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ABSTRACT

This thesis investigates analytical dynamic systemnggtassignment with departure time
choice in a rigorous and original way. Dynamic systenmggtassignment is formulated here
as a state-dependent optimal control problem. A fixed melwf traffic is assigned to
departure times and routes such that the total systemi trast is minimized. Although the
system optimal assignment is not a realistic reptasien of traffic, it provides a bound on
performance and shows how the transport planner or emgia® make the best use of the
road system, and as such it is a useful benchmark fluating various transport policy
measures. The analysis shows that to operate treptwrsystem optimally, each traveller in
the system should consider the dynamic externaléihk or she imposes on the system from
the time of his or her entry. To capture this dynamitemality, we develop a novel
sensitivity analysis of travel cost. Solution algorithare developed to calculate the dynamic
externality and traffic assignments based on the agmlyd/e also investigate alternative
solution strategies and the effect of time discrétma on the quality of calculated

assignments. Numerical examples are given and the thiastics of the results are discussed.

Calculating dynamic system optimal assignment andsiseciated optimal toll could be too
difficult for practical implementation. We therefotensider some practical tolling strategies
for dynamic management of network traffic. The tollingategies considered in this thesis
include both uniform and congestion-based tolling strategibgsh are compared with the
dynamic system optimal toll so that their performace® be evaluated. In deriving the
tolling strategies, it is assumed that we have an ewwatel for the underlying traffic
behaviour. In reality, we do not have such informationttsmt the robustness of a toll
calculation method is an important issue to be invastd) in practice. It is found that the
tolls calculated by using divided linear traffic models panform well over a wide range of
scenarios. The divided linear travel time models thusildheeceive more attention in the
future research on robust dynamic traffic control efyes design. In conclusion, this thesis
contributes to the literature on dynamic traffic modellalgd management, and to support

further analysis and model development in this area.
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Two roads diverged in a wood, and I-
| took the one less travelled by,

And that has made all the difference.

Robert Frost (1920)
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1. INTRODUCTION

11 GENERAL BACKGROUND

Population growth and economic developments tend to iretéasvolume of personal and
commercial interactions among people. These interactiovolve the movement of people or
goods from place to place which mostly use the road nktfeorsome part of their journey.
In 1998, road transport accounted for 44% of all goods traffic7®% of passenger traffic.
In particular, the road share of the goods traffic leenlgrowing constantly, and is expected
to reach 47% by 2010 (European Commission, 2001).

Unfortunately, heavy road traffic induces problems of poliytiooad congestion, and
incident management in every metropolis. The white paperigbedl by European
Commission (2001) reported that transport was responfible28% of carbon dioxide
emissions in Europe, of which road transport alone ad¢sdon84 %. Heavy road traffic also
causes congestion and travel delays. It is not unusuabgserve vehicles crawling slowly
along busy streets in urban areas. Heavy traffic dsm @omplicate the management of
unexpected incidents. An example of this was on 9 May 200&n three incidents happened
in Hong Kong: a fallen tree across Waterloo Road, Isusdfolding at Argyle Street, and
fallen scaffolding at Prince Edward Road East. Thesdemts, together with the heavy daily
traffic, induced heavy congestion and hence delays forofeti®usands of travellers (Cheng
et al., 2005).

Managing the ever increasing amounts of road traffimortant for the economy. However,
simply expanding and improving existing road networks arenaftetricted by increasingly

tight fiscal, physical and environmental constraintsu(H&998). Given these constraints,
transport scientists, engineers, and planners have gndesil implement effective strategies
to manage the existing transport facilities. To achigni®g, a reliable way to evaluate the
travellers’ likely response to traffic management measuné be essential: the importance
of this has been highlighted by the extreme example atE€' paradox (Braess, 1968;
Murchland, 1970; Kelly, 1991). This paradox refers to a casehishnexpanding a road

network, supposing traffic flows either to be constantarespond neutrally can lead to

decisions that, whilst intended and expected to improveanktperformance, would cause
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deterioration. Murchland (1970) also quoted a real experienoe Knodel (1969). Knodel
(1969) reported that there were major road investmentthe city centre of Stuttgart.
However, it was found the road construction projecedtatb yield the expected reduction in
travel delay. Eventually, a cross street in the wéiwork had subsequently to be withdrawn

from traffic use in order to gain that delay reduction.

12 METHODSFOR EVALUATING TRAFFIC MANAGEMENT POLICIES

There are several approaches proposed in the litertugstimate travellers’ response to
traffic management policies. Certainly, the most dirngay is to implement the policy and

then to observe the associated effects. Howeveruiecof the high costs and risks of
implementation and observation, this method is nonodtensidered to be practical, at least

in the early stages of the evaluation (Heydecker, 1983).

The second approach is through computer simulation. Siowlanethods apply some
predefined rules to estimate the resulting effects @ffidr after implementing the
management policy. The simulation approach is quite pojulpractice because it can be
sophisticated and can capture fine detail of the real vaydtem that is to be investigated.
Some of the most popular simulation models for dynatmadfic assignment include
DYNASMART (Mahmassani, 2001), DYNAMIT (Ben-Akiva et al., 200aphd CONTRAM
(Taylor, 2003). However, simulation models do not give maédrmation on the underlying
mechanisms of the system. Furthermore, calibrating anding simulation models can be

computationally demanding due to their complicated nature.

The third approach is through analytical models. In contwatgh simulation methods,
analytical models are built entirely on mathemategghations and inequalities. These models
serve as simplified representations of a part of tked weorld system, and they only
concentrate on certain elements considered to be iemgddr a particular analysis (Ortuzar
and Willumsen, 2001). The analytical models have wellr@efiformulation and properties
to analyse. It is also widely recognised that analyticatiels are more useful for transport
planning due to their relative simplicity and lower laboasts for implementation (Friesz

and Bernstein, 2000; Ortuzar and Willumsen, 2001). In addibidhis, analytical models can

12



offer a common ground for discussing policy and examiningiribeitable compromises

required in practice with minimum objectivity (Ortuzadawillumsen, 2001).

13 ANALYTICAL TRANSPORT MODELS

In the framework of analytical models, a transportesysts often simplified into a form of
network and zoning systems. The temetworkrefers to a structure in which there are two
types of elements: a set of nodes and a set of linkgoihasome pairs of nodes. In a detailed
network model, the nodes in a network model repraseitidual road junctions. Each link
corresponds to a section or road; in more aggregate nodksscan represent collections of
roads. The topology of network is specified by the presesr absence of links between
nodes which determine the possibility of travel from plaee to the other (Heydecker, 2005).
There are several attributes associated with each rirtke network model to define the
characteristics of that link. The most commonly usédbates include link length, free flow
travel time, and link capacity. With these attributiée delay, number of stops and travel
time on each link can then be estimated according toldathedf traffic carried by the link.
Various functional forms have been proposed to moderéhationship between link travel
times and traffic flows. In general, because an irsgea link traffic flow will normally
decrease the travel speed along the link, travel timesisually considered to be positive
monotonic increasing functions of traffic flow. Pardems in the travel time functions often
include free flow travel times (i.e. link travel timefi&n there is no traffic on links) and link
capacities (i.e. maximum values of traffic flow alohg tink). Some examples of travel time
functions can be found in Patriksson (1994, p20) and Mun (2003ddition to links, the
termroute or pathis defined to represent a sequence of directed links leagingdne node
to another. The corresponding travel time along a roatebe determined as the sum of the
travel times along the links comprising that route, witlvhich each of the link travel time is

calculated according to their corresponding time ofyentr

The termzonein the zoning system refers to a partition of an urlvea.aVithin each of these
zones, various data can be collected for calibrating ahdating the transport model. These
data include demographic features of people in the zoneeamds lof economic activity
including employment, shopping space, educational and rearebfacilities (Ortuzar and

Willumsen, 2001). Each zone is represented in the netlWgria special node called a

13



centroid Each centroid can either be @agin node from which traffic enters the network, or

adestinationnode to which traffic leaves the network.

After building a representation of the transport systenalysis and planning procedure can
then be carried out. The classic procedure of analysispéanning in transport practice,
known as thdour-stage modelis shown in Figure 1.1. The four stages are trip gébera
trip distribution, modal split, and assignment. The fst@ge model starts with estimating the
total number of trips generated by each zone based odatheof the levels of economic
activity in that zone. The next stage is to distribtiese trips from their origins to particular
destinations. The following stage, modal split is an egion of the choice of transport
modes, such as car, underground train, or bus, of the Tfiesfinal stage, assignment, is to
estimate how the trips travel through the network, triaffic flows generated, the resulting
traffic conditions, and the costs of travel for eashgin-destination pair. A detailed

discussion on the four-stage model can be found in OrtadaWéllumsen (2001).

Zones Base
networks data
\J
Database

v

1. Trip generation

v
2. Trip distribution

v
3. Modal split

v

4. Assignment

v

Evaluation

Figure 1.1 The classic four-stage transport planning model
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14 TRAFFIC ASSIGNMENT

A traffic assignment model aims to estimate how tdtbws through a road system and the
associated effects of traffic on the system. Thdfete can be measured by a number of
criteria including distance travelled, travel time,ajelfuel consumption and environmental
pollution (Heydecker, 2005). Traffic assignment models cao bé used to investigate the
responses of traffic to changes in the system (fomele& changes in travel demand,

travellers’ information, road capacities, signal tiggnand road tolls).

Formulating and solving a traffic assignment model requives=e kinds of information. The
two of these are the demand for travel and the chaistcde of transport system. The
demand for travel, which is estimated by the three exasliages of the four-stage model,
represents the likely travel decisions that travelleosld make, given the performance of the
transport system. Following the first three steps enftur-stage model, the travel decisions
considered include choices of destination, mode, frequaincip, and even whether to travel
at all (IHT, 1997, p91). It should be noted that althopgpulation, land-uses, and other
factors could vary over time, so does the travel dem@ondventional planning models only
consider the travel demand within a particular periodnoé tand the demand is regarded as
time-independent throughout that time period. The seconghanent of a traffic assignment
formulation is a network model of the characterst€ transport system. The function of this
network model is to define the relationship between itneet demand and the performance
of the transport system. For example, travel timesmodelled as increasing with travel

demand, due to the decreases in travel speeds of vehidlesl@97, p91).

Given the demand for travel and the characteristics wansport system, the third kind of
information is a way of estimating the correspondirgiribution of the travel demand over
the transport system. The most widely accepted wayaugh the two principles of traffic
assignment proposed by Wardrop (1952). Wardrop adopted the slgmpénd equilibrium
concept of economics, which suggests that travel demamalds be balanced against the
performance of the transport system in servicing thatl lef demand. This gives Wardrop’s

(1952) first principle, or thaser equilibriumprinciple:

“the journey times on all the routes actually usedeaygal, and less than those which

would be experienced by a single vehicle on any unusedroute.

15



The underlying assumption of this principle is that all/#llers are supposed to choose their
routes of travel through the network according to tharoon criterion that their individual
journey times are minimized. In addition, all travedlevill experience the same journey
times if they encounter identical traffic conditiorfisurthermore, all travellers will have
perfect information on all possible routes through nekwno matter whether the routes are

used or not.

In fact, this concept of equilibrium is found to be a pduletool for analysing transport

system, as Bell and lida (1997) wrote:

“While a transport system may never actually be intaesof equilibrium, it is

assumed that it is at least near equilibrium, tendingatds equilibrium, and only
prevented from attaining equilibrium by changes in extdawbrs... At equilibrium,

the transport system reduces to a fixed point (the equitibdasts and flows), and
powerful analytical techniques ... exist for finding the fixednpoProponents of
equilibrium theory take it as a matter of faith thgtyen the existence of an
equilibrium, there are behavioural mechanisms that pustrahsport system to this

fixed point.”

Although user equilibrium may be a good representationsbfillition of existing network
traffic, such distribution of traffic generally doestread to the best possible use of the
network system. This is because user equilibrium corssidi@t each individual traveller is

acting only in their own interests, but not necessarithe interest of the system as a whole.

In fact, the discrepancy between the behaviour of indivithaakllers acting on their own
interests and the interests of the whole communityn®wn in economic literature as the
“divergence between private cost and social cost”.al first raised and discussed by Pigou
(1920) and Knight (1924). In accordance with this observatgardrop (1952) further
proposed his second principle of traffic assignment to ribestow travellers could be
allocated centrally to minimize the total cost incurkdall travellers. Wardrop’s (1952)

second principle or the system optimal principle is:

“the average journey time is a minimum.”
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Under system optimum, some travellers may be assignexlites that have costs higher than
the minimal that they could travel along. This is heseathe additional costs incurred by such
travellers will be outweighed by the greater savings #Htatrue to the others. The user
equilibrium and system optimal principles will produce id=aitresults when the network is
uncongested (Sheffi, 1985, p72). Although the system optim@nassnt is not a realistic
representation of network traffic, it provides a bounchow we can make the best use of the
road system, and as such it is a useful benchmark fouatiraj various traffic control
policies. Using economic terminology, the user equilior and the system optimal
assignments respectively represent the descriptive i@ sind normative representations of

traffic flow patterns on road networks.
1.4.1 Formulations of traffic assgnment
A traffic assignment model should be formulated in mathtical terms before it can be

analysed and solved numerically. User equilibrium igafissignment can be stated

equivalently as the following complementary inequalitythe route flone,:

>0=C_=C,
e P OpOP,, OCod 1-
Pl=0=C, 2C;,

where g, is the flow assigned to roupe P, is the set of all routes from origonto destination

d, C, is the travel time along roupandC_, is the minimum travel time fromtod.

Beckmann et al. (1956) were the first to transfdh@m user equilibrium principle into a

mathematical programming problem for link flovy.

min > Tca (v)dv (1-2)

aL v=0

subject to
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> e,=Ey Cod (1-3)

e =0 OpOPRP, Uod. (1-4)

The notationv, represents the flow of traffic on link c, (0 is the travel time along link
and is a function of link flowv,, E_ , represents the traffic flow between originto

destinationd. It is noted that the objective function is foratld in terms of link flows, while
the constraints are formulated in terms of routevél. Hence, the following definitional

constraint is required to inter-relate the linknfand route flows

v, =Y. > eo; Oa, (1-5)

od pOPygy

where 5;‘ is a indicator variable:

(1-6)

p

50 = 1 if link aisonroutep
|0 otherwise’

Constraint (1-5) is also part of the optimizationgram (1-2).

Beckmann (1956) showed that solving this mathembtprogramming formulation is
equivalent to solving the static user equilibriussignment problem (1-1). The equivalency
can be proven by verifying that the Karush-KuhnHerc(KKT) necessary conditions for a
minimum point of the problem (see Sheffi, 1985, p666; Patriksson, 1994, pp35-36) are
exactly the conditions of user equilibrium. Sinds introduction, the transformation
technique by Beckmann (1956) is now standard arilkwewn in transport literature, and
hence its mathematical details are not shown tarérevity. A range of efficient solution
algorithms were later developed, and they can h@aymad to solve Beckmann et al.’s (1956)
mathematical programming formulation and its extams effectively. Examples of the
algorithms can be found in Evans (1976), Lee (1988) Bar-Gera (2002).

The system optimal assignment can also be forndilatethematically as a static

minimization problem of the total system journayeispent in the network:
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min 3" v,c, (v,) (1-7)

alL
subject to constraints (1-2) — (1-4).

The optimality conditions of the system optimaligssent are given in Sheffi (1985, pp69 —
72) as

e, = 'zlj ) OpOP,, Ood. (1-8)
=0=C, + > 0,v,—2222C,,
= ov,
oc,(v,)

The quantity Cp+25;‘va is interpreted as the marginal contribution of an
Oa

a

additional traveller on routp to the total travel time on that rouype The derivative of link
oc,(v,)
v

a

travel time with respect to the link flow , represents the additional travel time

induced by an additional traveller to each of thesteng travellers on the link. When the

transport network is at system optimum, thmarginal travel time on all used routes

connecting each origin-destination pair in the matwis equal. There are also many efficient
solution algorithms in the literature that can Inepioyed to solve the system optimization
problem. A comprehensive review on these optinoratalgorithms can be found in

Luenberger (1984), and Bazaraa, Sherali and S(€83).

1.4.2 Limitations of traffic assgnment models

In addition to the theoretic work, the four-stagedel has also been made operational
through numerous empirical studies (Small, 1992,1p Ortuzar and Willumsen, 2001, p23),
and has become the core of many kinds of commesoifilvare. The software has been
valuable for transport engineers and planners tgirguoviding important insights and useful

estimations of travellers’ response to variousgpamt policies.
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Nevertheless, it should be noted that the traffsigasnent model in the traditional four-stage
planning procedure adopted a steady-state approximationth®rcharacteristics of the
transport system, the network model considers tralfierd and travel times to be time-
invariant and travel demand to be below the physical cgpatithe transport network.
However, traffic flows and travel times are dynamic nature. In addition, there is a
possibility that during some parts of the day, the traeshand will exceed the capacity of
the network. This temporary overloading cannot be repredehy static models in a

satisfactory manner (Heydecker and Addison, 2005).

On the travel demand side, the steady-state traffigmsment model specifies the demand for
travel to a particular time period under consideratéowl treats it as constant over that period
of the day. This treatment could mask any systematiati@ni in travel demand over time of
the day. Indeed, empirical studies (Hendrickson and Plank, 1284jl, 1992) confirmed
that travellers do change their times of departure suljed¢he traffic conditions they
encounter, especially during morning and evening peak periods. erhysotal variation in
travel demand, which is known as theak spreadingphenomenon, cannot be captured by

steady-state traffic assignment models.

Finally, Patriksson (1994, p59) also commented on the statly assumption of static

traffic assignment models as follows:

“the fundamental principles underlying the assignment nsodete stated some forty
years ago. The traffic flows in the then relatively amgested urban networks were
probably suitable for approximation by steady-state floass,Wardrop did. Since
those days, the traffic networks have become much noonglex and the demand for
transportation has become orders of magnitude higher, lenagproximation of

present traffic flows by steady-state flows is fasleealistic.”

Accordingly, various dynamic versions of traffic @agsnent models have been proposed in

the literature in which travel demand and travel costcansidered to be varying over time.

1.5DYNAMIC TRAFFIC ASSIGNMENT MODELS
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In accordance with the comments on static traffiiggsnent models, there is a genuine need
for developing more robust and sophisticated traffic assgtrmodels. In the early 1960s,
Vickrey (1963) suggested the importance of developing technifpresnalysing time-
varying road traffic and implementing time-varying traffi@nagement strategies. He wrote
(Vickrey, 1963, p452),

“I will begin with the proposition that in no other joaarea are pricing practices so
irrational, so out of date, and so conducive to waste asban transportation. Two
aspects are particularly deficient: the absence of adequesk-off differentials and
the gross underpricing of some modes relative to othersedry all other operations
characterized by peak load problems, at least some attemmde to differentiate
between the rates charged for peak and for off-peak seWicere competition exists,
this pattern is enforced by competition: resort hotelehaff-season rates; theatres
charge more on weekends and less for matinees. Telepdalls are cheaper at

night... But in transportation, such differentiation astxis usually perverse.”

Vickrey (1969) later proposed his innovativettleneck modeffor analysing dynamic traffic
pattern. In the bottleneck model, traffic congestios wssumed to take the form of queuing
behind a bottleneck of fixed flow capacity, on a singdeet link connecting a single origin-
destination pair. In the model, each identical travellas assumed to commute in his or her
own car from home (i.e. origin) to work (i.e. destina)i along the single travel link. All
travellers wish to arrive at work at the same time cWwhs impractical to achieve because the
capacity of the bottleneck is finite. As a result, saragellers have to arrive earlier and some
arrive later. The cost of arriving earlier or laterrthidne desired arrival time was called
schedule delay codtach traveller will make his or her choice of timedeparture in order to
minimize the associatetdtal travel costwhich is essentially a cost associated with the tim
spent on travel plus the schedule delay cost. The lequith is achieved if all travel can be
made at the same total travel cost. This means thaquiibrium, travellers will trade off
changes in schedule delay costs against those in tnael Those who travel off-peak so as
to achieve short journeys do so at the expense of lirmvel relatively unfavourable times,
which is represented through schedule delay costs. Gotlibe hand, those who arrive close

to their desired time do so at the expense of a relatiwag journey. Following Vickrey

" The bottleneck model is also known as the deterniristeuing model which is the name to be referred in the
later parts of the thesis (see Section 2.3.3.1).
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(1969), authors including Yagar (1971), Hurdle (1974), and Merchant Nemdhauser
(1978a; b) have acknowledged the importance of Vickrey's (1968)k and have

contributed to the dynamic transport models.

Nevertheless, the significance of the dynamic modeals not widely acknowledged until the
inception of intelligent transportation systems and tibehnological advances in traffic
control systems in the early 1990s. The applicatiomtefligent transport systems (ITS) has
shown their ability to improve transport networks innpavays by providing information

and guidance to travellers. The benefits of ITS inchedlicing travel times in lightly-loaded
conditions, and increasing capacity and hence reducingl tiaves in more heavily loaded
ones. For example, Adler (2001) showed how travel tiowadd be reduced by about 1
minute in a 15-minute journey through providing advanced trafficrmation and route

guidance. Rajamani and Shladover (2001) showed that ITS tegie®w could be used to
provide autonomous adaptive cruise control systems thagaise road capacity from about
2,000 to about 3,000 vehicles per lane-hour. A more detailegiven ITS can be referred to
Heydecker (2002a). In addition to ITS, designing and implemetimayative traffic control

systems and policy also require dynamic traffic assigmmeodels to estimate travellers’
likely response. Some examples of these control giemtanclude network access control
(see for example, Smith and Ghali, 1990a; b; Lovell angabzo, 2000; Erera et al., 2002),
network design and road capacity management (see éonpde, Ghali and Smith, 1993;
Arnott, De Palma and Lindsey, 1993; Heydecker, 2002b), andvimyéag road pricing (see

for example, Yang and Huang, 1997; Wie and Tobin, 1998; Et¢mla 2006). Due to these
genuine needs, dynamic traffic assignment problems hawemieea popular and important

research topic in both academia and industry in theévuasdecades.

