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Abstract

Zinc Oxide (ZnO) exhibits a plethora of physical properties potentially advantageous in

many roles and is why it one of the most studied semiconductor compounds. When doped

or in its intrinsic state ZnO demonstrates a multitude of electronic, optical and magnetic

properties in a large variety of manufacturable morphologies. Thus it is inherently impor-

tant to understand why these properties arise and the impact potentially invasive sample

preparation methods have for both the function and durability of the material and its

devices.

Coherent X-ray Diffraction Imaging (CXDI) is a recently established non-destructive tech-

nique which can probe the whole three dimensional structure of small crystalline materials

and has the potential for sub angstrom strain resolution. The iterative methods employed

to overcome the ‘phase problem’ are described fully.

CXDI studies of wurtzite ZnO crystals in the rod morphology with high aspect ratio are

presented. ZnO rods synthesised via Chemical Vapour Transport Deposition were studied

in post growth state and during in-situ modification via metal evaporation processing and

annealing. Small variations in post growth state were observed, the physical origin of

which remains unidentified. The doping of a ZnO crystal with Iron, Nickel and Cobalt

by thermal evaporation and subsequent annealing was studied. The evolution of diffusing

ions into the crystal lattice from was not observed, decomposition was found to be the

dominant process.

Improvements in experimental technique allowed multiple Bragg reflections from a single
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ZnO crystal to be measured for the first time. Large aspect ratio ZnO rods were used to

probe the coherence properties of the incident beam. The longitudinal coherence function

of the illuminating radiation was mapped using the visibility of the interference pattern

at each bragg reflection and an accurate estimate of the longitudinal coherence length

obtained, ξL = 0.66 ± 0.02µm. The consequences for data analysis are discussed. The

combination of multiple Bragg reflections to realise three dimensional displacement fields

was also approached.
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1 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This chapter introduces Zinc Oxide (ZnO) the principal material studied in this thesis.

An industrial nanomaterial for many decades ZnO has seen wide application in the man-

ufacture of paints, rubber products, pharmaceuticals and sun screen amongst others. Its

versatility is defined by its tunable properties, a wide direct band gap II-VI semicon-

ductor it exhibits both n-type conductivity and when doped p-type conductivity (group

V elements). When doped in a controllable way the electrical properties can be varied

from an insulator through n-type semiconductor to a metal whilst maintaining optical

transparency. Exhibiting both piezoelectric and pyroelectric nature, ZnO has also been

identified when doped as a potential Dilute Magnetic Semiconductor (DMS) for spintronics

applications. ZnO has been fabricated and studied in the bulk, thin film and nanomaterial

morphologies. The literature is vast (several thousand publications per year), a concise

overview of the properties of ZnO, the methods used to manipulate them and examples of

application will follow.
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1.1 Zinc Oxide

ZnO is a unique material and exhibits a plethora of properties applicable in many fields.

A transparent semiconductor with a wide direct band-gap (Eg) of 3.37eV at 300K [175] is

candidate for electronic, optoelectronic and optical applications. At present many opto-

electronics devices have been fabricated using GaN, which exhibits a similar direct band

gap, Eg=3.44eV [142]. ZnO is particularly interesting as it exhibits several advantageous

properties, a larger exciton binding energy 60meV sufficient for ultra violet stimulated

emission at room temperature [108] (28meV GaN [142]), is biodegradable and biocom-

patible1 [219] and significantly cheaper to manufacture than alternatives. The inability

to fabricate p-type ZnO reproducibly has hindered its application to date and resulted in

hybrid ZnO devices where a different p-type material, such as ZnSe or Cu2O, is combined

with n-type ZnO. ZnO is also radiation hard making it a candidate for solar cells and

satellite applications and ideal for characterisation with x-rays as they will not damage

the samples.

1.1.1 Crystal Structure

ZnO can be found with either the rocksalt, wurtzite or cubic zinc-blende crystal structure.

The wurtzite structure is energetically favourable at room temperature. A phase transition

to rocksalt was observed at 9.6GPa, reversing at 2GPa [47, 94] and will not be discussed

further. In both the wurtzite and zinc blende form each anion is surrounded by four cations
1The Materials Safety Data Sheet for Gallium Nitride states: Skin, eye and respiratory ir-

ritant. Skin contact may cause sensitization. Toxicology not fully investigated. http :
//msds.chem.ox.ac.uk/GA/gallium nitride.html
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Figure 1.1: Unit cell of (a) zincblende ZnO (b) wurtzite ZnO

with tetrahedral symmetry. Jaffe et al. [89] accurately calculated the energy of cohesion for

each known phase using the generalised gradient approximation (GGA). Interestingly zinc

blende and wurtzite are very close, -7.679 and -7.692 respectively and could explain the

observation of both structures in the tetrapod morphology due to strains induced during

growth. Tetrahedral coordination is typical of sp3 covalent bonding, however ZnO shows

substantial ionic character responsible for the band gap widening beyond that expected

from covalent bonding [135]. The tetrahedral coordination results in a lack of inversion

symmetry and gives rise to its piezoelectric nature.

The wurtzite structure belongs to the P63mc space group and has a hexagonal unit cell

with lattice parameters, a = b and c, where the ideal ratio c/a =
√

8/3. A good agreement

has been found between the lattice parameters observed experimentally and those calcu-

lated, see Table 1.1. The measured lattice parameters lie in the range, a = 3.2498±0.0003Å

and c = 5.2057 ± 0.0015Å. The zinc blende structure belongs to the F43m space group,
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measured lattice parameters lie in the range, a = 4.42± 0.05Å, see Table 1.1.

Nanoscale synthesis has produced a large variety of morphologies in the wurtzite phase,

see Section 1.1.7. Combinations of both the wurtzite and zinc blende phases have been

identified in the tetrapod morphology [43,206].

Table 1.1: Lattice parameters for wurtzite ZnO both measured (X-ray Diffraction(XRD),
Reflection High Energy Electron Diffraction (RHEED), Transmission Electron Microscopy
(TEM)) and calculated

Wurtzite

a(Å) c(Å) c/a Method

3.2496 5.2042 1.6018 XRD [97]

3.2501 5.2071 1.6021 XRD [94]

3.2498 5.2066 1.6021 Energy Dispersive XRD [47]

3.2497 5.206 1.602 Powder XRD [152]

3.286 5.241 1.595 ab initio [28]

Zinc Blende

a(Å) Method

4.619 ab initio [28]

4.463 RHEED [10]

4.37 XRD [10]

4.47 TEM [10]

1.1.2 Surfaces

ZnO is important for gas sensor applications because point defects induce large changes in

surface conductivity and has become a wide field of research. Defects will be introduced
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in Section 1.1.4, here we will focus on the surface structure of wurtzite ZnO.

Wurtzite ZnO does not possess a center of inversion, hence along the c-axis an inherent

asymmetry results in facets terminated with either Zn, the zinc (001) facet, or O, the

oxygen (001) facet. Their polar nature suggests a surface reconstruction or relaxation to

minimise the net dipole moment. Low Energy Electron Diffraction (LEED) studies confirm

a (1x1) reconstruction [33, 39, 107, 187], thus atomically flat and a contraction of 0.1Å of

the Zn ions on the zinc face [91]. The reason for the lack of surface reconstruction is yet to

be determined. Recent theoretical frameworks have identified stabilisation due to either

a reconstructed triangular defect surface structure 2 or an unreconstructed ZnO surface

terminated with hydroxyl groups by density-functional calculations [99]. Experimental

evidence by Kunat et al. suggests the saturation of dangling bonds by CH3 or H molecules

[101] measured via He atom scattering. The dominant natural growth facet is the (001).

The low-index (100) and (110) facets perpendicular to the c-axis are non polar and atom-

ically flat with equal numbers of cations and anions in the surface plane. Both theoretical

calculation and LEED I-V measurements indicate an ideal termination on the (110) facet

and relaxation of the Zn ions inward by 0.4Å on the (100) facet [82]. The inward move-

ment of the surface cation suggests a tilt of the Zn-O dimer and can be understood in a

covalently bonded semiconductor by a rehybridisation of the cation from sp3 to sp2 mov-

ing it closer to its three anion neighbours. In ionic semiconductors charge transfer effects

dominate and both the anion and cation move closer to the bulk to improve electrostatic

screening and often results in a small tilt of the dimer.
2Triangular regions of Zn and O vacancies create a triangular surface reconstruction.
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Figure 1.2: The band structure of ZnO calculated by Vogel et al. [195] using ab initio
methods, the top and bottom dashed lines represent the measured band gap and the
d-band width respectively

1.1.3 Practical Properties

Knowledge of the band structure of a semiconductor is vital in determining its elec-

tronic and mechanical properties and potential utility in devices. Typically transitions

between electronic levels are determined by x-ray or ultraviolet, absorption or emission

spectroscopy. The most accurate theoretical description of the measured band structure

of ZnO was made by Vogel et al. [195] using ab initio methods, see Figure 1.2.

The electrical conductivity of a semiconductor is defined by its free charge carriers. In

ZnO the free charge carriers are electrons whose negative charge give it the name ‘n-

type’. For application in electronic devices ‘p-type’ ZnO is required where holes (positive)

are the free charge carriers. The conductivity of ZnO is n-type and can be varied by

adding dopants. Increased n-type conductivity has been observed in ZnO when doped

with transition metals, however p-type conductivity remains challenging. Recently, p-
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type conductivity in thin films doped with N, P, and As was demonstrated [113]. Look

et al. [111] provide a comprehensive overview of thin film developments. Xiang et al.

were the first to fabricate p-type ZnO nanomaterials in the nanorod morphology using

phosphorous pentoxide as a dopant source in a chemical vapour deposition method [214].

Later Lu et al. [114] used an atomic force microscope to generate 50-90mV from p-type

(P doped, grown via chemical vapour deposition) ZnO nanowires compared with -5mV to

-10mV from n-type nanowires. A thin film p-n junction fabricated from ZnO (n-type) and

N-doped ZnO (p-type) by Cao et al. did not exhibit electroluminescence [27] and remains

a challenge in the field.

The size of the band gap between valence and conduction states in solids determines many

of their properties. Large band-gap semiconductors can support high electric fields before

breaking down, which means that they can be used for high-power electronic devices.

Another important affect is the temperature dependence of the population of electrons in

the conduction band enabling its use at high temperatures. To date band gap tuning has

been achieved through divalent substitution on the cation site. A reduction in the band

gap has been observed by Makino et al. to 3.0eV by Cd substitution [119] up to 7% in

CdZnO films using Pulsed Laser Deposition growth, Vigil et al. [194] and Ma et al. [117]

confirmed a drop in the band gap of this order. An increase to 3.9eV by Mg substitution

was observed by Ohmoto et al. at 33% Mg content in epitaxial thin films [143], Teng et

al. observed 4.0eV at 36% solubility [178].

Optical properties of semiconductors are determined by both intrinsic and extrinsic effects.

Intrinsic optical transitions take place between electrons in the conduction band and holes
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in the valence band and include excitonic effects due to the Coulomb interaction. Extrinsic

properties are related to defects or dopants, which can create discrete electronic states in

the band gap and influence both optical absorption and emission processes. In ZnO many

optically excitable transitions exist, hence identification of the physical origins of individual

transitions is difficult. A photoluminescence spectra for ZnO nanowires and In-doped ZnO

‘nanobelts’ is shown in Figure 1.3 observed by Fan et al. [56]. ZnO typically produces two

main characteristic bands; a sharp free exciton ultraviolet band (∼380nm) and a broader

green luminescence or deep level emission band (400-700nm). The presence and intensity

of these bands is dependent on the growth parameters, the variation in photoluminescence

is demonstrated in Figure 1.3 between two different morphologies of ZnO. For In doped

‘nanobelts’ a shift in the first band was evident and the second band widened with an

increase in longer wavelength emission.

The lack of inversion symmetry along the c-axis leads to piezoelectric and pyroelectric

behaviour in the wurtzite phase. Piezoelectric materials mechanically deform in the pres-

ence of an applied electric field. This effect was observed by Song et al. [172] using large

aspect ratio ZnO rods of thickness >1µm and later harnessed by Qin et al. [151] to har-

vest electrical power. An overview of the field of nanopiezotronics was provided by Z. L.

Wang [207]. Lee et al. [104] proposed the use of single crystal ZnO nanowires in scanning

probe microscopy, Huang et al. [88] later proved theoretically that ZnO could be used

for atomic force microscopy tips in contact, non-contact and tapping modes of operation.

Pyroelectric materials generate electric charge when heated or cooled and are utilised as

ZnO temperature sensors [86].
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Figure 1.3: Room temperature photoluminescence spectra for ZnO nanowires and
nanobelts (In-doped) grown on a SiO2 layer by Fan et al. [56], multiple bands correspond
to measurements in different regions of the substrate.
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Zinc oxide is often described in the literature as a radiation hard material and is of great

consequence when applied to environments where radiation damage is a factor, i.e solar

cells or space satellite applications. Early work by Cordaro et al. [41] identified that

a ZnO varistor function did not vary up to a dose of 105 Gy 3. The mechanisms for

irradiation damage are under debate [84, 100, 112] and few studies exist to my knowledge

that have probed device operation as a function of dose. Khanna et al. [95] demonstrated

Schottky diodes remained fully functional after radiation exposure equivalent to 100 years

in a low Earth orbit. Tuomisto et al. [182] compared ZnO and GaN, ZnO was found to

be significantly harder due to the increased mobility of ionization induced defects at low

temperatures.

1.1.4 Defects

The properties discussed previously are heavily dependent on the presence of defects or

dopants, control of which allows the tailoring of a variety of properties making semi-

conductors particularly interesting. The presence of point defects in ZnO is well known

however, the individual defects and associated mechanisms are still under debate. ZnO

has a relatively open structure, in a hexagonal close packed lattice Zn atoms occupy half

the tetrahedral sites. All the octahedral sites are empty. Hence there are plenty of sites for

ZnO to accomodate intrinsic defects (Zn interstitials) and extrinsic dopants. It is accepted

that the n-type conductivity is due to the presence of point defects. In order to maintain a

Zn interstitial concentration Tomlins et al. found annealing in the presence of Zn vapour
3The unit of Gray (Gy) describes the absorption of 1 joule of energy per kilogram, the average radiation

dose experienced on the surface of the earth is 3 mGy per year.
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followed by rapid quenching was required [181].

Several studies have attempted to determine the concentration of defects. Kohan et al. [98]

and Sokol et al. [169] found zinc and oxygen vacancies to be the dominant defects using

ab initio methods. Tuomisto et al. [183] found neutral Zn vacancies or Zn vacancy related

defects at a concentration of Vzn = 2x10−16cm3 in undoped ZnO and doped (Mn,As)

ZnO grown via Chemical Vapour Transport (CVT). Oxygen vacancies were also seen

with a concentration of Vo=1017 cm3 and the partial substitution by Mn suppressed their

formation. Contrary to these findings Wang et al. [203] found the presence of Zn vacancies

to exceed O vacancies by an order of magnitude in bulk crystalline samples. Gopel et al.

determined the dominant surface defects to be O vacancies [72]. Janotti and Van de

Walle concluded oxygen vacancies were not responsible for n-type character via ab-initio

calculation [90]. This agreed well with a framework outlined by Van de Walle [185] where

the presence of unintentional hydrogen impurities were predicted responsible for n-type

character.

1.1.5 Diffusion

The steady state diffusion of atoms in one-dimension is described by Fick’s Law

J = −D dc

dx
(1.1)

where J is the flux of atoms (number crossing unit area per unit time), c is the concen-

tration of atoms, and D is the diffusion constant.
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The diffusion constant is temperature (T) dependent according to the Arrhenius relation-

ship

D = D0exp(−EA/kBT ) (1.2)

where EA is the activation energy, the energy barrier which must be crossed to allow an

ion to move. The activation energy can be split into two components; the energy required

to move into a vacant site called the energy barrier against mobility, EM , and a term

corresponding to the probability of a vacant site being available for diffusion, EV , the

energy required for an atom to vacate a site and migrate to the crystal surface. The

diffusion constant is proportional to the concentration of vacant sites hence EA=EM+EV .

The concentration of vacant sites is temperature dependent, at low temperature the vacant

sites are defined by impurity levels and at high temperatures dominated by vacancies

produced thermally. The number of vacant sites n in a lattice with N sites containing

atoms can be expressed simply by minimizing the free energy [50].

n = Nexp(EV /kBT ) (1.3)

The diffusion mechanisms for defects in ZnO are also under debate. Several studies using

Secondary Ion Mass Spectrometry (SIMS) have reached different conclusions. Haneda

et al. [77] working with polycrystals of pure ZnO proposed an interstitial mechanism for

oxygen diffusion. Sabioni et al. [162] determined oxygen diffusion rates in ZnO between

900◦C and 1000◦C and confirmed the interstitial mechanism for oxygen diffusion [161]. On
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the other hand, Tomlins et al. [180] proposed a vacancy mechanism for oxygen diffusion.

For Zn diffusion a vacancy mechanism was determined by Tomlins et al. [181] who built

on theoretical work by Mahan [118] and Binks [21].

1.1.6 Doping

A recent review by Davies et al. [45] regarding the doping of ZnO describes the present

state of the field. Here we focus on the transition metals Fe, Ni and Co due to recent

observations of improved luminescence [11], conductivity [184] and calculation suggesting

room temperature ferromagnetism [48]. Based on the electronegativities of Fe, Ni and Co

being larger than Zn, see Table 1.2, these elements should substitute at the Zn site upon

annealing.

Table 1.2: Electronegativity based on the Pauling Scale for deposition metals [6]

Element Zn Fe Ni Co

Electronegativity [146] 1.65 1.83 1.91 1.81

A variety of methods have been used for fabrication including ion implantation, sol-gel,

pulsed laser deposition and solid state methods. An array of conclusions has been drawn

regarding the solubility of these transition elements into the ZnO lattice. Several thin film

studies show dopant concentrations between 0 and 30 at.%4 [93, 120, 184, 210]. In both

bulk and powder samples concentrations of Fe at 2-7 at.% [16,200] at 500◦C-800◦C beyond

which secondary phases Fe2O3 and Fe3O4 were observed. Similar observations were made
4Atomic percent, number of atoms of one element relative to the total number of elements in that

compound.
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in Co doped ZnO thin films, up to 50 at.% [5, 120], compared with powder samples, up

to 6.5 at.% [16,160] again the onset of diffusion occurred at 500◦C. Dumont studied ZnO

bulk crystals and the diffusion of Co into the surface layers, at 550◦C Co substitution for

Zn atoms was observed [51]. Rout et al. noted an increase in photoconductivity when Co

diffused into the surface [160]. Few studies exist to my knowledge of Ni integration into

the ZnO lattice, in thin films a 3 at.% was observed by Mandal et al. [120] and in bulk

crystalline samples Bates et al. reported 1 at.% [16].

1.1.7 Synthesis

Z. L. Wang provides a comprehensive overview of the growth methods, properties and cor-

responding applications of ZnO nanomaterials [205] along with detailed discussion of the

variation in nanostructures synthesised to date [204]. Synthesis methods include; Chem-

ical Vapour Transport Deposition (CVTD), Metal-Organic Chemical Vapour Deposition

(MOCVD) and solvent based methods which will be introduced in Chapter 3. Focus

will be placed on the CVTD method [136, 137] which can be tuned to produce nanorods,

nanowires, platelets and tetrapods; nanoscale branched structures, demonstrated with

SEM5 in Figure 3.2 and Figure 1.4 highlights some more exotic nanostructures of ZnO

grown by Wang et al. [204].

The morphologies are dependent on several factors; substrate, catalyst, source material,

dopants, oxygen partial pressure and heating rates. Closely matching lattice parameter

substrates such as sapphire [202] and GaN [173] produce epitaxial crystal growth, well
5Carl Zeiss XB1540 ”Cross Beam” focussed-ion-beam microscope at London Centre for Nanotechnology,

specification: http://www.london-nano.com/content/lcnfacilities/crossbeam
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Figure 1.4: Variation in ZnO nanostructures grown by Wang et al. [204]. From left to right,
top to bottom nanobelts, nanohelices, nanosprings, nanorod arrays, nanosaws, nanobows,
nanorings, nanotubes, nanospheres, nanopropellers, nanocages and tetrapods.
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aligned ZnO nanorod arrays have been fabricated on GaAs substrates [103]. The intro-

duction of catalysts or defects affects growth morphology, Au [57,87,140,201,202,216,218]

and Sn [69] are common catalysts and In has been observed to change morphology from

nanowire to ‘nanobelt’6 [55,56]. Careful control of the electrostatic interaction energy and

chemical activity on the polar surfaces can lead to a number of nanostructures including

‘nanosprings’, ‘nanorings’, ‘nanohelices’ and many more [145, 204]. Zn powder in an oxy-

gen atmosphere produce the tetrapod morphology [43] as does CVTD [139]. In essence a

close control over the experimental variables can yield a variety of different morphologies,

the variables will be discussed further in Section 3.1.

The tetrapod structure in Figure 1.5, is of specific interest as it has been proven via

Transmission Electron Microscopy (TEM) [49] to possess both known phases of ZnO,

wurtzite arms and a zinc blende core [139]. The main advantage of using CXDI to in-

vestigate tetrapods is that different structures and crystal orientations produce different

Bragg peaks which can be measured independently. This would allow the independent

measurement of each side of an interface, in this case the Zinc blende core and the four

wurtzite arms, see Figure 1.5A. The experimental sample manipulation procedure prior to

this work was not accurate enough to map several Bragg peaks from a single crystal. If the

orientation of two crystals at a single interface is known and the experimental accuracy

improved the experiment is feasible. Tetrapods have been fabricated into Schottky diodes

by Newton et al. [136,139] using a Focused Ion Beam (FIB) to connect a single tetrapod to

contacts on a substrate, see Figure 1.5C. This fabrication method raises questions about

the damage induced by FIB and the effect it has on the properties of a material so sensitive
6The nanobelt morphology grows along the 100/110 crystal directions as opposed to the traditional 001

growth facet and determined by growth variables.
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to defects.

Figure 1.5: ZnO Tetrapod (A) produced via CVT on Silicon (100) substrate imaged with
Scanning Electron Microscopy (SEM) (B) predicted structure [121] (C) Schottky diode
fabricated by Newton with W and Pt contacts produced via FIB [136]

1.1.8 ZnO Goals

A detailed understanding of the structure of the crystals is required in order to determine

if the doping is uniform. Coherent X-ray Diffraction Imaging (CXDI) will be introduced

in Chapter 2, the technique is sensitive to lattice displacements on the angstrom scale.

First, the crystal synthesis will be tailored to grow nanostructures of ZnO uniform in both

size and morphology suitable for device applications (nanorods, nanowires, tetrapods).

Sample manipulation methods and the CXDI technique will be developed to measure the

samples grown and carry out in situ solid state reaction experiments. The measured

lattice parameters are shown for Fe concentrations in ZnO in Table 1.3. When doped to

the maximum 7 at.% uniformly throughout a 1µm crystal a 1.5nm expansion would be seen

which is well within the resolution of the technique. A solid state reaction method would

be implemented in vacuum in situ with deposition of Fe, Co and Ni layers at 200◦C onto

ZnO nanocrystals sufficient to dope the crystals to their maximum observed solubility.
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Upon step wise annealing the diffusion of the element into the ZnO structure would be

expected and mapped.

Table 1.3: Lattice parameters for Zn1−xFexO synthesised via a sol-gel method with differ-

ent concentrations of Fe estimated by Rietveld refinement from x-ray diffraction patterns,

* corresponds to solid state method Rietveld refinement.

x a0(Å) c0(Å) Reference

0.01 3.2494 5.2031 [4]

0.03 3.2526 5.2066 [4]

0.03 3.252 5.205 [3]

0.04 3.2525 5.2025 [22]

0.05 3.2538 5.2067 [4]

0.07 3.2547 5.2063 [4]

The piezoelectric effect can be intimately studied using CXDI, bringing about a distinct

structural change in the crystal through the application of an electric field. In device

applications where the crystals are fixed to a substrate large internal strains will result

during operation. This topic will not be approached in this thesis but remains a long term

aim of the work.

1.1.9 Device Applications

Nanorods are also of interest for applications other than those previously mentioned

throughout this chapter, a comprehensive overview of their growth, properties and ap-

plications is given by Yi et al. [217], Ozgur [144] and Schmidt-Mende et al. [165]. ZnO is

fabricated over 10 orders of magnitude with high crystalline quality. Highlights of the work
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to date include; the fabrication of a Schottky diode with a single ZnO nanorod by Heo

et al. [83]. Several sensors have been developed including hydrogen [199], ethanol [197],

glucose [209] and O2, NO2 and NH3 [58, 59]. On the nanoscale the total surface area is

large relative to the volume and defects in the surface, such as absorbed gases, have a

stronger influence on electronic properties. Liao et al. [109] demonstrated how the diam-

eter of nanorods affects the properties of a gas sensing device; those rods with smaller

diameters possessed larger compressive stress and increased surface defects, which made

them more sensitive to oxygen adsorption. The first single nanowire ZnO Light Emitting

Diode (LED) was demonstrated by Bao et al. [13] and exhibits broad sub-bandgap emis-

sion at room temperature; an LED consists of a p-n junction; p-type silicon and n-type

ZnO in Baos’ case. The necessity of a dopant for p-type conduction was shown by Xiang

et al. [214] in the synthesis of the first p-type ZnO nanowires. It is expected to pave the

way for pure ZnO LEDs and transistors.

1.2 Summary

The functionality of ZnO has been outlined. The ease at which nanoscale morphologies

are synthesised and its exceptional physical properties make ZnO a prime candidate for

future device applications. The defect chemistry is still debated and extrinsic dopants

have widened the interest in ZnO in recent years.
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Chapter 2

Coherent X-ray Diffraction

2.1 Diffraction

In this Chapter the basic principles of x-ray diffraction will be reviewed and the Coherent

X-ray Diffractive Imaging method introduced. The objective is not to extend the theory

of diffraction but to employ it in an already well documented way. Where necessary quan-

titative discussion will ensue however a formal treatment will be referred to qualitatively

and not derived as it can be found elsewhere.

The word “diffraction” is derived from the Latin dis, meaning “apart” or “asun-
der”, and frangere, “to break”. The term “diffraction of light” signifies a cer-
tain breaking-up which a beam of light undergoes in passing an obstacle, and
also signifies other types of breaking up which are fundamentally related to
the one mentioned.

Charles F. Meyer [127]
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2.1.1 X-ray Diffraction

X-rays are a type of electromagnetic radiation with wavelengths shorter than visible light

and were discovered in 1895 by Wilhelm Conrad Röntgen [159]. Their wavelengths range

from soft x-rays (6-100Å) to hard x-rays (0.1-6Å) and their energies 150-2000eV (electron

volts) and 2-120KeV respectively. High energies mean deeply penetrating radiation capa-

ble of probing the electron density of the material through either absorption or scattering

to determine atomic structure. This has allowed x-rays to be applied to many fields, in-

cluding; crystallography, radiography, astronomy and material science. Specifically, wave-

lengths of the order of atomic spacings in materials crystallographers have studied bulk

and surface structures of a wide range of materials with atomic scale resolution by probing

the electron density.

The experiments we describe utilise hard x-rays with a wavelength of 1.39Å (8.9KeV)

and a bandwidth of 1eV. We employ the exceptional coherence properties and brightness

of x-rays produced by third generation Synchrotron sources to study displacement fields

in crystal structures with sub-angstrom resolution. To introduce these methods we begin

with two assumptions, firstly the incident x-rays are a plane wave and secondly, each x-ray

scatterers elastically and only once, known as the ‘Kinematical’ limit.

Consider two parallel planes of atoms in a crystal lattice. When an incident plane wave

of x-rays is elastically scattered from an electron in a plane a spherical wave results. An

interference pattern between spherical waves generated from x-rays scattered by electrons

in both planes is understood by the Bragg Law [23]:
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Figure 2.1: Bragg Scattering Geometry; the path length difference (2dsinθ) between x-rays
incident on a set of parallel planes can determine the interatomic layer spacing, d, when
a constructive interference pattern is observed in the far field at a detector, see eqn 2.1

nλ = 2dsinθ (2.1)

The Bragg angle 2θ (relative to the incident radiation) describes the experimental geometry

for constructive interference to be observed at a detector between x-rays scattered from

different parallel planes in a crystal. The x-rays incident to the sample are equivalent in

amplitude and phase, and when scattered from different planes, separated by a distance d,

an optical path length difference results (2dsinθ). Thus, constructive interference occurs

when the phases are equal, i.e when the path length difference is an integer number of

wavelengths. Every 2θ angle at which constructive interference occurs is called a Bragg

peak.

Thus far we have assumed the incident x-ray phases are equal, this is not always true

as the bandwidth of the incident x-ray beam and source size play a role. The distance

over which the phases are equivalent defines the spatial coherence of the incident x-ray
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beam, and will be discussed further in Section 2.2.1. If the sample dimensions exceed

the spatial coherence an averaging over the illuminated volume of the sample results

and small scale local structures are averaged out. Whereas when coherently illuminated

an interference pattern results which is sensitive to local structures. Third generation

synchrotron facilities have improved the spatial coherence properties sufficiently to probe

sub-micron sized samples with coherent x-ray radiation.

2.1.2 Scattering from a perfect crystal

A full derivation will not be provided, for comprehensive overviews refer to texts by Warren

[208], Als-Nielsen and McMorrow [7], Coppens [40] or Guinier [76].

A crystal is a 3-dimensional periodic structure and can be built from a unit cell or the

‘basis’ (a description of atoms within the unit cell) found at each point on a 3-dimensional

uniform lattice of points. This describes a convolution operation, originally called the

‘folding’ operation, and is one of the most important concepts in Fourier Theory.

Mathematically, a convolution is defined as the integral over all space of one function f(x)

at a position x′ multiplied by another function g(x), reversed and shifted, at (x−x′). The

convolution, denoted by ⊗ is defined as

(f ⊗ g)(x) =

−∞∫
∞

f(x′)g(x− x′)dx (2.2)

The convolution theorem can now be expressed in two ways; the Fourier Transform (FT)

of the product of the two functions is equal to the convolution of the FTs of the individual



24

functions, or, the FT of the convolution of two functions is equal to the product of the

FTs of the individual functions, written respectively as

F(f · g) = F(f)⊗F(g) ; F(f ⊗ g) = F(f)F(g) (2.3)

Thus for a finite crystal we convolve the lattice, the basis and an envelope function (Sshape).

The envelope function is a binary function which defines the boundaries of the crystal, i.e

the lattice positions where unit cells exist. The 3-dimensional lattice of points is defined

by a set of vectors, Rn,

Rn = xa + yb + zc (2.4)

where x, y, z are integers and a,b, c are the primitive unit cell vectors. The unit cell scat-

tered amplitude is described by the structure factor, F (Q), which is the Fourier Transform

of the electron density inside the unit cell. Q defines the wavevector transfer local to the

Bragg peak1.

F (Q) =
N∑
j=1

fj(Q)eiQ·rj (2.5)

For j atoms inside a unit cell at positions rj with atomic form factor fj(Q), which is the

FT of the electron density of an atom. The corresponding intensity observed (I(Q)) is

derived in Appendix A.5.2.
1Q ≡ kf − ki, where ki and kf are the incident and scattered wavevectors (where λ is the wavelength

of the incident radiation, |ki| = 2π
λ

= |kf | ).
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I(Q) ∝
sin2(N1

Q·a
2 )

sin2(Q·a
2 )

.
sin2(N2

Q·b
2 )

sin2(Q·b
2 )

.
sin2(N3

Q·c
2 )

sin2(Q·c
2 )

(2.6)

where N1, N2 and N3 define a parallelepiped envelope function, the number of unit cells

along a,b and c respectively. For a large crystal Equation 2.6 the sum of phase factors

is small compared to when all of the phases are equal to 2πm, where m is an integer.

