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Abstract

Advances in supercomputer architectures have resulted in a situation where many sci-

entific codes are used on systems whose performance characteristics differ considerably

from the platform they were developed and optimised for. This is particularly apparent

in the realm of Grid computing, where new technologies such as MPIg allow researchers

to connect geographically disparate resources together into virtual parallel machines.

Finding ways to exploit these new resources efficiently is necessary both to extract the

maximum benefit from them, and to provide the enticing possibility of enabling new sci-

ence. In this thesis, an existing general purpose molecular dynamics code (LAMMPS)

is extended to allow it to perform more efficiently in a geographically distributed Grid

environment showing considerable performance gains as a result.

The technique of replica exchange molecular dynamics is discussed along with its appli-

cability to the Grid model and its benefits with respect to increasing sampling of con-

figurational space. The dynamics of two sub-structures of the HIV-1 protease (known

as the flaps) are investigated using replica exchange molecular dynamics in LAMMPS

showing considerable movement that would have been difficult to investigate by tradi-

tional methods.

To complement this, a study was carried out investigating the use of computational tools

to calculate binding affinity between HIV-1 protease mutants and the drug lopinavir in

comparison with results derived experimentally by other research groups. The results

demonstrate some promise for computational methods in helping to determine the most

effective course of treatment for patients in the future.
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Chapter 1

Introduction

It is generally well understood that the computational power available to researchers

is increasing all the time and that with this comes the ability to do new science. As

this increase becomes more difficult to obtain through traditional methods, new system

architectures require new techniques for efficiently using their available power. As the

limits of single core performance are reached, there is a new emphasis on parallelisation.

Individual chips now have multiple cores, and parallel machines have an ever greater

number of processors requiring codes that scale better and better.

In addition to a rise in performance at the top-end, a trickle down effect (caused largely

by the rise of the Linux cluster) has meant that there has been a democratisation of

computer power. Small universities who cannot afford a large, traditional supercom-

puter are able to afford to build and maintain a Linux cluster which they can customise

to suit their costs and needs, and the performance characteristics of such machines vary

wildly depending upon the interconnects chosen and the nodes used.

In recent years, there has been a rise in interest in Grid computing - geographically dis-

tributed, cross-organisational networks of resources which need to be used in an effective

way such that their utility is greater than the sum of that of their individual compo-

nents. Grid computing has many aspects, from cycle-stealing (using unused resources at

14
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people’s desks) to redundant multi-site data storage for datasets of unprecedented size

to linking together supercomputers into a “meta-computer”. Meta-computing brings

more complexity to the table, from complications arising from heterogeneous architec-

tures to varying performance depending on the performance of different networks for

both intra-site and inter-site communications.

A number of tools have been created to enable meta-computing, including some imple-

mentations of MPI[1, 2] that use the Grid for communication. Some examples include

MPICH-G2[3] and PACX[4]. The advantage of re-implementing MPI for a Grid is that

many parallel applications are written in MPI and should be able to be run with little

or no modification on top of such a solution.

All of these new architectures present new optimisations problems for developers. Par-

allel machines with many processors and fast interconnects present a very different

problem from a Linux cluster which may have a relatively slow interconnect, or from

a meta-computer on a Grid which may have a very non-uniform interconnect architec-

ture. These all vary again from the architecture a legacy code may have been originally

written for which (depending on its age) may be aimed at thirty-two or fewer processors,

shared memory or vector machines.

Molecular dynamics codes are heavy users of compute resources. They are general

purpose, legacy, (often) parallel codes which due to their nature are used for a long

time. They are used to model a wide variety of physical systems of a wide variety of

sizes and with force-fields that depend entirely on the problem at hand. A number of

these codes were written for older architectures and may be running in a sub-optimal

way on the modern generation of supercomputers and resources.

1.1 Motivation

Molecular Dynamics codes are heavily used by researchers world-wide (and more specif-

ically here in the Centre for Computational Science) for investigating a variety of sys-
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tems. Maximising the performance of these codes on the resources available would

mean a more efficient use of available resources (in the form of CPU time) and this (as

well as a move towards effective, reliable meta-computing) will allow new science.

1.2 Aims of PhD

1. To investigate the performance properties of existing Molecular Dynamics codes on

current platforms.

2. Identify the key factors limiting the performance of these codes and modify the

codes to avoid them.

3. Use the resulting improved codes to do new science.



Chapter 2

The Grid

2.1 Introduction

A “Grid” is a collection of geographically/organisationally distributed resources con-

nected together in a uniform way. Those resources may be computational in nature

but may also be storage or even scientific instruments. The original vision for the Grid

was that computational power and other resources would be available to users much

in the same way that electrical power is on the electrical grid (and hence the name).

Rather than there being any one Grid project, there are numerous Grids both national

and international, both general and project specific, for example QCDGrid1[5], The

National Grid Service in the UK2, and TeraGrid3 in the US.

The Grid is often proposed as a tool for allowing virtual organisations to be created,

bringing together disparate people and resources and indeed this is the case for this

project, drawing together resources at EPCC4, the CCS at UCL and sites on the

TeraGrid in the US and the National Grid Service in the UK. This is helped by the

fact that UK e-Science certificates (used for authentication and issued by the Grid
1QCDGrid web-site: http://www.Gridpp.ac.uk/qcdGrid/
2NGS web-site: http://www.ngs.ac.uk/
3TeraGrid web-site: http://www.teraGrid.org/
4EPCC web-site: http://www.epcc.ed.ac.uk

17
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Operations Support Centre5) are accepted by TeraGrid sites in the US.

Much of the drive for Grid projects has been in two main areas. The first of these is

in providing general purpose capacity (and to some extent capability) computing at

distinct sites to users at institutions without their own large computing resources. A

good example of this is the UK National Grid Service which provides access for UK

researchers to a number of small Linux clusters across the UK. Until relatively recently,

users have been limited to running jobs on these clusters which fit inside a single cluster

meaning that the majority of the use of these machines is in running large numbers of

small (32 processor or less) jobs which could well be handled by a small local cluster and

soon (with the rise in popularity of multi-core processors) by desktop machines. The

second variety of Grid project is the bespoke Grid - a Grid constructed for a particular

inter-institutional project, for example QCDGrid. The resources for this variety of Grid

are those relevant to the problem, and often there will be a more user-friendly layer on

top of the Grid middleware.

In this instance, the Grid (and its associated technologies) allows us to marshal re-

sources across the US (and in future the UK) to deploy MD codes, both running on a

single supercomputer and running across multiple sites. The Globus toolkit[6] is the

standard set of tools used for the majority of Grid projects and is the set of tools used

on the TeraGrid sites used in this work. The MPICH-G2[3] toolkit builds on top of

this layer.

Grid projects face many challenges. The first challenge is organisational. Most Grid

projects rely upon third party resources and cross institutional boundaries. Different

organisations have different policies for machine access and different support practises.

Many of the requirements for good interoperability between different resources may

require changes in policy at one or more sites, and support staff at those sites are

often unwilling to surrender autonomy to support the larger organisation. This can

be seen in the organisational differences between the TeraGrid and the UK National
5GOSC web-site: http://www.Grid-support.ac.uk/
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Grid Service. On the TeraGrid, sites retain a good level of autonomy, with each site

being responsible for managing accounts in their own way, and many sites issuing their

own user certificates. This system is politically easier, but causes significant problems

for users, who have to interact with multiple support teams, completely different user

environments and a system that layers GSI (the Grid Security Infrastructure) over

traditional UNIX accounts. It is possible to use the TeraGrid resources without ever

interacting with Grid software, as every user is issued a separate username and password

for every resource (or at least site) they have access to. If they choose to use GSI, then

they need to maintain the link between their certificate and their UNIX user account

across all sites, and make sure that their client software always has up to date certificates

for multiple certificate authorities. This autonomy has, however, allowed a large variety

of resources to be added to the TeraGrid as the operational requirements of providing

a TeraGrid resource are much lower.

In contrast, the National Grid Service is more centrally managed. Certificates are issued

from a single authority, this is the only authority which sites and users need to trust.

Users may only log in via GSI and when they do for the first time, UNIX accounts are

created transparently for them. Access to resources (time) is shared across all sites,

and once one has NGS access, they have access to all the resources (with the exception

of HPCx/HeCToR which are separate projects). This approach has issues too. Many

of the resources on the NGS are relatively underpowered when compared with those

available elsewhere (primarily due to funding problems) and the system suffers from

at least one single point of failure (the UK e-Science Certificate Authority) an issue

that was demonstrated twice in 2008, firstly when an issue with the Debian OpenSSL

package caused a number of e-Science related certificates to be generated with weak

random numbers, and the second when some of the Certificate Authority certificates

were revoked with only a few days notice causing havoc for a number of users and sites.

The second challenge is technical. Much of the software available for managing Grid

resources are unreliable and unfriendly. Early in the development of the Grid, this
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was excusable, but Globus has been in development since 1995 and is still a significant

usability barrier. The certificate system is excellent from a security point of view, but

this comes at the expense of a very high barrier of usability for new users, and ob-

tuse/difficult to solve errors for experienced ones. Many Grid projects have attempted

to hide or remove this usability problem by designing a bespoke web portal for their

users, but this is not really practical for general purpose use. A significant refinement of

this idea is the RealityGrid Application Hosting Environment (AHE)[7] which provides

the user with a user-friendly, general purpose, extensible Java GUI for interacting with

Grid resources. Other key software components, like a system for managing resource

heterogeneity are unavailable and this task is passed entirely onto the user in the form

of the Resource Specification Language (RSL).

It is important to understand however, that often problems attributed by support teams

to technical problems are really political issues. Most certificate problems for example,

are caused by the interactions between various CAs/users/sites and the “hidden node

IP” problem discussed later is a problem created entirely by site-specific security poli-

cies. Attempts to correct these problems by technical means are sometimes made (in

the case of the latter, complicated port forwarding tools, for example) but these will

always be less preferable to a change in policy at the respective institutions.

2.2 Globus

The Globus6 Toolkit (see [6]) is the de-facto standard Grid toolkit. It provides a

security framework based on certificates, a communications library and a job submission

system that provides a common, standardised interface to the native batch schedulers

on the machines it is running on and many other tools. These tools are intended to

be middleware which developers can build upon in order to build tools for users to use

on a computational Grid but the toolkit also contains some user tools which can be

used for tasks such as job submission and creating proxy certificates. Because they are
6Globus project web-site: http://www.globus.org/
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intended for developers, these tools are not particularly user-friendly. In addition, the

Globus Toolkit itself is (because it is a substantial library of software) rather large and

can be quite complicated to install and configure. Many of the issues that applications

developers face in using it are discussed in more detail in [8].

All Globus resources and jobs are specified in a language called RSL (or “Resource

Specification Language”). Unfortunately, because this language pre-dates the selection

of web services, and therefore XML as a primary component of Grid software, this

language is not XML-based or even XML-like and is unique to Globus, requiring all

new users to learn RSL and its idiosyncrasies which is a usability nightmare.

2.3 MPICH-G2

MPICH is an Open Source implementation of the MPI message-passing standard[1]

developed by Argonne National Lab and freely available from the MPICH web-site7. It

is designed in a modular way so that the actual message-passing system can be selected

or even re-written for the platform in use. As an example, the MPI implementation on

the IBM eServer Blue Gene machines is a version of MPICH with a communications

layer that is specifically written for the network hardware inside an eServer Blue Gene.

The communications layer is referred to as a “device”, and the default distribution

comes with a small number of devices. One of these is the “globus” device which allows

communication over a Grid using the Globus Toolkit. The name “MPICH-G2”[3] refers

to a recent version of MPICH with a much-improved version of the “globus” device,

referred to as the “globus2” device.

If MPICH-G2 is installed correctly, it can use the vendor’s MPI library for communi-

cation inside a site (which should allow for the best possible performance inside a site)

and MPICH-G2 communications between the sites. MPICH-G2 is designed with the

intention that coding for it should be no different from coding for any other MPI library,
7MPICH web-site: http://www-unix.mcs.anl.gov/mpi/mpich/index.htm
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and this provides a familiar interface for developers, as well as providing a convenient

level of abstraction. It has also been designed so that it is possible to use additional

functions and variables provided to discover the configuration of the systems the code

is running on and use this information to optimise communications patterns.

One of the major improvements over MPICH-G (the previous implementation) is that

the Globus communications library is no longer used for inter-site communications.

Instead, MPICH-G2 has its own communications library. This increases the available

bandwidth, and also improves the latency when accessing whichever MPI implemen-

tation is used of the intra-site communications[3], and allows the use of alternative

protocols for inter-site communication such as UDT[9].

The communications topology is described in MPICH-G2 by the use of the terms

“depth” and “color”. These terms are explained in [3] and that information is sum-

marised here. Depths represent a particular level of communication and at each depth,

all the processes of the same colour can communicate with each other at that layer.

So for example, given two processes, one at SDSC and one at NCSA, the processes

will have the same colour at the TCP/IP depth (since they can talk to each other),

but different colours at the vendor MPI layer (since they cannot communicate at this

level). This information is stored in arrays that may be obtained by any process and

used to construct a list of processes it can communicate with at the vendor MPI layer.

It can therefore work out which processors are at different sites from it and from each

other. Figure 2.1 shows the colours and depths for four different machines located at

two hypothetical sites. All processes can communicate at the WAN (wide area net-

work) layer but at the LAN (local area network) layer only intra-site communication

is possible. For both internal TCP/IP and vendor MPI layers, communication is only

possible inside a particular machine and so all for machines have different colours at

these depths.

When selecting to use MPICH-G2 for a code, it is important to be aware of the “Hidden

IP” problem. Specifically, MPICH-G2 (and indeed its predecessor MPICH-G) perform
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Figure 2.1: Illustration of colors at different depths for communication of four machines
at two sites. If MPIg/MPICH-G2 has been built without vendor MPI support, there
is no depth=3 for that machine.
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communication by allowing any one node to talk directly to any other. This causes

problems in a large number of clustered systems (for example HPCx) where the IP

addresses of the nodes are on private networks and are not routable from the other

machine. This is not the case for some other implementations of MPI over a Grid

(most noticeably PACX-MPI[4]) which route the inter-site communications through a

particular node at each site and therefore only that node needs to be routable from the

other machine. A work-around used at a number of sites (the latest being HPCx, with

the work solution described in [10]) is to use a port-forwarder to forward traffic to the

nodes in the private network, essentially replicating the system used by PACX-MPI.

The disadvantage of this solution is that it adds another bottle-neck to the inter-site

communications.

Because it implements most of the MPI-1 standard, it is not only possible to use

MPICH-G2 to develop new applications for deployment on a computational Grid, but

also to deploy existing applications across multiple sites on a computational Grid. The

possible advances this gives depend on the application at hand, but in general can

be summarised as being that the user has access to “more resource”, whether that is

that the physical memory required for a simulation is greater than they have access

to on a single resource, or that they require more processor power than is available

in a single system. It is likely that some code modification will have to be made in

order to best exploit the available resources (and work around the more complicated

communications hierarchy). Other studies[11] have shown that in certain codes with

somewhat less intensive communications patterns than molecular dynamics codes, the

performance of cross-site runs is considerably better than might be expected given the

increased latency and comparatively poor bandwidth of the inter-site links.

Jobs may be run in the traditional MPICH way, or by giving the mpirun command an

RSL file describing the job managers that the job needs to be submitted to, the number

of processors on each, locations of binaries on different systems etc. This builds on top

of existing multi-job support in Globus bringing with it a number of usability challenges.



O. A. Kenway 25

Figure 2.2 shows an example of a three-site RSL file which runs a test job between the

Manchester (red), Oxford (blue) and Leeds (green) UK National Grid Service nodes.

This sample file highlights a number of usability problems with using RSL to launch

jobs. Firstly, nearly every possible variable needs to be specified at each site and

this leads to poor readability. Each site has to have the TCP/IP port range specified

separately and each has to have the correct site-specific path to the executable and

input/output files. Secondly, although there are standard variables, sites often require

site specific variables as a side-effect of software or hardware configuration, for example

the number of nodes as well as processors, to force the job onto a specific set of nodes,

as per Oxford in the example8 or the NGSMODULES variable at Oxford to force Globus

libraries into the environment the job runs in which is not the default. Configuration

changes at the sites mean that these extra variables change over time, common ex-

ample being the UNIX environment variable LD LIBRARY PATH on numerous TeraGrid

machines, where common libraries drop in and out of the default library paths as the

system is updated.

The over-verbose structure of RSL also hinders code re-use, as each RSL file needs to be

tailored to a specific run and cannot be re-used, particularly when reservation-specific

variables are added, and no tool exists for automatically generating them. Early work

on this project involved developing such a tool, but keeping the site-specific variables

up to date generated too much work, making little saving over doing so by hand.