Following Wardrop’s (1952) principles, dynamic traffic igesnent can be formulated through
two approaches: dynamic user equilibrium and dynamic reysggimal assignments. In the
literature, dynamic user equilibrium assignment has bedémngthe focus of research. The

formulations of dynamic user equilibrium assignmentleagrouped into five categories:

1. Mathematical programming (see for example, Janson, 1981 ;aRd Boyce, 1996;
Han and Heydecker, 2006);
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2. Optimal control theory (see for example, Merchant Biethhauser, 1978a; b; Friesz
et al., 1989; Papageorgiou, 1990; Wie et al., 1994; Wa. el 995 a, b; Yang and
Huang, 1997);

Non-linear complementarity problem (see for examples &ial., 2002);

4. Fixed point problem (see for example, Addison and Heydedk&3; Heydecker and
Addison, 1996);

5. Variational inequality (see for example, Friesz et #)93; Ran and Boyce, 1996; Lo
and Szeto, 2002).

Following the success in tackling static traffic assigntmproblem, much work on dynamic
user equilibrium assignment attempted to use a matheinptimgramming approach. Janson
(1991) proposed a mathematical programming formulatioimtegrating Beckmann’s (1956)
equilibrium objective function with respect to time. Hoxgr, as later pointed out by Lin and
Lo (2000), and Boyce, Lee and Ran (2001), the formulatfaranson’s (1991) mathematical
programme cannot capture the traffic dynamics, the teatip@symmetric nature of dynamic
traffic cost functions, and the time-dependent intevadbetween traffic flows and travel times.
Lin and Lo (2000) also showed with simple counter-exanipd¢ solving Janson’s (1991)
formulation does not necessarily lead to a solution sh#tfies a dynamic user equilibrium
condition. Recently, Han and Heydecker (2006) have mefiated Beckmann’s (1956)
mathematical programme and have addressed the proaised by Lin and Lo (2000) in
Janson’s (1991) formulation. However, Han and HeydecK2066) formulation can be too
cumbersome for practical implementation. In additibajr formulation has yet to be applied to
networks in which interactions between flows from dédfe origin-destination pairs are

involved.

The optimal control theory is a widely recognised taml &nalysing dynamic systems.
Following the pioneering work of Merchant and Nemhauser (L9%B8amany researchers
(see for example, Carey, 1986, 1987; Friesz et al., 1989; ,C888; Ran and Boyce, 1996;
Yang and Huang, 1997; Wie and Tobin, 1998) have adopted theirabgtimtrol theoretic

formulation and have produced many important insights obehaviour and management of
time-varying network traffic. However, Merchant and Neos& (1978a; b) incorporated an
outflow traffic model into their analysis, which hiaser been criticized as being implausible

and unrealistic in its representation of traffic dymzmfsee Chapter 2).
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Friesz et al. (1993) were the first to formulate and yameathe dynamic user equilibrium
traffic assignment problem using variational inequalitfes shown by Patriksson (1994) and
Nagurney (1993), variational inequalities can be regard asexajeation of mathematical
programming, non-linear complementarity problem, and fixeidtparoblem. Due to their
generality, variational inequalities have attractedtaf attention as a means of formulating
and analysing dynamic traffic assignment. Detailed d@ouns on formulation of variational
inequality can also be found in Friesz et al. (1996), RanBanyde (1996), and Nagurney
(1993).

Dynamic user equilibrium is used to represent the Hidicn of traffic that arises when
travellers consider their own interests alone. Howessr discussed in Section 1.4, such
distribution of traffic generally does not lead to tiest possible use of the transport system,
because the user equilibrium considers that each individaxagller is acting only in their
own interests, rather than those of the communitnainic system optimal assignment, in
contrast, considers that there is a cergyatem managedistributing the traffic over time
within a fixed horizon so that the total, rather thadividual, benefit of all travellers in the

system is maximised.

Analytical dynamic system optimal assignment is apartant yet underdeveloped area and
indeed it is one of the most challenging areas in tratefjmor research. Different from its
static counterpart (1-7), dynamic system optimal assignmena kind of dynamic
optimization problem, which aims to calculateamtimal time patHor the decision variables
instead of a singleptimal valueas in the static case. As noted by Dorfman (1969), such a
problem is difficult to solve and “is not for beginnerki.addition, the challenges associated
with dynamic system optimal assignment problem are @dilsoto the range of interrelated
requirements on their components (i.e. travel demdratacteristics of road system, and the
way in which traffic is distributed) to perform in atiséactory manner. As twelve years ago,
Patriksson (1994) wrote:

“So far, no well-founded dynamic models free from angioss anomaly such as
instant propagation of some travellers, infinite cyclirajlufe to recognize the first-
in-first-out principle, etc., have appeared, and theirenigal solution most often rely
on a time-discretization which brings the dynamic nhaate a (typically very large)

static one.”
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Merchant and Nemhauser (1978a; b) were the first to fatmand analyse dynamic system
optimal assignment. Merchant and Nemhauser’s (1978a;rimufation was then followed
and modified by many others (see for example, Ho, 198GyCa087; Friesz et al., 1989;
Yang and Huang, 1997; Wie and Tobin, 1998). However, these prestodies used an
outflow traffic model, whose plausibility was latesuhd to be questionable. Addison and
Heydecker (1998) used an alternative calculus of vangtiechnique to analyse and calculate
the system optimal assignment with departure timecehd¢iowever, the calculus of variations

is complicated to use and to implement.

1.6 OBJECTIVE AND OUTLINE OF THE THES'S

This thesis investigates analytical dynamic systemnggtassignment with departure time
choice in a rigorous and original way. The results aguen this thesis can be applied to
various areas of transport modelling and management ingludavel activity analysis,

transport policy planning, road pricing and network designs Thesis contributes to the

literature on dynamic traffic management and supportsdudavelopment in this area.

The thesis is organized as follows:

In Chapter 2, this thesis starts with giving a compraliengview on the link traffic flow
and travel time models for use in dynamic traffic gissients. Proceeding after the comments
made by Patriksson (1994), we summarize the requiremearastifaffic or travel time model
to be satisfactory for use in dynamic traffic modelliAgreview on various traffic models is

given and discussed.

In Chapter 3, we investigate the analysis and the sol@igarithms for dynamic user
equilibrium assignment with departure time choice. Sévpraperties related to the
assignments are established. Numerical examples andhthacteristics of the assignment

results associated with different choices of trawed tmodels and discretizations are discussed.

In Chapter 4, we analyse dynamic system optimal assignioyeexploiting a state-dependent

optimal control formulation (see for example indsd et al., 2001). In the formulation, a fixed
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volume of traffic is assigned to departure times andesostich that the total system travel
cost is minimized. To facilitate the analysis and wlakion, we develop a novel sensitivity
analysis of travel cost. Solution algorithms are dewedbto implement this sensitivity
analysis and solve dynamic system optimal assignmeamnneNcal examples are given and
the characteristics of the results are discussepgaiticular, the results reveal that much study
in the literature of dynamic system optimal assignnased on the deterministic queuing
model is not generally applicable. In the end of Chaptevetalso propose some practical
tolling strategies for managing dynamic network traffibese tolling strategies are compared
with the dynamic system optimal toll and hence thdiiciencies can be evaluated
accordingly. Finally, we have an investigation on tlabustness of the toll calculation

methods which is an important issue to address in practice

Chapter 5 gives a conclusion of the whole thesis andtiitls some possible future

extensions in the area.
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2. LINK FLOWSAND TRAVEL TIMES

2.1 INTRODUCTION

Temporal variations of link traffic flows and link trav@nes in dynamic traffic assignment
models are represented tvgaffic models Many different kinds of traffic models have been
proposed in the literature (see for example, Vicki@®g9; Merchant and Nemhauser, 1978a;

b; Hendrickson and Kocur, 1981; Mahmassani and Herman, 1984]INE988; Friesz et al.,
1993; Daganzo, 1994, 1995a; Chu, 1995; Ran and Boyce, 1996; Yang and Huang, 1997
Carey et al., 2003). Some of these traffic models are mnactable or convenient to use over

the others, while some of the models are more realispresentation of traffic dynamics.
Because different traffic models produce different estonatfor link flows, travel times,

and hence solutions of traffic assignments, it is immbrta understand the properties,
plausibility, and applicability of each traffic modét.is also vital to identify the minimum

requirements on a traffic model for it to be used inashyic traffic assignment formulations.

In general, these traffic models can be summarizéakeifollowing general form
Ea (S) = pa[ea (S)’ X, (S)’ ga(s)]’ (2_1)

where¢,(s) is the link travel time experienced by traffic enters lihk a at a times. The
rate at which traffic enters and leaves the link aetsrare denoted bg, (s @ndg,(s)
respectively. The amount of traffic present on eachdirsk times is represented by, (s .)
The link travel time is related with the traffic floguantities through the traffic model, [.()
Daganzo (1995b) showed that for a traffic model which is miiget of inflow,e, , a

sufficiently fast decline in the link infows can make tinaffic model violate first-in-first-out
(FIFO) queue discipline. Likewise, Daganzo (1995b) furthemetd that the traffic model
should also be independent of outflogy, , because a sufficiently fast decline in the link
outflows can also make the traffic model violate FI§@eue discipline in a similar way.
Violation of FIFO queue discipline is considered to be alsBc in a macroscopic travel
time model that considers traffic to be flowing continupukecause it implies that the later

and faster vehicles wilump overthe preceding slower vehicles (Carey, 2004a). Following
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these observations, Daganzo (1995b) suggested that traffielsrehould only be a function

of amount of link traffic, i.e.
Ea (S) = Ka [Xa (S)] ' (2'2)

Proceeding after Daganzo (1995b), the properties of vakiads of traffic models and their
suitability for modelling dynamics of traffic have beilenestigated widely (see for example,
Astarita, 1996; Heydecker and Addison, 1998; 2005; Wu et al., 1998t xlu 1999; Rubio-
Ardanaz, 2003; Nie and Zhang, 2005a; b; Carey, 2004a; b).

This chapter gives a comprehensive review and a detailagsdiso on the research of traffic
models. The chapter is organized as follows. In Se@&i@nthe requirements on a link traffic
model for use in dynamic traffic assignment formulati@re summarized and discussed.
Section 2.3 introduces and analyses different kinds dictrafodels. For implementation,
Section 2.4 describes numerical schemes which transf@montinuous time formulation of
traffic models into discrete time. Numerical exames given in Section 2.5 to demonstrate
the characteristics of different traffic models. Hiywasome concluding remarks are given in
Section 2.6.

2.2. REQUIREMENTSON TRAFFIC MODELS

Following Carey (2004a; b), and Heydecker and Addison (2005pldoisible estimation of
traffic flows and travel times, the link traffic modadlopted should possess and satisfy the

following five properties:

non-negativity;
first-in-first-out (FIFO) discipline;
conservation of flow;

consistency between travel time and flow;

o bk~ 0N e

causality.

In this section, these properties are discussed in dstéllows.
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2.2.1 Non-negativity
The non-negativity principle states that if a positivilow is loaded into a travel link, then

each of the resulting traffic, outflow, and the traweles should always also be positive. This

condition can be stated as
e,(s)>0 = g[r.(s)]> 0. x,(9>0][r,(s) -5]>0, (2-3)

where,(s) is the time of exit for a time of entry at tinge and hencer,(s)-s is the

corresponding travel time along the link.
2.2.2 First-in-first-out (FIFO) queuediscipline

The FIFO queue discipline requires that if a travellderdehis departure time from the origin
and join the traffic queue later, then he can expectrieeaat the destination later. That is,

the FIFO discipline is satisfied 8, 2s,, 7(s,) 27(s,) for all times of entrys, ands, .

Proposition 2.1 then follows for differentiable @iions 7 (1) .

Proposition 2.1: If the traffic model satisfies the FIFO queue d¢ioe and the

function 7 () is differentiable, then the following conditionlibe satisfied

>0, 2-4)

for all times of entrys to the link.

Proof:

We first have the condition of link FIFO ags,)>7(s, for all s, ands,, s, >2s,.

1(sy) —7(s) _ Azr(s)
S As

> 0 because both numerator and

This implies that forAs >0,

denominator are positive. Taking the limit As — 0 gives 2T >0. O

-
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The FIFO queue discipline is an essential property fodetiog dynamic traffic. Indeed,
Daganzo (1995) and Astarita (1996) have shown that unless thedffik model respects
the FIFO discipline, problems will arise in respecboé or both of non-negativity of traffic
and proper propagation of flows. This is further supported bgyC&004a), who showed
that the FIFO discipline is a necessary and sufficcemdition to ensure non-negativity of
traffic and consistency between traffic flows and cgponding travel times (see proposition
3 in Carey, 2004a). The FIFO condition could be conside&rdx too strong and unrealistic,
but satisfaction of the FIFO discipline is necessarynacroscopic and continuous traffic
models. Carey (2004a) explained that FIFO discipline onlgn®meo prevent overtaking and
passing due to incidental features within the traffic moloi&t tlo not reflect any real world

phenomenon such as a fast vehicle jumps over the mgcadwer one.

2.2.3. Conservation of flow

The conservation of flow states that the trafficuvoé x_(s), which is the number of

vehicles or the occupancy, on a travel link at any tilmeukl be equal to the difference
between the cumulative inflow and outflow by that tifi@e underlying assumption of the
principle of conservation is that traffic will neithbe generated nor dissipated, for example
by vehicles entering from and exiting into side links, withie travel link. However, this
assumption could in principle be relaxed by introducingimieg destination nodes to the link

as noted by Carey (2004a). This conservation of flow camriten as

X,(8) = E,(9) - G,(9), (2-5)

where E, (s )and G, (s ) respectively represent the cumulative inflow and outfby times.

The relationship between the variables in Equation (2-&s@& shown in Figure 2.1.
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E(s)
xs) <[ TG

Cumulative flows

s’ time, s

Figure 2.1 Flow conservation

If the variables in Equation (2-5) are differentiable wi#spect to times, then from

differentiating (2-5) we have

K~ (9-0,). (2:6)

Equation (2-6) states that the rate of changexpfs at gny times can be determined as the

difference between the inflow and the outflow oftattttime.

2.2.4. Consistency between travel time and flow

This travel time-flow consistency is also known as prgpepagation of flow (Tobin, 1993;
Friesz and Bernstein, 2000; Mun, 2002; Heydecker and Addison, 20G%ates that the

cumulative traffic that has entered up to time s maseltexited from the link by exactly time

r,(s) (see Figure 2.2). This can be expressed as
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Ea (S) = Ga [Ta (S)] ’ -(2'

where E, (s ) and Ga[ra(s)] correspond to the cumulative inflow by s and the cunwaat

outflow by 7,(s) respectively.

iy G( s)

Cumulative flows

s’ r,(s) time, s

Figure 2.2 Consistency of travel-time and traffic-flow

If the variables in Equation (2-7) are differentiable widlspect to s, the we can apply the

chain rule and differentiate both sides with respe¢inte s, and hence Equation (2-7) can be

written equivalently as

dr,(s) ]
= (2-8)

e,(s) = g,[7.(9)]

Equation (2-8) shows the variation of the flow along titaeel link should be based on the

rate of change of the link travel time, |m Following Equation (2-8), a proposition on

de

the non-negativity of link outflow profile is also deduced.

Proposition 2.2: If the traffic model satisfies FIFO queue disciplined agiven a

positive profile inflow for all times, then the corresponding profile of outflow is also

positive.
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Proof:

Proposition 2.1 shows that FIFO queue discipline implestive rate of change of

dr, (9)

link travel time for all times. Proceeding after this and using Equation (2-8),

given the link inflow profilee, (s )and—drg(s)

-

are positive for all times, then the

corresponding link outflow profilega[ra(s)] must be also positive.]

2.2.5. Causality

Behaviour of traffic should be affected only by locatonditions downstream, not by traffic
conditions upstream. This causal relationship also imphas the outflow profile from a
travel link should only depend on the inflow profile atbefore the corresponding time of

entry but not after.

2.3LINK TRAFFIC MODELS

This section classifies all link traffic models intodhl different categories: wave models (for
example, Lighthill and Whitham, 1955; Richards, 1956; Payne, 18Eyell, 1988;
Heydecker and Addison, 1996), outflow traffic models (foraregle, Merchant and
Nemhauser, 1978a; b; Ho, 1980; Carey, 1987; Friesz et al., 198§;ananHuang, 1997),
and travel time models (for example, Vickrey, 1969; Erigisal., 1993; Mun, 2002; Carey et
al. 2003).

2.3.1 Wave model
This class of models was originated by Lighthill and Whith@955) and Richards (1956),
whose model is now known as the kinematic wave modsimply the LWR model. The

LWR model considers traffic stream to be one-dimensiooaipressible fluid and the model

can be stated by the following two conditions:
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of o0k
—+—=0 andf =F(k,xt -
3 ot (k, x,t) @

wheref is the traffic flow;k is the densityx andt are space and time variables, respectively,

andF is a function relating the traffic flovand the traffic densitlg over time and space. The
functionF is often referred to as the Fundamental Diagraimadfic as shown in Figure 2.3.

How f

Qm a

Density k
kjam

Figure 2.3 The Fundamental Diagram of traffic flow

Supported by the empirical evidence and its higldiailed description of traffic behaviour,
the LWR model is arguably one of the most widelgegted models of traffic flow. It takes
into account explicitly the macroscopic variabldsflow and density and covers the full
range of the fundamental density-flow-speed retatigps. The traffic model captures the
macroscopic features of traffic, including shockeswvgueue formation and queue dissipation,
in both congested and uncongested regimes. The wadel has also been applied to
dynamic traffic assignment problems (see for examewell, 1988; Heydecker and
Addison, 1996). Lighthill and Whitham (1955) deveadal a solution approach based on the
method of characteristics, yet they have the dmathge of being analytically and
computationally demanding.
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2.3.2. Outflow traffic models
2.3.2.1 Merchant and Nemhauser’s (1978) outflow traffic model

This kind of traffic model was first proposed by Merchantl 8Nemhauser (1978a; b) for
solving dynamic system optimal traffic assignment problelnms fraffic model is also known
in the literature as exit link function (Astarita, 199é)jt-flow model (Friesz and Bernstein,
2000; Carey, 2004b), or simply M-N model (Peeta and Ziliaskiogp 2001; Nie and Zhang,
2005a). The model considers outflow from each link in thedrnetwork to be a non-

decreasing functiog, of the traffic volume on the whole link at that tinféwus,

9.(9) =¢.[x.(9)]. (2-10)

The link traffic volumex, (s )can be determined either in continuous time or in disdime
(Carey, 2004b). In continuous time, the traffic volumgs on) the whole link can be

determined by conservation of flow (Equation 2-6).

Proceeding after Merchant and Nemhauser (1978a; b)ptiilow traffic model has been
adopted extensively (see for example, Carey, 1986; 1987; 16866z Et al., 1989; Carey and
Srinvasan, 1993; Wie et al., 1994; Wie et al., 1995; Lam and Ha868§, Yang and Huang,
1997; Wie and Tobin, 1998). The outflow traffic model has coieré mathematical
properties for analysis and has generated some impamsagihts on the properties of time-
varying network flows. However, the outflow traffic dels have been being criticized for
their implausible behaviour since Patriksson (1994). Addaad Heydecker (1995) showed
that the traffic models lead to unrealistic flow propagain which zero travel time could be
estimated for some travellers and infinitely long ofoeghe others. Carey (1992), Janson and
Robles (1993), and Astarita (1996) also discovered that th@ &lleue discipline cannot be
guaranteed in Merchant and Nemhauser’s (1978a; b) outflffictmodel. Hurdle (1986),
Astarita (1996), and Heydecker and Addison (1998) also shoveedhé outflow models

structurally violate causality, which is also shownha following proposition.

Proposition 2.3: The outflow traffic modelg, (s) =l//a[Xa(S)] structurally violates

causality.
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Proof (modified from Heydecker and Addison, 1998)

Combining the conditions of flow conservation (2-5) angetdéime-flow consistency

(2-7) givesx,[r,(9)] = E.[1,(9)] - E.(9).

Following the functional form of outflow models (2-10het instantaneous outflow

ga[ra(s)] depends orxa[ra(s)] and hence on the inflow in time interv@ 7, (s .)]
That is, the outflovvga[ra(s)] depends on the inflowfter the departure tims, and

this represents a violation of causality. [

This acausal behaviour is unrealistic and hence unaccepkablany dynamic model of

traffic.

2.3.2.2 The cell transmission model

Exploiting Merchant and Nemhauser’s (1978a; b) idea, Dagal@@4( 1995) developed a
Godunov solution scherhealled the cell transmission model (CTM) for solving th&R
model of traffic flow. The cell transmission modesasies its Fundamental Diagram to take
a trapezoidal form as shown in Figure 2.4. This relationabgumes a constant free-flow
speed,v, for lower densities and a constant negative wave speedalways lower than
free-flow speed) at higher densities. This simplificaticas supported with empirical data in
Cassidy (1998).

T Godunov solution scheme is a finite difference solusoheme for solving partial differential equations.
Daganzo adopted this to solve for the LWR model (Equation &g Merchant and Nemhauser’'s (1978)
formulation of a traffic model.

36



» .
Density k

Figure 2.4 The flow-density relationship used in CTM

In the cell transmission model, the road network isesgmted by a collection of equal-length
cells. The length of each cell is equal to the distahat a single vehicle travels in one time
step at the free-flow speed. When there is no congestiis expected that a vehicle would
move from one cell to another at each time step. Fgiven time intervak, each celi has a
number of vehicles in itx (k ,)and vehicles ready to enter @,(k . Yhe outflow from each

cell i (or the inflow into its downstream celi-1) during the time intervdlkAs, (k + DAS) is

governed by the following equation,
. w
Oin(K) = mln{xi (k)!Qi+l’V[Ni+l - Xi+1(k)]} , (2-11)

where Q,, is the maximum number of vehicles that can entdirie-1 in a single time step;
N, is the spatial capacity of call [N,,, - x,,(k)] is the available space in céh1; and

w/v is the ratio of shockwave speed to free-flow spelus formulation automatically

covers both the congested and uncongested rediomgyh the fundamental diagram.
After these flows have been determined for eachfoela specified time step, the traffic

conditions in the network at the next time intervatl, is updated with the following

conservation equation:
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X (k+1) = x (k) = g; (k) + g..(k) (2-12)

Although the cell transmission model is developed as@ Df outflow model, causality is
preserved in this model. It is because this model comsidetflow at one time interval
forward [KAs, (k +D)As) , rather than at the current instagts. The cell transmission model
has also been applied to dynamic traffic assignrpeoblems (see for example, Lo, 1999;
Ziliaskopoulos, 2000; Lo and Szeto, 2002; 2004 eskhstudies revealed that solving the cell
transmission model is computationally expensivéeszrand Bernstein (2000) also pointed
out that the cell transmission model is difficatanalyse because the outflow function (2-12)

is piecewise and hence is not differentiable watspect to its state variable(k . )

2.3.3. Travel time models

Travel time models consider travel time along elaghto be a non-decreasing function of
the traffic volume on the link. A key differencetlseen the travel time model and the
outflow traffic model is that the outflow trafficanel first determines the link outflow profile
according to the given outflow function and the reat traffic conditions, then back
calculates the corresponding link travel time. lontcast, the travel time model first
determines the link travel time according to theegitravel time function and the current

traffic conditions, and then calculates the coroesiing link outflow profile.

