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Abstract

Optical topography has recently evolved into a widespread research tool for non-invasively

mapping blood flow and oxygenation changes in the adult and infant cortex. The work described

in this thesis has focused on assessing the potential and limitations of this imaging technique,

and developing means of obtaining images which are less artefactual and more quantitatively

accurate.

Due to the diffusive nature of biological tissue, the image reconstruction is an ill-posed

problem, and typically under-determined, due to the limited number of optodes (sources and

detectors). The problem must be regularised in order to provide meaningful solutions, and

requires a regularisation parameter (λ), which has a large influence on the image quality. This

work has focused on three-dimensional (3D) linear reconstruction using zero-order Tikhonov

regularisation and analysis of different methods to select the regularisation parameter. The

methods are summarised and applied to simulated data (deblurring problem) and experimental

data obtained with the University College London (UCL) optical topography system.

This thesis explores means of optimising the reconstruction algorithm to increase imaging

performance by using spatially variant regularisation. The sensitivity and quantitative accuracy

of the method is investigated using measurements on tissue-equivalent phantoms.

Our optical topography system is based on continuous-wave (CW) measurements, and

conventional image reconstruction methods cannot provide unique solutions, i.e., cannot

separate tissue absorption and scattering simultaneously. Improved separation between

absorption and scattering and between the contributions of different chromophores can be

obtained by using multispectral image reconstruction. A method is proposed to select the

optimal wavelength for optical topography based on the multispectral method that involves

determining which wavelengths have overlapping sensitivities.

Finally, we assess and validate the new three-dimensional imaging tools using in vivo

measurements of evoked response in the infant brain.
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CHAPTER 1

Introduction

This PhD project is focused on establishing the optimum performance and inherent limitations

of three dimensional optical imaging of evoked response in the brain using optical topography

systems.

Optical topography monitors changes in the optical properties (absorption µa and

reduced scattering µ′s coefficients) and haemodynamic activity of the brain, from changes

in near infrared (NIR) light reflectance measurements. The technique exploits the different

absorption spectra of tissue chromophores (in particular, the spectra of oxy-haemoglobin and

deoxy-haemoglobin) to measure their concentration levels (refer to §2). Optical topography

has been used to measure functional activity noninvasively in studies of cognitive processes,

to examine brain maturation in infants, and also to identify cerebral pathological conditions

[Koizumi et al., 2003; Strangman et al., 2002] (refer to §3 for a review of the state-of-the-art

of optical topography). The advantages of optical topography imaging over other existing

imaging techniques (e.g. functional Magnetic Resonance Imaging (fMRI), Positron Emission

Tomography (PET) and Electrical Impedance Tomography (EIT)) are its fast acquisition rate,

the use of relatively inexpensive technology, its portability (enabling images to be acquired at

bedside), and its use as a continuous monitor of brain activity (for more detail refer to §4).

The source and detector fibers are attached to the head which makes it less sensitive to motion

artifacts. The technique can distinguish between changes in oxy-haemoglobin concentration

∆[HbO2] and changes in deoxy-haemoglobin concentration ∆[HHb], whereas fMRI can only

measure blood flow and deoxy-haemoglobin concentration [HHb]. The penetration depth is

limited by the diffuse nature of light in tissue to approximately half the source-detector distance

[Strangman et al., 2002]. Hence, optical topography can only image superficial cortical areas.

Another limitation, which is also a consequence of the highly scattering nature of tissue, is the

lack of spatial resolution, but localisation can be improved by optimising probe design (e.g. use

of overlapping measurements) (refer to §3).

Multiple measurements using different combinations of sources and detectors enable
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images to be generated, representing the optical properties of the tissues directly beneath the

probe. However, the image reconstruction problem is ill-posed and under-determined, and

therefore the direct solution of the least squares problem is not possible (refer to §5 for further

detail). Regularisation methods are essential to solve ill-posed problems by introducing some

constraints on the solution. This is achieved by the regularisation parameter, which controls the

tradeoff between the fidelity to the measurements and the smoothness of the solution. Several

methods have been used to select the regularisation parameter, which are summarised in this

thesis and tested for simulated and experimental data (refer to §6).

In almost all the published literature images reconstructed from optical topography

measurements are represented as two dimensional (2D) maps, whereas here we focus on

three dimensional (3D) imaging. The reconstruction of 2D images is a less under-determined

problem than the reconstruction of 3D images, given that the number of unknowns increases

for volumetric reconstructions.

One of the main disadvantages of optical topography is its low penetration depth, leading

to limited depth information. Perturbations in the medium can be more accurately located, in

particular in the depth direction, by using a spatially variant regularisation. Optical topography

simulations are used to analyse the influence of different spatially variant regularisations on the

reconstructed images (refer to §7). Thereafter, the performance of the UCL system and image

reconstruction algorithm is quantified, first using a liquid phantom and then using a dynamic

solid phantom based on a thermochromic pigment.

Our optical topography system is based on continuous-wave (CW) measurements.

However, it has been theoretically demonstrated that conventional image reconstruction

methods cannot provide unique solutions from CW measurements [Arridge & Lionheart, 1998].

Multispectral reconstruction methods can help overcome this non-uniqueness problem and

minimise cross-talk between chromophores [Corlu et al., 2005]. This thesis presents a method

of determining the optimum wavelengths based on the multispectral method that minimises the

differences between interrogated volumes at different wavelengths (refer to §8). This method

guarantees that the interrogated volumes at different wavelengths are similar and, hence,

the cerebral activation measurements contain information from the same region. The main

characteristics of the optically interrogated volumes are quantified using sensitivity profiles

generated at different wavelengths using a homogeneous and three-layer adult head model. We

also determine the influence of the selected optimal wavelengths on the accuracy of derived

oxy- and deoxy-haemoglobin concentration changes.

Finally, the new three dimensional imaging tools are used to reconstruct maps of ∆[HbO2]

and ∆[HHb] from measurements of evoked response in the infant brain (refer to §9).



CHAPTER 2

Tissue optics

Near infrared light within the range 600-900 nm can travel relatively deeply into biological

tissue due to the existence of a ”spectral window”, where absorption by the main chromophores,

water and haemoglobin, is low. At higher wavelengths absorption is dominated by water and at

lower wavelengths the absorption by haemoglobin is very high.

This chapter introduces the basic interaction of light with tissue. The main chromophores

and anatomy of the adult human head are also described. Finally, the origin of optical contrast

during functional brain activity is described.

2.1 Optical properties
Light travelling through tissue can be either absorbed or scattered. Tissue is highly scattering

because photons describe a path whose direction is randomly changed by the chaotic variation

in refractive index at cellular and sub-cellular level. Light is also absorbed in tissue by

chromophores. This phenomenon occurs when a light wave strikes the particle within the

medium (e.g. a haemoglobin molecule), whose electrons have the same natural frequency than

the frequency of the light wave. The electrons will absorb the energy of the electromagnetic

wave and oscillate with the frequency of the incident wave. Finally, this vibrational energy is

converted into other forms of energy such as thermal energy.

2.1.1 Absorption
For a single chromophore, the absorption efficiency Qa is given by the ratio of its absorption

cross section σa to its actual geometric cross sectionA. That is, for a chromophore with an area

A the effective cross-sectional area caused by absorption, where no photons propagate, is σa.

The probability that a photon is absorbed per unit length in a medium containing chromophores

with a volume density ρ, is the absorption coefficient µa, which is expressed as

µa = ρσa. (2.1)

The absorption mean free path between absorption events is 1/µa. For an homogeneous
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absorbing medium without scattering and a collimated beam with intensity I0, the intensity

of light after travelling a distance l in the medium is

I = I0exp(−µal), (2.2)

which is known as the Beer-Lambert law. If the medium contains n different chromophores

contributing to the overall absorption, the absorption coefficient is expressed as

µa(λ) = Σnεn(λ)cn, (2.3)

where εn is the extinction coefficient, which is wavelength dependent, and cn is the

concentration of each chromophore.

2.1.2 Scattering
Most scattering interactions in tissue are elastic, so that the energy is conserved, and only the

direction of propagation is changed. For a scattering particle, the scattering efficiency Qs is

given by the ratio of the scattering cross section σs and the geometric cross section S. The

probability that a photon is scattered in a medium containing many scattering particles is called

the scattering coefficient µs, expressed as

µs = ρsσs, (2.4)

where ρs is the volume density of scattering particles. The mean free path between scattering

events is 1/µs. An equation similar to equation (2.2) can be written for the case of a

homogeneous scattering medium by replacing µa with µs.

The probability of a photon travelling in direction ŝ being scattered into direction ŝ′ is

given by the normalised scattering phase function p(ŝ, ŝ′). Therefore, the integral over all

angles is ∫
4π
p(ŝ, ŝ′)dŝ′ = 1. (2.5)

If scattering is symmetric around the direction of travel, then for a random scattering medium

the average phase function is a function of the angle θ between the incident and scattered

directions: p(ŝ, ŝ′) = p(cos(θ)). The anisotropy factor g is the mean cosine of the scattering

angle

g =

∫ 1

−1
p(cos(θ))cos(θ)d(cos(θ)), (2.6)

which is a measure of the anisotropy of the phase function. When g = 1 the scattering

vanishes and light is forward directed, for g = 0 scattering is isotropic and for g = −1 light is

backscattered.

In biological tissue multiple scattering events occur, and light in tissue is strongly forward

directed, with an anisotropy factor in the range 0.69 ≤ g ≤ 0.99 [Cheong et al., 1990]. The

reduced (transport) scattering coefficient µ′s = µs(1 − g) is the effective number of isotropic

scattering events per unit length, which is equivalent to many anisotropic scattering events. This
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parameter is fundamental in the diffusion theory of light propagation through random media.

According to Mie scattering theory, the wavelength dependence of the reduced scattering

coefficient µ′s is given by

µ′s(λ) = aλ−b, (2.7)

where a is the scatter amplitude and b the scatter power, and both depend on the size, density

of the scatterers and refractive index variations in the medium.

The total attenuation coefficient is defined as

µt = µa + µs. (2.8)

Similarly, the total transport attenuation coefficient is

µtr = µa + µ′s. (2.9)

2.1.3 Refractive index
The speed of light in a medium with refractive index n is

v =
c

n
, (2.10)

where c is the speed of light in a vacuum. Light travelling across media with different

refractive indices causes changes in the direction of propagation. The average refractive index

of biological tissue is generally assumed to be 1.4, which is between that of lipid and water

[Bolin et al., 1989]. Consider a photon with an angle of incidence θ1 passing through a medium

with refractive index n1 enters a medium with refractive index n2 at an angle of refraction θ2,

Snell’s law relates these quantities as follows

n1sin(θ1) = n2sin(θ2). (2.11)

2.2 Optical properties of the adult human head
Although absorption of near infrared light is low in tissue, the absorption spectra of the

main chromophores are different. In particular the spectra of oxy-haemoglobin (HbO2) and

deoxy-haemoglobin (HHb) are distinct (refer to §2.2.1.3), hence measurements performed at

two different wavelengths, usually chosen on each side of the isosbestic point (wavelength

at which the absorption is the same, approximately 805 nm), can provide information

about relative concentrations of HbO2 and HHb, and therefore about blood oxygenation.

Concentrations of cytochrome oxidase, which is an indication of tissue oxygenation (found

in the cell mitochondrial membrane), lipid and water can also be determined using appropriate

wavelengths [Elwell, 1995; Cope & Delpy, 1988]. Typically the concentration of cytochrome

c oxidase is less than 10% of that of haemoglobin [Cooper & Springett, 1997]. While

concentrations of water and lipid are usually constant over time, haemoglobin and cytochromes

depend on oxygenation levels and metabolism. The absorption spectra for the main tissue

chromophores are described below.
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Figure 2.1: Absorption spectrum of water. Figure 2.2: Absorption spectrum of lipid (pig fat).

2.2.1 Absorption spectra of the main chromophores

2.2.1.1 Water

The adult brain contains on average 80% water [Leung et al., 2005]. The absorption spectrum

of water is shown in figure 2.1 over the wavelength range 650-1040 nm [Matcher et al., 1994].

Absorption is relatively low for shorter wavelengths, allowing light to travel several centimetres

into the tissue. It increases rapidly at about 900 nm showing a strong absorption peak at 970

nm, and drops beyond this wavelength.

2.2.1.2 Lipids

The absorption spectrum of 100% lipid, obtained from pig lard, is shown in figure 2.2 for the

range 650-1050 nm [van Veen et al., 2004]. A strong absorption peak can be seen at 930 nm.

An adult brain contains on average 11.6% lipid [White et al., 1991]. Although the spectra for

water and lipids are very similar, the contribution of the latter to the overall absorption of brain

tissue is smaller due to its lower concentration. However, the proportion of lipids in the white

matter is higher than in the grey matter.

2.2.1.3 Haemoglobin

Near Infrared Spectroscopy (NIRS) is mainly used to monitor changes in oxy- and

deoxy-haemoglobin concentrations (∆[HbO2], ∆[HHb]). From these measurements one is

able to retrieve changes in cerebral blood volume (CBV), cerebral blood flow (CBF), oxygen

saturation (SO2) and total haemoglobin concentration ([HbT]). The specific absorption spectra

of HbO2 and HHb for wavelengths from 650 nm to 1050 nm can be seen in figure 2.3 [Cope,

1991]. The spectra show that oxy-haemoglobin has higher absorption for wavelengths larger

than the isosbestic point at 805 nm, whereas deoxy-haemoglobin dominates for wavelengths

below this point. The high absorption below 600 nm sets the lower limit for wavelengths used

in NIRS and the upper limit at 900 nm is conditioned by the high absorption of water. The

haemoglobin concentration in adult brain tissue is approximately 80 µM and oxygen saturation

(SO2) is 70% [Cope, 1991; Choi et al., 2004].
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Figure 2.3: Absorption spectra of oxy- and deoxy-haemoglobin.

2.2.1.4 Cytochromes

Cytochromes are enzymes in the mitochondrial respiratory electron transport chain.

Cytochromes can be found in the reduced or oxidised state and at the beginning of the electron

chain the components tend to be more reduced while at the end they are likely to be almost fully

oxidised [Cope, 1991]. The first component accepts electrons from a donor and passes them to

the subsequent acceptor and so on until Cytochrome b (Cyt b) passes electrons to cytochrome

c (Cyt c), which passes them to cytochrome c oxidase (Cyt aa3), the terminal electron acceptor

of the chain, where oxygen is reduced to water.

The absorption spectra of cytochromes depend on their redox state. The absorption spectra

for Cyt aa3, Cyt b and Cyt c are shown in figure 2.4 for the oxidised and reduced state [UCL,

2005]. Cytochrome c oxidase is more absorbing in the NIR region than any other cytochrome,

and its spectrum has a broad absorption peak around 830 nm. For wavelengths below 700 nm

the combined absorption of cytochromes is stronger. Although the absorption magnitudes of

haemoglobin and cytochrome c oxidase are similar, the concentration of Cyt aa3 is much lower

than that of haemoglobin. As mentioned previously the concentration of Cyt aa3 is less than

10 % of that of haemoglobin, and the typical total concentration of Cyt aa3 is considered to

be 8 µM. Since about 80% of Cyt aa3 is oxidised it follows that the concentration of oxidised

Cyt aa3 (oxCyt aa3) is 6.4 µM and the remaining 1.6 µM is in the reduced state (rCyt aa3).

The ratios for reduced rCyt c : rCyt b : rCyt aa3 using the values found by van der Zee [1992]

for adult grey matter are 1 : 1.32 : 2.37. The same ratios can be assumed for rCyt b and

rCyt c concentrations which are found to be 0.89 µM and 0.68 µM respectively. Since near

the electron source cytochromes are nearly fully reduced and vice-versa at the end of the chain,

different concentration percentages can be attributed to the oxidised and reduced states of each

cytochrome. Cyt c can be considered to have an equivalent proportion of oxidised (50 %) and

reduced (50 %) Cyt c, whereas for Cyt b which is closer to the beginning of the chain, it can be

considered that 60 % is in the reduced state and 40 % in the oxidised state. Consequently the

concentrations of Cyt b and Cyt c are 2.37 µM and 1.36 µM respectively, and it follows that the
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Figure 2.4: Absorption spectra of cytochrome c oxidase (Cyt aa3), cytochrome b (Cyt b) and cytochrome
c (Cyt c)).

total cytochrome concentration is 11.73 µM.

2.2.2 Head tissues

The brain is surrounded and protected by the skin, skull, meninges (dura mater, arachnoid

mater and pia mater), and cerebrospinal fluid (CSF). The central part of the brain is the white

matter and the thin outer layer of grey matter, the cerebral cortex. Table 2.1 summarises the

optical properties of the main head tissues found in the literature. These values correspond

to measurements both in vivo and in vitro, but do not necessarily represent the true optical

properties. In vivo methods to measure the optical properties require an indirect measurement,

such as NIRS, where the optical properties may contain contributions from several types

of tissue. The exception is when measurements are performed during open brain surgery.

Meanwhile the water and residual blood are removed from in vitro samples and dyes are

usually applied to increase contrast of specific tissues. Therefore, the optical properties of

tissue samples may be altered.

The typical refractive index of soft tissue is about 1.4. Notice that scattering is much lower

for neonatal brain than for the adult brain, in particular for white matter [van der Zee, 1992].

For neonatal brain the differences between grey and white matter are less obvious. This is

a consequence of the smaller degree of myelination of the white matter and number of folds

present in the neonatal brain than in the adult brain. Due to the soft and thin skull of neonates,

combined with a small head size and thin CSF layer, it is more likely that light will penetrate

into deeper regions of the brain than for the adult brain.

2.2.2.1 Skin

The skin varies in thickness from approximately 2-4 mm. The skin has two main layers, the

epidermis and dermis. Underneath the skin there is the hypodermis, which mainly consists of

adipose tissue. The skin protects against physical damage, external hazardous substances and

helps regulate the body temperature.
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Tissue sample λ (nm) µa(mm−1) µ′s(mm−1)

Infant grey matter [Bevilacqua et al., 1999]
in vivo 674 0.017-0.018 0.99-1.12
in vivo 811 0.018-0.019 0.48-0.74
in vivo 849 0.018-0.019 0.45-0.74
in vivo 956 0.021-0.022 0.42-0.80

Infant white matter [Bevilacqua et al., 1999]
in vivo 674 0.017 1.34
in vivo 849 0.013 0.98
in vivo 956 0.030 0.84

Infant skull [Bevilacqua et al., 1999]
in vivo 674 0.021 1.19
in vivo 849 0.022 0.91
in vivo 956 0.036 0.77

Neonate brain [Zhao et al., 2005] in vivo 788 0.006-0.009 0.79-1.04
in vivo 832 0.007-0.010 0.72-0.97

Adult white matter [Yaroslavsky et al., 2002] in vitro 670 0.07 6.02
in vitro 850 0.10 4.1

Adult grey matter [Yaroslavsky et al., 2002] in vitro 670 0.02 0.84
Adult grey matter [Gebhart, 2006] in vitro 650-900 0.04-0.09 0.7-1.1
Adult white matter [Gebhart, 2006] in vitro 650-900 0.07-0.08 3.6-5.2
Adult grey matter [van der Zee, 1992] in vitro 650-900 0.04-0.06 1.9-2.2
Adult white matter [van der Zee, 1992] in vitro 650-900 0.02-0.03 8-10
Neonate grey matter [van der Zee, 1992] in vitro 650-900 0.04-0.08 0.4-0.9
Neonate white matter [van der Zee, 1992] in vitro 650-900 0.04-0.07 0.5-1.2
Pig skull [Firbank et al., 1993] in vitro 650-900 0.04-0.05 2.63-1.32
Dermis + epidermis [Simpson et al., 1998] in vitro 650-900 0.013-0.029 1.63-2.62

Table 2.1: Optical properties found in the literature of brain, skull and skin.

The epidermis is the outermost layer and is mostly composed of dead cells containing

keratin, a protein that helps skin hydration. The deepest layer of the epidermis contains

melanocytes that produce melanin. Melanin is a pigment that gives skin its natural colour and it

absorbs light in the ultraviolet (UV) and visible range. The amount of melanin varies between

individual and so does the attenuation coefficient.

Total Absorption Spectrum The absorption spectrum of skin has contributions from three

main chromophores: haemoglobin, water and melanin. Haemoglobin concentration in skin

is approximately 65 µM and oxygen saturation SO2 is 71% [Zonios et al., 2001]. The volume

fraction of water content is approximately 60% [Meglinski & Matcher, 2002]. The wavelength

dependence of the melanin absorption coefficient can be approximated by the expression

[Jacques, 1998]

µa,melanin = (6.6× 1010)λ−3.33 (mm−1), (2.12)

where λ is the wavelength represented in units of nm. For moderately pigmented Caucasian

skin the melanin content is approximately 13% [Jacques, 1998]. Considering the contributions

from these chromophores and using equation 2.3, the total absorption coefficient of the skin

layer can be represented as

µa,skin(λ) =εHbO2 [HbT ]SO2 + εHHb [HbT ] (1− SO2) + µa,H20W + µa,melaninM ,

(2.13)

where M is the fraction of melanin content, W is the fraction of water content, µa,H20 is the

absorption coefficient of 100% water (mm−1), εHHb is the specific absorption coefficient of

HHb (µM−1 mm−1) and εHbO2 is the specific absorption coefficient of HbO2 (µM−1 mm−1).
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(a) (b)

Figure 2.5: Skull [Schünke et al., 2007]. (a) Cranial bones. (b) Magnified view of the skull, showing
the bone structure, emissary veins, diploic veins and venous sinus.

The absorption coefficient values show a good agreement with the values presented by Simpson

et al [1998].

Scattering spectrum The wavelength dependence of the reduced scattering coefficient of skin

has been modelled as a combination of Mie and Rayleigh scattering given by [Bashkatov et al.,

2005]

µ′s,skin = 7.37λ−0.22 + 1.1× 1011λ−4 (mm−1), (2.14)

where λ is the wavelength in nm. The first term corresponds to Mie scattering due to large

collagen fibers and the second to Rayleigh scattering mainly due to small collagen fibrils,

present in the dermis.

2.2.2.2 Skull

The cranium protects the brain against external injuries. There are 8 cranial bones, connected

by a immobile fibrous connective tissue called sutures. It consists of a frontal, a sphenoid, a

ethmoid, a occipital bone, two parietal and two frontal bones. Figure 2.5(a) shows the left lateral

view of the cranial bones. Most cranial bones are flat bones, which are typically thin and slightly

curved. They consist of internal and external surfaces of compact bone with a layer of spongy

bone in between (see figure 2.5(b)). The spongy layer, the diploë, contains red bone marrow,

where blood cell production occurs. The compact layer is responsible for the strength and

rigidity of the skull. The emissary veins connect the intracranial venous sinuses with the veins

of the scalp (see figure 2.5(b)). The diploic veins are located in the diploë and are connected

to the emissary veins (see figure 2.5(b)). The skull does not have a homogeneous surface, the

thickness of skull varies between 4 mm and 10 mm. It is thickest in the parieto-occipital regions

and thinnest in the temporal region. The bone plates of the neonate skull are not fused and are

connected by loose fibrous connective tissue called the fontanelles. The large gaps between

bones are reduced by ossification of the joints by 18 months of age. Between the age of 7 and

13 years the skull approximates the adult size.

Firbank et al [1993] measured the optical properties of samples of bone from pig skull

in the NIR. Absorption and scattering spectra of skull used in this thesis are described in

[Firbank et al., 1993].
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Figure 2.6: Meninges: dura mater, arachnoid mater and pia mater [Siegel & Sapru, 2005].

2.2.2.3 Meninges

The meninges are below the skull and above the brain. From the outermost layer inward they

are the dura mater, the arachnoid mater, and the pia mater (see figure 2.6). The dura mater

is a two-layer membrane separated in some regions to form the venous sinuses, which collect

venous blood from the brain. It restricts the displacement of the brain when the head is moved

by forming partitions in the brain. The space between the arachnoid and pia membranes is

the subarachnoid space, which is approximately 1-2 mm thick and filled with CSF (see figure

2.6). The CSF is produced within the ventricles and acts as a shock absorbing medium, provides

support and nourishes the brain. CSF is a transparent non-scattering fluid with optical properties

similar to water.

The arachnoid villi are small knoblike projections of the arachnoid mater into the dura

sinuses, through which the CSF flows (see figure 2.6). These structures function only in one

direction, i.e., blood from the sinuses cannot flow back into the subarachnoid space. The

arachnoid membrane is connected to the pia mater through small strands of fibrous connective

tissue, the arachnoid trabecula. The largest blood vessels transverse the subarachnoid space,

which are transformed into tiny capillaries in the pia mater that penetrate deep into the brain.

2.2.2.4 Brain

The largest part of the brain is the cerebrum, which is divided into two halves, the right and left

hemispheres. The surface of the cerebrum is a 2-4 mm thick layer made of grey matter, known

as cerebral cortex (see figure 2.7). This layer is highly folded, with many ridges and dips, the

gyri and sulci. The folding increases the brain surface allowing the existence of a larger number

of neurons. The neurons are nerve cells that consist of a body, the soma, and a long myelinated

fiber, the axon. The cerebral cortex consists mainly of neuronal cell bodies. Beneath this layer

is the white matter (see figure 2.7) formed by a large number of axons. The neurons, from

different parts of the cortex, connect and communicate through the axons in the white matter.

Information is ultimately transmitted to the spinal cord. White matter is more scattering than

grey matter due to the presence of myelin sheaths around the axons.
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Figure 2.7: Cross-section of the brain showing the grey and white matter [Schünke et al., 2007].

Total Absorption Spectrum Using the typical concentrations in the brain outlined previously

for each chromophore, the total absorption coefficient is calculated from equation (2.3) as:

µa,brain =εHbO2 [HbT ]SO2 + εHHb [HbT ] (1− SO2) + µa,H20W + µa,Lipid L+∑
aa3,b,c

εoxCyt x [oxCyt x]Ox + εrCyt x [rCyt x] (1−Ox) +B

(2.15)

where L is the fraction of lipid content, µa,Lipid is the absorption coefficient of 100% fat

(mm−1), εrCyt x is the specific absorption coefficient of reduced cytochrome x (µM−1 mm−1),

εoxCyt x is the specific absorption coefficient of oxidised cytochrome x (µM−1 mm−1), Ox is

the fraction of oxidised Cyt x and B is a background absorption. The spectrum can be seen

in figure 2.8, together with the total haemoglobin spectrum and the HbT spectrum with added

chromophores. Adding the contribution of water to the HbT absorption coefficient results in

a slight increase in absorption beyond 700 nm and becomes more significant for wavelengths

larger than 900 nm. Lipids do not have a large contribution to the total absorption, there is

only a slight increase in absorption around the absorption peak of fat at 930 nm. Cytochromes

act approximately as a constant absorber beyond 750 nm with a slightly higher contribution

from Cyt aa3 around its broad peak at 830 nm. Leung et al [2005] calculated the intracerebral

absorption coefficient from the absorption contributions of HbO2, HHb, for a total haemoglobin

concentration of 61 µM, 71% water and a wavelength independent background absorption B,

which they set to a constant value so that the total absorption matches the value µa =0.036

mm−1 used by Okada and Delpy [Okada & Delpy, 2003a]. This spectrum is also shown in

figure 2.8. The background absorption in equation (2.15) was set to B=0.012 mm−1 (figure 2.8)

and it is clear that the contribution from the cytochromes has some influence on the total value

of absorption considering that the assumptions made are approximately correct. The difference

between the HbT + H20 + Fat + Cyt +B spectrum and the one obtained by Leung et al [2005]

is more evident for wavelengths below 750 nm and above 830 nm.

Scattering Spectrum Matcher et al [1997] measured µ′s of the forehead of different human

adults over the wavelength range 760 nm to 900 nm and observed that the scattering coefficient
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Figure 2.8: Absorption spectra of total haemoglobin (HbT), total haemoglobin with water (H20) added,
fat added to the previous spectrum, cytochrome (Cyt) absorption added, background (B) added and
spectrum by Leung et al [2007].

is approximately linear and represented by the relation µ′s(λ) = aλ+b where a = −6.5×10−4

(mm−1 nm−1) and b = 1.45 (mm−1). They also fitted the experimental spectra to Eq.(2.7) and

obtained a = 32.08 and b = 0.53. van der Zee [1992] measured µ′s for grey matter in vitro and

found µ′s(800 nm)=2.2 mm−1, which can be used as a reference number and included in the

exponential relation found by Matcher et al [Matcher et al., 1997], which then becomes

µs′,brain(λ) =
2.2
(
aλ−b

)
(a800−b)

(2.16)

where a and b are the same as those in the previous exponential relation. Over the wavelength

range 650 nm to 990 nm the maximum value at 650 nm corresponds to µ′s=2.43 mm−1 and it

decays to the minimum vale µ′s=1.83 mm−1 at 990 nm.

Figure 2.9 shows the absorption coefficients µa for skin, skull and brain tissue, for the

wavelength range 650 - 990 nm. The reduced scattering coefficient spectra for the main head

layers is shown in figure 2.10. A table with the absorption and reduced scattering coefficients

for skin, skull and brain tissue can be found in appendix A. The optical properties for skin were

obtained using equations (2.13) and (2.14), for brain tissue using equations (2.15) and (2.16)

and for skull these values are described in Firbank et al [1993].

2.2.3 Brain Activity
Optical topography is commonly used to monitor functional responses to a stimulus. Different

areas of the cerebral cortex can be activated since they respond to different stimuli. The main

regions of the brain and their functions are briefly described. It is also important to understand

cerebral oxygenation and blood flow.

2.2.3.1 Brain Functions

Large sulci in the cerebral cortex divide each hemisphere of the brain into four lobes: the frontal,

temporal, parietal, and occipital (see figure 2.11(a)). The lobes have specific functions and can
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Figure 2.9: Absorption coefficient µa spectra for
skin, skull and intracerebral tissue.

Figure 2.10: Reduced scattering coefficient µ′s
spectra for skin, skull and intracerebral tissue.

be subdivided into sensory, motor and association areas. Information processed in the right

hemisphere is associated with signals received from the left side of the body and vice-versa. The

motor areas are responsible for muscle activity, the sensory areas interpret sensory impulses and

the association areas process and store higher level information. The motor cortex is located

in front of the somatosensory cortex, in the frontal lobe. The motor cortex controls voluntary

motor activity. Other parts of the frontal lobe are related to speech ability, emotions, problem

solving, planning, among other functions. The somatosensory cortex is located in the parietal

lobe. It contains receptors that process diverse stimuli, such as touch, pressure, temperature

and pain, and identify its spatial origin. The parietal lobe also controls the ability to understand

language. The visual cortex in the occipital lobe is associated with visual processing. The

visual cortex is organised retinotopically, since each activated area of the retina corresponds to

a specific area of the visual cortex. Different visual stimuli activate different specific neuronal

regions in the visual cortex, since specific regions decompose the stimulation signal into shape,

movement and colour. The auditory cortex is located in the temporal lobe and is responsible for

the perception of the sound stimulus. It has a tonotopic organisation, which means that different

areas respond to different frequencies. The main functional regions of the brain are shown in

figure 2.11(b).

2.2.3.1.1 Social perception
Several areas of the brain are involved in social perception, which is the capacity to interact and

understand others. It involves understanding the intentions of other individuals based on their

words, facial expressions, body gestures, posture, behaviour, etc, and from these clues, predict

their actions, make decisions and communicate with them. The brain areas involved in social

cognition include the medial prefrontal cortex (mPFC), the posterior superior temporal sulcus

(pSTS), the temporoparietal junction (TPJ), the inferior frontal gyrus (IFG), the interparietal

sulcus (IPS), the anterior cingulate cortex (ACC), the anterior insula (AI) and the amygdala

(see figure 2.12) [Blakemore, 2008].

The amygdala is located deep within the temporal lobe and is involved in the recognition

of expressions such as fear. It is also activated in the presence of untrustworthy faces. The

ACC is located within the medial frontal lobe and is anatomically connected to the amygdala,

and it also reacts to fearful expressions. The AI is a cerebral structure that lies deep within
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Figure 2.11: Brain [Chiras, 2005]. (a) Cerebral lobes. (b) Functional regions. The cerebral cortex has
three principal functional areas: motor (M), sensory (S) and association (A) areas.

the lateral sulcus and processes expressions of disgust. The mPFC is a part of the prefrontal

cortex (anterior part of the frontal lobe) involved in processing emotions, such as guilt and

embarrassment. Mentalising tasks, i.e., understanding the mental state of other individuals and

of ourselves, also activates this regions. The activity of the mPFC increases between childhood

and adolescence and then decreases from adolescence to adulthood. The temporal lobe has

two main sulci, which divide it into three gyri: the superior, middle and inferior temporal gyri.

The pSTS is the sulcus separating the superior and middle temporal gyri. It activates with facial

movement, for example, when the subject observes someone moving their eyes. It also activates

with other biological motions which are socially relevant, such as hand gestures. The TPJ is the

area where the temporal and parietal lobes meet and is involved in the process of mentalising.

The IFG is located in the frontal lobe and is involved in emotional empathy, face and speech

perception. The IPS separates the superior parietal lobule from the inferior parietal lobule in

the posterior parietal cortex (located above the occipital lobe). It is involved in the analysis of

shifts in eye gaze direction, which indicates if the attention is focused on the subject or not.

2.2.3.2 Cerebral haemodynamics

Oxygenated blood is supplied to the brain by two paired arteries, the carotid and vertebral

arteries. These are connected forming the circle of Willis, which helps protect the brain against

brain damage in case one of the major arteries becomes occluded, since the blood can flow

across the circle of Willis. It also helps equalising the blood pressure in the anterior and

posterior regions of the brain. In the brain small capillaries deliver oxygen and nutrients to
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Figure 2.12: Regions of the brain involved in social cognition: medial prefrontal cortex (mPFC),
posterior superior temporal sulcus (pSTS), temporoparietal junction (TPJ), inferior frontal gyrus
(IFG), interparietal sulcus (IPS), anterior cingulate cortex (ACC), anterior insula (AI) and amygdala
[Blakemore, 2008].

the cells. The veins collect the deoxygenated blood from the capillary system, removing the

waste produced by the cells. The major fraction of venous blood is collected from the brain

by the venous sinuses in the dura mater, which then transfer it to the internal jugular vein.

The remaining venous blood in the brain is drained by the superficial cerebral veins and deep

cerebral veins.

Optical measurements are sensitive to changes in the diameter of blood vessels. The

cerebral blood vessels change their diameter in order to change the rate of blood flowing through

them. The arteries are thicker and more elastic than veins, to withstand the high pressure.

Approximately 70% of the blood volume is venous, because veins have a great capacity to store

blood. According to the demands of the organism, veins can expand and contract controlling

the amount of blood that returns to the heart. However, cerebral veins are different, since they

have no valves and no muscle in their walls like other veins in the body. In the brain, the dural

venous sinuses drain blood before returning to the heart.

Blood flow to the brain is approximately 700 ml/min [Buxton, 2002]. Cerebral blood flow

(CBF) is the ratio between the perfusion pressure (CP) and the vascular resistance (CR):

CBF =
CP

CR
. (2.17)

The perfusion pressure is the difference between the arterial pressure and the venous pressure.

The blood pressure changes in the arteries when the heart pumps blood. Cerebrovascular

resistance arises from friction and is given by

CR = V
L

D4
, (2.18)

where V is the blood viscosity, L is the blood vessel length and D is the vessel diameter. For

the small vessels of the capillary bed the resistance is higher, hence the blood flow is slowest,

allowing enough time to transfer oxygen and nutrients and remove waste products and carbon

dioxide from the surrounding tissue.

Haemoglobin is a protein found in red blood cells, which has the ability to transport
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oxygen and carbon dioxide. Each haemoglobin molecule is made of a globin group surrounded

by four heme groups. Each heme group contains an iron atom that binds to oxygen.

Therefore, the overall capacity of haemoglobin is four oxygen molecules. At high oxygen

concentration the oxygen molecules bind to haemoglobin to form oxy-haemoglobin, but when

the oxygen concentration is low the oxygen is released into the surrounding medium and

deoxy-haemoglobin forms. In the presence of carbon dioxide the oxygen dissociates from

haemoglobin easily. Deoxy-haemoglobin has a higher affinity for carbon dioxide than for

oxygen. Hence, carbon dioxide is transported to the lungs in the venous blood. The oxygen

saturation SO2, is a measure of how much haemoglobin is oxygenated relative to the total

amount of haemoglobin (HbT) present in the blood vessels. Total haemoglobin is basically the

sum of the concentration of oxy- and deoxy-haemoglobin. The SO2 of arterial blood is typically

97-100 % and of venous blood is on average between 65-75% .

The brain is an extremely active organ with a high demand for oxygen and nutrients, this

supply and blood flow are maintained constant by the cerebral autoregulation. Cerebral blood

flow tends to maintain relatively constant despite changes in the cerebral perfusion pressure,

by adjusting the vascular resistance. The resistance is altered by changing the diameter of

the blood vessels. Therefore, constant blood supply to the brain is always guaranteed and the

blood vessels are protected against an excessive increase in the blood pressure. The cerebral

autoregulation is a very precise mechanism, and no other organ with an autoregulatory system

has such sensitivity. However, the cerebral autoregulatory system is not infallible. It fails, for

example, when the pressure exceeds approximately 150 mmHg, known as cerebral oedema, and

when the pressure falls below about 50 mmHg, known as cerebral ischemia.

2.2.3.3 Functional Activation
When a region of the brain activates the arterial pressure remains constant, but the vessels

dilate and, hence, the resistance reduces in order to increase the CBF. The CBF increases to

supply additional oxygen. As a consequence the cerebral blood volume (CBV) also increases.

When blood flow increases by increasing the blood volume the [HHb] remains constant.

However, at the capillary bed the increase in CBF is mostly due to an increase in the blood

velocity rather than capillary dilation. In this case the transit time decreases, i.e., blood

spends less time in the capillaries, which reduces the capability of the capillary system to

deliver oxygen to tissue. Fox and Raichle [Fox & Raichle, 1986] reported that the oxygen

delivered to the brain (CBF) exceeds the oxygen consumption (cerebral oxygen metabolic rate,

CMRO2). As a consequence, the concentration of oxygen becomes higher in the veins than

before activation, which is associated with a decrease in local deoxy-haemoglobin concentration

[HHb]. Therefore, a typical functional activation causes an increase in local oxy-haemoglobin

concentration [HbO2] accompanied by a decrease in local deoxy-haemoglobin concentration

[HHb]. The total haemoglobin HbT provides an estimation of CBV. Generally, the change

in [HbO2] is greater in magnitude than [HHb] and they do not necessarily reach the respective

concentration peak at the same time. Optical topography can provide spatial and temporal maps

representing the haemodynamic response to the cerebral activity.



CHAPTER 3

Current state of optical topography instrumentation and imaging

In the 1970s Near Infrared Spectroscopy (NIRS) was first developed as a tool to monitor

changes in total cerebral oxygenation [Jöbsis, 1977]. NIRS uses a single source-detector pair

that provides global measurements of the concentration of tissue chromophores, without spatial

information. Measurements are made in either reflection or transmission mode. Spatial maps

that represent the optical properties of the object of study can be obtained by increasing the

number of sources and detectors on the surface of the object. There are two imaging approaches:

optical tomography and optical topography [Hebden, 2003]. Optical tomography is usually used

to describe methods which involve reconstructing a 3D volume using multiple measurements

of transmitted light across the volume. Meanwhile optical topography is usually applied to

systems which obtain diffuse reflectance measurements from an array of source-detector pairs

placed on the surface of the tissue, in order to map the changes in the optical properties of

the tissue underneath the array, which can be converted into ∆[HbO2] and ∆[HHb] [Hebden,

2003].

This chapter describes the different measurement techniques used in NIRS and imaging.

Some of the most important optical topography systems and array configurations of

source-detector pairs are introduced. Examples of functional activity studies performed using

the different systems are also presented. Finally, an overview is given of the state-of-the-art in

optical topography imaging.

3.1 Types of instrumentation
Three different measurement techniques have been implemented into NIRS and imaging

systems: continuous wave (CW), frequency-domain (FD), and time-domain (TD) measurements

(figure 3.1) [Gibson et al., 2005]. CW systems acquire straightforward measurements of

intensity attenuation (figure 3.1(a)). TD systems employ sources which emit short pulses of

light and measure the times of flight of photons through tissue, providing a temporal distribution

known as the Temporal Point Spread Function (TPSF), as seen in figure 3.1(b). In FD systems

the light source is amplitude modulated at frequencies of few hundreds of MHz. The detected
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(a)

(b)

(c)

Figure 3.1: Types of measurements of light through tissue [Hebden et al., 1997]. (a) Continuous wave
measurement. (b) Time domain measurement. (b) Frequency domain measurement.

signal is compared to a reference signal and the phase shift and amplitude are recorded (figure

3.1(c)).

CW systems are relatively inexpensive and have a fast acquisition rate. A drawback of

this type of system is the higher sensitivity to tissue immediately below the optodes, due to

the so-called photon measurement density function (PMDF) which typically has a banana-like

shape [Arridge, 1995]. The PMDF is a 3D map of the sensitivity of a measurement made

using a given source and detector to changes in optical properties at each point within the

medium [Arridge, 1995]. It represents the relative probability of detected photons having

probed a certain volume. The PMDF theory and calculation method will be analysed with

more detail in §5.2.1. CW measurements are highly affected by coupling changes, and for

this reason the coupling coefficients have sometimes been introduced as unknowns in the

reconstruction problem [Boas et al., 2001c]. Another successful strategy to overcome this

problem is to measure differences in intensity, where the coupling coefficients are assumed

to remain constant and intensity measurements are recorded for a reference period and then

during a period when changes in tissue occur [Gibson et al., 2005]. However, measurements of

intensity are not sufficient to separate the effects of absorption and scatter at a single wavelength

[Arridge & Lionheart, 1998].

FD systems record both the amplitude and phase which allows absorption and scatter to

be separated. These systems are still relatively inexpensive and have fast image acquisition (but

slower than CW). TD systems use expensive electronics and their photon counting detectors

are slow but highly sensitive. FD measurements are related to TD measurements via Fourier
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transform. However, TD systems acquire measurements over a broad range of frequencies

simultaneously, whereas FD systems typically use a single or a few discrete frequencies. TD

detection is optimum when acquiring measurements at large source-detector separations, where

the intensity is very low and photon counting techniques are required [Gibson et al., 2005].

However, photon counting techniques inherently require lower photon fluxes and therefore need

longer acquisition times [Boas et al., 2001b].

The CW optical topography systems have the advantage of being fast, simple, compact and

portable. In order to detect fast signals or to perform real-time imaging, fast acquisition rates are

essential, hence systems which can activate all the sources simultaneously are required. Each

source is modulated at a different frequency and the detected signal can be separated either

by using lock-in detection or by fast Fourier transform (FFT) [Gibson et al., 2005]. In lock-in

detection, each lock-in amplifier is locked to the modulation frequency of the appropriate light

source, hence, detected signals at frequencies other than the reference frequency are rejected

by the lock-in amplifier. Alternatively, the contribution from each source to the detected signal

can be isolated using a software that performs FFT. Systems which separate the signals by

FFT are preferred over systems with lock-in detection, because they allow a large variety of

source-detector arrangements requiring only minor changes to the software, and for a large

number of channels an equivalent system would require a large number of lock-in amplifiers.

3.2 Optical Topography
3.2.1 Main systems
Wolf et al [2007], in their recent review on the progress of the NIRS and optical imaging

instrumentation, provides an extensive list of the main recently developed systems. Optical

topography systems are mostly CW systems that either record signals sequentially, activating

one source at the time, or simultaneously, where each source is modulated at a different

frequency. The first commercial optical topography system was the Hitachi ETG-100 system

(with 24 channels, corresponding to 24 source-detector pairs which provide a measurement)

[Yamashita et al., 1999]. It incorporates eight laser light sources at 780 nm and eight at 830

nm, each source being modulated at a different frequency. Light is detected by eight avalanche

photodiodes which are coupled to lock-in amplifiers that are locked to the respective source

modulation frequency. The main advantage of the more recent Hitachi system ETG-7000 is

its ability to perform measurements of the whole head using 40 sources and 40 detectors (120

channels). Another Hitachi system, the ETG-4000 (48 channels) system employs laser diodes

at 695 nm and 830 nm.

The Hitachi optical topography systems have been used by researchers from the Hitachi

Medical Corporation (Tokyo, Japan) and others to study the activity of normal brain and

cerebral pathologies in adults, infants and newborns [Koizumi et al., 2003; Otsuka et al., 2007;

Homae et al., 2006; Koizumi et al., 2005]. As an example, adult brain activation was studied

during sleep, and the increase in the activation of the visual cortex during rapid eye movement

(REM) sleep indicated brain activity related to dreaming [Igawa et al., 2001]. In another study,

the intake of alcohol did not significantly affect the haemodynamic activity detected in the

visual cortex, when the subjects were submitted to repeated visual stimuli [Obata et al., 2003].
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Meanwhile, Watanabe et al [2002] used a Hitachi system to detect an increase in [HbO2] and

[HHb] during epileptic seizures. It has also been used to measure changes in haemoglobin of

patients with psychiatric disorders, such as depression and schizophrenia [Suto et al., 2004].