The MPICH-G2 implementation of mpirun wraps around the globusrun job submission

tool. Unfortunately, this tool does not support non-interactive submission of multi-job

RSL files for reasons that remain beyond the understanding of the author, meaning

that each multi-job run must be left bound to a terminal and closing the terminal

cancels the job. This may be mitigated by using the common UNIX tool screen but

still causes problems when (for example) the login node that a user is using crashes,

taking their job with it, despite there being no good reason for this to be the case.
8Since this test job was run, the configuration at Oxford has changed and now this is no longer

necessary. It is still necessary on some other sites on other general purpose Grids.
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Figure 2.2: Three site RSL file to launch an MPIg/MPICH-G2 job across three sites
on the UK National Grid Service. The section of the code for controlling the job at
Manchester is shown in red, the section which launches the the Oxford job is shown
in blue and the Leeds section is shown in green. Note the large amount of duplication
of variables across the three sites, as well as the necessity of site-specific variables (for
example, the NGSMODULES variable at Oxford) both of which hinder comprehension,
code re-use and portability.
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2.4 MPIg

MPIg9 is the successor to MPICH-G2. Like MPICH-G2, it is based on the open-source

MPICH MPI implementation, providing a communication layer which uses Globus for

Grid-based inter-machine communication. Rather than being an incremental improve-

ment over the old library, MPIg is a complete redesign and re-implementation. It does

however, share many concepts with MPICH G2.

Like MPICH-G2, MPIg can use the vendor-specific MPI implementation at each site

for intra-site communication. This allows for maximum performance to be extracted

from the interconnects. Its inter-site communication also suffers from the “hidden-IP”

problem as this is a problem that exists at a level below the inter-site MPI implementa-

tion. Its mpiexec command takes an RSL file in the same way as MPICH-G2’s mpirun

and in the same format. The topology discovery mechanisms are the same, although

the variable names used have changed, making some trivial code modification necessary

when moving between the two MPI implementations.

Both MPIg and MPICH-G2 provide similar topology discovery mechanisms, represent-

ing the available virtual machine in terms of “depths” and “colours” as described in

2.3.

In addition it needs to be made clear that it is possible to run MPIg/MPICH-G2 jobs

as two distinct sub-jobs at a particular site. In this instance, two processes in different

sub-jobs will not be able to communicate with each other at the vendor MPI layer,

even though there is no hardware reason for this being the case (there is of course a

software issue with the necessary security model for the vendor MPI layer meaning that

different MPI jobs cannot and should not be able to talk to each other).

The two main architectural changes are that MPIg uses the newer Globus-XIO library

for communications (which allows for greater performance and provides an abstrac-

tion layer for different communications protocols) and that MPIg has full support for
9MPIg web-site: http://www.mcs.anl.gov/˜toonen/mpig/
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threads.

MPIg is fully thread safe (as long as the installation of Globus it runs on is sufficiently

up to date) and supports multi-threading. This means that computation and com-

munication may be overlapped, something that is not possible with MPICH-G2, and

indeed some vendor implementations of MPI but has always been theoretically possible

with the MPI standard. Over-lapping computation and communication may be rela-

tively unimportant on large parallel machines where the interconnect is fast, but on a

computational Grid with high latency inter-site communications, it allows a developer

to lessen the impact of inter-site communication. This optimisation is only suitable for

some algorithms, as for it to be useful, the communication must not be necessary to

be complete for the computation it is overlapped with. Considerable success has been

shown using the HemeLB lattice-Boltzmann code using this technique[12].

2.5 Co-scheduling

One of the problems with using Grid technologies like MPIg/MPICH-G2 is that they

rely on jobs running at the same time across multiple hosts and multiple sites simulta-

neously. Current methods for achieving this either involve using Globus to submit the

jobs to the different sites when there are enough free processors that both jobs start at

almost the same time, or contacting the administrators of the sites and requesting that

they manually reserve a number of processors for a user to use at a particular time.

This is inconvenient both for the user and for the system administration teams at the

sites involved, meaning that it is a method of last resort for very large production runs

and demos.

2.5.1 The ideal co-scheduler

In order that it is possible to perform cross-site runs in a reliable way on a more

regular basis, it is necessary for a tool to be available that performs the reservations
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automatically. The ideal solution to this problem is analogous to a meta example of

the batch scheduler where a user submits a job file with a number of binaries and the

total number of processors required and the scheduler finds that number of processors

across the available sites transparently. There are a number of challenges associated

with achieving this.

The tool itself needs needs uniform access to the Grid resources. This can either be

achieved by having the tool installed at all locations where it needs to be used, or

else by defining a common standard so that any user front-end can communicate with

any combination of co-scheduler back-ends. Unfortunately, both these approaches face

problems. In the case of a universal tool, this brings up issues with co-ordination and

co-operation of the systems teams at local sites, all of whom need to agree upon a single

tool. With standards, these standards need to be agreed and implemented, avoiding

the current issues (for example) with the Globus toolkit where constantly changing

standards for Grid communication have forced complete re-implementation of many

parts of the toolkit. Currently, there are no agreed standards for co-scheduling.

The ideal co-scheduler needs to have the ability to match resources properly with the

job requirements automatically without the user specifying where the job will run, and

manage the transfer of I/O (and importantly errors) to the proper locations. Some

of these aspects are already built into local tools like Condor10, and existing batch

systems.

The tool needs to be reliable. This implies some level of redundancy since the system

itself has multiple potential points of failure. It needs to be able to handle the unavail-

ability of processors at a specific site and either fail gracefully (without making any

reservations at all) or find appropriate resources elsewhere.
10Condor project web page: http://www.cs.wisc.edu/condor/
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2.5.2 Co-reservation

Co-reservation side-steps some of the implementation and political problems with the

ideal co-scheduler, by replacing it with the ability to automatically reserve a specific

amount of resource at specific locations at a specific time. This avoids some of the more

difficult challenges (like resource matching) whilst still making the act of performing

regular cross-site runs possible for every day research. Two such tools are currently

deployed on the large, general purpose Grids used in this project (NGS and TeraGrid),

GUR and HARC.

2.5.3 HARC

HARC (Highly-Available Robust Co-scheduler)[13] is a tool for performing co-reservation

that is available on both the NCSA and SDSC TeraGrid sites as well as the Manchester

and Oxford NGS nodes. It is designed with robustness in mind, and uses an algorithm

known as the “Paxos Consensus algorithm”[14] in order to ensure that at the end of

the allocation attempt, the system has either made all the necessary reservations or it

has made none.

It is designed to be able to schedule resources other than just CPU time. It can (for

example) schedule dedicated network links. This is a feature that might become more

useful in the future with dedicated fibre-optic networks like JANET light-paths which

promise scheduled fast fibre optic links between UK supercomputing sites. It is easy

to envisage (for example) scheduling an optic link between two sites which are running

the two halves of a pair-wise cross-site MPIg run in order to decrease the performance

hit of a cross-site run, or scheduling a link to handle the live transfer of visualisation

data to a user’s desktop while their simulation is running. Supporting a new resource

only requires the development of a new Resource Manager, not a modification of the

HARC tools.

HARC is designed in a modular way, with three main components. The Resource Man-
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ager (or “RM”) is the component that runs on a particular resource, and interacts with

that resource’s native scheduling system (in the case of a computational resource, a

batch scheduler such as LoadLeveller or PBS). This acts as an abstraction layer, pro-

viding a standardised interface to perform scheduling operations upon that resource.

The second component is the HARC acceptor. A network of these act as intermediaries

for performing the reservation, providing robustness by requiring that multiple accep-

tors agree on the status of the reservation before it is completed.Not all the acceptors

need to be available for reservations to be possible. The final component is the HARC

client toolkit, consisting of commands for making and deleting reservations, and written

in Java for portability. The client talks to the acceptors, and the acceptors talk to the

resource managers. Adding a new resource simply requires the appropriate RM to be

written, with no modification of the rest of the toolkit, or the other deployed software

necessary.

Creating reservations is as simple as issuing a single command:

harc-reserve -c testmachine1/4 -c testmachine2/4 -s 15:20 -d 1:00

The above command creates a pair of reservations, each of four processors, lasting one

hour on two machines, testmachine1 and testmachine2. The reservations start at 15:20

in the time-zone which the workstation the harc-client is running on is in. This time

is automatically translated into the appropriate local times on each of the resources.

HARC will then attempt to make the reservations, and if the reservations are made

successfully, the reservation IDs of the two reservations will be reported to the user.

These can then be incorporated into the RSL files used by MPICH-G2/MPIg. HARC

also provides commands for cancelling and checking the status of reservations. Because

the client tool-kit is written in Java, it is easy to incorporate it into other tools. As

part of the GENIUS project, for example, HARC reservation has been integrated both

into the general-purpose Application Hosting Environment, and into a bespoke GUI

for the project.
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2.5.4 GUR

GUR[15] (or “Generic Universal Remote”) is a co-reservation tool, consisting of a num-

ber of Python scripts which layer on top of the SSH tools to allow a user to perform

reservations across multiple sites and supports the GSI-enabled versions of SSH. It is

designed to interact with the Catalina scheduler, a job scheduling system designed to

plug into existing batch systems such as LoadLeveller or PBS, but can work with any

scheduling system that allows users to create reservations.

Users interact with GUR by writing a configuration script called a “jobfile”. This

jobfile specifies all the requirements of the job, such as the number of processors/RAM

required, the length of the job, the sites (including account information) and a time

window during which the user wishes the reservation to be made. This configuration

file allows the user to request resources in a fuzzy way, for example, they can request n

processors over two or three given clusters, but not need to specify how those processors

are split over the available resources. This flexibility comes at the expense of usability,

much as with RSL, and from the documentation it does not appear to have a simple,

HARC-like user interface.

Currently, GUR is supported by a number of sites on the TeraGrid, with official support

on the NCSA and SDSC Itanium clusters.

2.5.5 Co-reservation tool selection

Due to the portability of the two systems, a user can use either. The primary require-

ment for both is that user-settable reservations are available on the resources. The

infrastructure cost of GUR is less than HARC, as it does not require the acceptors to

act as go-betweens between the user and the resources. To some extent, for simple

reservation use, HARC appears over-engineered. GUR is however less easy to use than

HARC and HARC is fully deployed across the TeraGrid and NGS resources used for

this project. Therefore, work with HARC is the focus here. In the “real world” users
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need to be prepared to use whatever tools are available on a given resource.



Chapter 3

Molecular Dynamics

3.1 Introduction

Molecular dynamics (MD) codes simulate the interaction between molecules at an

atomic level. They do this by calculating the forces between the atoms (and there-

fore the acceleration) at each time-step and from that calculate the new positions and

velocities of all the atoms. Many MD codes are general purpose, implementing a num-

ber of different algorithms to allow them to model different problems, and the path that

a particular simulation takes may depend a lot on what system is being modeled. They

are used in a wide variety of fields, from materials science to chemistry and biology.

Traditionally, the algorithm used updates the forces on each atom and from that calcu-

lates the acceleration. It then integrates the acceleration to find the new velocity, and

again to find the new position of each atom. There are number of different integration

methods that a code might use and they have varying scaling of accuracy with the size

of the time-step. Once these have been updated, the algorithm loops around again. In

some time-steps it may make a calculation of a physical property like the temperature

or the pressure, or it may dump the status of the simulation to disk for later analysis.

Some algorithms may adjust the simulation to keep a physical factor constant (like the

34



O. A. Kenway 35

pressure or temperature of the system) in an effort to remove problems like rounding

errors. MD codes are heavy users of CPU time, and may be parallelised in order to

run efficiently on parallel machines.

The decomposition strategy and the memory model of the code is an important factor

in the performance characteristics of a code. All codes generally use either a replicated

data or distributed data model. In the former, each processor has a complete copy

of all the data about the entire simulation. This means that when performing the

computation, each processor has access to all the data it needs from local memory, but

means that each processor has to communicate its data to every other processor (and

receive theirs) at every time-step which vastly increases the communications cost. In a

distributed data model, each processor owns a sub-set of the data and when it requires

data owned by another processor it needs to retrieve the data from the other processor.

Typically, thanks to the use of neighbour lists (described in more detail in 3.5.2), this

means that overall there is less communication required. In addition, it is easier to fit

the simulation in memory as each processor only needs to hold a fraction of the total

data.

The decomposition strategy is the way in which the work done by the processors is

shared out. In a distributed data model code like LAMMPS, there are a number of

ways this could be done. The volume that the simulation takes place in could be

broken down into equal-sized blocks with each processor getting a block. The force

computations could be split up so that each processor performs an equal portion of the

force-calculations, or the atoms in the simulation could be divided up equally between

the processors. This matter is investigated in great depth as part of [16].

There are a number of computational optimisations that may be made. Because at

large separation the force between a pair of atoms generally tends to zero, a technique

called neighbour lists decreases the amount of computation required by assuming that

for a large enough radius between a pair of atoms, the force is zero. A technique called

“rESPA”[17] allows the developer to make use of the fact that the different forces on an
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atom can be calculated to different levels of accuracy before they become detrimental

to the accuracy of the model, and a technique called “PPPM” (or “Particle-Particle

Particle-Mesh”)[17] allows the electrostatic forces to be calculated more efficiently than

the naive approach. These methods are all used in the LAMMPS code which is used

in this project.

3.2 Application of molecular dynamics codes

There are many uses of molecular dynamics codes in a wide variety of areas of study in

the chemical, biological and materials sciences. One of these uses is to study materials

science, an active research area here at the CCS. Many of the materials studied here

require large and computationally intensive simulations and it is this that drives the

need for large high performance computing and Grid resources.

One of the areas of research at the CCS is the study of the behaviour of clay minerals.

These are a species of materials that have a structure built up in layers or sheets. C.

Greenwell et. al. [18] contains a thorough discussion of the applications of computa-

tional methods to modelling these materials and the accuracy of various methods when

compared with real-world experiment, along with a detailed discussion of the structure

of these materials. In particular they mention that the primary advantage of using

Molecular dynamics to model these materials is that this allows the scientist to view

the evolution of the system over time (using visualisation tools) which can lead to a

better understanding of why the simulated material behaves the way that it does.

These simulations can be very large, with hundreds of thousands or even millions of

atoms. They select large systems to decrease the chance of accidentally introducing

inaccurate behaviour due to the periodic boundary conditions. Due to the fact that

long-range electrostatic forces have to be modelled, PPPM techniques are used to im-

prove the performance and accuracy of the simulations. They also make use of rESPA.

They use the LAMMPS code (and indeed the benchmarks used in [29] are based on
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versions of their models for an older version of LAMMPS) because of its scalability and

ability to handle very large systems.

The increase in computational power available has allowed larger and larger simulations

to be run, and as the simulations increase in size, the accuracy of the model tends to

increase. This in turn leads to the the correlation between the behaviours that are

observed in simulation and those which are observed in experiment increasing. In the

very largest of the simulations run by researchers at the CCS ([18] suggests 1 million

atoms but recently, simulations of up to 10 million atoms have been run1), physical

behaviours that are seen in real-world experiments (such as undulations in the layers)

have been observed[18]. This implies that the simulations are, at this scale, becoming

sufficiently accurate that it may shortly become possible to use them to predict the

results of real-world experiment. Running these codes on the Grid potentially allows

access to larger amounts of hardware than is available at just one site.

3.3 Force fields

In molecular dynamics, a force-field is a method of parametrising the forces between

atoms within a system. There are a number of commonly used force-fields available, but

the most commonly used are variations of the AMBER[19, 20, 21] force-field and the

CHARMM force-field, both named after the molecular dynamics packages they were

originally developed for. Because these particular methods have become so popular (due

the popularity of those codes leading to availability pre-parametrised systems), they

are commonly implemented in new molecular dynamics codes. Both of the molecular

dynamics codes used here for this thesis implement these force-fields.

In the studies presented here, when the AMBER force fields are used, the General AM-

BER Force Field[22] is used to parametrise the ligands the standard AMBER forcefield

for biorganic systems[23] is used to parametrise the protease. For work with LAMMPS
1Source: Professor P. V. Coveney, private communication.
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presented here, the CHARMM force-field[24] is used due to issues converting systems

using the AMBER force-field for use in LAMMPS.

An alternative to using a full force-field approach is to use Brownian dynamics. In

[25], Chia-En Chang et. al. represent individual amino acids as beads with simplified

interactions between them designed to roughly approximate the bonds between amino-

acids.

3.4 NPT vs. NVT constraints

In order for the researcher to calculate bulk properties of the system they are modelling

it is necessary to constrain some of the physical parameters of the system. There are

three physical parameters to consider - pressure, volume and temperature. Assuming

the researcher wishes to model a physical system at a particular temperature (common

for biological systems) then they have a choice of restricting either the pressure of

the system, or the volume of the system. In an NPT system the pressure is kept

constant and in an NVT system the volume is kept constant. Both keep the temperature

constant. For the work presented here, the biological systems are modelled using an

NPT system as constant pressure/temperature conditions allow the calculation of the

minimum Gibbs free energy and therefore change in the Gibbs free energy when two

molecules are bound together, as given in equation 3.1 below, where H is the enthalpic

and −T∆S is the entropic contribution to the change.