Therefore intensity is observed when

Q ·Rn = 2πm (2.7)

To solve this we construct the reciprocal lattice with a set of basis vectors a*,b*, c* which

obey the following equations

a · a∗ = 2πh ; b · b∗ = 2πk ; c · c∗ = 2πl (2.8)

where h, k, l are integers, also known as Miller indices. These are the Laue equations. The

points of the reciprocal lattice are defined by the vectors, G,

G = ha* + kb* + lc* (2.9)

Hence, when the Bragg reflection is met, Q = G, the equations in 2.8 are satisfied, this

is the Laue condition2. The equations in 2.8 are the Laue equations and it can be shown
2This relation is dependent on the structure factor, F (Q), being non zero, these reflections are known
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when simultaneously satisfied define a vector space where

a* = 2π
b× c
v

; b* = 2π
c× a
v

; c* = 2π
a× b
v

(2.10)

where the volume of the primitive unit cell is v = |a · (b × c)|, 3. Returning to the

convolution argument in equation 2.3; the reciprocal lattice is defined by the FT of the

direct space lattice, each point by a vector G, and the FT of the envelope function is copied

to every reciprocal lattice point. The resulting periodic function exhibits local inversion

symmetry at the origin of reciprocal space.

2.1.3 Ewald Sphere

The Ewald sphere is a geometric construction which defines a spherical shell of radius

2π
λ in reciprocal space, or a circle in two dimensions as shown in Figure 2.2, where the

incident wavevector, ki, and scattered wavevector, kf , are related in the kinematic limit

by ki = kf = 2π
λ . At every point on this shell where a reciprocal lattice point resides a

Bragg condition is met, G = Q, and the diffraction pattern corresponding to the envelope

function observed.

as forbidden reflections
3In wurtzite ZnO the basis vectors are not orthogonal a and b at 60◦ and a* and b* at 30◦.
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Figure 2.2: 2D Ewald circle construction, the Bragg condition is satisfied for any point
on the circle which overlays a point on the underlying reciprocal space lattice point,
Q(hk)=G(hk), extends to a sphere in 3D, Q(hkl)=G(hkl)

2.2 Coherent X-ray Diffraction Imaging

CXDI is applicable when a finite crystal is illuminated completely by the coherent portion

of a beam of x-rays; a coherent beam is achieved when all scatterers (electrons) within the

crystal see the source with the same relative phase. In the Kinematical limit scattering

from the whole volume of the nanocrystal will interfere at the detector, therefore the

intensity (I(Q)) surrounding each Bragg peak represents the shape of the electron density

(envelope function) and is given by:

I(q) = |A(q)|2 (2.11)

' |
∫
ρ(r)eiq.r|2 (2.12)
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where ρ(r) is a complex function describing the electron density of the sample at the

point r. If the reciprocal space amplitude and phase could be measured experimentally,

an Inverse Fourier Transform (IFT) could be used to obtain the diffracting electron density

distribution. The diffraction signal is detected as photons, the resulting intensity measure-

ment (square modulus of ρ(r) in equation 2.12) destroys all phase, α = q.r, information in

reciprocal space; the inherent ‘Phase Problem’ of X-ray Crystallography. One solution is

to sufficiently sample a bandwidth limited intensity measurement akin to diffraction from

a finite crystal and solve the phase problem using iterative methods. Iterative methods

use algorithms with constraints built from a priori information of the diffracting object

and converge to find the lost phase information.

If a finite crystal was truly real (i.e a perfect equilibrium lattice), the dependence of the

intensity on the FT of the shape function would produce a locally symmetric diffraction

pattern about each Bragg peak. In reality crystals have defects, which lead to atomic

displacements away from the equilibrium lattice positions. Assuming in the close vicinity

of Bragg peak, q = Q, and the displacements are small the resulting change in shape

function can be described by the phase factor, φ = Q.u(r), where the displacement field,

u(r), describes the relative displacement from an equilibrium lattice. The complex shape

function S′shape = Sshapee
iφ in direct space propagates as asymmetry in the observed

diffraction patterns4. Thus the technique is potentially sensitive to all crystal defects

which result in atomic displacements. The derivative of this displacement can be sought

to describe a component of the strain tensor and rigid body rotation.
4The symmetry of reciprocal space is not broken, the corresponding inverse Bragg peak about the origin

will exhibit the exact opposite asymmetry maintaining the overall symmetry of reciprocal space.



29

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
; τz =

(
∂uy
∂x
− ∂ux

∂y

)
(2.13)

where u represents the displacement field of the objects configuration, the difference be-

tween the objects current configuration and its natural state.

2.2.1 Coherence

For the coherent illumination of a finite crystal the incident x-ray beam must be suffi-

ciently coherent in all of the crystals dimensions. The coherent x-ray volume defines a

3-dimensional region of space, a coherent volume and is dependent on two factors; firstly,

the reliability of the x-ray source to produce a coherent beam, and secondly, the focussing

optics required to get the beam to the sample without distorting the wavefront. Until

recently the brightness (x-ray flux) and coherence properties of the source were the pre-

dominant factors, third generation synchrotron source facilities have provided sufficient

x-ray flux to illuminate extremely small volumes and coherence properties of the order of

the samples measured. The x-ray flux defines the smallest size (∼100nm3) a crystal can

be in order to measure an interference pattern at a Bragg peak and requires the beam to

be focussed. For the experiments we have carried out focussing was not possible, hence

we use larger crystals to obtain sufficient scattered intensity but the coherence properties

begin to limit our capability.

The coherence length of a beam of light is split into two components, the transverse

and longitudinal (temporal) coherence lengths (ξT and ξL respectively). The transverse
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coherence is dependent on the source itself and is split into two components the horizontal

and vertical creating the 3D coherent volume. A synchrotron source consists of incoherent

emitters confined to a space size d. Two points within the sample will see the source with

the same relative phase up to a separation distance ξT ,

ξT =
λD

2d
(2.14)

where D is the distance from the source to the sample. This is demonstrated in Figure 2.3;

two waves (A and B) of equal wavelength and different propagation directions coincide at

the point P. The propagation direction is dependent on the source size, two points at the

extents of the source will have the largest divergence angle and set the limit on ξT . ξT

is the distance traveled along the wavefront A from point P in both directions at which

destructive interference occurs [7, 186].

ξL is dependent on the bandwidth of the monochromator (∆λ
λ ) attributed to the thick-

ness of the monochromator crystal via the Darwin width [7, 208]. It is coupled to the

Optical Path Length Difference (OPLD) of scattering rays through the sample and can be

described by the equation,

ξL =
λ2

2∆λ
(2.15)

This is demonstrated in Figure 2.4; two waves of wavelengths λ and λ + ∆λ propagate

in the same direction from point A and destructively interfere (π out of phase) at point
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B, at a distance ξL. When the OPLD is smaller than ξL the sample is said to be co-

herently illuminated and meets the required conditions for CXDI measurements. It is

important to note the OPLD is coupled to the Bragg angle. For a typical synchrotron

source; ξT−horizontal = 10µm ,ξT−vertical = 50µm > ξL = 0.7µm therefore the longitudinal

coherence length is the limiting factor for successful CXDI measurements. The coherence

lengths are sufficient to investigate micro/nanosized objects with nanometer precision.

λ 

A 

B 

ξT 
d 

R 

Δθ 

P 

Source 

Figure 2.3: ξT described by the interference between two waves propagating from a source
size d at point P, adaptation of figure from [7]

Figure 2.4: Interference between two waves with different wavelengths ∆λ propagating
from the same point A are out of phase at point B a distance ξL from the source, adaptation
of figure from [186]
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Figure 2.5: Scattered x-ray interference patterns observed in the Fraunhofer regime for
(a) two point scatters and (b) all the scatterers inbetween the two points, a slit function,
(c) the data from (b) plotted with a log scale

2.2.2 Degree of Coherence

As CXDI is reliant on the coherence properties of the incident x-ray beam in 3D it is

important to understand how coherent the beam actually is, this cannot be measured

directly but can be estimated from the diffraction patterns. The degree of coherence in

its simplest form is a measure of the normalized correlation between two electromagnetic

fields; zero being completely incoherent, and where the two fields are effectively identical,

equal to one. If in fact they were identical x-rays scattering from two points, the inter-

ference pattern that would result is a cosine function, Figure 2.5(a). The fringe spacing

corresponds to the distance d between the scatterers through λD
d , where D is the distance

from the scatterer to the detector. The degree of coherence between the two scattered

x-rays can be measured directly by the visibility (V); defined as the contrast of the fringe

intensity maxima (Imax) and minima (Imin) of the interference pattern,

V =
Imax − Imin
Imax + Imin

(2.16)

For the coherent illumination of two point scatterers the visibility of the interference
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pattern would be equal to 1 for all fringes, and drop to zero as the two fields are varied to

the state where they are π out of phase.

So far we have considered two point scatterers, the intensity distribution expected is

shown in Figure 2.5. Practically a finite crystal consists of many scatterers. In 1D a finite

crystal is a chain of atoms whose diffracted intensity distribution is similar to the sinc

function, see Figure 2.5(b). The length of the chain can be determined by the interference

maxima spacing, equivalent to the spacing between slits for Youngs double slit experiment.

Therefore if we extend to three dimensions and sample the interference fringes which

correspond to each set of parallel facets in the crystal, the fringe spacing determines the

size of the crystal facet to facet in the corresponding direction. Equation 2.16 is still

valid and in the presence of perfect coherent illumination a visibility of one is expected.

Derivation for both distributions can be found in Appendix A.5.

2.2.3 Synchrotron Radiation

The Advanced Photon Source (APS) Synchrotron facility operation begins with the gen-

eration of electrons by a thermionic emission electron gun (tungsten oxide cathode at

1100◦C). The emitted electrons are then accelerated by a linear accelerator (LINAC) us-

ing microwaves produced by Radio Frequency (RF) cavities, and further accelerated in the

booster ring to 7GeV5. The RF cavities in the LINAC force the electrons to bunch into

pulses, these are used to fill a single ‘bunch’ in the storage ring, the number of bunches is

dependent on the length of a bunch, the size of the ring and the frequency of the RF cav-
5The booster ring is used to economise on both space and equipment as a linear accelerator would be

considerably larger than the synchrotron
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ities. When sufficient current is accumulated in the booster ring the electrons are fed into

the storage ring, here they are guided in a circular orbit actually made up of 40 straight sec-

tions and 40 bending magnets. In the straight sections Insertion Devices (ID) are placed,

they employ an array of magnets to produce an alternating field in the horizontal plane

and force the electrons to oscillate. Upon changes in direction of the electrons radiation

is emitted, as electrons further down the ID are oscillating and progressing down the ID

slower than the radiation emitted amplification of the x-ray beam results. The Undulator

ID simply ensures that the radiation emitted by an electron turning through one period in

the undulator is in phase with the radiation emitted at all other periods, Als-nielsen and

McMorrow [7] treat this comprehensively mathematically. The key point is the radiation

is in phase and quasi-monochromatic (a single wavelength and its harmonics6), therefore

suitable for CXDI experiments

2.2.4 Optics

The optics on a beamline required to maintain a coherence volume large enough to analyse

crystals using CXDI has been realised in the last 10 years [153]. Practically getting the

beam from the source to the sample is experimentally challenging, optical components

must handle heat load, vacuum environment and be stable enough to maintain ξL (the

limiting coherence property). Improvements in the quality of monochromator crystals

have enhanced the longitudinal coherence length set by equation 2.15. Longer longitudinal

coherence lengths can be achieved using crystal reflections with smaller darwin widths but

a smaller x-ray photon flux results. Equally different monochromator crystals could be
6Harmonics are removed from the beam using a mirror.
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used, for example diamond (111)(∆λ
λ =5.95x10−5) [75] provides ξL twice that of Silicon

but cannot be fabricated as flat which distorts the wavefront of the incident beam.

In addition to coherent beams third generation synchrotron sources provide enough inten-

sity to obtain sufficient statistics for CXDI measurements from finite nanocrystals. The

flux is spread across a relatively wide beam (several hundred microns) and for sub micron

crystals leads to the introduction of focussing optics. Common choices include Fresnel

Zone Plates, Kirkpatrick-Baez (KB) mirrors and compound refractive lenses. Their use

is dependent on the size of the focus and intensity required. Robinson et al. [154] discuss

the advantages and disadvantages of each method concluding KB mirrors are the most

suitable for finite nanocrystal CXDI for optimization of both flux and coherence. The

introduction of more optics has a significant impact on the coherence properties of the

incident beam, traditionally in a CXDI beamline as few components are used as possible

to maintain the coherence properties of the incident beam.

2.2.5 Beamline Setup

The synchrotron at the Argonne National Laboratory called the Advanced Photon Source

(APS) was used for our experiments. Beamline 34-ID-C uses a beam splitting mirror

to direct the x-ray beam produced by the undulator onto a silicon (111) double crystal

monochromator. The monochromator was used to select 8.9keV monochromatic x-rays (λ

= 1.39Å) with a bandwidth (1eV) small enough to provide a longitudinal coherence length

(ξL ' 0.7µm) according to equation 2.15. There are two principle modes of operation

defined by the size of the sample in the transverse directions:
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Figure 2.6: Schematic of unfocused mode of beamline operation

Figure 2.7: Schematic of focused mode of beamline operation
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Unfocused setup : the beam is selected using Roller Blade slits, depending on the

crystal density on the sample surface the required area of sample illumination can

be set comfortably to (20-100µm x 20-100µm).

Focused setup : the beam is again selected using Roller Blade slits (100µm x 100µm)

and is focussed using Kirkpatrick-Baez (KB) mirrors to a square approximately

1µm x 1µm, providing a significant increase in intensity compared to the unfocussed

approach, thus is favourable for smaller crystals which require a greater photon flux.

Sample stages move the sample into the beam, illuminating all crystals in the beam foot-

print. The beam footprint on the sample is incident angle dependent; from large angles

to grazing incidence the illuminated area on the sample will increase accordingly. The

footprint is varied to locate and isolate crystals on the substrate; for a sample with a

low crystal density a large footprint illuminates the few crystals that satisfy Braggs law

for a particular crystal orientation. Figure 2.8(a) shows a schematic view of a sample

with multiple randomly oriented crystals which all satisfy the Bragg condition akin to a

traditional powder ring. If the sample is densely populated and multiple diffraction peaks

from different crystals are detected, see Figure 2.8(b), the beam size and footprint can be

decreased until a single crystal in the required orientation is illuminated.

For ZnO rods two orientations are probable, rods stood on end and rods lying on their

sides at random rotations relative to the samples surface plane. By choosing a specific

orientation of the crystal; in this case a rod stood on end, the Roper Scientific direct-

detection Charge-Coupled Device (CCD) detector is placed 1-3m behind the sample and

is moved to the correct Bragg angle for in this case the brightest (101) ZnO reflection.



38

ki 

kf 

Detector Position 

h 

l 

k 

Q 

(a)

ϕ=1o  

ϕ=2o   

ϕ=3o   

ϕ=4o   

ϕ=0o  

(b)

Figure 2.8: The (002) ZnO powder ring (a) reduces to individual intensity distributions
due to low crystal density, (b) for four one degree φ rotations crystals move in and out
of diffraction according to the Bragg condition, intensity measured on a Charge Coupled
Device. Dataset No. 140 (Aug 2009), frames 5,25,45,65,85.
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The sample is translated in the beam until a crystal on the sample happens to have the

right orientation and adjustments to both the sample position and the detector arm to

allow the diffraction pattern to be centred on the detector. The distance to the detector

defines the rate at which the data is sampled, governed by the oversampling rule, see

Section 4.2.2. Through rotation of the sample in the surface plane (θ) rocking curves are

taken through the Bragg peak, reciprocal space is rocked through the stationary detector

and 2-dimensional diffraction patterns, see Figure 2.9, are concatenated to produce a 3-

dimensional dataset, see Figure 2.10. The cut planes in Figure 2.10 highlight the fringes

resulting from coherent illumination of a crystal terminated by parallel facets of a finite

single crystal.
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Figure 2.9: Twenty one 2D diffraction patterns collected in the CCD at consecutive steps
of a rocking scan of a ZnO (101) Bragg peak
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Figure 2.10: Three dimensional render of slices in Figure 2.9 using the MayaVi Data
Visualizer, (a) Side, (b) Top view and Logarithmic scalar cut planes for corresponding
views



42 CHAPTER 3. ZNO CRYSTAL SYNTHESIS

Chapter 3

ZnO crystal synthesis

In this chapter the Chemical Vapour Transport Deposition (CVTD) method employed

for ZnO crystal growth will be introduced and alternative routes to synthesis reviewed.

The processing of ZnO nanomaterials post growth will be discussed to achieve the sample

requirements for successful CXDI measurements. A description of experimental set up for

post growth, in-situ annealing and metal evaporation in high vacuum is provided.

3.1 ZnO synthesis routes to crystal growth

The huge variation in ZnO crystal morphologies available via several different synthesis

methods was identified in Section 1.1.7.

Several ‘control’ parameters were optimised for sample synthesis. For a measurable diffrac-

tive signal from a crystal both high crystalline quality and sufficient diffracting volume

were required. Control over the morphology, aspect ratio, size, orientation, crystal den-
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sity and location ensure a coherent illumination of a nanocrystal. Substrates with closely

matching lattice parameters and catalysts can provide orientation and location control,

however this often results in epitaxy; advantageous for locating diffraction but isolation be-

comes problematic and substrate diffraction can interfere when aligned with the substrate

lattice. The final consideration was the adhesion of measured crystals to substrates, crys-

tals simply deposited on substrates were unstable and prevented measurement by CXDI

hence a solution was sought.

3.1.1 Chemical Vapour Deposition

Chemical Vapour Deposition (CVD) is reported to proceed via the Vapour Liquid Solid

(VLS) mechanism [196]. When applied to ZnO, ZnO vapour reacts on the surface of a

substrate, typically a catalyst is used to control the growth in the form of Gold (Au) [57,

87,140,201,202,216,218] or Tin (Sn) [69] for nanowire/nanorod morphologies and Indium

for the nanobelt morphology [55, 56]. Solidification occurs when the liquid seed layer

is enriched until saturated. A multitude of experimental variables influence the growth

mechanism and subsequently change the dimensions, crystal quality and morphologies

of the grown structures. The thickness of the catalyst layer can determine the nanowire

dimensions [87]. At high temperatures the Au dewets the surface, the thickness determines

the size of coagulated Au and the size of the catalyst determines the size of the seeded

ZnO crystal.

For the large scale fabrication of nanoscale devices the growth needs to be controlled at

desired locations; the nucleation of several different ZnO morphologies has been success-
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fully controlled using substrates with closely matching lattice parameters, such as sapphire

c-plane (Al2O3), GaN and Silicon (111). The next step is to apply lithographic techniques

to control the catalyst location, a consequence is control over the volume of the catalyst

material and therefore its size. This was demonstrated initially over a wide area [74]

with Au catalyst (50-200nm squares) at regular intervals several nanowires were grown at

each catalyst location. Fan et al. [57] implemented a Au nanotube membrane method to

pattern the catalyst and grow individual rod structures from each catalyst location.

3.1.2 Metal-organic chemical vapour deposition

Metal-Organic Chemical Vapour Deposition (MOCVD) is traditionally used in thin film

growth. Desired atoms are combined with complex organic gas molecules. The gas passes

over a hot semiconductor substrate and breaks up, depositing atoms onto the surface,

layer by layer. Capable of almost atomic scale precision and orientation with substrates

has been applied to ZnO in thin film applications for decades, but rarely nanowires. Lee et

al. [105] demonstrated MOCVD of ZnO nanowires on GaAs substrates without catalysts.

The physical properties of the crystals were found to be similar to those in thin films,

suggesting high crystalline quality. The inability to seed growth leads to high crystal

density, this combined with orientation to the substrates was deemed unsuitable.

3.1.3 Hydrothermal growth

Hydrothermal growth methods, also referred to as aqueous solution methods were first

showcased by Andres Verges et al. [8] in 1990. The growth proceeds in liquid at relatively
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low temperatures (<150◦C) and result in homogeneous coverage of substrates over a large

surface area (>1cm2). A wide variety of morphologies are again available, particularly

advantageous for the manufacture of highly aligned arrays of nanowires/nanorods [73,165,

174, 193]. Alignment of wires in close proximity make them unsuitable for study with

CXDI at present, therefore this method was not employed for synthesis and will not be

discussed further.

3.1.4 Electrodeposition

Electrodeposition has also been implemented to grow ZnO columnar structures [29, 30,

32, 110, 124] and thin films [44, 54]. The reaction proceeds by deposition of material onto

an electrode (substrate) from a Zn containing solution and dissolved oxygen in deionized

water. Films grown in this way are being applied to photovoltaic applications. Typical

dimensions of ZnO columns between 100 and 300 nm in diameter and 400 to 900 nm in

height are obtained depending on the electrodeposition parameters [30], at low temperat-

ues (<100◦C). The structures grown with this method are extremely dense and aligned

with their substrate and unsuitable for study with CXDI.

3.1.5 Chemical vapour transport deposition

The CVD process discussed earlier in this chapter, Section 3.1.1, described growth seeded

at the substrate. We employed a variant CVTD method where the growth proceeds in

the gas phase and the grown crystals are deposited on a substrate downstream. The set

up is shown in Figure. 3.1. A mixture of zinc carbonate (ZnCO3 ◦ 2Zn(OH)2 ◦ H2O)
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Figure 3.1: Schematic and photograph of ZnO furnace set up, zoomed photograph of
silicon substrate location and mount with white ZnO deposition
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and graphite powder; weight ratios of (5:1) and (10:1) were placed in a silica boat in

the center of a quartz tube surrounded by a Carbolite1 furnace. Argon carrier gas was

introduced at a flow rate of 500-700 Standard Cubic Centimetres per Minute (sccm) with

oxygen concentration in the range 3%-5%. The furnace was heated to 900◦C, the reaction

proceeds via the carbothermal reduction of zinc carbonate, ZnCO3:

ZnCO3
Heat−−−→ ZnO + CO2 (3.1)

The decomposition begins at low temperature (<100◦C), is considerable between 240◦C

and 320◦C and complete by 400◦C. The zinc hydroxide component breaks down at low

temperature (∼100◦C) producing ZnO and water:

Zn(OH)2
Heat−−−→ ZnO +H2O (3.2)

At higher temperatures there are several energetically favourable reactions2, they include:

C + 1/2O2 −→ CO (3.3)

2ZnO + C −→ 2Zn+ CO2 (3.4)

ZnO + CO −→ ZnOx + CO2 (3.5)

ZnO + C(CO) −→ ZnOx + CO2 (3.6)
1Carbolite Tube Furnace (CTF:12/65/550), http://www.carbolite.com
2For Gibbs free energy calculations, see [46] for eqn. 3.3, [60] for eqns 3.4 and 3.5, and [136] for eqns

3.1 and 3.6.
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Figure 3.2: SEM micrographs of a) hexagonal plate b) tetrapod and c) nanorod morpholo-
gies synthesised previous to this work by Newton [136]; Scale Bar = 1µm

The carbon within the mixture promotes a deoxidation reaction, the resulting sub oxides

of ZnO formed through reactions 3.5 and 3.6 nucleate and oxidise to form nanocrystals.

The growth proceeds in the gas phase or on the walls of the furnace near the source [216].

The crystals are deposited on a substrate positioned downstream, observed as a white layer

of material on a Silicon (111) substrate (150◦C) parallel to the gas flow, see Figure 3.5(a).

The crystals grown are dependent on several variables; temperature, partial pressures of

Zn2+ and O2−, source material, the shape of the source boat and substrates used. A wide

variation in morphologies are made available and crystals can be suitably tuned to each

experiment. The cleaning procedure carried out before each run can be found in Appendix

A.7.

The nanocrystals synthesised by Marcus Newton previous to this project are shown in

Figure 3.2, they include hexagonal plates (200nm thick x 1-2µm), nanorods (0.2µm x

1µm) and tetrapods; multiarmed wurtzite ZnO structures joined at a central zincblende

core, growth parameters can be varied to produce both tapered and uniform hexagonal

arms at higher pressures.
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The growth mechanism is not clear, it is reported to be both vapour-solid [43, 125, 215]

and vapour-liquid-solid [69, 196], this could explain the large variation in parameters as

both are valid. A distinction needs to be made, not between the mechanism but where the

mechanism occurs for this study. The crystals are grown in the gas phase or on the furnace

walls at high temperature 3 and are deposited at a lower temperature downstream, they

therefore do not adhere or align to the substrate in anyway and cannot be grown longer

by increasing the growth time. This has several advantageous implications for the CXDI

measurements.

3.2 CXDI sample preparation

CXDI requires the coherent illumination of an almost perfectly crystalline sample in a

known orientation. In the two modes of set up with a high density of crystals on the

substrate, accentuated when aligned with each other, diffraction patterns from multiple

crystals can interfere with each other thus a lower density was preferable. In theory if

they are coherently illuminated they will interfere and the problem is still resolvable.

However with limiting coherence lengths of the incident radiation it is probable they will

be incoherently illuminated relative to one another and their diffracted intensities will

average out any information we had hoped to gain. With this in mind randomly oriented

crystals are useful, unless the distance between crystals can be guaranteed larger than the

beam footprint.

Misalignment of crystals with the substrate lattice is preferable, some level of epitaxy can
3Post growth, removal of the quartz tube showed heavy deposition of ZnO around the source. Between

synthesis cycles this was removed using Hydrochloric acid, Acetone and Isopropanol cleaning
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Figure 3.3: Temperature profile of the furnace system used to grow ZnO and red triangles
mark locations of samples subsequently characterised with SEM in Figure 3.4

be useful. Crystal Truncation Rods [9, 153] produced by interference between scattered

X-rays from the substrate reside at the same position in reciprocal space as they have the

same structure overlap diffraction from an illuminated crystal on the substrate.

CVTD produces misoriented crystals loose on a substrate. Due to the strong ionising

power of the x-ray beam loose crystals can move when placed in the incident x-ray beam.

Several post growth processing steps were required for successful CXDI measurements, see

Section 3.3.

3.2.1 Synthesis Results

The CVTD method used has been characterised.

There are many variables which determine the morphology and size of crystals grown,
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mentioned in Section 1.1.7. To an extent they all determine the partial pressure of Zn

supersaturate which oxidises in the gas phase to produce crystals. For uniform growth

the amount of supersaturate needs to remain relatively constant for the growth duration,

otherwise a taper was observed. In practice this was very difficult as the source quickly

became depleted. The conditions found to produce the most uniform crystals were 700sccm

oxygen, 45sccm Argon, 1.5grams of 10:1 zinc carbonate to carbon ratio and the substrate

positioned at 150◦C. Examples of the variation in morphology of samples deposited at

different temperatures is shown in Figure 3.4, a close up of one of the crystals is shown in

Figure 3.5 high crystalline quality can be identified from the well defined hexagonal and

end facets and was later confirmed by x-ray diffraction.

The temperature profile of the furnace is shown in Figure 3.3. Four red triangles identify

samples positioned at different temperatures subsequently characterised using SEM. The

rod morphology is deposited at 150◦C (A) with little variation in size and morphology,

upon increasing temperature a larger variation in structure was observed. At 190◦C (B)

few rods are deposited, balls of ZnO (up to 500nm) are observed in lines up to 10µm in

length. At 270◦C (C) nanowires (<100nm in width and up to 60 µm in length) are observed

amongst other morphologies and at 420◦C (D) high yields of ZnO whiskers are observed

(tapered nanowires several microns long and less than 40nm in width). Growth at the

substrate was not observed at any growth temperature, contrary to other findings [216].

The main drawbacks of vapour phase growth is the general lack of control. The material

deposited was found to be heavily dependent on the gas flow dynamics in the tube4,
4It is important to note the furnace system was moved to a new location (Jospehson Laboratory,

London Centre for Nanotechnology) and the strength of the exhaust severely affected the morphology
of the crystals. Maintaining atmospheric pressure with a needle valve favoured the rod morphology and
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additional substrates in the tube caused turbulence and deposition to change at different

temperatures. Newton et al. [139] highlighted this by using baffles to aid mixing of the

supersaturate, producing the tetrapod morphology under the same conditions, in the same

furnace.

To overcome the crystal adhesion problem the obvious solution discussed previously was to

catalyse the growth. Attempts to seed the growth in a furnace operating at atmospheric

pressure using different substrates (Indium Tin Oxide(ITO), sapphire, Si(111),Si(100))

and Au catalysts proved unsuccessul. The majority of the Zn supersaturate had oxidised

prior to arriving at the substrate. In general CVD approaches that seed substrate epitaxial

growth require low pressure (10−3Torr [216]) to ensure the Zn supersaturate gets to the

substrate before nucleating.

3.3 Post Growth Sample Preparation

Several methods were tested to adhere the crystals to the surface without changing their

morphology, they include; (i) evaporate a layer of Titanium (nm) onto the crystals; (ii)

fabricate on substrates with matching lattice parameters e.g Si (111) and sapphire c-plane,

(iii) previously Liang et al. [126] had used glues and paints, these proved to be unstable

as they did not fully crystallise; (iv) grow the oxide layer on the substrate to encase the

base of the crystals.

tuning of the variables allowed rods of dimensions in the range 0.2-2µm in diameter x 2-5µm in length to
be grown. These wires did not grow epitaxially and were easily broken by the electron beam in the SEM.
The inability to adhere the smaller morphologies to the substrate prevented measurement by CXDI in this
case.
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3.3.1 Silicon dioxide growth

Growing the oxide layer post synthesis proved the most successful method for adhering

samples to the substrate, combined with improvements in the stability of the beamline

allowed individual crystals to be analysed for several days. As the oxide layer was grown

the substrates colour changes (to blue for an additional 80nm of oxide layer). Gradients

in the oxide layer were avoided by increasing the oxygen flow rate and placing the sample

in the hottest region of the furnace where the temperature gradient across the sample was

the lowest (effectively zero) ±8cm about the center of the furnace, see Figure 3.3. It is

important to note an interaction between the crystals and the oxide layer was expected

and was observed in Figure 3.5 (b) as a lighter halo region around each crystal on the

substrate. Energy Dispersive x-ray Spectroscopy (EDS) confirmed a gradient of Zinc was

present here. Further evidence is shown in the side on view, Figure 3.5 (c), an undercut

at the base of the crystals confirmed a breakdown of the facets at the contact point with

the substrate, an increase in relative SiO2 growth in this region is also clear.

3.4 Energy Dispersive x-ray Spectroscopy of ZnO post oxide

growth

A 5keV electron beam excites an electron from the inner shell of an atom, an electron from

an outer shells decays into the hole producing an x-ray of energy defined by the energy

difference between the two states. An elemental analysis results, the method is called

Energy Dispersive x-ray Spectroscopy (EDS). A ZnO crystal with a grown thermal oxide
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Figure 3.5: (a) Photograph of 3 (10x10mm) silicon substrates post CVTD growth, white
deposition lines are evident due to system gas flow dynamics, and SEM micrographs of
(b) top view and (c) side view of multiple nanorods on a Si(111) substrate with a post
synthesis oxide layer growth. Note in (b) a halo is evident around each crystal , Energy
Dispersive x-ray Spectroscopy(EDS) confirmed a gradient of Zinc was present. In (c) an
undercut at the base of the crystals confirmed a breakdown of the facets during post
growth oxidation, an increase in relative SiO2 growth in this region is clear
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layer was characterised via EDS and SEM simultaneously. Starting where the ZnO crystal

was known to be several measurements were made at regular intervals through and beyond

the observed ‘halo’ of roughness surrounding the crystal. Figure 3.6D shows the weight

percentage of Zn(L edge) drops dramatically at the edge of the crystal and the Si(K edge)

increases in contrast as expected. At approximately 600nm from the crystals edge 20% Zn

is still present a shallow gradient is observed until the edge of the observed ‘halo’, beyond

the halo a negligible amount of Zn (<1Wt.%) was observed. Considerable diffusion of Zn

into the substrate, an accurate quantification was difficult. Figure 3.6B shows the imprint

left by the electron beam on the sample, the area sampled was considerably larger than

expected due to the beam size but less than 300nm in diameter and sufficient to rule out

tails of the electron beam exciting the end of the ZnO rod in all measurements.5

Initially experiments were carried out in the focussed mode of operation and required

small crystals. Further experiments incorporated an in-situ approach which could only

operate in unfocussed mode, it was necessary to tailor the rods to larger sizes to get enough

intensity from the samples to make successful CXDI measurements.

