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ABSTRACT

This thesis is related to the growth of structure in the late-time Universe. It addresses both
the measurement of this structure and the use of such information in constraining fundamental
underlying physics. This includes the gravitational framework and the sum of the three neutrinos’
mass.

The thesis starts by using weak gravitational lensing data (CFHTLS) to constrain a modifica-
tion of gravity that is invoked to provide the observed accelerated expansion in the Universe. This
is shown to disfavour the model in question. Itis, however, incapable of placing any bounds on the
growth parameter that represents extensions to gravity. The future of weak lensing in probing gen-
eral relativity is illustrated with forecasts on the growth signature and power spectrum parameter
using the proposed Euclid probe.

A measurement is made on the clustering of Luminous Red Galaxies (LRGS) in the Uni-
verse. This represents a new photometric galaxy clustering angular power spectrum: MegaZ
LRG Data Release 7 (DR7). The cosmological constraints are demonstrated to be competitive
with spectroscopic surveys and complementary to the WMAPS data. Specifically, bounds of
fo = Q/Qp, = 0.173 £ 0.046 and2,,, = 0.260 + 0.035 are placed. Potential systematics in
the data are discussed and examined.

The work concludes by placing one of the most stringent constraints available of the sum of
the three neutrino masses. By combining cosmic microwave background information, distance
measures from supernovae and baryon acoustic oscillations with growth from the MegaZ LRG
galaxy clustering data, produced earlier, the limit is found t®be:, < 0.281 eV at thed5%

confidence level.
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The first Hubble diagram where the plot of velocity against distance demonstrates that
distant galaxies are receding from us. The solid line and points correspond to an analysis
corrected for the sun’s movemeREDIT: Hubble (1929) . . . . . . ... ... .. 2
The three possible geometries for the Universe and their relation to the total dénsity
For Q > 1 the geometry is described as spherical &nd- 0 similarly to the surface

of the Earth (top). When the density is sub-criti€éal < 1, hyperbolic geometry en-
sues and: < 1 (middle). Finally, wherf) = 1 the Universe is said to be flak (= 0)

and correspondingly follows flat, or Euclidean, geometry (bottom). Also shown is the
relation between an apparent angle and geometry as described in thectexbiT:
http://map.gsfc.nasa.gov/medi@ary HinshawandNada . . .. ... .. ... .. 6
Left panel: The distribution of nearly one million galaxies in the local Universe as seen
by the Sloan Digital Sky Survey (SDSS). The dark wedges result from dust obscuration
from our own Galaxy.CREDIT: http://www.sdss.orgM. Blanton and the SD$SRight

panel: The present day matter power spectriftk), calculated using CAMB (Lewis

et al.2000), quantifies how the underlying mass distribution varies across different scales.
The turnover of the power spectrum, the baryonic wiggles and the non-linear evolution

(linear evolution is dashed) are clearly evident at progressively smaller scales.. . . 18
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14

2.1

2.2

2.3

Left panel: The temperature fluctuations in the cosmic microwave background radiation
as seen by WMAP. This full-sky map is observed in the V-band (61 Ghz) where the galac-
tic foreground across the centre (red) is minimal. The linear temperature scale ranges from
—200p K to 200pK . CREDIT: http://lambda.gsfc.nasa.ggwmap science tegnRight

panel: The CMB angular power spectrui, quantifies how these temperature fluctu-
ations vary across different scales. Tég values have been calculated using CAMB
(Lewis et al.2000) and can be matched to the data points to infer an underlying model as

in Dunkleyet al.(2009) and Section4.2.. . . . . . . . . . . ... ... 20

g(a) = d(a)/a, the linear growth, is plotted for a range of late time acceleration models.
The solid line demonstrates the growth for LCDM, the dashed for the 5D braneworld
model DGP and the dotted for a dark energy model with identical expansion history to
DGP (o = —0.78 andw, = 0.32 wherew(a) = wo + (1 — a)w,). The difference in the
expansion history gives a significant suppression in growth relative to a pure cosmological
constant. The effect, however, of the 5D perturbations not only adds to the suppression
for DGP but breaks the degeneracy between itself and the smooth dark energy model35
g(a) = d(a)/a, the linear growth, is plotted for various values ®@fthat characterise

the phenomenological LCDM-DGP interpolation (mDGP) model. The solid line demon-
strates the growth fooe = 0 (LCDM), the dashed forx = 0.25, the dash-dotted for

a = 0.5 and the dotted forr = 1 (DGP). Once again it is evident that the more DGP-like
end of thex spectrum experiences more suppression in the growth of density perturba8iaghs.
g(a) = d(a)/a, the linear growth, is plotted for various valuesygthe growth parameter,
resulting potentially from a change in force law. The solid line represents the growth for
LCDM (wg = —1, w, = 0) with the corresponding growth parameter= 0.55. The
dashed line shows the growth fpr= 0.68 which is the same as flat DGP but with the same
expansion as in LCDM. The dotted line also has: 0.68 but now withw, = —0.78 and

w, = 0.32, thus completely specifying the growth of the example DGP model. Finally
the dot-dashed line shows the growth for a LCDM expansiombeut 0.45. It is clear

that a high value of the growth parameter corresponds to a suppression of growth. This

potentially arises from a weakening of gravity.. . . . . . . . . . ... ... ..., 40
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2.6

2.7
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The distortion of background galaxies caused by the intervening mass distribution is par-
ticularly vivid in the vicinity of galaxy cluster Abell 2218. The images are stretched
out, or sheared, becoming more elliptical and in this scenario represents a more exag-
gerated version of weak lensing. In this latter case the underlying information resulting
from a more subtle deformation is deduced statistically over many galaxir&DIT:
http:hubblesite.org/galleryNASA. . . . . . . . . . . . . . 42
The open circles with associated error bars represergtigheo-point statistic as a func-

tion of # (arcminutes) for the CFHTLS-wide survey used in this paper. | selectively use
scales greater than 30 arcminutes to remove the unknown non-linear effects. The red
dashed line shows the best fit values as found with the combined probes mDGP analysis
(Section 2.5.2).. . . . . . . e e 46
The black dashed line represents the source redshift distribution with associated error
in the bins. The red solid line is given by the fitting function in Equation (2.29). The

fit is drawn for the function evaluated at the best-fit points as deduced by the combined
probes analysis for mDGP (Section 2.5.2). This corresponded to best fit values:

0.614 +0.034, b = 8.11 £ 0.681, ¢ = 0.627 £+ 0.0610 and A = 0.6462 consistent with F08.48
To test for consistency | include th8% and95% contours for aACDM analysis with

all angular scales (1 - 230 arcminutes) as ingtal. (2008). 6 parameters are varied in
total (2,,, os, h, a, b, ¢). Similarly |1 do not include the HST prior or the residual offset

(¢’ = 0) for this analysis. The baryon fraction is also fixedXp= 0.044. The degeneracy
betweern(?,, andogisclearlyvisible. . . . . . . . . . ... ... . ... . 0., 50
The diagram above demonstrates the attempted constraint on a parameterised gravitational
model that is motivated by the concept of a large extra dimension (mDGP). The contours
are for(2,,, anda (the modified gravity parameter) where 5 other cosmological parameters
(h, os, a, b andc) have been marginalised. Here only angular scales greater than 30
arcminutes have been used in order to avoid the non-linear regime. The data is from the
CFHTLS-wide (F08) survey using the E correlation two point statisti¢-¢’. For mDGP,

a = 0 corresponds to LCDM, whereas= 1 is equivalenttoDGP. . . . . . . . . .. 51
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2.9 The plot in the top left panel shows the constraintf®n anda. Although appearing
to disfavour DGP ¢ = 1) as in the analysis by Yamamot al. (2006) the remaining
parameters$), andh have been fixed at 0.044 and 0.66, respectively. | go beyond this
in the top right panel which contains constraints given on the same parameters but when
Supernovae data is added dnglandh are allowed to vary. One can now see thatthe
contour is beyond the bounds of the plot and so no constraint can be inferred. The benefit
of the weak lensing data is seen in the bottom left panel where once again | use angular
scales greater than 30 arcminutes from the CFHTLS-wide (FO8) lensing survey. | also vary
Qs b, 08, U, a, b, canda whilst keepingr, = 0.963. With this addition it is evident that
there is a visible improvement in constraint and that DGP is marginally disfavoured. This
is exemplified in the bottom right panel where | include the 1D marginalised probability
distribution (solid line). | find that the joint analysis gives constraints on mDG® af
0.58 anda < 0.91 at the68% and95% confidence levels, respectively. The dotted line
represents the mean likelihood of the samples. Finally, the dashed contours in the bottom
left hand panel show that the constraints are insensitive to any systematics in the data such
as an over or underestimation in the CFHTLS shear at high redshift (Section 2.5.3). 53
2.10 The left panel is an analysis of the mDGP model with weak lensing, BAO and Supernovae,
as before, but with the full range of angular scales (1-230 arcminutes). There is a slight, but
not significant, improvement compared to the more linear analysis. Hered find.56
anda < 0.86 at the68% and95% confidence levels, respectively. It should be noted
that this analysis includes data from the unknown non-linear regime. The right panel
demonstrates the current challenge in constraining the gravitational-as opposed to the
expansion’s—contribution to the growth of structure. | find that with current data it is
unfeasible to put any bounds on reasonable values of th@rameter. This plot contains
an analysis with weak lensing, Supernovae and BAOs. Implicit in this plot is the variation
ofalsoh, og, Qp, a,b,candwg. . . . v v . ot e e e e e e e e e e e e 54
2.11 The 2D marginalisetbrecastedconstraints with the proposed space-based Euclid survey.
This corresponds tbo bounds of2,,, = 0.3+0.003, h = 0.740.0832, og = 0.8+0.0041,
Q, = 0.05 £ 0.0140, ny, = 1.0 + 0.0158, wg = —0.95 £+ 0.0357 andw, = 0.0 +
0.1326 from the fiducial input cosmology. This demonstrates that such a survey is a highly
promising and worthwhile project with constraints being pushed towards the percent level
for anindividual late-time cosmological probe. The possible constraints on the equation

of state in particular are thoroughly exciting, especially given there are no extra priors.59
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2.12 The left panel displays Euclid’s potential constraining power with regards to the mDGP

model in a lensing only analysis. Here the contour (all solid lines) is well within the

a = 1, or DGP, line and so it will be easily distinguishable from LCDM & 0). In

fact, this corresponds to an error of 0.104 @twith /., = 500 (all red contours) in

stark contrast to today’s constraint. The right panel shows the marginalised contours for
the general growth parameterisation. Again, it seems that Euclid will provide excellent
insight into any potential modified gravity signatures. Specifically it is found that it will
be possible to constraimwith an error of 0.0451(¢). This is tightened further to 0.038
whenl,., = 10000 (black contours). The parametérsog, 21, andn, have been varied

and marginalised over for both models considered here while in additjprw, andX,

have been marginalised for the growthmodel.. . . . . . . . . . ... ... .... 60

2.13 The above plot shows the marginalisgd- X, forecast for a weak lensing only analysis

3.1

3.2

with Euclid. These two parameters, which could represent modified gravity or generic
dark energy signatures, demonstrate how this future weak lensing probe will potentially
place firm constrains on any model of late-time acceleration. The black contours cor-
respond td,,., = 10000, demonstrating an error of 0.089() on ¥, whereas the red
contours correspond ig,., = 500 giving instead an error of 0.25. In both cases the inner

and outer contours afer and2o, respectively. . . . . . . ..o 61

An example LRG spectrum is plotted over the SDSS filters (u, g, r, i and z) for varying
redshifts. Thel000 A break, which is clearly evident in the relatively stable SED, underlies
the LRG photometric accuracy. The redshifting of the spectrum from the boundary of the
g and r filters, through the r filter and up to the boundary of the r and i filters describes
the high redshift galaxy sample that | utilise44 < z < 0.65). To reiterate, it is from

the flux through the different filters that allows one to estimate the redshift for the galaxy.
CREDIT: Padmanabhamtal.(2007) . . . . . . . . . . . . . . i 68
The SDSS Data Release 7 (DR7) photometric LRG coverager74G deg? it covers

723, 556 galaxies over aredshift4 < z < 0.7. The three excluded stripes (76, 82 and 86)
are visible towards the boundary of the plot. The 2dF SDSS LRG and Quasar (2SLAQ)
survey and training set constitute a narrow stripex{ 0°) that passes approximately

through the middle of the coordinate system and the bottom of the defined survey. 70
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The averaged reconstruction of the ingut field for 1000 simulated realisations. The
thick dashed lines represent the input cosmology for the four redshift bins betwiéen

z < 0.65 and the thinner solid lines are the recovered averages. The plot has been trun-
cated at? = 200 as a visual aid to see the agreement. The behaviour beyond this point
continues in an identical fashion and so the accuracy and consistency of the code and the
measurement procedureisclear. . . . . . . . .. ... L L0 oo e e e 73
Left Panel: The analytic Gaussian expression (Equation 3.11; dashed line) is accurately
traced by the 1000 realisation simulated error in a redshift band (solid line), shown here
for bin 1 (0.45 < z < 0.5). This demonstrates the approximate validity of the Gaussian
expression. Right Panel: The agreement is further highlighted by the ratio of the analytic
and numerical estimations of the statistical error, where the overall behaviour is consistent
with unity. The two panels are shown for the first bin only but are representative of all
otherbincombinations. . . . . . . . . . . . . ... e 74
The measured Angular Power Spectta)(for the photometric SDSS MegaZ-LRG (DR7)
population as presented in Table 3.1. The error bars correspond to those calculated with
Equation 3.11 using the measured power spectrum. These include contributions from
cosmic variance and shot noise, while accounting for the fraction of the sky surveyed.
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for multipole scaleg > 60 for faster computation in the cosmological analyses.. . . 82
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A slice through the mixing matriX, - is plotted for two fixed multipole values given by

¢ = 200 (solid curve) and’ = 260 (dashed curve). The amplitude of the matrix peaks at
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little correlation is induced by the survey’s window function. Furthermore, the behaviour
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CHAPTER1

INTRODUCTION

Cosmology is one of the boldest of all intellectual endeavors. It seeks to describe the origin, evo-
lution and fate of the Universe. It also aspires to provide a complete census of its contents. Indeed,
it is not only with this shameless ambition that it stands in stark contrast to other scientific fields;
for example, it is not, in terms of the scientific method, reproducible. Moreover, it is a field that
seems to most closely border the metaphysical with its furthest advancing outposts represented by

a new philosophyprecision cosmology

This recent deluge of data, from the tiny fluctuations in the afterglow of the Big Bang to the
positions of millions of galaxies, is revealing a fascinating and dynamic Universe. As we will
see in the rest of thmtroduction it is expanding (Section 1.1.1) and is best described by a the-
ory where the fabric of space-time and mass intimately manipulate one another (Section 1.1.2).
However, this requires the existence of new physics with unseen dark matter (Section 1.1.4.4) and
dark energy (Section 1.1.4.5) necessarily being invoked to explain bo#ittederatedexpansion
(Section 1.1.4) and the statistics of fluctuations in the mass distribution (Section 1.2.2). In fact, it
forces us to consider the very notion ofreodeland its fundamental relation—through a choice in

the statistical approach—to the data (Section 1.3).

In addition, the vast wealth of data still being mined from our surroundings is capable of pro-
viding a fertile testbed for fundamental and underlying physics such as gravity, the neutrino, dark
energy or the discrete nature of space-time. This is a theme throughout the thesis and subsequently

the rest of the chapter outlines are described in Section 1.4.
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Figure 1.1:The first Hubble diagram where the plot of velocity against distance demonstrates that distant
galaxies are receding from us. The solid line and points correspond to an analysis corrected for the sun’s
movementCREDIT. Hubble (1929)

1.1 The smooth and expanding Universe

This subsection describes the smooth first order Universe associated with the concept of a dynamic
cosmos. It highlights the surprising link between this evolution and the stamp collecting-like quest
to quantify its energy contents (1.1.4), through both the concept of distance (1.1.5) and the theory
of gravity (1.1.2).

1.1.1 The expansion

The expansion of the Universe is perhaps one of the most startling yet central concepts in all of
modern cosmology. There are a number of direct and indirect methods to infer this expansion with
the clearest being through the Doppler effect.

Elements and their atoms have characteristic energy levels governed by quantum theory. A
transition between these energy levels is the result of an emission or absorption of a discrete and
specific packet of light energy. This definite energy has a fixed corresponding wavelength known

for each element and their energy levels in the rest frame. However, for a moving object, such
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as a galaxy containing the element, this wavelength will be shifteBoppler shifte¢ towards
one end of the spectrum. For an object moving away from an observer the succession of peaks
from an emitted wavelengtk.,,, will become more sparse thus shifting the observed wavelength
Aobs towards the red end of the spectrum; thatregjshifting the light. Conversely, an object
approaching the observer suffers a crowding of its light's peaks and troughs and subsequently it is
blueshifted.

Similarly, Vesto Slipher and Edwin Hubble, after years of observation, discovered that distant
galaxies tend to recede from every observer with a velacjiyoportional to the relative distance

d (Hubble 1929). This has been enthusiastically referred to as Hubble’s law,
v = HQJ (1.1

where Hy is the Hubble constant. The early emergence of this trend can be seen in Figure 1.1.
Since then determiningly has been a challenging but tantalising task with reétrible Space
Telescopameasurements proposid, = 72 + 8 kms~ 'Mpc~! (Freedmaret al. 2001) and

Hy = 74.2 4+ 3.6 kms~'Mpc~! (Riesset al. 2009). This overall recession of distant objects—the

expansion of the Universe—has led us to define the redshift

1 4= Aobs _ Aobs (12)

Aem Qem

wherea = a(t), the scale factor, literally describes a relative scale for the expansion. Most

remarkably we might now presuppose that any Universe that is expanding must have at some
point been arbitrarily small. Indeed, we now have complementary and consistent evidence of a
Universe with a beginning (within the bounds of everyday language), where recent data insists on

a present age df3.69 + 0.13 billion years (Dunkleyet al. 2009).

1.1.2 General Relativity

In order to accurately describe the expansion of the previous section it is essential to have a fully
viable and working theory of gravity. Conventionally this is fulfilled by general relativity.

Originally underlined by Bernhard Riemann and later expanded by Albert Einstein the theory
uses the concept of gravity not as a force but as a representation of the geometry, or the curva-
ture, of space-time. This geometry is described by an entity known as the metric that relates dis-
tances between coordinate points. Any test particle moving through such a geometry will follow a
geodesic (a generalisation of a ‘straight’ line in a curved space) and have its motion subsequently

affected. Specifically, general relativity associates gravity to the metric and pertains the existence
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of mass or energy to the distortion of the surrounding spacetime. This is encapsulated in Einstein’s

field equations,

1
RW — ZglR — f%TW’ (1.3)
2 A

where R*¥ and R, which describe the curvature, are the Ricci tensor and scalar, respectively,
andT*¥ is the energy-momentum tensor. Also present, and implicit witkiti and R, is the

4 x 4 symmetric metricg*”. The Greek indices run from the temporal (0) to the three spatial
components (1, 2, 3).

To retrieve our expanding cosmology we might start with a metric such as,
ds? = —c2dt? + Gij dz’ da’ (1.4)

where the spatial metric (for a constant time slice) is giverypy The form of this metric is
heavily restrained by the fact that observers perceive the cosmic microwave background (CMB)
to be astonishingly isotropic. Different parts of the background, which are now separated by large
fractions of the observable Universe, are virtually identical to several par€s iafter subtracting

the dipole contribution. Therefore for any constant time slice the Universe should be remarkably
homogeneous. Likewisg;;, which describes the geometry of the space, should also be close
to homogeneity. Indeed, if there exists both isotropy and homogeneity the full metric can be
described at all times by the Friedmann-Robertson-Walker metric,

dr?
1 — kr?

ds? = ¢ de? + aft)? + 72 d6° + rsin0 d? (1.5)

wherek is the curvature of the current time slice and | set 1 from here on.
The evolution of the metric (Eq. 1.5) is governed by Einstein’s equations (Eq. 1.3) and depends
on the contents of the energy-momentum tensor. For a perfect and isotropic fluid this can be

detailed by,

T = (1.6)

o O O 0
o o O

0 O
P 0
0 P
0o 0 P

whereP is the pressure andis the energy/mass density. This configuration yields two indepen-

dent equations. The time-timg & v = 0) part of the Einstein equation provides the Friedmann
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equation,

, (a2 87G k
1= (2) = prora — 5. L.7)

with piota1 = p(a) containing contributions from all the energy components. Secondly, the space-
space = v = 1,2, 3) part of the Einstein equations (with the above Friedmann equation sub-

tracted) gives the acceleration equation,

a 4ma

S == (p+sp). (1.8)

Remembering that the scale factor gives us a measure of the Universe’s expansion one can see
that its very evolution and dynamics depend on the energy contents. This is a powerful reason
therefore to quantify and understand the energy contents within the cosmos; to understand how
it started, how it is evolving and ultimately what might happen inexorably in the future. Viewed
another way, if we examine the expansion history in detail we might be abiéetdhe properties

of any known, or unknown, matter constituents. Accordingly, to interpret an equation such as (Eq.

1.7) we must understand the evolution of any flyide) with expansion (Section 1.1.4).

1.1.3 Geometry

In the aforementioned Friedmann equation (Eq. 1.7) there is a certain vatyg.othat results
in k = 0 for a setH. This is widely known as theritical density

_ 3H?

- (1.9)

PC(t)

It is therefore enormously convenient to express any matter densities as a fraction of this critical
densityQ2(t) = p/p.. In this way if the total matter densitf;1,; = 1 thenk = 0 and the
Universe will have a flat geometry. Physically this is represented by Euclidean geometry and
states, for example, that angles within a triangle add&® degrees. If we have more matter
Qiotal > 1 We findk > 0 and we acquire spherical geometry. Interestingly in this case the internal
angles of a triangle are greater thes) degrees. Alternatively if there is less matt@f,;.; < 1,
we find the three angles are smaller th&0 degrees. This is embodied by hyperbolic geometry
and subsequently < 0. Note that it is thisk that features in the metric of Equation 1.5. These
three geometries are displayed clearly in Figure 1.2.

Observationally the Universe is seen to be very close to flat with Koneatsiu(2009) finding
Q= 1 — Quoral = —0.004970095¢. It is commonly thought that sufficient evidence for a flat

Universe arises solely from the main acoustic peak in the CMB (Section 1.2.2.2 and Figure 1.4).
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Figure 1.2:The three possible geometries for the Universe and their relation to the total densfgr

Q > 1the geometry is described as spherical and 0 similarly to the surface of the Earth (top). When
the density is sub-critical < 1, hyperbolic geometry ensues ahd< 1 (middle). Finally, wher2 = 1

the Universe is said to be flat (= 0) and correspondingly follows flat, or Euclidean, geometry (bottom).
Also shown is the relation between an apparent angle and geometry as described in theR xtr:
http://map.gsfc.nasa.gov/imedi@ary Hinshaw and Nada

This is the scale of the most prominent fluctuations. A spherical (hyperbolic) geometry will act

to increase (decrease) the apparent angulat sizeharacteristic temperature fluctuations thus
shifting the position of the first peak on a scale of size. However, as the CMB effectively measures
the angular diameter distance (Section 1.1.5) to an isolated redshift and the position of the first
peak is also dependent on the sound horizon at decoupling it is degenerate with other parameters
that influence the expansion history and horizon (pressure) scale at that time, inéhdiagd

Q. By introducing probes of this history it is possible to break the degeneracy and retrieve the
tight bound as illustrated above. It is therefore common to assume flatness in many cosmological

analyses and similarly | follow this procedure for simplicity and clarity.

As can be seen in Figure 1.2.
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1.1.4 The Energy Contents

A simple rearrangement of Equation 1.7 and 1.8 allows us to produce a third, but dependent,

Einstein equation for the density evolution. This is known as the fluid equation,
p+39(p+P) —0. (1.10)
a

Alternatively one can derive this directly by ensuring mass-energy conservation in the field equa-
tions. This is obtained by forcing the covariant derivative of the energy-momentum tensor to be
zerd: V,T}' = 0. The derivative arises from a generalisation of the EQfoz7 = 0 and con-
tinuity equations)p/0t + V.(pu) = 0. Moreover, the covariant part allows us to see whether a
guantity has changed along a curve, say, independent to the change from a non-inertial coordinate
system.

We can now solve fop provided we know how to treat the pressure term. This is different for

the different forms of matter.

1.1.4.1 Baryons

In terms offamiliarity the primary form of matter is baryonic. Strictly speaking this is matter com-
posed of three quark particles. However, for the purposes of cosmology this is extended to include
the electron. Therefore all atoms, all of ourselves and all of the structures in our surroundings are
baryonic.

We can quantify the energk of these baryons if we know both the rest massand their
momentg by E? = m? + p?. Generally speaking, in the later stages of the Universe’s evolution
matter tends to be less energetic and has small momenta relative to its rest mass. In this case we
say that it behaves non-relativistically and subsequently it is a good approximation to assume it
exerts negligible pressui ~ 0.

Inserting this into the fluid equation (Eq. 1.10) we can solvefirst findingp+3%p =0and
finally p oc 1/a3. This implies, as we might have guessed, that the density drops in proportion to
the volume. Despite the apparent abundance of baryons recent studies sugghsttitat441 +
0.0030 (Dunkleyet al.2009), i.e. baryons comprise ordy 5% of the entire energy contents.

1.1.4.2 Radiation

Again in terms of its apparent ubiquitousness radiation is an important constituent in the cosmos.

In the electromagnetic form itis literally our primary tool for observing the Universe. Observations

2Note that there is a summation over the repeatéttex.
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in the visible, infrared, X-ray, radio and microwave allow us to infer the expansion highlighted in
Section 1.1.1, the properties of galaxies such as star formation and their mergers, the properties of
clusters and their gas, and the small fluctuations in thermal equilibrium present in the very early
Universe —to name a few.

The pressure of radiation is given By= p/3. Entering this into the fluid equation once more
(Equation 1.10) renders+ 4%,0 = 0 and finallyp < 1/a*. This implies, as one might not have
guessed, that the energy density for radiation falls faster than matter. Physically the extra factor
can be attributed to a redshifting of the radiation’s wavelength with expansion. Furthermore, via
the Stefan-Boltzmann law, which states that the energy density of black body radiation is given by
e o< T*, the temperature of the CMB, for example, is seen to decrease in accordangexwithia.

It is expected therefore that the early and energetic Universe was dominated by radiation with the
faster decrease in density later giving rise to matter domination. This débhsity monopolised
by the energy in the microwave background and is inferred from its temperdiure £.728 K)

giving Qr ~ 5 x 1075,

1.1.4.3 Neutrinos

First postulated by Wolfgang Pauli in 1930 to conserve energy and momenta in beta decay the neu-
trino was long thought to be massless. However, it was later observed by the Super-Kamiokande
experiment that there are oscillations between the neutrino flavours (Fekwdal998). This
indicates that the neutrino species must have finite mass eigenstates. Furthermore, the thermal
equilibrium that briefly occurred between the early primordial plasma and the cosmic neutrino
background ensures the neutrino to be particularly abundant. One might suggest therefore that
neutrinos could account for a large fraction of the missing energy density, di%ing ~ 1.
Quantifying(2,, or equivalently) ~ m,,, the sum of the individual masses, is considered in detail in
Chapter 4. Unfortunately it is found that while the neutrino contributes significantly to cosmolog-
ical phenomena it does not contribute sufficiently to the total energy density 0.01.

The neutrino is not only of great cosmological interest but also an astrophysical one. For
example, in the process of a core collapse superro®8% of the energy released is via neutrinos.
These are produced both thermally and in the formation of a neutrorpsta¢. — n + .. The
photons formed can take considerable time to diffuse through the extreme density of the collapsing
material. On the contrary the neutrinos barely interact with the infalling matter and free-stream
away from the object. This allows the possibility of using neutrino burst detections as an early

warning system in order to observe an entire supernova intensity profile with time.
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1.1.4.4 Dark Matter

It is now becoming increasingly apparent that in order to have a flat Universe, as stated in Sec-
tion 1.1.3, there must be a previousipmknowncontribution to the energy density. Explicitly
speaking, if we add up all the baryofig, photon2z and neutrinos$?, described above we can

not account for 95% of the cosmos.

One potential insight concerns the dynamics of galaxies. It has long been noted that their
high rotation velocities require an inordinate amount of mass relative to that observed as visible
matter (in any part of the electromagnetic spectrum). Put simply: there must be large quantities
of extra matter. This is known agark matterand by definition it is not expected to interact
electromagnetically. It is often assumed to be collisionless and non-relativistic (aR0rs®)
and is therefore frequently referred to @dd dark matter (CDM). Subsequently its density
evolves like baryonic mattex 1/a® and so too comes to dominance over the early radiation era.

A host of independent cosmological probes from the CMB to the clustering of galaxies (Chapter 3)
all agree on a consistent value$f + 2, = Q,, ~ 0.25.

As the existence of dark matter in galaxies has been deduced purely on gravitational grounds
it has been suggested that the effect could be the result of a modification to gravity. For example,
Milgrom (1983) has proposed an acceleration segldelow which Newtonian dynamics are
modified to explain the galactic rotation curves. This is called Modified Newtonian Dynamics
(MOND). On the other hand recent data from a merging cluster systerButled Cluster-has cast
some doubt on this (Clowet al. 2006). The cluster system appears to show a distinct separation
in baryonic and dark matter caused by electromagnetic collisions in the former. This dissociation
is not present in MOND and the theory seems to require neutrinosawizheV mass to remain
viable. | undertake a cosmological constraint of the neutrino in Chapter 4 and show this mass

range to be unlikely—consistent with the community.

1.1.45 Dark Energy

Despite the fact that the energy budget is increasing there is=stifi% that is completely unac-
counted for. This additional form of missing matter is caltiedlk energyand it is expected to have
the most peculiar of properties.

Just over a decade ago it was empirically found that the expansion of the Universe is not
slowing down, as one would expect under the attraction of the aforementioned matter, but instead

accelerating! This was achieved by probing the luminosity distance-redshift relation (see Sec-
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tion 1.1.5) with observations of type 1a supernovae (E.g. Ritak (1998) and Perlmuttest al.
(1999)).

By looking at the acceleration equation (Eq. 1.8) it is possible to see the unusual condition
under which this acceleration might occur. For this phenomenon we requiré thad and so
(p + 3P) < 0. Now given that we know nothing about this hypothetical fluid we have very little
chance of guessing its pressure term. Instead we can simply parameterise the pressure in terms of
the densityP = wp, where the constant of proportionality is known as the equation of state.
Under this terminologyw = 1/3 for radiation andv = 0 for the baryons and dark matter. Insert-
ing this expression into the condition above we fifd + 3w) < 0. After some rearrangement

this can be reduced to < —1/3; the missing energy component must have a negative pressure.

The Cosmological Constant
The cosmological constant was initially introduced by Einstein as a modification to the

original general relativity theory in order to accomplish a balanced and stationary Universe,
1
RN — EQWR + Agh” = 8rGTH". (1.11)

This idea temporarily vanished with the evidence of the Hubble expansion but has since reap-
peared as a way of explaining dark energy. In this specific case the equation of state is constant and
is exactly equal te-1. The resulting solution to the fluid equation giyes- constant. As a result
the density does not fall off with expansion and will come to dominate over matter. Together with
dark matter this has become a popular, although theoretically unfulfilled, paradigm and is often
referred to as\C' D M. Complementary estimates indicd@ ~ 0.75 thus fulfilling the missing
energy budget.

