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Abstract 
 

This thesis explores the concept of real time imaging parameter optimisation in 

digital mammography using statistical information extracted from the breast 

during a scan. Transmission and Energy dispersive x-ray diffraction (EDXRD) 

imaging were the two very different imaging modalities investigated. An attempt 

to determine if either could be used in a real time imaging system enabling 

differentiation between healthy and suspicious tissue regions was made. This 

would consequently enable local regions (potentially cancerous regions) within 

the breast to be imaged using optimised imaging parameters. 

 

The performance of possible statistical feature functions that could be used as 

information extraction tools were investigated using low exposure breast tissue 

images. The images were divided into eight regions of interest, seven regions 

corresponding to suspicious tissue regions marked by a radiologist, where the 

final region was obtained from a location in the breast consisting solely of 

healthy tissue.  

 

Results obtained from this investigation showed that a minimum of 82% of the 

suspicious tissue regions were highlighted in all images, whilst the total exposure 

incident on the sample was reduced in all instances. Three out of the seven 

(42%) intelligent images resulted in an increased contrast to noise ratio (CNR) 

compared to the conventionally produced transmission images. Three intelligent 

images were of similar diagnostic quality to their conventional counter parts 

whilst one was considerably lower. 

  

EDXRD measurements were made on breast tissue samples containing 

potentially cancerous tissue regions. As the technique is known to be able to 



4 
 

distinguish between breast tissue types, diffraction signals were used to produce 

images corresponding to three suspicious tissue regions consequently enabling 

pixel intensities within the images to be analysed. A minimum of approximately 

70% of the suspicious tissue regions were highlighted in each image, with at least 

50% of each image remaining unsuspicious, hence was imaged with a reduced 

incident exposure. 
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1.1 Introduction 

 

Breast cancer is the most commonly diagnosed cancer in the UK among women. 

More than 45,000 women and approximately 300 men are diagnosed with the 

disease each year (Cancer Research UK). The NHS Breast Screening Programme 

(NHSBSP) initiated by Professor Sir Patrick Forrest began screening in 1988 and 

has since screened more than 19 million women. It is estimated that 1.5 million 

women are now screened in the UK annually (NHSBSP). Cancer Research UK has 

reported an increase of approximately 50% in breast cancer incidence rates in 

Britain between the period 1977-2006 where a 14% increase was seen over the 

last 10 years alone. This indicates that the screening programme is beneficial, as 

prior to this, many cancers were going undetected. Also, this implies that, since 

the introduction of full field digital mammography (FFDM), approximately 10 

years ago, cancer detection rates have increased further.  

 

The benefits of using FFDM compared to screen film mammography (SFM) are 

not only reflected through the results yielded from research groups and 

screening programmes which were setup to compare the two methods (Lewin et 

al (2002), Pisano et al (2005), Skaane and Skjennald (2004)), but also through its 

rapid implementation into routine screening. In December 2006, FFDM units 

made up 15.0% of the accredited mammography units in use in the USA; this 

increased to 50.3% by April 2009 (Food and Drug Administration).  

 

Unlike SFM where image acquisition, processing and displaying are all coupled 

together, FFDM enables the separation of each of these steps therefore allowing 

the optimisation of each (James et al (2004) and Monnin et al (2007)). As a 

result, FFDM has the advantages of having a wider dynamic range enabling 

higher contrast resolution, higher quantum efficiency, allows visual adjustments 
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of the image for viewing (such as brightness, contrast and black/white inversion), 

instantaneous image recovery greatly reducing processing time, as well as 

allowing rapid distribution of images between locations worldwide (Cooper III et 

al (2003), Parikh (2005) and Fischer et al (2006)). As the images are of digital 

format, storage of high volumes of images becomes less cumbersome therefore 

space efficient. 

 

As one would expect, full digitisation of mammographic imaging potentially acts 

to revolutionise the imaging procedure as a whole, providing a platform for 

advanced applications. The use of computer aided diagnosis/detection (CAD) has 

been under investigation ever since the introduction of ‘digital mammography’ 

(Chan et al (1988), Vyborny and Giger (1994)); where now, it clinically acts as an 

aid to the radiologist, potentially enabling the elimination of the need for double 

readings hence the need for the presence of a second reader (Lauria et al 

(2005)). The use of automated exposure control (AEC) is now a standard means 

of image optimisation where the imaging parameters are automatically selected 

based on pre-scan information obtained using a digital detector (Williams et al 

(2008)). Also, the movement from analogue to digital has enabled 

mammography to take advantage of image enhancement techniques once 

foreign to the speciality. Modalities currently under investigation include 

contrast enhanced dual-energy subtraction mammography, which is used to 

detect angiogenesis in cancerous tissue (Dromain et al (2006), Dromain et al 

(2009)), dual-energy subtraction mammography which enables the removal of 

obstructing tissue structures from an image using a weighted subtraction 

method (Lemacks et al (2002), Brandan. M-E and Ramírez-R (2006)), breast 

tomosynthesis, a current modality which promotes 3D mapping of tissue 

structures as opposed to the currently available 2D mapping used by FFDM 

imagers. This consequently reduces tissue overlap (Sechopoulos et al (2007), 
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Andersson et al (2008), Sechopoulos and Ghetti (2009)) enabling a more accurate 

diagnosis to be made. Techniques such as energy dispersive and angular 

dispersive x-ray diffraction (ADXRD) are also under investigation (Taibi et al 

(2003), Hermann et al (2002)). All techniques attempt to further increase cancer 

detection rates whilst decreasing the rate of false-positives hence unnecessary 

biopsies and recalls. 

 

1.2 Digital X-ray Mammography 

 

Until recently, conventional SFM has been the modality of choice for screening 

programmes across the world (Yamada (2003)). However, as more and more 

FFDM systems appear on the market, it becomes apparent that FFDM is to be 

the next step in the evolution of x-ray mammography facilitating the realisation 

of the ‘digital hospital’. 

 

Over the last decade, a large quantity of research has been undertaken 

comparing FFDM to SFM in an attempt to determine whether FFDM increases 

cancer detection rates among women. A majority of the comparison studies 

published involve large population based breast screening programmes where 

women have been invited to attend the programme having been chosen from a 

specific age group, usually between 45-69 years. They have then been randomly 

selected for screening using either SFM or FFDM (Lewin et al (2001)). A large 

majority of the results from these clinical screening programmes (Osbenauer et 

al (2002), Vigeland et al (2007), Skaane and Skjennald (2004)) as well as others 

including laboratory based investigations (Berns et al (2002)), consistently 

indicate that FFDM increases cancer detection and characterisation amongst 

post-menopausal (aged 50-69) women whilst providing comparable detection 
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rates for women aged 45-49 (Skaane and Skjennald (2004) and Pisano et al 

(2005)). 

 

Recently, Vigeland et al (2007) conducted a population-based screening 

programme in order to compare currently available FFDM units to SFM. The 

results indicated a higher breast cancer detection rate was achievable when 

implementing FFDM as opposed to SFM. It has become apparent that over the 

years as a result of continuous technological development, cancer detection 

rates are increasing and it is inevitable that in the near future statistical 

significance will be established clearly making FFDM the new standard for 

mammography. 

 

As the literature concludes that the diagnostic accuracies of FFDM and SFM are 

similar, initially it may be thought that making the switch over from an analogue 

system to a digital one would have little benefit and prove costly. However, this 

would be a naive assumption as FFDM offers several significant advantages over 

SFM. The ability to greatly facilitate new applications increasing cancer detection 

rates by overcoming problems seen with conventional SFM such as contrast 

limitations, tissue obstructions etc are all made possible by FFDM and are 

currently under investigation (Fass (2008), Reiser et al (2006), Kappadath and 

Shaw (2004)).  

 

1.2.1 Commercially available FFDM systems 

 

There are currently at least eleven FFDM systems commercially available which 

all differ in performance and specifications (KCARE (2005), Fischer et al (2006), 

Monnin et al (2007), Williams et al (2008) and Ghetti et al (2008)). These include 

a Scanning Phosphor Charged-Coupled Device (CCD) system, Flat-Panel Phosphor 
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system and a Flat-Panel amorphous Selenium (a-Se) system. Each detector 

makes use of either an indirect x-ray detection method where a scintillator is 

implemented in an attempt to improve the detector x-ray sensitivity or a direct 

method where x-rays are converted directly to charge eliminating the light 

conversion process. In doing so an increase in performance is seen (Pisano and 

Yaffe (2005)). Table 1.1 compares the specifications of FFDM units. 

 

A large percentage of the published screening programmes used in evaluating 

FFDM have been undertaken using a Flat-Panel phosphor system namely the 

Senographe 2000D manufactured by General Electric Medical systems (GE) 

(Fischer et al (2002), Osbenauer et al (2002), Obenauer (2003), Yamada (2003), 

and Skaane and Skjennald (2004)). It is thought that this system was extensively 

used as radiologists quickly became familiar with it due to it being the first FFDM 

system to receive Food and Drug Administration (FDA) approval, hence making it 

readily available (Fischer et al (2002)). The more recent introduction of the 

Senographe DS and Senographe Essential which, both consist of a similar 

detector design whilst incorporating additional improved features such 

automated exposure control (AEC) and a larger imaging area, have helped to 

ensure the implementation of over 1500 systems into everyday clinical screening 

procedures worldwide (Young (2006)).  

 

Never the less, it cannot be overlooked that Flat-Panel direct detection systems 

are of growing interest as they are able to provide an increased spatial resolution 

and higher detection efficiency in comparison to indirect detection methods 

(Samei and Flynn (2003)), Gomi et al (2006)). The first system to implement such 

technology and receive FDA approval was the LoRad Selenia manufactured by  



25 
 

Table 1.1 Comparison of the differing specifications possessed by eleven commercially available DM systems. 

System 
 

Manufacture Detector type Detection 
Mechanism 

 Pixel Size 
(µm) 

Array Size 
(pixels) 

AEC 

 
Senographe 2000D 

 

 
GE Medical 

 
Amorphous Silicon 

 
Indirect 

  
100 

 
1900 × 2300 

 
YES§ 

        
Senographe DS GE Medical Amorphous Silicon Indirect  100 1900 × 2300 

 
YES§ 

        
Senographe  

Essential  
 

GE Medical 
 

Amorphous Silicon 
 

Indirect 
 

 100 
 

2400 × 3070 
 

YES§  

 
SenoScan 

 

 
Fisher Imaging 

 

 
Scanning CCD 

 

 
Indirect 

 

  
54 

 

 
4095 × 5625 

 

 
YES  

 
LoRad Selenia 

 

 
Hologic Inc. 

 

 
Amorphous 
Selenium 

 

 
Direct 

 

  
70 

 

 
3328 × 4096 

 

 
YES 

 
Novation DR 

 

 
Siemens AG 

 
Amorphous 
Selenium 

 

 
Direct 

  
70 

 
3428 × 4142 

 
YES 

 
Novation s 

 

 
Siemens AG 

 
Amorphous 
Selenium 

 

 
Direct  

  
- 

 
- 

 
YES 
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MammoDiagnost  FD 

Eleva 
 

 
Philips Medical / 
Fisher Imaging 

 
Amorphous 

Selenium/ Photon 
counting 

 
Direct 

  
50 

 
4096 × 5625 

 
YES 

 
MicroDose 

 

 
Sectra 

 
Crystalline Silicon 

wafers 

 
Direct 

  
50 

 
4800 × 5200 

 
NO 

 
Giotto Image 
MD/SD-SDL 

 

 
Internazionale 

Medico Scientifica 
 

 
Amorphous 
Selenium 

 

 
Direct 

  
85 

 
2048 × 2816 

 
YES 

 
Sophie Nuance 

 

 
Planmed 

 
Amorphous 
Selenium 

 

 
Direct 

  
85 

 
2016 × 2816/ 
2816 ×3584 

 
YES 

 
§   Has optimal exposure setting which determines kV and mAs based on breast thickness. 
-   Not specified 
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Hologic inc. with companies such as Siemens and Planmed following with the 

Novation S, DR (Williams et al (2008) and Siemens Healthcare) and Nuance 

(Planmed) respectively.  

 

Several research groups have investigated the use of a-Se based direct digital 

detectors and results show their implementation in mammography to be 

beneficial (Zhao et al (1997), Stone (2002) and Belev and Kasap (2004)). 

 

1.2.2 Automated Exposure Control (AEC) 

 

Ever since the commercial success of artificial intelligence (AI) during the early 

1980’s, the concept has been implemented across a vast amount of industries. 

Its use ranges from the management of investments in stocks and properties in 

the banking sector to its implementation within the military for tracking of 

soldiers (Ferandez (2000)). The use of AI, in the form of automated exposure 

control (AEC), has also been implemented within the medical imaging sector, 

namely in mammography, in an attempt to enhance the detection of 

abnormalities within the female breast.  

 

Prior to the implementation of AEC into mammography, the radiographer would 

determine the imaging parameters (kVp, mAs, exposure time) manually based on 

the nature of the breast in an attempt to optimise the x-ray beam quality used. 

This optimisation would seek to produce films with the correct optical density 

(OD) by optimising the exposure time and tube current with regards to the 

limited dynamic range (Meeson et al (1999) and Åslund et al (2005)) SFM 

provids. It was later demonstrated that x-ray beam optimisation could be 

achieved not only by the selection of an adequate tube voltage, tube current and 
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exposure time, but also via the selection of a more appropriate anode/filter 

material combination (Fahrig and Yaffe (1994) and Dance et al (2000)). Today, 

AEC acts to ensure adequate image quality is maintained via the use of an 

optimised x-ray beam.  

 

AEC refers to the automatic selection of the optimum imaging parameters to be 

used during the image acquisition procedure (Elbakri (2005)). Current techniques 

consider global exposure control only, taking no account of tissue pathology. 

Conventionally, this was done by placing radiation sensors, such as ionisation 

chambers or semiconductor diodes, underneath the film cassette and the 

exposure was then monitored. The AEC circuitry implemented acted to 

terminate the exposure once a set threshold was reached, therefore limiting the 

exposure time (Elbakri (2005)). As the implementation of digital mammography 

increases, acting to slowly replace the traditional screen-film procedure, the way 

in which AEC is implemented within a digital detection system is differing slightly 

as reported by Åslund et al (2005); where the actual digital detector is used both 

as the AEC sensor and the imaging device. 

 

AEC can be implemented in one of two ways: in a fully automated manner in 

which all the exposure parameters (kVp, anode/filter material, mAs etc) are 

selected without user intervention (Young (1996)) or in a semi-automated 

fashion where the system requires the user’s input in selecting specified 

parameters (Young (1997)). It appears that, regardless of the extent to which the 

AEC is implemented, both methods work in a similar fashion as they both require 

a low dose pre-exposure image to be acquired to determine the optimal imaging 

conditions. The literature also indicates that assumptions are made regarding the 

relationship of patient dose, image contrast and noise in the selection of the 
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beam quality and that optimal beam quality is defined as achieving a target 

contrast to noise ratio (CNR) for the lowest mean glandular dose (MGD) possible.  

 

AEC has proven to be an important and beneficial tool used in mammography, as 

it enables optimum images to be consistently acquired suggesting that the 

problems of over-exposure and under-exposure can be avoided. Young et al 

(2006) demonstrated that images acquired using some form of AEC resulted in a 

slightly higher dose (MGD) to the breast however the images were found to be 

significantly better in terms of image quality having a higher CNR. Consequently, 

a trade off is required, a slightly increased patient dose for a significant contrast 

improvement.  

 

1.2.3 Automated detection: Computer Aided-Detection  

 

Computer aided detection (CAD) is a post acquisition technique used to detect 

breast abnormalities by implementing the use of artificial intelligences (Astley 

and Gilbert (2004)). Its purpose is to act solely as an aid to the radiologist as an 

indicator identifying potential lesions in the mammogram such as masses and 

clustered microcalcifications, highlighting them therefore drawing the attention 

of the radiologist to potential carcinomas (Ko et al (2006)). This is achieved by 

using a statistical approach where probabilistic calculations are performed 

assessing the likelihood that a structure contains malignancy-induced 

abnormalities (Malich et al (2006)); authors have reported computational 

algorithms used (Wei et al (2005) and Ge et al (2007)). 

 

A vast amount of research has been done in an attempt to develop, evaluate and 

compare both commercially available and prototype CAD systems. The majority 

of this work has been undertaken retrospectively using digitised mammograms 
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produced conventionally by SFM systems (Freer (2001) and Lauria et al (2005)). 

This comes as a result of (1) there being a large volume of data readily available 

as this technique has been in use for several decades and (2) FFDM is still a 

relatively new modality hence only a limited amount of data is available. The 

studies that have been done on the implementation of CAD in FFDM report 

mainly on the comparison between the two techniques. For instance, Baum and 

Fischer et al (Baum et al (2002)) report seeing a 3.7% increase in sensitivity and a 

decrease in the number of false positives per image in the FFDM technique as 

well as several other beneficial advantages. Other authors report similar findings 

(Marx et al (2003) and Nishikawa (2007)).  

 

The studies undertaken thus far on the effect of CAD in mammography have 

used a range of different materials and techniques as there are no certified 

standard evaluation protocols in place. Different CAD systems, software versions, 

radiologists and protocols have been used, therefore making it difficult to 

accurately determine its overall effectiveness in a systematic comparison. Much 

of the literature indicates that the level of experience possessed by the reviewing 

radiologist was significant in determining the effectiveness of the CAD system 

implemented (Gur et al (2004), Malich et al (2006) and Rangayyan et al (2006)), 

with the level of experience directly related to the number of cancers missed by 

the radiologist, which were subsequently identified by the automated system, 

these being abnormalities that an experienced reader may have spotted. 

 

This indicates that some breast cancers go undetected simply due to them being 

overlooked when viewed by a single radiologist, with perceptual errors, lack of 

experience or masking by larger tissue structures all coming into play. As a result, 

double reading is frequently implemented in an attempt to reduce the number 

of cancers that initially go undetected. Studies show an increase of up to 15% in 
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the number of screening-detected breast cancers achieved when this technique 

is implemented (Morton et al (2006)). As the option of having a second, or even 

third, reader is an expensive one and most small hospitals/medical centres 

cannot afford to implement this option, a CAD system would be an ideal 

alternative. As a reduction in processing time is also seen with FFDM CAD 

systems in comparison to SFM due to the eradication of the digitisation step, it 

seems it could also potentially be an attractive alternative for larger busier 

practices and hospitals.   

 

There have been published reports, such as that produced by Gur et al (2004), 

where researchers have concluded that the implementation of CAD in 

mammography has an insignificant effect on the abnormality detection rate. Gur 

et al (2004) reports seeing only a 1.9% increased abnormality detection rate in 

comparison to when the CAD system was not implemented. This small increase 

could be due to a variety of reasons such as the radiologists’ level of experience 

(quite high in this case), the nature of the mammograms chosen to make up the 

study (how they were chosen), the way in which the reported evaluation 

parameters were determined (Nishikawa, 2007) or simply because a refining of 

the computational algorithms used may be required. 

 

When summarising the literature, a general trend can be seen throughout where 

the implementation of CAD in digital mammography (DM) results in a 1.9% -

15.0% increase in cancer detection rates. This suggests that a significant number 

of successful biopsies may have been performed if CAD was used where 

malignancies had initially gone undetected. The performance of CAD systems is 

increasing as dedicated teams of researchers continue to develop, test and 

evaluate systems resulting in a continuous evolution of software. Due to these 
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on-going technological advancements, it is inevitable that CAD will become a 

standard aid for mammography in the future.  

 

1.3 Energy dispersive x-ray diffraction 

 

Histopathology is the gold standard for tissue classification. Surgical specimens 

or biopsy aspirations are microscopically examined by a pathologist leading to a 

diagnosis. Although a well accepted technique, it requires surgical removal of 

tissue therefore is an invasive procedure. A non invasive means of tissue 

classification has been developed and is currently under investigation by 

research groups across the globe (Bohndiek et al (2008) and Castro et al (2005)). 

The technique makes use of the scattered photons present during x-ray imaging. 

 

 

1.3.1 Rayleigh Scatter Imaging 

 

Scatter has traditionally been seen as a problem within medical x-ray imaging as 

it acts to degrade image quality therefore hindering abnormality detection. A 

significant amount of research has been undertaken over the past two decades 

attempting to characterise and make use of this ever present ‘unwanted’ 

radiation (Johns and Yaffe (1982) and Kosanetzky et al (1987)). It has been shown 

that information regarding a material’s atomic and molecular structure is 

obtainable when scattered radiation is acquired (Hukins (1983)). This information 

due to the atomic structure of the material arises in the form of a diffraction 

profile (fig 1.1). Different molecular arrangements produce different diffraction 

patterns. Thus, by measuring the diffracted signal at small angles as well as the 

transmitted signal, valuable information can be obtained. This material specific 
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signature has proven to play a pivotal role within medical physics enabling 

ADXRD and EDXRD to become topics of research giving rise to novel applications.  

 

 
Figure 1.1 Illustration of the characteristic peaks of pure adipose tissue and cancerous 

tissue (Kidane et al (1999)). 

 

At diagnostic energies (<100keV), coherent scatter dominates among the low 

scattering angles (approximately <10°) exposing the molecular structure of a 

material. This information has enabled research groups worldwide to extract, 

characterise, and therefore diagnose pathological tissue conditions (Kosanetzky 

et al (1987), Poletti et al (2001), Changizi et al (2005) and Theodorakou et al 

(2008)). Many tissue types have been investigated ranging from brain, kidney, 

muscle, uterus, colon, prostate and liver (Theodorakou et al (2008)) however the 

two main areas that have received significant attention are those pertaining to 

the breast and bone. 
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1.3.2 Coherent  Scatter 

 

Coherent scatter is an elastic scatter process that arises when the electric field of 

an electromagnetic wave interacts with the electrons within an atom in close 

proximity causing it to vibrate, resulting in radiation emission. As no energy is 

transferred to the atom, the photon is scattered with an energy equivalent to 

that of the incident photon; the differential cross section for coherent scatter is 

expressed as shown in equation 1.1 below:  

 

�σ���
�Ω � ��σ����θ��Ω ��	�
� �� m2sr-1 per atom (Eq. 1.1) 

 

Where �σ����θ��Ω � is the Thomson cross section, F2(x, Z) is the elastic scatter form 

factor accounting for interference between x-rays scattered from various 

electrons within the atom and is related to the Fourier transform of the atomic 

charge density which has been tabulated in Hubbell et al (1975). Z is the atomic 

number and x is the momentum transfer.  

 

The Thomson cross section gives rise to the angular distribution of the scattered 

x-ray photons (Eq 1.2): 

                
�σ����θ�
�Ω � ���

	 �� � ���	Q�   m2sr-1 per e-  (Eq. 1.2) 

 

Where 
�σ����θ��Ω   represents the probability of an x-ray photon being coherently 

scattered, ��= ����� � �� !"#$is the classical electron radius and �� � ���	Q� is 

the averaged polarisation where θ represents the photon scattering angle.  

 

Constructive interference between x-ray photons occurs when Bragg’s law is 

satisfied, the latter stating that the difference in path length between two 
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scattering planes must be an integer value n of wavelengths λ, is satisfied (Eq 

1.3):  

 

%λ � �&'(%�θ�    (Eq. 1.3) 

 

Where λ is the photon wavelength, d is the spacing between scattering planes in 

a crystal and θ is the photon scatter angle.  

 

This constructive interference results in the manifestation of a material specific 

intensity profile formally known as an x-ray diffraction profile, and is a function 

of momentum transfer (Eq 1.4).   

 

) � *
+, '(% -	     (Eq. 1.4) 

 

Where E is the incoming photon energy, h is Planck’s constant, c is the speed of 

light and θ is the photon scatter angle. 