3.4.1 Micro-manipulation

The vast number of crystals present on a substrate meant it was virtually impossible to

find the crystal measured with CXDI with alternate imaging techniques such as SEM.

Novel methods were needed to fiducialise the samples to achieve this and extend the

CXDI technique so that multiple Bragg peaks could be measured from the same crystal.
5The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research

at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under
Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.
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Figure 3.6: A ZnO crystal (A) SEM post thermal oxide growth, (B) a zoomed SEM image
of distortion in the crystal post EDS, (D) EDS Wt% for elements present at intermediate
positions along the pink line identified in (D).
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A Silicon (001) wafer was cut in 10x10mm squares and a cross scored through the centre

of each die. An individual ZnO rod was placed in a marked corner quadrant as close to the

centre as possible using a micromanipulator 6; electrostatic forces attract the chosen rod

to the manipulation probe, contact with the surface being sufficient to deposit the rod.

It is then possible to identify the rod easily using SEM with the larger scored structure

providing a point of reference, see Figure 3.7, and utilise the roughness of the silicon

to guarantee illumination of the crystal. The additional information provided by SEM

allowed an accurate estimate of the orientation of the crystal on the substrate. A search

was then embarked upon to locate the specular reflection in this case ZnO (100), once

found the position is logged and a second search initiated for a second reflection. Upon

the realisation of a second reflection a full orientation matrix is achieved and further

reflections are easily found.

Multiple Bragg reflections could be independently measured for a single crystal. This

provided two new realms of contemplation, the first, the potential for 3 dimensional dis-

placement fields of single nanocrystals and, the second, a direct test of the reliability of

phase retrieval algorithms to find the correct solution (discussed further in Section 4.2.4).

Independent reconstructions should show similar features as they all represent different

components of the same three dimensional displacement field.
6A-Zoom-2 light microscope combined with two Narishige MMO-202ND Three-axis Hanging Joystick

Oil Hydraulic Micromanipulators, London Centre for Nanotechnology Cleanroom



59

  CVTD ZnO Crystals           Micromanipulate & Deposit           Thermal Oxide Growth 

 Morphology & Size Control         Isolate in known location               Adhere to substrate 

Figure 3.7: Micro-manipulation procedure: CVTD produces thousands of loose crystals,
a single crystal is removed and positioned next to a scored cross hair on a bare Silicon
substrate, finally, the oxide layer is grown in order to adhere the crystal to the substrate.

3.5 Confocal Microscope

The method outlined in the previous section has been optimised using a confocal mi-

croscope. Integrating this into the beamline setup to reside above the sample as it is

illuminated with x-rays. Alignment of the x-ray beam with the focal spot of the confocal

microscope allows any crystal to be oriented in either the unfocussed or focussed modes

of CXDI operation. Multiple Bragg reflections can therefore be measured from much

smaller crystals with minimal effort. Realised close to the end of this project the potential

applications for the technique are discussed in Section 8.2.1.

3.5.1 In-situ Coherent X-ray Diffraction Experiments

Vacuum Chamber Setup

The unfocused setup discussed previously in Section 2.2.5 can be implemented in-situ;

both for annealing and metal deposition evaporation experiments. The samples were
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Figure 3.8: Photographs of the confocal microscope at the APS, beamline 34-ID-C, posi-
tioned above the goniometer provides live observation of the illuminated sample and allows
alignment on user defined crystals

prepared on diced Silicon substrates (10x10mm) which were clamped to a ceramic heater,

capable of 1000◦C with tantalum clips, Figure 3.9 (b). A thermocouple was spot welded

to one of the clamps for temperature calibration. The sample mount was inserted into

the base of the vacuum chamber, Figure 3.9 (a), and the diffractometer moved to provide

vertical (z), rotation (θ) and tilt (φ) translation when sealed into the vacuum chamber

and fastened to the goniometer. The metal evaporator was mounted through an access

port and loaded with Ni, Fe and Co sources. The sample was raised and aligned in the

x-ray beam, diffraction from crystals on the sample exit the chamber through the large

beryllium window shown in Figure 3.9 (b) and were recorded using the CCD detector.

A crystal quartz monitor could not be mounted into the chamber, deposited layers were

estimated using Dektak7 and SEM observations of the sample cross section.
7A stylus was placed in contact with, and then dragged along the surface of the substrate. The vertical

deflection measures the change in step height and can map the profile in up to three dimensions. Veeco
Dektak 8 profiler, London Centre for Nanotechnology Cleanroom Facilities, 1nm minimum achievable step
height.
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Figure 3.9: Schematic and corresponding photograph of (a) vacuum chamber set up and
corresponding (b) sample mount for in-situ annealing and metal evaporation experiments
at the APS, Beamline 34-ID-C
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Evaporation Procedure

Before each experiment the evaporator was serviced and sources materials checked to

prevent shorting. The evaporator was mounted, the vacuum chamber sample mounting

procedure followed and when the chamber pressure was ≤1x10−8mbar or lower evaporation

could commence. The evaporator was water cooled during and for 15 minutes prior to the

evaporation. The procedure identified in the User Manual8 was followed, the guides for

power to deposition rate proved inaccurate hence the Dektak and SEM methods discussed

previously were used to estimate deposition.

The evaporation angle was 60◦ to the horizontal, hence for a rod stood on end would see

deposition on the top facet and half of the a-b plane facets (3 of 6 facets). Unlocking

the sample rotation circle on the diffractometer allowed a rotation through approximately

180 degrees ensuring deposition on all six a-b plane facets, consequently the top facet

deposition layer was approximately twice as thick.

Evaporation Goals

The aim was to evaporate several different transition metals on to ZnO nanocrystals. Using

transition metals with known solubility in ZnO anneal and observe the solid state diffusion

of the deposited metal into the crystal structure using CXDI in-situ. The diffusion will

result in a lattice parameter expansion in the deposition region, estimated in Section 1.1.6

to be resolvable with CXDI.

Assuming a uniform evaporation layer, a crystal of diameter 1µm and length 2µm, typical
8OXFORD APPLIED RESEARCH, Mini e-Beam Evaporator EGN4, http://www.oaresearch.co.uk
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size and aspect ratio for those measurements made. The total surface area upon which a

layer is deposited is 9.464µm2 for the asymmetric deposition (top facet and 3 a-b plane

facets) and 18.928µm2 for the symmetric deposition(top facet double thickness and 6 a-b

plane facets). The volume of the crystal is 6.928µm3 hence assuming maximum solubilities

of Fe, Ni and Co described in Section 1.1.6, Table 3.1 demonstrates the required deposition

thickness for each metal in both evaporation cases.

Table 3.1: Estimated deposited film thickness required to achieve maximum doping in
ZnO with Fe, Ni and Co for both the symmetric and asymmetric deposition cases.

Deposition Film Thickness (nm)

Asymmetric Case Symmetric Case

Fe 13.7 6.8

Ni 2.2 1.1

Co 29.2 14.6

3.5.2 Summary

A detailed description of the employed CVTD synthesis method and a review of alternative

synthesis routes was provided. The variation in morphology as a function of temperature

was demonstrated and a level on control was achieved, the parameters outlined for a high

yield of ZnO nanorods (700sccm oxygen, 45sccm Argon, 1.5grams of 10:1 zinc carbonate to

carbon ratio and the substrate positioned at 150◦C). A thermal oxide layer was grown to

adhere crystals to the substrates, EDS identified a gradient of Zn in the substrates due to

diffusion. The high vacuum set up used for solid state diffusion experiments, evaporation

procedure and required deposition thicknesses defined.
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The micromanipulation method used to isolate and locate a individual ZnO crystals for

combination with alternate characterisation methods was described. Subsequent advances

in beamline set up that have led to routine operation in this mode of operation were

discussed
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Chapter 4

Phase Retrieval

4.1 Introduction

The phase retrieval process tackles a typical inverse problem, given a measurement iden-

tify what is responsible for it. In this case, given the measured intensity I = |F (q)|2

from a crystal of density, f(r), find the phases of complex scattered amplitude F (q) lost

in the measurement so f(r) can be found simply by IFT. This is an example of a gen-

eral phase problem encountered in many fields including microscopy, astronomy, protein

crystallography and optics. In crystallographic problems Millane was the first to note

that crystallographic problems were analagous to imaging problems [132]. A series of

constraints were developed to overcome ambiguities Crowther [42] proposed an efficient

computational approach to solve the problem of internal non-crystallographic symmetry

identified by Rossman and Blow [192]. Solvent Flattening [198] set the region outside of

the object to a constant value and atomicity confined the electrons to a small volume close
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to the core of the atom.

Alternate methods have been studied, Maximum Entropy Methods (MEMs) employ Bayesian

statistics to solve structures [24] and are utilised in many fields including; in x-ray crystal-

lography, astronomy, medical tomography and electron holography amongst others [25,71].

MEMs isolate the global minimum and ensure the uniqueness of the solution. Baikova [12]

demonstrated a MEM method applied to the phase retrieval problem in two dimensions

and concluded upon increasing complexity that image reconstruction ran into the thou-

sands of iterations. In order to improve the efficiency of the method the MEM was used to

seed alternate iterative methods that will be discussed later in this chapter. The inability

of the applied algorithm to reconstruct relatively simple 2D structures does not bode well

for the 3D problems we encounter. Direct phase retrieval via x-ray holography using a

known reference wave has also been employed [67].

Here, we limit ourselves to the imaging of finite sized non periodic objects, a method

first approached in 1997 by Miao et al. [128] where vast progress has been made since.

The first example of coherent x-ray diffraction imaging was a one 1D study of Silicon

surfaces [155,189] and later Cu3Au [188]. The first demonstration in 2D was made by Miao

et al. [129] with a non-crystalline test object made up of an array of gold (Au) nanocrystals

at 75nm resolution. Vartanyants and Robinson [156,188] identified the application of the

method to map strain fields in finite crystalline samples. Vartanyants et al. [190] predicted

the partial coherence effects associated with measurements of this nature and Robinson

et al. [157] used CXDI around a 111 Bragg peak to recover the shape of a single Au

nanocrystal and confirmed the coherence effects predicted. This was soon followed by
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the successful recovery of a pseudo 3D test object [131] and a 3D Au nanocrystal by

Williams et al. [157, 211, 212] at 50nm resolution. Since then a large number of test

objects and samples have been successfully recovered from both x-ray [1, 15, 79, 92, 148]

and electron [68, 220] diffraction data. Those most relevant to CXDI of nanocrystals in

the Bragg geometry are detailed. Favre-Nicolin et al. [62] reconstructed the shape of a

single Silicon (100nm diameter) nanowire with 15nm resolution and discussed the effects

of the beam interacting with the sample, the observation of wires ’breaking’ whilst in

the beam implies radiation damage is a serious limitation. Chamard et al. [31] identified,

via simulation, the reciprocal space features exhibited by nanowires with stacking faults.

Minkevich et al. [134] studied arrays of silicon lines and concluded, by inspection with

finite element models, the origins of reciprocal space features attributed to large internal

strains.

In the transmission geometry reconstruction of individual Au nanocrystals (sub 100nm)

has been achieved by Schroer et al. [166] at 5nm resolution and Ag nanocubes (∼100nm)

at 3nm resolution by Takahashi et al. [176]. At present obtaining sufficient intensity

at high spatial frequencies limits the resolution and is dependent on the photon flux

delivered to the scattering volume. Bismuth (Bi) buried in Silicon was studied by Song et

al. [170], observation of the difference between reconstructions above and below the Bi M5

absorption edge. The first example of in-situ CXDI in the forward scattering geometry

was demonstrated by Takahashi et al. [177], although potential extensions to the phasing

algorithms were not discussed. We will demonstrate measurements of this nature for CXDI

in the Bragg geometry and discuss the implications for the phasing operation, see Chapter

6.
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Alternative applications of coherent diffraction methods include; Biological imaging, Shapiro

et al. [168] used soft x-ray diffraction microscopy to image yeast cells to 30nm resolution.

Nishino et al. imaged a dried human chromosome [141] and Song et al. imaged an un-

stained virus [171]. Direct Holographic Inversion of a magnetised film [52] overcomes the

central problem of phase retrieval by using a nanoscale pinhole reference aperture1 close

to the sample which phases the interference pattern, He et al. [80] have also demonstrated

this method. In these cases iterative algorithms can be used to further enhance the spatial

resolution of the image.

So far, only the recovery of finite objects has been discussed, it is possible to measure

extended objects using a combination of CXDI and microscopy methods called ‘ptychog-

raphy’ [61, 158]. The basis for this method is measuring multiple diffraction patterns

from overlapping regions on a sample, the subsequent overlap provides a constraint strong

enough to reconstruct the illuminated region of the sample. Here the successful recon-

struction of a Zone Plate was demonstrated by Thibault et al. [179]

The CXDI technique is also a strong candidate for future X-ray Free-Electron Lasers

(XFELs), high intensity coherent pulses of femtosecond duration allow single shot imaging,

see Appendix A.6.

4.2 Iterative Approach to the Phase Problem

An iterative mathematical approach is employed to solve our ‘Phase problem’ and gives

rise to its name ‘lensless imaging’. Moving from direct space to reciprocal space and back
1The size of the reference aperture/source defines the resolution.
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again, a priori information about the crystal is used to constrain each iteration until a

set of amplitudes and phases are found which are consistent with the measured intensity

around a Bragg peak. In this chapter the methods used to solve the phase problem will

be introduced and a critical analysis of the phasing method employed made in Chapter 5.

The successful retrieval of phase for a measured diffraction pattern is dependent on over-

coming several experimental and analytical hurdles; specifically sampling the diffraction

pattern sufficiently to retrieve all the information in the signal and the broader problem

of finding unique solutions and identifying ambiguous solutions (enantiomorphs).

4.2.1 Equation Counting

A discretely sampled continuous diffraction pattern represent scattering from a direct

space function f(x, y, z) which when complex has 2N1N2N3 unknowns, where x, y, z are

discrete coordinates and N1, N2, N3 the extents of the coordinate space in pixel dimensions.

To solve for these unknowns a matching number of known equations are required which

corresponds to the number of sampled points in reciprocal space. The modulus of inverse

Discrete Fourier Transform (DFT) is computed as

|F (qx, qy, qz)| = |
∑
x,y,z

f(x, y, z)exp(
2πi
N

(qxx, qyy, qzz))| (4.1)

where qx, qy, qz define the corresponding coordinates in reciprocal space and yields a total

of N1N2N3 equations. Hence to solve the problem we need to sample reciprocal space by

a factor of t ≥ 2 to ensure there are ≥ 2N1N2N3 equations.
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4.2.2 Oversampling

The ability of the phase retrieval method to find a solution depends on the sampling ratio;

the rate at which the intensity is sampled. A signal or function is bandwidth limited if it

contains no energy at frequencies higher than a defined bandwidth. Hence, it is constrained

in terms of how rapidly it changes in time and consequently how much detail it can convey

inbetween discrete instances of time. The sampling theorem [167] states that uniformly

spaced discrete samples are a complete representation of the signal if this bandwidth is

less than half the sampling rate. For example, a signal with a maximum frequency fmax

needs to be sampled at a frequency of at least 2fmax, the Nyquist critical frequency, to

be resolved. In the case of x-ray diffraction measurements Sayre [163] observed that if

the square modulus of the signal was measured, the intensity from equation 2.12, the

sampling rate required is oversampled by a factor of two, i.e (4fmax). The oversampling

ratio is defined in direct space in each dimension as

σ =
Array Size

Crystal Size
(4.2)

With this in mind, all data is measured with an oversampling ratio of approximately 3 to

ensure the data can be solved mathematically and corresponds to 3 pixels per fringe.

It is important to note the oversampling requirement is controversial in 3-dimensional

problems; Miao et al. [130] suggest the limit does not apply to each dimension individually

but to the entire measured volume, hence the object fills a volume half the volume of the

array. Millane suggests [132] σ=2 in each dimensions and the corresponding support
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1/23(1/8th) the total volume measured.

4.2.3 Aliasing

The phenomenon of ’Aliasing’ arises when discretely sampling a continuous function that

is not bandwidth limited to less than the Nyquist critical frequency. In this case all of the

power spectral density that lies outside of the frequency range (-fc<f<fc) is spuriously

moved into that range and would be expected in the Miao case. There are two ways to

overcome Aliasing; i) sample at a sufficient rate to obtain two points per period of the

highest frequency present, ii) identify the natural bandwidth of the signal or else enforce

a known limit by analog filtering of the continuous signal before it is sampled.

In our case by padding the diffracted intensity grid with zeroes, higher frequencies which

would overlap between unit cells are given room to be reconstructed and any overlap

significantly reduced.2

4.2.4 Uniqueness

It was Bruck & Sodin [26] who first identified uniqueness in multiple dimensional phase

retrieval problems and later discussed fully by Bates [17]. The constraints imposed must

be sufficiently tight to ensure there is no function g(r) other than f(r) which satisfies

|G(q)|2 = I = |F (q)|2, where F{g(r)} = G(q), i.e the solution f(r) is unique. The discrete

nature of the measurement leads to ambiguous solutions. A problem with N knowns
2High frequency amplitudes tend to overlap when two parallel facets lie parallel to the sides of the

sampled grid. A rotation of the crystal away from this condition will reduce overlap and is fulfilled by
interpolating the measured intensities onto a rotated grid
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(amplitudes) and N unknowns (phases) potentially has many solutions, the application of

a priori knowledge provides sufficient constraints for the algorithms to identify the correct

solution. This is not always satisfied. One can envisage a solution space whereby once an

algorithm finds a local minima, where some of the constraints are met but others are not.

The solution remains there as the changes its constraints impose upon it are insufficient

to find an alternate solution and this is the definition of ‘stagnation’. The global minima

is defined as the actual solution where all constraints are met and can never be achieved

in the presence of noise. At present distinguishing between local minima and the global

minimum is difficult and depends on the phase retrieval algorithms discussed in Section

4.3.

Barakat and Newsam [14] identified the uniqueness of the solution is not guaranteed if

the measured intensity is factorisable. Although prevalent in one dimensional problems,

Barakat and Newsam concluded multiple non-equivalent solutions in phase retrieval prob-

lems in more than one dimension are rare. They exhibit only when the convolution [66]

of two or more non centrosymmetric intensity distributions is equivalent3. Thus we would

expect to find a unique solution, however, limited prior knowledge and the presence of

noise can increase the likelihood of multiple solutions and can exhibit as stagnation in the

algorithm operation.

Once overcome the problem of multiple ambiguous solutions of a direct space function

(f(r)) remains, whereby rather than finding a single solution, a set of direct space solutions

are obtained where the Fourier Moduli are identical. The equivalent cases include; f(r+r0)
3Two direct space functions g(r) and h(r) when convolved produce the measured intensity,

|G(q)H(q)|2 = |F (q)|2.
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a shift in the position of the diffracting object, f*(-r) the complex conjugate of the electron

density (enantiomorphs) and eiφf(r) a phase factor applicable to the entire function.

There are several solutions presented in the literature for overcoming the uniqueness prob-

lem and the existence of ambiguities. Random starts provide an insight into the repro-

ducibility of the reconstructions and identify uniqueness [35,168] through the identification

of ambiguous solutions. The error between the equivalent solutions provide a measure of

the resolution of the function in the form of a Phase Retrieval Transfer Function (PRTF).

PRTF =
|〈Acalceiα〉|2√

Imeas
(4.3)

where Acalc are the calculated reciprocal space amplitudes and α their corresponding

phases. Solutions must be averaged correctly by accounting for ambiguous solutions to

identify which spatial frequencies are reconstructed consistently.

4.3 Phase Retrieval Algorithms

The algorithms are introduced using a theoretical language described by Levi and Stark

[106] each iteration is described as a projection in a Hilbert space (H). Defining con-

straints in both direct space and reciprocal space as sets, the algorithms proceed to find

solutions that intersect these sets by projecting the current best estimate onto each set and

measuring the distance between them with an error metric. A solution has been achieved

when it belongs to all sets simultaneously. For example, a solution set which describes all
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Figure 4.1: Iteration scheme for basic algorithm

objects that are constrained within a given volume in direct space (finite crystal approx-

imation) and the modulus set, all possible objects with a given diffraction pattern. We

define the N point discrete object ρn(r) as a N dimensional vector fn(r) in H. The object

can be described by a linear transformation in any n-dimensional orthogonal bases. In

our case a Fourier Transform describes the transformation between bases where constraint

sets are implemented. Parseval’s theorem states the distance between two points in an

n-dimensional space is independent of the Fourier transformation of the bases.

We define a projector P as an operator that takes to the closest point of a set from

the current point . A repetition of the same projection is equal to one projection alone

(P2 = P); its eigenvalues are therefore λ = 0, 1. Figure 4.1 defines the basic iteration

scheme and the projections employed in both direct space (PDS) and reciprocal space

(P̃RS).

The basic algorithm in Figure 4.1 is therefore formulated by two projections.
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Direct Space Projection:

PDSf ′n = fn+1

Reciprocal Space Projection:

PRSfn = F P̃RSFn F−1 = f ′n (4.4)

The (n+ 1)th iterate is therefore described as,

fn+1 = PRSPDSfn

The reflection projection applies an additional second repetition projection, effectively

reflecting it about a constraint set and is defined,

R = I + 2[P− I] = 2P− I (4.5)

4.3.1 Reciprocal Space Projections

The measured intensity, the common reciprocal space constraint sees the calculated am-

plitudes replaced by the measured amplitudes.

F ′n =
Fn
|Fn|
|
√
Imeas|

The appreciation of a threshold variable where this constraint is applied for all those pixels



76

registering x scattered photons significantly improved the ability of the algorithms to avoid

stagnation caused by fitting the noise in the measured amplitudes.

The threshold provides a lower bound, little has been tested regarding the associated error

on the measured intensities. The statistical error (
√
no.ofphotons [116]) for each pixel can

be applied to relax the modulus constraint in the following form.

fn+1(r) = F−1



Fn(r)
|Fn(r)|+ε(

√
I0 + σ√I0) if Fn >

[√
I0 + σ√I0

]
Fn(r)
|Fn(r)|+ε(

√
I0 − σ√I0) if Fn <

[√
I0 − σ√I0

]
Fn otherwise

(4.6)

where I0 is the measured intensity, σ√I0 the error on the measured amplitudes and ε a

small constant. A detailed analysis of this constraint has not been completed but the

potential implications are discussed later in Section 5.3.

4.3.2 Direct Space Projections

A large variety of direct space projections have been formulated based on a priori knowl-

edge of the crystal. The algorithms developed to date built on work by Gerchberg and

Saxton [70] in electron microscopy. Fienup developed an x-ray compatible algorithm called

Error Reduction (ER) [63] and later a Hybrid-Input-Output algorithm (HIO) [64] which

has proved very successful. Extensions and variations of these methods will be introduced.
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4.3.3 Gerchberg-Saxton Algorithm

The motivation of Gerchberg and Saxton (GS) was to find a method whereby the phase

of a wavefunction may be recovered from simultaneous measurements in the image and

diffraction planes [70]. It was proposed a similar method could be used in x-ray crystal-

lography, however the technical difficulties involved in making an x-ray measurement in

the image plane limited its application to electron microscopy.

In the GS algorithm there are two known constraints: (i) magnitude of the amplitudes in

the image plane, (ii) magnitude of the amplitudes in the diffraction plane.

The algorithm operation is represented in the flow diagram in Figure 4.2, the algorithm

iterates between direct and reciprocal space using the amplitudes in each space as the

constraint for estimating the unknown phases from a random starting position. The

feedback loop is instigated by a measure of the quality of the result and raises the question

how does one test this?

The simple observation of the FFT of the result compared to the experimental pro-

vides a qualitative measure. Quantitatively an error metric E2
nmse is defined as the nor-

malised mean squared difference between the reconstructed (Acalc) and measured ampli-

tudes (Ameas) in reciprocal space [66].

E2
nmse =

∑
|Acalc|2 − |Ameas|2∑

|Ameas|2
(4.7)

Hence when the direct space reconstructed amplitudes match the experimental amplitudes

E2
nmse = 0 the problem is solved.
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Figure 4.2: Flowchart of the Gerchberg Saxton(GS) algorithm operation
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4.3.4 Error-Reduction (ER) Algorithm

Fienup suggested an extension to the GS algorithm in 1978 [63] whereby the intensity

measurement is only made in reciprocal space. He proposed to use real-space constraints

in place of the real-space intensity measurement. The most common constraints being:

1. Positivity - The real-space density should not be negative, which in the case of a

perfect single crystal is physically expected.

fn+1(r) = PS+fn(r)


Re{fn(r)} if r ∈ S & if Re{fn(r)} > 0

0 otherwise

(4.8)

2. Finite support - The real-space density occupies a confined region within the volume

of real-space measured by the diffraction data.

fn+1(r) = PSfn(r) =


fn(r) if r ∈ S

0 if r /∈ S

(4.9)

here, any amplitude or phase outside of the support region (S) is set to zero, as

practically it cannot exist, the result is an estimate for the real space density fn+1(r).

Initially it was thought that both constraints were required, however Fienup later showed

[64] using a sufficiently tight support constraint the complex problem is no harder. Allied

to the original GS algorithm (Section 4.3.3), the reciprocal space constraint is the modulus

set, Pm.
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The algorithm proceeds with the FT on an estimate of the real space density fn(r) to obtain

Fn(q). A copy of the chosen support is the best estimate of the diffracting object, the FFT

of which is used as the starting point. The following steps are repeated; (i) Replace the

magnitude of the reconstructed diffracted amplitude by the measured diffracted amplitudes

F′n(q), (ii) IFT the result and (iii) project the solution onto the support set (PS) by setting

all data outside of the support to zero. Test the quality of the reconstruction and repeat

the process until a solution is found where the current iterate is the best estimate.

The algorithm operation is defined using the projection of the modulus set described in

Equation (4.4):

fn+1(r) = PSPMfn(r) (4.10)

The ER algorithm itself converges very slowly, once all of the amplitudes and phases lie

within the support the algorithm will stagnate. The algorithm has no way of distinguishing

between all solutions which contain phases and amplitude within the support, highlighting

the problem of finding a unique solution in this case, and further compounded when the

support is large relative to the object.

4.3.5 Hybrid Input Output (HIO) Algorithm

The slow convergence and stagnation tendency of the ER algorithm led to the formulation

of alternate algorithms. One class of these is the Input Output algorithms, again developed

by Fienup [63]; here the basic process of ER is maintained but the constraints are different,
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the input is no longer the current best estimate of the dataset, it is in fact the driving

function for the next output (derived from a combination of the current and previous

iteration). This produces a large amount of variation in the following input, aiding the

algorithm to avoid stagnation although it remains susceptible to it.

The constraint again applies outside the support; the current iterate fn(r) is used to

drive the algorithm through combination with the current iterate after projection onto

the modulus set.

fn+1(r) = PSPMfn(r) =


PMf ′n(r) if r ∈ S

fn(r)− βPMf ′n(r) if r /∈ S

(4.11)

where β is a variable, we employ β=0.9 for all phasing operations. β values in the range

0.8-0.95 are common, any lower and the changes made are insufficient to move out of

local minima in solution space and stagnation results. It is clear that, when β = 1 and the

next iterate begins to replicate the current iterate (i.e stagnates), the algorithms operation

approaches the ER algorithms regime; the amplitudes and phases outside of the support

will be set to zero, see Equation 4.9. Beyond a value of 1, amplitudes and phases outside

of the support will oscillate between positive and negative values forcing the algorithm

further away from a solution.
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4.3.6 Alternate Algorithms and Extensions

To date variations on the existing ER and HIO algorithms have been used as iterative

approaches to the phase problem in the form of Millanes HIO [133] and Solvent Flipping

(SF) [2]. Alternative algorithms include Difference Map (DM) [53], Averaged Successive

Reflections (ASR) [19], Hybrid Projection Reflection (HPR) [18] and Relaxed Averaged

Alternating Reflectors (RAAR) algorithm [115]. These algorithms are discussed fully

by Marchesini [122] and after extensive testing he concludes HIO is the most effective

algorithm at finding a solution and gradient based methods such as ER or SF can be used

to polish up the solution. The operation of each of the algorithms will be introduced.

Solvent Flipping Solvent Flipping (Charge Flipping) is analogous to the ER algorithm,

instead of setting the density outside of the support to zero it is forced negative.

PSPMfn(r)


PMfn(r) if r ∈ S

−PMfn(r) if r /∈ S

(4.12)

The algorithm can be simplified using reflector notation, see equation 4.5, to

fn+1 = RSPMfn (4.13)

The SF algorithm is a gradient search with a larger step size compared to ER, the result

is a faster convergence, however its application is only useful when refining a solution

obtained using HIO. The difference between solutions produced with SF/ER after several
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iterations of HIO is negligible.

Difference Map The difference map method exploits the difference between elementary

projections (PM and PS) and converges to a fixed point at which both constraint sets are

satisfied.

Dfn = [I + ∆] fn (4.14)

The error metric is defined as

∆ = [βPS ((1 + γS)PM − γSI)− βPM ((1 + γM )PS − γMI)] fn (4.15)

When the parameters are set to γM = β−1 and γS = −β−1, equation 4.14 can be simplified

Dfn = [1 + 2PSPM − PS − βPM ] fn (4.16)

Rewriting the HIO algorithm defined in equation 4.11 as a pure projection operation and

simplifying reproduces equation 4.16 and proves they in fact coincide.

fn+1 = PSPMfn + [(1− PS)(1− βPM )] fn (4.17)
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= [1 + 2PSPM − PS − βPM ] fn

A great deal of analysis was performed by Garth Williams [213] prior to this project

identifying the best parameters for the DM algorithm. The difficulties encountered and the

findings of Marchesini prompted focus on the HIO and variants (i.e additional constraints)

discussed in Section 4.3.7.

Alternate Algorithms The remaining three algorithms are defined using projection

notation.

Average Successive Reflections

fn+1 =
1
2

(RSRM + I)fn (4.18)

Hybrid Projection Reflections

fn+1 =
1
2

[RS(RM + (β − 1)PM ) + I + (1− β)PM ] fn (4.19)

Relaxed Average Alternating Reflectors

fn+1 =
[

1
2
β(RSRM + I) + (1− β)PM

]
fn (4.20)

It can be shown that HIO also coincides with ASR, HPR and RAAR when β = 1 as
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demonstrated previously with DM.

4.3.7 Algorithm Extensions

The basis for phasing in this work is built on that developed by Robinson et al. [147,

149, 213] and uses Fienups HIO and ER with additional phase constraints dubbed Phase

Constrained HIO (PC-HIO) and Phase Only ER (PO-ER) introduced by Ross Harder [79].

PC-HIO sets maximum and minimum thresholds for the phase that the algorithm can

assign in direct space. The method is often applied to crystals with relatively small phase

variations and prevents the phases from rotating randomly. Additionally it prevents the

formation of vortices as the phase is not allowed to form a 2π phase wrap. The presence

of vortices in reconstructions can lead to impractical features in reconstructions and will

be discussed later. Equation 4.11 is altered with an additional set of Phase constraints on

the support set, we define the projection as Psφ and rewrite the equation

PSφPmfn(r) =


PMf ′n(r) if r ∈ S ∩ φr > φmin ∩ φr < φmax

fn(r)− βPMf ′n(r) if r /∈ S ∪ φr > φmin ∪ φr < φmax

(4.21)

PO-ER is the ER algorithm with an additional constraint; amplitude can exist outside

the support region if its phase is zero. Practically the amplitude manifests as noise in the

data and has proven advantageous in refining reconstructions whilst quenching vortices.

