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ABSTRACT

This thesis is related to the growth of structure in the late-time Universe. It addresses both

the measurement of this structure and the use of such information in constraining fundamental

underlying physics. This includes the gravitational framework and the sum of the three neutrinos’

mass.

The thesis starts by using weak gravitational lensing data (CFHTLS) to constrain a modifica-

tion of gravity that is invoked to provide the observed accelerated expansion in the Universe. This

is shown to disfavour the model in question. It is, however, incapable of placing any bounds on the

growth parameter that represents extensions to gravity. The future of weak lensing in probing gen-

eral relativity is illustrated with forecasts on the growth signature and power spectrum parameter

using the proposed Euclid probe.

A measurement is made on the clustering of Luminous Red Galaxies (LRGs) in the Uni-

verse. This represents a new photometric galaxy clustering angular power spectrum: MegaZ

LRG Data Release 7 (DR7). The cosmological constraints are demonstrated to be competitive

with spectroscopic surveys and complementary to the WMAP5 data. Specifically, bounds of

fb ≡ Ωb/Ωm = 0.173 ± 0.046 andΩm = 0.260 ± 0.035 are placed. Potential systematics in

the data are discussed and examined.

The work concludes by placing one of the most stringent constraints available of the sum of

the three neutrino masses. By combining cosmic microwave background information, distance

measures from supernovae and baryon acoustic oscillations with growth from the MegaZ LRG

galaxy clustering data, produced earlier, the limit is found to be
∑
mν < 0.281 eV at the95%

confidence level.
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L IST OF FIGURES

1.1 The first Hubble diagram where the plot of velocity against distance demonstrates that

distant galaxies are receding from us. The solid line and points correspond to an analysis

corrected for the sun’s movement.CREDIT: Hubble (1929). . . . . . . . . . . . . . . 2

1.2 The three possible geometries for the Universe and their relation to the total densityΩ.

For Ω > 1 the geometry is described as spherical andk > 0 similarly to the surface

of the Earth (top). When the density is sub-criticalΩ < 1, hyperbolic geometry en-

sues andk < 1 (middle). Finally, whenΩ = 1 the Universe is said to be flat (k = 0)

and correspondingly follows flat, or Euclidean, geometry (bottom). Also shown is the

relation between an apparent angle and geometry as described in the text.CREDIT:

http://map.gsfc.nasa.gov/media[Gary Hinshaw and Nasa]. . . . . . . . . . . . . . . 6

1.3 Left panel: The distribution of nearly one million galaxies in the local Universe as seen

by the Sloan Digital Sky Survey (SDSS). The dark wedges result from dust obscuration

from our own Galaxy.CREDIT: http://www.sdss.org[M. Blanton and the SDSS]. Right

panel: The present day matter power spectrumP (k), calculated using CAMB (Lewis

et al.2000), quantifies how the underlying mass distribution varies across different scales.

The turnover of the power spectrum, the baryonic wiggles and the non-linear evolution

(linear evolution is dashed) are clearly evident at progressively smaller scales.. . . . . . 18
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1.4 Left panel: The temperature fluctuations in the cosmic microwave background radiation

as seen by WMAP. This full-sky map is observed in the V-band (61 Ghz) where the galac-

tic foreground across the centre (red) is minimal. The linear temperature scale ranges from

−200µK to 200µK. CREDIT: http://lambda.gsfc.nasa.gov[wmap science team] Right

panel: The CMB angular power spectrumC` quantifies how these temperature fluctu-

ations vary across different scales. TheC` values have been calculated using CAMB

(Lewis et al.2000) and can be matched to the data points to infer an underlying model as

in Dunkleyet al. (2009) and Section 4.2.. . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 g(a) ≡ δ(a)/a, the linear growth, is plotted for a range of late time acceleration models.

The solid line demonstrates the growth for LCDM, the dashed for the 5D braneworld

model DGP and the dotted for a dark energy model with identical expansion history to

DGP (w0 = −0.78 andwa = 0.32 wherew(a) = w0 + (1− a)wa). The difference in the

expansion history gives a significant suppression in growth relative to a pure cosmological

constant. The effect, however, of the 5D perturbations not only adds to the suppression

for DGP but breaks the degeneracy between itself and the smooth dark energy model.. . 35

2.2 g(a) ≡ δ(a)/a, the linear growth, is plotted for various values ofα that characterise

the phenomenological LCDM-DGP interpolation (mDGP) model. The solid line demon-

strates the growth forα = 0 (LCDM), the dashed forα = 0.25, the dash-dotted for

α = 0.5 and the dotted forα = 1 (DGP). Once again it is evident that the more DGP-like

end of theα spectrum experiences more suppression in the growth of density perturbations.37

2.3 g(a) ≡ δ(a)/a, the linear growth, is plotted for various values ofγ, the growth parameter,

resulting potentially from a change in force law. The solid line represents the growth for

LCDM (w0 = −1, wa = 0) with the corresponding growth parameterγ = 0.55. The

dashed line shows the growth forγ = 0.68 which is the same as flat DGP but with the same

expansion as in LCDM. The dotted line also hasγ = 0.68 but now withw0 = −0.78 and

wa = 0.32, thus completely specifying the growth of the example DGP model. Finally

the dot-dashed line shows the growth for a LCDM expansion butγ = 0.45. It is clear

that a high value of the growth parameter corresponds to a suppression of growth. This

potentially arises from a weakening of gravity.. . . . . . . . . . . . . . . . . . . . 40
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2.4 The distortion of background galaxies caused by the intervening mass distribution is par-

ticularly vivid in the vicinity of galaxy cluster Abell 2218. The images are stretched

out, or sheared, becoming more elliptical and in this scenario represents a more exag-

gerated version of weak lensing. In this latter case the underlying information resulting

from a more subtle deformation is deduced statistically over many galaxies.CREDIT:

http:hubblesite.org/gallery[NASA]. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 The open circles with associated error bars represent theξE two-point statistic as a func-

tion of θ (arcminutes) for the CFHTLS-wide survey used in this paper. I selectively use

scales greater than 30 arcminutes to remove the unknown non-linear effects. The red

dashed line shows the best fit values as found with the combined probes mDGP analysis

(Section 2.5.2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 The black dashed line represents the source redshift distribution with associated error

in the bins. The red solid line is given by the fitting function in Equation (2.29). The

fit is drawn for the function evaluated at the best-fit points as deduced by the combined

probes analysis for mDGP (Section 2.5.2). This corresponded to best fit values:a =

0.614± 0.034, b = 8.11± 0.681, c = 0.627± 0.0610 andA = 0.6462 consistent with F08.48

2.7 To test for consistency I include the68% and95% contours for aΛCDM analysis with

all angular scales (1 - 230 arcminutes) as in Fuet al. (2008). 6 parameters are varied in

total (Ωm, σ8, h, a, b, c). Similarly I do not include the HST prior or the residual offset

(c′ = 0) for this analysis. The baryon fraction is also fixed toΩb = 0.044. The degeneracy

betweenΩm andσ8 is clearly visible. . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 The diagram above demonstrates the attempted constraint on a parameterised gravitational

model that is motivated by the concept of a large extra dimension (mDGP). The contours

are forΩm andα (the modified gravity parameter) where 5 other cosmological parameters

(h, σ8, a, b and c) have been marginalised. Here only angular scales greater than 30

arcminutes have been used in order to avoid the non-linear regime. The data is from the

CFHTLS-wide (F08) survey using the E correlation two point statisticξE +c′. For mDGP,

α = 0 corresponds to LCDM, whereasα = 1 is equivalent to DGP.. . . . . . . . . . . 51
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2.9 The plot in the top left panel shows the constraint onΩm andα. Although appearing

to disfavour DGP (α = 1) as in the analysis by Yamamotoet al. (2006) the remaining

parametersΩb andh have been fixed at 0.044 and 0.66, respectively. I go beyond this

in the top right panel which contains constraints given on the same parameters but when

Supernovae data is added andΩb andh are allowed to vary. One can now see that the1σ

contour is beyond the bounds of the plot and so no constraint can be inferred. The benefit

of the weak lensing data is seen in the bottom left panel where once again I use angular

scales greater than 30 arcminutes from the CFHTLS-wide (F08) lensing survey. I also vary

Ωm, h, σ8, Ωb, a, b, c andαwhilst keepingns = 0.963. With this addition it is evident that

there is a visible improvement in constraint and that DGP is marginally disfavoured. This

is exemplified in the bottom right panel where I include the 1D marginalised probability

distribution (solid line). I find that the joint analysis gives constraints on mDGP ofα <

0.58 andα < 0.91 at the68% and95% confidence levels, respectively. The dotted line

represents the mean likelihood of the samples. Finally, the dashed contours in the bottom

left hand panel show that the constraints are insensitive to any systematics in the data such

as an over or underestimation in the CFHTLS shear at high redshift (Section 2.5.3).. . . 53

2.10 The left panel is an analysis of the mDGP model with weak lensing, BAO and Supernovae,

as before, but with the full range of angular scales (1-230 arcminutes). There is a slight, but

not significant, improvement compared to the more linear analysis. Here I findα < 0.56

andα < 0.86 at the68% and95% confidence levels, respectively. It should be noted

that this analysis includes data from the unknown non-linear regime. The right panel

demonstrates the current challenge in constraining the gravitational–as opposed to the

expansion’s–contribution to the growth of structure. I find that with current data it is

unfeasible to put any bounds on reasonable values of theγ parameter. This plot contains

an analysis with weak lensing, Supernovae and BAOs. Implicit in this plot is the variation

of alsoh, σ8, Ωb, a, b, c andw0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.11 The 2D marginalisedforecastedconstraints with the proposed space-based Euclid survey.

This corresponds to1σ bounds ofΩm = 0.3±0.003, h = 0.7±0.0832, σ8 = 0.8±0.0041,

Ωb = 0.05 ± 0.0140, ns = 1.0 ± 0.0158, w0 = −0.95 ± 0.0357 andwa = 0.0 ±

0.1326 from the fiducial input cosmology. This demonstrates that such a survey is a highly

promising and worthwhile project with constraints being pushed towards the percent level

for an individual late-time cosmological probe. The possible constraints on the equation

of state in particular are thoroughly exciting, especially given there are no extra priors.. 59
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2.12 The left panel displays Euclid’s potential constraining power with regards to the mDGP

model in a lensing only analysis. Here the1σ contour (all solid lines) is well within the

α = 1, or DGP, line and so it will be easily distinguishable from LCDM (α = 0). In

fact, this corresponds to an error of 0.104 onα with lmax = 500 (all red contours) in

stark contrast to today’s constraint. The right panel shows the marginalised contours for

the general growth parameterisation. Again, it seems that Euclid will provide excellent

insight into any potential modified gravity signatures. Specifically it is found that it will

be possible to constrainγ with an error of 0.045 (1σ). This is tightened further to 0.038

whenlmax = 10000 (black contours). The parametersh, σ8, Ωb andns have been varied

and marginalised over for both models considered here while in additionw0, wa andΣ0

have been marginalised for the growth model.. . . . . . . . . . . . . . . . . . . . . 60

2.13 The above plot shows the marginalisedγ − Σ0 forecast for a weak lensing only analysis

with Euclid. These two parameters, which could represent modified gravity or generic

dark energy signatures, demonstrate how this future weak lensing probe will potentially

place firm constrains on any model of late-time acceleration. The black contours cor-

respond tolmax = 10000, demonstrating an error of 0.069(1σ) on Σ0, whereas the red

contours correspond tolmax = 500 giving instead an error of 0.25. In both cases the inner

and outer contours are1σ and2σ, respectively.. . . . . . . . . . . . . . . . . . . . . 61

3.1 An example LRG spectrum is plotted over the SDSS filters (u, g, r, i and z) for varying

redshifts. The4000Å break, which is clearly evident in the relatively stable SED, underlies

the LRG photometric accuracy. The redshifting of the spectrum from the boundary of the

g and r filters, through the r filter and up to the boundary of the r and i filters describes

the high redshift galaxy sample that I utilise (0.44 < z < 0.65). To reiterate, it is from

the flux through the different filters that allows one to estimate the redshift for the galaxy.

CREDIT: Padmanabhanet al.(2007). . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 The SDSS Data Release 7 (DR7) photometric LRG coverage. At7746 deg2 it covers

723, 556 galaxies over a redshift0.4 < z < 0.7. The three excluded stripes (76, 82 and 86)

are visible towards the boundary of the plot. The 2dF SDSS LRG and Quasar (2SLAQ)

survey and training set constitute a narrow stripe (δ ≈ 0 ◦) that passes approximately

through the middle of the coordinate system and the bottom of the defined survey.. . . . 70
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3.3 The averaged reconstruction of the inputC` field for 1000 simulated realisations. The

thick dashed lines represent the input cosmology for the four redshift bins between0.45 <

z < 0.65 and the thinner solid lines are the recovered averages. The plot has been trun-

cated at̀ = 200 as a visual aid to see the agreement. The behaviour beyond this point

continues in an identical fashion and so the accuracy and consistency of the code and the

measurement procedure is clear.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Left Panel: The analytic Gaussian expression (Equation 3.11; dashed line) is accurately

traced by the 1000 realisation simulated error in a redshift band (solid line), shown here

for bin 1 (0.45 ≤ z ≤ 0.5). This demonstrates the approximate validity of the Gaussian

expression. Right Panel: The agreement is further highlighted by the ratio of the analytic

and numerical estimations of the statistical error, where the overall behaviour is consistent

with unity. The two panels are shown for the first bin only but are representative of all

other bin combinations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 The measured Angular Power Spectra (C`) for the photometric SDSS MegaZ-LRG (DR7)

population as presented in Table 3.1. The error bars correspond to those calculated with

Equation 3.11 using the measured power spectrum. These include contributions from

cosmic variance and shot noise, while accounting for the fraction of the sky surveyed.

The solid line is evaluated for the the best fit parameters found in Section 3.5 using the

Smith et al. (2003) non-linear prescription. The panels are: Bin 1 (top left), Bin 2 (top

right), Bin 3 (bottom left) and Bin 4 (bottom right). In the furthest redshift bin an excess

of power is observed over the largest scale. This was found similarly in DR4 but in that

earlier case with an additional40% more amplitude. The DR4 point is shown by the cross

in the top left corner of the panel.. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 A range of theoretical angular power spectra for the lowest redshift bin used in this survey

(0.45 ≤ z ≤ 0.5). This includes the small angle approximation (Equation 3.20; dotted

line), the exact expression with no redshift space distortions (Equation 3.17; dot-dashed

line), the exact expression including redshift space distortions (Equation 3.24; solid line)

and also with the addition of the partial sky mixing matrix convolution (Section 3.4.2;

Equation 3.26; dashed line). The input parameters are taken to be:Ωb = 0.05, Ωm = 0.3,

h = 0.75, σ8 = 0.8 andb = 1 for all four profiles. The small angle approximation is used

for multipole scales̀ & 60 for faster computation in the cosmological analyses.. . . . 82
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3.7 A slice through the mixing matrixR`,`′ is plotted for two fixed multipole values given by

`′ = 200 (solid curve) and̀ ′ = 260 (dashed curve). The amplitude of the matrix peaks at

those fixed values and decays rapidly within the size of a∆` band. This establishes how

little correlation is induced by the survey’s window function. Furthermore, the behaviour

is observed similarly across all angular scales. Note that the matrix profiles have been

normalised to unity at their peaks and the vertical axis is in logarithmic space.. . . . . . 84

3.8 The spectroscopic redshift distributionn(z) for each photometric bin in DR7 is illustrated
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CHAPTER 1

I NTRODUCTION

Cosmology is one of the boldest of all intellectual endeavors. It seeks to describe the origin, evo-

lution and fate of the Universe. It also aspires to provide a complete census of its contents. Indeed,

it is not only with this shameless ambition that it stands in stark contrast to other scientific fields;

for example, it is not, in terms of the scientific method, reproducible. Moreover, it is a field that

seems to most closely border the metaphysical with its furthest advancing outposts represented by

a new philosophy:precision cosmology.

This recent deluge of data, from the tiny fluctuations in the afterglow of the Big Bang to the

positions of millions of galaxies, is revealing a fascinating and dynamic Universe. As we will

see in the rest of theintroduction, it is expanding (Section 1.1.1) and is best described by a the-

ory where the fabric of space-time and mass intimately manipulate one another (Section 1.1.2).

However, this requires the existence of new physics with unseen dark matter (Section 1.1.4.4) and

dark energy (Section 1.1.4.5) necessarily being invoked to explain both theacceleratedexpansion

(Section 1.1.4) and the statistics of fluctuations in the mass distribution (Section 1.2.2). In fact, it

forces us to consider the very notion of amodeland its fundamental relation–through a choice in

the statistical approach–to the data (Section 1.3).

In addition, the vast wealth of data still being mined from our surroundings is capable of pro-

viding a fertile testbed for fundamental and underlying physics such as gravity, the neutrino, dark

energy or the discrete nature of space-time. This is a theme throughout the thesis and subsequently

the rest of the chapter outlines are described in Section 1.4.

1
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Figure 1.1:The first Hubble diagram where the plot of velocity against distance demonstrates that distant

galaxies are receding from us. The solid line and points correspond to an analysis corrected for the sun’s

movement.CREDIT: Hubble (1929).

1.1 The smooth and expanding Universe

This subsection describes the smooth first order Universe associated with the concept of a dynamic

cosmos. It highlights the surprising link between this evolution and the stamp collecting-like quest

to quantify its energy contents (1.1.4), through both the concept of distance (1.1.5) and the theory

of gravity (1.1.2).

1.1.1 The expansion

The expansion of the Universe is perhaps one of the most startling yet central concepts in all of

modern cosmology. There are a number of direct and indirect methods to infer this expansion with

the clearest being through the Doppler effect.

Elements and their atoms have characteristic energy levels governed by quantum theory. A

transition between these energy levels is the result of an emission or absorption of a discrete and

specific packet of light energy. This definite energy has a fixed corresponding wavelength known

for each element and their energy levels in the rest frame. However, for a moving object, such
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as a galaxy containing the element, this wavelength will be shifted, orDoppler shifted, towards

one end of the spectrum. For an object moving away from an observer the succession of peaks

from an emitted wavelengthλem will become more sparse thus shifting the observed wavelength

λobs towards the red end of the spectrum; that is,redshifting the light. Conversely, an object

approaching the observer suffers a crowding of its light’s peaks and troughs and subsequently it is

blueshifted.

Similarly, Vesto Slipher and Edwin Hubble, after years of observation, discovered that distant

galaxies tend to recede from every observer with a velocityv̄ proportional to the relative distance

d̄ (Hubble 1929). This has been enthusiastically referred to as Hubble’s law,

v̄ = H0d̄ (1.1)

whereH0 is the Hubble constant. The early emergence of this trend can be seen in Figure 1.1.

Since then determiningH0 has been a challenging but tantalising task with recentHubble Space

Telescopemeasurements proposingH0 = 72 ± 8 kms−1Mpc−1 (Freedmanet al. 2001) and

H0 = 74.2 ± 3.6 kms−1Mpc−1 (Riesset al.2009). This overall recession of distant objects–the

expansion of the Universe–has led us to define the redshiftz,

1 + z ≡ λobs

λem
=
aobs

aem
(1.2)

wherea = a(t), the scale factor, literally describes a relative scale for the expansion. Most

remarkably we might now presuppose that any Universe that is expanding must have at some

point been arbitrarily small. Indeed, we now have complementary and consistent evidence of a

Universe with a beginning (within the bounds of everyday language), where recent data insists on

a present age of13.69± 0.13 billion years (Dunkleyet al.2009).

1.1.2 General Relativity

In order to accurately describe the expansion of the previous section it is essential to have a fully

viable and working theory of gravity. Conventionally this is fulfilled by general relativity.

Originally underlined by Bernhard Riemann and later expanded by Albert Einstein the theory

uses the concept of gravity not as a force but as a representation of the geometry, or the curva-

ture, of space-time. This geometry is described by an entity known as the metric that relates dis-

tances between coordinate points. Any test particle moving through such a geometry will follow a

geodesic (a generalisation of a ‘straight’ line in a curved space) and have its motion subsequently

affected. Specifically, general relativity associates gravity to the metric and pertains the existence
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of mass or energy to the distortion of the surrounding spacetime. This is encapsulated in Einstein’s

field equations,

Rµν − 1
2
gµνR = −8πG

c4
Tµν (1.3)

whereRµν andR, which describe the curvature, are the Ricci tensor and scalar, respectively,

andTµν is the energy-momentum tensor. Also present, and implicit withinRµν andR, is the

4 × 4 symmetric metricgµν . The Greek indices run from the temporal (0) to the three spatial

components (1, 2, 3).

To retrieve our expanding cosmology we might start with a metric such as,

ds2 = −c2 dt2 + gij dxi dxj (1.4)

where the spatial metric (for a constant time slice) is given bygij . The form of this metric is

heavily restrained by the fact that observers perceive the cosmic microwave background (CMB)

to be astonishingly isotropic. Different parts of the background, which are now separated by large

fractions of the observable Universe, are virtually identical to several parts in105 after subtracting

the dipole contribution. Therefore for any constant time slice the Universe should be remarkably

homogeneous. Likewisegij , which describes the geometry of the space, should also be close

to homogeneity. Indeed, if there exists both isotropy and homogeneity the full metric can be

described at all times by the Friedmann-Robertson-Walker metric,

ds2 = −c2 dt2 + a(t)2
( dr2

1− kr2
+ r2 dθ2 + r2sin2θ dφ2

)
(1.5)

wherek is the curvature of the current time slice and I setc = 1 from here on.

The evolution of the metric (Eq. 1.5) is governed by Einstein’s equations (Eq. 1.3) and depends

on the contents of the energy-momentum tensor. For a perfect and isotropic fluid this can be

detailed by,

Tµν =


ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 (1.6)

whereP is the pressure andρ is the energy/mass density. This configuration yields two indepen-

dent equations. The time-time (µ = ν = 0) part of the Einstein equation provides the Friedmann
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equation,

H2 ≡
( ȧ
a

)2
=

8πG
3

ρtotal −
k

a2
. (1.7)

with ρtotal = ρ(a) containing contributions from all the energy components. Secondly, the space-

space (µ = ν = 1, 2, 3) part of the Einstein equations (with the above Friedmann equation sub-

tracted) gives the acceleration equation,

ä

a
= −4πa

3

(
ρ+ 3P

)
. (1.8)

Remembering that the scale factor gives us a measure of the Universe’s expansion one can see

that its very evolution and dynamics depend on the energy contents. This is a powerful reason

therefore to quantify and understand the energy contents within the cosmos; to understand how

it started, how it is evolving and ultimately what might happen inexorably in the future. Viewed

another way, if we examine the expansion history in detail we might be able toinfer the properties

of any known, or unknown, matter constituents. Accordingly, to interpret an equation such as (Eq.

1.7) we must understand the evolution of any fluidsρ(a) with expansion (Section 1.1.4).

1.1.3 Geometry

In the aforementioned Friedmann equation (Eq. 1.7) there is a certain value ofρtotal that results

in k = 0 for a setH. This is widely known as thecritical density,

ρc(t) =
3H2

8πG
. (1.9)

It is therefore enormously convenient to express any matter densities as a fraction of this critical

densityΩ(t) ≡ ρ/ρc. In this way if the total matter densityΩtotal = 1 thenk = 0 and the

Universe will have a flat geometry. Physically this is represented by Euclidean geometry and

states, for example, that angles within a triangle add to180 degrees. If we have more matter

Ωtotal > 1 we findk > 0 and we acquire spherical geometry. Interestingly in this case the internal

angles of a triangle are greater than180 degrees. Alternatively if there is less matter,Ωtotal < 1,

we find the three angles are smaller than180 degrees. This is embodied by hyperbolic geometry

and subsequentlyk < 0. Note that it is thisk that features in the metric of Equation 1.5. These

three geometries are displayed clearly in Figure 1.2.

Observationally the Universe is seen to be very close to flat with Komatsuet al.(2009) finding

Ωk = 1 − Ωtotal = −0.0049+0.0066
−0.0064. It is commonly thought that sufficient evidence for a flat

Universe arises solely from the main acoustic peak in the CMB (Section 1.2.2.2 and Figure 1.4).
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Figure 1.2:The three possible geometries for the Universe and their relation to the total densityΩ. For

Ω > 1 the geometry is described as spherical andk > 0 similarly to the surface of the Earth (top). When

the density is sub-criticalΩ < 1, hyperbolic geometry ensues andk < 1 (middle). Finally, whenΩ = 1
the Universe is said to be flat (k = 0) and correspondingly follows flat, or Euclidean, geometry (bottom).

Also shown is the relation between an apparent angle and geometry as described in the text.CREDIT:

http://map.gsfc.nasa.gov/media[Gary Hinshaw and Nasa].

This is the scale of the most prominent fluctuations. A spherical (hyperbolic) geometry will act

to increase (decrease) the apparent angular size1 of characteristic temperature fluctuations thus

shifting the position of the first peak on a scale of size. However, as the CMB effectively measures

the angular diameter distance (Section 1.1.5) to an isolated redshift and the position of the first

peak is also dependent on the sound horizon at decoupling it is degenerate with other parameters

that influence the expansion history and horizon (pressure) scale at that time, includingΩm and

ΩΛ. By introducing probes of this history it is possible to break the degeneracy and retrieve the

tight bound as illustrated above. It is therefore common to assume flatness in many cosmological

analyses and similarly I follow this procedure for simplicity and clarity.

1As can be seen in Figure 1.2.
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1.1.4 The Energy Contents

A simple rearrangement of Equation 1.7 and 1.8 allows us to produce a third, but dependent,

Einstein equation for the density evolution. This is known as the fluid equation,

ρ̇+ 3
ȧ

a

(
ρ+ P

)
= 0. (1.10)

Alternatively one can derive this directly by ensuring mass-energy conservation in the field equa-

tions. This is obtained by forcing the covariant derivative of the energy-momentum tensor to be

zero2: ∇µT
µ
ν = 0. The derivative arises from a generalisation of the Euler∂P/∂xj = 0 and con-

tinuity equations∂ρ/∂t +∇.(ρu) = 0. Moreover, the covariant part allows us to see whether a

quantity has changed along a curve, say, independent to the change from a non-inertial coordinate

system.

We can now solve forρ provided we know how to treat the pressure term. This is different for

the different forms of matter.

1.1.4.1 Baryons

In terms offamiliarity the primary form of matter is baryonic. Strictly speaking this is matter com-

posed of three quark particles. However, for the purposes of cosmology this is extended to include

the electron. Therefore all atoms, all of ourselves and all of the structures in our surroundings are

baryonic.

We can quantify the energyE of these baryons if we know both the rest massm and their

momentap byE2 = m2 + p2. Generally speaking, in the later stages of the Universe’s evolution

matter tends to be less energetic and has small momenta relative to its rest mass. In this case we

say that it behaves non-relativistically and subsequently it is a good approximation to assume it

exerts negligible pressureP ≈ 0.

Inserting this into the fluid equation (Eq. 1.10) we can solve forρ first findingρ̇+3 ȧaρ = 0 and

finally ρ ∝ 1/a3. This implies, as we might have guessed, that the density drops in proportion to

the volume. Despite the apparent abundance of baryons recent studies suggest thatΩb = 0.0441±

0.0030 (Dunkleyet al.2009), i.e. baryons comprise only≈ 5% of the entire energy contents.

1.1.4.2 Radiation

Again in terms of its apparent ubiquitousness radiation is an important constituent in the cosmos.

In the electromagnetic form it is literally our primary tool for observing the Universe. Observations
2Note that there is a summation over the repeatedµ index.
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in the visible, infrared, X-ray, radio and microwave allow us to infer the expansion highlighted in

Section 1.1.1, the properties of galaxies such as star formation and their mergers, the properties of

clusters and their gas, and the small fluctuations in thermal equilibrium present in the very early

Universe – to name a few.

The pressure of radiation is given byP = ρ/3. Entering this into the fluid equation once more

(Equation 1.10) renderṡρ + 4 ȧaρ = 0 and finallyρ ∝ 1/a4. This implies, as one might not have

guessed, that the energy density for radiation falls faster than matter. Physically the extra factor

can be attributed to a redshifting of the radiation’s wavelength with expansion. Furthermore, via

the Stefan-Boltzmann law, which states that the energy density of black body radiation is given by

ε ∝ T 4, the temperature of the CMB, for example, is seen to decrease in accordance withT ∝ 1/a.

It is expected therefore that the early and energetic Universe was dominated by radiation with the

faster decrease in density later giving rise to matter domination. This densityΩR is monopolised

by the energy in the microwave background and is inferred from its temperature (T0 = 2.728 K)

giving ΩR ≈ 5× 10−5.

1.1.4.3 Neutrinos

First postulated by Wolfgang Pauli in 1930 to conserve energy and momenta in beta decay the neu-

trino was long thought to be massless. However, it was later observed by the Super-Kamiokande

experiment that there are oscillations between the neutrino flavours (Fukudaet al. 1998). This

indicates that the neutrino species must have finite mass eigenstates. Furthermore, the thermal

equilibrium that briefly occurred between the early primordial plasma and the cosmic neutrino

background ensures the neutrino to be particularly abundant. One might suggest therefore that

neutrinos could account for a large fraction of the missing energy density, givingΩtotal ∼ 1.

QuantifyingΩν or equivalently
∑
mν , the sum of the individual masses, is considered in detail in

Chapter 4. Unfortunately it is found that while the neutrino contributes significantly to cosmolog-

ical phenomena it does not contribute sufficiently to the total energy densityΩν ∼ 0.01.

The neutrino is not only of great cosmological interest but also an astrophysical one. For

example, in the process of a core collapse supernova∼ 99% of the energy released is via neutrinos.

These are produced both thermally and in the formation of a neutron star:p+ e− → n+ νe. The

photons formed can take considerable time to diffuse through the extreme density of the collapsing

material. On the contrary the neutrinos barely interact with the infalling matter and free-stream

away from the object. This allows the possibility of using neutrino burst detections as an early

warning system in order to observe an entire supernova intensity profile with time.
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1.1.4.4 Dark Matter

It is now becoming increasingly apparent that in order to have a flat Universe, as stated in Sec-

tion 1.1.3, there must be a previouslyunknowncontribution to the energy density. Explicitly

speaking, if we add up all the baryonsΩb, photonsΩR and neutrinosΩν described above we can

not account for∼ 95% of the cosmos.

One potential insight concerns the dynamics of galaxies. It has long been noted that their

high rotation velocities require an inordinate amount of mass relative to that observed as visible

matter (in any part of the electromagnetic spectrum). Put simply: there must be large quantities

of extra matter. This is known asdark matterand by definition it is not expected to interact

electromagnetically. It is often assumed to be collisionless and non-relativistic (and soP ≈ 0)

and is therefore frequently referred to ascold dark matter (CDM). Subsequently its densityΩc

evolves like baryonic matter∝ 1/a3 and so too comes to dominance over the early radiation era.

A host of independent cosmological probes from the CMB to the clustering of galaxies (Chapter 3)

all agree on a consistent value ofΩc + Ωb = Ωm ≈ 0.25.

As the existence of dark matter in galaxies has been deduced purely on gravitational grounds

it has been suggested that the effect could be the result of a modification to gravity. For example,

Milgrom (1983) has proposed an acceleration scalea0 below which Newtonian dynamics are

modified to explain the galactic rotation curves. This is called Modified Newtonian Dynamics

(MOND). On the other hand recent data from a merging cluster system–theBullet Cluster–has cast

some doubt on this (Cloweet al.2006). The cluster system appears to show a distinct separation

in baryonic and dark matter caused by electromagnetic collisions in the former. This dissociation

is not present in MOND and the theory seems to require neutrinos with≈ 2 eV mass to remain

viable. I undertake a cosmological constraint of the neutrino in Chapter 4 and show this mass

range to be unlikely–consistent with the community.

1.1.4.5 Dark Energy

Despite the fact that the energy budget is increasing there is still≈ 75% that is completely unac-

counted for. This additional form of missing matter is calleddark energyand it is expected to have

the most peculiar of properties.

Just over a decade ago it was empirically found that the expansion of the Universe is not

slowing down, as one would expect under the attraction of the aforementioned matter, but instead

accelerating! This was achieved by probing the luminosity distance-redshift relation (see Sec-
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tion 1.1.5) with observations of type 1a supernovae (E.g. Riesset al. (1998) and Perlmutteret al.

(1999)).

By looking at the acceleration equation (Eq. 1.8) it is possible to see the unusual condition

under which this acceleration might occur. For this phenomenon we require thatä > 0 and so

(ρ + 3P ) < 0. Now given that we know nothing about this hypothetical fluid we have very little

chance of guessing its pressure term. Instead we can simply parameterise the pressure in terms of

the densityP = wρ, where the constant of proportionalityw is known as the equation of state.