The Hitachi device was used to measure haemoglobin changes in the dorsal prefrontal cortex

in children and adults playing video games for several hours, which showed a decrease in

the oxy-haemoglobin concentration probably due to the player’s attention on the video game

[Matsuda & Hiraki, 2006]. Pena et al [2003] investigated the response of neonates to linguistic

stimuli. Neonates at only few days of age responded significantly to normal speech, while

showing a much smaller response to reversed speech and silence. Infants aged 2 to 4 months

were submitted to visual and auditory stimuli in order to study the possibility of connections

between different areas of the brain [Taga & Asakawa, 2007]. It was verified that infants at this

age have separate cortical areas to process auditory and visual information.

Due to its commercial availability and well-established reputation in the field, the

Hitachi systems are widely used by researchers in functional activation studies. However,

most of the reported studies generally only describe global measurements of blood volume

changes. The information from each channel is used to find the variation of cerebral oxy-

and deoxy-haemoglobin independently. These systems are equipped with a simple imaging

reconstruction software, where images are obtained by interpolating the measurements into the

image space. Although it provides a visual tool to help researchers identify whether changes

occur, the spatial resolution in the lateral direction is quite low and no attempt is made to

reconstruct along the depth direction.

The CW4 system (developed at Photon Migration Lab, Massachusetts General Hospital,

and TechEn Inc.) is frequency multiplexed and the detected signals are separated by

Fourier transformation. This technology allows a large range of array designs by simply

modifying the software, which represents an advantage over the previously described system

that requires changes in the hardware. It has 16 laser diodes (8 lasers at 690 nm and 8

at 830 nm) and 16 avalanche photodiodes, and acquires data with a temporal resolution of

50Hz [Franceschini et al., 2003]. Franceschini et al [2003] used the CW4 system to study

the activation of the sensorimotor cortex in adults, using voluntary and nonvoluntary stimuli.

The results were consistent with previous studies: they observed an increase in [HbO2] and a

decrease in [HHb] contralateral to the stimulated side, with the ipsilateral response appearing

smaller than the contralateral response. Using a similar protocol but with 18 laser diodes

instead, Franceschini et al [2004] were able to detect fast optical changes presumably from

neuronal tissue (of the order of 50-100 ms) in approximately 60% of the subjects studied. More

recently the CW5 system has been developed, consisting of 32 sources and 32 detectors, which

enables the whole adult head to be covered in order to simultaneously monitor the prefrontal,

motor, and visual cortices [Franceschini et al., 2006]. Using this system they found that optical

signals are correlated with physiological signals associated with the cardiac cycle, respiration,

and blood pressure.

Bluestone et al [2001] measured the haemodynamic changes on the human forehead during

a Valsalva manoeuvre, which is an expiration against a closed airway causing high intrathoracic

pressure and low cardiac output, and found strong changes in [HbO2] by comparison with
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[HHb]. They used a CW system with frequency-encoded wavelengths, time multiplexed

source illumination, lock-in detection and an acquisition rate of 3 Hz [Schmitz et al., 2000].

This system has been improved recently [Schmitz et al., 2002] and also the DYNOT system

(manufactured by NIRx) has been introduced [Schmitz et al., 2005]. The DYNOT system uses

a time multiplexed scheme, where the sources are illuminated sequentially, which decreases the

frame rate but has the advantage of increasing the dynamic range.

Another commercially available instrument is the optical multichannel monitoring (OMM)

system, developed by Shimadzu Corporation. It can have up to 16 light source fibers and

16 detectors, each light source emitting at 780 nm, 805 nm, and 830 nm. This system was

used by Hoshino et al [2005] to study subdural grid electrodes implanted in the motor cortex,

which are used to identify functional brain areas before surgery, and successfully detected

electrically induced changes with optical topography. Emotional response was evaluated by

submitting 6 adults to visual stimuli consisting of attractive face versus unattractive faces

[Mitsuda & Yoshida, 2005]. The left anterior frontal cortex showed an increase in [HbO2]

when subjects considered a face to be unattractive.

Chance et al [1998] used a system with 4 detectors and 9 sources at a single wavelength,

which are switched sequentially, to image sensorimotor and cognitive activation in adults and

neonates. Although it was an intensity based system they used a phase cancellation technique,

so that the amplitude is null for the detector placed between two equidistant sources. The null

is highly sensitive to small perturbations in the medium.

Zeff et al [2007] successfully monitored functional activation of the visual cortex using a

high-density diffuse optical topography system. High density imaging arrays (24 sources and

28 detectors), high dynamic range and low inter-channel crosstalk are achieved by frequency,

time and spatial encoding. The time encoding scheme decreases the cross-talk by illuminating

nearby sources sequentially [Zeff et al., 2007; White & Culver, 2009]. Frequency encoding

assigns specific modulation frequencies allowing sources to be illuminated simultaneously

and increase the acquisition rate. Spatial encoding allows distant sources to be illuminated

simultaneously, which also increases the acquisition rate and reduces cross-talk. High dynamic

range is also achieved by using isolated and dedicated detector channels. The frame rate was

12 Hz. Most of the available optical topography systems lack the technology necessary to

perform high density measurements, which is highly desirable since it can improve resolution,

localisation and contrast [Zeff et al., 2007; White & Culver, 2009]. Nevertheless, systems like

the University College London (UCL) optical topography system, which is described below,

could be relatively easily adapted and programmed to accommodate high density imaging

arrays.

As mentioned earlier, measurement of intensity alone does not allow the separation

between the effects of absorption and scattering [Arridge & Lionheart, 1998]. To overcome

this limitation FD and TD systems have been used for optical topography. An example of a FD

system is the one used by Franceschini et al [2000] to study the adult motor cortex. The system

is commercially produced by ISS Inc; it employs 16 laser diodes (758 nm and 830 nm) and

measurements on all the 32 channels are acquired in 160 ms. Selb et al [2005] developed a TD

system with a pulsed laser emitting in the range 750 nm to 850 nm and the signal is recorded
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Figure 3.2: UCL topography system with 32 laser sources and 16 detectors.

by a intensified CCD camera, which performs a gated detection of the TPSF through narrow

temporal windows.

3.2.1.1 UCL Optical topography system

The optical topography system developed at UCL (figure 3.2) has 32 diode laser sources (16 at

770 nm and 16 at 850 nm) [Everdell et al., 2005]. The system can operate at other wavelengths

by simply replacing the laser sources. Each source is modulated at a different frequency,

ranging from 2 kHz to 4 kHz. A single 20 MHz quartz crystal oscillator provides all the

multiplexing frequencies. Then the signal is converted into kHz frequencies by a frequency

divider. Each laser has a mean power of approximately 2 mW and the intensity is controlled by

a digital potentiometer through software, which was implemented in C using LabWindows CVI

(National Instruments, Austin, Texas). A driver circuit is used to modulate the laser diode. Light

passing through the tissue is collected by 16 avalanche photodiode detectors that detect light

from all the sources at the same time. The signal is low-pass filtered to prevent aliasing with the

10 kHz Nyquist frequency of the analogue-to-digital converter, which samples each channel at

20 kHz. A Fast Fourier Transform (FFT) is performed on the detected data to isolate the signals

from each source. This system allows great flexibility in the arrangement of the optodes and

in the selection of source-detector pairs to be used, which only requires small changes in the

software. With 16 detectors active the system can operate at 20 frames/s. Figure 3.3 shows a

schematic diagram of the UCL topography system.

The UCL optical topography system has been used to study visual activation in 4

month-old infants [Blasi et al., 2007]. The stimuli consisted of visual noise, face images

and cartoons. Images of ∆[HbO2] were reconstructed which showed an increase in HbO2

concentration in different areas of the visual cortex for different stimuli. They verified that face

stimuli induced haemodynamic changes across a larger volume than visual noise stimuli.

More recently language processing studies in babies up to 2 months-old have been

performed. The probe was redesigned and divided in two, so that both hemispheres of
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Figure 3.3: Block diagram of the UCL topography system: APD - avalanche photodiode detector, LP
filter - low pass filter, ADC - analog-to-digital converter, FFT- fast Fourier transform.

the auditory cortex can be investigated at the same time [Branco, 2007]. In one of the

studies the stimuli consisted of 6 different conditions: native language (English), foreign

language (Arabic), emotional sounds (human vocalisations), animal vocalisations (monkey

calls), scrambled controls, and silence. These investigations, and other language processing

studies, are ongoing.

3.3 Probe configuration
As mentioned earlier in §3.1, the volume of tissue contributing to measurements is described by

the PMDF, whose mean depth depends on the source-detector distance and is typically around

half the optode spacing. Thus, for a source-detector separation of 30 mm, the sampled region

is a banana-shaped region which is narrowest immediately below the source and detector, and

broadest mid-way between them, centred at a depth of about 15 mm.

If the source-detector separations are kept small only the superficial areas of the tissue

are sampled, but the advantage is that the signal is relatively high. On the other hand, if

the separations are large, light will reach deeper areas but has to travel a bigger distance and

will be highly attenuated, resulting in a lower intensity signal. At source-detector distances of

approximately 4-5 cm the typical detected light levels on the head are low and noisy. Typically

the scalp and skull are approximately 1 to 2 cm thick in an adult (depending on the region of

the head), and it is assumed that these areas do not change during a measurement, hence it is

necessary to choose a separation that allows light to reach areas of the brain where changes

in haemoglobin concentration occur. The optode spacing should be chosen according to the

type of study performed, and the spacings that do not contribute with information or even cause

deterioration of images should be excluded.

The Hitachi system probes commonly employ the configurations shown in figure 3.4,

where the dimensions, the number of sources, and the number of detectors can vary. The
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Figure 3.4: Hitachi probe configurations [Kawaguchi et al., 2001].

Figure 3.5: Array used by Franceschini et al [2000] to probe the motor cortex during a hand tapping
protocol. The array has 16 sources (red circles) and two detectors (black circles).

separation between sources and detectors is 30 mm [Kawaguchi et al., 2001]. Two 3×3 probes

are used for studies where the activation within both brain hemispheres is compared. The 4× 4

probe is used for measurements of the visual cortex or areas on one side of the brain. The 3× 5

probe is useful for language studies, where simultaneous measurements of the Broca’s area and

Wernicke’s area is required.

Franceschini et al [2000] used two circles of sources with a detector in the centre of each

circle (see figure 3.5) to study the adult cortex during hand-tapping. In a different study of

the sensorimotor cortex they used two parallelogramic shaped probes attached on each side of

the head, containing 8 sources whose minimum distance to each of the 16 detectors was 3.0

cm, allowing 28 source-detector pairs [Franceschini & Boas, 2004]. Although this probe can

cover a large area it is relatively sparse and there is only one source-detector separation, which

resulted in images with poor spatial resolution.

An auditory study on neonates was performed by Nissila et al [2004] using an arc shaped

probe consisting of 8 detectors around a laser source, leaving space for the ear. This shape

ensures that the optodes are positioned on the assumed location of the auditory cortex.

A study undertaken by Yamamoto al [2002] aimed to find the probe configuration that

can provide optimum lateral spatial resolution. Three different configurations were tested (refer

to figure 3.6): the lattice arrangement (LA), the double-density arrangement (DA), and the

quadruple-density arrangement (QA). The distance between a source-detector pair is 30 mm.

Only measurements performed at this distance were used in the image reconstruction. The

separation between each measuring point (midpoint between a source and detector pair) is

21 mm for LA, 15 mm for DA and 11 mm for QA. The different probes were tested on a

phantom that simulated a three layer adult human brain, containing an absorbing object which

represented the brain activation, and the DA achieved the highest lateral resolution. Even
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Figure 3.6: Three optode arrangements, where � are the sources and � the detectors: LA
- lattice arrangement, DA - double-density arrangement and QA - quadruple-density arrangement
[Yamamoto et al., 2002].

though the QA is more dense than the DA it did not improve the lateral resolution of the image.

Kawaguchi et al [2007] showed through simulations that overlapping measurements by the DA

improve the lateral spatial accuracy.

Without overlapping measurements the lateral resolution is limited, since the only

information available is that a change occurred somewhere between the source and the detector,

whereas using overlapping measurements this ambiguity is reduced. Rectangular and hexagonal

geometries with overlapping measurements were analysed by Boas et al [2004b]. The first

employed 9 sources and 16 detectors (84 measurements), one source surrounded by 4 detectors,

and the second 8 sources and 15 detectors (50 measurements), one source in the centre and 6

detectors on each vertice of the hexagon. The longer source-detector separation is 4.25 cm for

both geometries and shorter separations are 1.9 cm for the rectangular probe and 2.5 cm for

the hexagonal probe. They were evaluated using motor stimulation studies on adults and it was

shown that overlapping measurements significantly improve the image lateral resolution and

spatial accuracy. The rectangular geometry performs slightly better. Zhao et al [2006a] used

a multi-centred hexagonal geometry with overlapping measurements (7 sources in the centre)

which gave better results than the single-centred and rectangular geometries.

A probe employed by Toronov et al [2007] to image the visual cortex uses source-detector

distances from approximately 20 to 30 mm, by placing 4 detectors in the centre of a circle

containing 16 sources. A disadvantage of this probe is that it only has depth sensitivity in a

small region. A different probe, which covers a larger depth range, was used to study the motor

cortex, employing 16 sources and 2 detectors with two source-detector distances. A smaller

distance (0.5 cm) was used to probe superficial layers and a larger one (2.8 cm) to sample

brain cortical tissues [Toronov et al., 2000]. Zeff et al [2007] imaged the visual cortex using a

high-density (HD) array with 24 source positions and 28 detectors (see figure 3.7). With this

array they were able to collect 348 measurement at four different source-detector distances

(13, 30, 40 and 48 mm). They obtained images with impressively high contrast-to-noise,

lateral resolution, and volumetric localisation. High density optical topography systems are

a promising technology. Improvements in their dynamic range will allow the use of larger

source-detector separations, which will provide measurements from deeper regions within the

brain [Dehghani et al., 2009]. Dehghani et al [2009] performed a simulation study where they

added a fifth source-detector separation (5.4 cm) to the high-density probe of Zeff et al [2007].
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Figure 3.7: High-density array with 24 sources (red) and 28 detectors (blue). The measurement
channels are represented by the green lines [Zeff et al., 2007].

They used a realistic head model to analyse the influence on the measurement sensitivity and

image reconstruction, of measurements using the first nearest neighbour (NN) source-detector

separation and of increasing the maximum separation up to the fifth nearest neighbour. Their

modelling predicts that first NN measurements can only interrogate the extracerebral layers.

Including second NN measurements provides sensitivity to the outer surface of the brain.

Adding other NN increases the distance within the brain at which brain activations can be

measured and imaged. With the fifth NN measurements, cerebral activity at depths greater than

20 mm within the brain can be imaged.

Heiskala et al [2009] compared three different probe configurations: the hexagonal

arrangement, the DA and HD arrangement. They simulated two absorption perturbations at

different centre-to-centre separations but at the same depth from the imaging surface, located

in the grey matter and outer region of the white matter. The reconstructions from simulated

data obtained using the HD arrangement showed the best spatial accuracy and recovery of

contrast. They have also shown that image quality can be further improved if mean time data

are available.

In conclusion, overlapping measurements improve image resolution and accuracy. Without

overlapping measurements it is difficult to identify where absorption changes occur in the brain;

i.e. near the source, near the detector or somewhere in between. Depth resolution can also be

improved by using different source-detector separations, since we are sampling both superficial

and deeper areas of the brain. High density arrays are desired, they can cover a large range of

depths and provide images with better quality. However, developments in the technology of the

UCL optical topography system and other systems are still required.

3.3.1 UCL topography probe
The array designed for human adult and infant studies has 3 different source-detector distances:

1.43 cm, 1.78 cm and 2.20 cm (see figure 3.8) [Blasi et al., 2007]. We have adapted the

software so that each detector can receive signals from all 16 sources, making a total of 64

channels and 15 different source-detector separations. This increases the number of overlapping

measurements and gives 16 different source-detector separations, as shown in figure 3.9.

Figure 3.9 shows all the possible channels, where the red lines represent the short distances

(the same as in the previous figure) and the blue lines represent larger distances. By using

multiple distances we hope to cover a great range of depths, which should improve depth
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Figure 3.8: Array showing the 16 sources (8 at each wavelength), 8 detectors and 3 source-detector
distances. D1-D3 are the source-detector separations.

Figure 3.9: Array showing 64 channels. All the source-detector pairs collect data. The red and blue
lines represent short and large separations respectively. D1-D15 are all the possible source-detector
separations in cm.

resolution and spatial accuracy. The largest separations are unlikely to provide any useful

information because of the high attenuation. However, these channels should not have a

negative effect on the reconstructed images using the difference imaging approach (refer to

§5.2).

3.4 Image reconstruction
Optical imaging of brain activity has potential applications in several clinical areas, for example

diagnosis and study of trauma, depression, Alzheimer’s, schizophrenia, stroke, haemorrhage,

or even tumours. It is also clearly useful for understanding normal brain response to stimuli or

mental tasks.

The images generated by the Hitachi systems assume that a change in intensity in a

source-detector pair measurement has its origin midway between the source and detector,

and there is no attempt to resolve in the depth direction. This assumption limits the lateral

spatial resolution to the optode separation [Yamamoto et al., 2002]. Boas et al [2001a]

used a linear reconstruction method based on the diffusion approximation (refer to §5 for

detailed explanation) and obtained more accurate measurements of the changes in haemoglobin

concentration than using simple NIRS with the modified Beer-Lambert law (MBLL). The

MBLL method often provides underestimated haemoglobin concentration changes, since it

assumes that the medium is homogeneous with uniform changes throughout the sampled
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volume and scattering is high but constant [Strangman et al., 2002]. Also, the MBLL does

not provide a framework for reconstructing images. Overlapping measurements can contribute

to the same pixel in the image when linear reconstruction is used, which can increase spatial

accuracy and resolution, as mentioned previously [Boas et al., 2004a]. The quality and accuracy

of the image can also be improved by including the derivation of the unknown coupling

coefficients (refer to §5.2.2 for more detail) as part of the reconstruction process [Boas et al.,

2001c].

Optical topography systems detect diffusely reflected light from superficial brain tissue

and in most cases 2D maps are generated to represent the haemodynamic changes. For studies

of infants heads, light may be transmitted across the head, because the skull is thinner and

their head is smaller, giving information about much deeper regions of the brain. Although

2D images can be sufficient for some type of studies, for example when there is only an

interest to identify if an haemodynamic change occurs or not, they will not convey any depth

information. Pseudo 3D images can be reconstructed by generating individual 2D maps at

different depths [Cheng & Boas, 1998]. However, in order to generate true 3D images one has to

solve an inverse problem that is largely under-determined in addition to being ill-posed (§5.2.2.1

explains how to deal with this type of problem). The main difficulty of 3D reconstruction is the

small number of measurements compared to the large number of pixels in the image to be

reconstructed.

Using a multi-distance probe Bluestone et al [2001] reconstructed 3D maps of the changes

in the concentrations of oxy-haemoglobin, deoxy-haemoglobin, which occurred in an adult

forehead during a Valsalva manoeuver. They used the finite-element method (see §5.1.1.1.4.1)

to solve the forward problem and an iterative scheme to reconstruct the images. The optode

positions and head surface geometry were determined using photogrammetry. A similar

approach was used to image the haemodynamic changes in a rat brain when carbon dioxide

was inhaled [Bluestone et al., 2004].

DOT images typically exhibit poor spatial resolution due to the diffuse nature of the photon

migration, but the quality of the image can be improved by the use of prior information. One

possible way to improve the images is to use MRI images to provide anatomical information.

For example, Ntziachristos et al [2000] used information about the localisation of a tumour,

which was extracted from an MRI image. Boas et al [2005] tried a different approach to test

spatial accuracy: they performed Monte Carlo (see §5.1.1.2.1 for description of the method)

simulations on a human head model and used a linear reconstruction approach, to which they

applied a cortical constraint that forces the absorption changes to occur in the cortex, in an

attempt to improve depth localisation accuracy. The constraint was obtained by segmentation

of a structural MRI image. However, the absorption contrast was always displaced towards the

surface of the cortex.

Corlu et al [2005] presented an algorithm which reconstructs ∆[HbO2] and ∆[HHb]

directly, without having to reconstruct absorption coefficient images first, which gives greater

separation between absorption and scattering, and between chromophores (refer to §8 for more

detail). The reconstructed variables are wavelength independent, and therefore data sets from

different measurement wavelengths can be used simultaneously in the image reconstruction.



3.4. Image reconstruction 52

Figure 3.10: Images of activation in the visual cortex obtained using a high-density array with 24
sources and 28 detectors. The visual stimulus is a reversing, black and white radial grid (a,c,e,g).
The maximal haemodynamic response appears in the opposite visual quadrant from the stimulus
(b,d,f,h)[White & Culver, 2009].

However, the quality of the images is dependent on the choice of wavelengths, i.e., some

combinations of wavelengths yield better images than others.

Superb images obtained by Zeff et al [2007] and White and Culver [2009] are a clear

indicator of the advantages of high density optical topography. High contrast to noise ratio

images with high spatial resolution enabled visualisation of retinotopic characteristics of the

visual cortex (see figure 3.10), which so far had only been studied by other well established

technologies such as PET and fMRI (these technologies are introduced in §4). The optical

topography results are in good agreement with those obtained by the other technologies. Not

only it is important to have an algorithm capable of producing accurate reconstructions, it is

also extremely important to have good quality data.

Custo et al [2010] introduced an imaging protocol that consists of using an atlas-based

anatomical model of the human head to solve the forward problem (refer to §5) and reconstruct

3D images, eliminating the need for subject specific anatomical MRI. The brain functional

images reconstructed using the general anatomic head model showed activity in the same

regions as those reconstructed using a subject-specific anatomical model. Therefore, even when

an anatomical MRI is not available results can still be interpreted anatomically.

A common practise in optical imaging is to use a so-called difference imaging approach

(refer to §5.2), where a data set is acquired before a change occurs and another one during

or shortly after. The use of difference measurements reduces the influence of uncertainties

in the geometry and of the initial estimate of background properties [Gibson et al., 2005;

Bluestone et al., 2001]. However, this approach can only determine changes in the optical

properties, and cannot yield absolute values.

Improving depth resolution and spatial accuracy is a complicated problem due to the

decrease in sensitivity with depth, and most of the approaches involve using sophisticated image

reconstruction algorithms in addition to overlapping measurements. Several methods have been

proposed to increase image quality, and each one has its advantages and drawbacks. This thesis

addresses some of the issues in image reconstruction of CW optical topography data and aims

to provide tools that can help reduce the artefacts, and increase the quality and accuracy of the

reconstructed images.



CHAPTER 4

Imaging techniques in medicine

Current medical imaging techniques are briefly reviewed, with particular emphasis on brain

imaging. Their strengths and weaknesses are analysed and compared to those of optical

topography. Medical imaging can be divided into two main groups: anatomical and functional

imaging. Anatomical imaging provides static images of anatomical structures. Functional

imaging provides images of physiological changes of tissues.

4.1 X-ray computed tomography
X-ray imaging, known as radiography, records the structure of the body as a two-dimensional

(2D) image, without any depth information, i. e., all the body structures superimpose in the

final image. Bone structures produce high contrast, but soft tissues show very little contrast.

The problem with brain imaging is that the soft tissue is surrounded by the highly absorbing

skull, which makes it more difficult to view the low contrast tissues of brain. However, in

angiography a contrast agent is injected into the bloodstream, which increases the contrast of

blood vessels, making them visible on x-ray images.

X-ray computed tomography (CT) overcomes these contrast and depth problems [Michael,

2001]. It provides a series of 2D thin slices of the body by rotating the source of x-rays around

the subject to obtain multiple projections. First generation CT scanners involved translating

and rotating a narrow beam of x-rays about the subject. This was a very slow process, where

data acquisition of each section could take several minutes. Nowadays, most CT scanner are

of fourth generation. In fourth generation CT scanners a fan beam of x-rays is rotated around

the patient and is detected by a ring of discrete detectors placed around the subject (figure 4.1).

Complete sectional scans take only few seconds. The fifth generation CT scanners provide scan

times of only few milliseconds. Instead of physically rotating the source, an electron beam is

swept across a semicircular anode ring surrounding the subject, producing x-rays (figure 4.2).

The images are no longer obtained directly, as in radiography. Instead, CT requires image

reconstruction algorithms that generate values of attenuation for each pixel of the image. One of

the most common image reconstruction methods is called filtered backprojection. This method
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Figure 4.1: Fourth generation CT scanner
geometry [Michael, 2001].

Figure 4.2: Fifth generation CT scanner
[Wolbarst & Hendee, 2006].

is based on the simple backprojection, where each attenuation profile, recorded for each viewing

angle, is projected across the image space and added together. However, the image formed

is highly artefactual with degraded contrast. Convolving the attenuation profiles with a filter

kernel before backprojection produces more accurate images. An advantage of this method

is that the projections are processed individually, therefore, the image reconstruction can start

before all the data has been acquired. Once the attenuation coefficients have been calculated

for each pixel in the image, these values are converted to CT numbers, which are calculated

relative to the value for water. Therefore, the CT number of water is zero. In order to enhance

the contrast of the images, a limited range of CT numbers can be selected, depending on the

type of tissue of interest.

CT is a non-invasive technology that provides high resolution anatomical images.

Applications of CT brain imaging include detection of tumours [Conry & Reznek, 1987],

hemorrhage [Brott et al., 1997; Zimmermana et al., 2006] and stroke [Mayer et al., 2000].

Figure 4.3 shows a CT scan of an adult brain suffering from intracranial hemorrhage (ICH),

where region 1 defines zones of ICH and regions 2 defines zones of edema (induced by ICH).

The disadvantages of CT are the relative high dose of ionising radiation, and the high cost of

the scan. Some patients have shown allergic reactions to certain contrast agents. CT scans

should not be done on children and pregnant women.

4.2 Ultrasound
In Ultrasound (US) imaging a pulse of high frequency sound waves is emitted, typically from

1 to 10 MHz, and travels through the patients body until it meets boundaries between different

structures in the body and is reflected [Pope, 1999]. Reflection occurs due to differences in the

acoustic impedance Z of tissues, which is defined as

Z = ρc, (4.1)

where ρ is the tissue density and c is the speed of sound in the same tissue. If the mismatch

between acoustic impedances is large, then the pulse is almost entirely reflected, whereas if they

are similar, then the pulse is mostly transmitted across the boundary. The fraction of intensity
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Figure 4.3: Computer tomography scan of an adult brain showing hemorrhages (1) and edema (2)
[Zimmermana et al., 2006].

reflected back, when the pulse is incident perpendicular to the boundary between two media, is

given by

α =

(
Z2 − Z1

Z2 + Z1

)2

, (4.2)

where Z1 and Z2 are the acoustic impedances of the media. The depth of the structure can be

found using the time delay t between emission of the pulse and detection of the echo

d =
ct

2
. (4.3)

The ultrasound pulse is produced and detected by a transducer. This device converts an

electrical signal to sound waves and vice-versa, through the piezoelectric effect. In order to

generate 2D images, the transducer can be physically moved or, alternatively, an array of

transducers can be used, where all the pulses are produced simultaneously, or successively,

producing a steered signal.

Doppler ultrasound systems can detect moving structures, by measuring the frequency

changes of the reflected waves. It can be used to measure the velocity of blood flow through

vessels.

Ultrasound is widely used in obstetrics, in abdominal studies, breast examinations and

cardiology [McGahan & Goldberg, 2008]. Ultrasound of the neonatal brain can access the

brain via the soft fontanelles. Neonatal brain ultrasound is a useful diagnostic tool for

cerebral disorders, such as hemorrhage, leukomalacia, meningitis and congenital anomalies

[Ancel et al., 2006; Yikilmaz & Taylor, 2008; Schenk et al., 2006]. However, ultrasound has

limited use for imaging the adult brain due to the high impedance of the skull relative to

the surrounding tissues. Transcranial duplex ultrasound, which combines the anatomical

and doppler measurements, allows the examination of the neurovascular system of adults

[Seidel et al., 2000, 2004]. It uses the harmonic technology, based on the principle that

harmonic frequencies of the original ultrasound signal are generated inside the tissue,
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Figure 4.4: Harmonic imaging ultrasound
(top) and cranial computed tomography (CT)
(bottom) for comparison [Seidel et al., 2004]. (A)
Pixel-wise peak intensity image. (B) Time to
peak intensity image. (C) CT scan 3 hours after
symptom onset. (D) CT scan 30 hours after
symptom onset.

Figure 4.5: Ultrasound scan (right) of a
cerebral tumour (small arrow) located near the
lateral ventricle (large ventricle) [Harrer et al.,
2003]. Magnetic resonance scan of the tumour for
comparison (left).

hence the harmonic signals only need to pass through the skull once before being detected

[Hedrick & Metzger, 2005]. Penetration depth at low frequencies is approximately 10 cm,

which is achieved at the expense of spatial resolution. This technique requires administration

of an US contrast agent and imaging is limited to regions where the skull is thinner. US is also

used in neurosurgery to identify tumours. Harmonic imaging after administration of an US

contrast agent has been used to identify cerebral acute ischemic (insufficient blood flow) stroke.

Figure 4.4 shows a colour-coded duplex US of a patient with middle cerebral artery occlusion

[Seidel et al., 2004]. The first image represents the pixel-wise peak intensity, where every pixel

is set to the peak intensity within the data set. The second image is the time to peak intensity,

in which each pixel is set to a value that represents the delay between the start and onset of the

contrast enhancement. A similar technique has been used to identify different types of tumours

in adult brains. An example can be seen in figure 4.5 [Harrer et al., 2003].

The main advantages of US are its portability, moderate cost, mobility, the use of

non-ionising energy and it can provide real-time images. The disadvantages are the strong

reflection when passing through bone or air, the decrease in the image resolution with depth,

and the potential risk that high frequencies can induce temperature rises that can cause tissue

damage.

4.3 Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality, with a high soft-tissue

contrast. The patient is placed inside a strong magnetic field, which causes the randomly

oriented magnetic moments of hydrogen nuclei (protons) to adopt one of the two spin states,

such that they precess around the magnetic filed vector ~B0. The principles of MRI or Nuclear

Magnetic Resonance (NMR), as it used to be referred to, are described by Mansfield and Morris

[Mansfield & Morris, 1982].

In more detail, the nucleus of atoms with odd number of protons or odd number of

neutrons have a property known as spin. As a consequence, the spinning charged particle

generates a magnetic field. For example, hydrogen is quite abundant in the human body, and
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Figure 4.6: External magnetic field ~B0 produces
the net magnetisation ~M0 in the direction of the
magnetic field [McRobbie & E A Moore, 2007].

Figure 4.7: T1 and T2 relaxation times after
a 90◦ RF pulse. T2 is much quicker than T1
[McRobbie & E A Moore, 2007].

the nucleus has an odd number of protons, hence the nucleus has a half-integer spin, which

is 1
2 . If ~B0 is applied, then the hydrogen nuclei in the human body can assume two energy

levels: spin-up (lower energy, oriented with a component parallel to the field) and spin-down

(higher energy, oriented with a component antiparallel to the field). According to the Boltzmann

distribution, slightly more nuclei will adopt the lower energy state (one in a million), so that

the net magnetisation ~M0 points in the direction of the magnetic field (see figure 4.6). The

individual proton magnetic moments also precess about ~B0. The frequency of precession is

known as the Larmor frequency, and is given by the equation

ω0 = γB0, (4.4)

where γ is the gyromagnetic ratio. For the hydrogen, γ = 42.6 MHz/Tesla, hence, in a magnetic

field ~B0 = 1 Tesla the precession frequency of the proton is 42.6 MHz. Even though the

individual protons precess, the net magnetisation ~M0 only has a component aligned with ~B0,

and therefore it does not precess.

If a radio frequency (RF) pulse is applied, whose frequency is ω0 and magnetic field vector

is perpendicular to ~B0, the individual magnetic moments can precess in phase with each other,

and ~M0 is given a component perpendicular to ~B0. At the same time spins in the lower energy

spin-up state flip to the higher energy spin-down state, causing the component of ~M0 parallel

to ~B0 to decrease. This is called resonance. When the RF pulse is turned off the spins begin

to dephase, and return to their original distribution of spin states. This recovery to the original

state is characterised by the relaxation times T1 and T2 (figure 4.7). The first is called the

longitudinal relaxation time and is related to the time it takes for the spin states to return to

their initial distribution (figure 4.8). The relaxation time T2, or transverse relaxation time,

characterises the time it takes for the spins to precess out of phase with each other (figure 4.8).

However, due to inhomogeneities in the magnetic field ~B0, the dephasing occurs faster than T2

and the term T2∗ is often used. Different tissues of the brain have different relaxation times.

Applying RF pulses with magnetic field gradients across each of the three orthogonal

directions, provides spatially encoded data. The most common method uses a longitudinal

gradient, where each slice along this direction has a different resonance frequency, therefore the
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Figure 4.8: After the 90◦ RF pulse, T2 relaxation causes rapid decrease in the transverse magnetisation
(a) and (b). At the same time, T1 causes a slower increase in the longitudinal magnetisation ~M0 (c) and
(d) [McRobbie & E A Moore, 2007].

RF pulse with the same frequency only rotates the spins of a single slice. Therefore, the spins of

the selected plane have the same precessing frequency. Subsequently, a phase encoding gradient

is applied across an orthogonal direction for a short period. When the gradient is turned on the

spins along the direction of the gradient precess at different frequencies. When the gradient is

turned off the spins have the same precession frequency but different phases, hence the name of

the gradient. Immediately after a frequency encoding gradient is applied across the remaining

direction. Each pixel of the selected plane has now a characteristic phase and frequency. A 2D

Fourier transform of the plane can provide the location of the spins.

The magnetic properties of haemoglobin depend on its oxygenation level. Oxy-haemoglobin

is diamagnetic, like most tissues in the brain, meaning that it develops a magnetic field

opposite to the applied field ~B0. Meanwhile, deoxy-haemoglobin is paramagnetic, meaning

that it creates a magnetic field aligned with ~B0. Functional MRI (fMRI) measures the effect

of the perturbations in magnetic field produced by deoxy-haemoglobin on the surrounding

protons, known as the Blood Oxygen Level Dependent (BOLD) effect. The presence of

deoxy-haemoglobin produces a decrease in the relaxation time T2. If a subject being studied

is presented with a stimulus, in the stimulated region of the brain an increase in the blood

flow is observed, bringing more oxy-haemoglobin and removing deoxy-haemoglobin, thus T2

increases locally.

Matthews et al [1999] describe several application of fMRI . For example, this technique

has been used to study regions of the brain related to motor, language and visual tasks. It

is also used to diagnose brain disorders and for function neurosurgery, where the regions

to be treated are stimulated. Figure 4.9 shows two fMRI brain maps, of the left and right

hemisphere, showing significant activation of regions of the medial prefrontal cortex, posterior

superior temporal sulcus, anterior cingulate cortex and inferior frontal gyrus [Pelphrey et al.,

2005]. The subjects were submitted to social perception stimuli, such as eye, mouth and hand

movements. This study pays particular attention to the pSTS; mouth movements are located

along the mid-posterior pSTS, while hand movements activate inferior and posterior regions

and eye movements activate superior and posterior regions of the right pSTS.

The advantages of MRI are its high spatial resolution, the use non-ionising radiation and

non-invasiveness. The disadvantages are associated with the presence of strong magnetic fields,

the high cost of the equipment, its large dimensions and the requirement for the patient to stay

still for relatively long periods of time, which is a particularly difficult task for infants and
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Figure 4.9: fMRI activation maps showing the regions of greatest response to social stimuli: eye, mouth
and hand movements [Pelphrey et al., 2005].

newborns (who often require the administration of anesthesia or sedatives).

4.4 Radionuclide Imaging
In radionuclide imaging a radioactive tracer is injected into the body and becomes involved in

the chemical and physiological processes. The radionuclide decays and produces detectable

γ-rays, which provide a measurement of the concentration of the tracer in the body

[Cherry et al., 2003]. Several different types of radionuclides are available that can trace

different regions of the body, making this technique very versatile, since it can image the

anatomy and function of different tissues and organs.

4.4.1 Single Photon Emission Computed Tomography
In Single Photon Emission Computed Tomography (SPECT) a gamma camera is rotated around

the subject, and is used to record a series of projection profiles that can be combined to generate

a 3D image [Powsner & Powsner, 2006]. The filtered backprojection method, described

previously, can then be used to reconstruct sections of the body. Multiple projection views can

be acquired simultaneously by using multi-headed gamma cameras, which accelerates the data

acquisition. Photons originating in deeper parts of the body are more likely to be attenuated

than those at the surface. Therefore, a correction using a sensitivity matrix is applied to the

algorithm assuming that attenuation is uniform, which is more or less accurate for brain tissue.

Technetium-99m (Tc-99m) is a radioactive tracer that is widely available, with a short

half-life of approximately 6 hours, and is used for functional brain imaging to measure blood

flow. Generators that contain molybdenum-99 (Mo-99), called the parent nuclide, decay

to produce Tc-99m. Mo-99 has a relatively long half-life (approximately 67 hours) and is

produced in nuclear reactors.

4.4.2 Positron Emission Tomography
Positron Emission Tomography (PET) radionuclides decay emitting a positron, which travels

few millimetres in the tissue until it finds an electron and annihilates, producing a pair of γ-rays

(each with energy 511 keV) that travel in opposite directions [Powsner & Powsner, 2006]. The

subject is surrounded by a ring of detectors and only coincident photons are used to generate

images. Therefore, the annihilation must have occurred somewhere between the line that

connects the two detectors that register the event. Image reconstruction can be performed using

filtered backprojection and applying the attenuation correction. The resolution can be increased

by measuring the time of flight of the coincident γ-rays, which informs where along the line

between the detectors the annihilation occurred. Nevertheless, the resolution of PET images is
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Figure 4.10: PET statistical maps showing regions involved in the assessment of facial emotion. Left:
sagittal; Centre: coronal; Right: transverse images [Nakamura et al., 1999].

limited by the distance travelled by the positron before it annihilates. Figure 4.10 shows a PET

statistical map of significant activation in the right inferior frontal cortex, during the assessment

of facial emotion [Nakamura et al., 1999]. The activated areas denote a significantly increased

CBF, which were then superimposed onto a mean MRI image produced from all the subjects.

It is necessary to have a cyclotron located near the imaging facility in order to produce the

short half-life radionuclides used in PET - half-lives of the order of few minutes to a couple

of hours. Fludeoxyglucose (F-18) is a tracer similar to glucose that is used to monitor brain

functional activity. When a certain region of the brain is more active more glucose is consumed,

and therefore, more radioactive glucose will also be consumed. Oxygen-15 (half-life ∼ 2min)

labelled water or Carbon-11 (half-life ∼ 20min) labelled carboxy-haemoglobin are used to

measure cerebral blood flow.

The main disadvantages of PET and SPECT are their high cost and the use of radioactive

substances.

4.5 Electrical Impedance Tomography
Electrical Impedance Tomography (EIT) produces images of the conductivity (σ) of tissues.

Different types of brain tissue have different conductivity values. For example, the conductivity

of grey matter is 3.5 mS/cm and of white matter is 1.5 mS/cm [Bronzino, 2000].

Electrodes placed at the surface of the body apply a small alternating current into the

tissue, which generates electrical potentials that are measured at the surface. The most common

electrode driving arrangement is the adjacent pattern, where the current is injected through two

adjacent electrodes, and the voltages are measured by the remaining pairs of adjacent electrodes

(figure 4.11). The process is repeated for all the electrode pairs [Graham & Adler, 2007].

In order to obtain maps representing the changes in conductivity of different brain tissues,

from measurements of voltage changes, it is necessary to solve an ill-posed inverse problem.

The type of problem and the approaches used in the image reconstruction are very similar to

those used in optical tomography (see §5).

EIT has been used to measure functional brain activity in the presence of a stimulus

[Tidswell et al., 2001] and localise regions of the brain responsible for epileptic seizures

[Fabrizi et al., 2006]. Changes in conductivity can occur due to changes in blood volume.

Figure 4.12(a) shows a conductivity increase in the visual cortex while the subject performed

a visual task [Bagshaw et al., 2003]. Similarly, figure 4.12(b) shows the response in the motor

cortex due to motor stimuli [Bagshaw et al., 2003].
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(a) (b)

Figure 4.11: EIT adjacent drive pattern [Graham & Adler, 2007]. (a) Current is injected through
electrode pair (1,2) and measured by the remaining pairs, except pairs (16,1) and (2,3). (b) Current
is injected through electrode pair (2,3) and voltage differences are measured by the remaining pairs,
except pairs (1,2) and (3,4).

(a) (b)

Figure 4.12: EIT transverse, coronal and sagittal images of the response to (a) visual and (b) motor
stimuli [Bagshaw et al., 2003].

This imaging modality produces images with relatively low spatial resolution, but it has a

high temporal resolution and is based on inexpensive technology.

4.6 Comparison of brain imaging modalities
The main characteristics of the medical imaging modalities described in this chapter and optical

topography (OT) using CW measurements are summarised in table 4.1. The values are estimates

extracted from different literature sources. Spatial resolution is the smallest distance between

two separate objects that can be successfully resolved by the imaging system. Temporal

resolution reflects the ability of the imaging system to resolve successive events in time, and is

effectively the inverse of the frame rate. However, note that in some cases, spatial resolution

can be increased at the expense of temporal resolution and vice versa.
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Imaging modalities that provide structural information include x-rays CT, US and MRI.

Functional imaging techniques include fMRI, SPECT, PET, EIT and OT. The structural imaging

modalities like CT and MRI have the advantage of generating images with high spatial

resolution. MRI can provide images with higher soft tissue contrast than CT, but it is also more

expensive, which makes it less available. However, CT has the disadvantage of using ionising

radiation. Contrast agents can be used to enhance contrast of blood vessels. However, these

modalities do not provide functional information and involve large, expensive and immobile

equipment.

US has very good temporal resolution but low spatial resolution. This technique is

inexpensive and widely available. Imaging of the adult brain is confined to regions where

the skull is thinner and requires the administration of US contrast agents. Larger field of views

have lower spatial resolution.

Anatomical MRI images can be combined with functional information from fMRI

acquired in the same session. fMRI can provide images of the BOLD signal and changes in

cerebral blood flow (with contrast agent) with a good temporal and spatial resolution. PET

and SPECT can also provide metabolic and functional measurement of cerebral activity, but

with lower temporal and spatial resolution, but require exposure to radioactive substances. PET

has better spatial resolution than SPECT, but it is more expensive since it requires a cyclotron

on-site to produce the short half-life radionuclides used by this technique.

EIT and OT have high temporal resolution but limited spatial resolution. The image

reconstruction techniques are very similar. They use inexpensive and portable technologies, and

do not require immobilisation of the subject, like in PET and MRI, since the probe is attached

to the head. Both modalities have low sensitivity to deeper regions below the surface, hence

imaging is mostly confined to the cerebral cortex. EIT provides measurements of changes in

cerebral blood volume, whereas OT provides simultaneous absolute or relative measurements of

CBF, CBV, oxy-haemoglobin and deoxy-haemoglobin concentration. By selecting appropriate

wavelengths OT can provide information about other wavelengths-dependent chromophore

concentrations. This is also an advantage over fMRI which can only provide measures of

deoxy-haemoglobin content without any information about oxy-haemoglobin.

Due to its low spatial resolution and depth sensitivity, optical imaging cannot replace

anatomical imaging methods, such as MRI and CT. However, it can provide complementary

functional information, which can be combined with images provided by these high resolution

structural imaging modalities.



CHAPTER 5

Image reconstruction

The image reconstruction process in optical topography aims to retrieve maps of changes

in optical properties and chromophore concentrations occurring in the medium under study,

based on diffuse reflection measurements performed at the surface. In order to do so, it is

necessary to model the propagation of light, from a given light source, through a medium

with specific optical properties, until it reaches a detection point. This is the forward

problem, which is commonly described by the diffusion approximation. The inverse problem

attempts to recover the internal optical properties from measured data, through the inversion

of the forward problem. However, this in an ill-posed and under-determined problem,

and regularisation techniques are required to obtain stable solutions. The changes in the

chromophore concentrations can be calculated from the changes in optical properties, or

reconstructed directly using the multispectral method. This chapter describes all the steps

involved in reconstruction of images from optical topography data.