 

These material specific characteristic peaks are therefore dependent on d. 

Crystalline materials are characterised by their narrow, sharp peaks yielded by 

their long range order. The opposite is true for amorphous materials where a 

broad peak is observed as a consequence of their short range order. As these 

peaks are material specific, it is possible to identify the spacing’s between the 

scatter sites, which leads to inference of the constituting materials. 
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1.3.3 Previous medical EDXRD Work 
 

1.3.3.1 Breast tissue  

 

Speller and Horrocks (1990) shed light on the fact that x-ray diffraction patterns 

were first observed in 1912 and have since been utilised within the field of 

material sciences to evaluate the structures of biochemical molecules. Since 

then, Speller (1999), Royle et al (1999), Kidane et al (1999), Poletti et al (2002) 

and Bohndiek et al (2008) are just a few of the authors to demonstrate the 

potential uses and applications specific to medicine of coherent scatter. 

 

Konsanetzky et al (1987) extracted the differential scatter cross sections from the 

measured x-ray diffraction patterns of a range of biological and tissue-equivalent 

materials. It was shown that water and Lucite exhibited typical amorphous 

material scatter patterns. Royle et al (1999) not only showed that EDXRD could 

be used to characterise crystalline tissues, such as bone, but also that 

classification between healthy and diseased amorphous tissue could also be 

achieved. Both Poletti et al (2002) and Kidane et al (1999) concluded that the 

shape and height of diffraction peaks were two important properties that could 

be used to enhance cancer detection with respect to clinical mammography. The 

authors obtained the diffraction patterns (linear differential scattering coefficient 

versus momentum transfer) from seven (four adipose and three glandular) and 

one hundred breast tissue samples (sixty one normal and thirty nine neoplastic) 

respectively, where it was seen that the characteristic peaks for adipose and 

carcinoma tissue occur at approximately 1.6nm-1 and 1.1nm-1 respectively (fig 

1.1). The latter study demonstrated that the characteristic peak for carcinoma 

tissue is similar to that of glandular tissue at approximately 1.6nm-1 (fig 1.2). 

Castro et al (2004) and Changizi et al (2005) experimentally confirmed these 
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findings, however they did so on a limited number of samples compared to 

Kidane et al (1999).  

 

Bohndiek et al (2008) demonstrated that diffraction imaging was possible using a 

CMOS active pixel sensor based system and suggested that ‘on-the-fly’ 

diffraction pattern recognition was possible. Scatter patterns from eleven 

different materials were obtained spanning three medical applications including 

breast cancer diagnosis. It was concluded that CMOS APS detectors were suitable 

for diffraction imaging. The findings by those mentioned above, as well as others 

(Griffiths et al (2007), Ryan and Farquharson (2007) and Theodorakou and 

Farquharson (2008)) prompts further application specific investigations with 

respect to the use of coherently scattered x-ray photons in medicine.  

 

 

 
Figure 1.2 Comparison of three similar diffraction peaks pertaining to three different 

tissue types found within the breast (Kidane et al (1999)).   

 

1.3.3.4 Bone 
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The composition of bone is collagen and hydroxylapatite in the form of mineral 

salts (Batchelar et al (2006)). Bone disease, namely osteoporosis, is a metabolic 

disorder affecting bone strength and homeostatic regularitory ability arising from 

an imbalance of bone formation and reabsorption (Bono and Einhorn (2003)). 

Bone mineral density (BMD) serves as an important indicator in determining the 

condition of the bone, i.e. healthy or diseased where a reduction in mineral mass 

due to adipose replacement is observed in trabecular bone (Justesen et al 

(2001)). Authors have demonstrated the benefits of using coherent scatter in 

determining the mineral content of bone (Royle et al (1991), Newton et al (1992) 

and Barroso et al (2007)) therefore indicating the presence of osteoporosis.  

 

Royle et al (1991) not only demonstrated that the changes in bone substitute 

concentration was more apparent using EDXRD as opposed to ADXRD, implying 

an increased sensitivity to bone mineral changes in the former technique, but 

also showed that the bone mineral content from both archaeological diseased 

tissue and fresh excised femoral heads could be scientifically estimated (Royle et 

al (1999)). Farquharson and Speller (1997) demonstrated that it was possible to 

quantitatively detect and perform analysis on archaeological human bone 

samples using EDXRD. They showed that Low angle X-ray scatter (LAXS) 

performed better at correlating BMD to pre-obtained values than other imaging 

methods investigated. More recent investigations demonstrated that it is 

possible to quantitatively obtain the collagen-mineral ratio from intact bone 

phantoms utilising coherent-scatter computed tomography (CSCT) (Batchelar et 

al (2006)) enabling the monitoring of changes in the bone indicative of bone 

disease. 

 



39 
 

1.4 X-ray detection systems 

 

Although EDXRD and ADXRD ultimately give rise to the same information, the 

requirements, therefore the experimental setup, for obtaining scatter profiles 

differ for each technique. EDXRD is reliant on the detection of x-ray scatter from 

the sample using a high resolution energy-resolving detector, namely, a high 

purity Germanium (HPGe) positioned at a fixed angle. The spectrum incident on 

the sample is collimated to a parallel pencil beam which is stepped across the 

tissue sample. A collimator is placed at the entrance to the detector 

consequently limiting the scatter angle. The scatter profile is obtained as a 

function of energy.    

 

Unlike EDXRD, traditional ADXRD is carried out using a monoenergetic pencil 

beam such as that of a synchrotron. However, as such facilities are inaccessible 

for routine analysis, it has been demonstrated, as seen with diffractometry, that 

a standard laboratory x-ray tube consisting of a copper anode with nickel 

filtration can be used giving rise to a quasi-monoenergetic x-ray beam. Scatter 

profiles are then measured as a function of angle. As the x-ray beam is of 

inherently low energy (8 keV) resulting from the Kα lines of copper, penetration 

depth is severely limited therefore restricting samples to be of a small powdered 

nature.  

 

Planar x-ray imaging differs significantly from EDXRD or ADXRD. Whereas the 

detection of x-rays scattered from a sample are of interest for the latter 

techniques, ideally, planar imaging makes use of transmitted x-rays only, 

therefore rendering contrast reliant on the intensity of the x-rays traversing the 

sample without interaction. For the purpose of mammography, either a 
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molybdenum, rhodium or tungsten target with adequate filtration is used 

depending on the nature of the breast to be imaged. 

 

1.4.1 CMOS APS 

 

Over the last two decades, Complementary Metal Oxide Semiconductor Active 

Pixel Sensors (CMOS APS) have received a lot of attention as research groups 

have focused on enhancing this technology. Since the invention of the CMOS 

sensor in 1967 (Weckler (1967)), before that of the Charge Coupled Device (CCD) 

(Smith and Boyle (1970)), the architectural design of the CMOS sensor has been 

developed, enhancing its capabilities. As a result of the movement from passive 

to active, CMOS APS devices have found their way into a broad spectrum of 

modern day applications ranging from mobile phone cameras and baby monitors 

(Fossum (1997)) to aero-space ((Bai et al (2003) and Buonocore et al (2005)), 

automotive and medical applications. Both Schanz et al (2000) and Hosticka et al 

(2003) demonstrated that CMOS APS sensors meet the requirements inherently 

imposed within the automotive imaging industry, which requires imaging sensors 

to have a wide dynamic range and to be able to function at temperatures in 

excess of 85°C. Both authors measured dynamic ranges of 120dB by using skip 

logic and logarithmic type read outs. Sandini et al (2000) and Schwartz et al 

(1999) both demonstrated that the advantages accompanied by CMOS sensors 

could also be used within the biomedical sector, with both research groups 

demonstrating that CMOS sensors can be used as the key components in retina-

like implant systems fulfilling special requirements including sub-region 

addressing, low power consumption and a high dynamic range. 
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The simplest CMOS APS structure comprises of four components per pixel; a 

photodiode, and three transistors (3T), as illustrated in figure 1.3 (Gamal and 

Eltoukhy (2005) and Hoffman et al (2006)). The photodiode is responsible for 

charge generation and charge collection, where the former is related to the 

sensor’s ability to detect in-coming photons and generate a representative 

signal, whilst charge collection governs the sensors ability to reproduce an image 

(Janesick et al (2003)). Ideally, 100% of the optical photons incident on the 

sensor would be detected and then converted to a corresponding voltage; 

however, due to the inherent nature of the sensor, this is not possible. This 

quantum efficiency (QE) loss is predominantly due to three mechanisms; 

absorption, reflection and transmission losses. Absorption losses are a result of 

the optically opaque structures located within and above the pixel such as the 

transistors and metal bus lines used to inter-connect the transistors, structures 

which act to reduce the fill factor of the detector consequently the image quality 

(Bigas (2006)). Reflection losses are contributed to by the insulating layers 

directly above the epitaxial layer where losses due to transmission occur when a 

photon passes through the thin epitaxial layer without interacting therefore goes 

undetected (Janesick and Putnam (2003)). Methods of increasing the fill factor 

have been investigated and near 100% fill factors have been reported (Dierickx et 

al (1997)). 
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Figure 1.3 Schematic of basic three transistor (3T) CMOS APS pixel circuitry. 

 

The three transistors, reset (Mrst), source follower (Msf) and row select (Msel) 

implemented within a 3T APS are illustrated above (fig 1.3). The Mrst transistor 

enables the VRST voltage to pass through to the photodiode consequently 

recharging its capacitance to a reference level. It is then opened enabling 

integration of the photocurrent incident on the sensitive node. As the 

photodiode is reversed biased, the capacitor discharge is proportional to the 

integration time therefore a bright pixel gives rise to low voltage and vice versa 

(Yadid-Pecht and Etienne-Cummings (2004)). The Msf transistor acts to isolate 

the sense node from the column bus capacitance whilst buffering the voltage 

from the node which is then read out via the row select transistor to the column 

bus (Gamal and Eltoukhy (2005)). 

 

Although CMOS APS devices excel in performance when it comes to power 

consumption, production costs, reliability, anti-blooming, windowing, radiation 

tolerance and read out speed, CCD technology still dominates the market with 

regards to medical imaging devices. This is mainly due to the fact that CMOS 

active pixel sensors suffer from an increased noise level in comparison to that of 
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CCDs. This is due to the numerous transistors located within each pixel. This 

architectural structure also acts to inhibit the fill factor of the devices in 

comparison to the 100% fill factor commonly achievable by the CCD (Bigas et al 

(2006)). 

 

1.5 The Intelligent Imaging Sensor project 

 

The Intelligent Imaging Sensor project (I-ImaS project) was a three year, EU 

funded project consisting of a European consortium spread across five EU 

countries. The aim of the project was to develop a new generation of active pixel 

sensors that would revolutionise the data acquisition phase, and therefore 

enhance the diagnostic quality, of medical x-ray images.  

 

The project was split into three phases, the design, manufacture and evaluation 

of a prototype system which had the potential to optimise imaging parameters in 

real time during a scan via the implementation of an intelligent feedback 

mechanism. At the close of the project, only a limited system evaluation had 

been performed. A preliminary investigation into possible implementable feature 

functions had been undertaken (and is discussed further in chapter three) which 

gave rise to potentially useful implementable statistical functions (I-ImaS (2005)).  

The feature extraction performances of a selection of the suggested functions 

have been investigated further along with several new feature functions 

consequently forming the basis of this thesis. Also, this thesis looks at a novel 

method of feature extraction using EDXRD imaging, where the highly specific 

nature of the diffraction signature is used to optimise data acquisition.   
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1.6 The aim and scope of this thesis 

 

This thesis firstly explores the concept of real-time image optimisation based on 

grey level pixel values using a feedback mechanism made available via the use of 

CMOS APS sensing devices. A prototype digital mammography system, the I-ImaS 

system, is characterised then used to explore real-time image optimisation. A 

low exposure ‘scout’ image is acquired, statistically interrogated and used as a 

control function which is fed back through the feedback system ‘on-the-fly’ 

enabling real time optimisation of the exposure incident on the sample which is 

being acquired simultaneously. As a result, an ‘intelligent’ image made up of 

various incident exposures is produced consequently acting to reduce the 

incident exposure to healthy, unsuspicious tissue regions within the breast whilst 

increasing it to suspicious, potentially cancerous regions. In doing so, it is thought 

that the contrast between normal and suspicious tissue regions will increase, 

therefore enhancing the diagnostic quality of the image. 

 

Secondly, the thesis explores the use of energy EDXRD to guide the enhancement 

process. EDXRD is a proven technique able to clearly differentiate between 

breast tissue types i.e. healthy and cancerous (Kidane et al (1999)). The use of 

EDXRD signals as a means of parameter guidance guiding the exposure 

optimisation procedure is also explored. EDXRD images of breast samples are 

acquired, analysed and then the analysis results are fed back into the imaging 

system, consequently governing exposure modulation. 
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Chapter Two 

 

Experimental systems and their 
performance evaluation 

 

 

 

 

 

 

 

 

 

 
 

 



46 
 

2.1 Overview 

 

As described in chapter one, the migration of mammographic imaging from SFM 

to FFDM has enabled mammography to take on a new form where by the 

introduction of various imaging enhancement techniques is now possible. This 

has consequently revolutionised the way in which mammography is performed. 

This chapter describes the imaging systems and, where appropriate, the 

configurations used to undertake the experimental investigations described in 

chapters three and four of this thesis. 

 

The implementation of intelligent imaging within digital mammography is a 

concept waiting to be explored. The ability of an imaging system to identify 

suspicious tissue regions enabling imaging parameter optimisation in real time 

during the data acquisition phase of mammography to local tissue regions would 

prove to be highly desirable, this would minimise the dose to healthy tissue. Such 

a system would not only require the ability to collect data, as is conventionally 

done, but also to analyse it, that is, to differentiate between healthy and 

diseased tissue types, and then optimise the collection of the data, all in real-

time during data acquisition. 

 

Two experimental systems are used within this investigation. The two systems 

differ as one was designed for transmission imaging only (the I-ImaS system), and 

the other was designed for x-ray scatter detection only (EDXRD system). Both are 

discussed below where x-ray characterisation of the I-ImaS sensor is reported. 
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2.2 The Intelligent Imaging System (I-ImaS) 

 

The prototype I-ImaS system is a medical imaging unit that has been specifically 

designed and developed for intelligent mammographic imaging. It is a scanning 

system comprising of five major components which work together enabling the 

production of intelligent x-ray images. The use of a staggered dual array of CMOS 

monolithic active pixel sensors (MAPS) enables image optimisation, where the 

first sensor array, the ‘scout’ array, is used to acquire a low exposure, scout 

image of the sample whilst the trailing sensor array, the ‘ImaS’ array, is used 

simultaneously to acquire an optimised exposure image of the corresponding 

sample region that had previously been imaged with the first sensor array as 

shown in figure 2.1 below.  

 

 

Figure 2.1 Schematic illustrating functionality of the prototype I-ImaS imaging system. 
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The scout image is statistically interrogated using feature functions resulting in 

the extraction of information from the image. This information is then fed back 

through the system, aiding optimisation of the incident exposure on the portion 

of the breast being imaged by the ImaS array. X-ray beam modulation is achieved 

using a set of attenuation filters designed to alter the beam intensity. These 

filters are aligned with the individual Imas array sensor and stepped in and out of 

the x-ray path accordingly as determined by the feedback (steering algorithm) 

mechanism (fig 2.1). The final optimised image, the ‘I-ImaS’ image, is the sum of 

both the scout and the Imas image. 

 

2.2.1 I-ImaS system components 

 

The I-ImaS system is an assembly of sophisticated electronic and mechanical 

components (fig 2.2). They co-operate enabling the constant relaying of 

information throughout the system ensuring the critical functioning of each 

component during the data acquisition, data analysis and optimisation phase of 

the imaging process. A description of the functionality of each individual 

component is given below. 
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Figure 2.2 The data acquisition components used by the I-ImaS system. 

 

2.2.1.1 The I-ImaS sensors 

 

The I-ImaS sensors were specifically designed, developed and optically 

characterised by Rutherford Appleton Laboratory (Turchetta et al (2007)). The 

intelligent imaging system can use up to twenty integrating 3T CMOS APS devices 

for x-ray detection where x-ray sensitivity is increased using a thallium doped 

caesium iodide (CsI:TI) scintillator. Sensor characteristics are given in table 2.1. 

 

 

 

 

Data Acquisition Card 

I-ImaS Filters 

CMOS sensors 

Tissue carrying plate 
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Table 2.1 Physical characteristics of an individual I-ImaS sensor where x-ray sensitivity is 
increased using a scintillator. 

Specification I-ImaS Sensor 
 

Detector Type CMOS MAPS 
Detection Mechanism Indirect 
Pixel Size (µm) 32 × 32a 

Readable Array Size (Pixels) 
Dynamic Range 

520 × 40a 

72dBa 

Reset Type 
Read out  

Flushedb 

Rolling shutterb 

Array Dimensions (mm) 
Epitaxial layer (µm) 

16.64 × 1.26b 

14b 

Full Well Capacity (e-) ≈105 
Scintillator Type Structured CsI:TI 
Scintillator Thickness (µm) 100 
Fibre optic plate thickness (mm) 1 
Scint. Light Yield (Pho/MeV) ≈ 66 000c 
Scint. Density (g/cm3) 4.51c 
Maximum Emission wavelength 
(nm) 

≈ 550 c 

  
aFant et al (2007) 
bTurchetta et al (2007) 
c Nikl (2006) 

 

2.2.1.2 The data acquisition card  

 

The data acquisition (DAQ) card plays a crucial role within the imaging system. It 

is responsible for analysing the acquired scout images and running the intelligent 

image processing algorithms, consequently governing the imaging parameter 

modulation process. It also houses and runs the dual array of twenty CMOS APS 

sensors that are used to acquire the images and the system’s field programmable 

logic arrays (FPGA’s), whilst acting as a power source to the sensors and 

providing a means of direct communication to the motion control system (MCS) 

and imaging system control station (a PC).  A communication protocol is used 

between the DAQ and the MCS enabling firstly, the defining of the system 

configuration commands used to set the experimental parameters, followed by 
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active experiment commands which set the positioning of the tissue carrying 

plate (TCP) and the x-ray beam attenuation filters. 

 

2.2.1.3 The tissue carrying plate stage (TCP) 

 

The current system utilises a stationary x-ray beam and scans the sample across 

the beam on the TCP depicted in figure 2.3. However, a clinical system would 

hold the breast stationary and scan the x-ray beam, attenuation filters and CMOS 

sensors. The custom built TCP (ANCO) has a maximum travel distance of 160mm 

across the sensors and can be positioned with an accuracy of ±3µm. It 

communicates its true position back to the MCS via an encoder (MicroE M1550-

40). The encoder keeps track of the TCP position using an encoder tape 

mechanism which is inscribed with lines 0.5µm apart. 

 

 
Figure 2.3 Tissue carrying plate used to scan breast samples across sensor arrays (I-ImaS 

D27 (2006)). 

 

Slide motion 
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2.2.1.4 The x-ray beam attenuation filters 

 

The x-ray beam attenuation filters modulate the exposure incident on the breast 

in real time during the data acquisition phase. The filters have a step wedge 

structure constructed from varying thicknesses of poly-methylmethacrylate 

(PMMA) and aluminium (Al) layers which act to provide nominal x-ray absorption 

ratios ranging from 20% to 100% for a 30kV tungsten (W) anode x-ray source (fig 

2.4 and table 2.2). Each step of the filter corresponds to the size of a single ImaS 

sensor enabling the exposure modulation of a sensor sized region of interest 

(ROI) to be achieved. The relevant segment of the filter is stepped in front of the 

sample in line with the corresponding ImaS sensor when required and is 

governed by the steering algorithm. The precise movement of the filters is 

controlled in an identical manner to that of the TCP, utilising an encoder and 

piezo-ceramic motors. The system comprises ten rows of filters corresponding to 

the I-ImaS sensor array. 
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Figure 2.4 I-ImaS x-ray beam attenuation filter used to optimise the exposure incident on 

the breast sample (I-ImaS D27 (2006)). 

 

Table 2.2 I-ImaS x-ray beam attenuation filter construction for use with a 30kV, W anode 
source. 

Filter Position Actual Beam attenuation 
(%) 

Filter Structure (mm) 

0 100 8 Al 
1 85 1.8 Al + 4 PMMA  
2 67 0.6 Al + 6 PMMA 
3 46 7.5 PMMA 
4 23 3 PMMA 
5 0 No filtration 
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2.2.1.5       The motion control system (MCS) 

 

The MCS houses all the necessary electronic components for the implementation 

of the motion functions for the system. It is responsible for the motion 

controller’s precise movement of both the TCP and the x-ray beam attenuation 

filters. The twelve motion controllers (Nanomotion LTD AB1A) receive feedback 

signals pertaining to the actual position of the stage from the encoders device 

enabling correction of the command in order to ensure the specified translation 

distance is achieved. It also determines the torque required for precise 

movements. 

 

2.3 EDXRD system components 

 

As the custom built I-ImaS system was designed and developed for transmission 

imaging only, a separate experiment was set up in order to investigate the use of 

EDXRD signals as a means of intelligence for the I-ImaS imaging system. This 

system was a laboratory based EDXRD system and is described below (fig 2.5).  
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Figure 2.5 Laboratory based EDXRD system setup used to acquire diffraction profiles of 

tissue samples. 

 

2.3.1 The X-ray unit 

 

The x-ray source used was a 30kW W anode industrial x-ray tube (AGO 

installations, UK) with a maximum voltage of 160kVp. It was operated in 

fluoroscopy mode at a maximum potential of 60kVp and 5mA and thus avoiding 

production of the characteristic k-lines of W whilst ensuring a detector dead time 

of < 10%. 

 

2.3.2 Photon detection 

 

The x-ray photons scattered by the sample were detected using a high purity 

electronically cooled germanium (HPGe) detector with a planar crystal of 

diameter 36mm and depth 10mm (GLP-36360/13P, Ortec, USA). It was 

Detector 

Beam optics 

Beam optics 

Sample 
X-ray source 

Translation stage 
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controlled by a DSPEC Jr 2.0 (Ortec) multichannel analyzer (MCA) and used 

Maestro software (Ortec) for data collection which assigned the detected 

photons to one of the 512 available channels. The energy resolution of the 

detector was measured to be 0.59keV at 59.9keV where system calibration was 

achieved using an Amerciuam-241 source.  

 

2.3.4 EDXRD system optics 

 

The collimators used to define the x-ray beam were interchangeable allowing the 

effect of spatial resolution on abnormality detection to be investigated. The solid 

angles of the collimators used were 0.23, 0.43 and 0.98msr. Each collimator was 

made of 3mm lead with 3mm aluminium backing. A nominal scatter angle of 6o 

was selected as it has been shown to be optimal for EDXRD breast tissue studies 

(Kidane et al (1999)).  

 

2.4 EDXRD system configuration 

 

The resolution of the EDXRD system is governed by both the angular resolution 

of the system and the energy resolution of the detector (eq 2.1) and is measured 

in terms of momentum transfer. Figure 2.6 depicts the geometry used to obtain 

the EDXRD signals. The system optics were interchangeable therefore changing 

the angular resolution hence the resolution of the system along with the incident 

exposure level. 
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Figure 2.6 Schematic illustrating the geometry of the EDXRD system used in this 

investigation (units of mm). 

 

V.
. � /0θθ �

	 � 0** �
	

        (Eq. 2.1) 

Where  
0*
*  represents the energy resolution of the detector and 

0θ
θ

 is the angular 

resolution of the system (eq 2.2) defined by the collimation width and source-

sample-detector distances. 