Under this terminologyw = 1/3 for radiation andw = 0 for the baryons and dark matter. Insert-

ing this expression into the condition above we findρ(1 + 3w) < 0. After some rearrangement

this can be reduced tow < −1/3; the missing energy component must have a negative pressure.

The Cosmological Constant

The cosmological constantΛ was initially introduced by Einstein as a modification to the

original general relativity theory in order to accomplish a balanced and stationary Universe,

Rµν − 1
2
gµνR+ Λgµν = 8πGTµν . (1.11)

This idea temporarily vanished with the evidence of the Hubble expansion but has since reap-

peared as a way of explaining dark energy. In this specific case the equation of state is constant and

is exactly equal to−1. The resulting solution to the fluid equation givesρ = constant. As a result

the density does not fall off with expansion and will come to dominate over matter. Together with

dark matter this has become a popular, although theoretically unfulfilled, paradigm and is often

referred to asΛCDM . Complementary estimates indicateΩΛ ≈ 0.75 thus fulfilling the missing

energy budget.

Similarly to dark matter the existence of dark energy has been invoked assuming an underlying

theory of gravity: general relativity. It could be that under the circumstances of interest this theory

is a poor description of gravitational phenomena and that a modification to this theory will explain

the acceleration naturally. This is the subject of Chapter 2.

1.1.5 Distance

Throughout the introduction of the metric and of the scale factor we have not explicitly addressed

the idea of distance in an expanding background. Clearly, measuring distance in such a setting

could be a challenging yet subtle task and accordingly there are several forms to consider:
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Comoving Distance

Any observer that perceives the CMB to be isotropic3 is a comovingobserver. They are co-

moving in the sense that their motion is determined entirely by the Hubble flow and expansion.

Imagine now that earlier in the Universe’s expansion history we had placed a grid over comoving

observers such that it too was carried along with the expansion. Therefore on a given grid axis the

distance between two observers would not change. This is thecomoving distance.

One coordinate system that does not expand with the Hubble flow is that associated with the

physical distance. The physical (r) and comoving (x) scales are related simply byr = a(t)x.

Therefore, the comoving distance between a distant object and ourselves can be calculated as,

χ(a) =
∫ to

ta

dt
a(t)

=
∫ 1

a

da
a2H(a)

(1.12)

where the scale factor today is defined to be unity (a0 = 1) but becomes vanishingly small (a→ 0)

towards the Big Bang. TheH(a) factor is the solution to the Friedmann equation (Eq. 1.7)

depending on all the constituent matter densities.

If we increase the lower limit in the above integral such thatta = a = 0 this will represent the

comoving limit of causality. As such it is often referred to as thecomoving horizon(η).

Luminosity Distance

A pragmatic approach to inferring distance in cosmology is to consider an object for which

the intrinsic luminosityL is known. One can then make an estimate of the distanced by taking a

measurement of its observed fluxF . For an isotropic source the energy is spread evenly over the

surface of a sphere and so the quantities of interest are related by,

F =
L

4πd2
. (1.13)

This is valid in a static or comoving space (d = χ(a) andL = L(χ)) but needs to be generalised

for an expanding one.

Working from a comoving coordinate system the observed luminosity in the physical coordi-

natesLo is diminished relatively by both the Doppler shift of emission and a relativistic redshift.

Both of these decreaseLo by a factor of(1 + z) giving,

F =
Lo

4πχ2(1 + z)2
. (1.14)

3Obviously only an observer with poor instrumentation can observe the CMB to be truely isotropic on all scales.

This refers to a redshifting and blueshifting of the entire CMB produced by relative motion thus resulting in adipole

anisotropy.
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Equating this expression to the earlier flux equation (Eq. 1.13), theluminosity distancedL can be

interpreted as,

dL ≡ χ(1 + z) =
χ

a
. (1.15)

In practise, this distance measure is applicable to type 1a supernovae. These are a specific form

of thermonuclear explosion resulting in the death of a star. In particular they are thought to arise

from the accretion of matter onto a white dwarf in a binary system. At a definite mass (the Chan-

drasekhar mass) the star is unable to support itself and collapses thus increasing its temperature. At

this moment the star becomes capable of carbon fusion and obliterates itself in a runaway process

releasing large quantities of stellar material, photons and neutrinos.

The prominent point is that as this is expected to occur at the same mass each supernova might

be expected to have the same intrinsic luminosity. In fact, the intrinsic luminosity is dependent on

the observed intensity profile of the exploding star. In this way by measuring the observed bright-

ness of supernovae in the sky it is possible to examine the luminosity distance-redshift relation and

hence probe models of the expansion history in the process. This is performed in Section 2.5.2

and 4.3 in order to reduce the parameter degeneracies of the model in question.

Angular Diameter Distance

Alternatively, one can measure theangular diameter distancedA. This is defined as the ratio

of a body’s (potentially known or theorised) projected magnitude on the skyl to its angular size

θ4, i.e.,

dA = l/θ. (1.16)

In comoving space the projected scale of the object isl/a and the comoving distanceto the object

isχ(a). As the subtended angle is the ratio of the transverse and radial distances,θ = (l/a)/χ(a).

Inserting this into Equation 1.16 enables a calculation of the angular diameter distance,

dA =
χ

1 + z
= aχ. (1.17)

This can therefore be applied whenever we know or whenever we can theorise the extent of some-

thing in the sky. This includes, for example, the characteristic scale of acoustic fluctuations in

the CMB or their remnants in the galaxy clustering pattern known as baryon acoustic oscillations

(BAOs). Again, this is encountered in Section 2.5.2 and 4.3 to relate the available data to proposed

cosmological parameters, such asΩm andH0, sequentially throughdA(a), χ(a) andH(a).
4In radians.
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In addition, it should be noted that in the potential presence of curvature (Section 1.1.3) the

angular diameter distance is generalised to,

dA =
a

H0

√
|Ωk|

 sin[
√
−ΩkH0χ] Ωk < 0

sinh[
√

ΩkH0χ] Ωk > 0

with Ωk = 1− Ωtotal.

1.1.6 Inflation

Except for the nature of dark matter and dark energy there are several other major issues that face

the Big Bang model we have built up so far. These can be summarised as the flatness, horizon,

structure and monopole problems:

Flatness

Using the expression for the critical densityρc (Eq. 1.9), the Friedmann equation (Eq. 1.7)

can be recast succinctly into,

|Ω(a)− 1| = |k|
a2H2

. (1.18)

From this it is clear that if the total densityΩ(a) is identical to one then it persists as equal to one

for the entire evolution of the Universe. However, it is also clear that this is an unstable solution;

for in the presence of matter or radiation, say,|Ω(a) − 1| grows with evolution. Therefore, any

deviation from a flat geometry will give rise to an ever more curved geometry. Indeed, under the

assumption of matter domination|Ω(a)− 1| ∝ t
2
3 .

With the above reasoning and the empirical evidence thatΩk ≈ 0 one can argue that the early

Universe (t ≈ 1017 seconds ago) must have beenexceptionallyflat! This can be interpreted as

rather fine-tuned given that even a slight change in the early value leads to wild differences in

today’s observable cosmology.

Horizon

When deducing the form of a cosmological metric in Section 1.1.2 we noted that the Universe,

and thus the metric, are extremely isotropic even on large scales. Evident in the CMB temperature

we can attribute this to an early Universe that was hot and in thermal equilibrium. However, as

light from widely separate regions has been traveling to us from the edges of our observable hori-

zon, since this equilibrium epoch, we must conclude that these areas are not causally connected!
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For this reason they could not have been in thermal equilibrium to produce the uniformity.

Structure

The small fluctuations in the CMB thermal bath are believed to be the progenitors of galaxies,

clusters and voids we observe now. Although, to obtain the current large scale structure there must

have been fluctuations in the density spectrum on scales that previously were outside the horizon.

Again, causal processes could not have caused these perturbations.

Monopoles

A magnetic monopole is a hypothetical particle with onlyonepole. These have been predicted

by a number of Grand Unified Theories (GUTs) and are expected to be particularly numerous and

massive. Therefore these particles would have been non-relativistic far earlier than ordinary bary-

onic matter giving them, on average, a much slower density reduction with regards to radiation or

any other matter component. However, the problem is that these particles are at least rare enough

not to have been observed to date–unless of course, they do not exist at all.

The solution:

A period of prodigious and extreme expansion in the very early Universe (t ∼ 10−34 seconds),

called Inflation, has since been invoked to explain these issues and yet preserve the successful

features of the Big Bang model.

The enormous increase in the scale factor with time blows up the denominator in Equation 1.18

thus driving the geometry decisively towards flatness. If there is ample increase at these early

times this can be sufficient to keepΩk close to zero as observed today, despite all the consequent

departure from flatness in|Ω − 1|. Furthermore, this rapid period of inflation takes a region of

causally connected and thermalised space and amplifies it beyond the boundaries of our current

observable Universe. In this way widely separated regions on the skyhavebeen in causal con-

tact. The observed large scale homogeneity is then a result of smaller scale homogeneity being

frozen across the sky with post-inflation mechanisms incapable of altering it in a causal way. The

inflation also allows for the inhomogeneous structure we observe today as the inflationary period

enables primordially generated quantum fluctuations to grow to cosmological scales. Many theo-

ries of inflation predict these fluctuations to be Gaussian and this is seen to be consistent with the

CMB. Finally, if the aforementioned magnetic monopoles are produced at an energy above that

corresponding to the end of inflation their observed density will be diminished resulting from a
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dilution with inflationary expansion.

1.2 The not-so-smooth and expanding Universe

This subsection describes the departures from isotropy and homogeneity associated with the growth

of structure in the Universe. It illustrates the growth of over-densities (1.2.1), the statistical quanti-

ties that describe them (1.2.2) and finally the probes that are sensitive to these fluctuations (1.2.2.1

and 1.2.2.2).

1.2.1 Inhomogeneities

In our earlier treatment of the Friedmann-Robertson-Walker metric (Eq. 1.5) we observed that

the Universe was close to homogeneous on large scales–effectively pervaded by a smooth ho-

mogeneous fluid. However, the field of astronomy is interesting because our present and local

environment is decidedly inhomogeneous; it is filled with clusters, galaxies and a whole host of

astrophysical entities.

Earlier I alluded to the notion that inflation takes primordial quantum fluctuations and amplifies

them to astrophysical and cosmological size. These and the resulting irregularities in the CMB

are the seeds of this fascinating structure. It is important to notice though that there is a large

discrepancy in the magnitude of these perturbations. As stated before, the CMB fluctuations are

very small, whereas a galaxy cluster, for example, can be of order a hundred times the mean density

of the Universe. The mechanism that provides this growth, from seed to structure, isgravitational

instability.

An initially over-dense region can be considered to have two competing forces acting on it.

Firstly, a mutual gravitational attraction will act towards the centre of the mass attempting to in-

crease the overdensity. This is contested by a pressure force acting against gravity. The pressure

can be provided, for example, by the thermal motion of the gravitating particles under consider-

ation. This can be seen prominently in the plasma of the very early Universe. In the radiation

dominated Universe the photons will have a small mean free path due to regular Thomson scat-

tering with free electrons. The entirety of the electron population will be free because the mean

thermal energy exceeds the hydrogen binding energy. Therefore, the electron and photon fluids

are tightly coupled, forming in the process a photon-baryon plasma. Due to the domination of the

radiation energy density in this epoch the photons dominate the bulk of the gravitational force.

Collapsing under this force the photons, and therefore the baryon fluid, will eventually oscillate
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due to the radiation’s pressure. Over large scales this pressure is unable to act due to a finite sound

speed and as a result the perturbation can continue to increase with gravity.

Mathematically this can be derived from perturbed energy-momentum conservation in the Ein-

stein Equations. This is equivalent to utilising the Euler and continuity (conservation) equations on

the first order perturbed quantities (δρ, δP , δ~v andδψ) and substituting for the Poisson equation,

k2ψ = −4πGa2ρδ. (1.19)

HereP , ~v andψ are the pressure, velocity and potential, respectively. The over-densityρ can be

further written in terms of the mean density in the Universeρ̄ and is referred to as the density

contrastδ,

δ(~r) =
ρ(~r)− ρ̄

ρ̄
. (1.20)

Combining this all together yields Equation (1.21). This expression is analogous to the physical

explanation above concerning radiation pressure and gravitational instability. Thek2 term is a

consequence of writing the density contrast in Fourier space andc2s describes the sound speed of

the fluid.

δ̈ + 2Hδ = (− c
2
s

a2
k2 + 4πGρ0)δ. (1.21)

Whether the perturbation grows or not therefore depends on the overall sign of the right hand side.

The associated scale (λJ = 2π/kJ ) for this is called the Jeans length and is given by,

λJ = cs

( π

Gρ0

) 1
2
. (1.22)

In line with the physical interpretation (in the radiation dominated era) whenλ > λJ gravitational

collapse dominates and the perturbation can increase. Otherwise, whenλ < λJ , the pressure

remains substantial and the perturbations do not grow.

During matter domination, on the other hand, the radiation is incapable of governing the grav-

itational dynamics. This role is taken over by the dark matter which, as we noted earlier (Section

1.1.4.4), has negligible pressure (P ≈ 0 =⇒ c2s ≈ 0). As a result the gravitational attraction

becomes uncontested and the perturbations grow on all scales; evolving eventually to become a

galaxy, pulsar or even Earth-like planet.

1.2.2 The Power Spectrum

A given model for cosmology is not expected to make an exact prediction as to the specific location

of an over-density or the precise temperature of a CMB fluctuation at a point in the sky. It is,

however, expected to make a prediction for the statistical distribution of these fluctuations.
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In cosmology a valuable statistical entity (and the one most commonly adopted) is the power

spectrum (Blackman & Tukey (1959), Yu & Peebles (1969) and Peebles (1973)). This effectively

describes how much a field changes on varying scales. Specifically, if a field has fluctuations that

are changing significantly over fixed separations, such that the variance of these fluctuations are

large, the power spectrum would be sizable over this scale too. Conversely, if the field is not

varying on a given scale the power spectrum will be small. Accordingly, the power spectrum is

defined through,

< δ̃(~k)δ̃∗(~k
′
) >= (2π)3P (k)δn(~k − ~k′) (1.23)

whereδn is the Dirac delta function,P (k) is the power spectrum and< .. > is the ensemble

average of a realisation of the fieldδ. The ensemble average is over many realisations of the field

each with identical statistical properties. Propitiously, if the underlying field is a random Gaussian

field then the power spectrum succeeds in describing and encapsulating the whole of the field.

Indeed, if a superposition of many independent random processes produced the fluctuations in

the early Universe, the resulting field would be Gaussian as a consequence of the Central Limit

Theorem. Such a mechanism could be provided by quantum fluctuations during inflation, for

example.

1.2.2.1 Matter Power Spectrum

The matter power spectrum can be calculated theoretically by considering the growth of structure

on different scales as described in Section 1.2.1. We can get insight into the shape of this function

by first noting that most theories of inflation predict the initial (post-inflation) power spectrum to

be in the form of a power law,

Pi(k) ∝ kn. (1.24)

As the matter power spectrum is usually plotted in log-log space this initial power spectrum is a

diagonal straight line. From the earlier discussion we know that on the smallest scales (largek)

the perturbations are unable to grow. However, large scales (smallk) are beyond the influence of

the radiation pressure and are free to evolve. The extra growth leads to a more clustered field and

so the power spectrum subsequently increases (at that scale). The net result is for the straight line

power law to bend, or turnover, at the interface of these two conditions.

With time the pressure/sound wave propagates to the larger perturbations. Obviously this halts

any evolution at this scale and so the amplitude of the power spectrum stabilises, shifting the
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Figure 1.3: Left panel: The distribution of nearly one million galaxies in the local Universe as seen

by the Sloan Digital Sky Survey (SDSS). The dark wedges result from dust obscuration from our own

Galaxy. CREDIT: http://www.sdss.org[M. Blanton and the SDSS]. Right panel: The present day matter

power spectrumP (k), calculated using CAMB (Lewiset al. 2000), quantifies how the underlying mass

distribution varies across different scales. The turnover of the power spectrum, the baryonic wiggles and

the non-linear evolution (linear evolution is dashed) are clearly evident at progressively smaller scales.

turnover of the spectrum to larger and larger scales (smaller and smallerk). Finally, at the onset of

matter domination, when all the scales are able to evolve, the shape of the power spectrum becomes

fixed. The resultant present day power spectra is illustrated in the right panel of Figure 1.3. To

reiterate, the x-axis is expressed in the wavenumberk and hence small scales appear to the right

of the plot.

Clearly evident in Figure 1.3 are a succession of wiggles at slightly smaller scales than the

turnover. This is a consequence of the photon-baryon fluid set up in the early Universe. In the

absence of pressure later in the matter dominated era the baryons will be left in a shell at a fixed

radius from the original centre of the over-density. As the dark matter is not coupled electromag-

netically to either photon nor baryon it will still reside mainly at this centre. These two regions

will subsequently attract matter gravitationally, eventually forming into galaxies over this pref-

erential scale. The resulting signatures in the power spectrum are befittingly referred to as the

baryon acoustic oscillations (BAOs). In addition, their calculable scale on the sky enables a clean

measurement of the angular diameter distancedA (Section 1.1.5).
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The matter power spectrum can be observed by measuring the angular and radial positions

of galaxies. The radial position is necessarily a redshift observation and hence a series of galaxy

measurements is often referred to as a galaxy or redshift survey. One such survey–the Sloan

Digital Sky Survey (SDSS)–is illustrated in the left panel of Figure 1.3. Strictly speaking such a

measurement is a measurement of thegalaxypower spectrum as we observe, by definition, only

the luminous matter. If these galaxies linearly trace the dark matter distribution it is possible to

relate the two spectra,

Pg(k, z) = b2 Pm(k, z) (1.25)

wherePg(k, z) is the galaxy power spectrum,Pm(k, z) is the matter power spectrum andb is

called the bias. Our ignorance with respect to this bias represents one of the major uncertainties

in a galaxy survey measurement and, at the very least,b must be included and marginalised (Sec-

tion 1.3.1) over in any cosmological analysis. Generally this biasing is expected to be a function

of redshift and of scaleb = b(k, z).

In Chapter 3 I construct a new measurement of the power spectrum based on the most recent

SDSS galaxy catalogue (DR7) and use this to place constraints on the matterΩm and baryon

fb = Ωb/Ωm densities.

Non-linear Matter Power Spectrum

As a given over-density continues to collapse the density contrast (Eq. 1.20) will eventu-

ally become of order unity|δ| ∼ 1. This is particularly common over smaller scales in the late

time Universe. At this point linear perturbation theory ceases to be valid. One could calculate

successively higher order perturbations although it inevitably fails to converge. Instead a prag-

matic approach to this issue is to reproduce the non-linear evolution with N-body simulations for

a range of parameters. With this methodology Peacock & Dodds (1996) and Smithet al. (2003),

for example, have provided a fitting function to map the linearly evolved power spectrum into

the non-linear. The non-linear growth causes an additional increase in the clustering of the matter

field, thus boosting the power spectrum on small scales. The difference in the linear and non-linear

power spectra can be seen distinctively in Figure 1.3 as the dashed and solid lines, respectively.

Some of the issues pertaining to the use and applicability of these universally implemented fitting

functions are discussed in Chapter 5.

Weak Gravitational Lensing
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Figure 1.4: Left panel: The temperature fluctuations in the cosmic microwave background radiation

as seen by WMAP. This full-sky map is observed in the V-band (61 Ghz) where the galactic foreground

across the centre (red) is minimal. The linear temperature scale ranges from−200µK to 200µK. CREDIT:

http://lambda.gsfc.nasa.gov[wmap science team] Right panel: The CMB angular power spectrumC`

quantifies how these temperature fluctuations vary across different scales. TheC` values have been calcu-

lated using CAMB (Lewiset al.2000) and can be matched to the data points to infer an underlying model

as in Dunkleyet al. (2009) and Section 4.2.

Weak gravitational lensing provides an alternative and powerful method to probe the matter

power spectrum. This involves measuring the shapes of galaxies, which have been distorted by the

intervening mass distribution, on route to the observer. Even though this distortion, orshearing,

is a small effect significant cosmological information can be extracted with a statistical analysis.

A more thorough introduction to this cosmological probe is left to Chapter 2 where it is used

extensively.

1.2.2.2 The CMB Power Spectrum

The observed temperature fluctuations in the cosmic microwave background are shown in the left

panel of Figure 1.4. This is quantified statistically by the angular power spectrum and is illustrated

for a representative cosmology in the right panel. The current best fit cosmology has been inferred

in Dunkleyet al. (2009) and is explored also Section 4.2. The underlying mechanisms for these

anisotropies can be categorised into those that happened at the time of last scattering (primary
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anisotropies) and those that have acted since (secondaryanisotropies).

Primary Anisotropies

Acoustic Oscillations

The main physical process in the formation of the anisotropies is once again the oscillation of

the photon-baryon fluid described copiously in Sections 1.2.1 and 1.2.2.1, but with the focus on

the conclusion to the photon perturbations.

While the matter over-densities are collapsing freely during the onset of matter domination the

photons will continue to oscillate in the potential governed by the dark matter. Finally, when the

mean thermal energy is considerably lower than the hydrogen binding energy there is a cessation of

Thomson scattering enabling the photons to free stream. It is this pattern of acoustic oscillations,

at the time of recombination, that we observe today. One particular scale will correspond to an

over-density that has collapsed and is on the verge of oscillating for the first time. As this is

replicated over the entire sky we can expect the power spectrum at this scale to be large. This is

the main acoustic peak in the CMB as seen in Figure 1.4.

Over successively smaller distances there will be perturbations having undergone multiple os-

cillations. These have had time to expand and contract back to maximum density and represent

the series of acoustic peaks to the right of the main bump.

The Sachs-Wolfe effect

A photon observed from an over-dense region will have to climb out of its surrounding poten-

tial well in order to escape. In an under-dense region the photon will instead roll down its local

potential. The overall effect of this is to provide power to the CMB over large scales (small multi-

pole moment̀ ). This is known as the Sachs-Wolfe effect.

Silk Damping

At very small scales (̀ & 800) the anisotropies suffer an exponential damping called Silk

Damping. This is a consequence of an extended period of recombination. During this time pho-

tons diffuse from the denser and therefore hotter regions to the colder less dense areas. In doing

so the electrons too are displaced, dragging protons with them through the Coulomb force. This

effectively smoothes out the perturbations on small scales and so suppresses the associated power

spectrum.
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Secondary Anisotropies

The Integrated Sachs-Wolfe effect (ISW)

Photons that are propagating through the late-time Universe are inevitably incident on some

gravitational potential. As they descend into the potential the photon is gravitationally blueshifted

due to an increase in energy. On departure the photon is redshifted resulting from a loss of energy

in climbing from the potential well. The net effect would seem to be zero. However, this is only

the case for a time independent potential. If it were to decay, for example, the photon would suffer

a net blueshifting; it would have less of a hill to climb out of, than it rolled down in the first place.

Such a decay is expected to occur in the presence of curvature or dark energy.

The overall effect for a photon is the sum from all contributions along the line-of-sight and

is in this sense theIntegratedSachs-Wolfe effect. The ISW contributes to the CMB power on

large scales but is sub-dominant to the normal Sachs-Wolfe effect. Evidence for the ISW has been

claimed in a number of sources, such as Rassatet al. (2007), and can be found through a cross

correlation of the CMB signal with large scale structure.

The Sunyaev-Zeldovich effect

The Sunyaev-Zeldovich (SZ) effect is caused by the inverse Compton scattering of CMB pho-

tons by hot cluster electrons. It has a specific frequency dependence and can therefore be detected

through observations in multiple wavelength bands. Most importantly, as the SZ effect is caused

by scattering its magnitude is redshift independent. This is particularly useful for the SZ as a

cluster finding tool given that it can detect clusters at high redshift just as easily as it can at low

redshift. Accounting for this distortion is particularly important for any CMB analysis at small

scales (high̀ ).

Gravitational Lensing of the CMB

In the same way that images of distant galaxies are expected to be distorted by large scale

structure so too are the anisotropies of the CMB, e.g. Seljak (1996) and Lewis & Challinor (2006).

This is a small effect which occurs mainly at high`. The overall contribution slightly smoothes

the anisotropic peaks while adding power to the smallest of scales (` ∼ 3000).

As the secondary anisotropies occur at a different point in cosmic evolution and often are the



1.3. The Cosmological Model 23

result of different physics, they provide a self-contained procedure for breaking the parameter de-

generacies implicit within any isolated cosmological probe. Furthermore, they contain important

information on the late-time Universe, such as the era of dark energy dominationz ∼ 1. In this

way they are a welcome consistency check with galaxy clustering and weak lensing, for example.

1.3 The Cosmological Model

This subsection describes the role of the statistical method in inferring physical components or

parameters in the cosmological model. It highlights how we relate data to a model given any prior

information we might have (1.3.1) and specifically the notion of a best fit and its error (1.3.2).

1.3.1 Bayes’ Theorem

We start with what initially appears to be an abstract exercise in rearranging probabilities but is, in

fact, a powerful method for statistical inference:

If there are two quantitiesX andY then the product rule within probability simply states that

the probability ofX andY both being true–given some other background informationB–is equal

to the probability thatX is truegiventhatY is true, multiplied by the probability thatY is true,

P (X,Y |B) = P (X|Y,B)× P (Y |B). (1.26)

Obviously we can interchange the labels forX andY without altering the truthfulness of this

statement, i.e., there is a simple symmetry,

P (Y,X|B) = P (Y |X,B)× P (X|B). (1.27)

Even more apparent is that the probability ofX andY being trueP (Y,X|B) does not depend on

the order we say or write them either. Therefore, the two expressions above are equivalent. This

enables us to derive the far-reaching Bayes’ theorem,

P (X|Y,B) =
P (Y |X,B)× P (X|B)

P (Y |B)
. (1.28)

In its present guise Bayes’ theorem certainly does not seem so instrumental. However, we can

write this in the slightly more provocative manner,

P (Θ|{di}, B) ∝ P ({di}|Θ, B)× P (Θ|B) (1.29)
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if we callY the data ({di}) andX the hypothesis (Θ). This new form of Bayes’ theorem now states

that the probability that an hypothesis is true given the data is proportional to the probability of

obtaining the data assuming the hypothesis! This is particularly potent because it is our intention as

cosmologists to derive the former probability (the posterior). For example, what is the probability

that Ωm = 0.25 (hypothesis) given an angular power spectrum (data)? Moreover, it allows an

estimate of this quantity because we can often calculate the second probability (the likelihood). In

this case, what is the probability of getting that angular power spectrum givenΩm = 0.25?

Notice that the hypothesis does not have to be a single proposition, likeX, but is free to

represent a variable, parameter or series of parameters in a model. The probability is therefore a

probability density function.

The second term in Equation 1.29 is known as the priorP (Θ|B). This contains any informa-

tion that we might know (or not know) about the chosen variablebeforethe analysis. This might

be a parameter range introduced via common sense or physical reasoning. For example,

P (Ωm|B) =

 1 Ωm ≥ 0

0 otherwise
(1.30)

where the background informationB is that there issomematter in the Universe. By itself the

prior encapsulates our level of knowledge about the hypothesis with no (extra) data. The shape of

this function is subsequently altered in the light of more empirical information by the likelihood

function.

The constant of proportionality in Bayes’ theorem (Eq. 1.29) was introduced above because

we neglected the evidence termP ({di}). This will not alter an estimate of the probability for a

parameter as it does not depend on the hypothesis; it merely changes the normalisation scale. It

can, however, be vital in differentiating between models.

Marginalisation

In general there may be a model with several parameters for which it is possible to calculate the

posterior distribution. However, it may be that we are really only interested in one of them. Using

a two parameter example, we could be interested in some physical entityX, that is necessarily

associated with another parameterY (a nuisance parameter). To understand the physics entailed

by X it would be desirable to obtain the posterior just for this parameter. Obviously we can not

fix the value ofY as this is tantamount to taking an arbitrary slice through the 2D posterior. A

less biased 1D posterior treats the probability ofX irrespectiveof Y, allowing it to vary through a



1.3. The Cosmological Model 25

range of values. This procedure is marginalisation and can be derived with a little more algebra.

If the probability thatX is true andY is not true P (X, Ȳ |B) is added to Equation 1.27 it is

possible to obtain the expression,

P (X,Y |B) + P (X, Ȳ |B) = [P (Y |X,B) + P (Ȳ |X,B)]× P (X|B). (1.31)

Obviously the term in the square brackets is equal to one because in the discrete case Y is either

true or not true. However, if instead Y represents a series of different outcomes one is free to

simply add more terms, likeP (X,Y1|B) or P (X,Y2|B), to the equation above. If the exhaustive

range of possibilities forY are added, the term in the square brackets will expand, becoming

eventually equal to one again. Therefore,
N∑
i=1

P (X,Yi|B) = P (X|B). (1.32)

In the circumstance thatY is a variable or parameter and is not discrete, the left hand expression

in Equation 1.32 tends to an integral of the joint posterior distribution
∫
P (X,Y |B) dY . The

distributionP (X|B) is thus the posterior of the relevant quantityX having been marginalised

overY .

1.3.2 Parameter Estimation

1.3.2.1 The Best Fit

The best fit is the parameter value we most believe to be true. It can therefore be found by locating

the value of the parameter for which the posterior distribution is largest. If the posterior is a

continuous function of a parameterX this best fit point is the value for which the derivative, with

respect toX, is zero. In the case of a flat prior this is equivalent to finding themaximum likelihood.

The probability of making a single observationo1 given some signals and measurement error

σ1 (e.g. the likelihood) is often assumed to take the Gaussian form,

P (o1|s, σ1, B) =
1√
2πσ2

1

exp
(
− (o1 − s)2

2σ2
1

)
. (1.33)

For a multitude of measurements the likelihood generalises toP ({oi}|s, σi, B) for the set of data

points{oi}. However, two quantities are independent ifP (X,Y ) = P (X) × P (Y ). Therefore,

if the series of measurements are also independent (i.e. they do not affect one another) the joint

likelihood can be expressed as a product of the individual Gaussians,

P ({oi}|s, σi, B) =
1

(2π)
N
2

∏N
i=1 σi

exp
(
−

N∑
i=1

(oi − s)2

2σ2
i

)
(1.34)
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whereN is the number of data points. It is common, however, to work with the logarithm of the

likelihood and so this can be written,

ln L = constant−
N∑
i=1

(oi − s)2

2σ2
i

. (1.35)

The second term on the right is often referred to as theχ2. Finding the best fit parameters by

maximising the likelihood is thus the equivalent to minimisingχ2. This seems rather logical

because we want the value ofs to be such that the net difference between itself and the data is

small. Evaluatingdχ2/ds = 0 results in the rather intuitive,s =
∑N

i oi/N .

1.3.2.2 Uncertainty in the Estimate

The precision of any best fit value depends on the behaviour of the posterior in the local environ-

ment of the most likely value. A sharply peaked function simply states that there is little chance

of the parameter taking a value too far from the best fit. A wide posterior assigns closely matched

probabilities to all the values under consideration. The error bar corresponding to the first distri-

bution should therefore be small; the second large.

To investigate the log likelihood in the vicinity of the best fit (X = a) one can take the Taylor

expansion,

ln L = ln L(a) + ln L′(a)(X − a) +
ln L′′(a)

2
(X − a)2 +

ln L3(a)
3!

(X − a)3 + ... . (1.36)

The first thing to notice is that the second term on the right hand side vanishes. This is because the

best fit value has been found by requiring the first derivative to be zero. Also, we are free to ignore

orders greater than or equal to 3 due to their diminishing contribution. This implies that the log

likelihood can be detailed mainly by the constant first term and the shape determining quadratic

term,

ln L ≈ ln L(a) +
ln L′′(a)

2
(X − a)2. (1.37)

This equation has the same form as Equation 1.35 and can be equated. For the specific case of

having one observation (i.e.N = 1) this reduces to,

ln L′′(a) = − 1
σ2

=⇒ σ0 =
( −1

ln L′′(a)

) 1
2

(1.38)

Therefore, one can associate the uncertainty in the best fit (parameter)σ0 as being related to

the square root of minus the inverse of the second derivative in the log likelihood. When more

data exists we expect our uncertainty to decrease, with the estimate of the posterior becoming
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more sharply peaked about the best fit value. This can be quantified by increasing the value of

N above–resulting in the summation
∑N

1 1/σ2 = N/σ2 in Equation (1.38). The corresponding

errorσ, on the parameter, is subsequently reduced by the square root of the number of data points:

σ = σ0/
√
N .

