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Abstract

Serial Magnetic Resonance (MR) Imaging can reveal structural atrophy in the brains of
subjects with neurodegenerative diseases such as Alzheimer’s Disease (AD). Methods of
computational neuroanatomy allow the detection of statistically significant patterns of
brain change over time and/or over multiple subjects. The focus of this thesis is the
development and application of statistical and supporting methodology for the analysis
of three-dimensional brain imaging data. There is a particular emphasis on longitudinal
data, though much of the statistical methodology is more general.

New methods of voxel-based morphometry (VBM) are developed for serial MR data,
employing combinations of tissue segmentation and longitudinal non-rigid registration.
The methods are evaluated using novel quantitative metrics based on simulated data.
Contributions to general aspects of VBM are also made, and include a publication con-
cerning guidelines for reporting VBM studies, and another examining an issue in the
selection of which voxels to include in the statistical analysis mask for VBM of atrophic
conditions.

Research is carried out into the statistical theory of permutation testing for application
to multivariate general linear models, and is then used to build software for the analysis
of multivariate deformation- and tensor-based morphometry data, efficiently correcting
for the multiple comparison problem inherent in voxel-wise analysis of images. Monte
Carlo simulation studies extend results available in the literature regarding the different
strategies available for permutation testing in the presence of confounds.

Theoretical aspects of longitudinal deformation- and tensor-based morphometry are
explored, such as the options for combining within- and between-subject deformation
fields. Practical investigation of several different methods and variants is performed for a
longitudinal AD study.
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Chapter 1

Background

Scientifically interesting and clinically important patterns of longitudinal brain change
in dementia may be detected through the analysis of serial MR imaging. Differences in
these patterns between groups of subjects may be relevant to diagnosis, tracking of disease
progression, and monitoring of potential disease-modifying treatments.

This thesis focuses on the application of techniques from the fields of image analysis
and statistics to the problem of identifying such patterns of change and their inter-group
differences. This chapter presents some of the clinical background, followed with brief
introductions to the key image analysis techniques, and basic statistical methods.

1.1 Clinical Application

The term dementia can refer to a number of different neurological disorders which result in
impaired functioning of the brain. Reasoning, memory, emotional behaviour, speech, and
movement, are among the faculties that can be degraded. Dementias include Alzheimer’s
Disease, Vascular Dementia (caused by problems with the brain’s blood supply), Lewy
Body Dementia (which shares certain traits of Alzheimer’s and Parkinson’s Disease),
Fronto-Temporal Dementia (which affects emotional judgement and social behaviour),
Huntington’s Disease (an hereditary disorder affecting personality and movement), and
Creutzfeldt-Jacob Disease (a rare and rapidly fatal encephalopathy) [1, 2].

Alzheimer’s Disease (AD) is the most common form of dementia. It is a progressive
disorder that leads to problems with memory, learning, judgement, communication, and
the basic abilities needed for independent living. At present, researchers know of no single
cause, nor of a cure. The average life-expectancy after first symptoms is eight years,
though this varies widely [3].

The greatest risk factor for AD is age — about a tenth of people older than 65 are
affected, rising to almost half of those over 85 [4].1 In many of the world’s countries
the average age of the population as a whole is increasing, and the health and economic
burden of AD will grow as a consequence. Ferri et al. [5] estimate that over 24 million
people suffer from dementia, world-wide, and they predict this will rise to over 80 million

1Prevalence may vary geographically; these figures were estimated from the United States population.
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by 2040. The financial impact of AD is severe, both in terms of patient care and lost
workforce productivity, and is motivating significant research investment.

Diagnosis of dementia chiefly involves clinical examination and consideration of medical
history. Diagnostic tests include the Mini-Mental State Examination [6] and the NINCDS-
ADRDA criteria [7]. Structural Magnetic Resonance Imaging can play an important part
in early diagnosis, tracking of disease progression, and differentiation of dementia from
other diseases [8, 9, 10, 11, 12]. AD can only be proven by post-mortem histopathological
examination.

People found to have memory problems incommensurate with normal ageing, but with-
out sufficient cognitive problems to fulfil criteria for dementia, are said to have Mild Cog-
nitive Impairment (MCI) [3]. Some such people later go on to suffer from full AD, while
others appear not to; the conversion rate is approximately 10–15% per year, which is
around ten times higher than the rate in the healthy elderly [13]. There has been some
debate as to whether MCI is a distinct state, or simply an early stage of AD [13, 14].
Little is known about the neurological differences between MCI and AD (or the conver-
sion process, if such an interpretation is correct), and this is a key area in which imaging
research may offer vital clues [15].

Family history of AD is a risk factor — individuals with an affected parent or sibling
are two to three times more likely to develop the disease [3], though genes are rarely the
direct cause of AD. Distinction is made between Sporadic and Familial forms of AD [16].
Sporadic AD refers to the common, unpredictable, form of the disease, which is not caused
by any particular gene. There are, however, genetic mutations which can increase the risk
of developing the disease, and lower the typical age of onset. Familial AD is directly caused
by an autosomal-dominantly inherited mutation in one of three (currently known) genes,2

which almost invariably results in disease development and usually causes a much earlier
onset (typically before the age of 60) [3]. Due to the predictability of Familial AD it has
been possible to study at-risk individuals from a presymptomatic stage [8, 11], allowing
important observations to be made about the very early progression of the disease.

While the underlying cause of AD is still unknown, the histopathological hallmarks
were first noted 100 years ago by Alois Alzheimer, and have since been extensively char-
acterised [17]. Two distinct features can be identified: Neurofibrillary tangles are twisted
strands of abnormal Tau protein that form within the neuronal cells; Neuritic plaques are
extra-cellular clumps built up from beta-amyloid (Aβ) — a fragment of a protein (APP).
Because the amyloid plaques are much larger and form outside cells, there is potential for
imaging them using high field strength MRI [18], though such techniques have thus far
only been demonstrated ex vivo on autopsy specimens [19] and in vivo in mice [20]. Re-
search is also progressing on MR imaging of amyloid using labelling compounds [21], PET
imaging with the marker molecule PIB [22, 23], and Near-Infrared imaging [24]. Amyloid
(and Tau) can also be detected in CSF via lumbar puncture [23, 25].

Some researches believe that the accumulation of Aβ is the primary cause of AD,
rather than just being symptomatic [26]. There is controversy regarding this ‘Amyloid

2All of which relate to the production of beta-amyloid — see later.
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Hypothesis’ and authors dispute the exact mechanism by which it might occur [27]. Nev-
ertheless, there has been great interest in the possibility of treating AD by targeting Aβ,
either directly, or by inhibiting the processes that led to its creation [28] or its deposi-
tion as plaques [29]. Schenk et al. [30] showed that immunization with Aβ attenuated
pathology in a mouse model of the disease, and a trial was later conducted on humans
[31]. The trial was prematurely terminated due to meningoencephalitis in some subjects,
but results indicated some slight cognitive improvement in antibody responders, and lum-
bar puncture samples showed reduced Tau present in CSF [31]. Cases that have come to
post-mortem showed immunoreactive macrophages and the absence of plaques in certain
regions [32]. Imaging results from the trial showed, surprisingly, that drug responders had
increased rates of whole-brain and hippocampal atrophy and ventricular expansion [33],
going against the prior expectation that the drug would slow disease progression and hence
reduce customary measures of atrophy. The apparent greater atrophy might however in-
dicate clearance of Aβ, so there remains hope that the drug is beneficially modifying the
disease. Investigation of local regional patterns of atrophy in these subjects, and in par-
ticular the differences between atrophic patterns in placebo and drug responder groups,
may help lead to important deductions about the exact effect of the drug.

1.1.1 Summary of Clinical Questions

The following is a brief list of some interesting clinically-focussed research questions in
the field of dementia, which may be usefully addressed with serial imaging-based studies,
particularly in terms of group differences in longitudinal patterns of atrophy:

• How does AD differ from normal ageing?

• What structural neural changes distinguish AD from MCI?

• What distinguishes MCI subjects who progress rapidly to AD from those who don’t?

• Are there structural/atrophic differences between Familial and Sporadic AD?

• Does the rate or pattern of atrophy differ when drugs are administered?

• How does atrophy in less common dementias compare to that in AD?

1.2 Overview of Methods

An overwhelming range of image analysis methods have been applied to neuroimaging,
many of them applicable to imaging of dementia, many suitable for longitudinal statistical
analysis, and some of them specifically tailored to serial data. One potential broad taxon-
omy of methods would be to divide them into: those that directly measure some quantity
from an image, or a change between two images; those that analyse intensities, segment-
ation probabilities, or registration transformations, on a voxel-wise basis; and those that
study surfaces extracted from the data. Methods will be discussed briefly in this general
order below.
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The algorithmically simplest methods involve large amounts of manual interaction.
For example, one of the best known examples of this type of method is to manually (or
semi-automatically) segment anatomical regions of interest [34], after which their volumes
or other properties may be quantified and statistically compared. Another example is
shape analysis based on manually selected point landmarks and their correspondences
across sets of images [35].

Two more complicated approaches, designed specifically for pair-wise longitudinal
imaging of brain change, involve rigid or affine registration of the image pair, followed
by estimation of the movement of the brain/CSF boundary. The Boundary Shift Integral
(BSI) [36] estimates the volume-change ‘swept out’ by the moving boundary between high
and low intensity regions by integrating the resultant intensity differences caused by the
movement. SIENA estimates the movement of the boundary by analysing the correlation
of the intensity profiles normal to the boundary in both images [37].

These techniques give useful and well-validated measures of volume change due to
atrophy in dementia. However, they are mainly useful for whole-brain analysis, with some
possibility for regional application if combined with manual segmentation of a baseline
region. Many of the clinical questions discussed above can be better answered if a finer
scale assessment of local atrophy in many different regions of the brain can be determined.
Secondly, there is a need to be able to compare regional effects across subjects, which
requires some form of datum or standard space (something discussed further in section
1.5.1).

These desires motivated the development of Voxel-Based Morphometry (VBM) [38,
39, 40], which aims to give a whole-brain voxel-wise analysis of morphological differences
between groups. VBM basically involves segmentation, non-rigid registration or ‘normal-
isation’ into the standard space of a template image, smoothing (for both theoretical and
practical reasons), and voxel-wise statistical testing to determine which areas differ sig-
nificantly over time or between groups. The technique of VBM has gained very wide use,
especially in the fields of ageing and dementia [15, 41, 42, 43, 44], though its basic under-
lying philosophy has been challenged by some authors [45, 46]. (It should be noted here
that SIENA has also been extended for voxel-wise comparison in a related but distinct
way [47].)

The original VBM approach looked at ‘mesoscopic’ differences remaining in the seg-
mentations after the spatial normalisation. It was later altered to incorporate a ‘modula-
tion’ step in which the volume change arising from the non-rigid registration was applied
to the normalised segmentations by multiplying voxels by the determinant of their corre-
sponding transformation Jacobian. For longitudinal analysis within a single subject, the
Jacobians of a non-rigid registration displacement field can be directly studied in an ap-
proach known as Voxel-Compression Mapping (VCM) [11]. However, as mentioned earlier,
comparisons between subjects require some further form of inter-subject registration to
ensure approximate voxel-wise correspondence. There have been several approaches that
combine non-rigid intra-subject registration of serial images with non-rigid inter-subject
normalisation to standard space (usually known as Deformation- or Tensor-Based Mor-
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phometry) [46, 48, 49, 50]. It should also be noted that the displacement fields themselves,
or some other tensor measure can also be studied in place of the Jacobian determinants
[39]. Much more on this will be included in later chapters.

Due to the clinical importance of the cerebral cortex in dementias including AD, meth-
ods have been developed which directly study an estimated cortical surface extracted from
the data [51, 52, 53, 54, 55, 56]. As with voxel-based methods, the problem of correspon-
dence for group-wise comparison is of key importance, and has been addressed in the
references just given. Taking full advantage of longitudinal imaging data in surface based
approaches has arguably received less attention than in the voxel-based literature, though
successful longitudinal studies have been performed [57, 58]. Closely related approaches to
the problem of surface extraction and modelling, for example using deformable shape mod-
els, have also been applied to structures other than the cortex, such as the hippocampus
[59].

It is apparent that voxel-based and surface-based techniques are dependent on the
more fundamental image analysis techniques of registration (especially non-rigid, for inter-
subject comparison) and segmentation (either for tissue maps or as part of the surface
extraction process), and these will be reviewed further in section 1.5. The importance of
appropriate statistical analysis is also clear, particularly with regard to data with both
longitudinal and cross-sectional aspects, and this will be discussed in some detail in sec-
tion 1.6.

1.3 Image Acquisition

Magnetic Resonance Imaging (MRI) [60] uses the quantum-mechanical magnetic proper-
ties of nuclei (for example hydrogen, found in water in the cells of the body) to produce
spectroscopic measurements or tomographic images. Through the application of magnetic
fields and the transmission and reception of radio-frequency electromagnetic pulses, it is
possible to sample the spatial Fourier domain (or ‘k-space’) signal of the object being
imaged; the inverse Fourier transform can then be used to recover the spatial domain
image.

The majority of the work presented in this thesis uses three-dimensional T1-weighted
structural scans, acquired at a main field strength of 1.5T, using a spoiled gradient echo
sequence. Details of the acquisition process and the physics underlying the many alterna-
tive sequences [61, 62] will not be given here, though a brief look at some of the potential
— from an image analysis perspective — of different MRI modalities will be taken in
section 1.3.2.

First, some important aspects of the variability and reliability of MR imaging are
reviewed, particularly with regard to possible changes over time. It should also be noted
that images acquired on different scanners are likely to differ significantly in terms of
intensities and geometrical accuracy, even if care is taken to use the same pulse-sequence
and protocol. This issue is particularly important for large cohort studies (where multiple
geographic locations may be required to recruit sufficient numbers), for clinical trials
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(where multiple centres are desirable for statistical as well as practical reasons), and for
long-term studies (in which scanners may be serviced, upgraded, or even replaced over the
time-scale of the investigation).

1.3.1 Geometrical Distortion and Serial Imaging Stability

The k-space MR signal is sampled by means of spatial encoding, which essentially in-
volves establishing spatial patterns of frequency and phase of the rate of precession of the
macroscopic bulk spin of the voxels. The signal from a voxel depends on the resonant
frequency of the atoms making up its tissue, and on the magnetic field strength at that
point. The different resonant frequencies (‘chemical shift’) of water and fat (205 Hz differ-
ence, at 1.5 T) lead to a relative shift of their spatial domain signals [63]. The effect can
be reduced with fat-suppressing acquisition sequences.

The magnetic field at a point depends on the main B0 field, the applied gradient fields,
and the magnetic susceptibility of the surrounding material. The main field should ideally
be constant throughout the material; a process known as ‘shimming’ attempts to ensure
this, both by the installation of fixed shims and by an electromagnetic ‘auto-shimming’
procedure which attempts to correct for material-induced magnetic susceptibility inhomo-
geneities at the time of each scan. Imperfections in this process (either from poor servicing,
RF-heating of the shims in the course of scanning, or challenging levels of susceptibility
variations) are one source of geometrical distortion. Eddy currents may also be induced
in the main field windings by the gradient fields, altering the main field slightly (though
the effect should be negligible in shielded-gradient systems) [63].

Non-uniformity in the applied magnetic gradients, caused by nonlinearity of the gra-
dient coils, are one of the most significant sources of geometrical distortion. The coils
are manufactured to ensure accuracy near the iso-centre of the main field; further away
from this, the field nonlinearities become worse (Fig. 1.1 illustrates this effect). In se-
rial imaging, inconsistent positioning of the patient between scans can lead to different
nonlinear geometrical distortion being present in the images at different time-points —
something that will confound the detection of biologically meaningful nonlinear changes
of anatomical geometry (e.g. due to atrophy).

The problem of geometrical distortion in MRI has been recognised for a long time
[64, 65], and many methods have been developed for its characterisation and correction.
Sumanaweera et al. state that the gradient nonlinearities and magnetic susceptibility in-
homogeneity are the two largest sources of distortion [63]. Gradient nonlinearities can be
characterised quite accurately by the scanner manufactures, using for example a spherical
harmonic expansion [66], and a method to correct the images based on this knowledge has
been patented as ‘GradWarp’ [67].

At the present time, many clinical and research scanners are not properly corrected for
the gradient nonlinearities, and scanner manufacturers do not always make the gradient
field modelling information available [68]. It may also be the case that even after correction,
some gradient-based geometrical distortion remains, perhaps due to the slight deviations in
the scanner’s coil performance from the specifications. This has motivated the development
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of several phantom-based methods for characterising and correcting distortion, [69, 70, 71,
72, 73], including a comprehensive body of work by Wang et al. [74, 75, 76]. The image
in Fig. 1.1 shows a typical phantom for this purpose.

Figure 1.1: A phantom image, showing MR (left) with some distortion due to gradient
nonlinearities apparent toward the edges, and a rigidly registered CT image (right).

Hill et al. investigated distortion in MR and CT using bone-implanted markers, and
found that the Fiducial Registration Error for CT was below 0.5 mm [77]. This suggests
the possibility of using MR-CT registration methods to correct MR distortion, bypassing
the need for a physical model of the phantom. Other authors, however, have found similar
magnitudes of distortion in more modern MR and CT images [78].

Because magnetic susceptibility variations depend on the material being imaged, they
cannot be corrected by phantom methods. Two different approaches have been popular:
Chang & Fitzpatrick pioneered a technique using read-out gradient reversal [79, 80, 81, 82];
and Sumanaweera et al. developed a phase-mapping approach [63].

The validity and statistical power of serial imaging is not only affected by geometrical
distortion, but also by other stability issues, such as uninteresting biological variability
between time points. For example, dehydration or other short-term physiological condi-
tions may have a sufficiently large effect on the brain to confound the measurement of
small atrophic changes (a particular problem for short-interval studies), as reported by
Littmann et al. [73]. The Alzheimer’s Disease Neuroimaging Initiative3 are also exploring
such issues [83].

3www.alzheimers.org/ADNI.
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1.3.2 Potential of other Imaging Modalities

The T1-weighted volumes used throughout this thesis are the most popular general pur-
pose 3D MR acquisition method; they can provide good contrast between grey and white
matter, and a good balance between resolution, signal-to-noise, and scanning time. Most
scanners in clinical use today have 1.5 tesla fields, though 3 T scanners are becoming more
common. The doubling in field strength can be used to double the SNR, or it can be
shared between improvements to SNR, resolution, and scanning speed.

T2-weighted imaging allows vascular lesions in the white matter to be visualised and
quantified [84], and research into their relationship with ageing and dementia continues to
be carried out [85, 86]. Wen et al. have investigated the correlation between reduced grey
matter volume (using T1 images) and increased volume of white matter lesions (using T2
FLAIR) [87].

Multi-modal T1 and T2 (and possibly further additions such as proton density) images
of the same patient can be registered together using appropriate similarity measures, such
as mutual information [88, 89, 90]. Because they have different tissue-contrast properties,
the fused T1+T2 data contains more information to aid brain tissue segmentation, and
algorithms exist for such multi-spectral segmentation [91, 92, 93].

Magnetisation Transfer Ratio (MTR) imaging measures differences between fixed and
free protons (e.g. within cell walls vs. within fluid), and can reflect underlying microscopic
pathological changes [94]. It has been applied in studies of ageing and dementia [95, 96].

Perfusion imaging measures the amounts of blood delivered to different parts of the
brain. Hayasaka et al. have applied the technique to AD, and have also investigated the
multi-modal fusion of information from conventional structural imaging and perfusion [97].

Diffusion imaging measures the mobility of water in tissue, and by considering the
relative mobility in different directions Diffusion Tensor Imaging can be used to make
inferences about the white matter tract connectivity. Rose et al. used DTI and found
significantly reduced white matter tract integrity in AD compared to controls [98]. Both
perfusion and diffusion-weighted MRI have been investigated in [99]. DTI and MTR were
studied in [100] with application to AD; and both were analysed alongside conventional
imaging in [101], with a focus on healthy ageing.

MR Spectroscopy can be used to measure metabolites including neuronal markers such
as N-acetyl aspartate (NAA), which may indicate cell viability. This approach has been
investigated in the field of neurological disorders including AD [12, 102, 103, 104].

Future developments in higher field strength imaging will allow higher resolution, and
higher SNR imaging, such developments may be combined with the use of surface coils to
focus on the cerebral cortex [105], potentially permitting much more accurate measurement
of changes that occur in dementias, such as the cortical thinning that takes place in AD.
Such improvements may also lead to the feasibility of applying sophisticated measures of
shape change such as curvature of the cerebral cortex [106] to AD.
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1.4 Clinical Validation

If methodological image analysis techniques are to be of genuine use in the domain of
medicine then they must be carefully validated. The underlying assumptions, limits of
applicability, likely error magnitudes, and possible failure mechanisms should all be in-
vestigated before techniques are relied upon for critical decisions such as those affecting
patient care or the declared efficacy of a potential drug.

Validation can involve statistical or machine learning analyses, such as consideration
of group-separation or the generalisation performance from optimising the algorithms on
one data-set and then applying them blindly to another. It can also involve, for example,
comparison between measures of disease progression with the known natural history of
the disease, or comparison of regional measurements with known regional distributions of
pathology.

As mentioned earlier, the exact nature of a clinically observed dementia can only be
fully understood through post-mortem examination of histopathology. This motivates the
validation of MRI measures and algorithms by comparing them with histological data,
including images of stained tissue samples [107, 108].

Research has been carried out on the construction of volumes from multiple digitised
photographic images of histology [109, 110] and the registration of such images with post-
mortem MRI and with in vivo MRI

Fig. 1.2 shows an example of a simple approximate registration of MR volumes of
fixed brain slices with the fixed (but unsliced) hemisphere from which they came. More
advanced methods along similar lines should enable registration of digital photographs of
stained histological blocks into the space of the fixed hemisphere MR image. If the fixed
hemisphere can be successfully warped to the in situ post-mortem brain, and then back
to available in vivo serial scans, then the photographic histology can be directly compared
with any algorithmic measurements derived from the longitudinal MRI data.

1.5 Image analysis overview

1.5.1 Image Registration

The process of image registration basically involves the estimation of geometrical transfor-
mations that align two or more images. A registration algorithm requires a model for the
class of transformation allowed, some measure of the quality of the alignment, and some
means of optimising the model parameters to achieve a good solution. A suitable scheme
for interpolation is also required. General overviews of medical image registration can be
found in [111, 112, 113].

Transformation Models

Models for the geometry of the transformations can be categorised in several different ways,
one broad classification divides them into affine transformations (sometimes inaccurately
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Figure 1.2: An illustration of the registration of three chemically fixed brain slices back to
their parent hemisphere (shown overlaid, the slices appear bright). The programs rview
and pareg from the I(R)TK software library of Daniel Rueckert and Julia Schnabel were
used in this work.

referred to as ‘rigid’) and more general transformations which allow flexible distortion of
the images (usually called ‘non-rigid’) [112, 114].

Affine transformations in three-dimensional space have 12 degrees of freedom (DF),
which can be parametrised in several different ways, including: a general 3-by-3 linear
mapping (9 DF) of coordinates with an additional translation (3 DF); three skews of the
three axis pairs (e.g. altering the angle between the x- and y-axis from 90 ◦), three re-
scalings along each axis (either before or after they are skewed), a general rotation (3
DF), and a translation; or, using the polar decomposition analogous with principal strain
in the mechanics of solids (see section 4.2.5), a rotation, three scalings along the rotated
axes, a further rotation, and a translation. A general three-dimensional rotation has three
DF, which can be parametrised in various ways, including three separate rotations about
the Euler-angles, a rotation about an axis defined by a unit vector, or equivalently, with
a unit quaternion.

Simple transformations involving combinations of one or more of: rotations, transla-
tions, scalings, and skews, are all special cases of affine transform. Popular cases include:
rigid transformations with just rotation and translation (6 DF), which preserve lengths
and angles; rigid with isotropic scaling (7 DF), which preserves angles and ratios of lengths;
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and rigid with axis-aligned anisotropic scaling (9 DF).4 Affine transformations preserve
straightness and parallelism of lines. The combination of successive affine transformations
is also affine.

Non-rigid models include polynomial mappings of the coordinates [115], and more
complicated (high DF) modelling of 3D displacement fields. A distinction can be drawn
between models which parsimoniously parametrise the displacement field, and those that
parametrise the full voxel-wise 3D displacement but regularise the optimisation using
appropriate physics-based constraints. Examples of the former include popular techniques
using tensor products of cubic B-splines [116] or discrete cosine transform basis functions
[117]. The latter have a long history, and include many types of physical deformation
model, such as elastic [118], fluid [119, 120, 121, 122], anisotropic diffusion [123], and
others. Details can be found in a recent book [124]. There is some overlap between
these classes, since lower DF models such as free-form deformations [116] may also use
physics-based regularisation, such as including elastic bending energy in the cost function.

Diffeomorphic mappings

It is common to assume that registration algorithms should recover physically reasonable
deformations, having positive Jacobian determinants everywhere (see section 4.2). Such
transformations are invertible, and the inverse mapping also has positive Jacobian determi-
nants (the Jacobian matrix of the inverse mapping at the point mapped to, is the inverse of
the Jacobian matrix of the forward mapping at the original point). If the domain and range
are smooth (differentiable) manifolds and the transformation and its inverse are smooth
(which implies that the Jacobian is bijective everywhere) then the mapping is a diffeomor-
phism. Diffeomorphisms form a mathematical group [125]; the practical relevance of this
fact is that (a) the composition of two diffeomorphisms is another diffeomorphism, (b) the
composition operation is associative, (c) there exists an inverse for each diffeomorphism,
such that the composition of the pair returns the identity diffeomorphism. Furthermore,
the diffeomorphism group can be given the structure of an infinite-dimensional Lie group,
with associated exponential map and Lie algebra [125]. The exponential map means that
the elements of the diffeomorphism group can be represented in the tangent plane, for
example, diffeomorphic transformation fields can be produced by integrating sufficiently
smooth velocity fields, which may be constant [126, 127] or variable [128]. Variable veloc-
ity fields can be derived from constant momentum maps [129]. Diffeomorphisms can also
be found by solving the Euler equations on the group [130].

Elements in the diffeomorphism group (or their discretised approximation) cannot be
treated as elements in a Euclidean space; addition or subtraction of displacement fields
associated with diffeomorphic transformations will not necessarily yield diffeomorphic re-
sults. Similarly, concepts of distances between transformations and averages of transfor-
mations must account for the nature of the group. In essence, distances must be measured

4This class of transformation does not form a group, in that two successive 9 DF transformations can in
general give a 12 DF affine transformation, and the inverse of a 9 DF transformation (though necessarily
still 9 DF) can not generally be represented by the same nine parameters.
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along curved geodesics along the surface of a Riemannian manifold. The concept of the
mean must be generalised from the simple arithmetic case, through the principle that the
mean minimises the average squared distance from itself to all other observations; using
the Riemannian distance metric instead of the simple Euclidean one leads to the Fréchet
mean [131]. One of the key advantages of the diffeomorphic approach is that the distance
between transformations provided by the metric is also a natural distance between sub-
jects [132, 133], upon which statistical or image-classification techniques can be based.
Similarly, the distance between subjects can be important in terms of choosing a template
[134].

Throughout this thesis, we use a simpler registration algorithm [135] which recovers
continuous one-to-one mappings that may be composed and inverted, though they are not
necessarily diffeomorphic, and nor can they represent any arbitrary diffeomorphism. The
longitudinal focus here also means that the geodesic distance between subjects, and the
related concept of a Fréchet mean [131], are not immediately applicable. This would be
an important direction for further investigation.

Similarity Measures

Objective functions for alignment can be divided into two broad classes, those which use
distance between point landmarks [35, 136, 137, 138], and those which consider some voxel-
wise similarity measure. The latter include basic measures such as mean squared error
and cross-correlation, and more sophisticated approaches (suitable for multi-modal regis-
tration, where a simple intensity relationship cannot be assumed). Popular and successful
multi-modal similarity measures have been derived from information theory; they include
joint entropy, mutual information [88, 139], and normalised mutual information [90]. These
are reviewed in [140], contrasted together and compared to conventional measures in [141],
and discussed in a non-rigid registration context in [142]. Another multi-modal similarity
measure is the correlation ratio [89]. Roche et al. [143] have used a unifying mathemati-
cal approach to derive measures including cross-correlation, mutual information, and the
correlation ratio, using maximum likelihood estimation.

Some more unusual similarity measures include examples involving the frequency do-
main [144], the images’ local phase [145], or local frequency [146]. The use of image
intensity gradients (in addition to other similarity measures) has also been investigated
[147]. Authors have also derived other (non mutual information based) information theo-
retic measures [148, 149].

For non-rigid registration, landmark-based measures can give very reliable registrations
of the chosen points (with accuracy determined by the quality of the point selection and
any regularisation included) but may not achieve good global correspondence without
huge numbers of landmarks being selected — a time consuming and error-prone process.
Regarding voxel-based measures, the problems of local optima in the objective function,
inadequate optimisation methods, and undesirable global optima that result in high voxel-
wise similarity but anatomically poor correspondence or implausible deformations, can
cause voxel-based registration to fail to meet clinically acceptable standards. This has
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motivated the development of combined voxel-similarity and landmark-correspondence
registration schemes. Landmarks may include manually selected points [150, 151, 152,
153], automatically identified regions or features [154, 155, 156, 157, 158]. Voxel-based
registration can also be guided with manually or automatically located surfaces [56, 152,
159] or corresponding surface-based landmarks [160, 161, 162].

Some Extensions

A popular extension to rigid or non-rigid registration algorithms, designed to increase
speed or robustness or both, is the implementation of a multi-level, multi-resolution, or
hierarchical scale-space framework [122, 163, 164, 165].

High-DF registration algorithms can be very slow, and several avenues have been
explored for speeding up the optimisation, including: advanced numerical approaches
such as variational methods [166, 167]; parallel implementations [168]; computationally
efficient strategies [169]; or modifications to the objective function [170].

A recent approach [171] using level-set methods [172], claims to unify some of the more
conventional techniques.

A desirable extension is to include information available in data-sets containing more
than two longitudinal images; some work on this has been done recently, but it is expected
that more research in this area would be worthwhile. The CLASSIC algorithm of Xue
et al. [173] aims for greater stability of longitudinal segmentation, by combining elastic
warping and image adaptive clustering, using spatiotemporal smoothness constraints in
joint estimation of the warps and fuzzy tissue segmentations.

Validation, Correspondence, and Atlases

As discussed in section 1.4, it is especially important that computational methods intended
for clinical or medical research use are thoroughly tested and properly validated against
specified standards. This is a challenging task for image registration, particularly non-
rigid methods, as it is difficult to quantify the performance of an algorithm, or even the
anatomical correspondences desired to result from it.

Several rigid intra-subject registration techniques were thoroughly compared by West
et al. [174] using bone-implanted markers (hidden from the registration algorithms). Such
an approach can easily give meaningful quantitative measures of registration quality, de-
rived from the mismatch of known and registered marker positions. However, for non-rigid
registration, bone-implanted markers cease to be useful, since the registration algorithms
are able to locally redistribute tissue within the brain. Schnabel et al. [175] have used
finite element simulations to provide a ground-truth deformation that can be compared
with the results of non-rigid registration. In the case of neuroimaging of dementia, the
changes that occur due to atrophy can be quite complex, so the generation of realistic
simulated data is a difficult problem, and a current research topic.

For inter-subject registration (either rigid or non-rigid) implanted markers can’t be
used since their between subject correspondence would not be known. Crum et al.
[176] have discussed the fundamental difficulty of deciding on correspondence between
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the brains of different subjects (which can have large structural and functional differ-
ences in anatomy). Further more, common MR-visible borders and landmarks such as
sulci do not necessarily relate precisely to more fundamental brain structure in terms of
cytoarchitectonics [177].

An attempt has been made to ‘evaluate,’ though not fully validate — their distinc-
tion — non-rigid inter-subject registration in [178]. Their approach involved both global
measures (such as overlap of tissue segmentations) and local measures (such as matching
of selected sulci) and indicated that more sophisticated non-rigid registration techniques
which attain superior global matching may actually be no better than rigid registration
in terms of local anatomical correspondence. A similar study comparing two non-rigid
methods can be found in [179].

Another method that may be used for evaluation of inter-subject non-rigid registration
is to consider ‘round-trip’ errors in a sequence of registrations, e.g. register A-to-B then,
separately, B-to-C, and C-A, and check the effect of following a full A-to-A loop. Indeed,
many algorithms are not guaranteed to find consistent pair-wise transformations for A-
to-B and B-to-A — in contrast with e.g. [180]. Crum et al. [181, 182] have established
metrics that can be used to assess non-rigid and group-wise registration across an ensemble
of images.

This issue provides a close link to another topic in the broad area of inter-subject
comparison and the voxel-wise correspondence problem — the aim of template or atlas
building. Population templates should ideally not be biased toward any particular image
or sub-group of images. This has motivated several approaches specifically designed for
group-wise registration or atlas construction. Kochunov et al. [183, 184] determine the
average deformation field from a number of registrations to a target (possibly selecting the
Best Initial Target on the basis of prior group-wise registration) and use this to transform
the target to the Minimal Deformation Template. Other authors attempt to directly create
an unbiased population atlas [126, 185, 186, 187, 188].

1.5.2 Tissue Segmentation

Segmentation of the human cerebral cortex — so important for some of the most popular
techniques such as VBM and surface-based analyses — is particularly challenging, due to
the complexity of the shape of the cortex. Image segmentation is a very widely researched
topic; some classical methods were reviewed in [189]. Some popular general methods
include: seeded region growing [190]; the watershed method [191]; active contours, or
active shape models [59, 192, 193, 194, 195]; segmentation propagation [196, 197]; or
combinations of these approaches.

Intensity-histogram based clustering methods such as k-means and fuzzy c-means [198]
are well-suited to the segmentation of unpredictably-shaped regions. Other clustering
methods include mean-shift [199], and recent spatio-temporal models [200]. In addition to
clustering, full statistical modelling of the intensity histogram is also possible (Choi et al.
[91] seems to be one of the earliest references).

Segmentation propagation is the process of using non-rigid registration of an image
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which has been segmented (perhaps manually) with the image to be segmented and trans-
ferring the tissue labels across with the determined transformation field [196]. The prop-
agated labels can either be treated directly as the segmentation of the new image, or
they may be used as spatial priors in a combined registration and histogram approach, as
implemented in several popular techniques [92, 201, 202].

Dependencies between neighbouring voxels (for example those that belong to the same
tissue type) can be modelled to some extent using the theory of Markov Random Fields
(leading to Gibbs Distribution priors), or Hidden MRFs [93, 202].

Too many techniques have been developed to discuss in detail here; some of the most
cited relevant references include [203, 204, 205, 206, 207]. Some more unusual approaches
include: the use of Support Vector Machine classifiers [208]; variational methods [209];
level-set based methods [172]; and the explicit modelling of longitudinal data [173].

Intensity-based segmentation can be degraded by the presence of intensity variations
due to MRI RF field inhomogeneities. The task of correcting these bias fields is therefore
a closely related and important topic. A review can be found within section 5.2.

Several tissue classification procedures require, or benefit from, the prior removal of
tissue such as scalp, eyes, and neck; a process generally referred to as ‘brain extraction’
[210] (in this context, CSF is often considered brain tissue). Several such methods are
reviewed in [211]; one of the most successful is found to be that described in [206].

As stated several times elsewhere in this chapter, it is crucial to consider the problem
of validation. Since expert manual segmentations show both inter- and intra-observer
variability, genuine ‘ground-truth’ for segmentation can rarely be known; acceptable ‘gold-
standards’ for validation are available on data that has been simulated in some way, for
example by using non-rigid registration of a well-labelled template to different subjects
(keeping the transformed template and labels and not the original subject images). Various
overlap measures can then be used to quantify the performance of different algorithms
[182].

1.5.3 Summary of Methodological Challenges

Below are listed a few of the key questions regarding future developments in clinically-
driven image analysis research:

• How can the validity of non-rigid registration be tested?

• What techniques can be used to favour anatomically reasonable deformations?

• Can meaningful non-rigid correspondences be found between different subjects?

• Can good correspondences be recovered between one subject’s scans and their sub-
sequent post-mortem histology?

• Should manual interaction play a large part in non-rigid registration?

• How can unbiased atlases best be generated?

• Can group-wise non-rigid registration be made fast enough for routine use?



CHAPTER 1. BACKGROUND 28

• Is it possible to reliably segment structures which have unclear boundaries in MRI?

• How can information from intensities, voxel neighbourhoods, anatomical priors, and
manual interaction be most usefully combined for segmentation?

1.6 Statistical Analysis

1.6.1 Introduction

A crucial part of experimental research is the statistical analysis of the results. In many
fields the data are typically in the form of one or a few scalar measurements, such as blood-
pressure. If there are multiple measurements then their dependence can be investigated
with standard methods of multivariate analysis [212]. However, medical images (and
various derived data such as segmentations, surfaces, non-rigid registration displacement
fields, etc.) typically contain very large numbers of measurements, which in most cases
will have a complicated and practically inestimable dependence structure. For example,
a typical T1-weighted MR volume of the brain might have 256 × 256 × 124 voxels, in
which, firstly, neighbouring voxels will be correlated due to the point-spread function of
the acquisition, and, secondly, the underlying anatomy will lead to dependence between
both neighbouring and more distant voxels, for example within a particular tissue type.

The multivariate nature of medical images is often ignored, either due to constraints
on computational resources, or because limited data make the estimation of covariances
unreliable. Investigators may also prefer simpler statistical methods for the ease of com-
municating their results. Techniques such as VBM [39] treat each voxel independently of
the others, allowing simple univariate statistics to be applied.

1.6.2 Basic univariate methods

To start with, a brief description of some simple methods is given, building up to more
complex models, before discussing possible avenues for future work.

Student’s t-test

The t-test [213] is one of the simplest and most commonly used statistical methods. The
single-sample t-test concerns a hypothesis on the mean of a sample; the two-sample t-test
considers the difference in means between two groups. The paired t-test is appropriate
when the observations in two samples are in correlated pairs, as for example when a single
quantity is measured on two occasions, and hence is important in longitudinal studies.
The paired t-test is equivalent to a single-sample t-test on the difference between the
paired values. The t-value is essentially a measure of ‘signal-to-noise’. The numerator
is an estimate of the mean or the difference in means between two groups, while the
denominator estimates the corresponding standard error. The degrees of freedom, v,
typically equal to the number of samples minus the number of parameters estimated from
them, can be thought of as characterising the uncertainty in the variance estimate.
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ANOVA and F-tests

By considering the increase in residual variance caused by restricting a subset of parameters
in a model due to a certain hypothesis (e.g. that some parameters are zero), more general
hypotheses can be tested [214]. This is the essential idea behind the F-test and the Analysis
of Variance (ANOVA) [213], which can be used to investigate factorial experiments [215],
in which factors such as group and time-point, take certain levels such as control/patient
or baseline/repeat. One may be interested in the main effects such as differences between
patient groups or changes over time, or in the interactions between factors, which include
the important case of a chronologically-changing group difference — as one would expect
with e.g. AD versus control over time.

For longitudinal data, the extension of a paired t-test to ANOVA is known as ‘repeated
measures’ or ‘within-subjects’ ANOVA [216, 217, 218], and allows one to consider more
than two time-points, and to test hypotheses on the interaction between group and time
in a principled way. For two groups over two (paired) time-points, a test of the interaction
between group and time can be shown to be equivalent to a cross-sectional two-sample
t-test of the differences in paired values.

Summary-statistics

For unbalanced longitudinal data, in which measurement times and/or numbers of mea-
surements vary for different subjects, the simplest approach is to perform between-subject
analysis of within-subject summary-statistics, for example slopes from regressions against
measurement time [219]. The above-mentioned paired-differences are a special case of the
slope, with two measurements separated by a unit measurement interval.

This two-stage procedure is sometimes known as the ‘NIH method’ [220, p.7] and is
the most commonly used method for multi-subject fMRI studies, where it is usually called
the random-effects approach [221, 222] in contrast to mixed-effects approaches that model
both between- and within-subject variability [223, 224], discussed further in 1.6.3.

Randomised Controlled Trials and ANCOVA

A clinically important statistical design is that of the placebo-controlled double-blind ‘Ran-
domised Controlled Trial’ (RCT) [225]. Baseline measurements are taken, then subjects
are randomly allocated to placebo or treatment groups, one or more follow-up measure-
ments are taken after the treatment (e.g. after administering a drug/placebo), and the
effects on the groups are analysed. The data are naturally longitudinal, and could be
analysed using repeated measures ANOVA or simple summary statistics such as the dif-
ference between pre- and post-treatment means.

Frison and Pocock [225] considered an alternative approach, in which the baseline
values are used as a covariate for time-averaged follow-up values in a regression model,
known as Analysis of Covariance (ANCOVA). The model makes the assumption that the
groups shouldn’t differ at baseline (due to the nature of the RCT). Frison and Pocock
showed that this approach is statistically more powerful than a simple analysis of paired
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differences, and also that the latter can be biased in the event of observed baseline group
differences, due to ‘regression to the mean’.

Vickers has shown that the commonly used summary statistic of percentage change
from baseline (i.e. longitudinal difference divided by baseline value) is flawed, and recom-
mends Frison and Pocock’s ANCOVA method instead [226]. The same author also suggests
that ANOVA in general should be avoided for RCTs, and that regression methods such
as ANCOVA should be used in preference [227].

For RCTs in dementia, the interest is usually in whether the rate of atrophy and/or
cognitive decline is modified by the treatment. Frison and Pocock later [228] extended their
method to consider such cases, under the assumption of linearly divergent measurements
following treatment. Again, they show that the most obvious summary statistic (the fitted
straight-line slope) is less powerful than an ANCOVA-based method.

The General Linear Model

All of the models discussed above, from simple t-tests through to repeated measures
ANOVA and ANCOVA, can be implemented in a single general framework. The Gen-
eral Linear Model (LM) [214], describes the vector of dependent variable values in terms
of a linear combination of explanatory independent variables or column vectors with ad-
ditive Gaussian noise. The column vectors may be continuous covariates or categorical
variables, e.g. coding variables for parameterising levels of an ANOVA-like experimental
design.

The model can be concisely written:

y ∼ N(Xb, σ2I) (1.1)

where y is a length n vector, and X is n× p. Appendix A.4 derives a procedure by which
any hypothesis that can be written in terms of a linear combination of the coefficients
cT b = d (usually with d = 0) can be tested with a t-statistic. This includes many common
hypotheses such as ‘means differ for groups 1 and 2’ or ‘time 2 values are higher than time
1’. For more complicated hypotheses, such as ‘means differ for all three groups’, the null
hypothesis involves multiple linear combinations of the parameters, CT b = d, for suitable
matrix C and vector d (again usually a zero-vector). An F-statistic can be derived in terms
of the increased mean-squared error due to the hypothesis, as shown in the appendix.
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Examples of the LM

An unpaired t-test simply models two groups with different means, and tests the hypothesis
that the means are equal, it can be implemented as:

yT = [a b c d q r s] (1.2)

XT =

[
1 1 1 1 0 0 0
0 0 0 0 1 1 1

]
(1.3)

cT = [1 -1] (1.4)

where the groups ({a, b, c, d}, {q, r, s}) need not have equal size. The contrast gives the
null hypothesis that the first mean minus the second is zero, and hence that they are equal.

For a paired test, each subject has a personal mean, and there is an extra explanatory
variable for the effect of time. The null hypothesis is that this extra time effect is zero:

yT = [a1 b1 c1 a2 b2 c2] (1.5)

XT =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

 (1.6)

cT = [0 0 0 1] (1.7)

Unlike simpler expressions for the paired t-test, the above can be extended to more
than two time-points. For example, for three times, the design:

yT = [a1 b1 c1 a2 b2 c2 a3 b3 c3] (1.8)

XT =


1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 (1.9)

would allow the testing of the hypothesis that the second time point exceeded5 the first,
cT = [0 0 0 1 0], or that the third exceeded the first, cT = [0 0 0 0 1], or if more
appropriate, that the third exceeded the second cT = [0 0 0 -1 1]. The F-contrast formed
from ‘collecting’ the first and second (or third) t-contrast vectors into an m × 2 matrix
tests the null hypothesis that all time-points are equal.

It is important to note that there are different ways of expressing the same design and
hypotheses, with varying ease of interpretation. This becomes particularly relevant if one
allows the use of rank-deficient design matrices. Estimable contrasts (see section A.4.5) can
be successfully tested in the rank-deficient case, but it may not be immediately obvious

5Assuming one-sided tests, as are commonly chosen for t-contrasts in SPM; for a two-sided test the
hypothesis is simply that the time-points differ.
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what the correct contrast should be if the model is highly over-parametrised. In the
examples here, we have preferred to use full-rank designs, derived from consideration of
‘extra’ effects, rather than introducing covariates for every level of each factor and every
combination of levels for interaction terms.

A Comparison of two or more groups over two or more time-points may be achieved
with an ANOVA model. For example, with two groups measured over three times,
({a, b, c}, {q, r}) the design could be:

yT = [a1 b1 c1 q1 r1 a2 b2 c2 q2 r2 a3 b3 c3 q3 r3] (1.10)

XT =


I5 I5 I5

zeros1,5 ones1,5 zeros1,5

zeros1,5 zeros1,5 ones1,5

zeros1,5 [0 0 0 1 1] zeros1,5

zeros1,5 zeros1,5 [0 0 0 1 1]

 (1.11)

where In is the n×n identity matrix, zerosn,m is an n×m matrix of zeros (and similarly
for ones).

The final two columns give the interactions between group and time, or, in other words,
the additional time effect for the second group. The contrast cT = [0 0 0 0 0 0 -1 1] would
test whether the difference between the groups was growing over time. This kind of anal-
ysis can become rather complicated, and, as mentioned earlier, some authors recommend
summary statistics instead [225, 227, 228], both for reasons of simplicity and of statistical
superiority under certain experimental designs.

The ANCOVA method [225] for the analysis of a simple two-group RCT with two time-
points can be implemented by modelling the follow-up measurements as the dependent
variable, and putting the baselines into the design matrix as a covariate, as follows:

yT = [a2 b2 c2 q2 r2] (1.12)

XT =

 1 1 1 0 0
0 0 0 1 1
a1 b1 c1 q1 r1

 (1.13)

cT = [−1 1 0] (1.14)

where the contrast will directly test the drug effect.

1.6.3 Extensions to the linear model

Appendix A.4 presents the multivariate general linear model in some detail. Here, we
briefly mention some of the other extensions.

While quite broadly applicable, the LM framework is based on assumptions that may
be overly restrictive in certain situations. In equation (1.1) the mean is modelled with a
linear combination of terms, and the noise (and hence likelihood, in this linear model) is
assumed Gaussian.
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Generalized Linear Models [229] extend the framework to include other noise distri-
butions, such as Poisson, and allow for a non-identity ‘link-function’ that models some
non-linear function of the mean as a linear combination. These extensions allow the
models to be used for applications such as logistic regression, or the analysis of discrete
variables such as count data or binary data. The price of this increased flexibility is that
the simple closed form solutions must be replaced with iterative estimation methods.

The LM also assumes a very basic structure for the residual error. In equation (1.1)
the covariance matrix is a simple scaled identity matrix, meaning that the error values
are independent and identically distributed. This may break down in several ways, such
as heterogeneous variance in different groups or at different times, or correlated residuals.
The latter can be a serious problem in longitudinal studies, since even with a repeated-
measures model there may be remaining correlations over time in the error.

It is simple to derive expressions similar to those in section 1.6.2 for a completely gen-
eral covariance matrix Σ, or, equivalently, the data can be ‘pre-whitened’ by multiplying y

and X by Σ−1/2. However, this requires that the entire n×n covariance matrix be known
a priori or accurately estimable from the available data — something which is rarely true
in traditional analyses. However, neuroimaging presents an interesting special case: if one
is willing assume a common covariance structure over voxels (scaled by a non-stationary
variance), then it becomes possible to pool all the voxels,6 permitting estimation of the
variance components with effectively total precision, meaning they can subsequently be
treated as known, as advocated by Glaser and Friston [230].

Multilevel or hierarchical models [231], also known as mixed effects models [223, 229],
aim to allow more general correlation structures than the simple LM without having to
specify or estimate all possible variances and covariances between variables, and without
having to make assumptions about the constancy of variance components over voxels.
They achieve this by breaking down a complete model into a hierarchy of levels with
simpler but interacting correlation structures, or equivalently by introducing ‘random
effects’ to model the variance components in addition to the ‘fixed effects’ linear model
of the mean (leading to an overall ‘mixed effects’ model). The models have recently been
described in a general ‘latent variable’ framework [232] which encompasses several other
important statistical techniques such as structural equation models.

1.6.4 The Multiple Testing Problem

Conventional hypothesis testing is based on the idea of controlling the false-positive rate
or type I error, α. If multiple statistical tests are performed then the overall probability
of getting false-positives clearly increases. This problem originally arose in situations
with relatively small degrees of multiplicity, such as ANOVA designs in which several
comparisons of particular levels’ means may be of interest, in addition to the main effect
hypothesis of all levels’ means being equal. E.g. in a one-way ANOVA with four levels
A, B, C and D, the investigator could test 4C2 = 6 pairs of means. Multiple comparison

6To be precise, the SPM software pools only those voxels which exceed a pre-specified main-effect
threshold.
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procedures are available that aim to control the chance of false positives if several such
tests are performed. Several such procedures have been developed [233]; we briefly discuss
two simple examples below, before considering other approaches more suited to the large
number of multiple tests performed in imaging studies. First, it is necessary to define
more precisely the basic concepts.

With multiple comparisons, several different measures of false-positive rate are avail-
able [234]. The family-wise error rate (FWE) is the chance of any false positives occuring
in any of the individual tests. When multiple comparisons are being made, it is possible
that a mixture of null and alternative hypotheses could be true, it is therefore necessary
to distinguish two senses in which FWE can be controlled. ‘Weak’ control of FWE means
the chance of any false positives is no greater than the nominal level given that the null
hypothesis is true for all of the comparisons (a ‘complete’ null hypothesis). ‘Strong’ con-
trol applies to the mixed or partial null case, and requires that the chance of any false
positives be controlled over any subset of comparisons for which the null hypothesis holds.

Fisher’s Least Significant Difference (LSD), sometimes known as Fisher’s Protected
LSD method, follows the logic that we can be ‘protected’ from errors in the individual
comparisons, by only performing them if a main effects test over all comparisons indicates
that there is a significant difference. This approach provides weak control of FWE for
the simple reason that the main effects test controls false positives at the nominal level
if there is no true effect in any of the comparisons. However, LSD does not offer strong
control of FWE. One or more true alternative hypotheses can be sufficient for the main
effects test to be rejected, allowing all the protected individual tests to be performed; but
if several comparisons are made for which the null hypothesis is true, the probability of
one or more false positives occuring in those tests may rise above the nominal level. The
important point to note from this is that one can no longer be confident that individual
rejected tests are significant.

Bonferroni correction provides strong control over false positives, allowing rejection
of individual hypotheses. The method relies on a conservative inequality regarding the
probability of any false-positive. If Fi denotes the event of falsely rejecting the ith hypoth-
esis, we have Pr(F1 ∪ F2) = Pr(F1) + Pr(F2)− Pr(F1 ∩ F2) ≤ Pr(F1) + Pr(F2), regardless
of the dependence of F1 and F2 or of the presence of other tests with true or false null
hypotheses. Note that the greater the dependency, the more conservative the inequality
is. More generally, Boole’s inequality holds:

Pr

(⋃
i

Fi

)
≤
∑

i

Pr (Fi) . (1.15)

If one can ensure that the chances of individual false positives are all less than or equal to
αB, then the right hand side of the inequality is no greater than NαB for N tests, therefore
if the individual hypotheses are tested at a level αB = α0/N FWE will be controlled at
the nominal level α0. The thresholds for the individual hypotheses could be different
[234],7 but it is common to consider a single threshold. For example a critical t-value

7An example of different thresholds occurs with the use of step-down permutation-based correction of



CHAPTER 1. BACKGROUND 35

corresponding to a p-value of α0/N would control FWE at α0 over a set of N t-statistics.
One can equivalently consider the Bonferroni-corrected p-values of N tests to be given by
N times the uncorrected p-values.

Multiple comparison correction in ANOVA-like scenarios has been the subject of some
controversy [235, 236]. One argument is that if each of several possible tests are of inde-
pendent scientific interest, then they should not be disadvantaged in terms of power simply
because they happen to have been studied simultaneously. In situations with relatively
small numbers of multiple comparisons, the most reasonable thing to do may be to note
that multiple tests have been carried out (even if only the significant ones are discussed),
letting the readers judge for themselves to what extent the significance of the reported
findings should be lowered.

Volumetric MR images usually contain a very large number of voxels (of the order of
105–107), if mass-univariate voxel-wise statistical tests are carried out for each of these
voxels, the scale of the resultant multiple testing problem8 is very different to the above
examples. Different voxels are typically not of independent scientific interest, and it would
be very difficult for the reader to accurately judge the extent of the multiplicity, which
varies with the level of dependence between voxels. It is clear therefore that some form
of correction for multiple testing is necessary. There is also usually a desire to be able
to localise results to particular brain regions by declaring certain voxels to be significant,
possibly in the presence of other voxels for which the alternative hypothesis is true, which
requires strong control of family-wise error. However, use of the Bonferroni correction
with such large numbers of dependent tests would be extremely conservative, resulting in
a very low sensitivity to true-positive results.

Medical images typically have a degree of local correlation, due to the nature of the
biological structure and the regional nature of pathology as well as the point-spread func-
tion of the acquisition process. In the popular technique of Statistical Parametric Mapping
[238] the images undergo substantial further spatial smoothing, guaranteeing that neigh-
bouring voxels are highly statistically dependent. These correlated tests should clearly
not be corrected for as though they were all independent. An intuitively appealing idea
is to estimate the correlation in some way, and from this, the effective number of inde-
pendent tests; one could then use Bonferroni correction with this smaller number in place
of the total number of voxels. However, this turns out not to be a succesful approach for
particularly smooth neuroimaging data, as demonstrated in [234].9 Instead, methods have
been derived which can control FWE more accurately than Bonferroni by considering the
distribution of the maximum of the multiple test statistics.

In order for one or more tests to be rejected at a certain threshold, it is necessary for

FWE, presented later in section 2.3.1.
8We use the term ‘multiple testing’ here instead of ‘multiple comparisons’, following [237], where the

latter term is recommended for multiple comparisons of means in ANOVA models, and the former term is
favoured for more general multiple testing.

9In particular, note that using the number of resolution elements (resels) [239] as the number of inde-
pendent tests in a Bonferroni correction fails to control FWE [234].
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the maximum of the statistics to be above this threshold, i.e.

Pr

(⋃
i

{Ti ≥ Tc}
∣∣H0

)
= Pr(max

i
Ti ≥ Tc|H0)

where Ti are the test statistics, and Tc is a critical statistic threshold. If Tc is chosen as
the 100(1− α0) percentile of the distribution of the maximum statistic under a complete
null hypothesis then the equality implies that FWE will be weakly controlled. Under an
assumption known as subset pivotality [240], which means that the null distribution of a
subset of tests is independent of the truth of other null hypotheses, Tc will in fact strongly
control FWE [234]. Mass-univariate imaging statistics satisfy subset pivotality because
there are no constraints between the the null hypotheses of different voxels [234].