Similarly to dark matter the existence of dark energy has been invoked assuming an underlying
theory of gravity: general relativity. It could be that under the circumstances of interest this theory
is a poor description of gravitational phenomena and that a modification to this theory will explain

the acceleration naturally. This is the subject of Chapter 2.

1.1.5 Distance

Throughout the introduction of the metric and of the scale factor we have not explicitly addressed
the idea of distance in an expanding background. Clearly, measuring distance in such a setting

could be a challenging yet subtle task and accordingly there are several forms to consider:
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Comoving Distance

Any observer that perceives the CMB to be isotrépg&a comovingobserver. They are co-
moving in the sense that their motion is determined entirely by the Hubble flow and expansion.
Imagine now that earlier in the Universe’s expansion history we had placed a grid over comoving
observers such that it too was carried along with the expansion. Therefore on a given grid axis the
distance between two observers would not change. This isaim®ving distance

One coordinate system that does not expand with the Hubble flow is that associated with the
physical distance. The physical)(and comoving £) scales are related simply by= a(t)x.
Therefore, the comoving distance between a distant object and ourselves can be calculated as,

to qt 1 da
X(G)Z/t a(t):/a 2 (@) (1.12)

a

where the scale factor today is defined to be unity=t 1) but becomes vanishingly smadi (- 0)
towards the Big Bang. Thél(a) factor is the solution to the Friedmann equation (Eq. 1.7)
depending on all the constituent matter densities.

If we increase the lower limit in the above integral such that a = 0 this will represent the

comoving limit of causality. As such it is often referred to as¢benoving horizorgn).

Luminosity Distance

A pragmatic approach to inferring distance in cosmology is to consider an object for which
the intrinsic luminosityL is known. One can then make an estimate of the distdrmetaking a
measurement of its observed fllix For an isotropic source the energy is spread evenly over the

surface of a sphere and so the quantities of interest are related by,

L
F=—.
4 d?

This is valid in a static or comoving spacé £ x(a) andL = L(x)) but needs to be generalised

(1.13)

for an expanding one.
Working from a comoving coordinate system the observed luminosity in the physical coordi-
natesL, is diminished relatively by both the Doppler shift of emission and a relativistic redshift.

Both of these decreadg, by a factor of(1 + z) giving,

Lo

F=—i7-—. 1.14
Ax2(1 + z)? (1.14)

3Obviously only an observer with poor instrumentation can observe the CMB to be truely isotropic on all scales.
This refers to a redshifting and blueshifting of the entire CMB produced by relative motion thus resultidgpiea

anisotropy.
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Equating this expression to the earlier flux equation (Eq. 1.13)uth@osity distance;, can be

interpreted as,

dp = x(1+2) = % (1.15)

In practise, this distance measure is applicable to type 1a supernovae. These are a specific form
of thermonuclear explosion resulting in the death of a star. In particular they are thought to arise
from the accretion of matter onto a white dwarf in a binary system. At a definite mass (the Chan-
drasekhar mass) the star is unable to support itself and collapses thus increasing its temperature. At
this moment the star becomes capable of carbon fusion and obliterates itself in a runaway process
releasing large quantities of stellar material, photons and neutrinos.

The prominent point is that as this is expected to occur at the same mass each supernova might
be expected to have the same intrinsic luminosity. In fact, the intrinsic luminosity is dependent on
the observed intensity profile of the exploding star. In this way by measuring the observed bright-
ness of supernovae in the sky it is possible to examine the luminosity distance-redshift relation and
hence probe models of the expansion history in the process. This is performed in Section 2.5.2

and 4.3 in order to reduce the parameter degeneracies of the model in question.

Angular Diameter Distance
Alternatively, one can measure thagular diameter distancé4. This is defined as the ratio
of a body’s (potentially known or theorised) projected magnitude on thé &kyts angular size

0% i.e.,
da=1/6. (1.16)

In comoving space the projected scale of the objeltdsand the comoving distande the object
is x(a). As the subtended angle is the ratio of the transverse and radial distdreés|a)/x(a).

Inserting this into Equation 1.16 enables a calculation of the angular diameter distance,

X
da = = ay. 1.17
A7 + 2 X ( )

This can therefore be applied whenever we know or whenever we can theorise the extent of some-
thing in the sky. This includes, for example, the characteristic scale of acoustic fluctuations in
the CMB or their remnants in the galaxy clustering pattern known as baryon acoustic oscillations
(BAOs). Again, this is encountered in Section 2.5.2 and 4.3 to relate the available data to proposed

cosmological parameters, such(as and Hy, sequentially through4(a), x(a) andH (a).

*In radians.
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In addition, it should be noted that in the potential presence of curvature (Section 1.1.3) the

angular diameter distance is generalised to,

a sin[y/ —QrHox] Q<0

dp = ———
Ho/|Q%| | sinh[v/QeHox] Q>0

with Qr =1 — Qiotal-

1.1.6 Inflation

Except for the nature of dark matter and dark energy there are several other major issues that face
the Big Bang model we have built up so far. These can be summarised as the flatness, horizon,

structure and monopole problems:

Flatness
Using the expression for the critical densjty (Eq. 1.9), the Friedmann equation (Eq. 1.7)

can be recast succinctly into,

I

2a) ~ 1l = - (1.18)

From this it is clear that if the total densify(«) is identical to one then it persists as equal to one
for the entire evolution of the Universe. However, it is also clear that this is an unstable solution;
for in the presence of matter or radiation, s@y(a) — 1| grows with evolution. Therefore, any
deviation from a flat geometry will give rise to an ever more curved geometry. Indeed, under the
assumption of matter dominatioft(a) — 1] £3.

With the above reasoning and the empirical evidence(that: 0 one can argue that the early
Universe { ~ 10'7 seconds ago) must have besxceptionallyflat! This can be interpreted as
rather fine-tuned given that even a slight change in the early value leads to wild differences in

today’s observable cosmology.

Horizon

When deducing the form of a cosmological metric in Section 1.1.2 we noted that the Universe,
and thus the metric, are extremely isotropic even on large scales. Evident in the CMB temperature
we can attribute this to an early Universe that was hot and in thermal equilibrium. However, as
light from widely separate regions has been traveling to us from the edges of our observable hori-

zon, since this equilibrium epoch, we must conclude that these areas are not causally connected!
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For this reason they could not have been in thermal equilibrium to produce the uniformity.

Structure

The small fluctuations in the CMB thermal bath are believed to be the progenitors of galaxies,
clusters and voids we observe now. Although, to obtain the current large scale structure there must
have been fluctuations in the density spectrum on scales that previously were outside the horizon.

Again, causal processes could not have caused these perturbations.

Monopoles

A magnetic monopole is a hypothetical particle with oohepole. These have been predicted
by a number of Grand Unified Theories (GUTs) and are expected to be particularly numerous and
massive. Therefore these particles would have been non-relativistic far earlier than ordinary bary-
onic matter giving them, on average, a much slower density reduction with regards to radiation or
any other matter component. However, the problem is that these particles are at least rare enough

not to have been observed to date—unless of course, they do not exist at all.

The solution:

A period of prodigious and extreme expansion in the very early Universel()—3* seconds),
called Inflation, has since been invoked to explain these issues and yet preserve the successful
features of the Big Bang model.

The enormous increase in the scale factor with time blows up the denominator in Equation 1.18
thus driving the geometry decisively towards flatness. If there is ample increase at these early
times this can be sufficient to ke€p, close to zero as observed today, despite all the consequent
departure from flatness i — 1|. Furthermore, this rapid period of inflation takes a region of
causally connected and thermalised space and amplifies it beyond the boundaries of our current
observable Universe. In this way widely separated regions on thbakgbeen in causal con-
tact. The observed large scale homogeneity is then a result of smaller scale homogeneity being
frozen across the sky with post-inflation mechanisms incapable of altering it in a causal way. The
inflation also allows for the inhomogeneous structure we observe today as the inflationary period
enables primordially generated quantum fluctuations to grow to cosmological scales. Many theo-
ries of inflation predict these fluctuations to be Gaussian and this is seen to be consistent with the
CMB. Finally, if the aforementioned magnetic monopoles are produced at an energy above that

corresponding to the end of inflation their observed density will be diminished resulting from a
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dilution with inflationary expansion.

1.2 The not-so-smooth and expanding Universe

This subsection describes the departures from isotropy and homogeneity associated with the growth
of structure in the Universe. ltillustrates the growth of over-densities (1.2.1), the statistical quanti-
ties that describe them (1.2.2) and finally the probes that are sensitive to these fluctuations (1.2.2.1

and 1.2.2.2).

1.2.1 Inhomogeneities

In our earlier treatment of the Friedmann-Robertson-Walker metric (Eq. 1.5) we observed that
the Universe was close to homogeneous on large scales—effectively pervaded by a smooth ho-
mogeneous fluid. However, the field of astronomy is interesting because our present and local
environment is decidedly inhomogeneous; it is filled with clusters, galaxies and a whole host of
astrophysical entities.

Earlier | alluded to the notion that inflation takes primordial quantum fluctuations and amplifies
them to astrophysical and cosmological size. These and the resulting irregularities in the CMB
are the seeds of this fascinating structure. It is important to notice though that there is a large
discrepancy in the magnitude of these perturbations. As stated before, the CMB fluctuations are
very small, whereas a galaxy cluster, for example, can be of order a hundred times the mean density
of the Universe. The mechanism that provides this growth, from seed to structgrayitational
instability.

An initially over-dense region can be considered to have two competing forces acting on it.
Firstly, a mutual gravitational attraction will act towards the centre of the mass attempting to in-
crease the overdensity. This is contested by a pressure force acting against gravity. The pressure
can be provided, for example, by the thermal motion of the gravitating particles under consider-
ation. This can be seen prominently in the plasma of the very early Universe. In the radiation
dominated Universe the photons will have a small mean free path due to regular Thomson scat-
tering with free electrons. The entirety of the electron population will be free because the mean
thermal energy exceeds the hydrogen binding energy. Therefore, the electron and photon fluids
are tightly coupled, forming in the process a photon-baryon plasma. Due to the domination of the
radiation energy density in this epoch the photons dominate the bulk of the gravitational force.

Collapsing under this force the photons, and therefore the baryon fluid, will eventually oscillate
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due to the radiation’s pressure. Over large scales this pressure is unable to act due to a finite sound
speed and as a result the perturbation can continue to increase with gravity.

Mathematically this can be derived from perturbed energy-momentum conservation in the Ein-
stein Equations. This is equivalent to utilising the Euler and continuity (conservation) equations on

the first order perturbed quantitiefo( P, ' anddw) and substituting for the Poisson equation,
k%) = —4nGa®po. (1.19)

Here P, ¥ andv are the pressure, velocity and potential, respectively. The over-densay be
further written in terms of the mean density in the Univepsand is referred to as the density

contrast,

5(7) = ”(’71_)_5. (1.20)

Combining this all together yields Equation (1.21). This expression is analogous to the physical
explanation above concerning radiation pressure and gravitational instabilityk’Tieem is a
consequence of writing the density contrast in Fourier spaceadéscribes the sound speed of

the fluid.
. 2
§+2H5 = (— 5k + 4mGpo)s. (1.21)
a

Whether the perturbation grows or not therefore depends on the overall sign of the right hand side.

The associated scalg = 27/ k) for this is called the Jeans length and is given by,

T \3
Ay = CS(GTO) . (1.22)
In line with the physical interpretation (in the radiation dominated era) when\ ; gravitational
collapse dominates and the perturbation can increase. Otherwise,\wken ;, the pressure
remains substantial and the perturbations do not grow.

During matter domination, on the other hand, the radiation is incapable of governing the grav-
itational dynamics. This role is taken over by the dark matter which, as we noted earlier (Section
1.1.4.4), has negligible pressur® (~ 0 = c¢? ~ 0). As a result the gravitational attraction
becomes uncontested and the perturbations grow on all scales; evolving eventually to become a

galaxy, pulsar or even Earth-like planet.

1.2.2 The Power Spectrum

A given model for cosmology is not expected to make an exact prediction as to the specific location
of an over-density or the precise temperature of a CMB fluctuation at a point in the sky. It is,

however, expected to make a prediction for the statistical distribution of these fluctuations.
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In cosmology a valuable statistical entity (and the one most commonly adopted) is the power
spectrum (Blackman & Tukey (1959), Yu & Peebles (1969) and Peebles (1973)). This effectively
describes how much a field changes on varying scales. Specifically, if a field has fluctuations that
are changing significantly over fixed separations, such that the variance of these fluctuations are
large, the power spectrum would be sizable over this scale too. Conversely, if the field is not
varying on a given scale the power spectrum will be small. Accordingly, the power spectrum is

defined through,
< 8(k)o* (k) >= (2m)>P(k)6" (k — k) (1.23)

wheres” is the Dirac delta functionP(k) is the power spectrum and .. > is the ensemble
average of a realisation of the field The ensemble average is over many realisations of the field
each with identical statistical properties. Propitiously, if the underlying field is a random Gaussian
field then the power spectrum succeeds in describing and encapsulating the whole of the field.
Indeed, if a superposition of many independent random processes produced the fluctuations in
the early Universe, the resulting field would be Gaussian as a consequence of the Central Limit
Theorem. Such a mechanism could be provided by quantum fluctuations during inflation, for

example.

1.2.2.1 Matter Power Spectrum

The matter power spectrum can be calculated theoretically by considering the growth of structure
on different scales as described in Section 1.2.1. We can get insight into the shape of this function
by first noting that most theories of inflation predict the initial (post-inflation) power spectrum to

be in the form of a power law,
Pi(k) o< k™. (1.24)

As the matter power spectrum is usually plotted in log-log space this initial power spectrum is a
diagonal straight line. From the earlier discussion we know that on the smallest scaleg)large
the perturbations are unable to grow. However, large scales (sjralé beyond the influence of
the radiation pressure and are free to evolve. The extra growth leads to a more clustered field and
so the power spectrum subsequently increases (at that scale). The net result is for the straight line
power law to bend, or turnover, at the interface of these two conditions.

With time the pressure/sound wave propagates to the larger perturbations. Obviously this halts

any evolution at this scale and so the amplitude of the power spectrum stabilises, shifting the
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Figure 1.3: Left panel: The distribution of nearly one million galaxies in the local Universe as seen
by the Sloan Digital Sky Survey (SDSS). The dark wedges result from dust obscuration from our own
Galaxy. CREDIT: http://www.sdss.orgM. Blanton and the SD$SRight panel: The present day matter
power spectrunP(k), calculated using CAMB (Lewist al. 2000), quantifies how the underlying mass
distribution varies across different scales. The turnover of the power spectrum, the baryonic wiggles and
the non-linear evolution (linear evolution is dashed) are clearly evident at progressively smaller scales.

turnover of the spectrum to larger and larger scales (smaller and siallEnally, at the onset of

matter domination, when all the scales are able to evolve, the shape of the power spectrum becomes
fixed. The resultant present day power spectra is illustrated in the right panel of Figure 1.3. To
reiterate, the x-axis is expressed in the wavenumbemnd hence small scales appear to the right

of the plot.

Clearly evident in Figure 1.3 are a succession of wiggles at slightly smaller scales than the
turnover. This is a consequence of the photon-baryon fluid set up in the early Universe. In the
absence of pressure later in the matter dominated era the baryons will be left in a shell at a fixed
radius from the original centre of the over-density. As the dark matter is not coupled electromag-
netically to either photon nor baryon it will still reside mainly at this centre. These two regions
will subsequently attract matter gravitationally, eventually forming into galaxies over this pref-
erential scale. The resulting signatures in the power spectrum are befittingly referred to as the
baryon acoustic oscillations (BAOSs). In addition, their calculable scale on the sky enables a clean

measurement of the angular diameter distaf)céSection 1.1.5).
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The matter power spectrum can be observed by measuring the angular and radial positions
of galaxies. The radial position is necessarily a redshift observation and hence a series of galaxy
measurements is often referred to as a galaxy or redshift survey. One such survey-the Sloan
Digital Sky Survey (SDSS)-is illustrated in the left panel of Figure 1.3. Strictly speaking such a
measurement is a measurement ofdglakxypower spectrum as we observe, by definition, only
the luminous matter. If these galaxies linearly trace the dark matter distribution it is possible to

relate the two spectra,
P,(k,2) = b* P (k, 2) (1.25)

where P, (k, z) is the galaxy power spectrunk}, (k, z) is the matter power spectrum ands
called the bias. Our ignorance with respect to this bias represents one of the major uncertainties
in a galaxy survey measurement and, at the very léast)st be included and marginalised (Sec-
tion 1.3.1) over in any cosmological analysis. Generally this biasing is expected to be a function
of redshift and of scalé = b(k, z).

In Chapter 3 | construct a new measurement of the power spectrum based on the most recent
SDSS galaxy catalogue (DR7) and use this to place constraints on the fattend baryon
fo = Qp/Q, densities.

Non-linear Matter Power Spectrum

As a given over-density continues to collapse the density contrast (Eq. 1.20) will eventu-
ally become of order unitys| ~ 1. This is particularly common over smaller scales in the late
time Universe. At this point linear perturbation theory ceases to be valid. One could calculate
successively higher order perturbations although it inevitably fails to converge. Instead a prag-
matic approach to this issue is to reproduce the non-linear evolution with N-body simulations for
a range of parameters. With this methodology Peacock & Dodds (1996) and &raiti§2003),
for example, have provided a fitting function to map the linearly evolved power spectrum into
the non-linear. The non-linear growth causes an additional increase in the clustering of the matter
field, thus boosting the power spectrum on small scales. The difference in the linear and non-linear
power spectra can be seen distinctively in Figure 1.3 as the dashed and solid lines, respectively.
Some of the issues pertaining to the use and applicability of these universally implemented fitting

functions are discussed in Chapter 5.

Weak Gravitational Lensing
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Figure 1.4: Left panel: The temperature fluctuations in the cosmic microwave background radiation
as seen by WMAP. This full-sky map is observed in the V-band (61 Ghz) where the galactic foreground
across the centre (red) is minimal. The linear temperature scale ranges Hwin K to 2004 /K. CREDIT:
http://lambda.gsfc.nasa.ggwmap science tednRight panel: The CMB angular power spectrui,
quantifies how these temperature fluctuations vary across different scale§, Vakies have been calcu-
lated using CAMB (Lewiset al. 2000) and can be matched to the data points to infer an underlying model
as in Dunkleyet al. (2009) and Section 4.2.

Weak gravitational lensing provides an alternative and powerful method to probe the matter
power spectrum. This involves measuring the shapes of galaxies, which have been distorted by the
intervening mass distribution, on route to the observer. Even though this distortisineaning
is a small effect significant cosmological information can be extracted with a statistical analysis.
A more thorough introduction to this cosmological probe is left to Chapter 2 where it is used

extensively.

1.2.2.2 The CMB Power Spectrum

The observed temperature fluctuations in the cosmic microwave background are shown in the left
panel of Figure 1.4. This is quantified statistically by the angular power spectrum and is illustrated
for a representative cosmology in the right panel. The current best fit cosmology has been inferred
in Dunkley et al. (2009) and is explored also Section 4.2. The underlying mechanisms for these

anisotropies can be categorised into those that happened at the time of last scaitariagy (
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anisotropies) and those that have acted siseeqndaranisotropies).

Primary Anisotropies

Acoustic Oscillations

The main physical process in the formation of the anisotropies is once again the oscillation of
the photon-baryon fluid described copiously in Sections 1.2.1 and 1.2.2.1, but with the focus on
the conclusion to the photon perturbations.

While the matter over-densities are collapsing freely during the onset of matter domination the
photons will continue to oscillate in the potential governed by the dark matter. Finally, when the
mean thermal energy is considerably lower than the hydrogen binding energy there is a cessation of
Thomson scattering enabling the photons to free stream. It is this pattern of acoustic oscillations,
at the time of recombination, that we observe today. One particular scale will correspond to an
over-density that has collapsed and is on the verge of oscillating for the first time. As this is
replicated over the entire sky we can expect the power spectrum at this scale to be large. This is
the main acoustic peak in the CMB as seen in Figure 1.4.

Over successively smaller distances there will be perturbations having undergone multiple os-
cillations. These have had time to expand and contract back to maximum density and represent

the series of acoustic peaks to the right of the main bump.

The Sachs-Wolfe effect

A photon observed from an over-dense region will have to climb out of its surrounding poten-
tial well in order to escape. In an under-dense region the photon will instead roll down its local
potential. The overall effect of this is to provide power to the CMB over large scales (small multi-

pole moment). This is known as the Sachs-Wolfe effect.

Silk Damping

At very small scales/ = 800) the anisotropies suffer an exponential damping called Silk
Damping. This is a consequence of an extended period of recombination. During this time pho-
tons diffuse from the denser and therefore hotter regions to the colder less dense areas. In doing
so the electrons too are displaced, dragging protons with them through the Coulomb force. This
effectively smoothes out the perturbations on small scales and so suppresses the associated power

spectrum.
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Secondary Anisotropies

The Integrated Sachs-Wolfe effect (ISW)

Photons that are propagating through the late-time Universe are inevitably incident on some
gravitational potential. As they descend into the potential the photon is gravitationally blueshifted
due to an increase in energy. On departure the photon is redshifted resulting from a loss of energy
in climbing from the potential well. The net effect would seem to be zero. However, this is only
the case for a time independent potential. If it were to decay, for example, the photon would suffer
a net blueshifting; it would have less of a hill to climb out of, than it rolled down in the first place.
Such a decay is expected to occur in the presence of curvature or dark energy.

The overall effect for a photon is the sum from all contributions along the line-of-sight and
is in this sense théntegratedSachs-Wolfe effect. The ISW contributes to the CMB power on
large scales but is sub-dominant to the normal Sachs-Wolfe effect. Evidence for the ISW has been
claimed in a number of sources, such as Rassat. (2007), and can be found through a cross

correlation of the CMB signal with large scale structure.

The Sunyaev-Zeldovich effect

The Sunyaev-Zeldovich (SZ) effect is caused by the inverse Compton scattering of CMB pho-
tons by hot cluster electrons. It has a specific frequency dependence and can therefore be detected
through observations in multiple wavelength bands. Most importantly, as the SZ effect is caused
by scattering its magnitude is redshift independent. This is particularly useful for the SZ as a
cluster finding tool given that it can detect clusters at high redshift just as easily as it can at low
redshift. Accounting for this distortion is particularly important for any CMB analysis at small

scales (high).

Gravitational Lensing of the CMB

In the same way that images of distant galaxies are expected to be distorted by large scale
structure so too are the anisotropies of the CMB, e.g. Seljak (1996) and Lewis & Challinor (2006).
This is a small effect which occurs mainly at highThe overall contribution slightly smoothes

the anisotropic peaks while adding power to the smallest of scales3(00).

As the secondary anisotropies occur at a different point in cosmic evolution and often are the
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result of different physics, they provide a self-contained procedure for breaking the parameter de-
generacies implicit within any isolated cosmological probe. Furthermore, they contain important
information on the late-time Universe, such as the era of dark energy dominatioh. In this

way they are a welcome consistency check with galaxy clustering and weak lensing, for example.

1.3 The Cosmological Model

This subsection describes the role of the statistical method in inferring physical components or
parameters in the cosmological model. It highlights how we relate data to a model given any prior

information we might have (1.3.1) and specifically the notion of a best fit and its error (1.3.2).

1.3.1 Bayes’ Theorem

We start with what initially appears to be an abstract exercise in rearranging probabilities but is, in

fact, a powerful method for statistical inference:

If there are two quantitieX andY then the product rule within probability simply states that
the probability ofX andY both being true—given some other background informaBeis equal

to the probability thafX is truegiventhatY” is true, multiplied by the probability thaf is true,
P(X,Y|B) = P(X|Y,B) x P(Y|B). (1.26)

Obviously we can interchange the labels forand Y without altering the truthfulness of this

statement, i.e., there is a simple symmetry,
P(Y,X|B) = P(Y|X,B) x P(X|B). (1.27)

Even more apparent is that the probability)6fandY” being trueP (Y, X |B) does not depend on
the order we say or write them either. Therefore, the two expressions above are equivalent. This
enables us to derive the far-reaching Bayes' theorem,

Y|X, B) x P(X|B)
P(Y|B)

P(X|Y,B) = il (1.28)

In its present guise Bayes’ theorem certainly does not seem so instrumental. However, we can

write this in the slightly more provocative manner,

P(O{d;}, B) « P({d;}|©, B) x P(6]B) (1.29)
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if we callY the data{d; }) and X the hypothesis®). This new form of Bayes’ theorem now states

that the probability that an hypothesis is true given the data is proportional to the probability of
obtaining the data assuming the hypothesis! This is particularly potent because it is our intention as
cosmologists to derive the former probability (the posterior). For example, what is the probability
that2,, = 0.25 (hypothesis) given an angular power spectrum (data)? Moreover, it allows an
estimate of this quantity because we can often calculate the second probability (the likelihood). In
this case, what is the probability of getting that angular power spectrum giyes 0.25?

Notice that the hypothesis does not have to be a single propositionXljkeut is free to
represent a variable, parameter or series of parameters in a model. The probability is therefore a
probability density function.

The second term in Equation 1.29 is known as the pfig®|B). This contains any informa-
tion that we might know (or not know) about the chosen varidgiorethe analysis. This might

be a parameter range introduced via common sense or physical reasoning. For example,

P(Qm|B) = b =0 (1.30)
0 otherwise
where the background informatiaB is that there isomematter in the Universe. By itself the
prior encapsulates our level of knowledge about the hypothesis with no (extra) data. The shape of
this function is subsequently altered in the light of more empirical information by the likelihood
function.
The constant of proportionality in Bayes’ theorem (Eg. 1.29) was introduced above because
we neglected the evidence teff{{d;}). This will not alter an estimate of the probability for a
parameter as it does not depend on the hypothesis; it merely changes the normalisation scale. It

can, however, be vital in differentiating between models.

Marginalisation

In general there may be a model with several parameters for which it is possible to calculate the
posterior distribution. However, it may be that we are really only interested in one of them. Using
a two parameter example, we could be interested in some physical &ntityat is necessarily
associated with another parameefa nuisance parameter). To understand the physics entailed
by X it would be desirable to obtain the posterior just for this parameter. Obviously we can not
fix the value ofY” as this is tantamount to taking an arbitrary slice through the 2D posterior. A

less biased 1D posterior treats the probabilityXoirrespectiveof Y, allowing it to vary through a
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range of values. This procedure is marginalisation and can be derived with a little more algebra.

If the probability thatX is true andY is not true P(X,Y|B) is added to Equation 1.27 it is

possible to obtain the expression,
P(X,Y|B)+ P(X,Y|B) = [P(Y|X, B) + P(Y|X, B)] x P(X|B). (1.31)

Obviously the term in the square brackets is equal to one because in the discrete case Y is either
true or not true. However, if instead Y represents a series of different outcomes one is free to
simply add more terms, lik&(X, Y1|B) or P(X, Y3|B), to the equation above. If the exhaustive
range of possibilities fo” are added, the term in the square brackets will expand, becoming
eventually equal to one again. Therefore,

N

Y P(X,Yi|B) = P(X|B). (1.32)

=1
In the circumstance that is a variable or parameter and is not discrete, the left hand expression

in Equation 1.32 tends to an integral of the joint posterior distribufid®(X,Y|B)dY. The
distribution P(X |B) is thus the posterior of the relevant quantXy having been marginalised

overY.

1.3.2 Parameter Estimation
1.3.2.1 The Best Fit

The best fit is the parameter value we most believe to be true. It can therefore be found by locating
the value of the parameter for which the posterior distribution is largest. If the posterior is a
continuous function of a paramet&tr this best fit point is the value for which the derivative, with
respect taX, is zero. In the case of a flat prior this is equivalent to findingmiagimum likelihood

The probability of making a single observationgiven some signad and measurement error

o1 (e.g. the likelihood) is often assumed to take the Gaussian form,

exp( — (012;;)2) (1.33)

P(oy]s, o1, B) = ——
V2rot
For a multitude of measurements the likelihood generaliséy{o; }|s, 0;, B) for the set of data
points{o; }. However, two quantities are independenPifX,Y) = P(X) x P(Y). Therefore,

if the series of measurements are also independent (i.e. they do not affect one another) the joint

likelihood can be expressed as a product of the individual Gaussians,

P({o}]s.0:.B) =~ exp( - zN: (0_5)2) (1.34)
(271-)5 Hfil 0; i=1 2012
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whereNN is the number of data points. It is common, however, to work with the logarithm of the

likelihood and so this can be written,

= (0 — 5)°
In L = constant — Z 1272
i=1 i

(1.35)

The second term on the right is often referred to asythe Finding the best fit parameters by
maximising the likelihood is thus the equivalent to minimisig$y This seems rather logical
because we want the value oto be such that the net difference between itself and the data is

small. Evaluatingdy?/ ds = 0 results in the rather intuitive, = ZZN 0;/N.

1.3.2.2 Uncertainty in the Estimate

The precision of any best fit value depends on the behaviour of the posterior in the local environ-
ment of the most likely value. A sharply peaked function simply states that there is little chance
of the parameter taking a value too far from the best fit. A wide posterior assigns closely matched
probabilities to all the values under consideration. The error bar corresponding to the first distri-
bution should therefore be small; the second large.

To investigate the log likelihood in the vicinity of the best I (= a) one can take the Taylor

expansion,

In L"(a)
2

In L3(a)

InL=1InL(a)+1In L'(a)(X —a) + 3l

(X —a)?+ (X —a)®*+.... (1.36)

The first thing to notice is that the second term on the right hand side vanishes. This is because the
best fit value has been found by requiring the first derivative to be zero. Also, we are free to ignore
orders greater than or equal to 3 due to their diminishing contribution. This implies that the log
likelihood can be detailed mainly by the constant first term and the shape determining quadratic
term,

In L"(a)

InL~1InL(a)+ 5

(X —a)* (1.37)

This equation has the same form as Equation 1.35 and can be equated. For the specific case of

having one observation (i.&v = 1) this reduces to,

Mgy — L (=L s
InL'(a) = —— = o= (m = (a)) (1.38)

Therefore, one can associate the uncertainty in the best fit (pararagtag) being related to
the square root of minus the inverse of the second derivative in the log likelihood. When more

data exists we expect our uncertainty to decrease, with the estimate of the posterior becoming
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more sharply peaked about the best fit value. This can be quantified by increasing the value of
N above—resulting in the summati@ff 1/0? = N/o? in Equation (1.38). The corresponding
erroro, on the parameter, is subsequently reduced by the square root of the number of data points:
o= 00/\/N.

Compared with most other scientific fields this last point results in a fundamental issue for
cosmology: cosmic variance The problem is that we only observe one Universe with a finite
number of realisations or observations. For example, if we wish to observe the power spectrum
over several large patches of sky, there are only several large patches of sky to observe. In this
way cosmic variance affects any statistical analysis over shwalk most severely and would be
present even in the circumstance of having a noiseless instrument.

It is important to stress that much of the above reasoning has assumed a model with one
parameterX. This can be expanded to an arbitrary number of dimensions with one or two extra

generalisations:

e Best fit: The best fit parameters are derived by maximising the likelihood as before. How-

ever, in this case the solutions are from a setigfultaneougquations.

e Error bar: The exploration of the local likelihood as in Equation (1.36) will include extra
derivatives with respect to the other variables. Therefore, the notion of the vatiamee
sulting from the second derivative terms is generalisecctovariance matrix The diagonal
terms correspond to the variance for each parameter in question and the off-diagonal terms
are associated with the mixed parameter derivatives. These cross terms describe the degree
of correlation and degeneracy present between two parameters and is usually illustrated as

a contour plot.

