultured
(FJ895051)

98 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

95

ASK9IP_27
Uncultured
(FJ895046)

98 Hyper-arid polar desert
Solirubrobacter soli
(AB245334)

90

ASK9IP_28
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Aeromicrobium ginsengisoli
(AB245394)

92

ASK9IP_32
Uncultured
(AM746681)

98
Rosy discoloration of ancient wall
paintings

Rubrobacter radiotolerans
(NR_029191)

92

ASK9IP_33
Uncultured
(FJ895046)

98 Hyper-arid polar desert
Solirubrobacter soli
(AB245334)

90

ASK9IP_34
Uncultured
(AM746696)

99
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli
(AB245334)

90

ASK9IP_35
Uncultured
(FJ895046)

98 Hyper-arid polar desert
Solirubrobacter soli
(AB245334)

89

ASK9IP_36
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(NR_029191)

95

ASK9IP_38
Uncultured
(AY250880)

99
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Actinotalea fermentans
(NR_026176)

93

ASK9IP_44
Uncultured
(EU440405)

98
Endostromatolites, Haughton impact
crater, Canada

Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_46
Uncultured
(EU883196)

97
Endostromatolites, Haughton impact
crater, Canada

Solirubrobacter soli
(AB245334)

92

ASK9IP_47
Uncultured
(EU440491)

97
Endostromatolites, Haughton impact
crater, Canada

Solirubrobacter soli
(AB245334)

92

ASK9IP_52
Uncultured
(EF220380)

97
Cryptoendolithic communities,
McMurdo Dry Valleys, Antarctica

Aeromicrobium ginsengisoli
(AB245394)

93

ASK9IP_53
Uncultured
(EU883196)

97
Endostromatolites, Haughton impact
crater, Canada

Geobacillus
thermodenitrificans
(AB210956)

82

ASK9IP_57
Uncultured
(EF220380)

97 Antarctic terrestrial habitats
Nocardioides jensenii
(AF005006)

94

ASK9IP_58
Uncultured
(FJ895074)

98 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_59
Uncultured
(FJ490270)

96 Hyper-arid polar desert
Sporichthya polymorpha
(X72377)

93

ASK9IP_60
Uncultured
(EU883196)

94
Endostromatolites, Haughton impact
crater, Canada

Solirubrobacter soli
(AB245334)

92

ASK9IP_61
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Aeromicrobium ginsengisoli
(AB245394)

92

ASK9IP_63
Uncultured
(AM746696)

99
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli
(AB245334)

91

ASK9IP_65
Uncultured
(AM746696)

98
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli
(AB245334)

90

ASK9IP_66
Uncultured
(FJ895062)

99 Hyper-arid polar desert
Aeromicrobium ginsengisoli
(AB245394)

91

ASK9IP_67
Uncultured
(AM746693)

94
Rosy discoloration of ancient wall
paintings

Ornithinimicrobium kibberense
(AY636111)

93

ASK9IP_68
Uncultured
(EF465010)

95
Soils of Northern Victoria Land,
Antarctica

Nocardioides jensenii
(AF005006)

93

ASK9IP_69
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(NR_029191)

94
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ASK9IP_71
Uncultured
(GQ396849)

96 Recently de-glaciated soil
Ferrimicrobium acidiphilum
(AF251436)

87

ASK9IP_73
Uncultured
(FJ895074)

98 Hyper-arid polar desert
Rubrobacter radiotolerans
(NR_029191)

94

ASK9IP_74
Uncultured
(EU440491)

97
Endostromatolites, Haughton impact
crater, Canada

Solirubrobacter soli
(AB245334)

92

ASK9IP_75
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(AJ243870)

94

ASK9IP_76
Uncultured
(FJ895042)

99 Hyper-arid polar desert
Sporichthya polymorpha
(X72377)

94

ASK9IP_80
Uncultured
(EF465010)

96
Soils of Northern Victoria Land,
Antarctica

Kribbella ginsengisoli
(AB245391)

92

ASK9IP_81
Uncultured
(EF683038)

97 African dust event, E. Mediterranean
Rubrobacter radiotolerans
(AJ243870)

93

ASK9IP_82
Uncultured
(AM746693)

94
Rosy discoloration of ancient wall
paintings

Ornithinimicrobium kibberense
(AY636111)