However, the maximum distribution is typically not known, or not available in closed
form. If the multiple tests are independent, then the maximum distribution is the product
of the individual cumulative distribution functions, but if there is a complex dependence
structure between the tests (as will likely be the case between voxels in imaging studies),
the maximum distribution must be approximated somehow. Section 2.3 explains how
permutation testing can be used to derive an empirical estimate of the null distribution,
and of the maximum distribution in multiple testing. Here, we briefly discuss a very
popular parametric approximation to the maximum distribution.

Random Field Theory (RFT) [241] can be applied to two- or three-dimensional con-
tinuous spatial fields of statistics. If discretely sampled images of statistics are sufficiently
finely sampled in relation to their smoothness10 then RFT results should be approximately
valid. For a particular threshold Tc the excursion set of a random field defined over Ω is
{s ∈ Ω : T (s) > Tc}. The Euler Characteristic of the excursion set is a topological measure
which, at sufficiently high thresholds Tc approximately counts the number of suprathresh-
old clusters [234]. If the threshold is high enough for the probability of multiple clusters to
be negligible, the expected value of the Euler Characteristic is approximately equal to its
probability of being non-zero. The relevance of this is that the probability of having any
suprathreshold clusters is the FWE, and the expected value of the Euler Characteristic is
an approximation to this which can in turn be approximated in closed form for a number
of statistical fields including Gaussian, t, χ2, F, and T 2 [242, 243].11 This provides para-
metric expressions for FWE corrected thresholds or p-values, if the necessary assumptions
for RFT hold [234]. It is also possible to use RFT to derive FWE-corrected p-values of
clusters of contiguous voxels above a prespecified threshold (e.g. an uncorrected p-value
of 0.001) based on their size or mass (the integral of suprathreshold intensities) [245, 246].

Power and sample-size calculations are more challenging when correcting for multiple-
tests, but a recent paper has presented results for voxel-level FWE calculations based on
the theory of non-central random fields [247].

10A rule of thumb of three voxels full-width at half maximum smoothness is mentioned and evaluated
in [234].

11An interesting point here is that the standard single-statistic transformations from e.g. t to standard
normal Z or correlation coefficient ρ do not correctly transform between t and Z or t and ρ random fields
[234, 244].



BIBLIOGRAPHY 37

In some situations, even relatively accurate control of FWE can still be undesirably
conservative, in the sense that the large number of false negatives or type II errors might
be of more concern to the investigator than the exact number of false positives. This moti-
vated the application of False Discovery Rate (FDR) correction [248, 249] to neuroimaging
[250]. FDR aims to correct for the proportion of false-positives among the rejected null
hypotheses, rather than the probability of falsely rejecting a single null hypothesis. The
two approaches are equivalent if all null hypotheses are true (i.e. there are no significant
voxels anywhere), which means that FDR provies weak control of FWE. However, FDR
is less conservative in the (often quite likely) event that there are some truly significant
voxels somewhere in a particular test. FDR may also be applied to uncorrected RFT
p-values for cluster-size [251].

1.7 Conclusion

This chapter has presented the clinical background for the application, and introduced the
basic image processing methods of registration and segmentation that are essential to later
work. The technique of voxel-based morphometry has been introduced, which is returned
to in detail in chapter 3. Basic statistical methods have been outlined, with a focus on
the multiple comparison problem, so that later discussion of the relative merits of different
types of correction procedure can be appreciated. The next chapter studies in great detail
a particular class of statistical method, developing a permutation-testing framework that
is then used in chapter 4, which attempts to improve upon VBM by incorporating certain
multivariate aspects of the data.
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Chapter 2

Permutation Testing

We review the theory of permutation testing for general linear models, providing new in-
sights into the relationships between several different strategies which have been proposed.
Extensions are discussed, including non-standard statistics and multivariate data, which
are employed in chapter 4. An important theoretical contribution is a thorough explo-
ration of a particular strategy which aims to achieve an exact test for a general linear
model by performing the permutation on an exchangeable lower dimensional set of trans-
formed residuals, before transforming back to the original data space. In particular, we
connect this transformed-residual permutation test more clearly to the traditional strate-
gies, and propose new alternative transformations for its residuals. The main practical
novelty in this chapter is a set of Monte Carlo simulations comparing the different permut-
ation test strategies in a range of challenging situations. The two new transformed-residual
approaches and one variant on a traditional method have not previously been evaluated
in the literature. Further experiments focus on important related aspects, including an
investigation into different classes of permutations from which to sample.

2.1 Introduction

Parametric statistical tests employ a certain parametrised mathematical model for the
distribution of a test statistic under the null hypothesis, usually relying on an assumption
of normally distributed errors. Non-parametric techniques have been developed which
use resampling or randomisation methods [1] to empirically estimate test statistic null
distributions, removing the need for parametric assumptions. We distinguish two main al-
ternatives: bootstrap methods [2] use resampling with replacement from the data (or more
generally, from some estimate of the unobservable errors), to approximate the distribution
of a parameter or statistic; randomisation or permutation methods [3] use re-ordering of
the data (or estimated errors) to derive the permutation null distribution of a statistic.
Good [3, 73] recommends permutation testing if the parametric distribution is unavail-
able or uncertain, and if exchangeability can be assumed; he suggests bootstrap methods
are only necessary if neither parametric nor permutation methods are suitable, or if a
confidence interval is required on a statistic which is not a parameter of the distribution.
Permutation testing will be the focus of this chapter.
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By relaxing the requirements on the test statistic, these testing methods have the
potential to employ statistics which are more powerful, more robust, or more widely ap-
plicable. Randomisation tests provide exact control of type I error in some situations, and
approximate control in general. Importantly for neuroimaging, randomisation tests can
be easily extended to control family-wise error in multiple testing scenarios [4, 5]. The
main drawback of resampling or randomisation tests are their significant computational
cost, which has become less important with increasing computing power.

To date, much of the theory and implementation of randomisation testing has focussed
on simple situations where the test is exact. For more general models, approximate per-
mutation tests have been proposed which should still control false-positives.

2.2 Basic concepts

In the standard general linear model, y = Xb + ε, the elements of the error vector are as-
sumed to be independently and identically distributed (IID) as a zero-mean Gaussian with
a certain variance. This assumption endows the test statistic (derived from the likelihood
ratio test, as described in appendix A.4.4) with a known parametric (F) distribution under
the null hypothesis. The use of this distribution to produce p-values, confidence intervals,
etc. is based on the classical statistical concept that if the null hypothesis were true, the
distribution would accurately describe the behaviour over a large number of theoretical
repetitions of the experiment (or observation). The fundamental idea behind the class of
non-parametric statistical method considered here, is to replace this concept of theoretical
repetitions with an empirical evaluation of the statistic’s null distribution over a number
of practical repetitions. These repetitions should be generated in a way which would be
consistent with the assumptions, including the null hypothesis.

An example should help to clarify the concept. Consider the problem of testing whether
two groups have equal mean. The standard two-sample t-test uses the distribution of the
difference in sample means divided by the estimated standard error of this difference,
which is t-distributed under the IID Gaussian assumption. For the randomisation testing
equivalent, under the assumption that the two groups are random samples from two popu-
lations with the same mean we are justified to randomly reallocate the group labels under
the null hypothesis [1]. If we compute the difference in means for all (n1 +n2)!/n1!n2! allo-
cations of the data to two groups (with the original sizes, n1 and n2) we have an estimate
of the null distribution which can be used to test the significance of the originally observed
difference in means. If the real labelling’s difference in means lies below the 5th percentile
or above the 95th percentile of the randomisation distribution then we reject the null hy-
pothesis at the 10% level. More precisely, we can assign a p-value equal to the proportion
of the randomisation distribution as-or-more extreme than the original observation (with
the original counted as part of the randomisation distribution). Critical values of the
statistic for a given α can be similarly determined, and both one- or two-tailed alternative
hypotheses are easily handled.

The randomisation test is exact, in the sense that its type I error under repeated
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experiments where the null hypothesis is true will have an expected value exactly equal
to the chosen α. For moderately large group sizes the exhaustive set of randomisations
will be too large to evaluate in practice, but a random sampling from this set is likely to
produce a very similar result. In fact, the randomisation test using the random subset can
still be considered to be exact in some sense, see p.15 of Manly et al. [1].

In cases where the data are not randomly sampled, or randomly allocated in an experi-
mental design, the test can still be justified under ‘weak distributional assumptions’ [4], for
example that the distributions have the same shape. Note that this is a stronger assump-
tion than simple equality of population means (in particular, the above test is sensitive to
differences in group variances as well as differences in mean), but still a considerably weaker
assumption than IID normality. Some authors distinguish between ‘randomisation tests’
and ‘permutation tests’ where the former have a justification in terms of random sampling
or experimental design, while the latter are justified in terms of an assumed exchangeabil-
ity [4]. We have attempted to follow this distinction above, but in the remainder of this
work, it will have little relevance, and we will refer exclusively to permutation testing.

A second example leads towards the more general situation. Consider a simple regres-
sion problem, where the null hypothesis is that there is no (linear) relationship between the
dependent variable y and the regressor x. If the data can be assumed to be exchangeable,
then computing correlation coefficients for the original and permuted data will again allow
us to derive a p-value for the observed correlation coefficient from its relative position in
the permutation distribution.

Again, the assumption of exchangeability can be made either because the data are
randomly sampled (from a bivariate population of independent x and y), or from a de-
signed experiment (with the y values acquired after the x values were randomly assigned).
Manly states that with observational studies, the justification is weaker and requires the
null hypothesis to be that the x and y values are ‘unrelated’ [1], which might suggest
that the errors should be IID (not necessarily Gaussian), in the sense that dependency or
heteroscedasticity within the errors would mean that any relationship between the errors
and the explanatory variable would invalidate the exchangeability of the data. In fact,
the IID property is sufficient for exchangeability, but not necessary — for example, com-
pound symmetric errors1 are dependent but exchangeable [6]. For more on the concept of
exchangeability see [6, 7]. Among the most useful results from Commenges [7] are: (i) a
matrix M is exchangeable if and only if SMST = M for all permutation matrices S; (ii)
an orthonormal basis for the space of exchangeable matrices is given by2 1̄n = 1n×n/n and
I − 1̄n, (iii) data with a constant mean and exchangeable covariance matrix has ‘second-
moment exchangeability’, which implies complete exchangeability for normally distributed
data, and may lead to useful approximate exchangeability for more general distributions.

At this point, the above examples can be used to highlight two important aspects of
permutation testing, by noting that a two-sample t-test is equivalent to a simple regression

1A compound symmetric covariance matrix has a constant diagonal, and a possibly different constant
value everywhere else.

2These matrices are respectively the projection matrix P and residual forming matrix R for a design
consisting only of a constant term: X = 1n×1.
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with a dummy variable indicating group membership.

2.2.1 Data or design permutation

In the two-group example, we talked of relabelling the groups, which can be thought of
as permuting the group indicator variable; while in the correlation example, we talked
of permuting the data. In fact, for any test statistic that depends only on the pairing
of dependent and independent variables, and not on the order of the pairs as such, these
interpretations are equivalent. Consider a permutation matrix S,3 whose action is to shuffle
the rows of a matrix which it premultiplies. All such S can be derived from permuting
the rows (or columns) of an identity matrix, and are orthogonal ST S = I = SST . Now,
in the general linear model, with residual-forming matrix R = I − X(XT X)+XT ; after
permuting the data, the sum of squares (from which, for full and reduced models, the t-
or F-statistic is derived) is given by (Sy)T R(Sy) = yT ST RSy = yT RSy with:

RS = ST S − ST X(XT X)+XT S

= I − ST X(XT SST X)+XT S

= I − ST X
(
(ST X)T (ST X)

)+
(ST X)T

where the final expression can immediately be seen to be the residual-forming matrix from
a permuted design ST X — i.e. permuting the data by S or the design by ST are equivalent.
This can also be seen in terms of the estimated parameters, where

B̂S = X+SY

= (XT X)+XT SY

= (XT SST X)+XT SY

= ((ST X)T (ST X))+(ST X)T Y

= (ST X)+Y

Trivially, we can also see that permuting both design and data by the same permutation
matrix S has no effect on the model.

2.2.2 Choice of statistic

The second point to draw from the examples is that in the two-group example we sug-
gested to use the difference in mean as the statistic, while in the regression, we chose
the correlation coefficient. A related question which naturally arises when comparing a
permutation test to a parametric version is whether the permutation test should use the
same statistic as the parametric test, but without using the (assumed) parametric distri-
bution. I.e. in this example, is there any advantage to using the t-statistic in place of the
difference of means or correlation coefficient? This question is motivated by the fact that
common parametric statistics often have some form of optimality, e.g. as described in ap-

3We avoid the letter P due to its association with projection matrices in linear modelling.
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pendix A.4, t- and F-statistics derive from the generalised likelihood ratio test and so are
optimal (under the parametric assumptions!) according to the Neyman-Pearson lemma.
In these particular examples, it can be shown that all three statistics are in fact equiva-
lent. Firstly, the difference in means is simply b1 in a regression model with a constant
(corresponding to b0) and a binary variable coding group. Secondly, we note that any
monotonic transformation of the statistic used for the permutation test will preserve the
relative ordering of the transformed statistics in the permutation distribution (including
the original) so the p-values (or critical values) which derive from the original statistic’s
relative position will remain unchanged. The t-statistic and (partial) correlation coefficient
ρ satisfy [8]:4

t = ρ

√
DFE

1− ρ2

ρ = t
1√

DFE + t2

which are monotonic functions as required. It remains to show that the t-statistic and b1

are permutationally equivalent. They clearly have the same sign, so it would suffice to
consider the relationship between F = t2 and b2

1. It is instructive to derive this as a special
case of the relationship between a contrast of interest cT b and the corresponding F-statistic
for a general linear model. Firstly, we note that the numerator and denominator degrees
of freedom are not affected by permutation of the data, so F is monotonically related to
SSH/SSE . Since SSR = SSE + SSH , SSR/SSH = 1 + SSE/SSH and so SSH/SSR is
also monotonically related to F, as is SSR/SSE , so we can consider the ratio of any pair
of the three sums of squares. From appendix A.4.4 and equation (A.19) we have

SSH = bT C(CT (XT X)+C)+CT b,

SSE = yT Ry,

SSR = yT R0y,

and we can also write SSE = yT (I − P )y = yT y − yT Py = yT y − bT XT Xb.
Now, we first note that XT X is invariant under permutation of X, and that in the case

of a t-contrast CT (XT X)+C and CT b will be scalar, so SSH is indeed permutationally
equivalent to (CT b)2. Similarly, yT y is invariant under permutation, and it may initially
appear that bT XT Xb will be permutationally equivalent to (CT b)2, however this quadratic
form in the vector b depends on the nuisance as well as interest elements of b, and therefore
the relationship is potentially non-monotonic. Similarly, we argue that there is no reason
in the general case to expect SSR = yT R0y to have a monotonic relationship with (CT b)2.
However, simple regressions with or without a constant are interesting special cases. With
no constant term, the reduced model is the null matrix, and the residual-forming matrix
is an identity, giving obvious permutational independence to SSR. With a constant,

4For completeness, note that the multiple correlation or squared coefficient of determination and the
F-statistic are also similarly related: F = (R2/(1−R2))DFE/DFH and R2 = F/(F + DFE/DFH).
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R0 = I − 1n×11+
n×1, and yT ST R0Sy = yT R0y is also permutationally invariant, thanks to

the fact that permutation has no effect on the vectors of ones 1n×1.
Having established that CT b is not permutationally equivalent to its corresponding t-

or F-statistic in the general case, the question arises as to whether either is preferable.
Kennedy and Cade [9] argue that a permutation test should use a pivotal statistic, such
as t, F or a correlation coefficient, and not an element of b. They demonstrate empirically
unacceptable type I error when using b under a particular permutation testing strategy
(‘Shuffle-X’, discussed in section 2.4). They also refer to related work on the importance
of pivotal statistics in Monte Carlo and bootstrap methods.

A pivotal statistic is one whose sampling distribution is independent of unknown pa-
rameters [10].5 For example, in testing a mean from a population with unknown variance,
Student’s t-statistic follows a t-distribution independent of the population mean or vari-
ance. This property allows the distribution to be computed or tabulated for given sample
sizes (degrees of freedom). Clearly the ease of parametric representation or tabulation
is of no interest in nonparametric permutation testing, however, the independence from
unknown parameters can be a useful property for a permutation test statistic.

Nichols and Holmes [5] suggested that ‘virtually any statistic’ was suitable for permut-
ation testing, but they preferred ‘more pivotal’ statistics to un-normalised ones such as
CT b. An additional motivation for pivotal statistics arises when using the permutation
distribution of the image-wise maximum to correct for multiple comparisons (section 2.3).

2.2.3 Transformations of the data

Having emphasised the invariance of permutation inference to monotonic transformations
of the test statistic, it seems important to clarify that permutation tests are not invari-
ant to monotonic but nonlinear transformations of the actual data. For example, log-
transforming strictly positive values (as will be relevant in chapter 4) can change the
relative ordering of the statistics (using the same set of permutations) and hence the p-
values obtained. However, Commenges [7] notes that identical component-wise nonlinear
transformations (such as the log-transform) do preserve exchangeability, so will be valid
for general permutation tests. A related point is the importance of the choice of function
in multivariate combining function approaches, which are discussed briefly in section 2.3.4.

This is in contrast to non-parametric tests based on ranks [11], where the invariance
to monotonic transformations does extend to the data. Manly points out on p.15 [1]
that some standard non-parametric tests can be seen as randomisation tests where the
dependence only on the relative ordering allows the complete randomisation distribution to
be enumerated for particular designs and sample sizes. It is widely known that rank-based
nonparametric methods tend to be less powerful than their parametric counterparts (given
that the assumptions of the latter hold), Edgington states that permutation tests can
avoid the loss of power from the rank-transformation [12], which is indirectly6 supported

5A more mathematically complete definition can be found in [8].
6There seem not to be any direct comparisons of permutation testing with and without rank-

transformation in the standard texts.
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by Monte-Carlo studies comparing parametric and permutation tests [1, 5].

2.3 Family-wise error control with permutation testing

In section 1.6.4, we discussed the multiple testing problem inherent in voxel-wise statistical
analysis of imaging data, and explained how results from Random Field Theory could
be used to control the chance of false positives occurring in any of the analysed voxels
(the family-wise error rate or FWE). This method is based on approximating the null
distribution of the maximum of the voxels’ statistics. Analogous to the way standard
permutation testing replaces parametric assumptions about the null hypothesis with non-
parametric estimation of an empirical null distribution, in the case of multiple tests we can
naturally estimate the maximum distribution by simply recording the maximum statistic
over the voxels for each permutation. We can then directly use percentiles from this
permutational maximum distribution as critical thresholds, or use the ranking of the
observed voxel-wise statistics within it to assign FWE corrected p-values.

Because permutation-based FWE control removes the need for (often approximate)
closed-form expressions, it has the major advantage of allowing a much broader range
of statistics. The types of statistic that should be valid for permutation methods in the
multiple-testing situation are unchanged from the standard case. However, an additional
consideration arises with multiple tests: it may be possible for the FWE to be accurately
controlled overall while different voxels may have different sensitivities and specificities [5].
For example, consider an image which contains a region of highly variable voxels,7 these
voxels will be more likely to produce high values under the permuted labellings, and the
maximum distribution will tend to be based more heavily on these voxels; less variable
voxels may then be less likely to be found significant in comparison with this distribution.
Voxels with true null hypotheses will have lower specificity with increasing variance, while
voxels with true alternative hypotheses will have lower sensitivity with decreasing variance.
For this reason, it may be desirable to use statistics that approximately have a common
voxel-wise null distribution, such as the standard pivotal parametric statistics [5].

Using pivotal statistics such as t instead of un-normalised statistics like GLM con-
trasts cT b, will result in more homogeneous null distributions across voxels. However,
some heterogeneity may remain, for example variable skew can persist after variance has
been standardised [13]. For this reason, Pantazis et al. [13] suggest replacing the max-
imum statistic approach with a minimum p-value one: at each voxel, the permutation
distribution of that voxel can be used to derive an uncorrected non-parametric p-value,
comparison of each voxel’s p-value with the permutation distribution of the minimum of
these p-values over all voxels can be used to control FWE. Since each uncorrected p-value
should be uniformly distributed under the null hypothesis (without requiring Gaussian
or other parametric assumptions), all voxels have a common null distribution and hence
specificity is uniform across the image. However, there are two disadvantages with this ap-

7The example is a realistic one for voxel-based morphometry, where the accuracy of inter-subject reg-
istration will tend to be lower at structures which are more challenging to register and/or less biologically
consistent across subjects.
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proach. Firstly, in practical terms, it has very high memory requirements, since the entire
permutation distribution consisting of Nv × Np statistics is required, where there would
typically be of the order of Nv = 106 voxels and Np = 103 or 104 permutations.8 Secondly,
and perhaps more importantly, is the disadvantage that the non-parametric uncorrected
p-values have a discreteness which is detrimental to the sensitivity of the FWE corrected
results. More precisely, the permutation-based p-values are all multiples of 1/Np. If a
large number L of the permutations achieve the lowest possible uncorrected p-value, then
the corrected p-values can be no more significant than L/Np, hence potentially requiring
very large numbers of permutations [13].

2.3.1 Step-down FWE control

Step-wise methods have been proposed that offer more powerful control of FWE [14].
For example, a step-down modification of the standard Bonferroni procedure takes into
account the fact that once we have declared the largest statistic to be significant (at the
corrected level), the problem of controlling FWE over the remaining tests has multiplicity
reduced by one, and so on. This is Holm’s method, which compares the increasingly
ordered p-values p(i) to α0/(N − i + 1), stopping when they become larger, and declaring
all smaller p-values significant. Nichols and Hayasaka found that such step-wise procedures
had little advantage over the standard Bonferroni method for neuroimaging data, and that
maximum-based random field theory or permutation testing approaches were significantly
better [5].

However, in the context of maximum-based permutation methods for controlling FWE,
it is possible that a similar step-down procedure could partially address the problem of
non-uniform sensitivity due to heterogeneous null distributions [4]. Since we seek the
permutation distribution of the maximum statistic under the null hypothesis, we can
argue that voxels for which we reject the null hypothesis under the current estimate of
this distribution should be excluded from a subsequent re-estimation of the maximum
distribution. This should therefore mean that some of the highly variable (or skewed,
etc.) voxels will be removed from the maximum distribution which is eventually used to
test the less variable voxels, increasing the sensitivity of the latter. We cannot hope to
achieve uniform sensitivity and specificity to the extent of the minimum p-value approach,
in part because many of the highly variable voxels might not have high values in the
original labelling and hence will not be excluded in the step-down procedure. However,
the step-down approach does not suffer from the discreteness problem of the minimum
p-value approach. An application with potential to benefit from this is mentioned in
section 2.6.1.

Theoretically, step-down procedures cannot be less powerful than single-step methods,
so they would seem a desirable option. The main draw-back is computational complexity.
The simplest way of implementing an FWE-controlling step-down permutation test is to

8It is possible to determine the uncorrected p-values for the original labelling in an efficient manor by
simply counting the number of times the original statistic is exceeded by the permuted versions; however,
the minimum p-value distribution requires the equivalent of uncorrected p-values for all permutations, not
just the original.
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perform repeated runs of a standard permutation test, removing all of the significant voxels
at each run [15]. This kind of blocked step-down test is not particularly time-efficient,
and, will be slightly less powerful than a method which removes voxels individually. To
remove individual voxels at a time, however, the complete permutation distribution must
be stored. An interesting alternative has been proposed by Belmonte and Yurgelun-Todd
[16] that records not only the values of the maxima in each permutation, but also their
locations, and the values and locations of the next largest statistic, and so on for a certain
number of Nr ‘reserves’ largest values, where Nr can be small compared to the number
of permutations. This approach allows voxels to be removed from this partial maximum
distribution and efficiently replaced with reserves. It is possible for a particular labelling
to have all its stored reserves exhausted. This problem is particularly likely to occur with
very smooth data, since voxels which are high in the original labelling will tend to be high
or low together in other permutations due to the preservation of the spatial correlation
that arises from permuting all voxels in the same way. Hence the set of reserves in a
particular labelling in the partial permutation distribution might all come from the same
cluster, and once this cluster has been found significant, the step-down procedure will
have removed all the information about this labelling stored in the partial distribution.
The solution Belmonte implemented in the AFNI software that accompanied the article
(not described in the published paper itself) is to drop these exhausted labellings from the
distribution, and to continue to evaluate the other voxels against a partial permutation
distribution which has a reduced number of permutations as well as a reduced number
of voxels. As long as the number of permutations is initially large, and the number of
exhausted permutations remains fairly small, the approach could still be more powerful
than a single-step equivalent, though it is important to note that it may also be less
powerful, unlike a true step-down procedure.

We close this section by discussing a single-step procedure which is related in the
sense that it also attempts to derive the maximum distribution from only null data. In a
functional MEG study, Chau et al. [17] proposed that the permutation distribution of the
maximum be derived only from some separate rest periods, by arbitrarily labelling (fake)
activation periods within them, and then flipping the rest/activation signs in a group-wise
one-sample t-test. The derived maximum distribution is then used with the correctly
labelled rest/activation data, the hope being that this resting-state maximum distribution
will not be broadened by the presence of voxels with true alternative hypotheses, hence
delivering higher power. However, it is possible that differences such as larger variance
or skew present in the genuine distribution compared to the rest/fake distribution could
increase the false positive rate. In [17], this risk was minimised by using the same amount
of data for the null distribution computation as was present in the main experiment. This
need for symmetry between the experimental and null data makes the technique difficult to
apply in more general contexts relevant to structural imaging. For example, it would not
be valid to take only the data which has constant values of a categorical interest covariate
and make a fake interest covariate within this set (E.g. in a two-sample comparison of
controls vs. patients, splitting the controls into two new halves) to derive a maximum
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distribution for use with the original design.

2.3.2 Non-standard statistics

Permutation-testing frees us from the need to know analytically the null-distribution of
the statistic or of the maximum of a field of such statistics, since we can approximate this
by the permutation distribution. It is therefore possible to consider other statistics, with
fairly relaxed assumptions about their properties. In particular, we note that multivariate
statistics are very easily handled. Section A.4.4, presents Rao’s F-approximation for Wilks’
Λ statistic:

F =
1− Λ1/s

Λ1/s
/
ν1

ν2
,

Λ =
|Y T RY |
|Y T R0Y |

The degrees of freedom and s depend only on terms such as the dimensionality of the
data and hypothesis which are constant under permutation. The powers involved in both
the F-approximation and the definition of Λ are monotonic, so we can equivalently base
a permutation test directly on Λ−1, i.e. the ratio of the determinants of the reduced- and
full-model sums of squares and products matrices.9 Hotelling’s T 2 statistic, applicable to
one- or two-sample tests of multivariate means, is also derived from the likelihood ratio
[18], and is monotonically related to Wilks’ Λ by

Λ2/n =
(

1 +
T 2

n− 1

)−1

, (2.1)

and to the squared Mahalanobis distance by T 2 ∝ (x̄− µ)T S−1(x̄− µ), for sample mean
x̄, hypothesised population mean µ and sample covariance matrix S. Hence, all three of
these common multivariate statistics are permutationally equivalent.

Robust statistics, i.e. statistics which aim to be less sensitive to outliers or to viola-
tions of the standard assumptions, usually lack simple parametric distributions. Subject to
computational demands, they can be easily handled in the permutation testing framework.
For example, Cade and Richards [19] explore permutation tests for least absolute deviation
regression, where parametric testing can be problematic. Brammer et al. [20] proposed
testing the median in place of the mean for greater robustness in permutation-based anal-
ysis of functional imaging data. Rorden et al. [21] investigated further generalised rank
order statistics, with potential benefits for skewed distributions or other data for which
the mean (or median) might not be the best measure of central tendency.

An interesting and successful example of an unusual statistic for which the parametric
distribution is unavailable is the smoothed-variance pseudo t-statistic [22]. At low degrees
of freedom, the estimated variance is noisier and/or rougher than the (usually anatomically
contiguous) signal of interest. Since the variance is only needed in a permutation test to

9The reciprocal is taken simply to give a statistic for which large values indicate departure from the
null hypothesis, for easier interpretation.
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normalise the signal so as to achieve a more pivotal statistic (as discussed above), the
denominator of the t-statistic can be spatially smoothed (in addition to any smoothing of
the original data). This has been found to increase sensitivity compared to permutation
testing of standard t-statistics [4].

2.3.3 Extent-based and related statistics

Following on from the previous section, we observe that the maximum distribution method
of FWE control is very well suited to statistics that aim to capture information other than
simple voxel-wise significance. Stemming from the intuition that a cluster of adjacent
voxels with large effects is more likely to be biologically significant than more random-
appearing isolated voxels, approaches have been developed to determine statistical signif-
icance based on the size of clusters that exceed a pre-specified threshold [23, 24]. Such
cluster-size tests are more sensitive to weaker but spatially broader effects [25]. It is a
simple matter to implement a cluster-size test in a permutation framework [22]; it is only
necessary to record the maximum cluster size instead of the maximum statistic value. It is
also possible to derive random field theory results for cluster size inference [24]. Imaging
data may exhibit non-stationary smoothness, i.e. some regions of the image have spatially
smoother residuals than others. Large clusters are more likely in smoother regions, which
hence could admit false positives if a single average smoothness were assumed to apply
everywhere in the image. Both random field theory and permutation-based cluster size
inference can be extended to handle this case [26].

Either cluster extent or peak height could be indicative of an effect, and clusters which
are both large and intense would provide the strongest indication, it is therefore desirable
to base inference on some combination of these aspects, rather than considering either
one alone. It is here that permutation testing really comes to the fore. A parametric
test for combined cluster height and size has been proposed based on their bivariate joint
distribution [27], but this necessitates an approximation and some strong assumptions
[28]. Bullmore et al. [29] proposed that the two aspects be combined by summing the
statistic values over the supra-threshold clusters, giving a measure known as cluster-mass,
which does not have a known parametric distribution, but has been found to perform
very favourably compared to standard alternatives [28, 29]. The above approaches are
all based on the concept of a supra-threshold cluster, and hence require a cluster-defining
threshold to be specified. The arbitrary choice of such threshold has no impact on the
validity of the inference, though this arbitrariness is often disliked by practitioners. More
importantly, while two different thresholds would both lead to valid results, their findings
could differ in scientifically significant ways, causing problems for the interpretation. The
permutation testing framework can again help here, by generalising the cluster-mass ap-
proach. Instead of setting a threshold and summing supra-threshold values, ‘threshold-free
cluster enhancement’ [30] assigns a value to each voxel based on the sum of supporting
sections beneath it, where the sections are defined over a range of heights from zero to the
value at that voxel. As well as removing the need for an arbitrary threshold, the method
has the advantage that distinct maxima are preserved, and can be interpreted within any
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significant ‘clusters’ found through permutation testing.

2.3.4 Multivariate combining functions

We now briefly present an approach which has extremely wide applicability — deserving
of more discussion than is given here — the use of combining functions for multivariate
permutation testing [31]. In essence, separate ‘partial’ tests for the m multivariate com-
ponents are combined into a single summary statistic, for example, p-values for partial
tests {pi}m

i=1 may be amalgamated using Fisher’s combining function −2
∑

i log pi. The
permutation distribution of these new statistics can then be used to derive overall p-values.
A combining function approach based on p-values provides useful scale-invariance (since
each partial test’s p-values are uniformly distributed on [0, 1] under the null hypothesis)
and implicitly accounts for correlation between the partial tests [31].

The multivariate combining function approach can be used to jointly test cluster extent
and height [28]. Indeed cluster-mass [29] can be seen as a form of combining function [28].10

Different combining functions can be used to obtain different properties, for example
Tippet’s combining function 1 −mini log pi is sensitive to situations in which one partial
test is significant, but gains no additional sensitivity from greater significance of other non-
extremal partial tests. For combining cluster size and peak height, Tippet’s combining
function is analogous to the parametric test discussed above [27], while cluster-mass is
sensitive to simultaneously large and intense clusters but not necessarily significant for
clusters which would be significant for either size or height alone, and Fisher’s combining
function is a compromise between these two extremes [28]. Some other combining functions
are discussed in [32] and [31]. Hayasaka and Nichols proposed that the merits of different
combining functions could be jointly capitalised on through the use of a second-level ‘meta-
combining’ function of the combining functions [28].

In the context of controlling FWE, the combining function approach can be seen as a
generalisation of the minimum p-value permutation test of Pantazis et al. [13] (described
in section 2.3). Where Pantazis obtained permutation-based p-values at each voxel, and
considered the permutation distribution of the minimum over the image, Pesarin’s ap-
proach obtains multiple partial p-values at each voxel, combines these, and then considers
the permutation distribution of the image-minima. This method has been employed in
the context of relatively low-dimensional surface shape models, based on the m-rep formu-
lation [33]. An alternative means of obtaining an FWE combining function permutation
test with greatly reduced memory requirements is to combine corrected p-values (instead
of correcting combined ones) [28]. In this approach the need to store the complete per-
mutation distribution is avoided, at the computational expense of having to perform a
second consideration of the permutation test: a first run is used to obtain the permut-
ation distributions for the maxima of the partial tests; in the second run, comparison of
the partial statistics with these permutation distributions yields partial corrected p-values

10Hayasaka and Nichols point out that cluster mass is not strictly a consistent combining function, as
defined by Pesarin [31], but that it may perform approximately consistently in practice [28]; in fact, in
their simulations and real data, it performs very well in most cases.
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at every voxel and for each permutation, these are then combined, and the maximum of
the combining function over the voxels can be recorded for each permutation; comparison
of the original permutation’s combined corrected p-value statistic with this distribution
gives the overall corrected p-value at each voxel.

It is also possible to combine parametric p-values, or raw t-values at each voxel, which
avoids the need for storing the complete permutation distribution; only the image-wise
maximum of the combined values need be stored for each permutation in order to determine
permutation-based FWE p-values. This approach was taken by Hayasaka et al. [34] in their
analysis of grey-matter density and perfusion in Alzheimer’s Disease. Terriberry et al. [33]
state that the disadvantage of this method is that it does not avoid problems of differing
scale or of strong correlation between the multivariate components. The issue of scaling
is clear, but it is not obvious why Terriberry et al. feel the test will handle correlation
differently when not based on p-values. In contrast, Hayasaka and Nichols postulated:

We suspect that there is very little effect on the sensitivity and the speci-
ficity of the test with our use of partial P values, compared to using the actual
peak intensity and cluster size information directly

and when using direct combination of raw statistics, Hayasaka et al. [34] still stated ‘the
cross-modality correlation is implicitly accounted for’.

Multivariate combining function permutation tests will not be considered further here,
but note that since the procedure essentially involves a combination of the results of some
standard permutation tests, the work on permutation testing for general linear models
below is of direct utility in the combining function setting. We are unaware of any studies
in an image analysis context that compare the two alternatives for combining-function
permutation-based FWE control discussed above, or that compare the use of p-values to
raw statistics in combining functions; these questions could be a useful topic of future
work.

2.4 Permutation testing for general linear models

2.4.1 Exact cases

In section 2.2 we presented two simple examples for which the permutation test is exact,
simple regression and a two-sample t-test. The logic motivating the two-sample t-test
generalises to one-way ANOVA — under the null hypothesis, the observations should be
exchangeable between the levels, allowing an exact test of the main effect. Combinatorics
shows that

(
∑L

l=1 nl)!∏L
l=1(nl!)

(2.2)

permutations are possible with nl observations in level l, where as noted already, random
sampling from this set preserves the exactness of the test.

A closely related argument (made as early as 1935 by Fisher [35], and described in
some detail by [1]) can be made that for a paired two-sample t-test, the order of each pair
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may be randomised under the null-hypothesis, or equivalently, that the signs of the paired
differences can be randomly flipped, giving an exact test with 2n possible ‘permutations’.11

It seems natural to extend this to the case of a one-sample t-test, however, as pointed
out by Manly [1] the justification is slightly weakened, and consequently, the required
assumptions grow to include that the distribution of the observations is symmetric.

The one-way ANOVA situation can be generalised to tests of main effects in multi-way
ANOVA designs if the set of permutations is restricted such that they mix the levels of
the factor in question, while preserving the levels of the other factor(s). Examples can
be found in [12, 36, 37], and discussion of the theoretical concepts of weak and partial
exchangeability in [6]. This provides an exact test, but with reduced power as the number
of usable permutations decreases [36]. If a discrete nuisance-covariate is present, a similar
strategy can be used, permuting the measures within equal values of the covariate, where
the set of permutations reduces to the identity in the limit as the number of non-unique
values of the covariate tends to zero.

The above models have exact permutation tests under fairly general assumptions,
in particular, they pose no obvious difficulties for observational studies. If one can make
additional assumptions thanks to the nature of a designed experiment, then arguments can
be made that more general models also have exact permutation tests. For example if all of
the (interest and nuisance) covariates X are randomly assigned, before measurements Y are
made, then randomisation of the observed measurements (referred to below as the strategy
‘Shuffle-Y’) provides exact tests for multiple and partial correlations [1]. Alternatively, if
one or more interest covariates Z are randomly assigned, before measurements are made
for the data Y and for one or more nuisance-covariates X0, then a permutation test using
randomisation of the interest covariates (‘Shuffle-Z’) while keeping the data and nuisance
covariates matched can be argued to be exact [38]. Further arguments can be found in
Manly [1] pp.180–181; and counter-arguments (though more aimed at the practical mis-
application of Shuffle-Y and Shuffle-Z than their theoretical justification) may be found in
[9, 39].

2.4.2 Approximate permutation tests for arbitrary designs

In more general cases, including multiple regression in the observational setting, the above
exact permutation tests are not applicable. To take a simple example, if the data, an
interest covariate and a nuisance-covariate might all be interrelated, an exact test cannot
be achieved by permuting the data (as its conditioning on the nuisance-covariate will not
be preserved), and nor is Shuffle-Z exact, since the changing relationship between the
interest covariates and the confounds will alter the statistics. Intuitively, in many such
situations where the data are not themselves exchangeable, one could argue that the errors
in the underlying regression model would be exchangeable. As a specific example, a general
linear model with non-Gaussian but IID (or compound symmetric) errors would satisfy

11Technically, these are not permutations. In analogy with the definition of a shuffling matrix in 2.2.1,
these sign-flippings could be performed with a diagonal flipping matrix F with fii = ±1, satisfying F =
F T = F−1.
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this assumption. We now consider a hypothetical exact test in such situations, followed
by approximations towards it.

For the remainder of this section we consider the following (possibly multivariate)
general linear model:

Y = XB + E

=
[
X1 X0

](B1

B0

)
+ E

where we have partitioned the design matrix into the effects of interest X1 and the
nuisance-covariates X0. We shall also refer to the interest covariates as Z (for exam-
ple in the algorithm ‘Shuffle-Z’), as this is common in the literature, and should cause
no confusion here.12 In appendix A.4.8, it is shown that any estimable contrast in any
general linear models may be re-written in this form, i.e. with the new contrast being a 1
(or identity matrix) over the column(s) of interest with zeros over the nuisance columns.

Importantly, it is not required here that the error E be IID Gaussian, but it will be
assumed to be exchangeable.13 It is obvious, but perhaps helpful, to point out, that under
the null hypothesis, one has the reduced model Y = X0Br+E , with the same exchangeable
errors E . However, the full and reduced models do not have the same estimated residuals:
E = RY 6= E0 = R0Y .

Anderson and Robinson [40] seem to have been the first authors to observe that a
hypothetically exact permutation test would require knowledge of the true (unobservable)
B or Br in order to recover the unobservable exchangeable errors E . In particular, under
a single-interest, single-nuisance model, with a test statistic of squared partial correlation,
they consider a test which can be seen to be a special case of the following strategy:

• Remove the true nuisance from the data, to recover the errors (under the null hy-
pothesis)

• permute these exchangeable errors

• add the true nuisance back to the permuted errors, to produce the equivalent of new
permuted data (not actually a permutation of Y )

• use the new data in the original regression model, testing B1 with adjustment for the
effect of B0 (now using the estimated, rather than true nuisance effect, for consistency
with the original test statistic).

In other words, testing the new data

Y S
AR = X0Br + S(Y −X0Br). (2.3)

12Note though that the literature commonly denotes the nuisance as X, which we have avoided since it
would cause confusion with the rest of this chapter.

13In the multivariate case, ‘exchanging’ Y or E refers to permutation of the rows of the matrix, as will
be performed by pre-multiplication with a permutation matrix S.
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Anderson and Robinson [40] then argue that an obvious approximation to the above
exact but unrealisable strategy is to instead adjust for the least squares estimated rather
than true nuisance effect, and therefore to test

Y S
FL = X0B̂r + S(Y −X0B̂r),

= P0Y + SR0Y. (2.4)

Freedman and Lane [41] introduced this concept, though not directly in a permutation
testing framework. Still and White [42] used what is essentially a special case of the
idea in the context of testing for an interaction in ANOVA. For example, an often quoted
expression [36, 37, 43] for testing an interaction in a two-way ANOVA model is

y∗ijk = yijk − ȳi·· − ȳ·j· + ȳ···

where the dots denote averaging over subscripts. This expression is equivalent to the
arguably simpler R0y, for a reduced design matrix X0 modelling the two main effects but
not their interaction. Note though, despite the apparently greater generality and simplicity
of R0y, the above papers consider more complex ANOVA designs for which the standard
Freedman-Lane method is not directly applicable, for example with nested factors [36] or
with one or both factors involving repeated measures [37].

It can be shown that the Freedman-Lane approximation has an expected asymptotic
correlation of 1 with the hypothetical exact test [40]. Interestingly, despite this apparently
strong theoretical foundation, Welch [44, 697] has objected to the Freedman-Lane strategy
on the following grounds:

permuting the residuals is seen to consider all experiments where [the inter-
est covariate(s)] remains constant but the response and rows of [the nuisance
covariate(s)] are permuted. Thus [the complete design matrix] is not constant
and the ancillarity principle is violated.

This passage is unfortunately rather brief, and not entirely clear; my interpretation of it is
that it is the initial regression on only part of the design matrix that violates ancillarity.
However, it also seems possible that Welch is mistaken in his interpretation of Freedman
and Lane’s method. This view is indirectly supported by the following passage from
Anderson and Legendre [8], in which they demonstrate an awareness of Welch’s point,
but appear to believe that it is only Shuffle-Z, and not Freedman-Lane, which violates
ancillarity:

We restricted our attention to methods which do not ignore a potential re-
lationship (collinearity) between the predictor variables (i.e. methods which do
not disobey the principle of ancillarity, which means relatedness: Welch, 1990;
ter Braak, 1992). This limits the discussion to methods which permute either
the raw data values (Y) or residuals of some kind, as opposed to permuting
predictor variables.
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Their citations are to our [44] and [45] respectively. Welch’s suggested method for per-
mutation testing is to identify a ‘maximal invariant’ with respect to nuisance-parameter
location shifts, then to find minimal sufficient statistics for the invariance-reduced data,
and then to construct a permutation test relying on these statistics [44]. Kennedy sug-
gests that the residualisation procedure of Freedman-Lane can be viewed as creating such
a maximal invariant [39] (in fact, Kennedy says ‘it seems to be a better maximal invari-
ant’). It seems that further mathematical research is needed to clarify these apparently
contradictory viewpoints.

We note that although the interpretation is eased by considering a process of removal
and re-addition of the nuisance effects with the permutation step sandwiched in the middle,
the re-addition is actually unnecessary if the new data are regressed on the complete
design, since the added nuisance will simply change B̂0 and not the estimated parameters
of interest or sum-squared error, as discussed in appendix A.4.8. Hence, instead of Y S

FL

from (2.4), the Freedman-Lane method can regress ES
0 = SR0Y against [X1 X0]. As

already noted, permutation of the data by S is equivalent to permutation of the design by
ST , so we may alternatively regress R0Y against ST [X1 X0] with the same contrast.

Freedman-Lane permutes the reduced-model residuals, E0 = R0Y ; we could also con-
sider the residuals of the full model E = RY . This forms the basis of a permutation
strategy suggested by ter Braak [45],14 which he argues should have greater power. The
rationale is that subtracting the fitted interest-covariate model before the permutation pro-
cedure should reduce the variance of the estimated parameters of interest under permut-
ation. This is considered further by Anderson and Legendre [8, pp. 280–281, figs. 1 & 6].
Note that the optional re-addition of the nuisance in Freedman-Lane, discussed in the
preceding paragraph, has even greater relevance to ter Braak’s method: if the full-model
fitted data PY is added back to the permuted residuals, the original estimated interest
X1B1 is part of the permuted data, and therefore the statistic should test the estimated
interest under permuted BS

1 against the original B1, instead of testing against zero, as
with the other methods. Anderson and Legendre [8] pointed this out, and noted that the
procedure is simplified if the fitted model is not restored after permuting the full-model
residuals. The ter Braak and Freedman-Lane methods can be respectively termed per-
mutation under the full model and permutation under the reduced model, in which case
Shuffle-Y can be seen in the same framework as permutation of the ‘residuals’ under a null
model [1]. Anderson and Robinson [40] showed that all three of these methods converge
asymptotically to the same (standard normal) distribution, in terms of the statistic

√
nρ,

though their values may differ for each permutation.

2.4.3 Nuisance-orthogonalisation and related methods

We now discuss three further permutation testing strategies. It is helpful to consider
the alternative regression formulations from appendix A.4.10. The Freedman-Lane ap-
proach can equivalently perform any of the following regressions (using the notation

14He also discuss a bootstrap methodology using the same full-model residuals.
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data:design:contrast)

ES
0 : X : C, (2.5)

ES
0 : [X1 X0] : Cp, (2.6)

R0E
S
0 : R0X1 : Ir1 , (2.7)

R0SR0Y : R0X1 : Ir1 . (2.8)

Notice from the last of these expressions that this form of the Freedman-Lane method re-
orthogonalises the permuted orthogonalised data. The need for this can be understood by
noting that orthogonalisation does not make R0Y and X0 completely independent; it only
linearly decorrelates them. After permutation SR0Y can exhibit some new correlation
with X0, by regressing against the complete model with [X1 X0] this new correlation is
adjusted for in the inference on B1, hence if we wish to regress just on R0X1 we must
explicitly adjust for this correlation with a second orthogonalisation with respect to X0. An
equivalent explanation of this, is to note that Freedman-Lane is attempting to approximate
the unobservable true nuisance [40], and its estimates of this nuisance can be different for
different permutations [8].

However, if we consider just the estimated interest-parameters from (2.8), we have:

B1 = (XT
1 R0R0X1)+XT

1 R0R0SR0Y

= (XT
1 R0X1)+XT

1 R0SR0Y

and we note that the second of these expressions would be consistent with the regression
SR0Y : R0X1 : Ir1 , (i.e. without the post-permutation orthogonalisation). This obser-
vation of equivalent interest-parameter estimates wrongly led Kennedy to believe that
this simpler regression was completely equivalent to the Freedman-Lane method, and to
propose this form as a permutation testing strategy [9, 39].

Anderson and Robinson [40] demonstrated that in terms of partial regression coeffi-
cients in a single-interest single-nuisance model,

ρ2
FL =

ρ2
K

1−A2
S

,

where A2
S is the (non-negative) squared correlation coefficient between X0 and SR0y.

Hence, the value of ρ2
K for the original unpermuted data (for which A2

S = 0) which equals
ρ2

FL will seem larger in comparison with the permuted values ρ2
K = (1 − A2

S)ρ2
FL than

under the Freedman-Lane method, and therefore Kennedy’s method may be expected to
be less conservative than Freedman-Lane. The difference disappears asymptotically [40],
but in practice, several Monte Carlo evaluations have found Kennedy’s method to be
anti-conservative [1, 8, 40].
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Further relationship of Freedman-Lane to Kennedy’s method

We now extend Anderson and Robinson’s result to more general models. First, note that
the equivalence of the interest-parameter estimates ensures that

SSH = B̂T C(CT (XT X)+C)+CT B̂

is equivalent for Kennedy and Freedman-Lane. For SSE , using the expression correspond-
ing to regression model (2.8), with (FL) and without (K) the re-orthogonalisation following
permutation, Kennedy’s estimate is larger by:

SSK
E − SSFL

E = Y T R0S
T R∗

1SR0Y

− Y T R0S
T R0R

∗
1R0SR0Y

= Y T R0S
T (R∗

1 −R0R
∗
1R0)SR0Y. (2.9)

In appendix A.4.9 we showed that the regression model with both data and interest-
covariates orthogonalised with respect to the nuisance no longer needed the nuisance-
covariates. Here, it will be helpful to consider an unusual model in which the interest-
covariates have been orthogonalised and the nuisance-covariates dropped, but without
orthogonalising the data. Such a model will have altered SSE and SSR and hence different
statistics, so may appear uninteresting. However, in appendix A.4.7, we showed that SSH

can be represented in terms of R0XC = R0X1 = X∗
1 alone, meaning that although SSE

and SSR change, they do so in a way that preserves SSH . Since this new model has only
X∗

1 , its reduced model is empty, with an identity residual forming matrix. Writing its full
model residual forming matrix as R∗

1, we have

SSH = Y T R0Y − Y T RY

= Y T Y − Y T R∗
1Y, (2.10)

and the arbitrariness of Y therefore implies

R0 −R = I −R∗
1. (2.11)

If we now consider the effect of orthogonalising the data, replacing Y by R0Y in (2.10)
gives

SSH = Y T R0Y − Y T R0R
∗
1R0Y

SSE = Y T RY = Y T R0Y − SSH

= Y T R0R
∗
1R0Y

⇒ R0R
∗
1R0 = R. (2.12)
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Using equations (2.12) and (2.11)

R∗
1 −R0R

∗
1R0 = R∗

1 −R

= I −R0 = P0,

and so the discrepancy in (2.9) is

SSK
E − SSFL

E = Y T R0S
T (P0)SR0Y,

For a univariate model,15 this can be written

SSK
E − SSFL

E = ‖SR0y‖2P0
,

where P0 is a positive semi-definite projection matrix, implying that Kennedy’s method
will estimate greater (or equal) SSE in each permutation compared to Freedman-Lane’s
method, producing smaller statistics, and hence being more likely to reject the null hypoth-
esis when comparing the original (equal) statistic to the smaller permutation distribution.

Interestingly, given that Kennedy and Cade emphasise the need for pivotal statistics
in permutation tests, we note that in the case of a single interest-covariate and univariate
data, Kennedy’s method reduces to a simple-regression of SR0y against X∗

1 = R0X1

(without a constant term), and therefore, as we showed in section 2.2.2, a permutation
test using the pivotal t-statistic is equivalent to one using b̂1 with Kennedy’s method.

Finally, we note that the equivalence of b̂1 under Kennedy’s method and Freedman and
Lane’s, together with the empirically poor performance of Kennedy’s method (regardless of
whether it uses t or b̂1), discredits the use of Freedman-Lane with b̂1, supporting Kennedy’s
argument in favour of pivotal statistics in approximate permutation tests.16 We return to
this point below, in sections 2.4.4 and 2.6.1.

A second permutation strategy was considered in [39] (attributed to Levin and Robbins
[46]) and evaluated by Kennedy and Cade [9]. The ‘Residualise-Y’ or Adjust-Y method
seems to be based on the facts that (i) orthogonalising the data with respect to the
nuisance doesn’t affect the interest-parameter estimates, and (ii) if both data and interest-
covarites are orthogonalised with R0 then X0 can be dropped from the partitioned model,
as discussed in appendix A.4.9. However, for reasons that are unclear, the Adjust-Y
method drops the nuisance-covariates from the regression, without first orthogonalising the
interest-covariates. The resulting interest-parameter estimates, B̂AY

1 = (ZT Z)+ZT SR0Y ,
are not equal to the original B̂1 under the identity permutation, as noted by Kennedy.
However, there appears to be no requirement for this to be the case for a valid permutation
test, however intuitively reasonable the property may appear. Kennedy and Cade [9] found
in Monte Carlo studies of size that Adjust-Y exhibited a type I error below the nominal
value. It therefore appears a valid test. The same authors argued on (slightly heuristic)

15In the multivariate case, the same conclusion seems intuitively likely, though it is more difficult to
prove. This is empirically investigated using Monte Carlo simulations in section 2.5.

16In contrast to situations where the nature of the design means that the permutation test is exact with
‘virtually any statistic’ [5].
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theoretical grounds that Adjust-Y should have low power, however they did not investigate
power in their simulation studies, so (as explained later, in section 2.5) it remains possible
that Adjust-Y could perform well in practice.

The third permutation strategy we consider here is an adaptation of Shuffle-Z, based
on the equivalence of the alternative regression formulations (A.25) and (A.26):

Y : [Z X0] : Cp,

Y : [R0Z X0] : Cp.

These alternatives naturally lead to the following two permutation strategies:

Y : [ST Z X0] : Cp,

Y : [ST R0Z X0] : Cp,

where the first is the conventional Shuffle-Z, and the second is a new method, proposed by
Steve Smith of FMRIB, Oxford (personal communication with Tom Nichols). The only
mention of this method in the literature appears to be the following comment, in a paper
by O’Gorman [47], who uses standard Shuffle-Z, and appears not to have since followed
up the suggestion:

A referee suggested permuting the residuals of the regression of Z on X

[X0 here], and then adding them to the predicted values of Z.

As discussed with Freedman-Lane and ter Braak’s method earlier, there is actually no
need to add the predicted P0Z back to the permuted ST R0Z, as this only affects the
nuisance estimates. To see that Shuffle-Z and Smith’s method are not equivalent, note
that the estimated interest-parameters after permutation are:

B̂SZ
1 = (ZT SR0S

T Z)+ZT SR0Y

B̂SS
1 = (ZT R0SR0S

T R0Z)+ZT R0SR0Y

which are identical only if S = I, in which case they both recover the original least-squares
interest-parameters B̂1 = (ZT R0Z)+ZT R0Y .

O’Gorman’s interest in Shuffle-Z [47] was motivated by the fact that it leaves the data
and the nuisance paired, which made it (and Smith’s method) applicable to an adaptive
test [48]. This adaptive test attempts to reduce the effect of outliers in the data by
using weights derived from the residuals of the reduced model, which is unchanged under
permutation of the interest, but would be changed under Freedman and Lane’s method.

2.4.4 Transformed-residual permutation strategies

Anderson and Robinson’s [40] exact method is based on the principle that the errors E
are exchangeable under the standard assumptions. The Freedman-Lane and ter Braak
approximations to this exact method replace the unobservable true errors with least-
squares residuals E or E0. As well as being intuitively reasonable, it can be shown [49]
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that e is the best linear unbiased estimate of ε. From Y = XB + E , E = RY = RE , we
observe E[E − E] = E[(I − R)E ] = (I − R)E[E ] = 0, showing the residuals are unbiased;
their linearity in the data is immediately obvious. Under the assumed null hypothesis,
E0 clearly satisfies the same properties. Theil [49] (p.195) shows that the (univariate)
residuals are the best linear unbiased estimate in the sense that V [e− ε] = σ2(I − R),
while V [ẽ− ε] corresponding to any other linear unbiased estimate ẽ exceeds the first
covariance by a positive semi-definite matrix.17

However, the covariance matrix of the residuals is no longer a scalar multiple of the
identity matrix:

V [e] = V [Rε] = RV [ε] RT = σ2RRT = σ2R, (2.13)

which implies that the residuals are not exchangeable.18 In particular, the rank-deficiency
of R, rank(R) = n− rank(X), ensures that dependencies exist between the residuals (for
example, in the simplest case of X = 1n×1 the residuals are forced to sum to zero). This
is also true of the reduced model residuals used in the Freedman-Lane method.