VQ

Q
� -1 -�

-     (Eq. 2.2) 

Where according to Cook (2008), θ is the nominal scatter angle and θ1 and θ2 are 

the maximum scatter angles that a photon can undergo and still reach the 

detector. These are computed using equation 2.3 and 2.4. 

 

2! � 34% ! 56�789�Q�:
;�� <=>�Q�:��

6� ;�� >?9$�Q�
@ � Q�?A  (Eq. 2.3) 
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  2	 � 34% ! 56�789�Q� 
;�� <=>�Q� ��

6�:;�� >?9$�Q�
@ B Q�?A              (Eq. 2.4) 

 

Where h=d1 + 2L1tan(θdiv) 

 

Theoretically, the above calculations consider the most extreme outer edge 

photon acceptance range. However, it has been shown by Luggar et al (1996) 

that different regions within the scattering volume subtend differing angular 

ranges at the detector. Consequently, extreme scatter angles are less probable 

than the angles immediately surrounding the nominal scatter angle.  

 

With the distances indicated in figure 2.6 and a collimation width of 1mm, an 

angular resolution of 0.3 is obtainable. As the collimation width is increased to 

2mm and then 3mm, 
0θ
θ

 becomes 0.7 and 1.0 respectively. Considering this, it 

becomes apparent that a compromise must be reached between the angular 

resolution of the system and the photon flux reaching the detector. 

 

2.5 Summary 

 

The data acquisition systems used to explore the intelligent imaging concept 

have been described. The custom built I-ImaS system is able to acquire 

transmission images only; therefore two separate experiments had to be setup in 

order to have acquired and investigated the use of EDXRD signals as a means of 

intelligent input. These diffraction signals would govern parameter optimisation 

as opposed to the statistical information extracted from the low exposure 

mammogram obtained by the I-ImaS system (fig 2.7). X-ray beam modulation is 



 

achieved using attenuation filters which are stepp

path consequently optimising incident exposure to the breast as deemed 

appropriate by the steering algorithm. The EDXRD system makes use of an 

electronically cooled HPGe detector which has good energy resolving capabilities 

enabling the detection of scattered photons from a restricted angular range.

 

Figure 2.7 Illustration of intelligent concept using 

system intelligence (option 1)
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achieved using attenuation filters which are stepped in and out of the x

path consequently optimising incident exposure to the breast as deemed 

appropriate by the steering algorithm. The EDXRD system makes use of an 

electronically cooled HPGe detector which has good energy resolving capabilities 

enabling the detection of scattered photons from a restricted angular range.

Illustration of intelligent concept using low exposure scout image to derive 

(option 1), and EDXRD concept (option 2).   

ed in and out of the x-ray beam 

path consequently optimising incident exposure to the breast as deemed 

appropriate by the steering algorithm. The EDXRD system makes use of an 

electronically cooled HPGe detector which has good energy resolving capabilities 

enabling the detection of scattered photons from a restricted angular range. 

 

low exposure scout image to derive 
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The indirect photon integrating mechanism of the I-ImaS system sensor was seen 

to greatly differ to that of the direct photon counting detection mechanism used 

within the EDXRD system. Unlike the CMOS APS devices, the germanium 

detector did not require an intermediate step of x-ray photon to light conversion 

therefore eliminating the need for a scintillator. However, both the I-ImaS 

system and the EDXRD system were both scanning systems requiring breast 

tissue samples to be either scanned across the face of the detector as was the 

case in the I-ImaS system, or scanned across the face of a collimator, as was the 

case in the EDXRD setup. 

 

2.6 Specimen evaluation: Radiologist’s analysis 

 

Two breast tissue samples were used (fig 2.8) which were obtained from patients 

who had undergone mastectomies at least three years prior to this investigation. 

These samples were collected by Professor A.M Hanby at the academic Unit of 

pathology, St James’ University hospital, Leeds. Both breast specimens referred 

to as sample one and sample two, were excised formalin fixed specimens 

individually sealed in polythene packs that had been stored at room 

temperature. The thickness of each sample was measured to be 10.2mm ± 

0.5mm and 14.3mm ± 0.5mm respectively throughout their central region.  

 

As the role of the intelligent feedback mechanism is to differentiate between 

suspicious and healthy tissue regions, classification of such regions first had to be 

made. A radiologist (Kazantzi) was used to first examine x-ray images of both 

samples identifying suspicious regions therefore determining those worth 

looking at more closely. Figure 2.9 illustrates the regions marked as suspicious. 

Sample one appeared to vary greatly between glandular and adipose tissue 
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whilst sample two appeared to be of a predominantly adipose nature. It was 

concluded that a severe fibrocystic element was present within sample one (as 

depicted in figure 2.8a) unlike sample two where the abnormality was embedded 

in a fairly homogeneous layer of adipose tissue. This diagnosis therefore 

indicated that sample one would act to test the extreme functionality of the 

statistical feature functions while sample two would determine whether the 

basic concept was feasible. 

 

 

 

 
                                      (a)                  (b) 

Figure 2.8 Photographs of the excised breast samples used to simulate the I-ImaS 

intelligent images. (a) sample one (b) sample two. 

 

Severe fibrocystic element Adipose tissue Abnormality 



 

   

Figure 2.9 Breast tissue regions marked as suspicious by radiologist. (a) 

sample 1 and (b) corresponds to sample 2.

2.7 X-ray characterisation of the I

 

This section describes the x

ImaS sensors in the frequency domain. 

Modulation Transfer Function (MTF), Noise Power Spectra (NPS) and the 

Detective Quantum Efficiency

resolution, system noise tr

system respectively. 
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(a)      

Figure 2.9 Breast tissue regions marked as suspicious by radiologist. (a) 

sample 1 and (b) corresponds to sample 2. 

characterisation of the I-ImaS sensors 

describes the x-ray characterisation methods used to evaluat

ImaS sensors in the frequency domain. Parameters investigated include the 

Modulation Transfer Function (MTF), Noise Power Spectra (NPS) and the 

Detective Quantum Efficiency (DQE) which are descriptors of detector 

noise transfer and total signal transfer through the imaging 

 

 

(b) 

Figure 2.9 Breast tissue regions marked as suspicious by radiologist. (a) Corresponding to 

 

ray characterisation methods used to evaluate the I-

investigated include the 

Modulation Transfer Function (MTF), Noise Power Spectra (NPS) and the 

(DQE) which are descriptors of detector spatial 

total signal transfer through the imaging 
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2.7.1 X-ray response 

 

As the detector within a digital imaging system has to have a linear response in 

order to investigate its performance using Fourier analysis, the I-ImaS detector 

response was measured using a range of mAs settings for a given kV 

consequently giving rise to a response curve. The region of the detector with a 

linear response was determined. 

 

2.7.2 Modulation transfer function (MTF) 

 

The MTF describes a system’s response to an input signal (single frequency 

sinusoid (u)) over a range of spatial frequencies:  

 

CDE�$�F� � GHIJ�K�G
LHIMN$�O�L    (Eq. 2.5) 

 

Where FTin and FTd are the amplitudes of the sinusoid before and after sampling 

respectively (Dobbins (1995)). The MTF is obtained by a Fourier transform (FT) of 

a finely sampled line spread function (LSF) (Eq 2.6).  

 

CDEP�F� � �QRST��
�U   (Eq. 2.6) 

 

Where LSF(x) is the line spread function. 

 

 In order to obtain a true estimate of the characteristic frequency response of a 

digital imaging system, i.e. the MTF, it is required that the imaging system have a 

linear response, where the output data from the system is linearly related to the 

input data. Also, the avoidance of aliasing due to undersampling is required as it 
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results in the MTF no longer being the transfer amplitude of a single frequency 

component. Aliasing causes frequencies sampled above the Nyquist frequency to 

mimic frequencies below the Nyquist frequency. This occurs when the signal is 

not sampled finely enough to record the entire frequency spectrum. 

 

The oversampled LSF can be measured using the slanted slit technique described 

in detail by Fujita et al (1992). The slit is carefully placed in front of the detector 

at a slight angle with respect to the detector pixels of approximately 2°. The slit 

image is corrected for sensor offsets and beam nonuniformities as expressed in 

equation 2.7 (Elbakri et al (2009) and Arvanitis et al (2007)):   

   

V,WX$�
� Y� � Z[\]$�.�^�$–$ZJ`$�.�^�
Z]M$�.�^� $ZJ`$�.�^� $� $�Vab$ B$VPc$)  (Eq 2.7) 

 

Where Īcor is the average corrected image, Īraw is the average raw image, Īdk is the 

averaged dark field value and Īwi is the average flat field image.  

 

 The slit image is then normalised with the integral of the digital values 

perpendicular to the slit in order to correct for any edge inhomogeneities or 

variations in slit width (fig 2.10) (Dobbins et al (1995) and Beutel et al (2000)). 

The angle is determined using a plot of the transverse profile maximum along the 

length of the slit (Dobbins et al (1995)) as shown in figure 2.11 .The local minima 

represents the point at which the slit centre is half way between two pixels 

whilst the local maxima indicates where the centre of the slit is directly above 

the centre of the pixel. The pixel distance (d) between local minima consequently 

enables the slit angle to be computed: 
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def�2� � !
P    (Eq. 2.8) 

 

 

g� � 4��
�4�� � 4�� � 4�h � 4�i � 4�j� 

Figure 2.10 Illustration of perpendicular integrals for slit normalisation procedure 

correcting for slit imperfections. 

 

 
Figure 2.11 Determination of the traverse profile maximum along the length of the slit. 
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Figure 2.12 The normalised oversampled LSF of the I-ImaS sensor coupled to 100µm CsI. 

 

The LSF (fig 2.12) is computed by plotting the image intensity versus distance 

from the centre of the slit for each pixel in a ROI surrounding the slit (Dobbins et 

al (1995)). The LSF is then Fourier transformed giving rise to the MTF which is 

then normalised at its maximum to unity. The MTF is then deconvolved in the 

frequency domain using the sinc function giving rise to the true presampled MTF 

(eq 2.9). 

 

CDE7�kl�m� � nIHJ$�o�
pbq,rsMt$�o�   (Eq. 2.9) 

 

Where sincslit(f) estimates the slit width. 

 

2.7.3 Noise Power Spectrum (NPS) 

 

The noise power spectrum is a two dimensional spectral decomposition of the 

variance which may be estimated either from the Fourier transform of the 

autocorrelation function (indirect method) or from the square of the modulus of 
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the Fourier transform of the raw data as shown below (direct method) (William 

et al (1999)):     

uvw�F� x� � yGHI�K�z�G�{
|}�|~ � ��� ��   (Eq. 2.10) 

 

Where yG�Q�F� x�G	{  represents the ensemble average of the squares of the FT 

data, Nx  and yN  are the number of elements in the x and y direction 

respectively (which is equal to the size of the ROI used), ∆ x  and ∆ y  are the pixel 

pitch in the x and y direction respectively.   

 

The NPS is commonly estimated using the direct method according to Samei 

(2003) where the 1-D normalised noise power spectrum (NNPS) is derived from 

the measured 2-D NPS as shown below (eq 2.11). 

 

uuvw�m� � ��T�F� x�
���4%$��V$'(�%4��	 

    (Eq. 2.11) 

Where ���4%$��V$'(�%4��	  is expressed in digital units. 

 

The 1-D NNPS is used as it enables the computation of the DQE estimation. The 

direct method is used as it gives rise to both, the 1-D NNPS and the 2-D NPS 

therefore provides additional noise information such as the presence or absence 

of any off axis noise peaks that may not have been visible if only the 1-D NNPS 

was observed. 

 

The 1-D NNPS is one of the most common metrics describing the noise 

properties of an imaging system serving as a noise characteristic estimate of the 

true NPS. This estimate is obtained rather than the true NPS, as in practice, only 
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a finite amount of data is available for analysis, therefore leading to a finite 

number of samples making up the ensemble average (William et al (1999)). 

Consequently, a compromise must be established between the size of each ROI 

and the number of ROIs in the ensemble average (Dobbins et al (2006)).  

 

In order to suppress offset and background trends such as those introduced by 

the heel effect, leakage current or mains pickup which can artificially inflate the 

low frequency NPS (Vedantham et al (2000)), a second-order polynomial fit is 

used in an attempt to eliminate these trends (Arvanitis et al (2007)). Such 

detrending techniques have been proven to be highly effective at reducing the 

low frequency noise power from within the spectrum as shown by several 

authors (William et al (1999), Vedantham et al (2000) and Arvanitis et al (2007)). 

 

In order to compute a smooth one-dimensional plot, the 1-D NNPS is estimated 

from a thick slice of the 2-D NPS comprised of eight lines on either side of the u 

and v axis (excluding the axis) grouped into frequency bins 0.1mm-1. The 

frequency for each data value (u, v) is computed as ��F	 � x	�. 
 

2.7.4 Detective quantum efficiency (DQE) 

 

Traditionally, detective quantum efficiency (DQE) describes the efficiency with 

which the signal-to-noise ratio (SNR) is transferred from the input to the output 

of an imaging system (Kandarakis et al (1997)) as expressed in equation 2.12. It is 

commonly computed as a function of frequency (Nishikawa and Yaffe (1990) and 

Monnin et al (2007)) and is written as expressed in equation 2.13. 

��� � �������
p|�MN�     (Eq. 2.12) 
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����m� � �����o�
�����o���      (Eq. 2.13) 

 

Where SNRout and SNRin are the output and input SNR, MTF(f) represents the 

modulation transfer function, NNPS(f) is the normalised one-dimension noise 

power spectrum and q is the x-ray photon flux per unit area incident on the 

detector (x-ray photons/mm2).  

 

The photon flux per unit area was determined using the measured exposure 

integrated over the normalised spectral distribution (Johns and Cunningham 

(1983)). The x-ray spectrum was simulated using commercially available 

spectrum generator software (Nowotny and Hvfer (1985) and Meyer et al (2004)) 

which was normalised and scaled with the measured exposure. The exposure 

measurements were made in air where the ion chamber was placed at the 

source to detector distance replacing the detector. 

  

2.8 Materials and Methods 

 

2.8.1 X-ray response 

 

The detector response curve was generated by acquiring flat field images over a 

range of mAs settings at 30kV. Mean pixel values were then determined from a 

centrally located, 35 pixel × 100 pixel region of interest enabling the sensor pixels 

to be averaged. This rectangular area was chosen as the sensor itself was only 40 

pixels × 512 pixel in size. The exposure values were measured using a 15cc 

calibrated Fluke Biomedical ionisation chamber (model: 96035B) along with a 

KEITHLEY electrometer (model: 35050A). The chamber was calibrated at 70kV 
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and 30kV where calibration is traceable to Physikalishc-Technische Bundesantalt 

calibration report number 24969-1. It was positioned in place of the detector at 

the same source to detector distance used to acquire all subsequent 

experimental data. In an attempt to replicate a clinical spectrum the x-ray beam 

was hardened using a 38mm block of PMMA (simulating a thin compressed 

breast) which was mounted onto the x-ray tube housing in order to reduce the 

amount of scatter introduced by the PMMA block reaching the detector. PMMA 

was used as it is a well accepted breast tissue equivalent material (White and 

Tucker (1980)). The values of mean pixel intensity (DN) were then plotted against 

incident exposure. 

 

2.8.2 MTF 

 

The presampled modulation transfer function was measured using the slanted 

slit technique described in detail by Fujita et al (1992) and summarised in section 

2.7. The slit camera comprised of a 1.5mm thick tantalum disk incorporating a 

10µm (±1µm) wide by 5.5mm long slit (MA4976 Gammex rmi). It was carefully 

placed 2mm in front of the detector (leading to a magnification of 1.006 hence 

removing the effect of focal spot size) at a small angle (<2°) with respect to the 

vertical pixel array. The slit was imaged using x-ray tube setting of 40kV and 

10mAs.  

 

2.8.3 NPS 

 

The NPS was estimated using the direct method according to Samei (2003) 

where the 1-D NNPS was estimated from the measured 2-D NPS. The effect of 

exposure on the NNPS was investigated where fifty five flat field images were 

acquired at five different incident exposure settings (0.00, 0.09, 0.30, 0.45 and 
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1.00µCkg-1). A constant source to detector distance of 630mm was maintained. 

The exposures were determined experimentally using the 15cc calibrated Fluke 

Biomedical ionisation chamber (model: 96035B) attached to the KEITHLEY 

electrometer (model: 35050A) which was positioned in place of the detector; 

these measurements were made in air. The flat field images were output from 

the imaging system as raw data. Due to sensor size limitations, 15 32 pixel × 32 

pixel non-overlapping ROIs were taken from each image for all 55 images 

providing 825 ROIs. Consequently, the NPS was an ensemble of 825 spectra; this 

resulted in a standard error of 3.4%. The 1-D NNPS was estimated from a thick 

slice of the 2-D NPS comprised of 8 lines on either side of the axis therefore 

providing 8 lines × 2 sides × 32 frequency bins = 512 data values per 0.1mm-1 

frequency bin.  

 

2.9 Results 

 

2.9.1 X-ray response 

 

The measured characteristic curve of a single I-ImaS sensor element is shown in 

figure 2.13. It is observed that the response has a correlation coefficient value 

(R2) of 0.9997 at low pixel intensity values. This therefore enables the 

assumption that the sensor is linear within reason for a given range (at low pixel 

intensity levels) to be made. Using this linear region for the remainder of the 

sensor characterisation investigation therefore accounts for any non-linearity’s 

associated with the sensor.  
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Figure 2.13 Sensor x-ray response where data points represent the mean intensity of the 

image expressed in digital numbers.  

 

2.9.2 MTF 

 

The measured presampled MTF of the I-ImaS system is shown in figure 2.14. The 

MTF of the system appears to fall to 10% at approximately 6 lp/mm. This is 

believed to be partly due to the imperfect coupling of the scintillator to the 

sensor. Another possible factor restricting the resolution is the quality of the 

columns within the structured CsI itself. Imperfections in the columnar structure 

would result in undesirable light diffusion through the path of the scintillator 

towards the sensor consequently contributing to MTF degradation. Although the 

MTF is an important descriptor of an imaging system’s spatial resolution 

performance, this parameter alone does not act as a complete performance 

indicator. The NPS and DQE metrics provide additional information which should 

be considered. 
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Figure 2.14 The presampled MTF plot of the I-ImaS sensor coupled to a 100µm structured 

CsI:TI scintillator.  

 
 
2.9.3 NPS 

 

The 2D NPS obtained at 0.00, 0.09, 0.30, 0.45 and 1.00µCkg-1 are shown in figure 

2.15. These results illustrate a common fact seen throughout the literature, 

(William et al (1999) and Samei and Flynn (2003)) that is noise increases as 

exposure is increased. However when normalised with the mean signal, the 

reverse is true as can be seen from figure 2.16. It is seen that at higher exposures 

(Fig 2.15d and 2.15e) the NPS appears noisier than those obtained at lower 

exposures (Fig 2.15a and 2.15b) which possess the characteristic grain like effect 

as a result of the relative amount of quantum noise on the detector.  

 

It is thought that the quantum noise along with contributions from CsI mottle 

noise is the reason for the varying shape of the curves with exposure where a 

more elliptically shaped noise contribution is seen at 0.09µCkg-1 and 0.30µCkg-1 

in contrast to higher exposures where the noise component appears to be 

contributed to more equally in all directions as the spectra appear to be more 
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radial in shape. The higher noise component seen on the vertical axis at zero 

frequency is thought to be associated with nonstationary electromagnetic 

fluctuations (pick up noise) arising from the row select transistors of the imager 

during readout (Siewerdsen et al (1998)). Spikes commonly associated with 

uncorrected fixed pattern noise or fiber optic plate mismatches are observed 

(Williams et al (1999) along the horizontal axis appearing at approximately 4 and 

8 cycles/mm. It is also observed from the 2D NPS that noise spikes are present in 

the corners of the images, as these spikes are present in the dark images it is 

likely that they are a form of internal high frequency EMI noise arising from one 

of the numerous electronic components on the DAQ. The results shown in figure 

2.16 provide indication that once normalised, the noise is inversely proportional 

to the exposure level, and also that at lower spatial frequencies, a higher noise 

content is exhibited. The noise amplitude fluctuations are seen at approximately 

4 cycles/mm and 8 cycles/mm and are believed to be associated with FOP 

mismatches.  
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        (a)         (b) 

 

 
       (c)                                  (d) 

 

                              
 (e) 

 
Figure 2.15 2-D NPS for all exposures investigated illustrating noise components not seen 

in 1-D spectrum where (a) illustrates the 0.00 (b) 0.09 (c) 0.30 (d) 0.45 and (e) 1.00µCkg-1 
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Figure 2.16 Comparison of 1-D normalised noise power spectrum obtained at all 

exposure settings investigated.  

 

2.9.4 DQE 

 

The DQE was determined according to equation 2.13 and the result is displayed 

in figure 2.17. The DQE close to zero frequency was 0.30 with a detector 

entrance exposure of 0.45µCkg-1, the measured x-ray photon flux incident on the 

detector was 3.2×105 photons/mm2. The drop in DQE seen at 4 cycles/mm is 

consistent with the 1D NNPS discussed above and is thought to be due to low 

frequency noise components arising from electromagnetic pick up noise. The low 

DQE value at higher spatial frequencies is associated with the non ideal CsI 

sensor coupling. It is thought that a higher DQE at lower spatial frequencies may 

be obtainable if a thicker fiber optic plate and better scintillator coupling was 

introduced.    
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Figure 2.17 The DQE of system configuration utilising the I-ImaS sensor coupled to the 

structured CsI:TI scintillator. Obtained with a sensor surface exposure of 0.45µCkg-1. 

 

2.10  Summary 

 

Care was first taken in determining the exposure response of the system as a 

linear-system response is generally necessary to characterise the system using 

Fourier analysis. The spatial resolution offered by the CsI:TI coupled I-ImaS 

sensors is superior (6 lp/mm at 10% MTF) to the Sensographe 2000D (5 lp/mm at 

10% MTF) which is the most commonly used commercially available indirect 

digital mammography imager (Monnin et al (2007) . The NPS indicates that the 

use of a higher incident exposure would be desirable reducing the noise power at 

mid to high spatial frequencies consequently increasing the likelihood of 

Microcalcification detection. As this system was intended for use in 

mammography, the exposure is therefore limited due to strict dose constraints. 

The DQE was estimated to be 0.3 at close to zero frequency. This indicates that 

for low dose mammography, the system is not very efficient at using the incident 

quanta to form an image. Consequently, as DQE increases with exposure, an 

increased exposure is recommended. The overall performance characteristics of 
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the I-ImaS system suggest that the system has the capabilities to be used as a 

medical imaging system and should be investigated further. 
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Chapter Three 

 

Feature extraction using statistical 
feature functions & EDXRD 
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3.1 Introduction 

 

This chapter explores the intelligent imaging concept. It has been proposed that 

the imaging parameters used to obtain a mammogram can be optimised in real 

time. This optimisation procedure would be implemented in one of two ways, 

either via a feedback mechanism based on information extracted from a low 

exposure image during the imaging process, or, via the feedback of an EDXRD 

signal.  

 

The former technique would therefore require a means of extracting information 

contained within the partial mammogram and determining whether the tissue is 

suspicious or not. As this decision making feedback loop would have to be 

performed in real-time, excessive computational times would have to be avoided 

requiring the mechanism to be of low computational complexity. 