Equation 4.9 becomes
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PSφPMfn(r) =


PMfn(r) if r ∈ S

±|PMfn(r)| if r /∈ S

(4.22)

here the amplitudes are rotated to their nearest axis and± defines the sign of the amplitude

imposed by the phase range, i.e (-) in the range (1
2π > φ < 3

2π) , (+) in the range

(1
2π < φ > 3

2π).

Three methods that were not analysed by Marchesini are the voting method [65], guided

HIO (gHIO) [37] and Shrinkwrap (SW) [123]. They focus on varying the constraints

as opposed to the application of these constraints like those in PC-HIO and PO-ER.

Both methods employ the normal HIO and ER algorithms. The voting method and

gHIO attempt to maintain features from multiple random starts to seed further phasing

operations (generations) until the solutions are equivalent. SW constrains the support

around the current iterate after each phasing operation until the support and the object

are consistent with each other. These methods were developed to overcome the uniqueness

problem, we combine their best attributes with the variants of HIO and ER to build

confidence in our results. In just 30-50 iterations of HIO followed by 10-20 iterations of ER

or their variants a solution is reached. Stagnation, solution uniqueness and ambiguity are

the key problems faced by the phase retrieval algorithms for finite crystal phase retrieval

problems.

Fienup and Wackerman [65] observed from multiple starting points stripes were found to

be prevalent in 2D reconstructions; different random starting points resulted in different

orientations and frequencies of stripes. Originating from phase singularities (vortices) in
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reciprocal space, vortices present, in pairs, centrosymmetrically in the image and with op-

posite phase wrapping, of total 2πn. Two methods; the ‘voting method’ and the ‘patching

method’ are discussed. In the voting method three random reconstructions are made, of

the two that correlate the most an average or combination is taken and used to drive the

next fit. The patching method is an extension of the voting method, the stripes extend

beyond the support and are used to locate the vortices and subsequently patch them out.

In 3D vortices present as loops which are much rarer than 2D cases [213], the proposed

solution is to reduce the background to prevent the algorithm assigning phase values large

enough for vortices to form. A valid approach that neglects the scenario whereby large

phase variations in a crystal are expected, distinguishing between an anomalous vortex

and physical phase wrap in this case becomes problematic. Harder [78] found that a

correlation between direct space vortices and the observed error metric minimum during

HIO.

Guided HIO has been developed by Chen et al. [37] and builds on the principle of maintain-

ing features from multiple solutions. Running the phasing algorithm through x number of

random starting points, the best solution is sought and combined individually with all of

the other solutions, these solutions then drive the next generation of solutions; the process

is then repeated until the algorithm converges. A version of this algorithm was written

for the Bragg scattering geometry, conclusions drawn were; the algorithm always tends

towards the initial solution and suffers similar stagnation problems as HIO and ER meth-

ods. A useful method for the determination of ambiguous solutions via cross correlation,

discussed further in Section 5.2.2.
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Marchesini et al. [123] developed the SW algorithm for which no a priori knowledge is

required, the support is built from the autocorrelation of the data and tightened until

the algorithm converges. Briefly, a Gaussian is convolved in each dimension with the

reconstructed object. This slowly reduces the size of the support used to constrain the

result until it converges to the correct solution. It has to overcome the autocorrelation

function as a potential solution and must converge when the solution has been found, if

the support encroaches on the reconstruction an incorrect solution will result.

In order to identify ambiguous solutions we must overcome f(±r-r0)eiφ solutions. The phase

factor offset is required before the alignment correction and enantiomorph identification

is completed.

4.3.8 Aligning Solutions

In order to align two reconstructions g(x,y,z) and h(x,y,z) after the phase offset correction

has been implemented, we raster one solution relative to another by a shift rs(xs, ys, zs)

and maximise

max
rs ∈ rsupp

∑
i∈N

gi(rs)hi (4.23)

where rsupp defined the shift based on the dimensions of the support as the majority of

amplitude is found here and N defines the number of voxels in the array. This is still com-

putationally demanding and in complex problems can be applied to either the amplitudes

or the phases or both simultaneously. If the average phase offset is not employed here in
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rare cases the complex method will result in a misalignment.

In order to speed the operation up a cross correlation is employed which utilises a convolu-

tion to aid the computation. The only difference is the complex conjugate of one function

is convolved with the other.

g ∗ h = g∗ ⊗ h (4.24)

we rewrite this according to the convolution theorem, eqns 2.3.

F(g∗ ⊗ h) = F{g∗} F{h} (4.25)

and calculate for a discretely sampled dataset over all voxels.

g ∗ h =
∑
i∈N

g∗i hi (4.26)

The cross correlation method is demonstrated in Figure 4.3. Combination of their Fourier

Transforms provide a correlation map from which the required shift to map one image

onto the other is extracted from the peak relative to the origin, shown on the right of

Figure 4.3 by a wireframe representation of g(x,y,z) now superimposed onto h(x,y,z).
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Figure 4.3: Convolution cross correlation method, two objects (f(x,y,z) and g(x,y,z)) su-
perimposed by the peak in the correlation map produced from the convolution of one
object and the complex conjugate of the other, F−1(G*H)

4.3.9 Enantiomorph Identification

A function g(x,y,z) is aligned to a reference function h(x,y,z) to produce, g(x1,y1,z1), it

and its complex conjugate g∗(x1,y1,z1) are combined with the reference function according

to the summation in equation 4.23. The maximum of the two identifies the solution which

best represents the reference function and thus, if an enantiomorph has been identified.

A direct space error metric (E2
direct) can now be applied to compare the solutions.

E2
direct =

∑
|ρa − ρb|2∑
|Ameas|2

(4.27)

Again a summation over all voxels and equal to zero when in perfect agreement, can only

be applied when ambiguous solutions have been identified and corrected for.
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4.3.10 Phase Factor Offset

Fienup described a method to calculate the phase offset between two datasets using error

metric minimization [66]. All solutions, be they twins or shifts should produce error

metrics equal to zero. Building on the cross correlation method, whereby a maximisation

of the cross correlation corresponds a minimised error metric between two images. The

required phase offset is obtained by minimising the partial derivative of the error metric

with respect to the associated phase factor and solving for it.

4.4 Summary

The algorithms used to solve the ‘Phase problem’ have been introduced in the favoured

projection notation. Extensions to the algorithms employed by Robinson et al. [78,79,147,

149, 213] prior to and during this project were introduced. The ambiguities of the found

solutions and approaches towards their identification highlighted. The robustness of the

algorithms can now be tested, correct average solutions generated and estimates from

the PRTF made. An example of the implementation of the phasing procedure described

and the constraint sets employed to successfully retrieve the lost phases for a diffraction

pattern from a non-periodic finite crystal will be outlined in the next chapter.

The modulus constraint was limited and does not consider the error present in the mea-

surement. The intensity measured in a Charge-Coupled Device detector is converted to

Analog Digital Units (ADUs)4 and does not directly translate to photon counts. We as-
4The voltage generated from the charge created by the absorption of a photon in a pixel is converted

via a digital circuit into Analog Digital Units (ADU), the number is directly proportional to the voltage
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sume approximately one photon is equal to 150ADU for our CCD detector (see Section

5.2.1 for determination of this quantity). The ADU count per photon varies poisson like,

hence the variance of each intensity measurement in photons (Iph) is

σI(ph) = ((I(ADU))/150)1/2 (4.28)

Thus the variance per pixel in ADU (σI(ADU)) can be formulated as

σI(ADU) = 150σI(ph) (4.29)

The error in the constraint can be implemented using equation 4.6.

generated. In the CXDI case the photons have a very small bandwidth hence their generated voltage is
approximately identical per photon within statistical errors.
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Chapter 5

Phase Retrieval Implementation

A description of the data treament steps from the collection on the experiment through

to the phase retrieved reconstruction will be detailed in this chapter. The computational

framework will be described and a measured dataset worked through for illustration. The

constraints applied will be introduced and different phasing approaches attempted dis-

cussed.

5.1 Data Preparation

5.1.1 Computational Framework and Data Conversion

The Charge-Coupled Device (CCD) detector is read off into Winview data acquisition

software (Princeton, Roper Scientific1) and outputs files in SPE format (ASCII text file).

Data manipulation and analysis programming capabilities are being constantly improved
1http://www.princetoninstruments.com/
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upon, hence only a brief outline of the current data treatment method will follow.

The SPE files are converted into the Sp4Array() file format introduced by Pitney [149].

A set of C-program libraries used to manipulate Sp4Arrays were developed and improved

upon by Williams [213] and Pfeifer [147]. These C-program libraries were compiled for use

in a python environment using a Simplified Wrapper and Interface Generator (SWIG)2 by

Harder [79]. For 3-dimensional visualisation the open source Visualization ToolKit (VTK)3

combined with the MayaVi Data Visualizer4 are used. The Enthought Python Distribution

(EPD) has MayaVi built in and provides a maintained cross platform compatible base from

which to build the phasing programs5.

The Fourier Transform (FT) operation identified in eqn. 2.12 is used to move from the

time domain to the frequency domain and vice versa. For a discretely sampled continuous

function, such as the diffraction surrounding a Bragg reflection, a discrete FT is used. In

practice it is computed efficiently using a Fast Fourier Transform (FFT) [150] and in our

case uses the Fastest Fourier Transform in the West (FFT-W) source code6.

For the phasing process to be successful several data preparation steps are undertaken.

Firstly, the data is centered in the array, the symmetry of the FFT requires this step.

Secondly, the data can be binned within reason to save time during data processing and

can be used to improve statistics but is limited by the required oversampling ratio, see

Section 4.2.2. Finally, spurious intensity in the detector unrelated to the measured crystal

is identified and removed.
2http://www.swig.org
3http://www.vtk.org
4http://mayavi.sourceforge.net/
5http://www.enthought.com/products/epd.php
6www.fftw.org/
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5.1.2 Centering

The FFT is a mathematical translation to reciprocal space units. Those points in the

center of the array are moved to the edge and those those at edge move to the center,

this is called ‘wrapping’. If the data is not placed in the center of the array unpractical

asymmetry is introduced into the data and leads to a gradient in the phase of the recon-

structed image, this gradient can be used to identify if the data is centered correctly. By

observing the autocorrelation function [150] (FFT of the measured intensity) of the data

as a function of position the center is identified. The program ‘dataCenter-5x5.py’ maps

the autocorrelation function by removing 2-dimensional slices of data in each dimension

through the central point, and repeats the operation for shifts in the data’s position of

±2 in each dimension relative to the center. The ouput of the x-y, x-z and z-y 2D cross

sections allows the required shift for a dataset to be identified quickly. In Figure 5.1, a

region of flat phase can be seen at a (-1 in z, -2 in y) from the center of (a), shifting the

flat phase region by the shifts defined by the axes lead to the centered result in (b). The

region of flat phase is not always obvious. As reciprocal space is discretely sampled the

actual center of reciprocal space can lie anywhere in the 3D space a single voxel encloses.

Slight gradients are inevitable but minimised using this method. The gradients of large

shifts (i.e ±2) are larger and give a clearer representation of where the center actually is.

Demonstrated in Figure 5.1 (b), moving clockwise around the largest shifts the gradients

are radial to the centered position therefore the data is correctly centered.

When centering it is important to buffer the data array with voxels of value zero. If the

CCDs region of interest is 200 x 200 pixels and center is at (100,126), such a large shift
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Figure 5.1: Autocorrelation of a 2D cross section of the 3D Dataset 27 in z-y plane pre
(a) and post (b) centring, using ’dataCenter 5x5.py’, a region of flat phase ‘the center’ is
observed at z=-1,y=-2.
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Figure 5.2: The reconstructed amplitude (translucent isosurface) and phases (2D scalar
cut planes) for a phased dataset for shifts; -2,-1,0,1,2 about the central voxel along the x
dimension

will see data far from the center wrap to the other side of the array. In this case the

voxel at (190,190) will move to (190,16), it is necessary to buffer by at least 26 pixels in y,

preferably more. The phase gradients reconstructed from an incorrectly centered dataset

are demonstrated in Figure 5.2, large erroneous gradients from left to right appear across

the reconstructed phase and the algorithm struggles to find a solution when ±2 voxels

away from the true center.

5.1.3 Binning

Once centered the analyst can decide whether or not to bin the data, this saves time in

the data processing stage as the file size is decreased dramatically. There is no evidence to

suggest that binning affects the quality of the reconstructed object. Binning requires the

data array to possess an even number of pixels in each dimension and can be set in the data

acquisition stage using Winview or in the data preparation stage. The Roper Scientific

CCD can operate in two modes; FAST and SLOW Analog to Digital Conversion (ADC)

rates, 1MHz and 100KHz respectively. The associated name defines the speed of readout

and each have a different threshold at which the CCD pixels register a photon count and
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saturate, a more limited dynamic range in fast operation mode but a five fold decrease in

readout time. A high resolution comparison has not been made, but low resolution data

has shown no difference between the two modes of operation, hence the fast ADC was

used. Acquisition speed can be further maximised by binning the data to the point where

the oversampling ratio is met but not violated (∼3).

5.1.4 Scaling Diffracted Intensities

When large crystals are illuminated naturally their observed diffraction patterns are very

intense and span a small region of reciprocal space. Maintaining the oversampling ratio,

the exposure time is limited to 80% of the maximum intensity to prevent damage to the

CCD using a fast shutter. When required exposure times dropped below the operation

limit (4 milliseconds) of the fast shutter, either the detector was moved further away7

or attenuators were introduced. Attenuators8 are applied either to the entire diffraction

pattern or to the brightest regions, known as ‘beam stops’ to obtain good statistics in

the outer fringes of the diffraction pattern quickly. In both cases the different frames or

different parts of frames of a diffraction pattern carry different weights, see Figure 5.3; a

rocking curve taken through a ZnO Bragg reflection using attenuation of zero, 25µm Mo,

50µm Mo, 25µm Mo and zero attenuation moving from the center to the outer fringes

respectively. Attempts to scale the dataset failed for three reasons:

1. The predicted scaling factor did not match the scaling factor required at correspond-
7The detector could be moved back to 3 metres, if the oversampling ratio was not met the crystal could

not be measured
8Molybdenum or Aluminium, depending on attenuation factor required.
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ing attenuation steps.

2. Where large attenuation and short exposures were used large amounts of data was

lost at high spatial frequencies, it is impossible to scale a count rate of zero.

3. Drifting of the sample during measurement is non uniform because the number of

accumulations and CCD exposure time were different for each attenuation.

The method for scaling was explored further with the use of beamstops. Beamstops cre-

ate an equally difficult problem whereby the alignment of the beamstop to the CCD is

imperfect and overlapping pixels make it difficult to scale accordingly. The ambiguity of

the attenuation provided makes it very difficult to successfully match statistics accurately

between frames of different attenuation and can completely suppress low intensity data in

the outer fringes. Beam stops have been used successfully in CXD microscopy and incor-

porated into iterative phase retrieval algorithms [35, 81], however were not implemented

here.

5.1.5 Aliens and their origins

After collection the data must be checked for ‘aliens’, erroneous intensity measurements

due to cosmic rays, other crystals and air scatter must be removed as they too intro-

duce asymmetry into the data, see Appendix B.1 for examples. These regions are simply

cropped out by setting their value to zero, using ‘alienExterminate.py’, see Appendix

G.1.5.

The influence of nearby crystal diffraction tends to only affect the unfocussed CXDI mode
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Figure 5.3: Scalar Cut Plane of the amplitude (log scale) across a concatenated diffraction
pattern 3 levels of attenuation were applied (zero, 25µm Mo, 50µm Mo, 25µm Mo, Zero)
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of operation and is reduced by reducing the size of the beam incident on the sample

using the Roller Blade slits and translating the sample to keep the crystal of interest in

the beam. Air scatter is minimised using either a helium filled or evacuated flight path

from the sample to the CCD detector limiting the exposure of the beam to the scattering

atmosphere.

Another factor which cannot be ignored is the presence of transparent materials (Beryl-

lium(Be) and Kapton) in the flight path, which can affect the coherence of the incident

beam and interfere with the diffracted beam. Observed in experiments where the window

lay between the diffracting sample and the CCD, as the crystal was rocked in the beam

a half-doughnut shaped artifact remained constant in position, seen in Figure 5.4 top left

of the bragg peak. The artifact was present in every frame, was stationary relative to

the sample but varied in intensity, hence, due to a stationary object in between the sam-

ple and the CCD. Both Kapton and Be exist in this region. The Kapton is attached to

the detector arm hence its illuminated area remains approximately constant for all mea-

surements. The Be window was large and stationary for the measurements, see Figure

3.9. Different Bragg reflections required different experimental geometries and so different

parts of the Be window were illuminated for different crystals. Artifacts did not present

in every diffraction pattern thus the Be was the source. Industrially manufactured Be has

been found to exhibit Fe inclusions [96] and can account for these artifacts. To date the

these artifacts have not been identified in the reconstructed datasets.

The data are now ready for phasing.
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Figure 5.4: Ten CCD images at uniform φ steps about a Bragg reflection with a Beryllium
window induced doughnut shape observable in the intensity distribution, top left of bragg
spot due to an Fe inclusion indicated in the first image by a red circle.

5.2 Phasing Data

The user defined algorithm constraints will be discussed in this section.

5.2.1 Threshold

The threshold is an addition by Ross Harder, applied to the phasing algorithm so that all

data below a certain value should be ignored by the algorithm. This threshold is deter-

mined by the user and is usually set to several photons. The CCD detector outputs the

measured intensity in Analog to Digital Units (ADUs), a full discussion of the operation

of a CCD detector was provided by Howell [85]. The gain of a CCD determines how the

charge collected in each pixel will be assigned to a digital number. As the majority of

intensity measured surrounds the Bragg peak, low intensity regions will register single

photons. Histograms including voxels from these regions identify single photon and some-

times double photon peaks. Figure 5.5 illustrates a prominent single photon peak of the
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Figure 5.5: Histogram produced using ‘histogram.py’ for DS131 identifying the frequency
of intensities measured on the CCD pixels, all 51 2D frames were considered

order 140-150 ADUs and a double photon peak (280-300 ADUs) observable only in the

2D slice taken through the (101) ZnO Bragg peak.

The effect of the threshold is very important. When set too low the algorithm is forced

to represent a large number of low intensity pixels and often stagnates. If set too high

the resolution of the image is compromised. This feature can be advantageous, by setting

the threshold deliberately high the algorithm reconstructs a low resolution object. Fewer

spatial frequencies converge faster due to fewer data points and provide a good starting

point when approaching datasets that stagnate initially at lower thresholds when the

defined support is still loose.
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5.2.2 Start Point

The iterative algorithms employed require an initial guess of the density of the crystal.

As mentioned previously a random starting point is the best method for identifying a

robust calculation. These methods are built on the application of prior knowledge in the

form of constraints. Therefore it is logical to implement a more accurate representation of

the illuminated object rather than a uniform density with random phases. The technique

is sensitive to small displacement fields and in the Bragg geometry a highly crystalline

sample is required, thus a perfect crystal with a flat phase is more probable than a set of

completely random phases. Discussion will continue related to this topic in Section 6.2.5.

5.2.3 Support Choice

The support for the data must now be chosen, this defines the region around the origin

at which the reconstructed object is allowed to exist. The support construction is based

around the volume enclosed by a set of analyst defined planes. From Section 4.2.2 the

maximum size of the object is half the volume of the array. Generally, the datasets

are oversampled by a factor of 3 in each dimension, so the support can be reduced to

approximately 1
27

th of the volume of the array. By observing the autocorrelation function9

in 3D one can estimate the size of a rough support for the object. From experience,

figure 5.6, this is set to 2/3 the extents of the autocorrelation function in each dimension.

Large enough to find a preliminary solution but not small enough to impinge on the

reconstructed object. The support can then be tightened further until it encloses the
9FT of the measured intensity, FT (ρ.ρ∗), is twice the size of the object
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Figure 5.6: x, y and z slices through the autocorrelation function of a dataset and red
wireframe isosurface of first guess at the support, approximately two thirds its size.

reconstructed object but does not interfere with its shape.

The reconstructed image is inspected and the support tightened or loosened depending on

the effect of the support on the current output. This process has been sped up by feeding

multiple supports to the phasing algorithm with variations of two voxel increases in each

dimension (±1 in the ± direction for each dimension to keep the support symmetric). Each

dimension is approached independently, multiple dimensional variations in the support

drastically alter reconstructions and lead to malsized supports and are difficult to converge.

The programs used to complete this operation are ‘varyXsupport.py’,‘varyYsupport.py’

and ‘varyZsupport.py’.

The evaluation of the suitability of the chosen support is based primarily on the analysts

intuition. To begin with the support is much larger than the object and hence can be

changed dramatically to the analysts discretion. Once the analyst is no longer able to

decide upon the variation required the error metric can be called upon but cannot be

relied upon, equation 5.7. Figure 5.7 shows the progression of the error metric as the

PC-HIO algorithm proceeds for 50 iterations with a further 20 iterations of ER for several
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different sized supports, here B is the prime support, A is smaller than B by four pixels

in each dimension, C is larger than B by two pixels in each dimension and D is larger

than C by two pixels in each dimension. C and D both converge to a lower error metric

than B, this is because the algorithms constraints are not enough for it to distinguish

between solutions, a superposition of solutions result which can lower the error metric, see

Figure 5.11. Only A does not exhibit a saddle point in the error metric, the constraints

are too tight and force the solution to an erroneous state. B is determined to be the prime

support as its reconstruction (Figure 5.9) has a relatively uniform amplitude distribution,

well defined hexagonal facets and reasonably well defined ends, an estimate of the crystal

dimension from the diffraction pattern also match the reconstruction, whereas C and D

do not. Yet E2
nmse(D) and E2

nmse(C) are lower than E2
nmse(B) suggesting an overfitting

of the noise.

Until this point the data is considered in voxel dimensions, in reality a geometric correction

[79,147] provides a meaningful lengthscale for the reconstructed image in both reciprocal

and direct space dimensions.

At present, depending on the number of defined planes a large portion of the support

will in fact remain empty. Therefore the algorithm has only the raw diffraction data to

constrain it in these regions, in reality the constraint could be tighter. These regions of

empty support become significant when the crystal lies at an angle to each of the voxel

dimensions and in the worst case scenario at 45o to every dimension the support has a

volume 3√
2

times larger than the ideal scenario. Using rotated planes is time consuming

and as expected significantly improves the convergence of the algorithm. This process
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Figure 5.7: Tracking the error metric for a phasing operation with multiple supports,
where A < B < C < D, switch to ER after 50 iteration of HIO.

is not automated at present. The proposed Shrinkwrap algorithm (SW) [123], uses the

autocorrelation function to begin with and smooths the function, constantly updating the

support relative to the solution. Ideally this should make the support as tight to the

reconstructions shape as possible but has one significant drawback; updating the support

relative to the solution produced from a support based on the autocorrelation function and

the typical HIO and ER algorithms. The SW algorithm is susceptible to the optimisation

of a local miminum. Effectively the robustness of this algorithm cannot be easily tested

as the starting point is predetermined and the number of defined variables considerable.

The variables for the smoothing of and building of the new support define the algorithms

ability to move to other minima, it is not obvious what these should be determined to

be. From experience the support has the most impact on the reconstruction and when

asymmetric can favour previously ambiguous solutions. For the application of such an
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Figure 5.8: Theoretical reciprocal space diffraction pattern and corresponding direct space
nanorod (a) Isometric View (b) Top View (c) Side View

asymmetry a priori knowledge is required, if it is not possible ambiguous solutions should

be dealt with via cross correlation described in Section 4.3.8.

5.2.4 CXDI ZnO

Theoretical Data Treatment

A simple three-dimensional model of the diffraction pattern of a hexagonal faceted nanowire

was produced by FFT; and is shown in Figure 5.8.

An experimental dataset is shown for comparison in Figure 5.9. The six fold symmetry

due to the hexagonal cross section of the rod and two fold symmetry perpendicular are
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evident, although in this particular case the two fold fringes are not well defined (are at

the limit of oversampling).

The phasing method described thus far was applied to dataset 27 (April 2007). It encom-

passes a succession of improvements in the sample preparation, data collection and data

analysis methods.

A 3-dimensional render of the experimental data obtained by stacking up the 2-dimensional

data and viewed in Mayavi (three-dimensional imaging software) is shown in Figure 2.10,

Diffraction Data. The morphology of the rod is well defined (A) and (B) respectively.

The two fold and six fold symmetry are evident, as seen in SEM. Increased rocking curves

enhanced the resolution of solutions in the z-dimension and smaller θ steps ensure over-

sampling. Subsequent ‘alien’ removal and phasing were carried out, the reconstruction is

shown in Figure 5.9, Direct Space Inversion. The data was collected using the focussed

beamline setup, see Section 2.2.5, with focusing mirrors, for an object greater in size in

a single dimension than the beam, the beam itself defines the ends of the wire, implying

the edges of the focused beam are not uniform in shape and intensity. The subsequent

smearing of the fringes in the 002 crystal direction could be explained by a rod with one

well defined end and one rough end; manifested either from the algorithm itself, an erro-

neous feature or, the beam incident on either the base/top of the rod in which case the

rod defines one end of the beam and the rough focus smears out the fringes.

The preliminary results are very encouraging, a solid real object has been inverted from the

diffraction data. Its dimensions have been estimated; width of uniform hexagonal facets

between opposite parallel faces approximately 370nm and 700nm in length. This agrees
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Figure 5.9: Diffraction pattern measured from a ZnO nanorod and corresponding direct
space inversion (a) Isometric View (b) Top View (c) Side View

quantitatively with estimates for dimensions and aspect ratios from SEM characterisa-

tion10. Undulations in the surface of the reconstruction are of the order of the resolution

of the image ∼50nm along the c axis and ∼35nm in the a-b plane.

The resolution of the dataset is estimated by the statistics in the nth order fringes, where

n is an integer the resolution is defined by the crystal extents d in dimension of fringes

divided by the number of observable fringes, d
n . The resolution is therefore set by the

acquisition time in this case, through experimentation and the need for good statistics

this was set to 200+ accumulations of each pixel at an exposure time defined by the

brightest part of the bragg peak at 80% pixel saturation (∼350photons). It will later be

shown this method is equivalent to the PRTF function defined in equation 4.3.

The error metric shows an interesting characterisitic, a saddle point observed after 17 HIO
10The exact crystal measured with CXDI cannot be identified as thousands of crystals are illuminated

at any one time, only the orientation, a rod stood on end, is known.
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Figure 5.10: Normalised mean squared error metric at each iteration for the phasing of
dataset 27 (April 2007), 100 iterations of PC-HIO (φc = ±π

2 )followed by 100 iterations of
ER

iterations, E2
nmse=0.021, the error metric then increases and stabilises at a value 0.025.

Subsequent iterations of the ER algorithm drop the error metric to 0.003. The saddle

point was observed for multiple dataset when the support was fully optimised.

5.2.5 Iteration Number and Algorithm Choice

The best way to understand the algorithms operation is to observe its effect on the de-

veloping image, Figure 5.11 demonstrates the solution at every iteration in terms of both

amplitude and phase. The error metric drops to a saddle point before stagnating, the

value at which stagnation occurs is dataset dependent and a property of the amount of

binning but does not scale with binning. The output of the algorithm at each iteration is

shown in Figure 5.11A, beginning with a copy of the support the algorithm proceeds to

a state of two overlapping solutions and then converges to one of these solutions. Cross

sections of the amplitude, shown in Figure 5.11C, show two ‘hot spots’ (red) superimposed

onto one another with a small offset, these ‘hot spots’ merge until the algorithm imposes
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a change large enough to favour one of them (the other likely an enantiomorph). The

reconstruction concludes a highly nonuniform amplitude distribution, the phase structure

variations correlate to amplitude variations upon further iteration. We expect a uniform

amplitude distribution and note attempts to enforce a uniform distribution within a small

error were unsuccessful. The saddle point was used to identify a suitably tight support.

5.2.6 Phasing methods

Many variations on the phasing methods described were employed. It was not possible to

identify an underlying phase method for definitive reconstruction of the diffracting object.

A simple HIO followed by ER method allowed a solid 3D object to then be enhanced

through constraint tightening. Increased iterations and consecutive repeats of the phasing

operation did not improve the result. The choice of support has the greatest impact

on the reconstructed object, to maintain objectivity a support incommensurate with the

shape of the crystal (i.e a hexagonal prism in this case) was deemed suitable as not to

influence the reconstruction. For highly symmetric crystal morphologies it was necessary

maintain a symmetric support otherwise enantiomorphs were favoured. However, a priori

knowledge can be applied to identify the correct orientation and this will be demonstrated

in Chapter 7. Several variants of existing algorithms were employed and will be discussed

as and when they apply to specific problems. Where suitable PC-HIO and PO-ER were

generally advantageous.
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5.3 Summary

The phasing procedure from collection to reconstruction has been described. The support

constraint has the greatest impact on the reconstructed crystal, should be symmetric

and can take any shape, however, for consistency the support should avoid the shape of

the reconstructions to prevent bias. The methods described in Chapter 4 can identify

any ambiguous reconstructions that symmetry allows. The chosen starting point for the

algorithms remains up for debate and will be approached in Chapter 6 for multiple datasets

recorded from the same crystal. The HIO algorithm produces a saddle point in the error

metric and was observed when the support was optimised.
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Chapter 6

Solid State Diffusion studies

This chapter will summarise the results obtained for deposition and annealing experiments

carried out on ZnO crystals coated with a layer of Fe, Ni and Co. The interpretation of

the calculated phases will be introduced using the results of the dataset phased in Chapter

5. An approach to justify the reliability of the reconstructions will be implemented. The

continuity of reconstructions of consecutive diffraction patterns measured from the same

crystal annealed through several cycles will be presented and the practical origins of the

phase modulations identified.

6.1 ZnO studied via CXDI

The key feature of the CXDI technique is the ability to map displacements within the

crystal. The phase maps shown in Figure 6.1 demonstrate scalar cross sections of direct

space phase through a translucent isosurface of the amplitude of a ZnO rod reconstructed
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Figure 6.1: Phase map cross sections taken at 80nm intervals along the length of the rod
(a)150nm → (f)550nm. The (101) Q vector direction is also shown.

in Section 5.2.4. The cross sections were taken at 80nm intervals along its length parallel

to the Q vector.

Close inspection of the phase maps shown in Figure 6.1 along an extrapolated (101) Q

vector highlight a phase modulation ranging from +π/4 to -π/4 to +π/4, a non-quadratic

relationship, which is present in all phase maps along the length of a ZnO rod shown in

Figure 6.1. A misalignment of the diffraction data due to pixelation can be ruled out as

the origin of this feature as this would generate a linear phase ramp, previously discussed

in Section 5.1.2. In this case a linear phase ramp was not evident however a linear feature

can underly the observed phase modulation. A suitable method for implementing this

correction has not been considered to date, however the centering process should limit its
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impact on the result. This particular measurement was completed using KB focussing,

hence, if a quadratic phase structure were to be generated the curvature of the wavefront

would need to be considered as a possible source. The quadratic phase structure would

see a smooth quadratic modulation in the phase from facet to facet along the sampled Q-

vector, this was not observed. Any complicated phase modulation is likely to correspond

to a strain in the crystal. The scalar cut planes slice through the phase perpendicular to

the c-axis, hence of the six equivalent hexagonal 100 facets; the two along and against the

Q-vector respectively exhibit the same sign, the remaining four which are less coupled to

Q also exhibit modulation in the phase.

6.1.1 Interpreting the phase in direct space

In Section 2.2 we introduced CXDI experiments, the interpretation of the generated phase

maps will be reiterated. In direct space, the calculated phase corresponds to the displace-

ment along the Q vector relative to an underlying equilibrium crystal lattice, φ = Q.u(r).

In the positive Q direction a positive phase corresponds to an expansion, a negative phase

corresponds to a compression. In negative Q, a positive phase corresponds to a compres-

sion, a negative phase corresponds to an expansion. Fitting to the phase modulation will

provide an insight into their physical origins.