Compared with most other scientific fields this last point results in a fundamental issue for

cosmology:cosmic variance. The problem is that we only observe one Universe with a finite

number of realisations or observations. For example, if we wish to observe the power spectrum

over several large patches of sky, there are only several large patches of sky to observe. In this

way cosmic variance affects any statistical analysis over small` or k most severely and would be

present even in the circumstance of having a noiseless instrument.

It is important to stress that much of the above reasoning has assumed a model with one

parameterX. This can be expanded to an arbitrary number of dimensions with one or two extra

generalisations:

• Best fit: The best fit parameters are derived by maximising the likelihood as before. How-

ever, in this case the solutions are from a set ofsimultaneousequations.

• Error bar: The exploration of the local likelihood as in Equation (1.36) will include extra

derivatives with respect to the other variables. Therefore, the notion of the varianceσ2 re-

sulting from the second derivative terms is generalised to acovariance matrix. The diagonal

terms correspond to the variance for each parameter in question and the off-diagonal terms

are associated with the mixed parameter derivatives. These cross terms describe the degree

of correlation and degeneracy present between two parameters and is usually illustrated as

a contour plot.

Practical Parameter Estimation

In order to sample the posterior space ofn parameters one could envisage sampling a regularly

spaced grid of parameter values. This method is highly inefficient though as the number of calcu-

lations, and hence computation time, scales with the power ofn. In addition, it is most likely that

more samples will be needed nearer and nearer to the best fit point. With limitations in computing

time and patience in mind, alternative methods in parameter exploration have been developed.

• Markov Chain Monte Carlo (MCMC)
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This is a general class of algorithms for sampling a probability distribution that rely on

building a Markov chain. This chain is Markov in the sense that a new sample relies only

on the current point and not on the history of points. It is intended that the desired posterior

distribution is the equilibrium distribution of the Markov chain.

One specific algorithm that allows the user to construct such a Markov chain is theMetropolis-

Hastingsalgorithm. In this procedure one can draw samples from the probability distribu-

tionP (x), where at each time step a candidate pointY is chosen from a proposal distribution

Q(Y ;xt)5. This proposal is accepted as the next point in the chainxt+1 if α, which is drawn

from a random uniform distributionU(0, 1), satisfies,

α <
P (Y )Q(xt;Y )
P (xt)Q(Y ;xt)

. (1.39)

The chain is implemented at a set of starting pointsxt=0 and run past a number of samples

known as theburn-in. The number of samples in the burn-in correspond to the amount of

time for the system to forget its starting point. These values are removed and all subse-

quent accepted points form a sample fromP (x). This is the procedure implemented by

the industry standard code COSMOMC (Lewis & Bridle 2002) that is used throughout this

thesis.

1.4 The Thesis Structure

This thesis is based mainly on the work in Thomaset al. (2009); Thomas, Abdalla and Lahav

2009a (In prep.) and Thomas, Abdalla and Lahav 2009b (In prep.). It is primarily concerned with

using and providing data on the growth of structure in our Universe in order to test the underlying

physics of our cosmology. In general, I assume that the geometry of the Universe is flat throughout

with Gaussian and adiabatic primordial fluctuations and no running of the spectral index (αs = 0).

However, explicit or implicit parameter choices, assumptions and values are stated within each

chapter.

Chapter Overview

• Chapter 2: underlines the role of weak lensing in probing modifications to gravity. These

departures from general relativity are invoked to explain dark energy and the corresponding

5For example, this might be a multivariate Gaussian atxt.
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accelerated expansion of distant galaxies. I use new CFHTLS weak lensing data to constrain

a modified gravity theory motivated by a large extra dimension. Similarly, I use this data to

test a more general parameterisation of gravity. Finally, I look to the proposed space-based

Euclid weak lensing mission and forecast its potential constraining power with respect to

these two models.

• Chapter 3: I construct a new angular power spectrum based on the final photometric Lu-

minous Red Galaxy (LRG) Sloan Digital Sky Survey (SDSS II) data release–MegaZ LRG

DR7. I use this data to place cosmological constraints onΩm, Ωb, b andσ8; the matter

and baryon densities, the galaxy bias and the normalisation of the powerspectrum, respec-

tively. The cosmological implications are tested against a number of potential systematics.

Furthermore, I test for complementarity with the CMB.

• Chapter 4: I use a succession of cosmological probes to place a combined constraint on

the cosmological model and the mass of the neutrino species. This includes data from the

cosmic microwave background, supernovae, baryon acoustic oscillations, the HST prior and

the new galaxy clustering data presented in Chapter 3.

• Chapter 5: includes a discussion of the issues, systematics, limitations and implications

raised in the preceding chapters. This includes, for example, a consideration of the non-

linear power spectrum and its application to a study of both modified gravity and the neu-

trinos. I also illustrate potential areas and avenues for fruitful work in the future. Finally, I

conclude the work presented in this Thesis.



CHAPTER 2

CONSTRAINING M ODIFIED GRAVITY AND

GROWTH WITH WEAK L ENSING

Abstract

The idea that we live in a Universe undergoing a period of acceleration is a new, yet strongly held,

notion in cosmology. As this canpotentiallybe explained with a modification to General Relativ-

ity I look at current cosmological data with the intention of testing gravity. Firstly, I constrain a

phenomenological model (mDGP) motivated by a possible extra dimension. This is characterised

by a parameterα that interpolates betweenα = 0 (LCDM) andα = 1 (the Dvali-Gabadadze-

Porrati (DGP) 5D braneworld model). In addition, I analyse moregeneralsignatures of modified

gravity given by the growth parameterγ and power spectrum parameterΣ. I utilise large angu-

lar scale (θ > 30 arcminutes) Weak Lensing data (CFHTLS-wide) in order to work in the more

linear regime and then add, in combination, Baryon Acoustic Oscillations (BAOs) and Type 1a

Supernovae (SNe). I demonstrate that the bounds inferred are insensitive to potential systematics

in the lensing data such as an underestimation of the CFHTLS shear at high redshift. Finally, I

look beyond these present capabilities and demonstrate that Euclid, a future weak lensing survey,

will deeply probe the nature of gravity.

This work is presented originally in Thomas, S.A., Abdalla, F.B.& Weller, J., 2009,MNRAS,

395, 197. Also, my Euclid predictions for the standard cosmological model in Section 2.6.2 have

been used by the Euclid Weak Lensing Working group for probe forecasting and detailed code

comparisons.

30
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2.1 Introduction

General relativity, a cornerstone of physics, is arguably one of our greatest intellectual achieve-

ments. It is not only elegant and physically motivated, but it makes a whole host of predictions

including gravitational waves, the anomalous precession of Mercury and the deflection of light–all

of which have been verified.

Considering this, today’s cosmologists have been posed the most tantalising problem: given

that recent precision data from Supernovae, the Cosmic Microwave Background and large scale

structure (E.g. Astieret al. (2006), Dunkleyet al. (2009), Percivalet al. (2007) and Chapter 3)

all indicate that the Universe is undergoing a period of cosmic acceleration, do we stand by this

successful theory and invoke some new unseen matter component (Dark Energy- Section 1.1.4.5)

to explain it? Or, more radically, do we treat this as evidence that Einstein’s theory of gravitation,

or the manner in which we implement it, is incomplete?

In this chapter I focus on the latter and investigate the idea that General Relativity is not gen-

eral enough. We do not attempt to motivate a new theory of gravity but instead aim towards testing

existing theories and aspects of general theories with current and future data. In Section 2.2 I re-

view the concept of modified gravity, including a phenomenological model I go on to constrain,

and touch upon some of its interesting features. One example feature, and thus potential signature

of modified gravity, concerns the growth of structure. In Section 2.3 I look deeper at this character-

istic and attempts to parameterise it analogous to the equation of state for dark energy. I highlight

how this extra richness in modified gravity can break the observational degeneracy with dark en-

ergy models and discuss the ensuing limitations. In addition, it is noted how modified gravity

alters the relationship, relative to GR, between the power spectrum of the potentials and the matter

power spectrum which is implicit within weak lensing. Section 2.4 introduces weak gravitational

lensing and its particular importance to modified gravity. This section also details the survey and

data that is used (CFHTLS-wide: Fuet al. (2008) - From here on F08) and follows with a dis-

cussion of the working caveats, including non-linearities, and how this data circumvents the issue.

Section 2.5.1 subsequently contains the analysis and constraints of the phenomenological model

and parameterisation of growth through lensing. It is promptly followed in Section 2.5.2 by the

addition of BAOs and Supernovae data to improve upon these constraints and break the parameter

degeneracies. For all the analyses in Section 2.5.1 and Section 2.5.2 I implement a Monte Carlo

Markov Chain (MCMC) approach (Section 1.3.2.2) with COSMOMC1 (Lewis & Bridle 2002),

1http://cosmologist.info/cosmomc/
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where the resulting plots have been produced with COSMOLOGUI2. In Section 2.5.3 I highlight

potential systematics in the data and quantify any effect on the constraints. I also look beyond

present day constraints on gravity in Section 2.6 and see how the highly exciting future weak

lensing probe Euclid (Refregieret al. (2008) and Cimattiet al. (2009)) will be able to distinguish

between GR and other models of cosmic acceleration and growth. I finish in Section 2.7 with a

summary of the chapter including a discussion of the caveats and limitations as well as suggestions

for future work.

2.2 Modified Gravity

General relativity itself is a modification of gravity. It superseded the previous established theory

of gravity, Newton’s Law of Gravitation, with a breathtaking physical principle for gravitational

phenomena (Section 1.1.2). Although an elegant change in how we think about gravity it was

quite simply necessary: The previous framework did not explain all gravitational processes. For

example, it did not account for the anomalous precession of Mercury. Given the success of New-

ton’s theory many attempts were made to understand this effect within its framework. In fact, even

a form of dark matter was invoked (an unseen planet) to cause the required procession.

Today we face a similar choice with the evidence of accelerated expansion in the Universe.

Again early attempts have tried to incorporate some new matter component within the formalism

of our current theory. The simplest procedure has been to introduce a cosmological constant–

perhapsarising from vacuum energy–to the usual Einstein field equations (Eq. 1.3 and Eq. 1.11).

However, an observed disagreement of 120 orders of magnitude in the event of it resulting from the

vacuum expectation represents a severe fine tuning problem. Other similar avenues have included

the introduction of a dynamical scalar field which is either trapped within a false vacuum or slowly

rolling down a potential (E.g. Wetterich (1988), Peebles & Ratra (1988), Friemanet al. (1995),

Ferreira & Joyce (1998) and Albrecht & Skordis (2000)). These Quintessence or dark energy

models can potentially lead to the desired acceleration.

2.2.1 Modifications

Alternatively, the more controversial, but historically successful, route is with another modifica-

tion to gravity. Starting from the assumption that any viable theory should be described by a

Lagrangian one might consider adding terms to the Ricci scalar (R) in the Einstein-Hilbert action

2http://www.sarahbridle.net/cosmologui/
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for GR given by,

IG ≡ −
1

16πG

∫ √
−gR d4x. (2.1)

This procedure was first performed by Weyl and later in the context of inflation by Starobinskii

(1980) but has more recently been analysed for the late-time low curvature universe, in e.g. Carroll

et al.(2004), where the term1/Rwas added. It was found to have the desired effect of acceleration

but is ultimately unfeasible as a realistic alternative due to its failure to comply with solar system

constraints (Chibaet al.2006). A generalised modification could assume the underlying theory to

be some general function of the Ricci scalar. These models, calledf(R) models, are being studied

extensively in the literature (Durrer & Maartens (2008) and references therein). One could gener-

alise this even further to functions of the Ricci tensorRµν and curvature tensorRµνρσ, resulting in

f(R,RµνRµν ,RµνρσRµνρσ) gravity. However, this more general gravity suffers from higher order

instabilities, through Ostrogradski’s theorem (Woodard 2007), and so analysis has tended to fo-

cus onf(R). It is not exclusively this subset of theoretical space that suffers theoretical problems

however. Healthy theories of gravity seem to be particularly rare with most suffering from a whole

host of theoretical afflictions; from ghost negative energy states to tachyonic behaviour (Durrer &

Maartens 2007).

2.2.2 The Dvali-Gabadadze-Porrati (DGP) model

Beyond these general Lagrangians one could also look to higher dimensional models. Within

the context of cosmology thisbraneworldscenario can somewhat be described as string theory

inspired. Normal matter might be confined to a 4-dimensional brane, where the conservation

equationρ̇ + 3H(ρ + p) = 0 holds firm, but gravity is free to roam into a higher dimensional

bulk. For late time acceleration we desire a model that will change over large distances and low

energy scales. The DGP model3 of Dvali-Gabadadze-Porrati (Dvaliet al.2000), described by the

Lagrangian in Equation (2.2), is exactly this.

IG ≡
−1

16πG

[ 1
rc

∫
bulk

d5x

√
−g(5)R(5) +

∫
brane

d4x
√
−gR

]
(2.2)

It was originally created consisting of a 4-dimensional Minkowski brane within a 5-dimensional

Minkowski bulk and with no motivation to explain dark energy. However the generalisation

(Deffayet 2001) to a Friedmann-Robertson-Walker brane gave rise to a self-accelerating solution.

Gravity leaking from this 4D brane into the bulk over large scales gives rise to the acceleration

3See Lue (2006) for an extensive review.
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through a weakening effect. The resulting Friedmann equation represents a correction to the GR

equation (Eq. 1.7) and is given by Equation (2.3) withrc, the cross over scale, specified in Equa-

tion (2.4).

H2 − H

rc
=

8πGρ
3

(2.3)

rc =
1

H0(1− Ωm)
(2.4)

With this modification one has a full description of the expansion history. This also allows us to

work towards understanding the growth of large scale structure giving two observational signatures

that enable a cosmological study. The difference in the background acceleration is itself enough

to produce a difference in the growth of structure. This can be seen in the second term, the Hubble

drag, in the growth of density perturbationsδ for in Equation (2.5). This is the same form as Eq.

1.21 that was motivated in Section 1.2.1, but instead with no pressure or sound speed term.

δ̈ + 2Hδ̇ = 4πGρmδ (2.5)

However, assuming that the only modification is via changes inH is fortunately incorrect. It

is fortunate because it is the extra modification that allows us to break the degeneracy between

some general dark energy within GR, which can replicate any desired expansion history, and

this modified gravity model (to be addressed in more detail in Section 2.3). The correct approach

regarding the evolution of perturbations in this gravitational framework is particularly difficult and

was tackled by Koyama & Maartens (2006). It was found that treating gravity as 4-dimensional,

which leads to Equation (2.5), induces an inconsistency in the 4-dimensional Bianchi identities.

Instead with the full five-dimensional analysis, and assumptions of a quasi-static regime and sub-

horizon scales, they found the metric perturbations on the brane to be,

k2φ = −4πGa2(1− 1
3β

)ρmδ (2.6)

k2ψ = −4πGa2(1 +
1
3β

)ρmδ (2.7)

with the extraβ factor given by,

β = 1− 2rcH(1 +
Ḣ

3H2
). (2.8)

φ is the spatial andψ the Newtonian potential seen within the perturbed metric in the Newtonian

gauge,

ds2 = −(1 + 2ψ)dt2 + a2(1− 2φ)dx2. (2.9)
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Figure 2.1:g(a) ≡ δ(a)/a, the linear growth, is plotted for a range of late time acceleration models. The

solid line demonstrates the growth for LCDM, the dashed for the 5D braneworld model DGP and the dotted

for a dark energy model with identical expansion history to DGP (w0 = −0.78 andwa = 0.32 where

w(a) = w0 + (1− a)wa). The difference in the expansion history gives a significant suppression in growth

relative to a pure cosmological constant. The effect, however, of the 5D perturbations not only adds to the

suppression for DGP but breaks the degeneracy between itself and the smooth dark energy model.

It is theβ factor within Equation (2.7) that breaks the expansion degeneracy and modifies Equation

(2.5) becoming rather (Lueet al. (2004) and Koyama & Maartens (2006)),

δ̈ + 2Hδ̇ = 4πG
(
1 +

1
3β

)
ρmδ. (2.10)

One can see this effect by looking at Figure 2.1. I have plotted the linear growth factor for LCDM,

DGP and a dark energy model with the same expansion history as DGP. It is evident that the

expansion history has considerable influence on the linear growth of structure with a suppression

in the dark energy model relative to a cosmological constant. The effect of the five-dimensional

modified gravity perturbations adds to this suppression and acts to clarify the deviation between

the dark energy and DGP model.

With the modified Friedmann equation and the correct linear growth equation it is now possible

to perform tests on the expansion history and/or large scale structure for this particular modifica-
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tion to gravity. Some of these tests already exist and it has been found that DGP is under tension

from the recent influx of cosmological data (E.g. Fanget al. (2008) and Songet al. (2007) and

references therein). It is also worth noting that this model is potentially not without some of the

theoretical problems alluded to above with notions of a ghost (Koyama (2005) and Gorbunovet al.

(2006)) and a strong coupling problem (Rubakov 2003). The model is still a good example theory,

however, and an excellent benchmark to test new methods, data or concepts.

2.2.3 The Phenomenological Model

I consequently go beyond DGP as an isolated theory and examine a phenomenological model that

is motivated by the concept of an extra dimension with infinite extent. This model, first introduced

by Dvali & Turner (2003), interpolates between LCDM and DGP and corrects the Friedmann

equation with the addition of the parameterα shown in Equation (2.11) andrc in Equation (2.12).

H2 − Hα

r2−αc
=

8πGρ
3

(2.11)

rc = (1− Ωm)
1

α−2H−1
0 . (2.12)

It is clear that in this case LCDM is recovered whenα = 0 and DGP whenα = 1. Furthermore,

it is worth noting thatα < 0 leads to effective equation of states less than−1, whereasα & 1

acts to disrupt both the long matter era needed for structure formation and the limits set by Big

Bang Nucleosynthesis (Dvali & Turner 2003). Also,α > 2 is capable of describing early universe

braneworld modifications.

It is possible to detail the entire background behaviour of this model with an effective equation

of stateweff that I derived generally in Equation 2.13. This reduces to Equation 2.14 for DGP as

in Lue (2006).

weff
DE(a) = − (2− α)

2− α(1− Ωm(a))
(2.13)

weff
DE(a) =

−1
1 + Ωm(a)

(2.14)

From Equation (2.11) it is possible to test the model with probes of expansion history and

indeed this has already been performed by Yamamotoet al.(2006) with BAOs. If one wants to go

beyond this and include tests of large scale structure then a formalism is needed for the growth of

density perturbations analogous to Equations (2.7), (2.8) and (2.10). The problem in this scenario

is that in order to deduce the growth of perturbations one needs an underlying covariant theory

and all that exists in this modified DGP model (mDGP) is a parameterisation. Koyama (2006)
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Figure 2.2: g(a) ≡ δ(a)/a, the linear growth, is plotted for various values ofα that characterise the

phenomenological LCDM-DGP interpolation (mDGP) model. The solid line demonstrates the growth for

α = 0 (LCDM), the dashed forα = 0.25, the dash-dotted forα = 0.5 and the dotted forα = 1 (DGP).

Once again it is evident that the more DGP-like end of theα spectrum experiences more suppression in the

growth of density perturbations.

introduced such an analysis based on a covariant generalisation of the DGP perturbations (a limit

in the model). It was subsequently found that the metric perturbations take the same form as

Equations (2.6) and (2.7) but instead with (Koyama 2006),

β = 1− 2
α

(Hrc)2−α
(
1 +

(2− α)Ḣ
3H2

)
. (2.15)

Figure 2.2 demonstrates how the growth of density perturbations alter within the mDGP model–

from LCDM to DGP. As in the previous figure it is clear that there is a suppression of growth at

the more DGP end of theα spectrum.

Although phenomenological, the mDGP model now has a definite Friedmann equation that

governs the expansion history, a set of metric perturbation equations and a corresponding density

perturbation equation. One can therefore treat this as a specific model and I choose to constrain it

as an example of modified gravity later in the paper. It is worth noting that using this as a measure
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of deviation from GR or as a parameterisation of general modified gravity is not the aim. This

would constitute a poor choice of parameter given the severe lack of generalness. I touch upon

the idea of parameterising modified gravity in the next section. This model has, however, been

extremely illustrative with regards to the extra richness that can occur in modified gravity. Not

only does it have varying expansion histories but a range of perturbation equations which alters

the growth of structure and the relationship to the power spectrum. This is useful when attempting

to distinguish between LCDM, general dark energy and modified gravity, and insightful to the

probes that will be most adept at detecting them.

2.3 Growth

The alteration in the growth of structure within the mDGP model demonstrated an additional

observational characteristic that allows us to further constrain the model and potentially break the

degeneracy with a general dark energy. It also highlights the possibility of searching forsignatures

of modified gravity in current data by looking for changes in the growth of structure. It may be

desirable, therefore, to parameterise this extra growth.

The notion of this parameterisation is analogous to the familiar parameterisation of the back-

ground expansion intow0 andwa. This is sufficient in describing and restricting the multitude

of possible dark energy models and expansion histories. It is now common procedure to examine

data and convert it into constraints on various cosmological parameters including thew0 andwa.

One might therefore like to extend this parameter space and allow for the signatures of gravity.

One possible parameterisation for growth is given byγ in Equation (2.16) and was first introduced

by Peebles (1980) and Lahavet al.(1991) and later discussed in Wang & Steinhardt (1998), Linder

(2005), Huterer & Linder (2007) and Linder & Cahn (2007).

δ

a
≡ g(a) = exp

( ∫ a

0
(Ωm(a)γ − 1) dlna

)
(2.16)

By again looking at Figure 2.1 we can see that the growth factor g(a) is affected by the expansion

history and by the gravitational framework. It is worth noting that theγ parameterisation attempts

to distinguish the two contributions, encapsulating the latter in isolation. This is due to the effect

of the expansion being absorbed intoΩm(a) thus leavingγ to pick out any remaining remaining

contribution. It is in this way thatγ has become known as a modified gravity or beyond-Einstein

parameter. It is easy to see why given that it detects changes to the growth not associated with

expansion. This could be down to a change in the force law acting on matter represented, for
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example, by the extra factor in Equation (2.10). And as we alluded to earlier, evident in Figure

2.1, this allows us to distinguish between dark energy and modified gravity.

However, as highlighted in Kunz & Sapone (2007) there exists an interesting caveat. They

found that contrary to Figure 2.1 one could force some generic dark energy to replicate the growth

of DGP. This is achieved by allowing for dark energy models with low sound speeds (c2s 6= 1)

which in turn induces a clustering in the fluid. The clustering instigates a deepening of the gravita-

tional potential wells thus leading to a magnification in the metric perturbations and subsequently

an increase in the growth. In addition, the existence of anisotropic stress is permitted which has the

effect of suppressing growth. With a balance between stress and sound speed it is possible to repli-

cate g(a) for DGP. Now although highly fine tuned it is worth keeping in mind that observationally

detecting some non-LCDM growth factor, orγ, would not necessarily constitute modified gravity.

Unless one allows only non-clustering dark energy the growth parameter is not just a modified

gravity parameter. It has the ability to pick up on clustered dark energy and modified gravity both

of which are interesting. Given this it is therefore my intention to test the growth parameter and

see whether current data or a future probe can pick out this subtle but potentially important effect.

There exist a few other attempts, including constraints from peculiar velocity measurements in

low redshift Supernovae (Abate & Lahav 2008) as well as future survey forecasts from Amendola

et al. (2007), Huterer & Linder (2007) and Heavenset al. (2007).

Figure 2.3 demonstrates the result of varying this parameter on the linear growth factor. The

growth for standard LCDM corresponds toγ = 0.55 whereas for flat DGPγ = 0.68. It is clear

that a higher growth parameter results in a suppression of growth.

2.3.1 Extra Signatures

It is worthwhile noting that other attempts at parameterising modified gravity have been made

which aspire to encapsulate the properties of gravity similar to the Parameterised Post-Newtonian

(PPN) parameters for local gravity constraints (Will 1993). For example, these include param-

eterising the relationship between the two metric potentials (φ andψ) and/or quantifying any

modification to the Poisson equation (E.g. Amendolaet al. (2007), Hu & Sawicki (2007), Ishak

et al. (2006), Jain & Zhang (2007), Danielet al. (2008) and Bertschinger & Zukin (2008)). These

parameterisations help illustrate the final modified gravity signature I consider before the analysis

with weak lensing.

Any deviation in the Poisson equation or between the metric potentials causes a deviation

in the relationship between the power spectrum of the potentials and the power spectrum of the
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Figure 2.3:g(a) ≡ δ(a)/a, the linear growth, is plotted for various values ofγ, the growth parameter,

resulting potentially from a change in force law. The solid line represents the growth for LCDM (w0 =
−1, wa = 0) with the corresponding growth parameterγ = 0.55. The dashed line shows the growth for

γ = 0.68 which is the same as flat DGP but with the same expansion as in LCDM. The dotted line also has

γ = 0.68 but now withw0 = −0.78 andwa = 0.32, thus completely specifying the growth of the example

DGP model. Finally the dot-dashed line shows the growth for a LCDM expansion butγ = 0.45. It is clear

that a high value of the growth parameter corresponds to a suppression of growth. This potentially arises

from a weakening of gravity.

density contrast. Failure to account for this by not modifying the corresponding lensing equations

will render any analysis incomplete. To understand this I use the notation of Amendolaet al.

(2007) but in doing so note the equivalence of theirQ andη (defined in Equations (2.17) and

(2.18)) toG̃eff andη given in the other thorough consideration by Jain & Zhang (2007).

Firstly, as will be further detailed in the following section, let us notice that in weak lensing

the deflection of light is sensitive primarily to the sum of the metricpotentialsφ + ψ. Therefore,

we require the power spectrum within the lensing statistic (Equation (2.26)) to actually be the

power spectrum ofφ + ψ, writtenP(φ+ψ). This is thenrelated to the matter power spectrumPδ.

Defining the matter power spectrum in Equation (2.19) and the potential power spectrum similarly

it is obvious that a general relationship betweenPδ andP(φ+ψ) relies on the relationship between
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φ + ψ andδ. In turn this depends on the Poisson equation and the relationship betweenφ and

ψ. This is where the parametersQ andη are particularly illustrative. HereQ parameterises any

modification in the Poisson equation relating the metric variableφ to the matter densityδ. η on

the other hand, also defined below, describes the relationship betweenφ andψ.

k2φ = −4πGQρa2δ (2.17)

ψ ≡ (1 + η)φ (2.18)

If one now adds the two metric potentials together and substitutesψ for η andφ, it is possible to

transform the combined Poisson equation, as given in the definition of the matter power spectrum

below,

< δ( ~k1, z)δ( ~k2, z) >= (2π)3δ( ~k1 + ~k2)Pδ(k, z), (2.19)

and similarly for the potential, to see the general relationship between the power spectra,

P(φ+ψ)(k, z) =
(8πG)2ρ2a4[Q(1 + η

2 )]2Pδ(k, z)
k4

. (2.20)

I then, following the notation of Amendolaet al. (2007), defineΣ ≡ Q(1 + η
2 ), giving the modi-

fication to the power spectrum more succinctly as,

P(φ+ψ)(k, z) =
(8πG)2ρ2a4Σ2Pδ(k, z)

k4
. (2.21)

In a standard cosmological scenario, such as LCDM for example,η = 0 andQ = 1 leavingΣ = 1.

This results in the standard relation between the power spectra assumed in the literature. It is clear

therefore that neglectingΣ is tantamount to constraining the subset of modified gravity models

that do not alter the power spectrum relation from GR. The mDGP model studied earlier is one

such model. This can be seen by adding Equations (2.6) and (2.7) and observing the cancellation

in β. Therefore, for this modelΣ = 1. Generally, however, if one strives to include general models

Σ should be allowed to vary. Note that it modifies the amplitude of the power spectrum and so a

constant value is degenerate withσ8. Accordingly and more generally, as introduced in Amendola

et al. (2007), I consider the general parameterisation,

Σ(a) = 1 + Σ0a. (2.22)

It is my intention therefore to constrain and forecast for the specific mDGP gravity model and

then, separately, constrain the general characteristics of modified gravity. For the latter I choose
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Figure 2.4:The distortion of background galaxies caused by the intervening mass distribution is particu-

larly vivid in the vicinity of galaxy cluster Abell 2218. The images are stretched out, or sheared, becoming

more elliptical and in this scenario represents a more exaggerated version of weak lensing. In this latter

case the underlying information resulting from a more subtle deformation is deduced statistically over many

galaxies.CREDIT: http:hubblesite.org/gallery[NASA].

to setΣ = 1 (or Σ0 = 0) due to limitations in data and constrainw0 andγ signatures only. I later

includeΣ0 6= 0 for the Euclid forecasts (Section 2.6).

γ andΣ arefunctions, optimised for weak lensing, of the more fundamentalQ andη. These

parameters themselves are, most generally,Q(k, a) andη(k, a). The assumption thatγ is constant

and the ansatz placed onΣ could be restrictive (Gannoujiet al.2008) with regards to the range of

modified gravities available (including normal DGP and somef(R) models (Durrer & Maartens

2008)) but have been enforced again due to limitations in current data.

2.4 Weak Lensing as a Cosmological Probe

The deflection of light by mass is given by the transverse gradient of the metric potentials inte-

grated along the path length,

~ϕ = −
∫
∂(ψ + φ)ds. (2.23)

This acts to not only change the apparent position of some point source but, in turn, distort the

shape of distant source galaxies. In fact, one can relate the observed position of the image~θI to
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the true position of the source~θS , in the plane of the sky by,

~θI = ~θS +
D(χs − χ)
D(χ)

~ϕ, (2.24)

whereD(χ) is given by the comoving angular diameter distance (Eq. 1.17). The subsequent

image distortion is given by the differential of this lens equation resulting in the Jacobian,

~A =
d~θS
d~θI

=

 1− κ− γ1 γ2

γ2 1− κ+ γ1


where the convergenceκ is reconstructed from the shearγ (with γ = γ1 + iγ2) measured from

galactic ellipticities (Refregier 2003). An extreme example of this distortion can be seen in Fig-

ure 2.4.

With regards to the analysis of a cosmological model one may choose to examine the conver-

gence quantity. This convergence, which represents a weighted projected mass distribution on the

plane of the sky, is given (Bartelmann & Schneider 2001) for a general mass distribution by,

κ =
3ΩmH

2
0

2c2

∫ χs

0
dχ
D(χ)D(χs − χ)

χs
(1 + z)δ(χ). (2.25)

Given that it is desirable to analyse this distribution in a statistical way it is possible to use the

definition of the power spectrum–analogous to Equation (2.19) and Equation (1.23)–to find the

expression for theconvergencepower spectrum,

Pκ(l) =
9Ω2

mH
4
0

4c4

∫ χH

0
dχ

[g(χ)
a(χ)

]2
Pδ

( l
χ
, χ

)
, (2.26)

where the geometric comoving angular diameter distance terms (D(χ)D(χs − χ)/χs) have been

absorbed intog(χ). It is therefore now clear, given the earlier discussion, how weak lensing is

particularly useful in studies of modified gravity; this statistic is sensitive to the growth of structure

via the presence of the linear growth factor in the matter power spectrumPδ; it is also sensitive

to the expansion history through the terms in the square brackets and through the Hubble drag in

the growth terms; and finally, as discussed at the end of Section 2.3.1, it is sensitive to the relation

between the power spectrum of the potentials and density. In the equation above the relation from

Pφ+ψ to Pδ has been performed assuming GR as given routinely in the literature. Again, it is

worth reiterating that if there is a modification to the Poisson equation and/or to the anisotropic

stress one must augment this power spectrum with the appropriate prefactor given, for example, in

Equation (2.20). Furthermore, in addition to these sensitivities, as the deflection of light is given

by the gradient of the potentials, which are sourced by mass irrespective of being baryonic or dark,

weak lensing does not suffer from any unknown bias (as in Eq. 1.25). That is, it probes the entirety

of the mass distribution.



2.4. Weak Lensing as a Cosmological Probe 44

2.4.1 Issues and Caveats

While this probe, in principle, is excellent for the chosen study the shear signal is a small1%

distortion on the already existing intrinsic ellipticity. This provides a thorough technical challenge

that is being combated with a combination of large galaxy number analyses and refined shear

measurement techniques (Heymanset al. (2006), Masseyet al. (2007), Bridleet al. (2008) and

Bridle et al. (2009)). Further still, the first detections of weak lensing are particularly recent

(Baconet al. (2000), Kaiseret al. (2000), Wittmanet al. (2000) and Van Waerbekeet al. (2000))

and so lensing is very much a highly promising, yet developing, cosmological probe. Despite this

there are already a number of papers that have addressed the relationship between weak lensing

and modified gravity/dark energy, such as Uzan & Bernardeau (2001), Schimdet al. (2005), Doŕe

et al. (2007), Schimdet al. (2007), Amendolaet al. (2007), Jain & Zhang (2007) and Tsujikawa

& Tatekawa (2008). With these studies and potential modified gravity attributes it is imperitive to

realise that there does exist a severe caveat. This is due to the fact that weak lensing probes the

non-linear regime.