∆Gb = ∆H − T∆S (3.1)

3.5 LAMMPS

LAMMPS[16, 17] (Large-scale Atomic/Molecular Massively Parallel Simulator) is a

molecular dynamics code developed and maintained by Steve Plimpton at the Parallel
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Computational Sciences Department at Sandia National Lab. It is a distributed data

model code and the parallel portions of the code are written using MPI. It is a general

purpose code, with the characteristics of the simulation defined by an input file.

There are two version of LAMMPS. The first one is an older, legacy version written

in Fortran with MPI which has been used previously for benchmarking studies and

is referred to here as LAMMPS 2001. The newer version (referred to as LAMMPS

2005) is the version which will be investigated here and is a complete re-write in C++,

again with MPI communications. The formats of the input files for the two versions of

the code are slightly incompatible meaning that in order to move to the new version

the input files may have to be re-written. Both versions of the code are available for

download and use under the GNU Public License from the LAMMPS web-site2. Along

with the software, a number of examples and benchmarks are provided. LAMMPS is

currently used in a number of areas of research at the Centre for Computational Science

at University College London and as a result the performance of this code on current

and future supercomputers is important. This is the motivation behind this work. This

code has also been the subject of previous work[29].

LAMMPS implements a number of algorithms, which are thoroughly discussed in [16]

and [17]. The information therein relevant to this report is summarised in sections 3.5.1

to 3.5.7.

3.5.1 Decomposition

LAMMPS decomposes the simulation using “Spatial Decomposition”[16, 17] which is

a method whereby the volume which the atoms are being modelled in is decomposed

over the processors into a three-dimensional mesh of three-dimensional boxes. These

boxes contain all the information about both the atoms that a particular processor

owns, and a sub-set of the information about some of the atoms in neighbouring boxes

that is required to calculate the forces.
2LAMMPS web-site: http://www.cs.sandia.gov/˜sjplimp/lammps.html
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This decomposition has a couple of down-sides. Firstly, it is possible because of the

nature of the simulation for load-imbalance to be introduced if the atoms are not

evenly dispersed over the space of the simulation and secondly, it is not the most

optimal decomposition for performing Fast Fourier Transforms (FFTs) which are (for

example) necessary for the PPPM algorithm (described in section 2.3.3). The former

of these is only relevant for a sub-set of possible simulations. The latter is solved

by re-decomposing the space so that instead of owning a box, each processor owns a

whole column of the three-dimensional space. This allows the three-dimensional FFT

to be performed as a series of one-dimensional FFTs on a single processor (which

saves in what might otherwise be extremely expensive communications costs). After

the calculations which require FFTs have been completed, the space is re-decomposed

back to the original, mesh configuration.

3.5.2 Neighbour lists

Neighbour lists[16] are a method by which a molecular dynamics code can decrease

the communication cost between processors in a parallel molecular dynamics code.

Typically, a cut-off radius is defined rc such that beyond that radius the force between

the atoms is close enough to zero that it can be treated as being zero with an acceptable

loss of accuracy. A list is then maintained for each atom of every other atom which

is inside rc, and the force terms are evaluated for those atoms. In the case of long

distance forces, communication of possitions and velocities of atoms can be passed

from neighbouring processor to neighbouring processors repeatedly until all processors

have the information they need.

Initially it might seem that calculating the neighbour lists is very expensive, but it need

not be done every time-step if rc is chosen so that it is less than the distance that an

atom can move in t time-steps then the neighbour lists only need to be update every t

time-steps.
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3.5.3 PPPM

PPPM or “Particle-Particle Particle-Mesh”[17] methods calculate the coulomb terms of

the force equation by replacing it with a term which calculates the force based on charge

density rather than on point charges. This algorithm is used rather than calculating

the coulomb forces in the traditional way because it scales as Nlog(N) rather than N2.

The charge density is decomposed spatially into a three-dimensional Grid of equally

sized boxes. Each box contains the charge density from the atoms in the box as well

as “ghost point” charge densities from the atoms in neighbouring boxes.

The algorithm is described in [17] and works as follows. The first step in the algorithm

is to interpolate the charge density based on the point charges of the atoms inside the

box. The next step is to exchange the charges of the ghost points with the neighbouring

processors. Then the simulation is re-decomposed into a decomposition that is more

optimal for FFTs and the entire system is transposed into Fourier space. The algorithm

then computes the electric field and transposes back to real space. Finally, the first

three steps are reversed with the decomposition being put back to the three-dimensional

mesh, each processor updates its ghost points from its neighbours and then finally the

forces on the atoms are interpolated from the electric field.

Because this method requires the data decomposition to be transposed multiple times

(so that processors have all the appropriate data to perform the one-dimensional FFTs

required to perform the three-dimensional FFTs, it has a relatively high communication

cost but this overwhelmed by the computational cost of performing the FFTS (see [17]

for more details).

3.5.4 rESPA

The rESPA algorithm[17] in LAMMPS allows the different terms in the force equation

to be integrated at different levels of granularity, allowing the computational cost to be

decreased for the terms where it will not have an unacceptable affect on accuracy while
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keeping it at the appropriate level for those where it will. This is achieved by having

the terms which have to be evaluated a greater number of times calculated repeatedly

in “sub-cycles” inside one cycle of the main algorithm.

3.5.5 File I/O

From looking at the freely available source code, it is clear that when LAMMPS per-

forms file I/O, it makes no use of the parallel routines available in the MPI 2 standard[2].

This means that it is more portable (and also avoids problems to do with the file formats

with MPI-IO like its reliance on binary output), but potentially adds a bottle-neck in

simulations that perform a lot of heavy I/O, and particularly those that write restart

files (files that contain a complete dump of the simulation so that if the code is termi-

nated abnormally, the simulation can be restarted from the restart file saving time).

The algorithm used by both versions of LAMMPS works as follows. Firstly, processor

0 writes the file header information. It creates a buffer in memory with enough space

to hold the largest number of atoms on any one processor, and copies its data into this

buffer, before writing it out to disk. Then it polls each of the other processors in turn,

receiving their data into the buffer and then writing out to disk before finally closing

the file. This means that the most memory that this operation uses on processor 0 is

two times the amount required for the largest number of atoms on any one processor,

which is helpful when running on systems like the eServer Blue Gene system where

the memory available per processor may be relatively small (in this case either 512

megabytes or 256 megabytes depending on the mode that the machine is running in).

However, this code does not scale with the number of processors being used because

the amount of time taken for the actual writing/reading of the data will always be the

same (the other processors are doing nothing while this is going on) and there will be

an additional communications cost.
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3.5.6 SHAKE

SHAKE is a method used to improve the accuracy of molecular dynamics by constrain-

ing bonds to a particular rigid length. This allows the user to set up simulations with a

larger time-step without loss of accuracy. This is possible with protein systems because

changing bond length is not thought to be part of biological processes.

3.5.7 Langevin temperature control

Langevin temperature control [30] maintains the temperature of a simulation by cou-

pling it to a (virtual) external heat bath. Molecules at the edges of the simulation have

their velocities adjusted as if they are interacting with an infinite bath of some solution

surrounding the simulation.

3.6 NAMD

The NAMD[33]3,4 molecular dynamics code is also widely used in the CCS and world-

wide to study a variety of systems. It differs from LAMMPS in a number of ways.

Like LAMMPS, NAMD is available for free (although under a more restrictive license

than the GPL) from the NAMD web-site, in both source and pre-built binary forms.

Unlike LAMMPS (which is written in C++/MPI making it relatively portable), NAMD

is written in a little-used language called “Charm++” (also developed at the University

of Illinois). This language is a rival to MPI and was an attempt to build an object

orientated parallel extension to C++ with a number of advanced features such as

automatic load balancing. It failed to achieve large-scale adoption and therefore is not

generally available on any resource where a user wishes to use NAMD. It is therefore
3NAMD web-site: http://www.ks.uiuc.edu/Research/namd/
4NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman

Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign.
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necessary (as part of the installation process for NAMD) to port Charm++ to that

platform. A version of Charm++ is provided with source releases of NAMD and this

version is guaranteed to work with that version of NAMD. Like LAMMPS, NAMD uses

FFTW to perform Fourier transforms. Installation of NAMD from source is generally

non-trivial making it more difficult to use than LAMMPS.

NAMD generally seems to perform better than LAMMPS, ranging between about 8

and 1.5 times faster depending on the machine the code is running on and how well

Charm++ works on that system as well as other unknown factors. It also has support

for more features than LAMMPS (although the list of features supported by LAMMPS

is growing all the time) and the combination of performance and features make it

popular with computational chemists.

3.7 Tools for calculating the Binding Free Energy (MM-

PBSA and NMODE)

A potential metric for determining resistance to a particular drug is the binding affinity[34,

35, 36] (i.e. the change in the free energy of the system caused by the binding of the

two molecules) between the drug and the protein it binds to (in the case of protease in-

hibitors, HIV-1 protease). The larger the negative change in free energy caused by bind-

ing, the less resistant the mutant is to the drug (i.e. the more negative ∆Gb, the more

strongly attracted the two molecules are, and the less resistant the protease mutant).

Equation 3.1 in section 3.4 shows the change in Gibbs free energy when two molecules

are bound together. The MM-PBSA (Molecular Mechanics Poisson-Boltzmann Sol-

vent Accessible Surface Area) and NMODE (Normal Mode) modules from the AM-

BER molecular dynamics package[19, 20, 21] make it possible to approximate ∆Gb

as in equation 3.2. For this study, the General AMBER Force Field[22] is used to

parametrise the ligands the standard AMBER forcefield for biorganic systems[23] is

used to parametrise the protease.
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∆Gb = ∆GMM
vdW + ∆GMM

ele + ∆Gsolpol + ∆Gsolnonpol − T∆S (3.2)

∆GMM
vdW is the van der Waals component and ∆GMM

ele is the electrostatic component of

the free energy difference. ∆Gsolpol is the polar component of the solvation free energy

and Gsolnonpol is the non-polar component. Finally, −T∆S is the component from the

change in entropy.

The MM-PBSA module approximates the average free energy difference of binding in a

solution, providing the ∆GMM
vdW +∆GMM

ele +∆Gsolpol+∆Gsolnonpol contributions in equation

3.2. The NMODE module is used to calculate the change in entropy, −T∆S. Together,

these tools allow an approximation of ∆Gb.

NMODE calculates the entropic contributions by relaxing the system and then calcu-

lating the normal modes. It makes the assumption that the motions in the system

are built up out of harmonic motions and attempts to break down the quite complex

motions into contributions from each of these harmonic motions. This is a reasonable

assumption to make in most circumstances when the system is in a fairly stable state.

However, when the system is undergoing a major conformational change (for example

a flap opening event in HIV-1 protease) this assumption may not be valid.

3.8 FFTW

FFTW[37] is an Open Source Fast Fourier transform library that is required to run both

LAMMPS and NAMD (specifically, the older, version 2.1.5 of FFTW is required). Like

LAMMPS, it is available under the GPL from the project web-site5. It not targeted

at a particular platform, but is instead self-optimising. It works by constructing the

routines used at run-time from small, pre-compiled sections of code according to a

“plan” file which is generated based on benchmarks run on the system at run-time.
5FFTW web-site: http://www.fftw.org/
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The user can choose how optimal a plan should to be generated (the more optimal the

plan, the longer it takes to generate). The algorithms and implementation is described

in [37]. Although this library is required for LAMMPS, it is not the focus of work here.

3.9 Replica exchange

Replica Exchange[38, 39] (sometimes referred to as “Parallel Tempering”[40]) is a form

of coupled model where instead of linking together different models, multiple copies

of the same model are run with a particular physical parameter (usually temperature)

varied across the replicas. These simulations are coupled by performing Monte Carlo

swaps of the configurations (see figure 3.1) every so often (on a much larger time-scale

than individual time-steps). In theory, this allows the simulation at the target value

of the physical parameter varied to explore a larger proportion of configuration space

that it would normally. It also helps to mitigate the problem of simulations becoming

stuck in local energy minima.

The way the selection is done depends on the code and even (in the case of LAMMPS)

on the algorithm selected by the user. LAMMPS offers two methods. In the first, pairs

are selected as odd and even pairs and in the seconds, random pairs are selected. When

a pair of prospective sites are selected, they are subjected to a fitness test to determine

whether a swap is valid. The complete test is in two parts. First a “Boltzmann factor”

is calculated as below (equation 3.3) for two trajectories with potential energies E1,

E2, temperatures T1 and T2 where kB is the Boltzmann constant:

FB = (E1 − E2)× (
1

kB × T1
− 1
kB × T2

) (3.3)

If this factor, FB is greater than or equal to zero, the swap happens, otherwise it has

a chance to swap if a random number selected from the Boltzmann distribution is less

than eFB . This process is illustrated in figure 3.1.
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Figure 3.1: This figure shows the process of replica exchange. In the above diagram
replicas are coloured based on starting temperature. Every n steps, possible pairs for
exchange are selected and a test for compatibility is performed. If this test is passed
(as in the two outer pairs) then the configurations are exchanged. If it fails (as in
the middle two pairs) those replicas carry on as before. The selection criteria may be
defined by the user.
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In the realm of meta-computing, Replica Exchange has the added advantage that the

amount of communication between replicas is relatively small compared to the amount

of communication that occurs inside a replica. This allows the programmer to make use

of systems where the communications network is heterogeneous as they can arrange the

replicas so that the intra-replica communication only happens on the faster bit of the

network while the inter-replica communication (which happens less often) can operate

on the slower links. Of course, it is not necessary for the inter-replica communication

to take place only on the slower links, only that the intra-replica communication only

happens on the fast links. This is the situation that we have with a Grid-based meta-

computer, where the communication inside a site is relatively fast (both in terms of

bandwidth and latency) and inter-site links (connections which may be travelling across

the internet, or else on dedicated links) are considerably slower.

Replica Exchange may be implemented as part of the core code (for example in the case

of LAMMPS) but it may also be implemented separately with custom code performing

the exchanges and farming out the chunks between exchanges to the main code. This

second approach is the one taken by Essex et. al.[41] In this case, the performance

is significantly reduced as at every exchange the MD code has to write out an entire

checkpoint of the simulation (may be many megabytes), the exchange code has to read

it in, do the exchange and write out the changed system and the MD code then needs to

start up and read in the entire system before continuing. This has to be done for all the

replicas. With the approach taken in LAMMPS, the exchange communication happens

in memory/interconnect rather than via disk and therefore the cost of swapping is

considerably lessened. Instead of writing everything out, replicas which are candidates

for swapping only need to exchange potential and kinetic energies (for the closeness

calculation) which is considerably less information every at swap.



Chapter 4

HIV-1 Protease

4.1 Introduction

Karplus et. al. [42] gives a thorough overview of the structure of HIV-1 protease. HIV-

1 protease is one of three primary proteins (the other two are reverse transcriptase

and integrase) that form the replication mechanism of the most common (HIV-1) form

of the HIV virus. The importance of this enzyme in viral replication has led to it

being the target of nine commercial, Food and Drug Administration1 (FDA) approved

HIV drugs which work by inhibiting its function (referred to as “protease inhibitors”).

HIV-1 protease is subject to a large number of mutations, some of which are related

to resistance to commonly used protease inhibitors. The interactions between the

enzyme, the drug and the protein strands it operates upon need to be well understood

in order to aid inhibitor design and to improve patient care. This understanding is

hindered by the flexible nature of the protease, and the difficulty in directly observing

its behaviour experimentally. As a result computational modeling must be used to

provide key insights into the proteases interactions.

Patients are routinely genotyped to determine the mutations present in the various
1FDA Web-site: http://www.fda.gov/

49
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Figure 4.1: HIV-1 Protease with flaps marked in red and active site marked in green.
This structure is structure “1HHP” from the RCSB protein data bank, rendered in
VMD and annotated later in an image editing package.

strains of the protease present in their bloodstream[43] but this information needs to

be interpreted by clinicians in selecting the appropriate drug to prescribe. Clinicians

rely on a number of sources to help make this determination including tables of which

mutations are generally related to resistance to particular inhibitors and expert-system-

style decision support software.