92

ASK9IP_83
Uncultured
(EF220380)

97 Antarctic terrestrial habitats
Nocardioides jensenii
(AF005006)

94

ASK9IP_85
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(NR_029191)

94

ASK9IP_86
Uncultured
(GQ128159)

97 Meadow Soil from Tibetan Plateau
Rubrobacter radiotolerans
(NR_029191)

94

ASK9IP_87
Uncultured
(FJ895051)

99 Hyper-arid polar desert
Rubrobacter radiotolerans
(NR_029191)

95

ASK9IP_89
Uncultured
(FJ790551)

99
Chasmolithic high-altitude arid
environment

Rubrobacter radiotolerans
(NR_029191)

93

ASK9IP_91
Uncultured
(FJ895077)

99 Hyper-arid polar desert
Aeromicrobium ginsengisoli
(AB245394)

93

ASK9IP_92
Uncultured
(EF220124)

96 Antarctic terrestrial habitats
Solirubrobacter soli
(AB245334)

90

ASK9IP_93
Uncultured
(AM746696)

98
Rosy discoloration of ancient wall
paintings

Solirubrobacter soli
(AB245334)

90

ASK9IP_94
Uncultured
(FJ895046)

98 Hyper-arid polar desert
Solirubrobacter soli
(AB245334)

90

Bacteroidetes

ASK9IP_3
Uncultured
(FJ895060)

99 Hyper-arid polar desert
Flavisolibacter ginsengisoli
(AB267477)

91

ASK9IP_20
Uncultured
(DQ346479)

88 Compost
Flexibacter aggregans
(AB078038)

87

ASK9IP_21
Uncultured
(FJ895052)

98 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

93

ASK9IP_23
Uncultured
(FJ895052)

95 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

95

ASK9IP_24
Uncultured
(EF683049)

94 African dust event, E. Mediterranean
Rhodocytophaga aerolata
(EU004198)

91

ASK9IP_37
Uncultured
(FJ490252)

95 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

95

ASK9IP_42
Uncultured
(FJ490252)

95 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

95

ASK9IP_43
Uncultured
(GQ396844)

97 Recently de-glaciated soil
Pedobacter composti
(AB267720)

95

ASK9IP_54
Uncultured
(FJ895060)

99 Hyper-arid polar desert
Flavisolibacter ginsengisoli
(AB267477)

93

ASK9IP_55
Uncultured
(EU369131)

91 Oyster shell
Cyclobacterium lianum
(DQ534063)

88

ASK9IP_62
Uncultured
(FJ490252)

95 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

95

ASK9IP_64
Uncultured
(FJ490252)

95 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

95

ASK9IP_70
Uncultured
(FJ490252)

98 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

93

ASK9IP_72
Uncultured
(FJ895060)

96 Hyper-arid polar desert
Flavisolibacter ginsengisoli
(AB267477)

92

ASK9IP_77
Uncultured
(FJ895060)

96 Hyper-arid polar desert
Flavisolibacter ginsengisoli
(AB267477)

92

ASK9IP_90
Uncultured
(FJ490252)

99 Hyper-arid polar desert
Segetibacter koreensis
(AB267478)

93

Proteobacteria

ASK9IP_7
Uncultured
(EF606067)

97 Soil
Sphingobium estrogenivorans
(DQ855413)

95

ASK9IP_10
Uncultured
(EU440412)

95
Endostromatolites, Haughton impact
crater, Canada

Sphingopyxis alaskensis
(CP000356)

93

ASK9IP_39
Uncultured
(DQ643704)

98 Soil
Methylibium petroleiphilum
(CP000555)

93

ASK9IP_45
Uncultured
(DQ643704)

98 Soil
Methylibium petroleiphilum
(CP000555)

93

ASK9IP_49

Variovorax sp.
enrichment
clone
(FJ828944)

97 Airfield in the Greenland
Variovorax paradoxus
(EU979529)

95

ASK9IP_79
Uncultured
(AM158417)

97 Rhizosphere
Methylobacterium
chloromethanicum (CP001298)

95
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Table 5. ‘Geology’ Filter wavelengths (in nm) for comparable Mars rover and lander
stereo cameras, given in chronological order.