In general, a travel time functior,, (x, , 9perates in a way that

r,(s)=s+k,(X,), (2-13)
which calculates the corresponding time of exi(s from the travel link for traffic entering
the link at times. The travel time functions considered in this ihdsas the following

properties:

1. x,(0) =@, whenx, = Q whereg, represents the free flow travel time of the link

when the link is empty;
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2. k', (x,) > 0for x, >0, wherek', (X, )is the first-order derivative with respect to

the state variable, ;

3. k', (x,) - Qi whenx, - o, whereQ, represents the capacity of the link.

a

Considering whether the travel time model satisi#BO queue discipline, we have the

following proposition:

Proposition 2.4: The travel time modelk,(x, ,) satisfies FIFO queue discipline

provided that, for all tims, the inflow profile satisfies

e.(92 9, (9 _F[iﬂl' (2-14)

Proof:
Proceeding after proposition 2.1, for the molglx_ ()] to satisfy FIFO, it requires
de(S) 1+k", [x, ()] == Xa( 9 >0
= K, [%. (9] e.(9) - ga(s)] 21
1
=6,(920.(9 -1
K'a[x.(9)]

This completes the proof. [

Nie and Zhang (2005b) showed that eliminating tigethdence of this condition for FIFO on
inflow, then condition (2-14) becomes

1
g.(s) < m (2-15)
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Hence, a travel time model is guaranteed to satisfy RfROsatisfies condition (2-15) no
matter the inflow profile is. Zhu and Marcotte (2000) conjeed a more convenient criterion

to check if FIFO condition is satisfied:

1
maxe, (s) < m . (2-16)

However, Nie and Zhang (2005b) presented a cowxample in which a piecewise linear
travel time model is adopted to disapprove (2-16) suggested that condition (2-15) should

be the correct criterion to use.

If we consider the travel time functior,(x, tQ be linear with which the function of time of

X, (S)

a

is a linear function of time of entry

exit, and hence, (s) =s+«,[x,(5)]=s+¢, +

then

) =Q, will always be greater thag, (s fpllowing property 3 above and hence
Ka Xa

FIFO condition is satisfied for adfl Taking this into account, the thesis restricts d@ktention

to travel time models in linear form.
2.3.3.1. Deterministic queuing model

The first linear travel time model that we consigethe deterministic queuing model, which
is also known as the bottleneck model (Vickrey, 3% uwahara, 1990; Arnott, de Palma
and Lindsey, 1990; 1998). This travel time modeatsiders each link to be freely flowing

with a flow-invariant travel timeg,, with a deterministic queue at its downstream legitg
discharged with a maximum service r&eg. In this model, when a traffic queue exists, the

link outflow is equal to the capacity and all triees arriving before the queue dissipates will
incur travel delay. Otherwise, if the queue lengthero, the outflow is taken as the inflow at

the time of entry and the travellers are unimpedéuds,

o d-[678) (9=0e-a)<a) .

- Q. otherwise
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The traffic volume in queue, (s), is determined by the following state equation,

X () {e - ) (2-18)

ds s-¢,)-Q, otherwise

which is derived from the conservation of flow. Wittist deterministic queuing model, the

time derivative of the state variable is not contimsiavith respect to time s and inflogy. In

particular, there is a correnn the inflow ate, = Q, whenx, = 0.
Finally, the time of exit from the link for a time ofitey s is calculated as

r,(s)=s+g,+ 2 E1A) (2-19)

Q.

The deterministic queuing model is the most popukarel time model due to its incisiveness.
This travel time model has also been shown to fgatige requirements summarized in
Section 2.2 (see Mun, 2002; Huang and Lam, 200Rjadt, the model has also shown its
value in analysing dynamic network traffic and was control policies (for example, Smith
and Ghali, 1990 a; b; Ghali and Smith, 1993; Arndét Palma and Lindsey, 1998; Akamatsu
and Kuwahara, 1999; Han, 2000; Akamatsu, 2003; Altamand Heydecker, 2003; Polak
and Heydecker, 2006). However, the deterministieuing model has been criticized for
over-simplifying real traffic behaviour (Arnott at., 1998). For example, Kimber and Hollis
(1979) pointed out that the deterministic queuirgdel does not give any delay until the link
has been over-saturated. This implies that the hfade to estimate any variation in travel
time when the road link is in use within its cappcChu (1995) commented the fact that the
deterministic queuing model cannot capture the ghan the period of assignment before
and after implementation of a transport policy, ebhis road pricing in Chu’s (1995) example,
is unrealistic. In addition, the non-differentiatyilin the state equation also causes analytical
and computational difficulties. Some problems taase from this non-differentiability are

discussed in detail in Chapter 4.

¥ A corner refers to a point of function at which the derivativetta# function is discontinuous (Kamien and
Schwartz, 1991,p86).
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2.3.3.2 Whole link linear traffic model

Friesz et al. (1993) proposed another traffic model @t be used in place of the
deterministic queuing model. The model considers the lmketrtime to be a linear function
of the traffic volume on the link. As a result, tlié of exit from the link for a time of entry

scan be calculated as

X, (S)

a

r,()=s+g,+ (2-20)

in which the whole link traffic volumex,(s ¢an be determined by the flow conservation

condition using Equation (2-6).

Furthermore, the outflow experienced by trafficttiesters at times can be established

according to correct propagation of flow (Heydecaed Addison, 1998) as

_e,(9) _ Qe ]
ga[Ta (S)] /Ta () Q.+e.(9-0.(9" (2-21)
ds

which depends on outflows at tirm&and hence on inflows at earlier times. Incorpogathis

flow propagation relationship, the state equat@mx, (s) can be re-written as

Q,&.[0,(9)]
Q, +e,]0.(9]-g.lo.(9)]’

dx, (s)
ds

=€,(8) - (2-22)

where o, (Jis the inverse function af, [{30 thataa[ra(s)] =s.

The whole-link traffic model is further investigdtdy many others (for example, Astarita,
1996; Mun, 2002), and has been shown to satisfthallrequirements listed in Section 2.2.
Contrasting with deterministic queuing model, thates equation of the whole-link traffic

model is smooth and continuously differentiable hwiespect to times and inflow e, .
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However, Nie and Zhang (2005b) commented that this whalettiaffic model overstates

the actual link travel time and hence underestimatesntheltflow rates.

2.3.3.3. Divided linear travel time model

Regarding the properties of the deterministic queuing merttethe whole-link traffic model,
the divided linear travel time models (see for examBin and Boyce, 1996; Mun, 2002;

Bliemer, 2006) can be regarded as a hybrid of them. Thewteuaf this class of travel time

models is shown in Figure 2.5.

Free flow @ —a

>O—»@
X, (9)

Figure 2.5 Representation of divided link travel time model

Each travel link is considered to be having a freely ftmapart and a congestible part. The

travel time along the free flow is taken @s—a,, and that along the congestible part is

g+ Xals* (@ -a)]

a

, Wherea, is a parameter representing the free flow trawes tin the

a

congestible part. Consequently, the time of exirfrthe link for a time of entrg can be

calculated as

X,[s+ (%, —aa)]}

r,(s) :s+(¢a—aa)+{aa+ 0,

(2-23)
x,[s+ (@ -a,)]
Qa

=s+q +

This class of travel time models was shown to aadl the requirements in Section 2.2
(Mun, 2002). It is noted that the divided traveh¢i model (2-23) includes the deterministic
queuing model and the whole-link traffic model &stwo extreme cases: the model becomes

a deterministic queuing model (2-19) when the patenn, is taken as zero; it becomes a

whole-link traffic model (2-20) whemr, is equal to the free flow travel timg, . Mun (2002)
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adopted a divided linear travel time model with a shorgestible part in whichr, = As for

smoothest network loading and assignment results aftéorpeng a series of numerical

experiments.

2.4 DISCRETIZATION OF LINK TRAVEL TIME MODELS

The analysis in Sections 2.2 and 2.3 is considamedontinuous time which enables the
exploitation of calculus. To obtain numerical solutiomsavel time models have to be
transformed into discrete time representation. Theirmeous time flow quantities, (s and
g.(s), will be expressed in terms of the amount of tra#igk) and g, (k ), in a time interval,
k, wherek =[kAs,(k +1)As) , in which As is the size of the time interval adopted in

discretization (see Figure 2.6). The traffic volumgk) in discrete time intervak will be

considered at thendof the time interval (i.e. at the instaht + 1)As).

k=0 k=1 k=2 k=3
—_— —_—
| .

| i >

| | |
k20  k=As k=2As kiaas Time

Figure 2.6 Time discretization

Broadly speaking, discretization is a process ttatsforms the continuous time quantities:

e,(s), 9.(s), x,(s), andr,(s)into corresponding discrete time oneg(k , g) (k), x,(k),
and 7 (k). In this thesis, a linear (i.e. first order) irgelation technique is adopted to

approximate and interpolate the continuous timee&lin discrete time. Nevertheless, there
are still two different approaches to discretizieaael time model which are described in the
following sections.

2.4.1 Discretization based on flows

The method of discretization based on flows wast iocumented in detail in Astarita (1996)

and is described as follows:
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Step 0 Initialisation
0.1 Sets:=0, andk:=¢, /As+ 1/2

0.2 Setxy(0) := 0 and hence, (0) := ¢, ;
0.3 Seiga(k) := 0 for allk = 01,2,...,¢, / As.

Step 1 Incremental loading
1.1 Sets:=s+1,;
1.2 Calculatex, (s) = x,(s-D+e,(s-D—-g,(s— 1)

and hence,(s) = (s—-1)As+ ¢, + xa_(s)

a

Step 2 Calculating the instantaneous outflow
e, (s—-1As
[7.(8) —T,(s=1)]

Calculatega[ra(s)] =

Step 3 Discretizing the outflow

While 7,(s) > (k—1/2)As, continuously interpolatg, (k Yvith ga[ra(s)] and ga[ra(s—l)]

as follows:

- il Galra®] - gulr. (-] el
3.1. Setg, (k) = g,[r,(s- D]+ (7. (6T [(k-1/2)8s-7,(s-1)];

3.2. Setk =k +1.
2.4.2 Discretization based on cumulative flows

Ge and Carey (2002), and Nie and Zhang (2005) taef@rted separately that discretization
scheme using cumulative flows is more efficientcoding and computing and can avoid
numerical difficulties such as division by zero. @&l Carey’s (2002) and Nie and Zhang's

(2005) discretizing procedure is described as Vdlto

Step 0: Initialisation
0.1. Sets:=0, andk = ¢, / As;

0.2. Setxy(0) := 0, and hence, (0) = ¢, ;
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0.3. Sey(k) := 0, for allk = 01.2,...,¢, / As;
0.4.SetR, = 0

Step 1 Incremental loading
1.1. Sets:=s+1,

1.2. Calculatex, (s) = x,(s-D) +e,(s-) —-g,(s— 1)
X (S)

and hence_(s) = (s—-1)As+¢@, + 2—.

a

Step 2 Discretizing the profile of outflow

2.1 Calculatenk := L@ -k;

JAXS

-

2.2 If nk<lthenR,:=R,+e,(s— 1) and go to step 3 directly; else go to step 2.3;

N [kAs—-7,(s-D)] e.(s-1):
[7.(s) —7.(s—1]

2.3 Setk :=k +1, calculateg, (k) = R,

2.4 Distribute inflow:

a. Sefj :=2;

b. Setk :=k +1;

c. Calculatg, (k) == £s e (s-1;
[7.(8) —7.(s—1)]

d. Setj == j +1;

e. Ifj =nkthen go the step 2.5; else go to 2.4b;

| [ne-ks
B A E ey R

Step 3 Stopping criterion

If s< LéJ go to step 1; otherwise stop.

Discussion

Nie and Zhang (2005) proved that the algorithm &larays proceed as long as a travel time
model satisfying FIFO is used and the minimum lirdvel time is greater than the size of
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discretized time intervalAs. In addition, Nie and Zhang (2005) also proved that the
algorithm converges to the solution of the continuous madeks approaches to zero,

provided the rate of change of link travel time is boundedeabo

2.5 EXAMPLE CALCULATIONS

This section presents some example calculationsaw #e characteristics of the numerical
results of the travel time models presented in Se@i8r8. We consider a single travel which

has a free flow travel timgg, equals to 3 mins and a capad@y equals to 20 veh/min. The

size of the discretized time intervals is taken as 1 min. The travel link is initially empty. A
parabolic profile of inflow as specified in (2-24) is thieaded into the travel link. This
profile has a peak inflow rate of 50 vehs/min, which equa®.% times of the link capacity.

Consequently, the travel link will be overloaded for peabtime.

1(40— s)s if 0<s<40 (minutes)
e (s) = 8 : 2-24)

0 otherwise

The resulting link outflow and the link travel time on tinavel link is estimated by using
four different linear travel time models: deterministjopeuing model (2-19), whole-link

traffic model (2-20), divided linear model (2-23) witf) = As (i.e. Mun’s (2002) model),
and divided linear model (2-23) witlr, =2As. This example calculation adopts the

cumulative flows based algorithm in Section 2.4.2 forrdiszation.

Given the inflow profile (2-24), Figure 2.7 depicts the resgltlink outflow profiles

estimated by the travel time models. All travel timedels show that the outflow will
approach to or equal to, but not exceed, the link capadaitg foigh inflow rate. With the
deterministic queuing model, the outflow equals to eitherctirresponding inflow when the
link is uncongested or the link capacity when the link asagested. Comparing with the
deterministic queuing model, the whole-link model and theddd/imodels show a more

realistic pattern of queue dispersion in which outfloas/\continuously with the inflow over
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time. It is also observed that as the congestible poitiothe travel model increases, the

values of the outflow rates approach the link capacityfaster rate.

60
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0 20 40 60 80
Time (min)
Inflow ——— Outflow (DDQ)
Outflow (Divided: ¢, =As ) - Outflow (Friesz)
- - - - Outflow (Divided a, = 2AAS)

Figure 2.7 Link outflow profiles

Figure 2.8 shows the link travel times estimated by theekittme models. As expected, as
the portion of the congestible part taken in the tratele models increases, the
corresponding travel time estimated increases. One odtewfeature of this result, however,

is that even we consider a small portion of the imke congestible (i.ex, = As), the travel

time will be substantially higher. This difference sugg#ésas choosing an appropriate traffic
model to represent the road network system is imprianparticular the deterministic
queuing model is so predominantly used in the literatureaf@yzing dynamic network
traffic (see for example, Vickrey, 1969; Arnott, de Paland Lindsey, 1990, 1993, 1998;
Akamatsu and Kuwahara, 1999, 2001; Akamatsu and Heydecker, 2003).
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Figure 2.8 Link travel times

2.6. DisCUSSION

This chapter reviews various traffic models that havenbased in dynamic traffic
assignment formulations. We start with summarizingréggirements for a traffic model to
be satisfactory for use in dynamic traffic modellingd aassignments. These requirements
include non-negativity of traffic, FIFO queuing disciplinenservation of traffic, travel time-
flow consistency, and causality. The implications ahd relationships between these
desirable properties are discussed. In this chapter,dffie tinodels are classified into three
distinct categories: wave models, outflow traffic miedeand travel time models. Wave
models are the most widely accepted traffic models. Mewehis class of traffic models is
too complex and computationally demanding to use in dynanaifictrmodelling and
assignments. The outflow traffic models have been usetepresent the link flows in
dynamic traffic models and assignments. With thedédnmaodels, we have generated some
important insights on dynamic network traffic phenomreaod management. However, the
outflow traffic models cannot guarantee plausible trgificpagation and causal relationship.
Compared with the wave models and the outflow trafficlet® the travel time models are
more practical to use and they have been shown to befastiry with respect to the
requirements in Section 2.2, provided the link travel tingelisear function of the associated

link traffic volume.
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The travel time models considered in this chapter incthdedeterministic queuing model,
the whole link linear traffic model, and the divided lin&avel time models. Their associated
properties are also analysed and discussed. The det¢iongqueuing model is the most
popular travel time model due to its incisiveness and hassalswn its value in analysing
dynamic network traffic and various control policies.wéwer, the deterministic queuing
model has been criticized for over-simplifying real tatiehaviour. In addition, the non-

differentiability in the model also induces difficultits use in dynamic traffic assignments.

Solution algorithms are presented for discretizing theetrame models. The characteristics
of the numerical results are discussed. Given an inflogfile, the deterministic queuing
model gives an outflow equal to either the correspondifigw in uncongested case or the
link capacity in congested case. Comparing with the detéstiai queuing model, the whole-
link model and the divided linear models show a more reapsittern of queue dispersion in
which outflows vary continuously with the inflow oveme. In addition, the corresponding
travel time estimated increases with the portion ef tbngestible part considered in the
travel time models. One noteworthy feature of this rebokvever, is that even we consider a

small portion of the link to be congestible (suchras= As), the estimated travel time is still

significantly higher than that of the deterministic qugumodel. Chapter 3 and Chapter 4
further investigate the relationship between using diffekémds of travel time models and
the corresponding results of traffic assignments. ifif@ications of choosing different travel
time models for modelling and managing network trafficase discussed in the following

chapters.
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3. DYNAMIC USER EQUILIBRIUM ASSIGNMENT WITH DEPARTURE
TIME CHOICE

3.1 INTRODUCTION

In this thesis, the response of travellers to ta#ficrflows and travel times that they encounter
can be considered in terms of their choices of degatimes and travel routes, which can be
represented by a dynamic traffic assignment model. Dyndraffic assignment models
provide important insight into the dynamics of urban nekwoaffic and the sensitivity of
travellers’ behaviour in response to a range of trangpolity measures. Dynamic traffic
assignment modelling has been considered in the literaiuthe context of activity analysis
(Zhang et al., 2005; Polak and Heydecker, 2006), transpaonipta (Yin and Lam, 2002;
Heydecker, 2002a), and network management (Smith and, GBal a; b; Yang and Meng,
1998; Heydecker, 2002b). The principles of dynamic tragigmment essentially follow the
extensions of Wardrop’s (1952) two principles: dynamic esgiilibrium and dynamic system
optimum. This chapter first reviews and discusdgsamic user equilibriunassignment,

while dynamic system optimaksignment is investigated in Chapter 4.

This chapter is organized as follows. Section 3.2erewidifferent specifications of travel
demand in dynamic user equilibrium assignment. Section iBt®duces different

formulations of dynamic user equilibrium assignmenthwiéspect to the specifications of
travel demand considered. The necessary conditionsaffic flows for each formulation of

equilibrium assignment are presented. Such conditions landagsociated mathematical
analysis make explicit reference to the elementshefttaffic model and the travel cost
functions. The results of this analysis can hencegmied to any combination of possibilities
for these component models, and have substantial dignerdaerms of the traffic model and

the travel cost functions. Section 3.4 presents the esgaints on the travel cost functions for
dynamic user equilibrium to exist. Section 3.5 showsattaysis of the relationship between
the total volume of traffic that is served by the sysiduring a fixed period and the total
travel costs associated with this. Section 3.6 desctle solution algorithm for solving the
continuous time analysis of dynamic user equilibrium sTrdte time solution. Section 3.7

demonstrates the example calculations and the numezsdis. We also investigate the effects
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on the assignments of using different travel time modéeislly, some concluding remarks are

given in Section 3.8.

3.2 SPECIFICATIONS OF TRAVEL DEMAND

In dynamic traffic assignment models, travel demarerseto the volume and the temporal
profile of traffic that are assigned to each route@ulgh the network within a fixed time

horizon. Travel demand can be specified according to therdiions of choices of travellers
that are considered. This section presents two diffé&iaeds of travel demand specifications

for representing travellers’ route choice and /or deypaitime choice.
3.2.1 Specification for modelling route choice

In the dynamic traffic assignment model when only raiteice of travellers are considered
(see for example, Lam and Huang, 1995; Heydecker and Addi®®6, Han, 2000), the
volume and the profile of travel demand between eaclmedligstination pair in the network

is specified exogenously. Mathematically, this can lpgessed as

e (s)=E,(s) ,Uod,Us, (3-1)
2.8

pDPod

whereey(s) is the rate of flow into routp at times, Pod is the set of all routes connecting
origin o and destinatio. The amount of travel at each instanbf departure is given by

Eod(S) exogenously.
3.2.2 Specification for modelling route and departure time choice

The demand specification in Section 3.2.1 confities dimension of travel choice to route
choice only. Moreover, such specification of traskeinand requires complete information on
the temporal profile of travel demand for the who&work, which could present practical
difficulties of data identification and collectidieydecker and Addison, 2006). In fact, the

specification of travel demand in (3-1) can be pa&sl such that the temporal profile of the
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demand is determined endogenously in the system with &ispetoital volume within the

study time horizon. The specification of travel deman(Bt1) can be reformulated as

> [e,(9)ds=J,, ,Cod, (3-2)

POR s
in whichJ,q represents the speciffembtal amount of travel within the study period.

To formulate the dynamic equilibrium assignment with specification of travel demand in
(3-2), some time-varying components of travel costedaired in additional to the cost of
travel time to localise the travel in the time domaind hence to determine the profile of
inflow over time (Heydecker and Addison, 2005, 2006). The defaihose time-varying

components of travel cost is discussed in Section 3.3.2.