4.2 Structure

HIV-1 protease (figure 4.1) is a homodimer with c2 symmetry, formed of two identical

monomers, each ninety-nine amino acids long. The active site (marked in green in

figure 4.1) is gated by a pair of flexible structures (residues 43 to 58 in each monomer,

marked in red in figure 4.1) referred to as the “flaps”. These flaps open and close and

their configuration at any given time can be categorised as being in one of three loosely
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Figure 4.2: Two different structures of HIV-1 protease to indicate the difference in
“handedness” between “semi-open” (a,b) and “closed”(c,d) conformations, shown from
both “above”(a,c) (showing “handedness”) and “in front”(b,d) (“showing openness”).
The semi-open structure is 1HHP (from the RCSB Protein Databank) and has a semi-
open conformation. The closed structure is 1HVR (from the RCSB Protein Databank),
and has a closed conformation. This image was rendered in VMD and composited in
an image editing package and is a recreation of Figure 1 in Hornak et. al. [44]
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defined states; “open”, “semi-open” and “closed” [44]. Two structures illustrating

this from the Research Collaboratory for Structural Bioinformatics (“RCSB”) Protein

Data Bank (“PDB”) are shown in figure 4.2. The flaps in figure 4.2 are coloured red

and blue to aid in distinguishing them from the rest of the protease. The structure

on the left, 1HHP exhibits a semi-open conformation and the structure on the right

exhibits a closed conformation. An important feature, is the change in conformational

“handedness”[44]. To understand what is meant by handedness, one must imagine the

two flaps from above as being a pair of arms with the hands curled slightly and one arm

twisted 180 degrees with respect to the other. In the semi-open state, the hands are

positioned with the backs of the hands facing each other, while in the closed state the

palms face each other. This change in handedness is a good way of characterising the

change in flap conformation. The “open” state is not easily observable experimentally

and at the time of writing no such crystal structure is available. Some computational

effort has been made to investigate flap opening, but since these simulations have not

demonstrated the flaps returning to a closed conformation, it is not clear that the

structures produced are physical[44].

HIV-1 protease is subject to a number of mutations which are associated with drug resis-

tance, including not only mutations which occur in the flap region (such as M46I/I54V)

and active site (such as V82A/I84V) but also in the dimerisation region (such as

L10I/L90M). The wide variation in the mutants in the protease means that there is no

single “wild-type”, even in a single patient, and most studies select a common mutant

to be their wild type for that study. Drug resistant mutations occur in the protease and

(often as a side-effect of failure to adhere to the very strict treatment schedule) resis-

tant mutants can become the dominant variant within a particular patient, hindering

treatment.

The process by which this occurs is a process of evolution and natural selection. Due

to its very nature, the HIV-1 virus mutates relatively often and completely randomly.

Some mutations in the protease improve resistance to an inhibitor the patient is being
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treated with and so the mutants with those mutations manage to reproduce more

often than the others and pass on those mutations (along, eventually, with gaining new

ones). Some of the mutations that hamper successful protease inhibition also hamper

the binding of the protease to the substrate so that while the resistant mutants are

resistant to the inhibitor, they are also less successful in reproducing. Further random

mutations may decrease this effect and so they will be selected for. It is therefore not

only interesting to investigate mutations which directly affect drug resistance but also

those which make some resistant strains viable.

4.3 Function

During the replication process, the reverse transcriptase transcribes the virus RNA

into DNA and this DNA is integrated into the DNA of the host by the integrase. This

combined DNA is then replicated inside the cell and re-transcribed into RNA. The

protease cleaves long polyprotein chains (referred to as the “substrate”) into much

shorter protein chains so that they may be re-assembled into new HIV virii. Without

protease function, the replication process does not result in a viable virus halting the

spread of infection. Inhibition of this function therefore has become a common method

of HIV treatment used by a class of drugs known as “protease inhibitors”. These

typically function by binding the the HIV-1 protease structure in such a way that the

active site is no longer accessible, blocking function. Mutations in the structure of

the protease therefore have an effect on the clinical efficacy of numerous common HIV

treatments.

Much of the work done on drug design involves performing so-called “docking studies”

where the physical matching of potential drugs to a docking site on the protease struc-

ture is investigated to see how strongly it binds to the static structure. These studies

do not take into account the dynamic nature of the system.
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4.4 Flap dynamics

Understanding the dynamics of the flaps is important in fully understanding their

function. Unfortunately, the motion is not easily experimentally observable (due to

the length scales, and time scales (milliseconds) involved), although it is understood

from NMR studies that the structure is flexible[44]. X-ray crystallography studies

have provided researchers with a large number (approximately 255 in total at time of

writing) of crystal structures of the HIV-1 protease, both un-liganded and bound to

the substrate and numerous drugs. Many of these are freely available from the RCSB

Protein Data Bank2 making computational investigation possible.

Mutations occurring in the flap region will have an affect on the behaviour of the flaps,

but the flap dynamics may also be affected by mutations elsewhere in the protease, in

particular around the active site. Some of these mutations may directly impact drug

resistance but others may compensate for a decreased binding affinity to the substrate

(and thus the function of the protease) caused by drug resistance-causing mutations.

4.5 Computational limitations

Unfortunately, computational investigation of the behaviour of the protease is not easy

either. Investigation with traditional molecular dynamics methods has been hampered

by the fact that flap motion is understood to happen at millisecond time-scales while

even the longest time-scale molecular dynamics simulations are only run to around a

hundred nanoseconds, limited by processor power, wall-clock time and the accuracy

of the method (which as with all iterative simulations loses accuracy with time). In

addition, molecular dynamics suffers from considerable sampling problems; the results

of a single run may not accurately represent the general behaviour of the structure due

to the possibility of the simulation exploring an unphysical region of configurational

space and becoming trapped in a local energy minima. These limitations have led to a
2RCSB Protein Data Bank: http://www.rcsb.org/pdb
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number of papers (for example [44]) where the results of a single, long run are published

but the usefulness of these results in determining the general behaviour of the protease

is not entirely clear.

Other researchers have attempted various methods of speeding up the simulation pro-

cess. For example, Chia-En Chang et. al.[25] simplify the problem in two ways. Firstly,

they course-grain the model by representing each amino acid in the protein chain as a

bead linked to each other by simplified bonds. Secondly, they use of Brownian dynam-

ics (i.e. assume that the system is operating in an overdamped regime where overall

acceleration is zero) to evaluate the motion of the beads rather than a full force-field

molecular dynamics method. Their work shows that some combinations of mutations

have a considerable effect (approximately seven-fold) on the time the protease spends

with its flaps in the open conformation, confirming that mutations have a considerable

affect on flap dynamics.

An alternative approach is to attempt to make it easier for the simulation to explore

configurational space. One technique using this idea is called “hyperdynamics”[26]

where the energy landscape of the simulation is modified such that energy minima are

easier to escape, allowing the simulation to explore configurational space more easily.

Because the scope of the modification is known, it is then possible to recover the cor-

rect characteristics of the simulation by performing the correct inverse transformation.

Replica Exchange (discussed in chapter 3) similarly has the potential to improve the

sampling of a simulation, as, like hyperdynamics, it allows the simulation to more easily

navigate the complex energy surface of such a flexible molecule. It is even possible to

combine these two techniques, with the change in the energy landscape for the hyper-

dynamics being the variable that is varied across the replicas in replica exchange. Both

these techniques avoid problems with long-term accuracy of MD by allowing the simu-

lation to explore greater conformational space in less simulated time. Replica exchange

suffers from requiring a very large amount of computational resource, while at the time

of the initiation of this study code for hyperdynamics simulations was not generally
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available. The selected variable for replica exchange will be temperature, with values

varying around the target simulation temperature of 300K.

A number of other methods exist. One such approach is “metadynamics”[27] where

the energy surface is explored by performing a number of non-equilibrium molecular

dynamics runs with a number of different variables constrained harmonically to try

and form a function for the free energy in terms of these variables. Another option is

“milestoning”[28] where the process of a reaction (and the resulting large movement

across the energy surface) is broken down into a series of smaller reactions (and therefore

smaller movements) and these smaller movements are modelled and then the results

combined to form the path taken by the full reaction.

4.6 Drug interaction

Central to drug design issues is how well a given protease inhibitor binds to a partic-

ular mutant of HIV-1 protease. There are six protease inhibitors currently in clinical

use; saquinavir, indinavir, ritonavir, lopinavir, amprenavir and nelfinavir. Experimen-

tal studies [46] have given some indication of how various mutations affect the binding

between these drugs and the protease and intriguingly, that multiple mutations signif-

icantly increase the drug resistance of a given mutant.

The Centre for Computational Science has already developed a set of tools called the

“Binding Affinity Calculator”[47] (or “BAC”) which wrap around existing tools such

as Amber, NAMD and VMD allowing the easy construction of equilibrated systems of

HIV-1 protease in water bound to either the substrate or a number of drugs from struc-

tures in the Protein Data Bank. Amongst its functions is the ability to insert mutations

into the structure and investigation of the accuracy of this technique has shown that it

produces structures whose properties are very close to those of experimentally derived

structures even for large numbers of mutations. Characterising the binding between

HIV-1 protease and a drug or substrate is more fully discussed in Chapter 8, along



O. A. Kenway 57

with an in depth computational study of the binding affinity between various mutants

of HIV-1 protease with lopinavir.

4.7 Lopinavir

Lopinavir (ABT-378, C37H48N4O5, DrugBank3 ID: DB01601) is a protease inhibitor[49],

prescribed together with ritonavir (ABT-538, C37H48N6O5S2, DrugBank1 ID: DB00503),

marketed under the single brand-name “Kaletra”. The two drugs are prescribed to-

gether because the presence of ritonavir helps to increase the level of lopinavir in the

blood stream reducing the chance of resistant mutations succeeding. This is important

because, without the addition of ritonavir, the levels between doses of lopinavir fall

below the level at which protease inhibition is effective[50]. The structure of lopinavir

is shown in figure 4.3.

The Ohtaka[46] experimental study suggests that lopinavir is adversely affected by the

presence of multiple mutations in the protease.

4.8 Conclusions

HIV-1 protease is an important enzyme in the replication and treatment of HIV. Un-

derstanding of its interactions is important both for drug design and improving patient-

specific drug selection. Particularly important is understanding the causes of the effects

of mutations related to drug resistance and the interaction between mutants and clini-

cally available protease inhibitors.

Computational modelling of the protease should give insight into the behaviour of the

flaps although care will need to be taken in finding an approach which gives informative

and useful results on feasible time-scales. Replica exchange has been selected as a

technique for overcoming these issues due to its availability at the time of project
3The DrugBank is a large database of drug information at http://www.drugbank.ca/
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Figure 4.3: Chemical structure of lopinavir.
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inception. In addition, it also maps well onto a Grid infrastructure allowing the use of

easily available, geographically distributed resources.

Previous experimental work has indicated that lopinavir will be a suitable inhibitor to

study in conjunction with the protease.



Chapter 5

Benchmarking Un-modified

LAMMPS on the TeraGrid

5.1 Overview

Clearly, there are a number of issues to be faced when running a code across multiple

sites on a Grid. The most obvious one is the problem of the “weak link” between the

sites. Even if the communication inside a site is normal TCP/IP (and in this case it is

not - it is using a version optimised for the cluster’s interconnect), then it will still have a

lower latency (simply because the boxes are closer together, both in a physical sense and

in that there is less network hardware between them) than the communication between

sites. It is also likely that there will be a much larger amount of available bandwidth

between nodes at the same site than there is between nodes at different sites. Inter-site

communications have been shown in other studies[11] on other types of codes to be a

bottleneck, and it is likely that they are even more so on molecular dynamics codes

which are very communications-heavy. Other studies[10] performed at EPCC between

two machines much closer (HPCx which is housed at Daresbury Laboratory in Cheshire

and an unnamed machine at Edinburgh, sites which are approximately 200 miles apart)

60
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together report the bandwidth to be around 4 megabytes/second and the latency to

be around 650 times as large as the latency inside the HPCx system itself. The two

TeraGrid sites selected (SDSC and UC/ANL) are an order of magnitude further apart

(around 2000 miles). Although the backbone TeraGrid network backbone which links

the two sites is reportedly 40 Gb/s, more important (due to communication pattern

and frequency) is the latency which is limited by distance.

The two sites selected for this preliminary benchmarking were chosen because they are

geographically distant, which represents a worst case scenario for latency and therefore

performance.

5.2 High performance computing resources

Both the SDSC and ANL/UC clusters are Linux clusters with Intel IA64 nodes con-

nected to the TeraGrid in the US. The SDSC cluster consists of 262 dual-processor

nodes, each with four gigabytes of memory. The interconnect is Myrinet. The ANL/UC

cluster has similar hardware but only 62 compute nodes. The SDSC cluster has 1.5

GHz processors while the ANL/UC one has 1.3 GHz processors. On both systems, the

“vendor” MPI is a version of MPICH optimised for the Myrinet interconnect.

In addition to the problems due to the increased latency/decreased bandwidth between

sites mentioned in the previous section, there were a number of problems due to the

fact that the two machines at the two different sites are within different administra-

tional domains. Even though the sites selected have similar hardware and software

configurations, libraries are installed in different places, and in particular the libraries

and compilers for the improved version of MPICH-G2 that is used here are installed

in different locations. If the sites had completely different systems, then it is not clear

how to decide what the performance of “one processor” in the resulting heterogeneous

meta-computer would be and since the purpose here is benchmarking, the selection of

two similar supercomputer systems makes this task easier.
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Of the two pre-release versions of the compiler available (a GCC based version and

an Intel-based version), the GCC compiler was chosen because initially there were

configuration issues with the Intel compiler at one of the sites. This is likely to adversely

affect the performance of the codes in the actual computational portion of the code,

but not in the communications portions (which will be more affected by latency and

bandwidth).

5.3 The benchmarks

LAMMPS comes supplied with a number of benchmarks. One of the benchmarks

which has been used previously[29] is the rhodospin benchmark. The base version of

this benchmark is a 32,000 atom model of the rhodospin protein. The entire system

can be replicated in all three dimensions (creating a system with n proteins within one

simulation) allowing the size of the problem to be scaled. It does not perform any file

I/O (although it could be easily added) and so this removes one complication.

In all the benchmarks in this chapter, a single trajectory system was used rather than

an ensemble. Even cross-site benchmarks use a simulation of a single protein spread

across multiple resources. To the LAMMPS code (and indeed any code) MPIg makes

these multiple resources appear to be a single resource with only a set of MPIg-specific

environment variables distinguishing this configuration from a single resource, to enable

a programmer to attempt to mitigate performance problems.

This benchmark was selected because it uses long-range forces and therefore is repre-

sentative of the other biological systems we wish to study later on. As a result, it makes

use of PPPM as described earlier in chapter 2.
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Figure 5.1: Loop time of the 32,000 atom Rhodospin LAMMPS benchmark on ANL/UC
cluster.

5.4 Results and analysis

5.4.1 Single site performance

Before looking at how well LAMMPS performs in a cross-site environment, it is nec-

essary to consider how well the code performs on the two systems separately. If the

code does not perform well there (unlikely, because LAMMPS has a good track record

of scaling well on a variety of systems) then there is little point attempting to get it

running across multiple sites.

Figures 5.1 and 5.2 show the loop time of LAMMPS running on the ANL/UC and

SDSC systems, and figures 5.3 and 5.4 show the scaling of the same. As can been

seen from these graphs, the code scales fairly well overall. There is not a great deal of

difference in performance between the two systems, despite the SDSC cluster having

slightly faster processors.
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Figure 5.2: Loop time of the 32,000 atom Rhodospin LAMMPS benchmark on SDSC
cluster.
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Figure 5.3: Scaling of the 32,000 atom Rhodospin LAMMPS benchmark on ANL/UC
cluster.
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Figure 5.4: Scaling of the 32,000 atom Rhodospin LAMMPS benchmark on SDSC
cluster.

The scaling curves in particular look very promising with the ANL/UC system being

almost linear and with the SDSC system coming close to that. These results show

that the code both performs and scales well on these systems and so it may be worth

attempting to get it running in a cross-site environment.

5.4.2 Cross-site performance

Figure 5.5 shows a graph of performance of cross-site runs using MPICH-G2 between

ANL/UC and SDSC compared with runs on those machines. The cross-site runs are

split evenly between the two machines, so (for example) the sixteen processor run has

eight processors on the SDSC system and eight on the ANL/UC system. The two job

runs are the same except that both jobs are on one system. This gives an indication

of the overhead from using the Globus device rather than the normal MPI. The single

job runs are just using the vendor MPI library for the system. The performance for
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Figure 5.5: Loop time of Rhodospin LAMMPS benchmark run with a single simulation
spread across the SDSC and ANL/UC Teragrid clusters, compared with the single-site
performance at the two sites and the single-site, two-job performance at the two sites.
The difference between the latter shows the performance loss of splitting the simulation
into two Globus sub-jobs in comparison to the single job, which is negligible compared
to the difference between the sites.

the cross-site runs seems to be comparatively poor with runs taking approximately five

times as long as the comparable runs on one system.