Practical Parameter Estimation

In order to sample the posterior spacengparameters one could envisage sampling a regularly
spaced grid of parameter values. This method is highly inefficient though as the number of calcu-
lations, and hence computation time, scales with the power bf addition, it is most likely that

more samples will be needed nearer and nearer to the best fit point. With limitations in computing

time and patience in mind, alternative methods in parameter exploration have been developed.

e Markov Chain Monte Carlo (MCMC)
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This is a general class of algorithms for sampling a probability distribution that rely on
building a Markov chain. This chain is Markov in the sense that a new sample relies only
on the current point and not on the history of points. It is intended that the desired posterior

distribution is the equilibrium distribution of the Markov chain.

One specific algorithm that allows the user to construct such a Markov chairietiepolis-
Hastingsalgorithm. In this procedure one can draw samples from the probability distribu-
tion P(x), where at each time step a candidate pwiig chosen from a proposal distribution
Q(Y;x')°. This proposal is accepted as the next point in the chidihif o, which is drawn

from a random uniform distributiofy (0, 1), satisfies,

P(Y)Q(z";Y)
< POV ) (1.39)

The chain is implemented at a set of starting pokits’ and run past a number of samples
known as théourn-in. The number of samples in the burn-in correspond to the amount of
time for the system to forget its starting point. These values are removed and all subse-
quent accepted points form a sample frétx). This is the procedure implemented by

the industry standard codeocSMoOMC (Lewis & Bridle 2002) that is used throughout this

thesis.

1.4 The Thesis Structure

This thesis is based mainly on the work in Thongasal. (2009); Thomas, Abdalla and Lahav
2009a (In prep.) and Thomas, Abdalla and Lahav 2009b (In prep.). It is primarily concerned with
using and providing data on the growth of structure in our Universe in order to test the underlying
physics of our cosmology. In general, | assume that the geometry of the Universe is flat throughout
with Gaussian and adiabatic primordial fluctuations and no running of the spectral indexq).
However, explicit or implicit parameter choices, assumptions and values are stated within each

chapter.

Chapter Overview

e Chapter 2: underlines the role of weak lensing in probing modifications to gravity. These

departures from general relativity are invoked to explain dark energy and the corresponding

SFor example, this might be a multivariate Gaussian®at
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accelerated expansion of distant galaxies. | use new CFHTLS weak lensing data to constrain
a modified gravity theory motivated by a large extra dimension. Similarly, | use this data to
test a more general parameterisation of gravity. Finally, | look to the proposed space-based
Euclid weak lensing mission and forecast its potential constraining power with respect to

these two models.

e Chapter 3: | construct a new angular power spectrum based on the final photometric Lu-
minous Red Galaxy (LRG) Sloan Digital Sky Survey (SDSS Il) data release-MegaZ LRG
DR7. | use this data to place cosmological constraint$2gn 2, b andog; the matter
and baryon densities, the galaxy bias and the normalisation of the powerspectrum, respec-
tively. The cosmological implications are tested against a number of potential systematics.

Furthermore, | test for complementarity with the CMB.

e Chapter 4: | use a succession of cosmological probes to place a combined constraint on
the cosmological model and the mass of the neutrino species. This includes data from the
cosmic microwave background, supernovae, baryon acoustic oscillations, the HST prior and

the new galaxy clustering data presented in Chapter 3.

e Chapter 5: includes a discussion of the issues, systematics, limitations and implications
raised in the preceding chapters. This includes, for example, a consideration of the non-
linear power spectrum and its application to a study of both modified gravity and the neu-
trinos. | also illustrate potential areas and avenues for fruitful work in the future. Finally, |

conclude the work presented in this Thesis.



CHAPTER 2

CONSTRAINING MODIFIED GRAVITY AND

GROWTH WITH WEAK LENSING

Abstract

The idea that we live in a Universe undergoing a period of acceleration is a new, yet strongly held,
notion in cosmology. As this cgpotentiallybe explained with a modification to General Relativ-

ity I look at current cosmological data with the intention of testing gravity. Firstly, | constrain a
phenomenological model (mMDGP) motivated by a possible extra dimension. This is characterised
by a parameten that interpolates betweem = 0 (LCDM) and« = 1 (the Dvali-Gabadadze-
Porrati (DGP) 5D braneworld model). In addition, | analyse ng@eeralsignatures of modified
gravity given by the growth parameterand power spectrum parameter | utilise large angu-

lar scale § > 30 arcminutes) Weak Lensing data (CFHTLS-wide) in order to work in the more
linear regime and then add, in combination, Baryon Acoustic Oscillations (BAOs) and Type la
Supernovae (SNe). | demonstrate that the bounds inferred are insensitive to potential systematics
in the lensing data such as an underestimation of the CFHTLS shear at high redshift. Finally, |
look beyond these present capabilities and demonstrate that Euclid, a future weak lensing survey,

will deeply probe the nature of gravity.

This work is presented originally in Thomas, S.A., Abdalla, RBWeller, J., 2000 MNRAS
395 197. Also, my Euclid predictions for the standard cosmological model in Section 2.6.2 have
been used by the Euclid Weak Lensing Working group for probe forecasting and detailed code

comparisons.

30
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2.1 Introduction

General relativity, a cornerstone of physics, is arguably one of our greatest intellectual achieve-
ments. It is not only elegant and physically motivated, but it makes a whole host of predictions
including gravitational waves, the anomalous precession of Mercury and the deflection of light-all
of which have been verified.

Considering this, today’s cosmologists have been posed the most tantalising problem: given
that recent precision data from Supernovae, the Cosmic Microwave Background and large scale
structure (E.g. Astieet al. (2006), Dunkleyet al. (2009), Percivakt al. (2007) and Chapter 3)
all indicate that the Universe is undergoing a period of cosmic acceleration, do we stand by this
successful theory and invoke some new unseen matter comp®aktEnergy- Section 1.1.4.5)
to explain it? Or, more radically, do we treat this as evidence that Einstein’s theory of gravitation,
or the manner in which we implement it, is incomplete?

In this chapter | focus on the latter and investigate the idea that General Relativity is not gen-
eral enough. We do not attempt to motivate a new theory of gravity but instead aim towards testing
existing theories and aspects of general theories with current and future data. In Section 2.2 | re-
view the concept of modified gravity, including a phenomenological model | go on to constrain,
and touch upon some of its interesting features. One example feature, and thus potential signature
of modified gravity, concerns the growth of structure. In Section 2.3 | look deeper at this character-
istic and attempts to parameterise it analogous to the equation of state for dark energy. | highlight
how this extra richness in modified gravity can break the observational degeneracy with dark en-
ergy models and discuss the ensuing limitations. In addition, it is noted how modified gravity
alters the relationship, relative to GR, between the power spectrum of the potentials and the matter
power spectrum which is implicit within weak lensing. Section 2.4 introduces weak gravitational
lensing and its particular importance to modified gravity. This section also details the survey and
data that is used (CFHTLS-wide: R al. (2008) - From here on F08) and follows with a dis-
cussion of the working caveats, including non-linearities, and how this data circumvents the issue.
Section 2.5.1 subsequently contains the analysis and constraints of the phenomenological model
and parameterisation of growth through lensing. It is promptly followed in Section 2.5.2 by the
addition of BAOs and Supernovae data to improve upon these constraints and break the parameter
degeneracies. For all the analyses in Section 2.5.1 and Section 2.5.2 | implement a Monte Carlo

Markov Chain (MCMC) approach (Section 1.3.2.2) wito€mMoMC?* (Lewis & Bridle 2002),

http://cosmologist.info/cosmomc/
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where the resulting plots have been produced witls@oLoGUI2. In Section 2.5.3 | highlight
potential systematics in the data and quantify any effect on the constraints. | also look beyond
present day constraints on gravity in Section 2.6 and see how the highly exciting future weak
lensing probe Euclid (Refregiet al. (2008) and Cimattet al. (2009)) will be able to distinguish
between GR and other models of cosmic acceleration and growth. | finish in Section 2.7 with a
summary of the chapter including a discussion of the caveats and limitations as well as suggestions

for future work.

2.2 Modified Gravity

General relativity itself is a modification of gravity. It superseded the previous established theory
of gravity, Newton’s Law of Gravitation, with a breathtaking physical principle for gravitational
phenomena (Section 1.1.2). Although an elegant change in how we think about gravity it was
quite simply necessary: The previous framework did not explain all gravitational processes. For
example, it did not account for the anomalous precession of Mercury. Given the success of New-
ton’s theory many attempts were made to understand this effect within its framework. In fact, even
a form of dark matter was invoked (an unseen planet) to cause the required procession.

Today we face a similar choice with the evidence of accelerated expansion in the Universe.
Again early attempts have tried to incorporate some new matter component within the formalism
of our current theory. The simplest procedure has been to introduce a cosmological constant—
perhapsarising from vacuum energy—to the usual Einstein field equations (Eg. 1.3 and Eq. 1.11).
However, an observed disagreement of 120 orders of magnitude in the event of it resulting from the
vacuum expectation represents a severe fine tuning problem. Other similar avenues have included
the introduction of a dynamical scalar field which is either trapped within a false vacuum or slowly
rolling down a potential (E.g. Wetterich (1988), Peebles & Ratra (1988), Friemnah(1995),
Ferreira & Joyce (1998) and Albrecht & Skordis (2000)). These Quintessence or dark energy

models can potentially lead to the desired acceleration.

2.2.1 Modifications

Alternatively, the more controversial, but historically successful, route is with another modifica-
tion to gravity. Starting from the assumption that any viable theory should be described by a

Lagrangian one might consider adding terms to the Ricci sc&lgin(the Einstein-Hilbert action

2http://www.sarahbridle.net/cosmologui/
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for GR given by,

1

- — 4
Ig = 167TG/\/ gRd*x. (2.2)

This procedure was first performed by Weyl and later in the context of inflation by Starobinskii
(1980) but has more recently been analysed for the late-time low curvature universe, in e.g. Carroll
etal.(2004), where the terr/ R was added. It was found to have the desired effect of acceleration
but is ultimately unfeasible as a realistic alternative due to its failure to comply with solar system
constraints (Chibat al. 2006). A generalised modification could assume the underlying theory to
be some general function of the Ricci scalar. These models, g&llefimodels, are being studied
extensively in the literature (Durrer & Maartens (2008) and references therein). One could gener-
alise this even further to functions of the Ricci tengby, and curvature tensat,,, ., resulting in
f(R,RuR* R0 R*P?) gravity. However, this more general gravity suffers from higher order
instabilities, through Ostrogradski’'s theorem (Woodard 2007), and so analysis has tended to fo-
cus onf(R). Itis not exclusively this subset of theoretical space that suffers theoretical problems
however. Healthy theories of gravity seem to be particularly rare with most suffering from a whole
host of theoretical afflictions; from ghost negative energy states to tachyonic behaviour (Durrer &

Maartens 2007).

2.2.2 The Dvali-Gabadadze-Porrati (DGP) model

Beyond these general Lagrangians one could also look to higher dimensional models. Within
the context of cosmology thisraneworldscenario can somewhat be described as string theory
inspired. Normal matter might be confined to a 4-dimensional brane, where the conservation
equationp + 3H (p + p) = 0 holds firm, but gravity is free to roam into a higher dimensional
bulk. For late time acceleration we desire a model that will change over large distances and low
energy scales. The DGP moglef Dvali-Gabadadze-Porrati (Dvagt al. 2000), described by the

Lagrangian in Equation (2.2), is exactly this.

1 1
lo=——[% / Far/ gD RO 4 / d'sy=gR] (2.2)
16wG Lr. bulk brane

It was originally created consisting of a 4-dimensional Minkowski brane within a 5-dimensional
Minkowski bulk and with no motivation to explain dark energy. However the generalisation
(Deffayet 2001) to a Friedmann-Robertson-Walker brane gave rise to a self-accelerating solution.

Gravity leaking from this 4D brane into the bulk over large scales gives rise to the acceleration

3See Lue (2006) for an extensive review.
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through a weakening effect. The resulting Friedmann equation represents a correction to the GR
equation (Eq. 1.7) and is given by Equation (2.3) withthe cross over scale, specified in Equa-
tion (2.4).

2 E _ 8nGp
Te 3

_ 1
Hy(1 - Q)

With this modification one has a full description of the expansion history. This also allows us to

(2.3)

(2.4)

Tc

work towards understanding the growth of large scale structure giving two observational signatures
that enable a cosmological study. The difference in the background acceleration is itself enough
to produce a difference in the growth of structure. This can be seen in the second term, the Hubble
drag, in the growth of density perturbatiofi$or in Equation (2.5). This is the same form as Eq.

1.21 that was motivated in Section 1.2.1, but instead with no pressure or sound speed term.
6 +2H6 = 4nGpm0 (2.5)

However, assuming that the only modification is via change# iis fortunatelyincorrect. It

is fortunate because it is the extra modification that allows us to break the degeneracy between
some general dark energy within GR, which can replicate any desired expansion history, and
this modified gravity model (to be addressed in more detail in Section 2.3). The correct approach
regarding the evolution of perturbations in this gravitational framework is particularly difficult and
was tackled by Koyama & Maartens (2006). It was found that treating gravity as 4-dimensional,
which leads to Equation (2.5), induces an inconsistency in the 4-dimensional Bianchi identities.
Instead with the full five-dimensional analysis, and assumptions of a quasi-static regime and sub-

horizon scales, they found the metric perturbations on the brane to be,

1

k¢ = —4rGa®(1 — %)pma (2.6)
k%) = —4wGa®(1 + Blﬁ)pmé (2.7)
with the extras factor given by,

¢ is the spatial an@ the Newtonian potential seen within the perturbed metric in the Newtonian

gauge,

ds? = —(1 4 2¢)dt* + a?(1 — 2¢)da. (2.9)
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Figure 2.1:g(a) = §(a)/a, the linear growth, is plotted for a range of late time acceleration models. The
solid line demonstrates the growth for LCDM, the dashed for the 5D braneworld model DGP and the dotted
for a dark energy model with identical expansion history to DGR & —0.78 andw, = 0.32 where

w(a) = wo + (1 — a)w,). The difference in the expansion history gives a significant suppression in growth
relative to a pure cosmological constant. The effect, however, of the 5D perturbations not only adds to the
suppression for DGP but breaks the degeneracy between itself and the smooth dark energy model.

Itis the g factor within Equation (2.7) that breaks the expansion degeneracy and modifies Equation

(2.5) becoming rather (Luet al. (2004) and Koyama & Maartens (2006)),

. ) 1
§+oH6 = 47TG<1 + @)pm& (2.10)

One can see this effect by looking at Figure 2.1. | have plotted the linear growth factor for LCDM,
DGP and a dark energy model with the same expansion history as DGP. It is evident that the
expansion history has considerable influence on the linear growth of structure with a suppression
in the dark energy model relative to a cosmological constant. The effect of the five-dimensional
modified gravity perturbations adds to this suppression and acts to clarify the deviation between
the dark energy and DGP model.

With the modified Friedmann equation and the correct linear growth equation it is now possible

to perform tests on the expansion history and/or large scale structure for this particular modifica-
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tion to gravity. Some of these tests already exist and it has been found that DGP is under tension
from the recent influx of cosmological data (E.g. Faiagl. (2008) and Songt al. (2007) and
references therein). It is also worth noting that this model is potentially not without some of the
theoretical problems alluded to above with notions of a ghost (Koyama (2005) and Gosgduahov
(2006)) and a strong coupling problem (Rubakov 2003). The model is still a good example theory,

however, and an excellent benchmark to test new methods, data or concepts.

2.2.3 The Phenomenological Model

| consequently go beyond DGP as an isolated theory and examine a phenomenological model that
is motivated by the concept of an extra dimension with infinite extent. This model, first introduced
by Dvali & Turner (2003), interpolates between LCDM and DGP and corrects the Friedmann
equation with the addition of the parameteshown in Equation (2.11) and in Equation (2.12).

H®  8xGp

H? — = 2.11
= 3 (2.11)

re=(1—Qu)a2Hy L. (2.12)

It is clear that in this case LCDM is recovered whenr= 0 and DGP whenv = 1. Furthermore,
it is worth noting thate < 0 leads to effective equation of states less than whereasy 2 1
acts to disrupt both the long matter era needed for structure formation and the limits set by Big
Bang Nucleosynthesis (Dvali & Turner 2003). Algo;> 2 is capable of describing early universe
braneworld modifications.

Itis possible to detail the entire background behaviour of this model with an effective equation
of statew.g that | derived generally in Equation 2.13. This reduces to Equation 2.14 for DGP as

in Lue (2006).

2-a)

eff _
wpp(a) = —5— a0 = (@) (2.13)
will;(a) = H;;(a) (2.14)

From Equation (2.11) it is possible to test the model with probes of expansion history and
indeed this has already been performed by Yamarabab. (2006) with BAOs. If one wants to go
beyond this and include tests of large scale structure then a formalism is needed for the growth of
density perturbations analogous to Equations (2.7), (2.8) and (2.10). The problem in this scenario
is that in order to deduce the growth of perturbations one needs an underlying covariant theory

and all that exists in this modified DGP model (mDGP) is a parameterisation. Koyama (2006)
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Figure 2.2: g(a) = d(a)/a, the linear growth, is plotted for various values ®@fthat characterise the
phenomenological LCDM-DGP interpolation (mDGP) model. The solid line demonstrates the growth for
a = 0 (LCDM), the dashed forx = 0.25, the dash-dotted for = 0.5 and the dotted forx = 1 (DGP).

Once again it is evident that the more DGP-like end ofdhspectrum experiences more suppression in the
growth of density perturbations.

introduced such an analysis based on a covariant generalisation of the DGP perturbations (a limit
in the model). It was subsequently found that the metric perturbations take the same form as

Equations (2.6) and (2.7) but instead with (Koyama 2006),

B=1- %(H?“C)Q_a<1 Il ;;‘Z)H) (2.15)

Figure 2.2 demonstrates how the growth of density perturbations alter within the mDGP model—
from LCDM to DGP. As in the previous figure it is clear that there is a suppression of growth at
the more DGP end of the spectrum.

Although phenomenological, the mDGP model now has a definite Friedmann equation that
governs the expansion history, a set of metric perturbation equations and a corresponding density
perturbation equation. One can therefore treat this as a specific model and | choose to constrain it

as an example of modified gravity later in the paper. It is worth noting that using this as a measure
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of deviation from GR or as a parameterisation of general modified gravity is not the aim. This
would constitute a poor choice of parameter given the severe lack of generalness. | touch upon
the idea of parameterising modified gravity in the next section. This model has, however, been
extremely illustrative with regards to the extra richness that can occur in modified gravity. Not
only does it have varying expansion histories but a range of perturbation equations which alters
the growth of structure and the relationship to the power spectrum. This is useful when attempting
to distinguish between LCDM, general dark energy and modified gravity, and insightful to the

probes that will be most adept at detecting them.

2.3 Growth

The alteration in the growth of structure within the mDGP model demonstrated an additional
observational characteristic that allows us to further constrain the model and potentially break the
degeneracy with a general dark energy. It also highlights the possibility of searchgigrfatures
of modified gravity in current data by looking for changes in the growth of structure. It may be
desirable, therefore, to parameterise this extra growth.

The notion of this parameterisation is analogous to the familiar parameterisation of the back-
ground expansion intayy andw,. This is sufficient in describing and restricting the multitude
of possible dark energy models and expansion histories. It is now common procedure to examine
data and convert it into constraints on various cosmological parameters including #melw, .
One might therefore like to extend this parameter space and allow for the signatures of gravity.
One possible parameterisation for growth is given/biy Equation (2.16) and was first introduced
by Peebles (1980) and Lahatal.(1991) and later discussed in Wang & Steinhardt (1998), Linder
(2005), Huterer & Linder (2007) and Linder & Cahn (2007).

g =g(a) = exp(/oa(Qm(a)'y -1) dlna) (2.16)

By again looking at Figure 2.1 we can see that the growth factor g(a) is affected by the expansion
history and by the gravitational framework. It is worth noting that{hmmarameterisation attempts

to distinguish the two contributions, encapsulating the latter in isolation. This is due to the effect
of the expansion being absorbed ifitg, (a) thus leavingy to pick out any remaining remaining
contribution. Itis in this way thay has become known as a modified gravity or beyond-Einstein
parameter. It is easy to see why given that it detects changes to the growth not associated with

expansion. This could be down to a change in the force law acting on matter represented, for
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example, by the extra factor in Equation (2.10). And as we alluded to earlier, evident in Figure
2.1, this allows us to distinguish between dark energy and modified gravity.

However, as highlighted in Kunz & Sapone (2007) there exists an interesting caveat. They
found that contrary to Figure 2.1 one could force some generic dark energy to replicate the growth
of DGP. This is achieved by allowing for dark energy models with low sound spegds (1)
which in turn induces a clustering in the fluid. The clustering instigates a deepening of the gravita-
tional potential wells thus leading to a magnification in the metric perturbations and subsequently
an increase in the growth. In addition, the existence of anisotropic stress is permitted which has the
effect of suppressing growth. With a balance between stress and sound speed it is possible to repli-
cate g(a) for DGP. Now although highly fine tuned it is worth keeping in mind that observationally
detecting some non-LCDM growth factor, ®rwould not necessarily constitute modified gravity.
Unless one allows only non-clustering dark energy the growth parameter is not just a modified
gravity parameter. It has the ability to pick up on clustered dark energy and modified gravity both
of which are interesting. Given this it is therefore my intention to test the growth parameter and
see whether current data or a future probe can pick out this subtle but potentially important effect.
There exist a few other attempts, including constraints from peculiar velocity measurements in
low redshift Supernovae (Abate & Lahav 2008) as well as future survey forecasts from Amendola
et al.(2007), Huterer & Linder (2007) and Heavegtsal. (2007).

Figure 2.3 demonstrates the result of varying this parameter on the linear growth factor. The
growth for standard LCDM corresponds4o= 0.55 whereas for flat DGF = 0.68. It is clear

that a higher growth parameter results in a suppression of growth.

2.3.1 Extra Signatures

It is worthwhile noting that other attempts at parameterising modified gravity have been made
which aspire to encapsulate the properties of gravity similar to the Parameterised Post-Newtonian
(PPN) parameters for local gravity constraints (Will 1993). For example, these include param-
eterising the relationship between the two metric potentialar{d 1)) and/or quantifying any
modification to the Poisson equation (E.g. Amendstial. (2007), Hu & Sawicki (2007), Ishak
et al. (2006), Jain & Zhang (2007), Daniet al. (2008) and Bertschinger & Zukin (2008)). These
parameterisations help illustrate the final modified gravity signature | consider before the analysis
with weak lensing.

Any deviation in the Poisson equation or between the metric potentials causes a deviation

in the relationship between the power spectrum of the potentials and the power spectrum of the
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Figure 2.3:g(a) = d(a)/a, the linear growth, is plotted for various valuesfthe growth parameter,
resulting potentially from a change in force law. The solid line represents the growth for L@M=(

-1, w, = 0) with the corresponding growth parametet= 0.55. The dashed line shows the growth for

~ = 0.68 which is the same as flat DGP but with the same expansion as in LCDM. The dotted line also has
~ = 0.68 but now withw, = —0.78 andw, = 0.32, thus completely specifying the growth of the example
DGP model. Finally the dot-dashed line shows the growth for a LCDM expansionul.45. It is clear

that a high value of the growth parameter corresponds to a suppression of growth. This potentially arises

from a weakening of gravity.

density contrast. Failure to account for this by not modifying the corresponding lensing equations
will render any analysis incomplete. To understand this | use the notation of Ameeidala
(2007) but in doing so note the equivalence of ti@iand» (defined in Equations (2.17) and
(2.18)) toG.g andn given in the other thorough consideration by Jain & Zhang (2007).

Firstly, as will be further detailed in the following section, let us notice that in weak lensing
the deflection of light is sensitive primarily to the sum of the mepatentialsg + . Therefore,
we require the power spectrum within the lensing statistic (Equation (2.26)) to actually be the
power spectrum of + ¢, written P, 4. This isthenrelated to the matter power spectrufi
Defining the matter power spectrum in Equation (2.19) and the potential power spectrum similarly

it is obvious that a general relationship betwdgrand P4, ;) relies on the relationship between
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¢ + v andé. In turn this depends on the Poisson equation and the relationship bepwaseah
1. This is where the parameteiandn are particularly illustrative. Her&) parameterises any
modification in the Poisson equation relating the metric variaite the matter density. n on

the other hand, also defined below, describes the relationship bepnaret).
k2 = —ArGQpa®s (2.17)

v=(1+n)o (2.18)

If one now adds the two metric potentials together and substittufes n and¢, it is possible to
transform the combined Poisson equation, as given in the definition of the matter power spectrum

below,
< 6(k1,2)(ka, 2) >= (2m)%3(k1 + ko) Ps(k, 2), (2.19)
and similarly for the potential, to see the general relationship between the power spectra,

81G)2p2a*[Q(1 + 1)]2Ps(k,
Pigro(h,z) = ETCVpe [Q;f 2 Folk.2) (2.20)

| then, following the notation of Amendoket al. (2007), defineZ = Q(1 + 2), giving the modi-

fication to the power spectrum more succinctly as,

81G)2p2a* L2 Ps(k, 2
P(¢+¢)(k,z):( ) o s(k,2). (2.21)

In a standard cosmological scenario, such as LCDM for exampte) and@ = 1 leaving® = 1.

This results in the standard relation between the power spectra assumed in the literature. Itis clear
therefore that neglecting is tantamount to constraining the subset of modified gravity models
that do not alter the power spectrum relation from GR. The mDGP model studied earlier is one
such model. This can be seen by adding Equations (2.6) and (2.7) and observing the cancellation
in 3. Therefore, for this model = 1. Generally, however, if one strives to include general models

3 should be allowed to vary. Note that it modifies the amplitude of the power spectrum and so a
constant value is degenerate with Accordingly and more generally, as introduced in Amendola

et al. (2007), | consider the general parameterisation,
Y(a) =1+ Xpa. (2.22)

It is my intention therefore to constrain and forecast for the specific mMDGP gravity model and

then, separately, constrain the general characteristics of modified gravity. For the latter | choose
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Figure 2.4:The distortion of background galaxies caused by the intervening mass distribution is particu-
larly vivid in the vicinity of galaxy cluster Abell 2218. The images are stretched out, or sheared, becoming
more elliptical and in this scenario represents a more exaggerated version of weak lensing. In this latter
case the underlying information resulting from a more subtle deformation is deduced statistically over many
galaxies.CREDIT: http:hubblesite.org/gallerfNASA.

to setX = 1 (or ¥y = 0) due to limitations in data and constraig and~ signatures only. | later
include>:, # 0 for the Euclid forecasts (Section 2.6).

~ andX arefunctions optimised for weak lensing, of the more fundame@eindy. These
parameters themselves are, most genem@l¥, a) andn(k, a). The assumption thatis constant
and the ansatz placed ahcould be restrictive (Gannougit al. 2008) with regards to the range of
modified gravities available (including normal DGP and sofi&) models (Durrer & Maartens

2008)) but have been enforced again due to limitations in current data.

2.4 Weak Lensing as a Cosmological Probe

The deflection of light by mass is given by the transverse gradient of the metric potentials inte-

grated along the path length,

g = —/8(1/) + ¢)ds. (2.23)

This acts to not only change the apparent position of some point source but, in turn, distort the

shape of distant source galaxies. In fact, one can relate the observed position of thé}image



2.4. Weak Lensing as a Cosmological Probe 43

the true position of the sour@@, in the plane of the sky by,

Y 2y D(XS*X)_,
0 =g+ —2* M3 2.24
I D(X) ¥ ( )

where D(x) is given by the comoving angular diameter distance (Eq. 1.17). The subsequent

image distortion is given by the differential of this lens equation resulting in the Jacobian,

—

g d0s _
ad;

l—k—m 72

V2 I—k+m
where the convergencgeis reconstructed from the shearnwith v = v + i9) measured from
galactic ellipticities (Refregier 2003). An extreme example of this distortion can be seen in Fig-
ure 2.4.

With regards to the analysis of a cosmological model one may choose to examine the conver-
gence quantity. This convergence, which represents a weighted projected mass distribution on the

plane of the sky, is given (Bartelmann & Schneider 2001) for a general mass distribution by,

_ 3G /XS dXD(x)D(xs — x)(
0

202 1+ 2)6(x)- (2.25)

K
s

Given that it is desirable to analyse this distribution in a statistical way it is possible to use the
definition of the power spectrum—analogous to Equation (2.19) and Equation (1.23)-to find the

expression for theonvergenc@ower spectrum,

P.(l) = mjfg /OXH dx[zg;]zﬁ(i,x), (2.26)

where the geometric comoving angular diameter distance tebg)O(xs — x)/xs) have been

absorbed intg(x). It is therefore now clear, given the earlier discussion, how weak lensing is
particularly useful in studies of modified gravity; this statistic is sensitive to the growth of structure
via the presence of the linear growth factor in the matter power speduiit is also sensitive

to the expansion history through the terms in the square brackets and through the Hubble drag in
the growth terms; and finally, as discussed at the end of Section 2.3.1, it is sensitive to the relation
between the power spectrum of the potentials and density. In the equation above the relation from
Py, 1o Ps has been performed assuming GR as given routinely in the literature. Again, it is
worth reiterating that if there is a modification to the Poisson equation and/or to the anisotropic
stress one must augment this power spectrum with the appropriate prefactor given, for example, in
Equation (2.20). Furthermore, in addition to these sensitivities, as the deflection of light is given
by the gradient of the potentials, which are sourced by mass irrespective of being baryonic or dark,
weak lensing does not suffer from any unknown bias (as in Eq. 1.25). Thatis, it probes the entirety

of the mass distribution.