5.1 Forward problem
5.1.1 Radiative transfer equation
A commonly used model of photon propagation through tissue is the diffusion model

[Boas et al., 2001b; Arridge, 1999]. This model can only be applied when scattering is much

higher than absorption, and consequently the photons undergo a random walk. The diffusion

equation is derived from the radiation transport equation (RTE), which describes the flow of

energy through a medium. This equation represents the balance of energy between the incident,

outgoing, absorbed and scattered photons within the medium. The time-dependent RTE is given

by

1

c

∂φ(r, t, ŝ)

∂t
+ŝ·∇φ(r, t, ŝ) = − (µa + µs)φ(r, t, ŝ)+µs

∫
4π
p(ŝ, ŝ′)φ(r, t, ŝ′)d2ŝ′+q(r, t, ŝ),

(5.1)
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where φ(r, t, ŝ) is the radiance (energy per unit time, per unit solid angle and through a unit

area) at position r, travelling in direction ŝ and at time t, p(ŝ, ŝ′) is the scattering phase function,

which represents the probability that a photon travelling in direction ŝ is scattered into direction

ŝ′ (see §2 ), q is the radiation source and c is the speed of light (in a specific medium it is divided

by its refractive index) [Arridge, 1999; Kaltenbach & Kaschke, 1993]. For a small volume (δV )

around the point r, the first term on the left-hand side represents the radiance change with time

of photons travelling in direction ŝ through δV , and the second term represents the change

due to energy flow. The first term on the right-hand side represents the radiance loss owing

to absorption and scattering, the second term represents the gain in radiance due to scattering

from all directions into direction ŝ and the last term is the light source distribution introduced

at position r per unit time, per unit volume, per unit area in direction ŝ.

The RTE is computationally demanding due to the directional dependence of its terms.

Expanding the terms that depend on direction ŝ into spherical harmonics yields an infinite series

of equations, and truncating the expansion to the first N term gives the PN approximation to

the RTE.

5.1.1.1 Diffusion equation

The diffusion equation can be obtained using the first-order approximation P1 to the RTE.

Derivation of the diffusion equation is explained in more detail by Arridge [1999]. Expanding

the ŝ direction dependent terms φ(r, t, ŝ) and q(r, t, ŝ) into spherical harmonics Yl,m leads to:

φ(r, t, ŝ) =

∞∑
l=0

l∑
m=−l

(
2l + 1

4π

) 1
2

φl,m(r, t)Yl,m(ŝ) (5.2)

q(r, t, ŝ) =
∞∑
l=0

l∑
m=−l

(
2l + 1

4π

) 1
2

ql,m(r, t)Yl,m(ŝ). (5.3)

In the diffusion approximation the terms φl,m,ql,m=0 for l > 1. Expressing ŝ in terms of

spherical harmonics and using the photon density Φ, which is

Φ(r, t) =

∫
4π
φ(r, t, ŝ)dŝ, (5.4)

and the photon current J , which is

J(r, t) =

∫
4π
ŝφ(r, t, ŝ)dŝ, (5.5)

the approximation is obtained

φ(r, t, ŝ) ≈ 1

4π
Φ(r, t) +

3

4π
ŝ · J(r, t). (5.6)

Similarly, for the source term the approximation leads to

q(r, t, ŝ) ≈ 1

4π
q0(r, t) +

3

4π
ŝ · q1(r, t), (5.7)

where q0 represents the isotropic component of the source
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q0(r, t) =

∫
4π
q(r, t, ŝ)dŝ, (5.8)

and q1 the dipole component

q1(r, t) =

∫
4π
ŝ · q(r, t, ŝ)dŝ. (5.9)

Substituting equations (5.6) and (5.7) in the RTE, equation (5.1), and integrating over all

angles, leads to the continuity equation(
1

c

∂

∂t
+ µa

)
Φ(r, t) +∇ · J(r, t) = q0(r, t). (5.10)

Multiplying both sides of the RTE by ŝ and integrating over all angles gives(
1

c

∂

∂t
+ µa + µ′s

)
J(r, t) +

1

3
∇Φ(r, t) = q1(r, t). (5.11)

Equations (5.10) and (5.11) can be further simplified into a single equation that contains

Φ(r, t) only. This is done by assuming that the source is isotropic, q1(r, t) = 0 and that the

photon current J changes slowly, ∂J(r,t)
∂t = 0. Equation (5.11) reduces to Fick’s Law

J(r, t) = −κ(r)∇Φ(r, t), (5.12)

where the diffusion coefficient κ is defined as

κ(r) =
1

3(µa(r) + µ′s(r))
. (5.13)

The diffusion approximation is obtained by substituting equation (5.12) into the continuity

equation (5.10). The time-dependent diffusion equation is then given by

−∇ · κ(r)∇Φ(r, t) + µa(r)Φ(r, t) +
1

c

∂Φ(r, t)

∂t
= q0(r, t). (5.14)

The assumption ∂J(r,t)
∂t = 0 is valid when(

`′

c

)(
1

J(r, t)

∂J(r, t)

∂t

)
� 1, (5.15)

where `′ = 1
µa+µ′s

is the transport mean free path. This means that the fractional change in the

photon current over the time it takes for photons to travel `′ is quite small [Wang & Wu, 2007].

Equation (5.15) can be written as

1

c

∂J(r, t)

∂t
� J(r, t)

(
µa + µ′s

)
. (5.16)

The P1 approximation considers the radiance as almost isotropic, which results in an isotropic

photon density, which is achieved in highly scattering media, µa � µ′s. Therefore, collimated

sources cannot be modelled using the diffusion equation since it will not be accurate near the

boundaries, since a minimum travelling length `′ is necessary before entering the diffusion
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regime. However, boundary and source conditions can help improve the accuracy in these

areas.

Fourier transforming equation (5.14) gives the frequency-domain diffusion equation

−∇ · κ(r)∇Φ(r, ω) + µa(r)Φ(r, ω) +
iω

c
Φ(r, ω) = q0(r, ω). (5.17)

Setting the modulation frequency ω to zero provides the time-independent form of the diffusion

equation, which is be described as

−∇ · κ(r)∇Φ(r) + µa(r)Φ(r) = q0(r). (5.18)

5.1.1.1.1 Boundary conditions
The solution of the diffusion equation in a domain Ω requires the use of boundary conditions

applied to the boundary ∂Ω, where the sources si and the detectors di are placed. Different types

of conditions can be applied. One the simplest and most common is the Dirichlet boundary

condition [Schweiger et al., 1995]

Φ(r, t) = 0, ∀r ∈ ∂Ω, (5.19)

hence all the photons travelling across ∂Ω will be absorbed. Therefore, it is equivalent to

surrounding the domain Ω with a perfect absorber.

For a non-absorbing surrounding medium a more adequate boundary condition can be

applied, which requires that photons from outside Ω cannot travel into the domain Ω, except at

source positions si, that is,

φ(r, t, ŝ) = 0, ∀r ∈ ∂Ω, ŝ · n̂ < 0, (5.20)

where n̂ is the unit normal vector on ∂Ω pointing outward [Arridge, 1999; Schweiger et al.,

1995]. However, the diffusion equation cannot fully satisfy this boundary condition, since it

deals with the integral of radiance over all directions and not only a single direction. Instead,

the total photon current flowing into the domain Ω is set to zero∫
ŝ·n̂<0

ŝφ(r, t, ŝ)dŝ = 0, ∀r ∈ ∂Ω, (5.21)

which, within the diffusion approximation, leads to the Robin boundary condition given by

[Arridge, 1999; Schweiger et al., 1995]

Φ(r, t) + 2κ(r)
∂Φ(r, t)

∂n̂
= 0, ∀r ∈ ∂Ω. (5.22)

This is equivalent to a non-scattering surrounding medium, hence, all the diffusive sources

are inside Ω. The Robin boundary condition is a linear combination of a Dirichlet condition

(first term) and Neumann condition (second term). If the surrounding medium has a different

refractive index than the domain Ω, it is necessary to take into account the reflection of light

back into the medium Ω that occurs at the boundary. The boundary condition in equation (5.21)

becomes
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∫
ŝ·n̂<0

ŝφ(r, t, ŝ)dŝ =

∫
ŝ·n̂>0

ŝRφ(r, t, ŝ)dŝ, ∀r ∈ ∂Ω, (5.23)

where R is the boundary reflection factor. From experimental measurements of R for different

refractive indices, Egan and Hilgeman [1979] found the polynomial approximation R ≈
−1.4399n−2

Ω +0.7099n−1
Ω +0.6681+0.0636nΩ, where nΩ is the refractive index of the medium.

This expression is only valid when one of the media has a refractive index equal to one. For the

diffusion approximation this boundary condition takes the form [Schweiger et al., 1995].

Φ(r, t) + 2κ(r)A
∂Φ(r, t)

∂n̂
= 0, ∀r ∈ ∂Ω, (5.24)

where the parameter A is generally defined as A = 1+R
1−R .

5.1.1.1.2 Source conditions
The light sources si on the boundary ∂Ω are usually simulated using the collimated source

model or the diffuse boundary source model [Schweiger et al., 1995]. A collimated source is

represented by a diffuse point source of the form

q0 = δ(r − rs), (5.25)

where rs is at depth 1/µ′s (reduced mean free path) below the surface, approximately the

distance at which the propagation of light becomes isotropic. Recall from § 2.1 that the

probability of survival of a photon in a random walk after travelling a distance z follows an

exponential decay, exp(−µ′sz).

If the anisotropic source q1 in equation (5.11) is kept, then after applying Fick’s law

(equation (5.12)) the new source term q̃0 in the diffusion equation becomes [Arridge, 1999]

q̃0(r, t) = q0(r, t)− 3∇ · k(r)q1(r, t). (5.26)

In the diffuse boundary source model, the sources are inward directed diffuse photon

currents Γs placed on the boundary at positions ∂Ωs ⊂ ∂Ω. The Robin boundary condition

in equation (5.24) becomes

Φ(r, t) + 2κ(r)A
∂Φ(r, t)

∂n̂
=

0, ∀r ∈ ∂Ω \ ∂Ωs

−4Γsw(si), ∀r ∈ ∂Ωs

, (5.27)

where the function w(si) indicates if the source si is on (w(si) = 1) or off (w(si) = 0). The

source is usually defined as a Gaussian profile in order to model light emitted by an optical

fiber.

The quantity measured by the detectors di located on the boundary is the exitance (flux),

defined as

Γ(r, t) =

∫
4π
φ(r, t, ŝ)ŝ.n̂dŝ. (5.28)

Using Fick’s law the exitance can be written as
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Γ(r, t) = n̂ · J(r, t) = −κ(r)
∂Φ(r, t)

∂n̂
, (5.29)

which can be further simplified using equation (5.24) to

Γ(r, t) =
1

2A
Φ(r, t). (5.30)

The time- independent equations can be obtained by integrating over time the boundary

and source conditions. Alternatively, it can be done by transforming to the frequency domain

and taking the DC component.

5.1.1.1.3 Analytical solutions - Green’s functions

The analytical solution of the diffusion equation is a Green’s function when the source is a delta

function at position r′ and time t′, δ(r′, t′). A detailed description of the analytical methods can

be found in [Patterson et al., 1989; Arridge et al., 1992]. The analytical solution of the diffusion

equation is obtained by convolving its Green’s function with the source term

Φ(r, t) =

∫ ∞
−∞

∫
Ω
g(Φ)(r, r′, t− t′)q0(r′, t′)dr′dt′, (5.31)

where g(Φ) is the time-domain Green’s function solution of the diffusion equation. In the

frequency-domain

Φ(r, ω) =

∫
Ω
G(Φ)(r, r′, ω)q0(r′, ω)dr′, (5.32)

where G(Φ) is the corresponding Green’s function solution. If the source is assumed to be a

delta function, i.e. point source, the solution to the diffusion equation reduces to the Green’s

function: Φ(r, t) = g(Φ)(r, t) or Φ(r, ω) = G(Φ)(r, ω).

For an infinite homogeneous medium and an isotropic point source, the solutions of the

diffusion equation in the temporal- and frequency domain are given, respectively, by

g
(Φ)
inf (r, t) =

1

(4πcκ(t− t′))3/2
exp

(
− |r − r

′|2

4cκ(t− t′)
− µac(t− t′)

)
, (5.33)

G
(Φ)
inf (r, ω) =

exp (−iωt′)
2|r − r′|(2π)3/2cκ

exp

(
−|r − r′|

(
(µa + iω/c)

κ

)1/2
)
. (5.34)

For the semi-infinite space the point source is assumed to be at a depth z0 = 1/µ′s. The

method of images is used to find the solution for this geometry, by placing a negative image

source outside the medium at −z0, which forces the photon density to zero Φ = 0 on the

boundary at z=0 (see figure 5.1). The solutions are given by
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Figure 5.1: Geometry used to derive the Green’s
function solution to the diffusion equation for a
semi-infinite homogeneous medium. The isotropic
point source is indicated by the filled circle.
The boundary condition is satisfied by adding
a negative source indicated by the open circle
[Patterson et al., 1989].

Figure 5.2: Geometry used to derive the Green’s
function solution to the diffusion equation for
a infinite homogeneous slab. The boundary
conditions are met by adding multiple positive and
negative sources [Patterson et al., 1989].

g
(Φ)
semi−inf (r, t) =

1

(4πcκ(t− t′))3/2
exp

(
−µac(t− t′)−

ρ2

4cκ(t− t′)

)

×

[
exp

(
− (z − z0)2

4cκ(t− t′)

)
− exp

(
− (z + z0)2

4cκ(t− t′)

)]
,

(5.35)

G
(Φ)
semi−inf (r, ω) =

exp (−iωt′)
2 (2π)3/2 cκ

exp
((
−µa+iω/c

κ

)(
ρ2 + (z − z0)2

))1/2

(
ρ2 + (z − z0)2

)1/2

−
exp

((
−µa+iω/c

κ

)(
ρ2 + (z + z0)2

))1/2

(
ρ2 + (z + z0)2

)1/2

 ,
(5.36)

where ρ =
√

(x− x′)2 + (y − y′)2.

For the Robin boundary condition with boundary reflectivity (equation (5.24)), the photon

density is forced to zero on the extrapolated boundary, shifted outwards from ∂Ω. The

extrapolated boundary is shifted by

zR = 2κ
1 +R

1−R
. (5.37)

The solution for this boundary condition can be found using the method of images, with the

source at z = z0 and negative image source placed at z = −z0 − 2zR.

For an infinite slab geometry of thickness d, the method of multiple images is used to set

the photon density to zero on the boundaries z = 0 and z = d. This condition can be met by
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placing an infinite number of positive sources at location z = 2Nd + z0 and negative sources

at locations z = 2Nd− z0, where N is an integer. The first four positive and negative sources

are shown in figure 5.2. The solutions are similar to equations (5.35) and (5.36), but for the

multiple source locations and summing all source terms, i.e. for the time-domain

g
(Φ)
slab(r, t) =

1

(4πcκ(t− t′))3/2
exp

(
−µac(t− t′)−

ρ2

4cκt

)

×
N=∞∑
N=−∞

[
exp

(
− (z − 2Nd− z0)2

4cκ(t− t′)

)
− exp

(
−(z − 2Nd+ z0)2

4cκ(t− t′)

)]
,

(5.38)

For solutions to other geometries such as cylinders and spheres refer to [Arridge et al., 1992].

Analytical solutions are limited to simple geometries and homogeneous optical properties.

Numerical methods of solving the diffusion equation are generally necessary for more complex

media.

5.1.1.1.4 Numerical methods

5.1.1.1.4.1 Finite element method

The finite element method (FEM) can be used to solve the diffusion equation numerically.

In FEM the domain Ω is divided into P elements, joined at N nodes [Arridge, 1999;

Schweiger et al., 1995]. The solution of the diffusion equation Φ in FEM is the approximate

piecewise function

Φh(r) = ΣN
j=1Φjuj(r), (5.39)

where uj are the basis functions, which inform how the function varies between nodes. This

function decreases from one at the jth node to zero to the surrounding nodes.

The Galerkin approach allows this discretisation by converting the differential diffusion

equation into an integral equation. The weak formulation requires the residual R to be zero

over the domain, where R in the frequency-domain is

R(r, ω) =

(
−∇ · κ(r)∇+ µa(r) +

iω

c

)
Φh(r, ω)− q0(r, ω), (5.40)

and, therefore, the sum of the inner product of R with the basis functions is required to be zero

∫
Ω
ui(r)R(r, ω)dΩ =

∫
Ω
ui(r)

[(
−∇ · κ(r)∇+ µa(r) +

iω

c

)
Φh(r, ω)− q0(r, ω)

]
= 0.

(5.41)

The Green’s first identity theorem for any functions u, w is derived from the relation

∇ · (κu∇w) = u∇ · (κ∇w) + κ∇u · ∇w, (5.42)

and by applying the divergence theorem
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∫
Ω
u∇ · κ∇wdΩ =

∫
∂Ω
uκn̂ · ∇wd(∂Ω)−

∫
Ω
κ∇u · ∇wdΩ. (5.43)

Applying the divergence theorem to the term containing κ in equation (5.41)

∫
Ω
ui(r)∇·

(
κ∇Φh(r, ω)

)
dΩ =

∫
∂Ω
ui(r)κn̂·∇Φh(r, ω)d (∂Ω)−

∫
Ω
κ∇ui(r)·∇Φh(r, ω)dΩ,

(5.44)

and replacing into equation (5.41) leads to

∫
Ω
κ∇ui(r) · ∇Φh(r, ω)dΩ−

∫
∂Ω
ui(r)κ

∂Φh(r, ω)

∂n̂
d (∂Ω)

+

∫
Ω
µaΦ

h(r, ω)ui(r)dΩ +
iω

c

∫
Ω

Φh(r, ω)ui(r)dΩ

=

∫
Ω
q0ui(r)dΩ.

(5.45)

This equation can be written in a matrix form

(K(κ) + C(µa) + iωB) Φ(ω) = Q(ω), (5.46)

where the matrix elements are given by

Ki,j =

∫
Ω
κ∇ui(r)∇uj(r)dΩ, (5.47)

Ci,j =

∫
Ω
µaui(r)uj(r)dΩ, (5.48)

Bi,j =

∫
Ω

1

c
ui(r)uj(r)dΩ, (5.49)

Qj =

∫
Ω
ui(r)q0(r, ω)dΩ, (5.50)

Φ = [Φ1,Φ2, . . . ,ΦN ]T . (5.51)

Similarly, in the time domain the matrix equation can be expressed as

(K(κ) + C(µa)) Φ(t) +B
∂Φ(t)

∂t
= Q(t). (5.52)

For a Dirichlet boundary condition the basis functions associated with boundary nodes are

set to zero, except for source nodes. If the Robin boundary condition with reflection and a

diffuse point source (equation (5.24)), for any point r∂Ω on the boundary, is expressed as

∂Φh(r∂Ω, ω)

∂n̂
= f(r∂Ω)Φ(r∂Ω, ω) + g(r∂Ω), (5.53)
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Figure 5.3: A slab finite element mesh. The triangles are the elements and the vertexes the nodes. The
regions of higher node density correspond to the location of the optodes.

the source term Q vanishes and equation (5.46) becomes

(K(κ) + C(µa) + F (A) + iωB) Φ(ω) = G(ω), (5.54)

where

F =

∫
∂Ω

1

2A
ui(r)uj(r)d(∂Ω), (5.55)

G =

∫
∂Ω

−2Γsω(s)

A
ui(r)d(∂Ω). (5.56)

For an isotropic source G(ω) = Q(ω). The exitance at the measurement points is given by

equation (5.30), which is the measurement operatorM in the FEM forward problem for the ith

source, defined as [Schweiger et al., 1995]

Fi =M[Φh
i ]. (5.57)

The FEM framework is based on discrete points, the nodes. Different optical properties

can be assigned and complex boundary shapes can be modelled with high accuracy. The basis

functions ensure the continuity of the solution, interpolating the values at the nodes through all

the points connecting between them. The meshes used in FEM usually have higher node density

near the boundary, in particular near the sources and detectors (optodes) for optical imaging,

since the rate change of photon density is greatest in this region. This is the approach used

by the software package TOAST (Temporal Optical Absorption and Scattering Tomography),

which has been developed by Prof. Arridge and Dr. Schweiger at University College London

(UCL). Figure 5.3 shows a mesh generated with the meshing software NETGEN by Schöberl

[1997].

5.1.1.1.4.2 Finite difference method
The finite difference method (FDM) finds the solution to the diffusion equation on a regular

grid, by approximating the differential equations to finite difference quotients [Arridge, 1999;

Klose & Hielscher, 1999]. This method is limited to rectangular geometries, since the nodes are

assumed to be equally spaced. To model accurately irregular boundaries the number of nodes
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can be increased at the expense of computation time. The solutions are calculated at the nodes

and the function between nodes is not known. The FDM is relatively easy to implement but the

approximate solution is less accurate for complex structures and regions near the boundary.

5.1.1.1.5 Validity of the diffusion approximation
The main conditions for the applicability of the diffusion approximation are that the absorption

coefficient is significantly smaller than the reduced scattering coefficient, µa � µ′s, and that the

measurement point is at least 1/µ′s away from the source.

Light propagation cannot be modelled using the diffusion approximations in the presence

of non-scattering regions, like the cerebrospinal fluid (CSF) surrounding the brain. Methods

such as Monte Carlo (described later in this section) can provide accurate numerical solutions

but are computationally time demanding. A common approach is to use hybrid methods,

where the diffusion approximation is applied to highly scattering regions and another method

models the non-scattering regions. Hybrid methods include the Monte Carlo-diffusion

method [Hayashi et al., 2003], the RTE-diffusion method [Tarvainen et al., 2005] and the

radiosity-diffusion method [Arridge et al., 2000; Dehghani et al., 2000]. The radiosity theory

calculates the flux Γi at the point r on the outer surface, due to contributions from an inner

surface ∂Ω′. For the frequency-domain, under the Robin boundary condition with reflectivity,

the flux Γi is given by [Arridge et al., 2000; Dehghani et al., 2000]

Γi(r) =

∫
∂Ω′

φ(r′)cos(θ1)cos(θ2)

|r′ − r|2
1

2A
exp

[(
−|r′ − r|

)
(µa + iω/c)

]
dr′ (5.58)

where I is the radiance at point r′ located on the surface ∂Ω′, θ1 is the angle between the

travelling direction at position r′ and the normal at the same point, and θ2 is the equivalent for

position r.

5.1.1.2 Numerical solutions of the RTE

5.1.1.2.1 Monte Carlo method
The Monte Carlo (MC) simulation is a stochastic method that models individual photons

travelling through the medium that undergo discrete absorption and scattering events

[Wang & Wu, 2007]. It can model the propagation of photons through complex geometries

and regions with different optical properties. MC is relatively simple to implement, the

required parameters are the absorption coefficient µa, the scattering coefficient µs and the

scattering phase function p(ŝ, ŝ′). Individual photons are injected into the medium and

travel in a straight line until they are scattered. The probability of a photon being scattered,

after travelling a distance τ , is randomly generated according to an exponential distribution:

P (τ) = µsexp(−µsτ). The cumulative probability distribution of a scattering event is given

by ∫ τ

0
P (τ)dτ = 1− exp(−µsτ) = r, (5.59)

where r is a randomly selected number from a uniform distribution in the range 0 ≤ r ≤ 1.

Therefore, a scattering event will take place after a distance
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τ = − 1

µs
ln(1− r) = − 1

µs
ln(r). (5.60)

The direction of propagation after scattering is given by a polar angle θ, whose probability

is described by the phase function, and an azimuthal angle Ψ

Ψ = 2πr1, (5.61)

∫ θ

0
p(θ′)dθ′ = r2, (5.62)

where r1 and r2 are uniformly distributed random numbers in the range 0 ≤ r1, r2 ≤ 1.

Photon paths terminate when the photon is either completely absorbed or when it reaches

the detection point. Absorption is included in the model between successive scattering events

through a weight function. The photon with a weight wi after a scattering event, reduces its

contribution before it is scattered again, according to the weight function w

w = wi exp(−lµa), (5.63)

where l is the distance travelled since the previous scattering event.

One of the main disadvantages of MC methods is the required computation time. In

order to obtain statistically significant results, millions of photons which suffer hundreds of

interactions need to be followed. However, it can provide solutions of the RTE with great

accuracy, including for media where the diffusion approximation fails.

5.1.1.2.2 Kubelka-Munk theory
The Kubelka-Munk (KM) theory is a simplification of the RTE. It considers two opposite

directed fluxes, the forward (Γ+) and backward flux (Γ−), propagating through a multi-layered

medium, where each layer is homogeneous [Kubelka, 1948, 1954]. Consider a homogeneous

slab, of thickness d, where light propagates in the normal direction. The rate of change of the

fluxes, as a function of depth z, is given by

dΓ+ = −(K + S)Γ+dz + SΓ−dz ⇒ dΓ+

dz
= −(K + S)Γ+ + SΓ−, (5.64)

dΓ− = SΓ+(−dz)− (K + S)Γ−(−dz) ⇒ dΓ−
dz

= −SΓ+ + (K + S)Γ−, (5.65)

where K and S are the KM coefficients for absorption and scattering, respectively. For diffuse

light these parameters are K = 2µa and S = µs. Solving these differential equations for the

boundary conditions Γ+(z = 0) = Γ0 and Γ−(z = d) = 0, where Γ0 is the flux entering at

z=0, yields

Γ+ = Γ0
sinh(bSz)

asinh(bSd) + bcosh(bSd)
, (5.66)
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Γ− = Γ0
asinh(bSz) + bcosh(bSz)

asinh(bSd) + bcosh(bSd)
, (5.67)

where a = S+K
S and b =

√
a2 − 1.

This two-flux model is useful due to its simplicity, but is limited to diffuse fluxes.

The four-flux theory can provide more accurate solutions, since it includes opposite directed

collimated fluxes [Ishimaru, 1999]. The complexity and accuracy of the KM method can be

increased by using multiple fluxes, but it will still be limited to simple homogeneous slab

geometries.

5.2 Inverse problem
The inverse problem involves finding the optical properties x of the medium, µa and κ, from a

set of measurements y made at the surface. The forward problem can be expressed as

y = F (x). (5.68)

The optical properties can be obtained by solving the inverse problem

x = F−1(y). (5.69)

The forward operator is non-linear but it can be linearised and reduced to a so-called difference

method, based on the assumption that the real optical properties are close to an initial guess

x0. Therefore the measured data y is close to the modelled data y0 [Arridge, 1999, 1997]. The

forward problem can be expressed in a Taylor series

y = y0 + F ′(x0)(x− x0) + F ′′(x0)(x− x0)2 + . . . , (5.70)

where F ′ and F ′′ are the first and second Fréchet derivatives, represented by the Jacobian (J)

and Hessian (H) matrices, respectively. If the higher order terms are ignored the problem

reduces to the linear problem valid for small perturbations occurring in the medium

∆y = J∆x. (5.71)

Therefore, the change in the optical properties ∆x = x − x0 can be obtained from the change

in the measurements ∆y = y − y0 by inverting the matrix J: ∆x = J−1∆y.

5.2.1 Jacobian calculation
Let Φ be a solution to the diffusion equation in the frequency-domain (equation (5.17)), and let

Φ̄ = Φ + δΦ be the solution for the same source, but in the presence of a perturbation in the

optical properties given by [Arridge, 1999]

µ̄a = µa + δµa, (5.72)

κ̄ = κ+ δκ. (5.73)

Substituting into equation (5.17) leads to
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−∇ · (κ(r) + δκ(r))∇ (Φ(r, ω) + δΦ(r, ω)) + (µa(r) + δµa(r)) (Φ(r, ω) + δΦ(r, ω))

+
iω

c
(Φ(r, ω) + δΦ(r, ω)) = q0(r, ω).

(5.74)

Assuming that all the second order terms in the previous equation are approximately zero,

subtracting the original diffusion equation, and rearranging by keeping the terms corresponding

to the homogeneous equation on the left hand side and perturbations terms on the right side,

yields

−∇ · κ(r)∇δΦ(r, ω) + µa(r)δΦ(r, ω) +
iω

c
δΦ(r, ω) = ∇ · δκ(r)∇Φ(r, ω)− δµa(r)Φ(r, ω).

(5.75)

Using the definition of the Green’s function in equation (5.32), the perturbed solution δΦ of the

diffusion equation is

δΦ(r, ω) = Φ̄(r, ω)− Φ(r, ω)

=

∫
Ω
G(Φ)(r, r′, ω)∇ · δκ(r′)∇Φ(r′, ω)dr′ −

∫
Ω
G(Φ)(r, r′, ω)δµa(r

′)Φ(r′, ω)dr′.

(5.76)

Applying the divergence theorem in equation (5.43) to the term containing a scattering

perturbation and the boundary condition Φ(r, ω) = 0 for r ∈ ∂Ω, yields the Born

approximation [Arridge, 1999]

δΦ(r, ω) = −
∫

Ω
δκ(r′)∇G(Φ)(r, r′, ω) · ∇Φ(r′, ω)dr′−

∫
Ω
δµa(r

′)G(Φ)(r, r′, ω)Φ(r′, ω)dr′.

(5.77)

For a δ source located at position rs the solution can be written as

δΦ(r, rs, ω) =−
∫

Ω
δκ(r′)∇G(Φ)(r, r′, ω) · ∇G(Φ)(r′, rs, ω)dr′

−
∫

Ω
δµa(r

′)G(Φ)(r, r′, ω)G(Φ)(r′, rs, ω)dr′.

(5.78)

However, the flux is the measured quantity at the detection point rd on the boundary ∂Ω, given

by equation (5.29). Similarly, the perturbed flux δΓ for a δ source is given by
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δΓ(rd, rs, ω) =−
∫

Ω
δκ(r′)∇G(Γ)(rd, r

′, ω) · ∇G(Φ)(r′, rs, ω)dr′

−
∫

Ω
δµa(r

′)G(Γ)(rd, r
′, ω)G(Φ)(r′, rs, ω)dr′,

(5.79)

where G(Γ) is the result of substituting the Green’s function of the diffusion approximation into

equation (5.29).

The Rytov approximation considers logarithmic changes in the measurements:

δ(log(Γ)) = δΓ/Γ. Therefore, the Rytov approximation is the normalised Born approximation

given by [Arridge, 1999]

δΓ(rd, rs, ω) =
−1

G(Γ)(rd, rs, ω)

(∫
Ω
δκ(r′)∇G(Γ)(rd, r

′, ω) · ∇G(Φ)(r′, rs, ω)dr′

+

∫
Ω
δµa(r

′)G(Γ)(rd, r
′, ω)G(Φ)(r′, rs, ω)

)
dr′.

(5.80)

The reciprocity theorem states that the measurement flux at rd due to an isotropic source at

r′ is equal to the measurement of the photon density at r′ due to a source at position rd

[Arridge & Schweiger, 1995], i.e.

G(Γ)(rd, r
′, ω) = G(Φ)+(r′, rd, ω), (5.81)

where G(Φ)+ represents the adjoint Green’s function, whose direction of propagation is the

opposite to the normal Green’s function.

The Jacobian represents the sensitivity of all the source-detector pair measurements to

local perturbations in the optical properties of the medium. For the Born approximation together

with the adjoint Green’s function, the expression for the Jacobian is

J(rd, r
′, rs, ω) =

(
∂Γ(rd,rs,ω)
∂δµa(r′)

∂Γ(rd,rs,ω)
∂δκ(r′)

)
=

(
−G(Φ)+(r′, rd, ω)G(Φ)(r′, rs, ω)

−∇r′G(Φ)+(r′, rd, ω) · ∇r′G(Φ)(r′, rs, ω)

)
.

(5.82)

This is a complex matrix, where the real part represents the changes in the amplitude of the

measurements and the imaginary part the changes in phase.

In the FEM framework, one can consider ~Φ(i)(ω) to be the solution vector in the mesh for

a source at position si and let ~Φ(j)
Adj(ω) be the solution vector in the mesh for an adjoint source at

position dj on the boundary [Arridge & Schweiger, 1995]. The Jacobian can be calculated for

a variety of measurement types (for more information refer to [Arridge & Schweiger, 1995;

Arridge, 1995]). For the intensity solutions taken at zero frequency, the Jacobian for an

absorption perturbation is

Jδµa(si, dj , r
′) =

(
~Φ(i) × ~Φ(j)

Adj

) (
r′
)
. (5.83)
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Figure 5.4: Absorption photon measurement density function for a slab geometry with dimensions 85
mm × 85 mm × 30 mm, optical properties µa= 0.01 mm−1 and µ′s= 1 mm−1, and an optode separation
of 35 mm (left). All the values are negative; the hot colours are values closer to zero and cold colours
are more negative and show areas of higher sensitivity (units in mm). Top view of the PMDF (top right),
where the dashed line marks the cross sectional plane of the lateral view (bottom right).

Similarly, the Jacobian for a perturbation in the diffusion coefficient is given by

Jδκ(si, dj , r
′) =

(
∇~Φ(i) ×∇~Φ(j)

Adj

) (
r′
)
. (5.84)

Each row of the Jacobian matrix represents the sensitivity of a source-detector pair given an

infinitesimal perturbation in the optical property. Each sensitivity map is known as a photon

measurement density function (PMDF), and indicates to which regions the measurement is

more sensitive, which can be interpreted as the probability of an infinitesimal perturbation

at a location within the medium being detected. The columns of the Jacobian represent the

perturbation in the data due to a change in the optical property at a node. Therefore, the Jacobian

is a matrix whose rows are the measurements m and columns the nodes n. The PMDF has its

maxima near the source and detector positions. The volume sensitivity is narrowest near the

optodes and broadest in the middle, as shown in figure 5.4.

Using the adjoint method to calculate the Jacobian matrix saves computation time. Instead

of finding the flux for each perturbed node, the same information can be obtained by replacing

the measurement point with an adjoint source and the photon density is calculated for all nodes,

as illustrated in figure 5.5.

5.2.2 Linear reconstruction

Linear image reconstruction aims to find the changes in the optical properties and hence changes

in the chromophore concentrations from the changes in a set of measurements, by inversion of

the Jacobian matrix

∆x = J−1∆y. (5.85)

Using the Rytov approximation the changes in log intensity are linearised. The reconstruction

using logarithmic intensity gives improved images compared to intensity measurements, since
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(a) (b)

Figure 5.5: Simplified diagrams illustrating the determination of the sensitivity function. (a) Direct
solution, where the forward problem needs to be solved for each absorption or scattering perturbation in
the medium. (b) Adjoint method, where the sensitivity function is obtained in two steps: by calculating
the forward and adjoint problem.

it compensates for the high sensitivity near the surface by increasing the sensitivity to inner

regions [Arridge & Hebden, 1997].

By applying some normalisation to equation (5.85) the quality of the image may improve

[Gibson et al., 2006]. Because µa and κ have different units and range of values, ∆x and J are

normalised to the mean optical parameters. Also, in order to have equivalent contributions

from all nodes, a row normalisation can be performed, where each row is divided by its

mean. Finally, the standard deviation σ of the log amplitude can be considered a measure

of the level of confidence in the data points, so we apply a correction by dividing by σ on

both sides of the equation. The noise is considered to be Poisson distributed with standard

deviation σ =
√
y [Arridge & Schotland, 2009]. According to the Central Limit Theorem,

if the number of detected photons is large enough, then the detected intensity approximates a

Gaussian distribution [Arridge & Schotland, 2009].

The source and detector coupling coefficients can also be derived if they are included

as unknowns in the image reconstruction. The Jacobian matrix becomes Ĵ = [JSD] and

∆̂x = [∆x1, . . .∆xNv, logS1, . . . , logSNs, logD1, . . . , logDNd], where Nv is the number of

voxels, Ns the number of sources and Nd the number of detectors. The elements of matrix [S

D] are either one or zero, indicating which source and detector correspond to each measurement.

Further details can be found in [Boas et al., 2001c].

Image reconstruction is an under-determined problem, since the number of unknowns is

much larger than the number of measurements and it is ill-posed.

5.2.2.1 Tikhonov regularisation

Consider a generic discrete ill-posed problem of the form

Ax = b, (5.86)

where A is an m × n matrix and b is a vector of dimension m that corresponds to the

measurements. A problem is well-posed in the Hadamard sense if the following conditions

are true [Hadamard, 1902]:

1. A solution exists;

2. The solution is unique;
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3. The solution depends continuously on the data.

A problem that does not satisfy one or more of these conditions is termed ill-posed.

In discrete ill-posed problems the matrix A is ill-conditioned and its singular values decay

gradually to zero, without a clear gap in the singular values spectrum. Because the data b are

contaminated by noise, added to the fact that A is ill-conditioned, a small change in the data

may result in a large change in the solution x, and consequently a direct solution of the least

squares problem, minx ‖Ax − b‖2, may not yield a sensible result. By using regularisation

methods we are able to reduce the influence of noise.

A well known regularisation method used to obtain more stable solutions is the Tikhonov

regularisation, which is defined as [Tikhonov & Arsenin, 1977]

min
x
‖Ax− b‖22 + λ2 ‖x‖22, (5.87)

where ‖Ax− b‖2 is the least square or residual norm, ‖x‖2 is the regularised or solution norm

and λ is the regularisation parameter. The solution of (5.87) as a function of λ is given by

xλ = AT
(
AAT + λ2I

)−1
b, (5.88)

where AT is the transpose of matrix A and I is the identity matrix. Applying the Tikhonov

regularisation to the optical imaging problem gives

∆xλ = JT
(
JJT + λ2I

)−1
∆y. (5.89)

5.2.2.2 Reconstruction methods

Increasing the number of measurement wavelengths in the conventional approach to optical

topography image reconstruction only increases the number of unknowns, since absorption

and scattering need to be reconstructed for each wavelength and subsequently chromophore

concentrations can be obtained. The multispectral method proposed by Corlu et al [2005]

directly reconstructs the chromophore concentrations and scattering factors which are

wavelength independent, meaning that the number of unknowns remains constant when

the number of measurement wavelengths increases, representing a clear advantage over the

conventional approach.

5.2.2.2.1 Conventional Method
The Jacobian matrix J of the conventional method, as described previously, represents the

sensitivity of a measurement to changes in the optical properties within the medium. For CW

measurements only intensity I is measured, hence the Jacobian is a M × N matrix with the

form

Jλ (µa, κ) =


∂I1(λ)
∂µa1

∂I1(λ)
∂µa2

. . . ∂I1(λ)
∂µaN

∂I1(λ)
∂κ1

∂I1(λ)
∂κ2

. . . ∂I1(λ)
∂κN

...
...

. . .
...

...
...

. . .
...

∂IM (λ)
∂µa1

∂IM (λ)
∂µa2

. . . ∂IM (λ)
∂µaN

∂IM (λ)
∂κ1

∂IM (λ)
∂κ2

. . . ∂IM (λ)
∂κN

 , (5.90)
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where each row represents a source-detector pair measurement and each column a perturbation

node. Changes in the measured data ∆I are related to changes in the optical properties ∆x

through ∆I = Jλ∆x, where x = [µa;κ]. Optical properties are obtained by solving an

ill-posed inverse problem at each wavelength and then combined to calculate the chromophore

concentrations using equation (2.3). If measurements are performed at two different

wavelengths and only contributions of oxy-haemoglobin HbO2 and deoxy-haemoglobin HHb

are considered, then equation (2.3) can be written as

µλ1a = ελ1Hb02 [HbO2] + ελ1Hb[Hb]

µλ2a = ελ2Hb02 [HbO2] + ελ2Hb[Hb]
(5.91)

Note that both absorption coefficient and chromophore concentrations (denoted by square

brackets) represent relative changes, which is not explicit in the equation for simplicity. Solving

this system of two equations yields the chromophore concentrations

[HbO2] =
µλ1a ε

λ2
Hb − µ

λ2
a ε

λ1
Hb

ελ1HbO2
ελ2Hb − ε

λ2
HbO2

ελ1Hb

[HHb] =
µλ2a ε

λ1
HbO2

− µλ1a ε
λ2
HbO2

ελ1HbO2
ελ2Hb − ε

λ2
HbO2

ελ1Hb
.

(5.92)

5.2.2.2.2 Multispectral Method

The multispectral method involves reconstructing chromophore concentrations and scatter

parameters using all measurements at all wavelengths simultaneously. The derivatives with

respect to absorption in equation (5.90) are related to derivatives with respect to chromophore

concentrations by

J̃ (ci, λ) =
∂I (λ)

∂ci
=

∂I (λ)

∂µa(λ)

∂µa(λ)

∂ci
=

∂I (λ)

∂µa(λ)
εi (λ) = Jλ(µa)εi (λ) . (5.93)

Similarly, for scattering parameters a and b

J̃ (a, λ) =
∂I (λ)

∂a
=
∂I (λ)

∂κ(λ)

∂κ(λ)

∂a
=
∂I (λ)

∂κ(λ)

∂κ(λ)

∂µ′s (λ)

∂µ′s (λ)

∂a
, (5.94)

J̃ (b, λ) =
∂I (λ)

∂b
=
∂I (λ)

∂κ(λ)

∂κ(λ)

∂b
=
∂I (λ)

∂κ(λ)

∂κ(λ)

∂µ′s (λ)

∂µ′s (λ)

∂b
. (5.95)

Using the diffusion coefficient κ = 1/3(µa + µ′s), the previous equations become

J̃ (a, λ) = Jλ (κ)
(
−3κ(λ)2

)
(λ−b), (5.96)

J̃ (b, λ) = Jλ (κ)
(
−3κ(λ)2

) (
µ′s (λ)

)
(− lnλ) . (5.97)
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The multispectral method combines equation (5.93), (5.96) and (5.97) for n measurement

wavelengths as follows

 ∆Iλ1

∆Iλ2

. . .
∆Iλn

 =


J̃ (c1, λ1) J̃ (c2, λ1) . . . J̃ (ci, λ1) J̃ (a, λ1) J̃ (b, λ1)
J̃ (c1, λ2) J̃ (c2, λ2) . . . J̃ (ci, λ2) J̃ (a, λ2) J̃ (b, λ2)

...
...

...
...

...
...

J̃ (c1, λn) J̃ (c2, λn) . . . J̃ (ci, λn) J̃ (a, λn) J̃ (b, λn)




∆c1
∆c2
. . .
∆ci
∆a
∆b

 ,

(5.98)

The matrix J̃ has dimensions (number of measurements× number of wavelengths )× (number

of chromophores and scatter parameters × number of nodes).

5.2.3 Non-Uniqueness problem
Arridge and Lionheart [1998] have shown that the solution of the image reconstruction problem,

using CW measurements at a single wavelength, is non-unique. This means that several pairs of

distributions of µa and µ′s can yield identical data. As a consequence, it is difficult to separate

µa and µ′s simultaneously and so-called cross-talk occurs.

Following the demonstration of non-uniqueness by Arridge and Lionheart [1998], the

domain Ω is divided into two sub-domains Ω0 and Ω1, hence Ω = Ω0∪Ω1. For the sub-domain

Ω0 the source term q0 is always zero. Whereas, the sub-domain Ω1 surrounding Ω0, contains

the isotropic source within a distance of the surface z0 = 1/µ′s.

Simplifying the diffusion equation (equation (5.17)) with the change of variables γ2 = κ

and Ψ = γΦ, the following Helmholtz-type equation is obtained

−∇2Ψ(ω) + η(ω)Ψ(ω) =
q0

γ
, (5.99)

where η(ω) = η0 + iωξ, with

η0 =

(
∇2γ

γ

)
+
µa
γ2
, ξ =

1

cγ2
(5.100)

Two sets of functions (κ, µa) and (κ̃, µ̃a) will return the same solution Ψ if the following

conditions are met

• Condition 1: η̃ = η ∀Ω,

• Condition 2: κ̃ = κ ∀Ω1.

Note that any different set κ̃, also gives a different ξ and consequently this violates the first

condition. However, for the dc case (ω = 0) condition 1 becomes η̃0 = η0. Consider that a

function α is added to µa and β to κ such that

κ̃ = κ+ β

µ̃a = µa + α.
, (5.101)

If condition 2 holds, then the two data sets provide equal solutions if
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(
∇2(κ+ β)1/2

(κ+ β)1/2

)
+
µa + α

(κ+ β)
=

(
∇2(κ)1/2

(κ)1/2

)
+
µa
(κ)

, (5.102)

which is true when

α = (κ+ β)

((
∇2κ1/2

κ1/2

)
+
µa
κ
−

(
∇2(κ+ β)1/2

(κ+ β)1/2

))
− µa, (5.103)

for any β satisfying β = 0 in the sub-domain Ω1.

The results demonstrate that there are an infinite set of functions that give the same data.

Therefore, there is no unique solution for the CW inverse problem. Multispectral reconstruction

can help reduce the non-uniqueness problem as will be shown in §8.

5.2.4 Non-linear reconstruction
If the reconstruction problem cannot be linearised or if absolute values for the optical properties

are required, then a non-linear approach has to be used. Non-linear methods use iterative

processes that update J in order to minimise the difference between the measured data and the

data calculated by the forward model. The image reconstruction software TOAST developed

at UCL uses the FEM for the forward model and can apply a non-linear algorithm to find the

optical properties that best fit the data (refer to http://web4.cs.ucl.ac.uk/research/vis/toast/ for a

complete list of references).