The phase modulation seen in Figure 6.1 shows a positive phase on both 100 facets along

and against the Q-vector. This represents an expansion in the positive Q direction and

a compression in the opposite direction, the origins of which are undetermined. We ex-

pect the presence of oxygen and zinc vacancies, if they were to be uniformly distributed
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throughout the centre of the rod the atomic spacing in the crystal would be constant

throughout the crystal thus the Bragg peak would simply shift. If however a sample was

placed in vacuum an increase in oxygen vacancies at the surface would lead to a con-

traction near the facet relative to the rest of the crystal [164]. Equally a contraction on

the six hexagonal facets would not be expected as they are non polar and atomically flat

with equal numbers of cations and anions in the surface plane. A contraction is predicted

on the zinc face however the scale of contraction, 0.4Å, is likely below the resolution of

the data, close to 50nm, so would not be observed. It is clear strains of some form have

been observed and are considerably larger than the resolution of the direct space phase

(∼ 0.15rad) but their origins are not obvious.

6.1.2 How reliable is a reconstruction?

This is the primary cause for concern. The nature of the ‘Phase problem’, a problem with

N unknowns and N knowns leads to not only the multiple ambiguous solutions discussed

in Section 4.2.4, but a significant number of different solutions (local minima in solution

space) if the constraints are insufficient. Two approaches exist to overcome these prob-

lems, first, ambiguous solution identification [20,213] and second, averaging [35,37,168]. A

combination of the two will be implemented here as they are both advantageous for differ-

ent reasons. The first makes the second applicable and averaging highlights reproducible

phase features and averages out the erroneous phase features.
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6.1.3 Phasing variables

The phasing variables discussed in section 4 provide the constraints for the phasing oper-

ation. The constraint with the largest impact on the solution is the support constraint.

The shrinkwrap method introduced by Marchesini et al. has proved very successful in

forward scattering phase retrieval experiments [35,36,123]. The algorithm begins with the

autocorrelation function as the first estimate of the illuminated object, several iterations

of HIO and ER are run and a support tailored to the current solution via a convolution

operation with a 3x3x3 voxel cube and smoothing with a gaussian function. Further it-

erations of HIO and ER follow, the support is updated after each set of iterations. The

algorithm converges when the support is found to be self consistent between algorithm

iterations (<1% variance in shape). For a detailed overview of the modified Shrinkwrap

algorithm see Appendix G.2.

Although a valid method, the shrinkwrap method outlined relies on the initial solution

of pre-existing algorithms with a very loose support constraint, an enlarged copy of the

autocorrelation function. In solution space a number of solutions are available with loose

constraints, and are subsequently optimised by shrinking the support around them. The

shrinkwrap method has optimised the solution based on the support constraint, it does

not definitively identify the global minimum. It simply identifies a solution based on a set

of loose constraints and optimises it. From random starting points we would expect and

observe a large variation in reconstructions but their supports are optimised. From this

position we can apply the two approaches mentioned previously and find a more reliable

average. In Section 5.2.2 an argument was put forward for using an object with a flat
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phase variation as the starting point, thus a comparison will be made here.

6.1.4 Identifying ambiguous solutions

The random starting point leads to multiple different solutions, in order to combine them

the average phase needs to be set to zero, solutions need to be overlaid, ambiguous solutions

identified and made equivalent (i.e enantiomorphs) and finally averaged together. To

identify ambiguous solutions we refer to Section 4.2.4. The solutions are now equivalent

and can be averaged accordingly. The average solution must then be normalised before it

is used to seed further phasing iterations.

6.2 Consecutive measurements from the same crystal

6.2.1 Raw Data

Initial observations of the Bragg peak of a ZnO nanorod post Fe deposition are shown in

Figure 6.2. The stark contrast between diffraction from the same crystal annealed to a

higher temperature is clear. The crystal has decreased in size as the interference fringes

have become larger. Then a dramatic increase in exposure time from 0.1 to 2 seconds

was required to obtain the same level of statistics and the need for a wider rocking curve

confirms a solid state chemical reaction between Fe and ZnO has taken place on a relatively

large scale.

The reaction proceeds at a relatively low temperature of 350◦C. Bates et al. [16] observed

a solubility of zero at 500◦C increasing as a function of temperature to 7 at.% at 800◦C. A
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Figure 6.2: Diffraction data at -4,0,+4 frames offset from the bragg spot at (a) 298◦C
(DS131) and (b) 358◦C (DS137) for sample 108A

solubility of this order does not explain the large variation in diffraction. We would expect

a severe degradation due to the formation of Fe dominated crystal structures leading to

fractured ZnO crystals. In one case, a crystal began to move away from its previously

adhered location, it was tracked for an hour over 1.0◦ in angle. Its movement prevented a

measurement but upon returning to its original location a remnant similar to that observed

in Figure 6.2 DS137 was observed suggesting part of the crystal detached.

The low reaction temperature observed can be explained by heating of the nanocrystal due

to the illuminating beam and the presence of large errors in the temperature measurement.

The thermocouple sits several millimetres away from the illuminated region of the sample.

Inspection of the silicon as it began to conduct suggested a good temperature calibration

as the sample began to glow orange at 600◦C, see Appendix Figure A.1. The heating

was asymmetric and large gradients were evident across the sample. The thermocouple

resides on a mounting plate attached to a screw hence, measures a region of the sample
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approximately 5mm from the illuminated sample region. An error in the thermocouple

itself must also be considered, they are less sensitive at higher temperatures as they exhibit

a negative exponential resistance to temperature relationship.

The structural change was later confirmed with SEM, see Figure 6.3. The sample was

heated through to 358◦C and post experiment SEM analysis shown in A and B confirms

the presence of crystals coated with a layer of Fe but no obvious change in morphology.

The shadow is due to the angle of evaporation and means only the top and three of the

hexagonal facets are coated in metal. A second sample (No. 115) where similar diffraction

changes were observed, see Figure B.2, was heated to 600◦C was shown in (C) and (D).

At this temperature the layer of Fe has dewetted the surface and the internal degradation

of the crystals observed. This confirms the large variation in the x-ray diffraction data

and highlights the ability of CXDI to observe the initial stages of the reaction before the

morphology changes. It also emphasises the potential for CXDI of buried structures.

6.2.2 Goals

Having ascertained the basic parameters for the experiment further experiments were

carried out with Fe, Ni and Co depositions ranging between ∼10-100nm. Several exper-

imental methods were introduced to obtain the best data. The crystals were measured

at a reference temperature (approximately 200-300◦C), chosen from experience where no

variation in diffraction was observed but close enough to the reaction temperature that

the diffraction does not move completely out of the detector upon further annealing. An-

nealing proceeds for 5 and 10 minute periods, which will be referred to as ‘steps’, after
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Figure 6.3: SEM from the sample heated to 358◦C (A and B) in Figure 6.2 and the
sample heated to 600◦C (C and D) 6.2 for two different orientations ([002] perpendicular
and parallel to the substrate) of ZnO crystal imaged by CXD

which the sample was cooled and measured at the reference temperature. This had three

advantages; firstly, the crystal was not changing during measurement, secondly, the phas-

ing parameters could be kept constant as thermal expansion effects can be neglected and

thirdly, the Bragg spot proved highly reproducible, in the case of a large structural change

the remaining crystal could be found and measured by returning to the logged motor po-

sitions for the previous measurement. In order to obtain sufficient statistics a 3 hour scan

was required after each annealing step. By gradually altering the annealing step the onset

of the solid state chemical reaction was sought, subsequent quenching to a reference tem-

perature would prevent a continuation of the reaction while the measurement was made.

The process was then repeated on a clean crystal to hone the parameters further.

Attempts were made to observe the crystal change during annealing using 2D analysis

(1000 accumulations, 50 second total exposure). Any observable variation was difficult to
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identify by eye, there was no guarantee at each temperature the same 2D slice through the

crystals Bragg spot was measured. Subsequent reconstructions proved too slow to have

an impact on the decision to cool the sample and suffered from inconsistencies due to the

miscentering.1.

The diffraction data for the experiments described previously for depositions and sub-

sequent annealing of Fe, Ni and Co will now be discussed. The oversampling ratio was

optimised to a factor of 3 or greater in all dimensions by binning the data and checks

made to ensure the visibility of the fringes was not compromised.

6.2.3 Fe Deposition Diffraction Analysis

The diffraction patterns measured from a (101) Bragg peak for a ZnO crystal embedded

in SiO2 after annealing iterations is shown in Figure 6.4 (Sample 3 July 08).

The first datasets were measured before annealing, the following three annealing steps

show no visible variation and the final step demonstrates a significant change. The in-

tegrated intensities, the total photons scattered into the detector from the crystal, for

these datasets for the same exposure time are 5.67, 4.34, 3.99, 4.20, 4.70 (x109ADU)2.

We would expect a drop in intensity if the crystal structure was changed dramatically as

observed previously. There are many error sources to consider; the long exposure time

rules out beam intensity fluctuations; a beam refill (every 8 hours) could not account for
1Approximately 3 minutes per phasing operation where required to compare 2D datasets once the

phasing variables had been optimised
2Based on the assumption a single photon produces 150ADU, the diffraction pattern consists of 3.73x107

scattered photons of which 8x105 are removed by a 10 photon threshold. A high threshold is set to
enable the successful removal of alien scattering without accidentally removing scattered photons from the
illuminated crystal
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a 17% increase and we would see it twice as each dataset took 2hrs 30mins to acquire

plus annealing and subsequent alignment delays. These datasets were acquired in the un-

focussed mode, therefore any structure in the beam may become apparent. Realignment

after each step may sample a slightly different distribution of intensity and could explain

the modulations between datasets 2, 3 and 4. Note alien diffraction was removed and is

evident from blocks of zero intensity in the hexagonal cross section of the reference dataset

in Figure 6.4.

Table 6.1: Integrated Intensities before and after threshold was applied, corresponding
photon flux discarded

Filename DS54 DS55 DS59 DS61 DS64

IInt 5.67x109 4.34x109 3.99x109 4.20x109 4.70x109

IThresholdInt 5.55x109 4.23x109 3.87x109 4.08x109 4.56x109

∆ (Photon Number) 1.43x108 1.16x108 1.18x108 1.18x108 1.40x108

The visibility of the diffraction patterns was measured for each set of fringes and found

to be consistently high (>90%) along every direction defined perpendicular to a set of

parallel facets, see Table 6.1. Binning of the data did not compromise the visibility and an

oversampling ratio of 3 was maintained in all dimensions. The importance of the visibility

will be discussed further in Chapter 7 therefore the assumption of a perfect coherent

illumination of the crystal was made.

Table 6.2: Observed visibilities for 5 datasets from Sample No.139c (July 08) measured
along the both the a-axis and c-axis

Filename DS54 DS55 DS59 DS61 DS64

Visibility (002) (%) 95 96 95 98 92
Visibility (100) (%) 98 98 98 98 70
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6.2.4 Ni and Co Deposition Diffraction Analysis

A similar observation was made when Ni was evaporated onto ZnO and annealed. The

diffraction patterns are shown in Appendix 1 Figures (F.1, F.2) and (F.3, F.4). For two

crystals covered with Ni and one crystal covered in Co a change was visible in the diffraction

pattern, for the second Co covered crystal the experiment was unsuccessful, expected due

to a failed Co deposition. A coherent illumination was confirmed via the fringe visibility

and the integrated intensities were well correlated with the change in exposure times. See

Tables 6.3 and 6.4 for Ni samples and Tables 6.5 and 6.6 for Co samples.

In both Ni depositions where a change in the crystal was observed the intensity remained

relatively constant until the onset of the solid state chemical reaction; Ni Sample 115 (Mar

08), see Figure F.1, dropped by factor of 2 in intensity, Ni Sample 123 (Mar 08), see Figure

F.2, dropped by 33%. In the first Co deposition the sample (Sample 113, Mar 08), see

Figure F.3, remained constant over the first two annealing steps and then increased by 22%

before returning to the level of the first two annealing steps, the diffraction patterns do

not vary dramatically suggesting the crystal has not changed. The second Co deposition,

Sample 115 (Mar 08), see Figure F.4, remained constant for the first two annealing steps

and then increased by 5% before dropping to 87% of the level obtained in the first two

annealing steps. Considering the aim of the experiment was to observe the onset of a solid

state chemical reaction the variation in integrated intensity should remain constant for

small displacements (less than the lattice parameter across the whole crystal). This was

not observed, increasing intensity can be understood by the fluctuations in flux across the

beam profile, equally the drops in intensity could also be attributed to similar effects.
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The data shown were taken for the initial identification of the temperature at which the

solid state reaction proceeds and have relatively low statistics. The lack of consistency

in the measured temperature of the onset combined the irreproducibility of the cobalt

and nickel film evaporation led to focus on the Fe deposition experiments, quenching and

measurements at reference temperatures were not made for Ni and Co depositions.

Table 6.3: Experimental parameters for successive annealing steps for Sample 115 (Mar
08) with a Ni deposition

Filename DS160 DS161 DS162 DS164 DS165 DS166 DS169 DS170

Temperature(◦C) 203 203 211 303 351 382 382 403
Accumulations 300 100 50 100 100 100 50 50

Exposure Time (sec) 0.2 0.2 0.2 0.2 0.2 0.2 1.0 1.0
IInt (x109) 2.82 1.39 0.73 1.35 1.23 1.34 1.55 1.49

Table 6.4: Experimental parameters for successive annealing steps for Sample 123 (Mar
08) with a Ni deposition

Filename DS114 DS116 DS118 DS120

Temperature(◦C) 200 307 408 501
Accumulations 100 100 100 40

Exposure Time (sec) 0.2 0.2 0.2 0.6
IInt 2.15x109 2.43x109 2.51x109 2.03x109

Table 6.5: Experimental parameters for successive annealing steps for Sample 113 (Mar
08) with a Co deposition

Filename DS62 DS64 DS65 DS67 DS68

Temperature(◦C) 200 303 350 401 451
Accumulations 200 200 200 200 200

Exposure Time (sec) 0.15 0.15 0.15 0.15 0.10
IInt 1.73x109 1.69x109 1.75x109 2.13x109 1.25x109

6.2.5 Reconstructions of consecutive Bragg reflection data

The described diffraction patterns measured after annealing steps for Fe, Co and Ni de-

positions will now be ‘phased’ and the internal structure revealed. We have seen from the

integrated intensities errors may be present and will propagate into the reconstructed so-
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Table 6.6: Experimental parameters for successive annealing steps for Sample 115 (Mar
08) with a Co deposition

Filename DS185 DS188 DS190 DS192 DS193

Temperature(◦C) 321 406 480 607 320
Accumulations 200 100 100 100 100

Exposure Time (sec) 0.3 0.3 0.3 0.2 0.3
IInt 0, 6.08x109 3.10x109 3.20x109 2.30x109 2.77x109

lutions. Based on the arguments and questions raised in Section 5.2.2, two starting points

will be implemented; random start and a copy of the support. From a random starting

point the reliability of the algorithms can be tested, hence 10 random starts will be used

and the result averaged and normalised after considerations for ambiguous solutions have

been made. Starting from a copy of the support will always lead to the same solution.

The question of how much a priori knowledge can we apply? can be raised. With mul-

tiple diffraction patterns from the same crystal we have the capability of seeding phasing

operations from solutions of any one of the diffraction patterns. Ideally this should be the

reference reconstruction, however if the quality of the reconstruction was compromised an

alternate seed solution would be used. There is also an algorithm independent test, by

measuring the crystal at a reference temperature all experimental variables are approxi-

mately constant, hence we can apply constant constraints in the phasing operation so any

variation in the generated solution is a property of the intensity distribution alone. The

instance in which a slight variation in a crystal was expected lends itself to an alternate

method of analsyses called the Differential Phase Map and will be compared alongside the

individual diffraction pattern phasing methods employed.

The following phasing operation was applied. The datasets were individually phased

using a copy of the support as the starting point to quickly hone in on the correct phasing
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parameters with 50 iterations of PC-HIO followed by 20 iterations of ER. Ten random

starts were run for each diffraction pattern and the solutions shifted via cross correlation,

twins identified and phase offsets applied. Once satisfied the constraints were correct, the

random start solutions were averaged and normalised to the measured diffraction intensity.

Two seed reconstructions for each diffraction pattern result; the averaged solution from

random starts and a solution from the copy of the support. Cross correlation of these

solutions proceed, twins identified and a visual comparison completed to unify the seed

solutions. A decision is now required with regards to which seed solution to use for the final

phasing operation. If an obvious consistency between reconstructions was observed the

solutions were used as seed solutions, however, if no obvious similarity was observed the

three reconstructions with the lowest error metric were used as seed solutions for phasing

with the diffraction data to produce the final result.

The phasing approach will be detailed for the Fe coated sample introduced previously. The

final results of the same operation will be shown and discussed for Ni and Co depositions.

An additional analytical tool will be employed, the Differential Phase map, described in

Appendix D.1. Any region which is non zero has changed between experimental steps,

this allows very subtle variations of phase in an image to be identified. Side by side

individual reconstructions are difficult to interpret when the variation is small (a phase

variation), hence this method will be applied to try to identify the small scale changes in

phase expected.



131

Figure 6.5: (A) 3D isosurface renders of solutions from DS54 Sample 139c for 10 random
starting points, cross correlation identifies 5 twins (2,3,5,8,9 numbered left to right starting
from zero), the shifted solutions and complex conjugates of twins for visual comparison
are shown in (B)

Fe in-situ reconstruction analysis

The first two stages of the phasing process are demonstrated in Figures 6.5 and 6.6 3.

In Figure 6.5 ten random starting points were used to obtain 10 solutions (A) using a

generic parallelpiped support generated in the initial parameter identification steps. These

solutions were phase offset corrected and cross correlated (B) to obtain and implement

the correct shift, twins identified and complex conjugates used where necessary when

averaging. The phase constraint of ±π
2 were used initially to obtain a solid density, the

3The solutions demonstrated here have not been geometrically corrected and appear skewed as a result.
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phase constraints were later relaxed if the algorithm utilised the whole phase range in

the reconstruction. Solutions 2, 3, 5, 8 and 9 (numbered left to right starting from zero)

were found to be twins, see ‘CrossCorrelation.py’ output in Appendix B.3 and are visibly

inverted in (B). The solutions were then averaged together to produce a seed solution

with which further phasing operations were run, akin to the gHIO method [37]. For

comparison a copy of the support was used to seed phase retrieval for each dataset as

well. In this case five diffraction datasets were phased, each dataset had individual seeds

generated (one random average generated without a phase offset correction and one copy

of the support). In Figure C.1(A) from left to right, the average solution seed, and copy

support seed for consecutive diffraction patterns (DS54, DS55, DS59, DS61 and DS64) are

shown. The solutions have had their supports optimised with the SW algorithm and were

cross correlated to align for visual comparison in (B). If we compare solutions all seeded

from average solutions from random starting points for different diffraction patterns, a

trend emerges. In (A) (0,2,4,6,8) the reconstructions appear smooth and possess well

defined facets, subsequent iterations of the SW support optimisation break the facets

up. Alternately phasing from a copy of the support (1,3,5,7,9) produce broken up facets

initially and support optimisation smoothes the amplitude, the reason for which is not

clear. The phase responds as one would expect, for the average solutions some but not

all of the phase features are maintained, solutions from the copy of support maintain

their features and change very slightly. The exception to this trend is reconstruction 9,

for which the phase is very different after support optimisation and may be due to the

complex nature of the crystal structure in the degraded region.

Figure 6.6 shows the same random start solutions with the phase offset correction before
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averaging. The results are very different. Large phase modulations are observed and few, if

any consistencies between reconstructions are observed. The average amplitudes also vary,

with DS59 particularly rough compared with DS61 suggesting an unknown noise source

during DS59 measurement. The smoothing trend of the amplitude after SW optimisation

remains clear after the addition of the phase offset correction.

Figure 6.6: From Sample 139c for DS54, DS55, DS59, DS61, DS64, at reference temperature
292◦C, after a 1 minute anneal to 400◦C, and additional annealing steps of 5,5 and 10
minutes. Cut planes through the phase and multiple views (+y,+z,-y, +x) of 3D renderings
of the amplitude isosurface at 18% for both the average of 10 random starts and after
support optimisation with the Shrinkwrap algorithm.

Ideally for consistency between shrunk supports to be achieved the solution needs to be

enlarged by approximately the resolution of the image, the parameters used for SW in this

case are found in Appendix C.1. The lowest E2
nmse was used to identify the best solution,

in this case solution 0, 6 and 7 in (B) at 0.005923, 0.005871 and 0.005726 respectively.

There was very little variation in the final nmse values across all reconstructions, in the

range, 0.005923 - 0.007250, the PC-HIO E2
nmse did not impact which dataset produced

the lowest error. The three solutions were then used to seed the phasing of all diffraction
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patterns. The quality of the reconstructions were compared both with E2
nmse and via

visual comparison, renderings of the amplitude distribution and cut planes of the phase

are shown with geometric correction applied in Figures 6.7 and 6.8 respectively.

Uniform crystal morphology

The morphology of the crystal was uniform, geometric corrections found the crystal to be

1520nm in length and the three parallel inter facet diameters from the hexagonal cross

section 1176nm, 1095nm and 1141nm. The resolution of the datasets at a threshold of

1600ADU were 100nm along its length and 70nm across its width according to the fringe

counting approximation. All facets are well defined for the first four annealing steps.

The final annealing step shows the breakdown of several facets to an extent, a change

greater than the resolution of the data. Accompanied by a variation in the internal phase

modulation, see Figure 6.8, of the crystal confirms its physical existence and was not due

to noise in the diffraction data.

Figure 6.7: 3D renderings of the amplitude isosurface for five annealing steps using solu-
tions DS54 Copy, DS61 Copy and DS61 Avg as seeds for five measured diffraction patterns
at different stages of annealing. Note all renderings are not on a commensurate scale.

The phase cut planes shown in Figure 6.8 are taken along the Q vector direction. A consis-
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tent phase variation was observed below the origin of the Q vector, the two distinct phase

gradients are observed at the top and base of the crystal. The orientation was not defini-

tive, the twin solution may in fact be the correct orientation as the crystal morphology

was symmetric4. An interaction was expected between the crystal and the substrate, zinc

diffusion into the SiO2 layer was discussed in Section 3.4. In the reconstructions this would

exhibit as an asymmetric feature on one of the 00l facets in the direct space reconstruction.

We observe large phase modulations on both facets therefore cannot distinguish the cor-

rect orientation of the crystal. Phase modulations on the 00l facets were also inconsistent

between different crystals. An Fe coating was expected on the left and top facets from the

readers perspective, due to the evaporation angle. Diffusion of Fe into the ZnO structure

would lead to an expansion on the Fe coated facets. The last reconstruction for each

seed shows a considerable variation in the phase structure compared to the previous four

reconstructions, as expected from the diffraction data in Figure 6.4. Previous experiments

observed heavy crystal degradation, to the point where the diffraction patterns were too

complex to reconstruct.5 It is concluded that Fe is scavenging oxygen from the crystal

and forming Iron oxide phases as opposed to diffusing into the ZnO crystal.

If we were to observe the expected diffraction intensities of the reconstructions (FFT−1)

the E2
nmse values show they are very similar. By thresholding the solution and recalculating

the measured intensities, one can establish if the variation in diffraction corresponds to

noise or a specific physical feature in the reconstruction. For these data this was not

possible, the change was too small to pinpoint a physical feature that corresponded to the
4The twinned solution would demonstrate the same physical attributes, its phases are conjugated and

the Q vector inverted.
5Too little crystal remained to achieve sufficient statistics in the measured diffraction patterns post

annealing iterations.
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Figure 6.8: Phase cut planes along the Q vector direction (arrow) for three seeds 0, 6
and 7 used as starting points for the reconstruction of 5 diffraction datasets (left to right
increasing annealing steps)

diffraction change.

The phase variation between reconstructions observed thus far appears small. In this sce-

nario a Differential Phase map approach can be applied to try to reconstruct the variation

due to each annealing step. The calculated reciprocal space phases for each diffraction pat-

tern are used as the missing phases for the other four measured diffraction patterns. The

results are shown in Figure 6.9, the data has been geometrically corrected, the modulus

of the difference was plotted.
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Figure 6.9: Differential Phase maps using both Copy and Avg. seed solutions from DS54

as the reference reconstruction for the remaining four annealing iterations of Sample 139c.

The interpretation of the differential phase maps for both starting points produce are the

same. Two regions of density opposite one another suggest a change in the crystal structure

on both sides of the crystal. The crystal in question had a layer of Fe deposited from one

position hence a change would only be expected on one side of the crystal. This can be

interpreted as a miscentering of the two datasets relative to one another, the resulting

gradient in the phase between the two would exhibit as two positive lobes in the plotted

modulus. In our case the first three annealing steps demonstrate variations of the two lobed

structure, the third DS61 has a rotated lobe feature attributed to miscentering in multiple

dimensions. The final dataset does not show the lobe features instead modulations are

observed throughout one end of the crystal. The modulation is not uniform and is unlikely

to be due to diffusion effects, the formation of iron oxide phase cannot be ruled out.
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As the data has been binned it could be shifted with sub-pixel resolution to recenter the

data and remove this gradient. This process was implemented for the data in Figure 6.9.

It remains possible an underlying gradient will remain. The solution is to interpolate the

data. As we expect to observe a phase modulation which is non linear this step is not

required until quantitative analyses are made. We conclude from the lack of observed

phase modulation evolution between annealing steps the Differential Phase map approach

is unsuitable for these particular problems.

Ni in-situ reconstruction analysis

The final reconstructions for Ni data is shown in Figure 6.10.

Sample 115 demonstrates a general trend towards crystal degradation and was expected

from the diffraction data, the reconstructions are however very inconsistent. The am-

plitude distribution is very asymmetric and is not expected for single crystal rods. The

source of this feature in the reconstructions will be discussed fully in Section 7.1.

Sample 123 shows a large change after the final annealing step. The algorithms struggle

to find a uniform direct space amplitude distribution. Agreement was observed between

the phase modulation before the onset of the reaction after which the crystal had changed

so much an evolution would not be seen.

The low solubility of Ni in ZnO suggests changes of this nature are unlikely a result of Ni

integration into the ZnO lattice but rather NiO cluster formation.
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Figure 6.10: Phase retrieval solutions from three different seeds for two crystals (Sample
115 Ni, Sample 123 Ni) deposited with Nickel and annealed and quenched through several
steps. The geometric correction was not implemented.
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Co in-situ reconstruction analysis

The final reconstructions for Co data is shown in Figure 6.11.

Sample 113 demonstrates no change upon annealing with a deposited Co layer. Very little

change was observed between reconstructions and agrees with the minimal changes (of the

order of the noise) observed in the diffraction patterns.

Sample 115 shows a similar amplitude distribution observed for a Ni deposition on sample

grown under identical conditions. The larger aspect ratio of crystals means that each

scatterer is no longer coherent relative to every other scatterer of the crystal. A partial

coherent illumination results and the phase retrieval process leads to erroneous amplitude

modulation, again this will be covered in more detail in Section 7.1. The 3D renderings

of the diffraction data showed a very slight variation, the reconstructions do not provide

sufficient consistency to conclude the crystal has in fact changed in some way.

Multiple Bragg peaks from a single crystal

It is important to highlight the experiments discussed thus far have measured a single

Bragg peak from a ZnO crystal and are only sensitive to displacements in the measured

crystal in one dimension. Improvements in experimental technique have allowed us to

measure multiple Bragg peaks from a single crystal. This method, initially only possible in

the unfocussed mode of operation identified important consequences for the longitudinal

coherence properties of the illuminating x-ray beam. It also opens the door to multi-

dimensional displacement fields from the same crystal, displacement fields with overlapping
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Figure 6.11: Phase retrieval solutions from three different seeds for two crystals (Sample
113 Co, Sample 115 Co) deposited with Cobalt and annealed and quenched through several
steps
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components can also be used to verify the quality of the reconstructed solution. This will

be comprehensively described in Chapter 7.

6.2.6 Refraction Correction

Refraction occurs when a wave travels from one material to another where the refractive

indices of the two mediums are different. In our experiments there are three mediums to

consider; air, vacuum and ZnO crystal. At 8.9KeV the refractive index difference between

x-rays in air and vacuum is negligible. We apply a correction to the recovered phases in

direct space according to the method exhibited by Harder et al. [79].

n = 1− δ − iβ (6.1)

For ZnO the real part of the refractive index, n, is less than unity by δ=1.308x10−5 6,

relative to an x-ray in vacuum in parallel to that passing through the crystal the maximum

phase difference (∆φ) can be calculated using the following equation:

∆φ = kdδ (6.2)

where d is the path length for an x-ray through the crystal. For a 1µm ZnO crystal,

δφ=0.59rad. The attenuation over the path length is ∼1% (kdβ, where β=2.24x10−7)

therefore absorption can be neglected. In actuality the experimental geometry increases
6http://henke.lbl.gov/optical-constants, were used to calculate both δ and β for ZnO,

ρZnO=5.67gm/cm3, at 8.9 KeV (λ=0.138nm, k= 2π
λ

=45nm−1)
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the optical path length difference for a crystal of a specific dimension.

The refraction effect is exacerbated by the amount of crystal the illuminating beam has to

pass through. The majority of the reconstructions correspond to a crystal stood on end,

i.e the short dimension determines the refraction correction for a 1µm ZnO crystal. A rod

laying on its side with long axis parallel to the beam would see a significant impact due

to refraction. In Figures 6.12 and 6.13 the generated reconstruction of DS54 has had its

direct space phases set to zero, the refraction correction is then applied to demonstrate

the relative offset. The crystals morphology is shown by a translucent isosurface, scalar

cut planes through the corrected phase at regular intervals are shown along the length

and the width of the ZnO rod in Figures 6.12 and 6.13 respectively. For a 1.5µm crystal

the maximum phase offset was 0.849 radians observed to the left of the center of the rod

where the maximum optical path length through the crystal for scattered x-rays is found.

Moving towards the edge of the crystal along the positive Q-vector direction the path

length is decreased and equally in the negative Q-vector direction beyond the observed

maximum the path length decreases.

In Figure 6.13 the top view of the ZnO rod is shown and scalar cut planes of phase

modulation corrections are uniform between cut planes as the optical path length remains

approximately identical for each slice of scatterers7. The observed phase corrections again

demonstrate an asymmetric phase modulation, the maximum was observed left of the

center of the crystal along the negative Q-vector direction and matching gradients to

those seen previously from the side view.
7When the 001/001 are approached the phase retardation will decrease as the optical path length

difference decreases.
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Figure 6.12: A side view of a reconstructed ZnO rod (DS54, 1.5µm x 1.0µm) stood on end
from the illuminating source perspective, scalar cut planes through the refraction corrected
phase at regular intervals along the incident beam direction.

Figure 6.13: A top view of a reconstructed ZnO rod (DS54, 1.5µm x 1.0µm) stood on
end, scalar cut planes through the refraction corrected phase at regular intervals along the
crystals c-axis
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Figure 6.14: Cut planes through the refraction corrected phase at regular intervals (bottom
to top) along the crystals c-axis and a side view equivalent to Figure 6.8 Avg. DS61 Seeded
phase retrieval of DS61.

The refraction correction was considerable and provides an insight into the origins of some

of the phase modulations observed in unprocessed crystals. It does not detract from the

evolution of the crystal morphology discussed in the in-situ experiments as the offset

correction is identical for each measurement.

The refraction phase correction was applied to DS61 Fe Sample 139c, see Figure 6.8.

No change was expected upon this iteration so a phase corrected reconstruction would

demonstrate the crystal in its as grown state. Cut planes through the phase are shown

in Figure 6.14. The phase modulations observed previously have been removed, along

the positive Q vector direction a positive phase shift of π represents an expansion and

a smaller positive phase shift, 5/8π, in the negative Q direction describes a contraction.