3.3 DYNAMIC USER EQUILIBRIUM

The interaction between the travel demand, the tréiffivs, and the travel times in the
transport system can be represented by dynamic useibeguil assignment. There are a
number of ways to define and formulate dynamic user equifihridetails of which were

discussed in Section 1.5 and by Friesz et al. (1993); Beycal. (2001); Peeta and
Ziliaskopoulos (2001). Following the travel demand specificatimtroduced in Section 3.2,
dynamic user equilibrium assignment can be formulatéia reute choice, or with combined

route and departure time choice.
3.3.1 Dynamic user equilibrium with route choice

Ran and Boyce (1996) gave a definition for dynamic user bguiin assignment with route

choice by extending Wardrop’s (1952) user equilibrium principle,

® This thesis adopts a fixed demand formulation in whigh is considered to be fixed with respect to travel

cost, althoughJ , can also be considered to be a non-increasing funofithe associated travel cost in an

elastic demand formulation (see for example, Arna#tl.etl993; Yang and Huang, 1997; Wie and Tobin, 1998;
Chow, 2007).
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“under such equilibrium, the total travel cost is ideadtfor all travellers departing at

the same time, irrespective of the routes of trehey have chosen.”

Heydecker and Addison (1993; 1996) expressed the dynamiegs#ibrium assignment of

route choice in a complementary inequality form of wflas

>0 = ép(s)zégd(s)
e,(s) { o Gp(s)zégd(s)} OpOP,,, Ood, s, (3-3)

where 6p(s) is the cost associated with travel time alonge@uor traffic entering the route

at time s, and 6;, is the minimum cost associated with travel timenfr origin o to

destinatiord.

Heydecker and Addison (1993, 1996) further analgsetiderived the necessary conditions for
the dynamic user equilibrium assignment of routeicdgh They considered the rate of change
of the cost of travel on routes that are in usa particular times, and then differentiated the

first case of (3-3) with respect to tim@nd obtained

dc, (s)

ds<

-

e,(s)>0 =k,,(s) OpOP,, Ood,0s, (3-4)

dCyq (S)
ds
origin-destination paiod at times. In case when the cost of travel is representetthéyravel

where K, (s) = is the common rate of change of costs for allesum use between

time alone, we have
C,(9=Ar,(9-9]. (3-5

where A represents the value of time spent travelling. ngsthe condition of flow

dr (s
propagation (Equation 2-8) in Chapter 2 to elima{% gives the necessary conditions
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for the dynamic user equilibrium assignment of route ch@teydecker and Addison, 1996)

as

_ 9,[r,(8)]
ep(s)_mJod(s) OpOP,,, Ood, s, (3-6)

qDPod

which includes the case of zero inflow since theresponding outflow will also be zero.
Given a causally determinate traffic model, theugadf the right-hand-side of the expression
is determined by inflow before tim& and hence the equilibrium assignment at tsrie

determined by assignment at times befobat not after.
3.3.2 Dynamic equilibrium with route and departure time choice

As mentioned in Section 3.2, when both route anphdare time choice of travellers are
considered, the temporal profile of the demand bandetermined endogenously in the
system. Hendrickson and Kocur (1981) stated thénitieh for an assignment to be in

dynamic equilibrium in such cases,

“the total travel cost should be the same for edvellers between each origin-
destination pair in the network, no matter what borations of departure-time and

route that the travellers have chosen.”

The condition of this equilibrium can be expresgethe form of a complementary inequality

in route inflows as (Heydecker and Addison, 2005):

>0 = C,(s)=C.q
e,(s) {=o IPATESS OpOP,,, Os (3-7

where C(s) is the total cost associated with trav@l, is the total travel cost at which

travel takes place. All travel between each orwgstination pair is achieved at the same cost

C., throughout the study period.
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To complete this extended formulation of equilibriunmsigsment, some time-varying
components of travel cost are required to add to theofdsavel timeép(s) (see Equation

3-6) to localise the travel in the time domain. dughout the study we suppose the value of
time, A, is the same for all routes. For analytical comwece and without loss of generality,
we further consider that all additional time-vagyioomponents of travel costs are expressed
in terms of equivalent time spent travelling. Asault, A =1.

The first component to be added is a time-specifist, h(s), associated with the timeof

departure of the traveller from the origin. Thisstcexplicitly considers the value of time to
travellers at the origin of a journey. We consitlet travellers would gain continuing benefit
from remaining at their origin but are drawn toitlestination by a need to attend there and

hence to travel. Consequenthys) is considered to be a monotonic non-increasingtiom of

departure time.

The second component to be added is a time-spedfit; h(s), associated with the time of
arrival, s, of the traveller at the destination, so thatdheval cost associated with departure

from the origin at times and using routg is f[rp(s)]. Many authors have followed the

specification of Vickrey (1969), Hendrickson anddgo (1981), and Arnott, de Palma and
Lindsey (1990) in which piecewise linear functicare adopted foif (t) with constant value
throughout an interval surrounding the ideal tinieaival and increasing with increasing
deviation from it. Small (1982) introduced the id&faa discontinuous increase in cost at the
latest permitted arrival time and reported the eicgli finding that the rate of increase of cost
for progressively late arrivals is about twice tHat progressively early ones. The
consideration of the arrival cost in the presentnfdation is substantially more general than
that in the literature, while the choices of thedispecific costs are subject to certain
restrictions that are discussed in Section 3.4.

Finally, the total travel cost(s) associated with departure on royteat time s is

determined as the sum of all the above three costs:

C,(s)=h(s)+[z,(s)— sl + flr,(s)]. (3-8)
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Conditions (3-7) show that in equilibrium the cﬁgl(s) that is incurred by the travellers is

constant with respect to time. Heydecker and Addison (28®&)loped a novel analysis of the
equilibrium conditions (3-7), and derived a relationst@pMeen route flows and the costs at the
origin and destination of a journey that is satisfiedaby flows in equilibrium. Consider a
route that is in use for travel between a certain m1iigistination pair at timg Using the first

case of (3-7) together with (3-8), differentiating widspect to departure tirsejives
e,(s)>0 = h(s)+z,(s)-1+ f[r,(s)7,(s)=0. (3-9)
Rearranging this gives the expression

1-h'(s)

e,(s)>0 = Tp(s)zﬁ[r—(s)]’ (3-10)

which specifies the rate of change of travel tinmeaoy route in use between an origin and
destination to achieve dynamic user equilibrium ydézker and Addison, 2005). Pursuing
the analysis of (3-10) by using the condition ofxflpropagation (Equation 2-8) to eliminate

7,(s) gives

e,(5)= { 1-nls) }gp[rp(s)]- )

In order to maintain the dynamic user equilibriutime inflow to a route must satisfy the
condition (3-11). The rate of Chang|é(s) of departure time-specific cost is determinechat t
time of departure. As discussed earlier, this @e¢nrre is negative and values of greater
magnitude will increase the initial infloweg(s) in equilibrium. The arrival time-specific cost
enters in the denominator of the right-hand sid€ef1). The effect of this is that departures
will be more intense when they lead to arrivallaise times, if any, where the arrival time-
specific cost is decreasing and less intense whey kad to arrival at times when it is
increasing. Finally, the route inflow is directlygportional to the outflow at the time of

arrival. Due to causality, the outflowp[rp(s)] is determined by inflows before the tirme
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3.4 REQUIREMENTSON THE TIME-SPECIFIC COST FUNCTIONS

Following the analysis in Section 3.3, Heydecker and Add{@305) summarized certain
requirements on the travel cost functions for equiliorito exist. In order for both inflows
and outflows to be positive, it is required that eacthefnumerator and denominator of the
quotient in (3-11) is positive This givesh’(s)<1 and f'(s) > -1. Thus, the departure time-
specific costs cannot increase at a rate that dzoesue of time spent travellifigotherwise
travellers would have an incentive to depart eadied spend additional time travelling rather
than to remain at their origin. Furthermore, thedition f'(t) > -1 implies that the arrival
cost cannot decrease at a rate that exceeds tine @atime spent travelling. If it did, this
would imply that travellers would have an incenteither to travel more slowly, or to use a
route that is slower but otherwise equivalent &srédduced arrival costs on arrival would
more than compensate for the increased travel tieertheless, for reasonable travel

behaviour, we usually expedt(s)<0 and f'(s)>0 in practice, which dominates the

requirements above.

Furthermore, if the arrival time-specific cost ftino is monotonic non-decreasing so that

f'(t)= 0 for all timest, then in order for an equilibrium to exist, thepeeture time-specific

cost function has to satisfy

h(sg)<-flg+o ], (3-12)
where

¢ =inf {s|h(s)+®, + f(s+ > )< C} (3-13)

is the time of the first entry to the royte Thus, the departure time-specific cost functen i
required to decrease at the time of first assignmath greater magnitude than the increase
in the arrival time-specific cost at the associatiese of arrival. If this condition is not

™ The case in which both numerator and denominator aaineds excluded as being unrealistic.
™ Recall that the cost associated with a unit of tréives, /\ , is considered to be equal to 1 (see Section 3.3.2).
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satisfied, the total travel cost,(s), will increase, at least initially, so that equilibriu

cannot be achieved.

Moreover, suppose that the monotonic non-decreasingahbtiive-specific cost function is

piecewise continuously differentiable. At tins.%, where
s = sup{s|h(s)+ P, + fs+ CDp) <C.} (3-14)

is the time of the last entry to the rogtethe travel time will decrease because the tradfic

being cleared This implies the instantaneous rate ofgehan travel time at that time is

dr

negative (i.e. d_p -1/<0) and gives the third term on the left-hand-side(®fL1) a
s

s,

P

positive value less tharh '[rp(st)]. In order for the equilibrium condition (3-11) tme

satisfied, it is required that
—hi(st)< f1st +o,]. (3-15)

Thus for travel to cease, the cost of remaininthatorigin should not decrease at a greater

rate than that at which the penalty for late atrinereases.

3.5 COST-THROUGHPUT RELATIONSHIP IN DYNAMIC USER EQUILIBRIUM

The following three quantities:

(a) the total cosC., incurred by each traveller,

(b) the timesg at which each route is first used, and

(c) total amount of traveE, that takes place on each route during the stadgah
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are closely inter-related (Heydecker and Addison, 20Dbge the time of first departuﬁ on
route p is determined, the total cost of traw@], can be found directly using (3-8) as
C,y = Cp(sg). Conversely, if the cosE,, is specified for an origin-destination paid, the
times sg and sﬁ) of the first and last departures can be found for eauate p according to (3-

7) and (3-8). Once these times of first and last depadn a route are known, the inflays)

can be integrated over the intervening interval to g¢ee total amount of traffi&, that is

S
served by that route during the study perigg:= jep (s) ds. Because criterion (3-11) applies

separately to each route that is used, the route-spiiicghputs calculated according to this
procedure can be summed for each origin-destination paydedker and Addison (2005)
further showed how an implicit cost-throughput relatiomsan be established for each origin-
destination pair in a network. In the case that tha tatlume of traffic is exogenous, the cost
at which it will be achieved can be found by searghims implicit relationship. This then
establishes the equivalence of the three quantitiesifidd above, so that the specification of

any one of them will determine the values of the others

3.6 ALGORITHM FOR SOLVING DYNAMIC USER EQUILIBRIUM

The analysis in Sections 3.3 — 3.5 is considered in aonim time that facilitates the
exploitation of calculus. This section introduces autsmh algorithm that transforms the
analysis in continuous time into numerical solutionsdiacrete time. The algorithm is
structured as a forward dynamic programme to be solvedafdrim the order of departure
time interval. It is due to the causal property of tlaet time models that ensures the travel
cost experienced by the traffic that departs from anro@gitimes is independent of the
traffic departing from that origin after time The study period in continuous timg, is
discretized intoK intervals each of lengtiAs. Following this, the instantaneous flow in

continuous time formulation is represented as the #ky that is constant through the
discrete time intervak: [KAs, (k +1)As) . This flow is tested against the cd3(k +1)As at)

the late end of the time interval. Within each dép@ time intervak, the equilibrium inflow
is calculated by using Newton method, which congsngith an order of convergence at least
2 (Luenberger, 1989, p202).
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The algorithmic procedure is described as follows.

Step 0: Initialisation

0.1 Choose an initial equilibrium co€X, for all O-D pairsod;

0.2 Set the overall iteration counter=1;

0.3 Sete,(k):=0 for all p between each O-D paad, and for all timek J[0,K], where
K=T/As;

0.4 Set time indek :=0;

0.5 Set the origin-destination index :=1;
0.6 Set the route indep:= ;1

0.7 Set the inner iteration counter:= . 1

Step 1: Network loading

Find 7,(k +1) by loading the travel link using the route inflay(k) at the current iteration.

The algorithm in Section 2.4.2 in Chapter 2 is @addgor this purpose.

Step 2: Update the inflow
2.1 Calculate

Cp(k+1) = h(k+ 1)+ [r,(k+ )= (k+ D]+ flr ,(k+ DI;

C,(k+1)-C,(k
2.2 CalculateQ , (k) = oD p(),

As
20 (k
andﬁ((k)) = 1+ f'[rp(k+1)])%:5§ia,

if link aisonroutep

in whichd? = 1
P10 otherwise

¥ In Step 2.2, the derivativef'[rp(k)J can be estimated using a finite difference approximatie

flr, (k+)- flrp(k)J. The derivation of the expression @&, (K) is given in Appendix 3A. It is
r,(k+1)-7,(k)

noted that the equilibrium is achieved if and only iffirection Q ; (k) = O for all positive inflow €, (K) .

tlr )=
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231f C (k+]) # C.4, update the inflow as, (k) :=max[(e, (k) + d (k)),0] .

Q. (k)

The search direction is denoted thy(k) =-""° 20, (K) which is second order, and

de, (K)

Coa -Co(k+1)
Co(k+)-Co(k+1)

the step sizen is interpolated linearly ag =

whereC;(k+1) and C)(k +1) represent the corresponding valuesQgfk +1) when

e’;(k) is being updated withu is taken as 1 and O respectively. To determineve need

two network loadings, one before and one after tipgléhe inflow, to obtain the values of

C;(k+1) andC)(k +1).

Step 3: Stopping criteria
3.1. Check if |C,(k+1) -C,,

<&, whereg, is a test value, or afi is greater than the

predefined maximum number of inner iterations, tigento step 3.2; otherwise, set
n':=n' +1 and go to step 1;
3.2. If p=P,, then go to step 3.3; otherwige= p + 1 and go to step 0.7;
3.3. Ifod=0D, then go to step 3.4; otherwisé= od + 1 and go to step 0.6;
3.4. Ifk =K, then go to step 3.5; otherwise k + 1 and go to step 0.5;
> 2 &(k)Ca(k+1)-Cy

3.5 Defineé = ¥xaA as a measure of disequilibrium. Note that 0

Z Z ea (k)C:)d

kOK adJA

at dynamic user equilibrium. H is greater than the predefined maximum number of
overall iterations o€ is sufficiently small, i.e < & where¢ is a test value, then go

to step 3.6; otherwise set=n+1 and go to step 0.4;
3.6. Check the total throughpl, = > > e (k) of the system against the total demand

OpOR,y Ok

Jog for eacho-d pair. If E; =J,,, thenterminatethe algorithm; otherwise update

. . Jys—E : -
C.,=C,,+ 22— and go to step 0.2. For networks with mutuallyidés routes,
_ d

dC,

Heydecker  (2002b)  established an  expression for  thaerivative
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OE, _
acC._, 2

pDPod

Q, , Wwhere Q, :aneﬂljrgQa is

([b'(s‘;)+ e, (=[S )+ 1, 1))
(s )+ £l (sl 'lss )+ e, (sp)l

defined as the critical capacity of the ropte

Discussion

The discretization can bring in difficulties in deioig the instant at when the associated costs
should be considered. Heydecker and Verlander (1999) showed firedictive manner
should be adopted for plausible assignment results. ledicpive discrete time formulation,
the travel cost, which is calculated forward in time thueausality, associated with this flow
should be considered at the end of the interval (i.eheatime(k +1)As), rather than at the
start of the interval (i.e. at timgAs). The consequence of considering the cost at an
inappropriate time was illustrated by Heydecker ¥edander (1999).

The inflow at each departure time interkat calculated in Step 2.2 such that the associated

value Q (k) =0. With this inflow, the total travel cost remainsnstant over time. We

further need Step 2.3 to adjust the inflow assigaethe start time of the assignment such

that the total travel cost at the start time ofgassent is equal t&,,. Once the value of the

travel cost at the start of the assignment is ¢atled correctly, costs thereafter can follow.

Furthermore, the magnitude G6f, and the total traffic volumE,q are related as discussed in

Section 3.5. Consequently, Step 3.6 is used tosadiie magnitude o€, such that the

algorithm can give the same total volume of trefifjgas the predefined one.

Finally, the algorithm above considers networkshwinultiple origin-destination pairs
connected with mutually distinct routes. In caseetiworks with multiple origin-destination
pairs with overlapping routes, traffic entering thetwork during the journey time of a
traveller from other origins downstream can infloerthe travel time of travellers from its
upstream. As a result, some special computatiogetinique, for example Gauss-Seidel
relaxation (see for examples in Sheffi, 1985; Rason, 1994), is required. The basic idea of
such relaxation scheme is to decompose the assignpmblem for networks with

overlapping routes connecting multiple origin-deation pairs into several sub-problems. In
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each sub-problem, we calculate the equilibrium flow foe @rigin-destination pair, and
temporarily neglect the influences from the flows lesgw other origin-destination pairs.
When equilibrium is reached for the current origin-degion pair, we proceed with
calculations for the next pair. The implementation tbis relaxation scheme and the
numerical experiments on dynamic traffic assignment problcan be found in Han (2000)
and Mun (2002).

3.7 EXAMPLE CALCULATIONS

The section shows the example calculations to itistthe numerical properties and results
of dynamic user equilibrium assignment. In particwee, examine the effects of choosing

different travel time models and different degreesisdrétization on the assignment results.
3.7.1 Problem setting

We compute dynamic user equilibrium inflow in a networkhvat single origin-destination
pair connected with two parallel links as shown in Figgue Link 1 has free flow time 3
mins and capacity 20 vehs/min, and link 2 has free flow timairs and capacity 30
vehs/min. Four different link travel time models: the dwmiristic queuing model, two
divided linear traffic models with parameteg equal toAs and 2As respectively, and the
whole-link linear traffic model are used to represent thie traffic dynamics. The origin-

specific costh(s) is considered to be a monotone linear decreasingtion of time with a

gradienth'(s) = — 04 The destination cost functioh t (ig piecewise linear which has no

penalty for arrivalst before the preferred arrival tinté = 5@nd increases with a rate

f'(t) = 2 afterwards. The test valuesand £ are set to be 18. The length of the study

period,T, is set to be 60 minutes, which is long enough skiahthat all traffic can be cleared.
The time incremental ste@s, in the calculation is taken as 1 min and hekdce T /As=T.

The total volume of traffic] , within the period is fixed at 800.
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Figure 3.1 Example network

3.7.2 Dynamic user equilibrium assignments

Figure 3.2 shows dynamic user equilibrium assignment regsitg different travel time
models. The assignments show good equilibrations foaatlttime models adopted, in which
the measure of disequilibriug is below 10" in all cases. Given the same total volume of
traffic, the values of equilibrium cost at which travake place are estimated to be 10.08
mins, 11.64 mins, 13.43 mins, and 15.58 mins respectively for themileistic queue, the

divided travel time model witlw, = As, the divided travel time model wittx, = 2As, and

the whole-link traffic models. These examples show thatlarger the congestible portion

considered on the link, the higher the resulting travdbkcatsuser equilibrium.
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a) Deterministic queuing model
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b) Divided linear travel time model(, = As)
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c) Divided linear travel time model(, = 2As)
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Figure 3.2 Dynamic equilibrium assignments

3.7.3. Effects of choosing different travel time models

We compare the dynamic user equilibrium assignmentc@ased with different travel time
models, which are shown in Figure 3.3. With the same amofitravel demand, the

assignment inflows spread over longer periods of timeréret time model with a larger

congestible portion.
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Figure 3.3 Dynamic user equilibrium assignments

We also show the associated start times, the ends.timed the link volumes of the

assignments to each link in Table 3.1. In each of thasesc link 2 serves more traffic than

link 1 does due to its higher capacity despite its longerfiibaetravel time.

Table 3.1 Summary of assignments to each link

Link 1
Start time (min) End time (min) Traffic volume (veh)
DDQ 32 49 367.20
Divided: a, = As 28 52 352.30
Divided: a, = 2As 23 49 347.81
Friesz 18 49 380.25
Link 2
Start time (min) End time (min) Traffic volume (veh)
DDQ 34 47 432.80
Divided: a, = As 30 52 447.70
Divided: a, = 2As 26 49 452.19
Friesz 21 49 419.75

Table 3.2 further summarises the start times, the emektiand the durations of assignments

to the whole network system. Because all the trawed imodels commence with the same

free flow travel time and associate with the sameeispecific costs, following the cost-

throughput analysis in Section 3.5, a travel time modt#t & larger congestible portion

68



implies a higher total travel cost at user equilibriwmich results in a longer duration of

assignment as shown in the Table 3.2.

Table 3.2 Summary of assignments

Start time (min) End time (min) Duration (min)
DDQ 32 49 17
Divided: a, = As 28 52 24
Divided: a, = 2As 23 49 26
Friesz 18 49 31

3.7.4. Effects of using different degrees of discretization

Finally, this section investigates the effects of usinfgiht degrees of discretization on the
assignment solutions. The equilibrium link inflows for thigided linear travel time model

with a, =As and whole-link traffic model are plotted against differeségree of

discretization in Figure 3.4 and Figure 3.5 correspondinglg. ilVestigate four different
degrees of discretization in which the time incremestep As is set to be 0.25 min, 0.5 min,

1 min, and 2 mins respectively.

Similar to the findings in Mun (2002), for the divided line@vel time model, the travel time
estimated is dependent on the size\sfadopted. As a result, the corresponding assignments
do differ for different size of discretization as shoinrthe Figure 3.4. For the whole-link
traffic model, the travel time estimated is independenh®ivalue ofAs adopted. Following
this, the corresponding assignment shown in Figure &&ssthat for the assignment profile
converges with respect to the degree of discretizaliiogeneral, the solution algorithm gives
the assignments with the same start time, end tinteaaimilar profile forAs equals to 0.25
min, 0.5 min, 1 min. This experiment also shows that liyngea reasonable discretization

As =1 min.
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Figure 3.5 Dynamic user equilibrium assignments with wiioletraffic model

3.8 DISCUSSION

This chapter reviews and discusses dynamic user equiibegsignment. The formulation,
analysis, and calculation of the assignment are nfites. For dynamic user equilibrium
assignment with combined route and departure time chiiedistinct roles of the departure
and arrival time-specific cost functions are discusSaleral properties associated with the

assignment, including the requirements on the cost fursctior an equilibrium solution to
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exist and the relationship between the travel costlanshnd (i.e. cost-throughput relationship),
are also established. Based on the analysis, theiosolalgorithm is proposed using the
forward dynamic programming approach. Such approach ssohes assignments to a high
degree of accuracy. Following Heydecker and Verlande9Q)1% predictive assignment is
adopted for plausible results. The solution algorithm isiegpb numerical examples and the
characteristics of the results are discussed. Tha®fiéchoosing different travel time models

and different degrees of discretization are also inyatsd.