2.4. Weak Lensing as a Cosmological Probe 44

2.4.1 Issues and Caveats

While this probe, in principle, is excellent for the chosen study the shear signal is al$inall
distortion on the already existing intrinsic ellipticity. This provides a thorough technical challenge
that is being combated with a combination of large galaxy number analyses and refined shear
measurement technigues (Heymansl. (2006), Masseet al. (2007), Bridleet al. (2008) and
Bridle et al. (2009)). Further still, the first detections of weak lensing are particularly recent
(Baconet al. (2000), Kaisekt al. (2000), Wittmaret al. (2000) and Van Waerbelet al. (2000))
and so lensing is very much a highly promising, yet developing, cosmological probe. Despite this
there are already a number of papers that have addressed the relationship between weak lensing
and modified gravity/dark energy, such as Uzan & Bernardeau (2001), Sehimhd2005), Doé
et al. (2007), Schimcet al. (2007), Amendolat al. (2007), Jain & Zhang (2007) and Tsujikawa
& Tatekawa (2008). With these studies and potential modified gravity attributes it is imperitive to
realise that there does exist a severe caveat. This is due to the fact that weak lensing probes the
non-linear regime.
Usually one is able to use a fitting function (E.g. Peacock & Dodds (1996) and $trath
(2003)) for the non-linearities in standard gravity. These have been calibrated by detailed N-body
simulations. However, despite some early work to quantify the changes that arise in other models
with simulations (E.g. Laszlo & Bean (2008) and Oyakual. (2008)) no such prescription
is currently available. The uncertainty is exacerbated by the potentially environment and scale
dependent modifications that can arise in gravity, such as those through the chameleon effect. The
current fitting functions map the linear regime into the non-linear domain and subsequently fail to
include such behaviour. | therefore strive to work in the linear regime where possible in this study.
Obviously further effort is needed to explore these changes with N-body simulations but since this
work new methods have started to arise. | leave a discussion of this recent progress to Chapter 5.
There are, in addition, other benefits in avoiding the inclusion of small scales such as the eva-
sion of intrinsic ellipticity correlations (Crittendeat al. 2001), shear-shape correlations (Hirata &
Seljak 2004) and the presence of non-Gaussianity in the error (Sembokdn2007). | therefore
utilise the data provided by FO8 based on the CFHTLS-wide survey which, due to its range of large
angular scales (up to 230 arcminutes) probing the linear regime, is ideal for work on non-LCDM

cosmology such as this.
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2.4.2 CFHTLS

The Canada-France-Hawaii Telescope Legacy SUNVEFHTLS), based on the MEGAPRIME /
MEGACAM instrument, is an ongoing survey with a target of 450 nights extending over 5 years.
The recent analysis by Benjamat al. (2007) has gone beyond the initial releases and investi-
gations by Sembolorét al. (2006) and Hoekstrat al. (2006) which themselves were successful
in deriving constraints on th@,,, — g degeneracy and demonstrating the evolution of the shear
signal with redshift. This was achieved in Benjaneinal. (2007) through a better understanding
of the redshift distribution and having an increased area. This, while marking significant progress,
is still not the most optimal lensing analysis for this work. This is because they are potentially sen-
sitive to the growth of structures on non-linear scales which, as | emphasised above, is undesirable
for a current study of beyond-Einstein cosmology and weak lensing.

| therefore look to the 3rd year CFHTLS-wide release (T0003) given bytral. (2008)
(F08). Although having a smaller field of view than Benjaratral. (2007) it utilises much larger
angular scales (into the linear regime) also avoiding many of the potential systematics mentioned
at the end of the last section. It is because of this that both works reveal approximately equivalent
cosmological constraints and little constraining power is lost. The current sky coversgsgf,
approximately35% of the final CFHTLS target area, is reducedto2deg? after masking and the
removal of various contaminants. Eventually including five bandsitthand study stretches to
a magnitude of’, ; = 24.5 and encapsulating nearly 1.7 million galaxies has an effective galaxy
number density of. = 13.3 gal/arcmin?. The data (FO8) comes in the form of several two point
statistics which are relevant to this study. | choose to utilise the E correlation fungtipabich

is shown in Equation (2.27) and displayed along with the cosmological best fit in Figure 2.5.

1 oo

13 1P.(1)Jo(16) dl (2.27)

=5 i
As for the aperture mass pr > and shear top hat varianee |y|?> > two point statistics this

is a weighted transform of the convergence power spectrum. In this case it is given by a zeroth
order Bessel function of the first king. It is in this way that the two point functions vary in their
sensitivity to various aspects of the power spectrum and systeméticsuffers from a constant
offset resulting from a mixing of E and B-modes. A finite survey size introduces a maximum
angular scale which prevents a complete calculation of the shear correlation function over larger
ranges. This is needed for a separation of E and B (Kilbieget. 2006). To alleviate this | alter

the statisti€ to £ + ¢ including the constant offset as an extra parameter. An expression can

4http:/www.cfht.hawaii.edu/Science/CFHTLS/
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Figure 2.5:The open circles with associated error bars represengHeo-point statistic as a function

of 6 (arcminutes) for the CFHTLS-wide survey used in this paper. | selectively use scales greater than 30
arcminutes to remove the unknown non-linear effects. The red dashed line shows the best fit values as found
with the combined probes mDGP analysis (Section 2.5.2).

then be obtained for the offset given by the best fit offdgt(dc’ = 0) for each parameter choice.
This constitutes an analytic marginalisafiaver ¢’ (Lewis & Bridle 2002). | subsequently find

the expression for’ to be,

> (€& — D)
J = : (2.28)

> (€

/[:7-].

where the elemeny; is the model correlation function); the data and” the full covariance
matrix between all elements. Furthermore, the B correlation functiprvhich describes the
curl component of the shear field, as opposedgavhich measures the curl-free component, is
expected to be non-zero only for non-lensing contributions to the shear (Crittehdé&r2002).

It is because of this thdtg is an excellent check on any contamination of the lensing signal. FO8

5The concept of which is introduced in Section 1.3.1.
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found no real B-mode contribution except for the presence of a very small signal at large angular
scales. They find however that their cosmological conclusions are not affected by this potential
mode.

It was shown in FO8 that there is no significant deviation in cosmological constraints across any
of the aforementioned two point statistics. Bet al. (2007), also looking at a form of modified
gravity in the context of this CFHTLS data, came to a similar conclusion. It is worth noting that
other cosmological studies of this data set include a phenomenological modified gravity analysis
(Danielet al. 2008) and more recently an early study of the neutrino mass (Teteal0c2009). |
therefore choose, for simplicity, to use the gpestatistic.

The redshift distribution of the source galaxies, which weak lensing is critically sensitive to,
has been calibrated for the CFHTLS study using llieral. (2006). | decide to follow FO8 and

model this distribution using the function,

a ab Zmax ,Q ab 1
n(z)= A7 Gith A= (/ e dz) (2.29)
0

2+ ¢ b+ ¢
whereA is the normalisation angl b andc are three extra parameters to be varied and marginalised
over in the cosmological fit. It is found that Equation (2.29) enables a closer fit to the distribution
data that other common n(z) fitting formulae. The observed normalised redshift distribution and
the fitting function evaluated at the best fit points found in the mDGP combined probes cosmolog-

ical run (Section 2.5.2) are shown in Figure 2.6.

2.5 Constraints

2.5.1 Lensing

Having earlier discussed the characteristics of certain late-time acceleration models in Section 2.2
and Section 2.3, and having chosen a probe that is potentially capable of picking out these par-
ticular behaviours with weak lensing, we are now in a position to make cosmological constraints
based on the data which was decided, in Section 2.4.2, to be the most suitable. That is, | start by
making an analysis of the mDGP cosmological model and then separately the parameterisation of
growth with the FO8 CFHTLS-wide lensing data.

| perform a full likelihood analysis using a Monte Carlo Markov Chain (MCMC) approach
(refer to Section 1.3.2.2) on a set of 7 cosmological parameters for the mDGP analysis and 8 for
the growth parameterisation study. | vdy,, h, os, a, b, c which are common to both models, in

addition toa for mMDGP andwg and~ for the growth. Thew is not included for the former model
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Figure 2.6:The black dashed line represents the source redshift distribution with associated error in the
bins. The red solid line is given by the fitting function in Equation (2.29). The fit is drawn for the function
evaluated at the best-fit points as deduced by the combined probes analysis for mDGP (Section 2.5.2). This
corresponded to best fit values= 0.614 + 0.034, b = 8.11 £0.681, ¢ = 0.627 +0.0610 and A = 0.6462
consistent with FO8.

asa uniquely specifies its own expansion history as it does for the evolution of perturbations—
from GR to DGP. | do not vary the spectral index because the data needed at large angular
scales is insufficient for any constraint. Instead hset= 0.963 consistent with the best fit five-

year WMAP result (Dunklet al. 2009). Likewise | neglect varying, andX for the growth

model due to limitations in data. Instead bathand:( are set td) and a flat universe is assumed
throughout. This might represent a limitation and a restriction of parameter space. However, given
the recent analysis by Farg al. (2008) with the CMB where they find a slight but insignificant
change in constraint with a non-flat Universe, the effect is considered to be small.

For the lensing analysis the Gaussian log-likelihood is given by,

X = 5 3D~ (O (D~ ) (2:30
ij

where the data vectdb is given by the measureg; (6;). The theoretical predictions deduced at
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the corresponding angular scéleare represented tf) and, finally,C~! is the inverse covariance
matrix provided by the CFHTLS collaborati®in At present variation in eithet, b or ¢ in the
redshift distribution is detected implicitly through a modification in the model power spectrum.
However, in implementing the MCMC approach regions of parameter space will be sampled that
correspond to configurations af b andc incompatible with knowledge of just the redshift distri-
bution in isolation. | therefore follow the procedure in FO8 and multiply the likelihood above by

the likelihood of the redshift distribution given by,

. ))2
X121(z) = ! Z W, (2.31)

wheren;, the observed number of galaxies in a bin, are shown in Figure2(6;) represent

the values of the fitting function in Equation (2.29) evaluated at the bin centred redshifts. While
ignoring cross-correlations in the bins | includgwhich is the error im;. This error includes
Poisson noise, sample variance and the associated redshift uncertainty. In addition, an HST prior

(Freedmaret al. 2001) is included fok as given by,

1(h—0.72)?

2
== 2.32

Before the analysis in different gravitational frameworks | first test for consistency with the
Fu et al. (2008) ACDM analysis. In order to do so | vary six parameters,( os, h, a, b, ¢)
and include all angular scales from 1 to 230 arcminutes. The resulting likelihood contours are
displayed in Figure 2.7. The Hubble paramétdnas been marginalised with b andc in this
plot. The HST prior is left out however. The bounds are exactly equivalent to those derived in the
original data release.

Returning to the modified gravity study the data is cut for the lensing only analysis such that
only angular scales greater than 30 arcminutes are used. | reiterate, this is to avoid the unknown
non-linear contribution to the lensing constraint. The analysis for the mDGP model is shown in
Figure 2.8. It shows the marginalisél,, and o contours where, as detailed in Section 22,
parameterises corrections to the Friedmann and growth equations. The mDGP model interpolates
between LCDM & = 0) and the DGP braneworld model (= 1). It is clear therefore that a
lensing only analysis is presently not capable of constraining mDGP—-at least in the context of
physically more viable models(< 1).

| find a similar difficulty in constraining, with no bound possible for any reasonable physical

values given weak lensing in isolation. This should not be too surprising as | have used a relatively

5with thanks to Martin Kilbinger and Liping Fu for distribution.
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Figure 2.7:To test for consistency | include tH8% and95% contours for aACDM analysis with all
angular scales (1 - 230 arcminutes) as ingt@l. (2008). 6 parameters are varied in totl.(, os, h, a,
b, ¢). Similarly | do not include the HST prior or the residual offsét+£ 0) for this analysis. The baryon
fraction is also fixed t§2, = 0.044. The degeneracy betweé€h, andog is clearly visible.

new cosmological probe and have, in neglecting the non-linear scales, used only a third of the data.
Tomographic, or redshift binned, information is not yet currently available for this either and will
act to vastly improve information on the expansion history and hencé have also allowed
significant cosmological freedom with the variation of 7 parameters. However, this does not mean
that lensing, even with a current analysis, is not useful with regards to the late-time acceleration
models. In order to see this we now look at BAOs, Supernovae and weak lensing in combination
in the next section. Then in Section 2.6 we see how the future space-based weak lensing survey

Euclid will improve upon today’s lensing only constraining power.

2.5.2 Supernovae and Baryon Acoustic Oscillations

In the previous section | performed a preliminary analysis based on linear to quasi-linear weak

lensing data alone. This probe, while having characteristics significant for the discrimination of
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Figure 2.8: The diagram above demonstrates the attempted constraint on a parameterised gravitational
model that is motivated by the concept of a large extra dimension (mDGP). The contours Qg &émd

« (the modified gravity parameter) where 5 other cosmological paramétess,(a, b andc) have been
marginalised. Here only angular scales greater than 30 arcminutes have been used in order to avoid the non-
linear regime. The data is from the CFHTLS-wide (FO8) survey using the E correlation two point statistic
&g + . For mDGPga = 0 corresponds to LCDM, whereas= 1 is equivalent to DGP.

late time acceleration, was unable to constrain either the mDGP model or the growth parame-
terisation. As such it is desirable to combine it with other probes in order to improve potential
constraints. Moreover, it is most beneficial to combine weak lensing, an indicator of growth and
expansion, with distance indicators. This is because of the particular degeneracies that exist fol-
lowing an isolated study. For example, there is a degeneracy betweard v and so tighter
constraints on the expansion history will act to aid any constraint.oRurthermore, inclusion

of additional expansion data will aid the constraint of mMDGP given that differexrrespond to
different late time accelerations. | therefore choose to include both Supernovae and BAOs which,
due to their vastly differer®,,, — w degeneracies, are also extremely complementary to one an-

other.
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BAOs
BAOs are used as standard rulers and are observed in the galaxy distribution (Section 1.2.2.1),
testing cosmology through the distance-redshift relation. Using the data and notation of Percival

et al. (2007) | look to utilise the distance measure given by,
Dy (2) = [(1+ 2)2D%cz/H(2)]3 (2.33)

whereD 4 is the angular diameter distance (Eq. 1.17) &hd) is the Hubble parameter. Specif-
ically, it is the ratiors/ Dy (z) that | examine where, is the comoving sound horizon at recom-
bination. Percivakt al. (2007) detects the BAO in the clustering of 2dFGRS and SDSS galaxy
samples and the clustering of SDSS LRGs to quantify this measure-ai.2 andz = 0.35, re-
spectively. For each likelihood evaluation | compare this datg t®y/ (=) calculated withDy (2)

from Equation (2.33) and the varying comoving sound horizoevaluated using the formulae in

Eisenstein & Hu (1998).

Supernovae

For the inclusion of Supernovae (Section 1.1.5) | use the data provided from the first year Su-
pernova Legacy Survey (SNLS) (Astieral. 2006). This data set includes 71 type 1a Supernovae
also detected at the Canada-France-Hawaii Telescope. Here the distance mgdaloseasure

of the luminosity distancé; (Eq. 1.15), is used as the observable,
o = blogl0(dr(z)) + 25. (2.34)

This is given in the log-likelihood in Equation (2.35), wheig is the observed values;,; is
given by the intrinsic dispersion of the absolute magnitudescdpg ) by peculiar velocity and
light curve parameter information.

2 _ (B — Slogyo(dL(0,2)) — 25)2
= > 2(up) + o2, (2.35)

objects
With this machinery in place it is now possible to perform additional tests on the mDGP model. |
do not constrain the parameterisation with these probes in isolation as in this format they have
no growth information. | do, however, attempt to constrain the growth with a combined analysis
at the end of this section.

By looking at the top left hand panel of Figure 2.9 one can see that it is feasible to place
a constraint orv with a BAO only analysis. It should be noted that the disfavouring of DGP

(o« = 1) is not as promising as it first appears because | have, replicating the work of Yamamoto
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Figure 2.9: The plot in the top left panel shows the constraint{®n anda. Although appearing to
disfavour DGP ¢ = 1) as in the analysis by Yamamota al. (2006) the remaining parameteig and

h have been fixed at 0.044 and 0.66, respectively. | go beyond this in the top right panel which contains
constraints given on the same parameters but when Supernovae data is adflgdaadd are allowed

to vary. One can now see that the contour is beyond the bounds of the plot and so no constraint can

be inferred. The benefit of the weak lensing data is seen in the bottom left panel where once again | use
angular scales greater than 30 arcminutes from the CFHTLS-wide (F08) lensing survey. | al§h,yary

h, os, 4, a, b, c anda whilst keepingn, = 0.963. With this addition it is evident that there is a visible
improvement in constraint and that DGP is marginally disfavoured. This is exemplified in the bottom right
panel where | include the 1D marginalised probability distribution (solid line). | find that the joint analysis
gives constraints on mDGP of < 0.58 anda < 0.91 at the68% and95% confidence levels, respectively.

The dotted line represents the mean likelihood of the samples. Finally, the dashed contours in the bottom
left hand panel show that the constraints are insensitive to any systematics in the data such as an over or
underestimation in the CFHTLS shear at high redshift (Section 2.5.3).



2.5. Constraints 54

09 2
08 18t
ol 1.6t
ol 14t
12
3 05t &
1,
04
08}
03t
06}
02t
04f
01t 0l
018 02 (2 0.24Q 026 028 03 03 02 025 0 03 035 04
m m

Figure 2.10:The left panel is an analysis of the mDGP model with weak lensing, BAO and Supernovae,
as before, but with the full range of angular scales (1-230 arcminutes). There is a slight, but not significant,
improvement compared to the more linear analysis. Here Idind 0.56 anda < 0.86 at the68% and

95% confidence levels, respectively. It should be noted that this analysis includes data from the unknown
non-linear regime. The right panel demonstrates the current challenge in constraining the gravitational—
as opposed to the expansion’s—contribution to the growth of structure. 1 find that with current data it is
unfeasible to put any bounds on reasonable values of fierameter. This plot contains an analysis with
weak lensing, Supernovae and BAOs. Implicit in this plot is the variation of/glsg, 2, a, b, ¢ andwy.

et al. (2006) with BAO only, varied jusf,, anda with €, andh held fixed at 0.044 and 0.66,
respectively. The top right hand panel of the same figure demonstrates the need for caution as |
go beyond the Yamamotet al. (2006) analyses. By allowing more cosmological freedom (i.e.
varying 2, and i) and including the Supernovae data the two probes are in fact incapable of
disfavouring DGP. This is in contrast to other Supernovae and BAO studies by Fairbairn & Goobar
(2006) and Maartens & Majerotto (2006) where, as in Yamarso#d. (2006), they either fiX2,
fixing the BAO scale or use CMB data as a prior{on | allow a more general variation as I, nor
the aforementioned papers, have calculated the influence of DGP on the CMB. This is the main
difference in this aspect of the work and is otherwise consistent.

One can now see how, even at present, the weak lensing data is useful in the study of this
modified gravity. The2,, — a contours for a joint analysis with all three combined probes is

displayed in the bottom left hand panel. Once again | use only angular scales greater than 30
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arcminutes to avoid the unknown non-linear regime. | also vary a large number of cosmological
parameterst,,, h, os, 2, a, b, canda. Itis evident that the addition of the weak lensing analysis

is beneficial with a mild disfavouring of the DGP end of thespectrum. Indeed, | include in the
bottom right hand panel the 1D probability distribution forin the process demonstrating that

a < 0.58 at the68% confidence level and < 0.91 at the95% confidence level. This corresponds

to a disfavouring of DGP at ové@w. Furthermore, | include for interest in the left panel of Figure
2.10 the same analysis but with all angular scales (1-230 arcminutes). There is a noticeable but
not significant improvement in the constraint leadingytec 0.56 anda < 0.86 at the68% and

95% confidence levels, respectively.

Having had success with a combination of the three cosmological probes it is worth investi-
gating whether they can aid the determination of the far more subtle growth parameterisation
While the BAO and Supernovae will not add growth information explicitly they will help reduce
the parameter degeneracies. | find however, by looking at the right panel of Figure 2.10, that at
present and for meaningful valuespthere is still insufficient constraining power. This is un-
derstandable given that for mDGPcontained growtland expansion information. In this way
the Supernovae and the BAO actively contributed to the constraint, while the lensing constrained
it through the comoving diameter distancB@$y) in the convergence power spectrum, through
expansion terms within the growth via the Hubble drag and finally through the pure growth con-
tribution as seen in the addition Gf(Eq. 2.10). Constraining, on the other hand, is equivalent
to just changes i and is therefore far more subtle. However, just because we do not have the
current data to pick out this effect it should not deter us from continuing to pursue these signatures
of modified gravity. In fact, future cosmological probes, such as the weak lensing, will be able
to extract this contribution and tighten constraints on beyond-Einstein cosmology. | look to the

future in Section 2.6.

2.5.3 Accounting for systematics

Despite the absence of any significant B-modes in the CFHTLS data there exists a potential un-
derestimation of the shear at high redshift (Kilbinggral. 2009). In order to account for this
effect | use the model introduced in Kilbinget al. (2009) and multiply the redshift distribution

at high redshift £ > 1) by some constanty; wherecy, < 1 constitutes underestimatiosy > 1
overestimation and, = 1 no alteration in the shear. | vary and marginalise over the parameter

in an additional cosmological run, thus accounting for any such systematic. No additional prior is

placed oncy other than that it is flat with the parameter varying from 0 to 2. | consequently find
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little change in the constraint on mDGP as shown by the dashed contour in the bottom left hand
panel of Figure 2.9. In this way the constraint is limiteddbgtisticalrather than systematic error.

The 68% confidence interval is subsequently shifted only framx 0.58 to o < 0.61 with
systematic treatment. With the cut in angular scalés-at30 arcminutes it has not been possible
to meaningfully constraimy itself. It should be noted that further systematics might also affect
this data however one would expect, as above, to be limited instead by statistical information.
Further treatment and causes of potential systematics in the data are detailed in van Waerbeke et

al. in prep. and Kilbingeet al. (2009).

2.6 Future Probes - Euclid

Within the foreseeable future the age of precision cosmology looks likely to get ever more precise.
The field of weak lensing is most definitely no exception and it is perhaps set to be one of the
most promising areas of development. One striking reason, among others, is the planned Euclid
mission (Refregieet al. (2008) and Cimattet al. (2009)).

Euclid is a proposed space-based wide-field imager that will carry out an all-sky survey in one
visible and three Near-Infrared (NIR) bands. It will accomplish this as a medium class mission
carrying a 1.2m telescope. Itis intended to laurck017 with a major requirement over a ground-
based mission being the need for a stable point spread function (PSF) in weak gravitational lensing
at this precision. The primary science goals are focused o#k Universé, such as dark
matter, dark energy and the nature of gravity. However, it will also shed light on many other areas
of astronomy such as galaxy evolution and extrasolar planets.

It is of great interest to see how this future survey will probe the nature of the cosmological
model and the nature of gravity, whatever that may be. | therefore firstly undertake a Fisher matrix
analysis with the intention of forecasting, for lensing only, how Euclid will constrain the standard
cosmological model (Section 2.6.2). | then extend this model to include deviations from Einstein-
cosmology with the mDGP modek] as well as the more general parameterisation for grawity (

andX) in Section 2.6.3.

2.6.1 The Fisher Matrix

In Section 1.3.2.2 | touched upon the idea that the uncertainty in a quantity can be found by

investigating the neighbourhood and therefore the derivatives of a probability density function

"Hence its previous name DUNE as the Dark UNiverse Explorer.
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about the best fit point. This culminated in associating a type of error to the second derivative of
the log likelihood (Eg. 1.38). In the particular scenario when the likelihood/posterior is Gaussian
this is not an approximation but an exact case. One can imagine therefore that a quick method for
examining a parameter spageis to examine the second derivative at an assumed point. This can
be thought of as a curvature of the space and is given by,

0%In L

FP=———FHn.
0X?

(2.36)

For a set of parameters thaultivariateversion of this is called thEisher Information MatrixF;;;,
2
o=~ ) e

This is a powerful concept not just because of its speed but also because it can be calculated
without current data. Instead it is possible to use a planned survey design, as described below, to
forecast the potential constraints for a probe given a fiducial input cosmology.

The errors are found simply a§ = (F~'); (marginalised) and% = 1/F;; (fixed/conditional).
This fits intuitively with the curvature concept of the likelihood space. For a highly ‘curved’ dis-
tribution the likelihood will fall off more quickly from the best fit point and thus give a smaller

error.

2.6.2 Forecast: The standard Cosmological Model

The Fisher matrix formalism for weak lensing is subsequently given as,

oC oC
F = § vl 2.
¥ : iCo ; (2.38)

whereC is the weak lensing observable shown by,
Cij() = Ph+ <> 0ij/ni (2.39)

andPi’} is a convergence power spectrum similar to Equation (2.26), hendeghperscript, but
with indices i and j denoting tomographic bins. Further sfijljs the average galaxy number per
steradian in bin and<~2, >2 is the rms intrinsic shear in each component, that here is equal to
0.22. Jp; denotes the derivative with respect to a paramgtand Cov is the covariance matrix
given by,

o

CovlCi 1. Ca] = i) fru

[CRMCHD) + CHOCE ()] (2.40)
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For the following analyses | take the effective sky coverage t@pe= 20,000 square degrees,
while probing the galaxy distribution with a median redshijt = 0.9 and having an effective
galaxy density oft0 gal/arcmin®. | assume the redshift distribution given in Equation (2.41)
wherezy = z,,/1.412, « = 2 andg = 1.5. | allow for five redshift bins with divisions such as

to give approximately equal galaxy number in each bin (0.0, 0.56, 0.79, 1.01, 1.32 and 3.0). The
photometric error (see Section 3.2.1 for more information on photometric redshifts) is accounted
for by using the parameterisatien = o,(1 + z), with o, = 0.03. To impart this error the
binned redshift distribution is convolved with a Gaussian, characterised by a width lafise the
transfer function as described in Eisenstein & Hu (1998) and the non-linear prescription of Smith

et al. (2003).
n(z) o« 2%xp(—(2/20)%) (2.41)

For the standard cosmology | vary 7 parameters about their fiducial values. These are given by:
Qm =0.3,h=0.7, 08 = 0.8, Q, = 0.05, ng = 1.0, wg = —0.95 andw, = 0.0. The resulting
2D marginalised contours are given for each parameter combination in Figure 2.11. | use no
extra priors on any of the parameters and so the derived bounds represent a true and conservative
Euclid-onlycapability?.

Assuming this underlying cosmological model Euclid would firdmarginalised bounds of
Qm = 0.3£0.003, h = 0.7£0.0832, 0g = 0.8 £0.0041, 2, = 0.05+£0.0140, ng = 1.0£0.0158,
wo = —0.95 + 0.0357 andw, = 0.0 + 0.1326.

2.6.3 Forecast: Modified Gravity

| now extend the above analysis further to include modified gravity. | use the same survey design,
requirements, noise and parameters as for the standard model but now im@ndé&: as extra
parameters for the general parameterisation (see Section 2.3) and ingtedalde mDGP model.
Note that this LCDM-DGP interpolation model specifies its om) w,, v andXy. The fiducial
values are taken to be= 0.55, ¥y = 0 anda = 0.

The resulting forecasts for this proposed project can be seen clearly in Figure 2.12. The left
panel shows that Euclid will be able to put considerable strain on any braneworld-like gravity sce-

nario that resembles the mDGP model. The sdlig) @nd dashed¢) contours are significantly

8For a code comparison or consistency check my fisher matrix and the associated parameter derivatives, as a function
of ¢, can be found at: http://zuserver2.star.ucl.ae-dat/DUNEworking.groupX, with X=fisher, derivomegam,
deriv_h_0, deriv.sigma8, deriv.omegab, deriv.w_0, derivw_a or derivn_s. These have been calculated with the exact

specification as described above.
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Figure 2.11:The 2D marginalisedorecastedconstraints with the proposed space-based Euclid survey.
This corresponds téo bounds ofQ2,, = 0.3 + 0.003, h = 0.7 £ 0.0832, o0g = 0.8 & 0.0041, }, =

0.05 + 0.0140, ny, = 1.0 + 0.0158, wy = —0.95 £+ 0.0357 andw, = 0.0 &+ 0.1326 from the fiducial

input cosmology. This demonstrates that such a survey is a highly promising and worthwhile project with
constraints being pushed towards the percent level fandividual late-time cosmological probe. The
possible constraints on the equation of state in particular are thoroughly exciting, especially given there are
no extra priors.
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Figure 2.12: The left panel displays Euclid’s potential constraining power with regards to the mDGP
model in a lensing only analysis. Here the contour (all solid lines) is well within thee = 1, or DGP,

line and so it will be easily distinguishable from LCDM (= 0). In fact, this corresponds to an error

of 0.104 ona with ,,,x = 500 (all red contours) in stark contrast to today’s constraint. The right panel
shows the marginalised contours for the general growth parameterisation. Again, it seems that Euclid will
provide excellent insight into any potential modified gravity signatures. Specifically it is found that it will
be possible to constrainwith an error of 0.0451(¢). This is tightened further to 0.038 whép., = 10000

(black contours). The parametérsog, 2, andn, have been varied and marginalised over for both models
considered here while in additian,, w, and>, have been marginalised for the growth model.

within the o« = 1, or DGP, bound. In fact, Euclid will potentially constrainto within an error

of 0.104 at the58% confidence level. This is in constrast to Figure 2.8 where no constraint was
possible with a lensing-only study. Note that for this analgsiky contributions from/ = 10 to

Imax = 500 were considered such that the deeply non-linear regime could be neglected.

The right panel in Figure 2.12 again illustrates the expected constraining power of Euclid but
now with regards to general modified gravity. For this general parameterisation | performed two
runs with one corresponding to contributions frém= 10 to /,.x = 500 (red contours) and
the other with contributions fromh = 10 to /,,.x = 10000 (black contours). Here one can see
that Euclid will be able to extract the growth characteristic thus allowing a strong cosmological
test of our gravitational framework. Indeed, it will be able to constrain the fiducial 0.55

(LCDM) to within an error of 0.0446 ato with [,,,,x = 500. This is further tightened to 0.038
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Figure 2.13:The above plot shows the marginalised X, forecast for a weak lensing only analysis with
Euclid. These two parameters, which could represent modified gravity or generic dark energy signatures,
demonstrate how this future weak lensing probe will potentially place firm constrains on any model of late-
time acceleration. The black contours correspon,tQ = 10000, demonstrating an error of 0.06%() on

Yo, Whereas the red contours correspond.tg, = 500 giving instead an error of 0.25. In both cases the
inner and outer contours ate and2o, respectively.

7 075 08

with [,,.x = 10000. The other 7 cosmological parameteks ¢s, 2, wo, wq, ns andXy) have
been varied and marginalised over in the plot. Again, this forecast is in contrast to Figure 2.10
where even the combined probes of weak lensing, BAOs and Supernovae were incapable of any
constraint.

Finally, | include in Figure 2.13 a marginalised contour foagainst:, which further high-
lights how modified gravity or very generic dark energy signatures can be constrained, consis-
tently, with weak lensing. | find that with,.x = 500 (red contours) this survey could constrain
alterations in the power spectrum with an errobig of 0.25 atlo. This parameter is more sen-
sitive to the range of scales used thgrhowever, with/,,,x, = 10000 (black contours) confining
Yo to within 0.069 of the fiducial valu&, = 0.

The two sets of modified gravity forecast figures reveal interesting degeneracies between the
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new parameters, with both and~ having the same degeneracy with respec®tp. This can
easily be understood by considering the compensation of one physical quantity for another in or-
der to keep the magnitude of the weak lensing signal, and its corresponding statistic, constant. In
each case an increase in the modified gravity parameter gives rise to a suppression in the growth
of structure resulting from the force law (remembering Figure 2.2 and Figure 2.3). A less in-
homogeneous and clustered intervening mass distribution naturally gives rise to less statistical
weak lensing. This effect is simply offset by having more mass in the Universe, i.e. increasing
Q... Therefore, given the correlation betwegrand X, it is evident that these bounds can be
significantly improved with complementary constraints on the mass density, perhaps provided by
a distance indicator.

It should also be emphasised that the spectroscopic element of Euclid (Giinaitt2009)
will also be able to constrain growth and therefore modified gravity via redshift space distortions

(Peacock (2002) and Guzetbal. (2008)).