 

As discussed in chapter one, the use of automated global image enhancement is 

currently available in the form of Automated Exposure Control (AEC), which acts 

to find and set the optimal imaging conditions for a given breast (Pisano and 

Yaffe (2005)). This technique often results in over and under exposed tissue 

regions which are far from ideal (Elbakri et al (2005)). The technique proposed by 

the I-ImaS system of first extracting then identifying information signatures from 

the content rich image in an attempt to optimise the imaging parameters to local 

as opposed to global tissue regions overcomes this limitation. This would 

consequently result in an image being obtained with more than one incident 

exposure, an ‘intelligent image’. The ability to control the imaging parameters for 

a given region of interest would ultimately result in a more efficient exposure 

distribution where diseased tissue regions could be imaged at higher exposure to 

that of healthy tissue regions. As a consequence of this exposure optimisation, 
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risk to healthy tissue would be minimised whilst maintaining or potentially 

increasing the contrast between healthy and suspicious tissue regions.  

 

The investigation as to whether the real time parameter optimisation technique 

is possible is considered in this chapter where it has been experimentally 

demonstrated that the proposed concept is possible using simple statistical 

feature functions as a means of information extraction. 

 

An alternative breast tissue information extraction technique for implementation 

into the I-ImaS parameter control system was also investigated. The proven 

tissue differentiation capability of EDXRD is considered. As the I-ImaS system was 

custom built for transmission imaging only, it was therefore necessary to conduct 

a separate experiment in order to extract and determine whether EDXRD signals 

could serve as an intelligent input parameter, controlling the imaging parameters 

of the I-ImaS system in real time. Two experiments were setup, an EDXRD system 

in order to extract the coherent diffraction profiles from two breast tissue 

samples, and the second experiment used the I-ImaS imaging system in order to 

obtain conventional transmission images at several different incident exposures 

of the corresponding tissue regions pertaining to the same specimens 

consequently enabling the simulation of EDXRD guided intelligent transmission 

images.  

 

The ultimate goal of this investigation is to demonstrate that the concept of 

using EDXRD signals obtained from the breast during a scan, therefore identifying 

suspicious tissue regions, can be used to optimise the imaging parameters in real 

time during data acquisition. This therefore introduces the potential to optimise 

the imaging parameters of a mammogram, via the use of an intelligent imaging 

system in real time during a scan. The ability to provide an increased or even 
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similar image quality whilst reducing the incident exposure to the breast would 

also prove desirable. However, in practice, this concept appears to be hindered 

by the fact that the exposure required to obtain diffraction signals from the 

breast is higher than the exposure used to obtain the conventional 

mammograms. This therefore means that the exposure used to obtain an EDXRD 

guided intelligent I-ImaS image, by default would require an increased incident 

exposure therefore requiring the optimisation of the EDXRD procedure. 

 

3.2 Materials 

 

3.2.1 Database images  

 

To supplement the two tissue sample images, thirty three mammograms 

obtained from the publicly accessible Mammographic Image Analysis Society 

(MIAS) Mini-Mammographic Database were used (Suckling et al (1994)). The 

purpose of this investigation was to test the statistical feature functions on 

conventionally acquired mammograms, providing indication as to which feature 

functions could possibly be implemented into the steering algorithm; therefore 

used to generate intelligent I-ImaS images. As the database was specifically 

compiled in order for researchers to test and compare their algorithms, each 

mammogram had been digitised using a 200µm pixel where each image was of 

1024 × 1024 pixels. Each mammogram was accompanied by appropriate 

information providing sample details such as background tissue type, 

abnormality type, abnormality location, abnormality size etc enabling various 

abnormality types and conditions to be investigated for the I-ImaS analysis.  
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3.2.2 Statistical feature functions for abnormality detection 

algorithm 

 

The feedback mechanism used to drive the intelligence is of paramount 

importance and should ideally be based on information obtained from the breast 

itself. It is intended that the use of statistical functions that are able to 

consistently highlight changes in grey level trends, i.e. pixel intensities, be 

implemented into the feedback algorithm. 

 

A preliminary study was undertaken within the I-ImaS consortium attempting to 

determine potentially useful statistical measures that could be eventually 

implemented into the feedback algorithm (I-ImaS (2005)). The investigation 

involved the evaluation of twenty statistical feature functions where nine of 

them were basic functions such as the mean, max, min, entropy etc. The 

remaining eleven were synthetic functions created by combining one or more of 

the original nine. Their capability to track image quality fluctuations with 

parameter change was investigated. It was concluded that eight of the twenty 

functions evaluated had the potential for I-ImaS system implementation subject 

to further verification (I-ImaS (2005)). The work presented here follows on from 

this preliminary investigation. A set of eight feature functions have been 

investigated with respects to their ability to consistently detect suspicious 

regions within mammograms, in order to find the best candidates for 

implementation into the real time image analysis procedure. Four of the eight 

functions were the same as some of those used previously (eq 3.1 – eq 3.4), and 

were selected firstly, based on their performance, and secondly, their simplicity. 

The remaining four functions were newly combined synthetic functions created 

by combining two of the initial four functions together. All eight functions were 

selected as they were simplistic, therefore having low computational times 
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complying with the strict time restraints, along with their potential suitability for 

grey level differentiation. 

 

The statistical functions used for tissue information extraction are listed below: 

 

• Minimum value  

V�bq � #(%RV�
� Y��U�    (Eq. 3.1) 

    

• Maximum value 

     

V��. � #4
RV�
� Y��U�        (Eq. 3.2) 

 

• Mean Value 

µ � !
|� )�� !���     (Eq. 3.3) 

 

• Standard deviation 

σ � / !
| !� �)�� !��� B µ�	    (Eq. 3.4) 

 

• Synthetic function 1 

TY%�! � �V��. B  ¡?9� ¡8�	    (Eq. 3.5) 

 

• Synthetic function 2 

TY%�	 � ¢£¤¥�
µ

     (Eq. 3.6) 

 

• Synthetic function 3 

TY%�¦ � �µ � V��.�V��.        (Eq. 3.7) 
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• Synthetic function 4 

TY%�§ � µ � σ                (Eq. 3.8) 

 

 

3.2.3  Tissue differentiation: Threshold levels 

 

The ability to differentiate between healthy and suspicious tissue regions from 

within a mammogram based on pixel intensity requires the use of a threshold 

value. This threshold serves as a trigger where once exceeded, the corresponding 

tissue region is then classified as suspicious. This differentiation procedure would 

usually be undertaken by a radiologist who would view mammograms of both 

the right and the left breast side by side before concluding whether the breast 

contained any potentially cancerous tissue regions; therefore possibly leading to 

re-examination.  

 

The technique posed by the I-ImaS system makes use of a mammogram of a 

single breast obtained with a low exposure, first extracting and identifying 

information signatures from within the image prior to image parameter 

optimisation. The method used to derive the threshold values for each function 

was experimentally determined hence developed and optimised as the 

investigation went on. 

 

In order for the system to highlight a region as suspicious, the thresholds of all 

the selected feature functions corresponding to the same tissue region have to 

be flagged as suspicious as to minimise the flagging of healthy regions incorrectly 

flagged by an individual function. This combining of individual functions 

ultimately leads to a single secondary feature function, the combined feature 

function.  
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3.3 Testing of the statistical feature functions 

 

3.3.1 Preliminary feature function testing: Database images 

 

The performance characteristics of the eight statistical feature functions were 

investigated using mammograms obtained from the MIAS Mammography 

database in an attempt to identify the most robust, stable and consistently 

performing functions within the set. This part of the study concentrated on the 

detection of microcalcifications and both malignant and benign well 

defined/circumscribed masses. These conditions were selected for investigation 

as microcalcifications indicate the presence of early breast cancer whilst 

circumscribed masses are commonly encountered.  Once the database images 

were downloaded, they were categorised and placed into one of three 

appropriate folders based on the nature of the tissue type surrounding the 

abnormality (adipose, fatty glandular and dense glandular). A total of thirty three 

different mammograms were investigated. The images were then divided into 

strips (fig 3.4) corresponding to the height of the stepping ROI. Two strips from 

within each mammogram were selected and pertained to two different breast 

tissue regions, one containing an abnormality as shown in figure 3.4b, and the 

other comprised of healthy tissue alone (fig 3.4c). Two different regions were 

selected in order to have investigated the behaviour of the statistical functions 

both in the presence and absence of any abnormalities.  

 

The underlying principle of the data processing procedure was to increase the 

pixel intensity difference between the healthy and suspicious tissue in order to 

allow statistical differentiation of the two regions. A global histogram 

equalization approach was used as it was an effective method of enhancing an 

entire low contrast image (Cheng et al (2006)). The pixels within each image 
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investigated within this chapter were re-assigned values between 0 and 255 

where 0 presented the lowest pixel value and 255 represented the maximum 

pixel value within the image.  

 

Statistical information from within a mammogram in the form of grey level pixel 

intensities was extracted using a stepping region of interest. The size of this ROI 

remained constant for all the database images investigated. They were analysed 

using a 5 × 75 pixel stepping region of interest whilst corresponded to a 1mm × 

15mm I-ImaS pixel area. The ROI was stepped across the image in one pixel 

column steps where the feature functions were computed giving rise to a single 

representative value for that ROI (fig 3.1). Each ROI value yielded was 

independent of any previously obtained values and was solely governed by the 

pixel values within the immediate ROI being analysed. This value was compared 

to the threshold where it was determined whether the ROI was suspicious or 

not.  

 

 

        B’ + C’ = X2 

 

 

 

 

 

 

                   A’ +  B’ = X1 

Figure 3.1 Schematic of stepping ROI where statistical results obtained from within ROI is 

stepped one column at a time.  
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3.3.2  Results of preliminary investigation 

 

Selection of the best performing feature functions to be used within the I-ImaS 

feedback system was done by visually identifying numerical trends from within 

the feature function profiles as seen in figures 3.2 and 3.3. The feature functions 

that were able to enhance the grey level pixel intensity difference between 

healthy and suspicious tissue regions were selected. The profiles of all thirty 

three database mammograms were investigated.  

 

The mammogram strip presented in figure 3.2 depicts a microcalcification cluster 

imbedded in adipose tissue. It can be observed from the feature function profiles 

that Max, SynF1, SynF2 and SynF3 show distinct peaks corresponding to the 

abnormality only. The remaining feature functions prove ineffective at 

differentiating healthy from suspicious regions. Depicted in figure 3.3 is a 

mammogram strip containing a circumscribed lesion imbedded in adipose tissue. 

From the graphs, it can be seen that the Max, standard deviation and all of the 

synthetic feature functions are able to detected the abnormal region, however, it 

appears that SynF1, SynF2, SynF4 and the standard deviation are able to 

distinctively highlight the suspicious region only. Consequently the max, SynF1 

and SynF2 are the three common feature functions in both examples that 

consistently perform as required. Table 3.1 depicts the abnormality detection 

performance of using SynF1 and SynF2 as a combined feature function on all 

thirty three mammograms. It can be seen that this combined feature function 

has a 73% detection success rate hence will be the combined feature function 

used throughout this investigation.  
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Figure 3.2 Strip of database mammogram containing a microcalcification cluster 

embedded in adipose tissue. Graphs depict results of the statistical feature functions.  
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Figure 3.3 Strip of database mammogram containing a circumscribed lesion embedded 

in adipose tissue. Graphs depict results of the statistical feature functions. 
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Table 3.1 Results of the combined feature function analysis obtained from database 
mammograms.  

Strip ID Abnormality 
Type 

Background 
tissue 

Combined 
detection 

1 µCal Adipose Yes 
2 µCal Adipose Yes 
3 µCal Adipose Yes 
4 µCal Adipose Yes 
5 µCal Adipose Yes 
6 Circumscribed Adipose Yes 
7 Circumscribed Adipose Yes 
8 Circumscribed Adipose Yes 
9 Circumscribed Adipose Yes 

10 Circumscribed Adipose Yes 
11 Circumscribed Adipose No 
12 µCal Fatty glandular Yes 
13 µCal Fatty glandular Yes 
14 µCal Fatty glandular Yes 
15 µCal Fatty glandular Yes 
16 µCal Fatty glandular Yes 
17 µCal Fatty glandular Yes 
18 µCal Fatty glandular Yes 
19 µCal Fatty glandular Yes 
20 µCal Fatty glandular Yes 
21 µCal Fatty glandular Yes 
22 µCal Fatty glandular Yes 
23 Circumscribed Fatty glandular No 
24 Circumscribed Fatty glandular No 
25 Circumscribed Fatty glandular Yes 
26 Circumscribed Fatty glandular Yes 
27 µCal Dense glandular Yes 
28 µCal Dense glandular No 
29 µCal Dense glandular No 
30 µCal Dense glandular No 
31 Circumscribed Dense glandular No 
32 Circumscribed Dense glandular No 
33 Circumscribed Dense glandular No 

Total 33   Detected: 24 
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The threshold value pertaining to SynF1 and SynF2 were derived by either 

manipulation of the feature function itself as seen in equation 3.10, or 

observationally determined from analysing the results yielded from the database 

plots (eq 3.11). The ROI (eq 3.9) used to derive the threshold in equation 3.10 

was taken from either the initial 32 pixel columns or final 32 pixel columns of 

breast tissue within each mammogram. This was done as the I-ImaS system 

would require the area immediately under the skin (edge of breast image) to be 

used as opposed to regions found mid way within the breast ensuring the 

maximum amount of tissue is scanned.  

 

¨�©Z � !
|n� � ��V�
� Y�n̂�!|.�!              (Eq. 3.9) 

 

Where XROI is the average value of the ROI comprised of N and M rows and 

columns respectively. 

 

Qªp^qH! � «!*� ¨�©Z*¬�! ��� � ��j                        (Eq. 3.10) 

 

Where E=32 

Qªp^qH	 � �j�$®�         (Eq. 3.11) 

 

Presented in figures 3.5, 3.7 and 3.9 are the results of both, the combined and 

selected individual feature functions obtained from figures 3.4, 3.6 and 3.8.  

 

Figures 3.5a, b and c correspond to segment 3.4b and show that the benign well-

defined/circumscribed mass, embedded in adipose tissue, is accurately 

highlighted as suspicious by both feature functions therefore the combined 

feature function also. Whilst highlighting the abnormal region, it can be seen that 
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the individual functions do well to minimise false flagging of the healthy tissue 

regions, therefore providing indication that the combined function has good 

specificity when used to analysis breast consisting predominantly of adipose 

tissue. Figures 3.5d, e and f correspond to the healthy image segment (3.4c) and 

illustrate that the condition governing the combined feature function is not 

satisfied. It can be observed that this is due to the fact that although both 

individual functions (fig 3.5d and e) flag regions within the image as suspicious, 

they do not correspond to a given location hence does not satisfy the combined 

feature functions predetermined condition.  

 

 

 

 

 



94 
 

 

                      (a) 

 

                      (b) 

 

                    (c) 

Figure 3.4 (a) Illustration of a mammogram  containing a  calcification 

embedded in adipose tissue downloaded from MIAS database (b) section of 
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mammogram containing abnormality analysed by statistical feature functions 

(c) healthy segment of mammogram analysed by feature functions. 

 

 

(a) Results from SynF1 pertaining to 3.4b      (d) Results from SynF1 pertaining to 3.4c 

 

 

(b) Results from SynF2 pertaining to 3.4b            (e) Results from SynF2 pertaining to 3.4c 

 

 

(c) Combined feature function figure 3.4b.   (f) Combined feature function figure 3.4c.    

Figure 3.5 Results of statistical analysis yielded by SynF1 and SynF2 corresponding to 

figure 3.4. 

 

Figure 3.6a shows a mammogram consisting of a benign calcification embedded 

in fatty glandular tissue (fig. 3.6b). The results of the statistical investigation 

corresponding to this abnormality are shown in figures 3.7a, b and c. Again, all 

three figures correlate well with the abnormality. The combined feature function 

does well to highlight this suspicious region only, regardless of the fact that both 

SynF1 and SynF2 flag other regions as suspicious. However, the healthy region 

incorrectly flagged by SynF1 appears to correspond to the immediate 

surrounding tissue hence may potentially not be seen as a problem. The healthy 
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segment of the mammogram (fig 3.5c) appears to comprise of both adipose and 

glandular tissue types. A glandular region is seen to occupy the segment 

between approximately 190 pixels to 240 pixels and is reflected by SynF1 (fig 

3.6d). However, as this region goes undetected by SynF2, no x-ray beam 

modulation is required (fig 3.6f). 

 

Figure 3.8a depicts a mammogram containing a well-defined/circumscribed mass 

embedded in fatty glandular tissue as can be seen more closely in figure 3.8b. 

Both statistical feature functions highlight the suspicious mass only, as seen in 

figures 3.9a and b, therefore satisfying the predetermined condition which states 

that both feature functions must be flagged for a given location before an 

increase in exposure can be administered; hence figure 3.9c. Figure 3.9f shows 

that the healthy tissue segment is at no point treated as suspicious. However, it 

can be seen for a second time, that SynF1 flags regions within the healthy tissue 

as suspicious therefore suggests that it is more sensitive to tissue changes than 

SynF2. 
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                   (a) 

              

                  (b) 

             

                      (c) 

Figure 3.6 (a) Illustration of a mammogram containing a benign microcalcification 

embedded in fatty glandular tissue downloaded from MIAS database (b) section of 
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mammogram containing abnormalities analysed by statistical feature functions (c) 

healthy segment of mammogram analysed by feature functions. 

 

 

 

(a) Results from SynF1 pertaining to 3.5b      (d) Results from SynF1 pertaining to 3.5c 

 

 

(b) Results from SynF2 pertaining to 3.5b            (e) Results from SynF2 pertaining to 3.5c 

 

 

(c) Combined feature function yielded from a and b.  (f) Combined feature function yielded from d and e. 

 

Figure 3.7 Results of statistical analysis yielded by SynF1 and SynF2 corresponding to 

figure 3.6. 

 

0.00E+00

2.00E+06

4.00E+06

0 200 400 600

D
ig

ita
l V

al
ue

ROI (32 pixel width)

SynF 1

0.00E+00

4.00E+05

8.00E+05

1.20E+06

0 200 400 600

D
ig

ita
l V

al
ue

ROI (32 pixel width)

SynF 1

0.00E+00

1.00E+02

2.00E+02

0 200 400 600

D
ig

ita
l V

al
ue

ROI (32 pixel width)

SynF 2

0.00E+00

1.00E+02

2.00E+02

3.00E+02

0 200 400 600

D
ig

it
al

 v
al

ue

ROI (32 pixel width)

SynF 2

0

1

1 201 401 601

Co
nd

it
io

n

ROI (32 pixel width)

Filter Action

0

1

1 201 401 601

Co
nd

iti
on

ROI (32 pixel width)

Filter Action



99 
 

 

       (a) 

       

        (b) 

      

       (c) 

Figure 3.8 (a) Illustration of a mammogram containing a benign circumscribed 

mass embedded in fatty glandular tissue downloaded from MIAS database (b) 

section of mammogram containing abnormality analysed by statistical feature 

functions (c) healthy segment of mammogram analysed by feature functions. 
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(a) Results from SynF1 pertaining to 3.7b         (d) Results from SynF1 pertaining to 3.7c 

 

 

(b) Results from SynF2 pertaining to 3.7b              (e) Results from SynF2 pertaining to 3.7c 

 

 

(c) Combined feature function from a and b           (f) Combined feature function from d and e 

 

Figure 3.9 Results of statistical analysis yielded by SynF1 and SynF2 corresponding to 

figure 3.8. 
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within the mammograms. The results imply that more than one feature function 
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point unnecessarily flagged healthy regions within the image. It was also 
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observed that the tissue-background border did not prove problematic (i.e. 

leading to false indications). This was due to the fact that these regions could 

only result in a decrease in pixel intensity; however, this consequently implies 

that such behaviour may possibly result in abnormalities close to the 

skin/background border going undetected. It has been demonstrated that 

abnormality detection using low complexity statistical feature functions is 

possible when at least two of the discussed functions are combined, therefore 

acting to reduce the proportion of healthy tissue unnecessarily highlighted. For 

the remainder of this investigation, SynF1 and SynF2 will be used in the combined 

fashion as shown above as a statistical information extraction tool. 

 

3.4 Imaging parameter modulation 

 

The previous section demonstrated the ability of the statistical feature functions 

to highlight abnormalities within the database mammograms; the next section 

reports the testing of the feature functions using mammogram segments 

obtained using the I-ImaS sensors in a conventional transmission imaging system.  

 

During the initial phase of the I-ImaS project, the design and specification of the 

I-ImaS imaging system was investigated. The main objective during this phase 

was to identify the key aspects of a medical image which correspond to the level 

of diagnostic information contained within it enabling abnormality detection. 

This objective lead to the production of an End User Survey (EUS) which enabled 

the opinions of 62 medical imaging professionals (34 radiologists, 21 physicists 

and 7 radiographers) to be considered. The majority of the replies demonstrated 

that contrast resolution was the main feature both the radiologists and the 

physicists’ thought needed improving. The results of the EUS concluded that an 
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increase in patient dose was undesirable and hence should be avoided; however, 

maintaining dose at current levels was acceptable providing an increase in 

diagnostic information was seen. All respondents agreed that lowering the 

patient dose was desirable provided that a significant reduction occurred (≥20%) 

(I-ImaS (2004)). It was also thought (85% of radiologists) that a very useful 

feature a new imaging system would possess would be the ability to optimally 

expose local regions of tissue therefore potentially leading to having optimal 

contrast at all points in the image. 

 

The final I-ImaS design addressed the above issues. It was decided that a system 

with the ability to modulate the photon flux could potentially enable a more 

efficient way of exposing the breast. This would enable suspicious tissue regions 

to be imaged with a higher exposure than healthy regions, reducing the dose to 

the patient whilst potentially increasing image contrast. Intelligent imaging 

techniques that could be used to modulate the exposure required that a line 

scanning system be used enabling techniques such as  modulation of the scan 

speed, where the scan speed would be slowed when imaging a suspicious region 

and speeded up when a non-suspicious regions is imaged; or modulation of the 

x-ray beam using attenuation filters. As the EUS reported a dose reduction of at 

least 20% was desirable, the use of attenuation filters would enable 

corresponding intensity reductions to be achieved. Modulation of the kVp was 

also considered, however it was thought that as the system is to perform in real 

time, rapid modulation of the kV would be challenging as the time required for it 

to be decreased and allowed to settle would be limited. Spatial resolution was 

also considered as a means of increasing the image quality to corresponding 

suspicious tissue regions. The benefit would only be fully appreciated in an 

imaging system using larger pixel sizes. Modulation of the spatial resolution also 

has the disadvantage of having no effect on patient dose. 
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It was decided that the final I-ImaS system would implement a smaller pixel size 

than is currently used within mammography in order to achieve the desired 

spatial resolution. The use of x-ray beam attenuation filters corresponding to 

exposure decrements of 20%, 40%, 60% and 80% were selected. This enabled the 

shape of the incident spectrum to be modulated, ultimately optimising exposure 

distribution. 

 

3.5  Feature extraction 

 

3.5.1 Transmission imaging  

 

Simulation of an intelligent I-ImaS image requires that an image be made up of 

several segments of other images each obtained using a different incident 

exposure. This therefore required that the I-ImaS system be used in a 

conventional manor to obtain images of the two breast tissue specimens at five 

different incident exposures. The exposures used were 3.7, 8.2, 13.3, 19.0 and 

24.8µCkg-1 corresponding to filter positions one, two, three, four and five 

respectively; therefore five images with different image qualities were produced. 

Consequently, the simulation of intelligently acquired images where local 

parameter adjustments based solely on the statistical information extracted 

from within the sample was now possible.  Regions highlighted by the feedback 

algorithm as suspicious would correspond to tissue segments acquired using the 

maximum exposure (24.8µCkg-1) whereas the remainder of the tissue would 

correspond to segments imaged with only the scout exposure (either 3.7, 8.2, 

13.3 or 19.0µCkg-1). 