Usually one is able to use a fitting function (E.g. Peacock & Dodds (1996) and Smithet al.

(2003)) for the non-linearities in standard gravity. These have been calibrated by detailed N-body

simulations. However, despite some early work to quantify the changes that arise in other models

with simulations (E.g. Laszlo & Bean (2008) and Oyaizuet al. (2008)) no such prescription

is currently available. The uncertainty is exacerbated by the potentially environment and scale

dependent modifications that can arise in gravity, such as those through the chameleon effect. The

current fitting functions map the linear regime into the non-linear domain and subsequently fail to

include such behaviour. I therefore strive to work in the linear regime where possible in this study.

Obviously further effort is needed to explore these changes with N-body simulations but since this

work new methods have started to arise. I leave a discussion of this recent progress to Chapter 5.

There are, in addition, other benefits in avoiding the inclusion of small scales such as the eva-

sion of intrinsic ellipticity correlations (Crittendenet al.2001), shear-shape correlations (Hirata &

Seljak 2004) and the presence of non-Gaussianity in the error (Semboloniet al.2007). I therefore

utilise the data provided by F08 based on the CFHTLS-wide survey which, due to its range of large

angular scales (up to 230 arcminutes) probing the linear regime, is ideal for work on non-LCDM

cosmology such as this.
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2.4.2 CFHTLS

The Canada-France-Hawaii Telescope Legacy Survey4 (CFHTLS), based on the MEGAPRIME /

MEGACAM instrument, is an ongoing survey with a target of 450 nights extending over 5 years.

The recent analysis by Benjaminet al. (2007) has gone beyond the initial releases and investi-

gations by Semboloniet al. (2006) and Hoekstraet al. (2006) which themselves were successful

in deriving constraints on theΩm − σ8 degeneracy and demonstrating the evolution of the shear

signal with redshift. This was achieved in Benjaminet al. (2007) through a better understanding

of the redshift distribution and having an increased area. This, while marking significant progress,

is still not the most optimal lensing analysis for this work. This is because they are potentially sen-

sitive to the growth of structures on non-linear scales which, as I emphasised above, is undesirable

for a current study of beyond-Einstein cosmology and weak lensing.

I therefore look to the 3rd year CFHTLS-wide release (T0003) given by Fuet al. (2008)

(F08). Although having a smaller field of view than Benjaminet al. (2007) it utilises much larger

angular scales (into the linear regime) also avoiding many of the potential systematics mentioned

at the end of the last section. It is because of this that both works reveal approximately equivalent

cosmological constraints and little constraining power is lost. The current sky coverage of57deg2,

approximately35% of the final CFHTLS target area, is reduced to34.2deg2 after masking and the

removal of various contaminants. Eventually including five bands thisi′ band study stretches to

a magnitude ofi′AB = 24.5 and encapsulating nearly 1.7 million galaxies has an effective galaxy

number density ofn = 13.3 gal/arcmin2. The data (F08) comes in the form of several two point

statistics which are relevant to this study. I choose to utilise the E correlation function (ξE) which

is shown in Equation (2.27) and displayed along with the cosmological best fit in Figure 2.5.

ξE =
1
2π

∫ ∞

0
lPκ(l)J0(lθ) dl (2.27)

As for the aperture mass<M2
ap > and shear top hat variance< |γ|2 > two point statistics this

is a weighted transform of the convergence power spectrum. In this case it is given by a zeroth

order Bessel function of the first kindJ0. It is in this way that the two point functions vary in their

sensitivity to various aspects of the power spectrum and systematics.ξE suffers from a constant

offset resulting from a mixing of E and B-modes. A finite survey size introduces a maximum

angular scale which prevents a complete calculation of the shear correlation function over larger

ranges. This is needed for a separation of E and B (Kilbingeret al.2006). To alleviate this I alter

the statisticξE to ξE + c′ including the constant offsetc′ as an extra parameter. An expression can

4http:/www.cfht.hawaii.edu/Science/CFHTLS/
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Figure 2.5:The open circles with associated error bars represent theξE two-point statistic as a function

of θ (arcminutes) for the CFHTLS-wide survey used in this paper. I selectively use scales greater than 30

arcminutes to remove the unknown non-linear effects. The red dashed line shows the best fit values as found

with the combined probes mDGP analysis (Section 2.5.2).

then be obtained for the offset given by the best fit offset (dχ2/dc′ = 0) for each parameter choice.

This constitutes an analytic marginalisation5 over c′ (Lewis & Bridle 2002). I subsequently find

the expression forc′ to be,

c′ =

∑
i,j

(C−1)ij(ξi −Di)∑
i,j

(C−1)ij
, (2.28)

where the elementξi is the model correlation function,Di the data andC the full covariance

matrix between all elements. Furthermore, the B correlation functionξB which describes the

curl component of the shear field, as opposed toξE which measures the curl-free component, is

expected to be non-zero only for non-lensing contributions to the shear (Crittendenet al. 2002).

It is because of this thatξB is an excellent check on any contamination of the lensing signal. F08

5The concept of which is introduced in Section 1.3.1.
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found no real B-mode contribution except for the presence of a very small signal at large angular

scales. They find however that their cosmological conclusions are not affected by this potential

mode.

It was shown in F08 that there is no significant deviation in cosmological constraints across any

of the aforementioned two point statistics. Doré et al. (2007), also looking at a form of modified

gravity in the context of this CFHTLS data, came to a similar conclusion. It is worth noting that

other cosmological studies of this data set include a phenomenological modified gravity analysis

(Danielet al.2008) and more recently an early study of the neutrino mass (Terenoet al.2009). I

therefore choose, for simplicity, to use the oneξE statistic.

The redshift distribution of the source galaxies, which weak lensing is critically sensitive to,

has been calibrated for the CFHTLS study using Ilbertet al. (2006). I decide to follow F08 and

model this distribution using the function,

n(z) = A
za + zab

zb + c
with A =

( ∫ zmax

0

za + zab

zb + c
dz

)−1
(2.29)

whereA is the normalisation anda, b andc are three extra parameters to be varied and marginalised

over in the cosmological fit. It is found that Equation (2.29) enables a closer fit to the distribution

data that other common n(z) fitting formulae. The observed normalised redshift distribution and

the fitting function evaluated at the best fit points found in the mDGP combined probes cosmolog-

ical run (Section 2.5.2) are shown in Figure 2.6.

2.5 Constraints

2.5.1 Lensing

Having earlier discussed the characteristics of certain late-time acceleration models in Section 2.2

and Section 2.3, and having chosen a probe that is potentially capable of picking out these par-

ticular behaviours with weak lensing, we are now in a position to make cosmological constraints

based on the data which was decided, in Section 2.4.2, to be the most suitable. That is, I start by

making an analysis of the mDGP cosmological model and then separately the parameterisation of

growth with the F08 CFHTLS-wide lensing data.

I perform a full likelihood analysis using a Monte Carlo Markov Chain (MCMC) approach

(refer to Section 1.3.2.2) on a set of 7 cosmological parameters for the mDGP analysis and 8 for

the growth parameterisation study. I varyΩm, h, σ8, a, b, c which are common to both models, in

addition toα for mDGP andw0 andγ for the growth. Thew0 is not included for the former model
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Figure 2.6:The black dashed line represents the source redshift distribution with associated error in the

bins. The red solid line is given by the fitting function in Equation (2.29). The fit is drawn for the function

evaluated at the best-fit points as deduced by the combined probes analysis for mDGP (Section 2.5.2). This

corresponded to best fit values:a = 0.614± 0.034, b = 8.11± 0.681, c = 0.627± 0.0610 andA = 0.6462
consistent with F08.

asα uniquely specifies its own expansion history as it does for the evolution of perturbations–

from GR to DGP. I do not vary the spectral indexns because the data needed at large angular

scales is insufficient for any constraint. Instead I setns = 0.963 consistent with the best fit five-

year WMAP result (Dunkleyet al. 2009). Likewise I neglect varyingwa andΣ0 for the growth

model due to limitations in data. Instead bothwa andΣ0 are set to0 and a flat universe is assumed

throughout. This might represent a limitation and a restriction of parameter space. However, given

the recent analysis by Fanget al. (2008) with the CMB where they find a slight but insignificant

change in constraint with a non-flat Universe, the effect is considered to be small.

For the lensing analysis the Gaussian log-likelihood is given by,

χ2 =
1
2

∑
ij

(Di − Ti)(C−1)ij(Dj − Tj) (2.30)

where the data vector~D is given by the measuredξE(θi). The theoretical predictions deduced at
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the corresponding angular scaleθi are represented by~T and, finally,C−1 is the inverse covariance

matrix provided by the CFHTLS collaboration6. At present variation in eithera, b or c in the

redshift distribution is detected implicitly through a modification in the model power spectrum.

However, in implementing the MCMC approach regions of parameter space will be sampled that

correspond to configurations ofa, b andc incompatible with knowledge of just the redshift distri-

bution in isolation. I therefore follow the procedure in F08 and multiply the likelihood above by

the likelihood of the redshift distribution given by,

χ2
n(z) =

1
2

∑
i

(ni − n(zi))2

σ2
i

, (2.31)

whereni, the observed number of galaxies in a bin, are shown in Figure 2.6.n(zi) represent

the values of the fitting function in Equation (2.29) evaluated at the bin centred redshifts. While

ignoring cross-correlations in the bins I includeσi which is the error inni. This error includes

Poisson noise, sample variance and the associated redshift uncertainty. In addition, an HST prior

(Freedmanet al.2001) is included forh as given by,

χ2
HST =

1
2

(h− 0.72)2

0.082
. (2.32)

Before the analysis in different gravitational frameworks I first test for consistency with the

Fu et al. (2008)ΛCDM analysis. In order to do so I vary six parameters (Ωm, σ8, h, a, b, c)

and include all angular scales from 1 to 230 arcminutes. The resulting likelihood contours are

displayed in Figure 2.7. The Hubble parameterh has been marginalised witha, b andc in this

plot. The HST prior is left out however. The bounds are exactly equivalent to those derived in the

original data release.

Returning to the modified gravity study the data is cut for the lensing only analysis such that

only angular scales greater than 30 arcminutes are used. I reiterate, this is to avoid the unknown

non-linear contribution to the lensing constraint. The analysis for the mDGP model is shown in

Figure 2.8. It shows the marginalisedΩm andα contours where, as detailed in Section 2.2,α

parameterises corrections to the Friedmann and growth equations. The mDGP model interpolates

between LCDM (α = 0) and the DGP braneworld model (α = 1). It is clear therefore that a

lensing only analysis is presently not capable of constraining mDGP–at least in the context of

physically more viable models (α . 1).

I find a similar difficulty in constrainingγ with no bound possible for any reasonable physical

values given weak lensing in isolation. This should not be too surprising as I have used a relatively

6With thanks to Martin Kilbinger and Liping Fu for distribution.
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Figure 2.7:To test for consistency I include the68% and95% contours for aΛCDM analysis with all

angular scales (1 - 230 arcminutes) as in Fuet al. (2008). 6 parameters are varied in total (Ωm, σ8, h, a,

b, c). Similarly I do not include the HST prior or the residual offset (c′ = 0) for this analysis. The baryon

fraction is also fixed toΩb = 0.044. The degeneracy betweenΩm andσ8 is clearly visible.

new cosmological probe and have, in neglecting the non-linear scales, used only a third of the data.

Tomographic, or redshift binned, information is not yet currently available for this either and will

act to vastly improve information on the expansion history and henceα. I have also allowed

significant cosmological freedom with the variation of 7 parameters. However, this does not mean

that lensing, even with a current analysis, is not useful with regards to the late-time acceleration

models. In order to see this we now look at BAOs, Supernovae and weak lensing in combination

in the next section. Then in Section 2.6 we see how the future space-based weak lensing survey

Euclid will improve upon today’s lensing only constraining power.

2.5.2 Supernovae and Baryon Acoustic Oscillations

In the previous section I performed a preliminary analysis based on linear to quasi-linear weak

lensing data alone. This probe, while having characteristics significant for the discrimination of
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Figure 2.8: The diagram above demonstrates the attempted constraint on a parameterised gravitational

model that is motivated by the concept of a large extra dimension (mDGP). The contours are forΩm and

α (the modified gravity parameter) where 5 other cosmological parameters (h, σ8, a, b andc) have been

marginalised. Here only angular scales greater than 30 arcminutes have been used in order to avoid the non-

linear regime. The data is from the CFHTLS-wide (F08) survey using the E correlation two point statistic

ξE + c′. For mDGP,α = 0 corresponds to LCDM, whereasα = 1 is equivalent to DGP.

late time acceleration, was unable to constrain either the mDGP model or the growth parame-

terisation. As such it is desirable to combine it with other probes in order to improve potential

constraints. Moreover, it is most beneficial to combine weak lensing, an indicator of growth and

expansion, with distance indicators. This is because of the particular degeneracies that exist fol-

lowing an isolated study. For example, there is a degeneracy betweenw andγ and so tighter

constraints on the expansion history will act to aid any constraint onγ. Furthermore, inclusion

of additional expansion data will aid the constraint of mDGP given that differentα correspond to

different late time accelerations. I therefore choose to include both Supernovae and BAOs which,

due to their vastly differentΩm − w degeneracies, are also extremely complementary to one an-

other.
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BAOs

BAOs are used as standard rulers and are observed in the galaxy distribution (Section 1.2.2.1),

testing cosmology through the distance-redshift relation. Using the data and notation of Percival

et al. (2007) I look to utilise the distance measure given by,

DV (z) = [(1 + z)2D2
Acz/H(z)]

1
3 (2.33)

whereDA is the angular diameter distance (Eq. 1.17) andH(z) is the Hubble parameter. Specif-

ically, it is the ratiors/DV (z) that I examine wherers is the comoving sound horizon at recom-

bination. Percivalet al. (2007) detects the BAO in the clustering of 2dFGRS and SDSS galaxy

samples and the clustering of SDSS LRGs to quantify this measure atz = 0.2 andz = 0.35, re-

spectively. For each likelihood evaluation I compare this data tors/DV (z) calculated withDV (z)

from Equation (2.33) and the varying comoving sound horizonrs evaluated using the formulae in

Eisenstein & Hu (1998).

Supernovae

For the inclusion of Supernovae (Section 1.1.5) I use the data provided from the first year Su-

pernova Legacy Survey (SNLS) (Astieret al.2006). This data set includes 71 type 1a Supernovae

also detected at the Canada-France-Hawaii Telescope. Here the distance modulusµ0, a measure

of the luminosity distancedl (Eq. 1.15), is used as the observable,

µ0 = 5log10(dL(z)) + 25. (2.34)

This is given in the log-likelihood in Equation (2.35), whereµB is the observed value.σint is

given by the intrinsic dispersion of the absolute magnitudes andσ(µB) by peculiar velocity and

light curve parameter information.

χ2 =
∑

objects

(µB − 5log10(dL(θ, z))− 25)2

σ2(µB) + σ2
int

(2.35)

With this machinery in place it is now possible to perform additional tests on the mDGP model. I

do not constrain theγ parameterisation with these probes in isolation as in this format they have

no growth information. I do, however, attempt to constrain the growth with a combined analysis

at the end of this section.

By looking at the top left hand panel of Figure 2.9 one can see that it is feasible to place

a constraint onα with a BAO only analysis. It should be noted that the disfavouring of DGP

(α = 1) is not as promising as it first appears because I have, replicating the work of Yamamoto
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Figure 2.9: The plot in the top left panel shows the constraint onΩm andα. Although appearing to

disfavour DGP (α = 1) as in the analysis by Yamamotoet al. (2006) the remaining parametersΩb and

h have been fixed at 0.044 and 0.66, respectively. I go beyond this in the top right panel which contains

constraints given on the same parameters but when Supernovae data is added andΩb andh are allowed

to vary. One can now see that the1σ contour is beyond the bounds of the plot and so no constraint can

be inferred. The benefit of the weak lensing data is seen in the bottom left panel where once again I use

angular scales greater than 30 arcminutes from the CFHTLS-wide (F08) lensing survey. I also varyΩm,

h, σ8, Ωb, a, b, c andα whilst keepingns = 0.963. With this addition it is evident that there is a visible

improvement in constraint and that DGP is marginally disfavoured. This is exemplified in the bottom right

panel where I include the 1D marginalised probability distribution (solid line). I find that the joint analysis

gives constraints on mDGP ofα < 0.58 andα < 0.91 at the68% and95% confidence levels, respectively.

The dotted line represents the mean likelihood of the samples. Finally, the dashed contours in the bottom

left hand panel show that the constraints are insensitive to any systematics in the data such as an over or

underestimation in the CFHTLS shear at high redshift (Section 2.5.3).
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Figure 2.10:The left panel is an analysis of the mDGP model with weak lensing, BAO and Supernovae,

as before, but with the full range of angular scales (1-230 arcminutes). There is a slight, but not significant,

improvement compared to the more linear analysis. Here I findα < 0.56 andα < 0.86 at the68% and

95% confidence levels, respectively. It should be noted that this analysis includes data from the unknown

non-linear regime. The right panel demonstrates the current challenge in constraining the gravitational–

as opposed to the expansion’s–contribution to the growth of structure. I find that with current data it is

unfeasible to put any bounds on reasonable values of theγ parameter. This plot contains an analysis with

weak lensing, Supernovae and BAOs. Implicit in this plot is the variation of alsoh, σ8, Ωb, a, b, c andw0.

et al. (2006) with BAO only, varied justΩm andα with Ωb andh held fixed at 0.044 and 0.66,

respectively. The top right hand panel of the same figure demonstrates the need for caution as I

go beyond the Yamamotoet al. (2006) analyses. By allowing more cosmological freedom (i.e.

varying Ωb andh) and including the Supernovae data the two probes are in fact incapable of

disfavouring DGP. This is in contrast to other Supernovae and BAO studies by Fairbairn & Goobar

(2006) and Maartens & Majerotto (2006) where, as in Yamamotoet al. (2006), they either fixΩb

fixing the BAO scale or use CMB data as a prior onΩb. I allow a more general variation as I, nor

the aforementioned papers, have calculated the influence of DGP on the CMB. This is the main

difference in this aspect of the work and is otherwise consistent.

One can now see how, even at present, the weak lensing data is useful in the study of this

modified gravity. TheΩm − α contours for a joint analysis with all three combined probes is

displayed in the bottom left hand panel. Once again I use only angular scales greater than 30
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arcminutes to avoid the unknown non-linear regime. I also vary a large number of cosmological

parameters:Ωm, h, σ8, Ωb, a, b, c andα. It is evident that the addition of the weak lensing analysis

is beneficial with a mild disfavouring of the DGP end of theα spectrum. Indeed, I include in the

bottom right hand panel the 1D probability distribution forα, in the process demonstrating that

α < 0.58 at the68% confidence level andα < 0.91 at the95% confidence level. This corresponds

to a disfavouring of DGP at over2σ. Furthermore, I include for interest in the left panel of Figure

2.10 the same analysis but with all angular scales (1-230 arcminutes). There is a noticeable but

not significant improvement in the constraint leading toα < 0.56 andα < 0.86 at the68% and

95% confidence levels, respectively.

Having had success with a combination of the three cosmological probes it is worth investi-

gating whether they can aid the determination of the far more subtle growth parameterisationγ.

While the BAO and Supernovae will not add growth information explicitly they will help reduce

the parameter degeneracies. I find however, by looking at the right panel of Figure 2.10, that at

present and for meaningful values ofγ there is still insufficient constraining power. This is un-

derstandable given that for mDGPα contained growthand expansion information. In this way

the Supernovae and the BAO actively contributed to the constraint, while the lensing constrained

it through the comoving diameter distancesD(χ) in the convergence power spectrum, through

expansion terms within the growth via the Hubble drag and finally through the pure growth con-

tribution as seen in the addition ofβ (Eq. 2.10). Constrainingγ, on the other hand, is equivalent

to just changes inβ and is therefore far more subtle. However, just because we do not have the

current data to pick out this effect it should not deter us from continuing to pursue these signatures

of modified gravity. In fact, future cosmological probes, such as the weak lensing, will be able

to extract this contribution and tighten constraints on beyond-Einstein cosmology. I look to the

future in Section 2.6.

2.5.3 Accounting for systematics

Despite the absence of any significant B-modes in the CFHTLS data there exists a potential un-

derestimation of the shear at high redshift (Kilbingeret al. 2009). In order to account for this

effect I use the model introduced in Kilbingeret al. (2009) and multiply the redshift distribution

at high redshift (z > 1) by some constantc0; wherec0 < 1 constitutes underestimation,c0 > 1

overestimation andc0 = 1 no alteration in the shear. I varyc0 and marginalise over the parameter

in an additional cosmological run, thus accounting for any such systematic. No additional prior is

placed onc0 other than that it is flat with the parameter varying from 0 to 2. I consequently find
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little change in the constraint on mDGP as shown by the dashed contour in the bottom left hand

panel of Figure 2.9. In this way the constraint is limited bystatisticalrather than systematic error.

The68% confidence interval is subsequently shifted only fromα < 0.58 to α < 0.61 with

systematic treatment. With the cut in angular scales atθ = 30 arcminutes it has not been possible

to meaningfully constrainc0 itself. It should be noted that further systematics might also affect

this data however one would expect, as above, to be limited instead by statistical information.

Further treatment and causes of potential systematics in the data are detailed in van Waerbeke et

al. in prep. and Kilbingeret al. (2009).

2.6 Future Probes - Euclid

Within the foreseeable future the age of precision cosmology looks likely to get ever more precise.

The field of weak lensing is most definitely no exception and it is perhaps set to be one of the

most promising areas of development. One striking reason, among others, is the planned Euclid

mission (Refregieret al. (2008) and Cimattiet al. (2009)).

Euclid is a proposed space-based wide-field imager that will carry out an all-sky survey in one

visible and three Near-Infrared (NIR) bands. It will accomplish this as a medium class mission

carrying a 1.2m telescope. It is intended to launch∼ 2017 with a major requirement over a ground-

based mission being the need for a stable point spread function (PSF) in weak gravitational lensing

at this precision. The primary science goals are focused on theDark Universe7, such as dark

matter, dark energy and the nature of gravity. However, it will also shed light on many other areas

of astronomy such as galaxy evolution and extrasolar planets.

It is of great interest to see how this future survey will probe the nature of the cosmological

model and the nature of gravity, whatever that may be. I therefore firstly undertake a Fisher matrix

analysis with the intention of forecasting, for lensing only, how Euclid will constrain the standard

cosmological model (Section 2.6.2). I then extend this model to include deviations from Einstein-

cosmology with the mDGP model (α) as well as the more general parameterisation for gravity (γ

andΣ) in Section 2.6.3.

2.6.1 The Fisher Matrix

In Section 1.3.2.2 I touched upon the idea that the uncertainty in a quantity can be found by

investigating the neighbourhood and therefore the derivatives of a probability density function

7Hence its previous name DUNE as the Dark UNiverse Explorer.
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about the best fit point. This culminated in associating a type of error to the second derivative of

the log likelihood (Eq. 1.38). In the particular scenario when the likelihood/posterior is Gaussian

this is not an approximation but an exact case. One can imagine therefore that a quick method for

examining a parameter spaceX is to examine the second derivative at an assumed point. This can

be thought of as a curvature of the space and is given by,

F = −∂
2ln L
∂X2

. (2.36)

For a set of parameters themultivariateversion of this is called theFisher Information MatrixFij ,

Fij ≡
〈
− ∂2ln L
∂Xi∂Xj

〉
. (2.37)

This is a powerful concept not just because of its speed but also because it can be calculated

without current data. Instead it is possible to use a planned survey design, as described below, to

forecast the potential constraints for a probe given a fiducial input cosmology.

The errors are found simply asσ2
Xi

= (F−1)ii (marginalised) andσ2
Xi

= 1/Fii (fixed/conditional).

This fits intuitively with the curvature concept of the likelihood space. For a highly ‘curved’ dis-

tribution the likelihood will fall off more quickly from the best fit point and thus give a smaller

error.

2.6.2 Forecast: The standard Cosmological Model

The Fisher matrix formalism for weak lensing is subsequently given as,

Fij =
∑
l

∂C

∂pi
Cov−1 ∂C

∂pj
(2.38)

whereC is the weak lensing observable shown by,

Cij(l) = P kij+ <γ2
int> δij/n̄i (2.39)

andP kij is a convergence power spectrum similar to Equation (2.26), hence thek superscript, but

with indices i and j denoting tomographic bins. Further still,n̄i is the average galaxy number per

steradian in bini and<γ2
int>

1
2 is the rms intrinsic shear in each component, that here is equal to

0.22. ∂pi denotes the derivative with respect to a parameterp and Cov is the covariance matrix

given by,

Cov[Ckij(l), C
k
kl(l

′)] =
δll′

(2l + 1)fsky∆l
[Ckik(l)C

k
jl(l) + Ckil(l)C

k
jk(l)]. (2.40)
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For the following analyses I take the effective sky coverage to befsky = 20, 000 square degrees,

while probing the galaxy distribution with a median redshiftzm = 0.9 and having an effective

galaxy density of40 gal/arcmin2. I assume the redshift distribution given in Equation (2.41)

wherez0 = zm/1.412, α = 2 andβ = 1.5. I allow for five redshift bins with divisions such as

to give approximately equal galaxy number in each bin (0.0, 0.56, 0.79, 1.01, 1.32 and 3.0). The

photometric error (see Section 3.2.1 for more information on photometric redshifts) is accounted

for by using the parameterisationσz = σp(1 + z), with σp = 0.03. To impart this error the

binned redshift distribution is convolved with a Gaussian, characterised by a width ofσz. I use the

transfer function as described in Eisenstein & Hu (1998) and the non-linear prescription of Smith

et al. (2003).

n(z) ∝ zαexp(−(z/z0)β) (2.41)

For the standard cosmology I vary 7 parameters about their fiducial values. These are given by:

Ωm = 0.3, h = 0.7, σ8 = 0.8, Ωb = 0.05, ns = 1.0, w0 = −0.95 andwa = 0.0. The resulting

2D marginalised contours are given for each parameter combination in Figure 2.11. I use no

extra priors on any of the parameters and so the derived bounds represent a true and conservative

Euclid-onlycapability8.

Assuming this underlying cosmological model Euclid would find1σ marginalised bounds of

Ωm = 0.3±0.003, h = 0.7±0.0832, σ8 = 0.8±0.0041, Ωb = 0.05±0.0140, ns = 1.0±0.0158,

w0 = −0.95± 0.0357 andwa = 0.0± 0.1326.

2.6.3 Forecast: Modified Gravity

I now extend the above analysis further to include modified gravity. I use the same survey design,

requirements, noise and parameters as for the standard model but now includeγ andΣ as extra

parameters for the general parameterisation (see Section 2.3) and insteadα for the mDGP model.

Note that this LCDM-DGP interpolation model specifies its ownw0, wa, γ andΣ0. The fiducial

values are taken to beγ = 0.55, Σ0 = 0 andα = 0.

The resulting forecasts for this proposed project can be seen clearly in Figure 2.12. The left

panel shows that Euclid will be able to put considerable strain on any braneworld-like gravity sce-

nario that resembles the mDGP model. The solid (1σ) and dashed (2σ) contours are significantly
8For a code comparison or consistency check my fisher matrix and the associated parameter derivatives, as a function

of `, can be found at: http://zuserver2.star.ucl.ac.uk/∼sat/DUNEworking group/X, with X=fisher, derivomegam,

deriv h 0, deriv sigma8, deriv omegab, deriv w 0, deriv w a or derivn s. These have been calculated with the exact

specification as described above.
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Figure 2.11:The 2D marginalisedforecastedconstraints with the proposed space-based Euclid survey.

This corresponds to1σ bounds ofΩm = 0.3 ± 0.003, h = 0.7 ± 0.0832, σ8 = 0.8 ± 0.0041, Ωb =
0.05 ± 0.0140, ns = 1.0 ± 0.0158, w0 = −0.95 ± 0.0357 andwa = 0.0 ± 0.1326 from the fiducial

input cosmology. This demonstrates that such a survey is a highly promising and worthwhile project with

constraints being pushed towards the percent level for anindividual late-time cosmological probe. The

possible constraints on the equation of state in particular are thoroughly exciting, especially given there are

no extra priors.
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Figure 2.12: The left panel displays Euclid’s potential constraining power with regards to the mDGP

model in a lensing only analysis. Here the1σ contour (all solid lines) is well within theα = 1, or DGP,

line and so it will be easily distinguishable from LCDM (α = 0). In fact, this corresponds to an error

of 0.104 onα with lmax = 500 (all red contours) in stark contrast to today’s constraint. The right panel

shows the marginalised contours for the general growth parameterisation. Again, it seems that Euclid will

provide excellent insight into any potential modified gravity signatures. Specifically it is found that it will

be possible to constrainγ with an error of 0.045 (1σ). This is tightened further to 0.038 whenlmax = 10000
(black contours). The parametersh, σ8, Ωb andns have been varied and marginalised over for both models

considered here while in additionw0, wa andΣ0 have been marginalised for the growth model.

within theα = 1, or DGP, bound. In fact, Euclid will potentially constrainα to within an error

of 0.104 at the68% confidence level. This is in constrast to Figure 2.8 where no constraint was

possible with a lensing-only study. Note that for this analysisonly contributions froml = 10 to

lmax = 500 were considered such that the deeply non-linear regime could be neglected.

The right panel in Figure 2.12 again illustrates the expected constraining power of Euclid but

now with regards to general modified gravity. For this general parameterisation I performed two

runs with one corresponding to contributions froml = 10 to lmax = 500 (red contours) and

the other with contributions froml = 10 to lmax = 10000 (black contours). Here one can see

that Euclid will be able to extract the growth characteristic thus allowing a strong cosmological

test of our gravitational framework. Indeed, it will be able to constrain the fiducialγ = 0.55

(LCDM) to within an error of 0.0446 at1σ with lmax = 500. This is further tightened to 0.038
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Figure 2.13:The above plot shows the marginalisedγ−Σ0 forecast for a weak lensing only analysis with

Euclid. These two parameters, which could represent modified gravity or generic dark energy signatures,

demonstrate how this future weak lensing probe will potentially place firm constrains on any model of late-

time acceleration. The black contours correspond tolmax = 10000, demonstrating an error of 0.069(1σ) on

Σ0, whereas the red contours correspond tolmax = 500 giving instead an error of 0.25. In both cases the

inner and outer contours are1σ and2σ, respectively.

with lmax = 10000. The other 7 cosmological parameters (h, σ8, Ωb, w0, wa, ns andΣ0) have

been varied and marginalised over in the plot. Again, this forecast is in contrast to Figure 2.10

where even the combined probes of weak lensing, BAOs and Supernovae were incapable of any

constraint.

Finally, I include in Figure 2.13 a marginalised contour forγ againstΣ0 which further high-

lights how modified gravity or very generic dark energy signatures can be constrained, consis-

tently, with weak lensing. I find that withlmax = 500 (red contours) this survey could constrain

alterations in the power spectrum with an error inΣ0 of 0.25 at1σ. This parameter is more sen-

sitive to the range of scales used thanγ, however, withlmax = 10000 (black contours) confining

Σ0 to within 0.069 of the fiducial valueΣ0 = 0.

The two sets of modified gravity forecast figures reveal interesting degeneracies between the
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new parameters, with bothα andγ having the same degeneracy with respect toΩm. This can

easily be understood by considering the compensation of one physical quantity for another in or-

der to keep the magnitude of the weak lensing signal, and its corresponding statistic, constant. In

each case an increase in the modified gravity parameter gives rise to a suppression in the growth

of structure resulting from the force law (remembering Figure 2.2 and Figure 2.3). A less in-

homogeneous and clustered intervening mass distribution naturally gives rise to less statistical

weak lensing. This effect is simply offset by having more mass in the Universe, i.e. increasing

Ωm. Therefore, given the correlation betweenγ andΣ0 it is evident that these bounds can be

significantly improved with complementary constraints on the mass density, perhaps provided by

a distance indicator.

It should also be emphasised that the spectroscopic element of Euclid (Cimattiet al. 2009)

will also be able to constrain growth and therefore modified gravity via redshift space distortions

(Peacock (2002) and Guzzoet al. (2008)).

2.7 Discussion and Conclusion

To summarise, I have noted that the surprising, but well confirmed, late-time acceleration of the

universecould be the result of a modification to gravity. I then, in Section 2.2, reviewed the

concept of modified gravity detailing in the process a model that is motivated by a large extra

dimension (mDGP). Interpolating between LCDM (α = 0) and DGP (α = 1) it can be tested as

a model in its own right and/or used as an example to demonstrate the rich set of observational

signatures that are likely to arise for a modified gravity model in cosmology. These signatures

include the expansion history, and rather interestingly, the growth of structure (Section 2.3) and a

modification to the relationship between the potential power spectrum and the matter power spec-

trum (Section 2.3.1). With these characteristics in mind I then examined attempts to parameterise

modified gravity in this way. This included a growth parameterγ and a power spectrum parameter

Σ.