Linear reconstruction has the advantage of being computationally fast in comparison with

non-linear and iterative reconstructions and, hence, is preferred.

5.3 Summary
Optical topography is mostly used to monitor haemodynamic activity occurring in the brain.

However, due to the limited penetration depth of light in tissue it can only image superficial

cortical regions. In order to obtain spatial maps representing the optical properties and

chromophore concentrations of tissues beneath the imaging probe it is necessary to solve

an ill-posed and under-determined problem. Regularisation methods, such as the zero-order

Tikhonov regularisation, are required to solve this type of problem. It is necessary to find the

optimal balance between the noise present in the image and its accuracy, which is controlled

by the regularisation parameter. The next chapter analyses different methods used to select the

regularisation parameter.

In optical topography the measurement sensitivity is higher nearer the surface than at

deeper regions, which leads to limited depth information. This decrease in sensitivity can

be compensated by introducing a spatially variant regularisation parameter in the image

reconstruction. The influence of using a spatially variant regularisation parameter will be

analysed later in this thesis.



CHAPTER 6

Selection of regularisation parameter

In order to reconstruct a 3D optical topography image it is necessary to solve an ill-posed inverse

problem where the number of unknowns is much greater than the number of measurements.

Tikhonov regularisation, and all regularisation methods in general, replace an ill-posed problem

with an approximate but less ill-posed problem, which ensures the existence and stability of the

solution. The residual norm measures the proximity of the original data to the simulated data

which is obtained when the regularised solution is used. This proximity cannot be smaller than

the average of the perturbations present in the data b. The solution norm is a measure of the

noise in the solution. The regularisation parameter λ finds a balance between these norms,

so that the least squares solution approximates the true solution. If λ is too large the inverse

problem is only slightly related to the original unregularised problem and important information

in the data b may not be used. If λ is chosen to be small the solution will be highly dominated

by noise.

One attempts to find a good solution to the problem by choosing a suitable regularisation

parameter. It is important to have a systematic and reliable method for computing an optimum

regularisation parameter and different methods have been proposed. In §6.2 the most common

methods are summarised. One cannot expect to find a method that will always find a good

λ for every problem. In this chapter, two specific problems that have common features are

studied in anticipation that at least one of the methods will perform well in both cases. First,

the methods are applied to a deblurring problem, which is ill-posed, but its solution is known,

and the amount of noise and blur in the data can be controlled. Second, the methods are applied

to optical topography data. This is a more complex problem than deblurring since in addition

to the ill-posedness it is also under-determined (less measurements than unknowns), it is not an

easy task to estimate the solution when no prior information is available about the object, and

there are multiple sources of noise. This work has been published in [Correia et al., 2009b].
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Figure 6.1: Tikhonov filter factors fi

6.1 Singular Value Decomposition
The numerical technique known as Singular value decomposition (SVD) is employed here to

illustrate the effect of Tikhonov regularisation (refer to §5.2.2.1) on the solution.

Let the SVD of matrix A be given by

A = USV T =
n∑
i=1

uiσiv
T
i , (6.1)

where the left and right singular vectors ui and vi are orthonormal, and the singular values σi,

which are the diagonal elements of S, appear in the following order: σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

The Tikhonov regularised solution is a function of the regularisation parameter λ, and the

norm can be expressed in terms of SVD as [Hansen, 2001, 1998]

‖xλ‖22 =
n∑
i=1

(
fi
uTi b

σi

)2

, (6.2)

where fi =
σ2
i

σ2
i+λ2

are the Tikhonov filter factors.

When the singular values are smaller than λ the filter factor is approximately σ2
i /λ

2

which means that the filter factors are small, as illustrated in figure 6.1. This means that the

singular vectors for small singular values are filtered, having a less significant contribution

on the regularised solution. These singular vectors, which in the examples used here can be

represented as images, reflect spatial variations. Smaller singular vectors correspond to low

spatial frequencies, whereas higher singular vectors correspond to large spatial frequencies.

Because the frequency of the singular vectors increases as the singular values decrease, by

using the Tikhonov regularisation the high frequency oscillatory vectors are filtered. Note that
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it is the division by small singular values, in the non-filtered solution, that amplifies the high

frequency components of the data b. We can see in figure 6.1 that for singular values larger

than the regularisation parameter, the filter factors approach one, which results in a significant

contribution from low-frequency components to the regularised solution.

The residual norm in terms of SVD is

‖Axλ − b‖22 =
n∑
i=1

(
(1− fi)uTi b

)2
, (6.3)

where 1− fi = λ2

σ2+λ2
, and it is easy to see that for filter factors close to one the residual norm

will be small, and vice-versa.

To ensure that the regularised solution approximates the exact solution, the discrete Picard

condition (DPC) has to be satisfied for the given ill-posed problem [Hansen, 1990].

Definition 1 The data vector b satisfies the DPC if the data space coefficients
∣∣uTi b∣∣ on average

decay to zero faster than the singular values σi.

This condition ensures that the solution components related to small singular components

are not over amplified. But in real problems, measured data b are generally contaminated by

different types of noise and it usually does not fully satisfy the condition. If the DPC holds

partially, until a point where the data space coefficient levels off and becomes dominated by

errors, a valid solution should be obtained by any regularisation method. On the other hand, if

the DPC is violated for a given problem one should question the validity of the solution.

6.2 Selection Methods
The influence of the regularisation parameter on the reconstructed image is fundamental. We

have examined the most common methods, described below, in order to identify which one is

the most suitable for ill-posed inverse problems such as imaging using optical topography. The

methods are divided in two main groups: generic, which can be applied to all inverse problems

in general, and image based, which are methods that use information extracted from the images

to calculate the regularisation parameter. The generic methods are divided in two subgroups:

the methods that use noise statistics and methods that do not use noise statistics.

6.2.1 Generic methods

6.2.1.1 Methods that do not use noise statistics
6.2.1.1.1 Heuristic Method
The Heuristic Method is a very popular method to find the regularisation parameter, mostly due

to its simplicity [Graham & Adler, 2006]. It involves human selection by eye, where a subject

generates several solutions for different regularisation parameters and selects the regularisation

parameter which, in his/her opinion, results in the most acceptable reconstruction. However,

this method is subjective, which is a disadvantage especially when there is no information

available about the solution. It can lead to different λ choices by different subjects. It is also

common to define the regularisation parameter equal to estimate of the noise present in the data

[Gibson et al., 2006].
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Figure 6.2: Example of an L-curve. The numbers correspond to the regularisation parameters for each
point marked by the dots.

6.2.1.1.2 L-curve

The L-curve is perhaps the most commonly employed quantitative method for finding

the regularisation parameter when solving ill-posed problems [Hansen, 2001, 1998;

Hansen & O’Leary, 1993; Hansen, 1992]. The L-curve is a log-log plot, for different

regularisation parameters, of the solution norm ‖xλ‖2 against the residual norm ‖Axλ − b‖2
(see example in figure 6.2). We seek the minimisation of these two quantities, which

theoretically corresponds to the corner of the graph, i.e., the point of maximum curvature.

The formulation described in [Hansen, 2001, 1998] is used to define

η = ‖x‖22 , ρ = ‖Ax− b‖22 (6.4)

and

η̂ = log η, ρ̂ = log ρ. (6.5)

The point of maximum curvature of the L-curve kλ is given by

kλ = 2
ρ̂′′λη̂
′
λ − ρ̂′λη̂′′λ((

ρ̂′λ
)2

+
(
η̂′λ
)2)3/2

, (6.6)

where prime represents differentiation with respect to λ.

From equations (6.2), (6.3), (6.4), (6.5) and (6.6) the following expression is obtained
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kλ = 2
ηλρλ
η′λ

λ2η′λρλ + 2ληλρλ + λ4ηλη
′
λ

(λ4η2 + ρ2)3/2
. (6.7)

The behaviour of the solution norm for different regularisation parameters discussed earlier

can be visualised on the L-curve (refer again to figure 6.2). For large λ the solutions are mostly

influenced by the regularisation error. It is easy to see that for large values of λ, the solution

norm ‖xλ‖2 approaches the regularised exact solution ‖xλ,exact‖2, where xλ,exact = AIλbexact,

with AIλ representing the Tikhonov regularised pseudoinverse of A and bexact the unperturbed

data vector. The residual norm ‖Axλ−b‖2 increases with λ. For small λ the contributions from

the perturbation errors e in b, where the data b = bexact + e, are more significant and ‖xλ‖2
increases as λ decreases, whereas ‖Axλ − b‖2 becomes approximately ‖e‖. The region where

both ‖xλ‖2 and ‖Axλ − b‖2 contribute equally corresponds to the L-curve corner, which is the

maximum of kλ.

6.2.1.1.3 f-slope
The f-slope is the plot of the solution norm ‖xλ‖2 versus µ = ln (1/λ) [Wu, 2003]. By using

the inverse of λ in the x axis the values are kept positive. This method involves finding the

”insensitive” or flattest part of the curve and thereby selecting a value of λ which corresponds

to the smallest difference between adjacent solution norms [Wu, 2003].

A discrete least squares problem, that partially satisfies the DPC, has a regularised solution

where the error ‖xλ − xexact‖2 is minimum if λ is close to σl, and where σi with i > l decays

faster than the data space coefficients
∣∣uTi b∣∣. The exact solution xexact is the unregularised

solution to the unperturbed problem, xexact = AIbexact, whereAI represents the pseudoinverse

of the matrix A. The f-slope finds a value λ = e−µ that minimises the derivative of the solution

norm with respect to µ and the regularisation parameter given by this method should also be

close to σl. In fact, this derivative suppresses contributions from σi/λ which are very large

or small. This method has the drawback that it only analyses the solution norm from the least

squares problem and not the data norm.

6.2.1.1.4 Generalised Cross-Validation (GCV)
The GCV is used in smoothing splines, where λ is the smoothing parameter, and in inverse

problems where regularisation is needed. This method is based on the principle that, if a data

point is omitted, then from the regularised solution obtained from this reduced data set, one

should be able to estimate the missing data value [Wahba, 1977; Golub et al., 1979]. The

optimal regularisation parameter is the one that minimises the function [Hansen, 1998; Wahba,

1977; Golub et al., 1979; Craven & Wahba, 1979; Wahba, 1990]

GCV (λ) =
RN

τ2
=

‖Axλ − b‖22
(trace(I −AAIλ))2

, (6.8)

whereRN is the residual norm. The denominator is the weighting factor of the function, which
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can be written in terms of the filter factors as τ = trace(I −
∑n

i=1 fi). The filter factors sum

represents the degrees of freedom (df) for the signal, which basically is the number of singular

values used in the regularised solution, hence the term τ represents the df for noise [Wahba,

1990]. The denominator favours residual norms whose regularised norm contains contributions

from a small number of singular values, resulting in a smaller GCV value. Thus, minimising

the GCV function provides a solution that can fit the data using the smallest possible number of

parameters, thereby minimising the contribution from small singular values.

It has been shown [Craven & Wahba, 1979] that the GCV minimum is similar to the

minimiser of the true mean square error ‖Axλ − bexact‖22, which cannot be calculated if neither

bexact nor error variance are known. Although this seems to be a good argument, the GCV

method relies only on the transition point of the residual norm, where its value starts increasing

rapidly from an almost constant value, without considering the changes in the solution norm.

6.2.1.1.5 Quasi-Optimality Criterion (QOC)

The regularisation parameter is found by minimising the function [Hansen, 1998; Hanke & Hansen,

1993; Hanke & Raus, 1996; Kitagawa et al., 2001]

Qλ =

∥∥∥∥λ2 dxλ
d(λ2)

∥∥∥∥
2

=

(
n∑
i=1

(
fi (1− fi)

uTi b

σi

)2
)1/2

. (6.9)

The iterated Tikhonov regularisation computes successive approximations to the solution

whose accuracy increases at each iteration. If x(0) is the starting vector, which can be any vector

but usually x(0) = 0, then the iterative solution is [Golub, 1965]

x(q+1) =
(
ATA+ λ2I

)−1
(AT b+ λ2x(q)). (6.10)

If the solution of the first iteration x(1) is defined to be the regularised solution xλ, then the

second iterate is given by

(
ATA+ λ2I

)−1
(AT b+ λ2xλ) = xλ − λ2 dxλ

d(λ2)
, (6.11)

where

dxλ
d (λ2)

= −
(
ATA+ λ2I

)−1
xλ. (6.12)

From equation (6.11) it is easy to see that the minimisation ofQλ minimises the correction

to xλ in the solution. Note that when the correction applied to the iterated Tikhonov

approximation xit is small this means that the solution is closer to the exact solution, hence

‖xλ − xit‖ ≈ ‖xλ − xexact‖. This method is similar to the f-slope method in the sense that it

is also based on the error estimate of ‖xλ − xexact‖.



6.2. Selection Methods 91

6.2.1.2 Methods that use noise statistics

6.2.1.2.1 Unbiased Predictive Risk Estimator (UPRE)
The UPRE method seeks to minimise the predictive risk defined as follows [Vogel, 2002]

1

m
‖pλ‖22 =

1

m
‖Axλ −Axexact‖22 . (6.13)

Writing the Tikhonov regularised solution as xλ = Aλb, the solution error eλ can be defined as

eλ = xλ − xexact = (AλA− I)xexact +Aλe. (6.14)

The predictive error can be expressed as

pλ = Aeλ = (AAλ − I)Axexact +AAλe. (6.15)

The influence matrix can be defined as

Bλ = AAλ. (6.16)

Inserting Bλ into equation (6.15), then the predictive error becomes

pλ = (Bλ − I)Axexact +Bλe. (6.17)

The regularised residual is defined as

rλ = Axλ − b = (Bλ − I)Axexact + (Bλ − I) e. (6.18)

Comparing equation (6.18) with (6.17) one can verify that there is a new term Ie. We assume

thatBλ is symmetric and that the noise signal e is white noise, hence the expected valueE(e) =

0 and for 1 ≤ i, j ≤ m

E(ei, ej) =

σ2
ij , i=j

0, i 6= j
, (6.19)

where σ2 is the variance. The expected value of the mean squared norm of rλ is thus given by

E

(
1

m
‖rλ‖22

)
=

1

m
‖(Bλ − I)Axexact‖22 +

σ2

m
trace

(
B2
λ

)
− 2σ2

m
trace (Bλ) + σ2. (6.20)

Note that the two first terms of this equation are the expected value of the predictive risk. The

UPRE is defined as

Uλ =
1

m
‖rλ‖22 +

2σ2

m
trace (Bλ)− σ2. (6.21)

The UPRE method selects the regularisation parameter that minimises Uλ. This method

depends on the accuracy of the estimate of the noise variance. The minimiser of Uλ is not
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necessarily the same minimiser of the predictive risk and it does not ensure that the solution

error is small.

6.2.1.2.2 Discrepancy Principle (DP)

The regularisation parameter obtained with the DP method satisfies the following condition

[Vogel, 2002]

DP =
1

m
‖Axλ − b‖22 − σ

2 ≈ 0. (6.22)

If it is assumed that xexact ≈ xλ , then ‖Axλ − b‖22 ≈ Ie and therefore E
(

1
m ‖Axλ−b‖

2
2

)
≈

σ2. This method also depends on the quality of the noise statistics; in principle if the noise

variance is known the method should find accurate solutions, whereas when variance is only

an estimate the DP method does not necessarily return λ ≈ λopt, where λopt is the optimal

regularisation parameter.

6.2.1.2.3 Normalised cumulative periodogram (NCP)

This method favours the regularisation parameter for which the residual vector resembles white

noise [Hansen et al., 2006]. It is derived from the periodogram, which is the power spectrum of

the residual and is obtained by taking the squares of the absolute values of the discrete Fourier

transform (dft) for half of the residual vector length. Given a vector r, which here represents

the residual vector of length N, the periodogram is computed as

Pk =| dft (r)k |
2, k = 0, ..., N/2. (6.23)

The normalised cumulative periodogram (NCP) is the cumulative periodogram vector

normalised by the sum of its elements

NCPk =

∑k
i=0 Pi∑N/2
i=0 Pi

. (6.24)

If the residuals are pure white noise then the power spectrum is flat, since the variance is

uniform, and the NCP is a straight line from the coordinate point (0,0) to (0.5,1). The selected

regularisation parameter is the one that minimises the distance of the NCP to a straight line

[Hansen et al., 2006]. Therefore, unlike the UPRE and DP methods, one does not need to

directly estimate the noise variance.

Recall that the residual vector is

rλ = Axλ − b =
n∑
i=1

ui(1− fi)uTi b = U(I − F )UT b, (6.25)

and that white noise is invariant to orthogonal and unitary transformations, such as the Fourier

transform. Recall that, given a random white noise vector e, the covariance is given by cov(e) =

σ2I , where σ2 is the variance. By applying the dtf to the white noise vector will not change

its covariance, cov(dft(e)) = σ2I , and since U is an orthogonal matrix then, also cov(UT e) =

σ2I . If the data vector b = bexact + e, hence the covariance of dft(rλ) will be
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cov(dft(rλ)) = cov(dft(U(I − F )UT b))

= U(I − F )UT cov(e)U(I − F )UT = σ2U(I − F )2UT .
(6.26)

From the previous analysis on filter factors (refer to §6.1), when λ is too small the

solution is dominated by high frequency noise components. When the regularisation parameter

is optimal λopt the residual is white-noise with the low-frequencies removed, i.e., high-pass

filtered white noise.

6.2.2 Image based methods

6.2.2.1 Fixed Noise Figure (NF)

The Fixed Noise Figure is defined as the ratio between the signal to noise ratio of

the measurements and the signal to noise ratio of the image [Graham & Adler, 2006;

Adler & Guardo, 1996; Adler, 2004]

NF =
SNRdata
SNRimage

=

∣∣∣∣( b̄

σb

)∣∣∣∣
/∣∣∣∣( x̄λ

σxλ

)∣∣∣∣ , (6.27)

where x̄λ represents the mean value of the solution image, σxλ is the standard deviation of

image, and b̄ and σb represent the equivalent parameters for data. The regularisation parameter

is found by plotting NF as a function of λ, and selecting the optimal NF value whose λ returns

the most acceptable solution. The NF gives a measure of the image reconstruction performance,

and the curve allows a comparison between different regularised solutions.

In principle the selected NF values for experimental data should be ≤ 1, since Tikhonov

regularisation smooths the image, eliminating high-frequency components and hence reducing

its standard deviation. This method replaces the selection of a regularisation parameter as in

the Heuristic method, by the selection of a fixed NF value. The advantage is that for the same

experimental set-up one can use the same NF value which should result in good reconstructions

for all the data.

6.2.2.2 Blur Radius (BR)

Adler and Guardo [1996] defined the Blur Radius as a measure of the resolution achieved by

electrical impedance tomography (EIT) using the following expression

BR =
rz
r0

=

√
Az
A0
, (6.28)

where r0 and A0 are the total image radius and area respectively, and rz and Az are the radius

and area of the region containing half the total image amplitude. In a mesh structure each

element has a distinct area Ael, calculated from the position of the vertices. Thus A0 =
∑
Ael

and Az =
∑
Ael>δ, where the threshold δ is defined so that only areas of elements with

intensity above half the maximum intensity contribute to the summation. The minimum value of
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the BR function corresponds to the maximum resolution and hence to the optimal regularisation

parameter λ.

For images with square pixels, where each element has equal area, this equation can be

expressed as [Wheeler et al., 2002; Avis & Barber, 1994]

BR =

√
p>FWHM

pt
, (6.29)

with pFWHM representing the number of pixels with intensity above half the maximum intensity

and pt is the total number of pixels. This measure of resolution has a limitation, since it depends

on the existence of a single point-like feature in the image so that the Full Width Half Maximum

(FWHM) of the point-spread function (PSF) can be found.

When contrast is low or no isolated feature exists, instead of using FWHM that may lead to a

erroneous result, the threshold can then be defined as the background value, and BR becomes

BR2 =

√
p
>bkg

pt
, (6.30)

where now p>bkg is the number of pixels with intensity above the background intensity. This

no longer relies on an isolated feature: all the pixels that appear with a different intensity from

that of the background are counted. A disadvantage of this is that it considers every variation

from background as being part of the signal, even though it could be noise.

6.2.2.3 Full Width Half Maximum

This method is applicable to image data containing a single isolated region of contrast. The

FWHM of the region is calculated for different regularisation parameters. The FWHM is found

by selecting all the pixels of the row/column that include the pixel with maximum value in the

image (interpolating where necessary and/or rejecting non-correlated pixels). It is a figure of

merit much like the BR; the major difference between these two methods is that while the BR

includes all the pixels in the image with intensity above half maximum intensity the FWHM

only includes pixels from a row/column in the image. By considering the FWHM for all the

pixels the BR method has higher probability of including pixels that represent noise. For a

three-dimensional image the Full Volume Half Maximum (FVHM) is used, which is considered

to be FV HM = FWHMx.FWHMy.FWHMz .

Regińska [1996] has shown that the minimum of the function

Ψα (λ) = ‖x‖2 . ‖Axλ − b‖
α
2 ,where α > 0, (6.31)

is similar to the point with maximum curvature of the L-curve. It can be also useful to analyse

the behaviour of FWHMw=FWHM · Ψα, where both quantities are normalised to vary from 0

to 1. The optimal λ corresponds to the minimum value of this function, where one expects to

achieve a compromise between the size of the feature, the noise and accuracy of the solution,

i.e., FWHM should represent the true size of the feature, with minimal noise and blurring. The
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function Ψα can be considered to be a measure of accuracy, or a weighting factor; if FWHM

is small then Ψα needs to be small. A value of α is chosen to force the quantities to be of the

same magnitude.

6.2.2.4 Contrast Ratios
The first of two contrast ratios described here involves plotting the contrast to noise ratio (CNR)

as a function of the regularisation parameter [Culver et al., 2003], where noise is the solution

norm and contrast is defined as

C =
Imax − Ibkg

Ibkg
, (6.32)

where Imax is the peak value of the image and Ibkg is averaged intensity of the background.

One seeks the regularisation parameter that results in a maximum contrast to noise ratio.

Using the function Ψα as a weighting factor, following the same arguments presented

for the previous method, a second ratio can be defined Cw=CNR · Ψ−1
α , which should have a

maximum value whose corresponding λ compromises between high CNR and accuracy of the

solution.

A potential disadvantage of this method is that it favours contrast over resolution.

6.2.2.5 Criteria
This study seeks a method for selecting the regularisation parameter for optical topography. We

begin by showing and describing the use and performance of the various methods, but reject

some immediately because they are not suitable for optical topography. Our criteria are:

1. The method should not require any subjective input from the user.

2. The method should only require knowledge which is available during clinical optical

topography. For example, it should not require knowledge of the size of the feature being

examined.

3. The method should not rely on the presence of particular features in the image. For

example, it should not assume there is a single, spatially isolated change.

6.3 Regularisation parameter selection
The above methods were initially applied to a deblurring problem. This is a test problem for

which the solution is known, which is simple to generate and is ill-posed. Thereafter, the same

methods were applied to experimental optical topography data, and the consistency between the

results for the two problems were examined.

6.3.1 Deblurring
Deblurring is an example of an ill-posed inverse problem. We start with an image which is

blurred and noisy, and we perform deblurring and denoising processes to estimate the true

image. For the deblurring problem A is the blurring matrix, x is the original image, b is the

blurred image and finally δ is additive Gaussian noise. To generate the matrixA, and the images

x and b, we used the function blur from the Matlab package Regularisation Tools [Hansen,

1994, 2007]. The image x has 50 × 50 pixels (see figure 6.3). The matrix A is basically a
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Figure 6.3: Original test image. Figure 6.4: Blurred image with 5% added
Gaussian noise.

symmetric matrix 502 × 502 with Toeplitz blocks, which is determined from A = T ⊗ T ,

where ⊗ represents the Kronecker product and T is a Toeplitz matrix that contains elements of

a Gaussian point spread function with variance σ2, which models the blurring effect [Hansen,

2002].

Definition 2 A Toeplitz matrix T is a n × n matrix, where its elements tij = ti−j , i.e., it is a

matrix of the form

T =


t0 t−1 t−2 . . . t−(n−1)
t1 t0 t−1 . . . t−(n−2)
t2 t1 t0 . . . t−(n−3)
...

...
...

. . .
...

tn−1 tn−2 tn−3 . . . t0

 .

The advantage of this structure, in particular when dealing with large-scale problems, is that it

can be represented by 2n − 1 different elements instead of storing n2 elements. If the matrix

elements become ti = 0 for |i| > l, T is termed a banded Toeplitz matrix, with band l that

defines the number of diagonals, with nonzero elements, from the main diagonal that are stored

in the matrix T . The Toeplitz matrix used in the blur function is symmetric, hence it contains

information in n different elements.

Definition 3 The Kronecker product of a n × n matrix T and a n̄ × n̄ matrix T̄ is a nn̄ × nn̄
matrix with the block structure

T ⊗ T̄ =

 t11T̄ · · · t1nT̄
...

. . .
...

tn1T̄ · · · tnnT̄

 .

We added different levels of Gaussian noise to the blurred image b, from 5% to 40% and

for 500 noise realisations each. For example, if 5% Gaussian noise is added to b, this means

that δ = 0.05 ∗ ‖b‖2√
n∗n ∗ randn(n ∗ n, 1). For this test we have set σ = 3 and band = 5 (figure

6.4).
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Figure 6.5: Picard condition for the deblurring problem, where the vertical dashed line marks the
beginning of

∣∣UTi b∣∣ < σi and the horizontal line represents the noise level. DPC is satisfied for i . 695.

Figure 6.6: Relative error for the regularised
solution for a single realisation of 5% noise. The
λopt value is marked by the cross.

Figure 6.7: Reconstructed image with λopt =
0.038.

To deblur the image, i.e., to perform the inverse problem, we need to use the properties of

the Kronecker product. If the SVD of T is T = UbSbV
T
b , then the approximate solution x̂ to

the original image x is given by the following equation

x̂ = Vb
St
(
UTb b Ub

)
S2
t + λ2

V T
b , (6.33)

where St = diag (Sb) diag
(
STb
)
.

Figure 6.5 shows that the DPC is satisfied for i . 695. For higher values of i the DPC is

no longer fulfilled and
∣∣UTi b∣∣ reaches the noise level. Since the DPC is at least partially satisfied

it means that we can find a solution which approximately recovers the real solution.

The unblurred and noise-free image of the test problem is known, and using this

information we can find the regularised solution xλ which is closest to the real solution xexact.
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method λ ε

Optimal 0.038 0.380
Heuristic [0.02,0.08] 0.448
L-curve 0.031 0.387
f-slope 0.071 0.411
Fixed NF [0.02,0.08] 0.448
BR 0.005 1.490
BR2 0.035 0.381
GCV 0.031 0.385
QOC 0.122 0.450
FWHM [0.035,0.082] 0.422
FWHM · Ψ 0.019 0.460
CNR 0.012 0.638
CNR · Ψ−1 0.019 0.460
DP 0.052 0.391
UPRE 0.031 0.385
NCP 0.055 0.481

Table 6.1: Regularisation parameter λ and relative error ε obtained using the selection methods for the
deblurring problem for a single noise realisation of 5% noise.

In order to do so, we define the optimal regularisation parameter λopt to be the one that

minimises the relative error ε = ‖xλ − xexact‖2/‖xexact‖2. Figure 6.6 shows the relative

error for different regularisation parameters, for a single noise realisation of 5% noise, and the

minimum which occurs for λopt = 0.038. The corresponding deblurred and denoised image is

shown in figure 6.7.

6.3.2 Results
The results obtained for the deblurring problem are described for each selection method. First

the results for this problem with 5% noise are shown and described in order to illustrate

the features of each method. The results and the relative errors are presented in table 6.1.

Thereafter, the results for different levels of added noise are analysed, but only for the methods

that satisfy the three criteria defined in §6.2.2.5. The regularisation parameter was chosen from

a set of 1000 logarithmically spaced points between 10−4 and 10−0.3.

6.3.2.1 Example of methods and results - 5 % noise
Heuristic method Images were generated for different values of λ. It was not easy to identify

a single value, and we conclude that acceptable results are obtained for λ ∈ [0.02, 0.08].

L-curve The L-curve exhibits a point of maximum curvature which is easily identifiable (figure

6.8(a)). Using equation (6.7) we can find the curvature for different regularisation parameters,

which is illustrated in figure 6.8(b). The point of maximum curvature is found at λ = 0.031.

f-slope The f-slope curve clearly shows a flat part which is less sensitive to perturbations (figure

6.9). We search on this part of the curve for the smallest slope, which occurs at λ = 0.071.

Fixed NF The log(NF ) decreases with increasing λ (see figure 6.10). We selected 5 points

on the curve with values approximately between NF=1 and NF=2. We use the corresponding

regularisation parameters to deblur the images, the reconstructed image whose relative error is

smallest corresponds to the optimal value of NF, which was obtained for NF=1.28 (λ = 0.04).

But we know already from the Heuristic method that λ ∈ [0.02, 0.08] which corresponds to

NF ∈ [1.22, 1.43]. Here we have used information from another method to find NF, but as

described previously the NF value is usually found first and then the images are reconstructed

for the corresponding fixed NF values.
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(a) (b)

Figure 6.8: (a) L-Curve method and (b) curvature for different values of λ for the deblurring example.

Figure 6.9: f-slope as a function of ln(1/λ). Figure 6.10: Fixed NF as a function of λ. For ×
the top numbers are the NF values and the bottom
numbers the corresponding λ value.

BR We calculated the BR using equation (6.29) and found several minima (see figure 6.11(a)).

Although the local minimum at λ = 0.017 results in an acceptable deblurred image, since

this minimum is not so prominent we select λ = 0.005 as the result for this method (figure

6.11(a)), which is extremely small. When calculating BR using equation (6.30), the resolution

of the image is better when the regularisation parameter has a value of 0.036, as shown if figure

6.11(b). We find that the second definition is more effective for this task.

GCV The minimum value for this function was easily identifiable, although it is located on a

relatively flat region of the curve, as shown in figure 6.12. The minimum value for the GCV

function is found at λ = 0.029.

QOC As shown in figure 6.13, the QOC function decreases with increasing λ and the minimum

value for this method occurs for λ = 0.12, a value which is higher than the values found with

the previous methods.
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(a) (b)

Figure 6.11: (a) Blur radius method calculated using the number of pixels with intensity above half
maximum and (b) BR with number of pixels with intensity above the background intensity.

Figure 6.12: Generalised-cross validation
function and its minimum.

Figure 6.13: Quasi-optimality criterion and its
minimum.

FWHM To evaluate this method we use the green ellipse to estimate the FWHM, where we

selected all the pixels along the horizontal row of pixels through the centre of the ellipse. We

compute the intensity by averaging 63 pixels around the central pixel of our region of interest

(ROI).

The analysis of the FWHM together with the ROI intensity for different λ allows us to

have a more qualitative idea of what the regularisation is actually doing to the image. From

figure 6.14(a) it can be seen that it is not possible to identify a single regularisation parameter,

but instead we can define a preferred range. For λ ∈ [0.012, 0.091] the FWHM does not change

significantly and its value is close to the real value (see figure 6.14(a)). On the other hand, as

shown in figure 6.14(b), the intensity within the ROI is higher for λ ∈ [0.035, 0.082]. As the

latter interval is contained in the former, the regularisation parameter should be selected from

that interval.
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(a)

(b)

(c)

Figure 6.14: (a) FWHM, (b) maximum intensity of ROI and (c) weighted FWHM of the deblurred
images.The circles represent the intervals that provide sensible results.
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(a) (b)

Figure 6.15: (a) Contrast to noise ratio curve with maximum located at λ = 0.012 and (b) Cw curve
with maximum at λ = 0.018.

Figure 6.16: DP method where the cross marks
the zero of the function.

Figure 6.17: UPRE function and its minimum.

Multiplying the FWHM by the solution norm and the residual norm, with α set to 0.58, we

obtain a single λ value at 0.019 (figure 6.14(c)).

CNR The obtained CNR curve is shown in figure 6.15(a), where it is possible to locate a sharp

global maximum at λ = 0.012. The value for Ibkg was found by averaging a single row of pixels

located in one of the extremities of the image, which means that 50 pixels were included. Using

the weighting factor Ψα we obtain the curve Cw and its maximum point occurs for λ = 0.019,

which can be seen in figure 6.15(b). These two curves and their results have shown to be very

similar.

DP The residual norm equals the noise variance at λ = 0.052 (figure 6.16). The noise variance

was approximated from the noise norm as σ2 ' 1
m ‖e‖

2
2.

UPRE Figure 6.17 shows the UPRE function which is minimised for λ = 0.009. To calculate

the function UPRE it is necessary to find the trace(Bλ) which is given by the filter factors.
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Figure 6.18: Normalised cumulative periodograms for different regularisation parameters. The red
straight line is the NCP for the λ selected using the NCP method.

Finding the SVD of the full blur matrix is computational intensive, hence the singular values

are calculated from SVD of matrix T as S = diag (Ub ⊗ Ub)T A (Vb ⊗ Vb).

NCP The residual vector resembles white noise when the regularisation parameter λ = 0.056.

The NCP function for this λ value is represented by the red straight line in figure 6.18. When

the regularisation parameter is small the residual becomes dominated by high frequency signals,

whereas for larger λ low frequency components dominate.

6.3.2.2 All noise levels and realisations
The DPC is partially satisfied for all the different noise levels, which indicates that if

the regularisation parameter λ is accurately selected then the regularised solution xλ will

approximate the exact solution xexact.

The BR, Fixed NF and FWHM methods do not satisfy the criteria defined in §6.2.2.5,

therefore these are excluded from the following analysis. For all noise realisation, the mean

optimal regularisation parameters, and corresponding standard deviations, for the nine selection

methods are shown for different noise levels in table 6.2. The corresponding relative errors

calculated using the mean values in table 6.2 are shown in table 6.3 and in figure 6.19.

Heuristic Although the heuristic method is subjective and non-repeatable, we retain this method

in our analysis as a measure against which to compare other more objective methods. In every

noise case, the selected range using this method included λopt. The corresponding ranges of

errors are quote in table 6.3. Note that for better comparison with the other methods, we chose

to display its central value and error, where the latter gives the range limits. The range of λ

included λopt, however the regularisation parameter errors are consistently higher than for most

of the other methods, illustrating the irreproducibility of the heuristic method.

L-curve The L-curve did generally exhibit a single, easily identifiable point of maximum

curvature. The predicted λ agree closely with λopt. For the deblurring problem, an image

reconstructed with 5 % noise was slightly undersmoothed, with a visible noise component.

However, all the results were acceptable, as confirmed by the small relative errors (table 6.3) and

by the small regularisation parameter error (table 6.2). The latter reflects the small sensitivity
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Figure 6.19: Mean relative error of λopt (�), L-curve (◦), f-slope (M), NCP (O), CNR · Ψ−1 (/), GCV
(.), QOC (7), DP (?) and UPRE (D) methods for different noise levels.

of this method to perturbations of similar nature in the data.

f-slope This method seems to overestimate λ at low noise levels but selects λ close to λopt at

higher noise levels.

GCV The selected λ was similar to λopt at low noise levels, 5% and 10% noise, but was rather

low at higher noise levels.

QOC The QOC regularisation parameter prediction is much higher than λopt, however the

relative error becomes closer to that of the optimal solution relative error εopt as the noise

increases.

CNR The CNR method, for all noise levels, yields regularisation parameters which are lower

than λopt and generated much greater relative errors than for any of the other methods, and

the errors associated with λ are as large as those corresponding to the heuristic methods. The

addition of the Ψ parameter led to λ which were closer to λopt than for CNR alone. The method

still tended to underestimate λ for low noise levels, but for higher noise levels, the selection of

λ was good. Note that the regularisation parameter uncertainty is particularly large for noise in

the data between 15% and 25%.

DP This method appeared to overestimate values of λ; nevertheless its relative error εDP ≈ εopt
particularly when noise ≥ 15%.

UPRE The performance of UPRE appears to be similar to that of GCV, with good estimates of

λ at low noise levels but an underestimated λ at higher noise levels.

NCP This method and the DP have similar performances. However, this method seems to be

more sensitive to the different noise realisations, in particular for noise levels above 25%.
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Method 5% 10% 15% 20%
Optimal 0.039 ± 2.6% 0.066 ± 3.3% 0.090 ± 4.0% 0.111 ± 4.2%
Heuristic 0.050 ± 60.0% 0.125 ± 60.0% 0.130 ± 53.8% 0.190 ± 57.9%
L-Curve 0.030 ± 2.7% 0.065 ± 1.7% 0.090 ± 1.6% 0.110 ± 1.5%
GCV 0.030 ± 4.0% 0.047 ± 5.1% 0.060 ± 5.6% 0.071 ± 5.8%
UPRE 0.030 ± 3.3% 0.048 ± 4.4% 0.062 ± 4.4% 0.073 ± 4.8%
DP 0.054 ± 3.2% 0.087 ± 3.2% 0.113 ± 3.3% 0.133 ± 3.1%
NCP 0.056 ± 6.4% 0.088 ± 7.6% 0.113 ± 8.5% 0.134 ± 8.7%
f-slope 0.070 ± 1.7% 0.089 ± 1.7% 0.104 ± 1.8% 0.116 ± 1.7%
QOC 0.121 ± 1.5% 0.142 ± 1.7% 0.160 ± 1.8% 0.176 ± 1.7%
CNR 0.014 ± 35.0% 0.018 ± 57.2% 0.025 ± 60.0% 0.033 ± 61.8%
CNR · Ψ−1 0.022 ± 3.6% 0.049 ± 4.5% 0.077 ± 13.2% 0.105 ± 11.3%
Method 25% 30% 35% 40%
Optimal 0.131 ± 4.5% 0.148 ± 4.2% 0.164 ± 4.3% 0.178 ± 4.0%
Heuristic 0.190 ± 57.9% 0.300 ± 66.7% 0.300 ± 66.7% 0.350 ± 71.4%
L-Curve 0.128 ± 1.5% 0.145 ± 1.5% 0.159 ± 1.5% 0.172 ± 1.3%
GCV 0.081 ± 6.1% 0.090 ± 5.7% 0.099 ± 5.8% 0.108 ± 5.0%
UPRE 0.083 ± 5.1% 0.092 ± 4.8% 0.101 ± 4.9% 0.109 ± 5.0%
DP 0.151 ± 3.2% 0.167 ± 3.1% 0.181 ± 3.2% 0.195 ± 3.1%
NCP 0.152 ± 9.1% 0.168 ± 9.6% 0.183 ± 9.3% 0.195 ± 9.7%
f-slope 0.127 ± 1.8% 0.138 ± 1.7% 0.147 ± 1.8% 0.155 ± 1.7%
QOC 0.189 ± 1.7% 0.202 ± 1.7% 0.213 ± 1.6% 0.223 ± 1.7%
CNR 0.039 ± 55.4% 0.044 ± 58.7% 0.049 ± 53.4% 0.051 ± 56.4%
CNR · Ψ−1 0.129 ± 9.7% 0.154 ± 2.4% 0.183 ± 2.8% 0.190 ± 2.8%

Table 6.2: Regularisation parameters λ obtained using the selection methods for the deblurring problem
with different noise levels.

6.3.3 Discussion

As described in §6.3.1, the optimal regularisation parameter for the deblurring problem is

λopt = 0.038. Most methods analysed assume that no prior statistical information about the

noise is needed to find the regularisation parameter. Although there are methods that rely on

the knowledge of the noise variance, which is known in the deblurring problem, in most real

situations this value is unknown.

We note that the heuristic, the fixed NF, the BR and the FWHM methods do not meet the

suitability criteria. They identify a range of regularisation parameters, rather than a single value.

They are also subjective and non-repeatable, which means that the selected interval of values

may depend on the person analysing the method and there is no way to define the extremes

of this interval analytically. Also, if the same study is repeated at another time the selected

values will probably not be exactly the same. In spite of this λopt is contained in the range of

regularisation parameters selected.

The limitations of the L-curve method were analysed by Hanke [1996]. He showed that

the L-curve method fails to find λ for very smooth solutions, i.e., when the SVD coefficients∣∣uTi b∣∣ decay very fast to zero, and therefore the optimal regularisation parameter occurs before

the solution norm starts increasing, because a large number of SVD components have to be

included in the solution to increase its norm significantly. Vogel [1996] has shown another

non-convergence of λ which is related to the asymptotic behaviour of the L-curve as the

dimensions of the problem increase. He pointed out that the regularised solution fails to

converge to the true solution as the dimensions of the problem tend towards infinity. For the

deblurring problem, an image reconstructed with 5 % noise is slightly undersmoothed, with a
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Method 5% 10% 15% 20%
Optimal 0.387 ± 1.0% 0.432 ± 1.2% 0.454 ± 1.1% 0.468 ± 1.1%
Heuristic 0.393 ± 0.8% 0.457 ± 0.5% 0.463 ± 0.7% 0.485 ± 0.6%
L-Curve 0.395 ± 1.5% 0.432 ± 1.2% 0.454 ± 1.1% 0.468 ± 1.1%
GCV 0.395 ± 1.5% 0.433 ± 1.2% 0.477 ± 1.7% 0.499 ± 1.8%
UPRE 0.395 ± 1.5% 0.432 ± 1.2% 0.473 ± 1.7% 0.496 ± 1.8%
DP 0.400 ± 0.8% 0.438 ± 0.9% 0.458 ± 0.9% 0.471 ± 0.9%
NCP 0.400 ± 0.8% 0.439 ± 0.7% 0.456 ± 1.1% 0.471 ± 0.9%
f-slope 0.414 ± 0.5% 0.439 ± 0.9% 0.456 ± 0.9% 0.469 ± 1.1%
QOC 0.451 ± 0.2% 0.463 ± 0.4% 0.473 ± 0.5% 0.482 ± 0.6%
CNR 0.578 ± 2.8% 0.853 ± 2.3% 0.878 ± 2.4% 0.884 ± 2.4%
CNR · Ψ−1 0.403 ± 1.5% 0.456 ± 1.1% 0.457 ± 0.9% 0.472 ± 0.9%
Method 25% 30% 35% 40%
Optimal 0.479 ± 1.0% 0.488 ± 1.0% 0.495 ± 1.2% 0.502 ± 1.0%
Heuristic 0.489 ± 0.6% 0.525 ± 0.6% 0.525 ± 0.6% 0.544 ± 0.6%
L-Curve 0.479 ± 1.0% 0.488 ± 1.0% 0.495 ± 1.2% 0.502 ± 1.2%
GCV 0.513 ± 1.9% 0.526 ± 1.9% 0.534 ± 1.2% 0.541 ± 1.9%
UPRE 0.510 ± 2.0% 0.520 ± 1.7% 0.528 ± 1.9% 0.541 ± 1.9%
DP 0.481 ± 0.8% 0.489 ± 0.8% 0.496 ± 1.0% 0.503 ± 1.0%
NCP 0.481 ± 0.8% 0.490 ± 0.8% 0.496 ± 1.0% 0.503 ± 1.0%
f-slope 0.480 ± 1.3% 0.488 ± 1.2% 0.497 ± 1.2% 0.504 ± 1.2%
QOC 0.489 ± 0.6% 0.495 ± 0.8% 0.501 ± 0.8% 0.506 ± 1.0%
CNR 0.895 ± 2.6% 0.903 ± 2.6% 0.935 ± 2.7% 0.987 ± 2.5%
CNR · Ψ−1 0.481 ± 0.8% 0.489 ± 0.8% 0.498 ± 1.0% 0.502 ± 1.0%

Table 6.3: Relative error for the deblurring problem with different noise levels.

visible noise component. Nonetheless the results are fairly good, as confirmed by the small

relative errors (table 6.3) and by the small regularisation parameter error (table 6.2). The latter

reflects the small sensitivity of this method to perturbations of similar nature in the data.

The f-slope method has been compared against the L-curve for different test problems [Wu,

2003] and it was claimed that the f-slope method has a good performance for all the problems

tested and can often perform better than the L-curve method. In fact, it seems that when little

regularisation is needed the f-slope may perform better, but there is no evidence that the same

happens when it is necessary to apply more regularisation to the problem. For our deblurring

example it is possible to reconstruct an image that is close to the true image when the noise in

the data is equal to or higher than 15%. For smaller noise levels it tends to overregularise the

solution.

The UPRE and GCV methods are similar in the sense that they both are estimators of the

predictive risk. However the GCV method does not require knowledge of the noise variance.

Vogel [2002] used a two-dimensional deblurring problem with added white noise to compare

these two methods, and observed that the minimisers of the predictive risk, the UPRE and GCV

methods are identical. The GCV method has been shown to perform well in different situations.