The deterministic queuing model has been used predominanhbly lterature for analysis of
this kind. The results presented in this chapter, howeversubstantially more general. The
analysis developed makes explicit reference to thelttame models and the time-specific
cost functions adopted. In addition to the deterministic equgeunodel, this chapter also
analyses and calculates the assignment using otheitdatravel time models including the
divided linear travel time models and the whole-link tecafhiodel. With different travel time
models, it is observed that the corresponding volumespaoiiles of equilibrium inflow
generated differ substantially. This shows that aeslysased on the deterministic queuing

model do not apply in general.

Finally, the example calculations shown in this chaptnsider networks with mutually
distinct routes, i.e. routes without shared bottlenda networks with multiple origin-

destination pairs connected with overlapping routes, dreffitering the network during the
journey time of a traveller from other origins downatrecan influence the travel time of
traveller from its upstream. In such case, certaiaxetlon techniques are required to

compute the assignment solutions.
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Appendix 3A: An expression for thederivative of travel cost with respect to inflow

p

©

which is used in

This appendix derives an approximated expression for theaties

the solution algorithm presented in Section 3.6 for dynarser equilibrium assignment.

Suppose that the travel time is the only componetitartotal travel cost that is dependent on

the inflow e, . Differentiating the functior2 ; with respect tee, gives

0Q,
de

=+ i, 0 e (3A-1)
P oe,

p p

in which the route travel time is written as

M(p

r, (k) =k+ er;m (K)-12 ()] =k+ Mﬁj@z 2 ), (3A-2)

wherez,; (s) represents the exit time of the traffic enterihg toute at time from link an on
routep. The notationa,,, represents therth link on the route, ankli(p) is total number of links

on routep. This exit time is calculated based on the assedtitk entry timer? (s), as
12 (s) =1 (9+Cl[ry ()], (3A-3)

where Ea[rfmfl(s)] is the link travel time for traffic enters the Kinat time 72 (s) and

I, (s) =s for all routesp.

ot

The derivativea—p in (3A-1) can be approximated as the followingtérdifferentiation as
e
p
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or AT M(p) dcP (7P
PP - 1 A1+ Z —a'“( a"”)r'apm (K) ¢, (3A-4)
aep Ae, Ae, — dr;’m =

in which we assume that the perturbation in the infthwing the time intervak only affects

the travel time at the final instant of the intédedut not at times thereatfter.

The travel time models that we adopted in this chapteall linear in inflow, so we have

ac, (T ) 1
dr;’m Qp

-1

(92 [r2 (1= g2 [r? (K)]). (3A-5)

where g; (s) represents the route-specific flow exiting ligf on routep at times, which
also implies thag; (s) is the route-specific flow entering link, on routep. The notation

Qy , denotes the capacity of lirk,, on routep.

Hence, for the linear travel time models adoptethis chapter, we have

Ar‘ M(p) dC.
{1+Z a"*( p(k)}
Aep Aep o~ amfl

1 1 MO
=L > (g2 (1 (-0l [r (Il (), (38A6)

Aep anq

m=1

S ) P
Q;:ﬂ Aep am1

in which we consider that the link outflogg [7; (k)] is independent of the inflow, (k)

following causality.

In addition, the flow propagation mechanism giveshat

e (s) =9z [r5 (977 (9). (3A-7)
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Consequently,

AF, MO 1 Ag;’mfl[rapm?l(k)]T_p ©
Ae B - p Ae 81
p m=1 8m-1 p
M (p) Ae
=2 % . .pl 2 (k) , (3A-8)
m=1 -1 Ae Tam—l (k)
M (p) 1
m=1 Qazjfl

or equivalently,

AT _(k
A = Z 5;‘ {ij ) (3A-9)
Ae, (k) T "(Q.
Finally, it gives the following approximate expriessfor —= as
p

0Q At

2=+ 7 (k -
e [+ £, 0] S

_ (3A-10)

bt J1
=i+ f [Tp(k)]]Za:JP{Q }

a
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4. DYNAMIC SYSTEM OPTIMAL ASSIGNMENT WITH DEPARTURE
TIME CHOICE

4.1 INTRODUCTION

Dynamic user equilibrium is used to represent the Hidicn of traffic that arises when
travellers consider their own interests alone. Howesech distribution of traffic generally
does not lead to the best possible use of the transmensybecause the user equilibrium
considers that each individual traveller is acting onlyhieir own interests, rather than those

of the whole system.

This chapter investigates dynamic system optimal assigimmehich is an important yet
underdeveloped area in the literature. We suppose that ithereentralsystem manager
distributing the traffic over time within a fixed horizgo that the total, rather than individual,
benefit of all travellers in the system is maximis@lthough the system optimal assignment
is not a realistic representation of traffic, it piees a bound on performance that shows how
the transport planner or engineer can make the best tise afad system, and as such it is a
useful benchmark for evaluating various transport policy oreas These measures include
time-varying pricing (Yang and Huang, 1997; Wie and Tobin, 1998 kRoid Heydecker,
2006), network access control (Smith and Ghali, 1990; Larl Daganzo, 2000; Erera et
al., 2002), and road capacity management (Ghali and Smith, H@98ecker, 2002b).

Dynamic system optimal assignment, which is a kind yofaghic optimization problem, is
difficult to solve. Merchant and Nemhauser (1978a; bjewibe first to consider, formulate,
and analyse this as an optimal control problem in wihiatffid¢ is modelled by the outflow
model (see Section 2.3.2.1). Merchant and Nemhauser’s (1By8armulation was then
studied by many others in the past three decades (seeafmplex Ho, 1980; Carey, 1987;
Friesz et al., 1989; Janson, 1991; Carey and Srinivasan, 1963tVdl., 1995a; Yang and
Huang, 1997; Wie and Tobin, 1998; Friesz et al., 2004). On thdam& this formulation
provides some attractive mathematical properties folysisa On the other hand, the
plausibility of outflow traffic model was later founa tbe questionable as discussed in
Section 2.3.2. In particular, the outflow traffic modghores the importance of ensuring

causality and proper flow propagation as first shown by T ¢b993), followed by many
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others such as Astarita (1996); Heydecker and Addison (1988%zFand Bernstein (2000);
Mun, (2001).

This chapter investigates dynamic system optimal assignmitim departure time choice
based on plausible travel time models. In Section #& assignment is reformulated as a
state-dependenbptimal control problem, with which optimal inflow pref is sought to
minimize the total system travel cost given a fixedvétademand. The state-dependent
control theoretic formulation was investigated by Frietzal. (2001) and Friesz and
Mookherjee (2006) for dynamic user equilibrium assignmert,gnFriesz et al. (2004) for
dynamic flow routing in data network. This study appliess thiate-dependent control
theoretic formulation to dynamic system optimal assigmm The current formulation
considers transport systems with one origin-destingt@nconnected with mutually distinct
routes consisting of one single link. Due to the spgr@berties of the deterministic queuing
model as discussed in Section 2.3.3.1, we also particidady the analysis of dynamic
system optimal assignment with such traffic model. &doer, as any kind of optimization
problem, solving dynamic system optimal assignment reqgthieederivative of the objective
function (i.e. total system travel cost) with respcthe control variables (i.e. inflow). In
Section 4.3, a novel sensitivity analysis is developedtti. The sensitivity analysis is
developed through general flow propagation mechanisms anadhssia is not restricted to
any specific travel time model. In Section 4.4, solutmigorithms are developed and
presented for implementing the sensitivity analyses amdng dynamic system optimal
assignments for a range of travel time models. In@edt5, example calculations are given
and the characteristics of the numerical resultslm®issed. Given the difficulties in solving
dynamic system optimal assignment, in Section 4.5unbdr suggest an alternative solution
algorithm which may be considered to replace the original for assignments with better
quality. Section 4.6 proposes some practical tollingesgias for managing dynamic network
traffic flow based on the study of dynamic system optiamssignments. Finally, some

concluding remarks are given in Section 4.7.
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4.2 DYNAMIC SYSTEM OPTIMAL ASSIGNMENT WITH DEPARTURE TIME CHOICE

Dynamic system optimal assignment with departure tocheice is formulated as the
following optimal control problem. This seeks an optimdbw profile e, (s) that minimizes
the total system travel cost within the study peribdgiven a fixed total amount of traffic,

Jog .

m(ir)1 zZ=> ]Ca (s)e,(s)ds (4-1)
subject to:

—dGanrca(s)] =e/(s) ,0aOs (4-2)

%O e (9-0,9 Cals (@3

—dEgc(S) =e,(s) .0a,Os (4-4)

D E.(T) =3, (4-5)

e, (s)=0 ,0a0s (4-6)

The objective function (4-1) was first adopted bgrbhant and Nemhauser (1978a; b), and by

several other researchers since then. The not&j¢s) there represents the total travel cost

associated with a departure tilmeas defined previously in Section 3.3.2. Equalié+R)
ensures the proper flow propagation along each Hajiation (4-3) is the flow conservation
constraint, which serves here as the state equttéangoverns the evolution of link traffic,

X, (). Equation (4-4) defines the cumulative link infldgy (). Equation (4-5) specifies the

amount of total throughpukq between the origin-destination pair within thedilmorizonT.

Condition (4-6) ensures the non-negativity of tlentool variable,e, (). Given a non-

negative inflowe, (J, the corresponding outflowy, () and the link traffic volumex, ()! are

guaranteed to be non-negative (see PropositiomZhapter 2). Hence, we do not need any
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additional constraints to ensure the non-negativitg gf)) and x_ ()} as proposed in Friesz et

al. (2001). In addition, because the travel time modelstadop the formulation satisfies

FIFO discipline structurally, we do not need additiormaistraint(s) to ensure FIFO as well.

One technical difficulty arise because the duration eftime lag between changes to the
control variable,e, (s), and the corresponding respongg|7,(s)], depends on the stake
The time lag between the control and the response ibnthtravel time that is a function of
the state variable, (s). This state-dependent control theoretic formulationnsrthodox in

the control theory literature. Its properties and aapibn to dynamic equilibrium assignment
were studied by Friesz et al. (2001). We derive the necessadjtions for dynamic system

optimal assignment in the following proposition.

Proposition 4.1: A necessary condition for the solution of the dyraaptimization
problem (4-1) — (4-6) is

>0=C,(S) + W, (9) + A, () —Va(9) =
2(8)1_ 0= C,(S) +W,(5) +A,(5) — Va(s) 2

},Ua(S) =v,y ,0a,0sO[0T], (4-7)
where A, (s )and y,(s) = A,[r.(5)] are the respective costate variables for the flow
propagation constraint (4-2) and flow conservatonstraint (4-3), andz,(s) =V,

is the costate associated with constraint (4-4)ismmnstant with respect to time with

magnitude given by _, which is a multiplier of constraint (4-5). The walofv , is

determined by the total amount of traffig,. The notationW, (s )represents the

sensitivity of the value of the objective functiaith respect to a perturbation in the

.
oC
inflow profile, where ¥,(s) = J{aua %(D}dt refers to the additional travel cost

t=0 St
imposed by an additional amount of traffig, at times to existing travellers in the
system. This additional cost is also termeddgsamic externalityWe define the

parametersis be a perturbation in the inflow profile for which
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dey (t) _ { 1 if tO[s,s+ds 4.8)

du 0 otherwise

S

in whichdsrepresents the incremental time Step

The value of¥, (s )is equal to the total change in the value of the totaesysravel

cost Z with respect to this change in the inflow profile during ttime interval
[s,s+d9).

Proof:

The objective functionZ is first augmented with the constraints to forne th
following Lagrangian:

lc.(9e.(9+ Aa(s){[ea (9-09.(9)]- %} u, (s){% —e, (s)}
i ) -
o1+ ya (S){ad—a - ea (S)} - loa (S)ea (S) ’
S
+ l/od [Jod - z Ea (T)]
(4-9)

where A_(s)and y,(s)are the respective costate variables for the ionservation

and flow propagation constraints; apg(s and p,(s)are the associated multipliers

on the cumulative and the non-negativity constgiof the control variables

respectively. Finallyy, , is the multiplier associated with the total thropgt. Using

integration by parts, the terms involving—dxda(s) and dE, ()

ds<

-

in the integrand over

time can be rewritten as follows:

%8 The inflow e (s) Is a continuous quantity with respect to time. Strispigaking, the value @k, (s) is zero if
we refer to only one particular instant, and henowilit not be effective on the cog (). TO validate the

analysis, we propose a notatigo, to represent the change in inflow throughout a time inteather than at a
particular instant.
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d/1 (s)

j A (s)%s j A, (9)dx, (S) = A, (T)%,(T) = A, (), (0) - j X, (S) ds,(4-10)

and

J (9" Vs = jua(s)dE (9) = 4, (T)E, (T) - 11, (O, (0) - jE() el
(4-11)

in which the initial valuesx, (0) and E, (0) are considered to be zero. Consequently,

the Lagrangiarz” becomes

z —Z[ A (M)x,(T) + 4, (T)E, (T)]+Vod( ZE (T)]

d/1 d ! (4-12)
+ZI{H 9+ Py (9- eI (s)}
in which we can identify the Hamiltonian function:
H.(5) = C,(9)e,(9) + A, ()e.(s) ~ 0. ()] - (9. (9)
(4-13)

; ya(s){ga[ra (9970 ¢ (s)} —pa(9e(s)

Before proceeding forward, we define the parametgrbe a perturbation in the

outflow profile for which

dg,(t) |1 if tO[s,s+ds) (4-14)
dv 0 otherwise

for consistent with the inflove, .

The variationdZ™ of Z* with respect to its variables is derived as

81



@ =T [0 M)+ 4, NE,M]+ ZI[ }Jea(s)ds

Oa o s

+ZI adga(s)+ e, [r,(9)]+ {Ha M (S)}fx()} (4-15)

Da o V(5 X, ds

-3 d”a(s)aE (s)ds- vodZdE )

Oa o

in which oH, , oH, , oH, , and oH, represent the derivatives of Hamiltonian

du; ~ Ovy OV,

S a

function with respect to its corresponding variabke (s), 9,(s), 9.[7.(s)], and

X, (S) respectively.

Applying the change of variable$,=7,(s) = dt=7,(s)ds, the bounds of the

integral are changed accordingy=0=t=7, @ds=T =t=r7_(T)

The variation with respect tga[ra(s)] can now be transformed to

T 7a(T) oH dt
&0 ds= 29
ﬂ ga[ra(s)]} = | L,V g()}a( 3

Y9 r 0 7Vl
7a(T)
oH 1
o g% t
7,(0) RACAQ) Taloa(1] (4-16)
SO .
= . 59a(9) ds

R ORAACIORECEC)

The time horizorT is taken such that it is long enough for all icatb be cleared by
the end of it, the integral on the right hand sié&quation (4-17) only needs to be

calculated up to tim& as

T

ol oH aH 1
ad a 0 d -
ILT@ g""[r""(s)]} e U (@17)
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Finally, &Z" becomes

& =S AMEM + 1 ME,M]+ ZI[

Oa o
7,(0) aH
+Z I{

Oa o

Jdea (s)ds

S

J .(S)ds

S

OH, [oH, 1
+ _a._ @a(S)dS
%‘:r.[o){: {OVS TaJU(S)]
0H, , dA,(9) . RE)
+D2£K - }d(()}d Dz! o Xk, (s)ds- vodZdE(T)
(4-18)
Or,
a Z[ Ao (T3, (T) + 11, (T) I, (T)] + ZI{ }é'ea(s)ds
TIoH, (oH, 1
o) w H { o TJ U (S)]@la(S)ds
+ZIKOH ‘“d(s)}dx()}d -5 [ %), (9ds-v,, T o8 M
(4-19)

because there is no outflow between time 0 andir8tearrival time 7, (O).

The optimality is achieved whe™ is stationary (i.edZ” =0) with respect to all

variations. The stationarity conditions are recagdias:

oH
ou

==C (9 + W () + A (9~ Va9 ~ K (9 - p.(89 =0 ,Dals;  (4-20)

S

aHﬁ‘+ %i
ov, |ov, 7

S a

=-1,(9+y.lo.(9]=0 .0a0s0[r,0).T];  (4-21)

aa(s)
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OH,  dA,(9) _ e, (s) L A.(9)

ax: - =1+ f[r,(s)]) =2 o =0 0als; (4-22)

A,(M)=0 ,Da; (4-23)
% =0 ,Oa,Us; (4-24)
u,(M-v,y,=0 ,[a. (4-25)

We also have the following Karush-Kuhn-Tucker (Kkdgnditions hold for the non-

negativity constraints on the inflow:

e(9=0 Ha,Os; (4-26)
e,(90.(9=0 Hafs (4-27)
p.(s)20 [Palls. (4-28)

With equations (4-24) and (4-25), we can deduce thés) will remain constant at

U, (T)=v,, for allswithin T because% 0.

-

Furthermore, equation (4-21) can be written eqentdy as
ya(8) = 4,[r.(9)] \Da,0sO[7,(0),T1, (4-29)

and the evolution of the costate varialdl€s is )poverned by (4-22) for alwith the

terminal condition (4-23)Finally, combining (4-20) and the KKT conditions-28),
(4-27), and (4-28), we then get the following caiotis for dynamic system optimum:

9 {> 0=>Cy (8) + Wy (9) +Au(9) = a(9) =

=0= Ca (s) + Y, (s)+ /]a(s) -V (s) 2}/”3 (s) = Vo ,0a,0s0][0,T], (4-30)
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as is to be shown. O

Moreover, using the costate equation (4-22) and the traadit)yersondition (4-23), the

costate variablel, (s Jor any times can be calculated recursively working backward in

time:

PRCE —QiajT(l+ £[r, ©)e, (Oct

- Qi ](1+ f[z, ®)]e, (t)dt ,0a,0s

(4-31)

Similar to their static counterparts (see She®B3), Proposition 4.1 shows that the dynamic
system optimal assignment can be reduced to anvagqot dynamic user equilibrium

assignment formulation in which additional compdsenf the cost[LIJa(s) +A,(9) -V, (s)],

are introduced to each link and departure timesm &Each of these components is discussed

in detail in Section 4.3.

We further investigate on tteifficiencyof these conditions for a system optimal assignmen
It is found that sufficiencxannot be guaranteed with the current formulatioth @bjective
function. Further research will be necessary origent conditions for dynamic system
optimal assignment, but we nevertheless includeattaysis that has been developed at this

stage in Appendix 4A for readers’ reference.
Discussion: Dynamic system optimal assignment with the deterministic queuing model

The previous analysis requires the state variatglés), to be continuously differentiable with

respect to the inflow. However, this is not theecés the deterministic queuing model, in
which the state variable is not differentiable l& point when the inflow equals to capacity
(see discussion in Section 2.3.3.1). Arnott, den@and Lindsey (1998) derived the dynamic
system optimal solution for the deterministic qurguimodel by intuitive reasoning. They

showed that the period of assignment in dynamitegy®ptimum is the same as in dynamic
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user equilibrium. In addition, the dynamic system optim#iow profile should equal to the

link capacity through the assignment period.

Consider that the frequency of application and simplicftthe deterministic queuing model
in the literature of dynamic traffic modeling and manageimsee for example, Vickrey,
1969; Laih, 1994; Arnott, de Palma, and Lindsey, 1993; 1998; Yang and Hi99g;

Huang and Lam, 2002), the following proposition derives thamapity conditions of

dynamic system optimal assignment for the determintptieuing model by exploiting the
analysis in Proposition 4.1. To the knowledge of the aytbuch detailed mathematical
analysis for dynamic system optimal assignment witierdanistic queuing model has not

been found in the literature.

Proposition 4.2: The necessary condition for dynamic system optimuith w

deterministic queuing model is having the inflow pro#gs) = Q, for all links a for

all timess.

Proof:
To derive the system optimality conditions for the deieistic queuing model, we

need to consider separately the uncongested case, (5= 0 and e,(s-¢,)<Q,)

and the congested case (kds)>0 or e,(s-¢)=Q,).

Case 1: Uncongested condition

We consider the travel link be uncongested during the ramsigt period, i.e. when
x,(s)=0 and e,(s-¢)<Q,, and show that the limiting case dd, (s)=Q, is

preferable. With the deterministic queuing model, the @atad link travel time is
taken as the link free flow travel time that is indepamdof the inflow. Under such
condition, dynamic system optimal assignment candresidered as minimizing the

total system cost (4-1) subject to

e(s-w)<Q., (4-32)
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together with the constraints (4-4) to (4-6). We do natdn& include the flow

propagation condition (4-2) because the outfigy{s eqbals to the inflove,(s Jor
all time sand all linksa. We also do not need the state equation (4-3) becaustathe
variable x,(s)equals to zero for all time Furthermore, without queuing, the total
travel costC, (s) is independent of the inflow and is only dependent endéparture

times.

