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Abstract The structure of diopside (CaMgSi2O6) has been calculated at

pressures between 0 and 25 GPa using the planewaves and psudopotentials

approach to Density Functional Theory. After applying a pressure correction

of 4.66 GPa to allow for the under-binding usually associated with the

Generalized Gradient Approximation, cell parameters are in good agreement

with experiment and fitting to the third order Birch-Murgahan equation

of state yields values of 122 GPa and 4.7 for the bulk modulus and its
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pressure derivative. In addition to cell parameters, our calculations provide

all atomic positional parameters to pressures considerably beyond those

currently available from experiment. We have analyzed these data in terms

of polyhedral rigidity and regularity and find that the most compressible

Ca polyhedron becomes markably less anisotropic above 10 GPa.

Key words diopside, density functional theory, equation of state, pyrox-

ene, compression

1 Introduction

Linking compositional models of the Earth’s mantle to observed geophysi-

cal data requires knowledge of the properties of candidate minerals at high

pressure and temperature. Increasingly this information is supplied by first

principles simulation, which can circumvent experimental limitations and

derive the structure and properties of minerals under extreme conditions

while giving atomic-scale insight into important processes. Recent exam-

ples of this approach include the development of an Earth reference model

based on mineral physics data (Weidner et al., 2006) and an analysis of the

mechanism of the water induced weakening of the mantle (Walker et al.,

2007). Given this interest and the fact that diopside has historically been

seen as a difficult stuture to model (Dove, 1989), it is perhaps surprising

that modern electronic structure methods have not been used to determine

the high pressure behavior of diopside (CaMgSi2O6), the magnesium rich
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end member of the calcium bearing clinopyroxenes found in the Earth’s

crust and upper mantle. However, such methods have been used to probe

the electron distribution in diopside, e.g. Gibbs et al. (2005) and Bianchi

et al. (2005). Here, we rectify this by reporting results derived from den-

sity functional theory which reveal the equation of state and high pressure

structure of diopside.

The compressibility and compression mechanism of diopside have been

studied experimentally on a number of occasions. Levien and Prewitt (1981)

compressed a natural single crystal to 5 GPa in a diamond anvil cell and

recovered full structure refinements from X-ray diffraction. McCormick et al.

(1989) and Zhang et al. (1997) also performed single crystal X-ray diffraction

in diamond anvil apparatus, compressing natural and synthetic samples to

6 and 10 GPa, respectively. More recently Rietveld refinement of data from

X-ray powder diffraction experiments have recovered the cell parameters of

diopside to 40 GPa (Tribaudino et al., 2000). However, the crystal structure

could not be determined at this pressure. Indeed, until very recently, the

only published high pressure structure refinements were those of Levien and

Prewitt (1981). New experiments reported by Thompson and Downs (2008),

provide structural data to 10 GPa. This data, which was collected from a

natural single crystal compressed in a diamond anvil cell, is consistent with

the results of Levien and Prewitt (1981) and Tribaudino et al. (2000) but

differs from the results of Zhang et al. (1997).
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Like all pyroxenes the structure of diopside is characterized by parallel

chains of corner sharing silicon tetrahedra (Si) and edge sharing octahedra

(M1) parallel to the c axis (Figures 1a and 1b). These essential structural

elements are embedded in a pseudo-close packed array of oxygen atoms with

sheets of oxygen atoms parallel to (100). In diopside the oxygen atoms are

arranged with distorted cubic close packing (CCP) with three symmetrically

distinct oxygen sites and a third cation site (M2). The M1 site is occupied by

magnesium while the M2 site is occupied by eight-coordinated calcium. One

oxygen site (O3) is shared between adjacent tetrahedra while a second (O2)

lies in the same (100) sheet as the two O3 atoms bonded to its silicon atom.

The third, apical, oxygen (O1) bonded to each silicon is in the adjacent

(100) plane and links parallel chains of Si and Mg atoms. The two Si–O3

bonds have slightly different bond lengths, and we call the longer bond Si–

O3a and the shorter bond Si–O3b. Similally, there are two Mg–O1 bond

lengths, Mg–O1b being longer then Mg–O1a. The Ca polyhedra also form

kinked edge sharing chains (Figures 1c and 1d). There are two pairs of

Ca–O3 bonds in the structure, with Ca–O3a being longer then Ca–O3b.