In Section 2.4 I introduced weak lensing and related its attributes to modified gravity given that

it is sensitive to the expansion history, the growth of structure and the power spectrum. A severe

caveat was described in the use of non-linear scales and therefore, in Section 2.4.2, I described

the appropriate choice of survey (CFHTLS-wide) and data (θ > 30 arcminutes) used in the cos-

mological analyses. The subsequent lensing only constraints were given in Section 2.5.1 where I

showed that one could not yet constrain meaningful values ofα or γ with the current data. It was
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then demonstrated, by adding BAO and Supernovae data, that weak lensing was highly beneficial

in aiding the constraint of mDGP in combination. Without the inclusion of the lensing data the

expansion-only probes were incapable of constrainingα = 1 when varyingΩm, α, h and Ωb. I

found however that the combined probes disfavoured the DGP model with over a95% confidence

level where specificallyα < 0.58 at1σ andα < 0.91 at2σ.

I then showed that a constraint on the subtle, yet important, growth signature is beyond the

current weak lensing, BAO and Supernovae data. Almost total cosmological freedom was allowed

in all these analyses, varying parameters:Ωm, h, σ8, Ωb, a, b andc for both models, in addi-

tion to α for mDGP andw0 andγ for the growth model. Furthermore, I used theξE two point

statistic while analytically marginalising over the residual offsetc′. It was also demonstrated in

Section 2.5.3 that my results are insensitive to over or underestimation of the CFHTLS shear at

high redshift.

Finally in Section 2.6 I looked towards the future space based weak lensing survey Euclid and

discovered that it will have significant ability to discriminate the standard cosmological model.

This was illustrated most clearly in Figure 2.11 and highlights that with the addition of a few sim-

ple priors we will soon be pushing towards percent level constraints with an individual late-time

cosmological probe. This was followed by showing that Euclid will go further and be able dis-

tinguish between modified gravity and LCDM. I included a forecast for the mDGP model finding

that even for a lensing only analysis Euclid could restrictα to within 0.104 of the fiducialα = 0

at 1σ, even when the deeply non-linear regime has been removed (lmax = 500). In addition,

a complete and consistent forecast was included for generalised modified gravity demonstrating

that deviations from a fiducialΣ0 = 0 of ∆Σ0 = 0.25 at the68% confidence level will be possible

with lmax = 500. Whenlmax = 10000 this gets further restricted to∆Σ0 = 0.069. It will also

confineγ to within 0.045 (lmax = 500) and0.038 (lmax = 10000) of the fiducialγ = 0.55 at1σ,

where a full 9 cosmological parameters were varied.

In the analyses with data I have, except as an example case, actively removed angular scales

less than 30 arcminutes. This was to remove the contribution from the unknown non-linear regime

in modified gravity. This clearly does not utilise the available information especially over scales

for which weak lensing is particularly sensitive. In addition, one might also expect that non-linear

physics will act to emphasise any difference in gravitational theory as an additional signature.

This is analogous to the early studies of non-linearities with neutrinos where there is anextra

suppression in the non-linear regime relative to a model mapped naively from the linear (E.g Saito

et al. 2008). However, for a potential viable theory of gravity it is necessary for it to match the
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stringent observations of solar system tests that are satisfied most closely by GR. In this way such

a theory should actually tend to the non-linear behaviour of GR with the same expansion history.

I elaborate on this idea in the discussion of Chapter 5 and how it is leading to developments that

will benefit this study.

Even though I have detailed the advantages of weak lensing in a modified gravity study, and

even though Euclid in particular will be deeply insightful it is obvious that a collected and coor-

dinated assault on our gravitational framework will prove more advantageous. This might exist

in the form of a combination of probes as discussed in Jain & Zhang (2007), for example, where

ideally the four perturbation variablesφ, ψ, δ andθ are independently targeted. This in principle

would allow us unprecedented experimental scrutiny on the structure of our gravitational theory

over large scales.



CHAPTER 3

THE ANGULAR POWER SPECTRUM OF

PHOTOMETRIC SDSS LRGS

Abstract

I construct a new galaxy angular power spectrumC` based on the extended, updated and final

SDSS II Luminous Red Galaxyphotometricredshift survey–MegaZ LRG (DR7). Encapsulating

7746 deg2 (30% more area than the previous photometric SDSS power spectrum) I utilise 723,556

photometrically determined LRGs between0.45 < z < 0.65 in a spherical harmonic analysis of

the galaxy distribution. By combining four photometric redshift bins I find parameter constraints

of fb ≡ Ωb/Ωm = 0.173±0.046 andΩm = 0.260±0.035, consistent with and independent of the

CMB. This survey is not only one of the largest to date but is one of the most competitive currently

available. The robustness of the power spectra with respect to a number of potential systematics

are discussed. Finally, this composed galaxy clustering data is combined with the CMB (WMAP

5-year) to examine the complementarity of these early and late-time probes.

This work is presented originally in Thomas, S.A., Abdalla, F.B.& Lahav, O., 2009a (In prep.).
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3.1 Introduction

The analysis of the statistical distribution of fluctuations in the Universe is a potent method for

constraining theories or components within Cosmology. In fact, the power spectrum will fully

describe these variations, which are predicted by theory, if they are given by a Gaussian random

field. The Cosmic Microwave Background (CMB) has been a great example of this principle

in action with recent high precision measurements (Dunkleyet al. (2009) and Komatsuet al.

(2009)) confirming that a clear and consistent picture of cosmology is emerging. It is desirable

however to test this picture with additional and independent data that explores a contrasting epoch

of cosmic evolution and breaks the parameter degeneracies that exist from a single probe of the

early Universe. A galaxy redshift survey is therefore a powerful tool in Cosmology (Peebles

1973). In addition, this late-time distribution is sensitive to the emergence of dark energy (Riess

et al.(1998) and Perlmutteret al.(1999)) and arising through the growth of structure enables a test

of gravity (Jain & Zhang (2007), Huterer & Linder (2007), Thomaset al. (2009) and Chapter 2)

and the mass of the neutrino (Huet al.1998). I tackle this last topic in Chapter 4 with a combined

constraint on the absolute mass.

The structure and aim of this Chapter is as follows: To construct and present the angular power

spectrumC` of the new SDSS Luminous Red Galaxy (LRG) photometric survey (Section 3.2),

along with the associated error and cosmological constraints.

Specifically, I determine the colour, redshift and angular selection functions that define the sur-

vey in Section 3.2.1. The spherical harmonic analysis is described in Section 3.3 and Section 3.4.

The cosmological constraints inferred and the potential systematics of the data set are discussed

in Section 3.5 and Section 3.6, respectively. Finally, I combine this data set with an analysis of the

5-year WMAP data in Section 3.7.

3.2 The LRG Angular Power Spectrum

3.2.1 Data

The development of galaxy surveys over the past few years reflects the balance between observa-

tional technology and gains in cosmological parameter estimation. This has at present culminated

in the impressive 2-degree Field Galaxy Redshift Survey (2dFGRS - Collesset al.(2001)) and the

Sloan Digital Sky Survey (SDSS - Yorket al. (2000)). However, the acquisition of a vast number

of precise redshifts through spectroscopy is an expensive, challenging and time consuming task.
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An alternative method is to use photometric redshifts (E.g. Csabaiet al. (2003)) resulting from

observations of broadband galaxy colours through a series of filters (see also Figure 3.1). The mo-

tivation is that a decrease in redshift accuracy is outweighed by measurements of a vast number

of galaxies over a wide area of the sky, therefore encompassing a large cosmic volume. Photo-

metric redshift surveys have been shown to be competitive (Blakeet al. (2007) and Padmanabhan

et al. (2007)) and upcoming surveys, such as the Dark Energy Survey (The Dark Energy Survey

Collaboration (2005)), are heavily based on this efficiency principle.

I therefore aim to analyse the clustering of the latest and final SDSS II photometry given by

Data Release 7 (DR7). The≈ 1.5 million LRG catalogue (MegaZ-LRG DR7) is produced as an

updated version of MegaZ-LRG (Collisteret al.2007). These LRGs are old red elliptical galaxies

that provide a clean and consistent galaxy sample. With a stable spectral energy distribution (SED)

and a sharp4000Å break (Figure 3.1) they therefore provide good photometric redshift estimates.

Furthermore, they are known to strongly trace the underlying mass density; a distribution we are

striving to quantify. Also, being among the brightest galaxies in the Universe they allow detailed

studies over a large cosmic volume. This is highly desirable for a cosmological study given that it

diminishes the effect of sample variance.

3.2.1.1 Redshift Selection

The redshift estimates for this above sample were constructed by using the redshift output as given

by ANNz (Collister & Lahav 2004) an Artificial Neural Network code. This empirical photometric

redshift estimator learns an effective parameterisation of redshift with varying galaxy magnitudes

by working on a representative training set. The 13,000 spectroscopic redshifts from the 2dF-

SDSS LRG and Quasar (2SLAQ) survey (Cannonet al. 2006), aδ ≈ 0 ◦ (declination) stripe

within the DR7 imaging area, is one such training set. For this reason and for this specific galaxy

sample over the range of redshifts of interest (0.45 < z < 0.65) Abdallaet al. (2008) found the

ANNz training method to have the best performance on an evaluation LRG sample compared with

other redshift estimation codes, with average scatterσz = 0.0575 andσz defined by,

σz =< (zphot − zspec)2 >
1
2 . (3.1)

The reliability of the neural network training procedure depends on the training set being

completely representative of the target galaxy sample. It is noted that by applying this 2SLAQ

stripe to the wider photometric LRGs there is an extrapolation of the training set with sky position.

The discussion of this potential systematic, however, is left to Section 3.6.
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Figure 3.1: An example LRG spectrum is plotted over the SDSS filters (u, g, r, i and z) for varying

redshifts. The4000Å break, which is clearly evident in the relatively stable SED, underlies the LRG

photometric accuracy. The redshifting of the spectrum from the boundary of the g and r filters, through the

r filter and up to the boundary of the r and i filters describes the high redshift galaxy sample that I utilise

(0.44 < z < 0.65). To reiterate, it is from the flux through the different filters that allows one to estimate

the redshift for the galaxy.CREDIT: Padmanabhanet al.(2007).

3.2.1.2 The Colour Selection

At the start of the 2SLAQ survey there was an alteration in the selection criteria used to extract

the homogeneous LRG sample from the overall galaxy population. This is associated with the

de Vaucouleurs magnitudeideV and alsodperp, a colour cut which is related to theg, r and i

magnitudes via,

dperp ≡ (r − i)− (g − r)/8.0. (3.2)

I prefer to act cautiously in order to analyse a galaxy sample that most represents the training

set used to infer its properties. Therefore, I introduce the additional colour cutsideV ≤ 19.8

anddperp ≥ 0.55 to select the LRG population given that these were the selection criteria used

in the strict majority of 2SLAQ. These cuts were also introduced in the analysis of the earlier

MegaZ-LRG catalogue (Blakeet al.2007).
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3.2.1.3 M-star Contamination

The presence of M-stars represent the main source of object contamination (≈ 5%) within the

remaining sample owing to similar broadband colours. Generally, an uncorrelated sample of stars

will act to suppress the power of fluctuations (Hutereret al. 2001). One would expect a slightly

correlated variation of stellar material through the galactic plane and hence our survey area. I

therefore remove a large proportion of these contaminants with a cut in star-galaxy separation. The

ANNz code has a star-galaxy parameterδsg as an additional optional output (Collister & Lahav

2004). The parameter varies continuously from ‘guaranteed’ starδsg = 0 to ‘certain’ galaxy

δsg = 1. I remove all objects withδsg < 0.2, in the processes decreasing the contamination

fraction to≈ 1.5% with minimum loss of bona fide galaxies (Collisteret al. (2007) and Blake

et al. (2007)).

3.2.1.4 The Angular Selection Function

The angular selection function was obtained, which is used to determine the boundaries of the sur-

vey in the plane of the sky, fromtsChunk.dr7.best.par downloaded atwww.sdss.org/

dr7/coverage . I converted the provided great circle coordinates (µ,ν) and the survey’s stripe

numbers to declination and right ascension before undergoing a HEALPix pixelisation on a sphere

(Górskiet al.2005). I used a total of 3,145,728 pixels (12× nside× nside wherenside = 512) over

the entire sky, placing a zero in pixels corresponding to holes, gaps or regions not surveyed and

a one in genuinely surveyed pixels. This discrete survey mask was then overlaid with the afore-

mentioned LRG catalogue to leave the final galaxy map. I further tested this withnside = 1024 to

examine the effects of a pixelised space. After appropriately adjusting the estimatedC` (found in

the next subsection), by dividing by the square of the HEALPix window functionw2
` , the pixeli-

sation effect was found to be negligible.

I imposed an additional constraint on the mask/map by excluding the survey stripes 76, 82

and 86, which are widely separated from the rest of the contiguous region. These segments act to

increase the complexity of the survey window function and contribute relatively little extra galax-

ies. The resulting survey used for the primary angular power spectrum analysis spans7746 deg2

and723, 556 galaxies over a redshift0.4 < z < 0.7. This is a30% larger area for analysis than

the first and previous MegaZ-LRG survey (Blakeet al. (2007) and Collisteret al. (2007)). Like-

wise, it is significantly more expansive than the earlier Padmanabhanet al.(2005), which covering

3, 528deg2 and0.2 < z < 0.6 represents a slightly different LRG population and analysis method.
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Figure 3.2:The SDSS Data Release 7 (DR7) photometric LRG coverage. At7746 deg2 it covers723, 556
galaxies over a redshift0.4 < z < 0.7. The three excluded stripes (76, 82 and 86) are visible towards the

boundary of the plot. The 2dF SDSS LRG and Quasar (2SLAQ) survey and training set constitute a narrow

stripe (δ ≈ 0 ◦) that passes approximately through the middle of the coordinate system and the bottom of

the defined survey.

The final sky coverage is shown in Figure 3.2.

3.3 The Power Spectrum Measurement

The measurement of the angular power spectrum is performed by undertaking a spherical har-

monic analysis (Peebles 1973). By explicitly summing the discrete galaxies over the incomplete

sky I follow the derivation, methodology and/or notation of Peebles (1973), Wrightet al. (1994),

Blakeet al. (2004) and Blakeet al. (2007).

One connects the underlying density field in a redshift band to the relevant statistical entities

by first projecting the mass distribution onto a plane in the skyσ(θ, φ). This distribution is then

decomposed into a series of spherical harmonicsYl,m and their corresponding coefficientsal,m,
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σ(θ, φ) =
∞∑
l=0

l∑
m=−l

al,mYl,m(θ, φ). (3.3)

The statistical distribution–the angular power spectrumC`–is then given by the multi-realisation

expectation of theseal,m coefficients,< |al,m|2 >. For a full sky survey these coefficients rep-

resent an orthogonal and normalised basis and are thus found by a summation of the spherical

harmonic conjugate over the galaxy catalogue,

Al,m =
N∑
i=1

Y ∗
l,m(θi, φi). (3.4)

However, in reality one will observe a masked and therefore incomplete sky. This effectively

correlates the spherical harmonic coefficients and induces the correction and adjustment for loss

of power given by,

Cpsky
l,m =

|Al,m − N
∆ΩIl,m|

2

Jl,m
− ∆Ω

N
(3.5)

where theIl,m andJl,m integrals in Equations 3.6 and 3.7 are evaluated over the geometry of the

discrete survey area. I.e.,δΩ = 1 for a surveyed pixel andδΩ = 0 for an unsurveyed pixel. The

last subtracted term is a correction for the statistical distribution of shot noise and is equivalent to

the expectation of the corresponding harmonic coefficient for a random unclustered sample.

Il,m =
∫

∆Ω
Y ∗
l,m dΩ (3.6)

Jl,m =
∫

∆Ω
|Yl,m|2 dΩ (3.7)

One can then obtain the resulting angular power spectrum for a given multipole` via an averaging

of Cl,m over the (2`+ 1) al,m values,

Cobs
` =

∑l
m=−l C

psky
l,m

2l + 1
. (3.8)

The angular power spectrum is independent ofm for statistical isotropy. TheC` values are further

averaged into bins of width∆` = 10. I weight this average by the corresponding number ofal,ms,

C∆`
` =

∑`′+∆`
`′ (2`+ 1)Cobs

`∑`′+∆`
`′ (2`+ 1)

. (3.9)
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The angular power spectrum in these∆` bands is measured up to` = 500. One can therefore use

these statistics for each redshift bin within the survey volume. I measure the clustering distribution

in four such photometric redshift bins, each having width∆z = 0.05 from z = 0.45 to z =

0.65. These procedures are in line with Blakeet al. (2007) and therefore a direct MegaZ-LRG

comparison and consistency check can be made.

The aforementioned redshift bins are correlated, however, as photometric errors scatter galax-

ies throughout the bins. A small modification to the angular power spectrum,

Ci,j` =
1

2`+ 1

∑̀
m=−`

(Ail,m)∗Ajl,m (3.10)

enables a measurement where the harmonic coefficients in bini and binj have been adjusted for

incomplete sky coverage as detailed above. The results are displayed in Section 3.3.2.

Note there exist other analogous procedures for the analysis of galaxy clustering including,

for example, quadratic estimators, maximum likelihood methods and explicit reconstructions of

the power spectrum (E.g. Hutereret al. (2001), Tegmarket al. (2002), Seo & Eisenstein (2003),

Tegmarket al. (2004), Blake & Bridle (2005), Tegmarket al. (2006), Padmanabhanet al. (2007),

Blakeet al. (2007) and Reidet al. (2009)).

3.3.1 Simulations, the Covariance and Gaussian error

The methodology described above in Section 3.3, for the measurement of the angular power spec-

trum, was applied to simulated data in order to test the procedure and the code. This was performed

by first constructing a Gaussian random field for some input cosmology, using best fit WMAP5

parameters (Dunkleyet al.2009), and subsequently reconstructing this cosmology for each of the

four galaxy clustering redshift bins to be measured. Irandomlyselected the full set of spheri-

cal harmonic coefficientsa`′,m from Gaussian distributions with widths given by the underlying

known cosmology [(C`′)
1
2 ]. The relation between the underlying matter power spectrum and the

theoretical angular power spectrum is described in Section 3.4. Then, using the HEALPIX func-

tion alm2map (Górski et al.2005) I simulated a pixelised galaxy map from these quantities and

sampled objects as a Poisson realisation of the field. The full angular selection function of the

survey (Section 3.2.1; Figure 3.2) was imposed on the simulated map and the number of galaxies

sampled in each bin were matched to those present in the observed catalogue. This mock data was

then analysed with my code in the same manner as the real data and averaged over 1000 simu-

lated realisations. The accuracy and reliability of the code and the power spectrum measurement

procedure is evident in Figure 3.3.
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Figure 3.3:The averaged reconstruction of the inputC` field for 1000 simulated realisations. The thick

dashed lines represent the input cosmology for the four redshift bins between0.45 < z < 0.65 and the

thinner solid lines are the recovered averages. The plot has been truncated at` = 200 as a visual aid to see

the agreement. The behaviour beyond this point continues in an identical fashion and so the accuracy and

consistency of the code and the measurement procedure is clear.

Interestingly one can also use these simulations to derive the statistical error in the galaxy

clustering measurementsσ(C`). This is extracted from the standard deviation over the1000 mock

realisations at each̀. An alternative estimate of the error is to use the simple analytic Gaussian

expression (E.g. Dodelson (2003) and Blakeet al. (2007)),

σ(Cl) =

√
2

fsky(2l + 1)

(
Cl +

∆Ω
N

)
(3.11)

wherefsky is the fraction of sky surveyed,∆Ω is the area, N is the measured number of galaxies in

the bin andC` is the observed or theoretical angular power spectrum. The first and second terms

in Equation 3.11 include the necessary error contributions from both cosmic variance and shot

noise, respectively. It also accounts for the reduced error given the combination of2` + 1 C`,m

values into the determination of eachC`. For the statistical error in the cross power spectrum this
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Figure 3.4:Left Panel: The analytic Gaussian expression (Equation 3.11; dashed line) is accurately traced

by the 1000 realisation simulated error in a redshift band (solid line), shown here for bin 1 (0.45 ≤ z ≤ 0.5).

This demonstrates the approximate validity of the Gaussian expression. Right Panel: The agreement is

further highlighted by the ratio of the analytic and numerical estimations of the statistical error, where

the overall behaviour is consistent with unity. The two panels are shown for the first bin only but are

representative of all other bin combinations.

generalises to,

σ2(Ci,jl ) =
2

fsky(2`+ 1)

(
Ci` +

1
Ni/∆Ω

)(
Cj` +

1
Nj/∆Ω

)
. (3.12)

However, the expression for the error is potentially invalid for non-Gaussian statistics and non-

linear growth and does not capture the full effects of a complex survey geometry. By earlier

including the survey mask in the Monte Carlo realisations/simulations and accounting for the ob-

served number density of galaxies in each redshift bin the simulated error has no such limitations.

In addition, the variance between the simulatedCi,j` will incorporate the full covariance between

redshift bins and∆` bands. I therefore use the mock errors as a testbed for the Gaussian expres-

sion’s validity.

I find the expression reconstructs the simulated error accurately in each of the four redshift

bins and across the entire range of`. This is easily seen in the left panel of Figure 3.4. The error

ratio, typified by the first redshift bin, is displayed in the right panel.
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3.3.2 Results

I have constructed the galaxy clustering angular power spectrumC` for SDSS MegaZ-LRG (DR7),

an extension to the earlier analysis (Blakeet al. 2007) of the original MegaZ-LRG catalogue

(Collister et al. 2007). Including723, 556 photometrically determined LRGs and encapsulating

7746 deg2 the measured values in four redshift bins extending∆z = 0.05 in redshift, from0.45 to

0.65, are recorded in Table 3.1. These are illustrated further in Figure 3.5. The full measurement

procedure was detailed in Section 3.3. In addition, the measured cross power spectra between bins

are described and listed in Section 3.6.2.

Table 3.1 also includes the statistical errorsσ(C`) on each power spectrum measurement as

given by Equation 3.11, but calculated with themeasuredC`. They have been further weighted

over the∆` = 10 band. This was shown in Figure 3.4 to be a good approximation. Note that

for the cosmological parameter estimation in Section 3.5 I utilise the Gaussian expression but

evaluated withmodelC`s.

In addition to the simulations described previously I also test the measurement pipeline by

reconstructing the observedC` as found in the DR4 catalogue. I find these values to be identical

to Blakeet al. (2007). As in the DR4 results I find that DR7 also exhibits an excess of power

over the largest scale (` = 6 band) in the furthest redshift bin. There is slight relief from this

tension however as the DR4 point is found to have a further40% more amplitude. The effects and

potential cause of this are discussed later in the chapter.

Table 3.1: The angular power spectrumC` for SDSS MegaZ-LRG (DR7), an extension to the first

MegaZ-LRG analysis (Blakeet al. (2007) and Collisteret al. (2007)). The Gaussian statistical

error on the measurement is also included, which has been weighted over each∆` band. Each bin

extends∆z = 0.05 in redshift fromz = 0.45 to 0.65 and covering7746 deg2 contain259, 498;

237, 564; 155, 293 and71, 201 galaxies, respectively. With the exception of the multipole values

(`) all quantities have been multiplied by105. Note that for the main cosmological analyses the

modelC`s are used to deduceσ(C`), except where explicitly stated for comparison.

` CBin 1
` σ(C1

` ) CBin 2
` σ(C2

` ) CBin 3
` σ(C3

` ) CBin 4
` σ(C4

` )

6 24.757 7.646 16.307 5.154 18.944 6.096 26.380 8.846

16 15.685 3.027 9.702 1.951 13.501 2.740 10.512 2.522

26 10.917 1.692 7.708 1.245 9.893 1.633 7.230 1.509

36 9.865 1.310 7.481 1.030 6.803 1.012 5.686 1.094

46 7.613 0.916 6.980 0.857 5.979 0.806 5.602 0.959

56 5.447 0.619 3.900 0.477 5.192 0.654 4.574 0.769
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` CBin 1
` σ(C1

` ) CBin 2
` σ(C2

` ) CBin 3
` σ(C3

` ) CBin 4
` σ(C4

` )

66 5.293 0.557 5.072 0.544 4.177 0.511 4.408 0.693

76 5.088 0.501 4.872 0.491 3.802 0.445 3.165 0.542

86 3.817 0.371 3.945 0.388 3.936 0.429 3.636 0.546

96 3.675 0.341 3.068 0.302 3.368 0.364 2.728 0.450

106 3.358 0.302 3.141 0.293 3.313 0.342 2.944 0.443

116 2.987 0.264 2.947 0.266 2.736 0.288 2.966 0.425

126 2.570 0.226 2.333 0.216 2.056 0.232 2.052 0.348

136 2.426 0.208 2.064 0.191 2.310 0.239 1.817 0.321

146 2.375 0.198 1.847 0.171 2.069 0.216 1.690 0.302

156 2.162 0.179 1.860 0.166 1.683 0.187 1.888 0.303

166 1.878 0.157 1.342 0.132 1.390 0.164 1.504 0.272

176 1.579 0.136 1.647 0.145 1.569 0.169 1.561 0.268

186 1.842 0.147 1.552 0.136 1.310 0.151 1.497 0.257

196 1.507 0.125 1.152 0.111 1.356 0.149 1.050 0.227

206 1.358 0.115 1.140 0.108 1.267 0.141 0.992 0.218

216 1.159 0.102 1.203 0.109 1.302 0.140 1.345 0.231

226 1.163 0.100 1.244 0.108 1.191 0.131 0.844 0.201

236 1.149 0.097 1.036 0.096 1.237 0.130 0.712 0.191

246 0.906 0.084 0.943 0.090 0.933 0.114 0.959 0.198

256 1.025 0.088 0.872 0.085 0.984 0.114 1.038 0.198

266 0.998 0.085 0.875 0.083 0.888 0.107 0.713 0.180

276 0.853 0.077 0.955 0.085 0.794 0.101 0.745 0.178

286 0.824 0.074 0.724 0.074 0.855 0.102 0.949 0.183

296 0.738 0.069 0.657 0.070 0.796 0.098 0.795 0.174

306 0.754 0.069 0.707 0.070 0.639 0.090 0.582 0.162

316 0.780 0.069 0.717 0.070 0.571 0.085 0.764 0.167

326 0.784 0.068 0.654 0.066 0.611 0.086 0.635 0.159

336 0.727 0.065 0.634 0.064 0.612 0.084 0.689 0.159

346 0.756 0.065 0.626 0.063 0.700 0.087 0.728 0.158

356 0.686 0.061 0.690 0.065 0.586 0.081 0.589 0.150
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` CBin 1
` σ(C1

` ) CBin 2
` σ(C2

` ) CBin 3
` σ(C3

` ) CBin 4
` σ(C4

` )

366 0.667 0.060 0.519 0.057 0.589 0.080 0.553 0.147

376 0.681 0.059 0.632 0.061 0.485 0.075 0.532 0.144

386 0.611 0.056 0.517 0.056 0.569 0.077 0.432 0.139

396 0.617 0.055 0.525 0.055 0.599 0.077 0.307 0.132

406 0.561 0.053 0.559 0.056 0.540 0.074 0.592 0.141

416 0.427 0.047 0.489 0.053 0.510 0.072 0.545 0.138

426 0.625 0.054 0.515 0.053 0.511 0.071 0.257 0.126

436 0.558 0.051 0.509 0.052 0.502 0.070 0.376 0.128

446 0.521 0.049 0.459 0.050 0.332 0.063 0.541 0.133

456 0.539 0.049 0.459 0.049 0.482 0.068 0.398 0.126

466 0.488 0.047 0.447 0.048 0.446 0.066 0.419 0.126

476 0.438 0.045 0.453 0.048 0.403 0.064 0.425 0.125

486 0.429 0.044 0.364 0.044 0.419 0.064 0.153 0.114

496 0.493 0.045 0.356 0.044 0.330 0.060 0.410 0.122
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3.4 Theoretical Power Spectrum

In order to deduce the cosmology to match the measured angular distribution above one must first

have a method for connecting the underlying 3D mass distribution toC`. The outline description

below simply follows the approach and notation of Hutereret al. (2001), Tegmarket al. (2002),

Blakeet al. (2007) and, most clearly, Padmanabhanet al. (2007).

One starts by noting that before the statistical decomposition of the density field into spherical

harmonics in Section 3.3 the field was projected onto the plane of the sky. The same procedure

is initially followed for the theoretical angular power spectrum with the 3D mass distributionδ

projected along the line-of-sightδ2D. This gives,

δ2D = il
∫

d3k

(2π)3
δ(k)Wl(k), (3.13)

whereδ has also undergone a Fourier transformation. The resulting spherical Bessel function

j(kz) and the projection’s weightf(z) have been absorbed into the window function given by,

Wl(k) =
∫
f(z)jl(kz) dz. (3.14)

The weight naturally depends on the normalised redshift distribution of the objects under consid-

eration
∫
n(z) dz = 1 and the linear growth factorD(z),

f(z) = n(z)D(z)
( dz

dx

)
(3.15)

with the Jacobian relating to the radial comoving coordinatex. Using the definition of the power

spectrumP (k) for the 3D density fieldδ(k),

< δ(k)δ∗(k′) >= (2π)3δ3(k− k′)P (k) (3.16)

the angular power spectrumC` is found and similarly defined to be,

C` ≡< δ2Dδ∗2D >= 4π
∫

∆2(k)W 2
` (k)

dk
k
. (3.17)

The power spectrum has been recast into the dimensionless power spectrum defined in Equa-

tion 3.18. This power spectrum describes the variance of the matter field in logarithmic bands

and so the equation forC` is subsequently a weighted integral of this quantity over logarithmic

intervals (dk/k = dln k).

∆2(k) ≡ 4πk3P (k)
(2π)3

(3.18)
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Figure 3.5: The measured Angular Power Spectra (C`) for the photometric SDSS MegaZ-LRG (DR7)

population as presented in Table 3.1. The error bars correspond to those calculated with Equation 3.11 using

the measured power spectrum. These include contributions from cosmic variance and shot noise, while

accounting for the fraction of the sky surveyed. The solid line is evaluated for the the best fit parameters

found in Section 3.5 using the Smithet al. (2003) non-linear prescription. The panels are: Bin 1 (top left),

Bin 2 (top right), Bin 3 (bottom left) and Bin 4 (bottom right). In the furthest redshift bin an excess of

power is observed over the largest scale. This was found similarly in DR4 but in that earlier case with an

additional40% more amplitude. The DR4 point is shown by the cross in the top left corner of the panel.
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This can be further written in terms on the galaxy power spectrum with the addition of the linear

galaxy biasb,

Pg(k) = b2P (k). (3.19)

For ` & 60 the exact expression (Equation 3.17) can be simplified by the small angle approxima-

tion (e.g. Blakeet al. (2007)),

C` = b2
∫
P (k, z)

n(z)2

x(z)2
( dx

dz

)−1
dz. (3.20)

On larger scales (smaller`) this approximation becomes invalid as it seriously underestimates the

power inC`. In fact, even the exact expression does not capture the shape of the true power

spectrum beloẁ ∼ 60. The main reason is because of redshift space distortions, which lead to a

significant boost in the angular power spectrum.

3.4.1 Redshift Space Distortions

The peculiar velocity of a galaxy will cause it to appear shifted along the line-of-sight in redshift

coordinates (E.g. Sargent & Turner (1977), Peebles (1980), Kaiser (1987), Fisheret al. (1994),

Heavens & Taylor (1995), Hamilton (1998) and Guzzoet al. (2008)). This is relative to the same

galaxy carried along only by the background Hubble flow. That is, the redshift distances of a

body will be altered from its true distancer, by its own peculiar velocityv ≡ r̂.v, radially from

the observer,

s = r + r̂.v ≡ r + v. (3.21)

In redshift space this deviation alters the apparent clustering of galaxies and collectively the effect

is said to be the result ofredshift space distortions.

Over large scales the gravitational collapse of some spherically symmetric (in real space) over-

density will cause it to appear narrower along the line-of-sight (in the observed redshift space).