Figure 5.6 shows the scaling of the various different types of run, as calculated from the

run-time of a single processor job on the relevant machine. In the case of the cross-site

run, deciding what the performance of “one processor” is is problematic. There are two

obvious options. The first is to make the assumption that the code scales perfectly to

the smallest number of processors that was actually run (in this case four). This might

be an acceptable assumption on a single machine, but given the nature of this system,

it is entirely possible that it will give a vastly inflated estimate of the time taken by one

processor. The second option is to take an average of single processor runs on the two

different systems. This is in reality more accurate as what we are interested in here is
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Figure 5.6: Scaling of Rhodospin LAMMPS benchmark run with a single simulation
spread across the SDSC and ANL/UC Teragrid clusters, compared with the single-site
performance at the two sites and the single-site, two-job performance at the two sites.
The difference between the latter shows the performance loss of splitting the simulation
into two Globus sub-jobs in comparison to the single job, which is negligible compared
to the difference between the sites.



O. A. Kenway 68

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12  14  16

S
pe

ed
-u

p

Processors

Comparison of Cross Site Scaling Methods

Scaling from single processor runs
Scaling from four processor runs

Figure 5.7: Comparison of the scaling curves obtained using two different methods of
estimating the speed of one processor for cross-site runs. As can be seen, estimating the
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site. This means that the most effective way of calculating single processor performance
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how the performance of a cross-site run compares to that of a single machine. It also

gives a worst possible result for the cross-site run’s performance. The latter of the two

methods has been chosen for figure 5.6.

In order to show just how much these results differ, figure 5.7 contrasts the two. From

this we can see that while the first method gives a rather good scaling curve (almost

comparable with the single machine runs), the second shows that running things in a

cross-site mode is actually worse on four processors than on only one processor on a

single machine.

Looking at figure 5.6, the scaling is poor in comparison to single machine runs, and it is

rather unlikely that there is a point at which MPICH-G2 runs over-take runs on a single

machine. What is also interesting, looking at these results, is that the single machine

two-job runs are indeed scaling somewhat slower than the single job ones. This is to

be expected given that some of the communication is going over the “slower” globus

device, but it does reinforce how much better the dedicated MPI back-end is.

Because the Rhodospin benchmark is designed to be easily scaled, it is possible to

generate benchmark figures for larger systems from it. Replicating the benchmark by

a factor of two in the x direction creates a benchmark with 64,000 atoms, twice the

previous number. Figure 5.8 shows a comparison between a cross-site run on SDSC

and ANL/UC and a normal run on SDSC with such a system.

Figure 5.9 shows the scaling curve of the larger benchmark. Although at first glance

it looks to be as poor as the one for the original system, the scaling is very slightly

better. This is most noticeable on these graphs when comparing the speed-up from

sixteen processors. It seems likely from this that as the system gets larger, the scaling

will get better. While it seems possible that for a suitably large system the scaling will

start to approach that of the conventional MPI runs it seems likely that the system

would have to be extremely large. It is also likely that the cross-site runs will never

over-take the conventional MPI runs because it is also clear from these figures that the

scaling of those is improving too and they are faster to start with.



O. A. Kenway 70

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  2  4  6  8  10  12  14  16

Lo
op

 T
im

e 
(s

)

Processors

MPICH-G2 Cross Site Performance

Cross-site run
Single job run at SDSC

Figure 5.8: Loop time of replicated (64,000 atom) Rhodospin LAMMPS benchmark
run with a single simulation spread across the SDSC and ANL/UC Teragrid clusters,
compared with the single-site performance at the two sites and the single-site, two-job
performance at the two sites. The difference between the latter shows the performance
loss of splitting the simulation into two Globus sub-jobs in comparison to the single
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Figure 5.9: Scaling of replicated (64,000 atom) Rhodospin LAMMPS benchmark run
with a single simulation spread across the SDSC and ANL/UC Teragrid clusters, com-
pared with the single-site performance at the two sites and the single-site, two-job
performance at the two sites. The difference between the latter shows the performance
loss of splitting the simulation into two Globus sub-jobs in comparison to the single
job, which is negligible compared to the difference between the sites.
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There are a number possible explanations for the poor performance. This particular

benchmark might, in this case be suffering from being bandwidth-limited (there might

be an issue with the total network bandwidth between the two sites). It might also

be suffering with problems due to the vastly increased latency between the two sites.

It is likely that with two sites which aren’t as far apart geographically that it will

perform better, somewhere between the performance shown here and the performance

on one machine but with two separate Globus jobs. The selection of the two sites was

deliberate, in order to produce a set of results that were close to the worst possible,

and while it is possible that a user might want to run between two sites this far apart,

doing so is never going to be optimal.



Chapter 6

Modifications to LAMMPS for

Replica Exchange on a Grid

6.1 Introduction

As described in chapter 3, section 3.9, replica exchange explores configuration space

by running multiple replicas of a system with changes to a particular environmental

variable (usually temperature) and then randomly exchanging configurations regularly.

The results in chapter 5 indicate that running LAMMPS across a Grid as a single

monolithic molecular dynamics simulation is unlikely to ever be an efficient use of

the available resources. Therefore, it is necessary to explore other methods which

decrease the performance loss due to slow inter-site communication, either by hiding it

(overlapping inter-site communication with some other process) or by limiting inter-site

communication. Replica exchange has the potential to be a successful example of the

latter option, because it is possible to set up the simulation in such a way that each

replica has all its cores at one site. Then the only communication between sites will be

the replica exchange itself which happens infrequently relative to the intra-replica (and

therefore intra-site) communication which happens every time step. Figure 6.1 gives
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Figure 6.1: Division of cores across two sites (A and B) with an arbitrary replica
exchange molecular dynamics code (for our purposes this will be LAMMPS), modified
to be aware of the topology discovery mechanisms available to the communications
library (in this instance MPIg).

an example of how eight simulations may be allocated over two sites so that they only

communicate over the slow inter-site link at the replica exchange steps.

6.2 Algorithm

The algorithm chosen (shown in figure 6.2) is relatively basic, splitting the available

cores into pools based on their colour at the vendor MPI layer (see chapter 2, section

2.3 and figure 2.2 for definitions and examples) and then simply allocating the available

cores to simulations in chunks on a first come/first served basis from each of those pools

in turn as they run out of cores. Table 6.1 shows an example allocation of sixteen cores

over four simulations at two sites based on MPI rank.

This algorithm’s implementation is simple in that it does not try to cope with systems

where replicas have different numbers of cores (as supported by LAMMPS) but this is



O. A. Kenway 75

Core Rank Site Simulation Rank in Simulation
0 A 0 0
1 A 0 1
2 A 0 2
3 A 0 3
4 A 1 0
5 A 1 1
6 A 1 2
7 A 1 3
8 B 2 0
9 B 2 1
10 B 2 2
11 B 2 3
12 B 3 0
13 B 3 1
14 B 3 2
15 B 3 3

Table 6.1: Core allocation for a small demonstrative test case as allocated by the topol-
ogy aware version of LAMMPS. Note change in rank for each core within simulation.
This means that depending on the MPI communicator used, cores have different rank,
and within a simulation, the molecular dynamics communication code is exactly the
same as a normal, single simulation version of LAMMPS.

Figure 6.2: Pseudo-code algorithm for processor re-allocation in modified, MPIg
topology-aware version of LAMMPS.
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not a situation that would normally be encountered when performing replica exchange.

It may however become the case if the number of processors available changes, either

during a run, or between a run being terminated and being restarted. It is also unable

to deal with a situation where the number of cores in each simulation does not exactly

divide the number of available cores, but this situation is caught by error handling

in LAMMPS anyway (giving an error about an inconsistent number of cores/worlds).

This code could be improved in future to use uneven numbers of cores in replicas in

order to avoid cross-site communications in more distributions of cores between sites.

6.3 Implementation

LAMMPS already supports the concept of running multiple replicas of a system by

partitioning the cores into separate MPI worlds as specified by a command-line option,

as well as support for replica exchange. For the purposes of this study, it is necessary to

modify the code such that when these cores are allocated to replicas, they are allocated

so that each replica wholly resides at a particular site. In this way, the communications

that occur between sites over the relatively “slow” inter-site links are limited to the

replica exchange steps. This was done by modifying the file “universe.cpp” which

handles the creation of all the worlds when the code starts up. No other modifications

were required.

At this point in the project, the successor to MPICH-G2, named “MPIg” became avail-

able. Both MPICH-G2 and MPIg share the same topology discovery mechanism (with

a slight change in variable names) which allow a code running on them to determine

which cores are at a particular site (the cores at a particular site should all be able to

communicate by the vendor MPI layer). Since MPIg seemed likely to replace MPICH-

G2 across the TeraGrid and was to be deployed on the National Grid Service resources,

developing the modified version of LAMMPS to run on MPIg, rather than MPICH-G2

seemed a sensible course of action.
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LAMMPS adds partitions as it parses the command-line in a sequential fashion, as

opposed to splitting up the cores all at once. As a result, it is not trivial to allocate

partitions to sites as partitions are added. Instead, the code has been modified so that

at the end of the allocation phase, it checks to see if the configuration is suitable to be

re-allocated to specific sites, and then if possible does so.

6.4 Benchmarking

The aim of this series of benchmarks is to show that performing replica exchange

simulations with LAMMPS scales nearly as well cross-site as it does at a single site.

Unfortunately, this does not allow a perfect comparison with earlier work as that is

running LAMMPS differently and also uses a different system as the previous was

performed before the decision to investigate HIV-1 protease was made.

Benchmarks were run on two different general purpose Grids: the National Grid Service

(NGS) in the UK, and the TeraGrid in the US. In order to guarantee proper execution,

HARC reservations were used. In the US, the SDSC and NCSA IA-64 clusters were

selected for their similar architectures. In the UK, the Leeds, Manchester and Oxford

x86-64 clusters were selected. The modified version of LAMMPS was deployed at all

five sites. Due to the number of sites selected, three site runs were performed on the

NGS with two site and single site runs performed on both Grids. Attempts were made

at cross-Atlantic runs using pairs of machines on either side, but these were unsuccessful

due to configuration problems.

The two TeraGrid sites (NCSA and SDSC) are connected by the shared 10Gb net-

work infrastructure. The internal interconnects are Myrinet. On the National Grid

Service, the Manchester and Oxford sites are connected by a lightpath. Other intersite

communication occurs over the normal JANET1 network.

For benchmarking purposes on the NGS, a system of six replicas was selected (a number
1http://www.ja.net/
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that can be divided by three and two, but few enough that low core counts can finish

in a timely fashion) over a temperature range of 295K to 320K with an unliganded

HIV-1 protease in water. In an attempt to increase the negative effects of inter-site

communication, the swapping frequency was increased ten-fold to every 200 femto-

seconds. On the TeraGrid, a system with four replicas was used.

In both sets of benchmarks, HARC was used to perform user-defined co-reservations

for all cross-site runs (but not single-site runs), ensuring that all of the sites started the

sub-jobs at the appropriate time. All benchmarks were run with the MPIg modified

version of the code.

A network benchmark was also performed on the National Grid service machines be-

tween Manchester and Leeds to investigate the performance characteristics of this net-

work. The latency between two sites can be measured in two ways. The first is to

use the UNIX ping command which sends packets to a particular IP and times the

response. This method is a useful first step but may not give a sufficiently accurate

measure for cases where the inter-site traffic is routed down a lightpath, or where in-

ternet traffic to or from compute nodes communications are routed through additional

hardware which traffic to or from the login nodes is not, distorting the times measured.

It was therefore decided to develop a short code in C with MPI which passes messages

between two cores and measures the time (using MPI Wtime) that these operations take

to complete. This code can also measure bandwidth by using it to pass a single, large

message between two cores. This same code can be run locally to measure the inter-

connect performance between the two sites and a comparison made. When measuring

latency, the code passes 1 million integers between the two cores as individual messages,

and when measuring bandwidth 1 million integers are sent as a single message. Know-

ing the size of an integer on a particular platform it is then possible to calculate the

bandwidth from the times measured. This code was run both between nodes and inside

multi-processor nodes at a given site to give an overview of the hierarchical nature of

the modern cluster.
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6.5 Results and analysis

Site(s) Ping Latency Bandwidth
Leeds (intra-node) n/a 3.1 µs 790 megabytes/s
Leeds (intra-site) n/a 26 µs 201 megabytes/s

Manchester (intra-node) n/a 2.9 µs 745 megabytes/s
Manchester (intra-site) n/a 29 µs 190 megabytes/s

Cross-site 2.7ms 2.6ms 45 megabytes/s

Table 6.2: Network characteristics of NGS. Shown are average (over ten) ping times
between login nodes, latency inside and between compute nodes as measured by the
interconnect test code and bandwidth inside and between compute nodes as measured
by the interconnect test code.

The network benchmarking code was run locally at the two sites on the NGS (Leeds

and Manchester) and between those two sites. The results are shown in table 6.2. For

comparison, the average timings from ten ping packets between the login nodes are

also shown. These results show that the Manchester and Leeds clusters have similar

performance characteristics. For the more geographically displaced TeraGrid sites, the

disparity in latencies and bandwidth between inter-site and intra-site communications

will be far greater.

The cross-site network performance is considerably lower than the intra-site network

performance, with latencies approximately two orders of magnitude larger and approx-

imately one quarter of the bandwidth. This latency overhead will have a significant

impact on any code which heavy communications patterns (such as molecular dynamics

code like LAMMPS), particularly if the code’s developer makes little or no effort to

hide the latency of communications. Percentage-wise, the bandwidth cost is lower .

Figure 6.3 shows the loop time of the modified version of LAMMPS run cross-site

between SDSC and NCSA, compared with the loop time at SDSC. As can be seen, from

this graph, the performance of the cross-site run closely tracks that of the single-site

run (although there is still a very small decrease in performance) and the performance

in real time from running LAMMPS like this over a Grid is very much better than

the original method. Figure 6.4 compares the speed-up from a particular number of
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cores at SDSC obtained by doubling that number of cores at SDSC and the speed-up

obtained by adding the same number of cores at NCSA. The ideal shape of this graph

is of course a horizontal line at 2x speed-up. As can be seen in this graph, the speedup

obtained by adding a second site (NCSA) closely tracks that of adding more cores at

SDSC.

Figure 6.5 shows the loop time vs. core count for a similar system with six replicas

when run on the National Grid Service at a single site (Manchester), across two sites

(Manchester and Leeds) and across three sites (Manchester, Leeds and Oxford). As

with the TeraGrid, the cross-site performance closely tracks the performance of a single

site, even when extended to three sites.

In fact, this performance should not be surprising. In essence, what has been achieved

by replica exchange is an avoidance of cross-site communication by making it so infre-

quent that it has barely any effect on the run-time and so the performance of a replica

exchange code is close to that of an individual simulation, i.e. in the case where we

have 128 cores and eight 16 core simulations and we double the number of cores, the

code should scale close to the move from 16 to 32 cores rather than 128 to 256 which

means it should scale better than normal. In addition, accuracy may be improved by

adding extra replicas (and therefore enhancing sampling) with very little performance

loss if a particular simulation only scales to a small number of cores.

The cross-site performance of this modified code is very good compared to the original

method of performing cross-site runs in LAMMPS. This is due to the replica exchange

method decreasing the cross-site communication performed to a level where it has rel-

atively little effect on the performance of the code. This implies that this method of

running the code is likely to be more useful to researchers when running large simula-

tions on geographically disparate resources on a Grid.
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Figure 6.3: Comparison of the loop time vs. core count of the LAMMPS(MPIg-
modified) replica exchange test system run cross-site between SDSC and NCSA with
the same system run only at SDSC. Cross-site runs were performed using reservations
made by the HARC co-scheduler.
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Figure 6.5: Comparison of the loop time of the LAMMPS(MPIg-modified) replica
exchange test system with total core count when run cross-site between Manchester,
Leeds and Oxford (three sites) and Manchester and Leeds (two sites) with the same
system run only at Manchester. Cross-site runs were performed using reservations made
by the HARC co-scheduler.



Chapter 7

Replica Exchange Molecular

Dynamics with HIV-1 Protease

7.1 Introduction

There are number of issues with investigating the flap dynamics of HIV-1 protease

computationally by traditional single trajectory long time-scale methods. For a start,

the flap motion itself occurs over time-scales considerably longer than it is traditionally

practical to run a molecular dynamics simulation (a very long scale molecular dynamics

simulation is at most hundreds of nanoseconds of simulated time, limited both by avail-

able real-world time and by decreasing accuracy) meaning that the chance of observing

rare event such as an interesting flap motion is very low. In addition, the flexible nature

of the protease means that the configurational space is extremely large and so exploring

it properly is problematic. Ensemble methods enhance the sampling of the system (and

therefore the chance of observing rare events) but consume additional computational

resource linearly with the number of replicas in the ensemble.

Replica exchange molecular dynamics is a suitable approach for investigating the flap

dynamics of HIV-1 protease because it increases the chance of a flap event being sam-
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pled, whilst hopefully allowing for accurate modeling. Unfortunately it is extremely

resource intensive with many full molecular dynamics simulations all running concur-

rently. This means that until recently it has only been used in bio-chemistry to study

very short proteins. With the availability of the Grid and new, extremely large compu-

tational resources, the possibility of studying the protease in this way becomes available.