However, a drawback is that sometimes it can be difficult to locate its minimum. The function

may be flat near the optimal regularisation parameter or it may display multiple minima, and

consequently the method can fail to locate the correct λ [Thomson et al., 1989]. The same

applies to the UPRE method. In one example presented by Hansen and O’Leary [1993] of a

one-dimensional deblurring test problem, the L-curve and GCV methods yielded reasonable

results when the DPC is satisfied. When the DPC is marginally satisfied, the decay rates of
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the data space coefficients and the singular values are approximately the same, and the GCV

fails to find a regularisation parameter due to the flatness of the curve. For our test problem,

the minimum is clearly identifiable for both UPRE and GCV methods, and as expected, the

performances of both methods are very similar. The solution for λ obtained with these methods

is generally undersmoothed, but the image relative error is still small when the data noise is

lower than 10 %, meaning that it produces a reasonable reconstruction.

A study undertaken by Thompson [1991] on the selection of the regularisation parameter

for the deblurring problem showed that the DP method tends to oversmooth the solutions

and the GCV method generally performs well but eventually may produce underestimated

regularisation parameters. The DP method oversmooths even if a good estimate of the noise

variance is available [Hansen, 1998]. This observation is confirmed by our study. From Tables

6.2 and 6.3 we can see that λDP > λopt, but εDP ≈ εopt which means that it produces

acceptable image reconstructions.

The NCP and the DP methods have similar performances, as expected, since they both

select the regularisation parameter such that the data norm is equal to the noise variance.

However, the former seems to be more sensitive to the different noise realisations, in particular

for noise levels above 25%. Hansen et al [2006] found that the NCP gives better results than

the GCV method, which is confirmed here at higher noise levels.

Hansen [1998] compared the L-curve, the GCV and the QOC methods by applying them

to six test problems with different data perturbations but with the same noise level. He found

that the L-curve method is most likely to undersmooth the solution, the QOC method generally

oversmooths and the GCV method can have both conditions. Another complication that may

arise with the QOC method is the presence of a large number of local minima. For our particular

case the QOC method overestimates the regularisation parameter, and the image appears too

smooth. However, as the noise of the data increases the solutions obtained using this method

become more accurate.

The CNR method gives very low regularisation parameters and generated much greater

relative errors than for any of the other methods, and the errors associated with λ are as large

as those corresponding to the heuristic method. As expected, the weighted contrast gives a λ

which is closer to λopt than the CNR alone. The method still tended to underestimate λ for low

noise levels, but for higher noise levels the selection of λ was good. Note that the regularisation

parameter uncertainty is particularly large for noise in the data between 15% and 25%.

We applied all the methods to the deblurring problem and we found that some methods

produce better reconstructions, some favour noisy images whereas others favour smooth

images. In the next section the methods are applied to optical topography data.

6.4 Image reconstruction of phantom data
Data were obtained with the optical topography system developed at UCL with light sources

at 670 nm (refer to § 3.2.1.1), and using an object consisting of absorbing targets within a

small tank filled with an intralipid solution. Intralipid is a fat emulsion and is suitable for

phantoms because it mimics turbid tissues. The intralipid was diluted to provide a transport

scattering coefficient of µ′s=1 mm−1, and a near infrared dye was added to provide an absorption
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Figure 6.20: Phantom used to acquire optical topography data. The red dot represents the origin
(x, y) = (0, 0) relative to the tank and probe. The axis represent the x, y, and z directions. The dashed
square represents the 2 mm window in the epoxy wall. Section A-B shows the target at position z=0,
which is located close to the 2 mm window. Dimensions are in mm.

coefficient µa=0.01 mm−1. These values are typical of biological tissues at 770 nm. The

refractive index was about 1.33. The cylindrical absorbing targets, with 5 mm radius and 10

mm height, have the same µ′s as the medium but different µa. From now on we consider C1 to

be the target with µa=0.0125 mm−1, C2 to be the target with µa=0.02 mm−1 and C3 to be the

target with µa=0.04 mm−1.

The optical topography array consisted of 8 sources and 8 detectors and data were collected

for all possible source-detector distances (see figure 3.9), which results in 64 measurements.

The array was placed on one of the walls of the tank, which is made of epoxy resin with the

same optical properties as the solution, and is 2 mm thick. Figure 6.20 shows the position

(x, y)=(0 mm, 0 mm), which corresponds to the centre of both the array and the tank wall. The

centre of the target is approximately 7 mm behind the wall when it is located at z=0 mm.

The support frame of the probe was made of plastic and lined with a 10 mm thick

near-infrared absorbing foam, to prevent light travelling from the sources directly to the

detectors. The probe contained 16 holes of approximately 6 mm diameter to which the plastic

connectors were attached, which in turn hold the probe optical fibers.

Each target was positioned individually at x=0 mm, y=0 mm, and z=17 mm, and data

were collected for around 20 seconds (refer to figure 6.20 for axes directions). Before each

acquisition a baseline measurement was collected for calibration, without any target inserted

in the solution. The optical topography system at UCL was designed to acquire data at two

wavelengths, and the data is stored in a file where each row of data represents one detector, the

1st column corresponds to time, the 2nd column to the event marker and the remaining columns

to the detected intensities. A program written in Matlabr separates the data into two files,

which subsequently are averaged to filter the noise.

The TOAST forward model was used to calculate the Jacobian matrix using a FEM mesh

with 115027 nodes, 74418 elements and dimensions 85 mm × 85 mm × 50 mm, which was



6.4. Image reconstruction of phantom data 109

mapped to a pixel basis. Images of the phantom were reconstructed on a regular grid of 24 ×
24 × 21 pixels using linear reconstruction, which is described in §5.2.2, based on the algorithm

implemented in MATLABr by Adam Gibson [Gibson et al., 2006].

6.4.1 Results

The results for the methods that satisfy the criteria defined in §6.2.2.5 and also the heuristic

method, used for comparison, are described below and summarised in table 6.4. The FWHM

and other important quantities that give us important information about the reconstructed

images will also be considered here, to help identify the optimal regularisation parameter. The

λ values used are the same as before.

Discrete Picard Condition Before selecting the regularisation parameters it was necessary

to determine if the DPC is satisfied, in order to know if regularisation can lead to a stable

solution. As seen in figure 6.21 the DPC is partially satisfied for all the different targets. The

vertical line represents the value ix, where for i < ix the data space coefficients
∣∣uTi b∣∣ decay

faster than the singular values σi and for i > ix the DPC is not satisfied; here the data space

coefficients level off at a level determined by the perturbations in the data b (horizontal line), and

because the singular values continue to decay, the coefficients
∣∣uTi b∣∣ /σi are highly dominated

by noise. When the ix value is not easily identifiable from the solution coefficients
∣∣uTi b∣∣ /σi,

we approximate ix to the beginning of the noise level of the coefficients
∣∣uTi b∣∣. For example

for target C2 apparently
∣∣uTi b∣∣ /σi increases for i & 40, but the coefficients

∣∣uTi b∣∣ level off at

ix ≈ 28. For target C1 ix ≈ 25 and for target C3 ix ≈ 26 .

Heuristic Method Using the images reconstructed for different regularisation parameters, and

the knowledge that the absorbing object should be located approximately in the centre of the

image, we are able to select a range of λ values that can be used to reconstruct images that are

in agreement with our expectations. The intervals of regularisation parameters found for the

three targets are very similar; for C1 we found λ1 ∈ [0.004, 0.025], whereas for C2 the interval

was slightly smaller with λ2 ∈ [0.004, 0.015] and even smaller for C3 where λ3 ∈ [0.005, 0.01].

Images for regularisation parameters outside these intervals are either too blurred, or dominated

by noise, or the target appears misplaced in the image, and artifacts become dominant in the

images. Figure 6.22 shows the reconstructed images (xy plane at z=17 mm) of target C1 for

three regularisation parameters: a value lower than the minimum acceptable λ found by this

method (λ = 0.002), a value which is included in the set of regularisation parameters (λ =

0.007), and a value which is above the maximum acceptable value (λ = 0.04). We can see

the presence of high contrast artifacts in the images reconstructed for λ outside the interval of

regularisation parameters and that the standard deviation is higher for smaller λ. As expected,

the image contrast is overestimated when the image is reconstructed using a low regularisation

parameter and is underestimated when a higher regularisation parameter is used, whereas when

an adequate regularisation parameter is used the image contrast is close to the true value.

FWHM For this particular study the position of the targets is known approximately, hence

plots of the position of the absorbing target as a function of the regularisation parameter were

generated, to indicate the accuracy of the range of regularisation parameters selected. However,

this approach cannot be used in applications where the true positions of features in the imaged
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(a) (b)

(c)

Figure 6.21: DPC for 3 different absorbing targets. There are 64 singular values σi. The horizontal
dashed line represents the noise level and the vertical line the approximate value ix, for which i > ix
no longer satisfies the DPC: (a) C1 - µa = 0.0125mm−1 and ix ≈ 25, (b) C2 - µa = 0.02mm−1 and
ix ≈ 28, (c) C3 - µa = 0.04mm−1 and ix ≈ 26.

volume are not known. The positions of the target along the x and y axis in pixels are shown in

figure 6.23 and 6.24 respectively, the z axis is not shown since we have only considered targets

at a depth of z= 17 mm. The arrows in the figures indicate the range of values for which the

object appears in the image in the correct position, which is located ideally at pixel number 12

(refer to figure 6.23 and 6.24 again for λ values). For other values of λ the positions change

significantly depending on the regularisation parameter used, which is more obvious along the

x axis.

The change in the maximum absorption coefficient µamax as a function of the

regularisation parameter is plotted in figure 6.25. It can be seen that its value is high for small

regularisation parameters and it decays rapidly to an almost constant value for λ > 0.005.

The FVHM represents the apparent volume of the object. The apparent volume of the

target varies with the amount of regularisation applied, increasing relatively slowly until it

reaches a point of maximum volume and then dropping drastically to a constant value when

too much regularisation is applied and the image is too smooth (figure 6.26). The rectangle
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(a) (b)

(c)

Figure 6.22: Images reconstructed (xy plane at z=17 mm) of target C1 for (a) λ = 0.002 (b) λ = 0.007
and (c) λ = 0.04. The true position of the target is 17 mm behind the centre of the imaging surface. The
colourmap represents the changes in the absorption coefficient µa.
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Figure 6.23: Position of the target on the x
axis of the reconstructed image for different λ
values. The target is in the correct position for
λ1 ∈ [0.0055, 0.0196] (– · –), λ2 ∈ [0.0042, 0.031]
(—) and λ3 ∈ [0.0067, 0.0145] (– –).

Figure 6.24: Position of the target on the y axis
of the reconstructed image for different λ values.
The target is at pixel 12 for λ1 ∈ [0.0047, 0.0196]
(– · –), λ2 ∈ [0.0044, 0.0469] (—) and λ3 ∈
[0.0045, 0.0207] (– –).

Figure 6.25: Maximum absorption coefficient for
each image reconstructed.

Figure 6.26: FVHM of the target in the images.
The rectangle shows λ ∈ [0.0045, 0.01] where the
size of the target is approximately constant for C1
and shows a linear dependence for C2 and C3.

designates a region of the curves where the volumes are fairly constant, meaning that any

regularisation parameter selected from this interval, λ1,2,3 ∈ [0.0045, 0.01], gives a reasonable

image resolution.

L-curve The L-curve for the optical data does not exhibit a pronounced corner, but it is still

possible to calculate the point of maximum curvature. Figure 6.27 shows the L-curve method

applied to the data for the three targets in this study. The regularisation parameter found with

this method is consistent for all the experiments undertaken here. For the first target the point of

maximum curvature was reached for λ1 = 0.0061, for C2 λ2 takes the value of 0.0066, while

for C3 the corner of the L-curve appears at λ3 = 0.0068.
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(a) L-curves for the phantom containing C1, C2 and C3. (b) Curvatures of L-curves for the different phantoms.

Figure 6.27: L-curve method for the optical topography problem.

Figure 6.28: The f-slope method fails to find a
regularisation parameter λ for experimental data.

Figure 6.29: The GCV method and its minima for
the phantoms in study.

f-slope The solution norm exhibits a fast growth with ln(1/λ), which does not display a flat

region characteristic of the f-slope method, and therefore it was not possible to identify the

minimum slope for each curve (figure 6.28).

GCV For all three targets we were able to localise an absolute minimum for the convex GCV

functions and their values are very similar (figure 6.29). This method obtained for the first target

C1 a minimum value at λ1 = 0.0095, a regularisation parameter of λ2 = 0.0085 for C2 and

finally C3 yields a minimum at λ3 = 0.0091.

CNR To calculate C it is necessary to know µamax and µabkg . The former is the mean of 9

pixels, where one of them is the pixel of maximum intensity in the image and the other 8 are

the pixels which surround it in the xy plane. The latter is obtained from an average of 24 pixels

from the boundary of the image furthest from the peak in the image. The curves for the CNR are

shown in figure 6.30(a), and their local maxima are identifiable and marked by the crosses. The
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(a) CNR for the experimental data. (b) Ratio of the CNR to Ψα.

Figure 6.30: Plots of the CNR method as a function of the regularisation parameter

curve corresponding to target C1 is very similar to C3, showing a global minimum followed by

a local maximum, which occurs at λ1 = 0.056 and λ3 = 0.074. The minimum and maximum

occur for lower regularisation parameters in the case of the C2 target, and this method results

in λ2 = 0.0051. When dividing the CNR by Ψα the results become more consistent. The α

values were α1 = 0.27, α2 = 0.48 and α3 = 0.32 for the three targets. Each curve shows a

maximum as shown in figure 6.30(b), with the highest peak value at λ3 = 0.0066, followed by

λ2 = 0.0068 and the smaller peak occurs for C1 at λ1 = 0.0068.

QOC As shown in figure 6.31 the QOC criterion for the experimental data for C1 and C3

exhibits a steadily decreasing function without any local minima, and consequently this method

fails. For target C2 a local minimum is visible at λ2 = 0.0097.

DP The DP function has a zero for target C1 at λ1 = 0.0071, for C2 at λ2 = 0.0061 and for

C3 at λ3 = 0.0051 (figure 6.32). The noise variance was estimated from the noise vector uTi e
which levels off at ix = σ, and considering the coefficients uTi b = uTi bexact+uTi e, we find that

E
(∣∣uTi e

∣∣2) = σ2. Overall, for i < ix the coefficients
∣∣uTi bexact∣∣ dominate and decay levelling

off at the noise level at i ≥ ix, which corresponds to
∣∣uTi e

∣∣.
UPRE Figure 6.33 shows the UPRE functions for each target. The minima were localised at

λ1 = 0.0081, λ2 = 0.0071 and λ3 = 0.0081.

NCP It is necessary to pre-process data so that all measurements have zero mean and unit

variance. In optical topography we use the difference imaging approach, where the baseline

is subtracted from the data, hence all the measurements should have zero mean, but different

variance. Whitening could be accomplished by dividing each measurement by the respective

standard deviation. The regularisation parameters obtained with this method were quite

low: λ1 = 0.0034, λ2 = 0.0032 and λ3 = 0.0034. Figure 6.34 shows the optimal

normalised cumulative periodograms for each target. The residual is affected by high frequency

components for small λ values, whereas for large λ contributions from small frequency

oscillations are more significant.
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Figure 6.31: The QOC fails to exhibit a minimum
for C1 and C3.

Figure 6.32: DP method and the respective zeros
for each function.

Figure 6.33: UPRE functions and its minima. Figure 6.34: Normalised cumulative
periodograms for C1 represented by the blue
lines, C2 by the red and C3 the black lines. The
ticker lines correspond to the optimal NCPs.

If we set the Kolmogorov-Smirnoff limits [Brockwell & Davis, 1998] to a significance

level of 5%, which is equivalent to a 95% confidence level, and choose the largest regularisation

parameter inside these limits, we obtain λ2 = 0.0064, λ2 = 0.0056 and λ3 = 0.006, which are

more reasonable values.

6.4.2 Discussion
In in vivo applications the solution of the optical imaging problem is unknown so the results

of the Heuristic method must be considered as the optimal regularisation parameter, and

the selection methods compared against this λopt value or interval. Tikhonov regularisation

suppresses noise and only low frequency components of the solution are reconstructed,

which results in images that are known to be smooth with a limited resolution. Since we
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methods λ1 λ2 λ3

Heuristic [ 0.004, 0.025 ] [ 0.004, 0.015 ] [ 0.004, 0.01 ]
FVHM [ 0.0045, 0.01 ] [ 0.0045, 0.01 ] [ 0.0045, 0.01 ]

xpos [ 0.0047, 0.0196 ] [ 0.0044, 0.0469 ] [ 0.0045, 0.0207 ]
ypos [ 0.0055, 0.0196 ] [ 0.0042, 0.031 ] [ 0.0067, 0.0145 ]

L-curve 0.0061 0.0066 0.0068
GCV 0.0095 0.0085 0.0091
UPRE 0.0081 0.0071 0.0081

DP 0.0071 0.0061 0.0051
NCP 0.0034 0.0032 0.0034

f-slope – – –
QOC – – –
CNR 0.056 0.0051 0.074

CNR ·Ψ−1 0.0068 0.0068 0.0066

Table 6.4: Regularisation parameters for the experimental data using different selection methods

are constrained by this factor it can be difficult to identify an image that is a reasonable

representation of the true object. The images reconstructed using the Heuristic method all

have in common several features such as: correct positioning of the target, relatively high

contrast, low presence of noise and moderate smoothing. For easier comparison with the other

methods, the apparent position and FVHM of the target in the images were calculated for the

different regularisation parameters. The range of regularisation parameters found using the

FVHM analysis is approximately in agreement with the heuristic selections and for this range

of λ the target is correctly positioned in the image (refer to table 6.4).

Our optical imaging problem is an under-determined problem, where we have 64

measurements corresponding to 64 source-detector pairs at different separations and we aim

to reconstruct a three-dimensional image consisting of 12096 pixels. The decay rate of the

singular values measures the degree of ill-posedness [Hofmann, 2005] and it indicates that this

is a very ill-posed problem. The accuracy of the regularised solution is highly affected by

these factors, which means that the selection methods are also influenced and as a consequence

they may fail to find a suitable regularisation parameter. The L-curve method reflects this, by

the absence of a sharp corner. In spite of these difficulties, the images reconstructed with the

regularisation parameters obtained with this method are consistent with the Heuristic method.

The L-curve method has been used previously in optical imaging, for simulated and real data,

and its results are considered to generate acceptable images [Gaudette et al., 2000; Zhou et al.,

2006; Zhao et al., 2006b]. To our knowledge the f-slope method has not been tested previously

on real data, only for testing models where it has a good performance [Wu, 2003]. This

method does not exhibit a flat region, characteristic of this method, when applied to the optical

topography problem. This seems to be due to its ill-posedness which results in fast changes of

the solution norm as mentioned before. Another method that failed to converge was the QOC.

No minimum was found for C1 and C3. For C2 the regularisation is in the interval of acceptable

λ values defined by the Heuristic method.

Hansen [1992] tested the L-curve against the GCV method for a test problem perturbed

by errors that are highly correlated, for example sampling errors or approximation errors in

matrix A. He found that the GCV method fails to compute a useful solution; a very small λ

is selected because this method treats errors as being part of the signal. The L-curve seems
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to find a solution that is a good approximation to the exact solution, as long as the correlated

errors do not satisfy the DPC. In the presence of uncorrelated errors both methods choose good

regularisation parameters, although the GCV method gives a slightly overregularised λ. The

GCV method for the optical topography phantom data chooses regularisation parameters which

produce good image reconstructions. The minimum value of the GCV function occurs for λ

values higher than those found with the L-curve method. This result could explained by a low

presence of correlated errors.

The L-curve, GCV, DP and UPRE methods were compared for simulated , phantom and

neonatal EIT data [Abascal et al., 2008]. All the methods were successful for simulated and

clinical data. Overall, the preferred methods were the GCV and L-curve. For optical topography

data both DP and UPRE methods converged and the predicted regularised parameters λ are in

agreement with the values found heuristically. Note also the similarity between predictors from

the GCV and UPRE methods.

The NCP method returned a very low regularisation parameter, which is not included in

the values found heuristically. However, if we set significance levels of 5% the value obtained

is more reasonable.

An artifact with high contrast leads to an erroneous selection of λ1,3 from the CNR curve.

A good reconstruction is achieved for target C2 because although the artifact is still present its

contrast is smaller compared to that produced by the target.

If Ψ is applied as a weighting factor to CNR, the regularised solutions are similar to the

ones generated from the L-curve method. This is probably due to the similarity between Ψ

and the L-curve method [Regińska, 1996]. The regularisation parameters selected with these

methods are contained in the set of λopt from the Heuristic method.

The quality of the reconstructed images is highly dependent on the quality of the acquired

baseline; an inadequate baseline can produce meaningless results. Intralipid solutions are not

completely stable over time, and even if the solution is regularly stirred its properties are not

exactly the same during the whole experiment, which can explain the difference between the

results for the targets and the similarity between results for targets C1 and C3.

6.5 Conclusions
Optimising image reconstruction for diffuse optical imaging requires special attention to the

amount of regularisation applied, which controls the smoothness of the regularised solution

and balances the influence of the noise present in the image against its accuracy. We have

examined a number of methods for selecting the regularisation parameter, as described in §6.2.

Diffuse optical imaging is a challenging ill-posed and under-determined problem, and for in

vivo applications the true distribution of optical properties is unknown, making it difficult to

predict the optimal solution. We therefore initially tested the methods by applying them to a

simpler ill-posed problem, the deblurring problem, where we can control the amount of blur and

noise applied to the data, where the exact solution is known (and by using this information it is

easy to know the optimal regularisation parameter), and where the size of the data array is the

same as the solution. We believe that if a method does not produce a good regularised solution

for the deblurring problem, we cannot rely on it for optical topography. However, if a good
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solution is found with a certain method for the deblurring problem the same is not necessarily

true for the more demanding optical problem.

From this study we hoped to identify a single method that selects a regularisation

parameter, which produces a meaningful regularised solution that works for diverse

experimental conditions and does not rely on human judgement. It is also desirable that

the chosen method is fast and efficient, particularly if we have to manipulate a large amount of

data or perform real-time imaging. With this in mind, in §6.2.2.5 we list three criteria that a

selection method must meet. On the basis of these criteria, we reject the heuristic method, the

fixed noise figure method and methods related to optimising the full width at half maximum of

the image. All the remaining methods performed acceptably well for the deblurring problem.

However, the f-slope and QOC failed to converge for the more demanding optical topography

problem.

The CNR method gave poor results, but it was much more successful when Ψ was

minimised simultaneously. The use of Ψ in this way, as proposed by Regińska [1996]

and developed further here, could be applied to other methods and may be worth further

examination.

The DP and UPRE methods use statistical information in order to predict the regularisation

parameter. If the noise variance or an accurate estimative is available, then these methods are

able to provide good predictions of the regularisation parameter. The NCP method has the

advantage of selecting λ automatically, hence it does not directly require an estimate of the noise

variance. Nevertheless, this method is sensitive to error fluctuations and only gives reasonable

results for the optical topography problem under certain assumptions.

Another method that obtained a good regularisation parameter was the GCV method. This

method can be useful when we search for smooth solutions since it tends to overregularise the

solution. The UPRE and GCV methods both estimate the predictive risk, although the GCV

method does not require any prior knowledge of noise variance. The GCV method is also

known to have a high theoretical convergence [Vogel, 2002]. DP, UPRE, NCP and GCV only

consider the data norm.

The L-curve consistently demonstrated the lowest error for the deblurring problem (see

table 6.2 and 6.3). It is easy to implement and simultaneously minimises both residual norm

and solution norm. This method requires the computation of both the solution norm and residual

norm for a large number of regularisation parameters, which is a disadvantage common to all

the tested methods.

The purpose of this study is to select a single method that can be used for optical imaging

problems, and the L-curve was found to be the optimal selection method, since it performs well

for both deblurring and optical topography problems.

So far we have studied ideal or almost ideal cases, whereas in vivo studies suffer further

sources of error. These include motion artifacts, changes in the contact between the optodes and

the skin which can result in intensity fluctuations in the collected data, and detection of light

which has not passed through the investigated medium. All these effects produce correlated

errors, which are not necessarily apparent in the raw data. The L-curve has been shown to

perform well in the presence of these type of errors [Hansen & O’Leary, 1993; Hansen, 1992].
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As mentioned previously, Hanke [1996] showed that one of the disadvantages of the L-curve

method is related to the reconstruction of very smooth solutions (when the coefficients
∣∣uTi b∣∣

decay fast to zero) where this method fails to find a good regularisation parameter. Under these

circumstances, GCV should be investigated as an alternative to the L-curve method.

In conclusion, the quality of the images does not depend uniquely on the regularisation

parameter, but for the reconstruction methods available at present to solve ill-posed inverse

problems the choice of the regularisation parameter is important, since it controls the degree of

accuracy and smoothing of the solution. The L-curve seems to find reasonable regularisation

parameters for the optical topography imaging problem, but it is still necessary to test the

validity of this method for in vivo situations, which is done in §9.



CHAPTER 7

Quantitative assessment of the depth sensitivity using tissue-like
phantoms

Images produced from optical topography measurements have limited depth information, and

are restricted to the superficial layers of the tissue underneath the array of sources and detectors.

The use of arrays with several source-detector pairs at different separations increases the ability

to discriminate between signals at different depths, and overlapping measurements improve the

lateral resolution and accuracy [Zeff et al., 2007; Dehghani et al., 2009; Heiskala et al., 2009].

Since light penetration is limited by the highly scattering nature of tissue, the sensitivity is

higher at the surface than for deeper tissues. Larger source-detector separations are required

to sample at greater depths, and large separation implies more attenuation and less detected

signal. The volume of tissue sampled also increases with larger separation, and consequently

spatial resolution and contrast also decrease with depth. Image reconstruction using zero order

Tikhonov regularisation assigns high sensitivity measurements to high sensitivity regions in the

reconstructed image. Therefore, perturbations in optical properties tend to be reconstructed in

shallow areas and deeper tissues are overshadowed by these. Also, there is often no PMDF

(refer to §5.2.1 for definition) overlap immediately below the optodes, hence the reconstruction

tends to place perturbations below the optodes. It is therefore necessary to develop means

of modifying the algorithm or the images in order to locate the perturbations in their correct

positions.

One possible correction to compensate for this effect is to use a spatially variant

regularisation (SVR) in the Tikhonov regularisation process instead of a constant value

[Arridge & Schweiger, 1993; Pogue et al., 1999]. In this chapter, different spatially variant

regularisation parameter types are used to reconstruct images from simulated and experimental

data, in order to analyse their influence in the image quality. Some of the main spatially variant

regularisation parameter types found in the literature are described below.

Pogue et al [1999] used a spatially variant regularisation parameter on tomography

data. In their theoretical and experimental study the sources and detectors were placed in a
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ring surrounding the object. The regularisation parameter varied exponentially in the radial

direction, applying less regularisation to the region of lower sensitivity, nearest the centre of the

object, and more regularisation towards the surface, to reduce noise sensitivity near the optodes.

Their results show a relatively even contrast and resolution across the image, and reduction in

the effects of noise near the optodes. The regularisation parameter can be expressed as

λ(rj) = λe exp (rj/R) + λc (7.1)

where rj is the radial position of pixel j, R is the radius of the image, and λe and λc are free

variables determined empirically .

Culver et al [2003] performed phantom and in vivo measurements and used a variable

regularisation parameter to reconstruct the images. They adapted the variable regularisation

parameter to three dimensions, allowing the regularisation parameter to vary for a whole

volume. Images of multiple phantom targets at different spatial locations were successfully

reconstructed. Kepshire et al [2007] investigated imaging of absorbing and fluorescent targets

at different depths using both simulations and experiments. A SVR similar to equation (7.1) was

applied to the image reconstruction, but they replaced R by an empirically determined decay

coefficient α that they found to be α=25 mm. The location of the targets in the image can be

accurately measured within 10 mm below the surface.

Recently Zhao et al [2007] have introduced the layer-based sigmoid adjustment (LSA).

They correct sensitivity variations by adjusting directly the forward matrix according to a

sigmoidal function. Simulations showed that without any depth adjustment the absorbing region

in the image appears to shift towards the surface. When SVR is used the object appears to be

deeper than it actually is. The LSA method achieves better results both for superficial and

deep objects. They showed that depth contrast is improved and position errors of less than

3 mm could be obtained for targets located at depths from the surface between 1 cm and 3

cm. A similar study, using a similar adjustment of the forward matrix, where they multiply the

elements in the sensitivity matrix by the maximum singular value for each depth layer in inverse

order, yielded identical results [Niu et al., 2008].

Endoh et al [2008] assigned a different regularisation parameter to each voxel by setting

the regularisation parameter proportional to the square-root of the diagonal elements of

JTJ , hence compensating for both depth and lateral sensitivity decrease. They successfully

reconstructed simultaneously two simulated targets located at different depths. This type

of regularisation had been previously used by Culver et al [2005] to generate images of

haemodynamic activity in rat brain, but without the intention of obtaining depth discrimination.

This type of regularisation is well known in EIT image reconstruction as NOSER (Newton’s

One Step Reconstructor) [Cheney et al., 1990; Adler et al., 2007].

Another approach is to use a covariance matrix as the penalty term [Guven et al., 2005;

Boas & Dale, 2005]. Each entry of this diagonal matrix is the variance σ2
y of the measurements,

allowing adaptive regularisation according to the accuracy at each position derived from the

measurements. Here the regularisation parameter λ appears as a scaling factor of the covariance

matrix. One can use the covariance matrix of the measurements C and the covariance matrix of
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the unknowns R to derive an inverse operator W

W = RJT (JRJT + λC)−1 (7.2)

The perturbations in the optical properties x can be extracted from the measurement data b using

x = Wb following an iterative procedure [Gibson et al., 2005; Yalavarthy et al., 2007]. The

matrix R can also be given by the NOSER method (refer to §7.2) [Adler et al., 2007]. Adler et al

[2007] has proposed a method that incorporates spatial and temporal correlations in the image

in the regularisation prior, where R in the previous equation is the regularisation matrix that

includes both spatial and temporal priors. This method could be applied to optical topography

imaging of brain functional activity, where the aim is to produce spatial and temporal images

of changes in the concentrations of oxy- and deoxy-haemoglobin.

It has been shown that a regularisation matrix based on space-uniformisation of the

variance of reconstructed EIT images yields better images of regions distant from the

surface than the zero order Tikhonov regularisation [Cohen-Bacrie et al., 1997]. This method

eliminates the differences in the image variance, which is a direct consequence of the differences

in the variance of the measurements.

A very simple spatially variant regularisation parameter can be defined by dividing the

image into two separate regions, containing voxels with two different regularisation parameters:

the voxels of the region of interest are assigned a smaller regularisation parameter and the

background voxels are assigned a higher regularisation parameter [Srinivasan et al., 2004;

Li et al., 2003] .

Alternative approaches to assigning different regularisation parameters to different regions

have been tested. Endoh et al [2005] tried to compensate for the lack of sensitivity in deeper

regions by increasing the corresponding voxel size in the image.

In theory, time-domain (TD) optical systems offer better depth resolution than CW systems

[Selb et al., 2005] . TD systems send a pulse of light into the tissue and record the time

the photons take to travel through the tissue back to the detectors on the surface. The TPSF

provides a distinction between photons that have travelled shorter distances, the so-called early

photons, which means they have only reached superficial layers, and the late photons that have

probed deeper tissues. This approach provides higher sensitivity to deeper tissues of the brain

(cortex) and can reject early photons, with information from outer layers of the head where

activation is not expected to occur (scalp and skull). Selb et al [2006] tested the depth resolution

of a TD system using a phantom and in vivo measurements. They were able to detect the

superficial and deep inclusions in the phantom using the early and late photons respectively,

and observed a higher contrast with small variance for the superficial inclusion. They were also

able to image activation of the motor cortex of an adult brain when performing a finger-tapping

task, and verified that the contrast was higher when information from early photons was not

used. Activation of the brain was measured with a TD system during a motor stimulation and

a Valsalva manoeuver and it was possible to distinguish between intracranial absorption and

scalp activation respectively [Steinbrink et al., 2001; Montcel et al., 2005].

Frequency-domain (FD) systems have also been used to provide depth information in
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the brain [Kohl-Bareis et al., 2002]. FD systems measure amplitude and phase at a single

frequency. Amplitude is more sensitive to absorption changes near the surface whereas phase

is more sensitive to perturbations in deeper layers of the brain.

The use of a variable regularisation parameter has proven to increase depth resolution.

Different types of regularisation were incorporated separately in our linear reconstruction

algorithm. The performance of each method was evaluated and, finally, the one that generated

images with greater accuracy was incorporated in the linear image reconstruction algorithm.

To determine which spatially variant regularisation parameter is more appropriate for

our data, we tested the different types of regularisation on both simulated and phantom data.

Simulations, if correctly implemented, are good approximations to reality, and are inexpensive,

relatively easy and fast to perform. However, they usually reproduce an ideal and simplified

system performance where, for example, all sources have identical noise levels. To fully

characterise a specific imaging system, appropriate phantom measurements are essential. This

study is of high importance since it will provide an indicator of how trustworthy the results are

when images are reconstructed from in vivo measurements.

7.1 Methods
7.1.1 Simulations
A TOAST forward model was used to calculate both simulated data and a Jacobian matrix, using

a FEM mesh with 115027 nodes, 74418 elements and dimensions 85 mm × 85 mm × 50 mm.

Initially the medium is homogeneous with optical properties µ′s = 1 mm−1, µa=0.01 mm−1

and η = 1.4, and data were generated to be used as reference data. Regions, with dimensions

10 mm × 10 mm × 10 mm and higher absorption coefficient (µa = 0.0175 mm−1), were then

inserted in turn in the centre of the mesh at depths from 10 mm to 30 mm in steps of 5 mm.

Five data sets were produced, to which 0.01% Gaussian noise was added, and images were

reconstructed on a regular grid of 24 × 24 × 15 pixels using a linear reconstruction algorithm

described in §5.2.2.

7.1.2 Optical topography phantom experiments
Data were obtained using the UCL optical topography system and probe described in §3,

operating at a wavelength of 670 nm.

7.1.2.1 Liquid phantom

A tank filled with an intralipid solution was used to perform measurements similar to the

experiment described in § 6.4. As before, the intralipid solution has optical properties µa=0.01

mm−1, µ′s=1 mm−1 and refractive index η = 1.33. The probe was placed on the centre of the

epoxy resin wall.

We inserted individually four different cylindrical absorbing targets in the liquid at

different known positions along the x, y and z axis. In order to place the target in the desired

position we used three translation stages assembled on an optical table. Figure 7.1 shows

the experimental setup with one of the targets inserted in the liquid phantom. As described

previously, we considered the x and y directions to be parallel to the array (x is the horizontal

axis and y is the vertical axis), and z axis to be perpendicular.
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Figure 7.1: The experimental setup.

target µa (mm−1)
T1 0.0175
T2 0.04
T3 0.02
T4 0.005

Table 7.1: Targets used in the experiment. The
transport scattering coefficient is µ′s=1 mm−1 for
all targets.

The absorbing targets used for this experiment had a diameter and height of 10 mm

and the same µ′s as the medium but different µa. All targets and their respective absorption

coefficient µa are listed in table 7.1. Since one of the main applications of optical topography is

brain imaging, targets should ideally represent a small absorption change typical of the evoked

response in the brain. Another reason to use targets with properties close to the surrounding

medium is that the linear reconstruction approach is only valid for small changes. Nevertheless,

a highly absorbing target is also used for comparison.

Experiment 1 - variable depth. Target T1 was used and positioned at x = 0 mm and y = 0

mm, which is the centre of the array and where sensitivity to changes in the medium should

be highest. The target was moved in depth from z = 12 mm to z = 32 mm in steps of 5 mm

(figure 7.2(a)).

Experiment 2 - fixed depth. For this experiment target T1 was fixed at depth z = 12 mm and

moved in the xy plane, as illustrated in figure 7.2(b). The target was moved from x = −10 mm

to x = 10 mm in steps of 10 mm and the same for the y direction.

Experiment 3 - two targets. The purpose of this experiment is to determine the ability of the

system to separate two targets 2 cm apart. In this study we have used two pairs of targets, the

first pair represented increases in the absorption and the second pair corresponds to an increase

and a decrease in absorption. Both targets were centrally placed at depth z = 12 mm (see

figure 7.2(c)). We chose T3 for both measurements which was paired with target T2 for the first

measurement and with T4 for the second measurement.

Data processing. For all the experiments data were collected at each target position for around

20 seconds and subsequently averaged to reduce the noise. Previous to each acquisition a

baseline measurement was collected for calibration, without any target inserted in the solution.

Differences between reference measurements and target measurements were used in the linear

image reconstruction, to generate three-dimensional images representing absorption changes

occurring within the phantom. A TOAST forward model was used to calculate the Jacobian

matrix, as described previously.
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(a) (b) (c)

Figure 7.2: Phantom experiments. The centre (x, y)=(0, 0) is marked in red. Dimensions are in mm.
(a) Experiment 1 - Target at (0, 0, z) moved from z = 12 mm to z = 32 mm in steps of 5 mm. (b)
Experiment 2 - Target at (x, y, 0) moved from x = −10 mm to x = 10 mm and in steps of 10 mm and
for each x moved from y = −10 mm to y = 10 mm. (c) Experiment 3 - Two targets inserted in the
phantom.

7.1.2.2 Solid phantoms

Experiment 1 - variable depth. A solid dynamic phantom with tissue-like optical properties

was used, which contained seven discrete targets impregnated with thermochromic pigment

located at different depths from the surface. The targets consist of a mixture of thermochromic

dye and polyester resin, and contain a 12 Ω surface mount resistor together with a 4.7 kΩ

bead thermistor (to monitor the temperature) [Correia et al., 2009a]. When heated, the pigment

changes from black to white, with a nominal activation temperature of 47 ◦C. The targets

produced a change in absorption of approximately 0.6 mm−1 when heated above the activation

temperature, which occurs after approximately 70 seconds. The phantom consisted of polyester

resin mixed with titanium dioxide (TiO2) powder, which produced a transport scattering

coefficient µ′s = 0.8± 0.05 mm−1, and an absorption coefficient µa = 0.001± 0.0002 mm−1.

The background absorption is deliberately relatively low (representing that of fatty tissue at

near-infrared wavelengths), enabling depth sensitivity to be evaluated at large depths. It had

dimensions of 115 mm × 100 mm × 73 mm and the targets were located 23 mm above the

bottom surface of the block. The targets were 4.5 mm diameter cylinders with a length of 41

mm and were arranged in the phantom as illustrated in figure 7.3(a). This target arrangement

minimises the imaging array dimensions necessary to cover all targets simultaneously and

confines the targets to a central position, which takes advantage of the higher sensitivity in

the centre of the imaging array. The smallest spacing between targets is 11.2 mm, which is

sufficient to ensure that heating of a target does not cause a colour change in its neighbours.

The target nearest the surface was at depth 5 mm and the deepest at 35 mm, as shown in figure

7.3(b). The target closest to the surface will be referred to as target 1, the second target closest

to the surface as target 2 and so on.
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(a) (b)

Figure 7.3: (a) Schematic of the solid phantom containing seven targets impregnated with
thermochromic dye located at different depths. The targets are electrically activated through the sockets
on top of the phantom; (b) Top view of the phantom showing the target arrangement. Targets are at
depths from 5 mm to 35 mm in intervals of 5 mm.

The phantom construction was designed and produced at UCL. A detailed description of

its construction can be found in [Correia et al., 2009a].

Experiment 2 - fixed depth. Another electrically-activated phantom has been designed and

produced at UCL based on an array of semiconductor diodes, which are used to heat targets

containing thermochromic dye embedded in a solidified polyester resin with tissue-like optical

properties [Hebden et al., 2008a]. Sixteen targets were arranged in four rows of four, with the

centre of each target 20 mm apart and at a depth below the top surface of 15 mm (figure 7.4).

Each target can be activated individually. The targets are contained within a block of polyester

resin mixed with TiO2 powder, with the same optical properties as the phantom described in

experiment 1. Each target was an 8 mm diameter cylinder with a height of 8 mm. The targets

produced a change in absorption of approximately 0.6 mm−1, when heated above the activation

temperature.

Experiment 3 - two targets. The first electrically-activated dynamic tissue-equivalent phantom

produced at UCL contained two targets impregnated with thermochromic pigment. A detailed

description of its construction and results from transmission measurements performed across

the phantom can be found in [Hebden et al., 2008b]. The resin block surrounding the two targets

has a transport scattering coefficient µ′s = 1.0 ± 0.1 mm −1 and an absorption coefficient µa =

0.001± 0.0002 mm −1. The targets were placed 10 mm below the top surface and 30 mm apart.

The targets contain different pigment concentrations, target A produced an absorption change

of approximately 0.64 mm−1 and target B of 0.26 mm−1, when heated above the activation

temperature.

Data processing. In the first experiment, the probe was placed on the centre of the xy surface

at z=0 mm (using the coordinate system shown in figure 7.3(a)), with the centre of the array

immediately above the centre of target 2. In the second experiment, the probe was placed on

the centre of the top surface. Data were acquired for the four central targets of the array. In the

third experiment, the probe was placed directly above the two targets.
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Figure 7.4: Solid phantom where each diode is embedded within a cylindrical target containing
thermochromic pigment [Hebden et al., 2008a].

Data were acquired for 20 s with the targets at room temperature, and then each target

was heated in turn (except for experiment 3, where targets were activated simultaneously)

for approximately 70 s, followed by a cooling period of 120 s to allow the targets to

return to room temperature. For each target and each source-detector channel, a reference

measurement was calculated from the mean signal of the 20 s recorded at room temperature.

Similarly, the activation measurement was obtained by averaging over the 20 s segment of data

centred on the time at which the maximum temperature was reached. Difference between the

reference measurements and the corresponding activation measurements were used to generate

three-dimensional images representing absorption changes occurring within the phantom. The

Jacobian was calculated for a homogeneous medium with optical properties µ′s = 0.8 mm−1

and µa = 0.001 mm−1.

7.2 Variable regularisation parameter

The L-curve method was employed to find the regularisation parameters for the simulation

and liquid phantom with target T1 at different depths. This should provide a variation of λ

with depth for these discrete positions, and it should be possible to find an expression that best

fits the data to represent our depth-dependent regularisation parameter. Figure 7.5 shows the

normalised regularisation parameters for the liquid phantom with target T1 at different depths,

and exponential and sigmoidal fits to the data. The fit results are similar for the simulated data.

For the exponentially variant regularisation (signified by the label E), the expression found

empirically was

λE = exp
(
−z

9

)
, (7.3)

which is very similar to that found using the values obtained from the L-curve method. This

expression was found by testing different exponential decays and observing the effect on the

image reconstruction.

The image can be reconstructed using the following expression:
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Figure 7.5: Exponential and sigmoidal fit to the normalised regularisation parameters found using the
L-curve method, for the phantom with target T1 at different depths.

xλv =
(
JTJ + (λcλv)

2
)−1

JT b (7.4)

= λ−1
v

(
λ−1
v JTJλ−1

v + λ2
cI
)−1

λ−1
v JT b (7.5)

= λ−2
v JT

(
Jλ−2

v JT + λ2
cI
)−1

b, (7.6)

where λv is the spatially variant regularisation parameter , λc = λσmax and σmax is the

maximum singular value of JJT . The value λ is found using the L-curve method.