As alluded to above this is because the matter nearest to the observer is redshift distorted towards

the overdensity’s centre, giving the impression that it is located closer to the origin. Matter on

the other side of the structure will have projected peculiar velocities towards the observer such

as to make them also appear closer to the origin. The object therefore seems flatter in the radial

direction. Naturally the object is not deformed along the plane of the sky as the inferred redshift

is not affected by its transverse motion.
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Over smaller scales the peculiar velocity tends to increase through infall. In addition to this,

the velocity is larger relative to the distance from the test matter to the centre of the structure. In

redshift space the distorted object subsequently becomes ever more flat. Eventually, over suffi-

ciently small scales or within a viralised object, the peculiar velocity will be high enough such

that visible objects appear on theother side of the overdensity. This gives rise to a tendency of

long, thin, column-like structures to appear radially in a galaxy survey. These particular objects,

resulting from the redshift space distortions, are grandiosely referred to asfingers-of-God.

To include redshift space distortions in the angular power spectrum the window function

W`(k) in Equation 3.17 is modified such thatW`(k) → W`(k) + WR
` (k) (E.g. Fisheret al.

(1994) and Padmanabhanet al. (2007)). This is a result of writing the weight properly as a func-

tion of redshift distancef(s) and assuming that the magnitude of the peculiar velocities are small.

This is because with this assumption one can perform a Taylor expansion of the weight,

f(s) ≈ f(r) +
df
dr

(v(rr̂).̂r). (3.22)

The subsequent window function (remembering Equation 3.14) therefore now has the two compo-

nents,W`(k)+WR
` (k), with the latter currently a function ofv from above. The Fourier transform

of v is in turn related to the density perturbation through the linear continuity equation,

v(k) = −iβδg(k)
k
k2

(3.23)

with the constant of proportionalityβ known as the redshift distortion parameter. This is com-

monly approximated byβ ≈ Ω0.6
m /b. Substituting this into the expression for the window function

and Legendre transforming (see Padmanabhanet al. (2007) for further details) eventually leaves

one with,

WR
l (k) = β

∫
f(y)

[ (2l2 + 2l − 1)
(2l + 3)(2l − 1)

jl(ky)−
l(l − 1)

(2l − 1)(2l + 1)
jl−2(ky)−

(l + 1)(l + 2)
(2l + 1)(1l + 3)

jl+2(ky)
]
dy.

(3.24)

For large values of̀ the integral within Equation 3.24 tends to zero and so the total window

function is reduced to the previous form. In this way, even with the inclusion of redshift distor-

tions, the small angle approximation is an efficient and accurate estimate of the angular power

spectrum at small scales. The behaviour of this approximation and the effects of the redshift space

distortions on the power spectrum are illustrated further in Figure 3.6.
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Figure 3.6:A range of theoretical angular power spectra for the lowest redshift bin used in this survey

(0.45 ≤ z ≤ 0.5). This includes the small angle approximation (Equation 3.20; dotted line), the exact ex-

pression with no redshift space distortions (Equation 3.17; dot-dashed line), the exact expression including

redshift space distortions (Equation 3.24; solid line) and also with the addition of the partial sky mixing

matrix convolution (Section 3.4.2; Equation 3.26; dashed line). The input parameters are taken to be:

Ωb = 0.05, Ωm = 0.3, h = 0.75, σ8 = 0.8 andb = 1 for all four profiles. The small angle approximation

is used for multipole scales̀& 60 for faster computation in the cosmological analyses.

For an analysis between redshift bins the above outline can be easily extended. The cross

correlation of two distinct projected mass distributions< δ2Di δ∗2Dj > leads simply to a slight

modification in Equation 3.17; with the window function for each bin treated separately,

Cij` = 4π
∫

∆2(k)Wi(k)Wj(k)
dk
k
. (3.25)

3.4.2 The Mixing Matrix: Partial Sky Convolution

An additional alteration in the shape ofC` at large scales is to account for the partial sky cover-

age of the real survey. As stated in Section 3.3 this correlates the usually orthonormal spherical

harmonic coefficients, effectively creating a dependency on neighbouring scales. The net effect
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is to slightly suppress the shape of the power spectrumC` below ` ∼ 60 as seen in Figure 3.6.

The effect can be calculated by convolving with themixing matrixRl,l′ (Hauser & Peebles (1973),

Hivon et al. (2002) and Blakeet al. (2007)),

Cl =
∑
l′

Rl,l′Cl′ . (3.26)

The mixing matrix can be pre-calculated and depends purely on the survey geometry. It is de-

scribed by,

Rl,l′ =
2l′ + 1

4π

∑
l′′

(2l′′ + 1)Wl′′

 l l′ l′′

0 0 0

2

(3.27)

with Wl, the power spectrum of the survey’s mask, calculated using Equation 3.28. The2 × 3

matrix withinRl,l′ is a Wigner coefficient. For a full sky survey the convolution should have no

effect on the angular power spectrum and accordingly the mixing matrix reduces to the identity

matrixR`,`′ → δ``′ .

Wl =
∑l

m=−l |Il,m|2

2l + 1
(3.28)

For the DR7 survey geometry the mixing matrix at a given` is seen to be heavily peaked as

a function of`′ about that multipole value. The profile rapidly falls within the chosen∆` bin,

implying only a small correlation between the` bands is introduced by the mask. This is illustrated

in Figure 3.7 for two different multipole scales.

3.5 The Cosmological Analysis

I calculateP (k) for the angular power spectrumC` usingCAMB (Lewiset al.2000). TheHALOFIT

fitting function (Smithet al. 2003) is then used to map the linear power spectrum into the non-

linear regime (largè). To increase the speed of calculation I use the small angle approximation

(Equation 3.20) for̀ & 60 and the full and exact window function, including redshift distortions

(Equation 3.17 and Equation 3.24), otherwise. This is all convolved with the mixing matrixR`,`′

as described in the previous subsection.

3.5.1 The Redshift Distribution

The model redshift distributionn(z) in each redshift slice is taken to be the form of the spec-

troscopic 2SLAQ evaluation set, with the same LRG selection criteria, in thatphotometricbin.
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Figure 3.7: A slice through the mixing matrixR`,`′ is plotted for two fixed multipole values given by

`′ = 200 (solid curve) and̀ ′ = 260 (dashed curve). The amplitude of the matrix peaks at those fixed values

and decays rapidly within the size of a∆` band. This establishes how little correlation is induced by the

survey’s window function. Furthermore, the behaviour is observed similarly across all angular scales. Note

that the matrix profiles have been normalised to unity at their peaks and the vertical axis is in logarithmic

space.

This is possible because the 2SLAQ evaluation objects have both a spectroscopic and photometric

redshift. Thesen(z) were fit with a Gaussian function given by,

n(z) ∝ exp
[
− (z − µ)2

2σ2

]
. (3.29)

For the cosmological analysesµ andσ are fixed to their best fit values in each bin. I address this

assumption as a potential calibration systematic in Section 3.5.3 and Section 3.6.2. The best fit

quantities are summarised in Table 3.2 for the current (DR7) and previous data release (DR4).

In addition, the Gaussian fits to the spectroscopic distributions are illustrated in Figure 3.8. The

vertical axis represents the number of spectroscopic 2SLAQ objects within a small histogram band

(δz).
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Figure 3.8:The spectroscopic redshift distributionn(z) for each photometric bin in DR7 is illustrated as a

series of histograms. Each redshift distribution is fit by a Gaussian functionexp[−(z − µ)2/2σ2], whereµ

andσ are specified in Table 3.2. The associated Gaussian fits are represented by the smooth and continuous

curves.

3.5.2 Parameter Constraints: The Single Redshift Bins

I start by undertaking a cosmological analysis in each of the four separate redshift bins described

previously. A conservative choice of parameters is studied such that I can test for consistency

against the previous MegaZ LRG analysis (Blakeet al. 2007). I therefore vary four quantities:

fb = Ωb/Ωm, Ωm, σ8 andb; the baryon-to-matter density ratio, the matter density, the normalisa-

tion of the power spectrum and the galaxy bias, respectively. The bias is assumed to be scale inde-

pendent (b 6= b(k)). Along with the earlier MegaZ paper the Hubble constant is fixed toH0 = 75

km s−1 Mpc−1 and the spectral index tons = 1. Bothσ8 and the bias control the amplitude of

the power spectrum and are thus degenerate with one another. A flat prior is therefore enforced

on the former such that0.7 ≤ σ8 ≤ 1.1. The Universe is assumed to be flat throughout with the

equation of state fixed tow0 = −1. Again, to compare directly to the first MegaZ analysis I use all

the multipole values up tò = 300. This is the scale at which the non-linear corrections become
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µ σ Redshift Bin Photometric Range

0.474 0.035 Bin 1 0.45 < z < 0.50

0.525 0.042 Bin 2 0.50 < z < 0.55

0.572 0.044 Bin 3 0.55 < z < 0.60

0.625 0.053 Bin 4 0.60 < z < 0.65

0.474 0.0312 Bin 1 0.45 < z < 0.50

0.523 0.0428 Bin 2 0.50 < z < 0.55

0.568 0.0433 Bin 3 0.55 < z < 0.60

0.624 0.0568 Bin 4 0.60 < z < 0.65

Table 3.2:The meanµ and deviationσ of the Gaussian fitting to the spectroscopic redshift distribution

n(z) in each photometric bin. The top segment is the fit corresponding to the previous DR4 release as

found in Blakeet al.(2007) and similarly in Collisteret al.(2007). The bottom segment is for the new DR7

release. This is highlighted in Figure 3.8.

increasingly significant. For the parameter exploration I use the publicly available COSMOMC

package (Lewis & Bridle 2002).

3.5.2.1 Data Release 4

To test for consistency I first perform the cosmological analysis on the previous DR4 angular

power spectra, which are then compared to those found in Blakeet al. (2007). I find a remarkably

similar agreement to the previous study in the first three redshift bins over a redshift range0.45 ≤

z ≤ 0.6. However, for the final and furthest redshift bin (0.6 < z ≤ 0.65) a large discrepancy

is discovered when all angular scales tolmax = 300 are utilised. It is interesting that for this

particular redshift bin a large excess of power was detected in the measurement of theC` on the

largest angular scale (` = 6 band). Even though this is approximately at the turnover scale of the

power spectrum, where one might expect the power to start decreasing, the excess was found to be

just over1σ from the best fitC` profile. One might not therefore expect this anomalous point to

cause any significant alteration in the cosmological analysis. It is important to remember, however,

that the error on this data point, assigned in the previous study, was the error given by the Gaussian

expression (Equation 3.11) using thedatavalue for theC`. As the magnitude of this point is so

much larger than theC` corresponding to a smooth fit through the other data points, the associated

data error bar is made to appear much larger also. In the parameter estimation performed here
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Figure 3.9:Constraints on the MegaZ LRG (DR4) highest redshift bin (0.6 < z ≤ 0.65) using model

errors (red contour), data errors (green contour) and model errors with the lowest multipole removed (blue

contour). The last analysis gives constraints consistent with the previous Blakeet al. (2007) study. Other-

wise the excess power on large scales acts to alter the constraints; in the process favouring a much lower

matter density.

and in Blakeet al. (2007) the error and therefore covariance matrix are evaluated using themodel

errors. This is because in a Bayesian analysis one implicitly assumes the model to be true. Any

model spectrum attempting to fit the other data points will assign a theoretical value at the largest

angular scales much lower than that measured and subsequently the error bar will be much smaller.

The excess power is therefore a much poorer fit than is first thought. In order to try and replicate

the original DR4 constraint for this furthest bin I remove this irregular point. In addition, I also

follow an analysis using the data errors in the covariance matrix whileincludingthe excess power

quantity. The resulting contours are shown in Figure 3.9.

The plot highlights that the excess power at low multipoles is indeed significant, with the

inclusion of the lowest point dragging the constraint to much lower values ofΩm (red contour).

Also, the figure reiterates the notion that the data error (green contour) acts to buffer against this

anomaly given that the contour is similar to the model analysis that excludes the excess power
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(blue contour). When fitting with the model errors and no excess power I find the constraints to

be identical to those in Blakeet al. (2007) and also consistent with the three other redshift bins.

These are all plotted in Figure 3.10 along with analyses using the data error in each bin.

3.5.2.2 Data Release 7

The angular power spectrum for the last redshift bin was measured for DR7 in Section 3.3.2 and

shown in Figure 3.5. Once again an excess of power is detected at this high redshift. However,

there seems to be a slight hint of an ease in tension as the magnitude of the DR4 point is found

to be40% higher than the newly measured DR7 value. I therefore undertake a cosmological run

for this bin using the excess power point and also with it removed to test the effects. I find that

despite the more recent decrement in theC` on these large scales the inclusion of the quantity

still significantly affects the parameter constraints found with the bin. This is illustrated clearly in

Figure 3.11. Again, with this point excluded the fourth redshift bin is found to be consistent with

the other three slices.

I therefore choose to continue the galaxy clustering study by excluding the anomalous excess

power in thè = 6 band for the furthest redshift bin. It is intriguing that excess power has also

been detected in Padmanabhanet al. (2007) and, most recently, in the study of the maxBCG

cluster power spectrum by Huetsi (2009). I discuss the possible origin of this signal further in

Section 3.6.1.

For the new DR7 release the associated constraints for every redshift bin are displayed as the

yellow contours in Figure 3.12 and Figure 3.13. Also included, for direct comparison and consis-

tency, is my analysis of the previous SDSS release (DR4) as described above. This is illustrated

in each panel by the blue contours.

The increase in survey area and thus galaxy number does not seem to particularly aid the joint

constraint ofΩm andfb along the direction of their mutual degeneracy, except perhaps in the

highest redshift bin. Perpendicular to the degeneracy, however, there is a slight restriction in the

parameter space. Also, the new DR7 sample predicts a modest shift in the value of the bias in

each bin. Even though this is much less than a significance level it could reflect the fact that the

continually updated SDSS pipeline gives rise to different photometry values even for the same

objects as before. In this way galaxies near the selection criteria (as discussed in Section 3.2.1)

might be scattered into/out of the new analysis, resulting in a slightly different galaxy sample.

This can be a moderate effect for LRGs and is discussed, along with other systematics that might

affect the samples, also in Section 3.6. Irrespective of the changes inherent in the samples there is



3.5. The Cosmological Analysis 89

Ω
m

f b
 =

 Ω
b
/Ω

m

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ω
m

f b
 =

 Ω
b
/Ω

m

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ω
m

f b
 =

 Ω
b
/Ω

m

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ω
m

f b
 =

 Ω
b
/Ω

m

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3.10:MegaZ LRG DR4 constraints onfb = Ωb/Ωm andΩm for four redshift bins using model

errors (blue contours) and data errors (green contours) in the covariance matrix.b and σ8 have been

marginalised over andH0 andns are fixed to75 km s−1 Mpc−1 and1, respectively. This release has

been analysed to test for consistency with Blakeet al. (2007). All the bins are remarkably compatible

except for the fourth redshift bin. Here an excess of power at the lowest multipole must be removed for

an agreement (see text). The panels are: Bin 1 (top left), Bin 2 (top right), Bin 3 (bottom left) and Bin 4

(bottom right). The inner and outer contours are the68% and95% confidence levels, respectively.
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Figure 3.11:Constraints on the MegaZ LRG (DR7) highest redshift bin (0.6 < z ≤ 0.65) using model

errors and all data points tòmax = 300 (red contour) and model errors with the lowest multipole band

removed (yellow contour). Despite a decrease in the excess power in DR7, relative to the previous DR4

release, the observed shift in constraints above show the contribution from the anomalous low band to still

be significant. The yellow contour analysis is consistent with the other three redshift bins (Figures 3.12 and

3.13) and as such this point is removed from all subsequent analyses as before.

a comfortable consistency between the two releases and all four bins within the releases. All the

inferred constraints are summarised in Table 3.3.

When obtainingfb, Ωm or b all the other parameters are marginalised over. The bias is subse-

quently seen to enlarge with an increase in redshift. This is partially due to the observed galaxies

in the furthest redshift bin necessarily being more luminous, resulting from the pseudo-magnitude

limit in the survey. They are therefore observed to be more highly clustered (Blakeet al.2007).

3.5.3 Parameter Constraints: The Combined Redshift Bins

I now combine the data from each of the four redshift bins. These bins are not independent,

however, as photometric redshift errors act to disperse galaxies throughout the bins. Another

way of noting this is to observe that the Gaussian redshift distributions, as seen in Figure 3.8,
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Figure 3.12:MegaZ LRG DR7 constraints onfb = Ωb/Ωm andΩm for four redshift bins (yellow con-

tours).b andσ8 have been marginalised over andH0 andns are fixed to75 km s−1 Mpc−1 and1, respec-

tively. The previous MegaZ LRG DR4 release has been reevaluated to test against Blakeet al. (2007) (blue

contours). The panels are: Bin 1 (top left), Bin 2 (top right), Bin 3 (bottom left) and Bin 4 (bottom right).

The inner and outer contours are the68% and95% confidence levels, respectively.
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Figure 3.13:MegaZ LRG DR7 constraints onΩm and the biasb for four redshift bins (yellow contours).

fb = Ωb/Ωm andσ8 have been marginalised over andH0 andns are fixed to75 km s−1 Mpc−1 and1,

respectively. The previous MegaZ LRG DR4 release has been reevaluated to test against Blakeet al.(2007)

(blue contours). The panels are: Bin 1 (top left), Bin 2 (top right), Bin 3 (bottom left) and Bin 4 (bottom

right). The inner and outer contours are the68% and95% confidence levels, respectively.
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fb Ωm Redshift Slice Photometric Range

0.152± 0.055 0.271± 0.0430 Bin 1 (DR4) 0.45 ≤ z < 0.5

0.139± 0.053 0.262± 0.040 Bin 2 (DR4) 0.5 ≤ z < 0.55

0.175± 0.051 0.240± 0.038 Bin 3 (DR4) 0.55 ≤ z < 0.6

0.199± 0.072 0.268± 0.0655 Bin 4 (DR4) 0.6 ≤ z < 0.65

0.166± 0.066 0.253± 0.049 Bin 1 (DR7) 0.45 ≤ z < 0.5

0.136± 0.069 0.251± 0.051 Bin 2 (DR7) 0.5 ≤ z < 0.55

0.206± 0.062 0.274± 0.052 Bin 3 (DR7) 0.55 ≤ z < 0.6

0.146± 0.076 0.248± 0.067 Bin 4 (DR7) 0.6 ≤ z < 0.65

0.163± 0.0373 0.263± 0.0270 All bins (DR4) 0.45 ≤ z ≤ 0.65

0.173± 0.0462 0.260± 0.0351 All bins (DR7) 0.45 ≤ z ≤ 0.65

0.163± 0.0480 0.234± 0.0309 All bins (DR7)* 0.45 ≤ z ≤ 0.65

Table 3.3: The marginalised mean values obtained from the analyses of the galaxy clustering

angular power spectraC`. fb = Ωb/Ωm, Ωm, σ8 andb are varied for each single bin run. The

values for the previous release (DR4) were recalculated and shown to be entirely consistent with

Blake et al. (2007). In the last three runs all the bins were combined together using the full

covariance matrix and a bias parameter for each bin (b1, b2, b3, b4). *In this analysis the lowest

multipole band in the highest redshift slice is included.

overlap for each bin. I therefore use the full covariance matrix in the analysis. The variance

element corresponding to the same redshift bin (e.g. betweenCi` andCi`) is given by the square of

Equation 3.11 using thetheoreticalexpression forC` as before. The covariance elements between

different bins are described by,

Cov(Ci`, C
j
` ) =

2
fsky(2`+ 1)

(
Ci,j`

)2
. (3.30)

In this way the whole matrix allows for the covariance between all bin combinations but not

multipole bands. This is a good approximation given our earlier discussion of the highly peaked

mixing matrixRl,l′ (Figure 3.7).

I include a redshift dependence in the galaxy bias, to the extent that each redshift bin is as-

signed a separate bias parameter (b1, b2, b3 andb4) in the cosmological run.

The marginalised best fit parameters are again listed in Table 3.3, with the corresponding con-

tours displayed in Figure 3.14. The updated DR7 release (yellow contours) demonstrate consistent



3.5. The Cosmological Analysis 94

constraints with the previous DR4 study (blue contours). For the four bias parameters (b1, b2, b3

andb4) this analysis gives noticeably tighter bounds. As found with the individual bins the con-

tours can be seen to visibly rise along the bias axis with an increase in redshift. Moreover, the four

bias quantities are seen to be relatively high implying that the LRGs strongly trace the underlying

mass distribution.

Again, due to the degeneracy betweenfb andΩm the new data does not reduce the contour or

resultant constraints on either parameter. In fact, despite a minor narrowing of the degeneracy’s

width the distribution is seen to slightly elongate. This could be the consequence of having a

different fixed best fit Gaussian redshift distribution (µ, σ) for each of the four redshift bins com-

pared to DR4. In this way each analysis might represent a different slice through the parameter

hyper-volume for which the matter densities have a different local curvature. Furthermore, these

parameters could be naturally degenerate with the other parameters, such as the matter density,

given that a displacement inµ alters the effective comoving distance to the sources andσ alters

the degree of predicted anisotropy.

Additional tests on the redshift distribution are needed to probe this potential calibration and,

as well as a suggestion for future work, is discussed further in Section 3.6. It is worth reiterating,

however, that the constraints are similar and have been analysed using the redshift distribution that

most corresponds to their spectroscopic-photometric bins with the most recent SDSS photometry.

Finally, in the top left hand panel I include a calculation of the combined bins with (red con-

tour) and without (all yellow contours) the lowest multipole band measured in redshift bin 4. As

with the individual bin the excess power is seen to systematically displace the marginalised distri-

bution and once again is removed from all other constraints.

3.5.3.1 Other Studies

In as much as other analyses can be compared, with varying parameter choices and assumptions,

these results are concordant but competitive with respect to recent studies of SDSS galaxy clus-

tering. These often include alternate or earlier data sets and at different redshifts. This includes

Padmanabhanet al.(2007), an analogousphotometricstudy to Blakeet al.(2007), that instead re-

constructs the 3D real space power spectrum. Apart from these two works, studies have tended to

focus on the spectroscopic samples, such as Tegmarket al. (2004), Tegmarket al. (2006) (DR4),

Cabŕe & Gaztãnaga (2009) and Sanchezet al. (2009) (DR6) (with a measurement of the correla-

tion function) and most recently Reidet al.(2009) (DR7). A more direct numerical comparison is

made with this latest release in Section 3.7.
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Figure 3.14:Cosmological constraints given by the combination of four redshift bins between0.45 < z <

0.65. The earlier DR4 (Blakeet al.2007) analysis, which has been recalculated as a consistency check, is

illustrated by the series of blue contours. The DR7 bounds are displayed by the yellow contours. The red 2D

distribution in the top left panel shows the systematic shift induced by including the excess power measured

over large scales in the highest redshift bin, whereas the normal yellow contours have this anomalous point

removed. The bottom four panels demonstrate the additional constraining power of DR7 on the bias where

b1, b2, b3 andb4 are the bias parameters in sequentially higher redshift bins.
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Furthermore, the SDSS galaxies have permitted measurements of the Baryon Acoustic Oscil-

lations with Percivalet al. (2007), Gaztanagaet al. (2008) and Percivalet al. (2009).

3.6 Systematics and Further Tests

The earlier MegaZ release (Blakeet al. 2007) performed a series of systematic tests based nat-

urally on examining variations across the plane of the sky. This included astronomical seeing,

overlapping survey stripes, regions of low galactic latitude, varying completeness and variations

in star-galaxy separation. The aforementioned paper also highlighted the impact of photometric

errors for LRGs given their location on the galaxy luminosity function. This functionφ(M) de-

scribes thenumberof galaxies that have absolute magnitudesM within an intervalM + dM .

The position of the galaxy sample under consideration is one where the gradient of this function

is high. Therefore, any slight systematic shift inM will impart a large systematic shift in the

number of galaxies. If this systematic shift were some function of sky position, for example, it

could contribute significantly (and artificially) to the galaxy clustering signal at that scale. All of

the separate tests run for DR4 were found to produce no significant change in the galaxy clustering

data.

Even though I have demonstrated the impact of the large scale excess power on the cosmolog-

ical parameters there has yet been no solution to the cause of the effect in the literature. Consid-

ering this and also the caveat discussed above I therefore continue with a discussion of potential

systematics in the analysis and consider and suggest further tests for the work.

3.6.1 Excess Power

With the earlier Blakeet al. (2007) and Padmanabhanet al. (2007) studies it might be tempting

to assume that the excess power is related to an analysis using two disconnected angular selection

functions. This is because for these two papers the power spectra were estimated using both a

separate northern and southern region of galaxies. This could introduce a difficulty in the relative

photometric calibration between the bands, for example. DR7, on the other hand, presents a fully

contigious region forC` estimation. However, despite a diminished amplitude in the excess of

the power it still persists and has a significant effect on the cosmological parameters. This is

approximately consistent with the preliminary tests performed in each DR4 paper–in that the two

separate regions do not appear to significantly shift theC`s. Irrespective of this, the fully connected

region and updated SDSS pipeline are expected to produce more robust photometric estimates for
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DR7.

Alternatively, the origin of this data point could be the result of something more physical

and radical, such as a dark energy fluid with low sound speed that induces further clustering.

This would suggest that dark energy is not some form of cosmological constant. Or, it could be

the first evidence for some large scale inhomogeneity or over density that opposes our very core

assumptions in cosmology: the cosmological principle. Another possibility is a severe change

(increase) in the galaxy biasing process over these large scales or even a consequence of cosmic

variance. While these are interesting and potential avenues for future work there also remain some

more mundane, but pernicious, systematics; such as the effects of extinction and the extrapolation

of the 2SLAQ training set with sky position.

3.6.2 Redshift Bin Cross Correlations

A useful test of any known or unknown systematic present in the study is the cross angular power

spectra (Equation 3.25). A signal in these quantities should be the result of photometric errors

scattering galaxies between bins aspredictedby the spectroscopic redshift distribution defined

earlier and the best fit auto-correlation functions. Any significant alteration in the measurement

relative to the theoreticalCi,j` could indicate an additional systematic in the photometry, extinction

correction or an ill-calibrated redshift distribution, for example.

I measure the cross power spectra in each of the six cross-bin combinations (note thatCi,j` =

Cj,i` ) in multipole bands of∆` = 10 up until lmax = 500 as performed previously for the auto

power spectra. The observed values are listed in Table 3.4 and Table 3.5 and are plotted in Fig-

ure 3.15 along with their associated error bars. The solid lines in these plots show the predicted

theoretical spectra using the best fit values from the DR7 combined bins run and the correspond-

ing Gaussian redshift distributions. For nearby bins there is excellent agreement in the values.

However, the anticipated cross spectrum between bin 1 and bin 4 (middle left panel) suffers from

a lack of amplitude and consequently does not fit the mean profile of the data well. This is most

likely the result of the Gaussian redshift distributions being weak fits to the spectroscopic profiles

far from the mean of the distribution. As can be seen in Figure 3.8 the Gaussian underestimates

the number of galaxies far from the bin centre. This will lead to an under prediction in the cross

term. Less dramatic is the apparent marginal overestimation of the cross spectrum between bins

2 and 3 (middle right panel). This might be the result of the Gaussian smoothing adding slightly

more galaxies in the overlap region between the redshift slices.

To test this hypothesis I interpolated the spectroscopic distribution with a spline through the
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n(z) histogram. Then using this more ‘realistic’ profile I re-evaluated the theoretical cross power

spectra in the bin. These are shown as the dashed lines in the cross spectrum panels. For the

most physically separated bins (1 and 4) this is seen to give, as predicted, a significant boost in

amplitude and a better fit to the data points. It is worth noting the presence of the log scale in the

plot which acts to disguise the40% increase in amplitude. Once again this hints that the use of a

fixed µ andσ in a Gaussian is not optimal with regards to the data. When I calculated the cross

power spectrum for the DR4 release it was intriguing to see that the quoted best fit Gaussian was a

much worse fit than is seen in DR7. In this case the interpolated redshift, for that catalogue, gave

rise to∼ 100% boost in power. Meanwhile, back in DR7, the splined distribution is also seen to

give a slightly better fit between bins 2 and 3 with a modest decrement in power (dashed line to

solid line–middle right panel). Finally, with the redshift function now accounted for in the cross

correlation measurement it is interesting to see that in several of the bins there does exist an excess

of power. This could point towards a residual systematic in the catalogue.

While beyond the scope of this work it would be interesting to see the effect on the inferred

constraints in using the spline interpolated redshift distribution in the cosmological analysis. How-

ever, it is important to note that this could introduce errors of its own. For example, it might

propagate inherent fluctuations in the profile, that are particular to that bin in that patch of the sky,

into the analysis. This was the reason why the fitting function from Fuet al. (2008) was used in

Section 2.4.2 for the CFHTLS weak lensing redshift distribution (Equation 2.29).

Another suggestion for the future would be to includeµ andσ as extra parameters with an

additional likelihood associated with the spectroscopic redshift distribution. By varying these

quantities one could calculate the effects of a more flexible distribution but smooth the more noisy

spectroscopic interpolation.

Table 3.4: The observedcrossangular power spectraCi,j` for SDSS MegaZ-LRG (DR7), an ex-

tension to the first MegaZ-LRG analysis (Blakeet al. (2007) and Collisteret al. (2007)). The

Gaussian statistical error on the measurement is also included, which has been weighted over each

∆` band. Each bin extends∆z = 0.05 in redshift fromz = 0.45 to 0.65 and covering7746deg2

contain259, 498; 237, 564; 155, 293 and71, 201 galaxies, respectively. With the exception of`

all quantities have been multiplied by105.

` CBin1,2
` σ(C1,2

` ) CBin1,3
` σ(C1,3

` ) CBin1,4
` σ(C1,4

` )

6 13.249 6.278 3.220 6.828 -2.846 8.224

16 8.783 2.430 1.892 2.880 2.923 2.763

26 6.449 1.452 3.738 1.663 2.713 1.598
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` CBin1,2
` σ(C1,2

` ) CBin1,3
` σ(C1,3

` ) CBin1,4
` σ(C1,4

` )

36 6.674 1.162 3.119 1.152 2.630 1.197

46 4.552 0.887 1.638 0.860 0.688 0.938

56 2.461 0.544 0.580 0.637 0.322 0.691

66 3.270 0.551 1.312 0.534 0.504 0.622

76 3.486 0.496 1.408 0.473 0.153 0.522

86 2.550 0.380 1.053 0.400 0.564 0.451

96 2.064 0.321 0.837 0.353 0.284 0.392

106 2.056 0.298 0.893 0.322 0.542 0.366

116 1.860 0.266 0.600 0.276 0.294 0.335

126 1.619 0.221 0.722 0.229 0.241 0.281

136 1.530 0.199 0.621 0.224 0.532 0.259

146 1.264 0.184 0.511 0.207 0.140 0.245

156 1.372 0.173 0.519 0.183 0.359 0.234

166 0.989 0.145 0.325 0.161 0.447 0.208

176 1.058 0.141 0.342 0.152 0.172 0.192

186 1.190 0.142 0.313 0.149 -0.0868 0.195

196 0.877 0.119 0.364 0.137 0.0336 0.169

206 0.763 0.112 0.293 0.128 0.0406 0.159

216 0.764 0.106 0.215 0.120 -0.0144 0.154

226 0.856 0.105 0.371 0.115 0.211 0.142

236 0.698 0.0971 0.308 0.113 0.191 0.137

246 0.612 0.0872 0.180 0.0982 0.0328 0.130

256 0.606 0.0867 0.203 0.100 0.0949 0.132

266 0.574 0.0845 0.259 0.0959 0.179 0.124

276 0.518 0.0814 0.145 0.0887 -0.0396 0.117

286 0.550 0.0744 0.327 0.0875 0.197 0.117

296 0.392 0.0699 0.258 0.0829 0.113 0.110

306 0.512 0.0702 0.097 0.0791 0.142 0.106

316 0.506 0.0698 0.193 0.0772 0.0520 0.108

326 0.461 0.0675 0.233 0.0768 0.0764 0.105
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` CBin1,2
` σ(C1,2

` ) CBin1,3
` σ(C1,3

` ) CBin1,4
` σ(C1,4

` )

336 0.451 0.0649 0.152 0.0744 -0.0201 0.102

346 0.426 0.0645 0.119 0.0754 0.242 0.102

356 0.402 0.0634 0.117 0.0709 0.0258 0.0965

366 0.325 0.0589 0.103 0.0695 -0.0632 0.0942

376 0.339 0.0605 0.0916 0.0672 0.0740 0.0931

386 0.345 0.0563 0.159 0.0662 0.124 0.0886

396 0.346 0.0558 0.149 0.0660 0.00243 0.0862

406 0.361 0.0547 0.125 0.0630 0.0432 0.0868

416 0.242 0.0504 0.0560 0.0589 -0.0303 0.0813

426 0.328 0.0538 0.139 0.0624 0.00808 0.0828

436 0.339 0.0519 0.170 0.0602 0.0270 0.0813

446 0.335 0.0498 0.0636 0.0562 0.0365 0.0812

456 0.300 0.0496 0.130 0.0582 0.000687 0.0793

466 0.290 0.0479 0.101 0.0560 0.0505 0.0772

476 0.297 0.0467 0.0643 0.0538 0.0655 0.0751

486 0.323 0.0446 0.134 0.0533 0.0629 0.0713

496 0.277 0.0451 0.0731 0.0528 0.0519 0.0749
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Table 3.5: The observedcrossangular power spectraCi,j` for SDSS MegaZ-LRG (DR7), an ex-

tension to the first MegaZ-LRG analysis (Blakeet al. (2007) and Collisteret al. (2007)). The

Gaussian statistical error on the measurement is also included, which has been weighted over each

∆` band. Each bin extends∆z = 0.05 in redshift fromz = 0.45 to 0.65 and covering7746deg2

contain259, 498; 237, 564; 155, 293 and71, 201 galaxies, respectively. With the exception of`

all quantities have been multiplied by105.