2.7 Discussion and Conclusion

To summarise, | have noted that the surprising, but well confirmed, late-time acceleration of the
universecould be the result of a modification to gravity. | then, in Section 2.2, reviewed the
concept of modified gravity detailing in the process a model that is motivated by a large extra
dimension (MDGP). Interpolating between LCDM & 0) and DGP { = 1) it can be tested as
a model in its own right and/or used as an example to demonstrate the rich set of observational
signatures that are likely to arise for a modified gravity model in cosmology. These signatures
include the expansion history, and rather interestingly, the growth of structure (Section 2.3) and a
modification to the relationship between the potential power spectrum and the matter power spec-
trum (Section 2.3.1). With these characteristics in mind | then examined attempts to parameterise
modified gravity in this way. This included a growth parametand a power spectrum parameter
>

In Section 2.4 | introduced weak lensing and related its attributes to modified gravity given that
it is sensitive to the expansion history, the growth of structure and the power spectrum. A severe
caveat was described in the use of non-linear scales and therefore, in Section 2.4.2, | described
the appropriate choice of survey (CFHTLS-wide) and déta (30 arcminutes) used in the cos-
mological analyses. The subsequent lensing only constraints were given in Section 2.5.1 where |

showed that one could not yet constrain meaningful valuesafy with the current data. It was
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then demonstrated, by adding BAO and Supernovae data, that weak lensing was highly beneficial
in aiding the constraint of MDGP in combination. Without the inclusion of the lensing data the
expansion-only probes were incapable of constraining 1 when varying2,,, «, h and €. |

found however that the combined probes disfavoured the DGP model with 6%&f eonfidence

level where specificallye < 0.58 at1o anda < 0.91 at2o.

| then showed that a constraint on the subtle, yet important, growth signature is beyond the
current weak lensing, BAO and Supernovae data. Almost total cosmological freedom was allowed
in all these analyses, varying parametets,,, h, os, 2, a, b andc for both models, in addi-
tion to o for mDGP andw, and~ for the growth model. Furthermore, | used e two point
statistic while analytically marginalising over the residual offgetlt was also demonstrated in
Section 2.5.3 that my results are insensitive to over or underestimation of the CFHTLS shear at
high redshift.

Finally in Section 2.6 | looked towards the future space based weak lensing survey Euclid and
discovered that it will have significant ability to discriminate the standard cosmological model.
This was illustrated most clearly in Figure 2.11 and highlights that with the addition of a few sim-
ple priors we will soon be pushing towards percent level constraints with an individual late-time
cosmological probe. This was followed by showing that Euclid will go further and be able dis-
tinguish between modified gravity and LCDM. | included a forecast for the mDGP model finding
that even for a lensing only analysis Euclid could resti¢o within 0.104 of the fiducialae = 0
at 10, even when the deeply non-linear regime has been remdygd & 500). In addition,

a complete and consistent forecast was included for generalised modified gravity demonstrating
that deviations from a fiducial, = 0 of AXy = 0.25 at the68% confidence level will be possible

with [, = 500. Whenl,.,x = 10000 this gets further restricted tAYXy = 0.069. It will also
confiney to within 0.045 (Iax = 500) and0.038 (Imax = 10000) of the fiducialy = 0.55 at 10,

where a full 9 cosmological parameters were varied.

In the analyses with data | have, except as an example case, actively removed angular scales
less than 30 arcminutes. This was to remove the contribution from the unknown non-linear regime
in modified gravity. This clearly does not utilise the available information especially over scales
for which weak lensing is particularly sensitive. In addition, one might also expect that non-linear
physics will act to emphasise any difference in gravitational theory as an additional signature.
This is analogous to the early studies of non-linearities with neutrinos where thereeidran
suppression in the non-linear regime relative to a model mapped naively from the linear (E.g Saito

et al. 2008). However, for a potential viable theory of gravity it is necessary for it to match the
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stringent observations of solar system tests that are satisfied most closely by GR. In this way such
a theory should actually tend to the non-linear behaviour of GR with the same expansion history.

| elaborate on this idea in the discussion of Chapter 5 and how it is leading to developments that
will benefit this study.

Even though | have detailed the advantages of weak lensing in a modified gravity study, and
even though Euclid in particular will be deeply insightful it is obvious that a collected and coor-
dinated assault on our gravitational framework will prove more advantageous. This might exist
in the form of a combination of probes as discussed in Jain & Zhang (2007), for example, where
ideally the four perturbation variables 1, 6 andf are independently targeted. This in principle
would allow us unprecedented experimental scrutiny on the structure of our gravitational theory

over large scales.



CHAPTER 3

THE ANGULAR POWER SPECTRUM OF

PHOTOMETRIC SDSS LRGs

Abstract

| construct a new galaxy angular power spectrmbased on the extended, updated and final
SDSS Il Luminous Red Galaxyhotometricredshift survey—MegaZ LRG (DR7). Encapsulating
7746 deg? (30% more area than the previous photometric SDSS power spectrum) | utilise 723,556
photometrically determined LRGs betwe@d5 < z < 0.65 in a spherical harmonic analysis of

the galaxy distribution. By combining four photometric redshift bins | find parameter constraints
of fp = Q/Qy, = 0.173£0.046 and2,,, = 0.260+0.035, consistent with and independent of the
CMB. This survey is not only one of the largest to date but is one of the most competitive currently
available. The robustness of the power spectra with respect to a number of potential systematics
are discussed. Finally, this composed galaxy clustering data is combined with the CMB (WMAP

5-year) to examine the complementarity of these early and late-time probes.

This work is presented originally in Thomas, S.A., Abdalla, RBLahav, O., 2009a (In prep.).

65
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3.1 Introduction

The analysis of the statistical distribution of fluctuations in the Universe is a potent method for
constraining theories or components within Cosmology. In fact, the power spectrum will fully
describe these variations, which are predicted by theory, if they are given by a Gaussian random
field. The Cosmic Microwave Background (CMB) has been a great example of this principle
in action with recent high precision measurements (Dunigegl. (2009) and Komatset al.

(2009)) confirming that a clear and consistent picture of cosmology is emerging. It is desirable
however to test this picture with additional and independent data that explores a contrasting epoch
of cosmic evolution and breaks the parameter degeneracies that exist from a single probe of the
early Universe. A galaxy redshift survey is therefore a powerful tool in Cosmology (Peebles
1973). In addition, this late-time distribution is sensitive to the emergence of dark energy (Riess
et al.(1998) and Perlmuttest al. (1999)) and arising through the growth of structure enables a test

of gravity (Jain & Zhang (2007), Huterer & Linder (2007), Thonesal. (2009) and Chapter 2)

and the mass of the neutrino (ldtial. 1998). | tackle this last topic in Chapter 4 with a combined
constraint on the absolute mass.

The structure and aim of this Chapter is as follows: To construct and present the angular power
spectrumC, of the new SDSS Luminous Red Galaxy (LRG) photometric survey (Section 3.2),
along with the associated error and cosmological constraints.

Specifically, | determine the colour, redshift and angular selection functions that define the sur-
vey in Section 3.2.1. The spherical harmonic analysis is described in Section 3.3 and Section 3.4.
The cosmological constraints inferred and the potential systematics of the data set are discussed
in Section 3.5 and Section 3.6, respectively. Finally, | combine this data set with an analysis of the

5-year WMAP data in Section 3.7.

3.2 The LRG Angular Power Spectrum

3.2.1 Data

The development of galaxy surveys over the past few years reflects the balance between observa-
tional technology and gains in cosmological parameter estimation. This has at present culminated
in the impressive 2-degree Field Galaxy Redshift Survey (2dFGRS - Celles£2001)) and the

Sloan Digital Sky Survey (SDSS - Yoek al. (2000)). However, the acquisition of a vast number

of precise redshifts through spectroscopy is an expensive, challenging and time consuming task.



3.2. The LRG Angular Power Spectrum 67

An alternative method is to use photometric redshifts (E.g. Csetbali (2003)) resulting from
observations of broadband galaxy colours through a series of filters (see also Figure 3.1). The mo-
tivation is that a decrease in redshift accuracy is outweighed by measurements of a vast number
of galaxies over a wide area of the sky, therefore encompassing a large cosmic volume. Photo-
metric redshift surveys have been shown to be competitive (Biakk (2007) and Padmanabhan
et al. (2007)) and upcoming surveys, such as the Dark Energy Survey (The Dark Energy Survey
Collaboration (2005)), are heavily based on this efficiency principle.

| therefore aim to analyse the clustering of the latest and final SDSS Il photometry given by
Data Release 7 (DR7). The 1.5 million LRG catalogue (MegaZ-LRG DRY7) is produced as an
updated version of MegaZ-LRG (Collistet al.2007). These LRGs are old red elliptical galaxies
that provide a clean and consistent galaxy sample. With a stable spectral energy distribution (SED)
and a sharg000A4 break (Figure 3.1) they therefore provide good photometric redshift estimates.
Furthermore, they are known to strongly trace the underlying mass density; a distribution we are
striving to quantify. Also, being among the brightest galaxies in the Universe they allow detailed
studies over a large cosmic volume. This is highly desirable for a cosmological study given that it

diminishes the effect of sample variance.

3.2.1.1 Redshift Selection

The redshift estimates for this above sample were constructed by using the redshift output as given
by ANNz (Collister & Lahav 2004) an Artificial Neural Network code. This empirical photometric
redshift estimator learns an effective parameterisation of redshift with varying galaxy magnitudes
by working on a representative training set. The 13,000 spectroscopic redshifts from the 2dF-
SDSS LRG and Quasar (2SLAQ) survey (Canmaral. 2006), ad =~ 0° (declination) stripe

within the DR7 imaging area, is one such training set. For this reason and for this specific galaxy
sample over the range of redshifts of interésti§ < = < 0.65) Abdallaet al. (2008) found the

ANNz training method to have the best performance on an evaluation LRG sample compared with

other redshift estimation codes, with average scatier 0.0575 ando, defined by,

[NIES

0, =< (thot - Zspec)Q > (3.2)

The reliability of the neural network training procedure depends on the training set being
completely representative of the target galaxy sample. It is noted that by applying this 2SLAQ
stripe to the wider photometric LRGs there is an extrapolation of the training set with sky position.

The discussion of this potential systematic, however, is left to Section 3.6.
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Figure 3.1: An example LRG spectrum is plotted over the SDSS filters (u, g, r, i and z) for varying
redshifts. The1000A break, which is clearly evident in the relatively stable SED, underlies the LRG
photometric accuracy. The redshifting of the spectrum from the boundary of the g and r filters, through the
r filter and up to the boundary of the r and i filters describes the high redshift galaxy sample that | utilise
(0.44 < z < 0.65). To reiterate, it is from the flux through the different filters that allows one to estimate
the redshift for the galaxycREDIT: Padmanabhaet al.(2007)

3.2.1.2 The Colour Selection

At the start of the 2SLAQ survey there was an alteration in the selection criteria used to extract
the homogeneous LRG sample from the overall galaxy population. This is associated with the
de Vaucouleurs magnitudg.y and alsod,e.p, a colour cut which is related to thg r and:

magnitudes via,
dperp = (r —1) — (g —r)/8.0. (3.2)

| prefer to act cautiously in order to analyse a galaxy sample that most represents the training
set used to infer its properties. Therefore, | introduce the additional colour gyts< 19.8
anddpep > 0.55 to select the LRG population given that these were the selection criteria used
in the strict majority of 2SLAQ. These cuts were also introduced in the analysis of the earlier
MegaZ-LRG catalogue (Blaket al.2007).



3.2. The LRG Angular Power Spectrum 69

3.2.1.3 M-star Contamination

The presence of M-stars represent the main source of object contamiratioy ) within the
remaining sample owing to similar broadband colours. Generally, an uncorrelated sample of stars
will act to suppress the power of fluctuations (Hutezeal. 2001). One would expect a slightly
correlated variation of stellar material through the galactic plane and hence our survey area. |
therefore remove a large proportion of these contaminants with a cut in star-galaxy separation. The
ANNz code has a star-galaxy parameigy as an additional optional output (Collister & Lahav
2004). The parameter varies continuously from ‘guaranteed’dsfar= 0 to ‘certain’ galaxy

ds¢ = 1. 1 remove all objects withi,, < 0.2, in the processes decreasing the contamination
fraction to~ 1.5% with minimum loss of bona fide galaxies (Collister al. (2007) and Blake

et al. (2007)).

3.2.1.4 The Angular Selection Function

The angular selection function was obtained, which is used to determine the boundaries of the sur-
vey in the plane of the sky, frotsChunk.dr7.best.par downloaded aivww.sdss.org/
dr7/coverage . | converted the provided great circle coordinates) and the survey’s stripe
numbers to declination and right ascension before undergoing a HEALPIx pixelisation on a sphere
(Gorskiet al.2005). | used a total of 3,145,728 pixel2(x ngqe X ngige Wherengge = 512) over
the entire sky, placing a zero in pixels corresponding to holes, gaps or regions not surveyed and
a one in genuinely surveyed pixels. This discrete survey mask was then overlaid with the afore-
mentioned LRG catalogue to leave the final galaxy map. | further tested thisiwith= 1024 to
examine the effects of a pixelised space. After appropriately adjusting the esti@atiedind in
the next subsection), by dividing by the square of the HEALPix window funaﬂﬁmhe pixeli-
sation effect was found to be negligible.

| imposed an additional constraint on the mask/map by excluding the survey stripes 76, 82
and 86, which are widely separated from the rest of the contiguous region. These segments act to
increase the complexity of the survey window function and contribute relatively little extra galax-
ies. The resulting survey used for the primary angular power spectrum analysis’pénsg?
and723, 556 galaxies over a redshift4 < z < 0.7. This is a30% larger area for analysis than
the first and previous MegaZ-LRG survey (Bladteal. (2007) and Collisteet al. (2007)). Like-
wise, it is significantly more expansive than the earlier Padmanadtrer(2005), which covering

3,528deg? and0.2 < z < 0.6 represents a slightly different LRG population and analysis method.
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Figure 3.2:The SDSS Data Release 7 (DR7) photometric LRG coverager4tdeg? it covers723, 556
galaxies over a redshift4 < z < 0.7. The three excluded stripes (76, 82 and 86) are visible towards the
boundary of the plot. The 2dF SDSS LRG and Quasar (2SLAQ) survey and training set constitute a narrow
stripe ¢ ~ 0°) that passes approximately through the middle of the coordinate system and the bottom of
the defined survey.

The final sky coverage is shown in Figure 3.2.

3.3 The Power Spectrum Measurement

The measurement of the angular power spectrum is performed by undertaking a spherical har-
monic analysis (Peebles 1973). By explicitly summing the discrete galaxies over the incomplete
sky | follow the derivation, methodology and/or notation of Peebles (1973), Weiggit (1994),
Blakeet al. (2004) and Blaket al. (2007).

One connects the underlying density field in a redshift band to the relevant statistical entities
by first projecting the mass distribution onto a plane in thesld; ¢). This distribution is then

decomposed into a series of spherical harmoFig¢s and their corresponding coefficients,,,
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00 l
0,8)=> > amYim(0,0). (3-3)

=0 m=-—1
The statistical distribution—the angular power spectés then given by the multi-realisation
expectation of these, ,, coefficients,< |a;,|> >. For a full sky survey these coefficients rep-
resent an orthogonal and normalised basis and are thus found by a summation of the spherical

harmonic conjugate over the galaxy catalogue,

§j (6i, 67)- (3.4)

However, in reality one will observe a masked and therefore incomplete sky. This effectively
correlates the spherical harmonic coefficients and induces the correction and adjustment for loss

of power given by,

Cpsky ‘Al m %Il,mp . @
I,m Jl,m N

(3.5)

where thel; ,,, andJ, ,, integrals in Equations 3.6 and 3.7 are evaluated over the geometry of the
discrete survey area. 1.&$) = 1 for a surveyed pixel and) = 0 for an unsurveyed pixel. The

last subtracted term is a correction for the statistical distribution of shot noise and is equivalent to
the expectation of the corresponding harmonic coefficient for a random unclustered sample.

Iy = Y, dQ (3.6)
AQ

ﬁmZ/lﬁM%Q (3.7)
AQ

One can then obtain the resulting angular power spectrum for a given multip@en averaging
of Cj ,,, over the @/ + 1) a; ,,, values,

l psky
Zm:—l Cl,m

Cobs —
20+ 1

(3.8)
The angular power spectrum is independentdbr statistical isotropy. Thé€’, values are further
averaged into bins of width/ = 10. | weight this average by the corresponding number; ofs,

bt _ oA 20+ 1)ophs
£ Z’+Af(2£+1) .

(3.9)
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The angular power spectrum in the&é bands is measured up fo= 500. One can therefore use
these statistics for each redshift bin within the survey volume. | measure the clustering distribution
in four such photometric redshift bins, each having width = 0.05 from z = 0.45t0 z =
0.65. These procedures are in line with Blag&eal. (2007) and therefore a direct MegaZ-LRG
comparison and consistency check can be made.

The aforementioned redshift bins are correlated, however, as photometric errors scatter galax-

ies throughout the bins. A small modification to the angular power spectrum,

4
. 1 ) .
,] __ 7 * 2]
Cyl = TR § (Al ) A, (3.10)

m=—¢
enables a measurement where the harmonic coefficients indpid binj have been adjusted for
incomplete sky coverage as detailed above. The results are displayed in Section 3.3.2.

Note there exist other analogous procedures for the analysis of galaxy clustering including,
for example, quadratic estimators, maximum likelihood methods and explicit reconstructions of
the power spectrum (E.g. Huteretr al. (2001), Tegmarlet al. (2002), Seo & Eisenstein (2003),
Tegmarket al. (2004), Blake & Bridle (2005), Tegmart al. (2006), Padmanabhaat al. (2007),
Blakeet al. (2007) and Reict al. (2009)).

3.3.1 Simulations, the Covariance and Gaussian error

The methodology described above in Section 3.3, for the measurement of the angular power spec-
trum, was applied to simulated data in order to test the procedure and the code. This was performed
by first constructing a Gaussian random field for some input cosmology, using best fit WMAP5
parameters (Dunklegt al. 2009), and subsequently reconstructing this cosmology for each of the
four galaxy clustering redshift bins to be measuredaridomlyselected the full set of spheri-

cal harmonic coefficients, ,,, from Gaussian distributions with widths given by the underlying
known cosmology([Cg/)%]. The relation between the underlying matter power spectrum and the
theoretical angular power spectrum is described in Section 3.4. Then, using the H¥E Alne-

tion alm2map (Gorski et al. 2005) | simulated a pixelised galaxy map from these quantities and
sampled objects as a Poisson realisation of the field. The full angular selection function of the
survey (Section 3.2.1; Figure 3.2) was imposed on the simulated map and the number of galaxies
sampled in each bin were matched to those present in the observed catalogue. This mock data was
then analysed with my code in the same manner as the real data and averaged over 1000 simu-
lated realisations. The accuracy and reliability of the code and the power spectrum measurement

procedure is evident in Figure 3.3.
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Figure 3.3:The averaged reconstruction of the ingitfield for 1000 simulated realisations. The thick
dashed lines represent the input cosmology for the four redshift bins befw&er: 2z < 0.65 and the

thinner solid lines are the recovered averages. The plot has been truncate®@d as a visual aid to see

the agreement. The behaviour beyond this point continues in an identical fashion and so the accuracy and
consistency of the code and the measurement procedure is clear.

Interestingly one can also use these simulations to derive the statistical error in the galaxy
clustering measuremeni$Cy). This is extracted from the standard deviation overlih@ mock
realisations at each An alternative estimate of the error is to use the simple analytic Gaussian

expression (E.g. Dodelson (2003) and Blakal. (2007)),

[ 2 AQ

wherefy, is the fraction of sky surveyed\(2 is the area, N is the measured number of galaxies in
the bin and’} is the observed or theoretical angular power spectrum. The first and second terms
in Equation 3.11 include the necessary error contributions from both cosmic variance and shot
noise, respectively. It also accounts for the reduced error given the combinaténtof C; ,

values into the determination of ea€h. For the statistical error in the cross power spectrum this
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Figure 3.4:Left Panel: The analytic Gaussian expression (Equation 3.11; dashed line) is accurately traced
by the 1000 realisation simulated error in a redshift band (solid line), shown here forhifs 1 z < 0.5).

This demonstrates the approximate validity of the Gaussian expression. Right Panel: The agreement is
further highlighted by the ratio of the analytic and numerical estimations of the statistical error, where
the overall behaviour is consistent with unity. The two panels are shown for the first bin only but are
representative of all other bin combinations.

generalises to,

yii 2 S S
) = F e (ci+ NZ-/AQ) (ci+ Nj/AQ)‘ (3.12)

However, the expression for the error is potentially invalid for non-Gaussian statistics and non-

linear growth and does not capture the full effects of a complex survey geometry. By earlier
including the survey mask in the Monte Carlo realisations/simulations and accounting for the ob-
served number density of galaxies in each redshift bin the simulated error has no such limitations.
In addition, the variance between the simulatéd will incorporate the full covariance between
redshift bins and\¢ bands. | therefore use the mock errors as a testbed for the Gaussian expres-
sion’s validity.

| find the expression reconstructs the simulated error accurately in each of the four redshift
bins and across the entire range/ofThis is easily seen in the left panel of Figure 3.4. The error

ratio, typified by the first redshift bin, is displayed in the right panel.
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3.3.2 Results

| have constructed the galaxy clustering angular power spectifior SDSS MegaZ-LRG (DR7),

an extension to the earlier analysis (Blad&eal. 2007) of the original MegaZ-LRG catalogue
(Collisteret al. 2007). Including723, 556 photometrically determined LRGs and encapsulating
7746 deg? the measured values in four redshift bins extending= 0.05 in redshift, from0.45 to

0.65, are recorded in Table 3.1. These are illustrated further in Figure 3.5. The full measurement
procedure was detailed in Section 3.3. In addition, the measured cross power spectra between bins
are described and listed in Section 3.6.2.

Table 3.1 also includes the statistical erref€’;) on each power spectrum measurement as
given by Equation 3.11, but calculated with timieasured”,. They have been further weighted
over theA?¢ = 10 band. This was shown in Figure 3.4 to be a good approximation. Note that
for the cosmological parameter estimation in Section 3.5 | utilise the Gaussian expression but
evaluated withmodelCs.

In addition to the simulations described previously | also test the measurement pipeline by
reconstructing the observéd as found in the DR4 catalogue. | find these values to be identical
to Blakeet al. (2007). As in the DR4 results | find that DR7 also exhibits an excess of power
over the largest scalé (= 6 band) in the furthest redshift bin. There is slight relief from this
tension however as the DR4 point is found to have a furtb& more amplitude. The effects and

potential cause of this are discussed later in the chapter.

Table 3.1: The angular power spectrdimfor SDSS MegaZ-LRG (DR7), an extension to the first
MegaZ-LRG analysis (Blaket al. (2007) and Collisteet al. (2007)). The Gaussian statistical
error on the measurement is also included, which has been weighted ovek&hahd. Each bin
extendsAz = 0.05 in redshift fromz = 0.45 t0 0.65 and coveringr746 deg? contain259, 498;
237,564; 155,293 and71, 201 galaxies, respectively. With the exception of the multipole values
(¢) all quantities have been multiplied ip>. Note that for the main cosmological analyses the
modelCys are used to dedued Cy), except where explicitly stated for comparison.

/ C?inl O‘(C}) CEinQ O‘(CZQ) CEinB O’(Cg) C?in4 O’(Ozl)

6 || 24.757 7.646| 16.307 5.154| 18.944 6.096| 26.380 8.846
16 | 15.685 3.027| 9.702 1.951| 13.501 2.740| 10.512 2.522
26 || 10.917 1.692| 7.708 1.245| 9.893 1.633| 7.230 1.509
36| 9.865 1.310| 7.481 1.030| 6.803 1.012| 5.686 1.094
46 || 7.613 0.916| 6.980 0.857| 5979 0.806| 5.602 0.959
56| 5.447 0.619| 3.900 0.477| 5.192 0.654| 4.574 0.769
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| cPm o(ch) | CP o(ch) | CP o(CR) | CPt a(C)
66 | 5.293 0.557| 5.072 0.544| 4.177 0.511| 4.408 0.693
76 || 5.088 0.501| 4.872 0.491| 3.802 0.445| 3.165 0.542
86 || 3.817 0.371| 3.945 0.388| 3.936 0.429| 3.636 0.546
96 | 3.675 0.341| 3.068 0.302| 3.368 0.364| 2.728 0.450
106 | 3.358 0.302| 3.141 0.293] 3.313 0.342| 2.944 0.443
116 2.987 0.264| 2.947 0.266| 2.736 0.288| 2.966 0.425
126 | 2.570 0.226| 2.333 0.216] 2.056 0.232| 2.052 0.348
136| 2.426 0.208| 2.064 0.191| 2.310 0.239| 1.817 0.321
146 2.375 0.198| 1.847 0.171| 2.069 0.216| 1.690 0.302
156| 2.162 0.179| 1.860 0.166| 1.683 0.187| 1.888 0.303
166 | 1.878 0.157| 1.342 0.132] 1.390 0.164| 1.504 0.272
176 1.579 0.136| 1.647 0.145| 1.569 0.169| 1.561 0.268
186 || 1.842 0.147| 1.552 0.136| 1.310 0.151| 1.497 0.257
196 | 1.507 0.125| 1.152 0.111] 1.356 0.149| 1.050 0.227
206 | 1.358 0.115| 1.140 0.108| 1.267 0.141| 0.992 0.218
216 | 1.159 0.102| 1.203 0.109| 1.302 0.140| 1.345 0.231
226 1.163 0.100| 1.244 0.108| 1.191 0.131| 0.844 0.201
236 | 1.149 0.097| 1.036 0.096| 1.237 0.130| 0.712 0.191
246 | 0.906 0.084| 0.943 0.090| 0.933 0.114| 0.959 0.198
256 | 1.025 0.088| 0.872 0.085| 0.984 0.114| 1.038 0.198
266 | 0.998 0.085| 0.875 0.083| 0.888 0.107| 0.713 0.180
276 || 0.853 0.077| 0.955 0.085| 0.794 0.101| 0.745 0.178
286 | 0.824 0.074| 0.724 0.074| 0.855 0.102| 0.949 0.183
296 | 0.738 0.069| 0.657 0.070| 0.796 0.098| 0.795 0.174
306 || 0.754 0.069| 0.707 0.070| 0.639 0.090| 0.582 0.162
316 0.780 0.069| 0.717 0.070| 0.571 0.085| 0.764 0.167
326 || 0.784 0.068| 0.654 0.066| 0.611 0.086| 0.635 0.159
336 || 0.727 0.065| 0.634 0.064| 0.612 0.084| 0.689 0.159
346 || 0.756 0.065| 0.626 0.063| 0.700 0.087| 0.728 0.158
356 0.686 0.061| 0.690 0.065| 0.586 0.081| 0.589 0.150
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| cpmt o(eh) | CP o(Ch) | CP o(CR) | P o(C)
366 || 0.667 0.060| 0.519 0.057| 0.589 0.080| 0.553 0.147
376 | 0.681 0.059| 0.632 0.061| 0.485 0.075| 0.532 0.144
386 | 0.611 0.056| 0.517 0.056| 0.569 0.077| 0.432 0.139
396 | 0.617 0.055| 0.525 0.055| 0.599 0.077| 0.307 0.132
406 || 0.561 0.053| 0.559 0.056| 0.540 0.074| 0.592 0.141
416 || 0.427 0.047| 0.489 0.053| 0.510 0.072| 0.545 0.138
426 || 0.625 0.054| 0.515 0.053| 0.511 0.071| 0.257 0.126
436 || 0.558 0.051| 0.509 0.052| 0.502 0.070| 0.376 0.128
446 || 0.521 0.049| 0.459 0.050| 0.332 0.063| 0.541 0.133
456 || 0.539 0.049| 0.459 0.049| 0.482 0.068| 0.398 0.126
466 | 0.488 0.047| 0.447 0.048| 0.446 0.066| 0.419 0.126
476 | 0.438 0.045| 0.453 0.048| 0.403 0.064| 0.425 0.125
486 || 0.429 0.044| 0.364 0.044| 0.419 0.064| 0.153 0.114
496 || 0.493 0.045| 0.356 0.044| 0.330 0.060| 0.410 0.122




3.4. Theoretical Power Spectrum 78

3.4 Theoretical Power Spectrum

In order to deduce the cosmology to match the measured angular distribution above one must first
have a method for connecting the underlying 3D mass distributi@ry td he outline description
below simply follows the approach and notation of Hutereal. (2001), Tegmarlet al. (2002),
Blakeet al. (2007) and, most clearly, Padmanableaal. (2007).

One starts by noting that before the statistical decomposition of the density field into spherical
harmonics in Section 3.3 the field was projected onto the plane of the sky. The same procedure
is initially followed for the theoretical angular power spectrum with the 3D mass distribtition

projected along the line-of-sight”. This gives,

3
620 = 4! / (gwl; S(k)Wy(k), (3.13)

whered has also undergone a Fourier transformation. The resulting spherical Bessel function

j(kz) and the projection’s weighf(z) have been absorbed into the window function given by,

Wi(k) = / F(2)ii(kz) d. (3.14)

The weight naturally depends on the normalised redshift distribution of the objects under consid-
eration [ n(z) dz = 1 and the linear growth factap(z),

£(2) = n()0(:) (L) (315)

with the Jacobian relating to the radial comoving coordinatéJsing the definition of the power

spectrumP (k) for the 3D density field (k),
< 6(k)o*(K') >= (2m)%63(k — K')P(k) (3.16)

the angular power spectru@y is found and similarly defined to be,

dk

Cp =< 6°P5**P >=4r / A2(k:)Wg2(k)?. (3.17)

The power spectrum has been recast into the dimensionless power spectrum defined in Equa-
tion 3.18. This power spectrum describes the variance of the matter field in logarithmic bands
and so the equation fary is subsequently a weighted integral of this quantity over logarithmic
intervals (dk/k = dln k).

_ 47k P(k)

A?(k) = 2n ) (3.18)
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Figure 3.5: The measured Angular Power Spectéz)(for the photometric SDSS MegaZ-LRG (DR7)
population as presented in Table 3.1. The error bars correspond to those calculated with Equation 3.11 using
the measured power spectrum. These include contributions from cosmic variance and shot noise, while
accounting for the fraction of the sky surveyed. The solid line is evaluated for the the best fit parameters
found in Section 3.5 using the Smidh al. (2003) non-linear prescription. The panels are: Bin 1 (top left),

Bin 2 (top right), Bin 3 (bottom left) and Bin 4 (bottom right). In the furthest redshift bin an excess of
power is observed over the largest scale. This was found similarly in DR4 but in that earlier case with an
additional40% more amplitude. The DR4 point is shown by the cross in the top left corner of the panel.
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This can be further written in terms on the galaxy power spectrum with the addition of the linear

galaxy bia9,
P,(k) = b*P(k). (3.19)

For/ = 60 the exact expression (Equation 3.17) can be simplified by the small angle approxima-

tion (e.g. Blakeet al. (2007)),

Cg:bQ/P(k,z)ZEj;z <%>_1dz. (3.20)

On larger scales (smallé) this approximation becomes invalid as it seriously underestimates the
power inCy. In fact, even the exact expression does not capture the shape of the true power
spectrum below ~ 60. The main reason is because of redshift space distortions, which lead to a

significant boost in the angular power spectrum.