 

 

The tungsten anode x

used to image the tissue samples

and 7mA, corresponding 

an ionisation chamber 

35050A). The ion chamber replaced the tissue sample

measurement at the end of the experiment after the samples had been imaged

The I-ImaS attenuation filters were used to image the sam

incident exposure at each filtration step

operated in scanning mode where 

sensor array in 832µm (±3

95 steps.  

 

Figure 3.10 Simplified schematic illustrating the experimental setup used to acquire x

images of breast samples one and two using the I
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The tungsten anode x-ray tube assumed inherent filtration of 

used to image the tissue samples. It was operated in fluoroscopy mode at 30kVp 

corresponding to an incident exposure of 24.8µCkg-1 

an ionisation chamber (15cc Fluke Biomedical) and an electrometer (Keithley 

ion chamber replaced the tissue sample for

at the end of the experiment after the samples had been imaged

ImaS attenuation filters were used to image the samples reducing

at each filtration step accordingly. The I-ImaS system was 

operated in scanning mode where the TCP scanned the sample acro

sensor array in 832µm (±3µm) steps where the final stitched image consisted of 

 

Simplified schematic illustrating the experimental setup used to acquire x

images of breast samples one and two using the I-ImaS system. 

 1mm of Al was 

rated in fluoroscopy mode at 30kVp 
 measured using 

(15cc Fluke Biomedical) and an electrometer (Keithley 

for the exposure 

at the end of the experiment after the samples had been imaged. 

ples reducing the 

ImaS system was 

the TCP scanned the sample across the dual 

µm) steps where the final stitched image consisted of 

 

Simplified schematic illustrating the experimental setup used to acquire x-ray 
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Figure 3.10 illustrates the experimental setup used to obtain the images. The 

samples were securely attached to a 5mm thick sheet of PMMA which was then 

fixed to the TCP. The PMMA sheet was used as it held the samples vertically 

whilst acting to eliminate any unwanted movement during the data acquisition 

phase. The final image was an average of 20 frames which were corrected  pixel 

by pixel using equation 2.7 in order to compensate for x-ray beam non 

uniformities and sensor nonlinearities such as those introduced by the heel 

effect and pixel-pixel gain mismatches  respectively. White fields were acquired 

using radiation without the sample present under identical exposure conditions, 

dark fields acquired with no x-ray exposure. 

 

3.6  Working limitations of the combined feature function 

 

As the combined feature function is required to perform on images acquired 

using some fraction of the incident exposure used to obtain conventional images 

(images acquired with a single exposure using no x-ray beam filtration), a range 

of incident exposures were investigated in order to have determined at what 

exposure level the combined feature function stopped reliably functioning. Eight 

different regions of interest from within breast sample one and two were 

selected for statistical investigation as can be seen from figure 3.11. Figures 

3.11a – 3.11e are sections of tissue taken from breast sample one where images 

a - d are seen to comprise of both healthy and suspicious tissue. Figure 3.11e 

consists of healthy tissue alone. Image sections f - h are taken from tissue sample 

two and are all seen to consist of both healthy and suspicious tissue. The eight 

regions varied in size as suspicious tissue regions within each sample was limited. 

The heights of each segment corresponded to the height of the stepping ROI 

used (32 × 490 pixels). Each of the eight sample sections were imaged five times, 
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each time with a different incident exposure (see section 3.5.1), consequently 

resulting in the production and analysis of forty images. Each image containing a 

suspicious region was taken from the section of the breast marked as suspicious 

by the radiologist (see section 2.6). 
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        (a) Sample 1 section 1                 (b) Sample 1 section 2 

                
        (c )  Sample 1 section 3                 (d)  Sample 1 section 4 

 
                     (e)  Sample 1 section 5   (f)  Sample 2 section 1 

 
                         (g) Sample 2 section 2                  (h) Sample 2 section 3 

 

Figure 3.11 Regions of interest obtained from breast samples one and two used to 

evaluate the abnormality detection algorithm. Images obtained conventionally using 

the I-ImaS sensors implementing no intelligence at an incident exposure of 24.8µCkg-1. 

 

The image quality of all forty image segments was calculated in terms of the 

contrast to noise ratio (CNR) according to Young et al (2006) as shown in 

equation 3.12. This was done in order to have a means of comparison between 

each image segment at different exposure levels. The CNR would also serve as a 
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means of comparing the quality of these conventional images with the simulated 

intelligent I-ImaS images that are to be generated. The location of the ROI 

allocated for CNR determination within each tissue sample remained constant 

regardless of exposure used to acquire the image and can be seen within images 

a and f of figures 3.12, 3.13, 3.15 and 3.16.  

 

¯u° � nN |rOr
/±rJN�²$rJrOr� ³$

�
          (Eq. 3.12) 

Where Mn, Nsus, sd2
n and sd2

sus represent the mean pixel value of the healthy ROI, 

mean pixel value of the suspicious ROI, standard deviation of the pixel values of 

the healthy ROI and the standard deviation of the suspicious ROI respectively. 
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 (a ) CNR = 13.2     (f) CNR = 4.5 

   

  (b)  CNR = 12.5    (g) CNR = 3.8 

   

(c) CNR = 10.2     (h) CNR 3.0 

   

(d) CNR = 4.8     (i) CNR 2.0 

  

        (e) CNR = 3.4.                        (j) CNR = 1.5 

 
Figure 3.12 ROIs obtained from Sample 1 section 1 are illustrated in the left hand 

column, and ROIs obtained from Sample 1 section 2  are illustrated in the right hand 

column. All ROIs contain healthy and suspicious tissue types. Images a, b, c, d, e and f, g, 

h, i, j correspond to incident exposures of 24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 respectively.  
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(a) CNR = 10.4        (b) CNR = 8.1 

 

(C)    CNR = 9.6    (d) CNR = 8.1 

 

(e)    CNR = 7.6     (f) CNR = 6.7 

 

(g)   CNR = 7.1    (h) CNR = 5.1 

 

(i)   CNR = 4.0    (j) CNR = 3.4 

 

Figure 3.13 ROIs obtained from Sample 1 section 3 are illustrated in the left hand 

column, and ROIs obtained from Sample 1 section 4 are illustrated in the right hand 

column. All ROIs contain healthy and suspicious tissue types. Images a, b, c, d, e and f, g, 

h, i, j correspond to incident exposures of 24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 respectively.  
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(a)                                                                  (b) 

 

    (c)                                                              (d) 

 

(e) 

Figure 3.14 Sample 1 section 5 containing healthy tissue only. Images a, b, c, d and e 

corresponds to incident exposures of 24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 respectively.   

 

 
     (a) CNR= 9.9     (b) CNR = 9. 3 

           
   (c) CNR = 8.4    (d) CNR = 5.1 

 
(e) CNR = 4.1 

Figure 3.15 Sample 2 section 1 containing healthy and suspicious tissue. Images a, b, c, d 

and e corresponds to incident exposures of 24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 

respectively.   
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(a) CNR = 5.6        (f) CNR = 9.4 

   

(b) CNR = 5.5     (g) CNR 8.7 

                
(c) CNR = 4.9     (h)  CNR = 7.3 

                
(d) CNR = 3.8      (i)  CNR =  6.0 

                   

(e) CNR = 1.7       (j)  CNR = 3.2 

 

Figure 3.16 ROIs obtained from Sample 2 section 2 are illustrated in the left hand 

column, and ROIs obtained from Sample 2 section 3 are illustrated in the right hand 

column. All ROIs contain healthy and suspicious tissue types. Images a, b, c, d, e and f, g, 

h, i, j correspond to incident exposures of 24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 respectively.  
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Presented in figures 3.17 - 3.21 are the results of the combined feature function 

i.e. intelligent algorithm. The graphs illustrate the regions of tissue flagged as 

suspicious for each of the forty image segments investigated (figures 3.12 - 3.16), 

where suspicious regions correspond to a value of one. Regions that have not 

exceeded the threshold do not satisfying the condition therefore consequently 

correspond to zero. These flagged regions correspond to sections within the 

image which are to be imaged with optimised imaging parameters.  

 

The results obtained from sample 1 section 1 at each exposure level is shown in 

figure 3.17a-e and table 3.2. The combined feature function appears to be 

effective at highlighting the suspicious tissue region within this specific image 

segment where 100% of the suspicious region is highlighted at 24.8, 19.0 and 

13.3µCkg-1 respectively. The amount of healthy tissue falsely flagged as 

suspicious appears to be proportional to the level of exposure incident on the 

sample; however an anomaly is seen at 19.0µCkg-1. From the table, it is seen that 

using 19.0µCkg-1 as the scout exposure results in approximately 69% of the total 

image being exposed to an increased level of exposure, therefore resulting in 

31% of the image being acquired with a reduced exposure (scout beam alone). 

This therefore indicates that an exposure level of 19.0µCkg-1 would be most 

suited for use as the scout exposure in this instance as it outperforms 13.3, 8.2 

and 3.7µCkg-1. It is observed from figure 3.17d, e and table 3.2 that at incident 

exposures below 13.3µCkg-1, less than a fifth of the suspicious region is flagged. 

The image quality measurements depicted in figure 3.12 are as expected where a 

decline in the CNR is observed with increasing filtration. This is due to the 

increase in quantum mottle. The combined statistical feature function performs 

well on this specific section of breast sample one.  
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(a)     (f) 

   

                                                       (b)                   (g) 

   

                 (c)                                  (h) 

          

(d)       (i) 

     

(e)      (J) 

Figure 3.17 Results from the regions of tissue analysed by the combined feature function 

pertaining to sample 1 section 1 (left column) and sample 1 section 2 (right column). 

Images a, b, c, d, e and f, g, h, i, j correspond to incident exposures of 24.8, 19.0, 13.3, 8.2 

and 3.7µCkg-1 respectively.   
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Table 3.2 Results obtained from Sample 1 section 1 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure.  

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 100 46.3 73.6 
19.0 100 40.8 69.0 
13.3 100 44.5 72.7 
8.2 16.5 31.8 24.0 
3.7 0.0 7.0 3.4 

 

Table 3.3 Results obtained from Sample 1 section 2 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure.  

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 66.4 0.0 41.0 
19.0 82.3 11.0 55.1 
13.3 39.7 0.0 24.6 
8.2 40.6 7.8 28.1 
3.7 43.8 70.9 54.1 

 

Figure 3.17f - j and table 3.3 depicted the results obtained from sample 1 section 

2. The intelligent algorithm appears to work well in this instance as a maximum 

of approximately 82% of the suspicious tissue is flagged whilst only 11% of the 

healthy tissue is falsely highlighting as suspicious. There appears to be no logical 

trend seen within table 3.3 however, as a minimum of approximately 40% of the 

suspicious region is flagged regardless of the exposure level, it can be said that 

the feature functions functionality is challenged but still proves to be beneficial 

in differentiating tissue types. In this instance, an incident exposure level of 

19.0µCkg-1 would be most suited for use as the scout exposure consequently 

reducing the exposure to 45% of the image whilst highlighting the majority of the 

suspicious tissue region. 

 

Figure 3.18 along with table 3.4 provide indication that an exposure level of 

19.0µCkg-1 would be the most suited exposure level to be implemented as the 
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scout exposure in this instance. It can be seen from figure 3.18c (sample 1 

section 3) and table 3.4 that a larger proportion of the image is highlighted as 

suspicious in comparison to any other exposure level. Although 68% of the 

healthy tissue is unnecessarily flagged as suspicious, 100% of the suspicious 

region is detected. This only equates to a 7% increase in the amount of 

suspicious tissue flagged compared to when an exposure of 19.0µCkg-1 or 

24.8µCkg-1 is used. This is accompanied by a 37% increase in the amount of 

healthy tissue highlighted, therefore an exposure level of 19.0µCkg-1 is deemed 

as most fitting. Table 3.5 corresponding to sample 1 section 4 shows that 

approximately 98% of the suspicious tissue region may be highlighted when an 

exposure of 13.3µCkg-1 is used. This is accompanied by a 10% proportion of 

healthy tissue being wrongly flagged as suspicious. As there is minimal difference 

between the results obtained using exposure levels of 24.8, 19.0 and 13.3µCkg-1, 

13.3µCkg-1 would be the most appropriate exposure level to assign as the scout 

exposure in this instance. The ratio of tissue correctly flagged as suspicious in 

tables 3.2, 3.3, 3.4 and 3.5 for exposure levels corresponding to 19.0µCkg-1 and 

13.3µCkg-1 appear to be significantly high where on average, 88% of the 

suspicious regions is highlighted.  

 

As this breast sample (breast sample 1) was initially diagnosed as having a severe 

fibrocystic content by the radiologist, it was therefore anticipated that these 

specific regions would challenge the combined feature function’s functionality. 

However, from the results presented above, the feature function appears to 

perform well.     

 



117 
 

 

 
   (a)        (f)

 

   (b)        (g) 

 
   (c)       (h)

 

   (d)         (i)

 

   (e)         (j) 

Figure 3.18 Results from the regions of tissue analysed by the combined feature function 

pertaining to sample 1 section 3 (left column) and sample 1 section 4 (right column). 

Images a, b, c, d, e and f, g, h, i, j correspond to incident exposures of 24.8, 19.0, 13.3, 8.2 

and 3.7µCkg-1 respectively.   
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Table 3.4 Results obtained from Sample 1 section 3 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure. 

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 93.0 43.3 68.6 
19.0 93.0 43.3 68.6 
13.3 100.0 68.4 84.5 
8.2 24.1 25.6 24.9 
3.7 0.0 0.0 0.0 

 

Table 3.5 Results obtained from Sample 1 section 4 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure.  

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 97.1 8.4 82.8 
19.0 94.4 6.6 80.3 
13.3 97.5 9.6 83.4 
8.2 
3.7 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

 

The final region to be investigated from sample 1 is presented in figure 3.19 and 

table 3.6. This segment of tissue comprises of healthy tissue only. Considering 

the images acquired using an incident exposure of 8.2, 13.3, 19.0 and 24.8µCkg-1, 

the intelligent algorithm performs well as none of the image is highlighted as 

suspicious. This is due to the fact that the initial region (32 pixel columns) used to 

determine the threshold value for SynF1 contains both high and low pixel 

intensities in comparison to the rest of the image, hence resulting in a high 

range. As SynF1 uses the range as a scaling factor, the threshold for this feature 

function is set high consequently resulting in none of the image being flagged. 

From table 3.6 it can be seen that although there are no abnormalities present, 

approximately 77% of the image is flagged as suspicious when an exposure level 

of 3.7µCkg-1 is used. This is a significant proportion of the image and is due to the 

performance limitations of both the individual feature functions SynF1 and SynF2 

making up the combined feature function. As the mean value used to compute 
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SynF2 for each ROI was high relative to the maximum pixel value for each of the 

highlighted columns (due to the pixel rescaling mention in section 3.3.1), the 

threshold corresponding to SynF2 proved to be too low hence ineffective.  

 

 

 
(a)                                                                  (b) 

 

(c)                                               (d) 

 

(e) 

Figure 3.19 Regions of tissue flagged as suspicious by the combined feature function 

pertaining to Sample 1 section 5. Images a, b, c, d, e corresponds to incident exposures of 

24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 respectively. 
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Table 3.6 Results obtained from Sample 1 section 5 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure. 

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

 Proportion of imaged 
flagged as suspicious 

(%) 
24.8 0.0 0.0  0.0 
19.0 0.0 0.0  0.0 
13.3 0.0 0.0  0.0 
8.2 0.0 0.0  0.0 
3.7 0.0 77.3  77.3 

 

Figure 3.20 and table 3.7 show the results obtained from sample 2 section 1. 

From the figure it becomes apparent that the proportion of suspicious tissue 

highlighted decreases with decreasing exposure. This trend appears to continue 

until none of the suspicious tissue is highlighted. From the table it becomes clear 

that a reduction in suspicious tissue detection is experienced with each exposure 

decrement. In this instance, an exposure value of 19.0µCkg-1 is best suited for use 

as the scout exposure where 100% of the suspicious tissue region marked as 

suspicious by the radiologist is flagged. This corresponds with less than a quarter 

of the healthy tissue being incorrectly highlighted. 
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(a) (b) 

 

(b) (d) 

 

           (e) 

Figure 3.20 Regions of tissue flagged as suspicious by the combined feature function 

pertaining to Sample 2 section 1. Images a, b, c, d, e corresponds to incident exposures of 

24.8, 19.0, 13.3, 8.2 and 3.7µCkg-1 respectively. 

 

Table 3.7 Results obtained from Sample 2 section 1 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure.  

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 100.0 15.7 41.0 
19.0 100.0 21.7 45.3 
13.3 92.0 9.7 34.4 
8.2 57.6 8.0 22.9 
3.7 0.0 5.5 3.9 
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Figure 3.21 depicts the results of the intelligent algorithm obtained from sample 

2 sections 2 and 3. From the results presented in table 3.8, it can be seen that as 

the level of exposure is reduced, both the amount of suspicious tissue flagged 

along with the proportion of healthy tissue unnecessarily flagged is reduced; 

however an anomaly is seen at 19.0µCkg-1. 100% and 92% of the suspicious 

tissue region is highlighted for incident exposure values of 19.0µCkg-1 and 

13.3µCkg-1 respectively. As the proportion of healthy tissue flagged reaches a 

maximum of approximately 30% and 15% for these two exposures respectively, a 

maximum of approximately 50% of the total image is highlighted as suspicious. 

This therefore means the remaining 50% of the sample can be imaged with a 

reduced exposure. Consequently, this result indicates that a scout exposure of 

19.0µCkg-1 would be well suited for use as the scout exposure. The CNR declines 

as expected as seen from figure 3.16. 
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(a)                    (f) 

  

(b)     (g) 

  

(c)     (h) 

  

(d)                                    (i) 

        

(e)     (j) 

Figure 3.21 Results from the regions of tissue analysed by the combined feature function 

pertaining sample 2 section 2 (left column) and sample 2 section 3 (right column). 

Images a, b, c, d, e and f, g, h, i, j correspond to incident exposures of 24.8, 19.0, 13.3, 8.2 

and 3.7µCkg-1 respectively.  
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Table 3.8 Results obtained from Sample 2 section 2 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure.  

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 100.0 18.7 44.7 
19.0 100.0 29.2 51.8 
13.3 92.2 15.0 39.7 
8.2 22.8 1.1 8.1 
3.7 0.0 0.0 0.0 

 

Table 3.9 Results obtained from Sample 2 section 3 analysis illustrating proportion of 
tissue highlighted as suspicious for a given level of exposure.  

Incident 
Exposure 
(µCkg-1) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
24.8 99.3 18.3 44.2 
19.0 100.0 24.7 48.8 
13.3 100.0 48.4 64.9 
8.2 100.0 38.6 58.2 
3.7 70.8 32.2 44.6 

 

The results presented in figure 3.21 obtained from sample 2 section 3 show that 

the suspicious tissue region is easily highlighted by the combined feature 

function. Table 3.9 above shows that approximately 100% of the suspicious 

region is flagged when an exposure as low as 8.2µCkg-1 is used. It is also noticed 

that the proportion of healthy tissue unnecessarily highlighted increases with a 

reduction in incident exposure to a point (13.3µCkg-1). This therefore indicates 

that an exposure of 19.0µCkg-1 would be best suited for use as the scout 

exposure as it highlights 100% of the suspicious regions whilst reducing the 

amount of healthy tissue flagged by approximately 50% and 36% in comparison 

to when 13.3µCkg-1 and 8.3µCkg-1 is used respectively. 

 

Similarly to the results obtained from the database image investigation (section 

3.3.2), the results presented in this section indicate that the feature function is 

able to differentiate between healthy and suspicious tissue regions within 
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mammograms. Regions diagnosed as suspicious by a qualified radiologist were 

detected in 29 of the 35 low exposure suspicious tissue containing images 

investigated. It was seen that in 33 instances, less than 50% of the healthy tissue 

regions were incorrectly flagged as suspicious.  

 

A trend was seen throughout this investigation where the proportion of the 

suspicious tissue flagged was suddenly decreased between an exposure level of 

13.3µCkg-1 and 8.2µCkg-1. This occurred in four of the seven sample sections 

investigated containing suspicious tissue regions (sample 1 sections 1, 3, 4 and 

sample 2 sections 2). This is believed to be due to the change in spectral shape of 

the x-ray beam as it is at this point that the attenuation filters go from being 

comprised of solely PMMA to including 0.6mm of Al. 

 

3.7 Effect of the scanning ROI size used for statistical 

analysis 

 

The effect the size of the ROI used to step across the scout image analysing pixel 

values has on abnormality detection has been investigated in an attempt to 

determine the optimum ROI size to be used in intelligent image production. All of 

the image sections containing suspicious tissue regions that were previously 

allocated within samples one and two were investigated using the combined 

feature function. An incident exposure of 19.0µCkg-1 was used as the scout 

exposure. The ROI used to analyse pixel intensities was stepped across the scout 

image in one pixel column steps. The results obtained from the combined 

feature function for this investigation are presented in tables 3.10 – 3.16.  
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Table 3.10 Performance characteristics of scanning ROI size investigation for sample 1 
section 1 using an incident exposure of 19.0µCkg-1. 

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 94.1 28.2 60.4 
32 100.0 40.8 69.0 
64 100.0 51.7 73.9 

128 100.0 83.0 88.0 
256 100.0 100.0 100.0 

 

Table 3.11 Performance characteristics of scanning ROI size investigation for sample 1 
section 2 using an incident exposure of 19.0µCkg-1. 

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 69.6 3.0 44.2 
32 82.3 11.0 55.1 
64 92.9 27.2 67.4 

128 100.0 55.4 83.0 
256 100.0 97.4 99.0 

 

Table 3.12 Performance characteristics of scanning ROI size investigation for sample 1 
section 3 using an incident exposure of 19.0µCkg-1.  

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 54.9 30.5 42.9 
32 93.0 43.3 68.6 
64 100.0 45.0 72.8 

128 100.0 66.4 83.5 
256 100.0 100.0 100.0 

 

Table 3.13 Performance characteristics of scanning ROI size investigation for sample 1 
section 4 using an incident exposure of 19.0µCkg-1.  

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 72.9 0.0 61.2 
32 94.4 6.6 80.3 
64 100.0 26.6 88.3 

128 100.0 65.4 94.3 
256 100.0 100.0 100.0 
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Table 3.14 Performance characteristics of scanning ROI size investigation for sample 2 
section 1 using an incident exposure of 19.0µCkg-1.  

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 99.0 13.2 39.0 
32 100.0 21.7 45.3 
64 100.0 49.2 64.5 

128 100.0 48.0 76.3 
256 100.0 60.0 90.3 

 

Table 3.15 Performance characteristics of scanning ROI size investigation for sample 2 
section 2 using an incident exposure of 19.0µCkg-1.  

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 100.0 20.7 46.1 
32 100.0 21.7 45.3 
64 100.0 45.0 62.6 

128 100.0 64.1 75.6 
256 100.0 85.9 90.0 

 

Table 3.16 Performance characteristics of scanning ROI size investigation for sample 2 
section 3 using an incident exposure of 19.0µCkg-1. 

ROI width 
(pixel 

columns) 

Abnormal region flagged 
as suspicious 

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
16 97.7 18.4 43.8 
32 100.0 24.7 48.8 
64 100.0 39.9 59.2 

128 100.0 64.8 76.1 
256 100.0 80.4 86.7 

 

It can be seen from tables 3.10 – 3.16 that a general trend emerges where it is 

seen that the amount of tissue highlighted as suspicious is proportional to the 

size of the scanning ROI. It is observed that ROI widths of 128 and 256 pixel 

columns enables 100% of the suspicious tissue region to be highlighted, 

however, consequently a minimum of approximately 50% of healthy tissue 

regions are also unnecessarily flagged. This increases considerably for a scanning 
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ROI of 256 where at least 80% of the healthy tissue regions are incorrectly 

highlighted as suspicious tissue.  