The CCP oxygen sub-lattice is actually extremely distorted and was the

most distorted of the common rock forming minerals studies by Thompson

and Downs (2001). In a hypothetical pyroxene with perfect CCP oxygen sub-

lattice the space group would be C2/c, one would expect the tetrahedera

and octehedera to be perfectly regular, and the Si–O–Si angle would be 120◦

(Thompson and Downs, 2003, 2004). Although diopside does crystalize in
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the C2/c space group, the bond lengths are not equivalent. All four Si–

O bonds are different lengths with the two inequivalent bonds to bridging

oxygen being shorter then the two non-bridging bonds. There are three pairs

of inequivalent Mg–O bonds in the M1 octahedera and four inequivalent

Ca–O bonds around the M2 site. Previous experimental analysis of the

structural evolution with pressure is based on the data of Levien and Prewitt

(1981) who show that the M2 site is the most compressible cation site, and

the Si site the least compressible. Thompson and Downs (2001) showed that

the effect of pressure was to drive the structure towards more perfect close

packing while Thompson et al. (2005) was able to fit the compressibility to

a simple model driven by the evolution of oxygen ion radius and O3–O3–O3

angle (Figure 1a).

2 Methodology

Our calculations made use of Density Functional Theory (DFT; Hohenberg

and Kohn, 1964; Kohn and Sham, 1965), an exact recasting of the time in-

dependent Schrödinger equation for electrons in the potential field of nuclei,

to evaluate the energy of a periodic model of diopside. Although DFT is

an exact theory the exchange correlation functional is not known and must

be approximated. We made use of the functional of Perdew et al. (1996),

which belongs to the family of functionals within the generalized gradient

approximation (see Jung and Oganov, 2005, for a recent review of these

methods).
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The calculations were performed using the popular planewaves and pseu-

dopotentials approach for DFT-based models of periodic systems, which

owes much to the work of Car and Parrinello (1985). The key feature of this

approach is to represent the core and valence electrons in different ways so

that most of the computational effort is concentrated on the behaviour of

the valence electrons. These are represented by a planewave basis expansion

that includes all waves whose kinetic energy, Ek = ~2k2/2m (m is the elec-

tron mass, k is the wavevector), is less then a cutoff energy threshold. In our

calculations a cutoff of of 600 eV was used. Core electrons were described

by ultrasoft psudopotentials fitted to all election GGA results for isolated

atoms (Vanderbilt, 1990). Electrons in the 2s and 2p, 2p and 3s, 3s and

3p, and 3s, 3p and 4s levels were treated as valance states for O, Mg, Si

and Ca atoms, respectively. All lower levels were treated as core states. The

Brillouin zone was sampled with a 2×2×2 Monkhorst-Pack grid (Monkhorst

and Pack, 1976) which was fine enough to converge the total energy and

forces on the atoms (shown in the supplementary information).

Using this approach the enthalpy, cell volume and structure of diopside

were calculated at pressures from 0 to 25 GPa in increments of 1 GPa. For

each pressure all internal degrees of freedom were allowed to vary along with

the cell parameters during minimization of the energy.

We made use of the CASTEP code (Segall et al., 2002) to perform

the calculations. The calculations were run in parallel on the four clusters

belonging to the North-West Grid (Thomas et al., 2007) and each made use
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of 32 compute cores connected by a high performance ethernet-based SCore

interconnects. Typical run times were of the order of 12 (wall clock) hours.

3 Results

The calculated cell parameters at each pressure increment are reported in

Table 1 and compared with experiment in Figure 2. Comparison of the 0

GPa result with neutron diffraction data collected at 4 K (Prencipe et al.,

2000) shows that the calculated results overestimate the a, b, c and β cell

parameters by 1.8, 1.7 and 1.7 % and 0.8◦, respectively. This overestimate in

cell volume (and a corresponding decrease of the elastic stiffness and vibra-

tional frequencies) compared to experiment is typical of calculations making

use of the GGA but the uniform nature of the expansion is gratifying. For

comparison, an equivalent calculation at 0 GPa using the local density ap-

proximation yielded cell parameters that were too small (underestimated a,

b, c and β by 0.9, 1.3 and 1.0 % and 0.03◦, respectively).