We definea,(s )as the multiplier for the inequality constraiet(s—@,)<Q,. The

objective functionZ is augmented with the constraints (4-4) - (4-6), an@2}to

form the following Lagrangian:

mnz' =Y j{c (e, <s)+ua<s){d =(9 ea(s)}—pa(s)ea(s)—a)a(s)[Qa—ea(s)]}ds

€a(s) Da o

+ l/od [‘]od - Z Ea (T)]

(4-33)
which can be transformed using integration by parts asojpaBition 4.1 to
ARPWAYLS (T)+vod( 25 (T)]
(4-34)
+ZJ{H (s) - ”a( e (s)}ds
Oa o
in which the Hamiltonian function in this case is:
H.(s)=C - S
(9=CI8( 3B &) (4:35)

—p. 6B ()-w, (s) Q- e(9

The variationdZ™ of Z* with respect to its variables is derived as
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7 = Z,Ua(T)dEa(T) + ZI{‘;’:‘JaJJea(s)ds
Oa Oa o s (4'36)

-3 [ O (gds-v,, 3 &M

Oa o d

The set of the stationary conditions for this dyiamptimization problem is

recognized as:

H, _ C,(s)—u,(8)+w,(s)-p,(s)=0 ,0Oa,Us; (4-37)
@ =0 ,OaDs; (4-38)
U, (T)-v,,=0 ,0Oa. (4-39)

We also have the following set of Karush-Kuhn-Tud&KT) conditions hold for the

non-negativity constraint on the inflow:

e(9=20 [Hals (4-40)
e,(90.(9=0 Hallsg (4-41)
P.(s)20  [afls. (4-42)

Combining (4-37) — (4-42), we have the followinghddgions on inflow to be satisfied

at optimality

e, (S){> 0= 09"

=0=C.(s) Z}Na (8)—w,(s)=v,, ,0a,0s0O[0,T]. (4-43)

We also have another set of Karush-Kuhn-Tucker (Ki&dnditions on the inflow due
to the inequality constraint (4-32):
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Q.-e(9=20 [HDafls (4-44)
w(s)[Q-e(3]=0 [Dady (4-45)
w(s)20 [Hafs. (4-46)

Following (4-43), consider the casg(s) > , @e have the corresponding travel cost
as C,(s) = u,(s)~w,(s) =v,, . Moreover, with (4-44) — (4-46), we have the

following condition on positive inflow at optimalitysa

e, (S){< Q. =Ca(9) =

—Q. = C.(9) <}ua(s:)=vod ,0a,0s0[0,T]. (4-47)

In the uncongested condition, the link travel timeonstant at free flow. Following
the discussion on time-specific costs in Sectigh e also have the derivative of the

origin-specific cost’(+) be negative and the derivative of the destinasjpecific cost
f'(-) be non-negative at all times. Consequently, tlaalt travel cost,
C.(s)=h(s)+@ + f(s+¢) , with the deterministic queuing model under
uncongested condition will decrease initially oviéme due to the monotonic

decreasing functioh(-) of time, and increase in later stage of assignmémen the
increasing functiorfi(-) starts to dominate due to late arrivals. ConsetiyeC, (s) is
greater than the cost, when the departure time intenslies outside the assignment
period; is equal to , at the start and end time intervals of assignmsistnaller than
V.4 Within the assignment period. This gives the dywasystem optimal inflow
e, (s)=Q, for all link a within the assignment period, amg(s) = odutside the

assignment period.

Case 2: Congested condition

In congested case, there is a traffic queue beingldped on the link and the

associated outflow ratg,(Jl is equal to the link capacitQ), . The condition for

congestion in the deterministic queuing model camnepresented by
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E.(92Q(s5) Hal, (4-48)

where s, is the first time at which the link is congested. Thaatdyic system optimal

assignment problem is then considered as minimizing tle $ystem cost (4-1)
subject to condition (4-48) together with constraints (4e3)4-6). We do not need to

include the flow propagation constraint (4-2) because titlow g,(s) equals to the

capacityQ, for all timesand all linksa.

We definew(s) be the multiplier associated with constraint (4-48he objective

function Z is augmented with the constraints (4-3) - (4-6)d 4-48) to form the
following Lagrangian:

x(s) dE,(s) _
5 I C.(9)&,(9) + 4, (s){[e (9) - 9.(9)] - } ua(s){T ea(s)}

m(ir;Z* = ds
a 70 = pa(96,(9) ~ @, (I[E, () ~ Q, (s~ so>] !
+ l/od[ z E (T)]
(4-49)
which can be transformed using integration by pasts Proposition 4.1 to
z —Z[ A (M)x, (T) + 1, (T)E, (T)]+Vod( ZE CF)]
d/1 d ! (4-50)
+X ] M9+ 9 - e g s
in which the Hamiltonian function in this case is:
H(9)=C(9e( 3+A(H £)s £)b 1 )sle) (4-51)

-0, 68 8)-@, (5] E(9 Q(s o9
The variationdZ™ of Z* with respect to its variables is derived as
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@' =3[ AM3M + 1 MM+ ZI( Jdea(s)ds

+DZIK6H LA, (S)J& ( )}d DZI[ Ha , d,uas(s)JdE (s
- odzﬁa(-r)

(4-52)

The set of the optimality conditions for the dynarmptimization problem is derived

as:

OH: =C,(8) +Wo(9) + A, (8) — 44, (5) — P, () =0 ,Ta,Us; (4-53)
My, ) _ 1, 1 (9] % (S) +I0) g o s (4-54)
ox, ds Q. ds

A,(T)=0 ,Oa; (4-55)
9 g (9=0 Oas: (4-56)
Ho(T)=Voq =0 ,[a. (4-37)

We also have the following two sets of Karush-Kdhueker (KKT) conditions hold

for the non-negativity constraint on the inflow:

e(920 [abs (4-58)
e(90.(9=0 [Dag (4-59)
p.(s)20  [Ha[ls. (4-60)
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Combining (4-53) — (4-60), we have the following conditiongrdlow to be satisfied

at optimality

>0= C,(S) + W, () + A, (5) — 4, (9) =
2912 0= C, () + W, () + A, (8) — . () =

}o ,Oa,0s0O[0,T].

(4-61)

Due to the inequality constraint (4-48), we havether set of KKT conditions on the

inflow:

E.(9-Q(s-§=20 &l
@, (9[E(9- Qs §]=0 [P dl;
w,(s)20 [Ha[ls.

Condition (4-56) gives

@,(s) =~

M (a. s
d< ) ] -

-

Substitutew, (s )into (4-62) — (4-64), after rearranging, gives

> Qa (S_ SO) = _a)a (S) = dﬂa (S) =

E.()
=Q.(s—5) = ~w,(s) =

di,(s) _
ds

Consider the case whex)(s) > , @e have
U, (S) =C,(5) +W, (s)+A,(s) ,0a,0sO[0,T],

and hence
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ds o 0a,0sO[0T].

(4-62)
(4-63)
(4-64)

(4-65)

(4-66)

(4-67)



dw, (s)

ds

-

duta (9 = L. ©+ W9+ A,9]=h(9 -1+

4 Oa,Os[0,T].

(4-68)

In addition, for the deterministic queuing model in tlengested state, the rate of

change of the sensitivity, of the value of the objective function with respectime

is

d9.(s) _ 1. ¢ e.(s) )

—a = 1+ £r,(9)]) o ,0a,Os. (4-69)
Consequently, we have

% =h(s)-1-(1+ f'[r,(9)) ezg(j) Oa,0s. (4-70)

Becauseh'([) <1 and f'([) > — las discussed in Section 3.4, we have

du, (s)
ds

<0=w,(s) >0,0a,0s, (4-71)
Together with (4-66), this implies

E.(9=Q(s- 5 Hal. (4-72)
Differentiating both sides with respect to tisigives

e(9=Q Hals (4-73)

which is the solution in both congested and uncstagkcases, and hence the solution

for dynamic system optimal assignment for the cheit@istic queuing model. 0

Discussion
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In case of the deterministic queuing model, congestiaiingnated completely in dynamic
system optimal assignment. The consequence of thiatighé travel times along each link
are constant at the corresponding link free flow treee all times of departure. One way to
decentralize this dynamic system optimal assignmentimpose a dynamic toll to each link
in the system. This system optimizing toll should beawveourally equivalent to the delays
that would be incurred in traffic queues under the nodgitamic user equilibrium (see

Heydecker and Addison, 2005). Such toll can be determined as

B2(s) = vog —h(s) -, - f[s+ @], (4-74)

in which v, is the cost at which travel takes place at dynamic eseilibrium. The

advantage of the toll being incurred as a charge ratharas delay is that the former can be
used to communal advantage whereas the latter is a dmadMore discussion on dynamic

tolling strategies is given in Section 4.6.

4.3 COSTATE VARIABLES, DYNAMIC EXTERNALITIES, AND SENSITIVITY ANALYSISOF

TRAVEL COST

Analysing and solving dynamic system optimal assignment ejuinderstanding and

determining the costate variablds(s ahd y,(s), and the dynamic externality,(s .)

These additional cost components are discussed in ietai section.
4.3.1. Costate variables

Following Dorfman (1969), Bryson and Ho (1975), and Kamien aruv&dz (1991), the

costate variablesi, (s )and y,(s) in this optimal control formulation represents the

sensitivity of the value of the objective functi@nwith respect to the changes in the state

variablesx, (s )and g,(s) in the corresponding constraints at the associdtee & The

costate variablel, (s ,)which is given by Equation (4-31), represents the totaigdan the

value of the total system travel cost with respeda tnit change in the link traffic volume
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X,(s) at times. Likewise, the costatga/a(s):/la[ra(s)] represents the magnitude of the

change in the total system travel cost with respeet tinit change in the link outflow, (s )

at times. The associated minus sign represents that an ind@esease) in outflow induces

a decrease (increase) in the total system cost.
The sum ofA (s )and —y,(s) is calculated as

T4 (1)
Aa(s)—ya(s)=Aa(s)—Aa[ra(s>]=Qi [a+flr®)ed  Oabs,  (4-75)

a t=s

which represents theetchange in the total system travel cost with respeeatunit change in

the traffic volume that enters the link at tim@nd exits at time (s .)Hence, the value of
A.(s) - y.(9 represents the portion of total system cost wischue to the traffic which
stays in the system between timeand 7,(S). This quantity can be interpreted as the

external costwhich is charged to the travellers who enter thstesy at times for their

presence between timsand 7,(S) .

4.3.2. Dynamic externalities

The notation W (s) in the cost components in condition (4-7), where

Y, (9= {"aﬁ

S

e, (t)}dt, representglynamic externalityDynamic externality refers to the
t

additional travel cost imposed by an additional amaof traffic, us, within an intervals to

other existing traffic on the lin&.

: : : .. dC
To determine this externality, (s , e need to calculate the sensm\flgyi of the travel
U |,
costC, over timet with respect to the addition amount of traffic The derivation and the

calculation of the derivativ:%& are discussed in detail in Section 4.3.3.
u

S It
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4.3.3. Sengitivity of travel cost

To determinea& , we can derive it by differentiating the total trawelst C,(s) with

ou

S

t

respect to the inflow perturbatiag as

aC, o7,

=1+ {.0)]) 5

t S

Ha [t

S t

(4-76)

. . ..QT . .
is now expressed in terms of the sensnlwa%ya— of travel time with
u

t S

The derivativeg&
u

S

t

is given in

: L - L . ... 0T
respect to perturbations in link traffic inflow. Therigation of this derlvatlvea—a
u

St

the Proposition 4.3.

Proposition 4.3: Suppose there is a changeugin the link inflow rate at a particular

time s, the sensitivity of the time of exit at tinhevith respect to this perturbation is

or

a

ou

S

Codx, dy

K=0(t)

— dra{ I Md/("‘ ga(t)% } Hallt, (4-77)
a,(t)

in which o, (t) is the time of entry to the link that leads to exitimett. Indeed,

o, () is the inverse function af, [()

Proof:

The traffic volume on the travel link, (t , at timet can be expressed as

X (1) = E,()-G,() =E,()-E [0, 0] = [e,(x)dk. (4-78)

K=0, (1)
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Suppose that there is a small chang@&duced in the profile of inflow at timg the
associated change in the value of the function ofithe of exit at time can be

deduced as

07,| _ dr, ax,(1)
aus‘t dx, dug

_dr, o |
oo, | st | (4-79)

k=0, t)

dr,|  de(x) . _90,()
m dx m e [ga (]

o K=, (1)

The first term in the parentheses can be calculatedtt.

To calculate the second term in (4-79), we first appdydéfinitional relationship,

r.[o.]=t. (4-80)

Differentiating the left hand side with respecut@nd by using chain rule, the left-

hand-side of (4-80) can be written as

RIAACIZACY -82)
do,(t) dug

dr,
du

_907,
ou

a,(t) s

s a,(t)

Similarly, differentiating the right hand side witespect taus, it gives

__dt (4-82)

=—=0,

du,

dr,
du

Slaa(t)

Hence, combining (4-81) and (4-82), it can be dedubat
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or,

a

ou

S

NIALACIZACINS

do,(t) ou (4-83)

AU s

Furthermore, becausg, [1 {9 an inverse function af, [X )t follows that

or,[o.(t)] _ (aaa (t)]‘l_ (4-84)

o, (t) ot

Therefore, combining (4-83) and (4-84), and afearranging terms, it gives

_ do,(t) dr,
dt odu

aa(t) s

00, (1) _ _[ara o, (t)]}'lara (4-85)

ou a0, (t) ou,

S

g, (t)

Finally, substituting (4-85) into (4-79) gives

or

a

ou

S

_dr, | ¢ de(x) do,(t)
| 00, )

T, (1) s
t
_ dr, I de, (k) dk + ea[aa(t)] do,(t) %
dx, d dt du

K=0,(t) S s
t

_dr, I de, (k) dk + ga(t)ara

dx, ou ou(t)

} (4-86)
74 (t)

Kk=0,(1) Vs s

as is to be shown. O

The expression in (4-77) is derived from flow prgagon mechanism and it is applicable for

general travel time models. The derivat%gﬁ—
u

S

is expressed in terms of the dependence of

t

the inflow profile e, (x ) in which x lies betweero,(t andt, the outflowg,(t )at timet,
and the value of the derivative at tirme(t . The derivative:i is the change in the value
Xa

of r_ () with respect to the change in the value of théesta() at the same time. If we
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consider the linear travel time models: the determinigtieue, divided linear models, and

whole-link traffic model, then it gives,

dr, _ d X, ] 1
2 t+g+—=|=— [a. (4-87)
dx, o { Q) Q

In the special case of the deterministic queuing modelddnivative% is zero when the

u

S

t
link is uncongested (i.e. link inflow is less than or edaahe capacity, and amount of traffic

in queue is zero) since the link travel time is equalde flow travel time which is a constant.

When the travel link is congested (i.e. amount of wajftieuing greater than zer(%,r—a will
u

S

t

be positive and the link traffic will be discharged a¢ tink capacityQ, . Substituting

g,(t) =Q, for all timest into (4-77) reduces the equation to

t
07,| _dr, I de, (x) dk
ou,| dx, 2, du
t (4-88)
_I de, (/()
a k=0

Equation (4-88) shows that in the particular cab¢éhe deterministic queuing model, the

.. 0r . : .
derivative 3 2| takes the value of zero for all timebefore the time of perturbatian and
Us |,
r . : . . .
3 &1 equals toi for all timest after the times of perturbation while the queue persists.
uS t a

This agrees with the previous analyses on the thatysbf the deterministic queuing model
(see for example, Ghali and Smith, 1995; Kuwah208,1). However, the sensitivity analysis
developed in this thesis allows for other mechasishdelay and flow propagation, and

hence is more general so that it can be appliedher traffic models.

Summary
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ar,

After determininga as described in Section 4.3.3, the dynamic extern&if{s in )

s It
Section 4.3.Zan be calculated directly. Finally, referring to tleeessary condition (4-7) of
dynamic system optimum, each traveller in the systdmm enters the travel link at a time
of entrys is expected to pay an amounttofi equal to[LIJa(s) +A,(9) —ya(s)] in order for
the transport system to operate optimally. This aallytresult shows that there is a
substantial difference between the traditional analysistatic transport system (for example
Sheffi, 1985) and the current analysis of dynamic transp@tem. To optimize a dynamic

transport system, in addition to paying for his/her owtereality W, (s) imposed on others,
travellers are also required to be responsible forllact@rge [/la(S)— ya(S)], which is

charged by the external system manager on the trawvdterusing the transport system

during timess and 7, (s) (see discussion in Section 4.3.1).

4.4 SOLUTION ALGORITHMS

This section illustrates the algorithms that transfone @nalysis presented in Sections 4.2

and 4.3 into numerical solutions. Section 4.4.1 first ptssan algorithm to calculate the

derivativesgra1 derived in Proposition 4.3 and hence the externdfitys . Then, Section
u

s lt
4.4.2 introduces an algorithm to solve dynamic system optisgagjnment. As dynamic user
equilibrium assignment described in Section 3.6, we adopidified second-order Newton

method to solve dynamic system optimal assignment.

4.4.1 Calculatethe sengtivity of travel time

The section presents the solution algorithm which toansf the sensitivity analysis given in
Proposition 4.3 into numerical derivatives. The derivigalculated can be used for solving

dynamic system optimal assignment.

Step 1: Initialisation for calculating the derivadés of link exit time
1.1 Set the link indexa:=1;

1.2 Set the time indek := 0, to represent the time interval when the inflow is yréed,;
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1.3 Set the time index := 0 to refer the time at which we consider the changeiintiene
due to the perturbation in inflow at time interkal

1.4: Calculate the derivatives of link exit time:

Ifco<k,thendra =0;
U,
else itk < ws[7,(K)], then &7e = £
dukw Q,

dokok

07,| ._ g.(w)or,
auk‘w' Q, du,

1.5 If w = K, then go to step 1.6; otherwige:= «. +1 and go to step 1.4;

else

T, ()

1.6 If k=K, then go to step 1.7; otherwise k + 1 and go to step 1.3;
1.7 Ifa= A, then go to step 2; otherwiae=a + 1 and go to step 1.2.

Step 2: Calculate the derivatives of total travestcfunction
2.1 Set the link indexa:=1;

2.2 Set the time indek ;= 0;

2.3 Set the time index :=0;

dC,| _ , dr,| .
2.4 Calculateaw =(1+f [ra(a))])duk w,

2.5 If w =K, then go to step 2.6; otherwige:= & +1 and go to step 2.4;
2.6 If k=K, then go to step 2.7; otherwike k + 1 and go to step 2.3;
2.7 Ifa= A, then go to step 3; otherwiae=a + 1 and go to step 2.2.

Step 3: Calculate the externality
3.1 Set the link indexa:=1;
3.2 Set the time indek :=0;

3.3 Initialise W, (k) := Q

™ The time g, (@) is not necessarily integral. We adopt a linear infatjmn to approximatgra as
~ dTa

dy, LAC)
- +[dTa
AUl g | A% o1

smallest integer not smaller than, (w) , and Laa (a))j is the greatest integer not larger thag(w) .

dr

a

du,

dr

_ a

du,

](Ua (W) -|o, (W) Where!_a A (a))—\ represents the

AR | 04 (w) |
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3.4 Set the time index :=0;

dC,| .
d )

3.5 CalculateW, (k) =W, (k) +e,(w)

klew
3.6 If w =K, then go to step 3.7; otherwige:= & +1 and go to step 3.5;
3.7 If k=K, then go to step 3.8; otherwike k + 1 and go to step 3.3;

3.8 If a= A, then stop; otherwisg&=a + 1 and go to step 3.2.

4.4.2 Calculate dynamic system optimal assignment

The analysis in Sections 4.2 — 4.3 is consideramntinuous time. In addition, except for the
very few exceptional examples such as the detestingueuing model, closed form
solutions for dynamic system optimal are genemadly available for most of the travel time
models. In accordance with this, this section mhiices a solution algorithm that transforms
the formulation and analysis of dynamic systemropin in continuous time into numerical
solutions in discrete time. The algorithm is stunetl as a combination of forward-backward
dynamic programme: to be solved forward in the ordk departure time interval for
assignment flow profile as the case of dynamic wsprilibrium discussed in Section 3.6;
solved backward in time for the corresponding exittty and response. The study period in
continuous time,T, is discretized intK intervals each of lengths. Following this, the

instantaneous flow in continuous time formulatienrépresented as the flogk) that is
constant through the discrete time intetalkAs, (k +1)As) . This flow is tested against the
costC[(k +1)As) at the late end of the time interval. Within eadparture time intervek,

the assignment inflow is calculated by using Newtmthod, which converges with an order
of convergence at least 2 (Luenberger, 1989, p202).

The algorithmic procedure is described as follows.

Step 0: Initialisation

0.1.Choose an initial equilibrium co€, for each origin-destination paid;
0.2 Set the overall iteration countar=1;

0.3 Sete, (k) :=0 for all linksa and all time interval&.

0.4 Set costated, (k) := 0 for all linksa and all time intervalk;
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0.5Set the time indek =0;
0.6Set the link indexa:=1;

0.7 Set the inner iteration countet :=1.

Step 1: Network loading

Find 7_(k + 1) by loading the travel link using the inflog, (k) at the current iteration. The

algorithm described in Section 2.4.2 is adopted.

Step 2: Calculate externality

Calculate the externalit¥, (k) associated with eaod) (k) by using the algorithm presented

in Section 4.4.1.

Step 3: Determine the auxiliary inflow
3.1 Calculate

C,(k+1) =h(k+1) +[r,(k +1) - (k + D] + f[r, (K + D]+ W, (k +1) + A, (k) = A, [r, (K)];

_C,(k+1)-C,(K) ey = 02K) _ 1.

3.2 CalculateQ(k) = . andQ'(k) = = 5= [+ f[r,(k +D)]) o
ili i - _Qa(k) .
3.3 Calculate the auxiliary inflowd, (k) = QLK)

3.4.If a= A, then go to step 3.5; otherwige= a + 1 and go to step 0.7;
3.5. If k =K, then go to step 4; otherwike= k + 1 and go to step 0.6.

Step 4: Determine step size for inflow

Search for 8 , for all a and k by golden section method such that

e, (k) := max{[e, (k) +6[d, (k) - e, (k)]].0} gives the minimum total travel cost.

Step 5: Calculate the associated costate variables
5.1 SetA, (K) = Ofor all linksa;

5.2 Set the time indek = K -1;
5.3 Set the link indexa:=1;

5.4 Computed_ (k) = A, (k+1) + {1+ '[r, (K)]) efék) As:

a
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5.5 Calculatela[ra(k)] from A, (k) and 7, (k ) using linear interpolation as

L7a (k)] * (/]a [7.(K)] _/]ahra(m)(fa (k) _Ua (k)J)’

5.6. If a= A, then go to step 5.7; otherwige= a + 1 and go to step 5.4;

Alr. (] = 2,

5.7. 1f k =0, then go to step 6; otherwike= k - 1 and go to step 5.3.