The expansion remains relatively constant along the length of the rod and the contraction

decrease in size towards the top. Again it is difficult to attribute any of the observed phase

modulations with practical origins.
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6.3 Resolution

When we discuss resolution we separate the phases and amplitudes. A single wrap in

the phase across a crystal corresponds to a shift from the equilibrium lattice by a single

lattice parameter. The resolution of the phase is difficult to quantify and is defined by

the asymmetry around a Bragg reflection. The signal to noise ratio defines the ability

to determine asymmetry. On average phase changes of the order 0.15rad are resolvable

corresponding to 1/40th of a ZnO lattice parameter. The phase modulation describes

the shift of a portion of crystal i.e the size of which is defined by the resolution of the

amplitude. The resolution of the amplitude can be estimated by the size of the crystal

divided by the number of resolvable crystal fringes along that dimension. The ability

to reconstruct the outer fringes defines the resolution and the reconstructed phases have

the greatest impact on the resolution of the image. When multiple solutions have been

measured it is common to define the Phase Retrieval Transfer Function (PRTF) of the

data equivalent to the Modulation Transfer Function for a lens, defined in Equation 4.3.

If a perfect average reconstruction were generated a step function would be expected,

PRTF = 1 for all spatial frequencies up to a cutoff frequency, the resolution limit, where

PRTF = 0. The PRTF function for a solution generated from a copy of the support

is shown in Figure 6.15, the PRTF is close to 1 for all values up to a cutoff frequency

of 0.018nm−1 corresponding to a ∼ 28nm half period. This is not an acid test for the

associated error on the resolution of our reconstructed solution, it does demonstrate the

resolution limit. By taking an average solution from many random starting points the

reproducibility of the phases reconstructed at higher frequencies is tested.
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Figure 6.15: PRTF of a reconstructed solution generated from DS54 Sample 139c (July
08) using a copy of the support as a starting point and the SW algorithm for support
optimisation.

Figure 6.16 demonstrates the PRTF generated from the average of 10 random start re-

constructed solutions for the same dataset (Sample 139c (July 08)). The reconstructed

crystal is 1.5µm in length and 1µm in width (hexagonal parallel facet separation), the

threshold was set to approximately 10 photons (1600 ADUs). At low Q (low frequencies

in direct space) the PRTF is low, we would expect it to be closer to 1, and likely due to a

lack of statistics, the first datapoint considers only 7 voxels compared to 45,000 voxels at

higher frequencies. The peak of the PRTF is observed at 0.6 (0.0025nm−1) corresponding

to a 161nm half period in direct space. The PRTF slowly drops and several peaks are

observed at 86nm, 56nm and 38nm half periods. The 56nm peak is large, the likely source

are the phases corresponding to the fringes generated due to the hexagonal facets. Here

three sets of parallel facets of equivalent resolution will correspond to a larger number

of voxels, compared to the set of fringes due to the parallel facets perpendicular to the

c-axis. As the crystal is large along the c-axis we would expect lower resolution along the

length of the crystal, hence the PRTF would be expected to drop due to irreproducible
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Figure 6.16: PRTF of an solution generated from 10 random starts for DS54 Sample 139c
(July 08)

phases at higher frequencies and a peak observed where the phases corresponding to the

reconstructed hexagonal parallel facets dominate. The python code used to generate the

PRTF function can be found in Appendix G.4

6.3.1 Summary

The in-situ experiments involving an Fe deposition routinely changed the crystal mor-

phology at a temperature of 400◦C for 10-20minutes. The observed modulation in the

amplitude suggested a more vigorous solid state reaction than diffusion, the formation

of secondary phase of iron oxide has been observed previously in experiments of this na-

ture [16,200] and is the likely source of the effects observed in this study. As a direct result

of the lack of phase modulation evolution the interpretation of the Differential Phase maps

proved difficult and deemed unsuitable for analysis of crystal variation of this order.

The in-situ experiments annealing ZnO with a deposited Ni layer confirmed a solid state
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reaction consistent with a scavenging type process observed previously upon annealing

with an Fe layer. The formation of NiO clusters destroys the ZnO lattice.

The in-situ experiments involving an evaporated Co layer upon annealing showed no

evidence for a solid state reaction and was somewhat surprising considering the previous

reports of a high Co solubility in ZnO.

The refraction correction was found to be considerable for ZnO crystals on the micron

length scale. Application of the refraction correction to reconstructed data proved incon-

clusive, however did reduce the reconstructed phase modulations.

The formulation of the PRTF function confirms the phases in the low intensity fringes are

considerably harder to reconstruct and limits the resolution to fringes with considerable

statistics.
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Chapter 7

Multiple Bragg Reflections

The coherent diffraction patterns surrounding five Bragg peaks of the same ZnO micro-

crystal have been measured for the first time. For a large aspect ratio (4:1) ZnO crystal

the degree of coherence can be determined via the visibility providing a coherence estimate

on a different length scale for each Bragg peak. Combined with eleven Bragg reflections

from a small aspect ratio crystal (3:2) the longitudinal coherence function of the incident

radiation was mapped. Two illumination regimes were studied; fully coherent and par-

tially coherent illumination, the consequences of a partially coherent illumination for the

reconstruction of a crystal are discussed [102]. Sufficiently coherent diffraction patterns

were combined to produce a two dimensional displacement field of the crystal studied.

A three dimensional displacement field was later generated [138], based on the observed

coherence effects a suitably smaller crystal was imaged.
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Figure 7.1: Scanning Electron Micrograph of the crystal from which 5 Bragg reflections
were measured, the field of view is 4µm x 6µm, a slight taper is evident and the bright
feature on the 100 facet parallel to the substrate on top of the crystal is due to charging
effects in the SEM

7.1 Multiple Bragg Reflections from a ZnO crystal

The large aspect ratio ZnO microcrystal was prepared via micromanipulation as described

in Section 3.4.1 on a silicon (100) substrate, using the unfocused mode of operation an

orientation matrix obtained and five different Bragg reflections were measured from the

crystal; (100), (010), (011), (101) and (002). The sample was characterised using SEM,

Figure 7.1 and is shown during micromanipulation stages in Figure 3.7, the crystal has well

defined facets and a halo observed post oxide growth corresponding to Zn diffusion into

the SiO2 layer during thermal oxide growth. The crystals dimensions were measured to

be 4.08µm x 1.10µm commensurate with the fringe spacing from the observed diffraction

patterns.

The longitudinal coherence length of the incident x-ray beam is of the order 0.7µm, the

transverse coherence components are larger than the crystal dimensions (>10µm). For

different Bragg reflections the optical path length difference (OPLD) between incident
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Figure 7.2: Schematic of diffraction from point scatters A,B and C for OPLD calculation;
OPLDAB = 0, OPLDAC = 2BCsinθ

x-rays scattering from the extents of the crystal will change. When the OPLD exceeds the

longitudinal coherence length the crystal is defined as under a partial coherent illumina-

tion. Upon a partial coherent illumination of a crystal the distribution of intensities is no

longer a full contrast interference pattern. A combination of interference between coherent

components and addition between incoherent components results and is quantified by a

drop in the fringe visibility, equation 2.16.

Figure 7.2 shows a crystal (grey rectangle) illuminated at the angle satisfying Braggs

Law for a set of lattice planes that lie perpendicular to the reciprocal lattice vector Q.

The OPLD between two coherent x-rays scattering from points within the same plane (A

and B) will be zero, hence the longitudinal coherence is independent to the length of the

crystal perpendicular to the Q-vector. If two scatterers (B and C) are positioned at the

extreme extents of the crystal, the OPLD (dotted line through point C) in this scenario

is simply the product of the plane layer spacing d with the number of planes between the

two scattering points with an additional angular scaling given by Braggs law [23]. This
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length equates to the projection of the long axis of the crystal onto the Q-vector and is

therefore the maximum OPLD of the measurement. Hence, measurement of a finite crystal

in the Bragg geometry using CXDI is viable if the longitudinal coherence is greater than

the projection of each of the crystals dimensions onto the Q-vector. If the inequality is

violated the fringes will become less visible in, at least, that direction.

Multiple values of the OPLD are probed for a given crystal by the simple expedient

varying Q by observing multiple Bragg peaks. The visibility of the same c-axis data can

be compared among these measurements. Diffraction data were sampled by extracting a

line of points through the measured distribution of the Bragg peak oriented along the 002

crystal direction in reciprocal space. The results for the 5 Bragg reflections are shown in

Figure 7.3 and the sampled points (green line) for each diffraction pattern highlighted in

the corresponding 3D renderings of the isosurface (blue diffracted intensities).

The fringes are clearly visible in the 100 and 010 reflection, less visible for 101 and 011

and not visible for the 002. The interference between two facets is equivalent to the 1D

slit function derived in Chapter 2 shown in Figure 2.5 (c). We fit Lorentzian functions

using MATLAB1 to the maxima and minima of the fringes to obtain the visibility, see

Figure 7.4. The decrease in fringe visibility as a function of the projection of the crystals

c-axis along the Q-vector allows us to map out the coherence function of the source.

Figure 7.5 shows these data combined with 11 additional Bragg reflections from a small

aspect ratio ZnO crystal, dimensions 1.6µm x 1µm. Sampled points for the additional
1The Mathworks, MATLAB Version 7.7, R2008b. Fits were determined at high Q either side of the

bragg peak independently to avoid asymmetry due to strain in the interference pattern impinging on the
estimate of the degree of coherence
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Figure 7.3: Measured intensity as a function of momentum transfer deviation along the
002 crystal direction (reciprocal space) demonstrating the 002 fringe visibility for 5 dif-
ferent Bragg peaks from the first ZnO nanocrystal (Left). The data points sampled are
highlighted (Right) as a green solid line through the measured diffraction data, blue iso-
surface
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Figure 7.4: Lorentzian fits to the maxima and minima of the fringe system generated along
the 002 crystal direction measured at the 100 Bragg reflection

reflections can be found in Appendix 1 E.1. A Gaussian function fitted to the coherence

function has a Half Width Half Maximum (HWHM) of 0.66±0.02µm, we take this width

as an estimate of ξL it implies a wavelength spread; ∆λ/λ=1.07x10−4±0.16x10−4 and is

within the expected range (1.0-2.9x10−4) for a Si(111) monochromator at 9keV [7,38].

The effect of a partially coherent illumination on the ability of the phasing algorithms

to reconstruct the electron density was investigated. The direct space reconstructions of

both 010 and 101 reflections of crystal 1 are shown in Figure 7.6, the raw data possess

visibilities of 96±3% and 25±10% representing both the fully coherent (010) and partially

coherent (101) geometries. The coherent 010 reconstruction has well defined facets with

a uniform amplitude distribution and the region of low amplitude in the bottom right

corner was attributed to a strained region of the crystal. The partially coherent 101

reconstruction has one well defined facet and one rough end and is an incorrect solution

for the diffraction data according to the uniform morphology identified using SEM and
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Figure 7.5: Visibility as a function of OPLD for 16 Bragg reflections measured from 2
separate ZnO crystals.
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Figure 7.6: Corresponding isosurface and scalar cut planes of the reconstructed density of
crystal 1 using diffraction data surrounding the 010 and 101 Bragg reflections, as labeled.

fully coherent reconstructions. The spacing of interference fringes defines the size of the

object and the number of fringes defines the resolution of the image obtained. When this

information has been smeared out by a lack of coherence, the phasing algorithm seeks a

solution which would mimic this behavior. Practically, this could manifest as a crystal

with two facets along the direction of interest, one flat and the other rough.

Scanning Electron Micrographs and fully coherent Bragg reflections confirmed the crystal

size for the two reflections to be 4.08µm x 1.10µm. In the 010 case the reconstruction

accurately reproduced the crystal dimensions and in the 101 case the reconstruction was

less than half the size of the actual crystal (2µm) with the high amplitude region super-

imposed on a lower amplitude correct representation of the crystal. Features of this type

were coined ‘hot spots’ and were first predicted by Vartanyants et al. [190], and observed in

2D reconstructions from Au nanocrystals by Williams et al. [212]. As the fringe visibility

drops, the algorithm finds a superposition solution of a low amplitude fringe pattern and

high amplitude fringeless pattern creating a ‘double image; this appears in direct space as
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a low amplitude full size representation of the object and a superimposed, foreshortened

‘hot spot. From the five measured reflections only two, the (100) and (010) are sufficiently

coherent to reconstruct an accurate representation of the crystal.

7.2 Combining reconstructions

The independent reconstructions of the (100) and (010) can be combined to generate a two

dimensional displacement field. In order to measure multiple Bragg reflections a crystal

must be manipulated over large angles with high precision in order to satisfy different

Bragg conditions. Therefore the reconstructions are misoriented in the lab reference frame

in both morphology and consequently voxel axes. Hence a reverse rotation around the

goniometer angles measured at each reflection brought the reconstructions into alignment,

an interpolation was required to resample the rotated solution onto a uniform voxel grid

(50nm voxel dimensions) and finally a real cross correlation (amplitude only) was required

to overlay the reconstructions via a simple translation (ambiguous solution).

Reconstructed amplitudes for the two reflections are shown in Figure 7.7 and phases in

Figures 7.8 and 7.9 for the (010) and (100) respectively, they were produced using the

Shrinkwrap method with a scaled version of the autocorrelation function of the diffracted

intensities as a starting point [138].

For analysis of the reconstructions it is necessary to employ the Bravais-Miller (h, k, i, l)

notation, see Appendix B.4. We define the facet in contact with the substrate (1̄,0,1,0)

and the smallest end of the crystal the (0,0,0,1̄).
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Figure 7.7: Corresponding 3D renders of the amplitude of the reconstructed density from
diffracted intensities measured at the 100 and 010 Bragg reflections, as labeled. Note a
manual rotation was used to compare the two reconstructions.
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Figure 7.8: From left to right (numbered, 1-5) and top to bottom (letters, A-D) Scalar
cut planes through the phase of the (010) reconstruction perpendicular to the c-axis at
200nm intervals along the length of the rod beginning at the smallest end of the tapered
rod, A1, and finishing at the largest end, D5.
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Figure 7.9: From left to right (numbered, 1-5) and top to bottom (letters, A-D) Scalar
cut planes through the phase of the (100) reconstruction perpendicular to the c-axis at
200nm intervals along the length of the rod beginning at the smallest end of the tapered
rod, A1, and finishing at the largest end, D5.
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A distinct low amplitude region presents in both reconstructions at the smallest end

(0,0,0,1̄) of the tapered large aspect ratio microcrystal. In the 100 reconstruction a region

of missing density was observed on the (1,0,1̄,0) facet and on the (1,0,1̄,0) and (0,1,1̄,0) for

the 010 reconstruction. The missing density extends through to the base (1̄,0,1,0) facet

of the 010 reconstruction. The 100 (1̄,0,1,0) facet is not as well defined near the (0,0,0,1̄)

facet beneath the low density region.

The phase maps shown combine 15% amplitude thresholded data, hence regions of zero

phase are found in the centre of the reconstruction where very low amplitudes were recon-

structed. The phase maps from the 100 reconstruction at 200nm intervals along the c-axis

show a consistent phase feature on the base of the crystal, (1̄,0,1,0) facet and corresponds

to a compression of the 0.81Å relative to the equilibrium lattice which decays to 0.20Å

over 150nm depth. An expansion was observed consistently across the (1,0,1̄,0) facet, over

a 1.4µm section approximately 800nm from the (0,0,0,1̄) facet of the crystal a region of

missing amplitude was observed accompanied by a large phase feature. In B2,B3,B4 a

wrapping of the phase was not observed but is inferred, the phase increases radially to-

wards the (1,0,1̄,0) facet and in the region of low amplitude switches to a large negative

phase. Upon relaxation of the phase constraint the algorithm still failed to reconstruct

this region the total phase range required was ±2.5rad. If the phase were to wrap a full

2π variation would be expected, therefore the crystal is highly strained with regions of

both expansion and compression in this region. Either side of the missing density the

phase gradient relaxes and a solid density observed with a well defined phase feature. To-

wards the (1,0,1̄,0) facet the expansion is accompanied by a compression on the adjoining

(1,1̄,0,0) and (0,1,1̄,0).
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The 010 reconstruction shows a similar missing density over a 1.8µm region 0.6µm from

the (0,0,0,1̄) facet. An expansion was observed consistently on the left hand side of the

base of the crystal. Both expansions and compressions are observed in the region of

low amplitude. B5, C1-6 and D1-6 all demonstrate oscillation in the phase consistent

with artifacts observed by fienup [65], in fienups case striping was observed in different

directions from different random starts, here oscillations are observed parallel to each facet

and correspond to the resolution limit of the reconstructed data.

We expect a substrate-crystal strain, but that observed on the top facet of the crystal is

likely due to damage caused in the manipulation of the sample. A plastic deformation has

left large strain gradients in the crystal. In the SEM image a small piece of crystal is seen

at one end of the rod, this feature presented after micro manipulation and is unique to

this sample and was not observed post oxide growth.

The consistency between the two reconstructions of the defect structure allows us to con-

fidently (overcome ambiguous solutions) superimpose the reconstructions to generate a

2D displacement field. The result of the rotation, realignment, resampling and overlay

operation is shown in Figure 7.10.

The agreement between the alignment of the two reconstructions is qualitatively very good.

A slight gradient along the length of the crystal was observed, the resolution of the data

is approximately 65nm in the hexagonal plane and 200nm perpendicular (c-axis), a direct

space voxel has dimensions (50nm in each dimension) so the translation error is lower

than the resolution and should not impinge on the result. The two displacement fields are

then combined using ‘BuildDField.py’ written by Marcus Newton, the two dimensional
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Figure 7.10: 3D renders of the 100 (maroon) and 010 (cream) reconstructions superim-
posed via a rotation alignment, interpolation and shift operation.

displacement field was calculated and three 2D slices taken through the defect region of

the crystal, see Figure 7.11.

The 2D displacement field highlights the compression at the substrate and a large displace-

ment either side of the low amplitude defect region providing a practical demonstration of

the displacements observed in the phase maps previously. The maximum displacements

are 1.03Å 0.72Å and 0.88Å for the 2D slices (left to right).

7.3 Summary

Multiple CXDI Bragg reflections from a single crystal have been measured for the first time

by manually isolating a crystal. We have shown that the longitudinal coherence length

can be determined by measuring the visibility of the fringe system (generated by the

illumination of a finite crystal with x-rays) relative to the projection of the corresponding
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Figure 7.11: 2D displacement fields at the defect site and ±300nm constructed perpendic-
ular to the c-axis of the crystal, the displacement direction is identified by the cone shaped
arrows, the magnitude of the displacement vector is defined by their size and emphasised
by their colour for consecutive images. The maximum displacement in each plane is 1.03Å,
0.72Å and 0.88Å.

dimension onto the Q-vector. At the Advanced Photon Source (APS) 34-ID-C beamline

the longitudinal coherence was shown to be gaussian shaped and the coherence length

measured to be, ξL=0.66±0.02µm. The phase retrieval from partially coherent Bragg

reflections was compromised by the visibility of the observed fringe pattern. False solutions

resulted and led to features in the reconstructions such as hot spots of amplitude and

combinations of well defined and rough facets deemed incorrect by the reconstructions

from the fully coherent geometries. It is vital to know the coherence lengths of the incident

radiation and ensure they are larger than the OPLD for any measured Bragg reflection.

This confirms that any smearing present in the diffraction pattern is a property of the

crystal alone, i.e due to internal strains.

Two fully coherent illumination Bragg peaks (010) and (100) were combined to produce

a 2D displacement field. In this case the slight taper along the length provides sufficient
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asymmetry to identify the correct orientation of the crystal characterised previously by

SEM. The observed defect structure was confirmed by both independent reconstructions

raising several avenues for further investigation.

By rotating, translating and interpolating the two reconstructions onto a regular cartesian

grid, independent reconstructions could be used to seed the phasing operation for different

Bragg peaks, the method implemented in Section 6.2.5. Consideration would have to be

made for the components of the displacement field observed in the additional reflections.

In the case where the measured displacement fields are orthogonal only the crystals shape

can be applied as a priori constraint.

Multiple Bragg reflections will also play a significant role validating strain fields observed

in crystals, independent reconstruction provide an acid test of reconstructed features.

The results discussed were obtained for large crystals in an unfocussed mode of operation,

ensuring the crystal was illuminated was relatively easy with a 100µm x 100µm 2. Moving

to the nanoscale requires a focused beam and a more precise method for crystal alignment

has been realised via the integration of a confocal microscope into the setup, an approach

outlined in Section 3.5. Manipulation with this level of precision opens the CXDI technique

to 3D displacement fields and regular recovery of the full 3D strain tensor assuming the

longitudinal coherence is sufficient for all reflections [138]. Additionally the strain fields

in two different crystal structures on either side of an interface could be achieved.

2Scored lines on the substrate provide features large enough to identify to guarantee illumination of the
crystal
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Chapter 8

Conclusion

8.1 Zinc Oxide Nanocrystal Synthesis

The aim of the ZnO synthesis was to grow uniform ZnO nanocrystalline samples suitable

for device applications and characterisation with CXDI. It was shown in Chapter 3 the syn-

thesis method produced high yields of equiproportioned single crystal ZnO nanorods (up

to 100%) loose on substrates. A source material of Zinc Carbonate to Carbon weight ratio

10:1 heated to 900◦C in an atmosphere of Argon (6.4% Oxygen) deposits ZnO nanorods

on a substrate positioned at 150◦C. The crystals were successfully adhered to substrates

via the growth of a thermal oxide layer. Zinc diffusion was observed from the crystals into

the SiO2 substrates. Other morphologies including the tetrapod and nanowire were fabri-

cated, however their growth parameters were not optimised for further experimentation.

As the device applications for ZnO nanocrystalline samples continues to grow the need for

sensitive characterisation increases as the origins of the variation of properties are sought.
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The potential for further study is huge and will be discussed after the CXDI results have

been reviewed.

8.2 Coherent X-ray Diffraction Imaging

8.2.1 Experiments

In Chapters 4 and 5 we provided a detailed description of the methods employed to solve

the phase problem specific to CXDI in the Bragg geometry. The data processing has been

advanced to a state whereby a diffraction pattern can be measured and within half an

hour of acquisition a first rough reconstruction of the crystal can be achieved1. At which

point a judgement on the quality of the crystal is possible for further measurements, i.e

higher resolution analysis, in-situ measurements or even moving onto a new sample. The

choice of the crystal is the first of many assumptions made from data collection to solution

generation and objectivity is difficult.

CXDI was implemented in an unfocussed mode of operation to study the solid state

reaction and attempt to dope the ZnO to tailor their properties. A solid state reaction

between Fe and ZnO was observed repeatably upon annealing, the onset of the reaction

was observed after being held between 10 and 20 minutes at 400◦C. An inability to measure

the illuminated crystals temperature accurately prevented the onset of the reaction being

accurately identified. Two dimensional phasing was used to identify variations around the

Bragg peak, these proved unsuccessful due to thermal expansion making it very difficult
1A typical synchrotron experiment allocates between 3-6 days of continuous beam access, prior to this

project analysis was carried out after the allocated time
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to track and measure the same slice of the reciprocal space. CXDI measurements were

taken at a reference temperature of 300◦C where the reaction was known not proceed

from experience. The sample was quenched to the reference state after each annealing

step to maintain objectivity in the phasing process and ensure the reaction had ceased

during measurements. The origins of the observed phase modulations was not identified

and refraction effects were insufficient to account for them. Formation of secondary phases

as opposed to integration into the ZnO lattice, Zn1−xFexO, was expected.

Experiments with Ni and Co depositions produced inconsistent results. The Ni depositions

were likely to produce the smallest observable change in the crystals due to its low solubility

in ZnO, yet showed a large change in the diffraction data. This confirmed a vigorous

reaction process than diffusion alone. Co was expected to produce the largest change

yet very little variation was observed in the diffraction patterns. Solid state reaction

experiments with Ni did not create reproducible changes in the crystal structure.

The measurement of multiple Bragg reflections from an isolated crystal was demonstrated

for the first time. Improvements in the sample fabrication method allowed a single ZnO

crystal to be isolated and adhered to a substrate in a known location, SEM characterisation

of the orientation allowed multiple Bragg reflections to be measured.

We have shown that the longitudinal coherence length can be determined by measuring

the visibility of the fringe system (generated by the illumination of a finite crystal with

x-rays) relative to the projection of the corresponding dimension onto the Q-vector. At

the Advanced Photon Source (APS) 34-ID-C beamline the longitudinal coherence was

measured to be, ξL = 0.66±0.02µm. In the phase retrieval process false solutions resulted
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from a partially coherent illumination and led to features in the reconstructions such

as hot spots of amplitude and combinations of well defined and rough facets deemed

incorrect by the reconstructed solutions from the fully coherent Bragg geometries. Our

work confirms the notion that it is vital to know the coherence lengths of the incident

radiation and ensure they are larger than the OPLD for any measured Bragg reflection.

This also confirms that any smearing present in the diffraction pattern is a property of

the crystal alone, i.e due to internal strains. This result will have consequences for thin

film characterization methods, films with a thickness close to the longitudinal coherence

in the specular geometry will result in smearing in the non-specular reflections (depending

on the size of the beam footprint and penetration depth).

The identified fully coherent Bragg reflections were combined to produce a 2D displace-

ment map of the measured crystal. The independent reconstruction of the reflections

showed commensurate phase structures. The integration of a confocal microscope into

the beamline has opened up CXDI to regular 3D displacement field imaging of nanocrys-

tals and led to the recovery of the full 3D displacement field and strain tensor in a ZnO

rod [138].

CXDI Outlook

The level of control now available gives CXDI the capability to characterise individual

devices during operation and study the impact of fabrication methods such as FIB and

e-beam lithography currently used to fabricate these morphologies into devices. The im-

proved sample manipulation for multiple Bragg reflections potentially allows the inves-



171

tigation of both sides of a crystalline interface i.e. ZnO tetrapod zinc blende core and

wurtzite arm interface, and the strains created in buried structures by host materials.

The additional advantages provided by independent measurements of the same crystal for

the phase retrieval will be discussed in the next section. For further in-situ experiments a

separate mobile vacuum chamber could add the multiple Bragg reflection method to aid

the characterisation and speed up the sample loading process.

8.2.2 Phase Retrieval

While it is clear there is no definitive general phasing method that solves every dataset, to

date attempts at phasing approximately 160 different datasets have identified no obvious

advantage between specific algorithms or their order of implementation. The general

approach which guarantees a finite solution was described in Chapter 5, some form of HIO

algorithm (30-50 iterations) to identify a solution followed by an a ER type algorithm

(10-20) to clean up the result. This provides a suitable starting point from which to hone

the phasing parameters. The acknowledgement that the phase retrieval is specific to each

problem means objectivity in the phase retrieval process is lost to an extent. We aimed to

maintain objectivity and identified several generic problems which manifest in the phasing

retrieval process.

The choice of support provided the largest variation in results in the phase retrieval pro-

cess. When too large multiple non ambiguous solutions result and when too small the

support defines the shape of reconstructed object and creates false features in the recon-

structions. Supports should remain incommensurate with the shape of the object once
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an initial solution has been obtain, at which point the support can be tightened to the

minimum, within the resolution of the crystal in each dimension thus should match its

shape closely. Where possible the support should remain symmetric as not to favour par-

ticular orientations of solution (unless prior knowledge can be applied), it is conceivable

an asymmetric support will favour one of two equivalent enantiomorph solutions.

As we have discovered from the multitude of solutions created from random starting points,

a priori information is very important. It begs the question; How valid is a random start-

ing point? The interference pattern around a Bragg peak suggests the crystal structure

is not random, the application of a phase constraint adds weight to this argument, if

the variation is small and it is constrained to be small the reconstructions improve. The

choice of starting point remains debateable. The illuminated crystals are approximately

single crystal (flat phase object) therefore to begin from a set of random phases effectively

loosens the constraints on the solution. In the case of several random starts in order to

correctly average the solutions and scale them ambiguous solutions must be indentified and

accounted for via cross correlation, for twin and shift identification, and the phase factor

offset to adjust for the arbitrary phase origin. When a crystal was tracked through some

form of processing, subtle variation in the diffraction patterns are seen. The correspond-

ing changes in direct space should be identifiable by phasing all datasets in the same way,

using the same support, same phase constraint if there is one and when the crystal expe-

riences the same conditions2. Starting independent phasing operations on each diffraction

pattern in this way proved inconsistent. The reconstructions did not reproduce amplitude

distribution and phase modulation for every annealing step although some agreement was
2Only applicable when the CXDI measurements are all obtained at a reference point, i.e the same ex-

perimental conditions, hence variation in the recontructed solution is independent of the phasing operation
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observed >50%. To solve this problem the introduction of further a priori knowledge in

the form of seeds proved relatively successful. A combination of the guided HIO algorithm

and the Shrinkwrap algorithm produced agreement between reconstructions of consecu-

tive annealing steps. Sources of discrepancy were identified in the data handling stages

and minimised by centering the data correctly and intensity unrelated to the illuminated

crystal removed. Constant phase modulation due to refraction of the scattering x-rays

was corrected for.

Several algorithms were introduced and discussed. Their best attributes were harnessed for

the analysis presented in this thesis. The potential drawback of the Shrinkwrap algorithm

was identified when the autocorrelation function was used as the initial support, the SW

algorithm always produced the same solution from random starting points. The constraints

applied initially were very loose and quickly tighten and force the algorithm into a local

minimum where the change implemented by the algorithm is too small to escape. The

obvious advantage of the PC-HIO is the additional constraint when required and supports

the argument of a flat phase object as a starting point. The PO-ER algorithm allows

amplitude to exist outside the support so provides a better representation of the noise in

the data.

Outlook

There are many avenues of investigation to pursue with regards to the phase retrieval

operation. The Shrinkwrap algorithm would improve its objectivity if it were to shrink

the support and symmetrize it about the origin. A sample with 5 fully visible (100%) Bragg
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reflections would provide a test bed for the reliabiility of the individual reconstructions,

like those discussed in Chapter 7 [138]. Each reconstructed Bragg reflection will sample

the same components of the displacement field in the crystal as other reflections hence

provide an independent test of the reliability of the reconstructions.

8.2.3 Laser Experiments

Preliminary experiments have been completed for pump probe CXDI measurements build-

ing on the groundwork in this thesis. The premice for the measurement is to maintain a

crystal in an x-ray beam, excite it in some way using laser light and measure it during

its excited state. A laser of frequency (88MHz) at beamline ID-7 is commensurate with

the frequency of x-ray pulses produced by a 324 bunch mode operation at the APS. An

accurate alignment of the pulses within 20picoseconds allows us to probe the distortion

produced by the incident laser. In this case a thermally induced shockwave. The experi-

mental set up, a ZnO crystal illuminated with a 800nm laser, was measured at incremental

offsets from alignment up to the expected dissipation time of a shockwave produced by the

incident radiation. In this case the ZnO is transparent to the laser due its large band gap

so a thin layer of Ni was deposited to absorb the laser light and initiate the shockwave.

Cut planes through the same slice of phases are shown for 3 offsets at 0ps, 100ps and 200ps

3 in Figure 8.1. The symmetric shape of the crystal makes it difficult to assess which twin

is actually the correct solution. The substrate may in fact reside at the other end of the

rod. The position defined is based on our interpretation of the phase modulation. At 0ps

a band of phase was evident in the center of the rod, corresponding to an expansion of
3Corresponding datasets DS144, DS146 and DS148 for the respective 0ps, 100ps and 200ps offsets.
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approximately 3
8π relative to the rest of the crystal, this distortion was present throughout

the hexagonal cross section of the crystal. The band at the center of the crystal suggests

the offset between laser pulse and x-rays is not as accurate as expected. Thus if we expect

the shockwave to propagate through the rod in approximately 200ps from the top facet

the third reconstruction will show very little distortion. At 100ps and 200ps a band of

positive phase was observed at the top of the crystal, the overall phase modulation in the

crystal is 1
8π larger in the 100ps reconstruction, suggesting a distortion was still present.

This analysis suggests the original state of the crystal has been measured at an offset of

200ps and a distinct phase structure was already present in the crystal. At 100ps a slight

deviation in the phase was seen near the substrate throughout the crystal which may relate

to the tail of the shockwave passing through the crystal and the top end has returned to

its original state.