Huh and Jhun observed this fact, and suggested the residuals should be transformed
so as to restore their exchangeability [50]. With reference to appendix A.2.3, the compact
singular value decomposition of the residual-forming projection matrix is R = UUT for
an n × rank(R) matrix U satisfying UT U = I. If one considers the rank(R)-dimensional
vector of transformed residuals e∗ = UT e = UT Ry, their covariance matrix is

V [e∗] = V
[
UT Rε

]
= UT RV [ε] RT U

= σ2UT RU = σ2UT (UUT )U

= σ2(UT U)(UT U) = σ2I, (2.14)

meaning that e∗ is exchangeable. The same should be true for the rows of E∗, and for the
reduced-model residuals E∗

0 = UT
0 R0Y where R0 = U0U

T
0 .

Due to this restored exchangeability, Huh and Jhun claimed that a permutation test
using the transformed reduced-model residuals E∗

0 (in a Kennedy-like framework) would
be an exact permutation test [50]. This concept will now be explored in some detail,
initially considering full-model residuals.

First, note that the expression E∗ = UT RY can be simplified, since

UT R = UT (UUT )

= (UT U)UT

= UT = (RU)T ;

UT
0 R0 = UT

0 = (R0U0)T .

Next, observe that the transformed residuals can be back-transformed to return the orig-
inal residuals UE∗ = UUT Y = RY = E.

17In the multivariate case, each column of E satisfies this property with respect to each column of E .
18In the multivariate case, V [E] = R V R is not block diagonal, so E does not have exchangeable rows.
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Now, consider ter Braak’s permutation test, using full-model residuals:

Y S
tB = PY + SRY

= PY + SUUT Y.

If the permutation step is applied to the transformed residuals E∗, (using a rank(R) ×
rank(R) permutation matrix S∗)19 before back-transforming them and adding back the
fitted model, this becomes:

Y S
U = PY + US∗UT Y.

At this point, note that for the original labelling S∗ = I, the above is exactly equivalent to
the original data, so there is no need to show the equivalence of B̂, SSE , etc.20 Surprisingly,
we find that although non-trivial permutation alters the data (Y S

U 6= Y ) it does not alter
the fitted model. Because U is in the null space of P , PU = 0, giving

PY S
U = PY + PUS∗UT Y = PY.

Similarly, the parameter estimates are also unaltered because X and U are orthogonal, as
can be seen by noting X = PX meaning XT U = XT PU = 0 and hence

X+Y S
U = (XT X)+XT Y S

U

= (XT X)+XT PY + (XT X)+XT US∗UT Y

= (XT X)+XT Y = X+Y.

Finally, note that although the residuals generally do differ, SSE does not:

RY S
U = RPY + RUS∗UT Y = US∗UT Y

(Y S
U )T RY S

U = Y T PUS∗UT Y + Y T U(S∗)T UT US∗UT Y

= Y T U(S∗)T S∗UT Y = Y T UUT Y = Y T RY.

This ability to derive apparently different data sets with the same estimates was noted
in [51], where its relevance to statistics education was emphasised. The invariance of the
fit, SSE and the parameter estimates, implies that the standard statistical tests will also
be invariant for Y S

U , and hence that ter Braak’s strategy cannot be used with transformed
full-model residuals.

Returning to Huh and Jhun’s original proposal [50], where the reduced model residuals
are transformed, the new ‘permuted’ data is given by

Y S
HJ = Y S

U0
= P0Y + U0S0U

T
0 Y,

19Huh and Jhun [50] argue that the reduced dimensionality of the permutation space (from n to
rank(R) = n − rank(X), or n − rank(X0) for E∗

0 ) is intuitively sensible, since it precludes tests where
DFR is too low.

20We have taken a slightly different path to the original paper; Huh and Jhun initially considered the
regression of UT

0 Y on UT
0 X1 [50], leading to B̂1 = (XT

1 R0X1)
+XT

1 R0Y , as for (A.27), then they proceed
to the back-transformation interpretation; they do not consider the use of full-model residuals.
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using a rank(R0)× rank(R0) permutation matrix S0. Jung et al. [43] proposed exactly the
same procedure in the context of ANOVA designs. For this new data, only the parameters
in a nuisance-only model (Y = X0Br +E) are invariant. The invariance of B̂r follows from
the orthogonality of X0 and U0, with a very similar derivation to the full-model invariance.
The variability of the interest-parameters under permutation allows the construction of a
(non-trivial) permutation distribution.

Although the nuisance-only model has invariant B̂r, the nuisance-parameters B̂0 within
the full model are not invariant, because although the orthogonality gives

[X1 X0]T U0 =

[
XT

1 U0

XT
0 U0

]
=

[
XT

1 U0

0r0×n

]
,

the pseudo-inverse mixes the zero and non-zero rows together. However, if the interest is
explicitly orthogonalised with respect to the nuisance, changing the original unpermuted
nuisance-parameters, then the new B̂∗

0 is invariant. The special case of this result arising
for a single interest covariate was shown in Huh and Jhun’s discussion of the ‘ancillarity’
of the nuisance in such a situation [50]. The results presented at the end of section A.4.8
regarding the pseudo-inverse of X∗

p allow us to extend this result to the general (possibly
multivariate) model.

One might intuitively expect that Huh and Jhun’s use of Kennedy’s permutation strat-
egy would share the flaw discussed in section 2.4.3. However, by considering the explicitly
orthogonalised version, it is apparent that the problem of Kennedy’s method not adjusting
for reintroduced correlation between the permuted orthogonalised data and the nuisance
will not occur, because of the above-noted invariance of B̂∗

0 — orthogonalisation of the
data will mean B̂∗

0 = 0 and remains at zero after permutation. An alternative way of show-
ing this is to consider a Freedman-Lane style permutation strategy using the transformed
residuals. First, as with FL, we note that adding back the fitted nuisance is redundant,
so we may consider ES

HJ = U0S0U
T
0 Y . Now, consider the formulation of FL in (2.7),

R0E
S
FL : R0X1 : Ir1 .

Replacing ES
FL with ES

HJ , post-permutation re-orthogonalisation has no effect because
R0U0 = U0 gives

R0E
S
HJ = R0U0S0U

T
0 Y

= U0S0U
T
0 Y = ES

HJ .

Therefore Freedman-Lane and Kennedy style permutation tests are equivalent with Huh
and Jhun’s transformed residuals. A third interpretation of this fact is possible using
a more geometric argument, considering univariate data for simplicity. R0y lies in a
rank(R0)-dimensional subspace of Rn, however, permuting it can take it out of this sub-
space, meaning that a second orthogonalisation is necessary; on the other hand UT y is a
general vector in the reduced space Rrank(R0), permutation therefore cannot ‘add dimen-



CHAPTER 2. PERMUTATION TESTING 84

sionality’ in the same way.
Interestingly, the suitability of Kennedy’s method means that for the Huh-Jhun per-

mutation test, cT b̂ can be used in place of t with equivalent results. Furthermore, since
SSR = Y T R0Y is invariant for Huh-Jhun, SSE and SSH = SSR − SSE are both permu-
tationally equivalent to F for more general univariate contrasts (recall section 2.2.2).21

A Shuffle-Z like variant of Huh-Jhun

We now derive a novel alternative formulation of Huh and Jhun’s method, in which only
the design matrix needs to be modified, in common with Shuffle-Z and Smith’s method.
We already have the following equivalent models:

ES
HJ : X : C,

ES
HJ : [X1 X0] : Cp,

ES
HJ : R0X1 : Ir1 .

The last of these can be expanded to

U0S0U
T
0 Y : R0X1 : Ir1 , (2.15)

with estimated parameters

B̂S
1 = (XT

1 R0X1)+XT
1 R0U0S0U

T
0 Y,

B̂S
1 = (XT

1 R0X1)+XT
1 U0S0U

T
0 Y,

and full model sum of squares

SSS
E = Y T U0S

T
0 UT

0 R∗
1U0S0U

T
0 Y

= Y T U0S
T
0 UT

0 (I − P ∗
1 )U0S0U

T
0 Y

= Y T U0S
T
0 UT

0 U0S0U
T
0 Y

− Y T U0S
T
0 UT

0 P ∗
1 U0S0U

T
0 Y

= Y T R0Y − Y T U0S
T
0 UT

0 P ∗
1 U0S0U

T
0 Y.

Now, if we pre-multiply data and design in model (2.15) by U0S
T
0 UT

0 , noting ST
0 S0 = I,

we obtain

U0U
T
0 Y : U0S

T
0 UT

0 X1 : Ir1 ;

B̂† = (U0S
T
0 UT

0 X1)+U0U
T
0 Y

= (XT
1 U0S0U

T
0 U0S

T
0 UT

0 X1)+XT
1 U0S0U

T
0 U0U

T
0 Y

= (XT
1 U0U

T
0 X1)+XT

1 U0S0U
T
0 Y ;

= B̂S
1

21In the multivariate case the invariance of |SSR| means Wilks’ Λ is permutationally equivalent to |SSE |,
but |SSH | 6= |SSR| − |SSE |, so |SSH | is not equivalent to Λ.
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and

SS†E = Y T U0U
T
0 (I − P †)U0U

T
0 Y

= Y T R0Y − Y T U0U
T
0 P †U0U

T
0 Y.

P † = (U0S
T
0 UT

0 X1)(U0S
T
0 UT

0 X1)+

= U0S
T
0 UT

0 X1(XT
1 U0S0U

T
0 U0S

T
0 UT

0 X1)+XT
1 U0S0U

T
0

= U0S
T
0 UT

0 R0X1(XT
1 R0X1)+XT

1 R0U0S0U
T
0

= U0S
T
0 UT

0 P ∗
1 U0S0U

T
0 ;

SS†E = Y T R0Y − Y T U0U
T
0 (U0S

T
0 UT

0 P ∗
1 U0S0U

T
0 )U0U

T
0 Y

= Y T R0Y − Y T U0S
T
0 UT

0 P ∗
1 U0S0U

T
0 Y

= SSS
E .

Since this model contains only the interest covariates, invariance of B̂S
1 and SSE implies

complete equivalence.
Finally, note that the above regression formulation can be written

R0Y : X†
1 : Ir1

where X†
1 = U0S

T
0 UT

0 X1, and that this (A.27)-model can be written in (A.25)-form as

Y : [X†
1 X0] : Cp.

Where we see firstly that the data has been left unmodified, and secondly that the nuisance
is also in its original form. Hence O’Gorman’s requirements for the adaptive test are sat-
isfied [47]. Comparing the above to Shuffle-Z and Smith’s method, observe that instead of
shuffling either Z or R0Z with ST , we have instead modified the original interest-covariates
using a rank(R0)-dimensional permutation ST

0 sandwiched between transformations to and
from the reduced permutation space. As for Shuffle-Z and Smith, there are computational
benefits from not having to recompute R0 for each permutation.

It might initially appear that a similar trick could be possible with Freedman and
Lane’s method, however, this is not the case. Considering the formulation in (2.8), one
cannot transfer the permutation from R0SR0Y to the design, because it is not possible to
expose S on the left hand side, since R0 has no left-inverse (recall from section A.3 that
the pseudo-inverse recovers the left-inverse where it exists, but that the pseudo-inverse of
a projection matrix is itself). Considering instead the formulation in (2.6), the following
manipulation is possible

ES
0 : [X1 X0] : [Ir1 0r1×p]T

SR0Y : [X1 X0] : [Ir1 0r1×p]T

R0Y : ST [X1 X0] : [Ir1 0r1×p]T

Y : [ST X1 ST X0 X0] : [Ir1 0r1×p 0r1×p]T , (2.16)
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but leads to a new effective set of nuisance-covariates which must span the combined space
of [ST X0 X0], hence O’Gorman’s requirement is not met, and the computational efficiency
is reduced through needing to recompute the new RS

0 = I − [ST X0 X0][ST X0 X0]+ for
each permutation.

An interesting parallel between Freedman-Lane and Shuffle-Y can be drawn by trans-
ferring the permutation in equation (2.16) to the data:

SY : [X1 X0 SX0] : [Ir1 0r1×p 0r1×p]T . (2.17)

In this light, Freedman-Lane extends Shuffle-Y to adjust the permuted data for the per-
muted (as well as the original) nuisance.

Using a similar derivation, not included here, it is also possible to show that model
(2.15) is equivalent to

S0U
T
0 Y : UT

0 X1 : Ir1 . (2.18)

This provides an interesting comparison to Kennedy’s method, with respect to which it
merely replaces R0 by UT

0 . The key point is that the reduced dimensionality of UT
0 Y

prevents S0 from re-introducing correlation with X0 (as discussed in section 2.4.3). A
second interesting point is that the reduced dimensionality means that if DFE is computed
for the above model, it is automatically reduced, in contrast to Kennedy’s method (see
the end of appendix section A.4.9).

Best Linear Unbiased Scalar-covariance residuals

At the start of section 2.4.4 it was noted that the ordinary least squares (OLS) residuals e

are the best linear unbiased (BLU) estimator for the unobservable true errors ε, but that
they have non-scalar covariance matrix. Huh and Jhun’s transformed residuals [50] are
also linear in the data, and unbiased in the following sense,22

E∗ = UT Y = UT (XB̂ + E) = UT E,

= UT (XB + E) = UTE ,

E[UTE − UT E] = UT E[E − E] = 0.

As shown earlier, these residuals also have covariance equal to a scalar multiple of an iden-
tity matrix. Theil therefore referred to such residuals as linear unbiased scalar-covariance
(LUS) residuals [49], and showed that such residuals must be based on an n × rank(R)
matrix satisfying UT X = 0, and UT RU = I.23 Although these transformed residuals have
lower dimensionality, this corresponds to the rank(R) dimensionality of the subspace of
Rn in which the OLS residuals lie. Furthermore, the norm of the transformed residuals
matches that of the OLS ones: for univariate data ‖e∗‖2 = yT UUT y = yT Ry = eT e =
‖e‖2. The above matrix U is non-unique; any orthonormal basis for the column-space of

22The full-model residuals are considered here for the sole reason of notational simplicity, none of the
properties are affected by the choice of X or X0 to derive the residual forming projection matrix.

23UUT = R is not a requirement, but can be proven [49] (pp.208–209), and similarly UT U = I.
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R satisfies the necessary properties.
Theil additionally showed [52] that a set of residuals can be found which were not

only LUS estimates, but were the best such estimate in a certain sense. Theil’s derivation
of these residuals (and a later simplification of the procedure, reproduced here [53]) was
based on partitioning a linear model with full column rank X into:

p rows
n-p rows

[
yα

yγ

]
=

[
Xα

Xγ

]
b +

[
εα

εγ

]
=

[
Xα

Xγ

]
b̂ +

[
eα

eγ

]
(2.19)

whereupon the BLUS residuals are given by the n− p vector

ε̂γ = eγ −XγX−1
α

(
H∑

h=1

dh

1 + dh
ghgT

h

)
eα (2.20)

where d2
h are the square roots of the H eigenvalues of Xα(XT X)−1XT

α which are less than
one (out of p total), and gh are their corresponding eigenvectors.

These residuals have the minimal value of the following optimality criterion

E[(εγ − ε̂γ)T (εγ − ε̂γ)] = tr (V [εγ − ε̂γ ])

= 2σ2
p∑

k=1

(1− dh). (2.21)

The BLUS residuals are unique [49], for a certain partitioning in (2.19), however, this
partitioning itself is arbitrary. Depending on the purpose for which the BLUS residuals are
required, different partitions may be preferred. If testing for autocorrelation it is logical
to choose a block of adjacent rows for the γ partition, for example the last n − p [54].
If testing for heteroskedasticity in a time-series then choosing the middle p rows for α is
likely to be most powerful since ε̂γ will then be estimated for the times furthest apart
[49]. For the purpose of permutation testing, there would seem to be no reason to favour
any partitioning a priori. Note though, that some partitions may not be valid for the
expression (2.20) since it is possible for a full column rank X to produce a rank-deficient
sub-matrix Xα (indeed, this is quite likely in categorical ANOVA-like designs). It turns
out that the optimum value achieved in (2.21) is dependent on the chosen partitions, which
provides one objective way to choose a partitioning for a permutation test based on BLUS
residuals: evaluate (2.21) (or similar; see below) for all nCp possible partitions and select
the ‘best’. The value of σ is unknown, but immaterial for the comparison of different
partitions, which can simply consider the criterion divided by 2σ2.

In [53], Theil argued that the following stronger optimality criterion was satisfied.
Define Σ = V [ε̂γ − εγ ]; for any other estimate ε̃γ with Σ̃ = V [ε̃γ − εγ ], ∆ = Σ̃ − Σ ≥ 0
(i.e. ∆ is positive semi-definite). However, it was later shown [55] that while the ordered
eigenvalues satisfied λi(Σ̃) ≥ λi(Σ) for all i, this did not imply the eigenvalues of the
difference λ(Σ̃ − Σ) were positive semi-definite; therefore ∆ is not necessarily a positive
semi-definite matrix.

While Theil showed [49] that ε̂γ can be represented in the form UT
Be = UT

By, the
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procedure for determining UB is far from straightforward. A simpler derivation was given
by Chow [56], who defined Xδ = XγX−1

α and showed

UT
γ = (I + XδX

T
δ )−1/2

UT
α = −UT

γ Xδ (2.22)

UT
B = [UT

α UT
γ ].

More recently, a derivation with greater generality has been given by Magnus and
Sinha [57]. While Theil assumed a partitioning of the rows into two sets, it is possible
to determine residuals UT

By that have a scalar covariance matrix and are the best linear
unbiased estimate of MT ε for an n × rank(R) matrix M satisfying rank(MT RM) =
rank(R). This constraint ensures that the full rank square matrix MT RM has a unique
positive square root. Magnus and Sinha prove in their appendix that

UB = RM(MT RM)−1/2, (2.23)

and that the optimal value of the criterion can be expressed as24

V
[
UT

BY −MT ε
]

= σ2(I + MT M − UT
BM −MT UB). (2.24)

In the special case that M selects certain error components (rows of multivariate E), as
assumed in Theil’s original partitioning framework, MT M = I. Considering the scalar
criterion as suggested by [55], the above then simplifies to

σ2tr
(
2I − UT

BM + MT UB

)
= 2σ2(n− p)− 2σ2tr

(
MT UB

)
= 2σ2(n− p)− 2σ2tr

(
MT RM(MT RM)−1/2

)
= 2σ2(n− p)− 2σ2tr

(
(MT RM)1/2

)
,

which appears similar to the sum of square-root eigenvalues that occurs in (2.21). We have
empirically verified that these two expressions are equal, although algebraically showing
their equivalence is not straightforward. As noted above, the expression in (2.20) assumes
Xα is invertible; (2.23) does not require this, nor even that X is full column rank. If one
considers adding a dependent column to an existing full column rank X, it is clear that
R will not change, and hence nor will the BLUS residuals derived using (2.23).

Here, we show a novel (though straightforward) simplification of the above results,
stemming from the fact that MT RM = (RM)T (RM) and hence the square roots of its
eigenvalues are the singular values of RM . If we consider the compact singular value

24The authors of [57] appear to be either unaware of or unconvinced by [55], since they consider the
matrix form of the criterion.
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decomposition of RM = URMDV T ,25 we have the optimality criterion as

E[‖UT
BY −MT ε‖] = σ2tr

(
I + MT M − 2D

)
. (2.25)

Furthermore, we can simplify the expression for the BLUS-forming matrix:

UB = RM(MT RM)−1/2

= URMDV T (V D2V T )−1/2 (2.26)

= URMDV T V D−1V T (2.27)

= URMV T . (2.28)

This provides a helpful comparison to the standard Huh-Jhun procedure, for which we
can choose the non-unique matrix U from the compact singular value decomposition of R;
the BLUS residuals instead use the unique UB = URMV T derived from the compact SVD
of RM ,26 for a chosen matrix M .

One might actually expect that Huh and Jhun’s LUS residuals and Theil’s BLUS
residuals are so similar that they would result in identical permutation tests. Indeed,
they are both in one-to-one correspondence, since either may be transformed back to the
OLS residuals and from there into the other.27 However, we have empirically verified
that Y S

HJ = Y S
U0

and Y S
UB0

give different results for the interest-parameters and SSE , and
different permutation distributions over a large number of such S. This non-equivalence is
closely related to a property discussed by Commenges [7], that transformations could pre-
serve exchangeability and yet lead to different permutation tests. For example, compound
symmetric data is exchangeable under a Gaussian assumption, and may also be whitened
to i.i.d. data if its covariance matrix is known, surprisingly, the two sets of exchangeable
data produce different results.

Having extended Theil’s BLUS residuals to more general prediction of MT ε using UT
By,

Magnus and Sinha [57] also considered the converse question: given a linear unbiased
estimator UT

L y = UT
L e producing a scalar covariance matrix UT

L RUL = I, does UL give the
BLUS estimator of MT

L ε for some matrix ML? Assuming C(UL) ⊆ C(R), they showed
that in fact a whole class of ML exists, satisfying

ML = ULQ + XT, (2.29)

where T is an arbitrary matrix and Q is a symmetric positive definite matrix. This means
that any non-unique U in Huh and Jhun’s permutation method is actually the unique
BLUS residual forming matrix for some combination of the errors MT

L ε. This suggests

25Using URM and D to avoid confusion with the already-defined U and the permutation matrix S, and
noting that RM is assumed to be full column rank, which means V = Vf and so V V T = I in addition to
the usual V T V = I.

26The uniqueness of URMV T despite the non-uniqueness of its factors URM and V , is not immediately
obvious, but the above derivation reproduces Theil’s unique BLUS residuals from the original procedure
[49].

27For example EB = UT
B E = UT

B UE∗ where E∗ = UT E. This point was made by Magnus and Sinha in
relation to BLUS residuals and recursive residuals (discussed later) [57].
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that for permutation testing, the conventional BLUS estimate for some selection of the
errors might not be superior to any of the LUS solutions, U . However, the BLUS residuals
are easier to interpret for M chosen a priori. A further advantage to using UB for a
specified (or optimally selected) partitioning, is that it is uniquely reproducible, while
different algorithms or computer platforms could find different U from the SVD of R.

The BLUS residuals were originally derived for a univariate regression model. How-
ever, given the BLUS residual forming matrix UB, one can just as easily compute UT

BY

for multivariate data Y . The properties of linearity and unbiasedness are clear. Using
the Kronecker tensor product and vectorisation operator [58] the multivariate residuals
vec (E) have covariance matrix V ⊗ I, or vectorising by rows, vec

(
ET
)

has block diagonal
covariance I ⊗ V as intuitively expected. The vectorised product vec (RE) has covariance
matrix V ⊗ R, while vec

(
UT

BE
)

restores this to V ⊗ I [59]. The optimality criterion will
be satisfied for each column of Ê with respect to the corresponding column of E (this
follows logically from the fact that the matrix UB depends only on X (or X0) and not on
the data. BLUS residuals have been used for multivariate data to address the problem of
outlier detection [60].

Recursive residuals

Another type of transformed residual has also been proposed in the literature: ‘recursive
residuals’ are defined in terms of the prediction error from models based on the data
(and design) available ‘before’ the current observation. They are therefore most clearly
interpretable for situations where a natural ordering of the data exists. Recursive residuals
are reviewed by Kianifard and Swallow, who describe them as ‘standardised one-step-ahead
forecast errors’ [61]. They can also be considered within a more general class of ‘conditional
residuals’ [62].

Denoting the sub-vector of univariate data from y1 to yi by y≤i (so that y≤n = y), the
corresponding sub-matrix of the design as X≤i, and the ith row of the design matrix as
xT

i , the recursive residuals ei
R can be obtained as follows:

b̂≤i = X+
≤iy≤i i = rank(X), · · · , n− 1 (2.30)

v2
i = 1 + xT

i

(
XT
≤i−1X≤i−1

)−1
xi i = rank(X) + 1, · · · , n, (2.31)

ei
R =

yi − xT
i b̂≤i−1

vi
i = rank(X) + 1, · · · , n. (2.32)

where σ2v2
i is the variance of the forecast error yi−xT

i b̂≤i−1. Only n−rank(X) = rank(R)
recursive residuals can be computed (the same as the number of BLUS residuals) because
rank(X) data points are required before the first b̂≤i can be estimated.

The recursive residuals defined above have the same distribution as the unobservable
errors, i.e. with the usual assumptions, they are independently and identically distributed
as N (0, σ2). The vector of recursive residuals can be written as eR = UT

Ry, because
each recursive residual in (2.32) depends linearly on the current and past data. Since the
recursive residuals are linear in the data, unbiased (UT

RX = 0 is easily observed), and
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have a scalar covariance matrix (implying UT
RUR = I and URUT

R = R), they are within
Theil’s class of LUS residuals [57]. The equation in [61] for UR (their C is our UT

R ) has
unfortunately been incorrectly typeset. The correct expression can be observed from (2.32)
above; for completeness, we provide the following verified MATLAB code:

UR = zeros(n, n-k);

for r = k+1:n

invprod = pinv(X(1:r-1, :)’ * X(1:r-1, :));

UR(1:r-1, r-k) = - X(1:r-1, :) * invprod * X(r, :)’;

UR(r, r-k) = 1;

UR(:, r-k) = UR(:, r-k) / sqrt(1 + X(r, :) * invprod * X(r, :)’ );

end

The expression in (2.32) assumes that X and all its sub-matrices X≤i are full column
rank. Tobing and McGilchrist derived much more complicated expressions [63], using
recurrence-relations for efficient updating of the various terms involved, with adjustments
included to allow for the ranks of the sub-matrices to change within the recurrence for-
mulae. The same authors also allowed for multivariate data. For the current purpose,
the number of permutations (and voxels for imaging data) are much greater than n, so
näıve computation using the above algorithm suffices. We have also observed that simply
using the pseudo-inverse (pinv in the MATLAB code) results in a matrix which satisfies
all the basic properties, as would be expected, since the fundamental idea is to predict yi

using y≤i, and this presents no difficulties with rank-deficient designs. Similarly, predicting
multivariate data poses no problems, suggesting that the obvious UT

RY retains the usual
recursive residual interpretation, as well as clearly satisfying the LUS properties.

Comparing recursive residuals to BLUS residuals, note that since recursive residuals
are in Theil’s LUS class while BLUS are optimal within this class, it might initially seem
obvious that BLUS would be superior. However, this is not necessarily true for two main
reasons. First, as pointed out in [61] the optimality of (2.21) does not imply that tests
based upon BLUS residuals will be more powerful than tests based on other residuals with
worse mean squared approximation error. For example, in testing for a change in the
true regression model part way through a time series (an example of a ‘structural break’),
BLUS outperformed recursive residuals for a test known as cusum, while recursive residuals
showed higher power with cusum-of-squares [57]. Secondly, as mentioned when comparing
BLUS and Huh-Jhun residuals earlier, Magnus and Sinha’s result (equation 2.29) implies
that the LUS recursive residuals contain the same information as the BLUS residuals, and
are in fact the BLUS predictor of some combination of the errors [57]. This is of particular
relevance to permutation testing, where the ability to select a particular set of residuals
for BLUS estimation seems to have little value; arguably, a more mixed compound of the
errors might be preferable. Conversely, the strongest arguments in favour of recursive
residuals for applications other than permutation testing tend to be based on their more
natural interpretation and more obvious correspondence with the original data [61]. For
example, Magnus and Sinha mention the BLUS residuals going ‘out of fashion [because]
recursive residuals have a more intuitive appeal’ and are believed to be preferable for
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testing structural breaks [57]. Tobing and McGilchrist point out that if one considers
updating the estimated regression parameters as each new observation is included, the
update is proportional to the recursive residual [63], which seems like an attractive property
for the detection of outliers in time-series data. However, these intuitive advantages aren’t
necessarily upheld in practice; from their Monte Carlo power studies, Magnus and Sinha
conclude that BLUS are preferable to recursive residuals, even when testing for a structural
break, and they argue that the preference for recursive residuals in recent literature is
unjustified [57]. Furthermore, for permutation testing, much of the time-series based
intuition behind recursive residuals is lost. The recursive residuals seem to have been
developed further with regard to dependent data, for example [63] considers their use
together with REML estimation of the covariance components, however, this is not of
particular interest for the permutation-testing application at hand, where computational
demands would be too great for such a combination.

One practical difference between recursive residuals and Theil’s BLUS residuals, is
that when the latter are computed for a matrix M which selects rows, they do not depend
on the order of the selected or unselected rows, but only on which rows are selected.
Consider a rank(R) permutation matrix SB, post-multiplication of M by SB shuffles the
columns, which effectively permutes the rows containing ones, without allowing them to
be exchanged with the earlier zero-rows. Because SB is orthogonal, if the the square root
and inverse are considered via the eigen-decomposition of MT RM = V D2V T , they change
only the orthogonal V and so can be taken outside the square root and inverse operations,
which affect only D2. From (2.23),

US
B = RMSB(ST

BMT RMSB)−1/2

= RMSB(ST
BV D2V T SB)−1/2

= RMSBST
B(V D2V T )−1/2SB

= RM(MT RM)−1/2SB = UBSB,

showing that the permutation only permutes the obtained residuals without changing
their values: (US

B)T Y = ST
BUT

BY = ST
BEB. While it is clear from (2.32) that the recursive

residuals are dependent both on the choice of rows to exclude and on the order of the
retained rows.

A second difference relevant to permutation testing is that the partition for the optimal
BLUS residuals can be objectively selected from a given set (possibly from all selections,
though obviously not from all general matrices M), e.g. using (2.25), while the recursive
residuals have no expression for the ‘quality’ of their chosen reordering of the rows. With
no a priori reason to select a particular order for the recursive residuals, one could either
use a random ordering or (perhaps preferable for reproducibility) simply use the original
order, with the first rank(X) errors not estimated.

To the best of our knowledge, neither the BLUS nor recursive residuals have been
investigated in a Huh-Jhun style permutation test (though Commenges seems to suggest
such a strategy with Theil’s BLUS residuals [7]), let alone directly compared. Bootstrap
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tests have been proposed using recursive residuals [64] and BLUS residuals [65], though we
are again unaware of any direct comparisons (Vinod seems to prefer recursive to BLUS,
though provides little in the way of evidence [64]). Grenier and Léger specifically con-
sidered the multiple regression problem, and performed Monte Carlo comparisons of the
BLUS residuals to OLS residuals, and also to ‘standardized’ and ‘studentized’ residuals
[65]. They concluded that BLUS were as good and sometimes better than the standardized
and studentized alternatives. There are two interesting differences between the bootstrap
formulation in [65] and the Huh-Jhun permutation test,28 firstly, instead of sampling (with
replacement) rank(R) transformed residuals and back-transforming them to produce n

modified residuals, Grenier and Léger directly sample n values from the rank(R) trans-
formed residuals. Obviously this is not feasible within the permutation testing framework,
but it could be of interest to compare the two bootstrap approaches in future work. The
second difference is that [65] uses centred BLUS residuals. For a model containing a con-
stant term (in C(X), even if not explicitly), the OLS residuals are zero-mean; somewhat
surprisingly, the BLUS residuals are generally not. Grenier and Léger do not explain their
preference for centred residuals, and it seems very slightly flawed for two reasons: the
bootstrap samples from centred residuals will generally not be zero mean themselves (only
permutations, which can occur as special cases of sampling with replacement, would guar-
antee this); and the centring process itself will colour the decorrelated BLUS residuals with
a compound symmetric correlation structure.29 While the compound symmetry does not
violate exchangeability, there seems no reason to expect it to be helpful. In any case, the
back-transformed permuted transformed residuals will be zero mean, because XT U = 0
implies that the constant term (within the column space of X) is also orthogonal to U and
hence to USUT Y . The same will be true for the reduced-model transformed residuals if
the constant term remains in the span of X0.

Finally, note that all these transformed residuals are only exchangeable in the exact
sense if they are derived from (exchangeable) normally distributed data, for other dis-
tributions, they achieve only second-moment exchangeability [7]. After considering both
linear and non-linear transformations towards exchangeability, Commenges states that for
correlated non-normal data, exact permutation tests are unavailable [7].

Having presented three differently motivated strategies for creating i.i.d. residuals, it
is natural to wonder whether slightly more general transformations to second-moment
exchangeability could be superior. Commenges [7] proves that linear transformations
from the OLS residuals to second-moment exchangeable residuals Te must be of the form:
T = GQ+M , where G is an m×m exchangeable matrix, Q is an m×n matrix whose rows
form an orthonormal basis for any subspace of N(XT ), M is a matrix whose rows are in
C(X), and m can be either rank(R) or rank(R)− 1.30 In terms of linear transformations
from the data of the form UT

C y, since e = Ry, MR = 0, and QR = Q we must have

28In fact, Huh and Jhun [50] also presented a bootstrap test using their LUS residuals with back-
transformation as discussed here.

29Centring can be enacted with the projection matrix M̄ = I−1n×11
+
n×1, which results in the covariance

matrix changing from σ2I to σ2M̄ .
30The larger option of rank(R) is obviously preferable for limited amounts of data, and is consistent with

the dimensionality of the BLUS and recursive residuals.
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UT
C = GQ, where we observe that the transformed residuals considered here are obvious

special cases with G = I but different bases Q. Since the class of matrices G is very limited
(G = aI + b1n) it seems unlikely that other linear transformations to exchangeability will
be dramatically different.

2.4.5 Summary of permutation strategies

Table 2.1 summarises all of the permutation testing methods that are analysed in the
Monte Carlo evaluations in section 2.5. Several variations on the different methods have
been commented on elsewhere in this chapter. For completeness, the most important ones
are reiterated in the table, after their primary forms. The alternative version of the exact
test is listed to emphasise that under a true alternative hypothesis, the exact test still
assumes the null holds and therefore assumes that E + X1B1 retains the exchangeability
property of E .

We have attempted to give the primary reference for each method;31 where a second
reference is also given, this is typically a more recent one which we have found to be the
most useful. Note that the reference for Smith’s method [47] only mentions it in passing;
this chapter is believed to provide the first detailed consideration of it. A reference is not
given for the optimal BLUS implementation of HJ, which we have termed Theil’s method,
nor for the recursive residual implementation, Re, since these are presented here for the
first time.

2.5 Monte Carlo evaluation studies

Several authors have used Monte Carlo simulation to evaluate the performance of alter-
native permutation testing approaches under different conditions, e.g. [1, 8, 9, 39, 40, 50].
However, these studies have had certain limitations which motivate further investigation.

Each paper has typically only evaluated a subset of the available methods. In particu-
lar, Anderson and Legendre’s simulations [8] are probably the most thorough in terms of
the number of scenarios considered, but they have deliberately excluded several methods
including Shuffle-Z on grounds of design ancillarity, as discussed in section 2.4.2; their
study also appeared before transformed-residual strategies were proposed [7, 50]. Huh
and Jhun [50] mentioned both Kennedy’s method and Freedman-Lane, but seem unaware
of Anderson and Legendre’s demonstration that Ke is invalid, and compare their new
approach only to Ke and not to the superior FL method. A later paper compared the
Huh-Jhun technique to FL, tB and SY, but only in the context of pure ANOVA designs
[43]. The latest edition of Manly’s text-book [1] appears to investigate the most complete
set of methods, and includes some comparisons of Huh and Jhun’s method to FL and
SY for regression, however these simulations have other short-comings mentioned below.
Naturally, the novel methods of Sm, Th, and Re do not appear in any existing evaluations.

31Still and White [42] arguably developed the method commonly known as Freedman-Lane earlier,
though in the context of ANOVA instead of general regression. Judging from a citation by Manly [1], the
method may have been developed even earlier by Beaton [66], though we have been unable to obtain this
conference paper.
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Method Abbr. Ref. Data Interest Nuisance Notes

Exact Ex [40] S(Y −X0B0) X1 X0 (a)
S(E + X1B1) X1 X0

Freedman- FL [41] [40] S(Y −X0B̂0) X1 X0 cf. Ex
Lane SR0Y X1 X0 cf. AY

R0SR0Y R0X1 cf. Ke

ter Braak tB [45] [8] SRY X1 X0

Huh-Jhun HJ [50] [7] U0S0U
T
0 Y X1 X0 (b)

Y U0S
T
0 UT

0 X1 X0 cf. SY
S0U

T
0 Y UT

0 X1 cf. Ke

Theil Th UBS0U
T
BY X1 X0 (c)

Rec. Res. Re URS0U
T
RY X1 X0 (d)

Shuffle-Z SZ [38] [1] Y ST X1 X0

Smith Sm [47] Y ST R0X1 X0

Shuffle-Y SY [67] [1] SY X1 X0

Y ST X1 ST X0 cf. SZ

Adjust-Y AY [46] [9] SR0Y X1 (e)

Kennedy Ke [39] [40] SR0Y R0X1 (f)

(a) Unobservable true B0 used; Y −X0B0 6= R0Y
(b) U0 comes from the compact SVD of R0

(c) UB is from (2.28) for an optimal selection matrix under (2.25)
(d) UR gives recursive residuals based on X0, dropping first r0 rows, see § 2.4.4
(e) This method does not give the usual B̂ for S = I
(f) DFE must be reduced to account for the DF removed by R0

Table 2.1: The eleven permutation strategies featured in the Monte Carlo evaluations. S
and S0 are permutation matrices; S is n× n while S0 is rank(R0)-dimensional.

All of the above-mentioned studies feature only a univariate dependent variable. An-
derson and Robinson state that their results ‘can be readily extended to the case of multi-
variate response’ [40] but they present no simulations for such cases. Interestingly, the same
paper includes a comment that parametric multivariate tests are typically less robust to
non-normality [40], which should heighten interest in evaluating their permutation-based
counterparts.

The literature has also focussed on designs with only one interest covariate, and of-
ten a single nuisance, for example [9] evaluates only the single-interest, single-nuisance
case, while [8, 40] consider multiple nuisance-covariates but only one interest. While the
theoretical extension of the permutation test from t- to F-tests over multiple covariates
of interest is trivial, it is not a foregone conclusion that the practical performance of the
different measures will show the same patterns.

Furthermore, all studies of which we are aware consider either the basic regression
situation with continuous interest and nuisance variables (e.g. [8, 9, 39, 40, 50]) or they
consider a pure ANOVA scenario without nuisance-covariates (e.g. [37, 40, 43]). These
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simulations therefore do not include the following realistic situations with potentially im-
portant practical relevance: regression with continuous interest variable(s) but categorical
(e.g. gender) nuisance(s); regression with continuous interest and a mixture of continu-
ous and categorical nuisance-covariates; ANCOVA, or regression with categorical interest
variable(s) and either continuous or mixed nuisance covariates.

Various special-case simulations have been proposed to highlight problems with par-
ticular methods, for example Kennedy and Cade [9] were the first to suggest an interesting
scenario under which they expected Manly’s Shuffle-Y method [1] to perform poorly: if
the nuisance-covariate contains an unusual ‘outlying’ value, but the data is generated from
the fitted nuisance with additive errors so that there is no real outlying measurement, then
after the data are shuffled the nuisance no longer explains the unusual value in the data,
which therefore becomes a genuine outlier. We refer to this as the presence of a ‘pseudo-
outlier’. Other extreme cases include severely skewed error distributions such as cubed
exponential [8], or designs with very low degrees of freedom. Often, these special cases
have been considered in isolation, but their combinations have not always received such
thorough attention. Anderson and Legendre have carried out the most exhaustive experi-
ments in this sense [8], though they have not considered e.g. multiple nuisance-covariates
including one with a pseudo-outlier.

Another limitation is that many studies have used relatively few random permutations.
For example, 999 permutations (plus the original) has been a common choice [8, 9, 40].
Several of Manly’s comparisons use just 99 randomisations [1]. As shown in section 2.5.3,
1000 permutations is not really sufficient for accurate permutation test p-values. A related
point is the number of simulated data-sets, and whether different random designs were
simulated or whether only the errors were randomly sampled and the designs fixed. For
example Kennedy and Cade’s simulations [9] and some of Manly’s [1] appear to have used
a single design with respectively 1000 and 10,000 randomly generated sets of errors. It is
clear that multiple designs must be considered in order to avoid accidentally unrealistic
situations biasing the results. Furthermore, it seems intuitively reasonable that each design
should be tested with multiple sets of errors for the same reason, although this approach
does not appear to have been used in the literature.

Lastly, note that some studies have evaluated only size, and not power, e.g. [9, 40]. It
may seem natural to expect that tests which are closer to exact under the null hypothesis
(i.e. only just valid, rather than very conservative) will be more powerful when the null
hypothesis is false. However, according to Manly (p.192) [1], a test which has fewer than
expected false positives under the null hypothesis is not necessarily less powerful under
the alternative hypothesis. It is therefore necessary to separately evaluate power.

Here, we perform a wide-ranging set of Monte Carlo evaluations, attempting to address
the limitations described above, and including a larger number of permutation methods
than any other single comparison in the literature. Following the main study into the
different GLM permutation methods, two minor experiments are performed to investigate
related aspects. Firstly, results from Anderson and Robinson [40] regarding correlations
among the statistics for some of the permutation methods are extended to a greater number
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of methods and simulations. Secondly, investigations are carried out into two particular
questions regarding the number and type of permutations sampled.

2.5.1 Linear model permutation techniques

Experimental setup

Data is generated from the following linear model:

Y = X1B1 + X0B0 + E . (2.33)

The data is n×m, and there are r1 interest and r0 nuisance covariates. There is no loss of
generality in having separate interest and nuisance partitions, compared to the apparently
more general case of an arbitrary design with an estimable contrast implicitly defining the
interest and nuisance spaces. This is explained in appendix A.4.8, which shows that an
equivalent partitioned form can be found for any estimable contrast.

Note that this generative model means that the true error E is available, along with the
true values of the interest and nuisance-parameters B1 and B0. The rows of E (elements
of ε in the univariate case) are independently and identically sampled, which ensures that
they are genuinely exchangeable. Three different error distributions are considered: the
standard normal, for which the parametric test should be optimal; a heavier-tailed t-
distribution on 5 degrees of freedom; a severely non-Gaussian highly skewed distribution,
raising standard mono-exponential samples to the third power. To evaluate the test size
for the various permutation strategies, the data are generated under a true null hypothesis
with B1 = 0r1×m, while to evaluate power the alternative hypothesis is true, with B1 =
δ1r1×m for scalar effect size δ. We decided to consider the following ranges of non-zero
effect sizes: δ ∈ {2, 4, 6, 8}. Although chosen a priori, the results a posteriori reveal a
wide range of powers from 4% to 97% being observed for the exact method, endorsing the
suitability of this choice.

The use of multivariate data and/or multiple interest covariates necessitate the use of
a two-sided test. For simplicity, a two-sided test is therefore also used in the univariate
and single-interest cases. The permutation testing methods are compared to parametric
results from the normal-theory F-test (or Rao’s F approximation in the multivariate case
— appendix A.4.4) which is abbreviated as PF in the tables and figures.

The most thorough Monte Carlo evaluations in the permutation-testing literature seem
to have used Ns = 10000 sets of simulated data [1, 8]. While some of these studies have
used single designs with 10,000 noise realisations [1], as argued above, we maintain that
multiple designs are required, and believe that using multiple error samples for each design
is preferable to ensure that all designs are evaluated reasonably well. We therefore elect
to use a total of 10,000 simulations, arising from 100 error realisations being simulated
for each of 100 randomly generated designs. Note that the same random design and error
realisations are used for evaluating each permutation method.32 In contrast, an attempt

32The same random permutations are also employed within each method (excluding the reduced-space
permutation methods) with S or ST used for the data or design as appropriate.
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to compare different permutation methods evaluated for different designs and noise (e.g.
performing a meta-study of different papers) would be somewhat less valid due to the
random variation in designs and noise.33

As mentioned above, there is practical interest in determining the performance of the
different permutation testing methods in situations other than purely continuous regression
models or purely categorical ANOVA designs. A total of six types of design are considered
here, listed in table 2.2. Mixed interest seems of much lower practical relevance, and has
therefore not been included in the simulations. It should be noted that although cases
DM and DD are similar in form to ANCOVA and ANOVA, we have not used standard
factorial designs, nor considered interactions. The disadvantage of this is slight reductions
in realism and relevance, but the advantage is that a greater number of random designs are
available, which one might hope would include some challenging/pathological examples by
chance, thus stressing the methods more acutely.

Code Interest Nuisance Example/Note

CC Continuous Continuous E.g. Multiple regression
DC Discrete Continuous E.g. Two-sample t-test with age as nuisance
CM Continuous Mixed N.B. mixed only possible with r0 ≥ 2
DM Discrete Mixed E.g. Two-way ANCOVA
CD Continuous Discrete E.g. Regression, with gender as nuisance
DD Discrete Discrete E.g. Two-way ANOVA

Table 2.2: The six design matrix scenarios considered in the Monte Carlo evaluation.

We argue that the most extreme case of a categorical variable is a Boolean or binary
coding variable (for example indicating membership of one of two groups) and that a
more general discrete variable with more levels tends towards the case of a continuous
variable. For this reason, our discrete (and mixed) designs use binary covariates simulated
from round(rand(n,1)). The continuous covariates are simply drawn from the standard
uniform distribution using rand(n,1).

To generate continuous nuisance-covariate(s) correlated with the (continuous or dis-
crete) interest, we simply add the interest covariate (or the mean of multiple interest
covariates) to a new rand(n,r_0) matrix. This results in a relatively high expected cor-
relation of about 0.7.34 Correlations among multiple nuisance-covariates themselves are
irrelevant because all the permutation methods keep the rows of multiple nuisances to-
gether, and only the space spanned by multiple nuisance columns (and their relation to the
interest) affects the statistics. Discrete nuisance-covariates (including those in the mixed
nuisance cases) are not made to be correlated with the interest in this way, but are simply
generated from round(rand(n,1)) as the interest were.

For continuous- and mixed-nuisance designs, we add a severe outlier to the first (or
only) continuous nuisance-covariate, by replacing one of its values with the value of its

33In fact, while some of the error distributions are commonly chosen (most notably, standard normal and
cubed-exponential), no standardised method of generating random designs has appeared in the literature,
making meta-studies largely impossible.

34For two independent standard uniform vectors u1 and u2, V [u1] = 1/12, V [u1 + u2] = 1/6 and

V [u1, u1 + u2] = 1/12. Giving the correlation of u1 and u1+u2 as (1/12)/
p

(1/12)(1/6) = 1/
√

2 ≈ 0.7071.
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mean plus ten times its original standard deviation. As discussed earlier, this ‘pseudo-
outlier’ is part of the data-generation process, so there is no true outlier in the regression,
as long as the data and the nuisance covariates remain aligned. This was originally pro-
posed to challenge the Shuffle-Y method (which will effectively create real outliers in the
permuted data) [9], but will also affect methods based on the residuals, like FL, tB and
HJ, among others.

A potential problem when randomly generating many designs (particularly for the
discrete or binary cases), is that one or more of the interest columns could lie in the space of
the others or the nuisance, and hence be inestimable. Similarly, rank-deficiency within the
nuisance-covariates would change the space in which the transformed-residual strategies
perform their permutation. To avoid these issues, we repeatedly generate the interest
covariates until they are full-rank and non-constant. Then the nuisance covariates are
repeatedly sampled until the entire design matrix of interest, constant and non-constant
nuisance has full column rank. There is no loss of generality in having a full-rank design
(which implies that the separate interest and nuisance partitions will also be full-rank).
This can be observed from the fact that the regression equations depend only on the spaces
spanned by the full and reduced models (via the projection matrices R and R0), which
are unaffected by the removal of dependent columns.

The design-generation procedure described thus far is independent of n, m or the num-
ber of interest or nuisance-covariates (r1 and r0 respectively). However, in practice, limits
of computational time, and the requirement for relatively straightforward interpretation
of the results, restricts the number of cases which can be considered. We chose to perform
thorough univariate analyses in a particularly challenging small-sample situation, with
n = 6, where it is not practical to further lower the degrees of freedom by having more
than a single interest and a single nuisance-covariate (plus a constant term). Hence the
mixed designs cannot be considered, leaving a total of four designs crossed with three
error distributions, for 12 simulations in total. For n = 6, we evaluate the exhaustive set
of n! = 720 permutations. Note that even fewer permutations will be available for designs
with discrete interest and discrete nuisance; potentially as few as 30 in the case that both
the interest and nuisance consist of a single 1 (in different positions) among zeros.

The smallest n which allows 2 nuisance-covariates in addition to the constant while
maintaining the (n − 3)! number of available permutations for the transformed-residual
methods at a reasonable level is n = 9, which gives 720 reduced space permutations.
5040 permutations are available for the other methods (though again, potentially fewer
for discrete designs). Arguments could be made for randomly sampling 720 of these, for
a ‘fair’ comparison to the transformed-residual strategies. However, we believe that a
realistic comparison must accept that the residual-transformation reduces the available
permutations, hence for n ≥ 9 we randomly sample 5000 permutations, as this number is
relatively typical of common practice in neuroimaging. We evaluate n = 9 with r1 = 2,
r0 = 3 (including the constant nuisance). Univariate and multivariate (m = 2) data are
considered, for all six design cases, giving 12 scenarios per type of error. Only normal
errors are considered here, to maintain a manageable number of simulations.
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At higher sample sizes (perhaps more correctly, higher DFE , since large samples with
almost equally large numbers of covariates are still challenging) the performance of the
different methods has previously been shown to converge under reasonable circumstances.
For this reason, and to partially address the limited number of error distributions used
for n = 9, we chose to evaluate n = 16 with m = 1, r1 = 2, r0 = 3, and cubed-
exponential errors. Isolated partial simulations (e.g. with only the null hypothesis, or
with lower Ns) have also been performed for some other cases, for example n = 20 and
different numbers of interest and nuisance-covariates. However, no interesting patterns
were observed beyond those which apparent from the the situations described thus far, so
these partial simulations are not reported in the tables of results.

Performance metrics for evaluation

The fundamental characteristics of a classical statistical test are its size and power, or
equivalently, its probability of a false positive and the complement of its probability of
a false negative. These measures have been the most common performance metrics for
evaluating permutation tests. Typically, the size α at a particular a priori significance level
α0 is reported, often along with a confidence interval based on the number of simulations
(see table 2.13 in section 2.5.3), and such results are also presented below. However, from
preliminary experiments, it became clear that the performance of the different permut-
ation testing techniques (and the parametric F-test) can change for different values of the
arbitrary level α0. In particular, a plot of the observed α against the expected value over
a range of α′ is expected to be the straight y = x line under the null hypothesis, but the
different methods tend to have rejection rate curves which differ not only in their overall
slope or intercept with respect to this line, but also in their variability around it. For
this reason, we additionally present tables and figures of several summary measures. Bias
in accuracy is summarised by the mean of the error α − α′ over a range of α′ equal-or-
more-significant than the predefined significance level(s), i.e. from one or more values of
α0 down to zero. Variability in accuracy is summarised by the Root-Mean-Square (RMS)
of the above error over the same range(s). For simplicity, in the main experiment we focus
solely on α0 = 0.05, which seems to be the most common value in neuroimaging, however,
we will briefly investigate the impact of different α0 within the secondary experiment of
section 2.5.4.

Under a true null hypothesis, the p-values are expected to have a standard uniform
distribution — i.e. one expects 5% of them to be below 0.05, 10% of them to be above
0.9, etc. We therefore present a third performance metric for accuracy under the null
hypothesis, based on the Kolmogorov-Smirnov test statistic. The K-S test is one of the
most commonly used procedures for testing the hypothesis that a sample comes from a
specific distribution; its test statistic is simply the greatest distance between the empiri-
cal cumulative distribution function of the sample, F̂ (x), and the theoretical cumulative
distribution function, F (x), for the assumed distribution: k = maxx|F (X)−F0(X)|. Any
subset of p-values less than or equal to α′ will have a uniform distribution over the interval
(0, α′), and hence a linear CDF F (x) = x/α′ over this interval. Therefore, a K-S statistic
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can be computed over the range(s) of most relevant α′ from zero to one or more levels α0.
Power introduces two major complications with respect to size. Firstly, while the null

hypothesis specifies a unique value of the interest-parameters (assumed to be zero here),
the alternative hypothesis is true for infinitely many values. As described in section 2.5.1,
a representative set of effect sizes can be used for simulation, such that a broad range of
powers is observed. However, for ease of interpretation of the results, we usually sum-
marise these by averaging together the observed rejection rates α,35 As for size, we further
summarise by averaging over a range of α′ from zero to α0 = 0.05. The second complica-
tion with power is that the expected α at a given level α′ is no longer equal to α′, and is
generally unknown. Therefore we replace the mean and RMS of the error α−α′ from the
size summaries with the simple mean and standard deviation of α over the same range.

We also evaluate the correlations among different permutation testing methods (most
notably between the hypothetical exact test and the other tests). Firstly in terms of their
sets of p-values from the Ns simulations, and secondly, averaged over multiple simulations,
in terms of their sets of statistic values from the Np permutations.

Results and discussion

The following series of tables provides detailed results for the 11 permutation methods
summarised in table 2.1 together with results from the parametric F-statistic (after trans-
formation in the case of m > 1, as described in section A.4.4). The third column heading
indicates the distribution of the simulated error E , with z denoting standard normal, t5 a
t-distribution on five degrees of freedom, and e3 a cubed standard exponential distribution.
The fourth column indicates the type of design X, as detailed in table 2.2.

Table 2.3 shows the observed false-positive rate at the 5% level. A 95% confidence
interval based on the 10,000 simulations performed is (4.57, 5.43) (see table 2.13 later).
Values outside the confidence interval are starred, and the numbers of values which are
above it, i.e. significantly anti-conservative, are summarised at the bottom of the table.
It is immediately obvious that Kennedy’s method is unsuitable as a permutation test,
since it completely fails to control type-I error, as already reported in [8], and explained
earlier and in [40]. More interesting, are the findings that ter Braak’s method and Shuffle-
Y are also quite frequently too liberal, in particular, they both appear quite unstable
with small n and highly-skewed errors; a discrete interest covariate leads to particularly
bad results in some but not all cases. For n ≥ 9 these methods appear valid, with tB
appearing conservative for n = 16 and exp3 errors. Note that n = 9 would typically
still be considered a very low degree-of-freedom example (with DFE = 7); the generally
good performance of the methods suggests that Freedman and Lane (as quoted in [8],
p.278) may have been unnecessarily wary in suggesting that the sample size ‘should be
relatively large’. Note that the zeros present for some methods with n = 6 and a discrete
interest covariate are a result of the very low number of permutations available in these

35Some authors reserve this symbol for a rejection rate under H0, where it is the false positive rate or
type-I error, but it is essentially the same measure for a permutation test: the proportion of p-values less
than or equal to some level, α′.
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cases. Since the covariate is binary, there are at most 6C3 = 20 distinct permutations of
the interest available, which would mean that a p-value of 0.05 is the lowest achievable.
This situation is particularly extreme, and arguably not of great practical importance.
Nevertheless, it is of interest here, within the context of comparing different methods,
because not all methods suffer to the same extent. In particular, Smith’s method, which
involves a relatively minor modification to Shuffle-Z, achieves results much closer to the
expected values.