 

An ROI of either 32 or 64 pixel columns results in at least 82% of the suspicious 

tissue regions being correctly highlighted. From tables 3.11 and 3.13, it is shown 

that a 32 pixel column ROI only incorrectly flags 11% and 6% of the surrounding 

healthy tissue regions respectively. This increases to approximately just over a 

fifth of the healthy regions in tables 3.14, 3.15 and 3.16. Tables 3.10 and 3.12 are 

the only two instances where the proportion of healthy tissue highlighted 

reaches maximums of approximately 41% and 43% respectively. An ROI width of 

64 pixel columns unnecessarily highlights between approximately 27% and 52% 

of the healthy tissue regions. 

 

 It can also be seen from the results that an ROI size of 16 pixel columns 

highlights a minimum of approximately 55% of the suspicious tissue regions 

within the samples. This is lower than that of the 32 pixel column wide ROI, 

however, a lower proportion of the healthy tissue present within the sample was 

flagged as suspicious. It therefore becomes apparent that a trade off is required 

between the amount of suspicious tissue detected and the amount of healthy 

tissue unnecessarily highlighted as suspicious. As a 32 pixel column wide ROI is 

able to highlight a minimum of 82% of the suspicious tissue regions, whilst 

allowing up to a 55% reduction in the proportion of healthy tissue flagged as 

suspicious, it will be used for the remainder of the investigation within 

subsequent sections of this chapter. 
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3.8 Feature function threshold optimisation 

 

3.8.1 SynF1 threshold optimisation 

 

As the threshold value governing SynF1 is derived from a region of interest of 

fixed size taken from an immediate region within the breast, which is assumed to 

comprise of healthy tissue only, the effects of the size of this ‘reference point’ 

used on suspicious tissue detection has been investigated. So far, the size of this 

region (1mm × 15mm) has remained constant throughout the investigation 

having a similar size to that of the active area of a single I-ImaS sensor. This 

section explores the effects of changing the size of this ROI (its width only) where 

seven different sizes are considered. The size of the scanning ROI used (32 pixel 

columns) remained constant throughout this investigation along with the scout 

exposure (19.0µCkg-1). The results are presented in tables 3.17 – 3.20 which 

correspond to four tissue segments (sample 1 sections 1 and 3 and sample 2 

sections 1 and 2) randomly chosen for analysis. 

 

Table 3.17 Results obtained from sample 1 section 1 depicting effect of threshold ROI size 
analysis for SynF1 using an incident exposure of 19.0µCkg-1. 

ROI width 
(mm) 

Abnormal region 
flagged as suspicious  

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of 
imaged flagged as 

suspicious (%) 
1 100.0 40.8 69.0 
2 100.0 40.8 69.0 
3 87.1 19.0 45.0 
4 75.4 0.0 38.2 
5 
6 
7 

5.8 
0.0 
0.0 

0.0 
0.0 
0.0 

2.9 
0.0 
0.0 
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Table 3.18 Results obtained from sample 1 section 3 depicting effect of threshold ROI size 
analysis for SynF1 using an incident exposure of 19.0µCkg-1. 

ROI width 
(mm) 

Abnormal region 
flagged as suspicious  

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of 
imaged flagged as 

suspicious (%) 
1 93.0 43.3 68.6 
2 16.4 0.0 8.3 
3 0.0 0.0 0.0 
4 0.0 0.0 0.0 
5 
6 
7 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

 

Table 3.19 Results obtained from sample 2 section 1 depicting effect of threshold ROI size 
analysis for SynF1 using an incident exposure of 19.0µCkg-1. 

ROI width 
(mm) 

Abnormal region 
flagged as suspicious  

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of 
imaged flagged as 

suspicious (%) 
1 100.0 21.7 45.3 
2 100.0 21.0 44.7 
3 81.0 9.4 31.0 
4 81.0 9.4 31.0 
5 
6 
7 

81.0 
81.0 
81.0 

9.4 
9.4 
9.4 

31.0 
31.0 
31.0 

 

Table 3.20 Results obtained from sample 2 section 2 depicting effect of threshold ROI size 
analysis for SynF1 using an incident exposure of 19.0µCkg-1. 

ROI width 
(mm) 

Abnormal region 
flagged as suspicious  

(%) 

Healthy region 
flagged as suspicious 

(%) 

Proportion of 
imaged flagged as 

suspicious (%) 
1 100.0 29.2 51.8 
2 63.3 0.0 20.2 
3 41.7 0.0 13.3 
4 5.7 0.0 1.8 
5 
6 
7 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

 

It can be seen from the four tables above that the smaller the ROI used to derive 

the threshold corresponding to SynF1, the higher the proportion of suspicious 

tissue highlighted. An ROI of 1mm enables over 90% of the suspicious tissue 
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region to be correctly flagged whilst only highlighting a maximum of 

approximately 44% (table 3.18) of the surrounding healthy tissue. This 

consequently results in approximately a minimum of 56% of the healthy tissue 

regions being exposed to a reduced incident exposure.   

 

Tables 3.17 and 3.20 show gradual decreases in the proportion of suspicious 

tissue highlighted corresponding to increases in ROI size. This is due to the fact 

that the initial 7mm used to obtain this threshold value from the images gets 

progressively more intense. This consequently resulting in the threshold being 

set too high, rendering it ineffective past a given point (5mm and 6mm 

respectively). Tables 3.18 and 3.19 together illustrate the robustness of the 

feature functions ability to function in opposite extreme conditions. The 

threshold value pertaining to table 3.18 (sample 1 section 3) was taken from the 

end of this image segment as it corresponded to the edge of the sample 

replicating the region directly below the skin (as indicated by the smaller 

rectangle in figure 2.9a). From this table it can be seen that the ability to 

highlight any suspicious tissue stops at 2mm, beyond this point, the immediate 

tissue intensity increases corresponding to the suspicious tissue region. This 

therefore renders the ROI ineffective. Table 3.19 show that it is possible for the 

suspicious tissue region to be detected using larger ROI’s than was previously 

seen. This corresponds well with the fact that the tissue sample used to obtain 

these results (sample 2 section 1) consists of smooth adipose tissue where there 

is minimal pixel intensity change within the initial 7mm. As a result, this enables 

the continual functioning of the feature function.  

 

From the tables, a trend was observed where derivation of the threshold value 

from a region larger than 2mm had a negative effect on the proportion of 

suspicious tissue flagged. This reduction is believed to be due to the fact that as 
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the ROI increases, it will eventually begin to include the suspicious tissue regions, 

hence higher pixel values consequently resulting in the threshold value being set 

too high. As a result, the threshold becomes ineffective. A 1mm ROI is therefore 

used in subsequent investigations 

 

3.8.2 SynF2 threshold optimisation 

 

The magnitude of the threshold value governing the ability of SynF2 to highlight 

suspicious tissue regions was also investigated. The initial value assigned as the 

threshold throughout this investigation thus far was determined experimentally; 

this value corresponded to 250a.u (arbitrary units). In an attempt to optimise this 

value, the effect of both increasing and decreasing it by 20% was investigated. All 

seven samples were used, the scout exposure remained constant at 19.0µCkg-1 

along with the size of the scanning ROI (32 pixel columns wide) and the width of 

the ROI (1mm) governing SynF1. The results obtained are presented below 

(tables 3.21 – 3.27). 

 

Table 3.21 Results obtained from sample 1 section 1 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 100.0 76.4 85.0 
250 100.0 40.8 69.0 
300 30.4 0.0 15.4 
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Table 3.22 Results obtained from sample 1 section 2 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 82.3 11.0 55.1 
250 82.3 11.0 55.1 
300 62.8 9.0 42.3 

 

Table 3.23 Results obtained from sample 1 section 3 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 93.0 44.7 69.3 
250 100.0 21.7 45.3 
300 5.2 6.2 5.7 

 

Table 3.24 Results obtained from sample 1 section 4 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 94.4 6.6 80.3 
250 94.4 6.6 80.3 
300 2.0 0.0 1.7 

 

Table 3.25 Results obtained from sample 2 section 1 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 100.0 22.6 52.6 
250 100.0 21.7 45.3 
300 51.6 0.0 15.5 
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Table 3.26 Results obtained from sample 2 section 2 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 100.0 42.8 61.1 
250 100.0 21.7 45.3 
300 25.3 0.0 8.1 

 

Table 3.27 Results obtained from sample 2 section 3 depicting effect of SynF2 threshold 
analysis using an incident exposure of 19.0µCkg-1. 

Threshold 
Value (DN) 

 

Abnormal region flagged 
as suspicious  

(%) 

Healthy region 
flagged as suspicious  

(%) 

Proportion of imaged 
flagged as suspicious 

(%) 
200 100.0 14.2 41.6 
250 100.0 24.7 48.8 
300 60.8 0.0 19.4 

 

It can be seen from the results directly above that a threshold value of either 

200Arb.U or 250Arb.U is preferable over 300Arb.U. This is due to the fact that 

only a maximum of approximately 63% of the suspicious tissue is highlight (table 

3.22) compared to as much as 100% by 200Arb.U and 250Arb.U (tables 3.21, 

3.25, 3.26 and 3.27). The feature functions performance for both 200Arb.U and 

250Arb.U are similar throughout this investigation, however, as the proportion of 

healthy tissue flagged as suspicious is generally lower for 250Arb.U than for 

200Arb.U, it becomes apparent that 250Arb.U is the more appropriate value to 

be used in the final algorithm.    

 

3.9 Summary 

 

From the results presented above, it can be concluded that the ability to 

highlight suspicious tissue regions by extracting information using simple 

statistical feature functions from a low exposure mammogram is possible 
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(section 3.5). As a result of combining the results obtained from the MIAS 

database investigation (section 3.3.2) with the results obtained from the 

transmission image investigation above, an optimum set of intelligent imaging 

parameters have become apparent. These parameters have been seen (sections 

3.5 – 3.7) to increase detection of suspicious tissue regions within the breast 

tissue samples whilst also enabling differentiation between tissue regions 

comprising solely of healthy tissue and those containing suspicious tissue. 

 

It becomes apparent that allocating a specific level of exposure to the scout scan 

results in a trade off between the percentage of the suspicious tissue highlighted 

and the proportion of healthy tissue unnecessarily subjected to an increased 

incident exposure. A scout incident exposure level of 19.0µCkg-1 appeared to 

sufficiently flag the suspicious regions within the images whilst reducing the total 

exposure incident on the breast in comparison to the conventional unfiltered 

image (24.8µCkg-1).  

 

3.10 EDXRD Introduction 

 

The concept of using an EDXRD image as a means of identifying suspicious tissue 

regions from within a breast sample and using it to optimise the imaging 

parameter settings used to obtain a mammogram is explored below. The effect 

changing an individual parameter setting has on suspicious tissue detectability is 

investigated. The effect of changing the system optics, statistical quality of the 

data, threshold value used to differentiate between suspicious and healthy tissue 

regions and the size of the stepping ROI used to analyse each pixel column was 

investigated. This consequently provided indication as to the optimum 

parameters to be used within an intelligent system. 
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3.11 Methodology 

 

3.11.1   Diffraction profiles 

 

Depicted in figure 3.22 is an example of the raw spectra obtained from tissue 

sample one from a region containing both healthy and suspicious tissue types. It 

can be seen that adipose tissue has a narrower, taller peak than that of the 

superimposed suspicious tissue region which appears broader and shorter with a 

less distinct peak. As concluded by Ryan and Farquharson (2007), this 

phenomenon is due to the decreased structural order of the collagen fibrils seen 

with cancer invasion consequently resulting in a disturbance in the atomic 

structure of the diseased tissue. This consequently leads to less periodic 

scattering hence lower detected counts for a given spectral window. The 

diffraction profile corresponding to the diseased tissue region does not peak at 

1.5nm-1 - 1.6nm-1 as previous authors’ have reported (Castro et al (2004), Castro 

et al (2005) and Royle et al (1999)), however this is thought to be due to the 

presence of more than one tissue component contributing to the scattered 

signature. Kidane et al (1999) reported similar findings where it was also 

demonstrated that the scattered signature for diseased tissue was dependent on 

the proportion of the tissue components present. 40% of the carcinoma 

containing tissue regions investigated by Kidane et al (1999) peaked at an 

average momentum transfer value of 1.14nm-1 where the diseased tissue 

component made up a maximum of 25% of the tissues present. The 

characteristic peak of 1.6nm-1 was seen for ROI’s containing at least a 65% 

malignant tissue component. This indicates that the diffraction profile is heavily 

dependent on the tissue type ratio present in the scatter volume. As figure 3.22 

fails to illustrate a distinct peak at 1.6nm-1, it can be concluded that the 

suspicious regions in sample one also contained superimposed healthy tissue 



 

therefore unlike the carcinoma peak usually seen at 

of 1.5nm-1  - 1.6nm-1, a broad plateau is seen instead.

 

Clinically, as sample thickness

be encountered, a change

signal is required along with the need for an array of x

use of a multi-slit collimator 

investigated simultaneously 

sample. The affect of beam hardening 

encountered before and after the scatter volume

diffraction profile. At mammographic energies on a Mo/Mo anode filter 

combination, EDXRD would not be possible due to the mono

the x-ray beam hence would be restricted to use on the thicker breasts imaged 

with a W anode. 

 

Figure 3.22 Diffraction profile obtained from 

one demonstrating the effect of tissue superimposition within the scattering volume.

ROI’s obtained with momentum transfer windows 1.02

1.71nm-1 depicted. 
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therefore unlike the carcinoma peak usually seen at momentum transfer values 

, a broad plateau is seen instead. 

sample thicknesses of approximately 5cm (compressed breast) will 

be encountered, a change in the type of optics used to obtain the diffraction 

along with the need for an array of x-ray scatter detectors

slit collimator would enable multiple scatter volumes to be 

simultaneously along the path of the x-ray beam

The affect of beam hardening would increase as attenuation effects are 

encountered before and after the scatter volume consequently altering the 

At mammographic energies on a Mo/Mo anode filter 

bination, EDXRD would not be possible due to the mono-energetic nature of 

ray beam hence would be restricted to use on the thicker breasts imaged 

Diffraction profile obtained from suspicious tissue region within sample 

one demonstrating the effect of tissue superimposition within the scattering volume.

h momentum transfer windows 1.02nm-1 – 1.2nm-1

momentum transfer values 

cm (compressed breast) will 

in the type of optics used to obtain the diffraction 

ray scatter detectors. The 

scatter volumes to be 

ray beam through the 

as attenuation effects are 

consequently altering the 

At mammographic energies on a Mo/Mo anode filter 

energetic nature of 

ray beam hence would be restricted to use on the thicker breasts imaged 

 

tissue region within sample 

one demonstrating the effect of tissue superimposition within the scattering volume. 
1 and 1.52nm-1 – 
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The shift in momentum transfer displayed by the diseased region in figure 3.22 

may also be due to the nature of the formalin fixation used to preserve the 

specimen. Cook (2008) investigated the effects of such preservation techniques 

using pork muscle as a breast equivalent material. It was concluded that the 

concentration of the formalin might affect the diseased diffraction profile most 

significantly where a shift in momentum transfer was seen from 1.5nm-1 to 

1.2nm-1 corresponding well with figure 3.22. It was also demonstrated that the 

momentum transfer value for adipose tissue was unaffected regardless of the 

formalin concentration used therefore its characteristic peak remained 

unchanged corresponding to a momentum transfer value of 1.1nm-1.  

 

3.11.2   EDXRD imaging  

 

EDXRD images corresponding to three suspicious tissue regions (referred to as 

samples 1, 2a and 2b) within the two breast samples were acquired using three 

different optical setups (corresponding to solid angles of 0.23, 0.43 and 0.98msr). 

This consequently allowed the effects of momentum transfer resolution to be 

investigated. Each tissue region was imaged using all three setups and all at a 

range of exposure levels. The diffraction profiles of each ROI making up the 

diffraction images was obtained using a laboratory based EDXRD system as 

described in chapter 2 section 2.4.  

 

The samples were individually mounted on a translation stage (Newport, M-

IMS600CC and M-IMS300V) connected via a controller (Newport) to a PC. This 

enabled the samples to be scanned in a raster like fashion where appropriate 

increments both vertically and horizontally were made (governed by the solid 

angle in use). Automated scanning of the tissue samples was achieved using the 

input/output facilities on the MCA and controller. The motors were controlled by 
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LabView software (National Instruments, USA), in which the 2D scan start point, 

end point and step size could all be set. Depending on the optics in use, the x-ray 

tube was operated in fluoroscopy mode at either a potential of 60kVp and 5mA, 

60kVp and 1mA or 60kVp and 0.5mA (corresponding to 0.23, 0.43 and 0.98msr 

respectively) as to ensure a detector dead time below 10%.  

 

Having obtained the diffraction profiles of the tissue samples, background 

corrections were made using data obtained from a sample free setup. The 

background signal was subtracted from each of the measured spectra therefore 

allowing the removal of any unwanted scatter contributions from surrounding 

materials. Diffraction images were constructed by summing the counts in a 

momentum transfer window and then allocating that point in the image an 

appropriate grey level value between 0 and 255. This therefore meant that all of 

the EDXRD images regardless of imaging parameter setting, was normalised to 8 

bits. Momentum transfer windows that maximised the contrast between the 

suspicious and healthy tissue regions were selected for analysis. Figure 3.22 

depicts the windows used where the region from 1.02nm-1 - 1.21nm-1 and 

1.52nm-1 - 1.71nm-1 is shown corresponding to thirty MCA channels. Cook (2008) 

investigated the effect of window channel size on EDXRD image contrast 

between healthy and diseased tissue regions, and found there to be less than a 

8% difference between a 1.53keV (10 channels) and a 15.34keV (100 channels) 

energy window. It was observed that this difference was due to the location of 

the window centre which is affected by the window width. The wider the 

window, the lower the contrast, however, this contrast decrease was 

compensated by an increase in count rate. The chosen window widths in this 

investigation corresponded to an energy window of 4.6keV.  

 



 

Ratio images where obtained by normali

intensities with the healthy regions 

Suspicious tissue regions were displayed with a higher pixel intensity (appearing 

whiter) than the adipose tissue 

as shown in figure 3.

tissue represents glandular tissue which

intensity to the suspicious

 

Figure 3.23 EDXRD image of an ROI located within b

solid angle of 0.23msr

intensity. 

 

The momentum transfer window corresponding to 

using the range of values used previously by several

(2008) and Kidane et al (1

of 1.6nm-1 was used throughout

 

3.11.3 Data analysis procedure

 

As the information contained within the EDXRD images were presented in the 

form of grey level pixel values, the mean function was used as a method of 

extracting feature information. A one column wide stepping ROI was used to 

step across the image in one pi
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atio images where obtained by normalising the suspicious

the healthy regions in order to have comparable

tissue regions were displayed with a higher pixel intensity (appearing 

whiter) than the adipose tissue which appeared darker within the EDXRD images

.23 below. The grey area surrounding the suspicious

glandular tissue which appears to have a 

intensity to the suspicious tissue in comparison to the adipose tissue. 

EDXRD image of an ROI located within breast sample one 

solid angle of 0.23msr. Suspicious tissue regions correspond to a high

The momentum transfer window corresponding to suspicious tissue was selected 

range of values used previously by several authors including 

Kidane et al (1999). A momentum transfer value with central position 

throughout this investigation 

Data analysis procedure 

As the information contained within the EDXRD images were presented in the 

form of grey level pixel values, the mean function was used as a method of 

information. A one column wide stepping ROI was used to 

step across the image in one pixel column steps averaging all the pixel

uspicious tissue region 

comparable images. 

tissue regions were displayed with a higher pixel intensity (appearing 

darker within the EDXRD images 

suspicious (white) 

 similar scatter 

adipose tissue.  

 
 obtained using a 

high (white) pixel 

tissue was selected 

authors including Cook 

ue with central position 

As the information contained within the EDXRD images were presented in the 

form of grey level pixel values, the mean function was used as a method of 

information. A one column wide stepping ROI was used to 

xel column steps averaging all the pixels within a 
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single column (fig 3.24). As the ROI gave rise to a single value, this value was then 

used as a means of comparison against a predetermined threshold value (see 

section 3.3.2) which determined whether the ROI was suspicious. If the ROI was 

deemed as suspicious, a parameter change would be made attempting to 

increase image quality.  

 

 

 

 

 

      

            A’   B’  C’ 

Where A’, B’ and C’ to n’ – 1 represents the average pixel value of each individual column.  

 

Figure 3.24 Schematic of stepping ROI where pixels within a single column are averaged.  

 

3.12  Setup optimisation 

 

3.12.1   Threshold determination  

 

The EDXRD images were used to set the exposure level incident on the sample, 

where above a given threshold, the exposure would be changed. Three 

diffraction images of size 31mm × 10mm were obtained from samples one and 

two using an x-ray beam collimation size of 1mm × 2mm corresponding to a solid 

angle of 0.23msr (fig 3.25). All tissue regions were chosen as they were known to 

partially contain healthy and suspicious tissue types. Column averages were used 

to decide whether or not a suspicious region existed in that column of the image. 

Pixel columns 

Rows 

A      B       C      D      E       F       G    H  

A      B       C      D      E       F       G    H 

A      B       C      D      E      F        G    H 

A      B       C      D      E      F        G    H   

n-1 
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All images were byte scaled and a threshold value of 100DN (40% of the dynamic 

range) was used. This value appeared to be the most appropriate threshold value 

as it would enable positive identification, consequently parameter optimisation, 

of a high proportion of the suspicious tissue regions with minimal effect on the 

surrounding healthy tissue (table 3.28, 3.29 and 3.30). Although a threshold of 

50DN (20% of the dynamic range) enabled 100% identification of the suspicious 

tissue region to be flagged, over 25% of the flagged columns were falsely 

highlighting surrounding healthy tissue. 

 

 

 

 

     

(a) Sample 1                                (b) sample 2a 

 

 

 

 

(c) sample 2b 

Figure 3.25 EDXRD image of sample 1, 2a and 2b corresponding to a, b and c 

respectively.  

 

 

 

 

Suspicious region 

 

Suspicious region Suspicious region 
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Table 3.28 Effect of threshold settings on breast sample 1 suspicious tissue detection.  

Statistical threshold 
value 
(DN) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of suspicious 
tissue flagged 

 (%) 

Flagged columns in 
suspicious region 

 (%) 

50 58.0 100.0 72.2 
100 41.9 100.0 100.0 
150 19.3 42.8 100.0 
200 12.9 28.5 100.0 

 

Table 3.29 Effect of threshold settings on breast sample 2a suspicious tissue detection.  

Statistical threshold 
value 
(DN) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of suspicious 
tissue flagged 

 (%) 

Flagged columns in 
suspicious region 

 (%) 

50 48.3 100.0 66.7 
100 22.5 70.0 100.0 
150 9.6 30.0 100.0 
200 0 0 0 

 

Table 3.30 Effect of threshold settings on breast sample 2b suspicious tissue detection.  

Statistical threshold 
value 
(DN) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of suspicious 
tissue flagged 

 (%) 

Flagged columns in 
suspicious region 

 (%) 

50 61.2 100.0 57.8 
100 29.0 81.8 100.0 
150 16.1 45.4 100.0 
200 0 0 0 

 

It can be seen from tables 3.28, 3.29 and 3.30 that the choice of the threshold 

value implemented affects not only the proportion of suspicious tissue 

highlighted but also the exposure incident on healthy tissue regions. A trend is 

seen where the efficiency of the exposure deposition with respect to the 

suspicious tissue regions increases with threshold value (as indicated from the 

last column). However, this is inversely proportional to the amount of suspicious 

tissue highlighted. When a threshold value of 100DN is used 100% of the flagged 

ROI’s are located within the desired tissue region where 100.0%, 70.0% and 

81.8% of the abnormality is highlighted for samples 1, 2a and 2b respectively. 