The sigmoid (S) function, obtained directly by fitting the data obtained from the L-curve

for the target T1 at different depths, when used as a regularisation parameter did not produce

images with improved spatial accuracy. Empirically, and for all the data, we found the optimal

function to be:

λS = 1− 1

1 + exp
(

(z−20)
6.5

) . (7.7)

Another method tested was the NOSER type regularisation, where the regularisation

parameter takes the form

λNOSER = diag
(
JTJ + γ

)1/2
, (7.8)

where the constant γ = ασ−1
max ensures that the regularisation parameter is never too small,

and is approximately equal to the noise present in the data. As shown in §6, the discrete Picard

condition can help find a reasonable estimate of the noise level. For experimental data α = 1

most of the time, but this parameter can be adjusted to improve contrast and resolution, specially

for perturbations located in deeper regions. The NOSER type regularisation can be used in

equation (7.6), which we rewrite as
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xλNOSER1
= λ−1

NOSER J̃
T (J̃ J̃T + λI)−1b, (7.9)

where J̃ = Jλ−1
NOSER. The alternative expression where λNOSER is not squared can also be

considered:

xλNOSER2
=
(
JTJ + λ2

cλNOSER
)−1

JT b (7.10)

As shown by Endoh et al [2008], using this type of regularisation to reconstruct images

gives uniform sensitivity and equal weights to the unknowns. They give an example of a simple

under-determined problem with one equation and two unknowns, Jx = b, where J = [j1, j2],

b = [b] and x = [x1, x2]T . For a zero order Tikhonov with a constant regularisation parameter

the solution is

xλc =
(
JTJ + λ2

cI
)−1

JT b (7.11)

=

([
j2
1 j1j2

j1j2 j2
2

]
+

[
λ2
c 0

0 λ2
c

])−1 [
j1
j2

]
[b] (7.12)

=
1

j2
1λ

2
c + j2

2λ
2
c + λ4

c

[
j2
2 + λ2

c −j1j2
−j1j2 j2

1 + λ2
c

] [
j1
j2

]
[b] (7.13)

=
[

j1b
j21+j22+λ2c

j2b
j21+j22+λ2c

]
. (7.14)

From this solution it is clear that if j1 is larger than j2, then x1 will have larger weighting than

x2. Therefore this type of regularisation favours high sensitivity regions. On the other hand,

if a variable regularisation parameter is used (equation 7.10), λv = [λ1, λ2] and the solution

becomes

xλv =
[

j1λ2b
j21λ2+j22λ1+λ1λ2

j2λ1b
j21λ2+j22λ1+λ1λ2

]
. (7.15)

If λv is chosen to be proportional to diag(ATA)(1/2), i.e., λ1 = λ2
c

√
j2
1 and λ2 = λ2

c

√
j2
2 , then

the solution has equal weighting

xλv =
[

b
j1+j2+λ2c

b
j1+j2+λ2c

]
. (7.16)

If equation (7.9) is used the solution becomes

xλv =
[

b
2j1+j1λ2c

b
2j2+j2λ2c

]
, (7.17)

which has larger weighting for regions with lower sensitivity and should prevent the

reconstructed features from appearing artificially close to the surface. One can include the

measurement covariance matrix, like in equation (7.2), which penalises noisier measurements

[Adler et al., 2007]. The measurement covariance matrix C is a diagonal matrix defined as

C = diag(σ2
b )/max(σ2

b ), where σ2
b is the vector of measurement covariances, derived from

the standard deviation of the measurements σb. The method that combines both NOSER

and covariance matric C in the image reconstruction is signified by the label NOSER&C.
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Instead of using R in eq. (7.2) as a NOSER type matrix, the regularisation matrix can be

defined as the image covariance, which is the noise sensitivity: R = P/max(P ), where

P = diag
(
invJ C invJT

)
and invJ = JT

(
JJT + λ2

cC
)−1. This method is signified

by the label R&C. The simpler case where C=I can also be considered, which means that

the regularisation is equal to the normalised image covariance for measurements with equal

variance (signified by the label R).

The variance uniformisation (VU) constraint [Cohen-Bacrie et al., 1997] is another

statistical approach. Recall that the singular value decomposition of the matrix J = USV T ,

hence the variable regularisation parameter is defined as

λV U = V DV T , (7.18)

where D is a diagonal matrix given by

D =
S√
c
− STS, (7.19)

where c is a parameter that controls the level of variance of the reconstruction.

7.3 Image analysis
An analysis of the image quality was performed, to determine how the depth-dependent

regularisation influences the resolution, spatial accuracy and contrast. It is anticipated that

depth discrimination will be improved significantly.

Spatial resolution is often characterised by the Full Width at Half Maximum (FWHM) of

the point spread function (PSF). The true PSF represents the image of an object of infinitesimal

size. The image cross-sectional plane for each target is, in fact, the convolution of the true target

structure with the PSF. Therefore the squared FWHM of the target image is approximately equal

to the squared width of the true target added to the squared width of the PSF, i.e., FWHM2 =

FWHM2
true + FWHM2

PSF . Profiles containing the highest intensity pixel in the image were

generated and the FWHM was calculated for each direction. The estimates of the PSF width for

each direction were calculated using FWHMPSF =
√
FWHM2 − FWHM2

true and then

averaged. The error is given by the pixel size, which is 3.3 mm for the z direction and 3.5 mm

for the x and y directions. For a three dimensional comparison between the images, we consider

the normalised FVHM to be the image volume that contains voxels which have corresponding

values greater than or equal to 50% of the maximum value divided by the total volume. The

error associated with FVHM corresponds to the propagation of the uncertainty associated with

the target volume, i.e., |∂FV HM∂Vt
|σVt , where σVt is the standard deviation of the target volume

Vt.

Contrast is a measure of the ability to distinguish a feature based on its brightness in the

image relative to the background. Image contrast in terms of µa can be expressed as C =

(µamax − µabkg)/µabkg , where µamax refers to the maximum absorption coefficient value in

the ROI and µabkg is the mean background absorption coefficient. The error associated with

derived contrast values corresponds to the propagation of the uncertainty associated with the

calculation of the background absorption coefficient, i.e., | ∂C
∂µabkg

|σµabkg , where σµabkg is the
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standard deviation of µabkg .

We define the spatial accuracy (SA) as a measure of the error between the true and the

apparent positions of the target. The apparent position xm is derived from the weighted mean

position along the one dimensional profiles, which is calculated as xm =
∑n

i µaixi/
∑n

i µai .

Again, the uncertainty in position corresponds to the intrinsic pixel size.

The total error for resolution, contrast and spatial accuracy, for each experiment, is

calculated using the root squared error (RSE). For example, for the SA for i target positions

the RSE is
√∑

i (xm,i − xtrue,i)2, where xtrue is the true position of the target.

7.4 Results and discussion
Different regularisation types were used in the reconstruction of images from the simulated

and liquid phantom data. An extensive analysis of the images focused on the depth recovery

accuracy of the inclusions was performed to help us identify a suitable regularisation type. Once

it was identified, the same was used to reconstruct images from the remaining measurements.

7.4.1 Simulations and liquid phantom experiments
Experiment 1. Images of the simulated and phantom data were reconstructed using the different

types of regularisation. For the purpose of this analysis only the xz cross-sectional images of

each target were used. Contrast, resolution and spatial accuracy were calculated for each image

reconstructed using the different variable regularisation parameters. The results are summarised

in tables B.1-B.4 in appendix B, and images are displayed from the simulations and phantom

data with target T1, for the all regularisation types.

Figure 7.6 shows the weighted mean depth for the simulation versus the true depth of the

target, for the different variable regularisation parameters. Those that use a statistical approach

are shown in figure 7.6(a) and the remaining types in figure 7.6(b). The uncertainty in depth

corresponds to the intrinsic uncertainty due to the pixel size, which is 3.3 mm. The straight

line represents the expected depth. When the target is at 15 mm the image reconstruction using

a constant regularisation performs better than any of the other methods. All the methods fail

to accurately locate the target at 30 mm. Nevertheless, at 30 mm they all show a significant

improvement compared to the reconstruction using a constant regularisation λc.

For the liquid phantom experiment, the targets were placed at different depth from 12 mm

to 32 mm in intervals of 5 mm. For the phantom with target T1, it is clear from figure 7.7

that the reconstructed images using a spatially variant regularisation parameter provide better

depth localisation than when only λc is used. However, all regularisation types fail to accurately

locate the target at 32 mm depth.

Figure 7.8 shows a stacked bar chart, where each bar represents the global depth accuracy

calculated using the RSE (zRSE), for each regularisation type for both data sets. The spatially

variant regularisation types analysed show a visible improvement in the depth localisation of the

target, in comparison with the image reconstruction using a constant regularisation parameter.

Overall, the differences between the different regularisation types are not very significant.

Nevertheless, the NOSER type gives slightly higher depth accuracy.

The PSF width error was calculated in a similar manner as the depth accuracy error, i.e.,

using the RSE. Figure 7.9 displays a stacked bar chart of the PSFRSE for all the regularisation
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(a) (b)

Figure 7.6: Graph showing how the apparent depth zm of target in the image varies with true depth.
Images reconstructed from simulated data using (a) regularisation parameters that use noise statistics
and (b) the remaining types.

(a) (b)

Figure 7.7: Graph showing how the apparent depth zm of target in the image varies with true depth.
Images reconstructed from measurements performed on the liquid phantom with target T1, using (a)
regularisation parameters that use noise statistics and (b) the remaining types.

types. The VU regularisation yields the narrowest PSF. It also has the narrowest PSF for

phantom images, whereas the sigmoidal regularisation yields the narrowest PSF for images

reconstructed from simulated data. Images reconstructed using a constant regularisation

parameter yield a narrow PSF, because the target is always located near the surface due to

the higher sensitivity in this region, hence the perturbation appears confined to a smaller

volume. Furthermore, the L-curve regularisation parameter selection method finds a λc which

produces images reconstructed with a ”good” resolution. Since the reconstructed images are

three dimensional, it is necessary to analyse the FVHM error (FVHMRSE) whose bar chart is

displayed in figure 7.10. The apparent volume of the target in the images is larger for the R and

R&C methods. The image resolution is highest for the VU or sigmoidal regularisation types.

The bar chart in figure 7.11, shows that the global contrast error, CRSE , is higher for
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Figure 7.8: Each bar represents the depth root
squared error (zRSE) of the target in the images
obtained using each regularisation type.

Figure 7.9: PSF width root squared error
(PSFRSE) of the reconstructed images using
different regularisation types.

Figure 7.10: FVHM root squared error
(FVHMRSE) of the target in the images obtained
using each regularisation type.

Figure 7.11: Contrast root squared error (CRSE)
of the reconstructed images using different
regularisation types.

the regularisation types S and E. The other methods exhibit similar contrast. In general, the

absorption change was underestimated in the phantom reconstructions and overestimated for

the simulations when the target is at 10 mm depth. Contrast decreases with depth, and for this

reason absorption changes occurring in deeper regions are underestimated (refer to appendix B

for contrast values).

All the spatially variant regularisation types clearly improve the depth localisation of the

target in the image. If only λc is used, one is not able to accurately locate targets placed deep

below the surface. From the bar charts we find that the NOSER regularisation produces images

with all the desired qualities: a reasonably good resolution, contrast and depth localisation.

Using the NOSER type regularisation, all the apparent depths of the target in the image for

the simulation and liquid phantom agree with the true depth within the associated uncertainty,

except when the target is at 30mm and deeper. At 15 mm depth, the simulated target appears

deeper in the reconstructed image. However, the point of maximum intensity is at 16.7 mm. For

most regularisation types, the amount of blur in the z direction is higher when the simulated
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Figure 7.12: Lateral spatial accuracy of
the target in the images obtained using
constant regularisation (blue) and NOSER
type regularisation (red).

Figure 7.13: PSF width of images obtained using
constant regularisation (blue) and NOSER type
regularisation (red).

Figure 7.14: FVHM of the target in the images
obtained using constant regularisation (blue) and
NOSER type regularisation (red).

Figure 7.15: Contrast accuracy of the
reconstructed images using constant regularisation
(blue) and NOSER type regularisation (red).

target is at 15 mm depth (not shown) which leads to a decrease in the depth accuracy.

The NOSER penalty is applied to the whole three dimensional volume, instead of varying

regularisation only in depth, which is an advantage. We used equation (7.10), which gave better

depth accuracy at the expense of resolution and contrast. The VU method could be used as

an alternative method. The exponentially variant regularisation could be adapted to vary in

three dimensions, but that would require determining the decay rate for both x and y directions.

When dealing with very large matrices, and if only correction in the depth direction is required,

it is computationally more efficient to use methods such as S or E. These also produce images

with good quality, but require less matrix manipulation.

Experiment 2. The effect of the NOSER regularisation on the lateral position of the target was

analysed. The target was placed at 9 different (x, y) positions at 12 mm depth. The contrast,

resolution and spatial accuracy for images reconstructed using a constant and a variable λ are

summarised in appendix B. Figure 7.12 shows the lateral spatial accuracy SAxy (calculated

using the RSE) for each of the target positions, using a constant regularisation in the image

reconstruction (blue bars) and the NOSER type regularisation (red bars). The SAxy improves

with NOSER. The PSF width increases with the use of NOSER (see figure 7.13). However,

when we analyse the three dimensional image we find that the resolution increases for most
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Figure 7.16: Image reconstructed using NOSER
regularisation of targets T3 (left) and T2 (right).

Figure 7.17: Image reconstructed using NOSER
regularisation of targets T3 (left) and T4 (right).

of the target positions (see figure 7.14). The image contrast becomes more uniform when

NOSER is used, as shown in figure 7.15. Thus, not only the accuracy of the reconstructed

images improves when NOSER regularisation is used, but images are produced with a quality

independent of the location of the target.

Experiment 3. The reconstructed image, using the NOSER regularisation, of targets T2 and

T3 at 12 mm depth is shown in figure 7.16. Target T2 is located on the right and T3 on the

left. The apparent separation of the targets is 31.9 ± 3.5 mm, which is much larger than the

true separation. Furthermore, target T3 is misplaced along the y direction by 7.1 ± 3.5 mm.

Figure 7.16 shows a xz plane that crosses the two targets, and we see that they appear at slightly

different depths. However, it is possible that the targets were not exactly at the same depth and

y position. The apparent separation of the targets in the image reconstructed using λc is the

same. For this image, the contrast of target T2 is 0.2 ± 0.01 and T3 is 0.1 ± 0.02, and the PSF

widths are 4.7 ± 3.4 mm and 6.8 ± 3.4 mm, respectively. Contrast is better and the PSF width

is narrower when the NOSER regularisation is used: the contrast of the target T2 is 2.5 ± 0.8

mm and PSF width is 1.1 ± 3.4 mm. For target T3 these values are 1.7 ± 0.2 mm and 5.4 ±
3.4 mm, respectively.

The image of targets T3 and T4 can be seen in figure 7.17. Target T3 is on the left side.

The apparent separation of the targets in the NOSER reconstructed images is 24.3 ± 3.5 mm.

Whereas, when a constant λ is used to reconstruct the images the apparent separation is 28.8 ±
3.5 mm. The reconstruction using the variant regularisation produces higher contrast, which is

closer to the true value, 0.8± 0.2 for target T3 and -0.5± 0.06 for target T4, against 0.3± 0.06

and -0.21 ± 0.04 for the reconstructed images using a constant regularisation parameter. The

PSF width is larger for target T4, 9.1 ± 3.4 mm (with λc is 10.3 ± 3.4 mm). For target T3 the

value is 4.1 ± 3.4 mm (with λc is 6.8 ± 3.4 mm).

The apparent separation accuracy using λc is already quite high. Including NOSER in the
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Figure 7.18: Optical topography images of each target in the xz plane. Bottom images from right to left
correspond to (a) target 1 located at true depth ztrue=5 mm, (b) target 2 at ztrue=10 mm and (c) target
3 at ztrue=15 mm. Middle images from right to left show (d) target 4 at ztrue=20 mm and (e) target
5 at ztrue=25 mm. Top images from right to left show (f) target 6 at ztrue=30 mm and (g) target 7 at
ztrue=35 mm.

reconstruction algorithm improved the resolution and contrast.

7.4.2 Solid phantom

Experiment 1. For the purpose of this analysis only the xz cross-sectional images of each

target were used. This gives us information regarding apparent depth and lateral positions of

the targets. Figure 7.18 shows the images for each target in the xz plane at y = 33 mm. Note that

the targets produce a localised decrease in absorption when they are activated electrically. The

targets in the image have different relative locations, and visually they seem to be approximately

accurate. It is also clear that the spatial resolution and contrast decreases with depth.

Profiles containing the highest intensity pixel in the image were generated for both the x

and z directions and the FWHM was calculated in each case. Then, the estimates of the PSF

width were calculated. Figure 7.19 shows the mean values of the PSF width for each target

plotted as a function of depth, and as expected the resolution decreases with depth, except for

the discrepancy in the general trend between targets 3 and 4. The lower resolution of target 3 is

almost certainly due to the lower sensitivity of the imaging array to perturbations located near

the edges, as opposed to higher sensitivity to perturbations in central locations.

As shown in figure 7.20, contrast decreases with increasing depth up to 20 mm depth, and

beyond this point contrast values are very low. This means that the reconstructed absorption

changes become less accurate with depth. The error associated with derived contrast values
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Figure 7.19: Graph showing how resolution
varies with depth.

Figure 7.20: Graph showing how contrast varies
with depth.

Figure 7.21: Graph showing the difference
between the real target position and apparent
position in the image, assuming that target closest
to the surface is in the correct position.

Figure 7.22: Graph showing how the depth of
the target in the image varies with true depth. The
expected depth is represented by the straight line.

increases from 4% of the background value for the first target to 15% for the deepest target.

It is assumed that the target closest to the surface was in the correct location, and therefore

the positions of the other targets were calculated relative to this. As shown in figure 7.21, the

lateral spatial accuracy reduces with depth, due to the lower sensitivity of the measurements

and the smaller number of overlapping measurements at deeper regions. Meanwhile in figure

7.22, the calculated apparent position in the z direction reveals a very good agreement with the

true depth of the target. The apparent depth agrees with the true depth within the associated

error, at all depths up to at least 30 mm.

The results shown were obtained using the NOSER regularisation in equation (7.9). The

results obtained using the alternative equation (7.10) were similar, although the image contrast

was not quite as good. These images and results have been published in [Correia et al., 2009a].

Summarising, the study presented here indicates that while spatial resolution degrades

roughly linearly with depth, contrast falls exponentially. It is also shown that, with an

appropriate choice of regularisation parameter, the apparent depth of a feature can match the
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Figure 7.23: Images of four perturbations embedded in a solid phantom, reconstructed using a spatially
variant regularisation parameter, NOSER. Targets were activated in the following order: (a) upper left;
(b) upper right; (c) lower left; and (d) lower right. The crosses represent the approximate expected
positions of the targets.

true depth within the statistical uncertainty of the measurement. Relatively good resolution,

contrast and spatial accuracy were obtained for images reconstructed of targets up to 20 mm

depth. For targets located deeper, our system was still able to reconstruct sensible images but

with lower quality.

There are three factors which contribute towards the poor recovery of true contrast

values shown in figure 7.20. First, the linear reconstruction algorithm inherently assumes

that all changes in optical properties are small (infinitesimal). Second, the Jacobian matrix

used in the reconstruction algorithm assumes homogeneous optical properties (as is common

practice in scientific applications of optical topography), while the phantom is actually highly

heterogeneous. The image reconstruction is also sensitive to the initial estimate of the

optical properties used to calculate J. Although non-linear methods (where the Jacobian is

updated iteratively [Arridge, 1999]) have been shown to provide more quantitatively accurate

results, they are computationally complex and slow, and not suitable for real-time imaging

of haemodynamic activity. Third, the decrease in spatial resolution with depth (shown in

figure 7.19) implies that the contrast is spread over a greater volume at larger depths, and thus

the maximum absorption value in the image is lower (hence the decrease observed in figure

7.20). The latter factor also applies to the previous studies as well as the sensitivity of the

reconstruction to the initial values used to calculate the matrix J.

Experiment 2. The reconstructed images, using the NOSER regularisation, of the four targets

embedded in the solid phantom are shown in figure 7.23. The images correspond to a depth of

15 mm below the surface. The targets were activated sequentially, from (a) to (d). The crosses

indicate the approximate position of the targets. The absorption changes caused by heating the

target roughly occur in the expected region. Figure 7.23(a) shows the lowest contrast, possibly

because it was the first target to be activated. Since the phantom is initially at room temperature,

the target cools more quickly and produces lower contrast. The reconstruction underestimated

the true change, which is expected since linear reconstruction can only provide realistic values
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Figure 7.24: Images of two targets embedded in a solid phantom, reconstructed using NOSER types
regularisation.

in the presence of small perturbation.

The images reconstructed using a constant regularisation parameter do not differ

significantly. However, the first activation is reconstructed closer to the expected position

and resolution is slightly better. The images reconstructed using λc have been published

in [Hebden et al., 2008a], along with images from another phantom. This other phantom

consisted of a block of polyester resin, TiO2 powder mixed together with thermochromic

pigment through the volume. For this phantom design the absorption changes spread through

an unknown volume. Therefore, it is not as suitable as the phantom studied to quantify spatial

accuracy.

Experiment 3. Figure 7.24 shows a decrease in absorption produced by the two targets

embedded in the solid phantom. This image was obtained using the NOSER regularisation

and corresponds to a depth 10 mm below the surface. The apparent separation of the targets is

35 mm, which is slightly larger than the true separation of 30mm. Target A is on the left,

showing a larger absorption change, and target B on the right. As before, the absorption

change is underestimated. Including the NOSER regularisation in the reconstruction increased

contrast and resolution compared to images reconstructed using λc (published in [Hebden et al.,

2008b]).

7.5 Conclusions
One of the limitations of optical tomography as a brain imaging tool is the low sensitivity

to haemodynamic activity occurring within deeper tissues compared to that occurring nearer

the surface. Nevertheless, considerable effort has been devoted to the development of

image reconstruction algorithms capable of generating three-dimensional images from diffuse

reflectance data, and schemes have been devised which aim to improve the ability of optical

tomography to discriminate along the depth direction.

Simulated data were generated and measurements on phantoms were performed, for

perturbations in the absorption coefficient placed at different spatial locations. Several spatially

variant regularisation types were evaluated in the image reconstruction algorithm, and their

performance was analysed in terms of contrast, resolution and spatial accuracy. They all

had a significant effect on the depth accuracy, and performed much better than the simple
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reconstruction using a constant regularisation parameter. The influence is more apparent for

perturbations deeper than 15 mm; down to that depth the images reconstructed using λc have

an accuracy similar to that obtained when a variable regularisation parameter is used. The

NOSER type regularisation improves the quality of the images, in all directions, by applying

a different regularisation to each voxel. When imaging two perturbations placed side by side

at the same depth, the effect of the NOSER regularisation is more obvious on the contrast and

resolution, although the spatial accuracy slightly improves. However, this study was performed

at a very superficial depth, and if tests had been performed using targets deeper in the phantom,

the benefit of the NOSER type regularisation would be more obvious. Contrast and resolution

decrease with depth, and an increase in the number of overlapping measurements at deeper

regions could potentially improve the quality of the images of deeper located targets.

This study to quantify the quality of the reconstructed images was valuable in order

to understand the potential and limitations of the UCL optical topography system, and the

results can inform the interpretation of results of clinical studies. It also allows a quantitative

comparison between optical topography systems and other medical imaging modalities.

In conclusion, using the NOSER type variable regularisation parameter in the image

reconstruction algorithm, enables good depth discrimination to be obtained from optical

topography measurements.



CHAPTER 8

Identification of the optimal wavelengths using photon density
measurement functions

The choice of wavelengths for NIRS is limited by the ”transparency” window for biological

tissue, which is approximately from 600 nm to 900 nm. In this region the absorption by the

main chromophores (oxy-haemoglobin, deoxy-haemoglobin and water) is relatively low, which

allows the light to travel relatively deep into the tissue. The wavelength pair 780 nm and 830

nm has been widely used because each wavelength is located symmetrically on either side of

the isosbestic point at 805 nm, where the HbO2 and HHb specific extinction coefficients ε

cross over. These wavelengths are also widely available as laser diode sources. However, this

wavelength pair may not necessarily be the optimal choice for optical topography imaging.

In this chapter a method to select the optimal wavelengths for optical topography is proposed

based on the similarity between volumes interrogated by NIR light.

A few NIRS studies have been published which explore the selection of an optimal

wavelength pair that minimises cross-talk, where a change in [HbO2] may replicate a change in

[HHb] and vice versa, and reduces the noise level of the calculated chromophore concentration

changes caused by noise in the measurements [Uludağ et al., 2004; Yamashita et al., 2001].

Most NIRS approaches use the MBLL (mentioned previously in §3.4) to calculate the changes

in the chromophore concentrations. The MBLL is an empirical description of light propagation

through scattering and absorbing media, where a change in the logarithm of the detected

light intensity is proportional to a change in the chromophore concentrations: − ln ∆I =

ε∆c dDPF , where d is the distance between the points where the light enters and leaves

the medium and DPF is the differential pathlength factor [Boas et al., 2001a; Strangman et al.,

2002]. The DPF accounts for the increase in the distance travelled by light due to scattering.

It depends on tissue absorption, scattering and optode separation, and therefore is wavelength

dependent [Boas et al., 2001a].

Yamashita et al [2001] have shown that the most accurate measurements of the

concentration changes in the brain (motor cortex) using NIRS are obtained for wavelengths



142

below 700 nm paired with 830 nm. Meanwhile, Strangman et al [2003] showed experimentally

and theoretically that the wavelength pair 691 nm or 752 nm with 830 nm produces more

accurate results than the pair 780 nm and 830 nm, which exhibits a high sensitivity to cross-talk

and to all sources of noise. The 780/830 nm pair is more sensitive to errors in the DPF than

other pairs. For the 780/830 nm pair Strangman et al [2003] also verified that a small error

in the optical properties results in a large error in the calculated oxygen saturation. They state

that the sensitivity to measurement errors is so large that they gain very little benefit by using

wavelengths with overlapping spatial sensitivities, which theoretically should reduce cross-talk.

They proved analytically that the cross-talk is proportional to the difference between the partial

pathlength factor (PPF). For an inhomogeneous change in µa the medium is divided into partial

volumes of uniform absorption change, and the DPF is replaced by the PPF through a region

of uniform absorption change at two wavelengths. They concluded that any wavelength in

the range of roughly 770 nm - 800 nm paired with 830 nm will result in poor chromophore

concentration information.

Another NIRS study of the adult head that yielded similar results was performed by

Uludağ et al [2004]. They evaluated theoretically, for the full wavelength range, and

experimentally different wavelength pairs in terms of cross-talk and noise present in the

calculated chromophore concentration changes. They concluded that one of the wavelengths

has to be between roughly in the range 650 nm - 720 nm and the other above 820 nm, in order

to achieve both low cross-talk and noise. Okui et al [2005] performed a theoretical study where

they analysed the cross-talk between ∆[HbO2] and ∆[HHb] and vice- versa, since these have

different magnitude and sign. They found that the optimal wavelength to pair with one at 830

nm should be in the interval 690 nm - 750 nm. They also showed that the change in the thickness

of the superficial layers influences the PPF and consequently the cross-talk. Umeyama et al

[2009] proposed a new cross-talk measure, based on the mean squared error of the calculated

concentration changes, which deals with both ∆[HbO2] and ∆[HHb] cross-talk.

Sato et al [2006] investigated the dependence of the DPF on 4 wavelength pairs and for 3

different source-detector distances. They analysed the hemodynamic activation signals from the

visual cortex and concluded that for 692 nm, 759 nm and 782 nm paired with 830 nm the DPF

was approximately the same, suggesting that the volume investigated is the same. However,

for the pair 678/830 nm there was possibly a slightly difference in the spatial sensitivity. In

a previous study Sato et al [2004] found that using a 692 nm wavelength paired with 830nm

increases the signal to noise ratio compared to the 780/830 nm pair.

Corlu et al [2005] introduced the first method for choosing the optimal wavelengths

for diffuse optical imaging. The non-uniqueness problem associated with CW imaging is

manifested as cross-talk between the images of absorption and scattering. A multispectral

reconstruction method can help overcome the non-uniqueness problem. Instead of

converting the absorption and scattering coefficients at each wavelength into the chromophore

concentrations and scattering components, using images reconstructed with the conventional

method, all the measurements at all wavelengths are used to reconstruct directly the

chromophore concentrations, which are wavelength independent (refer to §5.2.2.2.2 for more

detail). Corlu et al [2005] introduced two conditions for choosing the measurement wavelengths
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that give optimum absorption and scattering separation and also optimum separation between

the main breast tissue chromophores (HbO2, HHb, water and Lipid). Based on this method,

Eames et al [2008] explored the influence of using data for the full spectrum on the

reconstructions. They concluded that by using optimal spectral windows instead of the full

spectrum, not only the reconstruction is computationally faster but cross-talk is reduced, which

suggests that not all wavelengths add useful information.

One cannot guarantee that the volumes over which measurements are sensitive to changes

in absorption and scattering are identical for the wavelengths selected by the two conditions

defined by Corlu et al [2005]. This issue is of importance in order to accurately locate optical

property changes occurring within the object of study, since different wavelengths may have

different sensitivities to the same changes in the medium and the same measured change

could be associated with changes in different regions within the reconstructed volume. In this

study the optimal wavelength set is estimated by incorporating a third condition which takes

into account the interrogated volume. The spatial similarities between sensitivity profiles for

different wavelengths are analysed and quantified.

8.1 Unique and simultaneous reconstruction
The non-uniqueness problem associated with using CW measurements results in cross-talk

between absorption and scattering. Minimising the non-uniqueness of the multispectral method

by selecting the optimal wavelengths represents one of the conditions introduced by Corlu et al

[2005]. Rewriting the non-uniqueness conditions introduced by Arridge and Lionheart [1998]

in terms of the wavelength independent variables in the multispectral method and considering b

in equation 2.7 to be constant for simplicity, it follows that the inverse problem has a non-unique

solution when the residual norm R [Corlu et al., 2005]

R =
∥∥∥1− E (ETE)−1

ET1
∥∥∥ (8.1)

is zero, hence the maximisation of R is required. E is a wavelength dependent matrix of the

form

E(λ) =


ε1(λ1)

λb1

ε2(λ1)

λb1
· · · εi(λ1)

λb1
...

...
...

...
ε1(λn)
λbn

ε2(λn)
λbn

· · · εi(λn)
λbn

 . (8.2)

The ability to separate chromophore concentrations can be evaluated from the matrix form

of equation (2.3) [Corlu et al., 2005]

 ∆µaλ1
∆µaλ2
. . .

∆µaλn

 =

 ε1(λ1) ε2(λ1) · · · εi(λ1)
...

...
...

...
ε1(λn) ε2(λn) · · · εi(λn)

 ∆c1
∆c2
. . .
∆ci

 , (8.3)

using the condition number k of the extinction coefficient matrix εi(λ), which is the ratio of the

largest to the smallest singular value of the matrix. A small k(εi(λ)) indicates a smooth singular

value decay resulting in a reduced sensitivity of the system to errors in the measurements,
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and therefore chromophores contribute evenly to absorption. In order to distinguish between

chromophore concentrations the wavelength sets chosen should minimise the condition number

k(εi(λ)), which defines the second condition. This condition number also describes the linear

independence of the system of equations. When k(εi(λ)) is small the matrix has full rank, and

therefore the wavelength set provides distinct and independent information.

8.2 Interrogated volume
In optical topography brain activation studies using multiple wavelengths it is invariably

assumed that measurements at each wavelength contain information from the same cerebral

region. If not, data at some wavelength could be measuring a region where the activation

occurs whereas the data at others could be more sensitive to surrounding areas, and the study

may return erroneous results. Each row of the Jacobian matrix J represents a PMDF, which is

the measurement sensitivity of a source-detector pair to a perturbation in the optical properties

of the object of study [Arridge, 1995]. In terms of image reconstruction, if the forward model

is calculated for the same optical properties but, however, the measurement wavelengths have

different sensitivities to changes in absorption and scattering, then for a perturbation in the

optical properties of the tissue, the reconstructed perturbation will occur in different spatial

locations. In practice, the optical properties of tissues beneath the probe are unknown, and in

order to reconstruct changes in tissue properties as accurately as possible, it is necessary to

acquire data at wavelengths where the sensitivities at each wavelength coincide.

The aim of this study is to find which combinations of wavelengths have overlapping

sensitivities, which is an indicator of the similarity between interrogated volumes, by comparing

PMDFs for a certain source-detector pair using different measurement wavelengths.

8.3 Methods
8.3.1 Similarity Measures
It is essential to find a reliable method of comparing the sensitivity profiles generated for the

different wavelengths. Several similarity measures commonly used in image registration are

described below and their adequacy for comparing PMDFs is evaluated. These techniques are

explained in more detail in [Hill et al., 2001].

8.3.1.1 Sum of squared differences

The sum of squared differences (SSD) method calculates the sum of differences between the

squares of the values in the two PMDFs. For PMDFsX and Y with voxels i, the SSD is defined

as

SSD =
1

N

N∑
i

|X(i)− Y (i)|2 ∀i ∈ X ∩ Y, (8.4)

whereN is the number of voxels. The SSD will be zero when the distributions are identical and

will increase with increasing difference. This similarity measure is optimum when the images

differ only by Gaussian noise [Hill et al., 2001]. One of its disadvantages is the high sensitivity

to a small number of voxels that have large differences between the PMDFs [Hill et al., 2001].
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8.3.1.2 Ratio-image uniformity

An alternative similarity measure is the ratio-image uniformity (RIU), which has been employed

to register PET images [Woods et al., 1992]. It is based on the assumption that if two images

are aligned, then the voxels in the images are related by a scaling factor. If the images are

misaligned, then this scaling factor is no longer constant. The RIU is found by minimising the

normalised standard deviation of the ratio image r calculated from images X and Y as follows

[Hill et al., 2001]

r(i) = X(i)/Y (i)

RIU =
σr
µr
,

(8.5)

where σr is the standard deviation of r and µr is the mean of r, both calculated over the number

of voxels N in the overlap domain. Because RIU may be biased to the image used as reference,

the roles of the two images can be switched, and the two normalised standard deviations are

then averaged, hence the ratio image becomes

r(i) =

(
X(i)
Y (i)

+
Y (i)
X(i)

)
/2. (8.6)

A disadvantage of this method is the high sensitivity to noise for low value voxels. For

example, comparing two images that only differ by noise, if for the noise-free image one of the

background values is 1 and the corresponding voxel in the noisy image is 5, then the average

ratio is 2.6. This value should be close to 1, which happens for images with larger voxel values

and the same noise level.

8.3.1.3 Correlation coefficient

The correlation coefficient (CC) is the optimum measure if the images X and Y are linearly

dependent. This involves maximising the function

CC =

∑N
i

(
X (i)− X̄

) (
Y (i)− Ȳ

)[∑N
i

(
X (i)− X̄

)2 (
Y (i)− Ȳ

)2]1/2
, (8.7)

where X̄ and Ȳ are the means of images X and Y, respectively. Hence, when the correlation

coefficient is equal to 1 the images are linearly related. If the variables are independent they

are uncorrelated, and hence the CC value is zero. However, if two variables are (linearly)

uncorrelated it does not necessary follow that they are independent. If the CC is negative it

means that the variables are inversely correlated; the values of one variable increase and the

values of other variable decrease. CC fails when either or both images have uniform values.

8.3.1.4 Joint histogram and joint entropy

The joint histogram is a plot of the value of each voxel in image X against the value of the

corresponding voxel in image Y. The values in the histogram represent the number of voxels

for a certain intensity value pair. If two images are aligned and identical the joint histogram has

tight clusters, and the joint entropy is minimised. These clusters disperse as the images become

less similar, resulting in an increase in entropy. Therefore, we want to minimise the join entropy
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H, which is defined as

H(X,Y ) = −
∑
i,j

pX,Y (xi, yj) log pX,Y (xi, yj), (8.8)

where pX,Y (xi, yj) is the joint probability distribution function, which is the normalised joint

histogram. It represents the probability of value xi occurring in image X simultaneously with

value yj in image Y . Entropy is never negative. If all voxels in the images have the same

intensity, then the histogram will only have a single element with probability 1, which gives

H=0. This method can fail when images are misaligned and only overlap in regions that contain

noise.

8.3.1.5 Mutual information

Mutual information (MI) measures the statistical dependence between images, and it requires

maximising the function

MI(X,Y ) = H(X) +H(Y )−H(X,Y ), (8.9)

where H(X,Y ) is the joint entropy, and H(X) and H(Y ) are the marginal entropies for image

X and Y respectively, which can be calculated using the following equations

H(X) =
∑
i

∑
j

pX(xi, yj)log
∑
j

pX(xi, yj)

 , (8.10)

H(Y ) =
∑
j

(∑
i

pY (xi, yj)log
∑
i

pY (xi, yj)

)
. (8.11)

The marginal probability distribution pX is a projection of the normalised joint histogram onto

the axes corresponding to values occurring in image X, which is basically the sum of the

columns of the normalised joint histogram. The marginal probability distribution pY represents

the equivalent for image Y, and is the sum of the rows of the normalised joint histogram.

To maximise mutual information it is necessary to minimise joint entropy and maximise the

marginal entropies. Rewriting equation (8.9) in terms of the conditional entropy H(X|Y )

(H(Y |X)), which represents the uncertainty inX (Y ) when Y (X) is known, then MI becomes:

MI(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)). (8.12)

This method measures the amount of information in one image that can represent the other

image. If we can exactly predict the values in one of the images using information from the

other image, then the conditional entropy will be zero, and the mutual information reduces to

H(X) (H(Y )) alone.

Another approach is the normalised mutual information (NMI), which in some cases has

been shown to perform better than MI [Hill et al., 2001]

NMI =
H(X) +H(Y )

H(X,Y )
. (8.13)
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8.3.1.6 Test photon density measurement functions

To ensure that the similarity measures return sensible results when comparing PMDFs we

generated PMDFs for different optical properties, chosen to be different enough to return

distinct sensitivity profiles, and compared their SSD, RIU, CC, H, MI and NMI. A single

source-detector pair 40 mm apart was used in the forward model, because it has been suggested

theoretically that this was sufficient to measure haemodynamic changes in adult grey matter

[Okada et al., 1997]. We normalised the PMDFs to their maxima for absorption and diffusion

separately. Sensitivity values in the PMDF which are below 1% of the maximum value are

set to zero, since it does not compromise the quality of the reconstructed images [Eames et al.,

2007] and eliminates undesirable contributions from the corresponding nodes to the similarity

measures. SSD are calculated for N equal to the number of non-zero differences, i.e., for the

number of voxels with sensitivity above 1% from the PMDF with largest sensitivity volume.

This returns SSD values independent of the PMDF volume. On the other hand, for RIU, N is

chosen as the number of overlapping pixels with sensitivity higher or equal to 1%, in order to

avoid dividing by small background values. For CC, the image mean is calculated for values

above the threshold. For each PMDF, the depth centroid zcentroid was calculated along the z

axis at position (x, y)=(42.5 mm, 42.5 mm)

zcentroid =

∑Nz
i Aizi∑Nz

i Ai
, (8.14)

where A is the one-dimensional depth sensitivity along this axis, z is the distance from the

xy plane and Nz is the number of z pixels. The centroid can be considered to be the average

penetration depth. For the purpose of this analysis it is sufficient to analyse the absorption

sensitivity profiles.

The first test consisted of comparing a reference PMDF with PMDFS whose input optical

properties both change, µa is fixed and µ′s is varied and vice-versa. The second test compares

PMDFs with similar sensitivity volumes, for both large and small volumes.

8.3.2 Adult head model
The software package TOAST was used to model the propagation of light in tissue at

wavelengths from 650 nm to 990 nm spaced in 10 nm intervals. To generate PMDFs for

each wavelength one needs to insert the corresponding optical properties of the medium in the

forward problem. Initially the medium is considered to be homogeneous with optical properties

of grey matter. Subsequently a three layer model is used to generate PMDFs, which consists of

two extracerebral layers with the optical properties of skin and skull and an intracerebral layer

with grey matter optical properties.

8.3.2.1 Homogeneous model

The first model consisted of a slab with dimensions 85 mm × 85 mm × 30 mm with the

optical properties of grey matter, whose main chromophores in the near infrared region are

hemoglobin, water, lipid, and cytochromes. The extinction coefficients of water, cytochrome,

HHb and HbO2 are described in §2.2, along with the typical chromophore concentrations. The

optical properties are µa,brain and µs′,brain, given by equation (2.15) and (2.16), respectively.
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Figure 8.1: Three layer adult head model and probe placement.

8.3.2.2 Three layer model
Figure 8.1 shows the second adult head model, which is a slab with the same dimensions as the

homogeneous model, consisting of three layers that imitate the scalp, skull and intracerebral

tissue. Scalp is represented by a 4 mm thick layer and skull is 7 mm thick. Absorption and

scattering spectra for each layer are described in §2.2.

8.3.3 Optimal wavelengths
Sensitivity profile maps (PMDFs) were obtained for the wavelength range 650-990 nm in steps

of 10 nm, making a total of 35 wavelengths. Initially the PMDFs were combined in sets of

3 wavelengths (C35
3 ), making a total of 6545 wavelength sets and 19635 PMDF pairs to be

compared (3 × 6545, since for each wavelength set 3 PMDF pairs are compared, considering

repetitions). Thereafter, wavelength sets of 4 wavelengths are used, which results in 52360 sets

and 209440 PMDF pairs. For a medium with i absorption chromophores at least n = i + 1

wavelengths are required when the scattering parameter a is allowed to vary [Corlu et al., 2005].

Therefore, in order to find the solution for both absorption and scattering coefficients, for a

medium with two chromophores, it is necessary to employ at least 3 wavelengths. Several

optical topography systems acquire data at two wavelengths. Therefore, all possible wavelength

pairs are compared (total of 595), to provide an insight into what can be achieved using two

measurement wavelengths only.

The aim of this study is to find which wavelength set gives the best combination of: i)

good separation between absorption and scattering, ii) good separation between [HbO2] and

[HHb] and iii) excellent overlap between sensitivity profiles. Quantitatively we aim to find the

wavelength sets which maximise the residual norm R (equation (8.1)), minimise the condition

number k of the matrix εi(λ) (equation (8.3)) and have small sensitivity profiles SSD (equation

(8.4)). The matrix E in equation 8.2 for three wavelengths is reduced to:

E(λ) =


εHbO2

(λ1)

λb1

εHHb(λ1)

λb1
εHbO2

(λ2)

λb2

εHHb(λ2)

λb2
εHbO2

(λ3)

λb3

εHHb(λ3)

λb3

 , (8.15)

where the scatter power b is considered to be 0.53 [Matcher et al., 1997].
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Figure 8.2: Cross-section xy at z=11.7 mm of the medium used in the simulation.

Finally, we quantify the differences between PMDFs in terms of penetration depth, volume

and sensitivity.

8.3.4 Image reconstruction
Simulations were performed to compare the cross-talk effects in images reconstructed from

measurements at wavelengths selected using our method against those from measurements

at wavelengths selected using Corlu’s method [Corlu et al., 2005]. The simulated medium

consisted of a slab with 59202 nodes, resulting in 38572 elements, and dimensions 85 mm

× 85 mm × 30 mm. The UCL array with 8 detectors and 8 sources is centrally placed at

z = 0 mm ( refer to §3.3.1). However, here the maximum source-detector separation was

considered to be 41 mm. The software TOAST was used to generate CW model data at each

wavelength, to which 5% random Gaussian noise was added. The background had brain optical

properties, which were described in §2.2 and shown in appendix A. Hence, deoxy-haemoglobin

concentration [HHb] is 24 µM, oxy-haemoglobin concentration [HbO2] is 56 µM and scattering

amplitude a is 32 mm−1 nm−1. Three perturbations with dimensions 10.6 mm × 10.6 mm

× 10.6 mm were placed within the medium, as shown in figure 8.2. The centre of each

perturbation was at 11.7 mm below the imaging surface. A single parameter was changed

for each perturbation, which consisted of either an increase in [HHb] of 1 µM, in [HbO2]

of 4 µM or in a of 1 mm−1 nm−1. These perturbations are kept small to guarantee that the

concentrations and scattering amplitude can be retrieved by linear reconstruction. Furthermore,

the cerebral haemodynamic changes are roughly of the same order of magnitude. Images were

reconstructed using the multispectral method on a regular pixel basis of dimensions 24 × 24 ×
9.

8.4 Results and Discussion
8.4.1 Similarity measures test on photon density measurement functions
The first test consisted of comparing the reference PMDF (PMDFr) for a homogeneous medium

with µa = 0.01 mm−1 and µ′s = 1 mm−1 and dimensions 85 mm × 85 mm × 30 mm, with

PMDFs whose input optical properties both change, µa is fixed and µ′s is varied and vice-versa

(refer to table 8.1 for optical properties).
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PMDF µa µ′s SSD CC RIU H MI NMI zcentroid

reference 0.01 1 - - - - - - 11.11
1 0.02 1 0.0022 0.98 0.18 2.39 1.87 1.78 9.92
2 0.05 1 0.014 0.88 0.73 2.41 1.43 1.59 8.44
3 0.01 1.5 0.00082 0.99 0.060 2.44 2.03 1.83 10.83
4 0.05 1.5 0.017 0.84 0.83 2.41 1.24 1.51 8.27

Table 8.1: Optical properties (in mm−1) used to generate PMDFs which were compared against the
reference PMDFr to find the sum of squared differences (SSD), Correlation Coefficient (CC), the
Ratio-Image Uniformity (RIU), the joint entropy (H), the Mutual Information (MI), the Normalised
Mutual Information (NMI) and the depth centroid zcentroid.

Figure 8.3 shows five absorption PMDFs sampled in the xz plane at y=42.5 mm, which

illustrates the effects of using different optical properties to generate the sensitivity maps.

The absolute differences between the PMDFr and the other four others were calculated;

|PMDFr(i)−PMDFx(i)|, for i pixels. The results are shown in figure 8.4, which provides a

visual indicator of the similarity between the sensitivity maps.