A closer look at the rejection rates is given in figure 2.1. As mentioned earlier, the
validity of the method can depend on the level chosen, for example figure 2.1(b) shows
tB initially severely anti-conservative, but becoming less liberal for higher α′, eventually
becoming conservative over α′ = 0.17. Table 2.4 therefore averages the error in test size
over a range of the most important p-values. The general patterns are similar to table 2.3,
including the conclusion that Ke is invalid, and that tB and SY can be somewhat erratic.
However, the final summary row paints a slightly different picture because it considers
departures in either direction from the expected rejection rate to be equally bad in terms
of the ranking, unlike table 2.3 which ignores significantly conservative results. For this
reason, table 2.4 shows the transformed residual strategies in a bad light — they have
the worst rankings after Kennedy’s method. However, as noted earlier in section 2.5
conservatism under the null need not imply low power for the alternative hypothesis.
The four significantly liberal results for FL, compared to 0–2 for the transformed-residual
strategies gives empirical support to Huh and Jhun’s theoretical argument that their test is
exact, while FL is only approximate due to its use of inexchangeable errors [50]. Anderson
and Legendre observed from their simulations that ‘when Manly’s method [SY] gave too
many rejections, ter Braak’s method and the normal-theory t-test gave too few and vice
versa’ [8]. However, neither table 2.3 nor 2.4 seem to exhibit this trend; for example table
comparing the signs of α − α′ for tB and SY in the two tables shows that they agree in
22 and 23 of the 30 cases, including the cases where they are (both) least accurate.

Although the large number of values present in the tables makes them somewhat
tedious to interpret, it is important to note that simply averaging over the rows of the table
loses potentially important information, since the relative performance of the different
algorithms varies for different error distributions, types of covariate, or degrees of freedom.
This means that the arbitrary proportions of e.g. normal or exponential-cubed errors
considered for simulation will affect the summaries at the bottom of each table, which
are intended only to give a first-impression of the results. In the interests of further
simplifying the interpretation, but with the aforementioned caveat, figure 2.2 presents
boxplots summarising the columns of table 2.4. The most interesting aspect of the boxplot
is that it highlights the outliers present for some of the methods. The summary rows
in the two tables made the parametric normal-theory test seem surprisingly accurate,
given the high proportion of non-normal error distributions included: it matched the best
of the realisable permutation methods (FL) in that both had four significantly liberal
results, and they had almost equal average ranks. However, figure 2.2 shows that when
PF breaks down, it can do so quite dramatically, whereas FL has only a single relatively
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Figure 2.1: The observed false positive rate α plotted against the expected value under
the null hypothesis α′, for a subset of the methods and two different designs, with n = 6
and cubed-exponential errors.
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modest outlier. Interestingly, Smith’s method performs very similarly to FL, and has no
outlying liberal results. Once again, the validity (albeit with excessive conservatism) of
the transformed residual strategies is evident.

Ex FL tB HJ Th Re SZ Sm SY AY PF
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0

1
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7

M
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Figure 2.2: Boxplot showing the distribution of 100 mean(α−α′) : α′ ≤ 5% under the null
hypothesis, over the 30 scenarios in the rows of table 2.4.

Tables 2.5 and 2.6 explore the variability in size around the expected level, and the
uniformity of the p-values, respectively. These metrics are of secondary importance to
accuracy, but are useful for uncovering and further understanding the differences between
similarly accurate strategies. For example, FL and Sm are barely separable in terms of
average accuracy, but FL appears to be slightly more successful in terms of having less
variable accuracy and more uniform p-values. The transformed-residual strategies fair very
poorly here. The most obvious explanation for this is that they use fewer permutations;
even though the extra permutations used in the other methods are arguably exchanging
inexchangeable errors, they could still lead to lower overall variability. To shed further
light on this, figure 2.3 plots a histogram of the p-values for some of the methods in a
particular situation. It seems that the three transformed-residual strategies suffer from a
similar discreteness of the p-values due to the low number of reduced-space permutations,
rather than favouring any particular range of p-values at the expense of the most relevant
ones within the lowest bin.

Moving on to power, table 2.7 reports the rejection rates at the 5% level, and table 2.8
averages over a range of levels below this. Figure 2.4 summarises the distribution of average
powers. Kennedy’s method has been removed from consideration due to its invalid test
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Figure 2.3: Histogram of the 10,000 simulated p-values under the null hypothesis, for
n = 6, t-distributed errors, and continuous interest with discrete nuisance.

size; SY and tB have been retained, although their power results must be interpreted
in the context of their occasional failures to control false positives. The most important
question that arises from the tables is what it means for some of the realisable methods
to have greater power than the hypothetical exact test. In particular, it is surprising that
FL has a better average rank than the exact method that it approximates. Looking more
closely for the sources of its superior rankings, we observe that FL beats Ex in terms of
average power on 15 out of 30 occasions; of these, only 5 occur in situations for which FL
has average size-error greater than that of Ex and greater than zero (table 2.4). It cannot
be argued from these results that FL’s apparently greater power arises from a failure to
control size, though further investigation is clearly warranted to explain this surprising
result. Performing the same exercise to compare ter Braak’s method with FL leads to
a more interesting conclusion. Of the 23 cases for which tB is more powerful, 16 show
that it has a larger positive error in size compared to FL. Yet more damningly, the six
scenarios for which tB has the greatest power advantages over FL and Ex (of over 10%)
are precisely the same n = 6 designs with discrete interest for which it also has the largest
average size error, and for which its average size is furthest from that of both FL and Ex.
This suggests strongly that the method of ter Braak does not provide a legitimate power
advantage over FL, but that rather it can achieve greater apparent power in certain cases
due only to its loose control of false positives under challenging circumstances.
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Figure 2.4: Boxplot showing the distribution of 100mean(α) : α′ ≤ 5% under the alterna-
tive hypothesis, over the 30 scenarios in the rows of table 2.8.

Considering Smith’s method, it frequently out-performs its simpler variant Shuffle-Z
(by quite dramatic amounts for n = 6 and discrete interest) in cases for which its average
size is valid, suggesting that it should generally be chosen in preference. Compared to FL,
however, Sm is generally less powerful for n = 6, notably so for discrete nuisance, and most
of all, for discrete nuisance and discrete interest. However, these differences do not persist
at higher n, where most of the methods converge in terms of power. There are several
important exceptions to this trend though. The Adjust-Y method performs extremely
badly for larger n, providing empirical backing for Kennedy’s assertion that it would be
expected to show low power [9]. The parametric F-test is generally less powerful than the
permutation methods under cubed-exponential errors for n = 16, although, surprisingly,
it was slightly more powerful for the same error distribution with n = 6.

Disappointingly, the transformed-residual strategies, which showed conservative con-
trol of size, also exhibit generally low power. It is not surprising that they fair badly for
the extreme situations of n = 6 with discrete interest. However, they are also among the
least powerful methods for n = 9 (with both univariate and multivariate data), including
the cases with continuous designs, for which (n−3)! = 720 reduced-space permutations are
available. Although this is still significantly fewer than the 5000 used for the traditional
methods, the rationale of reduced-space permutation is that it includes all of the meaning-
ful permutations [50]. There is limited evidence that one of these approaches (Th) is more
powerful than FL at n = 16, though its advantages are small and disappear under purely
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discrete nuisance. Further investigation would be useful to characterise these differences
more carefully, but at this stage, we are forced to conclude that the appealing theoretical
basis of Huh and Jhun’s suggestion [50] seems to provide it with conservative control of
false positives, but lower power than theoretically inexact methods, even in cases where
the latter still maintain their size.
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Figure 2.5: Power curve, at α′ = 5%, for a subset of methods over a wide range of effect
sizes. Discrete interest and nuisance, with n = 6 and normal errors.

The extreme case of n = 6 with normal errors but discrete interest and nuisance is
particularly interesting for two reasons: FL beats the exact method, and the transformed-
residual approaches perform particularly badly compared to Ex. To investigate this case
more closely, figure 2.5 plots power curves over a wider range of effect sizes than were av-
eraged over for the other tables and figures. Interestingly, all of the permutation methods
seem to level out for higher effect sizes, unlike the parametric test which reaches 100%
power for sufficient effect (about b1 = 10). This is understandable given that the low num-
ber of effective permutations makes it difficult for small p-values to occur. One important
aspect of this figure is that the Huh-Jhun method is poor over the 2–8 range of effects used
for the other tables, but actually surpasses Sm (and Ex) for larger effect sizes. Considering
a less stringent level of α′ = 0.1 (not shown), to partially address the issue of the small
number of permutations, the Th curve is lifted up to more reasonable powers, and FL and
Sm manage to reach 100% power. However, Ex still seems to plateau, reaching a power of
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about 84% at an effect size of 6, but barely improving to 85% by b1 = 20. Again, we must
admit that this case is unrealistically challenging,36 but it nevertheless seems interesting,
and is probably worthy of further exploration.

Table 2.9 examines the variability of power. Intuitively, one would expect the results
to be similar to the equivalent ones for variability of rejection rate under the null hypoth-
esis, however, the rankings are quite different for the two performance metrics. The key
distinction is that for size, the variability was measured in terms of the RMS error of the
observed rejection rate around the expected level; for power, the expected rejection rate
is unknown, so we have elected to measure the standard deviation over the range of levels
considered. The most obvious effect of this is that the variabilities are much higher than
in table 2.5. More importantly though, this lack of ground truth leads to a misleading
effect, that lower powers are typically less variable. In particular, the apparent preference
for SZ to Sm in terms of power variability (in contrast to the other metrics, which favour
Sm) can be seen to arise chiefly from the very low variability that coincides with SZ’s
very low power for discrete interest covariates. Similarly, the fact that Adjust-Y has the
least variable power is meaningless, since it also has the lowest by a large margin. The
most interesting result from the table is that ter Braak’s method has one of the lowest
variabilities, despite having some of the largest average powers. However, the importance
of this is limited, in light of the earlier observation that this method’s high power seems
to stem from poor control of size.

The correlations of the sets of Ns p-values between the exact and the other methods are
given in tables 2.10 and 2.11, under the null and alternative hypothesis respectively. The
finding that FL has the closest correlation with the exact method under H0 is unsurprising;
however, the closer correlation for Sm under H1 is interesting, as it implies that although
the method is less directly approximating the theory of the exact method compared to
FL, Smith’s method is still a very good approximation in practice. It is initially counter-
intuitive that Kennedy appears to be very strongly correlated with the exact test, in
contrast to the investigations of accuracy. However, the likely explanation for this is
that the correlation does not penalise a consistent bias; Kennedy’s p-values are biased
downward, which leads to an inflated false-positive rate, but does not mean that they
cannot have a very similar trend over the different simulations. This fact may also detract
from the apparently excellent performance of SY under the null hypothesis. In conclusion,
correlation with the exact test’s p-values is a potentially misleading metric; more weight
should be placed on the accuracies and powers in the earlier tables.

2.5.2 Correlations among methods’ statistics

The previous section compared the different permutation methods in terms of their size
and power, and their p-value correlations over repeated simulations. It is also of interest
to know how they compare on an individual simulation in terms of the values of their
statistics for each permutation. Anderson and Robinson [40] derived theoretical values for
the expected asymptotic (Pearson) correlation between the sets of permutation statistics

36With continuous interest and design (not shown) none of the methods’ power curves flatten out.
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from four methods: exact, Freedman-Lane, ter Braak and Shuffle-Y. Their results assume
that the permutation statistic is the signed Pearson correlation coefficient and that only
one interest- and one nuisance-covariate are present in the model; they can be summarised
as follows:

ρ(Ex, FL) = 1 (2.34)

ρ(Ex, tB) = ρ(FL, tB) =
√

1− r2 (2.35)

ρ(Ex, SY ) = ρ(FL, SY ) =
√

1
1 + g2

(2.36)

ρ(tB, SY ) =

√
1− r2

1 + g2
,

where (using the centring matrix M̄ = I − 1n×11+
n×1)

r = ρ(y, x1|x0) =
(R0y)T (R0x1)
‖R0y‖ ‖R0x1‖

g =
(M̄x0)T (M̄y)
‖M̄x0‖ ‖R0y‖

,

and x0 is the single nuisance-covariate, but R0 is derived from X0 including a constant
term, i.e. X0 = [x0 1n×1].

In addition to the theoretical expressions, Anderson and Robinson gave predicted and
measured correlations for a single set of simulated data [40].37 They chose n = 40 and
b1 = b0 = 1 (i.e. the alternative hypothesis holds), and sampled individual vectors x1 and
x0 with IID elements from a uniform distribution on the interval (0, 3). A single vector
of errors e with IID standard normal elements was sampled and used to create the data
y = x1b1 + x0b0 + e. They considered 999 permutations (which we assume did not include
the original labelling, so that there were 1000 permutations including the identity).

Anderson and Robinson observed close agreement between the predicted and measured
correlations [40], however, their relatively large n and investigation of a single design and
single noise-realisation weaken this finding. Here, we repeat their single simulation 100
times, and also produce a further 100 simulations for a more challenging low DF example
with n = 6.

Only four permutation methods were studied in [40]. It is reasonable to exclude
Kennedy’s method and Adjust-Y, given their unacceptable performance in terms of size
and power respectively. It is also impossible to compare the sets of statistics under per-
mutation from the three transformed-residual permutation strategies to those from the
other methods, since the transformation leads to a reduced number of permutations. (It
is, however, possible to compare the transformed-residual methods to each other, and
this will be done below.) After the above exclusions there are six methods remaining;
in addition to the four analysed in [40], the results here include Shuffle-Z and Smith’s

37Note that the predicted correlations between methods other than Ex and FL are data-dependent
because r and g involve y.



CHAPTER 2. PERMUTATION TESTING 119

method.
It seems plausible that the behaviour in practice (as opposed to the asymptotic ex-

pectations) of the different methods could depend on whether the simulated model has
non-zero values of the true nuisance- and interest-parameters (as simulated in [40]), or
one of the other three combinations: non-zero nuisance, but null hypothesis holds; zero
nuisance and non-zero interest; both nuisance and interest zero. In particular, it is obvi-
ous that Shuffle-Y is equivalent to the exact method if the (unobservable) true nuisance-
parameters are zero, and the difference between Freedman-Lane and ter Braak’s method
concerns the choice of reduced or full model residuals. Figures presented here encompass
all four combinations of zero or non-zero interest and nuisance.

Like the t-statistic, the signed Pearson correlation is limited to single covariates, so
it is also of interest to compute correlations between sets of permutation statistics using
ρ2, which can be generalised to the squared coefficient of determination for designs with
multiple covariates.

Results

Table 2.12 presents the mean correlations among the six methods, extending the case
considered by Anderson and Robinson (n = 40 and b1 = b0 = 1). In each case the
correlations are between the 999 values of the statistic under the non-identity permutations
for a pair of methods. Both ρ and ρ2 are considered as the test statistic. We can observe
that for this case, the correlations based on ρ2 are broadly similar to those based on ρ;
for example, the relative rankings in terms of correlations between the exact and other
methods is the same for both test statistics. Results based on the t- and F-statistic for
this example were very similar, and are not shown here.

Ex FL tB SZ Sm SY
Ex 1 0.9786 0.5249 0.9565 0.9772 0.6917
FL 0.9895 1 0.5369 0.9769 0.9981 0.6871
tB 0.7306 0.7383 1 0.5248 0.5362 0.3634
SZ 0.9782 0.9887 0.7304 1 0.9781 0.6797
Sm 0.9892 0.9997 0.7382 0.989 1 0.6939
SY 0.8356 0.8312 0.6137 0.8219 0.8309 1

Table 2.12: Average Pearson correlations among the different permutation methods’ sets
of statistics. Both interest and nuisance-parameters were non-zero. Each permutation
set included 999 randomly sampled non-trivial permutations, and the correlations were
averaged over 100 repeated simulations (with different designs and noise realisations). The
correlations below the diagonal are based on the use of signed correlation coefficient as
the test statistic (as in [40]); above the diagonal, equivalent results based on the squared
correlation coefficient are given.

The averages over the 100 simulations of the theoretically predicted correlations using
ρ are as follows: Ex and FL, 1; Ex and tB, 0.739; Ex and SY, 0.8306; tB and SY, 0.6131.
There is excellent agreement between the predicted and measured results, as reported in
[40]. We observe high correlation of FL with Ex, slightly lower correlation of SY with Ex
or FL, and lower still between tB and FL or Ex. Unsurprisingly, we find that SZ and Sm



CHAPTER 2. PERMUTATION TESTING 120

are very closely related, however, much more interesting is the new result that Smith’s
method is very strongly correlated with FL; the correlation between Sm and Ex is virtually
identical to that of FL and Ex, and is notably higher than the correlations of the other
methods with the exact one.
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Figure 2.6: Boxplot showing the distribution of correlations between the exact and other
methods, over 100 simulations, with n = 40, and using ρ as the test statistic. The medians
of the three theoretical results from equations (2.34), (2.35) and (2.36) are plotted as green
crosses.

Figure 2.6 focusses solely on the correlations of the five practical methods with the
hypothetical exact method (and not with each other), and shows (in the bottom-right
panel) the distribution over the 100 simulations corresponding to the average shown in
the first column of table 2.12. The other three panels show the equivalent results for
different values of the interest- and nuisance-parameters. As noted above, SY is identical
to Ex if there is truly no nuisance (top panels); it seems to differ most from Ex when there
is non-zero nuisance but zero interest. The difference between tB and Ex is greater when
the alternative hypothesis holds; however, this difference should not be interpreted as a
failing of ter Braak’s method, since it is designed to use the estimated interest-parameter
in an attempt to reduce the variance under permutation of the test statistic [8], i.e. it is
not attempting to reproduce the exact method, which assumes the null hypothesis holds.38

38Arguably, if the alternative hypothesis is true Y −X0B0 = E+X1B1 will not generally be exchangeable;
however, in common with parametric tests, Anderson and Robinson’s exact method assumes that the null
hypothesis is true. Note that this means it ignores a truly non-zero interest-parameter, even though it uses
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In all four cases, there is good agreement between the theoretically predicted and observed
correlations. Interestingly, Smith’s method (for which the theoretical correlation with the
exact method is unknown) is barely distinguishable from FL.
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Figure 2.7: Boxplot of correlations, as in figure 2.6, but with n = 6, and all 719 non-trivial
permutations used to compute the correlations.

Equivalent results for 100 simulations with n = 6, using the exhaustive set of 6!− 1 =
719 non-identity permutations, are shown in figure 2.7. As expected, the correlations
are much more variable, with some low values being observed, even for FL and Sm. The
theoretical values occasionally fall outside of the interquartile range, but are still indicative
of the relative ordering of the results. Compared to the n = 40 results, Shuffle-Y now seems
closer to the other methods in the cases of non-zero nuisance. Again, Smith’s method
performs very similarly to FL.

Permutation-based p-values will be equivalent for ρ and t, and for ρ2 and F , thanks to
their monotonic relationships. However, the Pearson correlations based on these pairs of
statistics will not be equal (though their Spearman rank correlations obviously would be),
so it is potentially of interest to compare the permutation testing methods using these
statistics. The equivalent of figure 2.6, with n = 40, but using ρ2 (not shown) exhibits a
very similar pattern among the permutation methods and the four classes of simulation,
but with generally reduced values of the correlations. Similarly, the t-statistic produces
very similar results to ρ, and the F-statistic appears very similar to ρ2. However, in the

the unobservable true nuisance-parameter.
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n = 6 simulations, these differences become much more pronounced. Figure 2.8 illustrates
the results using the F-statistic (equivalent for this single-interest design to t2). The
correlations are now dramatically lower and more variable; negative correlations can now
be observed for all of the methods in some of the simulations. It is therefore important
to note that despite FL’s perfect asymptotic correlation with the exact method (using the
correlation coefficient as a test statistic, for a single interest-parameter), in practice, with
small data-sets and tests of multiple interest covariates, one cannot expect the statistics
from FL (or any of the other methods) to closely match those from the hypothetical exact
test.
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Figure 2.8: Boxplot of correlations, for n = 6, as in figure 2.7, but based on the F-statistic.

Transformed-residual permutation strategies are compared in figure 2.9. It is clear that
there is very little correlation between the sets of statistics under permutation for the Huh-
Jhun method and those for either of the other two approaches. It may seem surprising that
there is much less similarity between two versions of USUT Y using different U matrices
(which satisfy the same key properties, UUT = R, etc.) than there is between two versions
of RSRY using different R matrices (which correspond to distinct models, i.e. R0 for FL
and R for tB). However, in the case of FL and tB, the same permutations are carried out,
while the transformed-residual strategies effectively perform different permutations with
respect to the original data, since different combinations of the rows are transformed into
the reduced permutation space. This might also explain the observation that Th and Re
can show greater correlation in some simulations. Both the optimal BLUS residuals and
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the recursive residuals are derived from simple selection matrices, which presumably can
result in more similar effective permutations than the U matrix from the SVD in Huh
and Jhun’s method, which is likely to be the BLUS estimate for a more complicated ML

matrix (2.29). Note that Re is not BLUS for its selection matrix, but it might nevertheless
be expected that its ML will be closer to the class of selection matrices than the more
random mix implied by HJ. However, since any matrix UL leads to a class of non-unique
ML, it is difficult to prove this speculative explanation of the observed results. In any
case, the basic conclusion is that for a particular permutation within a particular design,
the three different transformed residual methods can give very different statistics.
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Figure 2.9: Correlations among transformed-residual permutation strategies, using the
signed correlation coefficient as the test statistic. 100 simulations with n = 40, and 999
non-trivial permutations were performed.

2.5.3 P-value precision

If the exhaustive set of permutations produces a p-value of pe, the estimated p-value from
a random subset of Np permutations (not including the original) may be assumed to be
approximately normally distributed with mean pe and variance pe(1− pe)/Np [68]. Table
2.13 uses this expression to evaluate 95% confidence intervals for common values of pe and
numbers of permutations ranging from 500 to 20,000. For example, for the half-width of
the confidence interval to be less than 10% of the nominal p-value for pe = 0.05, we find
approximately 7,300 permutations are required. A common value in use in neuroimaging
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is 5000.

p = 1% p = 5% p = 10%
Np Lower Upper Lower Upper Lower Upper

20000 0.8621 1.138 4.698 5.302 9.584 10.42
10000 0.805 1.195 4.573 5.427 9.412 10.59
5000 0.7242 1.276 4.396 5.604 9.168 10.83
2000 0.5639 1.436 4.045 5.955 8.685 11.31
1000 0.3833 1.617 3.649 6.351 8.141 11.86
500 0.1279 1.872 3.09 6.91 7.37 12.63

Table 2.13: Theoretical 95% confidence limits for p-values from exhaustive permutation,
pe ∈ {0.01, 0.05, 0.1}, for various numbers of permutations Np.

Edgington’s theory is very frequently cited in recent literature (e.g. [1]), but seems
not to have been evaluated in practice to the same extent. Therefore, we briefly explore
the precision of p-values from random sampling of the set of permutations, compared to
exhaustive evaluation. We simulated a random N(0, 1) independent vector x for n = 9, and
a dependent variable y = xf +e where e was a second N(0, 1) vector, and f was a measure
of effect size. We investigated two effect sizes, f = 0 to simulate a true null hypothesis,
and a value of f chosen to give a parametric p-value for the correlation between x and y

equal to 0.05.39 (The parametric p-value for the null case was 0.3342.)
For n = 9, there are 9! = 362, 880 possible permutations. We evaluated the squared

correlation coefficient for this complete set, and then considered various subsets randomly
sampled from it. We chose to sample without replacement, though it probably makes little
difference, meaning 18 different 20,000 permutation subsets were available. Figure 2.10
shows the results under the null hypothesis, and figure 2.11 the results for the parametric
p-value of 0.05. The exhaustive p-values were estimated as 0.3335 and 0.0507 respectively,
and in both cases there was very good agreement between the theoretical and empirical
intervals.

We conclude this section by noting that Anderson and Robinson [40] use the same
expression to estimate a confidence interval for the type I error over Ns = 10000 simula-
tions, each with Np = 1000 permutations. In this case, the uncertainty in the individual
p-values is not directly relevant, and the confidence interval is based solely on Ns. This
approach was also used earlier in this chapter, for example in table 2.3.

2.5.4 Class of permutation sampling

With basic models such as simple regression or one-way ANOVA, the complete set of per-
mutations from which one may randomly sample has a straightforward and unambiguous
form. For example, simple regression has available the n! different orders of the data (or
covariate). With a categorical covariate, the set of useful permutations is reduced by the
following fact: shuffling data in such a way that it remains paired with equal values of
the covariate will lead to unhelpful duplication of statistics. Similarly, in ANOVA, the nl

39This was achieved by optimising (p(y(f), x; e)− 0.05)2 as a function of f with fixed e using standard
MATLAB routines.



CHAPTER 2. PERMUTATION TESTING 125

20000 10000 5000 2000 1000 500

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Permutations

P−
va

lu
es

Figure 2.10: P-value precision as a function of number of permutations, under a true null
hypothesis. The black lines show the exhaustive p-value and its upper and lower limits for
a 95% confidence interval. The green, blue and red crosses show respectively: the mean
of the subsets’ estimated p-values, and their 2.5 and 97.5 percentiles.
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Figure 2.11: P-value precision as a function of number of permutations, with a parametric
p-value of 0.05. See figure 2.10 for legend.
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indicator variables (e.g. ones) in level l can be permuted in nl! ways without altering the
statistic, which is the origin of equation 2.2.

In general linear models with nuisance-covariates, every permutation of the data that
alters the pairing of points with distinct rows of the design matrix will typically result
in different statistics. As a simple example, an ANCOVA design which adds a single
continuous nuisance-covariate with n distinct values to a one-way ANOVA can result in all
n! permutations giving different statistics. The question therefore arises (for which credit
is due to Thomas Nichols), whether permutations which merely alter the relationship with
the confounds are useful, or whether sampling the random permutations only from the
set that change the interest covariates produces results which are better in some way (for
example, higher power, or a tighter spread of p-values or α).

A related issue is the importance of the permutations themselves being unique, or in
other words, being sampled without replacement from the complete set. This is relevant to
parallel implementation of permutation testing software, since it is inefficient for multiple
parallel nodes to swap data describing the set of random permutations they have chosen,
in order to ensure that all nodes’ pooled permutations are unique. Alternatively, consider
the use of designs with imaging covariates [69]. If either the nuisance or interest vary over
the voxels, then so too will the set of useful permutations. Maximum-distribution based
FWE control using methods which involve spatial-extent, such as cluster-volume, cluster-
mass [29], or cluster enhancement [30] clearly require the same set of permutations to be
used at each voxel. If the set of permutations is chosen for a ‘typical’ design matrix,40 it
is quite likely that this could result in non-unique permutations of the design (or of just
the interest) for some voxels. The effect of this is likely to be similar to having redundant
permutations in a simple model. We therefore identify three classes of permutation which
may be of interest, summarised in table 2.14. Below, we explore the accuracy and power
that result from these different permutation classes in two sets of Monte Carlo simulations.

Class Description

P1 {S : SZ 6= Z}, sampled without replacement
P2 {S : SR0Z 6= R0Z}, sampled without replacement
P3 {S}, sampled with replacement

Table 2.14: Permutation classes, from which Np permutations are sampled.

P1 versus P2 in ANCOVA

We first investigate the effect of including permutations from P2 which are redundant
in terms of P1, within the context of a simple ANCOVA example. Consider a balanced
two-group design, with n1 = n2 = 8 giving 16C8 = 12, 870 distinct permutations of the
categorical interest covariate. We then add to this a single continuous nuisance-covariate,
after which we can sample from the permutation classes. The chosen number of per-
mutations will affect the expected proportion of redundancy, so we consider two values,
5000 and 10,000, which can respectively be considered small and large with respect to

40For example the average over all voxels, though this choice is outside of the present scope.
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the number of available permutations in P1. It is plausible that the relationship between
the interest- and nuisance-covariates will impact on the relative merits of the permutation
classes, so we investigate three situations for the nuisance-covariate: ‘Standard’ — a uni-
form random vector; ‘Correlated’ — the same added to the interest covariate, to create a
relatively high degree of correlation; ‘Outlier’ — as in (i), but with a pseudo-outlier added,
as described earlier.

We wish to investigate both size and power, over a range of common a priori signifi-
cance levels: α0 = {0.01, 0.05, 0.1}. For power, we set the value of b1 to 2 (chosen to give
a range of powers from approximately 20% for correlated nuisance at α0 = 0.01 to just
below 100% for uncorrelated nuisance at α0 = 0.1). For size, b1 is zero, and b0 is 1 for
both size and power.

In each of these 12 scenarios, we simulated 100 different nuisance-covariates, each
resulting in different sets of Np permutation samples. Each of these were then evaluated
over 100 different samples of noise (data-sets). The choice of permutation strategy (e.g.
Freedman-Lane or Smith’s method) is not of particular interest here, so we limit ourselves
to Anderson & Robinson’s Exact method [40] and its closest practical implementation:
Freedman-Lane.
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Figure 2.12: Numbers of permutations in P2 which are redundant under the terms of P1,
over the 100 different simulated designs, for Np = 5000 and Np = 10000.

Figure 2.12 illustrates the level of ‘P1-redundancy’ in P2, in terms of the number of
samples from the latter which do not change the relationship between the data and the
(original) interest covariate. Under this experimental set-up, there are 16! permutations
in the complete set — such a large number that the sampling with replacement in P3

didn’t actually result in any duplicate permutations.41 Therefore, in this case, there is no
41In fact, continuing the simulation to sample a total of 1e7 permutations from P3 only resulted in two

duplicates.
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difference between P2 and P3, so the latter will not be considered further with this design.
A second experiment is described below, comparing P3 to P1 in a regression design with
small n.

Exact Freedman-Lane
Nuisance 100 α0 Np P1 P2 P1 P2

Standard

1
5000 0.98 0.97 0.97 0.97
10000 0.96 0.93 0.95 0.93

5
5000 5.36 5.31 5.33 5.3
10000 5.38 5.32 5.32 5.37

10
5000 9.98 10.01 9.95 10.04
10000 9.97 9.98 10.05 9.99

Correlated

1
5000 1.01 1.02 0.99 0.99
10000 1.04 1.03 1.01 1.05

5
5000 4.63 4.75 4.66 4.64
10000 4.62 4.58 4.61 4.63

10
5000 9.87 9.79 9.71 9.91
10000 9.81 9.78 9.73 9.84

Outlier

1
5000 1.01 1 1.06 1.09
10000 1 0.99 1.07 1.06

5
5000 5.41 5.45* 5.36 5.38
10000 5.4 5.39 5.31 5.42

10
5000 10.33 10.4 10.35 10.39
10000 10.38 10.29 10.41 10.39

Table 2.15: Effect of permutation class on accuracy, quantified by 100 α : α′ = α0. Values
outside the theoretical 95% confidence interval are starred. See table 2.14 for descriptions
of Pi.

We present results tables with a number of different performance metrics introduced in
section 2.5.1, focussing on the smallest p-values or rejection rates, {0.01, 0.05, 0.1}, since
these are of most interest. To quantify accuracy, we compare the observed size α to the
expected size α′ = α0 given the true null hypothesis (table 2.15), highlighting any values
outside the theoretical 95% confidence intervals based on 10,000 simulations.42 Table 2.16
shows the bias in accuracy, averaging the error α − α′ over the ranges 0 ≤ α′ ≤ α0, for
each significance level α0. To quantify the variability of the results from the different
permutation classes, table 2.17 shows the root-mean-square of the above error over the
same ranges. We also evaluate the expected uniformity of the p-values under the null
hypothesis with the Kolmogorov-Smirnov statistic (table 2.18), again considering subsets
of p-values in the ranges from 0 to the chosen α0.

For evaluating power, we consider similar metrics to the first two above, but without
the expected α′, as this is unknown under the alternative hypothesis. Namely, we consider
the mean (table 2.19) and standard deviation (table 2.20) of the observed values of α over
the aforementioned ranges.

The main conclusion we draw from the results is that there appear to be few discernible
patterns and no clear preferences. Both permutation classes are evidently valid, as demon-

42As given in table 2.13.
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Exact Freedman-Lane
Nuisance 100 α0 Np P1 P2 P1 P2

Standard

1
5000 -0.0314 -0.0364 -0.029 -0.0556
10000 -0.0345 -0.0277 -0.0365 -0.0494

5
5000 0.109 0.1047 0.1076 0.09652
10000 0.1058 0.1081 0.09662 0.09238

10
5000 0.1394 0.1468 0.1374 0.1369
10000 0.1393 0.1428 0.1412 0.1378

Correlated

1
5000 -0.0105 -0.0054 -0.0271 -0.0159
10000 -0.0042 -0.0068 -0.0031 -0.002

5
5000 -0.1515 -0.1538 -0.1542 -0.1462
10000 -0.1503 -0.1453 -0.1559 -0.1417

10
5000 -0.2682 -0.2634 -0.2709 -0.2615
10000 -0.2652 -0.2822 -0.2653 -0.2617

Outlier

1
5000 -0.0341 -0.0144 -0.024 0.0091
10000 -0.017 -0.0248 -0.0181 0.0166

5
5000 0.1991 0.2061 0.1815 0.2318
10000 0.1979 0.2056 0.1903 0.2362

10
5000 0.2388 0.2597 0.2396 0.2643
10000 0.2449 0.2489 0.2384 0.2836

Table 2.16: Effect of permutation class on accuracy, quantified by 100 mean(α−α′) : α′ ≤
α0, negative values are conservative. See table 2.14 for descriptions of Pi.

Exact Freedman-Lane
Nuisance 100 α0 Np P1 P2 P1 P2

Standard

1
5000 0.04306 0.04512 0.03876 0.0593
10000 0.04504 0.04117 0.04753 0.05452

5
5000 0.1787 0.1841 0.1799 0.1735
10000 0.1858 0.1804 0.1672 0.1716

10
5000 0.1914 0.1965 0.1864 0.1879
10000 0.1935 0.1882 0.188 0.1925

Correlated

1
5000 0.02373 0.02112 0.03599 0.02769
10000 0.02383 0.02789 0.02398 0.02404

5
5000 0.2023 0.1961 0.1923 0.1997
10000 0.199 0.1952 0.2096 0.1922

10
5000 0.3197 0.3034 0.3116 0.3111
10000 0.3127 0.332 0.3086 0.3106

Outlier

1
5000 0.04498 0.02311 0.03636 0.0239
10000 0.02905 0.03063 0.03211 0.0305

5
5000 0.2519 0.2632 0.2376 0.2814
10000 0.2518 0.2641 0.238 0.2865

10
5000 0.2698 0.2949 0.2733 0.2939
10000 0.2766 0.2843 0.2666 0.314

Table 2.17: Effect of permutation class on variability in test size, quantified by
100

√
mean((α− α′)2) : α′ ≤ α0, smaller is better. See table 2.14 for descriptions of

Pi.
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Exact Freedman-Lane
Nuisance 100 α0 Np P1 P2 P1 P2

Standard

1
5000 0.09306 0.09979 0.0866 0.1082
10000 0.09708 0.08473 0.1016 0.08742

5
5000 0.04319 0.0405 0.0483 0.03412
10000 0.04598 0.03636 0.04034 0.03994

10
5000 0.03907 0.03657 0.04077 0.03392
10000 0.04162 0.03901 0.03649 0.03952

Correlated

1
5000 0.07723 0.07412 0.09313 0.06869
10000 0.08769 0.08359 0.07634 0.0781

5
5000 0.03883 0.0349 0.03003 0.03274
10000 0.03335 0.04287 0.03313 0.03431

10
5000 0.05356 0.04036 0.03741 0.05241
10000 0.04397 0.04912 0.04052 0.0482

Outlier

1
5000 0.1269 0.07 0.1091 0.0978
10000 0.08 0.06525 0.1066 0.07434

5
5000 0.0334 0.03366 0.02864 0.03368
10000 0.02281 0.03684 0.03584 0.03279

10
5000 0.02709 0.03235 0.02842 0.03097
10000 0.02729 0.03319 0.02442 0.03235

Table 2.18: Effect of permutation class on p-value uniformity, quantified by ksstat (p
vs uniform) : p ≤ α0, smaller values indicate more uniform p-values. See table 2.14 for
descriptions of Pi.

Exact Freedman-Lane
Nuisance 100 α0 Np P1 P2 P1 P2

Standard

1
5000 59.98 60.1 59.92 60.25
10000 60.78 60.66 60.62 60.99

5
5000 82.22 82.32 82.26 82.32
10000 82.45 82.44 82.41 82.54

10
5000 88.87 88.95 88.91 88.92
10000 89.01 89 88.98 89.05

Correlated

1
5000 10.85 11.01 10.98 11.55
10000 11.03 11.08 11.06 11.71

5
5000 28 28.17 28.13 28.58
10000 28.13 28.13 28.14 28.66

10
5000 39.06 39.2 39.17 39.47
10000 39.17 39.16 39.2 39.53

Outlier

1
5000 60.39 60.48 60.32 61.91
10000 61.18 60.97 61 62.63

5
5000 83.01 83.04 82.96 83.47
10000 83.2 83.15 83.15 83.65

10
5000 89.49 89.49 89.47 89.73
10000 89.59 89.55 89.57 89.83

Table 2.19: Effect of permutation class on power, quantified by 100 mean(α) : α′ ≤ α0,
higher is better. See table 2.14 for descriptions of Pi.
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Exact Freedman-Lane
Nuisance 100 α0 Np P1 P2 P1 P2

Standard

1
5000 16.27 16.31 16.41 16.04
10000 15.4 15.62 15.71 15.11

5
5000 13.85 13.85 13.92 13.73
10000 13.41 13.5 13.53 13.29

10
5000 11.86 11.84 11.9 11.76
10000 11.55 11.6 11.63 11.46

Correlated

1
5000 4.925 4.983 4.897 4.995
10000 4.892 4.848 4.902 4.951

5
5000 10.78 10.78 10.79 10.69
10000 10.75 10.72 10.76 10.65

10
5000 13.71 13.69 13.7 13.53
10000 13.68 13.66 13.7 13.5

Outlier

1
5000 16.62 16.52 16.67 15.8
10000 15.75 15.85 15.9 14.87

5
5000 14.11 14.06 14.14 13.46
10000 13.66 13.75 13.75 13.02

10
5000 11.91 11.87 11.95 11.41
10000 11.59 11.66 11.66 11.1

Table 2.20: Effect of permutation class on power variability, quantified by 100 std(α) :
α′ ≤ α0, smaller is better. See table 2.14 for descriptions of Pi.

strated by the fact that all but one of the accuracies of the Exact and Freedman-Lane
methods lie within the theoretical 95% confidence intervals.

Looking at the mean and root-mean-square errors in accuracy (tables 2.16 and 2.17),
there seems to be no consistent winner. For example, considering the Exact method,
P1 is preferred in 12 of the 18 cases in terms of bias, and in 10/18 cases in terms of
variability. With Freedman-Lane, the equivalent results are 6 and 12/18 respectively.
Under a null hypothesis of no preference between the permutation classes, a binomial
distribution with 18 events of probability 0.5 gives [6,12] as an approximate 90% confidence
interval, meaning none of these findings would be considered significant at a reasonable
level. This binomial approximation is not strictly valid, however, because the rows of the
table are not independent events — the results for different alpha are likely to be very
strongly correlated, and the different Np will probably have at least some correlation.
Nevertheless, the conclusion that there is little evidence of a preference seems safe.

The other metrics seem to give similarly inconclusive results: The K-S statistic favours
P1 7/18 times for the Exact method, and 10/18 for Freedman-Lane. Interestingly, the
average power of the Freedman-Lane method is slightly higher for P2 in all 18 cases,
in contrast to our prior expectation that P1 should be superior. However, for the Exact
method the number is only 10, which casts doubt on the significance of this finding. Power
variability for Exact and Freedman-Lane prefers P1 10 and 2 times out of 18, again giving
weak evidence in favour of the class which includes permutations that change only the
nuisance.

These results are limited, in that they only consider a single interest covariate, and a
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single number n of data points. However, the design and n are fairly typical, and there
is little reason to believe the distinction between P1 and P2 would be more pronounced
with more complicated situations. At this stage, we must conclude that the experiment
has produced no evidence to favour either permutation class.

P1 versus P3 in regression

We now consider the impact of having duplicate permutations in P3. A multiple regression
setting is used with n = 8 giving 8! = 40, 320 possible permutations. The design consists
of a single interest covariate and one nuisance-covariate in addition to a constant term.
Both covariates are randomly sampled (from uniform [0, 1] distributions) for 100 simulated
designs, each evaluated over 100 data-sets, as above. Other details, for example the three
classes of nuisance covariate, are the same as in the preceding experiment.
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Figure 2.13: Numbers of permutations in P3 which are duplicates, over the 100 different
simulated designs, for Np = 5000 and Np = 10000.

Figure 2.13 illustrates the number of duplicate permutations in the samples with re-
placement. We found all 100 random designs had distinct values for the original and
orthogonalised interest covariate, meaning that the number of duplicates is also equal to
the number of P1- and P2-redundant permutations sampled from P3.

The following tables present the results, in terms of size and power, as before.
In table 2.21 we observe ten values outside of the 95% confidence intervals; this is not

very surprising, given the fact that 72 such comparisons have been performed without
adjusting the confidence intervals for multiple comparisons. Additionally, the fact that
the significant differences occur in four pairs, each including both P1 and P3, and that the
two unpaired ones consist of one in each class means that there is no evidence that the
class of permutation affects the validity.
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Exact Freedman-Lane
Nuisance 100 α0 Np P1 P3 P1 P3

Standard

1
5000 1.08 1.03 1.05 1.1
10000 1.04 1.08 1.04 1.06

5
5000 4.81 4.83 4.8 4.89
10000 4.79 4.79 4.82 4.78

10
5000 9.68 9.73 9.74 9.84
10000 9.69 9.71 9.78 9.78

Correlated

1
5000 1.2* 1.21* 1.16 1.1
10000 1.22* 1.24* 1.13 1.08

5
5000 4.74 4.77 4.82 4.78
10000 4.73 4.82 4.8 4.81

10
5000 9.56 9.49 9.58 9.59
10000 9.59 9.55 9.65 9.62

Outlier

1
5000 1.14 1.19 1.2* 1.19
10000 1.13 1.16 1.16 1.19

5
5000 5.38 5.48* 5.51* 5.54*
10000 5.39 5.34 5.48* 5.44*

10
5000 9.95 9.98 10.14 10.12
10000 10.01 9.99 10.11 10.03

Table 2.21: Effect of permutation class on accuracy, quantified by 100 α : α′ = α0. Values
outside the theoretical 95% confidence interval are starred. See table 2.14 for descriptions
of Pi.

Exact Freedman-Lane
Nuisance 100 α0 Np P1 P3 P1 P3

Standard

1
5000 0.0368 0.0011 0.0101 0.0112
10000 0.0293 0.0282 0.0195 0.0284

5
5000 -0.04906 -0.04254 -0.08452 -0.05786
10000 -0.0385 -0.05 -0.06188 -0.05886

10
5000 -0.2062 -0.2027 -0.1961 -0.1825
10000 -0.2008 -0.218 -0.1749 -0.1878

Correlated

1
5000 0.0916 0.0733 0.0624 0.0568
10000 0.1006 0.0805 0.0753 0.0611

5
5000 0.00624 0.03082 0.00816 0.01548
10000 0.02004 0.0252 0.01706 0.01004

10
5000 -0.1834 -0.1602 -0.1847 -0.1784
10000 -0.1818 -0.1679 -0.1852 -0.1746

Outlier

1
5000 0.0558 0.0521 0.0754 0.0809
10000 0.0607 0.0604 0.0764 0.0625

5
5000 0.1621 0.1761 0.2919 0.3168
10000 0.1724 0.1425 0.2994 0.2732

10
5000 0.1223 0.14 0.2418 0.2697
10000 0.1389 0.1193 0.252 0.231

Table 2.22: Effect of permutation class on accuracy, quantified by 100 mean(α−α′) : α′ ≤
α0, negative values are conservative. See table 2.14 for descriptions of Pi.
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Exact Freedman-Lane
Nuisance 100 α0 Np P1 P3 P1 P3

Standard

1
5000 0.04519 0.02456 0.02777 0.0265
10000 0.04026 0.04207 0.03437 0.03487

5
5000 0.1065 0.1057 0.133 0.1212
10000 0.1021 0.1179 0.121 0.1341

10
5000 0.2716 0.2741 0.2406 0.2408
10000 0.2707 0.291 0.2252 0.2492

Correlated

1
5000 0.113 0.09501 0.0749 0.07562
10000 0.1212 0.106 0.08702 0.07748

5
5000 0.1444 0.138 0.1033 0.09421
10000 0.1465 0.1345 0.1071 0.09526

10
5000 0.2867 0.2742 0.2847 0.2819
10000 0.2954 0.277 0.2919 0.2704

Outlier

1
5000 0.07485 0.07421 0.09195 0.09647
10000 0.07998 0.07979 0.08905 0.07853

5
5000 0.1871 0.2175 0.3203 0.3507
10000 0.1999 0.1665 0.3291 0.3031

10
5000 0.1913 0.2191 0.2862 0.3096
10000 0.1973 0.1786 0.2932 0.2729

Table 2.23: Effect of permutation class on variability in test size, quantified by
100

√
mean((α− α′)2) : α′ ≤ α0, smaller is better. See table 2.14 for descriptions of

Pi.

Exact Freedman-Lane
Nuisance 100 α0 Np P1 P3 P1 P3

Standard

1
5000 0.05593 0.08835 0.08 0.1073
10000 0.06269 0.09444 0.05231 0.05472

5
5000 0.04057 0.04282 0.03424 0.03831
10000 0.04179 0.0454 0.03997 0.05007

10
5000 0.02586 0.03727 0.02788 0.03765
10000 0.02664 0.03811 0.02807 0.03777

Correlated

1
5000 0.07 0.07934 0.08103 0.06182
10000 0.08 0.1 0.04646 0.08556

5
5000 0.07335 0.06569 0.05 0.052
10000 0.07484 0.05847 0.04683 0.05083

10
5000 0.035 0.03363 0.02537 0.02412
10000 0.03505 0.03087 0.02838 0.02508

Outlier

1
5000 0.08175 0.08168 0.08 0.07092
10000 0.06761 0.06552 0.05966 0.08092

5
5000 0.04292 0.05626 0.04066 0.04664
10000 0.03789 0.04464 0.04801 0.03959

10
5000 0.04462 0.05112 0.04854 0.05496
10000 0.04348 0.0426 0.04723 0.04827

Table 2.24: Effect of permutation class on p-value uniformity, quantified by ksstat (p
vs uniform) : p ≤ α0, smaller values indicate more uniform p-values. See table 2.14 for
descriptions of Pi.
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Exact Freedman-Lane
Nuisance 100 α0 Np P1 P3 P1 P3

Standard

1
5000 2.99 2.991 2.961 3.013
10000 3.035 3.021 2.999 3.025

5
5000 11.53 11.53 11.55 11.58
10000 11.56 11.56 11.61 11.57

10
5000 19.3 19.25 19.36 19.38
10000 19.33 19.29 19.41 19.38

Correlated

1
5000 1.772 1.776 1.749 1.795
10000 1.786 1.797 1.785 1.783

5
5000 7.081 7.125 7.303 7.301
10000 7.135 7.166 7.337 7.338

10
5000 12.55 12.58 12.75 12.73
10000 12.62 12.63 12.8 12.78

Outlier

1
5000 3.041 3.125 3.391 3.453
10000 3.099 3.092 3.437 3.444

5
5000 11.4 11.48 11.9 11.98
10000 11.46 11.44 11.95 11.93

10
5000 18.94 18.99 19.4 19.46
10000 19 18.95 19.45 19.42

Table 2.25: Effect of permutation class on power, quantified by 100 mean(α) : α′ ≤ α0,
higher is better. See table 2.14 for descriptions of Pi.

Exact Freedman-Lane
Nuisance 100 α0 Np P1 P3 P1 P3

Standard

1
5000 1.674 1.688 1.692 1.688
10000 1.692 1.685 1.698 1.745

5
5000 5.688 5.693 5.735 5.727
10000 5.683 5.687 5.74 5.711

10
5000 9.118 9.077 9.177 9.166
10000 9.105 9.076 9.174 9.169

Correlated

1
5000 0.9691 0.9448 0.9538 1.003
10000 0.9521 0.9495 0.9711 0.9891

5
5000 3.658 3.687 3.786 3.79
10000 3.686 3.689 3.798 3.818

10
5000 6.364 6.357 6.384 6.367
10000 6.382 6.361 6.395 6.375

Outlier

1
5000 1.684 1.715 1.753 1.813
10000 1.701 1.711 1.771 1.791

5
5000 5.599 5.626 5.686 5.719
10000 5.611 5.581 5.697 5.668

10
5000 8.864 8.836 8.844 8.832
10000 8.857 8.83 8.844 8.834

Table 2.26: Effect of permutation class on power variability, quantified by 100 std(α) :
α′ ≤ α0, smaller is better. See table 2.14 for descriptions of Pi.
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Measure Exact F-L

Accuracy 6 7
Size var. 6 8

Uniformity 11 13
Mean power 7 8

Power var. 8 8

Table 2.27: Counts of the number of times out of 18 that P1 was preferred to P3 for
various performance metrics, using Exact or Freedman-Lane permutation methods.

Table 2.27 summarises the results of pair-wise comparisons, as were discussed in greater
detail for the previous experiment. Here, the results are slightly more consistent (with
the exception of p-value uniformity quantified by Kolmogorov-Smirnov statistic), though
somewhat counterintuitive. The permutation class with duplicates is typically preferred
in around 10–12 of the comparisons. It is arguable here that variability of size and power
might be expected to be lower with fewer ‘real’ permutations, so these are perhaps not
good performance metrics. However, for P3 to give superior power more often than not
is very surprising. Having said that, the balance is only slightly in favour, and the actual
differences are very small, none of the percentage powers differ by more than 0.1. The
actual values of power here are much lower than in the previous experiment, but this
shouldn’t be a particular problem, since there is no obvious pattern of better performance
at higher or lower powers in either of the experiments. Further investigation is clearly
needed here, as there must logically be a point at which duplication of permutations
weakens the test. However, it seems fair to conclude that even with up to a third of
the permutations being duplicates, there is no strong evidence of reduced performance.
Sampling permutations with replacement is a step towards the (balanced) bootstrap [1],
where this could occur, along with the sampling of more general combinations of the
data which are not permutations. It is possible that theory from the bootstrap literature
could help to explain the better-than-expected performance of the permutation test with
redundant permutations.

2.6 Conclusions

In broad agreement with Anderson et al.’s theory [40] and simulations [8], we found the
Freedman-Lane method to be a good approximation to Anderson and Robinson’s hypo-
thetical exact test. We conclude that it has the best overall balance of size and power.
Ter Braak’s method seems unable to offer better power without compromising size, so it
cannot be recommended on the basis of the simulation results presented here.

Compared to Freedman-Lane, Smith’s method showed similar performance in terms of
size and power, and similar correlations between its set of permuted statistics and those of
the exact method. It therefore seems that other authors [8, 40] may have been too quick
to dismiss SZ and related methods like Sm. Furthermore, Sm seems uniformly preferable
to SZ. Since it presents no additional difficulties in terms of O’Gorman’s adaptive test
[47, 48] it would seem logical that Sm should supersede the more basic method in this
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context (where FL is inapplicable). The only practical disadvantage with Sm is that
voxel-wise nuisance-covariates are slightly more expensive to handle than with SZ.

The transformed-residual strategies, including two novel variants of Huh and Jhun’s
method, were found to have excellent control of size under the null hypothesis, but dis-
appointingly low power. They might be preferable to FL or Sm in cases where the noise
distribution or other factors are particularly challenging, if the slightly higher suscepti-
bility of FL to false positives is deemed more important than the lower power of the
reduced-space permutation methods. However, further simulations would ideally be car-
ried out to demonstrate that the differences can be significant, since only relatively minor
departures of FL’s size have been found here. However, there are two situations in which
the transformed-residual strategies have a definite advantage over FL, firstly, they are
valid for O’Gorman’s adaptive test [47, 48]. Secondly, their equivalence for the pivotal t

and non-pivotal cT b statistics, means that they should be valid for imaging tests which
aim to control FWE via the maximum of a non-pivotal statistic , whereas FL’s equiva-
lence to Kennedy’s method for cT b arguably discredits is use in such circumstances. We
hypothesise a third situation in which transformed-residual strategies might be superior:
with large r0 and n ' r0 + 7. Here, the reduced permutation space will have an adequate
(5000+) number of permutations, while the traditional methods will have a particularly
large number of permutations for technically inexchangeable residuals. Further simulation
experiments are needed to test this prediction.

Regarding the different classes of permutation, we have been unable to show any major
differences between permutations that alter only the nuisance (or the orthogonalised inter-
est) and those that alter the original interest-covariate(s). It also appears that sampling
permutations with replacement, does not lead to the fall in power or increase in power
variability that one would expect, though further simulations are needed to explore the
limits of this phenomenon.

2.6.1 Further work

Several suggestions for future research have been given in the body of this chapter; the main
ones are briefly recapitulated here, along with some additional suggestions. In section 2.3.4
two alternative methods for FWE control with combining functions were mentioned; we
intend to perform Monte Carlo simulations and real-data evaluations to compare the
practical performance of these techniques, and perhaps also to investigate the relative
merits of combining p-values or raw statistics in the analysis of structural MRI data.

It has been shown that the method of Freedman-Lane is equivalent to the invalid
method of Kennedy when they are both based on the un-normalised cT b statistic; in
contrast, the transformed-residual methods have been noted to be equivalent for t and
cT b due to the anicillarity of the nuisance [50]. In the case of neuroimaging studies, there
is interest in studying the un-normalised stastistics, since they are less confounded by
spatial smoothing [70]. We hypothesise that the use of a transformed-residual strategy
in combination with step-down control of FWE (section 2.3.1) could lead to a method of
inferring significance directly on the contrast images which is more principled and more
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powerful than existing approaches.
As discussed in section 2.5.1, only a relatively modest number of simulations could

be performed while keeping computation time and ease of interpretation at reasonable
levels. We attempted to cover a wide range of potentially important scenarios, but must
nevertheless admit that others could be of interest. Perhaps the most serious omission is
that the simulations reported here did not consider multivariate data with non-Gaussian
error. This is a complex issue though, which warrants an extensive set of simulations in its
own right. Furthermore, only bivariate data was considered. This is something of a special
case for multivariate data, as can be noted from the fact that Rao’s F ‘approximation’
is actually exact for m = 2 (see appendix A.4.4). Ideally, a large range of m would
be investigated, with an attempt to characterise the interactions between m, n and the
numbers of interest and nuisance-covariates. For example, it might be expected that the
typically robust large DFE situation could still be fragile as m approaches n in magnitude.
However, our experience here suggests that difficulties of interpreting the large numbers of
results would make such an investigation quite challenging, even if computational resources
were available.