As expected, fitting the calculated pressure – volume (P–V ) data to the

third order Birch-Murnaghan equation of state:

P =
3K0

2

[(
V0

V

)7/3

−
(

V0

V

)5/3
]

×

{
1 +

3 (K ′
0 − 4)
4

[(
V0

V

)2/3

− 1

]}
, (1)

with the zero pressure volume, V0, bulk modulus, K0, and its pressure

derivative, K ′
0, as free parameters gives a solution: V0 = 458.0 Å3, K0 = 99.8

GPa, and K ′
0 = 4.9, which is softer than experimental values of V0 = 439.13
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±0.06 Å3, K0 = 113 ±3 GPa, K ′
0 = 4.8 ±0.7 (Levien and Prewitt, 1981),

V0 = 439.465 ±0.016 Å3, K0 = 105.1 ±0.9 GPa, K ′
0 = 6.8 ±0.1 (Tribaudino

et al., 2000) and V0 = 438.66 ±0.02 Å3, K0 = 118 ±1 GPa, K ′
0 = 3.8 ±0.2

(Thompson and Downs, 2008).

The anisotropy of the compression of the unit cell with pressure is re-

vealed by the unit strain ellipsoid as a function of pressure. This is calculated

using the STRAIN software (Ohashi, 1982) and is represented in Figure 3

and Table 1 of the supplementary material. The distortion is measured from

the unit cell at the indicated pressure and that at 0 GPa with ε2 parallel

to the crystallographic b axis and ε1 and ε3 in the ac–plane. This data is

qualitatively similar to the strain calculated from experiment (Thompson

and Downs, 2008) but the strain is too high at low pressure. This is due to

the underbinding associated with the GGA. The general trend is for strong

anisotropy in the ac–plane (ε1 and ε3 are very different).

In addition to the cell parameters the calculations also yield atomic

positions at each pressure. Although no point symmetry was imposed on

the calculations (all 40 atoms were free to move in any direction if this

reduced the system’s enthalpy) the system retained C2/c symmetry. Atomic

positions for the atoms in the asymmetric unit are given in Table 2. This

data is also available in Crystallographic Information File (.cif) format as

supplementary information.

We extracted information regarding the three distinct coordination poly-

hedera from the crystal structure; the evaluation of bond lengths and poly-
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hedral volume with pressure are shown in Supplementary Tables 2, 3 and 4.

We also identify the center and radius, r, of the sphere that minimizes the

distance from the vertex atoms to the sphere surface using the approach de-

scribed by Balić Žunić and Makovicky (1996). The best fitting sphere yields

two measures of polyhedral distortion reported in Table 3. The first, ∆, is

the deviation of the central atom from the center of the best fit sphere.

For a perfect polyhedera this displacement is zero. The second measure,

called the sphericity, Σ, is derived from the standard deviation, σr, of the

distances from the sphere center to the co-ordinating atoms and is given

by: Σ = (1 − σr/r). In a regular polyhedera all the atoms lie exactly on

the surface of the sphere and this measure is equal to 1 (it is also equal

to 1 for any tetrahedera). These two measures of polyhedral regularity do

not account for deviations in the shape of the coordination polyhedera. One

can imagine moving the atoms on the surface of the best fit sphere without

changing r, ∆ or Σ. Makovicky and Balić-Žunić (1998) provide a way to

quantify this type of deviation by comparing the volume of the polyhedera

with the volume of the equivalent regular polyhedera inscribed by a sphere

of radius r. As the polyhederal shape moves away from the perfect equiv-

alent its volume will tend to decrease. The shape deformation can thus be

quantified by the volume discrepancy, υ(%) = (Vi − Vr)/Vi × 100. Finally,

we also evaluate the compressibility of the three polyhedera by fitting third

order Birch-Murnaghan equation of state to the polyhederal volumes.
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For the Si tetrahedera we extract equation of state parameters V0 = 2.26

Å3, K0 = 334.4 GPa and K ′
0 = 6.4 and the bond length evolution is shown in

Figure 4. Notable observations are that the anisotropy of the bond lengths is

retained over the whole pressure range, with bonds to the bridging oxygen

atoms always shorter than non bridging bonds. The Si–O–Si bond angle

becomes monotonously more kinked over the whole pressure range while the

two measures of polyhederal distortion, ∆ and υ initially decreases a little

with increasing pressure before distortion increases again. The minimum

distortion occurs at 12 GPa.

The Mg site is much softer with the EOS fit giving parameters V0 = 12.63

Å3, K0 = 88.9 GPa and K ′
0 = 4.3. The intermediate length Mg–O1b bond

is least compressible, Figure 5. The displacement of the central atom from

the center of the octahedron decreases with pressure, while the shape of the

octahedron becomes increasingly distorted. In terms of Σ, the minimum

distortion of bond lengths is at 12 GPa, about the pressure when the length

of the intermediate length bond is midway between the other two bond

lengths.