Step 6: Overall stopping criteria

Y. > e (K)C,(k+1) -C,
6.1 Defineé = 22tk as a measure of disequilibrium, which is equal to

Z Z ea (k)C:)d

Oa

zero at system optimum. if is greater than the predefined maximum numbewefall
iterations oré is sufficiently small, i.e <& wheree is a test value, then go to Step
6.2; otherwise set:=n+1 and go to step 0.5;

6.2. Check if the total throughpuE,, => > e, (k) from the system is equal to the

Oa Ok

predefined total demand.q for the o-d pair. If yes, thenterminatethe algorithm;

‘]od B Eod

dE,,
dcC,,

otherwise updat€,, =C_, + , and go back to step 0.2. For networks with

mutually distinct routes, following Heydecker (2@)2we can establish an expression

[n(s0)+ £ [ra ][ (st)+ £ [ra(sh)]]

for the derivativeaE—Eid => ; 5 I 1
0 h'is; )+ f'lr (sl [N\, )+ T'|7.(s,)

od Oa

]Qa , Wheres?

and s; respectively represent the first and last times the link is used.
Discussion

As noted in Section 3.6, a crucial point in solvohgnamic traffic assignments is to consider
the time-varying variables at the appropriate tikviaen we calculate the costate variables in
Step 3.1 in Section 4.4.2, the values of the cestate considered at the start of the time
interval kAs instead of the end of the interval. This is beeaw®ntrasting with the travel

time which is calculated forward in time, the costsariables are calculated backward in

time.
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Moreover, the auxiliary flows are calculated based e ttaffic conditions at the current
iteration up to time stek, the costate variables are calculated based on ffie t@nditions
at the previous iteration after time stepAs a result, they are not consistent, and we aaopt

step size search (Step 4) as a heuristics to accomenihitat

Finally, recall that in the deterministic queuing modéleré is a discontinuity in the

derivatives of the state variable with respect toinflew at e,(s) =Q, whenx.(s)=0. For
all x,(s)=0 and e,(s)<Q,, the travel link is congestion-free and traffic iswflng at the

free flow travel time which is independent of the infloW.gives the auxiliary inflow

Q,(k)

da(k) == Q (k)

a value of zero while there is no queue, no matter Wigturrent

traffic flow is, provided that the inflow does not exde¢he system capacity. The
consequence of this is that the present solution digoriannot achieve an optimal solution
or even an improved solution from the initial solutienuncongested condition when the

deterministic queuing model is adopted.

45  EXAMPLE CALCULATIONS

The section presents various example calculations mwatrate the performance of the
solution algorithms and the characteristics of the migake results of dynamic system
optimal assignment.

4.5.1 Sendtivity of travel time

The critical step in determining the externality (s) is calculating the derivative of link exit

. ar . o L ,
time 3 &1 with respect to perturbation in infow. Hence, this mectests the numerical

st
accuracy of this derivative as calculated according tongténod presented in Proposition 4.3.
We consider the single travel link and the parabolicowmfprofile that was introduced in
Section 2.6. To investigate the accuracy of the sertgitialysis of the travel time models,
we perturb the parabolic inflow profile at time 1, and &ssociated variations in travel time

are plotted in Figure 4.1. Thenalytical variations are calculated according to Equation (4-
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77), while thenumericalvariations are determined by using direct numericakfiditference
method. Both of these are plotted logarithm scalein Figure 4.1 for comparison. To
calculate the finite difference, one extra unit ofamflis added at time 1, while the inflow
profile remains unchanged at other times. The numevaahtions in travel times are then
calculated by subtracting the link travel time loadedHgy driginal inflow profile from that
loaded by the perturbed inflow profile. It is noted that deenot include the deterministic
queuing model here. For the deterministic queue model, ihere variation in travel time
because that traffic model gives a constant estimatidink travel time whenever the inflow

rate is less than the link capacity and the volumeadfi¢ in queue is equal to zero.

The result shows that the analytical variationsegiby Equation (4-77) represent the true
numerical variations in travel time reasonably wetl dll travel time models. Both numerical
and analytical variations drop to zero at the time wadletraffic is cleared from the link. It is
also observed that the variations of travel time Iageilfor travel time models with longer

congestible part, and that the analytical and numeggtahates agree closely on this.

— — Analytical

o
=

—— Numerical

LOG (Derivative)

0.01 \\

0.001 \ ‘ ‘ ‘
0 20 40 60 80 100

Time (min)

a) Divided linear modeld, = As)
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1
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=
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a
[0} [ s - ™
O o0.01 A Y =
= : -
0.001 \ ‘ i |
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Time (min)

¢) Whole-link traffic model

Figure 4.1 Sensitivity of travel times

4.5.2 Dynamic system optimal traffic assgnment

This section shows the dynamic system optimal assighmesults. We use the two-link
network as shown in Figure 3.1 and in Section 3.7. Alligagsents are computed
numerically by using the solution algorithm described intiS8ec4.4.2 except for the
assignments with the deterministic queuing model. As dégmliin Section 4.4.2, the present

solution algorithm is not suitable for solving dynamic systgptimal assignment with the
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deterministic queuing model. Solving numerically the dynasystem optimal assignment

with such traffic model requires some special heuristarsexample the route-flow swapping

technique adopted in Huang and Lam (2002). However, the n@ais @ this thesis is on the

properties of the traffic models and the associatedyras&ints and their implications on
dynamic traffic management, rather than on the nwaksblution strategies. As a result, this
section only presents the analytical solution of gs®gunments with the deterministic queuing
model and compares it with the numerical solutionsasggnments of traffic models of other
kinds.

Figure 4.2 shows dynamic system optimal assignments ugfegedi travel time models. In

the figure, thdotal travel costi.e. C,(s), refers to the sum of the cost associated with travel

time and the costs associated with the departure amalaimes for a traveller who departs
at time s. The total travel cost + tollmeans the total travel co€k(s) plus the toll, i.e.

[LIJa (s)+A,(8) -V, (s)], that the traveller who departs at timies going to pay. According the

optimality condition derived in Proposition 4.1 and Prajoms 4.2, the sum of the total travel
cost and the toll (i.e. externality) at dynamic systEptimum should be constant for all links
and all departure times in use. It is clear from thé@assent results that the quality of such
equilibration drops as the congestion portion considenethe traffic model increases. It
implies that solving dynamic system optimal assignmegetting more difficult. The reason
of this is that the larger congestible portion impliesreninteraction of traffic dynamics to be
considered in the calculation process and hence solvenglythamic optimization problem

becomes more difficult. Further discussion on the qualt dynamic system optimal

assignment is given in Section 4.5.3.

The assignment results also show that the durationss@frements are lengthened and hence
the profiles of inflows are spread out at dynamic systggtimum as suggested by Chu
(1995) in order to reduce the intensity of the congestior. fWther observe that the
durations of assignments are longer and hence the iitofile is more spread for travel
time models considering a larger congestible portion. &keeption is the deterministic
gueuing model which gives dynamic system optimal assignmémthe same duration as its
dynamic user equilibrium counterpart, within which thaffic congestion is completely
eliminated (see also Arnott et al., 1993; 1998).
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Figure 4.2 Dynamic system optimal assignments

The associated details for each assignment are atamatzed in Table 4.1 for further

illustration. In addition to a more spread inflow prafitbe table shows that more traffic is

assigned to link 2 in dynamic system optimum which can teegreted as a result of the fact

that link 2 has a higher capacity for discharging traffic
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Table 4.1 Summary of dynamic system optimal assignments

Link 1
Start time (min) End time (min) Traffic volume (veh)
DDQ 32 49 367.20
Divided: a, = As 16 55 343.21
Divided: a, = 2As 10 55 340.50
Friesz 3 56 369.45
Link 2
Start time (min) End time (min) Traffic volume (veh)
DDQ 34 47 432.80
Divided: a, = As 19 54 456.79
Divided: a, = 2As 13 54 459.50
Friesz 6 50 430.55

Table 4.2 compares the total system costs and individuas aosder dynamic user
equilibrium and dynamic system optimal assignments. heig, the total system costs drop
when the system transforms from dynamic user equitibto dynamic system optimum. We
note that this reduction in total system costs decremséise portion of the congestible part
considered on a travel link increases. Considering tle éwtremes, there can be an
estimation of 50% reduction in total system cost whendéterministic queuing model is
adopted, but a reduction of only 8.3% when the whole-link sdmnsidered. Moreover, it
is observed even if we only consider a small portiocooigestible part on the travel link, the
improvement in the total system cost in dynamic systgtimum will drop significantly
compared with the situation when the deterministic queuingeiis adopted. As noted
earlier and pointed out by Kimber and Hollis (1979), and by NB002), the deterministic
queuing model oversimplifies the traffic dynamics and vestemates the travel time before
the travel link is saturated (i.ee,(s)>Q,). This finding can be a reflection that the
traditional analysis of dynamic network system managérbesed on the deterministic
queuing model overestimates the efficiency of dynamistesy optimal assignment.
Equivalently, the traditional analysis underestimates #ificiency of dynamic user

equilibrium assignment.
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Table 4.2 Comparison of costs under different assignments

Total system cost (veh-min)

DUE DSO Difference
DDQ 8,064.00 4,032.00 -50.00%
Divided: a, = As 9,310.80 8,076.64 -13.26%
Divided: a, = 2As 10,741.20 9,627.28 -10.37%
Friesz 12,465.20 11,433.60 -8.28%

Individual cost (min)

DUE DSO Difference
DDQ 10.08 10.08 0.00%
Divided: a, = As 11.64 13.31 14.36%
Divided: a, = 2As 13.43 18.37 36.82%
Friesz 15.58 21.62 38.75%

The individual cost refers to the total cost ([@a(s) +W_(s)+1,(s) —ya(s)], in the unit of

minute) that each individual traveller has to be respt;gor when he/she makes the trip.
We recall from Section 4.2 that this cost is identical all travellers in dynamic system
optimum. Although dynamic system optimal assignment resltie total system cost of the
whole system, the individual cost does increase fagmamic user equilibrium to dynamic
system optimum for most travel time models adopteds linderstandable because each
traveller has to pay an extra toll in addition to tleist of travel in dynamic system optimum
for the good of the whole system. It could be an explamaif why road users would be
against road pricing. The only exception is when the det&sticiqueuing model is adopted
with which travellers are estimated to have the saméidchdhl cost in dynamic user
equilibrium and dynamic system optimum. With the samdévidual cost incurred, the only
difference is that the cost of congestion in dynammer equilibrium is eliminated and
replaced by the equivalent amount of toll which can bel tsecommunal advantage rather
than a dead loss (Heydecker and Addison, 2005).

Figure 4.3 plots and compares the profiles of the staiablarx_ (s) (i.e. traffic volumes) on

each link at dynamic user equilibrium and dynamic systgimom respectively. In the
travel time models, the state variables representiéiggee of congestion because the link

travel time is taken as a monotonic non-decreasing ikmoof it. Interestingly, yet
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importantly, the results show that dynamic system agdtimssignment has to allow
congestion for all travel time models except for theedainistic queuing model. According

to most models, we can only manage the level of comgelstit cannot eliminate it.
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The dynamic tolls (i.e[LIJa (s)+A,(8) -V, (s)]) which are to be imposed on the travellers are

then calculated and plotted in Figure 4.4. The profiletheftolls are different for different
travel time models. In general, the dynamic tollsease with time for travellers who arrive
at the destination before the preferred arrival tinmg, decrease afterwards. For travel time
models that consider a larger portion of congestible gatcharges start earlier and reach a
higher maximum value. The reason is that with thaseet time models, the traffic

congestion is estimated to form earlier and then realigher maximum level. As a result,
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the corresponding dynamic toll has to be implementedeeantid reach a higher magnitude

to manage the congestion.
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Figure 4.4 Dynamic system optimal tolls

4.5.3 Performance of the solution algorithm

This section discusses the performance of the saladgorithm for dynamic system optimal
assignment. Figure 4.5 and Figure 4.6 illustrate respectikielynonotonic reduction of the
total system cost and the measure of disequilibrium teeations. The travel time models

considered here include the linear travel time models wjtek1min, a, =2min, and the

116




whole link traffic model. The deterministic queuing modehdt considered here because
such travel time model is not suitable for the soluitgorithm to work with due to its non-
differentiability as discussed in Section 4.4.2 and Seai6.2.

In general, the results agree with the analysis teatdtal system cost reduces as the measure
of disequilibrium drops. The measures of disequilibraghieved are 0.024, 0.029, and 0.041

respectively for the divided linear models with =1  mis, = 2min, and the whole-link

traffic model. Such results of equilibrations are muds Ieatisfactory than dynamic user
equilibrium assignment which achieves an order 6f’18f disequilibrium measures. The
reason of this is that in the solution algorithm for ayic system optimum, the auxiliary
flows are calculated based on the traffic conditiahghe last iteration, while the costate
variables are calculated based on the traffic conditad the current iteration. Such procedure
gives correct values for costate variables but incoores for assignment flows. The result
of this is the improvement in system performance (eduction in total system cost) while
we have to sacrifice the quality of equilibration. Themneuical results further show that
dynamic system optimal assignment is more difficalt Solve for travel time models
considering larger congestible portion on the link. Thesoe is that the larger congestible
portion implies more interaction of traffic dynamits be considered in the calculation

process and hence solving the dynamic optimization probé&ammmes more difficult.
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4.5.4 An alternative solution algorithm for dynamic system optimum

To improve the quality of equilibration in dynamic systeptimum, we propose here and test
an alternative solution procedure. In this versioa,proceed as in Section 4.4.2 except that in
the last iteration we do not calculate the optimal siep (i.e. Step 4 in the solution algorithm
4.4.2) and add the costate variables and the ext@sdlie. Step 5 in the solution algorithm in
Section 4.4.2). As a result, the last iteration aonsalculate the correct equilibrium assignment
to the total travel cost, using the externality andctistate variables from the previous iteration
rather than determining them from the final assignmBgt.contrasting with the solution
procedure discussed in Section 4.5.3, this procedure gmesct assignment flows but
incorrect costate variables for a system optimalt®siuThe corresponding assignment results
are shown in Figure 4.7. It can be noticed that thgrasents are obtained with better quality
of equilibration for all travel time models adoptetieTmeasures of disequilibrium reach below

10" while with the spiky inflow profiles.
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Figure 4.7 Dynamic system optimal assignments solved bgitimmative solution strategy

Table 4.3 further shows the performances of theseassignments. The coluniSO* refers

to the performances associated with the new assigemaltulated by the alternative solution

algorithm. This table reveals that with high quality ébration, the new assignments

calculated by the alternative solution method yielil%8 86% in terms of total system cost

reduction compared with the original solution methodeveals that there is trade-off between

the quality of equilibration and system cost reduction.

Table 4.3 Performance of dynamic system optimal assigsnpentiuced by the alternative

solution strategy

Total system cost (veh-min) Difference btw.
DUE DSO DSO* DSO and DSO*
Divided: a, = As 9,311 8,077 8,310 81%
Divided: @, = 2As 10,741 9,627 9,778 86%
Friesz 12,465 11,434 11,583 86%

4.5.5 Effect of discretization on the assignment

Finally, this section investigates the effect of usinffedent time discretizations on the

quality of dynamic system optimal assignments. The divideshr travel time model with
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a, =As and the whole-link traffic model are chosen for iltatbn. The main difference

between these two travel time models is that th@gmsent results obtained by using the
divided linear travel time model depend on the size of tiseretization adopted (see also
illustration by Mun, 2002), while for linear travel time d® it does not. We investigate four
different values ofAs: 0.25 min, 0.5 min, 1 min, and 2 mins. Figure 4.8 shows thetsder
the divided linear travel time model. As discussed in 8ec3i.7.4, the assignment profile
varies with different degree of discretization duehe hature of the underlying travel time
model. It is observed that the assigned inflow profilsn®othened when the size A& is
large, say 1 min, and 2 mins. It also shows that itsgitie best assignment result in terms of
equilibration whenAs=1min . This is consistent with the findings by Mun (2002) who

studied the effect of choosing the value/sf on the quality of dynamic user equilibrium

assignment.
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(a, = As) against different sizes of discretization

Figure 4.9 shows the results for the whole-link traffiodel. Interestingly, the solution
algorithm gives better assignment results with coarsesredisation. The measures of
disequilibrium are 0.18, 0.096, 0.041, and 0.017 respectivelfdozquals to 0.25 min, 0.5
min, 1 min, and 2 mins. It is also observed that thegasdi inflow profile is smoothened
with the size ofAs increases. Surprisingly, the coarser the discretizaipthe better the
assignment result in terms of the quality of equililonatis. It can be explained by the fact

that finer discretization implies more sub-problemsatve and more interaction of traffic

dynamics to capture.
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DYNAMIC TOLLING STRATEGIES
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Figure 4.9 Dynamic system optimal assignments for wholettaffic model

From the experiments that we perform in Section 4.5, riealized that calculating dynamic
system optimal assignment and the associated optintlalcam be too difficult for
implementation in practice, or even for research purplséhe view of this, this section

proposes some more practical tolling strategies foragiag dynamic network traffic. The



tolling strategies are compared with the dynamic systgrimal toll and hence their
efficiencies can be evaluated. The tolling strategiassidered in this section include the

uniform tolls and the congestion based tolls.

Given the toll to be imposed at the origin to each lihle, correspondingew origin time-
specific cost can be updated as the sum of two distintipapents: one represents the
original travellers’ personal preferenck(s), and the other is the imposed tg(s) for time

of entrysto the corresponding lin. The associated tolled dynamic user equilibrium inflow

to each link can be determined by using condition (3-11) as

&(9 = {M] alz(3], (4-89)

1+ f'[7,(s)]

where € and g, represent the inflow and outflow profiles at the eoll equilibrium
respectively. This tolled dynamic user equilibrium assgnimof course, can also be calculated
by using the dynamic user equilibrium assignment solvexepted in Section 3.6 after adding

the toll component3, (s), to the travel cosiC, (s).

After obtaining the tolled equilibrium assignment, theresponding total system travel cost,

Z. ., can be calculated. Following this, we can investigageperformance of each of these

toll ?

tolls in terms okfficiencyby defining the efficiencys,, , of a toll as

— ZtoII _ZDUE (4_90)

toll — '
ZDSO - ZDUE

where Z, . and Z, are the values of the total system cost estimated dyrével time

model of interest under dynamic user equilibrium and dynagstem optimum respectively.

Note thats,, =100 %if the toll associated with dynamic system optimadigisment is

implemented.

The following sections aim to evaluate the proportioef@itiency gains from the proposed

tolling strategies with respect to the dynamic systermuozging toll.
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4.6.1 Uniform toll

A uniform toll, or a time-invariant toll, refers to dltarhich is constant while it applies. Such
tolling scheme is easy to design and implement in peacéicreal-life example of such
tolling scheme can be referred to the one being implesden Central London. A uniform
toll of £8 is charged on most vehicles that use thentptione during 07:00 and 18:30 on
workdays from Monday to Friday (Transport for London, 2007).

This section aims to determine the optimal uniform talleich minimize the traffic
congestion and compare their performance in terms ofesiion reduction with the
corresponding dynamic system optimal tolls under eatheofravel time model discussed in
the thesis. This is also a reflection of the valuasig dynamic tolling strategies. Laih (1994)
showed by using the bottleneck model (i.e. system with mggestravel route modelled by
the deterministic queue with a linear schedule delayfaastion) that the uniform toll can at
most yield 50% efficiency with respect to the optimaidivarying toll. An analytical proof
can be found in Proposition 1.1 in Laih (1994).

This study investigates the uniform tolling strategies far travel time models adopted in
this thesis apart from the bottleneck model. We setdlfing period for each toll associated
with each travel time model to be the same as tliag@eriod of corresponding dynamic
system optimizing tolls that are calculated in Sectb®.2. The magnitudep , of the
uniform toll to be imposed on each route for each trared model is then determined by a
brute force search such that the corresponding totalmnsystevel cost is minimized. The
optimal uniform tolls are shown in Table 4.4. The talls expressed in the equivalent value

of time which is in the unit of minute.
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Table 4.4 Optimal uniform tolls

Link 1
Start time (min) End time (min) Toll (min)
Divided: a, = As 29 54 2.92
Divided: @, = 2AAs 24 54 3.34
Friesz 19 55 3.95
Link 2
Start time (min) End time (min) Toll (min)
Divided: a, = As 31 53 2.43
Divided: @y = 2As 27 53 3.09
Friesz 22 55 3.32

The corresponding tolled equilibrium assignments are edémulated and plotted in Figure

4.10. The dotted lines refer to the total travel ca8tgs), while the thin solid lines refer to

the total travel cost plus the uniform ta@, (s) + 3, (s).
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Figure 4.10 Tolled assignments with uniform tolls

All assignments are in good equilibration with the totiei@l travel cost because the solution
procedure only involve solving a forward dynamic programmenaghé dynamic user
equilibrium solver, rather than solving two dynamic progreen(backward and forward) as
in the dynamic system optimal assignment solver. Tisees interesting observation in the
assignment results that, with the uniform toll, theseaimass of traffic flowing into the
system just before the toll be effective. It indésat tendency of travellers that they want to

rushinto the system within a particular time intervalslbecause everyone knows there is an

129



abrupt increase in travel cost after the toll is effectThis observation reveals a shortcoming
of traditional time-invariant toll: it can induce trafiiisruption during the time period before,

and possibly after, the toll charges.

Table 4.5 Performances of uniform tolls

Total system costs (veh-min)
DUE DSO Uniform tolls Efficiency /7,
Divided: @, = As 9,311 8,077 8,813 40%
Divided: @, = 2As 10,741 9,627 10,203 48%
Friesz 12,465 11,434 11,943 50%

The efficiencies of the uniform tolls calculated watifferent travel time models are shown in
Table 4.5. Similar to the findings by Laih (1994), the optioraform tolls yield around 50%

efficiency of the dynamic system optimizing toll. Iddaion to this, it is realized the uniform
toll appears to be more effective under travel time mdougti considers larger portion of

congestible part.
4.6.2 Congestion based toll

Different from the uniform toll discussed in Section 4,6the congestion based toll is
dynamic in nature. The idea of such tolling strateggingple and it is originated from the
deterministic queue based toll. Similar to the deternincieue based toll, the underlying
principle of this congestion based toll is to chargellaathich is equal to the cost associated
with congestion (i.e. the total actual travel time usithe total free flow travel time, which is

X . . . :
—2.) that would be incurred in queues in the network system uhdemtolled dynamic user

equilibrium. The advantage of doing this is that thedollected can be used as a communal
advantage rather than the dead loss. In fact, suchgdtheme is similar the one tested in
the city of Cambridge, United Kingdom in 1983(Sharpe, 1993; Small and Gomez-lbafiez,

™ Implementation efforts of this tolling scheme in@aidge ended with a change in the shire government ear-
lier in 1993. Although technically feasible, it was conegrrabout the potential for public outrage when the r-
oad tolls are unpredictable (see Small and Gomdzelhal 998).
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1998). The performance of this congestion based toll is igatst by simulating its

performance on the corresponding travel time models. ddrresponding assignments are

plotted in Figure 4.11.
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Figure 4.11 Assignment profiles with the congestion baded to

It is shown that the assignment is again in good egaildn with the tolled total travel cost
due to the straightforward solution procedure as mentiprnedously. It is further observed
that there are spikes appear in the inflow profile arotinedtimes when there is a sharp
change in the slope in the time-specific costs. Tgmearance of spikes can be understood
since cornersn the cost function can induce corners in the cpoeding inflow profiles

(Kamien and Schwartz, 1991).