` CBin2,3
` σ(C2,3

` ) CBin2,4
` σ(C2,4

` ) CBin3,4
` σ(C3,4

` )

6 11.687 5.605 8.670 6.752 18.705 7.343

16 6.354 2.312 3.313 2.218 10.076 2.629

26 5.887 1.426 3.206 1.370 6.577 1.570

36 4.801 1.021 3.115 1.062 5.210 1.052

46 4.398 0.832 2.280 0.907 4.193 0.879

56 2.457 0.558 1.217 0.605 3.857 0.709

66 3.342 0.528 2.201 0.614 3.336 0.595

76 2.978 0.467 0.915 0.516 2.106 0.491

86 2.809 0.408 1.156 0.461 2.342 0.484

96 2.315 0.331 0.887 0.369 2.172 0.404

106 2.288 0.316 1.160 0.360 2.061 0.389

116 2.071 0.277 1.008 0.337 1.846 0.350

126 1.725 0.224 0.572 0.274 1.567 0.284

136 1.602 0.214 0.649 0.247 1.495 0.277

146 1.538 0.192 0.410 0.227 1.131 0.255

156 1.237 0.176 0.432 0.225 1.267 0.238

166 0.934 0.147 0.739 0.190 1.156 0.212

176 1.210 0.157 0.406 0.197 0.904 0.213

186 0.917 0.143 0.343 0.187 0.871 0.197

196 0.925 0.129 0.344 0.159 0.827 0.184

206 0.892 0.124 0.411 0.154 0.882 0.176

216 0.928 0.123 0.347 0.158 0.940 0.180

226 0.813 0.119 0.336 0.148 0.800 0.163

236 0.722 0.112 0.358 0.135 0.743 0.158

246 0.628 0.101 0.253 0.133 0.657 0.150
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` CBin2,3
` σ(C2,3

` ) CBin2,4
` σ(C2,4

` ) CBin3,4
` σ(C3,4

` )

256 0.677 0.0985 0.228 0.129 0.491 0.150

266 0.594 0.0949 0.338 0.122 0.610 0.139

276 0.558 0.0932 0.234 0.123 0.561 0.134

286 0.632 0.0871 0.225 0.116 0.631 0.137

296 0.476 0.0829 0.165 0.110 0.439 0.130

306 0.441 0.0799 0.248 0.107 0.426 0.121

316 0.500 0.0776 0.164 0.108 0.350 0.119

326 0.460 0.0757 0.154 0.103 0.492 0.117

336 0.354 0.0741 0.132 0.101 0.525 0.116

346 0.449 0.0744 0.221 0.100 0.646 0.117

356 0.458 0.0728 0.141 0.0991 0.471 0.110

366 0.390 0.0681 0.0715 0.0922 0.418 0.108

376 0.340 0.0679 0.142 0.0941 0.359 0.104

386 0.329 0.0659 0.0718 0.0883 0.228 0.103

396 0.355 0.0657 0.144 0.0860 0.570 0.101

406 0.372 0.0647 0.168 0.0892 0.567 0.102

416 0.298 0.0620 0.173 0.0856 0.233 0.100

426 0.308 0.0618 0.0122 0.0820 0.204 0.0952

436 0.327 0.0609 0.135 0.0823 0.300 0.0954

446 0.253 0.0566 0.167 0.0817 0.234 0.0923

456 0.283 0.0582 0.140 0.0793 0.308 0.0931

466 0.267 0.0568 0.140 0.0784 0.373 0.0916

476 0.330 0.0557 0.194 0.0777 0.382 0.0896

486 0.260 0.0537 0.131 0.0718 0.302 0.0858

496 0.241 0.0517 0.116 0.0734 0.258 0.0860
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3.6.3 Extinction

Light from more distant galaxies is potentially absorbed, scattered or re-emitted by the dust and

gas within our own galaxy. Thisgalactic extinctionhas the capacity to be one of the dominant

systematics in a galaxy survey such as this. For example, extinction can preferentially absorb light

at the blue end of a galaxy’s spectral energy distribution thus making it appear redder and more

LRG-like. Alternatively, it can have the effect of scattering faint galaxies from the sample. As the

contribution from our own galaxy changes as a function of position this is a cause for concern given

that we are interested in inferring cosmological quantities through statistical variations across

the sky. Worse still, it could act to further systematically bias our redshift estimates given that

the ANNz derived galaxy catalogue is a spatial extrapolation of the 2SLAQtraining set, which

confined to a stripe atδ ≈ 0 ◦, covers a limited region of galactic extinction.

Fortunately detailed maps of galactic extinction are available (Schlegelet al. (1998); see also

Figure 3.16) and subsequently theu, g, r, i andz bands used are dereddened model magnitudes,

i.e. they are extinction corrected. Figure 3.17 shows the exaggerated effect that is the result of not

adjusting properly for the presence of dust. In this plot the angular power spectrum is evaluated

for the catalogue when theidev magnitude/colour cut is not extinction corrected. This causes extra

galaxies to be scattered from the sample in different regions of the survey area and a large boost

of power is observed. Although the values used for galaxy clustering statisticsare corrected for

extinction it could be that there are errors in the correction map. If these errors were related to

the magnitude of extinction or again varied with position, then they too would propagate into the

LRG sample.

To test for extinction correction errors I repeat the measurement of the angular power spectrum

with regions of high extinction removed (> 0.1 mag). This constitutes a removal15% of the survey

area. The resulting values are plotted in Figure 3.18 as solid lines against the previous data points

and error. It is clear that the profiles are not significantly affected. This result is consistent with

the preliminary examination in Blakeet al. (2007) and Abdallaet al. (2008). In the latter paper a

comparison of the ANNz catalogue was made with a template based photometric method (SDSS-

Padmanabhanet al. (2005)) in regions of varying extinction. The template based procedure does

not utilise a spatially confined training set and is effectively blind to the extinction with regards

to calibration. Given that they found no resultant bias or additional scatter in the photometric

redshifts between the procedures the extinction error is expected to be partially subdominant,at

leastwith respect to the extrapolation of the 2SLAQ calibration.
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Figure 3.15:The measured cross Angular Power Spectra (Ci,j
` ) for the photometric SDSS MegaZ-LRG

(DR7) population as presented in Table 3.4 and Table 3.5. The error bars correspond to those calculated

with Equation 3.12 using the measured power spectrum. The solid lines are evaluated for the the best fit

parameters found in Section 3.5.3 using the the Gaussian redshift distributions. The dashed lines are the

theoretical power spectra using a spline interpolation of the spectroscopic distribution. The panels are: Bin

1,2 (top left), Bin 1,3 (top right), Bin 1,4 (middle left), Bin 2,3 (middle right), Bin 2,4 (bottom left) and Bin

3,4 (bottom right).
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360 180 0

Figure 3.16:The fluctuations in galactic extinction are shown as a function of sky position across the DR7

survey area. The magnitude values are represented by dark blue (0.0− 0.05), light blue (0.05− 0.1), green

(0.1− 0.15) and red (> 015). The dust is particularly abundant near the edges of the survey indicating the

outer boundaries of the Galaxy.

3.6.3.1 Photometric Codes

The previous Abdallaet al. (2008) work also evaluated the SDSS DR6 LRG catalogue with six

different photometric codes: ANNZ (Collister & Lahav 2004), HyperZ (Bolzonellaet al. 2000),

SDSS (Padmanabhanet al.2005), Le PHARE (Ilbertet al.2006), BPZ (Beńıtez 2000) and ZEBRA

(Feldmannet al. 2006). The survey area corresponding to this release is remarkably similar to

that in this study. For future work and tests on the analysis it would be interesting to repeat

the combined bins study with each of the six different catalogues. Once again, as a number of

the methods have different mechanisms for producing the photometric redshift estimates it would

help to quantify or reveal any remaining systematic. This also includes a cosmological comparison

of the photometric codes as naturally one would expect their cosmology to be photometric-code

invariant.
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Figure 3.17:The exaggerated effect caused by neglecting the extinction correction for theidev colour cut

(dashed line). Although this is not used in the study it highlights how any systematic error in the correction

couldaffect theC` over various scales. The extinction corrected spectrum is shown by the solid points with

associated error bars. The solid line is a best fit profile for comparison.

3.7 Complementarity with WMAP5

It is reassuring that the galaxy clustering results are consistent with the most recent WMAP anal-

ysis (Dunkleyet al. 2009). This is a crucial consistency check as the two surveys probe vastly

contrasting cosmic epochs and are subject to different systematics. In addition, each tool in iso-

lation is subject to degeneracies given that a variation in one parameter can often be compensated

with a change in another for the same physical process. It is therefore also highly advantageous

to combine the two data sets. Hence I add the MegaZ LRG (DR7) data to WMAP5 in order to

examine the complementarity of a joint analysis and further push the current parameter bounds.

Furthermore, I repeat the study with the DR4 galaxy clustering data.

I study sixΛCDM parameters in all (Ωbh
2, Ωch

2, ΩΛ, ns, τ andAs), in addition to a bias

parameter for each of the four combined redshift bins (b1, b2, b3 and b4). I also include and

marginalise overASZ , the normalisation of the Sunyaev-Zeldovich template fluctuations. The

CMB power spectrum is evaluated usingCAMB (Lewis et al. 2000). Further details of these

parameters and my WMAP methodology are described in Section 4.2.
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Figure 3.18:The Angular Power Spectrum in all four bins are measured with regions of high galactic

extinction removed (> 0.1 mag; solid lines). This is to test for possible extinction correction errors prop-

agating into the analysis. The spectra deduced earlier in the Chapter are included as data points with error

bars. There does not seem to be a discrepancy between the two calculations.
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100Ωbh
2 Ωch2 ΩΛ ns τ ln(1010As)

1) 2.269± 0.067 0.1101± 0.00643 0.746± 0.0297 0.962± 0.015 0.0891± 0.0191 3.197± 0.05116

2) 2.296± 0.064 0.1192± 0.00346 0.711± 0.0183 0.962± 0.0139 0.0882± 0.0189 3.223± 0.0436

3) 2.276± 0.065 0.1191± 0.00324 0.706± 0.0184 0.958± 0.0144 0.0880± 0.0187 3.234± 0.0450

4) 2.272± 0.058 0.1161± 0.0039 0.711± 0.019 0.961± 0.013 0.084± 0.016 3.080± 0.037∗

Table 3.6: Constraints on the WMAP5 analysis and with the addition of various cosmological data:

1) WMAP5 2) WMAP5 + MegaZ DR4 3) WMAP5 + MegaZ DR7 4) WMAP5 + SDSS (Reid

et al.2009). The introduction of the constructed MegaZ LRG angular power spectra significantly

reduces the bounds onΩch
2 andΩΛ due to a break in theΩm-h degeneracy. A similar analysis

was performed by Reidet al.(2009), with the inclusion of the spectroscopic DR7 galaxy clustering

data. * It should be noted thatAs corresponds to a slightly different parameter between the studies.

For the first three cosmological runs this is actually∆2
R, the amplitude of curvature perturbations,

atk = 0.002Mpc−1. In Reidet al. (2009) the corresponding scale is defined atk = 0.05Mpc−1.

The improvement relative to a CMB-only study is evident in Figure 3.19 and Figure 3.20. The

black contours illustrate the individual WMAP5 result, whereas the tighter red contours represents

the joint constraint: WMAP5 + MegaZ DR7 and WMAP5 + MegaZ DR4. A similar combination

of data and cosmological parameters was investigated in thespectroscopicDR7 release by Reid

et al. (2009). A comparison of all these results are summarised in Table 3.6.

It is found that the addition of galaxy clustering data not only improves constraints through

the presence of more raw data, but acts to break the degeneracy betweenΩm andh that exists

in the CMB alone. This subsequently leads to significantly tighter constraints inΩΛ andΩch
2

with a factor∼ 1.6 and∼ 2 improvement in the error on the former and latter, respectively. This

was found similarly and compatibly in Reidet al. (2009). Moreover, through this complementary

comparison it seems the photometric approach to modern cosmological surveys is justifiable with

equally competitive and consistent results compared to the spectroscopic survey. The tight con-

straints on the matter densities show there is now overwhelming and precision evidence for some

dark energy-like component to the cosmos when including photometric data from the late-time

Universe. However, along with this optimism it has been shown in the preceding few subsections,

for example, that there are potentially still residual systematics to be examined.
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Figure 3.19:The two dimensional68% and95% contours and marginalised one dimensional distributions

for 6 ΛCDM parameters (Ωbh
2, Ωch

2, ΩΛ, ns, τ and ln(1010As)) and the amplitude of the Sunyaev-

Zeldovich fluctuationsASZ (not shown). The black contours are given by a WMAP-only analysis, whereas

the red constraints are with the addition of MegaZ DR7. For the latter analysis four bias parameters have

been implicitely marginalised over. The data is incapable of constrainingASZ consistent with Dunkley

et al. (2009). Note thatns andAs are defined atk = 0.002Mpc−1 (E.g. Komatsuet al. (2009)).
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Figure 3.20:The two dimensional68% and95% contours and marginalised one dimensional distributions

for 6 ΛCDM parameters (Ωbh
2, Ωch

2, ΩΛ, ns, τ and ln(1010As)) and the amplitude of the Sunyaev-

Zeldovich fluctuationsASZ (not shown). The black contours are given by a WMAP-only analysis, whereas

the red constraints are with the addition of MegaZ DR4. For the latter analysis four bias parameters have

been implicitely marginalised over. Once again the data is incapable of constrainingASZ consistent with

Dunkleyet al. (2009). Note thatns andAs are defined atk = 0.002Mpc−1 (E.g. Komatsuet al. (2009)).



CHAPTER 4

A COMBINED CONSTRAINT ON THE

NEUTRINO M ASS

Abstract

The neutrinos are not only unimaginably elusive particles but, with the presence of mass, are

an extension to the standard model of particle physics. Most surprising therefore is its measurable

effects on physics of the comparatively large scale. I discuss these effects and then pursue a

combined constraint on the sum of the species’ mass. Firstly, I use data from the 5-year WMAP

CMB temperature and polarisation fluctuations. I then add information from Baryon Acoustic

Oscillations (BAO) and type 1a Supernovae (SNe) to reduce the degenerate parameter space. The

neutrinos’ physical effects are also measurable in the pattern of galaxy clustering and with this in

mind I combine the MegaZ LRG data from Chapter 3 with the aforementioned analyses. Finally,

using an HST prior on the Hubble parameter, I find the collective bound of
∑
mν ≤ 0.281 eV at

the95% CL for a flatΛCDM cosmology–one of the tightest current constraints. Other studies are

also discussed in addition to the potential systematics that might affect such a calculation.

This work is presented originally in Thomas, S.A., Abdalla, F.B.& Lahav, O., 2009b.
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4.1 Introduction

4.1.1 The Neutrino: Particle Physics

Studies of the neutrino have traditionally been the realm of particle physics experiments, with

Super-Kamiokande (Fukudaet al. 1998) first detecting the presence of mass. In this experiment

the neutrinos were shown to oscillate between the known flavors (νe, νµ, ντ ) solving, in the pro-

cess, the long standing solar neutrino problem. This was the observed discrepancy between the

number of predicted and detected neutrinos thought to originate from the sun. The detectors were

measuring far fewer electron neutrinosνe (for which they were sensitive to) given that they had

changedflavor1. This implied the neutrinos have non-zero mass eigenstates (m1,m2,m3) because

the flavor mixing depends on the differences between their masses squared. Subsequently, bounds

have been placed on the splitting between the neutrino mass eigenstates from a host of solar, ac-

celerator and atmospheric experiments;|∆m2
31| ≈ 2.4× 10−3eV2 and|∆m2

21| ≈ 7.7× 10−5eV2

(E.g. Schwetzet al. (2008)). However, currently both the absolute scale and the hierarchy of the

masses remain hidden. KATRIN, a kinematic tritium beta decay experiment (Wolfet al. 2008),

aims to provide such a constraint. This will be performed by looking at the end region of theβ

energetic spectrum where the finite mass electron neutrino is expected to cause a decrement in

energy.

4.1.2 The Neutrino: Cosmology

Cosmology not only probes the absolute mass scale of the neutrino but is a completely independent

method for which to test against (E.g. Elgarøy & Lahav (2005), Lesgourgues & Pastor (2006) and

references therein). In any case, it is imperative to include an accurate prescription for the neutrino

in cosmology, as any failure to do so can bias the other cosmological parameters.

A cosmological constraint on the sum of the neutrino masses is primarily a constraint on the

relic Big-Bang neutrino densityΩν , i.e. the energy budget consumed by the cosmic neutrino

background. This background was initially in equilibrium with the very early cosmic plasma but

subsequently decoupled after t∼ 1 sec as a result of its weak interaction. Despite electron-positron

annihilations later heating the photon distribution it is still possible to associate the temperature

of the two particle populations by equating their entropy densities. From this one can then relate

the cosmic neutrino density to the sum of the individual mass eigenstates
∑
mν (E.g. Dodelson

1With other models such as neutrino decay less favoured by the data.
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(2003)) as given2 by,

Ων =
∑
mν

93.14h2eV
. (4.1)

It is this relation that helps us to probe the sum of the neutrino masses and the absolute scale.

Even with the most extreme conservativeness the above relation immediately enables a hard upper

bound of
∑
mν . 94h2 eV given that we live in a Universe that is at least close to flat (Komatsu

et al.2009).

The more direct effects of the neutrino depend on whether they are relativistic, non-relativistic

and also over what scale one is considering. In the early Universe these particles will naturally

behave like radiation and at some point, depending on their mass, will make a transition to become

matter-like. Specifically, the massive neutrino species start to become non-relativistic at a redshift

given by,

1 + zNR ≈ 2/3× 103
(∑

mν

eV

)
. (4.2)

I therefore combine a series of probes in the following sections that might be sensitive to these

different regimes or restrict the degenerate parameter space.

Explicitly, the layout of the Chapter is as follows: I start with preliminary bounds given by

WMAP5 CMB data in Section 4.2, while adding both Supernovae and Baryon Acoustic Oscilla-

tions in Section 4.3. The influence of the particle on this cosmology and the subsequent degen-

eracies are discussed. Following this, the MegaZ LRG (DR4/DR7) clustering data measured in

Chapter 3 is combined with the previous analyses to place one of the most stringent combined

constraints available on the total mass of the neutrino species (Section 4.4). Finally, I finish with

a discussion of other neutrino studies, the potential systematics that might affect such works and

conclude in Section 4.5.

4.1.2.1 Assumptions

For the parameter analyses and subsequent constraints I use the COSMOMC parameter estimation

package (Lewis & Bridle 2002). I assume a flat Universe with Gaussian and adiabatic primordial

fluctuations and no running of the spectral index (αs = 0) throughout. The effective number of

neutrinos are fixed toNeff = 3.04 (E.g. Manganoet al. (2002) and Yaoet al. (2006)), thereby as-

suming there are no sterile neutrinos or other relativistic degrees of freedom. The equation of state

2If massive.
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Figure 4.1:The relationship between the individual and sum of three non-degenerate neutrino mass eigen-

states is highlighted for the two possible hierarchies. These hierarchies are a consequence of knowing the

absolute differences (|∆m2
31| and |∆m2

21|) between two sets of mass eigenstates but not thesign. These

are known as the normal (m3 � m2 > m1; solid lines) and inverted (m2 > m1 � m3; dashed lines)

hierarchies. Current bounds of∼ sub1eV imply the assumption of degenerate masses to be valid.CREDIT:

Lesgourgues & Pastor (2006).

for dark energy is set tow0 = −1 for aΛCDM cosmology. Finally, I consider the three standard

neutrinos to be completely degenerate in mass given that the current inferred bounds are much

greater than the splitting hierarchies. The relation between the individual states, the hierarchies

and the total mass are highlighted in Figure 4.1. It should be noted that if the mass degeneracy

approximation is relaxed then Equation 4.1 remains a valid approximation (Lesgourgues & Pastor

2006). The potential of future surveys to discriminate this mass hierarchy and the encapsulated

mass splittings has been discussed in Abdalla & Rawlings (2007), Kitchinget al. (2008) and De

Bernardiset al.(2009). Any possible limitations imposed on the study from these assumptions are

discussed in Section 4.5.1.
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Figure 4.2:The effect of massive neutrinos is shown to alter the predicted CMB pattern. The dashed line

represents a flatΛCDM cosmology with massless neutrinos only. While fixingΩch
2, Ωbh

2 andh, three

massive species are introduced with an increase in the neutrino fractionfν = 0.1 (solid line). The CMB

angular power spectrum has been calculated usingCAMB.

4.2 Cosmic Microwave Background

The abundance of neutrinos in the Universe can have adirecteffect on the primary CMB anisotropies

if non-relativistic before the time of decoupling (i.e. when sufficiently massive). Otherwise, if

lighter, they act as a collisionless radiation-like fluid and have little impact. However, one of the

most clear effects at this epoch is a displacement in the time of matter-radiation equality. This is a

consequence of potentially having neutrinos either side of the relativistic/non-relativistic boundary

at decoupling; in the process changing the early ISW effect. In addition, as energy constituents,

the neutrinos can affect the observed CMB pattern through the background expansion, by altering

the angular diameter distance to last scattering. The overall effects are illustrated in Figure 4.2.

Although parameter degeneracies and a mild insensitivity to relativistic (lighter) neutrinos there-

fore limit the upper bounds one can place on
∑
mν (Ichikawaet al.2005), the CMB represents a

relatively clean and systematic-less cosmological tool whose high statistical discrimination of the
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remaining cosmological model facilitates a competitive combination of probes.

4.2.1 The WMAP Analysis

I therefore start by using the latest 5-year WMAP data (WMAP5) and the full likelihood as de-

scribed in Dunkleyet al. (2009)3 to vary six coreΛCDM parameters:Ωbh
2, Ωch

2, ΩΛ, ns, τ and

ln(1010As), plus
∑
mν– the sum of the neutrino masses.τ , ns andAs represent the optical depth

to reionisation, the scalar spectral index and the amplitude of curvature perturbations defined at

k = 0.002/Mpc, respectively.

I also include contributions from the Sunyaev-Zeldovich fluctuations by adding a template

spectrumCSZ` to the overall power spectrum. The template is approximately insensitive to the bulk

of cosmological parameters except for a∼ (Ωbh)2(σ8)7 dependence (Komatsu & Seljak 2002).

The amplitude ofCSZ` is moderated with a pre-factorASZ that I include in the cosmological

analyses. It is allowed to vary from0 < ASZ < 2 as in Dunkleyet al. (2009) and Spergelet al.

(2007). This inclusion was found to gently alter the cosmological parameters, including a slight

decrease inns and increase inΩbh
2 (Dunkley et al. 2009). As in the aforementioned analysis I

use the pre-March 2008 version of CAMB (Lewiset al.2000) to produce the CMB power spectra.

The reionisation is therefore treated as an instantaneous process by shifting from neutral to ionised

in a redshift of∆z = 0.5.

Due to the high statistical power of the new data I also include the gravitational lensing effect

on the CMB, e.g. Seljak (1996) and Lewis & Challinor (2006). To test for consistency with the

original 5-year analysis a primary run is performed based on the six core (plusASZ) ΛCDM

parameters described above. I find:100Ωbh
2 = 2.269 ± 0.067, Ωch

2 = 0.1101 ± 0.00643,

ΩΛ = 0.746± 0.0297, ns = 0.962± 0.015, τ = 0.0891± 0.0191, ln(1010As) = 3.197± 0.0512

and no constraint on the amplitude of the Sunyaev-Zeldovich template spectrum. The contours

and one dimensional marginalised distributions for each parameter were illustrated previously in

Figure 3.19 as the WMAP-only run (black contours).

4.2.2 CMB constraints

I now extend the above analysis to include 3 degenerate massive neutrinos via
∑
mν . I subse-

quently find
∑
mν < 1.271 eV at the95% confidence level. This is completely consistent with

Komatsuet al. (2009), who find
∑
mν < 1.3 eV. The result is shown further in Figure 4.3 where

3Publicly available at: http://lambda.gsfc.nasa.gov/product/map/
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Figure 4.3:For an isolated analysis of the neutrino mass with the CMB I find
∑
mν < 1.271eV consistent

with Komatsuet al. (2009). The corresponding 2D marginalised constraints are shown above with the

matter density (Ωm) and the Hubble parameter (h) degeneracy clear. The derived constraint implies that the

neutrinos were indeed relativistic at the time of decoupling and that the assumed degeneracy of the neutrino

masses is valid.

the inner and outer contours represent68% and95% confidence levels, respectively.

The inferred bounds imply that the neutrinos were relativistic at decoupling (z ≈ 1090) as

can be seen with reference to Equation (4.2). Therefore, as alluded to above, they will make

a significant contribution by delaying the matter-radiation equality. This explains the observed

degeneracy withΩm for one can counteract the delay by adding more matter. Furthermore, the

early ISW effect resulting from the extra relativistic material causes a shift in the low` part of the

CMB spectrum. This can be partially mimicked with a change inh, which is again degenerate

with
∑
mν . Finally, for increasing neutrino mass the distance to last scattering is reduced. This

induces a shift in the multipole scale and again can be compensated by a decrease in the Hubble

parameter. These have been found and described similarly in Ichikawaet al. (2005), Komatsu

et al. (2009) and Ichikiet al. (2009). Hence I now look to adding probes of the expansion history

in order to reduce these issues and the upper bound.
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4.3 Supernovae and Baryon Acoustic Oscillations

It is reasonable to assume that further constraining either the matter density (Ωm) and/or the Hub-

ble parameter (h) will break the degeneracies seen in the previous section, even if those probes are

not directly sensitive to the neutrino species. I therefore add information from the distance mea-

sures provided by both supernovae and baryon acoustic oscillations. This was shown in Ichikawa

et al. (2005), Komatsuet al. (2009), Terenoet al. (2009) and Ichikiet al. (2009), for example, to

be a particularly fruitful avenue.

I use 71 type 1a Supernovae from the first year Supernova Legacy Survey (SNLS; Astieret al.

2006) to initially probe the luminosity distance-redshift relation. A measure of this luminosity

distancedL(z) is the distance modulusµ0 given by,

µ0 = 5log10(dL(z)) + 25. (4.3)

This is shown in the log-likelihood in Equation (4.4), whereµB is the observed value. The con-

tributions to the error are the intrinsic dispersion of the absolute magnitudesσint and the peculiar

velocity and light curve parameter informationσ(µB).

χ2 =
∑
SN

(µB − 5log10(dL(θ, z))− 25)2

σ2(µB) + σ2
int

. (4.4)

The oscillations set up in the early photon-baryon fluid are observable in the late-time galaxy

distribution. These baryon acoustic oscillations (BAOs) can be used as standard rulers and aim

to test our cosmology through the angular diameter distance-redshift relation. Using the data and

notation of Percivalet al. (2007) I look to utilise the distance measure described by,

DV (z) = [(1 + z)2D2
Acz/H(z)]

1
3 (4.5)

whereDA is the angular diameter distance andH(z) is the Hubble parameter. Specifically, it is

the ratiors/DV (z) that is examined wherers is the comoving sound horizon at recombination.

Percivalet al. (2007) detects the BAO in the clustering of 2dFGRS and SDSS galaxy samples and

the clustering of SDSS LRGs to quantify this measure atz = 0.2 andz = 0.35, respectively. For

each likelihood evaluation I compare this data tors/DV (z) calculated withDV (z) from Equation

(4.5) and the varying comoving sound horizonrs evaluated using the formulae in Eisenstein & Hu

(1998).

Combining these two probes with the CMB data I find a substantial improvement with
∑
mν <

0.695 eV at the95% confidence level. This is similar to both Komatsuet al. (2009) (
∑

ν < 0.67
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Figure 4.4:Targeting the the degenerate parameter space of the CMB-only study (red/lighter contours) is

shown to be highly beneficial with the inclusion of both BAO and SN data (blue/darker contours). With this

configuration I find
∑
mν < 0.695 eV at the95% confidence level, consistent with Komatsuet al. (2009).

eV) and Ichikiet al. (2009) (
∑

ν < 0.76 eV). The former analysis also highlights an additional

gain from using these two geometric probes. This results from the highly complementary limits

that they place on the equation of state (as a consequence of their constrasting correlation inΩm-

w0). In this way the bounds on the mass are not seen to degrade substantially when the parameter

space is extended to include dark energy. It is also worth mentioning that the slight variation in

neutrino mass quoted between the other two studies is most likely a result of different data sets

being used. Both utilise theUnion supernovae (Kowalskiet al.2008) but Ichikiet al. (2009) uses

the BAO measurements from Eisensteinet al. (2005).

The bounds measured in this study are highlighted in Figure 4.4 with the degeneracy breaking

particularly evident.

4.4 Galaxy Clustering

4.4.1 Galaxy Clustering Signatures

Statistical galaxy clustering is an effective tool for breaking some of the parameter degeneracies

implicit in a CMB-centric study. This is demonstrated clearly in Figure 3.19 and Figure 3.20
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Figure 4.5:The impact of finite mass neutrinos on the matter power spectrum is demonstrated above. The

dashed line represents a standard flatΛCDM cosmology with three massless neutrinosfν ≈ 0. While

fixing Ωbh
2, Ωmh

2 andΩΛ, three massive species are introduced with an increase in the neutrino fraction

fν = 0.1 (solid line). It is clear that massive neutrinos act to suppress the power of fluctuations over

smaller scales. The power spectrumP (k) is calculated usingCAMB and the Smithet al. (2003) non-linear

prescription.

with MegaZ Luminous Red Galaxies (LRGs) in the previous Chapter. In order to reduce the

current bounds on the neutrino mass it seems reasonable therefore to amalgamate these with the

preceding data. While this would naturally give better constraints there is also a far greater physical

motivation for utilising the galaxy power spectrum: neutrinosdirectly alter the clustering of a

galaxy survey (E.g. Huet al. (1998), Lesgourgues & Pastor (2006) and references therein.).

The neutrinos have a large thermal velocity as a result of their low mass and subsequently erase

their own perturbations on scales smaller than what is known as thefree streaminglength. They

impart this suppression on the perturbations of other species through a gravitational backreaction.

However, while relativistic the neutrinos propagate at the speed of light and consequently their

free-streaming scale is equal to the Hubble radius. This is why they only had an indirect effect

on the CMB. After this period any neutrino with an individual mass given bymν will suppress
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scales in Fourier space smaller than the free-streaming wave vectorkfs (Hu & Eisenstein (1998)

and Lesgourgues & Pastor (2006)) where,

kfs = 0.82

√
ΩΛ + Ωm(1 + z)3

(1 + z)2
( mν

1 eV

)
hMpc−1. (4.6)

Implicit within this reasoning is also the fact that all the perturbations are affected by the neutri-

nos’ contribution to the Friedmann equation and therefore background expansion. The effects of

expansion on the growth of structure are discussed in detail in Section 2.2.2. The equation of state

of the neutrinos naturally evolve from that of radiation to matter and can be approximated by the

function,

weff
ν (z) =

1
3

(
1 +

( mν

(1 + z)× 0.058 eV

)a)−b
(4.7)

with valuesa = 1.652 andb = 0.561 (E.g. Terenoet al. (2009)). In this way the neutrino density

is included within the total matter density:Ωm = Ωb + Ωc + Ων .

The net behaviour for a study of the late-time Universe is a clustering of the particles on the

largest of scales, similar to ordinary cold Dark Matter. Alternatively, on the smallest scales there

is a uniform and therefore scale independent suppression of growth. Between these regions the

corresponding suppression is scale dependent. Thus statistically, the overall effect of massive neu-

trino species is a damping of the power spectrum over largerk and is shown clearly in Figure 4.5.

These signatures have been exploited with previous studies of galaxy clustering including, for

example, Elgarøyet al. (2002), Tegmarket al. (2006) and Reidet al. (2009).