7.2 Method

7.2.1 System

The structure selected for this study was a non-liganded 1HHP crystal structure from

the Protein Data Bank in water. The replicas are constrained to a particular tempera-

ture by being coupled with a Langevin bath, and constrained to a particular pressure

(1 atmosphere) using a Nosé/Hoover [31, 32]barostat. SHAKE (see section 3.5.6) is

used to keep the bonds to the hydrogen atoms at a constant length. The timestep used

was 2 femtoseconds, and exchanges were tried every 1000 time-steps. The pair selec-

tion process for attempting replica exchange steps was initially pair-wise, and after the

investigation of swapping behaviour in 7.2.4 this was retained as random pair selection

selection did not not significantly improve the probability of swapping occurring.

Simple benchmarks running a single replica for a short period of time to determine the

computer time required to run a nanosecond of simulation time were performed. Due to

computational constraints and the results of these preliminary benchmarks and those in

chapter 6, it was initially decided to run thirteen replicas over the temperature range

290K to 350K, each with twenty-four processors. As more computational resources

became available, this was adjusted to suit the available resources. Eventually it was

extended to sixty replicas of thirty-two processors each.
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7.2.2 Equilibration

The system was equilibrated using existing tools for equilibration of HIV-1 protease

systems as described in chapter 8. In addition, each replica was then heated to its

selected temperature over a period of 20 picoseconds. This will be referred to henceforth

as the “pre-heat” stage.

7.2.3 Computational resources

Initial estimates of the necessary run time for the simulation is a total of twenty-

six hours of wall-clock time across a total of 312 processors spread between the IA-

64 clusters at NCSA and SDSC. These systems were selected because they have a

similar architecture and similar performance per node. Later it was decided to do

large scale production runs on single, large computational resources. First HPCx (the

UK’s national supercomputer resource, a “constellation”-style cluster of IBM Power

based SMP machines), then Ranger (Ranger is a Sun Linux/AMD cluster at TACC

with 62,976 cores, 123 terabytes of RAM and a peak performance of 504 TeraFLOPS)

and finally the “Abe” cluster at NCSA. Abe is a Dell Linux/Intel cluster with 1200

nodes/9,600 cores and 14.4 terabytes of RAM (half of the nodes have 16 gigabytes of

RAM and half have 8 gigabytes). Abe’s peak performance is 89.47 TeraFLOPS. That

LAMMPS works reliably on all these resources and with good performance and scaling

is a testament to its portable nature.

Due to the difference between the architectures of the compute resource used for heating

up the replicas after the equilibration phase, and those used for production runs it was

necessary to convert the restart files to ASCII rather than using the standard LAMMPS

binary formats. This may have induced a small loss in precision as well as increasing the

size of the output files but meant that it was possible to move them between platforms.

The force-field used was the CHARMM force-field. This was used because of problems

converting data-files output by NAMD using the AMBER force-field into LAMMPS
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input files.

7.2.4 Replica exchange issues

An initial production run was made in late 2007 on the HPCx resource. Analysis of

the output showed that the replicas were not swapping regularly. Figure 7.1 shows a

graphical representation of the swapping behaviour of the HPCx run. The simulations

are coloured according to their temperature. This graphic clearly shows that the only

replicas exchanging configurations are the hotest ones (replicas nine to thirteen on that

graphic) and that these exchanges happen infrequently.

This was interesting because earlier tests and benchmarks performed while developing

the code (see chapter 6) showed good swapping. These results indicated that it was

necessary to perform some test runs (with the right number of simulations, but for

much shorter time-scales) to determine hat factors affect the rate of exchange between

the replicas.

Figure 7.2 shows the swapping behaviour of a number of runs. Top left shows the

behaviour with the pre-heating phase where each replica is heated to the correct tem-

perature and 5K temperature separation between the replicas. This run was terminated

early due to issues on the machine, but shows no sign of swapping at all. Top right

shows a test run for the same system, but starting all the replicas from the 300K replica

rather than from their pre-heated systems. As can be seen, the swapping frequency is

much higher, but by the end of the run the swapping frequency has decreased. Bottom

left shows a similar system to the first two, but with the selection algorithm changed

so that potential pairs to be exchanged are selected pseudo-randomly rather than al-

ternating between odd and even pairs. As can be seen exchanges happen less often

than alternating between odd and even pairings. Bottom right shows the swapping of a

system with replicas which have a smaller temperature gap of 2K between the replicas.

Here it can be seen that swapping appears to continue to the end of the run.
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Figure 7.1: Swapping behaviour of HPCx run. The replicas are coloured based on
temperature from coldest (dark blue) to hottest (dark red). The x-axis denotes the
replica number from 1 to 13 ordered in terms of starting temperature from 290K to
350K. The y-axis denotes the exchange attempt number so the system can be thought
of as evolving from the state at the top to that at the bottom. The y-axis in this
graphic represents a much longer time-scale than in figures 3 or 5 as in this system the
exchanges were tried once every 1000 time-steps instead of once every 100 in the later
test systems.
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Figure 7.2: Swapping behaviour of test runs. Top-left (A): 5 degrees separation, pre-
heated. Top-right (B): 5 degrees separation, no preheat. Bottom-left (C): 5 degrees
separation, random, no preheat. Bottom-right (D): 2 degrees separation, no preheat.
The replicas are coloured based on temperature from coldest (dark blue) to hottest
(dark red). The x-axis denotes the replica number from 1 to 12 ordered in terms of
starting temperature from 290K to 345K in the 5K separation systems and 290K to
312K in the 2K separation systems. The y-axis denotes the exchange attempt number
so the system can be thought of as evolving from the state at the top to that at the
bottom. Note that in the case of the top-left simulation, this was run for fewer steps
than the others (due to application termination on the machine used) but all others
had shown swapping by the time they reached the same stage as it terminates and the
longer HPCx run (figure 6.1) showed very little additional swapping behaviour for this
system over a much longer time-scale.
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Figure 7.3: Swapping behaviour of a system run for twice as many swapping oppor-
tunities as in figure 7.2, with 24 replicas, pair-wise swapping, 2K separation and no
preheat. The replicas are coloured based on temperature from coldest (dark blue) to
hottest (dark red). The x-axis denotes the replica number from 1 to 24 ordered in terms
of starting temperature from 290K to 324K. The y-axis denotes the exchange attempt
number so the system can be thought of as evolving from the state at the top to that
at the bottom.
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If we want to cover the same temperature range as was initially planned, then we need

to have more replicas than initially planned. Figure 7.3 shows the swapping behaviour

for a system with 24 replicas with the smaller temperature gap (2K) and a much longer

simulation time. As can be seen, in this case in general swapping continues to the end

of the run. A notable exception to this behaviour is for the hottest temperature where

swapping appears to die out. It seems likely that this is due to that replica evolving into

a state where the swapping test always fails because its configuration is too different

from all the other replicas.

A much more extensive production run was carried out during early user access to

Ranger. A computational resource this large is ideal for replica exchange because the

availability of processors allows many replicas to be run. In addition, early tests with

LAMMPS showed that its performance on Ranger was very good, scaling further than

other TeraGrid sites. This, combined with the lessons about swapping frequency, led

to the increase the number of replicas to 60 over a temperature range of 290K to

349K, each with 32 processors for a total of 1920 cores. This production run was then

extended a further nanosecond using the Abe cluster. The use of restart files allowed

the simulations to be moved between the two sites to be continued.

7.3 Results and analysis - production

7.3.1 Swapping behaviour

As a first analysis step, the swapping activity of the 60 replicas was plotted in the

same way as before (figure 7.4). The replicas were run for 1 nanosecond with pair-wise

swapping, 1K separation between 290K and 349K. This showed good and continued

swapping for the entire duration of the run. Reassuringly, this plot shows that the

system is evolving so that over time, swapping is happening from hot and cold temper-

atures into mid-range temperatures and vice-versa which is a good indicator of good

sampling conditions.
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Figure 7.4: Swapping behaviour 1 nanosecond production run on Ranger with 60 repli-
cas, pair-wise swapping, 1K separation between 290K and 349K, coloured based on
temperature from coldest (dark blue) to hottest (dark red). This plot shows good and
continued swapping even over an entire nanosecond of simulation and 500 swapping
steps.
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Figure 7.5: Configuration of 348K replica from production run on Ranger at (left to
right, top to bottom) 0 nanoseconds, 0.2 nanoseconds, 0.4 nanoseconds, 0.6 nanosec-
onds, 0.8 nanoseconds and 1 nanoseconds showing flap opening event.

7.3.2 Visual inspection

With adequate swapping behaviour confirmed, the next analysis stage might be to

perform a visual inspection of the trajectory files using the VMD visualisation tool

and categorising the behaviours demonstrated by the different replicas. Unfortunately,

while this method may seem sensible with a single trajectory simulation, in a replica

exchange system, the researcher would have to visually inspect a very large number of

trajectories. It is a much better approach to determine some metric for computation-

ally flagging trajectories that may show an opening event (see section 7.3.3) and then

visually inspecting only those trajectories.

7.3.3 Flap tip separation

In determining whether or not a flap opening event has been observed, a more objective

metric than visual inspection needs to be determined. In [44], it is proposed that the

distance between the tips of the flaps (residue ILE-50Cα to ILE-50’Cα) may be used to

quantitatively determine the state of the flaps. They propose that a distance of ∼4.3

angstroms represents a semi-open state while ∼5.8 angstroms represents a closed state
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Figure 7.6: Maximum separation of the ILE-50Cα and ILE-50’Cα residues (i.e. the
flap tips) in angstroms for each of the replicas over the full two nanoseconds. From this
graph it can be seen that the replica with the largest separation is the 317K replica.

but offer no suggestions for the open state. The greater distance in the closed state is

due to the way the flaps close. For the purposes of this thesis, a tip separation of over

8 angstroms will be considered as possibly being in an open state.

Figure 7.6 shows the maximum separation of the ILE-50Cα and ILE-50’Cα residues

(i.e. the flap tips) in angstroms for each of the replicas over the full two nanoseconds.

From this graph it can be seen that the replica with the largest separation is the 317K

replica.

Categorised in this way, the replicas which have a separation indicating that a flap

opening event has occurred are 310K, 312K, 317K, 319K, 323K, 327K, 330K, 333K,

336K, 337K, 339K, 340K, 346K, and 348K. This can then be cross-referenced with

the visual inspection results giving a number of candidate replicas including the 317K

replica as well as 327K, 330K, 336K, 337K, 340K and 348K replicas
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7.4 Conclusions

From the results of this study it is clear that the replica exchange molecular dynamics

method has considerable merit, both in terms of efficiently exploiting modern massively

parallel computational resources where traditional molecular dynamics methods exhibit

scaling issues and in terms of scientific merit allowing the researcher to more effectively

sample configurational space than by traditional methods.

The conformations created here could have numerous purposes in future studies. As it

stands there is a considerable lack of experimentally derived open structures available.

Replica exchange molecular dynamics provides a suitable method of deriving these

structures computationally.

In this study, open structures have been derived from a single HIV-1 protease structure

but many structures are available in the protein databank. The HIV virus shows

considerable variation due to its high rate of mutation and these mutations have a

considerable effect on the resistance of the virus to the the numerous clinically available

drugs. Generating open structures from only one starting structure limits the knowledge

gained to that particular strain of the virus, because mutations to the flaps are a major

contributor to resistance in the virus and could have a considerable impact on the flap

dynamics. It is therefore probably not appropriate to use tools such as those provided in

the BAC (see chapter 8) to introduce mutations into the open structures that have been

generated computationally using replica exchange. The most suitable course of action

for investigating open structures of other mutants of HIV protease is to do a replica

exchange study starting from the chosen structure (either from the protein databank

or generated by the BAC) to generate an open version of that structure using the tools

described here.

There are numerous experimental methods available for measuring drug efficacy[45].

Some, such as EC50 are done in blood plasma and therefore have the advantage that

they are representative of the conditions within the patient. However these methods are
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complicated by practical issues in performing the measurements. Others, such as I50

are performed in solution which provides for much easier measurements, but potentially

less representative results. Although both methods are commonly used, neither has a

direct link to rate constants. Being able to computationally derive open structures to

allow computational drug docking to estimate drug efficacy could compliment these

methods considerably.

The open conformations shown here show some potential open conformations for the

the protease but due to the difficulty in obtaining a comprehensive database of exper-

imentally derived open conformations it is difficult to determine whether these confor-

mations are representative of the most common open conformations for the protease.

More study is needed in this area.



Chapter 8

Study of Computational methods

for Approximating Binding

Affinity of Lopinavir to HIV-1

Protease

8.1 Introduction

The primary problem in the treatment of HIV patients is the occurrence of drug-

resistant mutants of the virus affecting drug efficacy. Currently, patients are genotyped

(i.e. the DNA of the strain of HIV they are infected with is obtained experimentally)

to determine which mutations are present in the virus they have contracted and then

the clinician makes a decision on which drug or drugs to prescribe using a combination

of experience, intuition and, sometimes, a decision support system which is designed to

help process the vast quantities of data available. Some of these packages are commer-

cial while others (for example those under development as part of the ViroLab project
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1) are open source solutions. Such software products are in the form of expert systems,

themselves entirely based on historical data of drug resistance caused by particular

mutations stored in a number of large databases. Unfortunately, this method has an

inherent flaw when mutations are new, or combinations of mutations are present in that

there is a level of complexity which cannot be easily handled by an approach based on

statistical inference rather than an instance specific model. The ability to simulate

the patient’s strain of the virus bound to the various available drugs and provide a

reasonably accurate ranking (i.e. a ranking in the correct order, but not necessarily the

exact value) of the potential efficacy of those drugs against that patient-specific strain

of the virus to aid in drug selection would be an extremely helpful tool. Until relatively

recently, the computational power to do this on a clinically useful scale has not been

available, but with the inevitable march of technological innovation, computers have

reached the point where this may now be possible. In order to do this a metric needs

to be selected to give a reasonable predictor of drug efficacy. It needs to be tested well,

proved to hold up to experiment and capable of coping with multiple mutants while

still providing a good ranking of the available drugs on a clinically appropriate time

scale (approximately two weeks).

A potential metric for determining resistance to a particular drug is the binding affinity[34,

35, 36] between the drug and the protein it binds to (in the case of protease inhibitors,

HIV-1 protease). The binding free energy (∆Gb) may be approximated using the MM-

PBSA method.

For the purposes of ranking of mutants of HIV-1 protease when bound to a particular

drug, a better metric of binding is “relative binding affinity” (∆∆G), i.e. the difference

in binding affinity between the mutant and the wild-type:

∆∆G = ∆Gmutant −∆Gwildtype (8.1)

1ViroLab project web-site: http://www.virolab.org/
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Figure 8.1: Workflow of the Binding Affinity Calculator showing standard stages and
codes used, as well as which parts of the workflow may utilise High Performance Com-
puting or Grid resources.

Ohtaka[46] describe experimental measurement of binding affinities for lopinavir (and

a number of other protease inhibitors with six different systems. These values are used

for comparison in this study.

In this study, the wild-type is structure HXB2 from the Protein Databank. A wild-type

mutant in a virus such as HIV which shows considerable mutation may seem difficult

to select, but for experimental purposes, what is desirable is a mutant that statistically

shows no known resistance-causing mutations to use as a base structure for comparison

with mutants that have the mutations that are of interest to this study.

This method has shown some promise with protease inhibitor known as “saquinavir”[51,

52].
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8.1.1 The Binding Affinity Calculator

The Binding Affinity Calculator (or “BAC”)[47] is a set of tools for calculating bind-

ing affinities of ligands with proteins developed in the CCS for constructing complete

systems of HIV-1 protease bound to ligands from the Protein Data Bank, adding in

TIP3P[53] water molecules, hydrogen atoms, mutations and constructing configuration

files for NAMD and job submission scripts for a large range of supercomputer resources.

This allows a user to set up and run molecular dynamics simulations of HIV-1 protease

in NAMD and then analyse them to calculate the binding affinities in an automated

and uniform way.

The BAC wraps around binaries provided with VMD (a visualisation package), AM-

BER and NAMD and is written mainly in Perl; it includes wrappers for a number of

analysis stages after the output from the molecular dynamics runs has been retrieved.

These include tools for converting the output (standard DCD files) from NAMD into

AMBER trajectory files and then calculating the binding free energy (∆Gb) using the

MM-PBSA method described in equation 8.1 below.

∆Gb = ∆GMM
vdW + ∆GMM

ele + ∆Gsolpol + ∆Gsolnonpol − T∆S (8.2)

∆GMM
vdW is the van der Waals component and ∆GMM

ele is the electrostatic component of

the free energy difference. ∆Gsolpol is the polar component of the solvation free energy

and Gsolnonpol is the non-polar component. Finally, −T∆S is the component from the

change in entropy.