All the simulations considered here have effectively been for individual voxels, in the
sense that the maximum-distribution method of FWE control has not been investigated.
Given that the subset pivotality assumption should be satisfied for images of voxel-wise
statistics, it is safe to assume that any method which is valid for individual voxels will
remain valid in the FWE case. Furthermore, it seems reasonable to believe that the relative
ranking of methods in terms of power should be approximately maintained in moving from
voxel-wise to image-wise analysis, since voxels where the alternative hypothesis holds
will result in a greater maximum for the original permutation compared to the other
permutations, while the null voxels will contribute similar statistics in the original and
permuted arrangements. The converse, however, is less clear: it might be the case that a
permutation method which does not control type I error for individual voxels could still
prove to be reasonable in the imaging setting, since the distribution of the maximum over
permutations could still control FWE. This should be the subject of further Monte Carlo
simulations, and perhaps further theoretical consideration.

In contrast to the rest of the thesis, this chapter has not considered longitudinal data.
Serial imaging will lead to within-subject correlations that mean the data is not exchange-
able over time. However, there are several methods that have the potential to deal with
this. Firstly, the special case of paired tests has already been discussed in section 2.4.1.
More generally, with designs including both repeated-measures factors and exchangeable
between-subject factors, the use of exact restricted-permutation strategies and/or per-
mutation of ‘exchangeable units’ may be employed [36, 37]. More simply, using the mul-
tivariate GLM, balanced repeated-measures data (or summary statistics such as slopes
and curvatures) can be analysed directly with the methods discussed here. These, and
other approaches, including attempts to model serial autocorrelation [71] or to work with
decorrelated (e.g. wavelet-transformed) data [72] should be investigated for application to
longitudinal structural MR imaging.
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Chapter 3

Voxel-Based Morphometry

Three distinct strands of work are presented in this chapter, all of them related to the
technique of voxel-based morphometry. After a brief general introduction, we discuss a
particular methodological issue that arises in the use of VBM to study neurodegenerative
diseases such as Alzheimer’s, and we develop an effective solution to this problem.

The second section specifically addresses the serial nature of the MRI data-sets with
which this thesis is primarily concerned, proposing and evaluating new longitudinally-
tailored preprocessing methods for VBM. To avoid the challenge of interpreting differing
VBM results in the absence of ground truth, we use simulated data from a finite-element
method (FEM) phenomenological model of atrophy (developed in collaboration with Ca-
mara et al. [1]).

Finally, we discuss a number of aspects regarding accurate and reproducible reporting
of VBM methodology, and provide a set of recommendations (which were jointly developed
by the coauthors of Ridgway et al. [2]1) which we hope will help to standardise and advance
this increasingly important field.

3.1 Introduction

Voxel-based morphometry (VBM), originally published by Wright et al. [3] but popularised
by the methodological work of Ashburner and Friston [4] and the SPM software package
(http://www.fil.ion.ucl.ac.uk/spm) is arguably the most successful among a number
of techniques known in general as computational anatomy (CA) [5, 6, 7]. CA concerns the
study of form and structure through mathematical and computational models, originally,
in the work of Miller, Grenander, and co-authors [5, 6, 8] it referred quite specifically to
modelling anatomical variation by means of a template and its associated deformation to
model the individuals in a population, but the term has become more general in recent
years [9].

In essence, Voxel-Based Morphometry involves Statistical Parametric Mapping (SPM)
of data derived from structural MRI of multiple subjects. The images analysed are ob-

1In particular, Henley and Rohrer wrote parts of some of the rules, as well as discussing all of them,
but the majority of the technical discussion as well as much of the final drafting of [2] were done by the
present author.
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tained through tissue segmentation, spatial normalisation, Jacobian modulation, and spa-
tial smoothing [4]. Modulation refers to the procedure of multiplying the intensities in
the spatially-normalised images by the Jacobian determinant of the transformation that
maps from coordinates in the template space to those in the original image. There is occa-
sionally some confusion about this procedure, so we briefly explain more carefully: in the
approach used here, subject images are ‘backward-mapped’ into the template space so as
to give a seamless result. This involves considering where each voxel in the warped result
in template space should be taken from in the individual source. If a particular structure
is larger in the subject than the template, the transformation models the expansion of the
template, and hence has |J | > 1. Similarly, the process of spatial normalisation will geo-
metrically shrink the subject’s structure down to the size of the template. By multiplying
the intensities in the warped result by the determinant, the original structure’s volume
is preserved. An alternative procedure is to forward-map the voxels from individual to
template, superposing their contributions, which clearly also preserves volumes, though at
the risk of creating seams in the warped result. This is the approach taken by Davatzikos
et al. [10] in their RAVENS method, and in version 8 of SPM.2

Smoothing is used primarily to compensate for residual misregistration following spa-
tial normalisation methods with limited flexibility [13]. It is also necessary for statistical
parametric mapping in order to improve the normality of the data [14]. Lastly (and still
potentially of importance even with very high-dimensional registration methods and non-
parametric statistics), smoothing acts as a matched-filter [15], sensitising the analysis to
a particular scale of effect.

3.2 Issues in masking for VBM of atrophy

3.2.1 Abstract

VBM performs voxel-wise statistical analysis of smoothed spatially normalised segmented
MR Images. The analysis should include only voxels within a certain mask. We show
that one of the most commonly used strategies for defining this mask runs a major risk
of excluding from the analysis precisely those voxels where the subjects’ brains were most
vulnerable to atrophy. We investigate the issues related to mask construction, and rec-
ommend the use of an alternative strategy which greatly ameliorates this danger of false
negatives.

3.2.2 Introduction

SPM performs mass-univariate statistical analysis using the general linear model at each
voxel. More precisely, the calculations are performed at each voxel within some mask.
There are several reasons why masking is necessary, mostly related to the multiple com-
parison problem. Family-wise error (FWE) correction using random field theory (RFT) is
generally more powerful for smaller analysis regions (this is commented on further in the

2Though the DARTEL group-wise registration algorithm [11, 12] is often used for spatial normalisation
in SPM8, which still uses backward-mapping.
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discussion), and perhaps more importantly, masking is necessary for successful estimation
of the smoothness of the residuals (John Ashburner, personal communication), which is
a key part of the RFT correction procedure. If permutation methods [16] are employed
for FWE correction, then the analysis region affects the computational complexity [17].
Correction of the false-discovery rate [18] also depends on masking, since non-brain voxels
could otherwise skew the distribution of p-values on which it is based. Furthermore, mask-
ing can also partially alleviate a problem of implausible false positives occurring outside
the brain due to the very low variance in voxels with consistently low smoothed tissue
density — the extreme limit of the phenomenon described by Reimold et al. [19]. Finally,
while not specifically considered here, multivariate machine learning, classification or de-
coding approaches [20, 21, 22] can also benefit from masking as an initial feature selection
or dimensionality reduction step.

Having emphasised above that smaller masks generally lead to higher sensitivity and
clarified interpretation, it is clearly important to recognise the obvious risk that overly
restrictive masks will lead to false negatives, as potentially interesting voxels are excluded
from the statistical analysis. In this section, we argue that there is a particular danger
of false negatives arising in VBM studies of pathological brains when using the popular
SPM software (http://www.fil.ion.ucl.ac.uk/spm/) with settings that are commonly
used, and which appear reasonable a priori. We recommend the use of an alternative
mask-generation strategy, which we show reduces this danger. In a three-part experiment,
we will: use simulated data to investigate properties of preprocessing relevant to masking;
explore the behaviour of standard and more novel methods of masking, considering variable
patient group composition; and test the practical importance of our recommendation on
a particular example of a real VBM study.

3.2.3 Methods

Masking strategies

The SPM software commonly used for VBM studies offers different alternatives to specify
the mask for statistical analysis. If available, a precomputed mask can be explicitly re-
quested, or the analysis mask can be automatically derived by excluding voxels in which
any of the images have intensity values below a certain threshold. This threshold can
be specified as an absolute value, constant for all the images, or as a relative fraction of
each image’s ‘global’ value. The global value can itself either be precomputed or can be
automatically calculated as the mean of those voxel intensities which are above one eighth
of the mean of all voxels. This arbitrary heuristic aims to determine an average that is
not biased by the presence of potentially variable amounts of non-brain background in the
field of view; it will be explored below.

In VBM studies where pronounced atrophy is expected, such as those of Alzheimer’s
disease (AD) [23] or semantic dementia (SD) [24], it is probable that some patients will
have particularly low GM density in their most severely affected regions, but it seems
undesirable to exclude such regions from the statistical analysis. Since this is likely to

http://www.fil.ion.ucl.ac.uk/spm/
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occur with SPM’s threshold masking, which effectively takes the intersection of all subjects’
supra-threshold voxels, we recommend an alternative strategy for the creation of a mask
(which can then be specified as an explicit mask in SPM). This strategy is based on the
principle of replacing the criteria that all subjects should have voxel intensity above the
threshold, with the relaxed requirement that some specified fraction of the subjects exhibit
supra-threshold voxel values within the mask. In other words, voxels are included if there is
a consensus among some percentage of the subjects that they are above threshold. Vemuri
et al. [21] used this approach in their image classification work, with a consensus of 50%
and a threshold of 0.1. SPM’s method is a special case of this, where the consensus fraction
is 100%. Another alternative masking strategy is to threshold the average of all subjects’
segmentations; this might be expected to be similar to using a consensus of 50%, and this
will also be explored. Software for VBM analysis has recently been released as part of the
FMRIB Software Library [25], these scripts (http://www.fmrib.ox.ac.uk/fsl/fslvbm/
index.html) implement another alternative procedure for their mask creation, which will
be briefly evaluated.

Simulated images and optimality

In the first experiment, simulated images will be used from the BrainWeb project [26, 27],
derived from real MRIs of normal healthy subjects. These images have known underlying
tissue segmentation models, allowing quantitative evaluation of segmentation accuracy. By
considering the simple Jaccard Similarity coefficient [28] between the discrete (maximum
probability) model of GM and the estimated probabilistic segmentation after binarisation
at a particular threshold, the optimal threshold may be found as a simple maximisa-
tion problem.3 The optimal threshold will be investigated with relation to preprocessing,
particularly smoothing, and in terms of its proportionality to the global or total signal.
SPM’s estimated global averages will be compared to a simple integrated total of the
(probabilistic) voxel tissue volumes in litres.

AD cohort with varying composition

To provide a clearer characterisation of the effect of atrophy severity on mask construction,
this experiment will consider different subsets from a typical VBM cohort of 19 patients
with probable AD (M:F 9:10, mean age 68.8) and 19 healthy controls (M:F 8:11, mean
age 68.3). All subjects were recruited from the Cognitive Disorders Clinic at the National
Hospital for Neurology and Neurosurgery and gave written informed consent. They were
assessed using standard diagnostic criteria including the Mini-Mental State Examination
(MMSE) [29]. The study was approved by the local ethics committee. Imaging was
performed on a 1.5 T GE Signa unit, using a spoiled fast gradient-recalled acquisition in
the steady-state. 124 contiguous 1.5mm-thick coronal slices with a 24 cm field of view
and 256 × 256 matrix were acquired. The scan acquisition parameters were as follows:
repetition time = 15 ms; echo time = 5.4 ms; flip angle = 15 ◦; inversion time = 650ms.

3For example, using MATLAB’s fminbnd to search for the best threshold between 0 and 1.

http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html
http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html
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This experiment focusses on the robustness of the generated masks with respect to
changes in the composition of the subject group, we will begin with only the 19 controls,
before adding a single visually-severe AD patient and re-creating the masks, then finally
the 18 remaining AD patients will be included, providing a typical balanced two-group
comparison.

Practical importance on FTD example

Finally, the potential for overly restrictive masks to exclude potentially interesting findings
in the most atrophied structures will be highlighted through presentation of the SPM
results for a particular VBM study. A group of 14 fronto-temporal dementia (FTD)
patients (M:F 7:7, mean age 63.5) with pronounced and focal temporal lobe atrophy, will
be compared to a group of 22 approximately matched controls (M:F 10:12, mean age 65.8).
All subjects were recruited from a specialist dementia clinic and gave written informed
consent. They were assessed using standard diagnostic criteria. The study was approved
by the local ethics committee.

Results will be presented following the masking strategy previously standard within our
group, and with an example using the newly recommended consensus masking strategy,
chosen based on visual evaluation of the suitability of various masks, prior to performing
the statistical analysis.

3.2.4 Results and discussion

Simulated images

Figure 3.1 illustrates typical results for VBM preprocessing using SPM5’s unified segment-
ation model [30]. The estimated segmentation is in close agreement with the simulation’s
underlying model,4 but the inter-subject correspondence following spatial normalisation
is only approximate. This imperfect overlap necessitates smoothing, but we can observe
that even after smoothing there could be poor correspondence if the results were binarised
with a relatively high threshold.

In figure 3.2, we explore the results from using the threshold which maximises the
Jaccard similarity coefficient between the binarised probabilistic segmentation and the
binary segmentation from the discrete BrainWeb model. It can be seen that while the
original segmentation can be binarised successfully at a very high threshold, after spatial
smoothing with an 8mm full-width at half-maximum (FWHM) Gaussian kernel, results
are visually unacceptable with the theoretically optimal threshold. The threshold must
clearly be lowered to include all desired voxels; fig. 3.2(f) shows the result from a much
lower threshold, which, while often employed in VBM within our group, appears here to be
far too generous. This apparent generosity should be contrasted with the findings shown
later in figures 3.5 & 3.7.

4In fact, one of the most noticeable differences is that SPM’s use of prior tissue probability maps has
excluded some unrealistic dural ‘GM’ present in the simulation.
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(a) BW04 GM
MNI −17,−18,70 mm

(b) SPM c1 BW04

(c) SPM mwc1 BW04 (d) SPM mwc1 BW05

(e) SPM smwc1 BW04
8mm FWHM Gauss.

(f) SPM smwc1 BW05
Smoothed

Figure 3.1: Illustration of the accuracy of tissue segmentation and inter-subject spatial
normalisation, and the effects of smoothing. (a) and (b) compare the grey matter model
used in the BrainWeb simulation to SPM’s grey matter segmentation of the simulated T1
image. (c) and (d) show the anatomical correspondence between two different simulated
subjects’ results after spatial normalisation with a few thousand basis functions. (e) and
(f) show the results following spatial smoothing.

To briefly investigate the use of relative thresholding, table 3.1 first compares the
values of SPM’s ‘global’ average to the totals from integrating over voxels, with three
different sources of input data for four simulated subjects. It is clear that the total value
is insensitive to the choice of these preprocessed source images, unlike the global value.
Since the total also has the additional merits of being much simpler to interpret clinically,
and of not using an arbitrary threshold (the 1/8 of the original mean), it seems preferable
to use these totals as values for deriving proportional masking thresholds.5 As a quick
check of the suitability of these totals for relative threshold masking, table 3.2 presents

5While not evaluated here, it would also seem reasonable to prefer these more interpretable and stable
values when adjusting for global volume in VBM, either through covariates or scaling-factors.
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(a) BW discrete GM
MNI −40,−18,−24 mm

(b) SPM native segm.

(c) Thresholding of (b)
at optimal level

(d) Smoothed version
of (b), 8mm FWHM

(e) Thresholding of (d)
at optimal level

(f) Thresholding of (d)
at level of 0.05

Figure 3.2: Optimal binarisation of probabilistic segmentations, and the interaction be-
tween smoothing and thresholding. (a) The binary GM label for BW, giving the voxels
which have greater probability of being GM than any other tissue. (b) SPM’s segment-
ation of the corresponding simulated T1 image. (c) SPM’s segmentation thresholded at
a level giving the optimal Jaccard similarity coefficient with the BW label. (d) Spatially
smoothed SPM segmentation (8mm FWHM Gaussian). (e) and (f) comparison of thresh-
olding of (d) at the optimal level and at a more typical absolute masking threshold.

the optimal absolute thresholds for four subjects, and the fractions of the global or total
values necessary to achieve these thresholds. There is no apparent problem with using the
totals, and limited evidence that they in fact have a more consistent relationship with the
optimal threshold than the globals.

AD cohort

Continuing the comparison of SPM’s globals with the integrated tissue totals from the
previous experiment, figure 3.3 shows a strong correlation between these two measurements
over all 38 subjects.
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Table 3.1: Comparison of SPM’s ‘Global’ averages with integrated totals (in litres) for four
BrainWeb subjects, based on native GM segmentations, modulated warped segmentations
without smoothing, and with 8mm FWHM smoothing.

Global Total
Subject Native Mod. Warped Smooth M. W. Native M. W. Smooth M. W.
BW1 0.788 0.606 0.402 0.911 0.911 0.911
BW4 0.811 0.650 0.430 0.970 0.970 0.970
BW5 0.782 0.586 0.397 0.907 0.907 0.908
BW6 0.751 0.566 0.387 0.888 0.888 0.888

Table 3.2: Optimal thresholds, in terms of Jaccard similarity coefficient with BrainWeb
model, as absolute values, relative fractions of SPM ‘Globals’ and of Totals in litres.

Subject Opt. Abs. Thr. Opt. Rel. G. Opt. Rel. T
BW1 0.364 0.904 0.400
BW4 0.379 0.881 0.390
BW5 0.373 0.939 0.411
BW6 0.361 0.934 0.407

A visual example of the range of atrophy present in this subject-group is given in
figure 3.4. On rough inspection, it might appear from the preprocessed images that the
spatial normalisation and smoothing has adequately standardised even the most severe
subject.

However, figure 3.5 presents a range of masks generated from four different strategies,
on the three differently composed sub-groups. Table 3.3 gives the corresponding quantified
mask volumes. It is clear from row (a) that the default SPM absolute thresholding strategy
is very fragile with respect to the inclusion of atrophied patients. Adding the single severe
individual results in a noticeably smaller mask, with particular reductions in the frontal
and temporal lobes, and 100ml less total volume. The addition of the remaining 18 AD
patients causes a further 120ml reduction in mask volume — corresponding to a loss of
approximately 15,000 2mm isotropic voxels. Potentially interesting frontal cortex would
not be analysed if such a mask was used. By lowering the consensus from SPM’s 100%
to 70%, the results become dramatically more robust to the inclusion of the patients.
Row (b) of the figure shows only visually minor reductions in the mask; the table reveals
that the volume loss through adding the severe case is just a tenth of that with the SPM
strategy, though this rises to half when the remaining patients are added.

The use of relative thresholding should reduce the sensitivity to disease severity, since
more severely atrophied patients will have lower global values and hence lower relative
thresholds. However, example results (row c) using SPM’s relative threshold masking
(based on globals) still show a disturbing loss of cortical GM voxels from the mask with one
patient, worsening with the additional patients. The overall loss when adding all patients
to just the controls is 180ml (over 12% of the volume of the controls-only mask). Row
(d) has the most visually appealing masks, derived from a 70% consensus and a threshold
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Figure 3.3: Comparison of total probabilistic GM volume in ml to SPM’s ‘global’ values
over 19 AD patients and 19 matched controls.

Table 3.3: Mask volumes (in litres) for the masks presented in Figure 3.5. See figure
caption for row descriptions.

Method 19 Controls Controls + 1 AD all 38 subjects
(a) 1.79 1.69 1.57
(b) 1.97 1.96 1.90
(c) 1.47 1.40 1.29
(d) 1.63 1.62 1.59

relative to the integrated total volumes. The loss when adding all patients is now less than
2.5% of the original controls-only mask volume. It is self-evident in this experiment that
the mask volume lost when adding a patient group to a control group could correspond
to clinically-significant tissue loss in the actual control-patient comparison of interest.
That this lost mask-volume can coincide with statistically-significant tissue differences is
demonstrated in the next experiment.

Finally within this experiment, one potential problem with over-generous masks is
demonstrated. In figure 3.6 some of the most significant voxels fall in regions where the
majority of images do not have substantial chance of being genuine GM tissue. It is difficult
to conclude confidently whether or not these are false positives, but the low variance and
greater residual roughness present at the illustrated voxel certainly cast some doubt on
the strength of the finding.

FTD example

The comparison of FTD patients with healthy controls reveals a pattern of tissue loss with
focal left temporal lobe atrophy. Unthresholded SPM t-maps are shown in figure 3.7 (a)
and (b); the two masks used for these analyses are overlaid in (c), where it is immedi-
ately obvious that the 100% consensus mask has excluded tissue in the temporal lobes,
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(a) Random control T1 (b) Segmentation of (a)
normalised, modulated,
smoothed (8mm FWHM)

MNI −40,−18,−24 mm

(c) Random patient T1 (d) Processed (c), as (b)

(e) Severely atrophied
patient T1

(f) Processed (e), as (b)

Figure 3.4: Example AD subjects. On the left are the standard clinical T1 images; on the
right are their corresponding preprocessed segmentations. (a) and (b) are for a typical
randomly selected healthy control from the group of 19. (c) and (d) are for one of the 19
patients, randomly chosen. (e) and (f) show the most severe patient, chosen in terms of
visual assessment of overall tissue volume.

particularly on the left. The difference in volume of these two masks is over 300ml. Most
importantly, (d) shows that some of the statistically-significant voxels (pFWE < 0.05)
found when using the more reasonable mask will be ignored in the analysis using the stan-
dard 100% consensus mask. This lost significant volume amounts to 8.19ml, or over 1000
2mm isotropic voxels, in exactly the areas that these FTD brains are most atrophied.

Alternative masking strategies

Unlike the SPM strategies so far considered, which are derived from the smoothed (and
optionally modulated) normalised segmentations, as used for the statistical analysis, FSL’s
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Row (a) SPM’s
thresholding at
0.05 absolute
MNI 0,0,0 mm

Row (b) MM
0.05 absolute,
0.7 consensus

Row (c) SPM’s
thresholding at

0.4 relative

Row (d) MM
thresholding at

0.2 relative to total
0.7 consensus

Figure 3.5: Masking results for varying method and patient group composition. The
left column is for the group of 19 healthy controls; middle column, 20 images, including
controls and the most severely atrophied patient; right column, entire collection of 19
controls and 19 patients. Rows (a) and (b) present masks based on absolute thresholding
at a level of 0.05, first with SPM’s default strategy, and in (b) with a ”Majority Mask”
(MM) requiring 70% of the images over threshold. Rows (c) and (d) investigate relative
thresholds. (c) uses SPM’s default strategy with thresholds of 0.4 times SPM’s global
values. (d) requires 70% of the images to exceed thresholds of 0.2 times the total value in
litres.

VBM masking strategy6 is based on unsmoothed and unmodulated segmentations (even
when modulated data are analysed). FSL-VBM includes voxels in the mask if they meet
both the following criteria: the maximum tissue probability over all subjects is at least
0.1; the minimum over the subjects is non-zero.

Examples of this strategy are illustrated for the AD data-set in figure 3.8. The most
noticeable difference is that the use of unsmoothed segmentations leads to a much rougher
mask. For correction of FDR or permutation-based FWE control, this roughness is unlikely

6http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html

http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html
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Figure 3.6: Masks and GLM results for the comparison of controls and AD patients. (a)
shows the mask of Fig. 3.5(d, right column) overlaid on over-generous mask requiring only
one of the images to exceed an absolute threshold of 0.05. (b-d) show the results from
GLM estimation using this generous mask, in terms of t-values, standard deviation, and
‘smoothness’, respectively. The latter is derived from the ‘resels per voxel’ image, for
easier visual interpretation.

to be a problem, but it may be detrimental for RFT-based correction of FWE. Worsley
et al. [31] reported that expressions for RFT thresholding of statistics appeared to be
most accurate for convex search regions, and they suggested that convoluted regions with
high surface-area to volume ratios offer no advantage in power over smoother regions with
larger volumes.

The lower panels of figure 3.8 show the results of applying FSL’s mask inclusion criteria
to the smoothed data which is actually analysed. In this case, smoothing leads to the
presence of non-zero voxels as far away from the brain edges as the size of the support
of the smoothing kernel used.7 This effectively leaves only the second criterion in place;
that the maximum over the segmentations be over 0.1. Now, we note that this criterion
is simply a special case of the consensus masking strategy, where the consensus fraction
is the reciprocal of the number of images, i.e. only one image (the maximum one for each
voxel) need be above the threshold.

Finally, we consider deriving masks from the average of all subjects’ smoothed nor-
malised segmentations. This approach has been reported by Duchesne et al.8 who bi-
narised their average of 3mm FWHM smoothed unmodulated normalised segmentations

7In SPM5, the kernel is non-zero for ±6 standard deviations.
8Unpublished manuscript, available online: http://www.bic.mni.mcgill.ca/users/duchesne/Proc/

NI2004a.pdf.

http://www.bic.mni.mcgill.ca/users/duchesne/Proc/NI2004a.pdf
http://www.bic.mni.mcgill.ca/users/duchesne/Proc/NI2004a.pdf
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Figure 3.7: Masks and regions of significance (pFWE < 0.05) for the comparison of FTD
subjects with controls. (a) and (b) show t-values for masking requiring either 70% (a)
or 100% (b) of images to exceed a threshold of 0.05 (the latter corresponding to SPM’s
default strategy). (c) overlays the 100% mask on the 70% one. (d) overlaid on the group
average segmentation is the region of significance present when using the 70% mask which
is excluded from analysis with the default SPM masking strategy.

at a threshold of 0.3. Assuming that there is limited skew in the distribution of voxel
intensities over subjects (SPM goes further in assuming normality), the arithmetic mean
will approximately equal the median. Since the median by definition has 50% of the data
beneath it, thresholding the average should be approximately equivalent to the special
case of our proposed masking strategy with a consensus of 50% and the same threshold.
In figure 3.9 we compare these two approaches on the AD data, showing almost identical
results. As one would expect from the relatively low consensus fraction, there is very
strong robustness to the addition of patients to the control group.

Based on the observation that the average image appears to have visually high prob-
abilities over an intuitively reasonable region, it might be expected that a good threshold
for the average would result in the binarised mask remaining highly correlated with the un-
thresholded original. One can determine an ‘optimal’ threshold such that this correlation
is maximised. We compare such thresholds to higher and lower ones in figure 3.10, using
the AD data-set. The volumes of the masks for the three subject groups are: 1.456, 1.456,
and 1.444 litres — exhibiting a loss of below 1% with the addition of the AD patients.
This provides a simple fully-automatic and objective technique for creating a mask, if the
process of visual inspection and manual selection of multiple thresholds and/or consensus
fractions is deemed too subjective.
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(a) FSL−style mask
0.1 threshold of

unsmoothed and
unmodulated CONTROLS

MNI 0,0,0

(b) as (a) but for
all 38 subjects

(c) as (a) but on smoothed
and modulated images

(d) as (b) but on smoothed
and modulated images

JUNK

Figure 3.8: Comparison with the masking strategy used in FSL’s VBM implementation.
The top row derives masks from unsmoothed and unmodulated normalised segmentations,
as in FSL; the bottom row uses smoothed modulated segmentations, as for the other SPM
masking strategies discussed here. Left: for controls only; right: for all controls and AD
subjects.

Further discussion

VBM studies aiming to localise small lesions or patterns of atrophy in finer scale structures
require smaller smoothing kernels, due to the matched filter theorem [15]. The chance of
losing interesting voxels from a mask created using absolute or relative thresholding with
the standard 100% consensus is likely to be even greater with less smoothing. In a single
subject with a severely atrophied small structure, greater amounts of smoothing would
permit neighbouring tissue to bring the average value at the atrophied voxels above the
threshold. However, it should also be noted that finer scale spatial normalisation [10, 11]
may counterbalance this effect, as atrophied structures can be better warped to match
those of the template/average, with the information about their atrophy being transferred
to the deformation field.

Further work could involve extension of the method of automatic threshold selection,
and/or selection of an optimal consensus fraction, perhaps using bootstrap methods or
cross-validation. It may also be helpful to base masks upon the voxel-wise statistical
results,9 directly addressing the problem of false-positives in low-variance regions by ex-
cluding these voxels.

9SPM follows a related procedure for variance component estimation, only pooling over voxels which
show main effects above a certain level of statistical significance [32].
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(a) Mean image
thresholded at 0.1
for CONTROLS

(b) as (a), but for
all 38 subjects

(c) MM thresholding at
0.1 with 0.5 consensus

for controls

(d) as (c), but for
all 38 subjects

Figure 3.9: Top row: masks derived from thresholding (at 0.1) the group mean of the
smoothed modulated normalised segmentations; bottom row similar masks using a 50%
consensus of the unaveraged segmentations and the same threshold. Left: for controls
only; right: for all controls and AD subjects.

3.2.5 Conclusions

The standard masking procedure in the SPM software risks missing findings in the most
severely atrophied brain regions. It is important to note that the missed atrophy when
using overly restrictive masks might not be readily apparent from consideration of the
‘glass-brain’ maximum intensity projection commonly presented in VBM results. It seems
not to be standard practice for VBM papers to present the analysis region resulting from
their choice of masking strategy. We would recommend careful checking of the mask, and
would argue in favour of this occurring prior to the statistical analysis itself — a practice
which is simplified by using the mask-creation strategy proposed here. We would addition-
ally suggest that the masking procedure be reported clearly enough to be reproducible,
as we have previously advocated [2]. Software is available to implement the consensus
masking technique recommended here.10

10http://www.cs.ucl.ac.uk/staff/gridgway/masking

http://www.cs.ucl.ac.uk/staff/gridgway/masking
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Row (a) mean s8m

Row (b) mean with
0.1 threshold

Row (c) mean with
optimal threshold

Row (d) mean with
0.3 threshold

Figure 3.10: Further investigation of masks derived from the group average segmentation.
Left column, for the control group; middle column, controls plus one severe AD patient;
right column, all controls and AD subjects. Top row, the average segmentations them-
selves; row (b) the means thresholded at 0.1 (as in Fig. 3.9); row (c) the mean images
thresholded at optimal levels of 0.203, 0.200, 0.189; bottom row, a higher than optimal
threshold of 0.3.
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3.3 Methods for longitudinal VBM

3.3.1 Abstract

The goal of this section is to evaluate Voxel-Based Morphometry and three longitudinally-
tailored methods of VBM. To aid quantitative comparison of subtly different methods,
images with simulated atrophy (and hence gold standard results) have been employed.
Segmentation performance itself has also been directly evaluated within a small num-
ber of subjects derived from phantom brain images. The simulated atrophy images are
produced by deforming original scans using a finite element method, guided to emulate
Alzheimer-like changes based on the typical MR-observed disease-course and imaging-
derived measurements of volume change. These simulated images provide quite realistic
data with a known pattern of spatial atrophy, with which VBM’s findings can be mean-
ingfully compared. This is the first evaluation of VBM for which anatomically-plausible
‘gold-standard’ results are available.

The three longitudinal VBM methods have been implemented within the unified seg-
mentation framework of SPM5; one of the techniques is a newly developed procedure,
which shows promising potential for use with serially acquired structural imaging data.

3.3.2 Introduction

Longitudinal variants of VBM have been developed for application to cohorts with serial
MR imaging [33, 34]. VBM necessitates preprocessing of the images, including spatial
normalisation and tissue-segmentation. There are a number of options and adjustable
parameters within the standard method, in addition to more dramatically different tech-
niques such as longitudinal alternatives. In contrast to the ease of methodological tuning,
there is great difficulty in evaluating the performance of VBM methods due to the lack
of ground truth. To the best of our knowledge, no previously published VBM studies
of realistically complex data have had gold-standard maps of the regions that should be
detected.

We have developed finite element method (FEM) models which can structurally al-
ter images, producing finely-controllable, clinically realistic changes [1]. Such simulated
images have known underlying deformation fields and volume changes, which can form a
gold standard for evaluating atrophy-measurement techniques.

Using a cohort of AD patients with MR images at baseline and one year later, we
simulated new approximate year-on scans from the original baselines, guided by semi-
automated measures of whole-brain, hippocampal, and ventricular volume changes [35].

The original baseline and simulated follow-up images then constitute a data-set with
known FEM ground truth; we use this to derive a gold standard suitable for evaluating
longitudinal VBM, and compare four such techniques, including our newly developed post-
averaging procedure.
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3.3.3 Methods

Voxel-Based Morphometry and Longitudinal VBM

The latest and most sophisticated version of segmentation for VBM (available in SPM5
and SPM8) unifies tissue-segmentation with spatial normalisation [30].

With serial data, statistical analysis can take advantage of reduced within-subject vari-
ability (e.g. using repeated-measures ANOVA on balanced data, or analysing longitudinal
within-subject summary statistics). To capitalise on the longitudinal information, changes
should also be made to the VBM preprocessing methods. In this work, we evaluate stan-
dard VBM against two longitudinal methods from the literature (which we have adapted
to be compatible with the unified segmentation framework of SPM5) and our own newly
developed SPM5 method.

For all four methods, SPM analysis was performed within an explicit mask, derived
from the (smoothed) ground-truth grey-matter segmentation. This segmentation, the
VBM subtraction images, and the equivalent gold-standard images (described below) were
all smoothed with the same kernel — an 8mm full-width at half-maximum (FWHM)
isotropic 3D Gaussian.

The balanced nature of the data (i.e. all subjects have equivalent time-points, at 0
and 12 months) means that within-subject summary statistics (for annualised change) are
simply given by longitudinal subtraction images; these are entered into a one-sample t-test.
A single-tailed contrast for atrophy (increase<0) and the ‘reverse contrast’ of tissue-gain
(increase>0) were evaluated and thresholded with multiple comparison correction using
random field theory (RFT) to control the family-wise error (FWE) at a 1% level.

Standard Here, ‘Standard’ VBM refers to simple application of unified preprocessing
independently to each scan of each subject; only the statistics differ from the non-serial
case. ‘Standard’ should not be contrasted here to ‘optimised’ VBM [36], which the unified
segmentation model aims to supersede [30].

Tied-normalisation The preprocessing step of spatial normalisation should take ad-
vantage of the fact that multiple time-points for a single subject can be registered much
more accurately than scans of different subjects, and that initial rigid alignment already
reveals a great deal about within-subject change [37].

Using the non-unified model of SPM2, Gaser (in Draganski et al. [33]) developed a
method with longitudinally tied spatial normalisation, in which repeat scans are trans-
formed using the parameters determined for their corresponding baselines, then indepen-
dently segmented.

Following the introduction of SPM5’s unified framework, an extended generative model
for unified longitudinal segmentation and normalisation should ideally be developed. As
a simpler alternative, we have implemented an approach which applies the baseline nor-
malisation parameters to the native-space baseline and follow-up grey matter images from
separate unified segmentations.
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Pre-averaged More advanced techniques can combine inter-subject spatial normalisa-
tion with precise intra-subject registration using High-Dimensional Warping (HDW). One
such method (designed by Ashburner, and implemented in [34]), creates low-noise averaged
images of HDW-registered longitudinal sets, before inter-subject spatial normalisation and
segmentation in SPM2. (i.e. averaging is ‘pre’ segmentation.)

We have adapted this approach to the SPM5 framework, with unified segmentation
and inter-subject normalisation following the intra-subject warping and averaging. The
intra-subject volume changes from HDW must be taken into account to generate the
follow-up data, which can be elegantly done by modulating the native-space segmented
average-images with the HDW Jacobian fields before applying the predetermined inter-
subject transformations. This avoids the interpolation-error due to the transformation of
the Jacobians in [34].

Post-averaged We propose here a technique similar to pre-averaging, but novel, and
better-suited to SPM5’s unified segmentation. The new method should be superior for
subjects with large longitudinal change that might not be fully recovered by HDW, as in
this case, the pre-averaged images may be too blurred to segment well.

Each time-point is first segmented, and SPM5’s bias-corrected version is saved; HDW
transformations are then determined on the corrected images 11 and applied to their native-
space segmentations. The warped segmentations are then averaged; i.e. averaging is ‘post’
segmentation of sharp original images. Each average segmentation is modulated with the
HDW volume changes to create follow-up equivalents, and finally, each set of original and
modulated segmentations is spatially normalised with the baseline parameters.

Finite Element Modelling of Atrophy

The atrophy simulation process is based on that described in [1]. It consists of four main
steps: (1) Generation of a reference mesh; (2) Warping to a subject-specific mesh; (3)
Deformation of the mesh using a FEM solver; (4) Application of the deformations to the
baseline image of each subject, to produce a new simulated follow-up image. The reference
mesh was built using the BrainWeb atlas labels of these structures [38] (http://www.bic.
mni.mcgill.ca/brainweb/). The adaptation of the reference mesh to each subject was
achieved with a mesh warping procedure guided by a fluid registration algorithm [39].

We used a cohort of 18 probable AD patients (7 female; ages from 55 to 86 years,
mean 70) with baseline and 12-month follow-up MRI scans [35]. The FEM simulation was
driven using values of the subjects’ volume changes in the brain, hippocampi, and ven-
tricles (from semi-automated segmentation-based measurements). Simulated mean (stan-
dard deviation) percentage volume increases were: brain, -2.43 (1.18); hippocampi, -4.74
(3.24); ventricles, 11.49 (5.35). Figure 3.11(a-c) shows a single-subject example of atrophy
simulation; ventricular expansion, cortical thinning, and opening of CSF spaces can be
observed.

11Bias corrected images were also used in the pre-averaged method, for fairness, though in practice this
would require additional time-consuming unified segmentations, or more conventional bias correction with
an external program.

http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/
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Figure 3.11: Example case of simulated atrophy: (a) Original baseline; (b) Simulated
+1yr follow-up; (c) Subtraction image. The same subject’s gold-standard volume changes
in BrainWeb space: (d) Volume gain (VG=1yr/orig); (e) GM-increase = (GM*VG)-GM;
and (f) Smoothed GM-increase, as entered into the analysis.

Generation of a Gold Standard Because the same mesh is warped from the BrainWeb
template to each individual patient, there is a known correspondence between elements of
the warped meshes for the different subjects; therefore the volume change of each element
that results from the mesh-deformation can be mapped back to the common space. By
converting the element-wise volume changes to a voxel-wise representation, an image of
the ratio of follow-up volume to original volume is created.

These volume gain ratio images can be used to modulate the BrainWeb Grey Matter
Segmentation, resulting in perfectly aligned effective follow-up segmentations, similar to
those in the two HDW-based longitudinal VBM methods. The original BrainWeb GM is
then subtracted from each follow-up and the result smoothed. Figure 3.11(d-f) illustrates
this process for one subject.

The gold-standard smoothed subtraction images could be entered into an identical
one-sample t-test as the actual sets of VBM subtraction images. For reasons discussed in
section 3.3.5, we instead use contrast images (the numerator of the t-statistic, here simply
equal to the negated mean over the scans), thresholded at different values for visualisation
purposes.

Evaluation of segmentation accuracy

While the FEM simulated data provides a form of gold standard for the regional volume
changes, it does not provide a direct standard for evaluating each individual segmentation,
since the tissue classification used in the atrophy simulation process is itself the result of a
potentially inaccurate non-rigid label propagation procedure. To investigate more directly
the relative merits of independent segmentation, and the use of high-dimensional warping
with pre- or post-averaging, a collection of images with accurate individual segmentations
is needed. BrainWeb [26] recently added twenty new anatomical models [27] to their online
brain phantom data-base (henceforth referred to as BrainWeb20). Grey-level simulated
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Figure 3.12: Gold-standard average atrophy, Maximum Intensity Projections thresholded
at: (a) 0, (b) 0.01, (c) 0.02, (d) 0.03.

Figure 3.13: Maximum Intensity Projections of significant atrophy (pFWE < 0.01) for
VBM methods: (a) Standard; (b) Tied-normalisation; (c) Pre-averaged; (d) Post-averaged.
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images are available with the underlying tissue model used for their simulation, providing
a good gold standard for segmentation.

The HDW-based methods are only meaningful in the context of longitudinal data,
which is not provided by BrainWeb. A good solution to this would be to apply the
techniques of atrophy simulation described in the previous section, with ‘baseline’ images
from BrainWeb20. The FEM process (and related pre- and post-processing) is time-
consuming, and currently somewhat operator-intensive. As a compromise, to provide a
simple pilot study, the unrealistic simulation of ‘atrophy’ with a simple uniform shrinking
of the entire image (meaning ventricles, skull, extra-cranial material, etc. all shrink), as
used in papers such as [40, 41], has here been applied to just four of the BrainWeb20
images. Rician noise has been added to the baseline and repeat images (after shrinking
the latter) using the approach of taking the magnitude after adding complex Gaussian
noise [42]. No intensity non-uniformity has thus far been added, though it would be a
trivial extension.

3.3.4 Results

FEM simulated atrophy

Gold-standard maximum intensity projections, at varying thresholds, can be seen in fig-
ure 3.12. The thresholded images corresponding to figures 3.12(c) and 3.12(d) are also
overlaid on coronal sections in figure 3.14.

Statistical results from the four VBM methods are presented in figure 3.13 as maximum
intensity projections, and in figure 3.14 as coronal overlays. In both cases the atrophy t-
contrast (increase<0) is shown. For the ‘reverse contrast’ (i.e. gain of GM over time),
none of the four methods detected any voxels at the corrected (pFWE < 0.01) level.

Figure 3.14: Atrophy images overlaid on coronal slices, at indicated positions anterior of
the Anterior Commissure: Gold standard contrast-image thresholded at (a) 0.02 and (b)
0.03, on BrainWeb grey-matter. VBM Results, on SPM5 grey-matter tissue probability
map: (c) Standard; (d) Tied-normalisation; (e) Pre-averaged; (f) Post-averaged.

Table 3.4 shows correlations between the ground truth contrast image and the contrast
or t-value images for the four methods:
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Method std tied pre post
contrast 0.24 0.17 0.63 0.65
t-values 0.16 0.10 0.47 0.36

Table 3.4: Image-wise Spearman rank-correlations (over in-mask voxels) between longitu-
dinal VBM contrast- and t-maps and gold-standard contrast-map.

Segmentation of shrunken BrainWeb20 images

Tissue classification performance of the standard method (independent segmentation) and
the two HDW-based longitudinal segmentation methods (pre- and post-averaging) is com-
pared in the following two figures. Two metrics have been used for quantifying the accuracy
of the estimated probabilistic segmentations with respect to the fuzzy tissue models un-
derlying the BrainWeb20 simulated images. The fuzzy-overlap measure of Crum et al. [28]
has been used directly, and the more conventional Tanimoto overlap (on which the fuzzy-
overlap is based) has been used on the binarised segmentations resulting from thresholding
at 50% probability. Figure 3.15 shows the results for grey-matter (of primary interest in
most VBM studies, including this one), while figure 3.16 shows equivalent results for
white-matter.
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Figure 3.15: Accuracy of grey matter segmentation, quantified with fuzzy overlap and
Tanimoto coefficient after binarisation at 50% probability.

3.3.5 Discussion

FEM simulated atrophy
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Figure 3.16: Accuracy of white matter segmentation, quantified with fuzzy overlap and
Tanimoto coefficient after binarisation at 50% probability.

From Simulation Ground Truth to VBM Gold Standard The atrophy simulation
method gives the ground-truth volume change over the nodes of the deformed mesh.
However, several steps are required to convert this data into a gold standard for VBM.
The volume change maps could probably be improved, for example with mesh-refinement
and/or better interpolation from mesh nodes to voxels, but the smoothed GM-increase
images which lead to the gold standard appear perfectly adequate.

Following the obvious approach of performing the same statistical analysis of the
ground-truth GM-increase images as of the VBM subtraction images, we obtained un-
realistic t-maps (not shown). Unreasonably large t-values occur outside the regions in
which FEM volume changes were introduced. This may be due to the low spatial variance
of the volume change maps outside these areas. Inter-subject spatial variability is far
lower for these images than it is for natural anatomical variation in real patient images
— even after spatial normalisation. Peak SPM t-values tend to move toward regions of
lower spatial variability; this is discussed at length by Reimold et al. [19], who propose a
solution based on combining information from the t-map and the contrast image to locate
peaks more precisely.

Here, it is desirable to have a gold standard image, instead of a list of peak locations,
so we instead threshold the contrast image, in this case simply equal to the (negative)
mean GM-increase. The maximum intensity projections and slices (see figures 3.12 and
3.14) now look sensible, but this method leaves open the question of at what level the
contrast image should be thresholded, since appeal can no longer be made to statistical
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grounds.12

The approach taken here of presenting differently-thresholded versions of the gold
standard allows a multi-scale evaluation of the pattern of atrophy. Note that the purpose
of the gold standard is to indicate the spatial pattern of simulated atrophy; its significance
is not of innate interest. To ensure a fair comparison, the statistical thresholds for the
different longitudinal methods were held constant.

Longitudinal VBM on simulated atrophy The gold-standard results shown in fig-
ures 3.12 and 3.14(a,b) indicate the presence of diffuse global atrophy, with greater focus
on the temporal lobes and strongest change in the hippocampi; the cerebellum and brain-
stem are spared. The key advance of this work is that the VBM methods may be compared
directly to this desired pattern, as well as to each other.

We first note that all four methods appear to perform better at detecting the hip-
pocampal and temporal lobe atrophy compared to the more diffuse cortical atrophy. This
is probably due to the greater natural anatomical variation in the pattern of cortical fold-
ing. Inter-subject registration with accurate sulcal matching is notoriously difficult; some
of the most successful approaches require manual intervention [43].

Standard VBM detects the least atrophy of the four methods, though there are no
obvious false-positive regions. Longitudinally tied normalisation seems to give only mi-
nor improvements, though there is some evidence that the less variable tied registration
preserves more of the cortical atrophy.

Both HDW-based methods appear much more sensitive, though some of the atrophy
they report is not apparently well-matched to the gold standard (e.g. the insula). In ad-
dition, some areas present in the gold standard appear to be missed despite the greater
apparent sensitivity (e.g. temporal horns, and the focal nature of the hippocampal atro-
phy).

The pre-averaging method [34] seems to produce false-positive results in the cerebellum
and brainstem. Our new post-averaging method appears to avoid this, at the expense of
detecting less true cortical atrophy. Additionally, the post-averaging method has better
detected the hippocampal atrophy. Reasons for these differences are not entirely clear, as
both methods used the same HDW transformations. The pre-averaging method segments
(and normalises) an image with higher signal-to-noise ratio but potentially significant
blurring; while post-averaging of original (lower SNR segmentations) also improves the
SNR of the results. It is conceivable that false-positives in the cerebellum could arise
because the greater blurring in the pre-averaging method causes the balance of GM and
WM to change due to the more severe partial volume effect, given the slightly greater bulk
of WM versus the thinner and more convoluted layer of GM. The relative merits of these
two alternatives need further investigation.

We note that there are statistical objections to the comparison of t- or p-values, as
a difference in significance is not equivalent to a significant difference. However, with

12We briefly explored the use of permutation-testing on the (non-pivotal) statistic given by the numerator
of the usual t-statistic, however, the thresholds turned out to be unhelpfully severe, removing much of the
atrophy which we know (from the simulation) should be present.
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fundamentally different methods such as the standard and HDW-based VBM evaluated
here, there is a risk of registration problems if the ANOVA interactions between atrophy
and method are tested. The findings shown here are intended to allow comparison between
distributions of detected atrophy of the four methods and the gold standard, with the aims
of informing choices between different VBM methods, and guiding further comparative
studies.

Segmentation performance

Figures 3.15 & 3.16 show the same general patterns. Surprisingly, given the apparently
superior VBM results, the standard independent segmentations appear to be superior to
those using high-dimensional image registration. With either metric, and either grey or
white matter, standard VBM has the highest segmentation accuracy for at least three
of the four subjects. Post-averaging seems marginally superior to pre-averaging based
on the Tanimoto overlap of the thresholded segmentations, but pre-averaging appears
better judging from the fuzzy-overlap. This inconsistency suggests simply that there is no
significant difference between the two methods — an hypothesis which greater amounts
of data should be able to confirm or refute.

Performance was also quantified using a third metric: Pearson correlation of the prob-
abilistic segmentations. These results (not shown) exhibited a similar pattern, with the
standard method again appearing more successful than either HDW technique, but with
little evidence for a significant difference between pre- and post-averaging.

It seems, in this case, that the registration is not sufficiently accurate to be improv-
ing the segmentation, even on these images with simple global scaling. In practice, the
VBM results do appear to be better for the HDW methods, suggesting that there is still
very valuable information in the warps. The obvious conclusion from these findings is
that Jacobians from HDW registration to follow-up images should be combined with in-
dependently produced baseline segmentations. Interestingly, the method used in Kipps
et al. [44] does just this. An earlier version of the software developed during this project
did in fact use an SPM5-adapted version of the method of Kipps et al., but after testing
(only) on real images, it was dropped in favour of the apparently superior pre-averaging
method. Later, the post-averaging method was developed in the hope of improving upon
pre-averaging (which it appears to have done). Ironically, it now seems (on the basis of
this admittedly limited investigation using unrealistic simulated atrophy) that the simpler
approach of Kipps et al. may be the best method for combining HDW Jacobians with
segmentations for longitudinal VBM. However, this may well change if a more precise reg-
istration method is used for the longitudinal averaging. A groupwise registration method
like DARTEL [11] would additionally remove the potential for bias that arises in choosing
the baseline as the target for registration of the follow-up images.

Future investigation with greater numbers of subjects (and, ideally, more realistic
atrophy simulation, as well as real data) will be essential to provide firm support for con-
clusions. One appealing idea which we have started to explore, is to quantify preprocessing
quality using disease-group classification performance from an automatic machine-learning
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classifier, such as a support vector machine (SVM), as used by Klöppel et al. [45]. The
main challenge here is that large data sets are required for precise and reliable estimates
of classification accuracy, but only relatively small data sets are available with completely
certain classification ground truth. Atrophy simulation may have a part to play here too.
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3.4 Guidelines for reporting VBM studies

3.4.1 Abstract

Voxel-Based Morphometry [4] is a commonly used tool for studying neuroanatomical cor-
relates of subject characteristics and patterns of brain change in development or disease.
In performing a VBM study, many methodological options are available; if the study is
to be easily interpretable and repeatable, then processing steps and decisions must be
clearly described. Similarly, unusual methods and parameter choices should be justified in
order to aid readers in judging the importance of such options or in comparing the work
with other studies. In this section, we suggest core principles that should be followed and
information that should be included when reporting a VBM study, in order to make it
transparent, replicable and useful.

3.4.2 Introduction

Voxel-Based Morphometry [4, 46] is becoming increasingly widely used as a tool to ex-
amine patterns of brain change in healthy ageing [36] or neurodegenerative disease [47]
and neuroanatomical correlates of behavioural or cognitive deficits [48]. VBM essentially
involves voxel-wise statistical analysis of preprocessed structural MR images. Although
much of the processing and analysis is automated in software packages such as SPM, many
methodological decisions remain, ranging from what template to use for normalisation, to
what level and type of correction to use and how best to display results. Different ap-
proaches, such as VBM using RAVENS maps [10], introduce yet more options. It can
be difficult to replicate or draw conclusions from VBM studies if the processing steps are
not clearly described. Similarly, if unusual methods or parameters are employed without
sufficient justification it can be challenging for readers to judge the potential impact on
results or to compare the work with other studies. Here, we present a set of recommen-
dations, in the form of ten ‘rules’, which we hope will be helpful to authors when writing
up VBM studies. The rules are intended to outline core principles that should be followed
and information that should be included when reporting a VBM study, in order to make
it transparent, replicable and useful. Since the field is rapidly developing, such rules must
not be overly restrictive; some of the points below aim to explain more general principles,
in the hope of aiding the reader to follow good practice in areas where rigid protocols
cannot be given. We feel that guidelines are crucial for clear scientific communication and
the development of the field, as VBM data sets accumulate and alternative procedures
and techniques proliferate. Additional motivation for this work came from the success
of the CONSORT statement [49], a major undertaking that helped to standardise and
improve the reporting of randomised controlled trials, and from a related effort in the field
of functional brain imaging [50].13

13See also: http://www.fmrimethods.org

http://www.fmrimethods.org
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3.4.3 Rules

1. Set out the rationale for your study and describe the data fully

What are the key experimental questions, and why was VBM preferred over other tech-
niques in order to address these questions? Prior hypotheses should be stated; either
experimental ones or a priori anatomical or spatial regions in which you predict effects
might be found [51]. This is particularly important if search volumes are restricted when
correcting for multiple statistical tests during data analysis (see Rule 5). The study de-
sign should be described in enough detail for readers to be confident that subjects have
been included appropriately and that important sources of error have been identified, and,
where possible, controlled for. Subject inclusion and exclusion criteria should be clearly
set out, as well as baseline demographic information (such as age, gender and handed-
ness) and any other variables which are relevant to the interpretation of the findings [52].
Examples of such variables could include IQ in a study of cognitive function, or measures
of disease severity or duration in a clinical study. Image acquisition can influence mor-
phometry results [53]; it is therefore essential to report any variations in acquisition, such
as different scanners, scanner upgrades, or pulse sequence changes. The relative timing
of data acquisition should be specified, for example, were MRI and any other clinical or
behavioural data for a subject collected on the same day; if not what was the interval?
It is also important to specify whether MRI data for different groups were collected in
an interleaved fashion, or in blocks (thus raising the possibility that changes in scanner
calibration over time could be an additional source of inter-group variation, [54]). Scanner
locations and make should be mentioned for multi-centre studies, and assessment interval
(for MRI and any other data collection) should be made clear for longitudinal studies..
If analysing multiple groups (e.g. patients and controls), discuss whether potential con-
founds, such as age, gender or acquisition differences, are balanced between groups. If
subjects or scans were excluded from the analysis this should be stated and justified (see
Rule 9).

2. Explain how the brain segmentations are produced

The inputs to VBM’s statistical analysis are derived from structural MR images using
tissue-segmentation, spatial normalisation, and smoothing. Additional preprocessing is
often performed before the main segmentation step, generally using automatic algorithms
such as MR bias correction or skull-stripping, or manual techniques such as semi-automatic
brain-segmentation or interactive reorientation. Multiple processes may be combined
within unified algorithms, such as that of Ashburner and Friston [30]. The preprocessing
steps must be reported in sufficient detail for the methods to be clear and reproducible;
as a minimum, this should include the software packages used (with version numbers)
and any parameters altered from the default values. For interactive steps, authors should
clarify the protocol, for example whether operators were blind to subject identity. The
segmentation method itself should be reported so as to be reproducible; either through
clear identification of the software package and description of any defaults modified, or
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via careful description of the algorithm. Some popular segmentation algorithms use reg-
istered spatial priors, in which case the source of the priors and the means of alignment
should be clear. In particular, with SPM2, different methods of iterative segmentation
and normalisation have been used, often including iterative regeneration of priors [36, 55];
these should be reported in detail — terms such as ‘optimised VBM using SPM2’ are not
sufficiently precise. Following segmentation, other image-processing methods can be used
to condition the data further. Such techniques include morphological filtering (used in
the ‘clean-up’ option of SPM2 and 5), the application of Markov Random Field models,14

or interactive editing of segmentations. These approaches tend to be less standardised,
so should be reported carefully. The final image-processing step is usually to smooth the
segmentations, typically through convolution with a Gaussian kernel, in which case the
Full-Width at Half-Maximum (FWHM) should be reported. Since smoothing sensitises
the analysis to a particular spatial scale of effect (due to the matched filter theorem [13])
some justification of the choice of FWHM may be helpful. Less widely used smoothing
techniques, such as anisotropic smoothing [56], should be explained in detail.