4.4.2 Galaxy Clustering Analysis

4.4.2.1 LRG data

Considering the aforementioned effects I therefore look to use the most recent galaxy clustering

measurement, MegaZ LRG DR7 (Chapter 3), to aid the bounds from the previous subsections.

This catalogue is composed of 723,556 Luminous Red Galaxies (LRGs) and spanning7746 deg2

on the sky represents the final SDSS IIphotometricrelease. These objects are old, stable systems

that provide reliable photometric redshift estimates and, due to their high luminosity, probe a large

region of cosmic volume.

I analyse the angular power spectrumC` of the LRGs in four equally spaced redshift bins

(∆z = 0.05) betweenz = 0.45 andz = 0.65 up until a maximum multipolèmax = 300. The

likelihood combines the four bins and includes the full covariance as a result of photometric errors

scattering galaxies between slices. There are four additional parameters included in the study as a
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result of the galaxy bias in each of the four bins (b1, b2, b3 andb4), i.e., modestly accounting for

the redshift dependence in each slice. By marginalising over these values only information from

the shape of the power spectrum is therefore utilised. Including a scale dependence in these biases

is beyond the scope of this work. Finally, the theoretical angular power spectra (Equation 3.17

and Equation 3.25) have been adjusted to include the effects of redshift space distortions (Equa-

tion 3.24). These allow an additional measure for the bias parameters through a change in shape

at low `. For more specific information pertaining to the galaxy clustering study the finer details

of the galaxy catalogue, measurement, power spectrum and systematics are described thoroughly

in Section 3.2.1, Section 3.3, Section 3.4 and Section 3.6, respectively.

In addition to their sensitivity of the neutrino signatures and the breaking of degeneracies

present in the CMB, the MegaZ power spectra are particularly beneficial to this combined mea-

surement. This is because the BAOs, which were shown to be so advantageous in the previous

section, can be used in conjunction to MegaZ with no cross-covariance. The BAO data is ex-

tracted atz = 0.2 andz = 0.35, whereas MegaZ is defined fromz = 0.45 to z = 0.65. They

therefore constitute two independent data sets and can be used both simply andsimultaneously.

4.4.2.2 The Linear and Non-linear Power Spectrum

In a linearΛCDM Universe the matter densities give rise to a scale independent growth of struc-

ture. In this way the shape of the power spectrum is redshift independent, with the amplitude

moderated by the linear growth factorg(z). In this regime one can therefore directly decompose

the power spectrum into scale and redshift terms (P (k, z) = P0(k)g(z)2). The introduction of

neutrinos into the late-time cosmology introduces a scale dependence that changes with cosmo-

logical epoch and therefore redshift (E.g. Equation 4.6). It is interesting to note therefore that

the decomposition intok andz is technically invalid. However, it is found that the inaccuracy

introduced by this decomposition is small compared to the discriminatory power of the current

galaxy clustering data (Lesgourgues & Pastor (2006) and Lahavet al. (2009)). Regardless of this

the matter power spectrum used here is calculated using CAMB (Lewiset al.2000).

As in the original MegaZDR4 release (Blakeet al. 2007) the maximum multipole scale is

limited to lmax = 300 at which point the non-linear regime starts to become significantly different

from the linear prediction. However, even for multipoles below this (i.e. larger scales) the non-

linear regime is still important due to a slight increase in power and should still be included.

Therefore in this study theHALOFIT (Smithet al. 2003) non-linear prescription is implemented.

Even though this fitting function is a good approximation for normalΛCDM cosmology and even
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Figure 4.6:Marginalised constraints on the sum of the neutrino mass from a complete joint analysis against

the matter densityΩm and the Hubble parameterh. Each successive addition of data gives a factor of 2

improvement from the CMB (red/lighter contours); with the inclusion of SN + BAO (blue/darker contours)

and finally the DR7 LRGs (grey/darkest contours). The overall bound is found to be
∑
mν < 0.325 eV at

the95% confidence level.

though it is widely used in that context the effects of the neutrino in this regime are ill-understood.

It should be noted therefore that non-linearities could represent a systematic and limitation to a

study such as this. However, very recently tests of the non-linear power spectrum in the presence

of neutrinos and new approaches to the regime have started to emerge in order tackle this difficult

issue, e.g., Hannestadet al. (2006), Brandbygeet al. (2008), Saitoet al. (2008), Brandbyge &

Hannestad (2009) and Saitoet al. (2009). While the implementation and further testing of these

procedures is very much the subject of future work, I reduce the reliance on the non-linear regime

in this study by repeating the full combined analysis but truncating the maximum multipole to

`max = 200.

4.4.2.3 Combined Results

I start by combining the MegaZ LRGs as described above with the previous CMB, SN and BAO

data in a complete joint analysis. I subsequently find a significantly lower bound of
∑
mν < 0.325

eV at the95% confidence level. Again, this is roughly a factor2 improvement in the sum of the

neutrino masses with the addition of the LRGs and is shown clearly against the matter density and
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Hubble parameter in Figure 4.6. A plot of all parameter combinations compared to the CMB-only

study is displayed in Figure 4.7. Furthermore, the cosmology corresponding to the best fit values

is plotted in Figure 4.9 compared to the data used. The improvement in the 1D marginalised

distribution is illustrated further in Figure 4.10. No evidence for massive neutrinos is found in the

data.

For interest I also repeat this analysis using instead the MegaZ DR4 galaxy clustering data.

The differences and subtleties in this catalogue are discussed thoroughly in Section 3.5.2.1 and

Section 3.5.3. Using this data set gives a slight further improvement in constraint with
∑
mν <

0.2996 eV. This could be the result of the slightly stricter errors onΩm andfb = Ωb/Ωm between

the releases (Section 3.5.3).

As stated before the information on the growth of structure is paramount to the improvement

seen in the neutrino study. However, part of this information originates from the non-linear regime

and could systematically bias the inferred constraint. While work continues into the effects of the

neutrino on these scales I repeat the primary combined analysis (DR7) with the most non-linear

of scales removed. By truncating the multipoles at`max = 200 the more conservative approach

is seen to give a similar but slightly relaxed limit of
∑
mν < 0.393 eV. While this highlights

the importance of understanding non-linearities for obtaining the most stringent constraints, it is

reassuring that there is still a marked improvement on the previous study (CMB+SN+BAO) with

the linear LRGs.

It is also intriguing to examine the input of the LRGs to the constraint with the two distance

measures (SN+BAO) removed. These have previously been highly beneficial to the uncertainty.

I therefore perform a joint analysis using just the WMAP5 and LRG (DR7) data. I subsequently

obtain the limit
∑
mν < 0.651 eV at the95% confidence level. This is comparable with the

spectroscopicDR7 galaxy clustering addition to the CMB in Reidet al.(2009) with
∑
mν < 0.62

eV. These are both comparable but naturally tighter than the earlier data analysis provided by

Tegmarket al. (2006) where
∑
mν < 0.9 eV.

I conclude the combined constraint on the neutrino by adding the new HST prior on the Hub-

ble parameter to the original WMAP5 + SN + BAO + MegaZ LRG DR7 run. The improved prior

was recently found to be:H0 = 74.2± 3.6 km s−1Mpc−1 by Riesset al. (2009). With this infor-

mation added the final limit in this study is reduced to
∑
mν < 0.281 eV at the95% confidence

level. The constraint is one of the tightest current bounds available without the use of data from

Lyman-α (E.g. Seljaket al. (2006)) or a complicated modelling of the bias (de Bernardiset al.

2008). However, I leave a more complete discussion of other works for the following subsection.
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The parameter distributions for the last three additional cosmological analyses are displayed in

Figure 4.8.

4.5 Discussion and Conclusion

4.5.1 Systematics and further work

4.5.1.1 Non-linearities

It is clear from the incredibly tight bounds placed on the neutrino in the previous subsections

and from the complementary analysis with the CMB in Section 3.7 that the LRG spectrum is a

powerful addition to any cosmological constraint. However, despite the possible gain this often

comes with information extracted in the non-linear regime. As alluded to before, this regime is

tested in theΛCDM framework (E.g. Smithet al. (2003)) but any deviations from this represent

an extrapolation.

A recent method to probe into the mildly non-linear regime with neutrinos is through standard

perturbation theory (SPT). This next order correction orone-loopcorrection has been highlighted

by e.g. Saitoet al. (2008) and Saitoet al. (2009). An alternative suggestion is the use of nuisance

parameters including a non-linear correction parameterQnl (Coleet al.2005). This has been used

also in Tegmarket al. (2006). Alternatively, Hannestadet al. (2006) has suggested the power

spectrum to be taken as a weighted average of the neutrino and baryon and cold dark matter power

spectra (Equation 4.8). This has been used, for example, in Terenoet al. (2009).

Pm(k) = [fν
√
PνL(k) + (fb + fc)

√
PNLb+c (k)]

2 (4.8)

Given the lack of testing, range of validity or recent emergence of some these methods the

approach taken here is to use the Smithet al. (2003) fitting function with the most non-linear

scales removed (` > 300). A more conservative bound was inferred by placing a strict cut in

multipole spacè = 200. This still gave a significant improvement in the sum of the masses from

a CMB+SN+BAO calculation (
∑
mν = 0.695 → 0.393 eV).

In the future it would be interesting to test the effect of these new procedures on the data and

previous constraints and see if there is any bias induced by neglecting them (or between them).

Early work in Saitoet al. (2009) implies this could bias the equation of state parameterw0. This

might be more severe for future large scale structure surveys where the direct contribution from the

galaxy clustering or weak lensing is not as statistically limited. One could examine the predictions
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Figure 4.7:The two dimensional68% and95% contours and marginalised one dimensional distributions

for 7 cosmological parameters (Ωbh
2, Ωch

2, ΩΛ, ns, τ , ln(1010As) and
∑
mν) in a WMAP5 + SN +

BAO + MegaZ DR7 combined constraint. The amplitude of the Sunyaev-Zeldovich fluctuations (ASZ) is

included in the analysis but is not plotted. The black contours are given by a WMAP-only analysis, whereas

the red constraints are with the addition of MegaZ DR7. For the latter analysis four bias parameters have

been marginalised. The data constrains the sum of the neutrino masses to
∑
mν < 0.325 eV (95% CL).



4.5. Discussion and Conclusion 127

Ω
m

Σ
 m

ν
  

 (
e

V
)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hubble Parameter (h)

Σ
 m

ν
  

 (
e

V
)

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ω
m

Σ
 m

ν
  

 (
e

V
)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hubble Parameter (h)

Σ
 m

ν
  

 (
e

V
)

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ω
m

Σ
 m

ν
  

 (
e

V
)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hubble Parameter (h)

Σ
 m

ν
  

 (
e

V
)

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 4.8:The marginalised distributions for three additional cosmological analyses (green contours) are

plotted against the previous neutrino bounds. Upper Panels: The contribution from the more non-linear

regime is removed by truncating the MegaZ multipole scale atlmax = 200 (
∑
mν < 0.393 eV). Middle

Panels: The LRGs are seen to provide approximately equal gain to the CMB as the SN and BAOs when the

distance measures are removed (
∑
mν < 0.651 eV). Bottom Panels: The addition of the new HST prior

restricts the parameter space further still, rendering one of the tightest current constraints (
∑
mν < 0.281

eV).
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Figure 4.9:The theoretical galaxy angular power spectra (top four panels) and theoretical CMB power

spectrum (bottom panel) are plotted for the best fit values found in the CMB+SN+BAO+MegaZ LRG DR7

analysis (solid lines). These are compared to the data points in MegaZ DR7 and WMAP5, respectively.

There is no observed discrepancy between the best fit models and the data. The top four panels correspond

to redshift bin 1 (top left;0.45 < z < 0.5), bin 2 (top right; 0.5 < z < 0.55), bin 3 (middle left;

0.55 < z < 0.6) and bin 4 (middle right;0.6 < z < 0.65).
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Figure 4.10:The 1D marginalised distributions for the sum of the neutrino mass
∑
mν are highlighted

above (solid lines). The bounds displayed are the result of a WMAP5 analysis (
∑
mν < 1.271 eV) that

is shown to decrease dramatically with the inclusion of SN and BAOs (
∑
mν < 0.695 eV) and also with

the further addition of MegaZ DR7 (
∑
mν < 0.325 eV). No evidence for massive neutrinos is observed

and so all constraints correspond toupper bounds. These levels and the vertical dashed lines denote95%
confidence levels.

separately with a Fisher matrix forecast. In addition, a greater number of N-body simulations

must be performed with the presence of neutrinos to probe the regime fully. Early work on such

simulations include e.g. Brandbygeet al. (2008) and Brandbyge & Hannestad (2009).

4.5.1.2 Extended Parameter Space

The combined constraints have been derived by varying a total of12 parameters, including the

normalisation of SZ fluctuations in the CMB and four bias parameters in the galaxy survey. While

a substantial sample of parameter space there are potentially extensions that could degrade or shift

the results of the previous sections.

Effective Number of Species

The number of massive neutrinos has been fixed to3.04 in this study. This assumes there
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are no sterile neutrinos or other relativistic degrees of freedom. These potential species are often

parameterised in terms of theeffectivenumber of neutrinosNeff . Variations in this quantity allow

a displacement in the time of matter and radiation equality in the early Universe. Subsequently it

is degenerate with the matter density and can weaken the best possible constraint. The effective

number of species has been analysed previously in a number of papers, including Goobaret al.

(2006), Ichikawaet al. (2007), Komatsuet al. (2009), Dunkleyet al. (2009), Reidet al. (2009)

and references therein. In future work I intend to extend the previous parameter space to account

for Neff as a free parameter.

Equation of State

As described earlier allowing for a more general dark energy modelw 6= −1 does not signifi-

cantly alter the neutrino constraint for a combination of WMAP+SN+BAO (Komatsuet al.2009).

However, the sum of the neutrino masses has been shown to be degenerate with the equation of

state in the presence of data from the late time Universe (Hannestad 2005). This can be under-

stood by considering that an increase in the expansion history (less negativew0) will suppress the

growth of matter fluctuations, similar to the effect of the free-streaming particles. As for the other

studies highlighted in Figure 4.1 the results quoted here are for aΛCDM cosmology and similarly

represent the benchmark of a more stringent restriction of parameters. It will be interesting to see

how the complete joint analysis will change with this extra parameter freedom and is the subject

of future work.

The Galaxy Bias

By marginalising over the four bias parameters information mainly on the shape of the power

spectrum was used. However, the exact relationship between galaxies and their tracing of the un-

derlying mass distribution is unknown. It could be that the bias is some function of scaleb(k) (E.g.

Swansonet al.(2008) and Cresswell & Percival (2009)). In this case the biasing mechanism could

act to mimic (oppose) the neutrino signature in the galaxy clustering measurement by suppressing

(boosting) the power of fluctuations over smaller scales. This is similar to allowing for a running of

the spectral index but in this case would be seen in the CMB as well as the galaxy survey. Testing

for a more extended bias model is beyond the scope of this work but could be an interesting avenue

for future work. Moreover, it would also be interesting to examine the constraints using various

galaxy types in order to get a measure on therelativebiasing of the galaxies. The motivation is that

if one expects the galaxy field to be correlated with the dark matter field then all the galaxy fields

should be directly correlated with each other. This will be possible with future/upcoming projects

such as the Square Kilometre Array (SKA; Abdalla & Rawlings (2007)), DES or Pan-Starrs.
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∑
mν 95% CL Analysis Comments

< 1.3 eV Komatsuet al. (2009) WMAP5

< 0.9 eV Tegmarket al. (2006) WMAP3 + SDSS

< 0.67 eV Komatsuet al. (2009) WMAP5 + SN + BAO

< 0.62 eV Reidet al. (2009) WMAP5 + SDSS (DR7)

< 0.54 eV Ichiki et al. (2009) WMAP5 + SN + BAO + CFHTLS WL

< 0.54 eV Terenoet al. (2009) WMAP5 + SN + BAO + CFHTLS WL

< 0.471 eV Li et al. (2009) CMB + WL + SDSS + SN

< 0.28 eV de Bernardiset al. (2008) WMAP5 + SDSS + biasbg(L)

< 0.17 eV Seljaket al. (2006) CMB + SDSS + 2dF +SN + Lyα

Table 4.1:A brief list of other recent cosmological studies on the absolute mass scale is included above.

All the bounds quoted are forΛCDM cosmologies at the95% confidence level. ‘CMB’ and ‘WL’ denote

an analysis that contains a range of CMB or Weak Lensing data, respectively.bg(L) corresponds to a

luminosity dependent bias measurement. For a detailed breakdown of the analyses the reader is referred to

the papers themselves.

4.5.2 Other Studies

At the present the addition of LRGs are far more effective for constraining the absolute mass

scale than current weak lensing data. The preliminary studies by Terenoet al. (2009) and Ichiki

et al. (2009) with CFHTLS data (Section 2.4.2) both find
∑

ν < 0.54eV at the95% confidence

level for a CMB+SN+BAO+CFHTLS joint analysis. The lack of substantial improvement with the

lensing data is a result of a similar degeneracy between the neutrinos andΩm, where the neutrinos’

suppression of the inhomogeneities can be compensated by an increase inΩm (or σ8). It is also

mainly a property of the probe being adevelopingtool, as the prospects for the addition of weak

lensing to the mass determination are promising. Interestingly, weak lensing does not suffer any

unknown biasing that is present in the galaxy clustering measurement. This is because the lensing

signal responds to the entire mass distribution. It does, however, probe matter fluctuations on

non-linear scales. The optimism seems well justified as it has been shown that a future probe such

as Euclid (Refregieret al. 2008) could even be sensitive to the neutrino mass hierarchy with the

addition of Planck data (De Bernardiset al.2009).

The
∑
mν < 0.281 eV limit found in this Chapter represents one of the most stringent con-

straints placed in the literature. A small list of some of the most recent and competitive studies is
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therefore given in Table 4.1. Within this table two papers have constraints that are similar to the

one mentioned above. The de Bernardiset al.(2008) study uses a measurement of the luminosity-

dependent biasbg(L) at various redshifts for three different surveys and adds this information

to a WMAP5 and SDSS LRG constraint. They find
∑
mν < 0.28eV for a ΛCDM Universe,

which relaxes to
∑
mν < 0.59eV in the presence of a general dark energy model (w0 6= −1).

The Seljaket al. (2006) analysis represents the tightest bound placed on the neutrino to date∑
mν < 0.17eV. This uses a range of CMB surveys in addition to SDSS galaxy clustering and

supernovae data. However, the main gain in parameter uncertainty arises from use of Lyman-α.

This cosmological tool probes the underlying mass distribution by looking at quasar absorption

in intervening hydrogen. There is great uncertainty, however, as to how this gas traces the distri-

bution. This could be subject to unknown winds or complex local physics, for example. There

appears to be tension at around2σ in the amplitude of the power spectrum between the Lyman-α

and CMB data. To compound this issue Seljaket al. (2006) also find evidence at2.5σ for more

than 3 effective neutrino species.

Considering the above the
∑
mν < 0.281 eV limit in this work is the tightest constraint on the

sum of the neutrino masses without the need for higher knowledge on complex biasing or higher

knowledge of complex gas physics. However, in the future we are not only interested in tight neu-

trino constraints, but also trustworthy neutrino constraints. This is why the previous suggestions

for further work necessarily involve working on the associated systematics and extensions to the

cosmological model. Despite this, preliminary work on neutrino forecasts for future surveys, such

as the Dark Energy Survey (Lahavet al. 2009), Euclid (De Bernardiset al. 2009) and the SKA

(Abdalla & Rawlings 2007) highlight that the gain in statistical information will be substantial.



CHAPTER 5

FUTURE WORK AND CONCLUSION

This chapter discusses some of the issues pertaining to the previous three chapters. This includes

the limitations and applicability of the methods and developments relating to these on the horizon.

The following therefore represents suggestions forfuture work. However, it should be noted that

this does not consist of all the suggestions for future work, given that segments will have been

discussed while relevant in the preceding chapters.

I finish by summarising the work in this thesis in Section 5.4.

5.1 The Non-linear Regime

The work examined in Chapters 2 and 4 have both been affected or limited by the non-linear

regime with current data. As stated previously this is usually tackled by using the fitting functions

of Peacock & Dodds (1996) and Smithet al.(2003) found with detailed N-body simulations. This

was the procedure followed in Chapter 3 where I used my constructed SDSS II angular power

spectra to place constraints on thestandardcosmological model. The other chapters are studies of

deviations from this model and so such an application is an extrapolation of validity. Brute force

application could systematically bias the inferred parameters or fail to encapsulate any subtle

signatures at this scale. With the advent of high precision probes such as the Dark Energy Survey

(DES) or Euclid (Section 2.6) and consequently higher statistical discrimination, the need for a

correct treatment or a quantification of the systematic error induced is even more vital.

133
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5.1.1 Modified Gravity

The most obvious concern for using any available prescription for the non-linearities in modified

gravity is that they have been evaluated using general relativity. Any use is therefore an extrapo-

lation of the framework especially given that the clustering is a gravitational effect.

A more pernicious problem concerns the potential scale or environmental dependence of the

modifications. Some theories, such as f(R), include an extra scalar degree of freedom that behaves

as an additional field. The extent over which this field acts depends on the local curvature and

density. The current fitting functions, such as Smithet al.(2003), determine the non-linear regime

from a mapping of the linear spectrum. For any theory where the extra field is suppressed at high

curvature there will be a change in the behaviour of the gravity when non-linear. This isnot en-

capsulated by the linear range of scales. It is this scale dependence that eludes the aforementioned

prescriptions.

In fact, due to the stringent constraints on gravity from solar system tests (E.g. Will (1993),

Chibaet al. (2006) and Erickceket al. (2006)) any viable theorymustdegrade the extra field in

the high density environment and subsequently tend to a ‘general relativity-like’ gravity. This

non-linear process is often referred to as the chameleon mechanism (Khoury & Weltman 2004).

Some progress can be made with the use of perturbation theory (E.g. Koyamaet al.2009) but

this has a limited range of validity to quasi-linear scalesk ∼ 0.1 h Mpc−1. In this way thedeeply

non-linear regime remains beyond the scope of conventional methods and the application of such

data is suspect.

The Interpolation Function

Despite the fact that this appears to be a dire situation there is a subtlety above that has led to

recent developments. This concerns the idea that the actual power spectrum (including thefully

non-linear) must therefore be an interpolation between modified gravity, with the extra field and

no chameleon suppression, and normal general relativity with the same expansion history as the

new theory at small scales. Hu & Sawicki (2007) found such an interpolating function and it is

described by,

P (k, z) =
PMG(k, z) + cnlΣ2(k, z)PGR(k, z)

1 + cnl(z)Σ2(k, z)
. (5.1)

In this equationcnl determines the scale for the interpolation to general relativity;Σ2(k, z) details

the degree of non-linearity at a given scale;PMG(k, z) is the power spectrum for the environment

independent modified gravity andPGR(k, z) is standard general relativity with the same expansion

history. For each of the twoP (k, z) a fitting function such as that from Smithet al. (2003) can be
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used.

Hu & Sawicki (2007) also proposed a parameterised form for the degree of non-linearity,

which is given by,

Σ2(k, z) =
( k3

2π2
Plinear(k, z)

)a
(5.2)

and Koyamaet al.(2009) have suggested a general expression for the possible redshift dependence

of cnl expressed as,

cnl = A(1 + z)b. (5.3)

For the DGP model these expressions were calibrated with perturbation theory (Koyamaet al.

2009) in the quasi-linear regime and checked for consistency and extrapolation against the N-

body simulations of Oyaizuet al. (2008). They subsequently founda = 1, A = 0.3 andb = 0.16

to be good fits.

It would be interesting to see how this new non-linear treatment affects the constraints on

mDGP from lensing given in Section 2.5.2 and in particular the analysis with all angular scales in

Figure 2.10. However, due to the lower statistical power of the current weak lensing data it might

prove more insightful to examine how this would alter the forecasts for Euclid. One could use

this as an example to quantify how an incorrect prescription for the regime will bias the inferred

constraining power relative to the brute force application of the usual scaling relation. Preliminary

work in this area has already started to appear very recently, e.g., Beynonet al. (2009).

Furthermore, despite the early work of Oyaizu (2008), Oyaizuet al. (2008) and Schmidtet al.

(2009) it is imperative that further N-body simulations are carried out for a range of models to

high resolution (largek). It will be interesting to apply this interpolating function to simulated

cosmologies in order to test the accuracy of any reconstructed power spectrum and the range of

validity. If it does describe the deeply non-linear regime well and if one quantifies the systematic

uncertainty it induces, it might have a role to play in the search for modified gravity in the next

generation of data.

5.1.2 Neutrinos

Like the interpolation model described above several fitting functions or approximate methods

exist to describe the impact of neutrinos on the non-linear power spectrum. This includes the

weighted average of the neutrino, baryon and cold dark matter power spectra proposed by Hannes-

tadet al. (2006) and shown previously in Equation 4.8. A more technical approach is through the



5.2. The Extended Neutrino Parameter Space 136

use of higher order perturbations (orone loop corrections) that probe the mildly non-linear regime.

See Saitoet al. (2008), Saitoet al. (2009) and references therein.

While the deeply and quasi-linear regimes were removed in the combined constraint on the

neutrinos in Section 4.4.2.3 it would be interesting to test these approaches on the data given its

high discriminatory power. This would allow a more robust measurement at the tightest end of

the constraint and, furthermore, the potential to quantify the biasing induced on any parameters

by neglecting it. Naturally this reasoning can be extended to forecasts for future probes such

as Euclid or the Dark Energy Survey. In addition, a comparison between the methods and to

continuing N-body simulations would allow the most thorough test. N-body simulations with

neutrino components have begun to emerge with e.g., Brandbygeet al. (2008) and Brandbyge &

Hannestad (2009).

5.2 The Extended Neutrino Parameter Space

The neutrino bounds found in Chapter 4 were evaluated and compared to other studies in a flat

ΛCDM cosmology. A natural extension of this work is to extend the parameter space to other

potential physical phenomena.

5.2.1 The Equation of State

An example of the aforementioned extension is to relax the restriction placed on the equation of

state (w0 6= −1). A change in the expansion history can act to either suppress or boost the power

of fluctuations relative to a cosmological constant (see Chapter 2) and thus partially mimic the

effects of the neutrino. In this way the equation of state can be degenerate with the sum of the

neutrino masses. Allowing this freedom is an intention for future work.

5.2.2 The Effective Number of Neutrinos

In addition, the effective number of neutrinosNeff was fixed to3.04 for all cosmological analyses.

Allowing for a variation in this parameter can also degrade the neutrinos’ constraint but gives a

more realistic and robust measurement. Again, including this for the combined constraint analysis

is an aim of future work.

These extensions of the parameter space are discussed in more detail in Section 4.5.1.2.
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5.3 A Cosmological Comparison of Photometric Codes

The galaxy clustering constraint on the cosmological model in Chapter 3 was the consequence of

a photometric redshift survey (SDSS DR7). The redshift estimates were assigned to the galaxy

objects using ANNz (Collister & Lahav 2004) an Artificial Neural Network code. For future work

I intend to use the catalogues produced for Data Release 6 (DR6; Abdallaet al. (2008)) to test

the effect of photometric codes on cosmological bounds. This is possible for DR6 because the

corresponding catalogue was evaluated using six different photometric codes: ANNZ (Collister

& Lahav 2004), HyperZ (Bolzonellaet al. 2000), SDSS (Padmanabhanet al. 2005), Le PHARE

(Ilbert et al.2006), BPZ (Beńıtez 2000) and ZEBRA (Feldmannet al.2006). Performing cosmo-

logical runs for each code would constitute a cosmological comparison of the codes and test the

influence of any particular code on the galaxy clustering measurement of MegaZ DR7. This is

feasible because the survey areas for DR6 and DR7 are remarkably similar.

The Redshift Distribution

Continuing with the galaxy clustering analysis it is important to evaluate the role of the red-

shift distribution on the inferred parameters. This could be performed by including the Gaussian

redshift parameters (µ, σ) as free variables or using the interpolated spectroscopic redshift distri-

bution. This is discussed more thoroughly in Section 3.6.2.

Extra Likelihood Details

Finally, it would be intriguing to examine what extra information is gained by actually includ-

ing the cross correlationCij` data in the galaxy clustering likelihood. Likewise, a cosmological

constraint could easily be run including a larger range of multipole scales (` > 300). This would

test the information present at highly non-linear scales.
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5.4 Conclusion

This Thesis is related mainly to the growth of structure in the late-time Universe. Specifically, it

addresses both the active measurement of this structure, through a galaxy survey, and the use of

late-time data in constraining more fundamental underlying physics. This includes the gravita-

tional framework and the sum of massive neutrino species. These themes were directly related to

three main science chapters:

1. Constraining Modified Gravity and Growth with Weak Lensing

2. The Angular Power Spectrum of Photometric SDSS LRGs

3. A Combined Constraint on the Neutrino Mass

The conclusions of the Thesis are as follows:

• In the first chapter I performed one of the first studies on modified gravity with weak gravita-

tional lensing data. A phenomenological model that interpolates with a parameterα between

a 5D DGP braneworld model (α = 1) andΛCDM (α = 0) was constrained atα < 0.58

(1σ) andα < 0.91 (2σ) using supernovae, baryon acoustic oscillation and linear CFHTLS

lensing data. I showed this to be insensitive to potential systematics in the lensing data. The

role of weak lensing in a modified gravity study was discussed and the growth of structure

γ and power spectrum parametersΣ are highlighted. I subsequently found that the current

data (SN+BAO+CFHTLS) is incapable of a constraint on this growth signature.

• I also looked beyond the present bounds and showed that Euclid, a future weak lensing

survey, will deeply probe the nature of gravity. I predicted potential1σ constraints of∆γ =

0.045 and∆Σ = 0.25 for a maximum multipole of̀ max = 500 (linear regime). This

is tightened to∆γ = 0.038 and∆Σ = 0.069 for `max = 10, 000 (linear and non-linear

scales). Forecasted bounds are also shown for the standard cosmological framework.

• In the second chapter I constructed a new galaxy power spectrum based on the extended

SDSS II Data Release 7 (DR7)photometricLuminous Red Galaxies (LRGs): MegaZ DR7.

This encapsulated7746 deg2 and723, 556 LRGs between0.45 < z < 0.65 in a spheri-

cal harmonic analysis of the galaxy distribution. An excess of power was detected on the

largest scales in the highest redshift slice similar to the previous DR4 data release, but with

a reduced tension to the best fit cosmology.
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• The cosmological constraints were then derived based on the newly constructed MegaZ

power spectra. The excess power in the high redshift bin was demonstrated to have a sub-

stantial effect on the calculation and was therefore removed from subsequent analyses. In-

cluding the effects of the survey window function, redshift space distortions and correlations

between the redshift bands I found the combined bin analysis to give cosmological limits of

fb ≡ Ωb/Ωm = 0.173± 0.046 andΩm = 0.260± 0.035. Finally, I demonstrate the LRGs

to be highly complementary to the CMB with the photometric analysis comparable to the

spectroscopic DR7 release.

• In the last chapter I highlighted the degeneracies present in a combined constraint on the

sum of the neutrino masses with the CMB, SN and BAOs. By then combining these probes

with the earlier MegaZ DR7 data I discovered a further reduction on the previous limit by

a factor of 2 (
∑
mν < 0.325 eV). With an additional HST prior this bound dropped to∑

mν < 0.281 eV–one of the tightest constraints in the literature. Additional runs without

the distance measures or the non-linear contribution were also performed, illustrating the

stringent and more conservative gains available with LRGs.
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M., Fukugita, M., Hennessy, G., Ivezı́c, Ž., Knapp, G. R., Lamb, D. Q., Lee, B. C., Lupton,

R. H., McKay, T. A., Kunszt, P., Munn, J. A., Peoples, J., Pier, J. R., Richmond, M., Rockosi,

C., Schlegel, D., Stoughton, C., Tucker, D. L., Yanny, B. & York, D. G., 2002,ApJ, 571, 191

Tegmark, M., Eisenstein, D. J., Strauss, M. A., Weinberg, D. H., Blanton, M. R., Frieman, J. A.,

Fukugita, M., Gunn, J. E., Hamilton, A. J. S., Knapp, G. R., Nichol, R. C., Ostriker, J. P.,

Padmanabhan, N., Percival, W. J., Schlegel, D. J., Schneider, D. P., Scoccimarro, R., Seljak,

U., Seo, H., Swanson, M., Szalay, A. S., Vogeley, M. S., Yoo, J., Zehavi, I., Abazajian, K.,

Anderson, S. F., Annis, J., Bahcall, N. A., Bassett, B., Berlind, A., Brinkmann, J., Budavari, T.,

Castander, F., Connolly, A., Csabai, I., Doi, M., Finkbeiner, D. P., Gillespie, B., Glazebrook,
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