3.4.1 Redshift Space Distortions

The peculiar velocity of a galaxy will cause it to appear shifted along the line-of-sight in redshift
coordinates (E.g. Sargent & Turner (1977), Peebles (1980), Kaiser (1987), Eishle(1994),
Heavens & Taylor (1995), Hamilton (1998) and Guzatal. (2008)). This is relative to the same
galaxy carried along only by the background Hubble flow. That is, the redshift distaoca
body will be altered from its true distanee by its own peculiar velocity = #.v, radially from

the observer,
s=r+tv=r+o. (3.21)

In redshift space this deviation alters the apparent clustering of galaxies and collectively the effect
is said to be the result aédshift space distortions

Over large scales the gravitational collapse of some spherically symmetric (in real space) over-
density will cause it to appear narrower along the line-of-sight (in the observed redshift space).
As alluded to above this is because the matter nearest to the observer is redshift distorted towards
the overdensity’s centre, giving the impression that it is located closer to the origin. Matter on
the other side of the structure will have projected peculiar velocities towards the observer such
as to make them also appear closer to the origin. The object therefore seems flatter in the radial
direction. Naturally the object is not deformed along the plane of the sky as the inferred redshift

is not affected by its transverse motion.
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Over smaller scales the peculiar velocity tends to increase through infall. In addition to this,
the velocity is larger relative to the distance from the test matter to the centre of the structure. In
redshift space the distorted object subsequently becomes ever more flat. Eventually, over suffi-
ciently small scales or within a viralised object, the peculiar velocity will be high enough such
that visible objects appear on th¢her side of the overdensity. This gives rise to a tendency of
long, thin, column-like structures to appear radially in a galaxy survey. These particular objects,
resulting from the redshift space distortions, are grandiosely referreditmass-of-God

To include redshift space distortions in the angular power spectrum the window function
W (k) in Equation 3.17 is modified such th#t,(k) — W,(k) + W/ (k) (E.g. Fisheret al.
(1994) and Padmanabhanal. (2007)). This is a result of writing the weight properly as a func-
tion of redshift distancg (s) and assuming that the magnitude of the peculiar velocities are small.

This is because with this assumption one can perform a Taylor expansion of the weight,

F) % £+ S ) ). (3.22)

The subsequent window function (remembering Equation 3.14) therefore now has the two compo-
nents W, (k)+ W[ (k), with the latter currently a function of from above. The Fourier transform

of v is in turn related to the density perturbation through the linear continuity equation,

, k
v(k) = —zﬂ5g(k)ﬁ (3.23)
with the constant of proportionality known as the redshift distortion parameter. This is com-
monly approximated by ~ Q%6 /b. Substituting this into the expression for the window function
and Legendre transforming (see Padmanateha. (2007) for further details) eventually leaves

one with,

212+2l—1) , I(1—1) , I+1)(1+2) .
ﬁ/f 2l+3 )Jl(k )_mﬂ—z(ky)—m]z+2(ky) dy.

(3.24)

For large values of the integral within Equation 3.24 tends to zero and so the total window
function is reduced to the previous form. In this way, even with the inclusion of redshift distor-
tions, the small angle approximation is an efficient and accurate estimate of the angular power
spectrum at small scales. The behaviour of this approximation and the effects of the redshift space

distortions on the power spectrum are illustrated further in Figure 3.6.
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Figure 3.6: A range of theoretical angular power spectra for the lowest redshift bin used in this survey
(0.45 < z < 0.5). This includes the small angle approximation (Equation 3.20; dotted line), the exact ex-
pression with no redshift space distortions (Equation 3.17; dot-dashed line), the exact expression including
redshift space distortions (Equation 3.24; solid line) and also with the addition of the partial sky mixing
matrix convolution (Section 3.4.2; Equation 3.26; dashed line). The input parameters are taken to be:
Qp = 0.05, Q,, = 0.3, h = 0.75, 0g = 0.8 andb = 1 for all four profiles. The small angle approximation

is used for multipole scalegs> 60 for faster computation in the cosmological analyses.

For an analysis between redshift bins the above outline can be easily extended. The cross
correlation of two distinct projected mass distributionss;”§3*” > leads simply to a slight
modification in Equation 3.17; with the window function for each bin treated separately,

dk

; (3.25)

CJ = 4n / A2(k)Wi(k)W; (k)

3.4.2 The Mixing Matrix: Partial Sky Convolution

An additional alteration in the shape 6% at large scales is to account for the partial sky cover-
age of the real survey. As stated in Section 3.3 this correlates the usually orthonormal spherical

harmonic coefficients, effectively creating a dependency on neighbouring scales. The net effect
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is to slightly suppress the shape of the power specityrbelow ¢ ~ 60 as seen in Figure 3.6.
The effect can be calculated by convolving with thxing matrixR,; ; (Hauser & Peebles (1973),

Hivon et al. (2002) and Blakest al. (2007)),

Cr=> RyCy. (3.26)
l/

The mixing matrix can be pre-calculated and depends purely on the survey geometry. It is de-

scribed by,

2

2 +1 P

Rl,l’ = 1 Z(Ql” + 1)W// (3.27)
T W 0 0 O

with W;, the power spectrum of the survey’s mask, calculated using Equation 3.282 Xt#
matrix within R; ; is a Wigner coefficient. For a full sky survey the convolution should have no
effect on the angular power spectrum and accordingly the mixing matrix reduces to the identity
matrix Ry ¢ — 6gpr.

St Himl?

Wi==""

(3.28)

For the DR7 survey geometry the mixing matrix at a giveis seen to be heavily peaked as
a function of¢’ about that multipole value. The profile rapidly falls within the chogehbin,
implying only a small correlation between thbands is introduced by the mask. This is illustrated

in Figure 3.7 for two different multipole scales.

3.5 The Cosmological Analysis

| calculateP (k) for the angular power spectru@y usingCAMB (Lewiset al.2000). TheHALOFIT

fitting function (Smithet al. 2003) is then used to map the linear power spectrum into the non-
linear regime (largd). To increase the speed of calculation | use the small angle approximation
(Equation 3.20) fo¥ > 60 and the full and exact window function, including redshift distortions
(Equation 3.17 and Equation 3.24), otherwise. This is all convolved with the mixing ndgtyix

as described in the previous subsection.

3.5.1 The Redshift Distribution

The model redshift distribution(z) in each redshift slice is taken to be the form of the spec-

troscopic 2SLAQ evaluation set, with the same LRG selection criteria, inpth@ibmetricbin.
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Figure 3.7: A slice through the mixing matrixz, . is plotted for two fixed multipole values given by

¢ =200 (solid curve) and’ = 260 (dashed curve). The amplitude of the matrix peaks at those fixed values
and decays rapidly within the size of/& band. This establishes how little correlation is induced by the
survey’s window function. Furthermore, the behaviour is observed similarly across all angular scales. Note
that the matrix profiles have been normalised to unity at their peaks and the vertical axis is in logarithmic
space.

This is possible because the 2SLAQ evaluation objects have both a spectroscopic and photometric

redshift. Thesex(z) were fit with a Gaussian function given by,

n(z) o exp [ — (22;/;)2} (3.29)

For the cosmological analysgsando are fixed to their best fit values in each bin. | address this
assumption as a potential calibration systematic in Section 3.5.3 and Section 3.6.2. The best fit
quantities are summarised in Table 3.2 for the current (DR7) and previous data release (DR4).
In addition, the Gaussian fits to the spectroscopic distributions are illustrated in Figure 3.8. The
vertical axis represents the number of spectroscopic 2SLAQ objects within a small histogram band
(6z).
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Figure 3.8:The spectroscopic redshift distributiaiiz) for each photometric bin in DR7 is illustrated as a

series of histograms. Each redshift distribution is fit by a Gaussian funetigh-(» — ©)?/202], wherep

ando are specified in Table 3.2. The associated Gaussian fits are represented by the smooth and continuous
curves.

3.5.2 Parameter Constraints: The Single Redshift Bins

| start by undertaking a cosmological analysis in each of the four separate redshift bins described
previously. A conservative choice of parameters is studied such that | can test for consistency
against the previous MegaZ LRG analysis (Blaeal. 2007). | therefore vary four quantities:

o = Q/Qm, Qm, 03 andb; the baryon-to-matter density ratio, the matter density, the normalisa-
tion of the power spectrum and the galaxy bias, respectively. The bias is assumed to be scale inde-
pendent§ # b(k)). Along with the earlier MegaZ paper the Hubble constant is fixeHge= 75

km s~! Mpc~! and the spectral index te, = 1. Bothog and the bias control the amplitude of

the power spectrum and are thus degenerate with one another. A flat prior is therefore enforced
on the former such tha&7 < og < 1.1. The Universe is assumed to be flat throughout with the
equation of state fixed toyg = —1. Again, to compare directly to the first MegaZ analysis | use all

the multipole values up t6 = 300. This is the scale at which the non-linear corrections become
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7 o Redshift Bin Photometric Range
0.474  0.035 Bin 1 0.45 < 2 < 0.50
0.525  0.042 Bin 2 0.50 < z < 0.55
0.572  0.044 Bin 3 0.55 < 2 < 0.60
0.625 0.053 Bin 4 0.60 < z < 0.65
0.474 0.0312 Bin 1 0.45 < 2 < 0.50
0.523 0.0428 Bin 2 0.50 < 2 < 0.55
0.568 0.0433 Bin 3 0.55 < 2 < 0.60
0.624 0.0568 Bin 4 0.60 < z < 0.65

Table 3.2: The mearu and deviatiorno of the Gaussian fitting to the spectroscopic redshift distribution
n(z) in each photometric bin. The top segment is the fit corresponding to the previous DR4 release as
found in Blakeet al. (2007) and similarly in Collisteet al. (2007). The bottom segment is for the new DR7
release. This is highlighted in Figure 3.8.

increasingly significant. For the parameter exploration | use the publicly availaia1GMC

package (Lewis & Bridle 2002).

3.5.2.1 Data Release 4

To test for consistency | first perform the cosmological analysis on the previous DR4 angular
power spectra, which are then compared to those found in Bisde(2007). | find a remarkably
similar agreement to the previous study in the first three redshift bins over a redshiforahge

z < 0.6. However, for the final and furthest redshift bih@ < =z < 0.65) a large discrepancy

is discovered when all angular scalesita, = 300 are utilised. It is interesting that for this
particular redshift bin a large excess of power was detected in the measuremenCpfat¢he

largest angular scalé & 6 band). Even though this is approximately at the turnover scale of the
power spectrum, where one might expect the power to start decreasing, the excess was found to be
just overlo from the best fitC, profile. One might not therefore expect this anomalous point to
cause any significant alteration in the cosmological analysis. Itis important to remember, however,
that the error on this data point, assigned in the previous study, was the error given by the Gaussian
expression (Equation 3.11) using thatavalue for theC;,. As the magnitude of this point is so

much larger than th€', corresponding to a smooth fit through the other data points, the associated

data error bar is made to appear much larger also. In the parameter estimation performed here
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Figure 3.9: Constraints on the MegaZ LRG (DR4) highest redshift i (< z < 0.65) using model

errors (red contour), data errors (green contour) and model errors with the lowest multipole removed (blue
contour). The last analysis gives constraints consistent with the previous &lak€2007) study. Other-

wise the excess power on large scales acts to alter the constraints; in the process favouring a much lower
matter density.

and in Blakeet al. (2007) the error and therefore covariance matrix are evaluated usingpithel
errors. This is because in a Bayesian analysis one implicitly assumes the model to be true. Any
model spectrum attempting to fit the other data points will assign a theoretical value at the largest
angular scales much lower than that measured and subsequently the error bar will be much smaller.
The excess power is therefore a much poorer fit than is first thought. In order to try and replicate
the original DR4 constraint for this furthest bin | remove this irregular point. In addition, | also
follow an analysis using the data errors in the covariance matrix wigladingthe excess power
quantity. The resulting contours are shown in Figure 3.9.

The plot highlights that the excess power at low multipoles is indeed significant, with the
inclusion of the lowest point dragging the constraint to much lower valués,p{red contour).
Also, the figure reiterates the notion that the data error (green contour) acts to buffer against this

anomaly given that the contour is similar to the model analysis that excludes the excess power
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(blue contour). When fitting with the model errors and no excess power | find the constraints to
be identical to those in Blaket al. (2007) and also consistent with the three other redshift bins.

These are all plotted in Figure 3.10 along with analyses using the data error in each bin.

3.5.2.2 Data Release 7

The angular power spectrum for the last redshift bin was measured for DR7 in Section 3.3.2 and
shown in Figure 3.5. Once again an excess of power is detected at this high redshift. However,
there seems to be a slight hint of an ease in tension as the magnitude of the DR4 point is found
to be40% higher than the newly measured DR7 value. | therefore undertake a cosmological run
for this bin using the excess power point and also with it removed to test the effects. | find that
despite the more recent decrement in heon these large scales the inclusion of the quantity
still significantly affects the parameter constraints found with the bin. This is illustrated clearly in
Figure 3.11. Again, with this point excluded the fourth redshift bin is found to be consistent with
the other three slices.

| therefore choose to continue the galaxy clustering study by excluding the anomalous excess
power in thel = 6 band for the furthest redshift bin. It is intriguing that excess power has also
been detected in Padmanabletnal. (2007) and, most recently, in the study of the maxBCG
cluster power spectrum by Huetsi (2009). | discuss the possible origin of this signal further in
Section 3.6.1.

For the new DRY release the associated constraints for every redshift bin are displayed as the
yellow contours in Figure 3.12 and Figure 3.13. Also included, for direct comparison and consis-
tency, is my analysis of the previous SDSS release (DR4) as described above. This is illustrated
in each panel by the blue contours.

The increase in survey area and thus galaxy number does not seem to particularly aid the joint
constraint of€2,, and f, along the direction of their mutual degeneracy, except perhaps in the
highest redshift bin. Perpendicular to the degeneracy, however, there is a slight restriction in the
parameter space. Also, the new DR7 sample predicts a modest shift in the value of the bias in
each bin. Even though this is much less than a significance level it could reflect the fact that the
continually updated SDSS pipeline gives rise to different photometry values even for the same
objects as before. In this way galaxies near the selection criteria (as discussed in Section 3.2.1)
might be scattered into/out of the new analysis, resulting in a slightly different galaxy sample.
This can be a moderate effect for LRGs and is discussed, along with other systematics that might

affect the samples, also in Section 3.6. Irrespective of the changes inherent in the samples there is
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Figure 3.10:MegaZ LRG DR4 constraints ofy, = €2;,/Q,,, and(,,, for four redshift bins using model
errors (blue contours) and data errors (green contours) in the covariance miatixd og have been
marginalised over andi, andn, are fixed to75 km s—! Mpc~! and 1, respectively. This release has
been analysed to test for consistency with Blakeal. (2007). All the bins are remarkably compatible
except for the fourth redshift bin. Here an excess of power at the lowest multipole must be removed for
an agreement (see text). The panels are: Bin 1 (top left), Bin 2 (top right), Bin 3 (bottom left) and Bin 4
(bottom right). The inner and outer contours are@R& and95% confidence levels, respectively.
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Figure 3.11:Constraints on the MegaZ LRG (DR7) highest redshift loit (< 2 < 0.65) using model

errors and all data points #,.x = 300 (red contour) and model errors with the lowest multipole band
removed (yellow contour). Despite a decrease in the excess power in DR7, relative to the previous DR4
release, the observed shift in constraints above show the contribution from the anomalous low band to still
be significant. The yellow contour analysis is consistent with the other three redshift bins (Figures 3.12 and
3.13) and as such this point is removed from all subsequent analyses as before.

a comfortable consistency between the two releases and all four bins within the releases. All the
inferred constraints are summarised in Table 3.3.

When obtainingf, €2,,, or b all the other parameters are marginalised over. The bias is subse-
guently seen to enlarge with an increase in redshift. This is partially due to the observed galaxies
in the furthest redshift bin necessarily being more luminous, resulting from the pseudo-magnitude

limit in the survey. They are therefore observed to be more highly clustered (Biake2007).

3.5.3 Parameter Constraints: The Combined Redshift Bins

I now combine the data from each of the four redshift bins. These bins are not independent,
however, as photometric redshift errors act to disperse galaxies throughout the bins. Another

way of noting this is to observe that the Gaussian redshift distributions, as seen in Figure 3.8,
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Figure 3.12:MegaZ LRG DRY7 constraints ofy, = Q,/Q,, and(,, for four redshift bins (yellow con-
tours).b andog have been marginalised over afg andn, are fixed ta75 km s—! Mpc—! and1, respec-
tively. The previous MegaZ LRG DR4 release has been reevaluated to test against2lak2007) (blue
contours). The panels are: Bin 1 (top left), Bin 2 (top right), Bin 3 (bottom left) and Bin 4 (bottom right).
The inner and outer contours are #8% and95% confidence levels, respectively.
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Figure 3.13:MegaZ LRG DRY7 constraints di},,, and the bia$ for four redshift bins (yellow contours).

fo = O/, andog have been marginalised over af§ andn, are fixed to75 km s—* Mpc~! and1,
respectively. The previous MegaZ LRG DRA4 release has been reevaluated to test agairestd|§ke07)
(blue contours). The panels are: Bin 1 (top left), Bin 2 (top right), Bin 3 (bottom left) and Bin 4 (bottom
right). The inner and outer contours are &8 and95% confidence levels, respectively.
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fo Qm Redshift Slice  Photometric Range

0.152 +£0.055 0.271 £ 0.0430 Bin 1 (DR4) 0.45 <z <0.5
0.139 £0.053  0.262 £ 0.040 Bin 2 (DR4) 0.5 <2<0.55
0.175+0.051  0.240 £ 0.038 Bin 3 (DR4) 0.55 <2 <0.6
0.199 £0.072  0.268 £ 0.0655 Bin 4 (DR4) 0.6 <z <0.65
0.166 £0.066  0.253 £ 0.049 Bin 1 (DR7) 0.45 <z <0.5
0.136 £0.069  0.251 £ 0.051 Bin 2 (DR7) 0.5 <2<0.55
0.206 +0.062  0.274 £ 0.052 Bin 3 (DR7) 0.55 <2 <0.6
0.146 £ 0.076  0.248 £ 0.067 Bin 4 (DR7) 0.6 <2z<0.65
0.163 £ 0.0373  0.263 £0.0270 All bins (DR4)  0.45 < z < 0.65
0.173 £0.0462 0.260 £ 0.0351  All bins (DR7)  0.45 < 2z < 0.65
0.163 £0.0480 0.234 £0.0309 All bins (DR7)* 0.45 <z <0.65

Table 3.3: The marginalised mean values obtained from the analyses of the galaxy clustering
angular power spectr@,. f, = Q,/Qn, O, og andb are varied for each single bin run. The
values for the previous release (DR4) were recalculated and shown to be entirely consistent with
Blake et al. (2007). In the last three runs all the bins were combined together using the full
covariance matrix and a bias parameter for each &inbg, bs, b4). *In this analysis the lowest
multipole band in the highest redshift slice is included.

overlap for each bin. | therefore use the full covariance matrix in the analysis. The variance
element corresponding to the same redshift bin (e.g. betW@andCé) is given by the square of
Equation 3.11 using thiaeoreticalexpression for’, as before. The covariance elements between
different bins are described by,

i . 2 i 2
COV(CZ,Cg) = fsky(zf—|—1)<0[j> . (330)

In this way the whole matrix allows for the covariance between all bin combinations but not
multipole bands. This is a good approximation given our earlier discussion of the highly peaked
mixing matrix R; ; (Figure 3.7).

I include a redshift dependence in the galaxy bias, to the extent that each redshift bin is as-
signed a separate bias parameber &, b3 andb,) in the cosmological run.

The marginalised best fit parameters are again listed in Table 3.3, with the corresponding con-

tours displayed in Figure 3.14. The updated DR7 release (yellow contours) demonstrate consistent
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constraints with the previous DR4 study (blue contours). For the four bias parantetéks {3

andb,) this analysis gives noticeably tighter bounds. As found with the individual bins the con-
tours can be seen to visibly rise along the bias axis with an increase in redshift. Moreover, the four
bias quantities are seen to be relatively high implying that the LRGs strongly trace the underlying
mass distribution.

Again, due to the degeneracy betwefgrand(?,,, the new data does not reduce the contour or
resultant constraints on either parameter. In fact, despite a minor narrowing of the degeneracy’s
width the distribution is seen to slightly elongate. This could be the consequence of having a
different fixed best fit Gaussian redshift distribution §) for each of the four redshift bins com-
pared to DR4. In this way each analysis might represent a different slice through the parameter
hyper-volume for which the matter densities have a different local curvature. Furthermore, these
parameters could be naturally degenerate with the other parameters, such as the matter density,
given that a displacement jn alters the effective comoving distance to the sourcescaaliers
the degree of predicted anisotropy.

Additional tests on the redshift distribution are needed to probe this potential calibration and,
as well as a suggestion for future work, is discussed further in Section 3.6. It is worth reiterating,
however, that the constraints are similar and have been analysed using the redshift distribution that
most corresponds to their spectroscopic-photometric bins with the most recent SDSS photometry.

Finally, in the top left hand panel I include a calculation of the combined bins with (red con-
tour) and without (all yellow contours) the lowest multipole band measured in redshift bin 4. As
with the individual bin the excess power is seen to systematically displace the marginalised distri-

bution and once again is removed from all other constraints.

3.5.3.1 Other Studies

In as much as other analyses can be compared, with varying parameter choices and assumptions,
these results are concordant but competitive with respect to recent studies of SDSS galaxy clus-
tering. These often include alternate or earlier data sets and at different redshifts. This includes
Padmanabhaet al.(2007), an analogoyshotometricstudy to Blakeet al. (2007), that instead re-
constructs the 3D real space power spectrum. Apart from these two works, studies have tended to
focus on the spectroscopic samples, such as Tegetak(2004), Tegmarlet al. (2006) (DR4),

Cabg & Gaztdiaga (2009) and Sanchetal. (2009) (DR6) (with a measurement of the correla-

tion function) and most recently Reé al. (2009) (DR7). A more direct numerical comparison is

made with this latest release in Section 3.7.
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Figure 3.14:Cosmological constraints given by the combination of four redshift bins betvégn< z <

0.65. The earlier DR4 (Blaket al. 2007) analysis, which has been recalculated as a consistency check, is
illustrated by the series of blue contours. The DR7 bounds are displayed by the yellow contours. The red 2D
distribution in the top left panel shows the systematic shift induced by including the excess power measured
over large scales in the highest redshift bin, whereas the normal yellow contours have this anomalous point
removed. The bottom four panels demonstrate the additional constraining power of DR7 on the bias where
b1, ba, b3 andb, are the bias parameters in sequentially higher redshift bins.
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Furthermore, the SDSS galaxies have permitted measurements of the Baryon Acoustic Oscil-

lations with Percivakt al. (2007), Gaztanaget al. (2008) and Percivadt al. (2009).

3.6 Systematics and Further Tests

The earlier MegaZ release (Blak al. 2007) performed a series of systematic tests based nat-
urally on examining variations across the plane of the sky. This included astronomical seeing,
overlapping survey stripes, regions of low galactic latitude, varying completeness and variations
in star-galaxy separation. The aforementioned paper also highlighted the impact of photometric
errors for LRGs given their location on the galaxy luminosity function. This functioh) de-
scribes thenumberof galaxies that have absolute magnituddswithin an intervalM + dM.
The position of the galaxy sample under consideration is one where the gradient of this function
is high. Therefore, any slight systematic shift i will impart a large systematic shift in the
number of galaxies. If this systematic shift were some function of sky position, for example, it
could contribute significantly (and artificially) to the galaxy clustering signal at that scale. All of
the separate tests run for DR4 were found to produce no significant change in the galaxy clustering
data.

Even though | have demonstrated the impact of the large scale excess power on the cosmolog-
ical parameters there has yet been no solution to the cause of the effect in the literature. Consid-
ering this and also the caveat discussed above | therefore continue with a discussion of potential

systematics in the analysis and consider and suggest further tests for the work.

3.6.1 Excess Power

With the earlier Blakeet al. (2007) and Padmanabhantal. (2007) studies it might be tempting

to assume that the excess power is related to an analysis using two disconnected angular selection
functions. This is because for these two papers the power spectra were estimated using both a
separate northern and southern region of galaxies. This could introduce a difficulty in the relative
photometric calibration between the bands, for example. DR7, on the other hand, presents a fully
contigious region foiC, estimation. However, despite a diminished amplitude in the excess of
the power it still persists and has a significant effect on the cosmological parameters. This is
approximately consistent with the preliminary tests performed in each DR4 paper—in that the two
separate regions do not appear to significantly shif€ifse Irrespective of this, the fully connected

region and updated SDSS pipeline are expected to produce more robust photometric estimates for



3.6. Systematics and Further Tests 97

DR?7.

Alternatively, the origin of this data point could be the result of something more physical
and radical, such as a dark energy fluid with low sound speed that induces further clustering.
This would suggest that dark energy is not some form of cosmological constant. Or, it could be
the first evidence for some large scale inhomogeneity or over density that opposes our very core
assumptions in cosmology: the cosmological principle. Another possibility is a severe change
(increase) in the galaxy biasing process over these large scales or even a consequence of cosmic
variance. While these are interesting and potential avenues for future work there also remain some
more mundane, but pernicious, systematics; such as the effects of extinction and the extrapolation

of the 2SLAQ training set with sky position.

3.6.2 Redshift Bin Cross Correlations

A useful test of any known or unknown systematic present in the study is the cross angular power
spectra (Equation 3.25). A signal in these quantities should be the result of photometric errors
scattering galaxies between bins@edictedby the spectroscopic redshift distribution defined
earlier and the best fit auto-correlation functions. Any significant alteration in the measurement
relative to the theoreticaﬂg’j could indicate an additional systematic in the photometry, extinction
correction or an ill-calibrated redshift distribution, for example.

| measure the cross power spectra in each of the six cross-bin combinations (nﬂ@jthat
Cg’i) in multipole bands oA/ = 10 up until l,,,x = 500 as performed previously for the auto
power spectra. The observed values are listed in Table 3.4 and Table 3.5 and are plotted in Fig-
ure 3.15 along with their associated error bars. The solid lines in these plots show the predicted
theoretical spectra using the best fit values from the DR7 combined bins run and the correspond-
ing Gaussian redshift distributions. For nearby bins there is excellent agreement in the values.
However, the anticipated cross spectrum between bin 1 and bin 4 (middle left panel) suffers from
a lack of amplitude and consequently does not fit the mean profile of the data well. This is most
likely the result of the Gaussian redshift distributions being weak fits to the spectroscopic profiles
far from the mean of the distribution. As can be seen in Figure 3.8 the Gaussian underestimates
the number of galaxies far from the bin centre. This will lead to an under prediction in the cross
term. Less dramatic is the apparent marginal overestimation of the cross spectrum between bins
2 and 3 (middle right panel). This might be the result of the Gaussian smoothing adding slightly
more galaxies in the overlap region between the redshift slices.

To test this hypothesis | interpolated the spectroscopic distribution with a spline through the
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n(z) histogram. Then using this more ‘realistic’ profile | re-evaluated the theoretical cross power
spectra in the bin. These are shown as the dashed lines in the cross spectrum panels. For the
most physically separated bins (1 and 4) this is seen to give, as predicted, a significant boost in
amplitude and a better fit to the data points. It is worth noting the presence of the log scale in the
plot which acts to disguise th#% increase in amplitude. Once again this hints that the use of a
fixed © ando in a Gaussian is not optimal with regards to the data. When | calculated the cross
power spectrum for the DR4 release it was intriguing to see that the quoted best fit Gaussian was a
much worse fit than is seen in DR7. In this case the interpolated redshift, for that catalogue, gave
rise to~ 100% boost in power. Meanwhile, back in DR7, the splined distribution is also seen to
give a slightly better fit between bins 2 and 3 with a modest decrement in power (dashed line to
solid line—middle right panel). Finally, with the redshift function now accounted for in the cross
correlation measurement it is interesting to see that in several of the bins there does exist an excess
of power. This could point towards a residual systematic in the catalogue.

While beyond the scope of this work it would be interesting to see the effect on the inferred
constraints in using the spline interpolated redshift distribution in the cosmological analysis. How-
ever, it is important to note that this could introduce errors of its own. For example, it might
propagate inherent fluctuations in the profile, that are particular to that bin in that patch of the sky,
into the analysis. This was the reason why the fitting function fronetral. (2008) was used in
Section 2.4.2 for the CFHTLS weak lensing redshift distribution (Equation 2.29).

Another suggestion for the future would be to inclydendo as extra parameters with an
additional likelihood associated with the spectroscopic redshift distribution. By varying these
guantities one could calculate the effects of a more flexible distribution but smooth the more noisy

spectroscopic interpolation.

Table 3.4: The observedtossangular power spectr@é’j for SDSS MegaZ-LRG (DR7), an ex-
tension to the first MegaZ-LRG analysis (Blagtal. (2007) and Collisteet al. (2007)). The
Gaussian statistical error on the measurement is also included, which has been weighted over each
A/ band. Each bin extendsz = 0.05 in redshift fromz = 0.45 to 0.65 and covering’746deg?
contain259, 498; 237,564; 155,293 and 71,201 galaxies, respectively. With the exception/of

all quantities have been multiplied ag°.

6 | 13.249 6.278| 3.220 6.828 | -2.846  8.224
16 || 8.783 2.430 | 1.892 2.880 | 2.923 2.763
26 || 6.449 1.452 | 3.738 1.663 | 2.713 1.598
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/ C;Binl,Q 0(021,2) Cfinl,?; 0(061,3) C?inl,él U(C;,4)
36 || 6.674 1.162 | 3.119 1.152 | 2.630 1.197
46 | 4.552 0.887 | 1.638 0.860 | 0.688 0.938
56 | 2.461 0.544 | 0.580 0.637 | 0.322 0.691
66 || 3.270 0.551 | 1.312 0.534 | 0.504 0.622
76 || 3.486 0.496 | 1.408 0.473 | 0.153 0.522
86 || 2.550 0.380 | 1.053 0.400 | 0.564 0.451
96 || 2.064 0.321 | 0.837 0.353 | 0.284 0.392
106 | 2.056 0.298 | 0.893 0.322 | 0.542 0.366
116 || 1.860 0.266 | 0.600 0.276 | 0.294 0.335
126 | 1.619 0.221 | 0.722 0.229 | 0.241 0.281
136 || 1.530 0.199 | 0.621 0.224 | 0.532 0.259
146 | 1.264 0.184 | 0.511 0.207 | 0.140 0.245
156 | 1.372 0.173 | 0.519 0.183 | 0.359 0.234
166 | 0.989 0.145 | 0.325 0.161 | 0.447 0.208
176 || 1.058 0.141 | 0.342 0.152 | 0.172 0.192
186 | 1.190 0.142 | 0.313 0.149 | -0.0868 0.195
196 | 0.877 0.119 | 0.364 0.137 | 0.0336  0.169
206 | 0.763 0.112 | 0.293 0.128 | 0.0406  0.159
216| 0.764 0.106 | 0.215 0.120 | -0.0144 0.154
226 | 0.856 0.105 | 0.371 0.115 | 0.211 0.142
236 0.698 0.0971| 0.308 0.113 | 0.191 0.137
246 || 0.612 0.0872| 0.180 0.0982| 0.0328 0.130
256 | 0.606 0.0867| 0.203 0.100 | 0.0949 0.132
266| 0.574 0.0845/ 0.259 0.0959| 0.179 0.124
276 || 0.518 0.0814| 0.145 0.0887| -0.0396 0.117
286| 0.550 0.0744, 0.327 0.0875| 0.197 0.117
296 | 0.392 0.0699, 0.258 0.0829| 0.113 0.110
306 | 0.512 0.0702| 0.097 0.0791| 0.142 0.106
316 0.506 0.0698| 0.193 0.0772| 0.0520 0.108
326 0.461 0.0675| 0.233 0.0768| 0.0764  0.105
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336 0451 0.0649| 0.152 0.0744| -0.0201 0.102

346 | 0.426 0.0645| 0.119 0.0754| 0.242 0.102

356 | 0.402 0.0634| 0.117 0.0709| 0.0258 0.0965
366 | 0.325 0.0589| 0.103 0.0695| -0.0632 0.0942
376 0.339 0.0605| 0.0916 0.0672| 0.0740 0.0931
386 | 0.345 0.0563| 0.159 0.0662| 0.124 0.0886
396 | 0.346 0.0558| 0.149 0.0660| 0.00243 0.0862
406 | 0.361 0.0547| 0.125 0.0630| 0.0432 0.0868
416 || 0.242 0.0504| 0.0560 0.0589| -0.0303 0.0813
426| 0.328 0.0538| 0.139 0.0624| 0.00808 0.0828
436| 0.339 0.0519| 0.170 0.0602| 0.0270 0.0813
446 || 0.335 0.0498| 0.0636 0.0562| 0.0365 0.0812
456| 0.300 0.0496| 0.130 0.0582| 0.000687 0.0793
466 | 0.290 0.0479| 0.101 0.0560| 0.0505 0.0772
476| 0.297 0.0467| 0.0643 0.0538| 0.0655 0.0751
486| 0.323 0.0446| 0.134 0.0533| 0.0629 0.0713
496 | 0.277 0.0451| 0.0731 0.0528| 0.0519 0.0749




3.6. Systematics and Further Tests 101

Table 3.5: The observettossangular power spectr@é’j for SDSS MegaZ-LRG (DR7), an ex-
tension to the first MegaZ-LRG analysis (Blakeal. (2007) and Collisteet al. (2007)). The
Gaussian statistical error on the measurement is also included, which has been weighted over each
A/ band. Each bin extendsz = 0.05 in redshift fromz = 0.45 to 0.65 and covering’746deg?
contain259, 498; 237,564; 155,293 and71, 201 galaxies, respectively. With the exceptionfof

all quantities have been multiplied ag°.