144 
 

Although a threshold value of 150DN (60% of the dynamic range) allows 

detection of 100% of the suspicious tissue regions, the proportion of suspicious 

tissue actually highlighted is significantly less compared to 100DN for any given 

image; consequently, a threshold value of 100DN will be used in all proceeding 

investigations. 

 

3.12.2    Statistical quality of data 

 

The previous section demonstrated the importance the predetermined threshold 

value assigned to govern the tissue differentiation performance of the mean 

function had on suspicious tissue detection. This section explores the effect the 

number of photons detected over the diffraction profile has on suspicious tissue 

detection.  EDXRD images of breast sample one were acquired at four different 

statistical qualities (fig 3.26) as shown in table 3.31 where a count summation 

momentum transfer window corresponding to diseased tissue (1.52nm-1 - 

1.71nm1) was used. 

 

Table 3.31 Experiment results obtained from sample one depicting the statistical quality 
of the four images investigated.  

Image (fig 3.31) Count time 
(Sec) 

No. Of photons in 
profile 

Sample incident 
exposure (µCkg-1) 

 

A 8 122900  30.9  
B 4 63100 15.4  
C 2 31500  7.8  
D 1 15200  3.9  

 

The images consisted of thirty one 1mm × 10mm columns as shown in figure 

3.26 enabling a 1 pixel column × 5 pixel row ROI to be stepped across the image 

in one pixel column steps averaging pixel intensities within the ROI. From the 

figure, it can be seen that the pixel intensity of the suspicious regions decreases 

relative to the surrounding healthy regions, as the statistical quality of the data 



 

decreases. This is also demonstrated in figure 3.27

of counts detected may potentially have a significant effect on the detectability 

of subtle abnormalities. 

 

 

 

 

Figure 3.26 Effect the number of photon counts has on visibility of suspicious 

tissue region in sample one. Images 

31500 and 15200 photon counts 

 

Suspicious region
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also demonstrated in figure 3.27. It is believed that the number 

may potentially have a significant effect on the detectability 

of subtle abnormalities.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Effect the number of photon counts has on visibility of suspicious 

tissue region in sample one. Images a, b, c and d corresponding to 122900, 63100, 

31500 and 15200 photon counts respectively. 

Suspicious region 

It is believed that the number 

may potentially have a significant effect on the detectability 

Effect the number of photon counts has on visibility of suspicious 

122900, 63100, 
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Figure 3.27 Results from sample one image analysis depicting the normalised effect the 

number of photon counts has on pixel column intensity. 

 

A reduction in the number of photons detected limits the pixel intensity 

difference between the healthy and suspicious tissue regions. This consequently 

reduces the detection of the suspicious tissue in the images acquired with fewer 

photon counts. It can be seen from table 3.32 that 53.8% of the suspicious tissue 

region is flagged when 15200 photons are detected corresponding to a photon 

flux of 7600 pho-1 sec-1 mm2. This increases to 100% when a detector integration 

time of eight seconds is used with the same flux, therefore illustrating that a 

photon flux of approximately 61450 pho-1 sec-1 mm2 corresponding to a photon 

count of 122900 would be ideal in this instance as detector integration times of 

less than a second are desirable. 
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Table 3.32 Effect of the statistical quality of data used to obtain EDXRD images of sample 
1 on abnormality detection.  

Detector 
Count time  

(secs) 

No. Of photons 
in profile 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of diseased 
tissue flagged 

 (%) 

Flagged columns in 
diseased region 

 (%) 

8 122900  41.9 100.0 100.0 
4 63100  38.7 92.3 100.0 
2 31500  35.4 84.6 100.0 
1 15200  22.5 53.8 100.0 

 

Ideally, the higher the count rate the better, however in practice a compromise 

must be established between the detector integration time, angular resolution, 

sensitivity and specificity. An increased integration time would increase the 

number of photons detected therefore pontentially increasing both the 

sensitivity and specificty. This would however consequently result in longer 

imaging times, where in mamography, this is undesirable. Increasing the angular 

resolution would also have the desired effect, only to compromise system 

resolution consequently reducing the probability of detecting smaller masses. As 

the purpose of this work is to demonstrate EDXRD can be used as an intelligent 

imaging parameter controller, and not to exhaustively determine the ideal 

conditions under which it is to work, the remainder of this investigation makes 

use of the EDXRD images of each breast tissue region obtained using the 

maximum number of photon counts (corresponding to an eight second detector 

integration per pixel). 

 

 

3.12.3   The effect of x-ray beam collimation size  

 

The angular resolution of an imaging system determines whether small objects, 

i.e. masses are to be detected. In conventional digital mammography systems, x-

ray detection comes in the form of either a pixelated CCD array or amorphous 
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selenium flat panel detector. The spatial resolution is thus governed by both the 

pixel size and coupled scintillator, or if a direct system is in use, the pixel size. As 

spatial resolution in diffraction imaging is determined by the angular resolution 

of the system, the effect of x-ray beam collimation size on the detectability of 

suspicious tissue regions has been investigated. All three breast tissue regions 

were imaged three times using the beam optics described in section 2.3.4. A 

stepping ROI size of one pixel column was used to investigate the pixel intensities 

of each image (therefore a 1mm × 10mm ROI corresponding to the 1mm wide 

collimation system, a 2mm × 10mm ROI for the 2mm wide collimation system 

and 3mm × 10mm ROI for the 3mm wide collimation system was used). The 

resultant EDXRD images are displayed in figures 3.28, 3.29 and 3.31 where both, 

momentum transfer windows corresponding to adipose tissue and diseased 

tissue are displayed. 
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(a)    Transmission x-ray image 

 

   

(b) Summation window: 1.52 nm-1 – 1.71 nm-1            (c) Summation window: 1.02 nm-1 – 1.21 nm-1 

 

                              

(d) Summation window: 1.52 nm-1 – 1.71 nm-1                    (e) Summation window: 1.02 nm-1 – 1.21 nm-1 

 

 

(f) Summation window: 1.52 nm-1 – 1.71 nm-1               (g) Summation window: 1.02 nm-1 – 1.21 nm-1 

 

Figure 3.28 (a) A 31mm × 10mm x-ray transmission image of a region of tissue obtained 

from sample 1 used to obtain EDXRD images (b-g) Corresponding EDXRD images of the 

tissue region imaged using a  solid angle of 0.23,0.43 and 0.98msr for images b-c, d-e 

and f-g repectively. 

 

From the transmission image above (fig 3.28a), it can be seen that breast sample 

one contains both healthy and suspicious tissue types where the suspicious 

region is seen in the form of an irregularly shaped mass (left side of image). This 

region has been previously marked as suspicious by a radiologists (section 2.6). 
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From figure 3.28b, d and f, it can be seen that the images acquired using a 

summation window of 1.52nm-1 – 1.71nm-1 appear to consist of higher intensity 

pixels within the first half (left side) of the image hence indicating the presence 

of an abnormality. The opposite is clearly seen when a momentum transfer 

window of 1.02nm-1 – 1.21nm-1 is used. Figures 3.28 d-g correspond with that of 

figures 3.28b and 3.28c where it can be seen that the suspicious tissue mass is 

still distinguishable from healthy tissue based on grey level values.  

 

The effect the solid angle has on the suspicious tissue detectability present in 

sample one is shown in tables 3.33. It can be seen that the proportion of 

suspicious tissue highlighted is maximised when a small solid angle is used. It is 

observed that up to 100% of the suspicious tissue is able to be correctly flagged 

whilst all the highlighted ROI’s are located in the suspicious regions. Past 

0.43msr, it appears that healthy tissue regions begin to be treated as suspicious 

as only 80% of the flagged ROI’s are located in the suspicious tissue area. 

 

Table 3.33 Effect solid angle has on abnormality detection within sample one. 

Solid Angle 
(msr) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of suspicious 
tissue flagged 

(%) 

No. of Flagged columns 
in suspicious region 

(%) 

0.23 41.9 100.0 100.0 
0.43 37.5 84.6 100.0 
0.98 45.4 84.6 80.0 

 

 

 

 

 

 



 

                                

(b) Summation window: 1.52nm

 

(d) Summation window: 1.52nm

 

(f) Summation window: 1.52nm

 

Figure 3.29 (a) A 31mm × 10

from sample 2a used to obtain EDXRD images (b

tissue region imaged using

f-g repectively. 

 

Tissue sample 2a (fig 3.29)

tissue types. The suspicious

shaped mass occupying the second quarter of the image. Although the mass is 

not seen to visually penetrate the enitire thickness of the sample, hence is 
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(a) Transmission x-ray image 

 

 
(b) Summation window: 1.52nm-1–1.71nm-1              (c) Summation window: 1.02nm

 
(d) Summation window: 1.52nm-1–1.71nm-1               (e) Summation window: 1.02nm

 
(f) Summation window: 1.52nm-1–1.71nm-1                (g) Summation window: 1.02nm

(a) A 31mm × 10mm x-ray transmission image of a region of tissue 

sample 2a used to obtain EDXRD images (b-g) Corresponding EDXRD images of the 

tissue region imaged using a solid angle of 0.23,0.43 and 0.98msr for images b

(fig 3.29), like sample one, contains both healthy and 

. The suspicious region in this sample takes the form of an irregularly 

shaped mass occupying the second quarter of the image. Although the mass is 

y penetrate the enitire thickness of the sample, hence is 

 
(c) Summation window: 1.02nm-1–1.21nm-1 

                                    
Summation window: 1.02nm-1 – 1.21nm-1 

                                                   
(g) Summation window: 1.02nm-1–1.21nm-1 

ray transmission image of a region of tissue obtained 

g) Corresponding EDXRD images of the 

for images b-c, d-e and 

contains both healthy and suspicious 

in this sample takes the form of an irregularly 

shaped mass occupying the second quarter of the image. Although the mass is 

y penetrate the enitire thickness of the sample, hence is 
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superimposed within healthy tissue, the EDXRD technique is still able to highlight 

it, where the statistical analysis procedure is able to detect and classify this 

region as suspicious (fig 3.30). It can be seen from figure 3.30 that the region 

between 9-15 pixel columns exceeds the threshold level (100DN) therefore 

consequently will be treated as suspicious. This sample is made up predominatly 

of adipose tissue as is seen from fig 3.29b and c. 

 

 

Figure 3.30 Results obtained from figure 3.29b illustrating the column intensity 

profile of sample 2a. 

 

Table 3.34 suggests that a smaller solid angle is desirable as it is able to highlight 

an increased proportion of the suspicious tissue compared to larger angles. An 

improvement in exposure distribution is also observed where less healthy tissue 

is being flagged as suspicious when the solid angle is reduced as can be seen 

from the proportion of the total image highlighted. 
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Table 3.34 Effect solid angle has on abnormality detection within sample 2a. 

Solid Angle 
(msr) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of suspicious 
tissue flagged 

(%) 

Flagged columns within 
suspicious region 

(%) 

0.23 22.5 70.0 100.0 
0.43 25.0 61.5 100.0 
0.98 27.2 61.5 100.0 

 

The final region investigated also came from tissue sample two and is referred to 

as sample 2b. Like sample 2a, this segment also consists predominantly of 

adipose tissue (fig 3.31). A suspicious section is located centrally within the 

image. The quantitative results (table 3.35) suggest that a solid angle of 0.43msr 

out performs both smaller and larger angles with respects to suspicious tissue 

flagging and exposure distribution efficiency respectively.  

 

Table 3.35 Effect solid angle has on abnormality detection within breast sample 2b.  

Solid Angle 
(msr) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of suspicious 
tissue flagged 

 (%) 

Flagged columns within 
suspicious region 

  (%)  
0.23 29.0 81.8 100.0 
0.43 31.2 90.9 100.0 
0.98 36.3 90.9 100.0 

 

 

 

 

 

 

 

 

 



 

(b) Summation window: 1.52nm

 

(d) Summation window: 1.52nm

 

(f) Summation window: 1.52nm

Figure 3.31 (a) A 31mm × 10

from sample 2b used to obtain EDXRD images (b

tissue region imaged using 

f-g repectively. 

 

It has been shown that the 

crucial importance and governs the efficiency to which the intelligent feedback 

parameter works. Id

amount of healthy tissue unnecessarily flagged as suspicious henc
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(a) Transmission x-ray image 

 

  
(b) Summation window: 1.52nm-1–1.71nm-1                 (c) Summation window: 1.02nm

   
(d) Summation window: 1.52nm-1 – 1.71nm-1               (e) Summation window: 1.02nm

   

(f) Summation window: 1.52nm-1 – 1.71nm-1               (g) Summation window: 1.02nm

 

(a) A 31mm × 10mm x-ray transmission image of a region of tissue 

sample 2b used to obtain EDXRD images (b-g) Corresponding EDXRD images of the 

tissue region imaged using a solid angle of 0.23,0.43 and 0.98msr for images b

It has been shown that the system optics used within an EDXRD system is of 

crucial importance and governs the efficiency to which the intelligent feedback 

parameter works. Ideally a small solid angle would be used as it limit

amount of healthy tissue unnecessarily flagged as suspicious henc

 
(c) Summation window: 1.02nm-1 – 1.21nm-1 

 
(e) Summation window: 1.02nm-1 – 1.21nm-1 

 

(g) Summation window: 1.02nm-1 – 1.21nm-1 

ray transmission image of a region of tissue obtained 

g) Corresponding EDXRD images of the 

for images b-c, d-e and 

used within an EDXRD system is of 

crucial importance and governs the efficiency to which the intelligent feedback 

would be used as it limits the 

amount of healthy tissue unnecessarily flagged as suspicious hence increasing 
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exposure distribution efficiency. However, it should be noted that this would 

consequently result in an increase in the data acquisition time as the photon flux 

decreases with solid angle. Using a smaller solid angle would also increase the 

chances of detecting smaller abnormalities that would otherwise go undetected 

by the larger angles.  

 

3.13 Stepping ROI size 

 

Throughout the previous EDXRD investigations the size of the scanning ROI used 

to analyse the tissue regions has remained constant for a given collimation size 

(solid angle). A one pixel column wide ROI has been used accompanied by the 

maximum possible height (10mm as this is the height of the image section). All 

images examined thus far have been identical in size for a given solid angle. The 

effects of varying the size of the ROI and hence the quantity of data within each 

region, is investigated below. Three different ROI sizes have been used to analyse 

the EDXRD images obtained from all three breast samples. Each image totally or 

partially incorporated previously identified suspicious tissue regions. This 

investigation therefore required the further acquisition of larger diffraction 

images than was previously used in order to investigate the effects of increasing 

the ROI size (height) beyond 10mm. These larger images would therefore enable 

changes in the tissue type ratio present within a single pixel column. Images 

were acquired using identical imaging parameters previously used (see section 

2.3). The height (y axis) of each pixel column was changed. Firstly it was doubled 

from 10mm to 20mm as this enabled the suspicious tissue region to be imaged 

with ample amounts of surrounding healthy tissue. Secondly, it was then 

approximately halved from 10mm to 6mm removing this abundance of 

surrounding healthy tissue. 6mm was used as opposed to 5mm as a collimation 



 

slit height of 2mm was

0.23msr was used as it out performed its competitors 

obtained using the maximum number of photons

an eight second detector count time

was achieved. Figure 

three ROI sizes. The stepping ROI size used to analyse the mean 

each column for images a, b 

column × 5 pixels and 1 pixel column × 

Figure 3.32 EDXRD images of sample 1

different scanning ROI sizes where a 1 pixel column by 10 pixels, 5 pixels and 3 pixels was 

used to analyse images a, b and c respectively.
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slit height of 2mm was used (hence height being a multiple of 2). 

was used as it out performed its competitors along with the images 

obtained using the maximum number of photons investigated (corresponding to 

detector count time) ensuring an adequate number of 

was achieved. Figure 3.32, 3.33 and 3.34 display the regions analysed by the 

three ROI sizes. The stepping ROI size used to analyse the mean pixel intensity

n for images a, b and c were 1 pixel column x 10 pixels , 1 pixel 

pixels and 1 pixel column × 3 pixels respectively. 

 

 

 
(a) 

 
(b) 

 
(c) 

EDXRD images of sample 1 corresponding to the area’s analysed by three 

different scanning ROI sizes where a 1 pixel column by 10 pixels, 5 pixels and 3 pixels was 

used to analyse images a, b and c respectively. 

 

 

 

 

 

). A solid angle of 

along with the images 

investigated (corresponding to 

number of counts 

display the regions analysed by the 

pixel intensity of 

0 pixels , 1 pixel 

corresponding to the area’s analysed by three 

different scanning ROI sizes where a 1 pixel column by 10 pixels, 5 pixels and 3 pixels was 
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(a) 

 
(b) 

 
(c) 

Figure 3.33 EDXRD images of sample 2a corresponding to the area’s analysed by three 

different scanning ROI sizes where a 1 pixel column by 10 pixels, 5 pixels and 3 pixels was 

used to analyse images a, b and c respectively. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3.34 EDXRD images of sample 2b corresponding to the area’s analysed by three 

different scanning ROI sizes where a 1 pixel column by 10 pixels, 5 pixels and 3 pixels was 

used to analyse images a, b and c respectively. 
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From figure 3.32, 3.33 and 3.34, the partial volume effect became apparent 

where the area of the ROI occupied by the suspicious tissue region increases as 

the stepping ROI decreases. This consequently results in the average pixel 

column intensity increasing, therefore potentially increasing the probability of 

detecting suspicious tissue regions. However, from figure 3.32, it appears that 

although the ratio of suspicious tissue with respects to healthy tissue contained 

within an ROI increases as the ROI size decreases, table 3.36 suggests that due to 

the intense pixels of the surrounding glandular region being similar to that of the 

suspicious region, the mean column intensity between an ROI containing just 

suspicious tissue (3.32b and c) is similar to the larger ROI (3.32a) containing both 

healthy and suspicious tissue types. This consequently results in 100% of the 

suspicious region being flagged for the largest ROI size along with the 

surrounding healthy tissue.  

 

Tables 3.36 and 3.38 demonstrate that the ability to highlight suspicious tissue 

regions is reduced by at least 45% when an ROI size of 1 pixel column × 10 pixels 

is used as oppose to a smaller one. In one instance it was observed that 25% of 

the highlighted regions where unnecessarily flagged as suspicious where only 

30% of the suspicious region was highlight (table 3.37). Thus an ROI size of 1 pixel 

column × 10 pixels is unsuitable for use. Such findings are due to the partial 

volume effect where the intense pixel grey levels of the suspicious regions are 

statistically compromised by that of the healthy tissue. Such an effect is reduced 

when a smaller ROI is used as mentioned above. In contrast, the difference 

between an ROI size of 1 pixel column × 5 pixels and 1 pixel column × 3 pixels 

was minimal where only a 10% difference was seen in the proportion of 

suspicious tissue highlighted (table 3.37). The results were identical for table 3.36 

and 3.38.  



159 
 

Table 3.36 Performance characteristics of three different ROI sizes used to investigate 
the suspicious tissue region within sample 1. 

ROI size 
(Pixel column × 

Pixel rows) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of 
suspicious tissue 

flagged 
 (%) 

Flagged columns within 
suspicious region 

 (%) 

1 × 10 45.1 100.0 92.8 
1 × 5 41.9 100.0 100.0 
1 × 3 41.9 100.0 100.0 

 

Table 3.37 Performance characteristics of three different ROI sizes used to investigate 
the suspicious tissue region within sample 2a. 

ROI size 
(Pixel column × 

Pixel rows) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of 
suspicious tissue 

flagged 
 (%) 

Flagged columns within 
suspicious region 

 (%) 

1 × 10 12.9 30.0 75.0 
1 × 5 22.5 70.0 100.0 
1 × 3 25.8 80.0 100.0 

 

Table 3.38 Performance characteristics of three different ROI sizes used to investigate 
the suspicious tissue region within sample 2b. 

ROI size 
(Pixel column × Pixel 

rows) 

Proportion of image 
flagged as suspicious 

(%) 

Proportion of 
suspicious tissue 

flagged 
 (%) 

Flagged columns within 
suspicious region 

 (%) 

1 × 10 16.1 45.4 100.0 
1 × 5 29.0 81.8 100.0 
1 × 3 29.0 81.8 100.0 

 

 

The results suggest that a stepping ROI size of either 1 pixel column × 5 pixels or 

3 pixels should be used throughout the remainder of this investigation as they 

highlight a higher proportion of the suspicious masses. 
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3.14 Summary 

 

From the EDXRD results presented above, it can be deduced that the use of 

EDXRD signals in the form of EDXRD images obtained from the breast, can be 

used to extract useful tissue characterising information therefore leading to the 

identification of suspicious tissue regions. It has been shown that by using the 

mean function to analyse the pixel intensity of these EDXRD images, it is possible 

to differentiate between the two tissue regions consequently promoting real 

time imaging parameter optimisation.  

 

The results of the above investigations have lead to the identification of a set of 

optimum intelligent imaging parameters. It has been demonstrated (section 

3.12.1) that a threshold value corresponding to 40% of the dynamic range of the 

EDXRD images is an ideal value assigned to govern the differentiation of the 

tissue types by the mean function as it is seen to maximise the proportion of 

suspicious tissue highlighted whilst minimising the amount of healthy tissue 

incorrectly flagged. Section 3.12.3 has shown that the smaller the solid angle (x-

ray beam collimator slit widths) used the greater the exposure distribution 

efficiency hence the tissue differentiation capability of the feedback algorithm. It 

can be seen from section 3.13 that the smaller the stepping ROI used to analyse 

the EDXRD image, the greater the amount of suspicious tissue highlighted.   

 

Table 3.32 demonstrates that suspicious tissue region detection is possible when 

as few as 15200 photons are detected (corresponding to an incident exposure of 

3.9µCkg-1). This therefore suggesting a linear array of energy resolving detectors 

integrating for one second spanning the length of the image would be sufficient 

for I-ImaS system integration. As statistical quality of the data is proportional to 

photon flux, a wider collimation system may be useful increasing the number of 
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counts detected however will compromise the achievable spatial resolution of 

the system.  
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Chapter Four 

 
Intelligent Images 
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4.1 Intelligent Image production 

 

The previous chapter demonstrated that tissue information could be extracted 

and analysed, therefore potentially enabling a real time image optimisation 

technique to be implemented into the data acquisition phase of the image 

acquisition procedure. This optimisation technique attempts to enhance the 

diagnostic quality of mammograms. The combined feature function used the 

grey level pixel intensity of small regions of interest to determine whether a 

specific tissue region contained suspicious tissue. It was demonstrated that by 

using appropriate thresholds and/or scout images, the suspicious tissue regions 

within a low exposure mammogram or EDXRD image could be successfully 

differentiated from the surrounding healthy regions. The intelligent images 

presented within this chapter were simulated using a single threshold value were 

the incident exposure was modulated by x-ray beam attenuation filters in an 

attempt to investigate the maximum CNR achievable using the proposed 

methods. 