Table 4.6 Performance of congestion based tolls

Total system cost (veh-min)

DUE DSO Congestion based tolls | Efficiency 77¢
Divided: a, = As 9,311 8,077 8,229 88%
Divided: a, = 2As 10,741 9,627 9,708 93%
Friesz 12,465 11,434 11,475 96%

To gain further insight on the performance of the assigisnethe efficiencies of the
congestion based tolls are calculated and shown in Téablelt can be noted that the

congestion based toll is reasonably effective in miagaglynamic traffic congestion

132



compared to the dynamic system optimizing toll. In genénalcongestion based tolls yield a
high efficiency of around 90%, although the efficiency drapghe portion of congestible
region of the traffic model decreases. The drop intotleefficiency in traffic models with
less congestible portion can be understood as a restiteofact that congestion is less
significant in those models. Despite its simplicitye ttongestion based toll appears to be a

promising strategy for managing dynamic network traffic.

4.6.3 Robustness of toll calculation method

Section 4.6.2 shows that the tolling strategy based ogesbtion profile is effective on
managing dynamic road traffic. In Section 4.6.2, it isias=d that we have an exact model
for the underlying traffic behaviour. In reality, we do hatve such information and hence it
is interesting and important to investigate hambusta toll calculation method with respect
to the underlying traffic model adopted is for implementatio practice. To our knowledge,
such robustness of calculation methods of dynamic halisnot been studied or documented

in the literature.

The congestion based tolls associated with each ttewel model which are calculated in
Section 4.6.2 are now simulated on travel time modeilstiodér kinds. The resulting tolled
assignments are plotted in Figures 4.12 — 4-15 respectivelytolts based on the

deterministic queuing model, the divided linear mode| € As), the divided linear model
(a, = 2As), and the whole-link traffic model. It can be seen #iaassignments are in good

equilibration, which is expected. Similar to the assigmseplotted in Section 4.6.2, the
spikes in Figures 4.12a, 4.13a, 4.14a, 4.14b, 4.15a, 4.15b, and 4lupear around the

times when there is a sharp change in the slope dihtieespecific costs.
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Figure 4.15 Tolled assignments of whole link traffic modekoktoll

To gain further insight, the performance in terms ofl teyatem travel costs and efficiencies
of each toll with each of the travel time model sihewn in Tables 4.7a and 4.7b respectively.
In both tables, the traffic model down the column repngs the one which the congestion toll
is calculated based upon, while the traffic model aloegdhwv refers to the one by which the
underlying system is evaluated. The entries on the diagdnde tables, which are bold,
represent the performance and the efficiencies of thegestion based tolls that are

calculated and implemented by the same traffic modeds@mumbers represepérfect

c¢) On divided linear model(, = 2As)
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knowledge on the underlying traffic dynamics and the astetresults are exactly the same

as those we calculated in Section 4.6.2.

For the toll calculated based on the deterministic augeunodel, its performance and
efficiency decreases along the row. This implies suah toll is more effective for travel
time models that consider smaller portion of congesphle (e.g. the divided linear model

with a, = As). The deterministic queue based toll can still achievesfliniency of 63%
under the divided linear travel time model, (= As), while the efficiency of the toll drops to

15% when it is being implemented on whole-link traffic mode

Contrasting with the deterministic queuing model, the balked on the whole-link traffic
model has better performance on traffic models withelaportion of congestible part (e.g.

the divided linear model witly, = 2As), while its efficiency drops to -5% (the negative sign

means it is actually worse than no-tolled equilibriumnditon) when it is implemented on
the deterministic queuing model. These findings are due tsitfiiarity between the traffic

models upon which the toll is calculated and on whichdhés evaluated.

The tolls calculated using the divided linear traffic mogedsform best on themselves, but
they are still able to give reasonable performance theetwo extremes. In particular, the

divided linear model @, =2As) achieves efficiencies of 32% and 52% under the

deterministic queuing model and the whole-link traffic madspectively. This suggests that
the class of divided linear travel time models shouldivecenore attention on designing

robust dynamic traffic control strategies in future resea
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Table 4.7 Robustness of congestion based tolls

a) Total system travel costs (veh-min)

Traffic model Traffic model for evaluation

for toll calculation DDQ Divided: a, = As Divided: a, =2As Friesz
DDQ 4,032 8,534 10,269 12,313
Divided: a, = As 6,768 8,229 10,060 12,276
Divided: a, = 2As 6,867 8,298 9,708 11,929
Friesz 8,248 8,926 9,776 11,475

b) Efficiencies

Traffic model Traffic model for evaluation

for toll calculation DDQ Divided: a, = As Divided: a, =2As Friesz
DDQ 100% 63% 42% 15%
Divided: a, = As 32% 88% 61% 18%
Divided: a, = 2As 30% 82% 93% 52%
Friesz -5% 31% 87% 96%

4.7 DiscussiON

This chapter investigates dynamic system optimal assiginwith departure time choice in a
rigorous and original way. The system optimal assignneerformulated as the optimal
control problem. A fixed amount of traffic is assignecioa system with a single origin-
destination pair connected by mutually distinct links. Thgaive of the assignment is to
minimize the total system travel cost within a fixedidst period. Similar to its static
counterparts, it is shown that dynamic system optinsalgament can be reduced to an
equivalent dynamic user equilibrium assignment with &mlthi components of the cost
introduced. Each traveller who enters a travel link &ime of entry is expected to pay an
amount of toll which is equal to his/her own exteryalihposed to the others, plus a toll that
is charged by an external system manager for usingraineport system during the time
when he/she presents in the system. To capture thengtyeaternality, we develop a novel
sensitivity analysis of travel cost. Solution algomits are presented for implementing the
sensitivity analysis and solving dynamic system optiasaignments for a range of travel
time models. Example calculations are presented andh#acteristics of the results are
discussed. The results first show that the sensitiaitgllysis can accurately capture the
variations in travel time and travel cost with regpec perturbations in traffic flows. On

dynamic system optimal assignment, it is observed dbagestion is generally inevitable
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even in dynamic system optimum. The durations of assgisnare lengthened and the
inflows are spread out as suggested by Chu (1995) in ordeduoeréhe intensity of traffic

congestion. This finding suggests that analysis based odetkeministic queuing model is
not generally applicable. With the deterministic queumadel, congestion is eliminated in
dynamic system optimum and the period of assignmeileistical to that of dynamic user

equilibrium.

To improve the quality of equilibration in dynamic systeptimum, we propose and test an
alternative solution strategy. Contrasting with the inagy solution method, the alternative
solution algorithm does give assignments with better tyualjuilibration. However, the
results also show that we have 15% - 20% drop in dethyction. It clearly reveals that there
is trade-off between the quality of equilibration andteys cost reduction. We also
investigate the effect of using different time disaations on the quality of dynamic system
optimal assignments. Surprisingly, the coarser theretigation, the better the assignment
result in terms of the quality of equilibration. Itncée explained by the fact that finer
discretization implies more sub-problems to solve andenmteraction of traffic dynamics to
capture. As a result, the dynamic optimization probleeooimes more intricate to solve.
These preliminary numerical experiments suggest that futtmeé is still necessary to
investigate more efficient solution algorithms for atiahl dynamic system optimal

assignment.

It is realized that calculating dynamic system optiaedignment and the associated optimal
toll can be too difficult for implementation in pramj or even for research purpose. In the
view of this, we propose some more practical tollingtstias for managing dynamic
network traffic, which are the uniform tolls and thengestion based tolls. These tolling
strategies are compared with the dynamic system olgidhand hence their efficiencies can
be evaluated. The uniform toll refers to a toll whicleasmistant while it applies. Such tolling
scheme is convenient and popular to design and implemeragtice. With the uniform toll,
the assignment results show that there is a masafti€ tflowing into the system just before
the toll becomes effective. The effect can inducéidraisruption during the time period
before and after the toll charges. The uniform to® gain around 50% of the delay
reduction which would have been achieved by implementingiulhe time-varying tolls.
This finding is consistent with the earlier one carred by Laih (1994). The congestion

based tolls are more effective in managing dynamic nd&twmoaffic. In general, the
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congestion based tolls yield an efficiency of around 90&ioagh the efficiency drops as the
portion of congestible region of the traffic model dases. The drop in the toll efficiency in
traffic models with less congestible portion can be tstded as a result of the fact that

congestion is less significant in those models.

In deriving the tolling strategies, it is assumed that aeetan exact model for the underlying
traffic behaviour. In reality, we do not have such infation and hence it is interesting and
important to investigate howobust a designed tolling strategy is for implementation in
practice. Given its effectiveness, we further inveséigaé robustness of the congestion based
tolls with respect to the underlying traffic model adopteds found that the tolls calculated
by using divided linear traffic models can generally give goedormances on a wide range
of traffic models. The divided linear travel time mad#ius should receive more attention in

the future research on robust dynamic traffic contratsgies design.
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Appendix 4A: A preliminary sudy on the sufficiency of the necessary conditions of

dynamic system optimal assgnment

This appendix shows a preliminary study on the sufficiericii@@necessary conditions of the

dynamic system optimal assignment derived in Propositibn

Recall the Lagrangian (4-9) formed by augmenting the obgdtinction and the constraints

in the dynamic system optimization formulation (4-1) as

lC.(9e.(9+ A, (s){[e (9-9,(9)]- de)}wa(s){%—ea(s)}

minZz" = ZI ds
T Eely, @{W -e, (s)} - Pu(9,(9 ,
s
+ l/od[ z E (T)]
(4A-1)
and its first order variation with respect to its ahies in (4-16):
@ =3[ AMaM+uMEMX ] { }Jea(s)ds
H, a Ha dA,(s)
Zj (9 v,a@dg[ r,9)+ { s }fx()}
-3 d”a(s)aE (9= v,; 3, (1)
(4A-2)
in which the Hamiltonian function is defined ag4R13) as:
H.(5) = C,(9)e,(9) + A, ()e.(s) = 9. ()] - (e, (9)
(4A-3)

+ya(s){g 7, 9] ea(s)}—pa(s)ea(s)'
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The notation %Ha , %Ha , aaHa , and oH, represent the derivatives of Hamiltonian
u v vV

s 7,(s) a

function with respect to its corresponding variablegs , 9)(s), 9.[7,(s)], and x,(s)

respectively. The parametaisandvs represent respectively the perturbations at srimethe

inflow e, and outflowg, as defined in (4-8), (4-14), and (4-15).

To ensure sufficiency, we require that the second ordétiem of LagrangiarZ to be non-
negative with respect to all perturbation in the neighibgupaths (see for example, Bryson
and Ho, 1975, p181). The second order variatioh @ derived as:

62
ov,ou

0x_0u

a S

0°Z’ :Z] Jo'e (s)[ }Je (9+9'g, (s){

}Je (s)+0"x (s){ 0°H, Jdea(s)}ds

S

T . . . 92 H, . azHa
+§Ta{i5 e (S){ J@Ja(shd ga(s){ Y J@a(sﬂd xa(s){axaa\/s Jdga(s)}ds
JTea(S){aa fy i} a,(s) +9' 4, (S)[a i 1} . ()
T usov, 7, o s
+Z I ds

A, (8)

ga(s)

aa i }& (9+3"g, (s){
s X

2
Ua 7, (0) +5Txa(s){aa ;la i}
X0V T

62

}d( (s)+0"x (s){ ;xz }d( (s)}ds

S a a

(4A-4)
2 2 2 2 2 2 2
The notationa Hza, 9 l_la, 9 l_la, 0°H, , 0°H, , 0°H, , and 0°H, are the second
ou; 0V ox; 0dudx, dudv, 0x,0u, 0X,0V,

order derivatives with respect to the variabdes g,, and x,, and they are reckoned as

2
aa:'Za:alaJ a(3+/]a($_ya( $_,Ua( )5—/0&1()%
T , (4A-5)
2
0°H e.(s) A

a e f”
[7.(5)] 0’

a

ox’
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2 2
OH. 2 0 s pr, 9 2 (4A-T)
0x,0u, 0u0x, Q.
0°H,
=0 -
o , (4A-8)
9°H 9°H
& = 2.=0, (4A-9)
ou,0vy 0vg ug
2 2
0°H, _0°H, -0, (4A-10)

0X,0V, - ov,0X,

Consequently, the matrix can be reduced to

]Je () +I" X, (s)[ 0°H, ] a(s)}ds

.
e, (s
7 gfoee o
: (4A-11)
.
+2 { e (s)[ “H, }fxa(s)+5Txa(s)[a—H:}6xa(s)}ds
ta o s a aXa
or further to the matrix form as
0°H, 0°H,
T 2
. ou?  ax,0u, | %, (9)
0°Z" = o' o' X a‘ts d 4A-12
duox,  ox:
0°H, 9°H,
- : | duZ  0u,0x
For the second order variation to be always posithes ntiatrix az'j aZSHa has to be

ox,0u,  0x:

a
positive semidefinite. A necessary and sufficient @ for this is that the determinant of

the matrix has to be non-negative.

The determinant is calculated as
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0°H 0°H
ou?  duodx, _0°H,0°H, 0°H, 0°H,
0°H, 0°H, ou? x>  ax,0u_ Audx,

ox,0u,  0x: ’

= £[7.(9)] egg(;) {aiuslca(s) fy, (s)]} - {(1+ fIr, (s)])Qij
(4A-13)
°H, %M,
du>  duox,

which has indeterminate sign. As a result, the imatr iS not positive

0°H, 0°H,
ox,0u,  0x:

a

semi-definite although it is symmetric. Hence, tieeessary condition in Proposition 4.1 may
not be sufficient for a solution of the optimizatigproblem (4.1), and it may imply that
multiple dynamic system optimal solutions can ex&milar results have been shown by
Yang and Huang (2005, p72) in static case. Neviedbethe issue of sufficiency will still be

subject to future investigation.
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5. CONCLUSIONS

5.1 SUMMARY

This thesis investigates analytical dynamic systemn@tassignment with departure time

choice in a rigorous and original way.

In Chapter 2, this thesis starts with giving a compraliengview on the link traffic flow
and travel time models for use in dynamic traffic assignts. We summarize the
requirements for a traffic or travel time model todagisfactory for use in dynamic traffic
modelling. The traffic or travel time model has to ensoo@-negativity of traffic, FIFO
queuing discipline, conservation of traffic, travel ¢hfiow consistency, and causality. A
review of various traffic models including the wave mod#ie outflow traffic models, and
the travel time models is given and discussed. ThisigHecuses on the linear travel time
models because such models have been shown to be csatisfavith respect to all

requirements listed above.

In Chapter 3, we investigate the analysis and the sol@igarithms for dynamic user
equilibrium assignment with departure time choice. Sévpraperties related to the
assignments, including the requirements on the tragtlfenctions for an equilibrium solution
to exist and the relationship between the travel codtdemand, are established. Numerical
examples and the characteristics of the assignmsultsessociated with different choices of

travel time models and discretizations are discussed.

In Chapter 4, we analyse dynamic system optimal assignioyeexploiting a state-dependent
optimal control formulation. In the formulation, fexed volume of traffic is assigned to
departure times and routes such that the total systeml ttast is minimized. The analysis
shows that dynamic system optimal assignment can bessqu as an equivalent dynamic
user equilibrium assignment with additional components@travel cost introduced for each
traveller. In general, to operate the transport systptimally, each traveller in the system is
expected to pay an additional amount of cost or toll whécequal to the externality that
he/she imposes on the system. To analyse and calthigtexternality, we develop a novel

sensitivity analysis of travel cost. Solution algiems are developed to implement this
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sensitivity analysis and solve dynamic system optiassignment. Numerical examples are
given and the characteristics of the results areudssd. It is observed that congestion is
generally inevitable even in dynamic system optimum in ke durations of assignments
are lengthened and the inflows are spread out to minitheentensity of congestion. This
finding suggests that much study in the literature of dyoasgstem optimal assignment
based on the deterministic queuing model is not genernagliicable. We also investigate an
alternative solution algorithm and the effect of timectktization on the quality of the
assignments. Interestingly, it is found that the sotualgorithm performs better with coarser
discretization. This could be a consequence of the @iseretization giving rise to a greater

number of sub-problems, making the assignment moreulifio solve accurately.

Calculating dynamic system optimal assignment and skeciated optimal toll can be too
difficult for implementation in practice or even fagsearch purpose. In the view of this, we
propose some practical tolling strategies for managimgueyc network traffic, which are the
uniform tolls and the congestion based tolls. Thesen¢pbirategies are compared with the
dynamic system optimal toll and hence their efficieaacan be evaluated accordingly. The
uniform tolls can gain around 50% of the delay reductionwmatld have been achieved by
implementing the fully time-varying tolls. This finding nsistent with the earlier one
reported by Laih (1994). The congestion based tolls are effeetive in managing dynamic

network traffic, which in general yield an efficienciyasound 90%.

In deriving the tolling strategies, it is assumed that aeetan exact model for the underlying
traffic behaviour. In reality, we do not have such infation so that the robustness of a toll
calculation method is an important issue to be inyat#d in practice. Given its effectiveness,
we further investigate the robustness of the congestasedotolls with respect to the
underlying traffic model adopted. It is found that the tolidculated by using divided linear
traffic models can generally give good performance ategrto a wide range of traffic
models. The divided linear travel time models thus shieddive more attention in the future

research on robust dynamic traffic control stratedesgn.

5.2 FUTURE WORK
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This section identifies several limitations of therw presented in this thesis and suggests

possible future research directions.

In this thesis, the analysis and calculation areicéstl to networks with origin-destination
pairs that are connected with mutually distinct routesisbing of single links. Extending the
current study to general networks is important futurearebedirection for practice. In the
case of networks that have origin-destination pairs witerlapping routes, traffic entering
the network during the journey time of a traveller frather origins downstream can
influence the travel time of travellers from its upaim. As a result, some special
computational technique, for example Gauss-Seidel ratexxégee Sheffi, 1985; Patriksson,
1994), seems likely to be required. The basic idea of ®lakation scheme is to decompose
the assignment problem for networks with overlappinge®wonnecting multiple origin-
destination pairs into several sub-problems. In eachpsoitlem, we calculate the
assignments for one origin-destination pair, and temihpraeglect the influences from the
flows between other origin-destination pairs. When dyinauser equilibrium or dynamic
system optimum is reached for the current origin-de®imapair, we proceed with
calculations for another pair. The procedure is repeatgideguilibrium or system optimum
is reached in the whole network. The relaxation schemeti guaranteed to converge, but if
it does, the solution will be the final assignment pat{see Sheffi, 1985, p217). In case of
routes with multiple links, difficulties are introduceshen we have to calculate the
derivatives ofroute exit time (see for example Balijepalli and Watling, 20053. shown
earlier in Proposition 4.3, changing the inflow to a limktbe route during one time interval
will induce perturbations in the link travel time, the lioktflow, and hence the inflow to
subsequent link(s) in several succeeding time intervalscdjetine dimension of time
intervals to be considered in calculating the derivatiwél expand exponentially along the
route. Investigating the strategies to cope with tealtiag curse of dimensionalityill be an
important area of future study. Efficient computing methadssystem optimal assignments
in general networks will also require investigation and ttork reported in this thesis

provides a foundation for research along this line.

On the travellers’ behaviour, this thesis supposes thateellers have perfect information
on the traffic conditions and hence the associateticosts that they will encounter on their
journeys. However, it is understood that travellersndb have such information in reality.

Investigating the effects of imperfect information istagly an important future extension.
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One popular way to capture this uncertainty in travebbeiur is through adding stochastic
terms in the travel cost functions to representutieertainties in travel information obtained
by travellers (see for example, Sheffi, 1985; Lim and teeldr, 2005; Maher, et al., 2005).
In addition to the realism, such stochastic trafisignment models have also been shown in
the literature to have certain computational advantage the deterministic ones. Several
studies (see for example, Ying and Yang, 2005; Connors ,eR@7) have shown that
incorporating the stochastic terms has a desirable goesee of providing smoothness and
convexity to both demand and travel performance functiomsafalysis and solution
algorithms to work with. Furthermore, this thesis consideavellers have same value of
travel time and time-specific costs, while it is aisut exactly the case in reality. Taking the
heterogeneityamong travellers into account is necessary for implging equitable transport
policy which is shown to be an important social conc&ransport economists revealed that
anonymous™ control policies tend to benefit disproportionately thosad users with a high
value of time, who are typically rich (Arnott, De Ra and Lindsey, 1994, 1998).
Technically, capturing the effects associated with hgemeity introduces a number of
difficulties (Newell, 1987; Arnott, De Palma and Lings&988, 1992, 1994; Yang and Meng,
1998; Lindsey, 2004) and it remains as a challenging topic in trdaspo research.

On capturing the behaviour of traffic flow, this thesesats traffic as physically dimensionless
in which vehicles queue vertically. However, much litera has shown that capturing the
physical dimension of traffic is crucial for modellingatistic traffic behaviour (see for
example Daganzo, 1998; Lo and Szeto, 2002; Szeto and Lo, 2008;aDdd_o, 2007; Lago
and Daganzo, 2007), although most models that explicitigider the physical dimension of
traffic are also shown to be difficult to apply and solfRecently, Daganzo (2005 a, b)
proposed a variational reformulation for solving kinematave model which is a realistic
and widely accepted physical queuing model (see discussioSeation 2.3.1). This
variational reformulation leads to efficient an&dg solution methods for kinematic wave
model. Hence, incorporating Daganzo’s (2005 a, b) work mmtopresent framework in the
thesis is an interesting future research. The outcerile be a network model that
simultaneously represents both the economics of ltksteaviour and the physics of traffic
flow in a dynamic framework. The resulting model vio# more realistic and reliable for use

of transport planning, policy implementations, networkglgsand incident management.

¥+ Anonymous policy refers to the policy which is imposgehtically on all individuals.
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