The results for the different similarity measures are summarised in table 8.1. The smallest

SSD, RIU, zcentroid difference, and largest CC, MI, NMI occurred when the PMDFr was

compared with the PMDF3, because a change in the scattering coefficient of the homogeneous

media has little influence on the absorption PMDF, as seen in figure 8.3(d). This is also

confirmed by the small absolute difference between these PMDFs, which is displayed in figure

8.4(c). Changes in the homogeneous media absorption coefficient results in visible changes

in the corresponding PMDFs, as seen in Figures 8.3(b) – (c) for PMDF1 and PMDF2 and

the corresponding absolute differences in figure 8.4(a) – (b). Changing both absorption and

scattering, PMDF4, resulted in the largest difference between PMDFs (refer to Figures 8.3(e),

8.4(d)). All the similarity measures (refer to table 8.1) reflect this tendency, except the joint

entropy H test.

The results are logical, hence the similarity measures, except H, seem to be adequate for

the comparison in question. However, we still need to test if these measures are independent of

the volume occupied by sensitivities above 1%. The second test compares PMDFs with similar

sensitivity volume, for both large and small volumes. For the large sensitivity volume we have

chosen µa=0.01 mm−1 and varied µ′s. The selected values are µ′s=1 mm−1 for PMDFL1 and

µ′s=1.5 mm−1 for PMDFL2, which is the same as PMDFr and PMDF3. The small sensitivity

volume was attained using µa=0.05 mm−1 and varying µ′s as previously for PMDFS1 and

PMDFS2, respectively. The results are displayed in table 8.2 for comparison.

The similarity tests H and MI fail. This is likely to be due to the strong dependence

on the low sensitivity regions. For example, the joint histogram calculated from the PDMFs

with smaller volume has more low intensity bins occupied than the joint histogram from the

PMDFs with larger volume. Consequently the joint probability will increase, reducing the

joint entropy H. For the MI test, the marginal entropies are lower for the PMDFs with smaller

volume, therefore the MI value is higher.

The similarity measures SSD, CC, RIU, and NMI return similar values for this second test,

so we conclude that they are appropriate to compare sensitivity profiles from homogeneous

media with different optical properties irrespective of PMDF volume. We chose to use SSD
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(a)

(b) (c)

(d) (e)

Figure 8.3: 2D photon density measurement functions (PMDFs) calculated for different optical
properties in the plane xz at y=42.5 mm. PMDFs were compared against the (a) reference PMDF
(PMDFr) with µa = 0.01 mm−1 and µ′s = 1 mm−1 to test the similarity measures. The contour numbers
indicate the sensitivity level. (b) PMDF1, represents an increase in µa from the reference value. (c)
PMDF2, represents an increase in µa. (d) PMDF3, represents an increase in µ′s. (e) PMDF4, represents
an increase in µa and µ′s.
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(a) (b)

(c) (d)

Figure 8.4: 2D absolute differences between PMDFr and each PMDF. The numbers indicate the
sensitivity level. (a) |PMDFr−PMDF1|. (b) |PMDFr−PMDF2|. (c) |PMDFr−PMDF3|. (d)
|PMDFr−PMDF4|.

PMDF µa µ′s SSD CC RIU H MI NMI zcentroid

L1 0.01 1 0.00082 0.99 0.060 2.44 2.03 1.83 11.11
L2 0.01 1.5 10.83
S1 0.05 1 0.00089 0.99 0.059 1.54 1.3 1.84 8.44
S2 0.05 1.5 8.27

Table 8.2: PMDFs with large and small sensitivity volumes, PMDFL and PMDFS respectively,
were compared to find the sum of squared differences (SSD), Correlation Coefficient (CC), the
Ratio-Image Uniformity (RIU), the joint entropy (H), the Mutual Information (MI), the Normalised
Mutual Information (NMI) and the depth centroid zcentroid. The optical properties are represented in
units of mm−1.

in the following study because it is intuitive, simple and from the beginning we expected this

similarity measure to be suitable for the task.

8.4.2 Optimal wavelengths
For simplicity, the absorption and diffusion sensitivity profiles are dealt with separately. The

first results are shown in figure 8.5 for the homogeneous model, considering absorption

sensitivity profiles only and 3 wavelength sets. Note that the SSD values in this figure represent

the average for each wavelength set. Due to the large number of points the results were limited

to R ≥ 0.2, k ≤ 100 and because the SSD for two similar PMDFs is ∼ 0.001 the limit for

the third criteria was set to SSD ≤ 0.002 (dark circles in figure 8.5). Each criterion has a

different order of magnitude, hence the results contained in this new range were normalised.

We also calculated the distance between the criteria values of a certain set of wavelengths in

this range and the point (SSD, k, R) = (0, 0, 1), which is the point with the smallest SSD,

smallest condition number criteria and highest residual. The wavelength distribution of the

ten sets of 3 wavelengths with the shortest distance are displayed in the histogram in figure
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Figure 8.5: Plot of the sum of squared differences SSD, condition number k and residual norm R, where
each point represents a set of three wavelengths. The dark circles represent the wavelength sets which
fall within the range SSD ≤ 0.002, k ≤ 100 and R ≥ 0.2

8.6. Histograms are obtained by counting the number of times a certain wavelength occurs,

which is done separately for the 3 wavelengths, and normalised to the most frequently occurring

wavelength. For comparison, figure 8.7 shows the histogram for the ten wavelength sets within

the limit R ≥ 0.2 and k ≤ 100, whose distance is closest to the point (k, R) = (0, 1). The

means and standard deviations σ of each wavelength distribution were calculated in order to

find the optimal wavelengths and measure their spread. The values are rounded up and a 5 nm

uncertainty error is combined with σ, due to the bin size. Using the three wavelength selection

criteria the wavelengths are 680 ± 5 nm, 726 ± 7 nm and 835 ± 17 nm. When only the high

residual and low condition number criteria are used the optimal wavelengths are 650 ± 5 nm,

724 ± 7 nm and 915 ± 17 nm. The results suggest that when the new PMDF overlap condition

is included the smallest wavelength becomes larger, its mean value shifts from 650 nm to 680

nm, and the largest wavelength becomes smaller, shifting from 915 nm to 835 nm.

When four wavelengths are used the histogram in figure 8.8 is obtained. The optimal

wavelengths which satisfy the three criteria are 680 ± 5 nm , 715 ± 14 nm, 733 ± 7 nm and

828 ± 9 nm. Adding a fourth wavelength broadened the central wavelength range and shifted

the highest wavelength to a smaller value. The histogram of wavelength distributions without

including the third condition can be seen in figure 8.9, which shows that the optimum set is 650

± 5 nm, 715 ± 7 nm, 727 ± 7 nm and 919 ± 13 nm. The differences between these results

and those presented by Corlu et al [2005] are inevitably due to differences in the wavelength

range and spacing, chromophore extinction coefficients and criteria limits imposed. As for the

previous results for three wavelengths, when the similarity between sensitivity profiles is taken

into account, the mean value for the smallest wavelength shifts from 650 nm to 680 nm and

the highest wavelength from 919 nm to 828 nm. The central wavelength range shows some

broadening. Therefore, including the SSD between PMDFs as a wavelength selection criterion

reduces the separation between the optimal wavelengths.

Defining empirically the conditions for small SSD, small condition number and high

residual, returns similar wavelength distributions to those found using the shortest distance



8.4. Results and Discussion 154

Figure 8.6: Histogram of the optimal wavelength
distributions that satisfy the three wavelength
selection conditions, for the homogeneous model,
three wavelengths and two chromophores (HbO2

and HHb).

Figure 8.7: Histogram of the optimal wavelength
distributions that satisfy the high residual and low
condition number criteria, for the homogeneous
model, three wavelengths and two chromophores
(HbO2 and HHb).

Figure 8.8: Histogram of the optimal wavelength
distributions that satisfy the three wavelength
selection conditions, for four wavelengths and two
chromophores (HbO2 and HHb).

Figure 8.9: Histogram of the optimal wavelength
distributions that satisfy the high residual and low
condition number criteria, for four wavelengths
and two chromophores (HbO2 and HHb).

method. For example, for 3 wavelengths we defined the condition R ≥ 0.25, k ≤ 5 and SSD

≤ 0.001 and the optimal wavelengths are 680 ± 5 nm, 727 ± 8 nm and 836 ± 15 nm, which

are very similar to the wavelengths found previously. Therefore, the shortest distance method

proves to be adequate to select optimal wavelengths.

The sum of squared differences SSD for diffusion PMDFs is always slightly smaller than

for absorption PMDFs. This is probably because scattering does not have a strong wavelength

dependence. Thus the optimal wavelength sets found using the absorption SSDs also return

small diffusion SSDs.

The histograms for the three layer adult head model for three and four wavelengths are

shown in figure 8.10 and figure 8.11, respectively. For the three wavelength distributions, the

optimal wavelength values are 680 ± 5 nm, 725 ± 10 nm and 876 ± 12 nm, and for four

wavelengths these values are 685 ± 7 nm, 719 ± 9 nm, 731 ± 8 nm and 873 ± 9 nm. The

main difference between the optimal wavelengths found for the homogeneous model and the

three layer model occurs for the largest wavelength, which becomes larger for the latter. The

other wavelengths are approximately the same, and similarly to the homogeneous case adding
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Figure 8.10: Histogram of the optimal
wavelength distributions that satisfy the three
wavelength selection conditions, for the three layer
model, three wavelengths and two chromophores
(HbO2 and HHb).

Figure 8.11: Histogram of the optimal
wavelength distributions that satisfy the three
wavelength selection conditions, for the three layer
model, four wavelengths and two chromophores
(HbO2 and HHb).

a fourth wavelength resulted in the merge of the two central wavelengths, hence the mean value

is approximately the same but the range is larger. Also for this model the diffusion SSDs are

smaller than the corresponding values for absorption, hence the previous results also apply for

diffusion sensitivity profiles.

Including the sensitivity profiles similarity criteria in the selection of the optimal

wavelengths has a clear effect on the resultant wavelength sets. The insertion of two superficial

layers in the adult head model had an influence on the results, in particular for the largest

wavelength mean value, which shows that selection depends on the accuracy of the head

model.

2 wavelengths. It is common to consider scattering homogeneous and constant over time. This

assumption is convenient when data were obtained using only two wavelengths, and therefore

solutions can only be obtained for two chromophores. The following analysis is aimed at

identifying the two optimal wavelengths which give good separation between chromophores

and good spatial overlap between sensitivity profiles.

First, it is shown that the solution is non-unique when only two wavelengths are used.

Figure 8.12 shows a 3D plot where each point represents a wavelength pair and the respective

R, k and SSD values. All the points cluster at small SSD, k and R and it becomes difficult to

define a wavelength selection range. The red points fall in the range defined by the condition 1,

SSD ≤ 0.005, k≤ 8 and R ≥ 1.5× 10−15. However, although the sum of squared differences

SSD and the condition numbers k can be very small, the residual norm R is never larger than

1 × 10−7. The wavelength pairs that fall in this range are very distinct from each other, which

can be seen in the histogram shown in figure 8.13. Histograms only return useful results if

the points cluster around a group of wavelengths, and so, in order to show this, we display the

optimal wavelength pairs for 6 different conditions in figure 8.14. It is clear that for the previous

condition and condition 2, k ≤ 14 and R ≥ 4× 10−15, the points do not cluster. Nevertheless,

for the latter condition the corresponding histogram would have peaks at 800 nm and 960 nm.

The mean and standard deviation σ of each wavelength distribution were calculated in order to

find the optimal wavelengths and measure their spread. The wavelength ranges found are 835±
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Figure 8.12: Sum of squared differences SSD,
condition number k and residual norm R for
different wavelength pairs. The red points fall in
the range defined by the condition SSD ≤ 0.005,
k≤ 8 and R ≥ 1.5× 10−15.

Figure 8.13: Histogram for the wavelength pairs
obtained for condition SSD ≤ 0.005, k≤ 8 and
R ≥ 1.5× 10−15.

Figure 8.14: Wavelengths pairs for 6 conditions. Figure 8.15: Histogram of the wavelengths that
satisfy the low condition number criteria.

47 nm and 921± 53 nm. The large standard deviation indicates that because the wavelengths do

not cluster around a particular wavelength one cannot find an optimal wavelength pair, hence σ

is an important indicator of the amount of clustering. Similarly, for condition 1 the wavelength

ranges are 775 ± 23 nm and 849 ± 50 nm, where σ is particularly large for long wavelengths.

The wavelengths with higher residual norm, using condition 3, R ≥ 1× 10−7, fall in the range

878 ± 18 nm and 906 ± 11 nm. Nevertheless, the small R values confirm that one cannot

separate absorption from scattering using only two measurement wavelengths.

Chromophore concentrations can be distinguished if the condition number k is small. The

wavelengths whose distance is shortest to the point with the smallest condition number cluster

at 710 ± 16 nm and 973 ± 9 nm (see figure 8.15). On the other hand if we set the condition

SSD≤ 0.002 and k ≤ 3 and find the wavelengths with shortest distance to the point (SSD, k) =

(0, 0), they cluster at 694 ± 7 nm and 883 ± 23 nm (see figure 8.16). A 2D plot of SSD versus

k is seen in figure 8.17 where the red points satisfy the condition SSD ≤ 0.002 and k ≤ 3. The

inclusion of the PMDF overlap condition has a clear effect on the largest wavelength.

For the three layer model, the wavelength pair with the shortest distance to the point (SSD,

k) =(0, 0) is 704 ± 7 nm and 887 ± 12 nm, which is very similar to the optimal wavelength set

found for the homogeneous case.
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Figure 8.16: Histogram for wavelengths with the
shortest distance to the point (SSD, k) = (0, 0).

Figure 8.17: Sum of squared differences SSD and
condition number k for different wavelength pairs.
The red points represent the wavelength pairs that
have SSD ≤ 0.002 and k ≤ 3.

(a) (b)

Figure 8.18: PMDFs Sum of squared differences SSD for wavelength pairs in the range 650-990nm for
(a) absorption and (b) diffusion.

The influence of µa on the absorption and diffusion PMDFs is identical; high absorption

coefficients lead to narrower PMDFs. A similar tendency is observed when µ′s has a high

value for the absorption PMDFs, although the diffusion PMDFs become broader. Nevertheless,

the SSD for both absorption and diffusion PMDFs is similar, as can be seen in figure 8.18.

The wavelength sets obtained using the diffusion PMDFs are identical to those found using

the absorption PMDFs. The largest SSD occurs for wavelengths paired with 970 nm, which

corresponds to the absorption peak of water. As mentioned previously, the sum of squared

differences SSD for diffusion is slightly smaller than for absorption.

In summary, it is possible to separate [HbO2] and [HHb] from measurements performed at

two wavelengths. However, one cannot distinguish between absorption and scattering. When

the sensitivity profiles similarity condition is included in the wavelength selection method, the

largest wavelength mean value changes in comparison to that obtained using the condition k
alone.



8.4. Results and Discussion 158

8.4.3 PMDF comparison

In the previous study, our main concern was to ensure that the sensitivities within the volumes

of tissue interrogated were similar for a set of wavelengths. Therefore, the PMDFs were

normalised and all the values below a certain threshold were set to zero. Here, the aim is to

compare the PMDFs for wavelengths from 650 nm to 990 nm and quantify the differences in

their sensitivity in terms of penetration depth, volume and sensitivity, in order to determine if

these differences are significant. We use the absolute sensitivity values (because the absorption

PMDF has negative sensitivity) and set the threshold to 0.01. An analysis is performed on how

these differences affect the measurements and image reconstructions. In order to understand the

effect that the optical properties have on the sensitivity profiles, the PMDF profiles (plane xz at

y =42.5 mm) for 4 different wavelengths (650 nm, 720 nm, 850 nm and 970 nm) are shown in

figure 8.19, for the homogeneous medium, and in figure 8.20, for the three layer model.

8.4.3.1 Volume

The volume (V ) is the number of voxels (N ) with sensitivity above the threshold times the

voxel volume. The relative volume compares the PMDF volume at 650 nm (V650) with all the

other PMDF volumes (Vλ):

relative volume =
Vλ
V650

=
Nλ

N650
, (8.16)

where N650 is the number of voxels above the threshold in the PMDF at 650 nm and Nλ is the

number of voxels above the threshold for the remaining wavelengths.

The relative volume was calculated for the absorption PMDFs (PMDFµa) and diffusion

PMDFs (PMDFκ), for both head models. Figure 8.21 shows the relative volumes for the

different wavelengths and the value of N650 for each case. The volume of the PMDFµa is

larger than that of the PMDFκ. For the homogeneous model, the PMDFµa volume resembles

an inverted µa spectrum of brain tissue, since for large µa the PMDF volume becomes smaller

and for small µa the volume becomes larger. For the PMDFκ the volume decreases as expected,

given that the volume decreases with decreasing µ′s. However, the volume for PMDFκ does not

vary as much as for PMDFµa . The relative volumes for the layered model are similar to those

obtained for the homogeneous case.

8.4.3.2 Full Width Half Maximum

The FWHM was calculated for the PMDF cross-section at x=42.5 mm (half way between

the source and detector), for both lateral and depth directions. The PMDF profiles for each

direction include the point of maximum sensitivity. The FWHM gives us information about the

amount of spread of the PMDFs. Figure 8.22 shows the difference between the depth FWHMs

and the depth FWHM corresponding to the wavelength 650 nm, FWHM650. The red lines

indicate the error limits, which represent an uncertainty of 0.6 mm associated with the pixel

size. In general, the difference is less than 1.2 mm, which indicates that the spread of regions

of higher sensitivity does not vary much with wavelength. The FWHM differences are smaller

for PMDFκ, in particular for the homogeneous model, which shows a relatively flat spectrum

for wavelengths below 970 nm. Figure 8.23 shows the difference between the lateral FWHMs
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(a)

(b)

Figure 8.19: PMDF profiles for 4 different wavelengths, for the homogeneous model. (a) Absorption
PMDF at 650 nm (top left), 720 nm (top right), 850 nm (bottom left) and 970 nm (bottom right). (b)
Diffusion PMDF for the same wavelengths.
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(a)

(b)

Figure 8.20: PMDF profiles for 4 different wavelengths, for the 3 layer model. (a) Absorption PMDF
at 650 nm (top left), 720 nm (top right), 850 nm (bottom left) and 970 nm (bottom right). (b) Diffusion
PMDF for the same wavelengths.
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Figure 8.21: Relative volume of the PMDFµa (left) and PMDFκ (right) for the homogeneous head
model (top ) and layered model (bottom).

Figure 8.22: FWHM for the depth direction of the PMDFµa (left) and PMDFκ (right) profiles for the
homogeneous head model (top ) and layered model (bottom).
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Figure 8.23: Lateral FWHM of the PMDFµa (left) and PMDFκ (right) profiles for the homogeneous
head model (top ) and layered model (bottom).

and the lateral FWHM corresponding to the wavelength 650nm. The dispersion of the PMDFs

is larger laterally than for the depth direction, which is confirmed by the larger FWHM values.

Differences in the lateral FWHM are less than 3.5 mm. The uncertainty in the lateral direction

is 1.7 mm, which explains the slightly larger difference.

8.4.3.3 Penetration depth

The penetration depth (PD) is defined as the maximum distance into the medium where

perturbations in the optical properties can still be measured. The central region of the PMDF

penetrates deeper into the tissue, which corresponds to the PMDF profile (z direction) that

passes through the midpoint between the source and detector ((x, y)=(42.5 mm, 42.5 mm)).

Hence, for these profiles, we consider the distance where the sensitivity drops below the

threshold to be our penetration depth.

Penetration depth is larger for the PMDFµa , as shown in figure 8.24. The graphs are

plotted as differences with reference to the PMDF penetration depth at 650 nm, PD650. For the

homogeneous model, the maximum depth is 15.6 ± 0.6 mm and occurs for wavelength 720

nm. The lowest PD is 13.2 ± 0.6 mm and occurs for wavelength 970 nm. This means that the

maximum PD difference is 2.4 ± 1.2 mm. For the layered model, the maximum penetration

depth is 14.4 ± 0.6 mm for wavelength 720 nm. For wavelength 970 nm the PD attains a

minimum value of 12.0 ± 0.6 mm. The largest difference between penetration depths is 2.4 ±
1.2 mm.

The PMDFκ exhibits a small variation in the penetration depth for the different
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Figure 8.24: Penetration depth of the PMDFµa (left) and PMDFκ (right) profiles for the homogeneous
head model (top ) and layered model (bottom).

wavelengths (figure 8.24). For the homogeneous model, the combination of low µa and high µ′s
for wavelengths from 670 nm to 840 nm, results in a broader PMDFκ with higher penetration

depth. The maximum PD is 12.6 ± 0.6 mm and the largest difference between PD is 0.6 ± 1.2

mm. The µ′s for skull decays faster than for brain tissue, and at wavelengths above 750 nm their

µ′s values diverge significantly. When the external layers have lower µ′s and µa than the inner

layer, the sensitivity profiles shift towards the surface. The high absorption of the brain tissue

at 970 nm reduces the interrogation depth to 9 ± 0.6 mm, compared to the maximum at 11.4 ±
0.6 mm.

8.4.3.4 Sensitivity depth

The FWHM was used as an indicator of the spread of the regions with high sensitivity. Another

two parameters, which can give similar information, are the mean sensitivity and maximum

sensitivity depths. The mean sensitivity depth is calculated from the depth sensitivity profile

using the following equation

zm =

∑n
i PMDFi zi∑n
i PMDFi

, (8.17)

where zi is the depth of pixel i. The maximum sensitivity depth zmax is simply the depth at

which the maximum sensitivity occurs in the PMDF profile. From figure 8.25 we see that for

the homogeneous model, the maximum zm occurs at 720 nm, where the absorption coefficient

is lower. The graphs are plotted as differences with respect to the values at 650 nm. In general,
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Figure 8.25: Maximum and mean sensitivity depths of the PMDFµa (left) and PMDFκ (right) profiles
for the homogeneous head model (top ) and layered model (bottom).

the maximum and mean depths increase when µa decreases. For PMDFµa , the maximum zmax

difference is 1.2± 1.2 mm, and occurs between wavelengths 720 nm and 970 nm. For PMDFκ,

for the same wavelengths, this value is 2.4 ± 1.2 mm. For zm the maximum difference is 1 ±
1.2 mm for both PMDFs.

The inclusion of the external layers in the head model has a clear effect on the sensitivity

depth. In particular, for zm the values show smaller variations with wavelength. The high

absorption and scattering coefficients of the brain tissue limits the sensitivity to the skull layer,

in particular at 970 nm. The high µ′s skin layer, compared to the skull layer, also confines the

photons near the skin/skull boundary, and the low µa increases the sensitivity in this region.

Hence, the region of high sensitivity is spread around the skull layer.

As a consequence of the pixel size, which only allows discrete spatial steps, the relative

sensitivity depth and relative penetration depth spectra exhibit a step-like behaviour.

8.4.3.5 Maximum sensitivity

The maximum sensitivity (MS) was calculated for the PMDF profiles in the z direction, which

were described for the PD analysis. Figure 8.26 shows the MS for the whole spectrum relative

to the MS for the PMDF at 650 nm, MS650 . For the homogeneous model, the sensitivity

of the PMDFµa decreases with wavelength, which is a consequence of the decrease in µ′s.

When µ′s increases the PMDF region with higher sensitivity is shifted towards the surface

and the sensitivity to perturbations in this region increases. Similarly, but less obvious in the

spectrum, the sensitivity at the surface is higher when µa is higher. The maximum changes in
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Figure 8.26: Maximum sensitivity of the PMDFµa
(left) and PMDFκ (right) profiles for the

homogeneous head model (top ) and layered model (bottom).

sensitivity are approximately 20% of the maximum sensitivity. The PMDFκ shows a sensitivity

increase for large µa values, which corresponds to the extremes of the spectrum. For the central

wavelengths the sensitivity is low and has small variations. The sensitivity increases when the

PMDF is confined to a smaller region and closer to the surface. The sensitivity increase can be

interpreted as an increase in the probability of a photon travelling through that region prior to

being detected.

For the layered model, the spectrum for PMDFµa is similar to the homogeneous case (see

figure 8.26), except for the peak at 970nm, which is a result of the low µa and µ′s of the external

layers. The maximum changes in intensity are approximately 50% of the maximum intensity.

For the PMDFκ, the low µ′s of the external layers, compared to the brain tissue, confines the

PMDF to the superficial layers. The scattering coefficient decreases with wavelength, and so

does the overall broadening and maximum sensitivity. The high µa brain tissue seems to reduce

the sensitivity.

8.4.3.6 Discussion

It is important to quantify the main characteristics of the optically interrogated volumes, in order

to determine how measurements at different NIR wavelengths may be combined to provide

information about the volume. We compared the volume, FWHM, maximum sensitivity depth,

penetration depth and maximum sensitivity of the PMDFs.

In general, for the homogeneous model, an increase in the absorption coefficient µa shifts

the PMDF toward the surface. Meanwhile an increase in transport scattering coefficient µ′s also
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causes a narrowing in the PMDFµa , whereas PMDFκ becomes broader. For the three layer

model, the higher optical properties of the brain tissue compared to the external layers largely

restrains photons within the top layers and only a small amount penetrates into the brain. The

PMDFs spread and broaden above the brain boundary.

Particular attention is given to the wavelengths selected using our wavelength selection

method and Corlu’s method [Corlu et al., 2005]. For the homogeneous model our method

returned the wavelengths with mean values (the values were rounded to one of the nearest

wavelengths for which the PMDF was calculated) 680 nm, 720 nm and 830 nm, when three

wavelengths were used, and wavelengths 680 nm, 710 nm, 730 and 830 nm, when four

wavelengths were used. For the three layer model the three wavelengths found were 680 nm,

730 nm and 880 nm, and the set of four wavelengths was 680 nm, 710 nm, 730 nm and 880

nm. For the two condition criteria the wavelengths were 650 nm, 720 nm and 910 nm, for three

wavelengths, and 650 nm, 710 nm, 730 nm and 910 nm, for four wavelengths.

For the optimal wavelengths selected using the high residual and low condition number

criteria, for the homogeneous model, the maximum penetration depth for the PMDFµa is 15.6

± 0.6 mm, and occurs for the mid-range wavelengths. For the lowest wavelength, with mean

value 650 nm, the penetration depth is 13.8 ± 0.6 mm. For the highest wavelength, with mean

value at 910 nm, the PD is 14.4 ± 0.6 mm. The maximum PD difference is 1.8 ± 1.2 mm.

If we consider the thickness of the head superficial layers to be approximately 11 mm, and

the grey matter to be 4 mm, then a difference in the PD of about 3 mm could make a very

significant difference in the information contained in the measurements. In theory, the lowest

wavelength penetrates 2.8± 0.6 mm into the brain tissue, which corresponds to the grey matter,

whereas the mid-range wavelengths penetrate 4.6± 0.6 mm, which means that some light could

reach the white matter. Including our PMDF overlap condition in the selection of the optimal

wavelengths reduces the difference in the PD to 0.6 ± 1.2 mm. The first and last wavelengths,

with mean values 680 nm and 830 nm respectively, penetrate 4 mm ± 0.6 mm into the brain

tissue. This value is closer to that obtained for the central wavelengths, which is 4.6 ± 0.6 mm.

The volumes interrogated are also larger and more similar for the wavelengths selected using

our method. For the PMDFκ, the changes in the PD are smaller and the maximum penetration

depth is only 12.6 ± 0.6 mm, hence confined to the the grey matter. However, the differences

between penetrations depths are smaller when our method is used.

For the three layer adult head model the discrepancies between the interrogated volumes at

different wavelengths are smaller. However, the volumes are more similar for the wavelengths

selected using our method than using the two selection criteria. In terms of PD, for the PMDFµa ,

the variations are smaller than for the homogeneous model. The maximum PD is 14.5 ± 0.6

mm and is attained for the central wavelengths of the selected wavelength sets. This means

that light penetrates 3.5 ± 0.6 mm into the grey matter. For the first wavelengths obtained

with our method the PD is 13.9 ± 0.6 mm, hence it penetrates 2.9 ± 0.6 mm into the brain.

For the remaining wavelengths the PD is 13.2 ± 0.6 mm, or equivalently, a maximum depth

of 2.2 ± 0.6 mm from the brain surface is probed. Although the differences between PD for

the different wavelengths, for both selection methods, are identical, when using our method it

optimises for the wavelength set with higher penetration depth possible, simultaneously with
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the best separation between chromophores, absorption and scattering. The PMDF spread, (i.e.

the FWHM) is also larger and more similar for our wavelength set. The maximum sensitivity

depth zmax and mean sensitivity depth zm show small variations for wavelengths from 680 nm

to 900 nm, where these values are maximum. For the PMDFκ, the maximum penetration depth

is only 11.4 ± 0.6 mm, hence light hardly reaches the brain surface. The differences PMDFκ
are much smaller than for the absorption PMDFs.

This method could be applied to other types of tissue. For example, for measurements

of muscle, breast or neonate brain. For muscle, the highest absorption occurs at 650 nm and

the lowest approximately at 850 nm [Xia et al., 2006]. For these wavelengths the PD is 15 ±
0.6 mm and 21.6 ± 0.6 mm, respectively. This results in a PD maximum difference of 6.6 ±
1.2 mm. For studies of muscle exercise, of the forearm for example, which has a diameter of

approximately 7 cm, a difference of about 8 mm is quite significant. The influence of the skin

and fat layer on the light propagation is likely to increase the PD, and it should depend on the

thickness of these layers. For breast tissue, using the optical properties from [Cubeddu et al.,

2000], the largest differences in the absorption coefficient occur at wavelengths 720 nm and

970 nm, with PD of 22 ± 0.6 mm and 16 ± 0.6 mm, respectively. Therefore, the maximum

PD difference is 6 ± 1.2 mm. The main objective of breast diffuse optical imaging is tumour

detection. A tumour is distinguished from surrounding healthy tissue on the basis of its optical

properties, and subsequently in terms of apparent blood volume, and oxygenation. Overlapping

sensitivities are required to provide accurate measures of these parameters and reduce the

uncertainty in the measured spatial location of the tumour. Light propagation in the neonatal

brain is different from the adult brain tissue, because the surrounding layers are thinner and

the optical properties are different. The µ′s is lower for the neonatal brain tissue [van der Zee,

1992]. Because of the high scattering of the neonatal brain, the sensitive regions of the PMDF

should be confined to the grey matter. However, the cortical thickness is only about 2.5 mm,

meaning that light is likely to penetrate into deeper regions of the white matter [Fukui et al.,

2003].

The PMDFs of other types of measurements, either frequency or time domain, can also be

analysed using our method. For example, the region of higher sensitivity of the mean time or

phase PMDF is located deeper in the tissue than that of the CW PMDFs [Arridge & Schweiger,

1995; Delpy & Cope, 1997].

It is clear that the adult head model had a large influence on the results. A more complete

model of the adult head should include the cerebrospinal fluid (CSF) surrounding the brain

tissue. However the diffusion equation-based model is only valid for high scattering tissues,

and cannot be applied to the low scattering CSF. Monte Carlo simulations of light transport

can be used, but they require long computational times. A popular method is the hybrid

radiosity-diffusion method, where the light propagation in high scattering media is calculated

using the diffusion equation and the low scattering region by radiosity theory [Arridge et al.,

2000; Dehghani et al., 2000].

Ono et al [2000] studied a simple three layer model with skin/skull, CSF and brain tissue

optical properties. They used the hybrid radiosity-diffusion method to model light propagation,

and observed that the sensitive region shifts towards the CSF layer and spreads between the
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source and detector. Light only penetrates the superficial parts of the brain.

A study by Fukui et al [2003] compared the influence of the CSF on the light propagation

within both neonatal and adult heads. They arrived at similar conclusions, that the sensitivity

profiles appear distorted around the CSF layer and only reach superficial regions of grey matter.

For larger source-detector separations the sensitivity increases within the grey matter. However,

for the neonate model, even though the influence of the CSF is significant, the penetration depth

increases with the source-detector distance and can possibly reach the deep regions of the white

matter. The scattering coefficient of the grey and white matter for the neonate are much smaller

than for the adult brain, hence the CSF has a smaller effect.

Okada et al [1997] studied light propagation within head models with different levels of

complexity. At a source-detector separation of 30 mm, for a simple model without CSF, they

verified that the spatial sensitivity profile is confined to the superficial layers, and only a small

fraction of detected photons actually reach the grey matter. Including CSF in the model shifts

the sensitivity towards the CSF layer, which spreads into the grey matter. The inclusion of more

complex structures in the model, for example, sulci filled with CSF, did not produce significant

differences between the sensitivity profiles and those corresponding to the simple model with

a CSF layer. In a more recent study, Okada et al [2003b] analysed the effect of the superficial

layers’ thickness on the spatial sensitivity profiles. The effect of skull or CSF thickness on the

penetration into the brain tissue was found to be negligible. However, the maximum sensitivity

decreases with increasing thickness. An increase in the CSF layer thickness was found to

broaden the spatial sensitivity profile. This indicates that even though the thicknesses of the

layers in our model were approximations, because the skull thickness varies between individuals

and with position on the head, the PMDF penetration depth into the brain tissue is not likely to

be highly influenced by these differences.

Another study that explored the influence of internal structures in the CSF layer was

performed by Dehghani et al [2000]. Regions with the same optical properties as the grey

matter were inserted into the CSF layer. The PMDFs calculated for this model show little

difference to those calculated for a model with no intrusions in the CSF layer. However, for

larger intrusions the sensitivity of the intrusion itself increases and also the regions immediately

adjacent to it. Ogoshi et al [2005] used an even more complete model, which included the folded

brain surface with sulci, and the space between the skull and the brain surface filled with CSF,

called the subarachnoid space. They used a hybrid Monte Carlo-diffusion method to model

the light propagation through this more realistic human head model, and found that photons

tend to propagate in shallow regions of the brain. The PMDF distorts around the low scattering

subarachnoid space and superficial brain tissue. The sensitivity region is broadened between

the source and detector, and an increase in the source-detector separation does not significantly

increase the penetration depth, but the sensitivity to the shallow region of the brain increases.

They were able to detect changes in intensity caused by focal absorption changes in the white

matter. The results were very similar to those found using a simpler model.

The inclusion of a CSF layer in our adult head model would not significantly affect our

results, since the high sensitivity regions of the PMDF would still be confined to superficial

regions of the brain, and because this layer has very little wavelength dependence. The
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Figure 8.27: Reconstructed images of oxy-haemoglobin (left), deoxy-haemoglobin (centre) and
scattering amplitude (right) from measurements at wavelengths 650 nm, 720 nm and 910 nm.

Figure 8.28: Reconstructed images of oxy-haemoglobin (left), deoxy-haemoglobin (centre) and
scattering amplitude (right) from measurements at wavelengths 680 nm, 720 nm and 830 nm.

penetration depth of the light in models with and without CSF is almost the same, for

source-detector separations of 30 mm and 40 mm [Okada & Delpy, 2003a].

An aspect to take into consideration is the error associated with the extinction coefficient

for the different chromophores. The spectra found in the literature, for certain chromophores,

show some variation. Based on Corlu’s method [Corlu et al., 2005] for wavelength

optimisation, Brendel and Nielsen [2007] added a criterion that evaluates the reconstruction

errors due to uncertainty in the extinction coefficients. From simulations and breast-like

phantom measurements, they found a set of optimum wavelengths almost independent upon

the uncertainties in the extinction coefficients spectra. Another potential source of error is the

assumed values of the chromophore concentrations for each head layer. This influences the

optical properties of the layers, which could possibly have an effect on the spatial sensitivity

profiles.

8.4.4 Image reconstruction
Images were reconstructed from simulated measurements at wavelengths 680 nm, 720 nm

and 830 nm (wavelengths selected using our method) and from measurements at 650 nm,

720 nm and 910 nm (wavelengths selected using the two criteria method). Figure 8.27

shows the xy cross-sectional images at z=8.4 mm, using measurement wavelengths at 650
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Figure 8.29: Reconstructed images of oxy-haemoglobin (left), deoxy-haemoglobin (centre) and
scattering amplitude (right) from measurements at wavelengths 650 nm, 710 nm, 730 nm and 910 nm.

Figure 8.30: Reconstructed images of oxy-haemoglobin (left), deoxy-haemoglobin (centre) and
scattering amplitude (right) from measurements at wavelengths 680 nm, 710 nm, 730 nm and 830 nm.

nm, 720 nm and 910 nm simultaneously. Figure 8.28 shows the reconstructed images

using measurement wavelengths at 680 nm, 720 nm and 830 nm simultaneously. For both

sets of measurement wavelengths, the images exhibit cross-talk between chromophores and

also scattering. Cross-talk is slightly more evident in the images reconstructed using the

wavelengths selected by our method. Cross-talk is particularly significant between oxy- and

deoxy-haemoglobin concentrations in the deoxy-haemoglobin reconstruction. The [HbO2] is

underestimated and [HHb] overestimated in both cases.

The same simulation study was performed using the four wavelengths found using our

method (680 nm, 710 nm, 730 nm and 830 nm) and the two criteria method (650 nm, 710

nm, 730 nm and 910 nm). Figure 8.29 shows the xy cross-sectional images at z=8.4 mm,

using the wavelengths selected by the two criteria method. Figure 8.30 shows the images for

the wavelengths selected using our method. Due to the limited sensitivity of the measurement

to scattering to regions deeper than 12 mm below the surface, the reconstruction were found

to have better contrast at z=8.4 mm than at z=11.7 mm. The reconstructions for both sets of

wavelengths are similar and show very small cross-talk. However, the reconstructed values

using the wavelengths selected by our method are closer to the true values. Nevertheless, the

scattering amplitude and deoxy-haemoglobin concentration are overestimated. The slightly

better reconstructions obtained using our wavelength set could be due to the higher sensitivity
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Figure 8.31: Reconstructed images of oxy-haemoglobin (left) and deoxy-haemoglobin (right) from
measurements at wavelengths 690 nm and 880 nm.

Figure 8.32: Reconstructed images of oxy-haemoglobin (left) and deoxy-haemoglobin (right) from
measurements at wavelengths 710 nm and 970 nm.

of these wavelengths to the depth at which the targets are located. Furthermore, even though the

sensitivity to scattering is quite limited in deeper regions, the penetration depth of the PMDFκ
has it maximum at these wavelengths. The simulation results indicate that four measurement

wavelengths are required, in order to reconstruct images with low cross-talk, from reflection

measurements and using linear multispectral reconstruction.

Finally, simulations were performed using the same medium as before, but without the

scattering perturbation and for two wavelengths only. Figure 8.31 shows the reconstructions

from measurements at wavelengths found using our method (690 nm and 880 nm). The images

show a good separation between chromophores but with their concentrations overestimated.

Figure 8.31 shows the reconstructions from measurements at wavelengths found using two

criteria method (710 nm and 970 nm). The retrieved [HbO2] is more accurate but there is

cross-talk in the [HHb] reconstruction. The presence of cross-talk could be due to sensitivity

differences between the two wavelengths. At 970 nm only the top of the target is interrogated,

whereas the light at 720 nm is likely to travel through the whole target volume.

One of the wavelength pairs used by the UCL topography system is 770 nm and 850

nm. Simulations were also performed to evaluate the image reconstruction performance for

this wavelength pair. The reconstructions are similar to the ones obtained using our optical
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(a) (b) (c)

Figure 8.33: (a) The xz cross section of the medium used in the simulation. (b) Image reconstructed
using the correct sensitivity matrix. (c) Image reconstructed using the erroneous sensitivity matrix .

wavelengths, but the perturbation [HbO2] was a bit higher, 64.5 µM.

All the simulations were repeated for larger concentration and scattering amplitude

changes, and the results showed a similar tendency.

The sensitivity matrix is usually calculated using an estimate of the average optical

properties of the medium, and subsequently used to reconstruct images from measurements

at different wavelengths. Given that the optical properties of the medium are wavelength

dependent, we analyse how reconstructed images are affected by using sensitivity matrices

generated for optical properties different from the true properties. Data were generated

for a homogeneous medium with the same optical properties as those used to generate the

PMDFr (µa=0.01 mm−1 and µ′s=1 mm−1, refer to §8.4.1), with an embedded absorption

perturbation centrally placed at a distance of 16 mm below the imaging surface (z=0) with

an absorption coefficient µa=0.015 mm−1, as depicted in figure 8.33(a). The array of sources

and detectors was described in §3.3.1. However, here the maximum source-detector separation

was considered to be 41 mm. Figure 8.33(b) shows an image reconstructed using a sensitivity

matrix generated for a medium with the true optical properties. To emphasise the effect of using

inaccurate estimates of the optical properties to calculate the sensitivity matrix, we used optical

properties that result in very different PMDFs, such as those used to generate PMDF4 (µa=0.05

mm−1 and µ′s=1.5 mm−1, refer to §8.4.1). Figure 8.33(c) shows the image reconstructed

using this erroneous sensitivity matrix. The absorption perturbation appears misplaced in the z

direction by approximately 4 mm.

It is common to consider the typical optical properties of biological tissue at NIR

wavelengths to be µa=0.01 mm−1 and µ′s=1 mm−1. To explore the consequences of using

these general optical properties to reconstruct images from measurements performed using the

wavelength sets obtained using our method, we compare the measurement sensitivity of the

reference PMDF (PMDFr) profile in the z direction (line at the midpoint between optodes)

with that of the PMDF profiles at different wavelengths. Thus we can compare the magnitude
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Figure 8.34: PMDFr and PMDF720 profiles. The marks on PMDF720 represent a unit perturbation in
the medium and the arrows indicate where it would occur if PMDFr was used to locate the perturbation.

of the sensitivity between two PMDFs and extract the depth difference. This is a very simplified

analysis and it should be noted, of course, that this analysis in terms of imaging is more complex

and not so linear.

Figure 8.34 shows the PMDFr and PMDF profile at 720nm (PMDF720), which we use

as an example. Consider that the measurements are performed at 720 nm, and the marks on

the PMDF720 to be unit perturbations in the medium, hence the measured intensity change

would be equal to the sensitivity value. Then, if the optical properties of the medium are

unknown and we use the PMDFr to identify where the perturbation occurs, it would provide a

position different from the true position by placing the perturbation in a region with equivalent

sensitivity, as indicated by the arrows in figure 8.34. If the perturbation occurs in regions where

the measurement PMDF profile, PMDF720, has higher sensitivity than the imaging PMDF

profile, PMDFr, then it would be reconstructed in a region where the sensitivity of the PMDFr
is higher. Furthermore, the magnitude difference results in an overestimation of the optical

properties.

The above analysis is performed throughout the whole PMDF depth and for the 3

wavelengths selected using our method and Corlu’s method [Corlu et al., 2005]. The depth

differences are displayed in figure 8.35. This gives us a rough indication of the maximum

depth differences that can be expected, if a sensitivity matrix generated based on typical optical

properties is used to reconstruct images. For deeper regions the depth difference can be as

large as 7.5 mm. If we consider an absorption perturbation localised in the grey matter, this

means that it could appear in the reconstructed image misplaced between 2 mm and 7.5 mm.

At approximately 10 mm depth the difference is zero because the PMDF intersect (have the

same value). Another zero can be found closer to the surface, although here the magnitude of

the sensitivities is different. The depth differences in the regions of highest sensitivity varies

between 3 mm and 5.5 mm. The largest differences are observed when measurements are

performed at 650 nm. If we now consider the reference PMDF to be PMDF720 and perform

the same analysis, the depth differences are smaller than 1.5 mm, as shown in figure 8.36. As

expected, the wavelengths set selected using our method returns the smallest differences.
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Figure 8.35: Depth difference between equal
sensitivities of PMDFr and PMDFs at wavelengths
selected using our method (680 nm, 720 nm and
830 nm) and wavelengths selected using the two
criteria method (650 nm, 720 nm and 910 nm).

Figure 8.36: Depth difference between equal
sensitivities of PMDF720 and PMDFs at the other
wavelengths selected using our method (680 nm
and 830 nm) and wavelengths selected using the
two criteria method (650 nm and 910 nm).

8.5 Conclusions
The method developed by Corlu et al [2005] to optimise the wavelengths for DOT systems,

based on multispectral reconstruction, has proven to successfully overcome the non-uniqueness

problem and to minimise cross-talk between chromophores. Based on this method a new

wavelength optimisation method was introduced, which uses SSD to compare PMDFs at

different wavelengths. By minimising this quantity one can guarantee that the sensitivity to

changes in absorption and scattering changes in the studied medium are similar. The wavelength

distributions obtained using this new method differ from those determined without comparing

the similarity between sensitivity profiles. From our analysis, we conclude that the differences

in the interrogated volume at NIR wavelengths are very small for the three layer adult head

model and slightly more significant for the homogeneous model. This indicates that the results

depend on the accuracy of the head model. However, increasing the complexity of our model,

by including CSF, is expected to have a small influence on the results. Our new approach can

be applied to other tissue types, like breast, muscle or neonatal brain, and also to other diffuse

optical tomography/topography measurement types.