/! C;Binl?) 0_(062,3) C?in?A O_(CZQ,4> Cfin3,4 0(03,4)

6 || 11.687 5.605| 8.670 6.752 | 18.705  7.343
16 || 6.354 2312 | 3.313 2.218 | 10.076  2.629
26 | 5.887 1.426 | 3.206 1.370 | 6.577 1.570
36 || 4.801 1.021 | 3.115 1.062 | 5.210 1.052
46 || 4.398 0.832 | 2.280 0.907 | 4.193 0.879
56 | 2.457 0.558 | 1.217 0.605 | 3.857 0.709
66 || 3.342 0.528 | 2.201 0.614 | 3.336 0.595
76 | 2.978 0.467 | 0.915 0.516 | 2.106 0.491
86 | 2.809 0.408 | 1.156 0.461 | 2.342 0.484
96 || 2.315 0.331 | 0.887 0.369 | 2.172 0.404
106 || 2.288 0.316 | 1.160 0.360 | 2.061 0.389
116 || 2.071 0.277 | 1.008 0.337 | 1.846 0.350
126 || 1.725 0.224 | 0.572 0.274 | 1.567 0.284
136 || 1.602 0.214 | 0.649 0.247 | 1.495 0.277
146 || 1.538 0.192 | 0.410 0.227 | 1.131 0.255
156 | 1.237 0.176 | 0.432 0.225 | 1.267 0.238
166 | 0.934 0.147 | 0.739 0.190 | 1.156 0.212
176 | 1.210 0.157 | 0.406 0.197 | 0.904 0.213
186 | 0.917 0.143 | 0.343 0.187 | 0.871 0.197
196 | 0.925 0.129 | 0.344 0.159 | 0.827 0.184
206 || 0.892 0.124 | 0.411 0.154 | 0.882 0.176
216 || 0.928 0.123 | 0.347 0.158 | 0.940 0.180
226| 0.813 0.119 | 0.336 0.148 | 0.800 0.163
236 | 0.722 0.112 | 0.358 0.135| 0.743 0.158
246 || 0.628 0.101 | 0.253 0.133 | 0.657 0.150
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i Cfin2,3 0(03,3) C?in2,4 0(05,4) C?in?),él 0(03,4)
256 | 0.677 0.0985| 0.228 0.129 | 0.491 0.150
266 (| 0.594 0.0949| 0.338 0.122 | 0.610 0.139
276| 0.558 0.0932| 0.234 0.123 | 0.561 0.134
286 0.632 0.0871| 0.225 0.116 | 0.631 0.137
296 0476 0.0829| 0.165 0.110 | 0.439 0.130
306| 0.441 0.0799| 0.248 0.107 | 0.426 0.121
316 0.500 0.0776| 0.164 0.108 | 0.350 0.119
326 || 0.460 0.0757| 0.154 0.103 | 0.492 0.117
336| 0.354 0.0741| 0.132 0.101 | 0.525 0.116
346 | 0.449 0.0744| 0.221 0.100 | 0.646 0.117
356 (| 0.458 0.0728]| 0.141 0.0991] 0.471 0.110
366| 0.390 0.0681| 0.0715 0.0922| 0.418 0.108
376 0.340 0.0679| 0.142 0.0941] 0.359 0.104
386 0.329 0.0659| 0.0718 0.0883| 0.228 0.103
396 0.355 0.0657| 0.144 0.0860| 0.570 0.101
406 || 0.372 0.0647| 0.168 0.0892| 0.567 0.102
416 | 0.298 0.0620| 0.173  0.0856| 0.233 0.100
426 | 0.308 0.0618| 0.0122 0.0820| 0.204  0.0952
436 | 0.327 0.0609| 0.135 0.0823| 0.300 0.0954
446 | 0.253 0.0566| 0.167 0.0817| 0.234 0.0923
456 | 0.283 0.0582| 0.140 0.0793| 0.308 0.0931
466 | 0.267 0.0568| 0.140 0.0784| 0.373 0.0916
476 0.330 0.0557| 0.194 0.0777| 0.382 0.0896
486 | 0.260 0.0537| 0.131 0.0718| 0.302 0.0858
496 | 0.241 0.0517| 0.116 0.0734| 0.258 0.0860
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3.6.3 Extinction

Light from more distant galaxies is potentially absorbed, scattered or re-emitted by the dust and
gas within our own galaxy. Thigalactic extinctionhas the capacity to be one of the dominant
systematics in a galaxy survey such as this. For example, extinction can preferentially absorb light
at the blue end of a galaxy’s spectral energy distribution thus making it appear redder and more
LRG-like. Alternatively, it can have the effect of scattering faint galaxies from the sample. As the
contribution from our own galaxy changes as a function of position this is a cause for concern given
that we are interested in inferring cosmological quantities through statistical variations across
the sky. Worse still, it could act to further systematically bias our redshift estimates given that
the ANNz derived galaxy catalogue is a spatial extrapolation of the 2Stt&@ing sef which
confined to a stripe @t~ 0 °, covers a limited region of galactic extinction.

Fortunately detailed maps of galactic extinction are available (Schéegel(1998); see also
Figure 3.16) and subsequently thgg, r, i andz bands used are dereddened model magnitudes,
i.e. they are extinction corrected. Figure 3.17 shows the exaggerated effect that is the result of not
adjusting properly for the presence of dust. In this plot the angular power spectrum is evaluated
for the catalogue when thg., magnitude/colour cut is not extinction corrected. This causes extra
galaxies to be scattered from the sample in different regions of the survey area and a large boost
of power is observed. Although the values used for galaxy clustering statistic®rrected for
extinction it could be that there are errors in the correction map. If these errors were related to
the magnitude of extinction or again varied with position, then they too would propagate into the
LRG sample.

To test for extinction correction errors | repeat the measurement of the angular power spectrum
with regions of high extinction removed-(0.1 mag). This constitutes a removd% of the survey
area. The resulting values are plotted in Figure 3.18 as solid lines against the previous data points
and error. It is clear that the profiles are not significantly affected. This result is consistent with
the preliminary examination in Blaket al. (2007) and Abdallat al. (2008). In the latter paper a
comparison of the ANNz catalogue was made with a template based photometric method (SDSS-
Padmanabhaet al. (2005)) in regions of varying extinction. The template based procedure does
not utilise a spatially confined training set and is effectively blind to the extinction with regards
to calibration. Given that they found no resultant bias or additional scatter in the photometric
redshifts between the procedures the extinction error is expected to be partially subdoatinant,

leastwith respect to the extrapolation of the 2SLAQ calibration.
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Figure 3.15:The measured cross Angular Power Spem?ﬁjq for the photometric SDSS MegaZ-LRG

(DR7) population as presented in Table 3.4 and Table 3.5. The error bars correspond to those calculated
with Equation 3.12 using the measured power spectrum. The solid lines are evaluated for the the best fit
parameters found in Section 3.5.3 using the the Gaussian redshift distributions. The dashed lines are the
theoretical power spectra using a spline interpolation of the spectroscopic distribution. The panels are: Bin

1,2 (top left), Bin 1,3 (top right), Bin 1,4 (middle left), Bin 2,3 (middle right), Bin 2,4 (bottom left) and Bin

3,4 (bottom right).
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Figure 3.16:The fluctuations in galactic extinction are shown as a function of sky position across the DR7
survey area. The magnitude values are represented by darlOlilue {.05), light blue (0.05 — 0.1), green

(0.1 — 0.15) and red & 015). The dust is particularly abundant near the edges of the survey indicating the
outer boundaries of the Galaxy.

3.6.3.1 Photometric Codes

The previous Abdallat al. (2008) work also evaluated the SDSS DR6 LRG catalogue with six
different photometric codes: ANNZ (Collister & Lahav 2004), HyperZ (Bolzonetlal. 2000),

SDSS (Padmanabhanal.2005), Le PHARE (llberet al.2006), BPZ (Beitez 2000) and ZEBRA
(Feldmannet al. 2006). The survey area corresponding to this release is remarkably similar to
that in this study. For future work and tests on the analysis it would be interesting to repeat
the combined bins study with each of the six different catalogues. Once again, as a number of
the methods have different mechanisms for producing the photometric redshift estimates it would
help to quantify or reveal any remaining systematic. This also includes a cosmological comparison
of the photometric codes as naturally one would expect their cosmology to be photometric-code

invariant.
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Figure 3.17:The exaggerated effect caused by neglecting the extinction correction g {helour cut
(dashed line). Although this is not used in the study it highlights how any systematic error in the correction
couldaffect theC, over various scales. The extinction corrected spectrum is shown by the solid points with
associated error bars. The solid line is a best fit profile for comparison.

3.7 Complementarity with WMAP5

It is reassuring that the galaxy clustering results are consistent with the most recent WMAP anal-
ysis (Dunkleyet al. 2009). This is a crucial consistency check as the two surveys probe vastly
contrasting cosmic epochs and are subject to different systematics. In addition, each tool in iso-
lation is subject to degeneracies given that a variation in one parameter can often be compensated
with a change in another for the same physical process. It is therefore also highly advantageous
to combine the two data sets. Hence | add the MegaZ LRG (DR7) data to WMAPS5 in order to
examine the complementarity of a joint analysis and further push the current parameter bounds.
Furthermore, | repeat the study with the DR4 galaxy clustering data.

| study six ACDM parameters in all{fyh?, Q.h2, Qa, ns, 7 and A,), in addition to a bias
parameter for each of the four combined redshift bins §2, b3 andb,). | also include and
marginalise ovetdsz, the normalisation of the Sunyaev-Zeldovich template fluctuations. The
CMB power spectrum is evaluated usiogmB (Lewis et al. 2000). Further details of these

parameters and my WMAP methodology are described in Section 4.2.
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extinction removed* 0.1 mag; solid lines). This is to test for possible extinction correction errors prop-
agating into the analysis. The spectra deduced earlier in the Chapter are included as data points with error
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100922 Qch? Qa ns T In(101°A4;)

1)2.269 £ 0.067 0.1101 £ 0.00643  0.746 +0.0297  0.962 +0.015  0.0891 +0.0191  3.197 £ 0.05116
2)2.296 £0.064 0.1192 £0.00346 0.711 +£0.0183 0.962 £0.0139  0.0882+0.0189  3.223 +0.0436
3)2.276 £0.065 0.1191 £0.00324 0.706 +=0.0184 0.958 £0.0144  0.0880 + 0.0187  3.234 4 0.0450
4)2.272 £0.058  0.1161 £ 0.0039 0.711 £ 0.019 0.961 £0.013 0.084 £0.016 3.080 £ 0.037

Table 3.6: Constraints on the WMAPS5 analysis and with the addition of various cosmological data:
1) WMAPS5 2) WMAP5 + MegaZ DR4 3) WMAP5 + MegaZ DR7 4) WMAP5 + SDSS (Reid

et al. 2009). The introduction of the constructed MegaZ LRG angular power spectra significantly
reduces the bounds @d.h? and2, due to a break in th&,,-h degeneracy. A similar analysis
was performed by Reiet al. (2009), with the inclusion of the spectroscopic DR7 galaxy clustering
data. * It should be noted that, corresponds to a slightly different parameter between the studies.
For the first three cosmological runs this is actua‘i&, the amplitude of curvature perturbations,
atk = 0.002Mpc~ L. In Reidet al. (2009) the corresponding scale is defined at 0.05Mpc !,

The improvement relative to a CMB-only study is evident in Figure 3.19 and Figure 3.20. The
black contours illustrate the individual WMAPS result, whereas the tighter red contours represents
the joint constraint: WMAPS5 + MegaZ DR7 and WMAP5 + MegaZ DR4. A similar combination
of data and cosmological parameters was investigated isgbetroscopi®R7 release by Reid
et al. (2009). A comparison of all these results are summarised in Table 3.6.

It is found that the addition of galaxy clustering data not only improves constraints through
the presence of more raw data, but acts to break the degeneracy bé&lyemmd /. that exists
in the CMB alone. This subsequently leads to significantly tighter constrairfds, iand 2.2
with a factor~ 1.6 and~ 2 improvement in the error on the former and latter, respectively. This
was found similarly and compatibly in Red al. (2009). Moreover, through this complementary
comparison it seems the photometric approach to modern cosmological surveys is justifiable with
equally competitive and consistent results compared to the spectroscopic survey. The tight con-
straints on the matter densities show there is how overwhelming and precision evidence for some
dark energy-like component to the cosmos when including photometric data from the late-time
Universe. However, along with this optimism it has been shown in the preceding few subsections,

for example, that there are potentially still residual systematics to be examined.
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Figure 3.19:The two dimensiona8% and95% contours and marginalised one dimensional distributions

for 6 ACDM parameters(,h2, Q.h%, Qa, ns, 7 andIn(10'°A,)) and the amplitude of the Sunyaev-
Zeldovich fluctuationsi sz (not shown). The black contours are given by a WMAP-only analysis, whereas
the red constraints are with the addition of MegaZ DR7. For the latter analysis four bias parameters have
been implicitely marginalised over. The data is incapable of constraifjfg consistent with Dunkley

et al. (2009). Note that, and A, are defined at = 0.002Mpc ™' (E.g. Komatstet al. (2009)).
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Figure 3.20:The two dimensiona8% and95% contours and marginalised one dimensional distributions

for 6 ACDM parameters(,h2, Q.h%, Qa, ns, 7 andIn(10'°A4,)) and the amplitude of the Sunyaev-
Zeldovich fluctuationsi sz (not shown). The black contours are given by a WMAP-only analysis, whereas
the red constraints are with the addition of MegaZ DR4. For the latter analysis four bias parameters have
been implicitely marginalised over. Once again the data is incapable of constrdigingonsistent with
Dunkleyet al. (2009). Note that,, and A, are defined at = 0.002Mpc~* (E.g. Komatstet al. (2009)).



CHAPTER4

A COMBINED CONSTRAINT ON THE

NEUTRINO MASS

Abstract

The neutrinos are not only unimaginably elusive particles but, with the presence of mass, are
an extension to the standard model of particle physics. Most surprising therefore is its measurable
effects on physics of the comparatively large scale. | discuss these effects and then pursue a
combined constraint on the sum of the species’ mass. Firstly, | use data from the 5-year WMAP
CMB temperature and polarisation fluctuations. | then add information from Baryon Acoustic
Oscillations (BAO) and type 1a Supernovae (SNe) to reduce the degenerate parameter space. The
neutrinos’ physical effects are also measurable in the pattern of galaxy clustering and with this in
mind | combine the MegaZ LRG data from Chapter 3 with the aforementioned analyses. Finally,
using an HST prior on the Hubble parameter, | find the collective bound of, < 0.281 eV at
the95% CL for a flat ACDM cosmology—one of the tightest current constraints. Other studies are
also discussed in addition to the potential systematics that might affect such a calculation.

This work is presented originally in Thomas, S.A., Abdalla, RB.ahav, O., 2009b.
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4.1 Introduction

4.1.1 The Neutrino: Particle Physics

Studies of the neutrino have traditionally been the realm of particle physics experiments, with
Super-Kamiokande (Fukuds al. 1998) first detecting the presence of mass. In this experiment
the neutrinos were shown to oscillate between the known flavgrs/(, v-) solving, in the pro-

cess, the long standing solar neutrino problem. This was the observed discrepancy between the
number of predicted and detected neutrinos thought to originate from the sun. The detectors were
measuring far fewer electron neutrinas(for which they were sensitive to) given that they had
changedlavor'. This implied the neutrinos have non-zero mass eigenstatgsii», ms) because

the flavor mixing depends on the differences between their masses squared. Subsequently, bounds
have been placed on the splitting between the neutrino mass eigenstates from a host of solar, ac-
celerator and atmospheric experimentsin3, | =~ 2.4 x 1073eV? and|AmZ, | = 7.7 x 10~%eV?

(E.g. Schwetzt al. (2008)). However, currently both the absolute scale and the hierarchy of the
masses remain hidden. KATRIN, a kinematic tritium beta decay experiment @talf 2008),

aims to provide such a constraint. This will be performed by looking at the end region gf the
energetic spectrum where the finite mass electron neutrino is expected to cause a decrement in

energy.

4.1.2 The Neutrino: Cosmology

Cosmology not only probes the absolute mass scale of the neutrino but is a completely independent
method for which to test against (E.g. Elgargy & Lahav (2005), Lesgourgues & Pastor (2006) and
references therein). In any case, it is imperative to include an accurate prescription for the neutrino
in cosmology, as any failure to do so can bias the other cosmological parameters.

A cosmological constraint on the sum of the neutrino masses is primarily a constraint on the
relic Big-Bang neutrino density,, i.e. the energy budget consumed by the cosmic neutrino
background. This background was initially in equilibrium with the very early cosmic plasma but
subsequently decoupled aftertl sec as a result of its weak interaction. Despite electron-positron
annihilations later heating the photon distribution it is still possible to associate the temperature
of the two particle populations by equating their entropy densities. From this one can then relate

the cosmic neutrino density to the sum of the individual mass eigenstates (E.g. Dodelson

lwith other models such as neutrino decay less favoured by the data.
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(2003)) as givefiby,
_ XMy
b = 93.14h2eV’ 4.1)

It is this relation that helps us to probe the sum of the neutrino masses and the absolute scale.
Even with the most extreme conservativeness the above relation immediately enables a hard upper
bound of)_ m,
et al.2009).

< 94h? eV given that we live in a Universe that is at least close to flat (Komatsu
The more direct effects of the neutrino depend on whether they are relativistic, non-relativistic
and also over what scale one is considering. In the early Universe these particles will naturally
behave like radiation and at some point, depending on their mass, will make a transition to become
matter-like. Specifically, the massive neutrino species start to become non-relativistic at a redshift

given by,
- (22w
1+ 2xr ~ 2/3 x 10 (TV ) 4.2)

| therefore combine a series of probes in the following sections that might be sensitive to these
different regimes or restrict the degenerate parameter space.

Explicitly, the layout of the Chapter is as follows: | start with preliminary bounds given by
WMAP5 CMB data in Section 4.2, while adding both Supernovae and Baryon Acoustic Oscilla-
tions in Section 4.3. The influence of the particle on this cosmology and the subsequent degen-
eracies are discussed. Following this, the MegaZ LRG (DR4/DRY7) clustering data measured in
Chapter 3 is combined with the previous analyses to place one of the most stringent combined
constraints available on the total mass of the neutrino species (Section 4.4). Finally, | finish with
a discussion of other neutrino studies, the potential systematics that might affect such works and

conclude in Section 4.5.

4,1.2.1 Assumptions

For the parameter analyses and subsequent constraints | use vl C parameter estimation
package (Lewis & Bridle 2002). | assume a flat Universe with Gaussian and adiabatic primordial
fluctuations and no running of the spectral index & 0) throughout. The effective number of
neutrinos are fixed td.g = 3.04 (E.g. Mangancet al. (2002) and Yacet al. (2006)), thereby as-

suming there are no sterile neutrinos or other relativistic degrees of freedom. The equation of state

2If massive.
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Figure 4.1:The relationship between the individual and sum of three non-degenerate neutrino mass eigen-
states is highlighted for the two possible hierarchies. These hierarchies are a consequence of knowing the
absolute difference§4&m?,| and|Am2,|) between two sets of mass eigenstates but nositne These

are known as the normat; > mo > my; solid lines) and invertednfs > m; > mg; dashed lines)
hierarchies. Current bounds sfsubleV imply the assumption of degenerate masses to be \@RdDIT:
Lesgourgues & Pastor (2006).

for dark energy is set tay; = —1 for a ACDM cosmology. Finally, | consider the three standard
neutrinos to be completely degenerate in mass given that the current inferred bounds are much
greater than the splitting hierarchies. The relation between the individual states, the hierarchies
and the total mass are highlighted in Figure 4.1. It should be noted that if the mass degeneracy
approximation is relaxed then Equation 4.1 remains a valid approximation (Lesgourgues & Pastor
2006). The potential of future surveys to discriminate this mass hierarchy and the encapsulated
mass splittings has been discussed in Abdalla & Rawlings (2007), Kitehiag (2008) and De
Bernardiset al. (2009). Any possible limitations imposed on the study from these assumptions are

discussed in Section 4.5.1.
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Figure 4.2:The effect of massive neutrinos is shown to alter the predicted CMB pattern. The dashed line
represents a flakC' DM cosmology with massless neutrinos only. While fixiagh?, Q,h? andh, three
massive species are introduced with an increase in the neutrino frgctien0.1 (solid line). The CMB
angular power spectrum has been calculated usigs.

4.2 Cosmic Microwave Background

The abundance of neutrinos in the Universe can halmeat effect on the primary CMB anisotropies

if non-relativistic before the time of decoupling (i.e. when sufficiently massive). Otherwise, if
lighter, they act as a collisionless radiation-like fluid and have little impact. However, one of the
most clear effects at this epoch is a displacement in the time of matter-radiation equality. This is a
consequence of potentially having neutrinos either side of the relativistic/non-relativistic boundary
at decoupling; in the process changing the early ISW effect. In addition, as energy constituents,
the neutrinos can affect the observed CMB pattern through the background expansion, by altering
the angular diameter distance to last scattering. The overall effects are illustrated in Figure 4.2.
Although parameter degeneracies and a mild insensitivity to relativistic (lighter) neutrinos there-
fore limit the upper bounds one can placeXm, (Ichikawaet al.2005), the CMB represents a

relatively clean and systematic-less cosmological tool whose high statistical discrimination of the
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remaining cosmological model facilitates a competitive combination of probes.

4.2.1 The WMAP Analysis

| therefore start by using the latest 5-year WMAP data (WMAPS5) and the full likelihood as de-
scribed in Dunkleyet al. (2009¥ to vary six coreACDM parameters2,h?, Q.h2, Qp, ng, T and

In(10'° Ay), plusy_ m,— the sum of the neutrino massesn and A, represent the optical depth

to reionisation, the scalar spectral index and the amplitude of curvature perturbations defined at
k = 0.002/Mpc, respectively.

| also include contributions from the Sunyaev-Zeldovich fluctuations by adding a template
spectrurrCfZ to the overall power spectrum. The template is approximately insensitive to the bulk
of cosmological parameters except fora(2,h)?(os)” dependence (Komatsu & Seljak 2002).

The amplitude ofoZ is moderated with a pre-factots, that | include in the cosmological
analyses. Itis allowed to vary frolm< Agz < 2 as in Dunkleyet al. (2009) and Spergaedt al.

(2007). This inclusion was found to gently alter the cosmological parameters, including a slight
decrease im and increase if2,h? (Dunkley et al. 2009). As in the aforementioned analysis |

use the pre-March 2008 version of CAMB (Leveisal. 2000) to produce the CMB power spectra.

The reionisation is therefore treated as an instantaneous process by shifting from neutral to ionised
in a redshift ofAz = 0.5.

Due to the high statistical power of the new data | also include the gravitational lensing effect
on the CMB, e.g. Seljak (1996) and Lewis & Challinor (2006). To test for consistency with the
original 5-year analysis a primary run is performed based on the six core Apius ACDM
parameters described above. | finth0Q,h? = 2.269 + 0.067, Q.h? = 0.1101 £ 0.00643,

Qp =0.746 £ 0.0297, ng = 0.962 £ 0.015, 7 = 0.0891 4+ 0.0191, ln(l()loAS) = 3.197+0.0512
and no constraint on the amplitude of the Sunyaev-Zeldovich template spectrum. The contours
and one dimensional marginalised distributions for each parameter were illustrated previously in

Figure 3.19 as the WMAP-only run (black contours).

4.2.2 CMB constraints

| now extend the above analysis to include 3 degenerate massive neutrinoswja | subse-
quently find> > m, < 1.271 eV at the95% confidence level. This is completely consistent with

Komatsuet al. (2009), who find) S m, < 1.3 eV. The result is shown further in Figure 4.3 where

3Publicly available at: http://lambda.gsfc.nasa.gov/product/map/
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Figure 4.3:For an isolated analysis of the neutrino mass with the CMB I §ingh,, < 1.271eV consistent

with Komatsuet al. (2009). The corresponding 2D marginalised constraints are shown above with the
matter density{,,,) and the Hubble parametér)(degeneracy clear. The derived constraint implies that the
neutrinos were indeed relativistic at the time of decoupling and that the assumed degeneracy of the neutrino
masses is valid.

the inner and outer contours represéstto and95% confidence levels, respectively.

The inferred bounds imply that the neutrinos were relativistic at decoupting (1090) as
can be seen with reference to Equation (4.2). Therefore, as alluded to above, they will make
a significant contribution by delaying the matter-radiation equality. This explains the observed
degeneracy witlf2,,, for one can counteract the delay by adding more matter. Furthermore, the
early ISW effect resulting from the extra relativistic material causes a shift in thé pmat of the
CMB spectrum. This can be partially mimicked with a changé,inmvhich is again degenerate
with >~ m,,. Finally, for increasing neutrino mass the distance to last scattering is reduced. This
induces a shift in the multipole scale and again can be compensated by a decrease in the Hubble
parameter. These have been found and described similarly in Ichikaala(2005), Komatsu
et al. (2009) and Ichikiet al. (2009). Hence | now look to adding probes of the expansion history

in order to reduce these issues and the upper bound.
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4.3 Supernovae and Baryon Acoustic Oscillations

It is reasonable to assume that further constraining either the matter dénsjtad/or the Hub-
ble parameterk) will break the degeneracies seen in the previous section, even if those probes are
not directly sensitive to the neutrino species. | therefore add information from the distance mea-
sures provided by both supernovae and baryon acoustic oscillations. This was shown in Ichikawa
et al. (2005), Komatstet al. (2009), Tereneet al. (2009) and Ichikiet al. (2009), for example, to
be a particularly fruitful avenue.

| use 71 type 1la Supernovae from the first year Supernova Legacy Survey (SNLSgAatier
2006) to initially probe the luminosity distance-redshift relation. A measure of this luminosity

distanced; (z) is the distance modulys, given by,
wo = 5logl0(dy(2)) + 25. (4.3)

This is shown in the log-likelihood in Equation (4.4), wherg is the observed value. The con-
tributions to the error are the intrinsic dispersion of the absolute magnituglesnd the peculiar

velocity and light curve parameter informatiofuz).

_ 2)) — 2

int

SN
The oscillations set up in the early photon-baryon fluid are observable in the late-time galaxy

distribution. These baryon acoustic oscillations (BAOs) can be used as standard rulers and aim

to test our cosmology through the angular diameter distance-redshift relation. Using the data and

notation of Percivaét al. (2007) | look to utilise the distance measure described by,
Dy (z) = [(1+ 2)2D%cz/H(2)]3 (4.5)

whereD 4 is the angular diameter distance aHdz) is the Hubble parameter. Specifically, it is
the ratiory /Dy (2) that is examined where, is the comoving sound horizon at recombination.
Percivalet al. (2007) detects the BAO in the clustering of 2dFGRS and SDSS galaxy samples and
the clustering of SDSS LRGs to quantify this measure &t0.2 andz = 0.35, respectively. For
each likelihood evaluation | compare this data{pDy (=) calculated withDy (z) from Equation
(4.5) and the varying comoving sound horizgrevaluated using the formulae in Eisenstein & Hu
(1998).

Combining these two probes with the CMB data | find a substantial improvement with, <

0.695 eV at the95% confidence level. This is similar to both Komatsual. (2009) (¢, < 0.67
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Figure 4.4:Targeting the the degenerate parameter space of the CMB-only study (red/lighter contours) is
shown to be highly beneficial with the inclusion of both BAO and SN data (blue/darker contours). With this
configuration | findy~ m, < 0.695 eV at the95% confidence level, consistent with Komatstal. (2009).

eV) and Ichikiet al. (2009) _, < 0.76 eV). The former analysis also highlights an additional
gain from using these two geometric probes. This results from the highly complementary limits
that they place on the equation of state (as a consequence of their constrasting correfatien in
wg). In this way the bounds on the mass are not seen to degrade substantially when the parameter
space is extended to include dark energy. It is also worth mentioning that the slight variation in
neutrino mass quoted between the other two studies is most likely a result of different data sets
being used. Both utilise thenion supernovae (Kowalslgt al. 2008) but Ichikiet al. (2009) uses
the BAO measurements from Eisenstetral. (2005).

The bounds measured in this study are highlighted in Figure 4.4 with the degeneracy breaking

particularly evident.

4.4 Galaxy Clustering

4.4.1 Galaxy Clustering Signatures

Statistical galaxy clustering is an effective tool for breaking some of the parameter degeneracies

implicit in a CMB-centric study. This is demonstrated clearly in Figure 3.19 and Figure 3.20
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Figure 4.5:The impact of finite mass neutrinos on the matter power spectrum is demonstrated above. The
dashed line represents a standard Al&tD M cosmology with three massless neutrings~ 0. While

fixing Quh2, Q,,,h? and,, three massive species are introduced with an increase in the neutrino fraction
fu, = 0.1 (solid line). It is clear that massive neutrinos act to suppress the power of fluctuations over
smaller scales. The power spectriit(i) is calculated usingame and the Smittet al. (2003) non-linear
prescription.

with MegaZ Luminous Red Galaxies (LRGs) in the previous Chapter. In order to reduce the
current bounds on the neutrino mass it seems reasonable therefore to amalgamate these with the
preceding data. While this would naturally give better constraints there is also a far greater physical
motivation for utilising the galaxy power spectrum: neutrirtheectly alter the clustering of a
galaxy survey (E.g. Het al. (1998), Lesgourgues & Pastor (2006) and references therein.).

The neutrinos have a large thermal velocity as a result of their low mass and subsequently erase
their own perturbations on scales smaller than what is known asafestreamindength. They
impart this suppression on the perturbations of other species through a gravitational backreaction.
However, while relativistic the neutrinos propagate at the speed of light and consequently their
free-streaming scale is equal to the Hubble radius. This is why they only had an indirect effect

on the CMB. After this period any neutrino with an individual mass givembywill suppress
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scales in Fourier space smaller than the free-streaming wave vectbtu & Eisenstein (1998)

and Lesgourgues & Pastor (2006)) where,

\/QA + Qm(l + 2)3 ( my
(14 2)2 leV

kg = 0.82

) hMpe'. (4.6)

Implicit within this reasoning is also the fact that all the perturbations are affected by the neutri-
nos’ contribution to the Friedmann equation and therefore background expansion. The effects of
expansion on the growth of structure are discussed in detail in Section 2.2.2. The equation of state
of the neutrinos naturally evolve from that of radiation to matter and can be approximated by the
function,

Wi () = %(1 - ((1 +2) <o) ) : (4-7)

with valuesa = 1.652 andb = 0.561 (E.g. Terencet al. (2009)). In this way the neutrino density

is included within the total matter densit§2,,, = Q + Q. + Q,.