3. Describe the method of inter-subject spatial normalisation

In order to compare different subjects, it is essential to use some kind of registration algo-
rithm to bring the images into at least approximate correspondence. Both the technique
used and the reference space to which brains are aligned can impact on the results [57], so
clear reporting is crucial. As with the other preprocessing steps (see Rule 2), if a popular
software package is used, deviations from the default options should be highlighted. The
less standard the approach, the more detailed the description should be — as a minimum
it should include the four basic elements of image registration: the spatial transformation
model; the objective function, including any regularisation terms or Bayesian priors; the
optimisation algorithm; and the interpolation method. Spatially-normalised segmenta-
tions may be subsequently ‘modulated’ with the Jacobian determinants from the transfor-
mation, in order to adjust for the resulting volume changes. This can heavily influence the
results and their interpretation [46, 58], so authors should state whether or not modulation
has been performed and justify this choice (particularly if non-rigid registration is used
without modulation). It is important to clearly report the reference space to which brains
are being aligned, as there are a number of different options available that are defined
in quite different ways; ranging from low degree of freedom landmark based reorientation
and scaling [59], to automated registration with greater degrees of freedom, either to a
template [60, 61] or to tissue probability maps [30]. Template images or segmentations
may be standard, such as the popular MNI or ICBM ones used in SPM and FSL, or may
be derived from the subjects themselves [11, 36, 62, 63]. If a subset of the data are used to
generate custom templates or tissue probability maps, then which subjects (e.g. healthy,
diseased, or a balanced mix), and why, should be clear. Poldrack et al. [50] further discuss
the choice of reference space, with particular focus on the concept of Talairach space and
its relation to standard atlases.

14See e.g. Christian Gaser’s software at http://dbm.neuro.uni-jena.de/vbm/markov-random-fields/
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4. Make your statistical design transparent

There are two issues here, model specification, and contrast testing. When constructing
a model it is important to be clear about which variables are included, and why. In the
case of factorial designs, it should be obvious to the reader exactly what the factors were,
the levels of each factor, and which interactions between factors were modelled. With
estimation methods more advanced than Ordinary Least Squares, it may be necessary to
report extra information; for example, SPM5 includes non-sphericity options that allow
levels of a factor to be dependent or to have different variances. Subject characteristics
(Rule 2) should be assessed critically to ensure confounding variables have been included
as covariates where appropriate. It is helpful to the reader to indicate why each variable
has been modelled, and whether it is a variable of interest (e.g. a psychological score) or
a potentially confounding factor (e.g. age). It may also be desirable to adjust for each
subject’s total or global brain tissue-volume, integrated over the whole analysis search
region; either by entering the global values as a covariate, or using them to scale the
original voxel values (See Kiebel and Holmes, chapter 8 of [64], for a tutorial in the context
of PET imaging). Adjusting for total intra-cranial volume [54] should also be considered,
as it can affect the results [36]. Adjustment for global variables remains a topic of debate
in VBM [46]. For all covariates, options relating to centring or orthogonalisation should
be reported, especially if factor-covariate interactions are modelled. When interrogating
the model, the contrasts tested should be described precisely, in terms of the variables
involved and their weights. The choice of statistic (t-test or F-test) should be justified
and (for single-tailed t-tests) the direction specified. Inclusion of a diagram (e.g. the design
matrix) or equation summarising the model and contrasts may be helpful.

5. Be clear about the significance of your findings

As with other mass-univariate image analysis techniques, VBM performs a very large
number of statistical tests. The method used to correct for multiple testing should be
both clearly stated, and carefully considered — ideally, a priori. VBM is often performed
on limited numbers of subjects (for example, to investigate rare disorders), where there
is a temptation to report uncorrected results due to low statistical power; this should be
made obvious, if done, and is probably best avoided — alternatives include correction
at a less stringent alpha level (it is then clear that there has been an effort to control
the false positive rate, and to what extent), or clear presentation of unthresholded t-
or effect-maps.15 Studies have also been published comparing single subjects to larger
control groups; the standard parametric statistical framework may be poorly suited to
such unbalanced designs unless large smoothing kernels are employed [65]. Control of the
voxel-level Family-wise Error rate (FWE) using methods based on random field theory
requires estimation of the smoothness of the data, and depends strongly on the size of
the search region. Therefore, interpretation would be aided by reporting the estimated
FWHM smoothness (not the same as the smoothness applied during preprocessing) and

15See Brett’s comments at http://imaging.mrc-cbu.cam.ac.uk/imaging/UnthresholdedEffectMaps.

http://imaging.mrc-cbu.cam.ac.uk/imaging/UnthresholdedEffectMaps
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the resel count. In addition, the method used to define the search region (e.g. an explicit
mask, or an absolute or relative threshold) should be specified. Cluster-level control of
FWE usually assumes stationary smoothness, which is unlikely to be appropriate for
VBM, unless special techniques are employed;16 if used it should be justified, and the
cluster-defining threshold must be reported. Permutation-based statistics [16] provide an
alternative method to control FWE (based on voxel value, cluster-size or cluster-mass).
These make fewer assumptions, but require careful explanation of the statistical design
(see chapter 2). If sub-volumes of the main search region are analysed (known as Small
Volume Correction in SPM) authors should explain how and why these regions of interest
were selected. Such regions should ideally be anatomically-defined and chosen a priori
with justification. (see also Rule 8). False Discovery Rate correction (FDR) [18] can
follow either parametric or permutation-based statistics, over the whole search region or
sub-volumes, and recently Chumbley and Friston [66] have suggested applying FDR to
uncorrected cluster-based p-values. These choices mean reporting should be more detailed
than a simple statement that FDR was used.

6. Present results unambiguously

The type and level of correction should be stated in all figure and table legends, and if
the statistical parametric map (SPM) is displayed as orthogonal slices or sections then
coordinates should be given. It may be helpful for tables to include statistic values and
cluster sizes, as well as coordinates of local maxima. SPMs should be displayed on a
template that represents some form of average anatomy, for example, the MNI T1-template
often used for normalisation, or ideally, a study-specific mean image. Displaying overlays
on a single high-resolution image is misleading: an individual subject is likely to be poorly
representative of the group, and implies a higher level of anatomical precision than is
possible with smoothed data [67].17 A similar caveat applies to the use of anatomical
labels. Methods for converting MNI coordinates to Talairach space should be referenced,18

and may be best avoided [67]. Comparison of results can be aided by using the same t- or
F-statistic colour-scales across figures. If an SPM is displayed at a threshold lower than
that used to locate significant voxels (for example in order to show small effects or give an
impression of the overall distribution of change) this should be made explicit. If single-
tailed t-tests are focussed on (for example in a study of atrophy where tissue gain would
be clinically implausible), it may nevertheless be helpful to report the reverse contrast; it
can indicate misregistration as a potential confound — or even a possible cause — for the
main findings.

7. Clarify and justify any non-standard statistical analyses

As a general principle, the less standard the analysis, the more thoroughly it should
be explained (see also Rule 3). Here, we discuss three of the more common examples.

16Such as Satoru Hayasaka’s toolbox for SPM — http://fmri.wfubmc.edu/cms/NS-General
17 Consider also the limitations of spatial normalisation discussed in Rule 9.
18For further discussion of the concept of Talairach space, see Poldrack et al. [50].
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Contrast masking may be used to disambiguate multiple possible causes of an effect or to
define smaller search regions, in which case authors should clarify not only which contrasts
were analysed and which were used for masking (and at what threshold), but also the
motivation for doing so and their interpretation. If a conjunction of analyses is tested
using the minimum of several statistic images, it is crucial to clarify the null hypothesis
— global, conjunction, or intermediate [68]. If data are extracted (e.g. eigenvariates from
volumes of interest, peak voxels or cluster summaries) for analysis with other statistical
software, this should be explained and justified (see also the Rule below).

8. Guard against common pitfalls

Here we discuss a few potential problems with VBM analyses that might be easily over-
looked. Firstly, note that while voxel-wise multiple testing is usually corrected for (see Rule
5), most software packages do nothing to correct for the user’s investigation of multiple
contrasts — the more conventional multiple-comparison problem [69]. A simple example
of this could occur if two opposite single-tailed t-contrasts were analysed; if any findings
in either could be reported as significant, then the alpha-level or p-values should be ad-
justed to reflect this — even if the other analysis is not reported. With more complex
models it can be difficult to decide on a suitable correction procedure [70], but if many
contrasts have been tested and not reported, this should be noted. A more insidious
multiple-comparisons problem can occur if part or all of the VBM analysis is repeated for
any reason. The motivation for this is crucial: for example, different amounts of smooth-
ing (see Rules 2 and 9) may be used to match the filter size to multiple spatial scales
of expected effects, whereas it would be misleading to try several FWHM values before
reporting only the most appealing results. It is also possible to invalidate correction for
voxel-wise multiple tests by extracting sub-regions of the images for further analysis; it is
essential that the procedure used to select data is independent of the subsequent analysis
[71], and clearly described. Similar caveats apply to the selection of alternative parameters
at other preprocessing stages, or the analysis of multiple sub-groups of subjects (perhaps
for disease sub-types), unless this is done using independent data sets. It is sometimes
necessary to exclude certain subjects or scans (for example due to artefacts or prepro-
cessing failures) such decisions should ideally be blind to the subjects’ identity, and care
should be taken to avoid bias or, if this is not possible (e.g. if more severely affected sub-
jects are more likely to be excluded due to poor segmentation), sources of bias should be
acknowledged.

9. Recognise the limitations of the technique

Like all image analysis methods, VBM has inherent limitations [72]. The basic premise of
inter-subject spatial normalisation is problematic: different subjects can have different gy-
ral variants with no ‘true’ correspondence between them; and information from structural
MRI (even manual sulcal labelling) does not necessarily predict underlying cytoarchitec-
tonic borders [73]. Normalisation accuracy is also likely to vary between brain regions,
for example highly convoluted cortex will register less well than simpler structures. This
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suggests that conclusions regarding fine-scale anatomical localisation should be cautious;
there is no single ‘correct’ normalisation method. Smoothing can alleviate some of the
problems of inter-subject correspondence (in addition to making the data more normally
distributed) but brings problems of its own. Variations in smoothing can produce very
different results [74], and while investigators may have a rough idea of a reasonable kernel
size for their study (based on a priori beliefs about the likely scale of interest), a degree
of arbitrariness remains. All classical statistical tests share the limitation that failure to
reject the null-hypothesis does not imply that it is true (this is particularly pertinent if
tests only just fail to reach arbitrary significance levels, such as 0.05). More specifically,
with SPM, the absence of a statistically significant effect in a particular region does not
prove that the region is unaffected. This is especially true for VBM, where regional vari-
ation in normalisation accuracy [75] or smoothness [4] is likely to cause spatially variable
sensitivity.

10. Interpret your results cautiously and in context

When implemented rigorously and interpreted carefully VBM can be a powerful technique.
Authors should be forthright in discussing potential sources of bias or imprecision, whether
they arise from the study’s design or analysis, or from the nature of VBM itself. Particular
care should be taken when interpreting results which appear fragile with respect to more
arbitrary aspects of the method such as preprocessing options and nuisance variables. A
conservative approach based on robust findings, related to a priori hypotheses, is preferable
to reporting weak effects that may be idiosyncratic to the particular parameters chosen.
This approach reflects an awareness of the potential sources of error and bias that can be
introduced at the different stages of a VBM study — effects that are likely to be amplified
in clinical populations with inherently atypical anatomy. Despite the caveats, our basic
message is brief: your VBM study should be conducted and reported in a way that is
principled, transparent and replicable. Such studies have potential to become valuable
contributions to the literature.
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Chapter 4

Multivariate Morphometry

The purpose of this chapter is to provide a thorough theoretical and practical study of the
major extensions of mass-univariate statistical analyses like voxel-based morphometry to
voxel-wise ‘mass-multivariate’ analyses.

The theory of multivariate or generalised tensor-based morphometry is expounded,
and an attempt is made to provide a novel synthesis of two complementary viewpoints: a
physical solid-mechanics approach, with the goal of aiding intuition; and a mathematical
group-theoretic approach, which provides rigour.

Issues related to spatial normalisation of longitudinal deformation fields, Jacobians or
strain tensors are thoroughly dealt with, in a discussion which also contributes to the
closely related problem of diffusion tensor reorientation.

The permutation-testing framework described in chapter 2 is employed to furnish infer-
ences corrected for the multiple testing problem, and to allow the use of two test statistics
which have never before been applied to morphometric data in this way. The second
such statistic permits the analysis of the principal direction of strain; one of a number
of quantities compared and contrasted to other strain-tensor-derived measures. Also in-
cluded, are analyses of the displacement fields, and multivariate voxel-wise analyses of
both displacement and volume changes using a local ‘searchlight’ kernel [1].

This chapter can be seen as an attempt to develop the equivalent ‘Morphometry’
chapter from Ashburner’s thesis [2, Ch. 6]; the main progress with respect to that work
(which focussed strongly on a solid-mechanics interpretation of strain tensors) stems from
broader consideration of related fields, for example bringing to morphometry practical
advances from diffusion tensor imaging and the theoretical developments in Riemannian
tensor metrics.

4.1 Introduction

Shape is fundamentally a multivariate concept, and one of the strongest criticisms of Voxel-
Based Morphometry is its univariate limitation [3]. As illustrated by Mechelli et al. [4],
the use of total tissue volume as a covariate can partially address this concern, allowing
questions about the local volume after adjusting for global effects. However, the nature
of shape suggests that multivariate analysis may offer significant potential to further the
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understanding of anatomical differences between subjects and of morphometric changes
over time.

Fully multivariate modelling of three-dimensional images (see e.g. [5, 6, 7]) requires
significant data reduction and/or regularisation in order to cope with the dimensionality of
the data vastly exceeding the number of scans. Furthermore, by considering entire images
as observations, these techniques complicate the anatomical interpretation of their results.
In this chapter, we investigate methods that lie between the two extremes of the mass-
univariate and the massively high-dimensional. Linear statistical modelling is employed,
with familiar concepts of design matrices and contrasts, producing standard thresholded
maps of significant voxels. However, the model is applied to data which has a multivariate
observation at each voxel. Such observations can either come from measurements which
are inherently multivariate (for example the three-dimensional displacement at each voxel,
from a non-rigid registration), or from collecting together the univariate observations of
all voxels within a specified neighborhood of the current voxel into a single multivariate
summary — Kriegeskorte et al.’s ‘searchlight’ [1].

The theory and implementation developed in chapter 2 and appendix D provide the
necessary tools for efficient permutation-based linear modelling of these data. Below, we
will describe various sources of multivariate measurements with potential application to
morphometry, focussing in particular on those derived from the Jacobian matrix. Theoret-
ical concepts are explored, including the issue of inter-subject normalisation of longitudinal
information. These approaches will then be investigated in practice through analyses of
the DRC/GSK MIRIAD longitudinal Alzheimer’s Disease data-set [8]. The SPM soft-
ware is used to perform the non-rigid registrations from which we derive the multivariate
measures and the univariate data suitable for analysis with the searchlight technique.

4.1.1 Summary of potential applications

The following is a concise overview of some potential applications of the multivariate sta-
tistical methods mentioned above to various sources of data, within the field of longitudinal
MR imaging of dementia.

Serial data

The most obvious potential source of multivariate voxel-wise data is to consider the
multiple measurements of the longitudinal time-series as a single multivariate measure-
ment at each voxel. This is a standard approach for the analysis of repeated measures
models, which is an alternative to univariate ANOVA with non-sphericity correction [9].
It is common practice not to analyse the original m time-point multivariate measure-
ments, but rather the data after transformation by some contrast. For example, the
m − 1 differences with respect to the first time-point, or the m − 1 adjacent differences
(t2− t1, t3− t2, ..., tn− tn−1). Polynomial contrasts using linear, quadratic, etc. terms can
also be used. Exact representation of m time-points requires m polynomial terms from
constant (degree 0) through to (m − 1)th degree, though, as with the differencing con-
trasts, it seems common to reduce the dimensionality to m− 1, in this case by neglecting
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the average (constant) term. The theory of the multivariate general linear model (A.4)
seems to apply just as well to the full m-variate data, but the use of contrasts simplifies
the interpretation of results. A significant multivariate finding can be directly followed
by ‘protected’ univariate tests of the particular differences or polynomial terms, within
the framework of Fisher’s ‘least significant difference’ multiple comparison procedure (see
section 1.6.4).

By combining time-points in this way, there is an implicit assumption that the dif-
ferent times are equivalent across subjects. Clearly, this framework cannot accommodate
unbalanced designs. Deliberately unbalanced experiments might seem desirable in some
cases, for example measuring patients on more occasions than controls, since the patients
might be expected to be changing more rapidly. More commonly, initially balanced de-
signs can suffer from missing data, for example patients becoming too ill to continue in the
study. Equivalence of time-points also means that there must not be significant variation
in acquisition times for the different subjects’ measurements. Mixed models, discussed
in section 1.6.3, can avoid some of these limitations, but the added computational com-
plexity seems likely to preclude the combination of variance-component estimation with
permutation testing.

Non-standard or multi-spectral MRI data

In addition to segmented tissue-density, which forms the basis of voxel-based morphometry,
complementary information can be derived from other sources, including different MRI
sequences and other imaging modalities. For example, Hayasaka et al. [10] analysed tissue
density and perfusion-weighted images from arterial spin labelling (ASL) MRI, finding
both areas of concordance and discordance in the two measures. Analysis of dementia
could also benefit by including information from

• quantitative images of T1, T2 or other parameters [11]

• diffusion-weighted information, to investigate markers of axonal degeneration

• PET imaging, e.g. using PIB [12] to measure the distribution of amyloid deposits

• FLAIR MRI, to investigate white-matter lesions and differentiate vascular dementia

These, and other imaging modalities were mentioned briefly in sections 1.1 and 1.3.2.
Such combined data-sets should meet the assumptions of equivalence over subjects

more easily than the serial data discussed above. However, it may still be difficult to
model or interpret large differences in scale, variability, etc. between the data sources.
Furthermore, with such disparate data, more complex relationships could be of interest,
including dissociation. For these reasons, the combining function framework used by
Hayasaka et al. [10] (and discussed in section 2.3.4) might be superior for such applications.

Deformation-based morphometry

Once non-rigid deformations have been found that register multiple images, the resultant
displacement fields contain information on the estimated correspondences. We will use
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the term deformation-based morphometry (DBM) to refer generally to approaches using
this concept. It is helpful to distinguish between high-dimensional ‘image-wise’ analysis
of complete deformation fields, and low-dimensional voxel-wise multivariate analysis of
displacement vectors. Ashburner et al. [13] pioneered the former approach; Gaser et al.
[14] focussed on the latter technique, in work more similar to that which is presented here.

With serial data, the deformation fields from within-subject registration can be anal-
ysed, using spatial normalisation simply to achieve intersubject correspondence (see sec-
tion 4.2.10 below). Cardenas et al. [15] have used this technique to look at brain changes
caused by chronic alcoholism.

Diffusion tensor MRI

In the context of Diffusion Tensor Imaging, Whitcher et al. [16] discuss the common prac-
tice of reducing the tensor to a scalar measure, such as Fractional Anisotropy, in order
to perform voxel-wise statistical testing; they point out that this involves a loss of in-
formation, and suggest that multivariate testing should offer several advantages. Below
we describe a family of symmetric positive definite strain tensors derived from the gradi-
ent of a non-rigid spatial transformation. There is a close analogy between diffusion and
strain tensors, which means that many of the approaches applied to the former (includ-
ing Whitcher et al.’s multivariate analysis) may be usefully transferred to morphometry.
Whitcher et al. investigate three alternative multivariate tests: the two-sample Hotelling’s
T 2 (a standard parametric test) [17]; the Cramér test (as presented in section 4.3.3); and
a test based on non-parametric combination of dependent multivariate permutation tests
(using the Fisher combining function) [18]. In [16], multiple tests are dealt with using false
discovery rate (FDR) correction, in contrast to the family-wise error (FWE) controlling
permutation-testing methods used here.

Tensor-based morphometry

The spatial derivative of a three-dimensional deformation field is a three-by-three matrix,
or second order tensor, known as the Jacobian.1 The term tensor-based morphometry
(TBM) is usually taken to imply the analysis of a measure derived from the Jacobian.
In TBM, as in DTI above, it is also common practice to reduce the information in the
Jacobian tensor to a single scalar (or zeroth order tensor) given by its determinant at
each voxel [19, 20]. Ashburner and Friston [21] suggested that a better approach might be
multivariate analysis using one of several possible Lagrangian strain tensors derived from
the polar decomposition of the Jacobian matrix. The theory underlying this is expanded
upon below.

Both cross-sectional and longitudinal transformations have been analysed using mul-
tivariate TBM. Lepore et al. [22, 23] apply their method to a cross-sectional comparison
of 26 HIV/AIDS patients compared with 14 matched healthy controls. Studholme and

1Some authors use the term Jacobian to refer to the determinant of this matrix, explicitly referring to
the ‘Jacobian matrix’. Both conventions are common; we will typically consider the Jacobian to be the
matrix, and will explicitly refer to the Jacobian determinant.
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Cardenas [24] study the brain changes in recovering alcoholics, on 16 consistent abstainers
and 8 relapsers (no non-alcoholic controls), over two time-points approximately 8 months
apart. When longitudinal change is the focus, spatial normalisation is still required to
define inter-subject correspondence. In section 4.2.10 we will discuss the issue of how the
inter-subject transformation interacts with the intra-subject one.

The multivariate searchlight

The basic premise of the work of Kriegeskorte et al. [1, 25] is to look for information in
the multivariate pattern of the observed voxels in a local window around each voxel; this
multivariate searchlight is then scanned through the image. By avoiding the preprocessing
step of smoothing,2 searchlight has the potential to detect more complex patterns, whose
structure would be damaged by näıve spatial blurring. As a specific example, TBM of
AD may fail to find (or fail to precisely locate) atrophy in a small structure like the
hippocampus, if the shrinking structure is adjacent to expanding CSF, and these opposite
effects are averaged together via the smoothing kernel. We explore the searchlight in
greater detail below.

4.1.2 Statistical methods applied to multivariate morphometry

We now provide a brief, but, to the best of our knowledge, complete survey of the different
types of statistical analysis applied to multivariate tensor-based morphometry. Univariate
TBM has typically used either the SPM implementation of the parametric GLM or a
simple form of permutation testing, though we do not attempt to survey in detail the
much larger number of publications employing univariate analysis.

The work of Gaser et al. [14, 26] on deformation-based morphometry employed un-
corrected statistics, though they alluded to the availability of random field theory (RFT)
results for Hotelling T 2 fields, and to the possibility of approximate transformation from
Wilks’ Λ to Snedecor’s F , as discussed in section A.4.4, which is also used by Studholme
and Cardenas [24]. Cao and Worsley [27] tested the three components of inter-subject
deformation fields, using RFT results for Hotelling T 2.

Ashburner [2] noted at the time of writing that RFT results were not available for
a general Wilks’ Λ field, and he presented only uncorrected statistics. RFT results for
Wilks’ Λ are now available from Carbonell et al. [28],3 but they appear not to be widely
adopted.

In order to apply RFT results to Hotelling’s T 2 or Wilks’ Λ, it is necessary to have an
estimate of the smoothness of the multivariate residuals. Interestingly, Worsley’s original
work included this multivariate generality [29], but it seems to have been lost from a more
recent development [30] which formed the basis for the implementation in the popular
SPM software.

2Note that even with permutation testing, which removes the requirement for normally distributed data,
smoothing (or the searchlight) is typically still beneficial, either to compensate for residual mis-registration,
or to enhance the signal-to-noise ratio, or perhaps to reduce the number of very small scattered findings.

3See also http://www.math.mcgill.ca/keith/felix/felix.htm

http://www.math.mcgill.ca/keith/felix/felix.htm
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Ashburner [2] found some evidence of non-normality in all the strain tensors he con-
sidered, which motivates the use of non-parametric testing.

Lepore et al. use non-parametric permutation testing, based on the squared Maha-
lanobis distance [22] or permutationally equivalent Hotelling T 2 statistic [23], with 5000
permutations. They produce uncorrected p-values at each voxel, before assessing the over-
all significance of the p-map using Storey’s ‘positive False Discovery Rate’ [31, 32]. Their
visualisation, however, focusses on uncorrected p-values.

Studholme and Cardenas [24] (discussed further below) use a special case of Wilks’ Λ for
a single interest covariate, but report only raw statistic maps thresholded at an arbitrary
level (transformed F=2). Interestingly, their 24 subjects seems not to be sufficient for
estimating the covariance matrices, which, for their multivariate data (m=9) will have 45
unique elements. There appears to be no discussion of the seemingly necessary shrinkage
or regularisation techniques (see section 4.3.3).

Statistical contribution of the present work

To the best of our knowledge, this chapter represents the first application of FWE-
controlling multivariate permutation testing to deformation- or tensor-based morphometry
(or to the searchlight). It is also believed to include the first use of the two-sample Cramér
statistic with morphometric data, and the first use of the bipolar Watson statistic with
orientational information in the context of morphometry. This work is also believed to fea-
ture the first neuroimaging application of FWE-controlling permutation-testing to either
the Cramér or Watson statistics. Additionally, this seems to be the first time a step-down
FWE-controlling permutation method has been applied in structural neuroimaging.

4.2 Theory

4.2.1 The searchlight

Kriegeskorte et al. [1, 25] analyse the multivariate observations formed from accumulating
the univariate voxel-wise data within a discretised approximation to a spherical kernel
around each voxel (i.e. a spherical searchlight is swept through the image). They explore
a range of kernel volumes from 1 to 123 voxels (for the properties of these see table 4.3).

Kriegeskorte et al. analyse the Mahalanobis distance between two fMRI conditions.
The squared Mahalanobis distance is very closely related (and permutationally equivalent)
to Hotelling’s two-sample T 2 test, which is in turn a special case of the more general
likelihood-ratio based Wilks’ Λ statistic. Therefore the multivariate permutation testing
methods proposed here in chapter 2 and appendix D generalise Kriegeskorte et al.’s method
to a wide range of linear models. Thus far, the searchlight method has been applied using
permutation-based testing to generate uncorrected p-values, which are then corrected using
the False Discovery Rate mechanism [33]. Therefore another development of this chapter
is the presentation of the first FWE-corrected searchlight analyses.

Because spatial smoothing is essentially an averaging process, it increases the signal-to-
noise ratio (SNR) of spatially distributed ‘blob-like’ signals. The matched filter theorem
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[34] implies that the analysis will be most sensitive to signals matching the shape and size of
the smoothing kernel. By replacing the explicit averaging with a more general combination
of signals via multivariate statistics, the searchlight hopes to achieve almost the same SNR
without assuming such a simple form for the signal. However, the searchlight does not
avoid the problem that different scales of signals will be best identified with different
size kernels. In fact, the problem is greatly exacerbated, since larger scale patterns will
require large searchlight kernels, leading to multivariate observations of undesirably high-
dimensionality with respect to the number of images.

We argue that patterns with a very large spatial extent are less likely simultaneously to
exhibit fine spatial detail. This motivates the application of multi-resolution or scale-space
techniques; in particular, pyramid approaches [35], which effect the necessary reduction in
dimensionality as they decrease the high-resolution content.

Multi-resolution methods

Multi-resolution techniques are common in image-processing, particularly in image regis-
tration, where they can be expected to improve accuracy, robustness [36], and speed, by
ensuring that (fast) initial computations at lower resolutions bring the coarser image fea-
tures into rough alignment [37], helping to avoid local extrema in the objective function,
and reducing the number of expensive full-resolution iterations required [38].

Pyramid methods are also useful in analyses, particularly fully multivariate ones such
as image-classification using Support Vector Machines, where they can provide a helpful
dimensionality reduction in addition to matching the scale of expected patterns. Such
techniques range from simple down-sampling via voxel-averaging [39], through Gaussian
blurring and down-sampling, to more complex techniques such as those found in the work
of Davatzikos’ group [40, 41].

The simplest voxel-averaging techniques are likely to have poor frequency-domain prop-
erties, particularly if upsampling is also required. Unser et al. [42] proposed the use of
spline-pyramids derived for optimal least-squares representation for a given approximation
order. They note that ‘among all interpolants of a given degree of smoothness, [polynomial
splines] are those that oscillate the least’ and go on to show superior performance com-
pared to linear and Gaussian pyramids. In later work, Brigger et al. [43] extended these
spline pyramids to symmetric centred-topology versions with several advantages, including
‘more faithful image representation at coarser pyramid levels’ [43] which is particularly
appealing for the present purpose. The techniques also offer an optimal means to up-
sample after down-sampling (e.g. to return statistical results at the lower resolution to the
full structural template resolution for visualisation) which is helpful here. Using C code
made available by the above-cited authors (http://bigwww.epfl.ch/sage/pyramids/),
we have incorporated this approach into our MATLAB-based permutation-testing soft-
ware.

Wavelet methods [40, 44, 45] probably provide the most sophisticated way of perform-
ing multi-resolution analysis, without the näıvety of stationary and isotropic Gaussian
smoothing or spline-pyramid downsampling. Wink and Roerdink [46] perform a direct

http://bigwww.epfl.ch/sage/pyramids/
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comparison of Gaussian smoothing and Wavelet denoising in the context of statistical
parametric mapping, strongly favouring the latter approach. However, due to the large
number of choices to be made regarding mother-wavelet and filter-orders, etc. and the
greater complexity in implementation, we postpone further consideration of this for future
work.

4.2.2 Displacement and deformation vector fields

Deformation-based morphometry is taken here to mean voxel-wise analysis of displace-
ment vector fields derived from non-rigid registration, either between subjects, or over
time after inter-subject spatial normalisation. A point r0 = (x0, y0, z0) in the target image
(defined over a domain Ω0) is mapped to a corresponding point r1 ∈ Ω1 in the source
image by a transformation T10.4 Distinction should be drawn between the transformation
r1 = T10(r0), which we consider as a voxel-wise ‘deformation field’ connecting points r0

and r1, and the ‘displacement field’ u10 = (ux
10, u

y
10, u

z
10) which measures the offset from

an identity transformation, r1 = r0 + u10(r0). The latter are often associated with small-
deformation registration approaches (e.g. using an elastic penalty on the displacement
away from an identity) in contrast to large deformation approaches, which focus on the
transformation (e.g. penalising instead a velocity field from which the transformation is
derived). However, for any transformation, we may compute u10(r0) = T10(r0) − r0. For
the purpose of standard statistical analysis of DBM data, however, we may note that the
identity transformation is common to all subjects, and therefore both deformation and
displacement fields will yield the same results for statistical models where the constant
term is in the space of the nuisance covariates. This is also true after smoothing, thanks
to linearity, though care is required that image boundaries are handled properly (or are
outside the analysis mask), since zero-padding is incorrect for deformation fields. Sim-
ilarly, the spline-pyramid downsampling discussed in 4.2.1 assumes reflectant boundary
conditions which would not be appropriate for deformation fields.

4.2.3 The Jacobian tensor field

The Jacobian of a deformation vector field is a tensor field. At each point, the Jacobian
matrix (of partial derivatives) relates infinitesimal vector elements in the target and source:dx1

dy1

dz1

 =


∂x1
∂x0

∂x1
∂y0

∂x1
∂z0

∂y1

∂x0

∂y1

∂y0

∂y1

∂z0
∂z1
∂x0

∂z1
∂y0

∂z1
∂z0


dx0

dy0

dz0


dr1 =

∂r1

∂r0
dr0,

4Note that r and s etc. denote vectors, e.g. r0 = [x0 y0 z0]
T , but there is no need to distinguish them

from scalars here. Arguably, transformations should be written with lower-case, since T (r) is a vector field,
but the notation used here seems less likely to cause confusion when T is mentioned in isolation.
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or, emphasising that the Jacobian is defined at each point r0

dr1 =
∂T10(r)

∂r

∣∣∣∣
r0

dr0

= J10(r0) dr0.

The Jacobian is also known as the ‘deformation gradient tensor’, and is related to the
‘displacement gradient tensor’ [47], K = ∂u

∂r = J − I,5 consistent with our distinction
between displacement and deformation vector fields.

The absolute value of the Jacobian determinant appears in the expression for a change
of variables in a multivariate integral:∫

Ω1

f(r1) dr1 =
∫

Ω0

f(T10(r0))
∣∣∣∣det

(
∂r1

∂r0

)∣∣∣∣dr0,

where Ω0 = T−1
10 (Ω1).6 A special case relates total volumes (e.g. of segmented structures)

in the source and target spaces [49]:∫
Ω1

dr1 =
∫

Ω0

|J | dr0.

More intuitively, an infinitesimal cube maps to a parallelepiped, whose volume is given
by the original cube’s volume multiplied by the determinant of the Jacobian. I.e. |J |
indicates the local volume change due to the transformation; |J | = 0 implies that one
or more dimensions have been flattened (e.g. a volume has been transformed to a plane,
line or point), while a negative determinant indicates ‘folding’ or ‘tearing’ of space has
occurred. For an affine transformation T (r) = Lr + b, the Jacobian is simply given by the
linear part, ∂(Lr + b)/∂r = L, which is constant. Note also that |J | = |L| = |A| where
A is the homogeneous form of the transformation matrix (a 4 × 4 matrix with the linear
part in the upper-left block, b to its right, and a final row of [0 0 0 1]). Rotations preserve
volume and have |L| = 1 as expected, while reflections have |L| = −1.

4.2.4 Unified deformation-based morphometry

DBM and a variant of TBM can be placed within a unified statistical framework of meth-
ods derived from the deformation field [50]. In particular, Chung et al. [50] note that
the ‘volume dilatation’ given by the trace of the displacement gradient tensor (tr (K) =
∂ux/∂x + ∂uy/∂y + ∂uz/∂z) is statistically independent of the displacement vector field
components. This eases the interpretation of multiple statistical tests, however, it should
be noted that the dilatation is only an approximation to the volume change given by the

5Subscripts will be omitted from T , J , etc. if they are obvious from the context or are not of interest.
6In practice, rigid or affine transformations are often used initially to align the images approximately,

after which, for simplicity, the non-rigid transformations are often assumed to have fixed boundaries [48],
meaning the range and domain are the same: Ω1 = Ω0 = Ω.
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determinant of the transformation’s Jacobian matrix, as we now show.7

r1 = T10(r0) = r0 + u10(r0)

J10 =
∂r1

∂r0
=

∂r0

∂r0
+

∂u10

∂r

∣∣∣∣
r0

= I + K10(r0)

|J | = |I + K| (dropping subscripts)

=
3∏

i=1

λi(I + K)

=
3∏

i=1

(1 + λi(K))

= 1 + λ1(K) + λ2(K) + λ3(K)

+ λ1(K)λ2(K) + λ2(K)λ3(K) + λ3(K)λ1(K)

+ λ1(K)λ2(K)λ3(K)

≈ 1 + λ1(K) + λ2(K) + λ3(K) = 1 + tr (K) = tr (J)− 2.

This suggests that the determinant should be prefered for larger deformations; we investi-
gate the practical impact of the difference on our data below. An alternative interpretation
of the dilatation comes from the fact that it is the divergence of the displacement vector
field. The divergence theorem [51] implies that the volume integral of the divergence over a
particular region is equal to the surface integral of the flux through the region’s boundary:∫∫∫

Ω

(∇ · u) dω =
∫∫
∂Ω

u · n̂ dS,=
∫∫
∂Ω

u · dn, (4.1)

where n̂ is the outward-pointing unit vector normal to the boundary ∂Ω of the volume Ω.
In the case of a displacement field, the surface integral of the ‘flow’ out of the bound-

ary appears intuitively equivalent to the volume increase of the region described by that
displacement field. It is initially difficult to tally this with the fact that the integral of
the Jacobian determinant over a region also gives that region’s transformed volume. The
answer, as suggested above, is that the outward flow only gives the increase in volume for
small deformations — for larger changes, the change in the boundary over which the flow
is considered must be taken into account. Figure 4.1 illustrates this for a simple example
in two dimensions (with exaggerated deformation).

4.2.5 Strain tensors

In this section, we review material from several sources relating to the study of shape via
tensors derived from the Jacobian or deformation gradient tensor. First, the perspective
is from the field of solid mechanics; later, a more abstract mathematical viewpoint will be
considered.

7We use λi here as an operator that returns the eigenvalues, such that λi(A) and λi(B) are the ith

eigenvalues of A and B respectively.
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(a) Transformation and Jacobian

(b) Displacement and divergence

Figure 4.1: Comparison of volume change and volume dilatation, for transformation of
the unit square in 2D. (a) For a simple linear transformation — here chosen as anisotropic
scaling — the Jacobian matrix is equal to the transformation matrix. The volume (area)
gained is |J | − 1 which can be approximated as a + b if a and b are small enough to
neglect their product (which is not the case in this illustration). (b) Considering instead
the divergence of the displacement field, the (1D) surface integral of the flow through the
faces of the unit square is also given by the (2D) volume integral of the dilatation, thanks
to the divergence theorem. Note though that the flow out of a hypothetical rectangle
intermediate between the initial and final result in fact has a larger boundary. Hence
Chung et al.’s dilatation [50] is only truly appropriate for small deformations.
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Since the Jacobian relates infinitesimal vector elements, it contains information about
the local change in length and orientation of such elements, which, in general, depends
on the orientation of the original element. Equivalently, one may interpret the Jacobian
tensor in terms of local strains, shearing and reorientation. Shears can be seen more simply
as strains along rotated axes, meaning that the Jacobian matrix can be decomposed solely
into strains and rotations. This can be achieved via the Singular Value Decomposition
(A.2), which gives J = XSZT .8 Because the Jacobian is a square 3 × 3 matrix, each of
the components in the decomposition are also 3× 3 matrices. X and Z have orthonormal
columns and hence satisfy XT = X−1 in common with rotation (or reflection) matrices. If
we assume there is no folding and no singularities in the deformation |J | = |X|·|S|·|Z| > 0,
meaning both these orthogonal matrices can be chosen to have positive determinants and
hence can be interpreted as rotations. S is a diagonal matrix of strictly positive values,
which can be interpreted as scalings along three orthogonal (rotated) axes.

From the singular value decomposition, one may derive two versions of the polar de-
composition:

J = XSZT

= X(ZT Z)SZT = (XZT )(ZSZT ) = RU

= XS(XT X)ZT = (XSXT )(XZT ) = V R.

R = XZT is the product of two rotations and hence is a rotation. U and V are symmetric
positive definite (for non-singular J) tensors known as the right and left stretch tensors
[47]. They can be related to the Jacobian via JT J = ZS2ZT and JJT = XS2XT , since
appendix B.1.1 then yields V =

(
JJT

)1/2 and U =
(
JT J

)1/2. Alternatively, U2 = JT J =
C, where C is sometimes known as the Cauchy-Green deformation tensor [52]. Lepore
et al. [23] refer to U somewhat non-standardly as simply the ‘deformation tensor’.

Strain tensors that can be derived from U are known as Lagrangian strain tensors, while
tensors derived from V are known as Eulerian. Expanding upon an explanation given
by Ashburner and Friston [21], the Lagrangian frame is appropriate for computational
anatomy, since multiple Jacobians, J (n) = R(n)U (n), can be analysed in terms of their
right stretch tensors U (n) in the template space, ignoring their differing (post-) rotations
to different source image spaces.

As discussed by Ashburner and Friston [21], each frame of reference possesses an entire
family of different strain tensors with varying properties, summarised here in table 4.1. The
Biot tensor relates to the solid-mechanics concept of ‘nominal strain’, while the Hencky
tensor (which we return to below) is related to the concept of logarithmic strain [47].

The strain tensor G is one of the most commonly used in solid-mechanics, but it
is unfortunately also one of the least consistently named. It is variously known as the
‘finite strain tensor’, ‘Lagrange strain tensor’ [47], ‘Lagrangian strain tensor’ [53] ‘Green

8We write the SVD with the matrices of left and right singular vectors as X and Z instead of U and V
as elsewhere in this thesis, allowing the latter to be used for the right and left stretch tensors respectively,
as is conventional in continuum mechanics [47].
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Name m Em = Um−I
m

Almansi -2 I−U−2

2 = I−C−1

2

Hencky lim(m→0) H = logm (U)

Biot 1 U − I

Green 2 G = U2−I
2 = C−I

2

Table 4.1: Lagrangian strain tensors Em derived from the right stretch tensor U =
(C)1/2 =

√
JT J = ZSZT where J = XSZT .

(Lagrangean9) strain tensor’ [21] or ‘Green - Saint-Venant’ tensor [52].10 Note that G is
closely related to the Cauchy-Green deformation tensor C = JT J , and that C may also
be expressed in terms of the displacement gradient tensor K, giving

C = JT J = (I + K)T (I + K) = I + KT + K + KT K (4.2)

G =
JT J − I

2
=

C − I

2
=

KT + K + KT K

2
. (4.3)

For isotropic materials satisfying Hooke’s law, the Saint-Venant - Kirchoff elasticity
energy is related to the finite strain tensor by∫

Ω
µ tr

(
G2
)

+
λ

2
tr2 (G) dr,

where µ and λ are the Lamé coefficients [52]. This energy can be used to derive the
constitutive equations; further details on its mathematical properties are discussed in [54].
It is interesting to note that if λ = 0 the energy reduces to

µ

∫
tr
(
G2
)

=
µ

4

∫
tr
(
(C − I)2

)
=

µ

4

∫
‖C − I‖2F

=
µ

4

∫
d2

Euc(C, I),

which is the squared Euclidean distance between the Cauchy-Green deformation tensor
C = JT J and the identity. Pennec et al. [52] consider replacing this Euclidean metric
with a Riemannian one that accounts for the curvature of the space of symmetric positive
definite tensors, leading to their concept of ‘Riemannian Elasticity’. Pennec et al. are
concerned with nonlinear elastic regularisation of deformation fields, but their work is also
closely related to Riemannian analysis of tensors, as discussed in section 4.2.6.

For small deformations, the term KT K in equations 4.2 and 4.3 can be ignored, leading
to the infinitesimal strain tensor F = KT +K

2 (which also approximates the Eulerian finite
strain tensor, thanks to the small difference between the coordinate frames) [47]. This

9The Oxford English Dictionary gives Lagrangian as the main spelling; Lagrangean as an alternative.
10The final expression is also sometimes misleadingly typeset, e.g. as ‘Green-Saint Venant’, but its name

derives from George Green and Adhémar Jean Claude Barré de Saint-Venant.
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tensor is linear in the displacement, which simplifies some analyses, but is only suitable
for small strain situations. Volumetric infinitesimal strain [47] is defined as tr (F ) =
tr (K) = ∇ · u, which is equivalent to Chung’s dilatation [50] again reflecting our earlier
argument that this is less suitable for larger deformations. Bower also defines a ‘deviatoric’
infinitesimal strain tensor as F − I tr(F )

3 (closely related to fractional anisotropy in DTI)
and an infinitesimal rotation tensor, given by the skew symmetric matrix K−KT

2 . Both of
these concepts are returned to in section 4.2.9.

The Hencky tensor is the matrix logarithm of U . The matrix exponential and logarithm
are defined and explored in appendix B. The singular and eigenvalue decompositions of
U are respectively U = ZSZT = ZSZ−1; the latter allows the use of (B.8) to show that
the Hencky tensor derives from U simply by taking the scalar logarithm of the latter’s
eigenvalues. Using (B.11), the Hencky tensor can also be expressed as

H = logm (U) = logm
((

JT J
)1/2

)
= 1

2 logm
(
JT J

)
. (4.4)

showing that the (real) eigenvalues of the symmetric Hencky tensor are equal to the logs
of the (positive) singular values of the Jacobian tensor, or equivalently, the logs of the
square roots (or halves of the logs) of the eigenvalues of the symmetric positive definite
Cauchy-Green deformation tensor C = JT J . The trace of the Hencky tensor is equal to
the sum of its eigenvalues, which is the log of the product of eigenvalues of U =

(
JT J

)1/2,
and hence is equal to the commonly analysed log of the determinant of the Jacobian:

tr (H) = tr
(
logm

((
JT J

)1/2
))

= log|
(
JT J

)1/2| = log|J |. (4.5)

Ashburner et al. [55] use the fact that the squared Frobenius norm of the Hencky tensor
is given by the sum of the squares of the logs of the singular values of the Jacobian to
motivate priors for a Bayesian regularisation of registration:

‖H‖2F =
∑
i,j

H2
ij = tr

(
HT H

)
= tr

(
V logm2 (S) V T

)
= tr

(
logm2 (S)

)
=
∑

i

log2(si).

The logs of the singular values have two useful properties in this respect, as explained
by Ashburner: (i) any probability distribution over log si prevents meaningless ‘negative’
lengths, unlike a prior on e.g. the eigenvalues of U , which would need to constrain them to
be positive, (ii) if the log si — related to lengths — are assumed to be normally distributed,
then so are their sums s1+s2 and s1+s2+s3 = log|J |— which relate to areas and volumes
respectively. The experimental results in this chapter use the same (high-dimensional
warping) registration algorithm developed by Ashburner et al. [55], motivating a focus on
the Hencky tensor (and measures derived thereof) in our analysis.
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4.2.6 Vector spaces, groups and manifolds

This section provides a more abstract mathematical perspective on the analysis of (Ja-
cobian) matrices. It builds gradually from simple cases (the full relevance of which will
become apparent only by contrast to the later examples) culminating in an alternative
motivation for analysing the Hencky tensor. While there is no novel theoretical develop-
ment in this section, it is hoped that it provides a more approachable introduction, and
perhaps a more unified synthesis of various related ideas than is currently available in the
literature.

General n × m matrices can be considered as points in an nm-dimensional vector
space. They form a group under addition, with the zero-matrix as the identity. A natural
measure of distance between such matrices is the usual L2 norm of the difference of the
corresponding vectors, i.e. the square-root of the sum of the squares of the elements of the
matrix given by subtracting one matrix from the other. This is known as the Frobenius
norm of a matrix, and can expressed in the following equivalent formulations:

‖M‖2F = ‖vec (M)‖2

= tr
(
MT M

)
= tr

(
MMT

)
= Σis

2
i ,

where si are the singular values of M (see appendix A.2). The mean of several general
matrices is simply the usual arithmetic mean, which can be easily shown to minimise the
sum of squared distances of each matrix from the average [56].

Jacobian matrices with positive determinant11 form a group under multiplication, with
the identity matrix as the group identity. In particular, they are an example of a matrix Lie
group, with an associated Lie algebra [56]. The space of matrices with positive determinant
cannot be considered Euclidean, and the notions of distance and mean must hence be
appropriately redefined.12

The special case of a 1×1 matrix with positive determinant is simply a positive scalar.
For positive numbers, the fact that the most natural group is multiplicative instead of
additive, suggests that in terms of distance, 0.5 and 2 are both equally far from 1 (their
geometric mean), and that 0 is essentially infinitely far from any positive number. This
corresponds to a distance metric

dlog(x, y) = |log(y/x)| = |log(x/y)|

= |log y − log x| = |log x− log y|.

11Note that the Jacobian is not positive definite, as mistakenly stated in [23] (p.131); it can have
complex eigenvalues, or repeated negative-real eigenvalues while retaining a positive determinant and
hence corresponding to an invertible transformation.

12The situation is similar to that of diffeomorphisms; as mentioned briefly in section 1.5.1, the diffeo-
morphism group can be seen as an infinite dimensional analogue of a Lie group.
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The geometric mean is then the usual arithmetic mean in log-space,

µ =

(
n∏

i=1

pi

)1/n

log µ =
1
n

n∑
i=1

log pi,

and can be shown to minimise the sum of squared distances from itself, where (hyperbolic
[57]) distances are measured according to the metric dlog. The logarithmic distance can
easily be shown to satisfy the conditions of a metric: symmetry, dlog(x, y) = dlog(y, x);
positive-definiteness, dlog(x, y) ≥ 0, dlog(x, y) = 0 ⇔ x = y; and the triangle inequality,

dlog(a, b) + dlog(b, c) = |log b− log a|+ |log c− log b|

≥ |log b− log a + log c− log b| = |log c− log a| = dlog(a, c).

This metric also satisfies some additional desirable properties: invariance to scaling,
dlog(ax, ay) = dlog(x, y); and invariance to inversion dlog(1/x, 1/y) = dlog(x, y).

Distances between Jacobian matrices

Given the logarithmic distance metric for positive numbers, it might seem intuitive to
attempt to use the matrix logarithm (appendix B) to define a similar distance between
matrices with positive determinant like the Jacobian tensors. For example,

dlogm(X, Y ) = ‖logm
(
X−1Y

)
‖F = ‖logm

(
Y −1X

)
‖F .

(Equality of the two expressions here arises from equation (B.11).)
In fact, for the special case of rotation matrices, such a distance does provide a valid

metric, satisfying several useful properties. Moakher [57] defines the Riemannian distance
between two rotations as drot(R1, R2) = ‖logm

(
RT

1 R2

)
‖F /

√
2, which is simply a scaled

version of dlogm, since RT = R−1 for rotations. As for dlog, this metric is also invariant
under inversion, and (now that AX 6= XA) invariant to both left and right multiplication
by rotation matrices, i.e. it is bi-invariant: drot(R3R1R4, R3R2R4) = drot(R1, R2) [57].

Unfortunately, with more general matrices, dlogm is not a valid metric. For the ma-
trix logarithm, the failure of commutation in the general case (cf. equation B.13) means
logm

(
X−1Y

)
6= logm

(
Y X−1

)
6= logm (Y )− logm (X), and nor are their Frobenius norms

equal. For rotations, invariance of the Frobenius norm to matrix similarity (and hence
congruence given R−1 = RT ) means that

‖logm
(
RT

1 R2

)
‖F = ‖R1logm

(
RT

1 R2

)
RT

1 ‖F

= ‖R1logm
(
RT

1 R2

)
R−1

1 ‖F

= ‖logm
(
R1R

T
1 R2R

−1
1

)
‖F

= ‖logm
(
R2R

T
1

)
‖F .
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However, neither expression is equal to ‖logm (R2)− logm (R1)‖F .
The expression, ‖logm (Y )−logm (X)‖F , can immediately be seen to satisfy the triangle

inequality thanks to the equivalence of the Frobenius norm to the standard vector norm,
but it can be verified that dlogm does not satisfy the triangle inequality for general matrices
with positive determinant (or even the stricter class of positive definite matrices). To
provide a sufficient counter-example, the following MATLAB code generates three pseudo-
random symmetric positive definite matrices,

randn(’state’, 0); % seed the random number generator

A = randn(3); A = A’*A;

B = randn(3); B = B’*B;

C = randn(3); C = C’*C;

for which
dlogm(A,B) + dlogm(B,C) > dlogm(A,C),

as required, but
dlogm(C,A) + dlogm(A,B) < dlogm(C,B),

implying dlogm(C,B) is not the (shortest) distance between C and B, and hence that dlogm

is not a distance metric.
Interestingly, it can be shown that there is in fact no valid bi-invariant Riemannian

metric for general matrices with positive determinant [56].13 This implies that a bi-
invariant Fréchet mean of Jacobian matrices is not a well-defined concept. We will return
to this in section 4.5.

Euclidean analysis of Jacobian tensors and determinants

Log-transformation of the determinant of the Jacobian in classical univariate TBM is
motivated by both statistical arguments (improved normality of the unbounded values)
and Riemannian ones (conformance with the group structure). However, one can clearly
still analyse the determinant without the log-transformation. Spatial smoothing, if desired,
will preserve the positivity of the determinant, and standard test statistics can be applied,
though they are not expected to be optimal.

It might therefore seem that one could also ignore the Riemannian argument in the case
of multivariate TBM of the full Jacobian matrix, and simply analyse the tensor as a general
matrix. However, somewhat surprisingly, major problems can theoretically arise with such
an approach. For symmetric positive-definite matrices (considered in detail next) half the
sum of two matrices is not a good Riemannian average, but it does nevertheless give a
valid symmetric positive definite matrix, since xT (A + B)x = xT Ax + xT Bx > 0 if A and
B are positive definite, and A + B clearly remains symmetric if both A and B are. One
might similarly expect that a näıve Euclidean mean of Jacobian matrices would still be a
matrix with positive determinant. However, this turns out not to be the case. A simple
counter-example can be generated in MATLAB:

13Woods [56] goes into greater detail, but essentially, all ‘compact’ Lie groups have bi-invariant metrics,
some non-compact ones may, but the group of matrices with positive determinant does not.
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seed = 3; % found through (short) search of 1,2,...

randn(’state’, seed)

% Generate two matrices with positive determinant

J1 = randn(3); J1 = J1 / sign(det(J1));

J2 = randn(3); J2 = J2 / sign(det(J2));

det(J1 + J2) % the determinant of their sum is negative!

In fact, even if one is stricter still with the creation of the Jacobian matrices, and re-
peatedly calls randn(3) until achieving matrices with positive determinant and with no
eigenvalues on the negative real line (see section 4.5) it is still possible (seed=5) for the
determinant of their sum to be negative. However, this is a theoretical problem, which
might not occur in practice for TBM — particularly for longitudinal studies, where the
Jacobians tend to be relatively close to the identity. Studholme and Cardenas [24] have in
fact published a simple Euclidean analysis of Jacobian matrices from longitudinal deforma-
tions, ignoring the complexities discussed here. For the sake of comparison, we therefore
also include this option in our experimental investigations, but, importantly, we check
whether negative determinants occur during the smoothing or statistical analysis. Note
that although the method is theoretically unappealing, it could potentially turn out to be
powerful in practice; see the related discussion of log-Euclidean analysis of strain tensors
in section 4.3.6.

4.2.7 A Riemannian metric for symmetric positive definite matrices

Matrices that are symmetric positive definite (SPD) also lie on a non-Euclidean manifold.
Since 2× 2 symmetric matrices have only three unique elements, it is possible to visualise
this manifold in three dimensional space. SPD matrices lie in the interior of a cone [58],14

whose surface, for the 2× 2 case, is defined by the equation∣∣∣∣∣x z

z y

∣∣∣∣∣ = xy − z2 = 0,

together with x > 0 and y > 0. Figure 4.2 illustrates this surface.
Symmetric matrices do not form a group under multiplication, because AB is not

necessarily symmetric. Real SPD matrices have unique real SPD square roots and inverses
(see appendix sec:sqrtm), so the operation A◦B = A1/2BA1/2, produces SPD results. This
operation features the usual matrix identity as its identity element and the matrix inverse
as its inverse element: A◦A−1 = I = A−1 ◦A. However, it does not yield a group, because
the axiom of associativity is not satisfied: A ◦ (B ◦ C) 6= (A ◦B) ◦ C [59].

SPD matrices nevertheless do lie on a manifold for which a Riemannian metric exists.
Replacing the term X−1Y with the similar15 term X−1 ◦ Y = X−1/2 Y X−1/2, converts
dlogm to:

dAff(X, Y ) = ‖logm
(
X−1/2 Y X−1/2

)
‖F . (4.6)

14Technically, a half-cone, and a hyperdimensional one for matrices larger than 2× 2.
15These two matrices are ‘similar’ in the technical sense because they are related by X−1/2 Y X−1/2 =

CX−1Y C−1 for C = X1/2, and hence have the same eigenvalues.
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Figure 4.2: Visualisation of the cone of 2×2 SPD matrices in 3-D space. Right: the surface
of the cone defined by z = ±√xy. Note that matrices on this surface are not positive
definite (they have determinant 0), while those inside the cone are. Left: z-contours of this
surface (solid lines) and of an interior surface (for SPD matrices with unity determinant;
broken lines) are plotted in the x-y plane.