Viking[I]

(1976 – 1982)
Pathfinder[II]

(1997)
Beagle[III]

(2003, Lost)
MER[IV]

(2004 –
Present )

MSL[VI]

(Launch
2011)

‘F2-12’[VII]

(ExoMars)
(Launch 2018)

400 - 500 443 440 432 435 440
500 - 600 479 480 482 480 470
600 - 700 530 530 535 535 510
820 - 920 599 600 601 600 560
900 - 940 671 670 673 675 600
930 - 1100 752 750 753 750 660

801 800 803 800 720
858 860 864 865 760
897 900 904 905 830
931 930 934 935 880
966 965 1009 1010 950

1002 1000 1000
[I] Evans & Adams (1979); [II] Smith et al. (1997); [III] Griffiths et al. (2006)
[IV] Bell et al. (2003); [VI] Malin et al. (2005); [VII] Chapter 6, section 6.1.3

Deinococcus-Thermus

ASK9IP_13
Uncultured
(AB374369)

97
Endolithic community, White rock
Switzerland

92

ASK9IP_19
Uncultured
(FJ895086)

97 Hyper-arid polar desert 90

ASK9IP_22
Uncultured
(AB374369)

96
Endolithic community, White rock
Switzerland

91

ASK9IP_30
Uncultured
(FJ895086)

99 Hyper-arid polar desert 90

ASK9IP_41
Uncultured
(AY250871)

100
Cryptoendoliths, McMurdo Dry
Valleys, Antarctica

91

ASK9IP_51
Uncultured
(FJ895086)

98 Hyper-arid polar desert 90

ASK9IP_56
Uncultured
(FJ895086)

98 Hyper-arid polar desert 90

ASK9IP_78
Uncultured
(FJ895086)

98 Hyper-arid polar desert

Truepera radiovictrix
(DQ022077)

92

Acidobacteria

ASK9IP_12
Uncultured
(FJ592786)

97
Fumarole within a hyperarid, high-
elevation landscape, Andes

81

ASK9IP_15
Uncultured
(FJ895045)

97 Hyper-arid polar desert 82

ASK9IP_18
Uncultured
(FJ592780)

99
Fumarole within a hyperarid, high-
elevation landscape, Andes

81

ASK9IP_29
Uncultured
(EF220302)

98 Antarctic terrestrial habitats 82

ASK9IP_31
Uncultured
(FJ028683)

97 Epilithic biofilms 81

ASK9IP_88
Uncultured
(FJ895045)

97 Hyper-arid polar desert

Chloracidobacterium
thermophilum (EF531339)

82

Planctomycetes

ASK9IP_5
Uncultured
(EF651250)

93 Australian vertisol
Phycisphaera mikrensis
(AB474364)

77

RDP Unknown

ASK9IP_40
Uncultured
(FN298047)

87 Roman Carmona tombs
Sphaerobacter thermophilus
(AJ420142)

82

ASK9IP_48
Uncultured
(FJ895048)

91 Hyper-arid polar desert
Leifsonia antarctica
(AM931710)

76

ASK9IP_50
Uncultured
(FJ895083)

91 Hyper-arid polar desert
Sphaerobacter thermophilus
(AJ420142)

85

ASK9IP_84
Uncultured
(FJ490245)

99 Hyper-arid polar desert
Thermodesulfobium narugense
(NR_024789)

77
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B) Equations

Equations for porosity and diversity indices calculated in Chapter 3.

Equation 1. Calculation of porosity as a fraction of the volume of pore spaces over the
total volume, where:

VV = volume of pore space (as measured by fluid saturation)
VT = bulk volume of material

Equation 2. Shannon Diversity Index as calculated using MOTHUR (Schloss &
Handelsman 2005), where:

S = number of OTUs
ni = number OTUs with i individuals

N = Total number of individuals within the community

Equation 3. Simpson’s diversity index as calculated using MOTHUR (Schloss &
Handelsman 2005), where:

S = number of OTUs
ni = number OTUs with i individuals

N = Total number of individuals within the community
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C) ‘PanCam’ spectra of geological samples used for testing filter sets in
Chapter 6, with the relevant mineral spectra from the USGS spectral
library (Clark et al. 1997) for comparison. Absorption features are
indicated as follows: Blue = water; Grey = Iron oxide (Fe2+/3+); Green =
Chlorophyll a.
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