∆GMM
vdW+∆GMM

ele +∆Gsolpol+∆Gsolnonpol contributions to equation 8.1 using the MM-PBSA

module from the AMBER package and the −T∆S using NMODE. Because of the lack

of scaling of MM-PBSA and NMODE (the versions currently in use are serial, although

work on getting a parallel version of NMODE into the BAC is ongoing), the analysis

steps are preformed on Mavrino, 96 core, local CCS Linux cluster. Work on extending
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this toolkit is on-going, for example: adding the automated generation of graphs (using

the free graphing tool GNUPlot) of the output of the analysis steps, reducing a time-

consuming and sometimes fiddly process to a single command. The General AMBER

Force Field[22] is used to parametrise the ligands the standard AMBER forcefield for

biorganic systems[23] is used to parametrise the protease.

Future plans for development of the BAC include integrating it into the Application

Hosting Environment (or “AHE”) which is a graphical user interface designed to ease

the use of Grid resources. This would automate job submission, file staging and a num-

ber of other tasks which currently have to be managed (or at least initiated) manually,

simplifying the user interface of the BAC still further.

8.2 Method

8.2.1 Computing infrastructure

The vast majority of the computational work for this study was carried out on the

“Ranger” terascale cluster at the Texas Advanced Compute Center (or TACC). Ranger

is a Linux cluster with 3,936 compute nodes, each of which is a single Sun SMP blade

with four four-core AMD Opteron processors for a total of 62,976 compute cores. Nodes

are connected with an Infiniband interconnect and the theoretical peak performance of

the entire system is 504 TeraFLOPS. In addition to this resource, some early simulation,

and the equilibration phases were run on the Manchester and Leeds National Grid

service clusters (256 cores each) and analysis was carried out on both a local cluster

with 96 cores and the Leeds NGS cluster.

Wall-clock time on Ranger equated to 8 hours per nanosecond of simulated time on

32 cores meaning that excluding equilibration and analysis, a fifty nanosecond, single

trajectory run took at total of 400 wall clock hours. In comparison, the four nanosecond

replicas within the ensemble complete in 32 wall clock hours each and can be be run
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simultaneously (32 cores times 300 replicas is 9600 cores) on a resource as large as

Ranger.

8.2.2 Protease mutants and lopinavir

The starting structure for this study is the structure 1MUI which comes from the Pro-

tein Data Bank already bound to lopinavir. This structure was mutated with mutation

S37N which turns it into 1HXB.

The Ohtaka study measures binding affinities experimentally by measuring heat in-

volved in the reaction between the protease and the ligands. Binding affinity is related

to drug resistance because it measures how strongly the protease binds to the drug or

to the substrate. Therefore the change in the strength of this binding due to mutation

can be used to provide a metric to show how much a mutation affects the ability of the

drug to bind into the active site and prevent the protease from functioning.

There are six mutants for which experimental binding affinities are available in Ohtaka.

The first of these is the “wild-type” with none of the six mutations present. Then there

are three double mutants, each with a pair of the six mutations. These are L10I/L90M

which are a pair of mutations that occur in the dimerisation region of the protease,

M46I/I54V which occur in the flap region and V82A/I84V which occur in the region

of the active site. In addition, a mutant with the active site and flap mutations only

(i.e. M46I/I54V/V82A/I84V, referred to as the “quad-mutant”) and a mutant with

all six (referred to as the “hexa-mutant”) were also studied. These six mutants were

chosen for two reasons. Firstly, because they allow comparison with the experimental

results in Ohtaka and secondly because they allow the investigation of the change in

resistance caused by combinations of mutations that may affect each other. Figure 8.2

shows a rendering in VMD of the hexa-mutant backbone bound to lopinavir (coloured

in green), with each of the six mutation structures shown and highlighted in different

colours. L10I is shown in blue, L90M in purple, M46I in red, I54V in orange, V82A

in yellow and I84V in pink. One of the I54V mutations has bent over slightly which is
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Mutant ∆G (kcal mol−1)
Wild type -15.1

Hexa-mutant -11.3
Quad-mutant -12.8
V82A/I84V -13.9
M46I/I54V -14.9
L10I/L90M -14.9

Table 8.1: The experimental binding affinities of the six mutants with lopinavir from
table 2 published by Ohtaka in [46]. The error claimed by Ohtaka in the Enthalpy
contribution is +/- 0.2 kcal−1.

normal behaviour for a part of the structure exposed to the solution (in this case water).

The Ohtaka study showed that these individual pairs of mutations lowered the binding

affinity of a number of drugs (including lopinavir) by a relatively small amount, but

that the hexa-mutant lowered the binding affinity by considerably more than the sum

of all those changes. The relatively small change in the quad-mutant implied that the

L10I/L90M mutations in the dimerisation region have a strong effect on the combined

resistivity of the hexa-mutant.

In order to validate the computational method, these are the same six systems that

will be used in the lopinavir computational study. The binding affinities measured by

Ohtaka are reproduced in table 8.1.

8.2.3 Equilibration

The BAC creates systems from crystal structures from the protein databank of various

mutants of HIV-1 protease bound to the specific inhibitor that the user requires. The

mutations that the user wishes to study are then added into the structure by the BAC

and this means that the equilibration protocol has to allow these mutations to settle

into a stable state in addition to the usual equilibration routine.

The systems were equilibrated using the standard equilibration protocol for the BAC

described fully in [47]. Each system was minimised for 2000 iterations using the conju-
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Figure 8.2: Multi-drug resistant hexa-mutant of HIV-1 protease bound to lopinavir
(green), showing the locations and structures of the six mutations - L10I (blue), L90M
(purple), M46I(red), I54V(orange), V82A(yellow), and I84V(pink). The flaps are high-
lighted in brown. Image rendered in VMD.
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gate gradient method and line search modules in NAMD. 50 picoseconds of simulation

time was then spent heating the system from 50K to 300K. Throughout equilibration

a 2 femtosecond time-step was used. Once this step was complete, the pressure was

controlled by coupling the simulation to a Langevin thermostat[30] and the pressure

was controlled with a Berendesen barostat[48] forming an isobaric (or NPT) ensemble.

Following this stage, a complex sequence of mutation-related relaxations was carried

out with each of the amino acids mutated as part of the system construction protocol

relaxed in turn over a period of 50 picoseconds to allow each mutation to settle into

a more equilibrated position. While each amino acid was being relaxed all the others

were constrained.

The forces on the ligand and then the protease were relaxed over a period of 200 pi-

coseconds and 150 picoseconds respectively. Finally, the entire system was run without

the constraining forces (other than the thermostat and barostat required to maintain

the NPT ensemble) leaving only physical forces (such as electrostatics etc.) for two

nanoseconds to complete the protocol.

This equilibration process was determined to be sufficient because inspection of physical

parameters (temperature, pressure) showed that by the end of the equilibration process

these parameters had become relatively stable.

8.2.4 Protonation study

Protonation is an important stage in the preparation of molecular dynamics simulations

from crystal structures where H+ ions are added to the system. For HIV-1 protease

bound to a particular ligand (in this case lopinavir), there are multiple possible proto-

nation states. It was therefore necessary to perform a small-scale protonation study to

determine which should be used for the full-scale lopinavir study.

When bound to lopinavir, there are two aspartic acid sites within the HIV-1 protease

homodimer that may be protonated, which for ease of reference shall henceforth be
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referred to as “a” and “b”. This means that there are four possible protonation states.

Either monomer may be protonated (“a-protonated” or “b-protonated” - known col-

lectively as “mono-protonated”), neither (“unprotonated”) or both (“di-protonated”).

This possible imbalance in the way the otherwise rotationally symmetrical structure of

HIV-1 protease is protonated is caused by the addition of the drug which makes the

drug/protease complex asymmetric.

In order to determine which of the four states was most appropriate for the lopinavir

study, four systems were set up (one for each protonation state) with the wild-type

bound to lopinavir and then run for four nanoseconds. These were then analysed with

MM-PBSA and NMODE and the system with the most stable looking (i.e resulting

in the lowest ∆G) entropies/enthalpies selected for the full study. For the lopinavir

system, this investigation indicated that of the four possible protonation states, the

most probable state was “mono-protonated” with the “b” monomer protonated.

8.2.5 Long time-scale molecular dynamics

Each system was run for an extended period of time post equilibration with NAMD.

The protocol used the same isobaric protocol as was used for the last two nanoseconds of

the equilibration protocol; the pressure was controlled by NAMD’s Berendsen barostat

(and kept at approximately 1 bar), while the temperature was controlled by a Langevin

thermostat at 300K. SHAKE was used to keep the bond length for the hydrogen atoms

constant in order to allow a two femtosecond time-step to be used. The algorithms by

which these methods operate are more fully discussed in chapter 3.

Initial production simulation durations were ten nanoseconds. After these were anal-

ysed, the simulations were subsequently extended to twenty nanoseconds and then

fifty nanoseconds with two of the systems (the wild type and the M46I/I54V mutant)

extended to one hundred nanoseconds.
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8.2.6 Ensemble Molecular Dynamics

In addition to the long timescale molecular dynamics, an ensemble method protocol

was devised with fifty replicas of each of the lopinavir systems. Fifty replicas were

created from the original PDB and subjected to the equilibration protocol individually

(to ensure that they were completely independent). Each of the additional replicas was

subjected to the same equilibration protocol as the long time-scale system, the only

difference being the initial randomised velocities at the start of the simulation. Each

replica was run for a total of four nanoseconds.

With a single, long time-scale simulation, there is a danger that the randomised ve-

locities at the start have a considerable impact on the subset of configurational space

explored by the simulation. Using ensemble methods should help avoid this situation,

and the comparison of the results derived from the two methods is important in de-

termining the most efficient way to use available computational power to arrive at an

accurate result.

8.2.7 Analysis

Analysis was performed using AMBER’s MM-PBSA package to calculate the enthalpic

contributions to the binding affinity, and using AMBER’s NMODE package to calculate

the entropic contributions. The MM-PBSA analysis was performed on 100 snap-shots

per nanosecond while the NMODE analysis was performed on 5 snap-shots per nanosec-

ond. The considerably lower frequency of snap-shots used by NMODE was due to the

high computational cost of that code in processing a snap-shot relative to MM-PBSA.

This process was automated by scripts within the BAC and performed on Mavrino and

the Leeds NGS cluster.

There does exist a parallel version of NMODE but at the time of study it had not

been integrated into the BAC. The parallel version of NMODE actually consists of two

parallel implementations, one of which is the most generally applicable and is written
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in MPI (the other is uses a shared memory model and is written in OpenMP, limiting

its use to large shared memory machines which are relatively rare). Unfortunately

this implementation was written targeting Sun Microsystems machines and portions of

the code appear to be non-portable to other machines. The other implementation is

in OpenMP and is therefore limited to shared memory machines with relatively small

numbers of processors (although modern clusters are constructed out of SMP nodes,

most of them are relatively small (typically two to four processors) and none exceed

sixteen processors. A relatively large shared memory machine is planned as part of the

UCL Legion system which may in future allow the SMP parallel version of the NMODE

code to be used. Once either version is working, it should be possible to increase the

number of snapshots used in the entropic part of the calculation decreasing the error

in the calculation.

In addition to the analysis computational requirements, the simulations produced an

extremely large quantity of geographically distributed data (the single trajectory sim-

ulations produced in excess of half a terabyte alone). This data was transferred via a

combination of normal internet traffic and dedicated fibre-optic links to a local RAID

array.

The data output by the two methods (single and ensemble) was compared with a

Gaussian distribution to determine whether they were indeed producing a Gaussian

distribution. This analysis comprised of two parts: Binning the data and then visually

inspecting the data when overlaid with a Gaussian distribution curve with correspond-

ing mean and variance, and using the Kolmogorov-Smirnov test (described below),

manually implemented in Octave to compare the closeness of the distributions with the

same curve.

The Kolmogorov-Smirnov statistic provides a metric for determining the closeness of

the empirical distribution function (E(x)) of a given sample to a given cumulative dis-

tribution function (F (x)). It does this by calculating the Kolmogorov-Smirnov statistic

which is given byKS = SUP |F (x)−E(x)|. SUP is the maximum limit of a series which
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for an experimental data set is analogous to MAX. This may more easily thought of

as KS being the largest difference between the empirical distribution and the selected

cumulative distribution. The KS statistic may then be compared to a look-up table of

values and for a given sample size this accepts or rejects the null hypothesis that the

sample is from the given data set. This is known as the “Kolmogorov-Smirnov test”.

This method may be modified easily into the Lillifors method with similar initial steps

and a change in the interpretation of the KS statistic.

For the purposes of this analysis, the system snapshots were considered to be indepen-

dent, although this may not seem to be intuitively the case. As with all other analysis,

the enthalpic and entropic contributions were considered separately.

Code to calculate the Kolmogorov-Smirnov statistic was written from first principles

in Octave after it was determined that the built-in library functions were using an

unusual algorithm for calculating the Kolmogorov-Smirnov statistic and using methods

other than using a look-up table for performing the Kolmogorov-Smirnov test upon

that statistic.

8.3 Results

8.3.1 Convergence

The graphs of ethalpic (top-left) and entropic (top-right) contributions to ∆G for a

single trajectory 50 nanosecond run of wild-type HIV-1 protease bound to lopinavir

are shown in figure 8.4. The sliding window averages (blue/black) for the enthalpic

contribution show noticeable step changes at approximately 8 nanoseconds and 28 to

30 nanoseconds. The corresponding pair of graphs for the hexamutant are shown in the

middle of figure 8.4. This is more unstable but has relatively few features which stand

out. Finally, the bottom pair show the same data for the quad-mutant. In this instance

there are noticeable step changes in the enthalpic contribution over time period from
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Figure 8.3: Visual comparison of the empirical cumulative distribution function of
the enthalpic contribution to the first 50 nanoseconds of wild-type HIV-1 protease
bound to lopinavir (replica zero/long timescale), binned into forty bins shown in red
with the normal cumulative distribution function centred around the mean with the
same variance as the sample (green). The Kolmogorov-Smirnov statistic is the largest
difference between these two series.
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Figure 8.4: Convergence graph for the enthalpic (left) and entropic (right) contributions
to ∆G of a 50 nanosecond single trajectory simulation of HIV-1 wild-type (top), hexa-
mutant (middle) and quad-mutant (bottom) protease bound to lopinavir. Red and
orange lines represent forward and backward running averages with the thickness of
the line indicating the error. Red indicates a forward running average, while orange is
a reverse running average. Black and blue lines represent ten and one hundred sample
sliding window averages of the same data.
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Figure 8.5: Convergence graph for the enthalpic (left) and entropic (right) contributions
to ∆G of a 50 nanosecond single trajectory simulation of HIV-1 L10I/L90M (top),
V82A/I84V (middle) and M46I/I54V (bottom) protease bound to lopinavir. Red and
orange lines represent forward and backward running averages with the thickness of
the line indicating the error. Red indicates a forward running average, while orange is
a reverse running average. Black and blue lines represent ten and one hundred sample
sliding window averages of the same data.
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Mutant Ens. ∆H Single ∆H Ens. −T∆S Single −T∆S
Wild type 0.017795 0.0097871 0.031352 0.013251

Hexa-mutant 0.029874 0.010832 0.038078 0.039572
Quad-mutant 0.033840 0.055384 0.019851 0.021720
V82A/I84V 0.014474 0.025567 0.039575 0.046216
M46I/I54V 0.011030 0.021127 0.055807 0.033119
L10I/L90M 0.011952 0.0062954 0.036591 0.041649

Table 8.2: Kolmogorov-Smirnov statistic for the ∆H and −T∆S contributions to ∆G
in comparison to a normal (Gaussian) distribution about the mean of the sample for
snapshots from the single, 50 nanosecond trajectories and from the 50 by 4 nanosecond
ensembles (marked “Ens.”). Lower values of the Kolmogorov-Smirnov statistic indicate
better fit to the distribution.

about 13-14 nanoseconds to 24-25 nanoseconds. This is further reflected in the forward

and reverse running averages which are widely spaced apart. The L10I/L90M mutant

(top-left and top-right in figure 8.5) shows relatively consistent behaviour over the

50 nanoseconds. The V82A/I84V (middle-left and middle-right in figure 8.5) mutant

shows considerably change in the enthalpic contribution over the entire run and a

step-change in the entropic contribution at around 20 nanoseconds. The M46I/I54V

mutant (bottom-left and bottom-right in figure 8.5) shows fairly constant behaviour

with a step-change in the enthalpic contribution at about 41 nanoseconds.