The net behaviour for a study of the late-time Universe is a clustering of the particles on the
largest of scales, similar to ordinary cold Dark Matter. Alternatively, on the smallest scales there
is a uniform and therefore scale independent suppression of growth. Between these regions the
corresponding suppression is scale dependent. Thus statistically, the overall effect of massive neu-
trino species is a damping of the power spectrum over ldrgerd is shown clearly in Figure 4.5.
These signatures have been exploited with previous studies of galaxy clustering including, for

example, Elgarget al. (2002), Tegmarlet al. (2006) and Reiet al. (2009).

4.4.2 Galaxy Clustering Analysis
4421 LRGdata

Considering the aforementioned effects | therefore look to use the most recent galaxy clustering
measurement, MegaZ LRG DR7 (Chapter 3), to aid the bounds from the previous subsections.
This catalogue is composed of 723,556 Luminous Red Galaxies (LRGs) and spanttintpg?
on the sky represents the final SDS$Mhlotometriarelease. These objects are old, stable systems
that provide reliable photometric redshift estimates and, due to their high luminosity, probe a large
region of cosmic volume.

| analyse the angular power spectrdm of the LRGs in four equally spaced redshift bins
(Az = 0.05) betweenz = 0.45 andz = 0.65 up until a maximum multipolé,,,x = 300. The
likelihood combines the four bins and includes the full covariance as a result of photometric errors

scattering galaxies between slices. There are four additional parameters included in the study as a
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result of the galaxy bias in each of the four biag, (2, b3 andby), i.e., modestly accounting for

the redshift dependence in each slice. By marginalising over these values only information from
the shape of the power spectrum is therefore utilised. Including a scale dependence in these biases
is beyond the scope of this work. Finally, the theoretical angular power spectra (Equation 3.17
and Equation 3.25) have been adjusted to include the effects of redshift space distortions (Equa-
tion 3.24). These allow an additional measure for the bias parameters through a change in shape
at low £. For more specific information pertaining to the galaxy clustering study the finer details

of the galaxy catalogue, measurement, power spectrum and systematics are described thoroughly
in Section 3.2.1, Section 3.3, Section 3.4 and Section 3.6, respectively.

In addition to their sensitivity of the neutrino sighatures and the breaking of degeneracies
present in the CMB, the MegaZ power spectra are particularly beneficial to this combined mea-
surement. This is because the BAOs, which were shown to be so advantageous in the previous
section, can be used in conjunction to MegaZ with no cross-covariance. The BAO data is ex-
tracted atz = 0.2 andz = 0.35, whereas MegaZ is defined from= 0.45 to z = 0.65. They

therefore constitute two independent data sets and can be used both simgiypalt@neously

4.4.2.2 The Linear and Non-linear Power Spectrum

In a linearAC DM Universe the matter densities give rise to a scale independent growth of struc-
ture. In this way the shape of the power spectrum is redshift independent, with the amplitude
moderated by the linear growth factgfz). In this regime one can therefore directly decompose

the power spectrum into scale and redshift terfék( z) = Py(k)g(z)?). The introduction of
neutrinos into the late-time cosmology introduces a scale dependence that changes with cosmo-
logical epoch and therefore redshift (E.g. Equation 4.6). It is interesting to note therefore that
the decomposition inté and z is technically invalid. However, it is found that the inaccuracy
introduced by this decomposition is small compared to the discriminatory power of the current
galaxy clustering data (Lesgourgues & Pastor (2006) and Lahal/(2009)). Regardless of this

the matter power spectrum used here is calculated using CAMB (lehvais2000).

As in the original MegaZDR4 release (Blakeet al. 2007) the maximum multipole scale is
limited tol,,.x = 300 at which point the non-linear regime starts to become significantly different
from the linear prediction. However, even for multipoles below this (i.e. larger scales) the non-
linear regime is still important due to a slight increase in power and should still be included.
Therefore in this study theALOFIT (Smithet al. 2003) non-linear prescription is implemented.

Even though this fitting function is a good approximation for norta@lD M cosmology and even
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Figure 4.6:Marginalised constraints on the sum of the neutrino mass from a complete joint analysis against
the matter density?,, and the Hubble parametér Each successive addition of data gives a factor of 2
improvement from the CMB (red/lighter contours); with the inclusion of SN + BAO (blue/darker contours)
and finally the DR7 LRGs (grey/darkest contours). The overall bound is found}d hg < 0.325 eV at
the95% confidence level.

though it is widely used in that context the effects of the neutrino in this regime are ill-understood.

It should be noted therefore that non-linearities could represent a systematic and limitation to a
study such as this. However, very recently tests of the non-linear power spectrum in the presence
of neutrinos and new approaches to the regime have started to emerge in order tackle this difficult
issue, e.g., Hannestad al. (2006), Brandbyget al. (2008), Saitoet al. (2008), Brandbyge &
Hannestad (2009) and Sakob al. (2009). While the implementation and further testing of these
procedures is very much the subject of future work, | reduce the reliance on the non-linear regime
in this study by repeating the full combined analysis but truncating the maximum multipole to

Cmax = 200.

4.4.2.3 Combined Results

| start by combining the MegaZ LRGs as described above with the previous CMB, SN and BAO
data in a complete joint analysis. | subsequently find a significantly lower bounthof < 0.325
eV at the95% confidence level. Again, this is roughly a factbimprovement in the sum of the

neutrino masses with the addition of the LRGs and is shown clearly against the matter density and
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Hubble parameter in Figure 4.6. A plot of all parameter combinations compared to the CMB-only
study is displayed in Figure 4.7. Furthermore, the cosmology corresponding to the best fit values
is plotted in Figure 4.9 compared to the data used. The improvement in the 1D marginalised
distribution is illustrated further in Figure 4.10. No evidence for massive neutrinos is found in the
data.

For interest | also repeat this analysis using instead the MegaZ DR4 galaxy clustering data.
The differences and subtleties in this catalogue are discussed thoroughly in Section 3.5.2.1 and
Section 3.5.3. Using this data set gives a slight further improvement in constrain} With <
0.2996 eV. This could be the result of the slightly stricter errors(hp and f, = €;,/2,,, between
the releases (Section 3.5.3).

As stated before the information on the growth of structure is paramount to the improvement
seen in the neutrino study. However, part of this information originates from the non-linear regime
and could systematically bias the inferred constraint. While work continues into the effects of the
neutrino on these scales | repeat the primary combined analysis (DR7) with the most non-linear
of scales removed. By truncating the multipoleg,at, = 200 the more conservative approach
is seen to give a similar but slightly relaxed limit df m, < 0.393 eV. While this highlights
the importance of understanding non-linearities for obtaining the most stringent constraints, it is
reassuring that there is still a marked improvement on the previous study (CMB+SN+BAO) with
the linear LRGs.

It is also intriguing to examine the input of the LRGs to the constraint with the two distance
measures (SN+BAQO) removed. These have previously been highly beneficial to the uncertainty.
| therefore perform a joint analysis using just the WMAPS5 and LRG (DR7) data. | subsequently
obtain the limit) m, < 0.651 eV at the95% confidence level. This is comparable with the
spectroscopi®R7 galaxy clustering addition to the CMB in Redtlal. (2009) with> " m, < 0.62
eV. These are both comparable but naturally tighter than the earlier data analysis provided by
Tegmarket al. (2006) whered > m,, < 0.9 eV.

| conclude the combined constraint on the neutrino by adding the new HST prior on the Hub-
ble parameter to the original WMAPS5 + SN + BAO + MegaZ LRG DR7 run. The improved prior
was recently found to befly = 74.2 4 3.6 km s~'Mpc~! by Riesset al. (2009). With this infor-
mation added the final limit in this study is reducedom, < 0.281 eV at the95% confidence
level. The constraint is one of the tightest current bounds available without the use of data from
Lyman-« (E.g. Seljaket al. (2006)) or a complicated modelling of the bias (de Bernaedial.

2008). However, | leave a more complete discussion of other works for the following subsection.
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The parameter distributions for the last three additional cosmological analyses are displayed in

Figure 4.8.

4.5 Discussion and Conclusion

4.5.1 Systematics and further work
4.5.1.1 Non-linearities

It is clear from the incredibly tight bounds placed on the neutrino in the previous subsections
and from the complementary analysis with the CMB in Section 3.7 that the LRG spectrum is a
powerful addition to any cosmological constraint. However, despite the possible gain this often
comes with information extracted in the non-linear regime. As alluded to before, this regime is
tested in the\C' DM framework (E.g. Smitlet al. (2003)) but any deviations from this represent
an extrapolation.

A recent method to probe into the mildly non-linear regime with neutrinos is through standard
perturbation theory (SPT). This next order correctiomoe-loopcorrection has been highlighted
by e.g. Saiteet al. (2008) and Saitet al. (2009). An alternative suggestion is the use of nuisance
parameters including a non-linear correction param@tgfColeet al.2005). This has been used
also in Tegmarket al. (2006). Alternatively, Hannestaet al. (2006) has suggested the power
spectrum to be taken as a weighted average of the neutrino and baryon and cold dark matter power

spectra (Equation 4.8). This has been used, for example, in Tetethq2009).

P (k) = [fur) PvE(k) + (fs + fo)/ PNE(R)]? (4.8)

Given the lack of testing, range of validity or recent emergence of some these methods the
approach taken here is to use the Snathal. (2003) fitting function with the most non-linear
scales removed/(> 300). A more conservative bound was inferred by placing a strict cut in
multipole space = 200. This still gave a significant improvement in the sum of the masses from
a CMB+SN+BAO calculation m, = 0.695 — 0.393 eV).

In the future it would be interesting to test the effect of these new procedures on the data and
previous constraints and see if there is any bias induced by neglecting them (or between them).
Early work in Saitoet al. (2009) implies this could bias the equation of state parameteiThis
might be more severe for future large scale structure surveys where the direct contribution from the

galaxy clustering or weak lensing is not as statistically limited. One could examine the predictions
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Figure 4.7:The two dimensiona$8% and95% contours and marginalised one dimensional distributions

for 7 cosmological parameter€4h?, Q.h?, Qu, ng, 7, In(101°A,) and > m,) in a WMAP5 + SN +

BAO + MegaZ DR7 combined constraint. The amplitude of the Sunyaev-Zeldovich fluctuatigns is
included in the analysis but is not plotted. The black contours are given by a WMAP-only analysis, whereas
the red constraints are with the addition of MegaZ DR7. For the latter analysis four bias parameters have
been marginalised. The data constrains the sum of the neutrino mases to< 0.325 eV (95% CL)
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Figure 4.8:The marginalised distributions for three additional cosmological analyses (green contours) are
plotted against the previous neutrino bounds. Upper Panels: The contribution from the more non-linear
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regime is removed by truncating the MegaZ multipole scalg,at = 200 >_m, < 0.393 eV). Middle

Panels: The LRGs are seen to provide approximately equal gain to the CMB as the SN and BAOs when the
distance measures are remov@d«#, < 0.651 eV). Bottom Panels: The addition of the new HST prior

restricts the parameter space further still, rendering one of the tightest current consyraints< 0.281

eV).
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Figure 4.9: The theoretical galaxy angular power spectra (top four panels) and theoretical CMB power
spectrum (bottom panel) are plotted for the best fit values found in the CMB+SN+BAO+MegaZ LRG DR7
analysis (solid lines). These are compared to the data points in MegaZ DR7 and WMAPS5, respectively.
There is no observed discrepancy between the best fit models and the data. The top four panels correspond
to redshift bin 1 (top left;0.45 < z < 0.5), bin 2 (top right;0.5 < z < 0.55), bin 3 (middle left;

0.55 < z < 0.6) and bin 4 (middle right).6 < z < 0.65).
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Figure 4.10:The 1D marginalised distributions for the sum of the neutrino n)dss, are highlighted
above (solid lines). The bounds displayed are the result of a WMAPS5 analysis,( < 1.271 eV) that

is shown to decrease dramatically with the inclusion of SN and BAOsr(, < 0.695 eV) and also with
the further addition of MegaZ DR7( m, < 0.325 eV). No evidence for massive neutrinos is observed
and so all constraints correspondupper bounds These levels and the vertical dashed lines defdfé
confidence levels.

separately with a Fisher matrix forecast. In addition, a greater number of N-body simulations
must be performed with the presence of neutrinos to probe the regime fully. Early work on such

simulations include e.g. Brandbygéal. (2008) and Brandbyge & Hannestad (2009).

45.1.2 Extended Parameter Space

The combined constraints have been derived by varying a tote? glarameters, including the
normalisation of SZ fluctuations in the CMB and four bias parameters in the galaxy survey. While

a substantial sample of parameter space there are potentially extensions that could degrade or shift
the results of the previous sections.

Effective Number of Species

The number of massive neutrinos has been fixed.@d in this study. This assumes there
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are no sterile neutrinos or other relativistic degrees of freedom. These potential species are often
parameterised in terms of tledfectivenumber of neutrinoV.¢. Variations in this quantity allow
a displacement in the time of matter and radiation equality in the early Universe. Subsequently it
is degenerate with the matter density and can weaken the best possible constraint. The effective
number of species has been analysed previously in a number of papers, including &aabar
(2006), Ichikaweet al. (2007), Komatstet al. (2009), Dunkleyet al. (2009), Reidet al. (2009)
and references therein. In future work | intend to extend the previous parameter space to account
for Nog as a free parameter.
Equation of State

As described earlier allowing for a more general dark energy modél—1 does not signifi-
cantly alter the neutrino constraint for a combination of WMAP+SN+BAO (Komatsu. 2009).
However, the sum of the neutrino masses has been shown to be degenerate with the equation of
state in the presence of data from the late time Universe (Hannestad 2005). This can be under-
stood by considering that an increase in the expansion history (less naggtiwdl suppress the
growth of matter fluctuations, similar to the effect of the free-streaming particles. As for the other
studies highlighted in Figure 4.1 the results quoted here arefar@M cosmology and similarly
represent the benchmark of a more stringent restriction of parameters. It will be interesting to see
how the complete joint analysis will change with this extra parameter freedom and is the subject
of future work.
The Galaxy Bias

By marginalising over the four bias parameters information mainly on the shape of the power
spectrum was used. However, the exact relationship between galaxies and their tracing of the un-
derlying mass distribution is unknown. It could be that the bias is some function oftgétalE.g.
Swansoret al. (2008) and Cresswell & Percival (2009)). In this case the biasing mechanism could
act to mimic (oppose) the neutrino signature in the galaxy clustering measurement by suppressing
(boosting) the power of fluctuations over smaller scales. This is similar to allowing for a running of
the spectral index but in this case would be seen in the CMB as well as the galaxy survey. Testing
for a more extended bias model is beyond the scope of this work but could be an interesting avenue
for future work. Moreover, it would also be interesting to examine the constraints using various
galaxy types in order to get a measure onrtiativebiasing of the galaxies. The motivation is that
if one expects the galaxy field to be correlated with the dark matter field then all the galaxy fields
should be directly correlated with each other. This will be possible with future/upcoming projects

such as the Square Kilometre Array (SKA; Abdalla & Rawlings (2007)), DES or Pan-Starrs.
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> my, 95% CL Analysis Comments
<1l3eV Komatsuet al. (2009) WMAPS5
<09eV Tegmarket al. (2006) WMAP3 + SDSS
< 0.67eV Komatsuet al. (2009) WMAPS + SN + BAO
<0.62eV Reidet al. (2009) WMAPS + SDSS (DR7)
< 0.54 eV Ichiki et al. (2009) WMAP5 + SN + BAO + CFHTLS WL
< 0.54 eV Terencet al. (2009) WMAPS5 + SN + BAO + CFHTLS WL
< 0.471 eV Li et al. (2009) CMB + WL + SDSS + SN
< 0.28 eV de Bernardi®t al. (2008) WMAPS5 + SDSS + biak, (L)
<0.17eV Seljaket al. (2006) CMB + SDSS + 2dF +SN + ky

Table 4.1:A brief list of other recent cosmological studies on the absolute mass scale is included above.
All the bounds quoted are fatxC' DM cosmologies at the5% confidence level. ‘CMB’ and ‘WL’ denote

an analysis that contains a range of CMB or Weak Lensing data, respectiyglly) corresponds to a
luminosity dependent bias measurement. For a detailed breakdown of the analyses the reader is referred to
the papers themselves.

4.5.2 Other Studies

At the present the addition of LRGs are far more effective for constraining the absolute mass
scale than current weak lensing data. The preliminary studies by Tetexig2009) and Ichiki
et al. (2009) with CFHTLS data (Section 2.4.2) both fihd, < 0.54eV at the95% confidence
level fora CMB+SN+BAO+CFHTLS joint analysis. The lack of substantial improvement with the
lensing data is a result of a similar degeneracy between the neutrinés,anmehere the neutrinos’
suppression of the inhomogeneities can be compensated by an incrégs€onog). It is also
mainly a property of the probe beingdavelopingool, as the prospects for the addition of weak
lensing to the mass determination are promising. Interestingly, weak lensing does not suffer any
unknown biasing that is present in the galaxy clustering measurement. This is because the lensing
signal responds to the entire mass distribution. It does, however, probe matter fluctuations on
non-linear scales. The optimism seems well justified as it has been shown that a future probe such
as Euclid (Refregieet al. 2008) could even be sensitive to the neutrino mass hierarchy with the
addition of Planck data (De Bernardital. 2009).

The > m, < 0.281 eV limit found in this Chapter represents one of the most stringent con-

straints placed in the literature. A small list of some of the most recent and competitive studies is
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therefore given in Table 4.1. Within this table two papers have constraints that are similar to the
one mentioned above. The de Bernastial. (2008) study uses a measurement of the luminosity-
dependent bias, (L) at various redshifts for three different surveys and adds this information
to a WMAPS and SDSS LRG constraint. They fihdm, < 0.28eV for a ACDM Universe,
which relaxes to_m, < 0.59eV in the presence of a general dark energy modsgl £ —1).
The Seljaket al. (2006) analysis represents the tightest bound placed on the neutrino to date
> m, < 0.17eV. This uses a range of CMB surveys in addition to SDSS galaxy clustering and
supernovae data. However, the main gain in parameter uncertainty arises from use ofd.yman-
This cosmological tool probes the underlying mass distribution by looking at quasar absorption
in intervening hydrogen. There is great uncertainty, however, as to how this gas traces the distri-
bution. This could be subject to unknown winds or complex local physics, for example. There
appears to be tension at aroutwdin the amplitude of the power spectrum between the Lyman-
and CMB data. To compound this issue Selglal. (2006) also find evidence a.50 for more
than 3 effective neutrino species.

Considering the above the m, < 0.281 eV limit in this work is the tightest constraint on the
sum of the neutrino masses without the need for higher knowledge on complex biasing or higher
knowledge of complex gas physics. However, in the future we are not only interested in tight neu-
trino constraints, but also trustworthy neutrino constraints. This is why the previous suggestions
for further work necessarily involve working on the associated systematics and extensions to the
cosmological model. Despite this, preliminary work on neutrino forecasts for future surveys, such
as the Dark Energy Survey (Lahat al. 2009), Euclid (De Bernardist al. 2009) and the SKA
(Abdalla & Rawlings 2007) highlight that the gain in statistical information will be substantial.



CHAPTERS

FUTURE WORK AND CONCLUSION

This chapter discusses some of the issues pertaining to the previous three chapters. This includes
the limitations and applicability of the methods and developments relating to these on the horizon.
The following therefore represents suggestiondtiture work However, it should be noted that

this does not consist of all the suggestions for future work, given that segments will have been
discussed while relevant in the preceding chapters.

| finish by summarising the work in this thesis in Section 5.4.

5.1 The Non-linear Regime

The work examined in Chapters 2 and 4 have both been affected or limited by the non-linear
regime with current data. As stated previously this is usually tackled by using the fitting functions
of Peacock & Dodds (1996) and Smithal. (2003) found with detailed N-body simulations. This

was the procedure followed in Chapter 3 where | used my constructed SDSS Il angular power
spectra to place constraints on 8tandardcosmological model. The other chapters are studies of
deviations from this model and so such an application is an extrapolation of validity. Brute force
application could systematically bias the inferred parameters or fail to encapsulate any subtle
signatures at this scale. With the advent of high precision probes such as the Dark Energy Survey
(DES) or Euclid (Section 2.6) and consequently higher statistical discrimination, the need for a

correct treatment or a quantification of the systematic error induced is even more vital.
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5.1.1 Modified Gravity

The most obvious concern for using any available prescription for the non-linearities in modified
gravity is that they have been evaluated using general relativity. Any use is therefore an extrapo-
lation of the framework especially given that the clustering is a gravitational effect.

A more pernicious problem concerns the potential scale or environmental dependence of the
modifications. Some theories, such aB)f(include an extra scalar degree of freedom that behaves
as an additional field. The extent over which this field acts depends on the local curvature and
density. The current fitting functions, such as Sneitlal. (2003), determine the non-linear regime
from a mapping of the linear spectrum. For any theory where the extra field is suppressed at high
curvature there will be a change in the behaviour of the gravity when non-linear. Tioseés-
capsulated by the linear range of scales. Itis this scale dependence that eludes the aforementioned
prescriptions.

In fact, due to the stringent constraints on gravity from solar system tests (E.g. Will (1993),
Chibaet al. (2006) and Erickcelet al. (2006)) any viable theorynustdegrade the extra field in
the high density environment and subsequently tend to a ‘general relativity-like’ gravity. This
non-linear process is often referred to as the chameleon mechanism (Khoury & Weltman 2004).

Some progress can be made with the use of perturbation theory (E.g. Keyamn2009) but
this has a limited range of validity to quasi-linear scales 0.1 h Mpc~!. In this way thedeeply
non-linear regime remains beyond the scope of conventional methods and the application of such
data is suspect.
The Interpolation Function

Despite the fact that this appears to be a dire situation there is a subtlety above that has led to
recent developments. This concerns the idea that the actual power spectrum (includirlty the
non-linear) must therefore be an interpolation between modified gravity, with the extra field and
no chameleon suppression, and normal general relativity with the same expansion history as the
new theory at small scales. Hu & Sawicki (2007) found such an interpolating function and it is

described by,

_ Pucl(k, z) + cu¥?(k, 2) Par(k, 2)

Plk,2) = Tt cn(2)52(k, 2) &

In this equatiorr,,; determines the scale for the interpolation to general relati¥ityk, ) details
the degree of non-linearity at a given scal; (k, z) is the power spectrum for the environment
independent modified gravity arie: z(k, z) is standard general relativity with the same expansion

history. For each of the tw®(k, z) a fitting function such as that from Smigh al. (2003) can be
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used.
Hu & Sawicki (2007) also proposed a parameterised form for the degree of non-linearity,
which is given by,
K3 a
2 — (2 _p.
X (]{Z,Z) = (27_‘_2 Phnear(kyz)) (52)
and Koyamaet al.(2009) have suggested a general expression for the possible redshift dependence

of ¢,; expressed as,
e = A1+ 2)°. (5.3)

For the DGP model these expressions were calibrated with perturbation theory (Keyata
2009) in the quasi-linear regime and checked for consistency and extrapolation against the N-
body simulations of Oyaizat al. (2008). They subsequently fouad= 1, A = 0.3 andb = 0.16

to be good fits.

It would be interesting to see how this new non-linear treatment affects the constraints on
mDGP from lensing given in Section 2.5.2 and in particular the analysis with all angular scales in
Figure 2.10. However, due to the lower statistical power of the current weak lensing data it might
prove more insightful to examine how this would alter the forecasts for Euclid. One could use
this as an example to quantify how an incorrect prescription for the regime will bias the inferred
constraining power relative to the brute force application of the usual scaling relation. Preliminary
work in this area has already started to appear very recently, e.g., Beyab2009).

Furthermore, despite the early work of Oyaizu (2008), Oyaizal. (2008) and Schmidtt al.

(2009) it is imperative that further N-body simulations are carried out for a range of models to
high resolution (large). It will be interesting to apply this interpolating function to simulated
cosmologies in order to test the accuracy of any reconstructed power spectrum and the range of
validity. If it does describe the deeply non-linear regime well and if one quantifies the systematic
uncertainty it induces, it might have a role to play in the search for modified gravity in the next

generation of data.

5.1.2 Neutrinos

Like the interpolation model described above several fitting functions or approximate methods
exist to describe the impact of neutrinos on the non-linear power spectrum. This includes the
weighted average of the neutrino, baryon and cold dark matter power spectra proposed by Hannes-

tadet al. (2006) and shown previously in Equation 4.8. A more technical approach is through the
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use of higher order perturbations @@re loop correctionsthat probe the mildly non-linear regime.
See Saitet al. (2008), Saiteet al. (2009) and references therein.

While the deeply and quasi-linear regimes were removed in the combined constraint on the
neutrinos in Section 4.4.2.3 it would be interesting to test these approaches on the data given its
high discriminatory power. This would allow a more robust measurement at the tightest end of
the constraint and, furthermore, the potential to quantify the biasing induced on any parameters
by neglecting it. Naturally this reasoning can be extended to forecasts for future probes such
as Euclid or the Dark Energy Survey. In addition, a comparison between the methods and to
continuing N-body simulations would allow the most thorough test. N-body simulations with
neutrino components have begun to emerge with e.g., Brand#yaje(2008) and Brandbyge &
Hannestad (2009).

5.2 The Extended Neutrino Parameter Space

The neutrino bounds found in Chapter 4 were evaluated and compared to other studies in a flat
ACDM cosmology. A natural extension of this work is to extend the parameter space to other

potential physical phenomena.

5.2.1 The Equation of State

An example of the aforementioned extension is to relax the restriction placed on the equation of
state {vg # —1). A change in the expansion history can act to either suppress or boost the power
of fluctuations relative to a cosmological constant (see Chapter 2) and thus partially mimic the
effects of the neutrino. In this way the equation of state can be degenerate with the sum of the

neutrino masses. Allowing this freedom is an intention for future work.

5.2.2 The Effective Number of Neutrinos

In addition, the effective number of neutrindgg was fixed ta3.04 for all cosmological analyses.
Allowing for a variation in this parameter can also degrade the neutrinos’ constraint but gives a
more realistic and robust measurement. Again, including this for the combined constraint analysis
is an aim of future work.

These extensions of the parameter space are discussed in more detail in Section 4.5.1.2.
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5.3 A Cosmological Comparison of Photometric Codes

The galaxy clustering constraint on the cosmological model in Chapter 3 was the consequence of
a photometric redshift survey (SDSS DR7). The redshift estimates were assigned to the galaxy
objects using ANNz (Collister & Lahav 2004) an Artificial Neural Network code. For future work
| intend to use the catalogues produced for Data Release 6 (DR6; Aledalla(2008)) to test
the effect of photometric codes on cosmological bounds. This is possible for DR6 because the
corresponding catalogue was evaluated using six different photometric codes: ANNZ (Collister
& Lahav 2004), HyperZ (Bolzonellat al. 2000), SDSS (Padmanabheanal. 2005), Le PHARE
(Ilbert et al. 2006), BPZ (Beitez 2000) and ZEBRA (Feldmaret al. 2006). Performing cosmo-
logical runs for each code would constitute a cosmological comparison of the codes and test the
influence of any particular code on the galaxy clustering measurement of MegaZ DR7. This is
feasible because the survey areas for DR6 and DR7 are remarkably similar.
The Redshift Distribution

Continuing with the galaxy clustering analysis it is important to evaluate the role of the red-
shift distribution on the inferred parameters. This could be performed by including the Gaussian
redshift parametersu( o) as free variables or using the interpolated spectroscopic redshift distri-
bution. This is discussed more thoroughly in Section 3.6.2.
Extra Likelihood Details

Finally, it would be intriguing to examine what extra information is gained by actually includ-
ing the cross correlatioé?f data in the galaxy clustering likelihood. Likewise, a cosmological
constraint could easily be run including a larger range of multipole scéles300). This would

test the information present at highly non-linear scales.
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5.4 Conclusion

This Thesis is related mainly to the growth of structure in the late-time Universe. Specifically, it
addresses both the active measurement of this structure, through a galaxy survey, and the use of
late-time data in constraining more fundamental underlying physics. This includes the gravita-
tional framework and the sum of massive neutrino species. These themes were directly related to

three main science chapters:

1. Constraining Modified Gravity and Growth with Weak Lensing
2. The Angular Power Spectrum of Photometric SDSS LRGs

3. A Combined Constraint on the Neutrino Mass
The conclusions of the Thesis are as follows:

¢ Inthe first chapter | performed one of the first studies on modified gravity with weak gravita-
tional lensing data. A phenomenological model that interpolates with a paramigtérveen
a 5D DGP braneworld modet(= 1) and ACDM (« = 0) was constrained at < 0.58
(1) anda < 0.91 (20) using supernovae, baryon acoustic oscillation and linear CFHTLS
lensing data. | showed this to be insensitive to potential systematics in the lensing data. The
role of weak lensing in a modified gravity study was discussed and the growth of structure
~ and power spectrum paramet@rsare highlighted. | subsequently found that the current

data (SN+BAO+CFHTLS) is incapable of a constraint on this growth signature.

¢ | also looked beyond the present bounds and showed that Euclid, a future weak lensing
survey, will deeply probe the nature of gravity. | predicted poteftiatonstraints ofAy =
0.045 and AYX = 0.25 for a maximum multipole o¥,,.x = 500 (linear regime). This
is tightened toAy = 0.038 and AY = 0.069 for £;,.x = 10,000 (linear and non-linear

scales). Forecasted bounds are also shown for the standard cosmological framework.

e In the second chapter | constructed a new galaxy power spectrum based on the extended
SDSS Il Data Release 7 (DR@hotometrid_uminous Red Galaxies (LRGs): MegaZ DR7.
This encapsulate@746 deg? and723, 556 LRGs betweer).45 < z < 0.65 in a spheri-
cal harmonic analysis of the galaxy distribution. An excess of power was detected on the
largest scales in the highest redshift slice similar to the previous DR4 data release, but with

a reduced tension to the best fit cosmology.
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e The cosmological constraints were then derived based on the newly constructed MegaZ
power spectra. The excess power in the high redshift bin was demonstrated to have a sub-
stantial effect on the calculation and was therefore removed from subsequent analyses. In-
cluding the effects of the survey window function, redshift space distortions and correlations
between the redshift bands | found the combined bin analysis to give cosmological limits of
fo = Q/Qp = 0.173 £ 0.046 and2,,, = 0.260 + 0.035. Finally, | demonstrate the LRGs
to be highly complementary to the CMB with the photometric analysis comparable to the

spectroscopic DR7 release.

e In the last chapter I highlighted the degeneracies present in a combined constraint on the
sum of the neutrino masses with the CMB, SN and BAOs. By then combining these probes
with the earlier MegaZ DR7 data | discovered a further reduction on the previous limit by
a factor of 2 §~m, < 0.325 eV). With an additional HST prior this bound dropped to
> m, < 0.281 eV-one of the tightest constraints in the literature. Additional runs without
the distance measures or the non-linear contribution were also performed, illustrating the

stringent and more conservative gains available with LRGs.
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