It is informative to show the symmetry of the above metric, which is not obvious since
logm

(
X−1/2 Y X−1/2

)
6= logm

(
Y −1/2 XY −1/2

)
in general. Noting that the logarithm

preserves the symmetry of X−1/2 Y X−1/2 and using the matrix similarity (B.8)

logm
(
X−1/2 Y X−1/2

)
= X1/2 logm

(
X−1Y

)
X−1/2,

followed by the trace’s circularity-property to reduce tr
(
X1/2 · · ·X−1/2

)
= tr (· · ·), we

have:

‖logm
(
X−1/2 Y X−1/2

)
‖2F = tr

(
logm

(
X−1/2 Y X−1/2

)T
logm

(
X−1/2 Y X−1/2

))
= tr

(
logm

(
X−1/2 Y X−1/2

)
logm

(
X−1/2 Y X−1/2

))
= tr

(
X1/2 logm

(
X−1Y

)
X−1/2 X1/2 logm

(
X−1Y

)
X−1/2

)
= tr

(
logm

(
X−1Y

)
logm

(
X−1Y

))
.

At this point, it is important to note that

tr
(
logm

(
X−1Y

)
logm

(
X−1Y

))
6= tr

(
logm

(
X−1Y

)T logm
(
X−1Y

))
= ‖logm

(
X−1Y

)
‖2F

due to the lack of symmetry of logm
(
X−1Y

)
. Continuing the derivation, following the
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reverse of the above sequence but with Y in place of X gives:

‖logm
(
X−1/2 Y X−1/2

)
‖2F = tr

(
logm

(
X−1Y

)
logm

(
X−1Y

))
= tr

(
Y 1/2 logm

(
X−1Y

)
Y −1/2 Y 1/2 logm

(
X−1Y

)
Y −1/2

)
= tr

(
logm

(
Y 1/2 X−1Y 1/2

)
logm

(
Y 1/2 X−1Y 1/2

))
= tr

(
logm

(
Y 1/2 X−1Y 1/2

)T
logm

(
Y 1/2 X−1Y 1/2

))
= ‖logm

(
Y 1/2 X−1Y 1/2

)
‖2F .

Finally, using the invariance of the norm to sign, and (B.11) shows the symmetric form:

‖logm
(
X−1/2 Y X−1/2

)
‖2F = ‖−logm

(
Y 1/2 X−1Y 1/2

)
‖2F

= ‖logm
((

Y 1/2 X−1Y 1/2
)−1

)
‖2F

= ‖logm
(
Y −1/2 XY −1/2

)
‖2F .

The metric dAff has been derived in alternative ways by Batchelor et al. [60] and
Pennec et al. [58]; the first authors start with an expression for the length of an arc
between an identity and an infinitesimally close tensor, deriving the geodesic between the
identity and a diagonal matrix, and then using congruence (see below) to build up to
the distance between two general SPD tensors. The latter paper also uses congruence to
simplify d(X, Y ) to d(I,X−1/2 Y X−1/2), and then uses invariance arguments to show that
the distance should be a function of the squared logs of the eigenvalues of X−1/2 Y X−1/2;
the Frobenius norm of the matrix logarithm of X−1/2 Y X−1/2 satisfies this requirement
because, for an SPD matrix A, ‖A‖2F = tr

(
A2
)

and equations (B.2) and (B.6) respectively
imply that this equals the sum of squared eigenvalues of A, which for A = logm (B) are
the logs of the eigenvalues of B.

Under a general linear change of coordinates x → Ax, the Jacobian matrix changes
as J → AJA−1 and therefore the SPD strain tensors change as JJT → AJJT AT or
JT J → BJT JBT where B = A−T , i.e. a congruence relation, as for the diffusion tensor
[58, 60]. The metric dAff is invariant to congruence transformations by definition, i.e.
dAff(AXAT , AY AT ) = dAff(X, Y ) for any invertible A. To see this, note that

dAff(AXAT , AY AT ) = ‖logm
(
(AXAT )−1/2(AY AT )(AXAT )−1/2

)
‖F

is the Frobenius norm of the logarithm of an SPD matrix, and therefore depends on its
eigenvalues, as shown above. Now, using similarity, the following matrices have the same
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eigenvalues:

D = (AXAT )−1/2(AY AT )(AXAT )−1/2

∼ (AXAT )−1/2D(AXAT )1/2

= (AXAT )−1AY AT = A−T X−1Y AT

∼ X−1Y ∼ X−1/2 Y X−1/2.

The last of the above matrices is SPD, and hence its eigenvalues provide its Frobenius
norm, and in turn the original distance dAff(X, Y ).

This invariance under a linear transformation also ensures affine invariance [58], since
translations affect neither the diffusion nor Jacobian tensors. This is the origin of the
nomenclature dAff, which is adopted from [59].

The metric is also invariant under inversion

dAff(X−1, Y −1) = ‖logm
(
X1/2 Y −1X1/2

)
‖F

= ‖logm
(
(X1/2 Y −1X1/2)−1

)
‖F

= ‖logm
(
X−1/2 Y X−1/2

)
‖F = dAff(X, Y ).

The combination of affine invariance and invariance to inversion can also be interpreted as
a form of bi-invariance [56], though this should not be confused with the suggestion that
dAff(PXQ, PY Q) = dAff(X, Y ) which is only true for Q = P T .

This affine invariant metric can be used to define a Fréchet mean of SPD tensors Ti

which satisfies
∑

i logm
(
T
−1/2
i T̄ T

−1/2
i

)
= 0.16 Statistical tests can be carried out within

the tangent plane to the Riemannian manifold at the location of this mean[58]. However,
the computations are expensive, especially when they must be performed at every voxel
for a set of high-resolution structural MR images. For example to find an explicit estimate
of the implicitly defined mean, it is necessary to perform a geodesic gradient descent [58]:

T̄t+1 = T̄
1/2
t expm

(
1
N

N∑
i=1

logm
(
T̄
−1/2
t TiT̄

−1/2
t

))
T̄

1/2
t

= T̄t expm

(
1
N

N∑
i=1

logm
(
T̄−1

t Ti

))

= expm

(
1
N

N∑
i=1

logm
(
TiT̄

−1
t

))
T̄t.

Where the equality of the above expressions follows from:

T̄
1/2
t expm (Z) T̄

1/2
t = T̄

1/2
t expm (Z) T̄

−1/2
t T̄t = expm

(
T̄

1/2
t ZT̄

−1/2
t

)
T̄t

= T̄tT̄
−1/2
t expm (Z) T̄

1/2
t = T̄texpm

(
T̄
−1/2
t ZT̄

1/2
t

)
,

16This expression is equivalent to
P

i logm
“
T̄−1/2TiT̄

−1/2
”

= 0 and also to
P

i logm
`
T−1

i T̄
´

= 0 which

is the form given in [60] (see the discussion of the equivalence of the gradient descent formulae).
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bringing the matrix similarities inside the exponential, and then in turn, inside each log-
arithm within the sum (i.e. using C

(∑N
i=1 logm (D)

)
C−1 =

∑N
i=1 logm

(
CDC−1

)
).

The Log-Euclidean Riemannian metric

A more computationally efficient metric is available if one is willing to sacrifice affine
invariance. For scalars, dAff reduces to dlog, just as dlogm does. Now, it was observed
above that while dlog(x, y) = |log(y/x)| = |log y − log x|, for matrices

dlogm(X, Y ) = ‖logm
(
X−1Y

)
‖F

6= ‖logm (Y )− logm (X)‖F = dLE(X, Y ).

Now, unlike dlogm, dLE is a generalisation of dlog which does satisfy the triangle inequality
for SPD tensors.17 In fact, dLE, which was first proposed and extensively developed by
Arsigny et al. [59, 61], satisfies all the necessary properties of a metric, and is additionally
invariant under inversion. Considering a congruence, the metric is invariant to scalar
multiplication thanks to (B.17), and for the special case of an orthogonal matrix P T = P−1

allows us to use (B.8) to show

d2
LE(PXP T , PY P T ) = ‖logm

(
PY P T

)
− logm

(
PXP T

)
‖2F

= ‖P {logm (Y )− logm (X)}P T ‖2F = ‖PQP T ‖2F
= tr

(
(PQP T )T PQP T

)
= tr

(
PQT P T PQP T

)
= tr

(
PQT QP T

)
= tr

(
P T PQT Q

)
= tr

(
QT Q

)
= ‖Q‖2F = ‖logm (Y )− logm (X)‖2F = d2

LE(X, Y ).

So the metric is invariant to congruence by a geometric similarity transformation.18 It is
simple to verify in practice that it is not invariant to more general affine transformations
such as anisotropic scaling or skewing.

The key benefit of this metric is that it provides a Euclidean vector space structure
on tensors, hence the name ‘log-Euclidean’ which dLE denotes. This aspect is described
in much greater detail in [59], but we shall briefly describe some important properties
here. By defining a vectorisation operator that extracts the n diagonal elements and
the n(n − 1)/2 unique off-diagonal elements, dividing the off-diagonal terms by

√
2, the

Frobenius norm maps to the standard L2 norm of the vectors:

‖logm (Y )− logm (X)‖F = ‖vechLE (logm (Y ))− vechLE (logm (X))‖.

Similarly, instead of the implicit formula for the Fréchet mean based on dAff, the log-
17It is not clear from the literature whether it is a suitable metric for more general matrices, e.g. those

with real logarithms. See section 4.5 for further discussion of this.
18We use the term geometric similarity to distinguish this similarity transformation (rotation and scaling)

from the matrix similarity transformation used earlier.
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Euclidean metric leads to a very natural explicit formula

logm
(
T̄
)

=
1
N

N∑
i=1

logm (Ti) ,

i.e. the same form as the log of the geometric mean of scalars given near the start of
this section. In fact, the log-Euclidean approach automatically makes all the standard
statistical methods available to SPD tensors, without any additional complication. It has
been used for analysis of diffusion tensors by Whitcher et al. [16], who also compared it
to straight-forward Euclidean analysis. Log-Euclidean analysis of a deformation tensor
(actually the right stretch tensor U from section 4.2.5) has been explored in the work of
Lepore et al. [23] on cross-sectional TBM.

The main disadvantage of the log-Euclidean metric is that the loss of affine-invariance
means that the choice of template subject affects the analysis, in contrast to the framework
expounded in [56]. However, for our application of longitudinal TBM, the tensors of
interest relate to the chronological warps, and the choice of template for cross-sectional
normalisation is of considerably less importance. For this reason, the computationally
simpler log-Euclidean analysis of strain tensors is particularly appealing, and is the main
method focussed on here.

We have shown that analysis of the matrix logarithms of a symmetric positive defi-
nite matrix derived from the Jacobian can be derived from two very different view-points.
Solid-mechanics led to the idea of analysing the unique elements of the Hencky tensor,
vech

(
logm

(
(JT J)1/2

))
, as proposed by Ashburner [2]. The desire for a Riemannian metric

led to vechLE

(
logm

(
(JT J)

))
, or vechLE

(
logm

(
(JT J)1/2

))
as analysed by Lepore et al.

[23]. The matrix square-root within the matrix logarithm can be taken out as an irrel-
evant factor of two, leaving the only difference between these approaches being the

√
2

normalisation of the unique off-diagonal elements, motivated from the desire to equate
the Frobenius and vector norms. In the experimental section, we investigate the practical
relevance of this distinction.

4.2.8 Further Jacobian-based measures

It may also be useful to consider other measures derived from the Jacobian or strain
tensors. There are several possible motivations for this: (a) although Jacobian-derived
measures can only preserve or decrease statistical information, non-linearly derived mea-
sures may better exploit their information in practical significance tests; (b) reducing the
dimensionality from the nine Jacobian elements (with their 45 covariances) may improve
inference from limited numbers of subjects; (c) some aspects may be of less fundamental
interest, for example rotational information in the Jacobian, as discussed in section 4.2.5;
(d) measures that focus on particular aspects of interest, e.g. magnitudes of principal axes
of strains, or orientation of the major axis, lead to easier and more precise interpretation
of significant findings.

One natural idea is to consider components of an eigendecomposition. However, the
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Jacobian matrices can (and often do in practice) have complex eigenvalues, which com-
plicates both testing and interpretation. The singular values of the Jacobian matrix are
guaranteed to be real, and also positive for a Jacobian with positive determinant (since
they are equal to the eigenvalues of the SPD matrix JT J). Their positivity leads naturally
to consider their logarithms, at which point we observe that the Hencky tensor has arisen
again, since the logs of the singular values of the Jacobian are the logs of the square roots
of the eigenvalues of JT J , which in turn are equal to the eigenvalues of logm

((
JT J

)1/2
)
.

The eigenvalues of the Hencky tensor contain all of its information about the magnitudes
of the principal strains, without the information about the principal axes. Lepore et al.
[23] compared analyses based on logm (U), the eigenvalues of U (without the log), the
maximum (log) eigenvalue,19 the log determinant (equal to log|J |), and the log trace,20

in a two-dimensional example over a slice through segmented corpus callosa. The same
experiment also included two orientational measures, discussed further below.

4.2.9 Measures of vorticity, anisotropy and orientation

The focus thus far (both above, and in the literature) has been on deformation or strain.
The main reason for this is probably the ease of interpretation of displacement and of
volume change. However, it is possible that measurements related more to the directional
or rotational aspects of the deformation might contain useful information. Patterns of
significant group-difference in such measures would be more challenging to interpret, but
may nevertheless be of interest. We therefore consider several less common measures,
loosely grouped together as orientational. We choose to group vorticity and anisotropy
with other orientational measures, even though they are not dependent on direction as
such, simply because they seem more closely related to the orientational measures than
to the more standard deformation or strain based measures described earlier.

Historically, the first such measure seems to have been proposed by Chung et al. [50],
though they did not present results for it. Considering (K+KT )/2, the infinitesimal strain
tensor (section 4.2.5), they note that the complementary skew-symmetric term from the
additive decomposition K = (K + KT )/2 + (K −KT )/2 encodes rotational information.
This term has already been mentioned in section 4.2.5 as the infinitesimal rotation tensor
[47]. Ignoring their signs, three unique elements of K −KT = J − JT can be identified as

∂uz/∂y − ∂uy/∂z,

∂ux/∂z − ∂uz/∂x,

∂uy/∂x− ∂ux/∂y,

which are the elements of the curl of the displacement vector field, hence forming a natural
complement to the displacement’s gradient (Jacobian matrix) and divergence (the dilata-

19This inconsistency seems surprising, and might be a mistake in the paper, but the authors explicitly
refer to the log of the deformation tensor and to the eigenvalues of the deformation tensor.

20Note that tr (U) = tr
“
(JT J)1/2

”
is related to a root-mean-square of the eigenvalues of the Jacobian

matrix, instead of the simpler mean that relates to tr (J).
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tion, closely related to the Jacobian determinant). Note that both curl and the Jacobian
itself are linear (differential) operators, and Gaussian smoothing is also a linear operation,
so the curl of the Jacobian of the smoothed displacement field is the same as the curl of
the smoothed Jacobian and the smoothed curl.

Strain anisotropy

Moving from the rotational, vorticity aspect of the displacement, to a more directional
aspect of the three-dimensional deformation, we may wish to investigate the anisotropy of
the strain; i.e. to what extent is the ellipsoid of the strain tensor preferentially elongated,
or, informally, how ‘oriented’ is it? The fractional anisotropy (FA) is a measure related to
the second moment (or more precisely, the sample standard deviation) of the eigenvalues
[62]. For comparison, the trace of an m×m matrix is simply m times the arithmetic mean
or first moment of its eigenvalues, which is known as the mean-diffusivity in diffusion
tensor imaging [62]. Higher moments of the distribution of eigenvalues, such as skewness,
may also be of interest [63]. In 3D, FA can be expressed in terms of the eigenvalues {λi}3i=1

and their mean λ̄ = 1
3tr (T ), as

FA =
√

3√
2

√∑3
i=1(λi − λ̄)2√∑3

i=1 λ2
i

=
√

3√
2
‖T − Iλ̄‖F

‖T‖F

=
√

3√
2

d(T, I tr (T ) /3)
d(T, 0)

The final expression directly shows the relation of FA to how far the strain ellipsoid
deviates from being spherical, or how far the strain tensor is from the closest isotropic
tensor, using distance measured with a Euclidean metric.21 Although not novel, the maths
demonstrating that I tr (T ) /m is the closest scaled identity matrix to an m×m tensor T

is not included in [60], so for completeness it is given here. The (squared) distance from
T to a general scaled identity matrix is

‖T − tI‖2F = tr
(
(T − tI)2

)
(noting T − tI is symmetric)

= tr
(
T 2 + t2I − 2tT

)
= tr

(
T 2
)

+ mt2 − 2ttr (T ) ,

and the minimum requires stationarity

d‖T − tI‖2F
dt

= 0 ⇒ 2mt− 2tr (T ) = 0

t = tr (T ) /m.

21At this point, recall the similar definition of the deviatoric infinitesimal strain tensor in section 4.2.5.
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Following the same logic as section 4.2.6, Batchelor et al. [60] proposed to use an
affine-invariant Riemannian distance metric in place of Euclidean distance, giving the
geodesic anisotropy (GA). Note that the normalising denominator d(T, 0) and constants
of proportionality in the definition of FA ensure that 0 ≤ FA ≤ 1; however, dAff(T, 0) = ∞,
so Batchelor et al. instead chose to define an unnormalised measure satisfying 0 ≤ GA < ∞
and to normalise it as 0 ≤ tanh(GA) < 1. We have:

GA = min
t

dAff(T, tI) = min
t

d2
Aff(T, tI),

where the squared distance can be expanded as

d2
Aff(T, tI) = ‖logm

(
t−1/2Tt−1/2

)
‖2F = ‖logm (T/t)‖2F

= ‖logm
(
T (tI)−1

)
‖2F = ‖logm (T )− logm (tI)‖2F = d2

LE(T, tI) (4.7)

= tr
(
(logm (T )− logm (tI))2

)
= tr

(
logm2 (T ) + logm2 (tI)− 2logm (T ) logm (tI)

)
= tr

(
logm2 (T ) + I log2(t)− 2 log(t)logm (T )

)
= tr

(
logm2 (T )

)
+ m log2(t)− 2 log(t)tr (logm (T )) .

The minimum requires

d2
Aff(T, tI)
d log t

= 0 ⇒ log t = 1
mtr (logm (T ))

log t = 1
m log|T | = log(|T |1/m) ⇒ t = |T |1/m

GA = dAff(T, I|T |1/m) = dLE(T, I|T |1/m). (4.8)

Note that (4.7) proves that the affine-invariant and log-Euclidean metrics lead to equivalent
measures of geodesic anisotropy, using the fact that the isotropic tensor commutes with
the original one, as observed by Lepore et al. [23]. We note, novelly to the best of our
knowledge, that the equivalence of GA under affine-invariant and log-Euclidean metrics
also shows that the GA shares the FA’s simple interpretation in terms of the sample
standard deviation of the eigenvalues [62], since both FA and GA relate to ‖T − tI‖F

where T is either the SPD tensor itself (FA) or its matrix logarithm (GA), and t =
tr (T ) /3 = λ̄(T ). We derive the relationship for completeness:

‖T − tI‖2F = tr
(
(T − tI)2

)
=
∑

i

λi

(
(T − tI)2

)
=
∑

i

(λi (T − tI))2 Using (B.2)

=
∑

i

(λi(T )− t)2 ,

where the last line uses the fact that if λ is an eigenvalue of T then Tv = λv gives
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(T − tI)v = (λ− t)v and so λ− t is an eigenvalue of T − tI. Finally, we have

GA =
√∑

i

(
λi(T )− λ̄(T )

)2
, (4.9)

which is simply
√

2 times the unbiased estimate of the standard deviation of the eigenval-
ues, or

√
3 times the biased estimate, as given in equation (12) of [62].

The nearest isotropic tensor under the Euclidean norm preserves the trace of the ten-
sor, tr (I tr (T ) /m) = tr (T ); the nearest under either of the Riemannian norms preserves
its determinant, det

(
I |T |1/m

)
= |T |.22 This is a special case of the properties for inter-

polation of traces or determinants under interpolation of tensors [60].

Directionality of strain

If there is notable anisotropy in some brain regions, then there may also be regional pat-
terns in the major axis of the strain ellipsoid, either involving its magnitude and direction
jointly, or purely in terms of either one of these aspects. The magnitude is given by the
largest of the eigenvalues; the orientation, known as the principal direction,23 is given by
the corresponding eigenvector. It is interesting to consider how this might compare to the
direction of the displacement field itself at the same voxel.24 One key distinction is that
unlike the displacement vectors, the principal strain vectors (like the principal diffusion
directions) do not have a well-defined sense, in that the three ellipsoidal axes can not be
assigned positive or negative directions, meaning that v̂ and −v̂ are equivalent.25 This
can be seen from the nature of the principal direction as an eigenvector: if Tv = λv then
trivially −Tv = −λv gives T (−v) = λ(−v). Another potentially important difference is
that the principal eigenvector may be poorly defined, and hence unstable in the presence of
noise, if the first two or three eigenvalues are of similar magnitude (i.e. the tensor ellipsoid
is oblate or spherical, rather than prolate).

The direction of a vector (or axis) is a classic example of a measurement where the
manifold structure is particularly important. Lepore et al. [23] consider the principal
strain direction in two dimensions (where it has a single degree of freedom) as a single
angle relative to the horizontal, on which they perform standard univariate statistics.
Even with the simplified manifold structure in 2D, this is still questionable. For example,
the equivalence of 0 and 180 ◦ means that an angle of 10 ◦ is as close to 170 ◦ as it is to
30 ◦ — a fact not accounted for in the student’s t-test used by Lepore et al. [23] which
may partially explain the poor results they observe (their figures 2 and 3 show very little
significance for angular differences). In 3D the direction of a vector has two degrees of
freedom, and can be identified with points on the unit sphere. However, it would be highly
inappropriate to perform standard statistics on the usual polar angles, not only because

22We denote the first determinant with det (T ) here to avoid the confusing expression |I |T |1/m|.
23We use the plural terms principal strains or principal axes to refer to the set of eigenvectors, and the

singular principal strain or principal direction to refer to the largest of these.
24Such a comparison can be found later in figure 4.39.
25Strictly, the principal direction would be known as the principal axis in the field of directional statistics,

because of this irrelevance of the unit vector’s sense.



CHAPTER 4. MULTIVARIATE MORPHOMETRY 213

of the above-mentioned equivalence of opposite points, but more importantly because the
actual angle between two points (which is the Riemannian distance between them) is not
represented by the azimuthal angle at non-zero latitudes. For example, at latitudes near
90 ◦, large changes in the azimuth represent very small actual distances between the unit
vectors.

Addressing the related problem in diffusion tensor imaging, Schwartzman et al. [64]
used the bipolar Watson distribution to analyse the principal direction in a way that
accounts for the curved manifold it inhabits. The bipolar Watson statistic is invariant to
the arbitrary sense of the vectors, as desired. The hypothesis testing in [64] employed a
parametric approximation, followed by false discovery rate correction. In our experimental
work, we use the same permutation testing framework developed for the Cramér statistic
to derive FWE-corrected p-values for a Watson-based statistic. Further details are given
in section 4.3.3.

Note that the question of which particular strain tensor to base the principal direction
upon does not arise, since the operations of matrix logarithm and matrix powers (includ-
ing square-root) only modify the eigenvalues and not the eigenvectors. Any monotonic
function of the eigenvalues will preserve their ordering and hence choice of principal eigen-
vector. However, the question of what quantity to smooth becomes crucial. Smoothing
a field of unit vectors will not preserve their unit norm. Re-normalising smoothed unit
vectors is unappealing, since a relatively rough field could include many points where
smoothing leads to near cancellation of the components, requiring large scaling to re-
normalise, and consequently producing noisy ‘smoothed’ results. Instead, it seems prefer-
able to smooth a better behaved tensor, and then to compute the principal direction from
this. The Hencky tensor seems a natural choice, given the theoretical underpinnings of
log-Euclidean smoothing.

Since the principal direction unit vectors require special statistics, and also seem to
be surprisingly noisy, it is interesting to consider whether a non-unit magnitude vector
could have advantages. We propose one such quantity: a vector of the absolute values of
the principal eigenvector components, scaled to have the magnitude of the corresponding
principal eigenvalue. The result will no longer be suitable for the bipolar Watson test, but
should be approximately valid for conventional statistics. Though strictly, the positivity
of the components means that the vector again lies in a manifold whose structure should
ideally be accounted for in the analysis. This measure is a compromise between a more
purely directional quantity and the strain based measures that form the main part of
this chapter; it might be hoped that such a combined measure would be more sensitive
to complex patterns of group difference than either type of measure alone. In addition,
because this non-unit vector measure removes the need for re-normalisation, conventional
smoothing of the derived result becomes possible, as an alternative to deriving the result
from the smoothed tensors.
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4.2.10 Transformation of deformation fields and their derivatives

With the goal of quantifying the chronological change in multiple subjects, there are two
main possibilities for processing the data: (i) processing of all images can be performed
separately, with no account taken of whether they come from different subjects or differ-
ent time-points within a particular subject; only the statistical analysis accounts for the
longitudinal nature of the data, for example simply by analysing differences within each
subject with respect to their baseline. (ii) Alternatively, longitudinal effects can be di-
rectly measured in the image processing steps, with the statistical analysis comparing these
direct measures of change [65]. The second approach should have advantages when the
longitudinal processing is likely to be more accurate than multiple separate applications
of standard image processing. This was the motivation for the boundary shift integral
approach [66] and is also likely to be the case with non-rigid registration for longitudinal
VBM, DBM or TBM. The two distinct options, including multiple variations on the latter
in the case of longitudinal VBM are investigated in chapter 3; here, the details of the
second approach in relation to longitudinal DBM and TBM are explored.

Deformation- or tensor-based voxel-wise analysis of longitudinally processed data from
multiple subjects requires the chronological transformations to be combined with inter-
subject (spatial normalisation) transformations. An equivalent way of expressing this is
to say that the we seek the longitudinal transformation in reference space Tr(r) that cor-
responds to the longitudinal transformation in source space Ts(s), where reference and
source space are related via s = Tsr(r). More precisely, Tr is conjugate to Ts, facilitated
by Tsr [67]. Figure 4.3 makes it clear that for a particular point r0 we can reach r1 = Tr(r0)
directly (using transformation d from the figure), or by composing the three transforma-
tions (d = c ◦ b ◦ a from the figure). In detail, the four transformations a, b, c and d are
respectively:

s0 = Tsr(r0)

s1 = Ts(s0)

r1 = Trs(s1) = T−1
sr (s1),

r1 = T−1
sr (Ts(Tsr(r0))). (4.10)

For the special case of a longitudinal displacement field us(s), s1 = Ts(s0) = s0+us(s0),
we have

ur(r0) = r1 − r0 = T−1
sr (Ts(Tsr(r0)))− r0

= T−1
sr (Tsr(r0) + us(Tsr(r0)))− r0,

which is equivalent to the result given by Rao et al. [67]. As a visual example, in figure 4.3
it can be seen that rotation and compression of source onto reference also rotates and
compresses the longitudinal change.
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Figure 4.3: Conjugate spatial transformations. Given a mapping, a, from reference image
to source image, and a transformation in source space, b, the inverse of the reference-source
mapping, c, is required to derive the transformation in reference space, d, which is given
by the composition c ◦ b ◦ a. Equivalently, r1 = d(r0) = c(b(a(ro))). Note that the time-1
reference is shown dotted since it is unknown.

Transformation of Jacobian tensor fields

Regarding the Jacobian matrices, the chain rule first gives

∂Tr

∂r

∣∣∣∣
r0

=
∂

∂r
Trs(Ts(Tsr(r0)))

=
∂Trs

∂s

∣∣∣∣
s1

∂Ts

∂s

∣∣∣∣
s0

∂Tsr

∂r

∣∣∣∣
r0

; (4.11)

now, using the following trick with a second application of the chain rule allows us to
evaluate the Jacobian of Trs = T−1

sr in terms of the Jacobian of Tsr:

s1 = Tsr(Trs(s1))

∂s

∂s

∣∣∣∣
s1

= I =
∂Tsr

∂r

∣∣∣∣
r1=Trs(s1)

∂Trs

∂s

∣∣∣∣
s1

∂Trs

∂s

∣∣∣∣
s1

=

[
∂Tsr

∂r

∣∣∣∣
r1=Trs(s1)

]−1

Jrs(s1) = J−1
sr (r1), (4.12)

which mirrors the result in the appendix of [67], and makes intuitive sense in terms of the
volume ratios given by the Jacobian determinants: the voxel at s1 changes volume by the
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reciprocal of the volume change of the related voxel at r1, during the transformations Trs

and Tsr that relate them.
Finally, this allows us to write equation 4.11 as

Jr(r0) = J−1
sr (r1)Js(s0)Jsr(r0). (4.13)

One of the few papers which attempts to analyse full Jacobian tensors from longitudinal
registration after inter-subject spatial normalisation is that of Studholme and Cardenas
[24]. However, they appear to have crucially misunderstood the work of Rao et al. [67],
citing it, but dismissing it as relating only to deformation fields, and not the Jacobian
matrix with which they are concerned. In fact, Rao et al. also derive results relating
the Jacobian tensors of conjugate transformations, as we reiterated above. In [24], the
finite strain (FS) reorientation strategy of [63] is employed. This is discussed further in
section 4.2.10, but for now, we recall from [63] that FS reorientation neglects the non-rigid
components of the transformation (including affine components of scaling and shearing).
Figure 4.4 illustrates the behaviour of the FS method on deformation fields, which we
argue is undesirable for macroscopic longitudinal deformation.

Figure 4.4: The finite strain reorientation [63], as used by Studholme and Cardenas [24]
on Jacobian tensors, fails to reorient deformation vectors for the changes that occur in
affine transformations that are not purely rigid, for example the anisotropic scaling shown
here.

For the special case of affine inter-subject transformations, Tsr(r) = Lr + t is spatially
constant, as is Jsr = L, and we have Jr(r0) = L−1Js(s0)L. Studholme and Cardenas [24]
almost have the corresponding expression Jr(r0) = SJs(s0)S−1, with S = L−1 except they
have incorrectly replaced S−1 with ST , which holds only if the linear transformation S is
a rotation (without scaling or shearing).

Transformation of Jacobian determinant fields

The properties |AB| = |A||B| (for square matrices) and |A−1| = 1/|A| (for invertible A),
allow us to write

|Jr(r0)| = |Js(s0)|
|Jsr(r0)|
|Jsr(r1)|

, (4.14)

where we see (as Rao et al. showed) that it is not generally correct to simply resample
the subject’s longitudinal Jacobian determinant image Js at the point s0 = Tsr(r0) to find
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the equivalent Jacobian determinant in the reference space at r0; instead, a scaling factor
depending on the change in the inter-subject Jacobian determinant Jsr between r0 and r1

is required.
For the special case of affine Tsr(r) = Lr + t, |Jsr| = |L|) is equal at r0 and r1, so

we find that it is sufficient to resample the subject’s Jacobian determinant image in the
reference space. This contradicts Studholme and Cardenas [24], who wrongly state ‘for
a subject with a temporal lobe which is twice a big as another subject, their atrophy
rate will be increased by a factor of two when mapping the change deformations into the
reference space.’ Rao et al. [67] make a further interesting observation that the behaviour
of the longitudinal deformations is qualitatively the same in the local neighbourhoods of
the fixed points Tr(rf ) = rf and Ts(sf ) = sf , additionally showing that these fixed points
correspond: sf = Tsr(rf )).

Interestingly, although Chung et al. [50] appear not to have considered the poten-
tial need for special methods of resampling longitudinal TBM data, we note here that
the volume dilatation, which is equivalent to the trace of the Jacobian, is also invari-
ant under equation (4.13) with an affine transformation: tr (Jr(r0)) = tr

(
L−1Js(s0)L

)
=

tr (Js(s0)).26 However, the importance of this result is very limited, since in practice, the
inter-subject normalisation is unlikely to be affine, and in addition, the intra-subject de-
formation is likely to be large enough to make the determinant preferable to the dilatation
(this is tested in the experimental results later).

Transformation of strain tensor fields

Returning to equation 4.13, we now consider SPD tensors derived from J . For the squared
left and right stretch tensors, we have respectively

Jr(r0)JT
r (r0) = J−1

sr (r1)Js(s0)Jsr(r0)JT
sr(r0)JT

s (s0)J−T
sr (r1),

Jr(r0)T Jr(r0) = JT
sr(r0)JT

s (s0)J−T
sr (r1)J−1

sr (r1)Js(s0)Jsr(r0).

In the special case of a rigid transformation Jsr = R, J−1
sr = RT , and the above

expressions reduce to

Jr(r0)JT
r (r0) = RT Js(s0)JT

s (s0)R,

Jr(r0)T Jr(r0) = RT JT
s (s0)Js(s0)R.

These expressions mirror that of Alexander et al. [63] for rotation of a diffusion tensor
(though Alexander et al. have R as the mapping from source to reference, and hence R

and R−1 = RT are exchanged).
At this point it is crucial to note that if Tsr is actually non-rigid, we do not wish to

derive a rotation matrix from it, as is done by Alexander et al. [63] in the diffusion tensor
case, due to the fundamental distinction between microscopic diffusion and macroscopic

26In fact, all three eigenvalues (which can be used to derive both trace and determinant) are preserved
under the matrix similarity if the transformation is affine.
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serial deformation, as explained by Rao et al. [67]. Our first pair of expressions above
cannot therefore be simplified in general.

Diffusion tensor reorientation

It is of interest to consider diffusion tensor reorientation more closely, as there is a con-
siderably more prior work than in the field of longitudinal morphometry. Figure 4.5
demonstrates the situation in diffusion imaging, where the desire is to preserve the prop-
erties of tissue microstructure while simultaneously preserving the macroscopic continuity
of fibre tracts. In order to preserve the microstructural properties, the eigenvalues of the
diffusion tensor must be preserved — if a brain is larger in a particular dimension, it is
assumed that it has larger tracts, but the same diffusion coefficient along those tracts
[63]. While maintaining the eigenvalues, the eigenvectors must be appropriately reori-
ented. One solution, which seems not to appear in the DTI literature, is to replace the
eigenvectors with those from the transformed tensor – since affine transformations map
ellipsoids to ellipsoids it is possible to rotate the original ellipsoidal axes into alignment
with the new ones while preserving their original lengths or tensor eigenvalues. Since the
major eigenvector is of greatest importance in subsequent tractography, Alexander et al.
[63] instead proposed an approach to preserve this principal direction of diffusion (PPD):
the reoriented tensor has its first principal eigenvector along the direction of the linearly
transformed original tensor’s first principal eigenvector. Since each direction corresponds
to two degrees of freedom, while a rotation can only adjust three, it is not possible to
orient the second principal eigenvector along the transformed second eigenvector direction
if the transformation has skewed the axes.27 The closest approximation to this, in terms
of minimal angle between the result (ṽ2) and the transformed second eigenvector (Jv2), is
achieved when v2 is rotated into the plane spanned by Jv1 and Jv2. Orthogonality then
constrains the third eigenvector entirely.

We observe here, novelly to the best of our knowledge, that the new PPD eigenvec-
tors are simply equal to the serially-orthonormalised transformed eigenvectors, i.e. Jv1

normalised, Jv2 orthogonalised with respect to Jv1 and then normalised, and Jv3 orthog-
onalised with respect to both Jv1 and Jv2 and then normalised. The rotation matrix can
then be obtained by treating the orthonormal matrices of eigenvectors as rotation matrices
and taking their ratio: Ṽ V −1 = Ṽ V T , where Ṽ collects together the new eigenvectors and
V collects the original ones.28

27The transformation does not actually need to contain skews in order to do this, since anisotropic
scaling alone will skew a set of axes rotated with respect to the axes of the scaling.

28Brief evaluation of this appears to show that our approach is computationally superior to the traditional
use of Rodrigues’ rotation formula to derive the two separate rotation matrices from angles and axes of
rotation, as suggested in Alexander et al, and implemented in e.g. FSL’s vec reg (http://www.fmrib.ox.
ac.uk/fsl/fdt/fdt vecreg.html), however, further investigation of this is clearly outside the scope of the
present thesis.

http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_vecreg.html
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_vecreg.html
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Figure 4.5: (a) Macroscopic transformation of anatomy, according to image registration.
(b) Microscopic properties of water diffusion are preserved (eigenvalues of diffusion tensor,
or size and shape of ellipse shown here). (c) Macroscopic compression is assumed to
represent shorter tracts rather than shorter diffusion scale; hence the reduction from two
to one equally-sized ellipses. (d) The orientation of each ellipse is transformed according
to the anatomical transformation.

Procrustean diffusion tensor reorientation

We can now also make a novel connection between Alexander et al’s PPD algorithm
and more recent work from Xu et al. [68, 69]. Xu et al. propose the use of Procrustes
analysis (see appendix C) to estimate a tensor reorientation from multiple neighbouring
voxels. Their papers seem to suggest that their algorithm is fundamentally different to
PPD. However, it is clear that if all three vectors from a single voxel are subjected to
orthogonal Procrustes analysis (see section C.3) then the singular value decomposition
of Ṽ V T = USW T , where S = I, and, trivially, U = Ṽ and W = V — meaning that
the Procrustean solution of R = UW T is the same rotation obtained above for PPD.
Interestingly, the Procrustes solution is also the same if the third vectors are dropped,
in this case, the third singular value is zero, because the product of the rank-2 matrices
[ṽ1 ṽ2] and [v1 v2] is also rank-2, nevertheless the third columns of U and W are constrained
to be orthogonal to the first two, and unit-norm, due to the properties of the SVD (see
section A.2) and hence R is again the same. Having made this connection, the extension of
PPD to multiple voxels in the Procrustean framework is now completely straightforward.
To summarise the method: the original first and second eigenvectors (at just the voxel
in question, or at it and its n neighbours) form the 3 × 2n matrix V ; the normalised
transformed set of n first eigenvectors form half of Ṽ ; the second half of Ṽ contains the n

transformed second eigenvectors, orthogonalised with respect to the first half (so that the
multiple second eigenvectors do not affect the preservation of the first principal direction,
as would be computed from Procrustes analysis on just the first halves) and subsequently
normalised; the singular value decomposition USW T = Ṽ V T then gives the rotation as
R = UW T ; the reoriented tensor is of course given by RDRT .
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Finite-strain diffusion tensor reorientation

The ‘finite strain’ (FS) reorientation strategy, discussed by Alexander et al. [63], is again
based on Procrustes analysis, but is subtly different from the method of Xu et al. It simply
takes the Procrustean solution to the problem of best approximating a linear transforma-
tion with a rotation, as outlined in section C.3.1. Where USV T = F is the singular value
decomposition of the linear transformation (or Jacobian matrix), FS reorientation uses
the rotation matrix R = UV T . As noted by Alexander et al. [63] This strategy ignores
the fact that differently oriented ellipses are differently affected by a given transforma-
tion (e.g. a predominantly vertical ellipse has its major axis rotated by a horizontal skew,
while a predominantly horizontal ellipse would have its major axis preserved by the same
transformation).

Thanks to our Procrustean interpretation of Alexander’s PPD algorithm in the previ-
ous paragraph, it is easier to see that the FS method may be viewed as an approximation
to PPD. If the transformation induces little or no non-rotational deformation, then the
orthonormalisation of the second half of Ṽ above has correspondingly little effect, meaning
Ṽ ≈ FV and hence USW T = Ṽ V T ≈ FV V T , if V contains all three eigenvectors from
a single voxel then it is orthogonal, giving FV V T = F and hence the SVD of Ṽ V T ≈ F

approximates the SVD of F employed in the FS method. For use within a tensor registra-
tion algorithm, the FS approximation is computationally preferable to PPD, as discussed
by Zhang et al. [70]. However, for post-registration transformation of tensor images, there
is no reason not to use the more accurate reorientation, and indeed, the final resampling
used in [70] does revert to PPD reorientation after using FS within the registration.

Regularisation of strain tensor reorientation

Having noted above, firstly that Rao et al.’s conjugacy results are the correct approach for
longitudinal TBM, while additionally discussing the extension of PPD to multi-voxel Pro-
crustean methods, it is natural to ask whether Rao et al’s method could also be extended
to include information from neighbouring voxels to help regularise the reorientation pro-
cedure. It seems likely that the answer is yes: one could probably use the unconstrained
solution for the best linear transformation described in section C.2. However, the details
of this are left for future work, since we instead follow the simpler approach described in
the next section.

The problem of inversion and an alternative approach

The approaches presented above for transforming longitudinal deformation fields, Jaco-
bian tensors, strain tensors and determinants require knowledge of the inverse of the
transformation used to normalise the serial data to the fixed target image or atlas. For
example, in equation (4.13), the inverse is needed in order to find the correct point
r1 = Tr(r0) = T−1

sr (Ts(Tsr(r0))) for evaluation of the Jacobian matrix inverse J−1
sr (r1).

Rao et al. [67] derive a numerical line integral technique to approximate Tr (in terms of
the displacement offset ur) without directly computing T−1

sr .
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Interestingly, it has been suggested that a closely related problem arises in the case
of diffusion tensor reorientation; Alexander et al. [63] stated that use of the first order
Taylor series approximation of a nonlinear transformation means that the Jacobian of the
transformation can straightforwardly take the place of the linear part of the affine transfor-
mation they focus upon. Xu et al. [69] later made the following argument: (i) resampling
the tensors into the space of the target conventionally requires the transformation field to
be defined over the space of the target, so that the data can be ‘back-transformed’ without
leaving gaps in the transformed result; (ii) the reorientation itself, in contrast, requires the
Jacobian that approximates the linear transformation which is applied to the tensors (at
their original location). If just this forward transformation is computed, then the tensors
can be reoriented using it and projected into the space of the target, but they will then
need to be re-gridded using a non-uniform interpolation method, potentially leaving gaps
in the result, as emphasised by Xu et al. [69] who refer to such gaps as ‘seams’.

While this seems valid at first sight, and appears not to have been countered in the
literature, we explain here why it is incorrect: while the inverse transformation is unknown
at the tensor/voxel locations of the source, it is known at the non-integral voxel location in
the source s = Tsr(r) from which the tensor is resampled to place into the target-aligned
result at (integer) location r, since this is simply the negation of the vector usr(r) that
goes from r to s. Moreover, noting that in DTI there is no longitudinal deformation to
consider, equation (4.12) reduces to Jrs(s) = J−1

sr (r), showing clearly that the Jacobian
of the inverse transformation at location s is simply given by the inverse of the known
Jacobian matrix of the original transformation at location r. This is the approach used in
Alexander et al.’s Camino ‘Reorient’ tool (http://www.cs.ucl.ac.uk/research/medic/
camino/index.htm) and in FSL’s vec_reg tool (http://www.fmrib.ox.ac.uk/fsl/fdt/
fdt vecreg.html).

In the case of morphometry though, the inverse transformation is needed at a different
location from that to which the original transformation points, and the Jacobian here is
unknown. One approach would be to assume that the intra-subject deformation is small
enough to ignore, and that Jrs(s1) ≈ Jrs(s0) = J−1

sr (r0) which is known. Alternatively, one
could assume that the inter-subject deformation is sufficiently small that the Jacobian of
the inverse transformation (at the required point s1) in the source image) is approximately
equal to the inverse of the original transform’s Jacobian matrix at the same (i.e. identical,
rather than corresponding) point in the target, i.e. to assume:

∂Trs(s)
∂s

∣∣∣∣
s=s1

=

[
∂Tsr(r)

∂r

∣∣∣∣
r=r1

]−1

≈

[
∂Tsr(r)

∂r

∣∣∣∣
r=s1

]−1

.

However, as argued by Ashburner [37], these ‘small deformation’ approximations can be
very poor, either in the presence of large anatomical variability between the brains of
different subjects (especially if abnormal or atrophied patients are included) or in the

http://www.cs.ucl.ac.uk/research/medic/camino/index.htm
http://www.cs.ucl.ac.uk/research/medic/camino/index.htm
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_vecreg.html
http://www.fmrib.ox.ac.uk/fsl/fdt/fdt_vecreg.html
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presence of significant longitudinal change. Therefore, in longitudinal TBM, one could
correctly argue, as Xu et al. apparently incorrectly did regarding DTI, that a true bijec-
tion is required. Xu et al. [69] proposed an algorithm to find the inverse of a deformation
field, which is somewhat unclear, but appears to be a standard scattered data interpolation
[71] of the target coordinates over the space of the source image from their non-uniformly
spaced transformed locations. In contrast, Ashburner’s DARTEL algorithm instead en-
sures inverse-consistency by construction, since forward and backward transformations are
generated by exponentiating (integrating) a velocity field or its negation.29 Strictly, DAR-
TEL is only exactly inverse consistent as the number of integration steps tends to infinity.
For a single integration time-step, it reduces to a small-deformation approximation; for
a typical number of steps (64 is the default [74]), there will be a small but measurable
discrepancy. Finally, as mentioned earlier, Rao et al. [67] build an approximation to the
effect of the inverse transformation without directly computing it, with a numerical line
integral employing the inverse Jacobian matrices.

None of the above methods for generating an inverse transformation or its effect will be
precisely correct (in the sense that T−1

rs (Trs(x)) 6= x), and those that are the most accurate
are also the most computationally involved. An additional source of imprecision is that
the inverse is required over the space of the longitudinally deformed source image (from
equation (4.10), r1 = T−1

sr (s1)) while the transformation to be inverted was derived to map
the reference to the undeformed source; if large expansions are present, extrapolating the
reference-source mapping to positions in the expanded source may lead to low accuracy.
This potential problem is likely to be limited here, since Ts is chosen to map from a baseline
image to an atrophied (rather than expanded) repeat image, but it is still likely to introduce
some additional inaccuracy in terms of the round-trip composition of transformations.
Furthermore, even ignoring any errors in the inverse, resampling multivariate deformation
fields (and/or Jacobians etc.) seems likely to introduce equivalent or greater interpolation
errors compared to resampling scalar images.

For the above reasons, the following alternative option may be preferred: simply spa-
tially normalising the time-series for each subject (after within-subject rigid or affine
registration without interpolation) using a single inter-subject transformation,30 and then
computing the longitudinal deformation fields directly in standard space. This means that
measures derived from the longitudinal deformation fields can be directly analysed, without
further consideration of the inter-subject transformations. This has an additional minor
computational advantage in that the longitudinal non-rigid registration can be estimated
on isotropic data with a more appropriate field-of-view than may have been acquired, and
without needing to account for the rigid component. This method should be similar in
effect to Rao et al’s approach, as it first creates an approximate real instantiation of the
hypothetical time-1 reference image (shown dotted in fig. 4.3) and then directly estimates
the transformation which is conjugate to the original, that Rao et al. derive theoretically

29Diffeomorphic registration algorithms frequently build the overall transformation from multiple com-
positions of small incremental transformations [37, 72, 73], for which the small-deformation approximation
of an inverse is applicable.

30Derived, for example, from the baseline or the average of each time-series (as in section 3.3).
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(d in fig. 4.3). However, further work would be required to experimentally validate this.
Having mentioned the potential difficulty in extrapolating the reference-source mapping in
the case of expansion of the source, we should admit here that the two-stage approach still
suffers a similar problem, in that a significantly expanded source image could be poorly
spatially-normalised by the transformation derived for its unexpanded original. Again, the
choice of baseline images for the inter-subject registration should limit this problem for at-
rophic diseases (if brain growth is expected, for example in developmental studies, it seems
preferable to estimate inter-subject warps from the latest time-point images instead).

4.3 Experimental methods

This section presents the results of applying the above methods to a particular study:
a subset of the longitudinal MIRIAD data-set [8]. The subset comprises 36 probable
Alzheimer’s Disease patients and 20 age- and sex-matched controls. Standard T1-weighted
3D MRI were acquired at baseline, and at six- and twelve-month follow-up visits. Image
acquisition followed the same protocol described in section 3.2.3.

4.3.1 Preprocessing

Following the discussion in section 4.2.10 it was decided to resample spatially normalised
sets of longitudinal images first, rather than transforming initially-computed intra-subject
deformation fields and/or Jacobians and/or strain tensors. The spatial normalisation was
derived using the unified segmentation algorithm [75] in SPM5, applied to the baseline
image of each subject. Subsequent time-points were then normalised with the same pa-
rameters as the baseline; all images were resampled using cubic B-spline interpolation [76]
to avoid the blurring introduced by simpler trilinear interpolation.

Within each subject’s spatially normalised set of longitudinal images, high-dimensional
warping [77] was used to independently estimate registrations from 6- and 12-month repeat
images to the baseline. From these deformation fields, the Jacobian matrix was estimated
at every voxel using centred finite differencing; the other TBM measures are then simply
derived from these matrices.

Smoothing, where necessary, was applied to each element of the (potentially) multi-
variate data separately, e.g. the x-, y-, and z-components of the deformation fields were
independently smoothed with the chosen kernel.

4.3.2 Exploring smoothing

There is currently no practical objective way of deciding upon a ‘correct’ amount of
smoothing to apply for high-resolution morphometric data. Bayesian methods developed
in recent years (discussed briefly in section 4.5.2) can be used to automatically estimate
the smoothness of signal in noise within each plane for fMRI, but they are currently too
computationally demanding for three-dimensional estimation at reasonable resolutions.

Even if simulated atrophy data with known gold-standard volume changes was used,
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the spatial scale of the underlying patterns of group-wise significant findings (after smooth-
ing out residual inter-subject misregistration) would not be known.

An initial univariate TBM experiment is therefore performed to briefly investigate
the need for smoothing, and once found desirable, to determine, approximately, the vi-
sually optimal choice of full-width at half-maximum (FWHM) for the isotropic Gaussian
kernel. The investigation is carried out on the (scalar) Jacobian determinants, after log-
transformation, as this type of measurement has been the most commonly analysed in
TBM to date. The following smoothing kernels are compared: 0 (no smoothing), 4 mm,
8 mm and 12mm FWHM. Kernels larger than 12 mm were found unworthy of investigation
due to the visually apparent over-smoothing already present at 12mm. A simple para-
metric two-group t-test is performed, with a one-sided alternative-hypothesis, testing for
greater volumetric contraction in patients compared to controls. Results are presented for
the contrast (t-numerator), unthresholded t-statistic, and t-statistic thresholded to control
FWE at a level of 5%. Note that RFT correction is likely to be highly conservative without
smoothing, in which case we follow SPM’s default approach of falling back on Bonferroni
FWE-correction if it is less stringent than RFT. Obviously, permutation-testing would be
expected to be superior in this case, but this is of limited interest in this brief and largely
qualitative exploration of smoothing options.

4.3.3 Statistical methods

In chapter 2 we develop theory for permutation-testing of fully general linear models,
including categorical factors and nuisance covariates. We focus there on Wilks’ Λ statistic,
which derives from the generalised likelihood ratio test. In this chapter, we are solely
interested in one of the simplest forms of design: the comparison of two independent
samples (which are typically assumed to have common variance). Because the interest
is in longitudinal change (over a relatively carefully controlled 12-month interval) with
inter-subject spatial normalisation removing differences in overall brain volume, we avoid
the need to covary for global measures such as total intracranial volume (TIV) or total
parenchymal brain volume. In addition, we have recently shown [78] that adjusting for TIV
largely removes the need to adjust for gender in VBM studies of healthy controls (there
may still be disease-gender interactions, but these are often of interest, rather than being
purely a confound). Since the groups in this study are also carefully matched [8], we choose
to focus on a pure two-sample test, with no nuisance covariates, for which the permutation
test is exact. It may appear that the testing procedure would also be straightforward in this
case, but there are two complications which are dealt with in the following subsections,
the first is related to high-dimensional measures (which is particularly crucial for the
searchlight technique, as can be seen from table 4.3); and the second is related to the
special case of comparing the orientations of principal strain directions (as suggested in
section 4.2.9).
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The problem of covariance matrix dimensionality

In the two-sample test, Wilks’ Λ reduces to the special case of Hotelling’s T 2 test (2.1).
However, both of these statistics suffer from the ‘curse of dimensionality’ in that they
rely on determinants of full m×m symmetric covariance matrices containing m(m + 1)/2
unique elements. If the number of elements approaches the number of observations, their
estimation will become unstable, and the value of Wilks’ Λ correspondingly unreliable.
Once there are more elements than observations, the covariance matrix becomes singular
and Λ becomes undefined.

It is possible to estimate well-conditioned covariance matrices from inadequate data
if one is willing to bias or ‘shrink’ the estimates in some way. Ledoit and Wolf [79]
derived such an estimator which is the asymptotically optimal convex combination of
the sample covariance matrix with a scaled identity matrix. In a classification setting,
Thomaz et al. [80] derive an approach for combining singular class covariance matrices
with a non-singular pooled covariance matrix using the maximum entropy principle. They
later adapted this to combine a singular sample covariance matrix with a scaled identity
in their ‘maximum uncertainty’ discriminant framework [81]. Essentially, while Ledoit
and Wolf form a weighted average of sample and identity covariance matrices, Thomaz
et al. form a new matrix by clipping the eigenvalues of the sample covariance matrix to
be no lower than the average of all original eigenvalues. Thomaz et al. motivate this
approach by objecting to the fact that shrinkage methods also unnecessarily adjust the
larger eigenvalues, however, they have not rigorously defined under what assumptions and
optimality criteria their estimate may be proven to be better.

For either of the above methods, the need to apply them for every permutation, and at
every voxel, makes them computationally very costly. Kriegeskorte et al. [1] nevertheless
used a shrinkage estimate in their work on the searchlight in fMRI. Here, the special
simplicity of the design (together with the permutation-testing framework) means that
other test statistics can be employed, which do not require covariance matrix estimation,
and should perform better with large m. One such statistic is presented next.

The two-sample Cramér test

The Cramér test is a non-parametric test for comparing two samples of univariate or
multivariate observations. It is based on the Euclidean interpoint distances between pairs
of observations. Baringhaus and Franz [82] showed that for independent m-dimensional
random vectors A1, A2, B1, B2, where A1 and A2 have the same distribution function F ,
and B1 and B2 have the same distribution function G,

E‖A1 −B1‖ − 1
2E‖A1 −A2‖ − 1

2E‖B1 −B2‖ ≥ 0,

with equality holding if and only if F and G are the same. This motivates the definition
of the Cramér statistic, which is the difference of the sum of all the Euclidean interpoint
distances between two different samples and one-half the sum of the two corresponding
sums of distances within the same sample [82]. Since the publication of the original paper,
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Franz has extended his cramer software (http://cran.r-project.org/web/packages/
cramer/index.html) to include the concept of a ‘kernel’ function φ, which modifies the
Euclidean distance. Including this, with n multivariate observations in the rows of Y , of
which n1 are in group G1 and n2 in group G2, the statistic is given by

t =
n1n2

n1 + n2

[
2

n1n2

∑
i∈G1

∑
j∈G2

φ(‖yi − yj‖2)

− 1
n2

1

∑
i∈G1

∑
j∈G1

φ(‖yi − yj‖2)−
1
n2

2

∑
i∈G2

∑
j∈G2

φ(‖yi − yj‖2)

] (4.15)

The kernel function must be defined on the positive real line, with non-constant monotone
first derivative, and φ(0) = 0. Kernels available in the R software package are given in
table 4.2, though we use only the original φCramer.