Table 8.2 shows the Kolmogorov-Smirnov statistic for the ∆H and −T∆S contribu-

tions to ∆G in comparison to a normal (Gaussian) distribution about the mean of the

sample for snapshots from the single, 50 nanosecond trajectory’s and from the 50 by

4 nanosecond ensembles. Lower values of the Kolmogorov-Smirnov statistic indicate

better fit to the distribution (closer to the null hypothesis that the sample is drawn

from the target distribution). From this data a number of important features may be

determined. Firstly, the ensemble snapshots provide in general a better fit than the sin-

gle trajectory snapshots, which would be expected due to the sampling characteristics

of the two methods. Secondly the entropic contributions are a worse match to a normal

distribution than the enthalpic ones. This is to be expected, because the normal mode

process which calculates the entropic contributions contains a minimisation phase: a

process which considerably deceases the configurational space sampled by the method.
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8.3.2 Comparison with Experiment

Tables 8.3 and 8.4 show the mean enthalpic and entropic contributions to the binding

affinity for the first 10, 20, 50 and the last 10 (i.e. 41 to 50) nanoseconds of the long

time-scale runs, along with the standard deviation for those results. The standard

deviation was used to calculate the standard error. Due to the difference in sampling

frequency between MM-PBSA and NMODE, this leads to much larger errors in the

entropic contributions provided by NMODE, in comparison to the errors for the en-

thalpic contributions provided by MM-PBSA. Table 8.5 shows a comparison of the

computational values of ∆G for each of the six mutants and each of the four simulation

time periods selected compared with the experimental values from Ohtaka This table

illustrates that as single trajectory simulations progress, the value for ∆G converges

towards the experimental value (a good example being the wild type) but for others it

diverges (c.f. the quad mutant).

Figure 8.6 shows the same data as table 8.5 graphically. In this instance, the x-axis is

the experimental value of ∆G and the y-axis the computational value. The magenta

line y = x on the graph represents “perfect correlation” between the experimental and

computational value. This graph indicates considerable problems with this particular

simulation of the M46I/I54V mutant which for all of the series appears to be more

attractive than the wild type and also with the quad mutant which at some point

undergoes a considerable change during the last ten nanoseconds drastically affecting

its binding affinity. Apart from these problems it appears from this graph that a good

ranking is obtained over the fifty nanoseconds (the blue line) with only the M46I/I54V

mutant giving a consistently incorrect ranking. Visual inspection of the trajectory files

in VMD showed evidence that some of the behaviour may be affected by the presence

of water molecules in the active site.

Table 8.6 shows the mean ∆H and −T∆S contributions from the fifty 4 nanosecond

simulations making up the ensemble. Table 8.7 compares the experimental ∆G from

Ohtaka with the value for ∆G calculated from long (50 nanosecond), single trajectory
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simulation and the ensemble systems. The single trajectory values for ∆G show con-

siderable variation, being both more positive (HM, QM and V82A/I84V) and more

negative (wild type, L10I/L90M and M46I/I54V) than the experimental values with

the difference between the computational and experimental values varying between -6.8

kcal/mol and +3.7 kcal/mol (a range of 10.5 kcal/mol). In comparison, the ensemble

values for ∆G are all more negative than the experimental values with a much smaller

range of difference from the experimental values of 2.7 kcal/mol (between -6.5 kcal/mol

and -3.8 kcal/mol). This implies that whatever experimental error exists in the en-

semble systems is more consistent than the one in the single trajectory, most likely

because the ensemble systems are not trapped in a single area of configurational space

determined by the initial conditions.

Figure 8.7 shows the relative binding free energies (∆∆G) of the five mutants to

lopinavir with respect to the wild type. Figure 8.8 shows the relative binding free

energies (∆∆G) of the five mutants to lopinavir with respect to the wild type, but with

the computational values only taking into account the enthalpic contribution to the

relative binding free energy. This shows better ranking than figure 8.7 for the ensemble

method. It provides a less satisfactory ranking than figure 8.7 for the single trajec-

tory. In particular it is less easy to discriminate between the quad-mutant and the

V82A/I84V mutant. Looking back to the entropic data for this trajectory in 8.5, there

is a considerable change in the entropic term which, between 10 and 50 nanoseconds,

cancels out the change in the enthalpic term and excluding this data is apparently hav-

ing a negative effect on ranking ability. This is an effect on a single trajectory, based

on a specific set of initial conditions which would have a smaller impact on an ensemble

system.
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Mutant First 10ns First 20ns 50ns Last 10ns
Wild type -52.2 (5.0) -51.1 (5.2) -50.1 (5.3) -49.2 (5.3)

Hexa-mutant -44.3 (6.4) -43.9 (6.3) -42.1 (6.3) -41.4 (6.0)
Quad-mutant -51.8 (5.4) -50.0 (6.4) -42.7 (8.4) -37.3 (5.1)
V82A/I84V -41.8 (9.2) -39.4 (7.9) -42.6 (7.4) -45.5 (5.9)
M46I/I54V -58.6 (4.7) -57.2 (5.7) -54.9 (5.7) -48.4 (4.9)
L10I/L90M -51.8 (5.2) -50.9 (5.4) -48.6 (5.5) -46.5 (4.5)

Table 8.3: Mean values for ∆H in kcal mol−1 for the six different mutants over four
different time periods with standard deviation (used to calculate error) in brackets.

Mutant First 10ns First 20ns 50ns Last 10ns
Wild type 32.4 (5.5) 33.5 (6.1) 32.2 (6.1) 31.5 (5.8)

Hexa-mutant 34.2 (5.4) 34.0 (6.5) 33.4 (6.7) 34.2 (6.3)
Quad-mutant 35.6 (4.4) 33.9 (5.3) 33.5 (5.2) 33.8 (5.4)
V82A/I84V 28.7 (6.9) 28.0 (7.6) 32.3 (7.7) 32.0 (6.4)
M46I/I54V 32.0 (7.4) 31.5 (6.6) 33.3 (6.6) 34.7 (6.8)
L10I/L90M 30.6 (7.7) 30.8 (6.9) 32.0 (6.7) 29.6 (6.8)

Table 8.4: Mean values for −T∆S in kcal mol−1 for the six different mutants over four
different time periods with standard deviation in brackets.

Mutant First 10ns First 20ns 50ns Last 10ns Experiment
Wild type -19.8 -17.6 -17.9 -17.6 -15.1

Hexa-mutant -10.1 -9.9 -8.7 -7.2 -11.3
Quad-mutant -16.3 -16.2 -9.1 -3.6 -12.8
V82A/I84V -13.1 -11.3 -10.3 -13.4 -13.9
M46I/I54V -26.5 -25.7 -21.7 -14.2 -14.9
L10I/L90M -21.2 -20.2 -16.5 -16.9 -14.9

Table 8.5: Mean values for ∆G in kcal mol−1 for the six different mutants over four
different time periods, compared with the values from Ohtaka [46].

Mutant ∆H −T∆S
Wild type -52.5 (0.04) 32.3 (0.21)

Hexa-mutant -48.8 (0.05) 31.5 (0.21)
Quad-mutant -49.0 0.05) 32.42 (0.21)
V82A/I84V -50.68 (0.04) 30.66 (0.22)
M46I/I54V -52.3 (0.04) 32.2 (0.22)
L10I/L90M -52.5 (0.04) 31.0 (0.22)

Table 8.6: Mean values for ∆H and −T∆S in kcal mol−1 for the six different mutants
over the fifty 4 ns replicas in the ensemble, each with a four nanosecond time-scale run.
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Mutant Experiment Single trajectory Ensemble
Wild type -15.1 -17.9 -20.1

Hexa-mutant -11.3 -8.7 -17.3
Quad-mutant -12.8 -9.1 -16.6
V82A/I84V -13.9 -10.3 -20.0
M46I/I54V -14.9 -21.7 -20.1
L10I/L90M -14.9 -16.5 -21.4

Table 8.7: Experimental values for ∆G from table 2 published by Ohtaka in [46] com-
pared with computational values calculated from entropic and enthalpic contributions
from a single 50 nanosecond simulation and an ensemble of 50x4 nanosecond trajectory
runs for each of the six mutants of HIV-1 protease bound to lopinavir.

Figure 8.6: Comparison of experimental values with computational values for ∆G for
the first 10 (red), 20 (green) and 50 (blue) nanoseconds of simulation time for each of the
six mutants of HIV-1 protease bound to Lopinavir. The x-axis shows the experimental
values for ∆G as provided by Ohtaka [46]. The y-axis shows the mean computational
values over the run-time. Therefore a “good” result should resemble a straight line with
a perfect result resembling the magenta line. Points for the L10I/L90M and M46I/I54V
mutants are distinguished by pale green and pale red backgrounds respectively.
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Figure 8.7: Relative binding free energies of the five mutants of HIV-1 protease to
lopinavir with respect to the wild type, comparing computational values from long
time-scale 50 nanosecond single trajectory runs (blue), fifty by 4 nanosecond ensemble
runs (red) and the experimental values calculated from Ohtaka in [46] (yellow).

8.4 Discussion

Investigation of the binding affinity of lopinavir to the six selected mutants provided

some promising results and insight into issues surrounding long time-scale molecular

dynamics simulations.

The six mutants studied were chosen for a number of reasons. Firstly, they were chosen

because they present a the option of investigating successive mutations (wild type,

three pairs of mutations, one mutant with two pairs and one with all three) which are

associated with increased resistance to a number of protease inhibitors.

In addition to investigating the binding affinity with Lopinavir, there are a number of

other possible inhibitors to investigate including Amprenavir, Ritonavir, Indinavir and

Nelfinavir. Experimental results for all four are available in Ohtaka for comparison.

Earlier work done in the group shows promising results calculating binding affinities
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Figure 8.8: Relative binding free energies of the five mutants of HIV-1 protease to
lopinavir with respect to the wild type, comparing computational values from long
time-scale 50 nanosecond single trajectory runs (blue), fifty by 4 nanosecond ensemble
runs (red) and the experimental values calculated from Ohtaka in [46] (yellow). Unlike
figure 8.7 the computational results shown here only include the enthalpic contribution
to the relative binding free energy. This produces a much better ranking than is shown
in figure 8.7 for the ensemble method.
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with the six mutants for a sixth inhibitor known as Saquinavir. Positive results for

these inhibitors might mean that it is possible to get an estimated binding affinity by

computational methods for other protease inhibitors when parameterisations of them

for the Amber force-field become available.

The convergence study demonstrated a number of limitations of single trajectory in-

vestigations of binding affinity. The primary limitation was one of convergence, with

the 50 nanosecond trajectories failing to converge to a reproducible result. This is

most apparent in the forward and reverse cumulative averages, for example in for the

V82A/I84V mutant in 8.5, whose separation demonstrates a lack of convergence.

Investigation of the distribution of ∆H and −T∆S for the single trajectory and en-

semble simulations demonstrated that the ensemble systems sampled the enthalpic

contributions more effectively than the single trajectory with a much more normal dis-

tribution of ∆H. The entropic contributions did not form a normal distribution and

this appears to be due to the minimisation step of the normal mode calculation limiting

the exploration of configurational space to a sub-set of minima.

For the purposes of the Binding Affinity Calculator, the single trajectory results for

Lopinavir are promising with four of the five mutants yielding consistently good rank-

ing when considering their relative binding affinities to the wild-type. This is likely

due to the simulations becoming trapped in local energy minima near to the start of

the simulation and as a result failing to explore configurational space correctly. This

means that even extending the simulations further is unlikely to yield better results.

The results for the ensemble systems are even more promising, giving correct ranking

for all five mutants when considering only the enthalpic contributions to the relative

binding affinity ∆∆G and with more consistent difference in ∆G with respect to the

experimental values.
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8.5 Conclusions and future work

It is evident from the data presented here that computational methods for calculating

relative binding affinities of HIV protease mutants to an inhibitor (in this case lopinavir)

have potential future merit with the caveat that single trajectory, long time-scale simu-

lations are a much less effective method of reproducing experimentally derived binding

affinities than ensemble methods. The sampling of configurational space is greatly im-

proved by choosing ensemble methods over single trajectory methods (although the

latter does sometimes still provide a good ranking) and this means that the result is

more reliable as the effect of one trajectory taking an unusual path though configura-

tional space is considerably lessened.

Ensemble methods also have the potential for increasing the accuracy of the estimated

result as larger parallel machines (or task farms of much smaller resources) by increasing

the number of replicas in the ensemble whereas with a single long time-scale system,

it is difficult to increase the accuracy of the simulation for three reasons. Firstly, as

a molecular dynamics simulation progresses along a longer time-scale, the build-up of

rounding errors, approximations and floating point errors mean that the results are a

decreasing reflection of reality, and as with the results shown here, it is not clear that

the reproduction of experimental results is improved at all. Secondly, increasing the

length of a single trajectory is not a parallel process as each time-step depends on the

previous ones. This means that increasing the length of the simulation increases the

real-world time that the simulation phase takes. Although in the past it would have

been assumed that the natural progression to faster and faster microprocessors would

overtake this increase in run time, most of the efforts in improving the performance of

a single processor currently focus around multiple cores and parallelisation. Thirdly,

unlike an ensemble which is for most intents and purposes embarrassingly parallel, the

speed-up obtained from increasing the number of cores available for a single trajectory

molecular dynamics system is limited by the communications costs involved.
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This difference in reliability means that for potential clinical use, long time-scale simu-

lations do not appear particularly useful since the ensemble method gives better results

and in terms of real-world time can be completed more quickly.

In order for these tools to be integrated into clinical practice a considerable amount of

infrastructure would need to be put into place. Large computational resources would

need to be set up with appropriate authentication and security to protect patient confi-

dentiality. As computer technology progresses however, the relative scale of the resource

needed decreases considerably. If simulation methods are proved to be effective then

it is possible that they could become routine in supporting the decisions made by clin-

icians. Once it became possible for doctors to reliably obtain accurate results from

the system within two weeks of the patient being genotyped, running a simulation to

provide a result to inform treatment would become routine.

The ranking provided by the ensemble enthalpic contribution to the relative binding

affinity provides an excellent and correct ranking. The number and size of simulations

required means that the researcher is reliant on a very large amount of computational

resource. In this instance terascale resources were used, but equally effective would be

a large number of mid-scale resources. Ensemble methods map more easily onto these

resources than single long simulations.

Future work should focus on a study to prove that the ensemble results are reproducible,

and are replicated for other inhibitors.

To make this work actually useful to clinicians who have little expertise in managing

simulations on a high performance resource (never mind the challenges of using a dis-

tributed, Grid infrastructure) then considerable effort needs to be made in developing

the prototype tools described here into a user-friendly solution. The user must be pre-

sented with a simple interface where they enter the mutations present in the patient’s

strain(s) of the virus and are presented with the results (rankings) at a later date with

all the complexity of the under-lying technological systems hidden from them. A work-

flow needs to be developed where the software constructs the systems and submits all
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the jobs to available resources, analyses that output and returns the results to the user

without any intervention on their part. This will require considerable development

effort but this is a software challenge rather than a science one.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis a number of important topics have been discussed in relation to applying

Grid resources to help provide insight into biological processes.

By modifying an existing replica exchange molecular dynamics existing so that it effi-

ciently exploits the heterogeneous nature of the communications infrastructure inherent

in cross-site Grid computation, the potential of the Grid as an alternative to single large

scale computational resources for some areas of biological molecular dynamics research.

These methods apply to some other codes, and the replica exchange molecular dynamics

code is itself being used in other fields. The code modifications to LAMMPS demon-

strated here are not limited to the biomolecular sphere and are likely to be just as

effective elsewhere.

An extensive replica exchange molecular dynamics study of the unliganded HIV-1

protease wild-type demonstrated enhanced sampling over traditional single-simulation

molecular dynamics methods and showed what appear to be flap opening events in a

number of the replicas.

124
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Extensive investigation of the accuracy of a number of methods available to the Binding

Affinity Calculator was carried out, determining that ensemble methods demonstrated

a ranking of the computationally derived binding affinity of Lopinavir to six mutants

of the protease that was closer to the experimentally derived values and ranking than

individual simulations although considerable improvement in accuracy will be required

before the tool is suitable for real-world patient-specific use.
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9.2 Future work

The MPIg Grid-aware variant of LAMMPS is essentially complete although some work

needs to be done moving the Grid code into the latest versions of LAMMPS. Further

work is planned to use SAGA to produce a replica exchange version of LAMMPS with

transparent access to disparate Grid resources independent of the middle-ware layers

on the available resources. It seems likely that this will involve moving the replica

exchange code out of LAMMPS and into a separate wrapper in order to free it from

some of the constraints it currently suffers from. There is already a replica exchange

SAGA framework for NAMD developed by the SAGA developers which has showed

considerable promise in this area.

As the technical work above continues, more work needs to be carried out investigating

the flap behaviours of various mutants of HIV-1 protease, and additionally the be-

haviours when bound to a ligand. The latter will either require the parametrisation of

Lopinavir into the Charm force-field, code modification to fix problems with the tool to

import Amber force-fields into LAMMPS or else the use of the replica-exchange version

of NAMD.

Further work needs to be carried out investigating more thoroughly the issues apparent

in the BAC’s estimates of binding affinity, in particular more work needs to be done

in understanding the reproducibility issues the method faces. A proper reproducibility

study is ongoing and the initial results go some way to indicating methods of improving

the accuracy and reproducibility of the tool.
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