Calcium occupies the most compressible M2 site and fitting its volume

to the EOS yields V0 = 27.1 Å3, K0 = 75.3 GPa and K ′
0 = 4.8. At am-

bient pressure the bond length compressabilities are very anisotropic with

the longest Ca–O3a bond being by far the most compressible bond in the

structure, Figure 6. Indeed, by 20 GPa this bond is shorter then the Ca–O3b

bond. At all pressures the central atom is significantly more displaced from
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the centroid then in the case of the tetrahedera or octahedera, and increas-

ing pressure decreases this displacement. Increasing pressure also increases

sphericity. In order to derive the volume discrepancy of the Ca polyhedera

it is first necessary to define an ideal shape. For this we take the Archa-

median square antiprism (Makovicky and Balić-Žunić, 1998, Table 2). The

maximum volume discrepancy of this site occurs at 14 GPa, with a mini-

mum distortion at 1 GPa. One of the interesting observations is that the Ca

polyhedron becomes less anisotropic with increasing pressure, as shown by

Figure 6, and by the decrease in volume discrepancy and centroid displace-

ment, and increase in sphericity with pressure. The results presented here

do not allow us to distinguish if this regularization drives or is driven by the

compression mechanism of diopside. However, Thompson and Downs (2008)

point out that a simple model including isotropic scaling and tetrahedral

rotation reproduce most of this trend, suggesting that the rapid shortening

does not control the compressibility.

4 Discussion and Conclusions

As mentioned above, our simulations result in cell parameters that are too

large and a compressibility that is too high when compared to experiment.

In order to arrive at a more reasonable estimate of the equation of state we

follow Vanderbilt (1998) and Oganov et al. (2001) and apply an empirical

pressure correction to our data. A shift of 4.66 GPa brings the zero pressure

DFT volume into agreement with the ambient conditions data of Levien
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and Prewitt (1981). Following this correction we arrive at an equation of

state with parameters V0 = 439.1 Å3, K0 = 122.0 GPa and K ′
0 = 4.7.

This is in fair agreements with the equation of state of Levien and Prewitt

(1981) (K0 = 113±3 GPa and K ′
0 = 4.7±7) and gives volumes that are

in good agreement with the results of Tribaudino et al. (2000) over the

whole stability field of diopside (Figure 2). This agreement indicates that

the calculations accurately recover the compressibility of the unit cell as a

function cell volume, and this shifted equation of state should be preferred

for geophysical applications based on our calculations.

The shift of the pressure scale also leads to very good agreement be-

tween the calculated internal parameters and experimental ambient pressure

structure determination. In particular, if the results of the calculation at 5

GPa is compared with the structure determined by single crystal neutron-

diffraction at 10 K (Prencipe et al., 2000), many calculated parameters fall

within error of the equivalent experimental parameter. The largest differ-

ences are in the z parameters of the O2 and O1 positions, which differ by

7.6×10−4 and 3.8×10−4 Å (0.004 and 0.002 fractional units), respectively.

The order of the polyhedral compressibilities is the same as that found

by Levien and Prewitt (1981) and Thompson and Downs (2008), with the

tetrahedra being least compressible and the M2 polyhedera is most com-

pressible, but because our data set is collected over a greater pressure range

it makes sense to go beyond a measure of the linear compressibility. This
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shows that the two M sites stiffen at about the same rate with increasing

pressure, but the tetrahdera stiffen much more rapidly.
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Fig. 1 Polyhedral representation of structural elements in diopside. Chains of Si
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in (a) and (b) while the chains of M2 polyhedra are shown in (c) and (d).
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(1981), circles: McCormick et al. (1989), diamonds: Zhang et al. (1997), squares:

Tribaudino et al. (2000)). Both the original and pressure corrected DFT results

are shown, with the corrected results plotting through the experimental data.
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Fig. 4 Bond lengths in the Si tetrahedron as a function of pressure. Closed circles:

Si–O1, open circles: Si–O2, open squares: Si–O3a, closed squares: Si–O3b.
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Table 1 Calculated cell parameters