 

The I-ImaS system used to acquire images within this investigation was unable to 

be implemented in real-time mode consequently resulting in the simulation of I-

ImaS intelligent images. The simulating of these intelligent I-ImaS images were 

governed by the results obtained from the experimental investigations 

undertaken in the previous chapter in an attempt to produce optimised I-ImaS 

intelligent images. In order to simulate a real-time change in incident exposure, a 

set of conventional images were acquired using the I-ImaS system each at a 

different incident exposure as discussed in section 3.5.1. 
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4.2 Combined feature function results 

 

Seven of the eight tissue regions presented in section 3.6 were used to generate 

intelligent images. The 8th sample section comprised of healthy tissue only.  An 

exposure level of 19.0µCkg-1 was used as the scout exposure whilst the threshold 

governing SynF1 was derived from a rectangle 1mm × 15mm in size located 

directly under the skin. This corresponded to the approximate size of an 

individual I-ImaS sensor (32 pixels × 512 pixels). The threshold pertaining to 

SynF2 was set to 250Arb.U. The scout images were analysed using the combined 

feature function described in section 3.3.2. The size of the scanning ROI used to 

extract statistical information from the scout images was 32 pixel columns wide 

by 490 pixel columns high. This ROI was stepped across the image in one pixel 

column steps. As the ratios of suspicious and unsuspicious tissue making up each 

intelligent image was known, along with the corresponding exposures used to 

obtain each region, the total exposure level used to obtain each intelligent image 

could be calculated.  

 

Figure 4.1 shows the results of the intelligent algorithm in the form of exposure 

maps. These maps correspond to the regions of tissue flagged as suspicious by 

the algorithm therefore are the tissue regions to be imaged with an increased 

incident exposure. The black regions within each image segment represent the 

tissue areas that were not highlighted as suspicious, hence imaged with a scout 

exposure only. These exposure maps also show the intensity of each pixel within 

the suspicious region where it is observed that the feature function combination 

highlights the most intense (i.e. suspicious) regions well in all instances. 
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       (a) Exposure map: sample1 section 1           (b) Exposure map: sample 1 section 2      

 

   

                  (c) Exposure map: sample 1 section 3         (d) Exposure map: sample 1 section 4 

 

  

                 (e) Exposure map: sample 2 section 1         (f) Exposure map: sample 2 section 2 

 

 

(g) Exposure map: sample 2 section 3 

 

Figure 4.1 Exposure maps obtained from scout images depicting the regions highlighted 

as suspicious by the intelligent algorithm. The black areas represent the regions not 

flagged as suspicious.  
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Once the exposure maps were obtained, intelligent Images were simulated 

according to equation 4.1. 

 

                           (Eq.  4.1) 

 

 

The parts of the images corresponding to the suspicious regions, that is, the 

regions corresponding to the exposure maps, were imaged with an increased 

level of exposure (24.8µCkg-1). This increase corresponded to a single 

attenuation filter step where an exposure level of 19.0µCkg-1, the scout 

exposure, was the last step prior to the maximum unfiltered exposure level 

(24.8µCkg-1). Figure 4.2 illustrates the first optimised intelligent images of real 

breast tissue produced by the I-ImaS imaging system. By means of comparison, it 

can be seen from figures 4.2 and 4.3 that all of the information relating to the 

suspicious regions is retained. The CNR calculated according to Young et al 

(2006) along with the exposure comparisons for each image is depicted in table 

4.1.  

 

Three of the seven (42%) intelligently produced images resulted in an increase in 

the CNR. Two of the four image sections investigated from within sample 1 

(Sample 1 sections 1 and 2) demonstrated increases of 5.3% and 2.2% 

respectively. These increases were accompanied by decreases in the exposure 

level used to obtain the images as seen in table 4.1. Although sample 1 section 3, 

4 and sample 2 sections 1 and 2 do not show an increase in the CNR when 

compared to the conventionally acquired images, three of the four show similar 

CNR’s whilst the exposure incident on all sections has been reduced. Sample 2 

section 3 demonstrated a CNR increase of approximately 4.2%. Again, this image 

was acquired using an approximate exposure reduction of 10%. 

Adapted 
exposure image 

at suspicious 
points 

Intelligent I-ImaS 
image 

= 
Scout image at all 

points + 
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(a)  Sample 1 section 1                         (b) Sample 1 section 2     

  
(c) Sample 1 section 3                                     (d) Sample 1 section 4     

 

             (e) Sample 1 section 1                              (f) Sample 2 section 2 

 

(g) Sample 2 section 3     

Figure 4.2  I-ImaS intelligent images produced using exposure maps derived from the 

statistical content extracted from breast tissue one and two using a scout exposure of 

19.0µCkg-1. 
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(a) Sample 1 section 1   (b) Sample 1 section 2 

  
(c )  Sample 1 section 3   (d)  Sample 1 section 4 

  
  (e)  Sample 2 section 1               (f) Sample 2 section 2 

                                         
(g) Sample 2 section 3 

Figure 4.3 Conventional images acquired using an exposure of 24.8µCkg-1 (no exposure 

reduction) implementing no feedback intelligence.  
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Table 4.1 Image quality and incident exposure results obtained from breast samples one and two intelligent images obtained using a scout 
exposure of 19.0µC/kg.  

Sample 
 

Intelligent image 
CNR 

Conventional image 
CNR (filter 5) 

Intelligent image 
exposure (µCkg-1) 

Conventional 
image exposure 

(µCkg-1) 

Total exposure 
reduction 

(%) 

CNR 
difference 

(%) 
Sample 1 section 1 13.9 13.2 22.9 24.8 7.7 5.3 increase 
Sample 1 section 2 4.1 4.0 22.0 24.8 11.3 2.5 increase 
Sample 1 section 3 
Sample 1 section 4 
Sample 2 section 1 
Sample 2 section 2 
Sample 2 section 3 

10.1 
8.0 
7.2 
5.5 
9.8 

10.4 
8.1 
9.9 
5.6 
9.4 

22.1 
19.5 
22.9 
22.0 
22.3 

24.8 
24.8 
24.8 
24.8 
24.8 

10.9 
21.4 
7.7 

11.3 
10.1 

2.9 decrease 
1.0 decrease 
27.3 decrease 
1.8 decrease 
4.2 increase 
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From the results present above, it can be deduced that the use of grey level pixel 

value feature extraction, leading to the production of intelligently optimised I-

ImaS images, is beneficial. An improved CNR as well as an incident exposure 

reduction is achieved.  

 

Figure 4.4 illustrates the pixel intensity profiles taken from sample 2 section 3. 

The plot compares the pixel intensities from the intelligent I-ImaS image and the 

conventional image acquired implementing no exposure modulation using a 

scout exposure of 19.0µCkg-1. It is observed that the I-ImaS profile tends to 

exhibit higher pixel intensities than that of the conventional image. This 

corresponds to the region imaged with an increased incident exposure 

(24.8µCkg-1) consequently giving rise to the increase CNR seen in table 4.1. The 

exact regions used to compute the CNR for each image section in the table are 

identical to those initially used in section 3.4.2 and are shown throughout figures 

3.12 – 3.15.  
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        (a) 

          
        (b) 

          
       (c) 

Figure 4.4 (a) Line profiles across suspicious tissue region in sample 2 section 3 obtained 

from the intelligent I-ImaS image and the conventionally acquired image implementing 

no exposure modulation (b )Region of tissue used to obtain line profile in intelligent I-

ImaS image (c) region of tissue used to obtain line profile in conventional image.  

 

4.3 Summary 

 

An increase in the CNR for five of the seven intelligently simulated I-ImaS images 

obtained using a scout exposure of 19.0µCkg-1 was observed in comparison to 
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the conventional transmission images obtained using an exposure of 24.8µCkg-1. 

A total exposure reduction was demonstrated in all instances. 

 

4.4 EDXRD results  

 

The simulated intelligent I-ImaS images obtained from the EDXRD investigation 

are presented below. Three regions of interest from within the area deemed as 

suspicious by the radiologist (section 2.6) were selected from samples one and 

two to be imaged using the EDXRD technique. The optimum parameters yielded 

from the previous chapter were used. Figure 4.5 illustrates the corresponding x-

ray exposure maps demonstrating the EDXRD techniques’ ability to differentiate 

between healthy and diseased tissue types based on grey level pixel values. It 

can be seen that the algorithm used to differentiate tissue types enables a 

distinction between healthy and suspicious tissue regions to be made without 

the need for complex statistical feature functions; consequently minimal 

computational time and processing power is required. The figure shows that by 

using the mean function as a means of analysing each stepping ROI, the majority 

of the suspicious area within the tissues can be highlighted whilst minimising the 

flagging of the surrounding healthy regions. As a result of this, it therefore 

becomes possible to alter the incident exposure to these flagged regions only, 

whilst maintaining or reducing the exposure to the healthy regions. 
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 (a) 

 
 (b) 

 
(c) 

 

Figure 4.5 (a – c) Exposure maps corresponding to suspiciously flagged tissue regions 

obtained from samples 1, 2a, and 2b respectively where black region represents  tissue 

regions not highlighted as suspicious.   

 

An image made up of several different exposures would theoretically act to 

increase the image contrast between given regions therefore acting to possibly 

increase abnormality detection. However, as image qualities differ from region 
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to region, the CNR yield may possibly be reduced in the intelligent images as the 

noise in specific regions (those acquired with low exposures) will increase.  

 

The simulated intelligent images comprised of a base exposure of 13.3µCkg-1 

where this exposure was used for two main reasons. Firstly, because the 

suspicious regions in all the tissue sample sections investigated in section 3.5 

imaged using this exposure were visible. Secondly, this exposure represents a 

single attenuation step decrease from the step used in the previous section 

(where a low exposure mammogram was statistically investigated), therefore, as 

the CNR was seen to increase using a scout exposure of 19.0µCkg-1, this 

investigation would determine if a lower exposure could yield similar results. The 

exposure corresponding to the regions highlighted by the EDXRD signal (fig 4.5) 

were imaged using an increased incident exposure corresponding to 24.8µCkg-1. 
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(a) 

 
(b) 

 
(c) 

Figure 4.6 Intelligent images consisting of scout exposure transmission image columns 

(13.3µCkg-1) and columns aqcuired with a higher incident exposure (24.8µCkg-1). (a) 

sample 1 aqcuired with a total image incident exposure of 18.1µCkg-1 (b) sample 2a 

aqcuired with a total image incident exposure of 15.8µCkg-1 and (c) sample 2b 

aqcuired with a total image incident exposure of 16.6µCkg-1. 

 

The CNR between the suspicious and healthy regions of the intelligent images 

were 6.3, 8.0 and 3.9 corresponding to figures 4.6a, 4.6b and 4.6c respectively; 

compared to the conventionally acquired images acquired with no filtration 

displaying CNR’s of 6.5, 10.4, and 4.1 for 4.7a, 4.7b and 4.7c respectively. 
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(a) 

 
(b) 

 
(c) 

Figure 4.7 (a - c) Conventional transmission images of sample 1, 2a and 2b 

corresponding to a, b and c respectively. In all three instances an increased 

incident exposure was used (24.8µCkg-1). 

 

The radiosensitive nature of breast tissue means that during the imaging 

procedure, the incident exposure should be minimised as much as possible, 

however, a trade off becomes apparent with respects to image quality (CNR). 

The intelligently produced images above (fig 4.6) were acquired with a reduced 

total exposure incident on each sample in comparison to the conventionally 

acquired images.  
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Samples 1 and 2b showed only a minimal difference in CNR. This minimal 

difference was achieved with a 24.6% and a 33.0% reduction in the total image 

exposure. Sample 2a showed a 23.1% decrease in the CNR ratio from 10.4 to 8.0 

for the conventional and intelligent image respectively. Qualitatively, there 

appears to be minimal difference in the diagnostic quality of the intelligent and 

conventional images. The lower CNR is due to the background area 

corresponding to the section of the image acquired with the base exposure. This 

lead to the intelligent image containing a higher noise component to that of the 

conventionally acquired image, where the standard deviations were 11.3% and 

9.7% of the mean ROI pixel value respectively. 

 

Higher CNR ratios are thought to be obtainable using an alternative EDXRD 

intelligent imaging concept. This alternative method would act to increase the 

incident exposure to diseased tissue whilst maintaining the conventional 

exposure to healthy tissue regions, as oppose to the demonstrated technique of 

attempting to increase the CNR by reducing the exposure to healthy tissue 

regions, from that of the conventional image, whilst maintaining the exposure 

incident on diseased regions. This alternative method would seek to increase the 

total image exposure in comparison to a conventional image, hence not reducing 

the total incident exposure to healthy tissue regions. 

 

4.5 Comparison of both methods 

 

From the results presented in this chapter thus far, it has been demonstrated 

that the use of a combined feature function or the EDXRD signal yielded by the 

breast can be used as a feedback mechanism within an adaptable imaging 

system. It has been shown that both methods act to highlight a significant 
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proportion of the suspicious tissue regions whilst maintaining an exposure 

reduction incident to the healthy regions.  

 

The final work presented in this thesis is a comparison of the two information 

feedback techniques. The three tissue regions used to investigate the EDXRDs 

functionality (fig 4.7) have been analysed using the combined feature function 

(described throughout chapter 3 and used in chapter 4 section 4.2). This has 

enabled a direct performance comparison to be made. The results are present 

below (fig 4.8).  

 

Figure 4.8 illustrates that although both modalities are able to highlight the 

suspicious tissue regions when embedded in fatty glandular tissue, the EDXRD 

technique appears to outperform the combined feature function when required 

to differentiate between suspicious tissue and dense glandular tissue. This can be 

seen from figures 4.8a and 4.8d. It is observed that none of image 4.8a is flagged 

as suspicious; therefore the suspicious tissue region present is gone undetected. 

The corresponding image (4.8d) obtained using the EDXRD feedback mechanism 

enabled approximately 93% of the suspicious region to be correctly flagged. This 

was achieved with approximately 60% of the total image remaining unsuspicious, 

hence being imaged with a reduced exposure.  

 

Figure 4.8b and c demonstrate the ability of the combined feature function to 

correctly highlight 100% of the suspicious tissue regions in sample 2a and 2b 

respectively. In comparison, the EDXRD method flags 70% and 82% of the 

suspicious regions respectively. Although this is a lower proportion of the 

suspicious tissue, a 63% and 47% reduction in the total proportion of tissue 

flagged was observed. It can be seen from figures 4.8b and 4.8c that the 



179 
 

suspicious regions highlighted are accompanied by more surrounding healthy 

tissue than the corresponding EDXRD images (fig 4.8e and f).  

   
        (a)      (d)    

  

        (b)      (e) 

  

          (c)       (f) 

 

Figure 4.8 Modality comparison (a - c) Exposure map of low exposure 

(19.0µCkg-1) images analysed using the combined feature function. Images a, 

b and c correspond to EDXRD images of sample 1, 2a and 2b respectively. (d 

– f) Exposure maps of identical tissue regions analysed in a – c, regions 

analysed using EDXRD feedback mechanism. 

 

It is believed that the limitation of the combined feature function seen in figure 

4.8a was due to a relatively high threshold being set to govern SynF1. This was 
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due to the initial regions from where the threshold is derived consisting 

predominately of suspicious tissue.  

 

4.6 Summary 

 

The investigation as to whether EDXRD can be used within the I-ImaS feedback 

mechanism has been completed. The results displayed above demonstrate that a 

similar image quality to conventional transmission imaging is obtainable using 

the intelligent imaging concept. The use of the EDXRD signal as a parameter 

controller has lead to a 46% incident exposure reduction to at least 58% of the 

total image area for all images. The results from section 4.5 demonstrate that 

both techniques are able to detected suspicious tissue regions within the breast, 

however, EDXRD appears to perform well highlighting at least 70% of the 

suspicious regions in all instances.  
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Chapter Five 

 

Conclusion 
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5.1 Overview 

 

The aim of the investigation reported in this thesis was to demonstrate that the 

concept of imaging parameter optimisation, based solely on the statistical 

content of the breast sample being imaged, is beneficial within digital 

mammography. It enables a reduction in the level of exposure incident on 

healthy tissue regions whilst maintaining/increasing the exposure incident on 

diseased tissue regions. As a result, it is thought that these ‘intelligently’ 

acquired images will be of improved diagnostic quality to that of conventionally 

produced images or at least of equivalent quality at a reduced dose. Successful 

proof of concept would mean other applications such as homeland security could 

potentially benefit also; where an intelligent feedback mechanism could be used 

for example, to control the speed of a baggage scanner. 

 

Currently, there is no such imager that has the ability to acquire mammograms in 

such a manner. The requirements of such a system would include the ability to 

acquire a low exposure image as well as a final image simultaneously. Secondly, 

the system would require a real time feedback mechanism enabling a means of 

data extraction, analysis and parameter optimisation. Finally, the feedback 

mechanism would have to be of low complexity complying with the stringent 

time constraints governing breast imaging. A potential solution is found within 

the bespoke I-ImaS system.  

 

The ability of the I-ImaS system to acquire two mammograms simultaneously, 

each with a different exposure if required, fulfils the first requirement stated 

above. The second and third requirement are software issues with are limited by 

current technological advances therefore are possible and are demonstrated 

within this thesis.  



183 
 

Two very different information extraction techniques were tested. The first 

technique involved the statistical interrogation of a low exposure transmission 

image of the sample; whilst the second technique demonstrated the concept of 

using coherent scatter profiles. The techniques presented within this thesis, 

which are summarised below, can help identify new imaging techniques which 

may lead to future imaging enhancements, ideally, a more efficient x-ray 

exposure diagnosis.  

 

5.2 Intelligent imaging based on low exposure scout images 

 

The aim of this investigation was to determine whether the statistical 

information contained within a low exposure mammogram, could be extracted in 

real time during the image acquisition procedure. This information would form 

the basis of a feedback mechanism which would optimise the imaging 

parameters ultimately leading to an intelligently produced image. This image 

would possess a similar, if not increased, image quality to that of a conventional 

image, however, would be obtained with a lower exposure.  

 

Transmission images of two breast samples were acquired using an aluminium 

filtered tungsten x-ray tube operated at 30kVp and 7mA.  Images were acquired 

at five different exposure levels by the I-ImaS system. Each image was obtained 

using a single exposure leading to the production of five separate images 

consequently enabling the simulation of a single intelligently acquired image. The 

next step was to derive a means of feature extraction. Synthetic feature 

functions, SynF1 and SynF2, were used as they were seen to perform well 
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highlighting abnormalities throughout the preliminary database image 

investigation. 

 

The statistical information from within the ‘scout’ image was then extracted 

using a stepping ROI which was stepped across the segmented mammogram 

whilst analysing pixel intensities. The effect the size (width) of this ROI had on 

suspicious tissue detectability was investigated where it was concluded that a 32 

pixel wide (sensor sized) ROI was suitable for implementation as it highlight at 

least 82% of the suspicious tissue area in all image segments investigated.  

 

Each ROI gave rise to a single, averaged intensity value which was then 

compared to a threshold value which ultimately determined whether the ROI 

was suspicious or not. The suspicious tissue regions gave rise to higher intensity 

pixel values than that of the surrounding healthy regions consequently enabling 

them to be distinguished. The final feature function thresholds were 

experimentally determined and selected based on performance.  

 

The CNR for three (42%) of the intelligent images increased. These images were 

obtained using a scout image exposure corresponding to 23% below that of the 

unfiltered conventional image (24.8µCkg-1). These CNR increases were also 

accompanied by an incident exposure decrease on average of 9%. Although the 

remaining two images experienced CNR decreases, an average exposure 

reduction of approximately 13% was seen. These results demonstrate, firstly, 

that the use of simple feature functions can be used to extract, analyse and 

therefore identify tissue regions within a breast sample that were deemed as 

suspicious by a qualified radiologist. Secondly, it has been demonstrated that an 

increase in image quality is achievable accompanied by a reduction in the level of 
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exposure incident on the healthy tissue regions; therefore the majority of the 

breast, when the investigated concept is used. 

 

5.3 EDXRD based intelligent imaging  

 

It was thought that as breasts containing cancerous tissue are composed of 

various tissue types, they therefore vary in structure and composition. A means 

of categorically differentiating tissue types during a breast scan could potentially 

lead to a more efficient way of imaging the radiosensitive breast. The exposure 

level the breast would be exposed to could be optimised. With this optimisation, 

the diagnostic quality of the image may also be enhanced, therefore the benefits 

are twofold. 

 

As EDXRD provides a means of quantitatively identifying tissue types, its use 

within digital mammography could potentially prove highly beneficial. If the 

diffraction signal could be used as an imaging parameter controller, healthy 

tissue regions could be imaged with a reduced exposure in comparison to 

suspicious tissue regions. As a consequence, the total breast exposure would be 

reduced. 

 

To satisfy the requirements of using the diffraction signal as a means of imaging 

parameter control, two separate experiments were setup. One to obtain 

transmission images of the breast samples and the other to obtain their x-ray 

diffraction signals. The combining of the two modalities would then enable 

intelligent image production. 
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The diffraction signal from the breast samples were obtained using a tungsten x-

ray source operated at 60kVp. A nominal scatter angle of 6o was selected as it 

had been shown to be optimal for EDXRD breast tissue studies (Kidane et al 

(1999)). The effects the statistical quality of the data, the angular resolution, 

stepping ROI size used to analyse the pixel intensities and the feature function 

threshold value had on suspicious tissue detectability were investigated. 

However, as the focus of this work was to prove the concept outlined earlier, 

parameter selection with regards to the above listed factors was based on 

performance rather than practicality, i.e. image acquisition time, data processing 

time, kVp etc. 

 

Having simulated EDXRD guided intelligent images it became clear that the use 

of the diffraction signal as a parameter controller is beneficial as 70% of the 

suspicious tissue regions in each image was highlighted. Similar diagnostic quality 

images were able to be acquired using a lower incident exposure than those 

images acquired using no intelligence, i.e. conventional transmission images 

acquired using no filtration. The exposure incident on healthy tissue regions was 

seen to be reduced by up to 46%. However, it should be noted that this exposure 

accounts for the acquisition of the transmission images only and in order to 

produce EDXRD guided images in practice, a means of coherent scatter 

extraction using the already present transmission beam would ideally be devised.  

 

5.4 Conclusion 

 

Through experimental demonstration, real time imaging parameter optimisation 

has shown signs of being a beneficial, novel, breast imaging technique. It has 

been demonstrated that intelligently produced images acquired with the use of 
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x-ray beam attenuation filters can give rise to increased image qualities 

compared to conventional transmission (using no filtration) images. Increases in 

the CNR were seen for the majority of sample sections investigated using the 

technique described in chapter three. However, this investigation was hindered 

through breast sample limitations where many more breast tissue samples 

would be required in order to obtain statistically sound results. All possible 

breast tissue disease types would ideally need to be obtained in order to fully 

characterise the systems abnormality detection performance.  

 

The design limitations of the current I-ImaS system quickly become apparent 

throughout this investigation. As its design does not accommodate for EDXRD 

data collection, a separate investigation had to be set up. Ideally, future I-ImaS 

system designs could possibly implement a single row of sensors, possible CMOS 

APS, dedicated to collection of diffraction data as this no longer has to be in the 

form of a cumbersome HPGe detector as demonstrated by Bohndiek et al (2008). 

 

As the I-ImaS is a scanning system, breast tissue data is acquired in steps. This 

therefore means that only the data that has been currently acquired can be used 

for image analysis. This can limit the statistical analysis procedure. Ideally, a large 

flat panel would be used instead of two dual arrays which would capture an 

entire low exposure scout image immediately. As CMOS APS promote 

windowing, a linear array of pixel columns within the flat panel could be 

activated only, consequently enabling the ‘filling in’ of exposure to suspicious 

tissue regions as the sample is scanned past this array. This method would 

increase the time the statistical algorithm had to analyse the scout image as it 

would have been acquired before the initiation of the scanning phase. Such an 

imaging technique would also potentially lead to a reduction in scanning time as 

the system could be setup such that only the suspicious regions were scanned 
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with a reduced translation speed past the linear array as oppose to the entire 

sample moving at a constant speed. 
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