Further experiments are required to confirm the phase modulation observed. This exper-

iment outines the potential for CXDI experiments in the Bragg geometry in pump probe

modes of operation looking at phenomena on the sub nanosecond timescale and empha-

sises its potential with the soon to be realised fourth generation X-ray Free Electron Laser

sources.
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Figure 8.1: The reconstructed solutions at a laser to x-ray offset of 0ps, 100ps and 200ps,
the translucent solid object shows the direct space amplitudes, the black bar represents
the expected location of the substrate. Cut planes through the phase are shown at regular
intervals along the beam direction, the crystals dimensions are 1.5µm x 0.5µm.
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Appendix A

A.1 Asymmetric Sample Heating

The gradients observed are a result of non uniform contact between the clamp and the

substrate.

Figure A.1: Silicon wafer mounted and heated to approximately (a) 600◦C and (b) 780◦C



178

A.2 Diffraction Geometry

The experiment itself requires an intimate knowledge of the sample orientation and detec-

tor position and orientation relative to the sample. The sample sits on kinematic mounts

with horizontal translations both parallel (z) and perpendicular (x) to the incident beam

(ki), where downstream and outboard translations are positive respectively and a vertical

translation (y). The kinematic mounts reside on a six circle diffractometer, five circles are

used, χ rotates around ki, θ a rotation about the surface normal and φ a rotation about

the x-axis. χ and φ are used to orient the sample perpendicular to the laboratory z axis

(i.e flat), relative to this a rotation of φ about the x axis and determines the incident

angle (α) of the beam. The 2D detector sits on an extendable arm aligned perpendicular

to the incident beam (ki) with rotation around both the surface normal (δ) and the x

axis (γ). Combination of φ, δ and γ define the θBragg − 2θBragg Bragg geometry for the

measurements.
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Figure A.2: Schematics of both top view and side view perspectives of the diffractometer
geometry, incident beam ki and refracted beam kf , detector rotations δ and γ and sample
rotations θ, χ and φ
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A.3 Convolution

The convolution theorem is useful, in part, because it gives us a way to simplify many

calculations. Convolutions can be very difficult to calculate directly, but are often much

easier to calculate using Fourier transforms and multiplication.

f ∗ g = f∗ ⊗ g (A.1)

F(f ⊗ g) = F(f).F(g) (A.2)

f ∗ g =
∞∑
m

f∗g (A.3)

The correlation theorem can be stated in words as follows: the Fourier tranform of a cor-

relation integral is equal to the product of the complex conjugate of the Fourier transform

of the first function and the Fourier transform of the second function. The only difference

with the convolution theorem is in the presence of a complex conjugate, which reverses

the phase and corresponds to the inversion of the argument u-x.
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A.4 Geometric Series

The geometric series is defined as a series with a constant ratio between successive terms,

an+1

an
, over the summation. When the series starts from 1 the sum can be written as

SN =
N−1∑
n=0

an =
1− aN

1− a
(A.4)

Where N →∞, the sum converges if |a| < 1, thus

S∞ = lim
N→∞

SN =
∞∑
n=0

an =
1

1− a
(A.5)

Geometric series are common in crystallography in the summation of phase factors.

Sn =
N−1∑
n=0

eiQr.n =
1− eiQr.N

1− eiQr
(A.6)

=
(e−i

Qr.N
2 − ei

Qr.N
2 )

(e−i
Qr
2 − ei

Qr
2 )

.
ei
Qr.N

2

ei
Qr
2

=
sin(NQr2 )

sin(Qr2 )
.ei

(N−1)Qr
2
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A.5 Wave interference calculations

A.5.1 Two Point Scatterers

Consider two equivalent waves (ψ1, ψ2) scattered from electrons, one at the origin and the

other a position r, are of the form,

ψ1 = Aeik.x ; ψ2 = Aeik.xeiQ.r (A.7)

where A is the amplitude, k the wavevector and eiQ.r is an additional phase factor.

The total scattered amplitude at a point is then written,

Ascattered(Q) = ψ1 + ψ2 = Aeik.x(1 + eiQ.r) (A.8)

and the observed intensity,

I(Q) = |Ascattered|2 = Ascattered.A
∗
scattered (A.9)

= A2eik.xe−ik.x(1 + eiQ.r)(1 + e−iQ.r)

= 2A2(1 + cos(Q.r))

Plotted in Figure 2.5(a) where Q is parallel to r.
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A.5.2 Finite Crystal

A finite crystal is built from the convolution of a lattice and a unit cell. Assuming a

perfect crystal lattice and a perfectly coherent illuminating beam the scattered amplitude

can be written

Ascattered(Q) = F (Q)
lattice∑
Rn

eiQ.Rn (A.10)

where F(Q) is the structure factor. The structure factor describes the Fourier Transform

of the electron density inside the unit cell. As F(Q) is a constant we simply solve the sum

using a geometric series approach, see Appendix A.4, assuming a finite crystal of N1,N2

and N3 unit cells along a,b and c respectively the summation becomes

lattice∑
Rn

eiQ.Rn =
N1−1∑
x=0

N2−1∑
y=0

N3−1∑
z=0

eiQ.(xa+yb+zc) (A.11)

=
sin(N1Qa)
sin(Qa)

.ei
(N1−1)Qa

2 .
sin(N2Qb)
sin(Qb)

.ei
(N2−1)Qb

2 .
sin(N3Qc)
sin(Qc)

.ei
(N3−1)Qc

2

The intensity is therefore proportional to

I(Q) ∝
sin2(N1Qa

2 )

sin2(Qa2 )
.
sin2(N2Qb

2 )

sin2(Qb2 )
.
sin2(N3Qc

2 )

sin2(Qc2 )
(A.12)

This is similar to the ‘sinc’ function and demonstrated in 1D in Figure 2.5 (b) and (c).
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A.6 X-ray Free Electron Laser sources

A Free Electron Laser (FEL) is a laser that shares the same optical properties as conven-

tional lasers. Emitting a beam consisting of coherent electromagnetic radiation capable

of reaching high power. The European XFEL1 expects to produce a brilliance billions

times stronger than third generation synchrotron at its brightest intensity and 104 times

brighter on average across the whole beam. Its operation is very different compared to

gas, liquid or solid-state lasers, which rely on bound atomic or molecular states, the ’free

electron’ term arises from the use of a relativistic electron beam as the lasing medium.

This gives them the widest frequency range of any laser type, and makes many of them

widely tunable, currently ranging in wavelength from infrared ISIR, Osaka University,

through to soft X-rays at the FLASH facility, at the Deutsches Elektronen-Synchrotron

(DESY) in Hamburg. The potential of FEL sources for CXDI has already been shown

by Chapman et al.; initially in the reconstruction of a test object [34] and later x-ray

holography of polystyrene spheres as they are vaporised by the incident beam [36]. The

proposed European XFEL will produce pulses of less than 100 femtoseconds providing the

time resolution to probe chemical and physical processes with precision yet to be achieved

by other characterization methods. The speed at which the measurements are taken is

problematic itself and there are many engineering hurdles to overcome, but the potential

in the fields of CXDI and Holography are clear [191].
1http://xfelinfo.desy.de/en/start/2/index.html
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A.7 Furnace cleaning procedure

The furnace system was cleaned with acetone and isopropanol and purged for a 30 minute

period to ensure the concentration of contaminants was reduced by a factor of 105 and is

calculated using equation A.13. The furnace took 36 minutes to reach 900◦C and growth

periods ranged from 1-20mins.

Cn = C0e
−Qflowt

V (A.13)

Cn = Concentration of dust particles and contaminants after time t C0 = Initial concen-

tration of dust particles and contaminants Qflow = Flow rate of gas (Nitrogen 500sccm)

t = Time V = Volume of furnace tube (2748sccm)
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Appendix B

B.1 Aliens reconstructed

Figure B.1: Example of reconstruction of cosmic ray strike total 7 pixels
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B.2 Initial Fe deposition annealing diffraction data

Figure B.2: Diffraction data at -1,0,+1 frames offset from the bragg spot at (a) 230◦C
(DS139)(b) 400◦C (DS147) for sample 115
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B.3 Cross Correlation output for Figure 6.5 A

The python script used to generate this output can be found in Appendix G.3.1

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence0dist0070_bd_54.sp4

Shift required to achieve best correlation: (7,5,-7)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence0dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (-3,8,-1)

Normal orientation had a stronger correlation, filename: 0.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence1dist0070_bd_54.sp4

Shift required to achieve best correlation: (-4,4,-5)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence1dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (8,15,-3)

Normal orientation had a stronger correlation, filename: 1.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence2dist0070_bd_54.sp4

Shift required to achieve best correlation: (4,4,-7)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence2dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (0,17,-1)

Possible Twin Identified, filename: 2.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence3dist0070_bd_54.sp4

Shift required to achieve best correlation: (2,3,-7)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence3dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (0,11,-1)

Normal orientation had a stronger correlation, filename: 3.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence4dist0070_bd_54.sp4

Shift required to achieve best correlation: (3,9,-2)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence4dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (1,8,-6)

Normal orientation had a stronger correlation, filename: 4.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence5dist0070_bd_54.sp4

Shift required to achieve best correlation: (-6,13,-5)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence5dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (8,3,-3)

Possible Twin Identified, filename: 5.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence6dist0070_bd_54.sp4

Shift required to achieve best correlation: (6,3,-6)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence6dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (-2,6,-2)

Possible Twin Identified, filename: 6.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence7dist0070_bd_54.sp4

Shift required to achieve best correlation: (-2,13,-4)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence7dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (6,4,-4)
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Normal orientation had a stronger correlation, filename: 7.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence8dist0070_bd_54.sp4

Shift required to achieve best correlation: (-4,12,-2)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence8dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (7,7,-6)

Possible Twin Identified, filename: 8.sp4

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence9dist0070_bd_54.sp4

Shift required to achieve best correlation: (2,8,-4)

FFTmethodCross Correlation between: shiftedSequence0dist0070_bd_54.sp4, Sequence9dist0070_bd_54Transpose.sp4

Shift required to achieve best correlation: (0,9,-4)

Possible Twin Identified, filename: 9.sp4
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B.4 Bravais-Miller index

The facets on ZnO can be referred to using a four coordinate {hkil} indexing system,

where h+ k = i, to distinguish all facets on a hexagonal crystal.

Figure B.3: Silicon wafer mounted and heated to approximately (a) 600◦C and (b) 780◦C
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Appendix C

C.1 The Shrinkwrap Method

The Shrinkwrap algorithm implemented was written by Marcus Newton and based on

Marchesini [123]. The implementation from raw data to phased solution is a three step

process, this will be introduced and modifications made outlined based on the experience

gained through data analysis.

C.1.1 Stage 1: Data Preparation

The data is prepared based on the handling methods described in Section 5.1, the data is

centered, aliens removed, buffered with additional voxels and binned to the oversampling

limit. This file will be named ‘BD-data.sp4’.

C.1.2 Stage 2: Initial Support Generation

Usage in terminal: python AutoArray2Support.py BD-data.sp4
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An automated method ‘AutoArray2Support.py’ was written to generate a support from

the autocorrelation function of the measured data. The autocorrelation function has a 2D

slice removed. An applied threshold produces a 2D solid shape. The 2D shape is copied at

every voxel in the third dimension where the brightest pixel in the 2D slice lies above the

defined threshold, the 2D shape is copied onto the brightest pixel. The result is a finite

3D object which approximately describes the autocorrelation function.

Scaling the Autocorrelation function to a percentage of the maximum allows a generic

value to e used for all datasets. The python script ‘AC diff percent.py’ carries out this

operation and the output viewed in Mayavi to optimise the threshold used

The user defined variables and typical values are:

Support Axis = 3
Support LengthThreshold = 30.0
Support WidthThreshold = 10.0
Support CrossSectionSmoothing = 0.5
Support Smoothing = 1.0

Choose Support axis

For high aspect ratio crystals choose axis approximately perpendicular to longest dimen-

sion. In reality you need to know something about your crystal and can be estimated by

the longest (pixel number) dimension of the autocorrelation function.

1 = x-axis (yz plane)
2 = y-axis (xz plane)
3 = z-axis (xy plane)

Choose Support lengthThreshold: (%)

This variable changes the dimension of the 3D object perpendicular to the plane of the
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chosen slice set by the Support axis variable.

Observe the autocorrelation function on a percentage scale, by decreasing threshold on

the isosurface when lobes begin to appear use this % as the threshold. Note, this variable

is dependent on the smoothing for the value defined approximately 20% more should be

added to this.

Choose Support widthThreshold: (%)

Effectively identical to Support lengthThreshold, a slightly larger threshold than set for

Support lengthThreshold ensures multiple 3D objects are not created as a support.

Choose Smoothing Parameters

Choose Support CrossSectionSmoothing = 0.5
Choose Support Smoothing = 1.0

The smoothing variables appear not to have a massive impact on the smoothness of the

support. Both use a c-program ‘Sp4ArraySmoothIPfft.c’ to convolve with a Gaussian of

width σ defined by the variable. This effectively increases the width of the 3D object

(Support CrossSectionSmoothing) and the length (Support Smoothing).

Once the correct variables have been identified and ‘AutoArray2Support.py’ run an Sp4Array

file is generated with a binary support built from the autocorrelation function.

C.1.3 Stage 3: Phasing

The final step carries out the phasing operation, tightening the support at every iteration.

Usage: python Shrinkwrap.py BD-data.sp4
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The python script in appendix G.2 has been modified to surpass stages 1 and 2. In this case

the starting support is generated using an alternate method however the phasing operation

remains the same. All associated variables are declared in the ‘ParamsShrinkwrap.py’ file.

A log file is generated with all user defined variables inputted, the additional input to the

support file is the raw centered intensities,The square root is taken to obtain the amplitudes

and a phasing operation initiated using the support file, the number of iterations are

defined by the variables (numERiter Initial and numHIOiter Initial). The solution is then

convolved with the a binary cube of the analysts choice which makes it larger and is then

smoothed, this new object commensurate with the solution is used as the new support.

The phasing operation is repeated and the number of iterations defined by the variables

(numHIOiter ShrinkWrap and numERiter ShrinkWrap), a new support is then generated

using the convolution method described in the previous step. The consistency between the

new support and the old support is tested, when this falls below the required consistency

the final phasing operation is carried out (numHIOiter Final and numERiter Final) and

all of the vtk files are generated for viewing in Mayavi.

The typical variables employed and their magnitudes are:

# Number of iterations of each algorithm with initial support
numERiter Initial = 2
numHIOiter Initial = 20

# Numer of ShrinkWrap iterations within each loop
numHIOiter ShrinkWrap = 10
numERiter ShrinkWrap = 2

# Number of iterations after the final support
numHIOiter Final = 20
numERiter Final = 5
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Choose Initial iterations

Initial iterations requires some finite object to begin support optimisation anything from

20-35 iterations of HIO and a few ER should be sufficient.

Choose Shrinkwrap iterations

Select the number of iterations of each algorithm during the support shrinking process,

the more you select the lower the probability of consistency being achieved.

Choose Final iterations

Arbitrary, could make equal to Initial iteration cycle, once the algorithm has decided on

a minimum it is likely to find it very quickly once the support has been shrunk, 20-35

iterations and a few ER is sufficient.

Self consistency variables and typical values:

# Self Consistence loop threshold value. Percentage value <1% is good.
SelfConsistenceThreshold = 1.0

# Self Consistency Smoothing variables for Sp4ArrayAverageIPfft:
AverageWidth = 3
AverageIter = 3

# Self Consistency Smoothing variables for Sp4ArraySmoothIPfft:
SmoothSigma = 0.35

# Self Consistency data cutoff threshold. 20.0 is normal
Array2SupportThreshold = 19.5

Choose SelfConsistenceThreshold

This value defines the variation between supports for shrinking cycles, a value below 1% is

sufficient to achieve a reasonable reconstruction, the lower this variable the longer it will
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take to converge to a consistent solution if at all. A 10 iteration limit has been placed on

the shrinking process, it can also be manually exited via keyboard command e.

Choose SelfConsistencySmoothing variables

The AverageWidth is the size of the cube to convolve the solution with, as you increase this

you decrease the size of the support, the required purpose of this operation is to broaden

the support. The AverageIter is the number of times to carry out the convolution.

Choose SmoothSigma

The width of the Gaussian with which to smooth the support.

Choose Array2SupportThreshold (%)

The percentage threshold at which to define the function to be the support.
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C.2 Fe deposition: Preliminary phasing steps

The average reconstructions demonstrated in Figure C.1 does not include a phase offset

correction.

Figure C.1: From Sample 139c for DS54, DS55, DS59, DS61, DS64, at reference temperature
292◦C, after a 1 minute anneal to 400◦C, and additional steps of 5, 5 and 10 minutes.
(A) 3D isosurface renders for average solutions from random starts and copy of support
phased solutions for each of the datasets, (B) the reconstructions after further support
optimisation with the Shrinkwrap algorithm
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Appendix D

D.1 Differential Phase Map

Figure D.1: The observed difference map between two images, the initial state, f0(r),
and the final state after a small change in phase in an isolated region, f1(r). Where
the corresponding amplitudes and phases are (A0, α0) and (A1, α1) respectively and the
modulus of the difference (∆ DM) the observed difference map

The differential phase map applies for a small change in a crystal. The crystal is measured

in its initial state f0(r) and after an induced change f1(r), for the majority of the crystal
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f0(r) ' f1(r) except for a local region of displacement.

f0(r)− f1(r) = F−1{F0(q)− F1(q)} (D.1)

where F and F−1 represent for Fourier Transform and its inverse respectively. When the

change is small the measured intensities are approximately equal, I0(q) ' I1(q), hence

the measured amplitudes (
√
I0,1) and phases (α0,1) are approximately equal. We can

separate the displaced region through subtraction and view as a differential phase map

(the modulus of the difference), see Figure D.1. and rewrite equation D.1 as:

f0(r)− f1(r) ' F{
√
I0 − I1e

iα0(q)} (D.2)

' F{
√
I0 − I1e

iα1(q)} (D.3)

The python scripts were developed by Dr. Moyu Watari and the visualisation module

for Mayavi was developed by Dr. Ross Harder. The method is very sensitive to small

variations in phase between consecutive diffraction patterns.
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Appendix E

E.1 Visibility of Bragg reflections from second ZnO crystal

A total of 11 Bragg reflections from a second ZnO crystal of dimensions 1.6µm in length

and 1µm in width were measured. The extracted lines of data corresponding to the 002

crystal direction in reciprocal space are shown in Figure E.1.
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Appendix F

F.1 Ni deposition diffraction data

Diffraction data obtained from annealing steps on ZnO rods with a layer of Nickel deposited

on them.

Figure F.1: Cut planes and isosurface renderings of the diffraction measured upon anneal-
ing steps for Sample 115 Ni
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Figure F.2: Cut planes and isosurface renderings of the diffraction measured upon anneal-
ing steps for Sample 123 Ni
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F.2 Co deposition diffraction data

Diffraction data obtained from annealing steps on ZnO rods with a layer of Cobalt de-

posited on them.

Figure F.3: Cut planes and isosurface renderings of the diffraction measured upon anneal-
ing steps for Sample 113 Co
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Figure F.4: Cut planes and isosurface renderings of the diffraction measured upon anneal-
ing steps for Sample 115 Co
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Appendix G

G.1 Basic Phasing Operation

Documented Python scripts for phasing operations. ‘Phase.py’ file runs all other programs

internally and are separated for ease editing. Adapted from scripts written by Ross Harder.

G.1.1 PhasingParams.py

#########################################################################

# Variables file required to run Phase.py phasing file

#########################################################################

# import the required libraries

import math

# Constants required for calculations

pi=math.pi

deg2rad = pi/180.0000

phasingparamsexecuted=True

#########################################################################

# Datafile identifier no.

#########################################################################

SequenceNumber=0 # File identifier, ends up in filename

scaleArrayPercentAmps=True # Scale the output amplitude array

#########################################################################

# Data Preprocessing

#########################################################################

# Define the min and max of the data amplitudes that are used in the phasing

minthresh = 50

maxthresh = 9000000000

# Set to true to output the data in various file formats

outputdatavtk=True

outputdataspe=True

outputdatasp4=True

# If True the program will exit after the data preparation stage

stopdataprep=False

#########################################################################

# Phasing Parameters

#########################################################################
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beta = .9

#########################################################################

# Iteration variables for each Algorithm run in the phasing operation

#########################################################################

numHIOiter = 50

numERiter2 = 20

ID=’\%dHIO\_\%dER’\%(numERiter1,numHIOiter,numERiter2)

#########################################################################

# The Phase Constrained HIO phase constraint must be defined here when used.

#########################################################################

phmin = -pi*.500

phmax = pi*.500

#########################################################################

# Planes defined to enclose a 3D region of space defined as the support

#########################################################################

planeList=[]

planeList.append([19,0,0])

planeList.append([-19,0,0])

planeList.append([-2,37,-2])

planeList.append([2,-37,2])

planeList.append([0,0,16])

planeList.append([0,0,-16])

#########################################################################

# Detector and scan variables

#########################################################################

pixelx=2*(22.50e-6) #Total pixel size, binning factor x pixel size (in meters)

pixely=2*(22.50e-6) #Total pixel size, binning factor x pixel size (in meters)

arm = 2.145 #Detector distance from sample (units are m)

lam = 0.139 #Wavelength of x-ray (units in nm)

delta = 29.502 * deg2rad #Detector angle delta

gam = 14.7472 * deg2rad #Detector angle gamma

dth = 0.0025 * deg2rad #rocking curve step size in theta orientation

dtilt = 0.00 * deg2rad #rocking curve step size in tilt (phi) orientation

dpx=pixelx/arm #pixel size in radians

dpy=pixely/arm #pixel size in radians

#########################################################################
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G.1.2 Phase.py

#########################################################################

# Function for scaling amplitude in an array to a percentage of the maximum amplitude

def Scale(Array,ScaledArray):

c.Sp4ArrayGetModulus(ScaledArray,Array)

max=c.Sp4ArrayGetMax(ScaledArray,c.AMP)

nontuple=max[1]

factor = 100.0/nontuple

c.Sp4ArrayScale(ScaledArray,factor)

#########################################################################

# User defined variables:

# i) Iterations of Phase Constrained HIO + Phase Only ER

# ii) Support dimensions

# iii) Equipment positions for correct geometric correction

#########################################################################

# import the necessary libraries

import cstuff as c

import mycstuff as mc

import sys

import SequenceClass as sc

import vtkStructuredGridMaker as vs

import vtkImageImportFromArray as iia

import vtk

import SpeFile as spe

import math

import os

# Generate Sp4 arrays

diffData=c.Sp4Array()

dDcrop=c.Sp4Array()

supcrop=c.Sp4Array()

support=c.Sp4Array()

NewCoords=c.Sp4Array()

# execute necessary python scripts

execfile("phasingparams.py")

execfile("DataPrep.py")

n=SequenceNumber

#########################################################################

# Update log file

#########################################################################

list = [’File Identifier =\%d \n’\%n,’Raw Data file: BD-data-’+fID+’.sp4\n’,’Support \n’]

stringPlanes=’’

for i in range(len(planeList)):

stringPlanes+=’\%d \%d \%d\n’\%(planeList[i][0],planeList[i][1],planeList[i][2])

list+=stringPlanes

append=ID

s = fID1+’\%d\_Support\_’\%n+append

s1 = fID1+’\%d\_’\%n+append

list+= [’Datamask Threshold: \%d\n’\%(minthresh),’Copy of Support to start\n’,

’Filenames Produced:\n’,s1,’\n’,s,’\n’,’############################################\n’]

data = []

if os.path.exists("PhasingLog\%d.txt"\%n):

data=open("PhasingLog\%d.txt"\%n).readlines()

filename=’PhasingLog\%d.txt’\%n

outfile=open(filename, "w")

for i in range (len(data)):

outfile.write(data[i])

for j in range (len(list)):

outfile.write(list[j])

########################################################################

max=c.Sp4ArrayGetMax(bd,c.AMP) #find max amplitude in raw processed data array

dims=c.Sp4ArrayGetDims(bd)[1:] #find dimensions of raw processed data array

print max[1], dims #print for the user benefit, error checking

########################################################################

# Generate the support

########################################################################

string = ’supportconf\%d’\%(n) #support planes conf filename

file = open(string, ’w’ ) #open new conf file

file.write (stringPlanes) #write user defined planes to conf file
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file.close() #close conf file

c.Sp4ArrayInitAsOther(support,bd) #give the support the same attributes of the data array

c.Sp4ArrayZero(support) #zero the support

c.Makepoly(support, string, 0.0,0.0,0.0) #make a polygon for the support

c.Sp4ArraySave(support,’support.sp4’) #save the support file

########################################################################

# Run algorithms

########################################################################

execfile("Algorithms.py")

# run a set of user defined algorithms from a different file

# the phasing parameters and result are saved in a SequenceData structure

diffData=seqdata.dist #copy the current result to a new array

max=c.Sp4ArrayGetMax(diffData,c.AMP) #find the maximum amplitude

# save the maximum amplitude to the log file

outfile.write("Maximum Amplitude in reconstruction: \%d\n"\%max[1] )

########################################################################

# Crop data for reduced output

########################################################################

# locate the dimensions of the reconstructed object, needs to be a binary array

cropDims=mc.Sp4ArrayFindCropDims(support,3)

print cropDims #print the crop dimensions for the users reference

# Test that the crop dimensions calculated do not exceed the size of the data array

arrayDims=c.Sp4ArrayGetDims(support)

if (abs(cropDims[1]*2)+cropDims[2])>arrayDims[1]:

cropDims[1]=0

cropDims[2]=arrayDims[1]

if (abs(cropDims[3]*2)+cropDims[4])>arrayDims[2]:

cropDims[3]=0

cropDims[4]=arrayDims[2]

if (abs(cropDims[5]*2)+cropDims[6])>arrayDims[3]:

cropDims[5]=0

cropDims[6]=arrayDims[3]

print cropDims #print the crop dimensions for the users reference

# Extract an array surrounding the reconstructed object based on cropDims

c.ExtractArray(diffData, dDcrop, cropDims[1], cropDims[2], cropDims[3], cropDims[4], cropDims[5], cropDims[6])

c.ExtractArray(support, supcrop, cropDims[1], cropDims[2], cropDims[3], cropDims[4], cropDims[5], cropDims[6])

########################################################################

# Generate a coordinate system

########################################################################

# get the cropped array dimensions

size1 = c.Sp4ArrayGetDim(dDcrop,0)[1]

size2 = c.Sp4ArrayGetDim(dDcrop,1)[1]

size3 = c.Sp4ArrayGetDim(dDcrop,2)[1]

# define the dimensions in real space

dx = 1.0/c.Sp4ArrayGetDim(diffData,0)[1]

dy = 1.0/c.Sp4ArrayGetDim(diffData,1)[1]

dz = 1.0/c.Sp4ArrayGetDim(diffData,2)[1]

# Generate a coordinate system in direct space

if dtilt ==0.0:

c.ThCoordTrans(NewCoords, size1, size2, size3, lam, delta, gam, dpx, dpy, dth,dx ,dy,dz,c.DIRECT)

print "theta rocking curve coordinate tranform"

elif dth == 0.0:

c.TiltCoordTrans(NewCoords, size1, size2, size3, lam, delta, gam, dpx, dpy, dtilt,dx,dy,dz,c.DIRECT)

print "chi rocking curve coordinate transform"

else:

print "dth/dtilt has been set incorrectly"

########################################################################

# Generate output files

########################################################################

# Ross Harder added the Q-vector output 3/08

# Generates a vtk file visualised with Glyph module in Mayavi

c.ShiftCoordOrigin(NewCoords, size1/2, size2/2, size3/2)

Qlabcenter1 = math.sin(delta)*math.cos(gam)*(2*3.14159265)/lam;

Qlabcenter2 = math.sin(gam)*(2*3.14159265)/lam;

Qlabcenter3 = (math.cos(delta)*math.cos(gam)-1.0)*(2*3.14159265)/lam;

ki=(0.0,0.0,(2*3.14159265)/lam)

kf= ( math.sin(delta)*math.cos(gam)*(2*3.14159265)/lam,

math.sin(gam)*(2*3.14159265)/lam, math.cos(delta)*math.cos(gam)*(2*3.14159265)/lam )
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vectorarr = vtk.vtkDoubleArray()

vectorarr.SetNumberOfComponents(3)

vectorarr.SetNumberOfTuples(3)

vectorarr.SetComponent(0,0,Qlabcenter1)

vectorarr.SetComponent(0,1,Qlabcenter2)

vectorarr.SetComponent(0,2,Qlabcenter3)

vectorarr.SetComponent(1,0,ki[0])

vectorarr.SetComponent(1,1,ki[1])

vectorarr.SetComponent(1,2,ki[2])

vectorarr.SetComponent(2,0,kf[0])

vectorarr.SetComponent(2,1,kf[1])

vectorarr.SetComponent(2,2,kf[2])

vectorpoints=vtk.vtkPoints()

vectorpoints.SetDataTypeToDouble()

vectorpoints.SetNumberOfPoints(3)

vectorpoints.SetPoint(0, (0.0,0.0,0.0) )

vectorpoints.SetPoint(1, (0.0,0.0,0.0) )

vectorpoints.SetPoint(2, (0.0,0.0,0.0) )

vectorgrid = vtk.vtkUnstructuredGrid()

vectorgrid.SetPoints(vectorpoints)

vectorgrid.GetPointData().SetVectors(vectorarr)

# Define filenames to save output files

s1=seqdata.filenameroot+"dist\%04d"\%seqdata.iterationscompleted+’\_bd\_’+fID

c.Sp4ArraySave(diffData,s1+’.sp4’)

s=seqdata.filenameroot+"\_Support"

# output calculated phases

dDphaseGM=vs.vtkStructuredGridMaker(NewCoords, dDcrop, c.PHASE)

dDphaseGM.WriteStructuredGrid(s1+’\_phase.vtk’)

# scale the amplitudes

ScaledArray=c.Sp4Array()

c.Sp4ArrayInitAsOther(ScaledArray,dDcrop)

Scale(dDcrop,ScaledArray)

c.Sp4ArrayCopy(dDcrop,ScaledArray,’’)

# output reconstructed amplitudes

dDampsGM=vs.vtkStructuredGridMaker(NewCoords, dDcrop, c.AMP)

dDampsGM.WriteStructuredGrid(s1+’\_amp.vtk’)

# output support vtk file

supampsGM=vs.vtkStructuredGridMaker(NewCoords, supcrop, c.AMP)

supampsGM.WriteStructuredGrid(s+’\_amp.vtk’)

# output Q vector vtk file

usgridwriter=vtk.vtkUnstructuredGridWriter()

usgridwriter.SetFileName(’Qvector.vtk’)

usgridwriter.SetFileTypeToASCII()

usgridwriter.SetInput(vectorgrid)

usgridwriter.Write()

# Remove following three lines if a datamask vtk file is not required.

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(datamask, c.AMP)

iimport.WriteImageData(’datamask_amp.vtk’)

#########################################################################
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G.1.3 DataPrep.py

#########################################################################

# Data preparation steps

#########################################################################

# import required libraries

import cstuff as c

import sys

import vtkImageImportFromArray as iia

import vtk

import SpeFile as spe

import math

# generate Sp4 arrays

bd=c.Sp4Array()

datamask=c.Sp4Array()

# test to ensure phasing parameters have been defined

if not phasingparamsexecuted:

execfile("phasingparams.py")

c.Sp4ArrayLoad(bd,datafilename) #Load the diffraction data

c.Sp4ArraySqrt(bd) #Square root the diffraction intensities

# Read the dimensions of the data array

size1 = c.Sp4ArrayGetDim(bd,0)[1]

size2 = c.Sp4ArrayGetDim(bd,1)[1]

size3 = c.Sp4ArrayGetDim(bd,2)[1]

# output vtk files if requested

if outputdatavtk:

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(bd, c.AMP)

cleandatafilename=fID+"Sequence\%i"\%SequenceNumber+"\_processeddata.vtk"

iimport.WriteImageData(cleandatafilename)

# output sp4 arrays if requested

if outputdatasp4:

cleandatafilename=fID+"Sequence\%i"\%SequenceNumber+"\_processeddata.sp4"

c.Sp4ArraySave(bd, cleandatafilename)

# set thresholds on the diffracted amplitudes

c.MinMaxThreshMask(datamask, bd, minthresh, maxthresh)

# place the data in wrap around format for correct Fourier transform operation

c.Sp4ArrayWrap(datamask)

c.Sp4ArrayWrap(bd)

#########################################################################
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G.1.4 Algorithms.py

#########################################################################

# Set up data structures

#########################################################################

# create a sequenceData structure to hold information about the reconstruction produced in phasing

seqdata=sc.SequenceData(SequenceNumber, ’./’)

# choose to initialise the algorithm with a random starting point or user defined starting point

c.InitializeSequence_COPY(seqdata, support)

c.InitializeSequence_dsRANDOM_REAL(seqdata, support)

#########################################################################

# Algorithms

#########################################################################

c.PhaseConstrainedHIO(seqdata, bd, support, datamask, beta, phmin, phmax, numHIOiter)

c.DoER_support(seqdata, bd, support, numERiter2)

# output the contents of the data structure

seqdata.Write()

#########################################################################
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G.1.5 AlienExterminate.py

#########################################################################

# Use to remove aliens from datasets

# Removes user defined cuboids / setting region defined to zero

# RectAlienRemoval(array,xmax,xmin,ymax,ymin,zmax,xmin)

#########################################################################

import cstuff as c

import mycstuff as mc

import sys

import vtkImageImportFromArray as iia

array=c.Sp4Array()

c.Sp4ArrayLoad(array,sys.argv[1])

# Apply multiple instances of the next line, drawing boxes around known alien scattering

mc.CuboidAlienRemoval(array,xmax,xmin,ymax,ymin,zmax,xmin) #

# Export the required files

c.Sp4ArraySave(array,’AlienRM’+sys.argv[1])

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(array, c.AMP)

iimport.WriteImageData(’alienRM_amp.vtk’)

#########################################################################
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G.2 Shrinkwrap Phasing Operation

The shrinkwrap code has been adapted to a single python file from a script written by

Marcus Newton.