P a b c β V

0.0 9.910 9.051 5.330 106.51 458.4

1.0 9.876 9.012 5.308 106.24 453.6

2.0 9.842 8.980 5.291 106.06 449.3

3.0 9.810 8.948 5.274 105.89 445.3

4.0 9.781 8.918 5.257 105.74 441.4

5.0 9.754 8.889 5.242 105.61 437.7

6.0 9.728 8.862 5.227 105.49 434.3

7.0 9.704 8.836 5.213 105.39 431.0

8.0 9.681 8.810 5.200 105.30 427.8

9.0 9.660 8.785 5.188 105.22 424.8

10.0 9.639 8.760 5.176 105.15 421.9

11.0 9.620 8.736 5.165 105.09 419.1

12.0 9.602 8.713 5.154 105.04 416.4

13.0 9.584 8.690 5.144 104.98 413.8

14.0 9.567 8.667 5.134 104.94 411.3

15.0 9.550 8.645 5.124 104.90 408.8

16.0 9.535 8.623 5.115 104.86 406.4

17.0 9.519 8.602 5.105 104.82 404.1

18.0 9.504 8.581 5.096 104.79 401.9

19.0 9.490 8.560 5.088 104.75 399.7

20.0 9.476 8.540 5.079 104.72 397.5

21.0 9.463 8.520 5.071 104.70 395.5

22.0 9.450 8.501 5.063 104.67 393.4

23.0 9.437 8.482 5.055 104.64 391.4

24.0 9.424 8.463 5.047 104.62 389.5

25.0 9.412 8.444 5.040 104.60 387.6
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Table 3 The effect of pressure on some measures of structural regularity

P GPa O3O3O3 ∆Si Å υSi (%) ∆Mg Å ΣMg υMg (%) ∆Ca Å ΣCa υCa (%)

0.0 170.02 0.0779 0.4631 0.0605 0.9929 0.5845 0.2628 0.9439 1.3607

1.0 168.57 0.0776 0.4356 0.0572 0.9939 0.5801 0.2403 0.9506 1.3604

2.0 167.62 0.0778 0.4195 0.0543 0.9949 0.5723 0.2306 0.9551 1.3802

3.0 166.76 0.0781 0.4067 0.0519 0.9958 0.5668 0.2223 0.9592 1.4014

4.0 165.93 0.0781 0.3968 0.0499 0.9965 0.5648 0.2146 0.9631 1.4249

5.0 165.21 0.0784 0.3881 0.0480 0.9970 0.5641 0.2079 0.9665 1.4502

6.0 164.58 0.0785 0.3812 0.0464 0.9975 0.5652 0.2020 0.9694 1.4749

7.0 164.04 0.0786 0.3763 0.0450 0.9980 0.5670 0.1967 0.9720 1.4969

8.0 163.55 0.0787 0.3721 0.0436 0.9985 0.5702 0.1920 0.9742 1.5169

9.0 163.14 0.0787 0.3691 0.0424 0.9989 0.5751 0.1879 0.9760 1.5311

10.0 162.78 0.0787 0.3673 0.0413 0.9992 0.5816 0.1841 0.9776 1.5396

11.0 162.45 0.0787 0.3664 0.0403 0.9996 0.5893 0.1806 0.9790 1.5470

12.0 162.16 0.0787 0.3667 0.0393 0.9999 0.5985 0.1774 0.9803 1.5510

13.0 161.89 0.0787 0.3673 0.0384 0.9998 0.6092 0.1744 0.9815 1.5531

14.0 161.66 0.0787 0.3685 0.0375 0.9995 0.6221 0.1715 0.9825 1.5522

15.0 161.43 0.0786 0.3708 0.0368 0.9993 0.6350 0.1688 0.9835 1.5505

16.0 161.23 0.0786 0.3736 0.0360 0.9991 0.6498 0.1663 0.9844 1.5472

17.0 161.04 0.0786 0.3769 0.0353 0.9989 0.6662 0.1638 0.9852 1.5420

18.0 160.88 0.0786 0.3801 0.0346 0.9987 0.6836 0.1615 0.9860 1.5382

19.0 160.72 0.0786 0.3856 0.0340 0.9986 0.7037 0.1592 0.9868 1.5280

20.0 160.55 0.0785 0.3892 0.0334 0.9984 0.7220 0.1571 0.9875 1.5223

21.0 160.40 0.0785 0.3942 0.0328 0.9983 0.7430 0.1551 0.9881 1.5139

22.0 160.29 0.0785 0.4004 0.0322 0.9982 0.7667 0.1531 0.9888 1.5009

23.0 160.13 0.0784 0.4054 0.0317 0.9981 0.7887 0.1512 0.9894 1.4941

24.0 160.01 0.0784 0.4119 0.0312 0.9980 0.8135 0.1493 0.9900 1.4819

25.0 159.89 0.0783 0.4183 0.0307 0.9980 0.8392 0.1475 0.9906 1.4702