Measurements with overlapping sensitivities ensure that the same regions are being

sampled, however, they do not significantly improve the image reconstruction. As expected,

the quality of the reconstructions depends on the accuracy of the estimated optical properties

of the medium used in the forward model. In CW optical topography using linear multispectral

reconstruction, at least four measurement wavelengths are required to separate absorption from

scattering and separate two chromophores from one another.

The selection of optimal wavelengths is limited by the commercial availability of laser

diodes, although the error and consequences of using wavelengths with non-overlapping

sensitivities can be quantified from our analysis.

This study could depend on the background chromophore concentrations, scattering

amplitude and extinction coefficients used, which requires further analysis, but it is not likely

that it will have a significant influence on the PMDFs differences. Future work could also

include phantom experiments, to help validate the method. The results are not expected to
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be exactly the same because there are many other factors involved, like differences between

the signal to noise ratio of the laser sources at different wavelengths. Simulations could help

evaluate the effect of noise on the reconstructed images, and indicate which wavelengths are

more sensitive to noise.

The main conclusion is that for the adult human head it can be assumed that the volumes of

interrogated tissue at different NIR wavelengths are identical. Hence, measurements performed

at different NIR wavelengths provide information from the same brain regions.



CHAPTER 9

Imaging of functional brain activation

The brain regions involved in social cognition have been extensively studied in adults. However,

the relation between social stimuli and functional activation of the infant brain is less well

known. One of the main reasons is the inadequacy of imaging systems, such as fMRI and

PET, to image conscious infants. Optical topography is a potential imaging technique for this

age-group, due to its portability, safety and low sensitivity to motion since the imaging probe is

attached to the head of the subject. However, it can only image superficial regions of the brain.

Researchers at the Centre for Brain and Cognitive Development (CBCD at Birkbeck,

University of London) have performed several studies using an optical topography system

developed at UCL, to investigate regions of the infant brain areas involved in social cognitive

processes. A recent study performed by Lloyd-Fox et al [2009c] showed an increase in

[HbO2] in the posterior superior temporal region bilaterally, when visual social dynamic stimuli

were presented to twenty-four five-month-old infants. Grossmann et al [2008] studied the

social perception of gaze in four-month-old infants and detected cerebral activation in areas

of the temporal and prefrontal cortex. However, these and many other NIRS studies simply

analyse single source-detector hemodynamic responses and do not attempt to reconstruct

haemodynamic maps of the region of study. From a study performed at CBCD, 3D images

are reconstructed representing the haemodynamic responses to different social related stimuli

and the social brain regions are identified.

9.1 Methods
9.1.1 Stimuli
Thirteen five-month-old infants took part in the study. The infants sat on their parent’s lap

while the stimuli were displayed on a 46-inch plasma screen. The experiment consisted of

three different social stimuli performed by female actors who either moved their eyes, mouth

or hand. In the eye condition (E) the eyes were moved left or right (figure 9.1(c)), silent vowel

mouth movements were used for the mouth condition (M) (figure 9.1(b)) and hand games

were performed for the hand condition (H) (figure 9.1(a)). The baseline condition consisted
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Figure 9.1: Social stimuli presented to 13 healthy five-month old infants, which consisted of hand, eye
and mouth movements for 10 seconds per trial [Lloyd-Fox et al., 2009b].

Figure 9.2: Lateral and frontal array, showing the approximate position of the array of the infant head.

of non-social dynamic motion (rotating toy).

Before the actual experiment starts, there is a rest period so that infants become

comfortable and familiarised with the environment and experiment setup. Then, for each

experimental trial, a stimulus with a duration of 10s was alternated with a 10s baseline

measurement. The experimental stimulus and baseline are repeated at least 6 times. Trials

where infants failed to look at the stimuli were excluded.

9.1.2 Data acquisition and processing

The UCL optical topography system described in § 3.2.1.1, with wavelengths at 770 nm and

850 nm, was used for the data acquisition. An array of sources and detectors appropriate for

this study was designed by the CBCD. Two arrays were placed on the temporal lobe over each

hemisphere, which consisted of 5 sources and 5 detectors each, making a total of 19 channels,

with source-detector separations at 2 cm and 4.5 cm (figure 9.2). Another 3 source-detector

pairs, at separations 2.5 cm, were placed over the frontal lobe (figure 9.2).

Once data were acquired for all the trials, each trial was separated into blocks consisting

of 4s baseline, followed by a 10s trial and 10s baseline. Assuming that the initial and final

magnitude of the measurements is identical, each block was detrended using a linear fit between

the two baselines [Blasi et al., 2007].

Trials for each infant and experimental condition were averaged. Subsequently, each

experimental condition was averaged across all thirteen infants. This results in a set of data

over time for each of the three social stimuli. Their respective baselines were averaged over

time.
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9.1.3 Image reconstruction

The TOAST forward model was used to calculate the Jacobian matrix, for each of the three

arrays, using a FEM mesh with 32615 nodes, 21845 elements and dimensions 120 mm ×
60 mm × 40 mm. The medium is considered to be homogeneous with η = 1.4 and optical

properties µa,brain(λ) and 1/3 × µs′,brain(λ) (neonate µ′s is approximately 1/3 of that of adult,

refer to §2.2) for each wavelength λ (770 nm and 850 nm), as described in §2.2 and appendix

A. Three-dimensional multispectral reconstruction with NOSER type regularisation was used to

reconstruct images of oxy-haemoglobin concentration changes [HbO2] and deoxy-haemoglobin

concentration changes [HHb], for each experimental condition and probe.

9.2 Results
For each stimulus, data were averaged over 1s time intervals centred at 13s, which

corresponds in general to the point of maximum activation. The L-curve method was used

to find the constant regularisation parameter. However, the L-curve method fails to find a

regularisation parameter when the problem is normalised by the standard deviation of the

data and row normalisation is applied, which possibly occurs since the problem becomes

less ill-conditioned. Nevertheless, the GCV method successfully finds a regularisation

parameter despite normalisation. Without normalisation the L-curve method selects a

regularisation parameter that provides images with higher accuracy than those generated using

the regularisation parameter acquired via the GCV method. However, we find that the images

improve when normalisation are use.

Figure 9.3 shows xy cross-sections at z=8 mm of reconstructed images representing

[HbO2], corresponding to the probe placed on the left temporal lobe, while infants were

presented with a hand movement stimulus. Note that for both hemispheres, images are

displayed with the posterior temporal area on the left and anterior area on the right. Recall

that the stimulus was initiated at 4s and ends at 14s, and is followed by a baseline condition.

An increase in [HbO2] is visible in the posterior site between 10s and 16s. A small region

in the anterior site also shows an increase in oxy-haemoglobin. The increase appears to be

preceded by a global decrease in oxy-haemoglobin. Figure 9.4 shows xy cross-sections at

z=8 mm of reconstructed images of [HHb] for the hand condition. An increase in HHb is

visible as a response to the stimulus and is followed by a decrease, which occurs 3s after the

increase in [HbO2]. The change in [HHb] occurs in the central and anterior regions, which

are adjacent positions to sites of increase in [HbO2]. The images of [HbO2] and [HHb] for

the mouth condition are displayed in figure 9.5 and figure 9.6, respectively. An increase in

[HbO2] occurs 1s post stimulus onset in the central region, and moves to the posterior site once

the control condition begins. Figure 9.6 shows that during the stimulus the [HHb] increases. A

decrease in deoxy-haemoglobin is visible between 14s and 24s in the anterior region. Figure 9.7

shows oxy-haemoglobin images for the eye condition. A slight decrease in [HbO2] is observed

followed by an increase. The maximum change in [HbO2] occurs 8-12s post stimulus onset.

Figure 9.8 shows a decrease in [HHb] that starts just as the stimulus is ending, preceded by an

increase. The decrease in [HHb] is located at the central and anterior sites.

Figure 9.9 shows xy cross-sections at z=6 mm of reconstructed images of [HbO2],
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measured by the probe placed on the right temporal lobe, while infants visualised hand

movements. The maximum change in [HbO2] occurs 5-13s post stimulus onset and mainly at

a posterior location. Some activity is also visible at the central/inferior site and anterior region.

The regions of maximum deoxy-haemoglobin decrease appear in figure 9.10 adjacent to the

regions of maximum change in [HbO2]. The response latency is similar for both chromophores.

Figure 9.11 shows xy cross-sections at z=6 mm of images of [HbO2] for the mouth condition.

The maximum [HbO2] increase occurs at the anterior site, which becomes visible in the images

1s after the stimulus onset. There is also an increase in [HbO2] at the posterior and central

regions. The haemodynamic activity predominantly influences data collected using the short

separation source-detector pairs, which is also reflected in the images. Figure 9.12 shows xy

cross-sections at z=6 mm of images of [HHb] for the same condition, where a decrease in

deoxy-haemoglobin can be seen in the central region, with a response latency of 6s. Figure 9.13

shows xy cross-sections at z=8 mm of images of [HbO2] for the eye condition. An increase

in oxy-haemoglobin is visible 2s post stimulus onset, which is located in the posterior/central

region. Figure 9.14 shows a large increase in deoxy-haemoglobin during the stimulus, followed

by a centrally located decrease.

The images reconstructed of oxy- and deoxy-haemoglobin concentration changes at depth

z=6 mm from the measurements performed on the frontal cortex while hand stimuli were

presented are displayed in figure 9.15 and figure 9.16, respectively. A strong change in

oxy-haemoglobin occurs in the centre. The [HHb] images show a decrease in the chromophore

concentration at the extremities, although it also exhibits regions of concentration increase. The

images for the mouth condition show a similar pattern, as displayed in figure 9.17 and figure

9.18, for [HbO2] and [HHb] respectively. The maximum [HbO2] occurs at the centre and just to

the right of centre. The maximum [HHb] is observed on the right side, but a smaller change in

deoxy-haemoglobin can also be observed on the left. Figure 9.19 shows the oxy-haemoglobin

concentration change for the eye condition. Here, the maximum [HbO2] occurs in the centre

at 6s and again at 11s from the stimulus onset. Figure 9.20 shows the deoxy-haemoglobin

concentration change for the eye condition. Besides the decrease in deoxy-haemoglobin at the

lateral sites, a decrease is also observed at the top right 2s post stimulus onset.

Figure 9.21 shows the xz cross-section at y=30 mm (section through the probe length) of

the image corresponding to the oxy-haemoglobin concentration change in the right hemisphere

evoked by eye movements. The maximum activity occurs at depths between 5 mm and 10

mm. Nevertheless, regions down to 15 mm still reveal activity. A similar image can be seen

in figure 9.22 for the mouth condition. Differences between interrogated regions by different

source-detector separations become evident in this image. Small source-detector separation can

only measure activity down to approximately 8 mm depth.

Using the reconstructed images, the regions where the increases in oxy-haemoglobin

and decreases in deoxy-haemoglobin occurred were estimated for all the three conditions and

probes, and are depicted in figure 9.23.
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Figure 9.3: Reconstructed images of changes in [HbO2] occurring in the left hemisphere over time,
showing the response to hand movements.

Figure 9.4: Reconstructed images of changes in [HHb] occurring in the left hemisphere over time,
showing the response to hand movements.
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Figure 9.5: Reconstructed images of changes in [HbO2] occurring in the left hemisphere over time,
showing the response to mouth movements.

Figure 9.6: Reconstructed images of changes in [HHb] occurring in the left hemisphere over time,
showing the response to mouth movements.
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Figure 9.7: Reconstructed images of changes in [HbO2] occurring in the left hemisphere over time,
showing the response to eye movements.

Figure 9.8: Reconstructed images of changes in [HHb] occurring in the left hemisphere over time,
showing the response to eye movements.
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Figure 9.9: Reconstructed images of changes in [HbO2] occurring in the right hemisphere over time,
showing the response to hand movements.

Figure 9.10: Reconstructed images of changes in [HHb] occurring in the right hemisphere over time,
showing the response to hand movements.
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Figure 9.11: Reconstructed images of changes in [HbO2] occurring in the right hemisphere over time,
showing the response to mouth movements.

Figure 9.12: Reconstructed images of changes in [HHb] occurring in the right hemisphere over time,
showing the response to mouth movements.
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Figure 9.13: Reconstructed images of changes in [HbO2] occurring in the right hemisphere over time,
showing the response to eye movements.

Figure 9.14: Reconstructed images of changes in [HHb] occurring in the right hemisphere over time,
showing the response to eye movements.
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Figure 9.15: Reconstructed images of changes in [HbO2] occurring in the frontal lobe over time,
showing the response to hand movements.

Figure 9.16: Reconstructed images of changes in [HHb] occurring in the frontal lobe over time, showing
the response to hand movements.
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Figure 9.17: Reconstructed images of changes in [HbO2] occurring in the frontal lobe over time,
showing the response to mouth movements.

Figure 9.18: Reconstructed images of changes in [HHb] occurring in the frontal lobe over time, showing
the response to mouth movements.
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Figure 9.19: Reconstructed images of changes in [HbO2] occurring in the frontal lobe over time,
showing the response to eye movements.

Figure 9.20: Reconstructed images of changes in [HHb] occurring in the frontal lobe over time, showing
the response to eye movements.
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Figure 9.21: xz cross-sectional images of changes
in [HbO2] in the right hemisphere evoked by eye
movements.

Figure 9.22: xz cross-sectional images of changes
in [HbO2] in the right hemisphere evoked by mouth
movements.

Figure 9.23: Schematic illustration of the regions of maximum haemodynamic activity for the three
experimental conditions, for the left pad (left), frontal pad (centre) and right pad (right). For both
hemispheres the posterior temporal area is on the left and the anterior area is on the right.

9.3 Discussion
Optical topography can clearly measure visually induced haemodynamic activity in regions of

the social brain. The array of optodes was placed on both temporal lobes and the frontal lobe.

Images of oxy-haemoglobin and deoxy-haemoglobin concentration changes were reconstructed

for all three imaged regions, for three different experimental conditions: hand, mouth and eye

movements.

The images obtained from the left pad representing oxy-haemoglobin change are quite

similar for the three conditions, showing a maximum change in the posterior region, which is

likely to be associated with activity in the posterior superior temporal sulcus (pSTS). Strong

activity is also detected in the anterior area of the image, which is possibly reflecting activity

taking place in the inferior frontal gyrus (IFG). For the mouth movement there is also an

increase in oxy-haemoglobin in the regions corresponding to the mid-STS. For the hand and

eye conditions the maximum [HbO2] has a latency from the stimulus onset of 7-12s and is

preceded by a decrease in its concentration. This is reasonable, since the great metabolic

demand in the activated brain regions causes an initial small decrease in local [HbO2], to which

the brain responds by increasing the blood flow that results in an increase in local [HbO2]. The

mouth condition seems to trigger an almost instantaneous response with longer duration. In

general, the images of changes in deoxy-haemoglobin, occurring in the left hemisphere, show

an increase in [HHb] followed by a decrease. This decrease has a latency of approximately 4s

from the time at which the [HbO2] is maximum, and appears adjacent to regions of increase in
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[HbO2].

The activity in the right hemisphere induced by hand and mouth movements is mostly

measured by source-detector pairs at small separations, and therefore the images show activity

in regions immediately between optodes with small separations. Activity in the anterior region

can be seen in the images of the right hemisphere for all conditions. As before, this may

correspond to activity in the IFG. The images reconstructed from measurements performed

while infants observed hand movements show a maximum increase in [HbO2] in the posterior

region, which may correspond to activity measured in the pSTS. For the mouth condition

activity is observed for regions corresponding to the pSTS and mid-STS/anterior temporal

region. Whereas for the eye condition activity is seen for regions corresponding to posterior/mid

STS. In general, the latency period from the stimulus onset is shorter for the right hemisphere

than for the left hemisphere. Once more, decreases in [HHb] occur in regions next of maximum

increase in [HbO2]. A longer latency from the stimulus onset is observed for [HHb] than for

[HbO2], except for the hand condition where they both respond at approximately 4s after the

stimulus starts.

As mentioned previously, a study by Lloyd-Fox et al [2009c] to determine activity in

regions of the social brain of five-month-old infants using the same conditions as those

described above, showed an increase in [HbO2] in posterior regions of the temporal lobes.

Activation was also found in the anterior temporal/inferior frontal region, which is in agreement

with our findings.

Puce et al [1998] performed a fMRI study to determine which regions of the temporal

cortex became activated in adult humans viewing eye and mouth movements, and found strong

bilateral activation in the pSTS. They also found that changes in gaze direction activate the right

STS more than the left. Studies of neural activity involved in the perception of eye, hand and

mouth movements suggest that the main focus of activation is the pSTS [Allison et al., 2000].

Responses to hand and mouth movements have been also measured in more anterior regions

[Allison et al., 2000].

Pelphrey et al [2005] conducted a fMRI study to compare cerebral activity during

viewing of eye, mouth and hand movements. They found bilateral activation of the posterior

temporal-occipital cortex. The right hemisphere showed a greater response to the stimuli, and

activity evoked by mouth movements dominated the left hemisphere. Activity induced by eye

movements was greatest in the pSTS region. Mouth movements activated more anterior regions

of the STS, whereas the most posterior activation was evoked by hand movements. A similar

posterior to anterior structural organisation of the STS can be seen in our oxy-haemoglobin

concentration change images of activity in the right hemisphere: the hand condition evokes

activity in the most posterior region, followed by the eye activity region and mouth activity in

more anterior regions. Activity evoked by mouth movements in the left hemisphere also occurs

in more anterior regions relative to other stimuli activity. It has been reported that the STS

on the right hemisphere of newborns is larger and presents a degree of complexity higher than

that on the left hemisphere [Dubois et al., 2008], which could explain the smaller structural

organisation level observed for the optical topography images of the left hemisphere. Pelphrey

et al [2005] also observed activation in the IFG, predominantly induced by eye and mouth
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movements. Thompson et al [2007] observed activity in the left IFG of subjects viewing hand

and mouth movements. This reinforces the hypothesis that the optically measured activity in

the most anterior site has its origin in the IFG.

The images reconstructed from measurements performed on the frontal lobe show a strong

increase in [HbO2] mainly in the centre and slightly deviated to the right. A decrease in [HHb]

is observed in the surrounding regions. PET and MRI studies of spatial working memory,

i.e., short-term storage and manipulation of information regarding spatial positions of stimuli,

observed activity lateralised to the right in the frontal cortex [Wager & Smith, 2003]. Hand

actions were visualised by children during a fMRI study and activity was found in the right

hemisphere of the medial prefrontal cortex (mPFC) [Ohnishi et al., 2004]. The optical probe

placed over the frontal cortex contains few channels, which results in images with low spatial

accuracy and resolution. For example, if activity occurs in a regions slightly to the right of the

central region, then an intensity change measured by the central source-detector pair will still

cause a reconstructed image to display the activated region in the exact centre of the image.

In the previous chapter, we analysed the similarity between sensitivity profiles for

wavelengths in the NIR range. We observed that for 770 nm and 850 nm the interrogated

volume is similar. Therefore, the information measured at these wavelengths should not

differ significantly. Also, simulations were performed to study the cross-talk between

oxy- and deoxy-haemoglobin present in the images using measurements acquired at these

wavelengths. The image reconstruction was able to separate both chromophores, but [HbO2]

was overestimated by 15 % and [HHb] by 10 %. Therefore we expect our concentration change

values to be overestimated. Nevertheless these values are of the same order of magnitude as

those found in NIRS studies [Lloyd-Fox et al., 2009c; Grossmann et al., 2008; Carlsson et al.,

2008]. As expected, the decreases in [HHb] are smaller than the increases in [HbO2].

The optical properties of the brain are not exactly known, and if the sensitivity matrix is

generated for optical properties very different from the true values it leads to cross-talk in the

reconstructions. Some of the decreases in the [HbO2] and increases in [HHb] present in the

images (refer for example to figure 9.13 and figure 9.14) could be due to this uncertainty in the

optical properties of the brain. Nevertheless, an increase followed by a decrease and vice-versa

can be observed in the intensity data (not shown), indicating that there actually is an increase

(decrease) in [HHb] ([HbO2]) before a decrease (increase).

Haemodynamic activity is observed in the reconstructed images down to a depth of 15

mm. Assuming the scalp thickness in infants to be about 3 mm, skull thickness 5 mm (may be

thinner for the temporal region), CSF layer 1 mm and grey matter 3 mm, then the whole cerebral

cortex depth and superficial regions of the white matter are being imaged. Short source-detector

separations can only measure activity at the surface of the cerebral cortex. As shown in the

previous chapter, the spatial accuracy of the haemodynamic activity depends on the accuracy of

the optical properties used to generate the sensitivity matrix.

As future work, optical topography should validated by performing it simultaneously with

an imaging modality that has already proven to be successful at identifying activity in regions

of the social brain, such as fMRI and PET. The quality of the optical topography images

would be greatly improved if more optodes and source-detector separations were used, which
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is something to consider for future studies. However, the CGCD and UCL have already tested

probes with higher optode density and found that data were more robust and reliable when a

smaller number of optodes were used [Lloyd-Fox et al., 2009a]. Also, data were less sensitive

to head movements for the type of probe used in this study.

9.4 Conclusions
Three-dimensional images of regions of the social brain were successfully reconstructed, using

the multispectral method, from optical topography measurements on five-month-old infants. In

general, images of oxy-haemoglobin concentration changes show a decrease in concentration

followed by a larger increase. The opposite is seen in images of deoxy-haemoglobin

concentration changes. There is a few seconds latency between the stimulus onset and the

maximum increase in [HbO2], and the [HHb] peak tends to occurs later. The results are in

agreement with adult fMRI studies, where activity is visible is the pSTS, IFG and mPFC.

Activity was observed in both hemispheres showing a certain degree of structural organisation,

where specific regions of the temporal cortex, possibly STS, respond to certain stimuli. The

right hemisphere exhibits a posterior to anterior response in the temporal lobe, possibly within

the STS, to viewing hand, eye and mouth movements. The left hemisphere shows less structural

organisation, but mouth movements evoke activity in a more anterior region than eye and hand

movements. These results suggest that five-month-old infants already have specialised regions

for processing social stimuli. Optical topography appears to be a suitable technique for imaging

responses to social stimuli in infants.
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Summary and future developments

Optical topography is an emerging imaging technique, which has proven to be suitable for

monitoring cerebral activity of awake infants. One of the main research applications is the

study of brain development. Although other imaging modalities exist, such as fMRI and PET,

which have successfully been used to study the adult brain, these techniques have factors that

restrict their used in infants. Moreover, the information provided by optical topography, i.e.,

oxy- and deoxy-haemoglobin concentration changes, cannot be obtained by any other imaging

modality. Note that measurements at an appropriate combination of wavelengths enables other

chromophore concentrations to be monitored. Most optical topography functional activation

studies, in both adults in infants, determine chromophore concentration changes for single

source-detector pairs. However, maps of cortical activity, proving volumetric haemodynamic

information, can be obtained by inverting the forward problem, which models the light

interaction with tissue, and by using overlapping measurements at different source-detector

separations. In this thesis different means of improving the quality of three-dimensional optical

topography images have been explored.

Image reconstruction in optical topography is an ill-posed and under-determined problem.

Tikhonov regularisation can be used to stabilise the solution of the inverse problem, which is

achieved by filtering out small singular values of the sensitivity matrix. The amount of filtering

is controlled by the regularisation parameter, which has a large influence on the image quality.

In this thesis we reviewed some of the most common methods used to select the regularisation

parameter. We were aiming to find a method that returned a single regularisation parameter

value, did not require a subjective input from the user or any prior information about the feature

being examined. Alternative methods were tested on a relatively simple ill-posed problem

with a known solution, the deblurring problem, where different levels of noise were added to

the blurred data. Finally, the methods were applied to experimental optical topography data.

We found that the L-curve method can find a reasonable regularisation parameter for both

deblurring and optical topography problems. However, the L-curve method fails when the
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multispectral reconstruction method is used to directly obtain the chromophore concentrations,

instead of the conventional approach where the absorption and scattering coefficients are

reconstructed, and normalisations are applied to the sensitivity matrix. The GCV method has

proven to be an effective alternative to the L-curve method.

Another approach used to optimise the linear image reconstruction algorithm in order

to provide more qualitatively accurate images, particularly in the depth direction, was the

inclusion of a spatially variant regularisation parameter. We have shown using simulations

and phantoms, with targets located at different depths from the imaging surface, that better

depth discriminations is obtained when NOSER type regularisation is used instead of a

constant regularisation parameter. The performance of the UCL topography system and image

reconstruction algorithm was quantified in terms of contrast, spatial resolution and spatial

accuracy.

The published literature includes several previous descriptions of methods designed to find

the optimal set of wavelengths for optical topography imaging of the adult brain. None of these

studies examined the similarities between interrogated volumes of measurements performed at

different wavelengths. Based on the multispectral reconstruction we introduced a method to

select the optimal wavelengths, which not only gives good separation between chromophores,

absorption and scattering, but also minimises the differences between interrogated volumes.

This method uses the SSD to compare PMDFs, which were generated for wavelengths in the

NIR range. The image reconstructions generated from simulated data slightly improved when

measurements with overlapping sensitivities were used. Interestingly, we found that in CW

optical topography using linear multispectral reconstruction that at least four measurement

wavelengths are required in order to separate absorption from scattering and separate two

chromophores from one another. Our method can be applied to other types of tissue.

Throughout this project we studied the limitations and potential of the UCL system and

linear image reconstruction, which is essential to evaluate the reliability of images reconstructed

from in vivo data. Finally, the new three-dimensional imaging tools were employed to

reconstruct images from measurements of visually evoked response in the infant brain. To

our knowledge these were the first optical topography images of regions of the social brain

network, showing decreases in [HHb] and increases in the [HbO2] in the temporal and prefrontal

cortex. More precisely, we believe that activity occurred in regions of the STS, IFG and mPFC.

These results are in agreement with PET and fMRI studies of the adult social brain. Optical

topography appears to be the ideal imaging modality for infant brain imaging. Many advantages

can be enumerated, such as its non-invasiveness, low-cost, short scanning times, portability,

infants can be monitored while they are awake, relatively small sensitivity to motion, and

the number of optodes and their configuration can be easily adjusted according to the types

of study. Nevertheless, these are preliminary studies and we hope that in the future we can

obtain better contrast, resolution and spatial accuracy. So far we have reconstructed images

from optical topography data using the zero-order Tikhonov regularisation, which is known

to produce smooth solutions. In the future, different penalty functions will be included in the

reconstruction algorithm and their effect on the reconstructed images analysed. These functions

include higher order Tikhonov functions, Total Variation (TV) and possibly a hybrid method
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like the one described by Douiri et al [2007]. The inclusion of priors in the image reconstruction

is briefly described below.

10.1 Use of priors in linear reconstruction
The generalised Tikhonov regularisation is given by [Vogel, 2002]

‖Ax− b‖22 + λ2F (x) = min (10.1)

where the function F (x) is a penalty function, which can incorporate a priori information. In

the zero-order Tikhonov regularisation F (x) = ‖Dx‖22 with D = I and the above becomes

equation (5.87). The matrix D can have other forms, for example it can be a covariance matrix,

as described further in §7, or it can be a derivative operator.

The special case of the Tikhonov regularisation described in equation (5.87), with F (x) =

‖x‖22, results in very smooth solutions. As mentioned previously the regularisation parameter λ

has a major effect on the solution. If λ is too large the inverse problem is only slightly related

to the original unregularised problem, whereas if λ is chosen to be small the solution will be

dominated by amplified errors.

If some information is known about the solution and its behaviour, then F (x) can

incorporate this a priori information [Pedersen, 2005; Aster et al., 2004]. If the solution is

known to have a small first derivative then selecting D = ∇, where ∇ is the gradient operator,

should penalise any rapid changes in the solution x. It is possible to approximate the first

derivative of x (in one dimension) by the multiplication D1x, where D1 is the matrix

D1 =


−1 1

−1 1
. . . . . .
−1 1

 .

In the second-order Tikhonov regularisation D = 4, where 4 is the Laplacian operator.

The inclusion of this penalty function imposes a solution with a small second derivative,

meaning that it penalises curvature. The second derivative of x can be approximated by D2x,

where D2 is

D2 =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 .

The Total Variation (TV) penalty function is used when there are discontinuous jumps in

the solution. Like Tikhonov regularisation it also penalizes highly oscillating solutions [Vogel,

2002]. The TV function is defined as

TV (x) =

∫
Ω
| ∇x |, (10.2)

where Ω is the solution domain. In the one dimensional case F (x) = ‖∇x‖1. The main

difference between the Tikhonov regularisation penalty functions and the TV function is

the norm; Tikhonov regularisation functions are L2 norms and TV is an L1 norm. The
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Tikhonov regularisation penalises discontinuities in favour of smooth transitions, whereas TV

regularisation allows discontinuous transitions, thereby preserving the edge information in the

reconstructed images [Aster et al., 2004].

A one-dimensional example is used to illustrate the advantage of the TV function.

Consider a function Γ = {f : R→ R, f(0) = 0, f(b) = a} and also the Ln norm which is

defined as follows

‖f(x)‖n =

(∫
|f(x)|ndx

)1/n

. (10.3)

Solving for the n norm raised to the power n we obtain ‖f ′(x)‖n = anb1−n, hence

‖f ′(x)‖nn = ab
1−n
n . If n = 1 then ‖f ′(x)‖1 = a, and for n = 2 then ‖f ′(x)‖2 = a/

√
b

[Pedersen, 2005; Borsic, 2002]. From these results it can be concluded that the L1 norm is

only influenced by variations, whereas for the L2 norm variations are penalised but also rapid

changes (steep gradients) are penalised; it can be seen that the norm becomes large for a small

b. In this example ‖f ′(x)‖1 can be minimised by an infinite number of functions, and only a

straight line that connects the origin to the point (b,a) can minimise ‖f ′(x)‖2.

Hybrid methods that take advantage of both features of the Tikhonov regularisation and

TV functions have been developed, and have proven to enhance the quality of optical images

[Douiri et al., 2007; Paulsen & Jiang, 1996]. Optical topography images exhibit poor spatial

resolution due to the diffuse nature of the photon migration, but the quality of the images can

be improved by the use of prior information. One possible example is to use MRI images to

provide anatomical information [Ntziachristos et al., 2000; Davis et al., 2007; Brooksby et al.,

2003; Carpenter et al., 2008].

The methods used to select the regularisation parameter described in §5 could be adapted

so that we are able to find the regularisation parameters for each prior type, followed by an

analysis of these methods similar to the one done for the zero-order Tikhonov regularisation. A

study would then determine if the selection methods return valid regularisation parameters when

priors are included in the inverse problem. The deblurring problem could be used again, as it

represents a simpler problem than optical imaging and it is always easier to obtain reasonable

results using generated data. Thereafter, the method could be assessed using experimental

optical topography data.
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Absorption and reduced scattering coefficients table

Table A.1 contains the absorption coefficients µa and reduced scattering coefficients µ′s used in

this thesis for the brain, skull and skin spectra.

Table A.1: Absorption and reduced scattering coefficients for skin, skull and brain tissue.



APPENDIX B

Appendix

B.1 Spatially variant regularisation - summarised results and
reconstructed images

The following tables summarise the results of §7.4.1. Tables B.1-B.4 show the results of

experiment 1, for the simulations and liquid phantom, where the absorption perturbation was

located at different depths. Images were reconstructed using the different regularisation types

( described in §7.2) and the apparent position of the target was calculated using the weighted

mean position ( described in §7.3). Table B.1 shows the real target position and the apparent

position of the target in the images. The root squared error (RSE) was used to calculate de

global depth accuracy. Table B.2 shows the mean PSF width (x and z directions) and the RSE

for each regularisation type. Table B.3 summarises the normalised FVHM and the RSE. Table

B.4 shows the contrast values and the RSE for each regularisation type. The results in table

B.5 correspond to experiment 2, where the target was moved along the x and y axis in the

liquid phantom. Images were reconstructed using a constant regularisation parameter λc and a

variable λ (NOSER regularisation). This table shows the true location of the target (x, y), the

apparent position in the image and the lateral spatial accuracy SAxy, estimated from the RSE.

The PSF width, FVHM and contrast values are also shown.

DEPTH OF TARGET IN THE IMAGE
λ type simulation (mm) phantom T1 (mm)
target depth 10 15 20 25 30 RSE 12 17 22 27 32 RSE
E 10.1 18.5 24.7 26.9 26.4 7.1 7.2 17.4 26.4 27.7 27.9 7.7
S 11.8 18.0 23.5 25.9 26.3 6.3 9.3 18.8 24.5 25.7 26.0 7.4
NOSER 10.8 18.5 22.7 24.1 25.3 6.4 10.9 17.4 22.3 25.9 25.2 7.2
NOSER & C 12.9 18.7 22.8 24.9 25.6 7.1 9.1 18.1 21.8 25.8 26.3 6.6
VU 12.2 18.9 22.7 23.8 24.7 7.8 9.9 18.1 23.5 24.6 25.0 7.8
R & C 10.2 18.5 22.8 24.5 25.7 6.3 12.2 17.7 20.4 25.0 25.4 7.1
R 10.9 17.9 22.6 24.1 25.3 6.9 7.1 14.6 21.2 24.2 24.3 9.9
λc 8.7 13.4 16.2 18.8 20.9 11.9 6.6 10.9 13.1 12.3 12.5 27.3

Table B.1: Weighted average depth for the simulation and liquid phantom. The uncertainty in depth
corresponds to the pixel size, which is 3.3 mm. The RSE values are the global depth accuracy.
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PSF WIDTH
λ type simulation (mm) phantom T1 (mm)
target depth 10 15 20 25 30 RSE 12 17 22 27 32 RSE
E 2.4 11.0 14.3 17.1 18.3 30.9 3.3 14.3 15.2 16.1 14.8 30.5
S 4.5 6.5 9.5 7.4 10.7 17.9 6.2 12.5 8.9 10.0 10.7 22.2
NOSER 5.5 17.0 14.1 11.2 9.8 27.2 3.7 15.9 11.5 11.1 12.0 25.9
NOSER & C 3.4 11.4 12.5 10.9 11.1 23.2 8.4 18.5 16.2 18.9 20.7 38.2
VU 8.1 9.9 10.8 10.9 12.4 23.5 9.3 8.1 4.6 6.1 6.6 15.9
R & C 4.7 14.9 20.1 22.7 25.3 42.5 1.8 15.1 8.8 6.7 7.3 20.1
R 7.1 14.5 21.9 28.0 27.5 47.8 6.4 17.0 18.9 13.7 13.5 32.6
λc 4.2 8.8 10.9 12.8 14.8 24.5 7.7 2.9 3.5 5.6 6.1 12.2

Table B.2: PSF width obtained from the reconstructed images of the simulation and liquid phantom.
The uncertainty is given by the pixel size, which has a mean value of 3.4 mm. The RSE values represent
the global PSF width.

NORMALISED FVHM
λ type simulation (mm) phantom T1 (mm)
target depth 10 15 20 25 30 RSE 12 17 22 27 32 RSE
E 0.009 0.022 0.033 0.044 0.050 0.071 0.016 0.058 0.030 0.038 0.043 0.081
S 0.009 0.014 0.025 0.022 0.028 0.040 0.019 0.033 0.022 0.030 0.030 0.053
NOSER 0.016 0.035 0.038 0.038 0.038 0.068 0.016 0.038 0.030 0.038 0.043 0.081
NOSER & C 0.009 0.028 0.032 0.030 0.028 0.052 0.003 0.052 0.047 0.074 0.073 0.118
VU 0.032 0.032 0.027 0.030 0.033 0.061 0.019 0.035 0.011 0.019 0.017 0.041
R & C 0.013 0.041 0.091 0.104 0.101 0.170 0.013 0.046 0.017 0.027 0.025 0.055
R 0.009 0.036 0.095 0.106 0.106 0.174 0.005 0.035 0.050 0.047 0.052 0.086
λc 0.013 0.014 0.022 0.032 0.039 0.051 0.008 0.014 0.017 0.009 0.009 0.020

Table B.3: Normalised FVHM. The uncertainty is 0.0001. The RSE values represent the FVHM for all
depths.

CONTRAST
λ type simulation (mm) phantom T1 (mm)
target depth 10 15 20 25 30 RSE 12 17 22 27 32 RSE
E 3.1 1.2 1.0 0.33 0.21 2.8 0.066 0.019 0.014 0.011 0.022 1.6

± 0.3 ± 0.1 ± 0.1 ± 0.01 ± 0.01 ± 0.5 ± 0.005 ± 0.004 ± 0.001 ± 0.001 ± 0.003 ± 0.01
S 4.1 2.0 1.6 0.63 0.43 4.3 0.066 0.045 0.042 0.047 0.062 1.6

± 0.4 ± 0.2 ± 0.1 ± 0.04 ± 0.02 ± 0.7 ± 0.004 ± 0.005 ± 0.004 ± 0.005 ± 0.006 ± 0.02
NOSER 1.9 0.8 0.67 0.27 0.11 1.4 0.064 0.032 0.022 0.026 0.028 1.6

± 0.1 ± 0.1 ± 0.02 ± 0.01 ± 0.02 ± 0.3 ± 0.006 ± 0.004 ± 0.002 ± 0.003 ± 0.005 ± 0.02
NOSER & C 2.6 1.9 0.67 0.15 0.11 2.2 1.2 1.0 1.0 0.59 0.25 0.8

± 0.2 ± 0.1 ± 0.03 ± 0.01 ± 0.03 ±0.4 ± 0.1 ± 0.1 ± 0.1 ±0.03 ± 0.07 ± 0.4
VU 1.9 0.9 0.67 0.19 0.11 1.6 0.027 0.012 0.0069 0.0052 0.013 1.6

± 0.01 ± 0.1 ± 0.03 ± 0.01 ± 0.02 ± 0.2 ± 0.001 ± 0.008 ± 0.0005 ± 0.0002 ± 0.009 ± 0.03
R & C 1.4 0.35 0.15 0.062 0.021 0.8 0.063 0.008 0.008 0.0073 0.0087 1.6

± 0.01 ± 0.03 ± 0.01 ± 0.004 ± 0.004 ± 0.1 ± 0.003 ± 0.007 ± 0.006 ± 0.0005 ± 0.0005 ± 0.02
R 1.8 0.33 0.014 0.050 0.019 1.1 0.083 0.041 0.024 0.025 0.029 1.6

± 0.01 ± 0.02 ± 0.003 ± 0.002 ± 0.01 ± 0.1 ± 0.005 ± 0.008 ± 0.001 ± 0.004 ± 0.001 ± 0.02
λc 3.1 1.4 1.1 0.78 0.16 3.1 0.32 0.78 0.68 0.83 1.6 0.9

± 0.1 ± 0.1 ± 0.1 ± 0.01 ± 0.01 ± 0.3 0.02 ± 0.05 0.05 ± 0.06 ± 0.3 ± 0.5

Table B.4: Contrast of the target in the reconstructed images from simulation and phantom data. The
RSE values are the global contrast.

constant λ variable λ
(x,y) x y SAxy PSF FVHM Contrast x y SAxy PSF FVHM Contrast(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
(-10,-10) -16.7 -13.5 7.6 4.3 0.003 0.48 ± 0.04 -11.3 -11.2 1.8 7.3 0.003 0.40 ± 0.05
(-10,0) -16.3 -3.6 7.2 6.4 0.007 0.32 ± 0.04 -14.7 -3.8 6.1 6.6 0.005 0.30 ± 0.03
(-10,10) -15.9 3.3 8.9 3.4 0.002 0.99 ± 0.18 -12.9 7.9 3.7 16.7 0.005 0.40 ± 0.04
(0,-10) -5.1 -11.4 5.3 6.8 0.005 0.23 ± 0.02 -3.2 -7.6 4.0 4.3 0.003 0.32 ± 0.03
(0,0) -3.8 -1.3 4.0 15.7 0.011 0.19 ± 0.02 -2.8 0.3 2.8 20.6 0.006 0.29 ± 0.03
(0,10) -5.4 -7.12 6.0 16.7 0.006 0.38 ± 0.06 -4.6 9.1 4.6 16.1 0.006 0.43 ± 0.05
(10,-10) 5.2 -9.8 4.8 13.8 0.010 0.11 ± 0.01 4.9 -7.8 5.5 17.7 0.011 0.25 ± 0.01
(10,0) -0.8 4.2 5.9 13.8 0.008 0.28 ± 0.03 4.2 0.3 5.8 14.9 0.007 0.24 ± 0.03
(10,10) 3.7 9.2 6.4 7.5 0.003 0.30 ± 0.03 4.6 10.1 5.4 21.0 0.011 0.34 ± 0.05

Table B.5: Apparent position (x and y) of the target in the images, spatial accuracy SAxy , PSF width,
FVHM and contrast.
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B.2 Reconstructed images
The following images were reconstructed using the different regularisation types from

simulated and liquid phantom data. First, images reconstructed from simulated data are shown,

followed by the phantom images. The images are zx cross-sections, the distances from the

surface are indicated for the z direction. Pixel dimensions are 3.3 mm × 3.5 mm. Figure

captions are self-explanatory.

B.2.1 Simulations

(a) (b) (c)

Figure B.1: Images reconstructed from simulated data using a constant regularisation parameter λc, for
absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm below the surface.

(a) (b) (c)

Figure B.2: Images reconstructed from simulated data using an exponential decay function (E) as
regularisation parameter, for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm
below the surface.
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(a) (b) (c)

Figure B.3: Images reconstructed from simulated data using a sigmoid decay function (S) as
regularisation parameter, for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm
below the surface.

(a) (b) (c)

Figure B.4: Images reconstructed from simulated data using the NOSER type regularisation parameter,
for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm below the surface.
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(a) (b) (c)

Figure B.5: Images reconstructed from simulated data using the NOSER type regularisation parameter
and data covariance matrix C , for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30
mm below the surface.

(a) (b) (c)

Figure B.6: Images reconstructed from simulated data using the variance uniformisation (VU)
regularisation parameter, for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm
below the surface.
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(a) (b) (c)

Figure B.7: Images reconstructed from simulated data using the covariance matrix R as regularisation
parameter, for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm below the
surface.

(a) (b) (c)

Figure B.8: Images reconstructed from simulated data using the covariance matrices R and C as
regularisation parameter, for absorption perturbations located at (a) 10 mm, (b) 20 mm and (c) 30 mm
below the surface.
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B.2.2 Liquid phantom

(a) (b) (c)

Figure B.9: Images reconstructed from phantom data using a constant regularisation parameter λc, for
absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm below the surface.

(a) (b) (c)

Figure B.10: Images reconstructed from phantom data using an exponential decay function (E) as
regularisation parameter, for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm
below the surface.
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(a) (b) (c)

Figure B.11: Images reconstructed from phantom data using a sigmoid decay function (S) as
regularisation parameter, for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm
below the surface.

(a) (b) (c)

Figure B.12: Images reconstructed from phantom data using the NOSER type regularisation parameter,
for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm below the surface.
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(a) (b) (c)

Figure B.13: Images reconstructed from phantom data using the NOSER type regularisation parameter
and data covariance matrix C , for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32
mm below the surface.

(a) (b) (c)

Figure B.14: Images reconstructed from phantom data using the variance uniformisation (VU)
regularisation parameter, for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm
below the surface.
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(a) (b) (c)

Figure B.15: Images reconstructed from phantom data using the covariance matrix R as regularisation
parameter, for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm below the
surface.

(a) (b) (c)

Figure B.16: Images reconstructed from phantom data using the covariance matrices R and C as
regularisation parameter, for absorption perturbations located at (a) 12 mm, (b) 22 mm and (c) 32 mm
below the surface.
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Pea, M, Maki, A, Kovačić, D, Dehaene-Lambertz, G, Koizumi, H, Bouquet, F, & Mehler, J.
2003. Sounds and silence: An optical topography study of language recognition at birth.
Proceedings of the National Academy of Sciences, 100(20), 11702–11705.

Pedersen, J. 2005. Modular algorithms for large-scale total variation image deblurring. Ph.D.
thesis, DTU, Lyngby.



BIBLIOGRAPHY 219

Pelphrey, KA, Morris, JP, Michelich, CR, Allison, T, & McCarthy, G. 2005. Functional
Anatomy of biological motion perception in posterior temporal cortex: A fMRI study of
eye, mouth and hand movements. Cerebral Cortex, 15, 1866–1876.

Pogue, BW, McBride, TO, Prewitt, J, sterberg, UL, & Paulsen, KD. 1999. Spatially variant
regularization improves diffuse optical tomography. Applied Optics, 38(13), 2950–2961.

Pope, JA. 1999. Medical Physics: Imaging. Oxford: Heinemann.

Powsner, RA, & Powsner, ER. 2006. Essential Nuclear Medicine Physics. 2nd edn. Blackwell.

Pruce, A, Allison, T, Bentin, S, Core, JC, & McCarthy, G. 1998. Temporal cortex activation in
humans viewing eye and mouth movements. Journal of Neuroscience, 18(6), 2188–2199.
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