G.2.1 ShrinkWrap.py

def Scale(Array,ScaledArray):

c.Sp4ArrayGetModulus(ScaledArray,Array)

max=c.Sp4ArrayGetMax(ScaledArray,c.AMP)

nontuple=max[1]

factor = 100.0/nontuple

c.Sp4ArrayScale(ScaledArray,factor)

#########################################################################%

# Performs phase reconstruction with a Shrink Wrapped support.

# For attended execution, the shrink wrap loop can be safely broken with user input character ’e’

# Inputs: AutoArray.sp4, Support.sp4

# Outputs: ShrinkWrap.log, Final.sp4, SupportSW.sp4, FinalCrop.sp4, SupportSWCrop.sp4, NewCoords.sp4,

# Object.vtk, Support_Initial.vtk, Support.vtk

%#

%# Usage:# python ShrinkWrap.py

%# c dependences: "cstuff": tree

%# c dependences: "mycstuff": Sp4ArrayThresholdRemoveLow.c, Sp4ArrayAverageIPfft.c, Sp4ArraySmoothIPfft.c,

%# Array2Support.c, Sp4ArrayAutoCrop.c.

%# python dependences: PhasingVariables.py

#########################################################################

# import required libraries

import cstuff as c

import mycstuff as mc

import sys

import SequenceClass as sc

import vtkStructuredGridMaker as vs

import vtkImageImportFromArray as iia

import math

import os

import time

import select

import tty

import termios

# generate the required arrays

InputArray=c.Sp4Array()

iD=’001’

Support=c.Sp4Array()

ScaledAC=c.Sp4Array()

DataMask=c.Sp4Array()

OutputArray=c.Sp4Array()

OutputArrayNew=c.Sp4Array()

FinalArray=c.Sp4Array()

NewCoords=c.Sp4Array()

FinalArrayCrop=c.Sp4Array()

SupportCrop=c.Sp4Array()

OutputArrayCrop=c.Sp4Array()

execfile("ParamsShrinkwrap.py")

# Load Centred Intensity Data

c.Sp4ArrayLoad(InputArray,sys.argv[1])

#########################################################################

# Generate Support

#########################################################################

c.Sp4ArrayCopy(Support,InputArray,’’)

c.Sp4ArrayFFT(Support,1,1)

c.Sp4ArrayWrap(Support)

supFN=’Support.vtk’

acFN=’AC_scaled.vtk’

Scale(Support,ScaledAC)

print c.Sp4ArrayGetDims(Support)

c.Sp4ArraySave(Support,’ACfunction.sp4’)
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mc.Sp4ArrayAC2Block(Support,Support_Axis,Support_WidthThreshold,Support_LengthThreshold,Support_CrossSectionSmoothing)

mc.Sp4ArraySmoothIPfft(Support,Support_Smoothing)

mc.Array2Support(Support,0.000001)

c.Sp4ArraySave(Support,’Support.sp4’)

# output autocorrelation function

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(ScaledAC, c.AMP)

iimport.WriteImageData(acFN)

c.Sp4ArrayDestroy(ScaledAC)

# output support generated form autocorrelation function

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(Support, c.AMP)

iimport.WriteImageData(supFN)

if stopSupportPrep:

print ’\nSupport Generated:’,supFN,’\nScript terminated for further support preparation

\nRefer to file: ’,acFN,’for percentage scale autocorrelation function\n’

sys.exit()

else:

print ’Support Generated’

print ’testing’

c.Sp4ArraySqrt(InputArray)

#########################################################################

# Update log file

#########################################################################

sw_log = open("ShrinkWrap\%d.log"\%n, "a")

sw_log.write(time.strftime("\n\%H:\%M:\%S \%a \%d-\%m-\%y", time.localtime()))

sw_log.writelines("\n\nIterations:"+"\nnumHIOiter_Initial = "+str(numHIOiter_Initial)+

"\nnumERiter_Initial = "+str(numERiter_Initial)+ "\nnumHIOiter_ShrinkWrap =

"+str(numHIOiter_ShrinkWrap)+ "\nnumERiter_ShrinkWrap = "+str(numERiter_ShrinkWrap

+"\nnumHIOiter_Final = "+str(numHIOiter_Final)+ "\nnumERiter_Final = "+str(numERiter_Final))

sw_log.writelines("\n\nSelf Consistency:" + "\nSelfConsistenceThreshold = "+ str(SelfConsistenceThreshold))

sw_log.writelines("\n\nSp4ArrayAverage:" +"\nAverage Width = "+str(AverageWidth) +"\nAverageIter = "+str(AverageIter))

sw_log.writelines("\n\nSp4ArraySmoothIPfft:" +"\nSmoothSigma = "+str(SmoothSigma))

sw_log.writelines("\n\nData Cutoff Threshold:"+"\nArray2SupportThreshold = "+str(Array2SupportThreshold))

#########################################################################

# Initial Phasing

#########################################################################

# Create and save DataMask if u like

c.MinMaxThreshMask(DataMask, InputArray, minthresh, maxthresh)

# Wrap:

c.Sp4ArrayWrap(InputArray)

c.Sp4ArrayWrap(DataMask)

execfile("Phasing_Initial.py")

c.Sp4ArrayInitAsOther(OutputArray,InputArray)

c.Sp4ArrayZero(OutputArray)

c.Sp4ArrayInitAsOther(OutputArrayNew,InputArray)

c.Sp4ArrayZero(OutputArrayNew)

#########################################################################

# Self Consistent Shrink Wrapped Phasing

#########################################################################

error_abs=100.0

sw_log.write("\n\nSelf consistency error values: \n")

c.Sp4ArrayFastCopy(OutputArray,seqdata.dist)

mc.Sp4ArrayThresholdRemoveLow(OutputArray,Array2SupportThreshold)

mc.Sp4ArrayAverageIPfft(OutputArray,AverageWidth,AverageIter)

mc.Sp4ArraySmoothIPfft(OutputArray,SmoothSigma)

mc.Array2Support(OutputArray,0.000001)

# Check that tty session is active from user input

# Shrink wrap can be exited cleanly with user input

# This is useful for testing the shrink wrap conditions

# during attended execution

iter=0

if sys.stdin.isatty():

def tty_input():

# boolean return on stdin pool. no timeout.

return select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], [])

# Grab current tty mode

old_tty_settings = termios.tcgetattr(sys.stdin)

try:

# Set file descriptor to break

tty.setcbreak(sys.stdin.fileno())
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while error_abs > SelfConsistenceThreshold:

execfile("Phasing_ShrinkingSupport.py")

# Self consistent part:

c.Sp4ArrayFastCopy(OutputArrayNew,seqdata.dist)

mc.Sp4ArrayThresholdRemoveLow(OutputArrayNew,Array2SupportThreshold)

mc.Sp4ArrayAverageIPfft(OutputArrayNew,AverageWidth,AverageIter)

mc.Sp4ArraySmoothIPfft(OutputArrayNew,SmoothSigma)

mc.Array2Support(OutputArrayNew,0.000001)

sum_old=c.Sp4ArraySelectSum(OutputArray,c.REAL)[1] + c.Sp4ArraySelectSum(OutputArray,c.IMAG)[1]

sum_new=c.Sp4ArraySelectSum(OutputArrayNew,c.REAL)[1] + c.Sp4ArraySelectSum(OutputArrayNew,c.IMAG)[1]

error=100.0 * (sum_new*sum_new - sum_old*sum_old)/(sum_old*sum_old)

error_abs= abs(error)

sw_log.writelines(str(error) + "\n")

print "Self-consistency error is \%.5f" \%error

c.Sp4ArrayFastCopy(OutputArray,OutputArrayNew)

if iter==10:

break

iter+=1

# Break loop with ’e’ key

if tty_input():

user_key = sys.stdin.read(1)

if user_key == ’e’: # x1b is ESC

break

finally:

#restore tty settings

termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_tty_settings)

else:

while error_abs > SelfConsistenceThreshold:

execfile("Phasing_ShrinkingSupport.py")

# Self consistent part:

c.Sp4ArrayFastCopy(OutputArrayNew,seqdata.dist)

mc.Sp4ArrayThresholdRemoveLow(OutputArrayNew,Array2SupportThreshold)

mc.Sp4ArrayAverageIPfft(OutputArrayNew,AverageWidth,AverageIter)

mc.Sp4ArraySmoothIPfft(OutputArrayNew,SmoothSigma)

mc.Array2Support(OutputArrayNew,0.000001)

sum_old=c.Sp4ArraySelectSum(OutputArray,c.REAL)[1] + c.Sp4ArraySelectSum(OutputArray,c.IMAG)[1]

sum_new=c.Sp4ArraySelectSum(OutputArrayNew,c.REAL)[1] + c.Sp4ArraySelectSum(OutputArrayNew,c.IMAG)[1]

error=100.0 * (sum_new*sum_new - sum_old*sum_old)/(sum_old*sum_old)

error_abs= abs(error)

sw_log.writelines(str(error) + "\n")

print "Self-consistency error is \%.5f" \%error

c.Sp4ArrayFastCopy(OutputArray,OutputArrayNew)

# close file

sw_log.close()

#########################################################################

# Final Phasing

#########################################################################

execfile("Phasing_Final.py")

FinalArray=seqdata.dist

CropDims=mc.Sp4ArrayFindCropDims(OutputArray,3)

print CropDims

print ’Change this if you want to look at the original support’

# Reduce the size of the output array

c.ExtractArray(FinalArray, FinalArrayCrop, CropDims[1], CropDims[2], CropDims[3], CropDims[4], CropDims[5], CropDims[6])

c.ExtractArray(Support, SupportCrop, CropDims[1], CropDims[2], CropDims[3], CropDims[4], CropDims[5], CropDims[6])

c.ExtractArray(OutputArray, OutputArrayCrop, CropDims[1], CropDims[2], CropDims[3], CropDims[4], CropDims[5], CropDims[6])

ScaledArray=c.Sp4Array()

c.Sp4ArrayInitAsOther(ScaledArray,FinalArrayCrop)

if scaleArrayPercentAmps:

Scale(FinalArrayCrop,ScaledArray)

else:

c.Sp4ArrayCopy(ScaledArray,FinalArrayCrop,’’)

# Name some files

PhaseNameSupportInitial=’\%d_sw_Support_fromAC’\%(n)

PhaseNameSupport=’\%d_sw_Support_Final’\%(n)

PhaseName=’\%d_sw_ReconstructedObject’\%(n)

if outputdatasp4:

c.Sp4ArraySave(OutputArray,PhaseNameSupport+’.sp4’)

c.Sp4ArraySave(Support,PhaseNameSupportInitial+’.sp4’)

if outputdatavtkvoxeldims:

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(ScaledArray, c.AMP)

iimport.WriteImageData(PhaseName+’VDamp.vtk’)

iimport=iia.vtkImageImportFromSp4Array()
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iimport.SetArray(FinalArray, c.PHASE)

iimport.WriteImageData(PhaseName+’VDph.vtk’)

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(OutputArray, c.AMP)

iimport.WriteImageData(PhaseNameSupport+’VD.vtk’)

iimport=iia.vtkImageImportFromSp4Array()

iimport.SetArray(Support, c.AMP)

iimport.WriteImageData(PhaseNameSupportInitial+’VD.vtk’)

#########################################################################

# Geometric correction

#########################################################################

size1 = c.Sp4ArrayGetDim(FinalArrayCrop,0)[1]

size2 = c.Sp4ArrayGetDim(FinalArrayCrop,1)[1]

size3 = c.Sp4ArrayGetDim(FinalArrayCrop,2)[1]

# define the dimensions in real space

dx = 1.0/c.Sp4ArrayGetDim(FinalArrayCrop,0)[1]

dy = 1.0/c.Sp4ArrayGetDim(FinalArrayCrop,1)[1]

dz = 1.0/c.Sp4ArrayGetDim(FinalArrayCrop,2)[1]

# Translate coordinates

if dtilt ==0.0:

c.ThCoordTrans(NewCoords, size1, size2, size3, lam, delta, gam, dpx, dpy, dth,dx ,dy,dz,c.DIRECT)

print "theta rocking curve coordinate tranform"

elif dth == 0.0:

c.TiltCoordTrans(NewCoords, size1, size2, size3, lam, delta, gam, dpx, dpy, dtilt,dx,dy,dz,c.DIRECT)

print "chi rocking curve coordinate transform"

else:

print "dth/dtilt has been set incorrectly"

#########################################################################

# Output vtk files

#########################################################################

if outputdatavtkgeocorr:

dDampsGM=vs.vtkStructuredGridMaker(NewCoords, ScaledArray, c.AMP)

dDampsGM.WriteStructuredGrid(PhaseName+’_amp.vtk’)

dDphaseGM=vs.vtkStructuredGridMaker(NewCoords, FinalArrayCrop, c.PHASE)

dDphaseGM.WriteStructuredGrid(PhaseName+’_phase.vtk’)

supampsGM=vs.vtkStructuredGridMaker(NewCoords, SupportCrop, c.AMP)

supampsGM.WriteStructuredGrid(PhaseNameSupportInitial+’_amp.vtk’)

supampsGM=vs.vtkStructuredGridMaker(NewCoords, OutputArrayCrop, c.AMP)

supampsGM.WriteStructuredGrid(PhaseNameSupport+’_amp.vtk’)

#########################################################################
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G.2.2 ParamsShrinkwrap.py

import math

# define constants

pi=math.pi

deg2rad = pi/180.0000

######################################################################

# Filename: ShrinkwrapParams.py

# Contains Variables for the Shrinkwrap method

######################################################################

# File Identifier

n=0

# Set to true to output the data in various file formats

generateSupport=True

scaleArrayPercentAmps=False

outputdatavtkgeocorr=True

outputdatavtkvoxeldims=False

outputdatasp4=True

# declare some Phasing variables

beta = .9

# Threshold for datamask

minthresh = 50

maxthresh = 9000000

# Phase Constraints set for PhaseConHIO

phmin = -pi * 2/4

phmax = pi * 2/4

#########################################################################

# Support from Autocorrelation variables

#########################################################################

Support_Axis=2

Support_LengthThreshold=90.0

Support_WidthThreshold=40.0

Support_CrossSectionSmoothing=2.0

Support_Smoothing=2.0

# If stopSupportPrep=True the program will exit after the support preparation stage.

# stopSupportPrep=True

stopSupportPrep=False

#########################################################################

# Algorithm parameters

#########################################################################

# Number of iterations of each algorithm with initial support

numERiter_Initial = 12

numHIOiter_Initial = 60

# Numer of ShrinkWrap iterations within each loop

numHIOiter_ShrinkWrap = 10

numERiter_ShrinkWrap = 2

# Number of iterations after the final support

numHIOiter_Final = 60

numERiter_Final = 12

#########################################################################

# Self consistent support generation variables

#########################################################################

# Self Consistence threshold, when the support changes by less than the threshold exit

SelfConsistenceThreshold=1.0

# Self Consistency Smoothing variables for Sp4ArrayAverageIPfft:

AverageWidth=3

AverageIter=3

# Self Consistency Smoothing variables for Sp4ArraySmoothIPfft:

SmoothSigma=0.35

# Self Consistency data cutoff threshold

Array2SupportThreshold=19.5

#########################################################################

# Experimental variables

#########################################################################

pixelx=2*(22.50e-6)

pixely=2*(22.50e-6)

arm = 2.145

lam = 0.139
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delta = 29.502 * deg2rad

gam = 14.7472 * deg2rad

dth = 0.0025 * deg2rad

dtilt = 0.00 * deg2rad

dpx=pixelx/arm

dpy=pixely/arm

#########################################################################
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G.2.3 Phasing Initial.py

#########################################################################

# Phasing Initial Support

#########################################################################

seqdata=sc.SequenceData(n, ’./’)

# c.InitializeSequence_COPY(seqdata, Support)

c.InitializeSequence_dsRANDOM_REAL(seqdata, Support)

#########################################################################

# Run algorithms

#########################################################################

c.PhaseConstrainedHIO(seqdata, InputArray, Support, DataMask, beta, phmin, phmax, numHIOiter_Final)

mc.DofER_maskedzero(seqdata, InputArray, Support, DataMask, numERiter_Initial)

#########################################################################

G.2.4 Phasing Final.py

#########################################################################

# Algorithms for final phasing operation

#########################################################################

c.PhaseConstrainedHIO(seqdata, InputArray, OutputArray, DataMask, beta, phmin, phmax, numHIOiter_Final)

mc.DofER_maskedzero(seqdata, InputArray, OutputArray, DataMask, numERiter_Final)

#########################################################################

# Output results

seqdata.Write()

#########################################################################

G.2.5 Phasing ShrinkingSupport.py

#########################################################################

# Algorithms for shrinking support

#########################################################################

c.PhaseConstrainedHIO(seqdata, InputArray, OutputArray, DataMask, beta, phmin, phmax, numHIOiter_ShrinkWrap)

mc.DofER_maskedzero(seqdata, InputArray, OutputArray, DataMask, numERiter_ShrinkWrap)

#########################################################################



221

G.3 Cross Correlation Operation

G.3.1 CrossCorrelation.py

#########################################################################

#FFT cross correlation method

#N squared cross correlation method

#plus transpose and shift array functions to identify twins

#########################################################################

# import required libraries

import cstuff as c

import mycstuff as mc

import os

import string

import vtkImageImportFromArray as iia

import sys

# generate required Sp4 arrays

tempRI=c.Sp4Array()

RI=c.Sp4Array()

mult=c.Sp4Array()

mod=c.Sp4Array()

array=c.Sp4Array()

transposeArray=c.Sp4Array()

#########################################################################

#FFT cross correlation method

#########################################################################

def CrossCorrelationFastFFT(templateFilename,RIFilename):

c.Sp4ArrayLoad(tempRI,templateFilename)

c.Sp4ArrayLoad(RI,RIFilename)

c.Sp4ArrayFFT(tempRI,1,1)

c.Sp4ArrayFFT(RI,1,1)

mc.Sp4ArrayConjugate(RI)

c.Sp4ArrayInitAsOther(mult,tempRI)

c.Sp4ArrayFastMult(tempRI,RI,mult)

c.Sp4ArrayFFT(mult,1,1)

c.Sp4ArrayWrap(mult)

c.Sp4ArrayGetModulus(mod,mult)

size1 = c.Sp4ArrayGetDim(tempRI,0)[1]

size2 = c.Sp4ArrayGetDim(tempRI,1)[1]

size3 = c.Sp4ArrayGetDim(tempRI,2)[1]

cenx=size1/2

ceny=size2/2

cenz=size3/2

max=mc.Sp4ArrayLocateMax(mod)

shiftX=max[1]-cenx

shiftY=max[2]-ceny

shiftZ=max[3]-cenz

print ’The FFT method shifts the RI (\%d,\%d,\%d) to match to the template’\%(-shiftX,-shiftY,-shiftZ)

totalShift = [-shiftX,-shiftY,-shiftZ]

#########################################################################

# Update log file #########################################################################

list = [’FFTmethod’,’Cross Correlation between:\n’,’ ’+templateFilename,’\n’,’ ’+RIFilename,’\n’,’Shift required to achieve best correlation:\n’,’(\%d,\%d,\%d)\n’\%(-shiftX,-shiftY,-shiftZ)]

data = []

if os.path.exists("CrossCorrelations.txt"):

data=open("CrossCorrelations.txt").readlines()

outfile=open("CrossCorrelations.txt", "w")

for k in range (len(data)):

outfile.write(data[k])

for j in range (len(list)):

outfile.write(list[j])

return totalShift

#########################################################################

# N squared cross correlation method

#########################################################################

def CrossCorrelationN2(templateRIFilename,RIFilename,shiftRange):

# set the shiftRange to 1 to calculate a single N2 value
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c.Sp4ArrayLoad(tempRI,templateRIFilename)

c.Sp4ArrayLoad(RI,RIFilename)

MaxSum = 0.0

MaxCoords = []

counter = 0

for x in range (shiftRange):

for y in range (shiftRange):

for z in range (shiftRange):

shiftX = x - (shiftRange-1)/2

c.Sp4ArrayShift(RI,1,shiftX)

shiftY = y - (shiftRange-1)/2

c.Sp4ArrayShift(RI,2,shiftY)

shiftZ = z - (shiftRange-1)/2

c.Sp4ArrayShift(RI,3,shiftZ)

c.Sp4ArrayInitAsOther(mult,tempRI)

c.Sp4ArrayFastMult(RI,tempRI,mult)

sum = mc.Sp4ArraySum(mult)

if sum[1] >= MaxSum:

MaxSum=sum[1]

MaxCoords=[-shiftX,-shiftY,-shiftZ]

#print MaxSum

counter+=1

if (shiftRange>1):

print ’The RI was shifted by \%d voxels in each dimension around its current position’\%(shiftRange-1/2)

print ’The maximum was found to be \%d at a shift of (\%d,\%d,\%d)’\%(MaxSum,MaxCoords[0],MaxCoords[1],MaxCoords[2])

totalShift=MaxCoords[0:]

totalShift.append(MaxSum)

return totalShift

#########################################################################

# Function: shift array in 3 dimensions

#########################################################################

def ShiftArray(Filename,shift):

c.Sp4ArrayLoad(array,Filename)

c.Sp4ArrayShift(array,1,shift[0])

c.Sp4ArrayShift(array,2,shift[1])

c.Sp4ArrayShift(array,3,shift[2])

return array

#########################################################################

# Transpose array function

#########################################################################

def TransposeArray(RIFilename):

c.Sp4ArrayLoad(array,RIFilename)

c.Sp4ArrayInitAsOther(transposeArray,array)

mc.Sp4Array3DTransposeComplex(array,transposeArray)

c.Sp4ArraySave(transposeArray,string.split(RIFilename, ’.’)[0]+’Transpose.sp4’)

return transposeArray

#########################################################################

# Usage

#########################################################################

print ’multiple files’

niter=0

for i in range(5):

i+=5

templateFilename=sys.argv[1]

RIFilename=’Seq\%d.sp4’\%i

print RIFilename

shift=CrossCorrelationFastFFT(templateFilename,RIFilename)

RIshiftFilename=string.split(RIFilename, ’.’)[0]+’Shifted.sp4’

print RIshiftFilename

c.Sp4ArraySave(ShiftArray(RIFilename,shift),RIshiftFilename)

N2=CrossCorrelationN2(templateFilename,RIshiftFilename,1)[3]

print N2

TransposeArray(RIFilename)

RItranFilename=’Seq\%dTranspose.sp4’\%i

RItranShiftFilename=string.split(RItranFilename, ’.’)[0]+’Shifted.sp4’

c.Sp4ArraySave(ShiftArray(RItranFilename,CrossCorrelationFastFFT(templateFilename,RItranFilename)),RItranShiftFilename)

print RItranShiftFilename

N2tran=CrossCorrelationN2(templateFilename,RItranShiftFilename,1)[3]

print N2tran

if os.path.exists("CrossCorrelations.txt"):

data=open("CrossCorrelations.txt").readlines()

outfile=open("CrossCorrelations.txt", "w")

for k in range (len(data)):
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outfile.write(data[k])

if N2tran>N2:

s=’Possible Twin Identified, filename: \%d.sp4\n’\%i

print s

outfile.write(s)

if N2>N2tran:

s1=’Normal orientation had a stronger correlation, filename: \%d.sp4\n’\%i

print s1

outfile.write(s1)

outfile.close()

#########################################################################
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G.3.2 Phase offset correction

#########################################################################

# Calculate the phase offset required to align the phase modulation around a common origin

#########################################################################

import cstuff as c

import mycstuff as mc

import sys

import os

files=os.listdir("./")

ref=c.Sp4Array()

recon=c.Sp4Array()

cpRecon=c.Sp4Array()

def ApplyOffset(refFilename,reconFilename):

c.Sp4ArrayLoad(ref,refFilename)

c.Sp4ArrayLoad(recon,reconFilename)

offset=mc.Sp4ArrayFindPhaseOffsetFienup1(ref,recon,cpRecon)

#mc.Sp4ArrayAddPhaseOffset(recon,offset[1],1.0)

c.Sp4ArraySave(cpRecon,’CP’+reconFilename)

#print offset

return offset

#########################################################################

# Usage

#########################################################################

refFilename=sys.argv[1]

reconFilename=sys.argv[2]

ApplyOffset(refFilename,reconFilename)

#########################################################################
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G.4 PRTF

import cstuff as c

import mycstuff as mc

import sys

import vtkStructuredGridMaker as vs

import math as m

# Define Constants

pi=m.pi

deg2rad = pi/180.0000

#########################################################################

# Define required data arrays

#########################################################################

arg1=sys.argv[1] # Raw intensities

arg2=sys.argv[2] # Reconstructed result

rawInt=c.Sp4Array()

reconRes=c.Sp4Array()

c.Sp4ArrayLoad(rawInt,arg1)

c.Sp4ArrayLoad(reconRes,arg2)

c.Sp4ArrayFFT(reconRes,1,1)

c.Sp4ArrayWrap(reconRes)

#########################################################################

# Variables

#########################################################################

# Set Threshold

minthresh=1600

maxthresh=900000000

# Experimental Parameters

pixelx=4*(22.50e-6) #Total pixel size including binning (in meters)

pixely=4*(22.50e-6)

arm = 2.792 #Detector distance from sample (units are m)

lam = 0.139 #Wavelength of x-ray (units in nm)

delta = 29.14 * deg2rad

gam = 15.4 * deg2rad

dth = 0.005 * deg2rad

dtilt = 0.00 * deg2rad

dpx=pixelx/arm

dpy=pixely/arm

# Generate datamask based on the defined threshold

datamask=c.Sp4Array()

c.MinMaxThreshMask(datamask, rawInt, minthresh, maxthresh)

# Generate coordinate system

NewCoords=c.Sp4Array()

size1 = c.Sp4ArrayGetDim(rawInt,0)[1]

size2 = c.Sp4ArrayGetDim(rawInt,1)[1]

size3 = c.Sp4ArrayGetDim(rawInt,2)[1]

dx = 1.0/c.Sp4ArrayGetDim(rawInt,0)[1]

dy = 1.0/c.Sp4ArrayGetDim(rawInt,1)[1]

dz = 1.0/c.Sp4ArrayGetDim(rawInt,2)[1]

if dtilt ==0.0:

c.ThCoordTrans(NewCoords, size1, size2, size3, lam, delta, gam, dpx, dpy, dth,dx ,dy,dz,c.RECIP)

print "theta rocking curve coordinate tranform"

elif dth == 0.0:

c.TiltCoordTrans(NewCoords, size1, size2, size3, lam, delta, gam, dpx, dpy, dtilt,dx,dy,dz,c.RECIP)

print "chi rocking curve coordinate transform"

else:

print "dth/dtilt has been set incorrectly"

# Calculate q for each point from origin

c.ShiftCoordOrigin(NewCoords,size1/2,size2/2,size3/3)

dDampsGM=vs.vtkStructuredGridMaker(NewCoords, reconRes, c.AMP)

dDampsGM.WriteStructuredGrid(’Coords_amp.vtk’)

dDphGM=vs.vtkStructuredGridMaker(NewCoords, reconRes, c.PHASE)

dDphGM.WriteStructuredGrid(’Coords_ph.vtk’)

dDampsGM=vs.vtkStructuredGridMaker(NewCoords, datamask, c.AMP)

dDampsGM.WriteStructuredGrid(’DatamaskCoords_amp.vtk’)

# Convert sp4 arrays into strings of doubles

rawIntdouble = mc.doubleArray.frompointer(rawInt.data)

reconResdouble = mc.doubleArray.frompointer(reconRes.data)

NewCoordsdouble = mc.doubleArray.frompointer(NewCoords.data)

datamaskdouble=mc.doubleArray.frompointer(datamask.data)
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# Generate bins and defined variable ranges

dataList=[]

cnt=0

cnt1=0

for a1 in range(size1):

for a2 in range(size2):

for a3 in range(size3):

cnt+=1

# index for coordinate array

coordIndex = 3*( a3 + size3*(a2 + size2*a1) )

# index for data array

dataIndex = 2*( a3 + size3*(a2 + size2*a1) )

if datamaskdouble[dataIndex]>0:

cnt1+=1

#get values of h,r and theta, amps and phase

q=m.sqrt(NewCoordsdouble[coordIndex]**2+NewCoordsdouble[coordIndex+1]**2+NewCoordsdouble[coordIndex+2]**2)

calcAmps = m.sqrt((reconResdouble[dataIndex+1]**2) + (reconResdouble[dataIndex]**2))

rawAmps = m.sqrt(rawIntdouble[dataIndex])

PRTF=calcAmps/rawAmps

dataList.append([q,PRTF])

print ’voxels considered:%d, voxels in datamask :%d’%(cnt,cnt1)

# output sp4 for reference

c.Sp4ArraySave(datamask,’datamask.sp4’)

qMax=0

print len(dataList)

for i in range (len(dataList)):

if dataList[i][0]>qMax:

qMax=dataList[i][0]

print qMax

# Assume 300 bins in 0.001 increments

binsList=[]

for i in range (300):

binsList.append([0.001*i,0,0])

for i in range (len(dataList)):

bin=int(round((dataList[i][0])/0.001))

binsList[bin][1]+=dataList[i][1]

binsList[bin][2]+=1

resList=[]

string=’’

for i in range(len(binsList)):

if binsList[i][2]>0:

q=binsList[i][0]

PRTF=binsList[i][1]/binsList[i][2]

resList.append([q,PRTF])

string+=’\%.10f \%.10f\n’\%(q,PRTF)

#########################################################################

# Generate a text file output, (q, PRTF) written on every line

#########################################################################

outfile1=open("PRTF.txt", "w")

outfile1.write(string)
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