Kernel function Alternative hypothesis

φCramer(z) =
√

z/2 Location
φlog(z) = log(1 + z) Location

φFracA(z) = 1− 1/(1 + z) Dispersion
φFracA(z) = 1− 1/(1 + z)2 Dispersion
φBahr(z) = 1− exp(1− z/2) Location or dispersion

Table 4.2: Cramér test kernels available in the R package cramer.

Baringhaus and Franz propose the use of resampling methods to determine critical val-
ues of the statistic [82], and their software provides three alternative approaches: conven-
tional bootstrap, permutation-based resampling, and bootstrapping the limit distribution.
Whitcher et al. [16] suggested the use of a non-stochastic procedure for approximating the
asymptotic distribution based on the quadratic form of Normal random variables. Here,
we use the permutation framework described in chapter 2 as a principled means to obtain
both voxel-wise and family-wise critical thresholds (or p-values). Appendix D.4 considers
the problem of computationally efficient implementation of permutation testing for the
Cramér statistic.

The Bipolar Watson test

Section 4.2.9 presented the principal strain direction as a potentially important orien-
tational tensor-based morphometry measure. We explained the need for a test which
accounts for the Riemannian structure of the manifold of directions (axes), and mentioned
the Bipolar Watson test developed for the related problem in diffusion tensor imaging by
Schwartzman et al. [64]. Further details on this test will now be given.

The bipolar Watson distribution is one of the simplest distributions on the unit sphere
which is antipodally symmetric [64], its (unnormalised) PDF is given by

f(± v̂|µ, κ) ∝ exp
(
κ(µT v̂)2

)
.

The mean direction µ is also a unit vector, so µT v̂ is the cosine of the angle between the

http://cran.r-project.org/web/packages/cramer/index.html
http://cran.r-project.org/web/packages/cramer/index.html
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axes v̂ and µ. The positive constant κ is the ‘concentration’; higher values result in more
tightly clustered points around ±µ. Given a collection of observed unit vectors in the rows
of the data matrix Y ,31 The maximum likelihood estimator of µ is given by the principal
eigenvector u1 of the scatter matrix of the observations —

S =
1
n

n∑
i=1

yiy
T
i =

1
n

Y T Y.

The corresponding principal eigenvalue gives the ‘sample dispersion’ s = 1−λ1(S), which
becomes the maximum likelihood estimator of 1/κ asymptotically as κ →∞.

Schwartzman et al. [64] propose a decomposition of the total dispersion s in terms of
the dispersions si = 1 − λ1(Si) from the group scatter matrices Si = Y T

i Yi, where Yi is
the matrix of observations in group i. Similar to an analysis of variance decomposition,
for the two groups,32 using

ns = (n1s1 + n2s2) + (ns− n1s1 − n2s2)

leads to a test-statistic
F =

(n− 2)(ns− n1s1 − n2s2)
n1s1 + n2s2

. (4.16)

This statistic is asymptotically F-distributed as κ → ∞, which seems quite a strong
assumption. We avoid this approximation by using the permutation-testing framework,
for which it is important to make the calculation of the test statistic as efficient as possible.
Writing

ns = n(1− λ1(S)) = n− λ1(Y T Y ) = n− λ,

and
n1s1 + n2s2 = n− λ1(S1)− λ1(S2) = n− γ,

the following rearrangements of the test statistic are permutationally equivalent:

F
p
= Fp =

ns− n1s1 − n2s2

n1s1 + n2s2
p
=

ns

n1s1 + n2s2

p
=

n− λ

n− γ
.

Now, for FWE inference (as we are primarily interested in here), λ varies over the
voxels, so we cannot further simplify the test statistic f = (n− λ)/(n− γ). However, for
uncorrected (or FDR inference, as used in [64]) one could consider each voxel indepen-
dently. Y T Y is invariant to permutation of the rows of Y , and therefore, we can treat
λ1(Y T Y ) = λ as constant (for each voxel). Meaning that the statistic can be simplified
further still:

Fp
p
= Fv =

1
n− γ

p
= γ,

31We drop the notation ŷ for a unit vector here, simply using y for conciseness.
32Straightforward extension to the k-sample problem is given in the appendix of [64].
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where λ ≤ n can only achieve equality in the degenerate case that all axes are coincident.
This surprising new result has been confirmed with Monte Carlo evaluations: the

original statistic in (4.16) and γ produce values under permutation of the data with the
same sort-order. No further algebraic simplification is possible, since γ = λ1(S1) + λ1(S2)
involves a sum of the principal eigenvalues of two matrices which are different for each
permutation. However, there remain opportunities for computational simplification (also
relevant to our more general FWE-suited test statistic) in the implementation of the
permutation-test, which we describe in appendix D.4.

Quantitative performance comparison

Rigorous evaluation of alternative neuroimaging methods is a challenging task (see e.g.
[83, 84] and related comments in section 4.3.2). In chapter 3 we used simulated atrophy
to derive gold-standard maps of expected change. However, this approach is far from
perfect. Simulated deformation fields give ground-truth for within subject volume changes,
but they do not give a straightforward gold-standard result for the pattern of group-wise
differences that should be considered significant in light of intersubject variability and
(with the low-dimensional DCT-normalisation used here) registration that only attempts
to match large scale anatomical features. Further work in this area would be useful,
however, in this chapter, we abandon the concept of simulated ground-truth and instead
rely on the over-simplified approximation that ‘more is better’ in a comparison of healthy
aging with Alzheimer’s disease. Hua et al. [85] make essentially the same assumption,
where they comment that:

Although an approach that finds greater disease effect sizes is likely to
be more accurate than one that fails to detect disease, it would be better to
compare these models in a predictive design where ground truth regarding the
dependent measure is known.

Though they offer no further details on how a realistically complicated scenario could have
a known dependent measure.

With the above assumption, performance can be quantified by comparing p-values.
A näıve approach would be to simply quote the most significant p-value found anywhere
in the image under each of the methods/statistics. However, this is somewhat removed
from the kind of outcome which is clinically of interest, since a single outlying significant
voxel would not be considered as compelling as a more distributed (and not necessarily
connected) pattern of less significant differences. A slight improvement might be to look
at a more robust estimate of extremity, such as the 5th percentile of the p-values, though
this then ignores the actual degrees of significance for the voxels with more extreme p-
values. A similar alternative, with similar limitations, would be to quote the numbers of
supra-threshold voxels at an arbitrary significance level like 5%. The loss of information
and arbitrariness of both these methods suggests a more complete graphical display of the
counts of supra-threshold voxels as the significance level is varied from the most extreme
p-value present through to unity. Methods with a few very strong voxels will then have
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the highest counts at the strictest thresholds, while methods with large areas of moderate
significance will move to the fore as the threshold becomes generous enough to include
them. Expressing these counts in a slightly more generalisable way as fractions of the total
number of voxels (which is of course also given by the number of supra-threshold voxels for
a p-value of unity) transforms the curve into the cumulative distribution function (CDF)
of the p-values. Hence, we use a p-value CDF measure very similar to that considered in
section 2.5.1, except that the distribution is computed over the voxels of the image, instead
of over the multiple Monte Carlo simulations. This kind of p-value CDF is intimately
related to the FDR procedure [33], and has been used in the same context of method-
evaluation by Lepore et al. [23] and Hua et al. [85].

Because the p-value CDF is computed over the voxels, it simply depends on the sorted
vector of in-mask p-values — no information on the voxels’ locations is employed. We
therefore also use a complementary performance measure, which directly compares p-
values from two or more methods at each voxel. In the absence of ground-truth at a
particular voxel, it is difficult to interpret the difference in p-values across methods. We
therefore propose to put these differences into context using their average, in a similar
way to Bland-Altman plots [86]. In a comparison of two measures, their difference may be
treated as independent to their sum (or average), and a plot of the difference against the
average provides an informative summary. In order to generalise this to more than two
measures, note that in the two-measure case, the difference between one of the measures
and the mean,

p2 − p̄ = p2 −
p1 + p2

2
=

p2 − p1

2
,

is simply a scaled version of the paired difference, and hence also satisfies the above
independence. It is therefore natural to consider an extended Bland-Altman plot for
multiple measures, taking the difference of each with respect to their overall mean. In the
special case of two measures, the second difference is simply a negated version of the first,
so only one need be plotted. A plot of differences against means for all voxels in the mask
would be too cluttered to interpret though, so we must also consider how to summarise it.
The approach taken here is to sort the voxels into order based on the mean p-value, and
then to divide them into groups, before presenting summaries of the differences within each
group. To be precise, we divide the mean p-values into an arbitrarily chosen number (8)
of equally-sized groups,33 covering a pre-specified range (from 0–0.1) potentially dropping
some of the least significant p-values in order that the total number is a multiple of 8. We
then summarise the voxel-averaged p-values by their 8 group-averages, and compute either
averages or boxplots (showing median and interquartile range, as usual) of the voxel-wise
differences in p-values within the bins. The following MATLAB code-fragment is provided
to avoid any remaining ambiguity in this description:

pmax = 0.1; ngrp = 8;

p = p(mask, :); % M methods in columns

pm = mean(p, 2); pd = p - pm*ones(1, M);

33The desire to have equal numbers is the reason we use the sorting and grouping, instead of binning
into fixed intervals.
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nsub = nnz(pm <= pmax);

nper = floor(nsub / ngrp); nsub = ngrp * nper;

[pms inds] = sort(pm);

pms = reshape(pms(1:nsub), nper, ngrp);

pmm = mean(pms); % means of grouped values

pd = shiftdim(pd, 1); % size(pd) now [M nsub]

PD = zeros(M, nper, ngrp);

for m = 1:M

PD(m, :, :) = reshape(pd(m, inds(1:nsub)), nper, ngrp);

end

pdm = squeeze(mean(PD, 2));

plot(pmm,zeros(size(pmm)),’k’, pmm, pdm, ’x’);

Boxplots of squeeze(PD(m, :, :)) may also be produced for each method. We present
both or whichever seems more informative in each case.

Our permutation-testing framework makes available three levels of corrected p-values:
uncorrected, FDR, and FWE. We argue that FWE p-values are the most important for lo-
calisation of effects [87], and also wish to focus on these because they have been neglected
in recent methodological work (e.g. [23, 64]). However, note that FWE p-values intro-
duce a dependence on the smoothness of the underlying data that may complicate their
interpretation. This is obviously true for Random Field Theory based FWE inference,
which directly uses the estimated smoothness of the random field [29], but is also true for
permutation-testing, which is implicitly affected by smoothness of the residuals via the
distribution of the maximum-statistic (rougher residuals produce more extreme maxima
by chance alone, hence the multiple-comparison correction is more severe, exactly as with
RFT). This dependence on smoothness can be characterised more precisely in terms of the
‘effective number of independent tests’ — a concept explored in greater detail by Nichols
and Hayasaka [87], and one which we would like to consider further for this application in
future work. Unfortunately, in the present case it is only computationally feasible to record
the permutation distribution of the maximum statistic; whereas the complete permutation
distributions of each voxel is required to explore the effective number of independent tests.
For this reason, uncorrected p-values (which are individually valid for comparison of dif-
ferent methods at corresponding voxels, regardless of the multiple-testing issue) are also
essential to our performance evaluation. We avoid direct comparison of FDR p-values
here, since their signal-adaptive property [33] (potentially permitting more significant ad-
justed p-values at a particular voxel thanks to the presence of significance elsewhere in the
image) is unhelpful for method comparison [Thomas Nichols, private communication].

4.3.4 Deformation-based morphometry

Deformation-based morphometry is performed using ‘mass-multivariate’ analysis of the
components of the displacement field at each voxel. Recall that this is in contrast to the
definition of DBM in [2] as an overall multivariate ‘characterisation of the differences in
the vector fields that describe global or gross differences’. The displacement fields for the
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baseline to 12-month follow-up longitudinal interval are analysed. The 0–6 month data
were also studied, but are not reported as they exhibited qualitatively similar (though
quantitatively weaker) patterns.

To shed further light on the need for smoothing, both raw unsmoothed images and
data smoothed with an 8 mm FWHM Gaussian kernel are analysed. The modest multi-
plicity of the displacement vector fields (three components, or six unique covariance matrix
elements) makes this an ideal setting to compare the two multivariate testing options, so
all the analyses are repeated once with Wilks’ Λ and once with the Cramér statistic.

4.3.5 Searchlight morphometry

The unsmoothed 0–12 month displacement fields are analysed using the searchlight tech-
nique with the Cramér test. Properties of a range of searchlight kernels are given in
table 4.3. Only kernels of 4, 7, and 10 voxel squared radius are employed for the displace-
ment fields. This choice was based on post-hoc observation of limited difference between
results at the extremes of the range.

(a) r2 1 2 3 4 5 6, 7 8 9 10

(b) width 1 1 1 2 2 2 2 3 3
(c) Nvox 7 19 27 33 57 81 93 123 147
(d) Ncov 28 190 378 561 1653 3321 4371 7626 10878
(e) Ncov3 231 1653 3321 4950 14706 29646 39060 68265 97461

Table 4.3: Spherical searchlight kernels. (a) squared radius in voxels, (b) half-width along
axes (border required between blocks, see appendix D.3) (c) total voxels contained, (d)
unique covariance matrix elements for scalar data, (e) unique covariances for displacement
3-vectors. Note that squared radii of 6 and 7 give equivalent searchlight kernels.

Searchlight tensor-based morphometry is also briefly investigated, using the commonly
analysed log-transformed Jacobian determinants, with the multivariate searchlight kernel
removing the need for the usual smoothing. Only searchlight kernels of more than 3
voxel squared radius are employed, given the need for a certain amount of smoothing (see
sections 4.3.2 and 4.4.1). As proposed earlier, we additionally explore the use of spline-
pyramid downsampled images, testing two levels of coarsened data with a searchlight
kernel of squared radius 4 voxels.

4.3.6 Generalised Tensor-based morphometry

We investigate a range of multivariate and univariate Jacobian-derived TBM measures,
listed in table 4.4. All the methods are tested on the 0–12 month data; the most promising
are then applied over the more challenging 6 month interval. Note that we include the full
Jacobian matrix, despite the theoretical limitations outlined at the end of section 4.2.6,
because in practice, we found no negative determinants arose for our data.

The Cramér statistic is used for all these tests; selected data are then reanalysed with
Wilks Λ for comparison in the section on methodological subtleties below.
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The results focus on the question of whether multivariate generalised TBM measures
are superior to the simpler univariate (log) determinant measure. We also compare the
two univariate options of log determinant and trace of the Jacobian.

m m(m + 1)/2 Measure

1 1 Log-transformed determinant of Jacobian matrix
1 1 Trace of Jacobian matrix (or ∇· u)
1 1 Maximum eigenvalue of Hencky strain tensor
3 6 Eigenvalues of Hencky strain tensor
6 21 Hencky strain tensor elements
9 45 All elements of the Jacobian matrix

Table 4.4: Jacobian-derived TBM measures, listed by their dimensionality (m) and the
corresponding number of unique covariance matrix elements.

Methodological subtleties

A number of aspects in the above TBM studies are open to further investigation; here, we
explore some of the more subtle methodological issues, which have often been ignored in
the literature. In particular, we thoroughly compare the interaction between the options
for smoothing and for scalar or matrix log-transforming data in univariate and multivariate
strain-tensor based morphometry.

Univariate TBM using the determinant of the Jacobian has been performed both with
[19, 88] and without [26] the log-transformation. Several authors [89, 90] have argued that
the logarithm is preferable (or even necessary) based on either principles of symmetry and
inversion invariance or on statistical grounds. In multivariate or generalised TBM, essen-
tially the same question arises, but with the matrix logarithm replacing the usual scalar
(natural) logarithm. Recent work in generalised TBM [22, 23] has exclusively employed
the matrix logarithm, on the justification provided by the elegant log-Euclidean frame-
work accounting for the Riemannian nature of the strain tensor (see section 4.2.6). Earlier
work [2], from the perspective of solid mechanics investigated different strain tensors with
and without the matrix logarithm in their definition (see section 4.2.5 and table 4.1). In
short, the Hencky tensor is logm (U), while analysis of the right stretch tensor U itself is
equivalent to analysis of the Biot strain tensor, given by U − I, since the subtraction of a
constant identity matrix has no impact on either the Cramér or Wilks’ Λ tests.

In the context of diffusion weighted image analysis, Whitcher et al. [16] compared
Cramér tests of the diffusion tensor with and without the matrix logarithm. Interestingly,
they found that the log-Euclidean approach actually lowered the statistical significance of
their findings, which motivates us to check whether this phenomenon is replicated in our
morphometric data. If one moves away from the more mathematical arguments [58, 59, 91],
to interpret either the scalar or matrix logarithm simply as a preprocessing step, then
not only can it be viewed as optional, but one may also ask where in the preprocessing
pipeline it should take place. Furthermore, one could employ the log-Euclidean framework
as a means of smoothing the data, before returning the results to their original space
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using either the scalar or matrix exponential as appropriate. While this might seem
mathematically unjustified, it is compatible with a comment made by Whitcher et al. [16]:

Whereas Riemannian metrics are advantageous in applications such as in-
terpolation or regularization, from a hypothesis testing perspective there is no
reason at this time to prefer the log-Euclidean distance.

In summary, one could consider any of the four schemes enumerated in table 4.5 for either
the determinant or the right stretch tensor. Note that in terms of software implementation,
all of the schemes are special cases of a three-stage process-smooth-process pipeline.

Procedure Notes

1 Smooth Common in univariate TBM
2 Log Smooth Uncommon (possibly unused)
3 Smooth Log Most common in univariate and generalised TBM
4 Exp Smooth Log Log-Euclidean smoothing only

Table 4.5: Smoothing options for strain tensors or determinants, including appropriate
(scalar or matrix) exponential- and logarithm-transformations.

For the scalar determinant, there are two additional options of smoothing the Jacobian
tensor itself before taking the determinant and optionally the logarithm. The strain tensor
U could similarly be derived from a smoothed Jacobian, and, furthermore, the eigenval-
ues (and/or maximum eigenvalue) included in table 4.4 have a large number of options.
However, in the interest of brevity, we neglect to compare these options, on the basis that
they are not only less theoretically motivated, but also that they should approximately
follow the behaviour for the scalar case. For example, if the scalar situation shows that
smoothing the Jacobian matrix directly is inferior to all the other options, then it would
be surprising to find that this was the best of the available options for the strain tensor
or its eigenvalues.

It might initially seem that the volume dilatation 1+ tr (K), or the statistically equiv-
alent transformation divergence tr (J), present similar options. However, note that while
1 + tr (K) was shown in section 4.2.4 and figure 4.1 to approximate |J |, there is no guar-
antee that 1+tr (K) or even tr (J) = 3+tr (K) will be positive, so the log-transformation
is not generally applicable. The comparison of the volume dilatation to the determinant
is still of interest, but this is addressed in the main TBM results section, comparing the
trace of the Jacobian to the particular log-transformed case of the determinant.

Two further tensor-related subtleties that have been explained in section 4.2 are evalu-
ated in practice here. Firstly, the infinitesimal strain tensor (J +JT )/2 (see section 4.2.5)
is compared to the finite strain Hencky tensor logm

((
JT J

)1/2
)
, in each case taking the

unique elements of these symmetric matrices. This comparison seems to be the closest
multivariate analogue of the comparison between the dilatation and the log-determinant,
though one could also argue that the infinitesimal strain tensor should be compared to the
Biot or Green strain tensors from table 4.1. Secondly, we explore the distinction reached
at the end of section 4.2.7 between analysing the elements of the Hencky tensor vech (H),
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compared to true log-Euclidean analysis (yielding equal Frobenius and vector norms) of
vechLE (H) with off-diagonal elements scaled by

√
2.

Another issue investigated in this section is the relative performance of the more general
Wilks’ Λ statistic compared to the design-specific Cramér test. Specifically, one measure
of each dimensionality in table 4.4 is tested using both statistics; the commonly studied
log-determinant being chosen to represent the univariate measures.

Finally, we briefly evaluate the benefit from the step-down procedure [92] for deriving
FWE-corrected p-values, in comparison to the standard approach using the permutation
distribution of the image-wise maximum-statistic [93].

Orientational measures

The orientational or directional measures discussed in section 4.2.9 and summarised in
table 4.6 are explored in some detail. Firstly, their raw data are visualised for an individual
AD patient. Secondly the group-wise arithmetic means over the 36 AD patients and
20 matched controls are illustrated. Finally, statistical results are presented. Tests are
performed using the Cramér statistic, except for the unscaled principal direction, which
is tested using the bipolar Watson distribution, as described in section 4.3.3.

m m(m + 1)/2 Measure

1 1 Geodesic anisotropy
3(2) 6(3) Principal eigenvector direction
3 6 Principal eigenvector scaled by its (max) eigenvalue
3 6 Infinitesimal rotation tensor elements (∇× u)

Table 4.6: Measures of anisotropy, orientation, or vorticity, derived from the Jacobian,
listed by their dimensionality (m) and the corresponding number of unique covariance
matrix elements. Numbers in parenthesis indicate a smaller number of true degrees of
freedom than the dimensionality (since unit vectors can be identified with points on the
surface of the unit-sphere).

Cross-methodological comparisons

Concluding this section of experimental work on morphometry, we compare the results
from deformation-based morphometry (using the three-vector of displacement field compo-
nents) to some representative results from tensor-based morphometry: the near-standard
log-determinant, the equal-dimensional three-vector of eigenvalues of the Hencky tensor,
the six unique elements of H, and the full Jacobian matrix. In addition, we include the
geodesic anisotropy in this comparison, as the most powerful of the orientational measures
(see sections 4.3.6 and 4.4.4).
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4.4 Results and discussion

4.4.1 Smoothness comparison

Results for univariate TBM on the log-determinant of the Jacobian at the four different
levels of smoothing are illustrated in the following figures. Figure 4.6 shows the t-statistic
and the signal or effect-size on which it is based — i.e. the numerator of the t-statistic
or ‘contrast’. Figure 4.7 shows maximum intensity projections for the significant (5%
family-wise error corrected) voxels at each level of smoothing.

Even with no smoothing, the contrast image shows a biologically plausible pattern of
losses predominantly in the temporal lobe and insula, though the map is very noisy, and
contains some more questionable isolated peaks, for example adjacent to the ventricles.
However, with no smoothing, virtually nothing survives correction for multiple compar-
isons. With 4 mm, the contrast and t images show quite appealing patterns, but there is
still substantial noise. The stringently corrected FWE results remove much of the spurious
noise, leaving findings in anatomically reasonable locations; however, these are unrealisti-
cally speckled and noise-like. At higher levels of smoothing, there is a general tendency
for spatially consistent findings to congeal into more interpretable contiguous regions of
significance, however, at 12 mm (or above) there is some evidence that genuine anatomical
detail has been lost due to excessive smoothing.

Based on subjective visual assessment, we favour the 8 mm FWHM results, which
mirrors the findings of Scahill [94], who favoured the same amount for voxel-based mor-
phometry. All further smoothed (i.e. not using the searchlight) results in this chapter are
performed with 8 mm FWHM.

It must be admitted that we have severely under-sampled scale-space [34], in the sense
that the changes from 4 to 8 and 8 to 12mm are relatively pronounced; visual comparison
of e.g. 7, 8, and 9mm may have indicated a slight preference for one of the other kernels.
In addition, as mentioned briefly by Jones et al. [95], a logarithmic sampling of scale-
space (e.g. 2, 4, 8, 16mm) would be more appropriate than our equally spaced samples.
However, given the essential subjectivity of any preferences, and the potential inaccuracy
when extrapolating from these univariate results to the various multivariate measures,
these issues do not seem worth pursuing here. A more promising line of research —
objective and automatic estimation of the signal smoothness using a principled Bayesian
formulation — is very briefly discussed in section 4.5.2.

4.4.2 Deformation-based morphometry

Statistical results from the analyses of the baseline to 12-month follow-up displacement
fields are summarised in figure 4.8. The first column shows the raw statistic maps for
Wilks’ Λ (actually its reciprocal, as stated in section 2.3.2, which is larger for greater
differences) and the Cramér test (also larger for greater significance, but starting from 0
instead of 1 as Λ does). The figure’s second and third columns illustrate the multiple-
comparison corrected significant findings, using both FDR and FWE p-values, displayed
after (negated) logarithmic transformation so that more significant voxels appear brighter.
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Figure 4.6: Results at different levels of smoothing. From top to bottom: 0, 4, 8 and 12 mm
FWHM Gaussian kernel. Left column, contrast numerator; right column, t-statistic.
Anatomical-left corresponds to display-left; cross-hairs are shown at the centre voxel.



CHAPTER 4. MULTIVARIATE MORPHOMETRY 237

SP
M

m
ip

[0
, 0

, 0
]

<

< <

(a) Unsmoothed

SP
M

m
ip

[0
, 0

, 0
]

<

< <

(b) 4mm

SP
M

m
ip

[0
, 0

, 0
]

<

< <

(c) 8mm

SP
M

m
ip

[0
, 0

, 0
]

<

< <

(d) 12mm

Figure 4.7: Maximum intensity projections of significant findings at each level of smooth-
ing. The t-statistics are thresholded to control pFWE < 0.05. Anatomical-left corre-
sponds to display-left.

In terms of the FDR results, there is little to choose between the methods. Smoothing
marginally increases power, while slightly reducing spatial acuity, but, interestingly, the
difference in power is very small compared to the FWE-corrected results. The significant
(pFWE < 0.05) areas are additionally illustrated in figure 4.9 as Maximum Intensity Pro-
jections (MIPs). As one might have expected, the permutation-testing FWE-correction
based on the distribution of the image-wise maximum statistic, is less weakened by rough-
ness than the parametric RFT results presented in section 4.4.1; nevertheless, there is a
clear gain in power for both Wilks’ Λ and the Cramér test obtained by smoothing.

The effect of smoothing and choice of statistical test are further visualised in figure 4.10.
In this particular study, there seems to be little evidence that smoothing is degrading the
accuracy of the spatial locations (cf. [96]); instead it appears to be increasing the extent of
findings without overly displacing their peak locations. For either raw or smoothed data,
the Cramér test appears to have dramatically greater power than the conventional Wilks’
Λ when considering the FWE-corrected results.

Figure 4.11(a) more quantitatively investigates power, by showing cumulative distri-
bution functions for the uncorrected p-values. The Cramér statistic appears superior for
all thresholds stricter than about 0.01 (which is very lenient for uncorrected results), with
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Figure 4.8: Statistical results for deformation-based morphometry, using Wilks’ Λ and
Cramér tests, on raw and 8 mm-smoothed displacement fields. P-values are displayed in
the range 0.05–0.0005 as absolute log10 p-values (brighter is more significant). The final
row shows the template, mask, and a Boolean intersection of the significant results of the
first four rows, to provide context.
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Figure 4.9: Maximum intensity projections of significant findings for DBM using Wilks’
Λ and Cramér tests, on raw and 8 mm-smoothed displacement fields. Absolute log10 p-
values over the range 0.00005 < pFWE < 0.05 are shown. Anatomical-left corresponds
to display-left.

Figure 4.10: Overlays of significant (0.0005 < pFWE < 0.05) absolute log10 p-values for
DBM using Wilks’ Λ and Cramér tests, on raw and 8 mm-smoothed displacement fields.
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the 8 mm FWHM Gaussian smoothing increasing the power for both statistics. CDF plots
based on corrected p-values are not presented, but show essentially the same results, with
the smoothed Cramér statistic performing best, followed by its unsmoothed version, and
then the two Wilks’ Λ tests. Panel (b) provides a comparison of the power of the different
methods when evaluated over corresponding voxels, and similarly favours the smoothed
Cramér statistic at reasonably strict thresholds. Wilks’ Λ becomes more powerful at very
relaxed levels of significance, and again, the smoothed data uniformly outperform the raw
data using either statistic.
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Figure 4.11: Statistical power of the different DBM tests illustrated via (a) cumulative dis-
tribution functions and (b) voxel-matched comparison of their uncorrected (permutation-
based) p-values.

4.4.3 Searchlight morphometry

Continuing the analysis of displacement fields from the previous section, we now turn from
using simple smoothing of the data prior to statistical analysis, to instead analysing the
unsmoothed data within differently sized searchlight kernels. The Cramér statistic is used
exclusively here, partly because of its superior power reported in the previous section, but
mainly because the higher-dimensional multivariate measurements obtained by collecting
three-vectors from all voxels in the searchlight would make the necessary covariance matrix
estimation for Wilks’ Λ particularly challenging.

Figure 4.12 summarises the findings, recapitulating the results from figure 4.8 for the
unsmoothed and 8 mm-smoothed Cramér test without searchlight for comparison. The
statistical maps show the expected gradual increase in smoothness with increasing search-
light radius; the largest 10 voxel squared-radius kernel appears to have produced a visually
similar level of smoothing to the 8mm Gaussian smoothing kernel. Approximate quanti-
tative estimates of the smoothness of the statistic images are given in table 4.7, estimated
with the 3dFWHMx program from the AFNI software package.34 This program estimates
the smoothness along each dimension based on the sample variance of the numerical first

34Analysis of Functional NeuroImaging http://afni.nimh.nih.gov/afni

http://afni.nimh.nih.gov/afni
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derivatives, using a three-dimensional extension of the expression derived in the appendix
of Forman et al. [97]. The table shows a peculiar tendency for the anterior-posterior (y)
smoothness to be higher than the others, which is almost certainly an artefact (perhaps
reflecting a ‘preferred direction’ of the ventricles and/or hippocampal changes that dom-
inate the statistic images). The geometric mean smoothness places the 8 mm smoothing
slightly beyond the largest searchlight kernel considered, in rough agreement with visual
inspection.

Searchlight r2 FWHMx FWHMy FWHMz
3
√∏

i FWHMi

0 9.38 13.05 10.48 10.87
4 10.59 14.89 11.82 12.31
7 11.27 16.14 12.66 13.20
10 11.63 16.68 13.08 13.64

8 mm smoothing 12.32 17.81 13.92 14.51

Table 4.7: Smoothness of searchlight DBM statistic images in terms of Gaussian Full-
Width at Half-Maximum, in mm, estimated using AFNI’s 3dFWHMx. The special cases of
no smoothing and no searchlight (r2 = 0) and of conventional smoothing, are included for
comparison. The final column gives the geometric mean of the three directional smoothness
values, because this corresponds to the scaled-identity covariance matrix closest, in the
Riemannian sense, to the anisotropic diagonal covariance matrix (compare equation (4.8)
for the geodesic anisotropy).

Considering now the p-value maps in figure 4.12, there is surprisingly little difference
between the alternatives, either in terms of FDR or FWE significance, other than the
fact that any searchlight kernel or smoothing is more powerful than the unsmoothed data
analysed directly. There are perhaps slightly more voxels satisfying pFWE < 0.05 for the
r2 = 10 searchlight than for any of the other options, but this is naturally accompanied
by slightly more blurring than the smaller kernels.

Observed powers are compared quantitatively in figure 4.13, which presents cumula-
tive distribution functions and matched-voxel comparisons, using both uncorrected and
FWE p-values. There is generally good agreement between the two correction methods,
particularly in the matched-voxel comparisons which both show all three searchlight ker-
nels to be superior to smoothing. The uncorrected CDFs favour searchlight with kernels
of r2 = 7 or 10 to classical smoothing; the FWE results show the r2 = 7 kernel and
the 8 mm smoothing performing approximately equally well, and slightly better than the
smaller kernel. The largest kernel seems to have relatively poor FWE-corrected power at
the more stringent levels, but has the highest CDF above about 1%. In the matched-voxel
comparisons there is a tendency for the larger kernels to be the best at significance levels
more lenient than 0.01, while the 33-voxel kernel (r2 = 4) appears better for the very
strictest alpha.

Searchlight TBM

We now test the searchlight technique on the most common univariate tensor-based mor-
phometry measure, the log-transformed determinant of the Jacobian, based on the same
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Figure 4.12: Statistical results for deformation-based morphometry using the Cramér test
comparing the use of searchlight (middle three rows) to raw data (top row) or conventional
smoothing (final row). P-values are displayed as absolute log p-values (brighter is more
significant).
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Figure 4.13: Comparison of searchlight and smoothing for DBM, in terms of (above) p-
value CDFs, and (below) matched voxel p-value comparisons; for (left) uncorrected and
(right) FWE-corrected p-values.

12-month interval data used above. Figure 4.14 overlays the Cramér statistic values and
resultant log-transformed FDR p-values for the smallest (33 voxel) searchlight kernel con-
sidered on top of the corresponding results for the largest (144 voxel) kernel. As with
the DBM results above, the larger searchlight kernel extends the regions of significance
slightly, but loses some of the finer detail — much as conventional smoothing, but to a
lesser degree.

Figure 4.15 presents maximum intensity projections of the FWE-corrected significant
voxels for all six searchlight kernels considered. The MIPs are essentially the same, dif-
fering only slightly in the extent of their findings, while no distinct regions are present for
some of the kernels but not others.

Figure 4.16 compares the observed powers of the different searchlight kernels, to each
other and to the conventionally smoothed log-determinant. Unexpectedly, the conclusions
differ depending on whether one focusses on uncorrected or FWE-corrected p-values. Un-
corrected results show very similar power for 8mm smoothing and for the 57-voxel (r2 = 5)
searchlight. However, when controlling FWE, it is the largest kernels that are closest to
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Figure 4.14: Results from searchlight Tensor-Based Morphometry on the log-transformed
Jacobian determinant. Cramér test statistic and FDR-corrected p-values (shown on a
logarithmic scale).

the power of smoothing (in fact, smoothing is the most powerful option for significance
levels above about 0.003). This is of great importance, since it appears to be the smaller
kernels (r2 ≤ 6) that preserve a similar amount of anatomical detail to smoothing; the
very large kernels introduce excessive blurring.

As a very simple (in fact, greatly over-simplified) quantitative summary of panels (a)
and (b) of figure 4.16, table 4.8 shows the numbers of voxels that survive the arbitrary
p < 0.05 threshold under the three different levels of multiple comparison correction.
The equivalent numbers for conventional Gaussian smoothing of the log-determinant lie
between those of r2 = 4 and r2 = 5 in terms of uncorrected or FDR-corrected p-values, but
are greater than any of the considered r2 values when judged on FWE-corrected p-values.

Searchlight r2 Uncorrected FDR corrected FWE corrected

4 78099 48049 3366
5 87343 59514 4728

6/7 92725 66321 5566
8 95387 69924 6225
9 101320 77363 7041
10 104683* 81458* 7827

8 mm smoothing 80536 55586 9868*

Table 4.8: Numbers of supra-threshold voxels at p < 0.05 for the three different levels
of correction, using different searchlight kernels on the log-determinant. Results with
conventional smoothing are given for comparison. The maximum within each column is
starred.

One potential explanation for the disappointing performance of the searchlight after
FWE-correction (put forward by Thomas Nichols) is that searchlight can be seen as a
form of adaptive smoothing, essentially taking advantage of the information in the voxels
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Figure 4.15: Maximum intensity projections of significant findings for searchlight TBM
using the Cramér statistic. Absolute log p-values over the range 0.00005 < pFWE < 0.05
are shown. Anatomical-left corresponds to display-left.
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Figure 4.16: Comparison of searchlight and smoothing for TBM, in terms of (above) p-
value CDFs, and (below) matched voxel p-value comparisons; for (left) uncorrected and
(right) FWE-corrected p-values.

Searchlight r2 FWHMx FWHMy FWHMz
3
√∏

i FWHMi

4 9.384 13.05 10.48 10.87
5 10.59 14.90 11.82 12.31

6/7 11.27 16.14 12.66 13.20
8 11.63 16.68 13.08 13.64
9 12.32 17.81 13.92 14.51
10 12.84 18.35 14.41 15.03

s.log det J 10.40 15.63 11.59 12.35

Table 4.9: Smoothness of searchlight TBM statistic images in terms of Gaussian Full-
Width at Half-Maximum, in mm, as in figure 4.7.
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included within the searchlight in a more complex way than simple Gaussian weighting.
This adaptivity and complexity however, might be expected to increase the variability
of the estimates at each voxel, leading to more outlying voxels and hence heavier tails in
the permutation distribution of the maximum. This is somewhat speculative however, and
further experimental work, probably including Monte Carlo simulation, will be necessary to
understand this phenomenon. We report the estimated smoothness values for the statistic
image in table 4.9 in an attempt to shed some light on the above difference. However,
conventional smoothing results in a similar estimated smoothness to a searchlight kernel
of r2 = 5, which therefore fails to explain the relatively poorer FWE performance of
the r2 = 5 searchlight compared to 8 mm smoothing. On the basis of these (admittedly
limited) results, the searchlight technique seems to offer no advantage to TBM when
judged on FWE-corrected performance.

Searchlight over multiple scales

A potential problem with the searchlight is that even moderately large separation between
the current voxel and its furthest neighbours requires an unreasonably large total number
of voxels within the kernel. For example, the largest kernel here, with 147 voxels still only
reaches a maximum radius of 3 voxels away from the centre. To reach 4, 5 and 6 voxel
distances respectively requires 257, 515 and 925 voxels. While even the smallest kernel
considered here (r2 = 4) has almost as many voxels as the number of subjects (33 cf.
56). In an attempt to increase the spatial range of the searchlight analysis without unduly
increasing the number of voxels being considered, we proposed to downsample the images.
In particular, we suggest the use of Unser et al.’s spline-pyramids [42, 43], which provide
optimal L2 approximation, and allow easy upsampling of data.

Figure 4.17 uses a constant r2 = 4 searchlight kernel, but with three different image
resolution levels, 2mm, 4 mm and 8 mm isotropic. Results are compared to conventional
smoothing at the finest level. Disappointingly, this scale-space approach shows no evidence
of benefit, for this particular data-set. No new locations become significant; originally
significant regions extend to cover larger areas, but without respecting anatomical bound-
aries. We do not pursue this approach further here, since CDFs etc. seem uninteresting
given the visually poor FDR and FWE results, however, we do not claim to have proven
that the method has no potential; it must be applied to several other data-sets to fully
characterise its merit.

4.4.4 Tensor-based morphometry

Results for five different tensor-derived measures over the 12-month interval are shown in
figure 4.18 in terms of the unthresholded Cramér test statistic, and the thresholded FDR
and FWE corrected p-values on a logarithmic scale. The most striking aspect of the statis-
tic images is the general tendency for the higher dimensional measures to exhibit more
widespread evidence of a group-difference between patients and controls. This is also sup-
ported by the FDR p-values. In particular, we observe that while the maximum eigenvalue
extends some regions of significance beyond those present for the log-determinant, it also
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Figure 4.17: Statistical results for TBM using the Cramér test. Top row: conventional
smoothing (8mm FWHM); following rows, r2 = 4voxelsearchlight kernel, on original 2mm
data, and two levels of spline-pyramid downsampled data. Statistic maps are shown at the
downsampled resolution, but the FDR and FWE (log) p-values have been returned to the
2mm resolution through spline pyramid upsampling. P-values are displayed as absolute
log p-values (brighter is more significant).
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loses others. Multivariate testing of the set of eigenvalues appears to restore all these areas
of lost significance, while adding additional voxels in clinically plausible locations includ-
ing parts of the frontal cortex. Note that the the log-determinant is very similar (differing
only in terms of smoothing) to the trace of the Hencky tensor (results not shown), which is
the sum of the eigenvalues of H. This sum in turn is likely to be dominated by the largest
of its components, the maximum eigenvalue, in voxels exhibiting anisotropic strain, which
explains the overall similarity of the maps. Clearly, the (non-linear) transformations from
J to H = logm

((
JT J

)1/2
)

and then to the eigenvalues can only reduce the total amount
of information available, at the same time as the dimensionality, so it is unsurprising that
the higher dimensional statistics show evidence of change over a greater number of voxels.
These results, in terms of the statistic and FDR-corrected p-values (and also the unshown
uncorrected p-values, from which the FDR-adjusted ones are monotonically derived) are in
agreement with the results from the literature on generalised tensor-based morphometry
[22, 23].

Interestingly, and counter-intuitively, it appears that the above trend has not been re-
produced in the FWE-corrected results (presented here for the first time using generalised
TBM). The third column of figure 4.18 shows very similar, anatomically reasonable, pat-
terns of significant difference, but without any clear preference for the higher dimensional
measures. In fact, the maximum intensity projections for FWE significance of the differ-
ent results presented in figure 4.19, show clearly that the set of eigenvalues of H produces
more widespread findings than either the complete set of unique elements of H or the full
Jacobian tensor. (We note in passing, that the MIPs add the sixth and final measure from
table 4.4, tr (J), to the five in figure 4.18, but that there is barely any visually discernible
difference between this ‘volume dilatation’ and the volume change that it approximates,
encoded in the log-determinant.)

To provide a simple quantitative summary of the above remarks, table 4.10 shows
the numbers of voxels that survive the arbitrary p < 0.05 threshold using each p-value
correction method.

Measure Uncorrected FDR corrected FWE corrected

s.log det J 80536 55586 9868
smth trace J 78288 52981 9366

max e-val s.H 72958 45137 10936
e-vals s.H 134333 118735 20731*

smth H 136303 123816 13788
smth J 145945* 134802* 14526

Table 4.10: Numbers of supra-threshold voxels at p < 0.05 for the three different levels of
correction, using various TBM measures. The maximum within each column is starred.

Avoiding the arbitrariness of any particular significance level, the p-value cumulative
distribution functions, both without correction and with FWE correction, are shown in
figure 4.20. The conclusions are essentially the same: the uncorrected results favour the
full Jacobian followed by the Hencky tensor and its eigenvalues over the whole range of sig-
nificance levels (from 0.0002, the reciprocal of the 5000 permutations performed, upward).
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Figure 4.18: Statistical results for tensor-based morphometry, using the Cramér test, with
8 mm FWHM smoothing, on the measures from table 4.4, except tr (J), which is similar to
det (J). P-values are displayed in the range 0.05–0.0005 as absolute log p-values (brighter
is more significant). Anatomical-left is display-left. The cross-hairs are located at (0.5,
-18.5, 17.5) mm MNI.
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Figure 4.19: Maximum intensity projections of significant findings for TBM on the mea-
sures from table 4.4. Absolute log p-values over the range 0.00005 < pFWE < 0.05 are
shown. Anatomical-left corresponds to display-left.
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The three univariate and three multivariate measures actually fall into two distinctly sep-
arate groups, with similar performance within each group. The FWE CDF curves are
considerably more complex, with the relative order of the methods changing quite sub-
stantially between e.g. 0.005 and 0.05. Nevertheless, the set of eigenvalues is consistently
the most powerful measure, while H and J perform quite badly at the most stringent p-
values, below about 0.01, before crossing the univariate measures to become second only
to the eigenvalues at about 0.05 (consistent with the numbers of supra-threshold voxels
in table 4.10). Looking again at figures 4.18 and 4.19, the explanation seems to be that
the higher dimensional measures have a broader but weaker pattern of significant voxels;
giving them greater numbers at lenient thresholds, but becoming disproportionately less
powerful at stricter levels of significance compared to the lower dimensional measures.
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Figure 4.20: Statistical power of the different TBM measures illustrated via cumulative
distribution functions of (a) uncorrected, and (b) FWE (step-down) corrected p-values.

False-discovery-rate p-value CDFs might also be of interest. For a particular method,
the FDR p-values are monotonically related to the uncorrected ones, implying that the
corresponding CDF curves will also be monotonically related. However, it is possible for
different methods to exhibit a different relative ordering (e.g. a different method having
the highest CDF curve at a particular level) in their uncorrected and FDR corrected
CDFs. On sets of random p-values, this phenomenon can be quite dramatic, with the
majority of levels showing different orders of ‘methods’, however, on the imaging results
presented here, the FDR CDFs have shown nearly identical orderings of the methods to
the uncorrected CDFs, and hence are omitted in the interest of space.

Moving from overall power to a comparison of sensitivity at corresponding voxels, fig-
ure 4.21 shows three separate plots of p-value differences with respect to (each plot’s)
mean, sorted by this mean value. This figure is based on uncorrected p-values, and shows
patterns largely consistent with the results presented thus far. Focussing briefly on the
choice between log-determinant and trace of the Jacobian, the means in panel (a) favour
the trace, while the medians in (b) slightly favour the determinant. The CDFs in fig-
ure 4.20 showed no meaningful difference for uncorrected p-values but uniformly favoured
the log-determinant to the trace in terms of FWE results. Panels (a-d) of figure 4.21
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also introduce a new measure, the smoothed maximum eigenvalue of the Hencky tensor,
instead of the maximum eigenvalue of smoothed H. This is included so that panels (a)
and (b) compare three measures which are all smoothed at the end of their processing,
however, the smoothed max eigenvalue performs very badly both in this comparison, and
in panels (c) and (d), which provide a comparison of three eigenvalue-based measures, and
is hence not considered further here (though other similar investigations related to the
interaction of smoothing and preprocessing are pursued in section 4.4.4). The eigenvalue
comparison shows the superiority of multivariate analysis of the set compared to both
univariate analyses. The final two panels, (e) and (f), consider the multivariate measures,
finding that higher dimensionality is associated with higher power.

In figure 4.21, we have focussed on uncorrected p-values for method comparison, be-
cause, as discussed earlier (section 4.3.3) uncorrected p-values are individually valid and
hence suited to this form of voxel-matched comparison. However, given the earlier con-
flicting conclusions regarding the best performing TBM measures, it seems prudent to
briefly explore matched p-value comparison on the FWE p-values, even though additional
complexity is added to the interpretation. Figure 4.22 presents equivalent plots for both
uncorrected and FWE corrected p-values, for the most interesting TBM measures. Just
as in the earlier figures, uncorrected results favour H and J to the univariate determinant,
while FWE correction brings results for the tensors to near or below those of the scalar.
The set of eigenvalues again appears to have some kind of optimal balance between the
univariate and the multivariate, with at or near the best performance with or without
correction. It will be important to investigate the reproducibility of this result in other
data-sets; it is conceivable, for example, that the eigenvalues are optimal here with 56 sub-
jects, but that the higher-dimensional strain tensor or Jacobian matrix could be preferable
in larger studies.

Following the inconsistent findings from uncorrected and FWE-corrected results for the
different measures, we now attempt to shed some light on two key aspects relating to FWE
correction: the permutation distribution of the maximum, which underlies the corrected
p-values; and the estimated smoothness of the statistical maps, which is related to the
underlying family-wise error rate, since smoother fields of statistics imply fewer effective
independent comparisons for which to correct. These two aspects are complementary in
a sense, because smoothness relates to the spatial map as a whole, while the maximum
distribution relates to the permutation-space, independent of the spatial location of voxels
(for simplicity, we ignore the step-down procedure here).

Considering first the permutation distribution of the image-wise maximal values from
which the corrected p-values derive, figure 4.23 shows various illustrations of the distri-
bution, and table 4.11 reports quantitative summary statistics. There is perhaps some
evidence that the relatively poorer FWE performance of the higher dimensional measures
might result from an increase in their maximum-distributions with respect to the maxima
of their original identity-permutations, however, this hypothesis is far from being conclu-
sively proven. For example, figure 4.23(c) provides the strongest support for this idea, with
the full Jacobian followed by the Hencky tensor having the highest permutation maxima
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Figure 4.21: Statistical power of the different TBM measures from table 4.4 illustrated
via voxel-matched comparison of their uncorrected (permutation-based) p-values. The
p-values are compared (to their group means) in separate groups of (a-b) ‘low’ and (e-f)
‘high’ dimensionality, with a group of eigenvalue based measures (c-d) used to bridge the
gap from low to high dimensional. The left column shows means, while the right shows
boxplots (with medians in their centres, as usual). Lower points correspond to lower (more
significant) p-values.
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Figure 4.22: Statistical power of the some measures from fig. 4.21 illustrated via voxel-
matched comparison of their uncorrected and FWE (step-down) corrected p-values.
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Figure 4.23: Illustrations of the 5000 values of the maximum statistic from each permut-
ation, for the different TBM measures. (a) shows the maxima sorted into ascending order.
The identity permutation produced the highest maximum values for each method, these
six values have been used to standardise the permutation distribution by (b) subtraction
and (c) division. The cumulative distribution function for the raw maxima is shown in
(d) with a uniform CDF in black.
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relative to their original maxima, and the Jacobian and trace being nearer the bottom.
However, we cannot argue that this form of normalisation is more appropriate than that in
figure 4.23(b), which shows a less easily interpretable ordering of the measures. Note that
the CDF, figure 4.23(d) shows essentially the same pattern as the sorted raw distributions
in fig. 4.23(a), with the top-to-bottom ordering of the measures in these two figures simply
mirroring each other; if the CDF is produced with the normalisations in figures 4.23(b) or
(c), it similarly reflects their orderings (graphs omitted for brevity).

In table 4.11, the most helpful summary statistic appears to be the kurtosis, in par-
ticular, the difference in kurtosis with and without the identity permutation is greatest
for the set of eigenvalues, and larger for the univariate measures than for H or J , which
is consistent with the relative FWE performance of the different methods illustrated in
figure 4.20(b). It makes intuitive sense that this kurtosis difference is closely related to
FWE performance, since it reflects the degree to which the original labelling’s observed
statistic is in the tails of the permutation distribution — exactly the basis of the FWE
p-values. Unfortunately though, the table seems to offer little in the way of extra insight.
One plausible a priori hypothesis was that the higher-dimensional measures would create
greater potential for variability and/or for outlying extrema in the statistics. However,
the standard deviation, skewness, and kurtosis all fail to show a consistent pattern with
increasing dimensionality, implying that the phenomenon is more complicated than this
simple hypothesis.

Measure Mean Mean\I Stdev Stdev\I Skew Skew\I Kurt Kurt\I

s.log det J 0.1097 0.1096 0.0282 0.0273 2.632 1.650 27.80 8.283
smth trace J 0.1113 0.1112 0.0303 0.0294 2.716 1.848 26.43 9.493

max e-val s.H 0.0596 0.0596 0.0147 0.0142 2.370 1.456 23.98 6.406
e-vals s.H 0.0645 0.0645 0.0158 0.0151 3.057 1.601 39.49 6.992

smth H 0.0729 0.0729 0.0197 0.0194 2.023 1.662 12.83 7.363
smth J 0.0837 0.0836 0.0204 0.0200 2.153 1.753 15.03 8.833

Table 4.11: Moment-based statistics (mean, standard deviation, skewness and kurtosis)
summarising the permutation distribution of the maximum statistic, with and without the
original identity-permutation, for the different TBM measures.

Measure FWHMx FWHMy FWHMz
3
√∏

i FWHMi

s.log det J 10.40 15.63 11.59 12.35
smth trace J 10.46 15.82 11.76 12.49

max e-val s.H 11.60 17.30 13.17 13.83
e-vals s.H 12.72 17.97 13.70 14.63

smth H 12.94 20.03 14.73 15.63
smth J 13.45 20.31 15.15 16.06

Table 4.12: Smoothness of TBM statistic images in terms of Gaussian Full-Width at
Half-Maximum, in mm, as in figure 4.7.

Approximate estimates of the smoothness of the data, in terms of the FWHM in mm of
a Gaussian kernel, are presented in table 4.12. A grossly over-simplified approach has been
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used to compute these values; they are estimated directly from the Cramér statistic images
themselves, using the 3dFWHMx program as used in section 4.4.3. A major improvement, left
for future work, would be to estimate the smoothness of the noise, without the anatomical
structure present in the statistic image itself, by using the method of Worsley [29] on the
full set of (multivariate) residuals. Along all axes, the smoothness increases monotonically
with increasing dimensionality of the TBM measures. This is consistent with subjective
visual inspection of the statistic images in figure 4.18, but does not help to explain the
poorer FWE performance of the higher-dimensional measures, since greater smoothness
should indicate a less severe multiple comparison problem, and hence less need for the
FWE correction to lower the uncorrected significance.

The failure of either smoothness or the maximum distribution to account for the dis-
crepancy between uncorrected/FDR and FWE performance of the multivariate measures
motivates further research. It will be important to see if this phenomenon is replicated
using other data-sets in the future; for now, note that we already found the same be-
haviour using a different method on the same data, in terms of the size of searchlight
kernels in section 4.4.3. We will now also investigate this effect on the six-month data,
though reproducibility here will admittedly be much less compelling than on an entirely
separate data-set.

TBM results for six-month data

Clinically, there is great interest in evaluating neurodegeneration over shorter intervals,
with obvious motivations such as earlier diagnosis or more rapid detection of drug treat-
ment effects. Methodologically, however, the length of baseline–follow-up interval should
be immaterial, and therefore results are presented only briefly here. The chief technical
question here is whether the six-month interval exhibits the same inconsistency between
uncorrected and FWE-corrected results in terms of comparing the different TBM methods.
Figure 4.24 presents the statistics, FDR, and FWE (step-down) corrected p-values, for a
selection of tensor-based measures having dimensionalities 1, 3, 6 and 9. Reassuringly, the
general pattern of findings is similar, which can be seen most clearly by comparison of the
unthresholded statistic images with those from figure 4.18.

As expected, significance is lower for all results — maximum intensity projections given
in figure 4.25 clearly show much smaller areas surviving pFWE < 0.05. Interestingly, the
six-month data seem to exhibit the same pattern of higher-dimensional measures being
favored by uncorrected significance but not FWE results, with the two highest dimensional
measures (H and J) having the least corrected supra-threshold voxels of the four measures
(counts are given in table 4.13). In fact, in terms of the areas surviving pFWE < 0.05, the
phenomenon is even more pronounced over the shorter interval. It seems that the higher-
dimensional data increase the number of voxels that appear prominent in the statistic
images while slightly decreasing the highest statistic values, and similarly, produce more
wide-spread but slightly reduced patterns of FWE significance. Over 12 months, enough
of the wide-spread areas meet pFWE < 0.05 to make the higher dimensional measures
appear comparable to or better than the scalar measures. With the smaller changes occur-
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Figure 4.24: Statistical results for tensor-based morphometry over the six-month interval.
Orientation and location of views matches figure 4.18, but here, the p-values are displayed
using the more lenient range 0.1–0.01 (again as absolute log p-values).



CHAPTER 4. MULTIVARIATE MORPHOMETRY 259

ring over six months, the general reduction of significance with increasing dimensionality
has a more noticeable detrimental impact on the number of voxels meeting the chosen
threshold.

Measure Uncorrected FDR corrected FWE corrected

s.log det J 43431 14514 1248*
e-vals s.H 70813 37410 1229

smth H 80098* 51769* 197
smth J 79491 50721 210

Table 4.13: Numbers of supra-threshold voxels at p < 0.05 for the three different levels of
correction, using the TBM measures evaluated over the six-month interval. The maximum
within each column is starred.
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Figure 4.25: Maximum intensity projections of significant findings for TBM over the six-
month interval. Details as for figure 4.19 (including the p-value range, which is consistent
with the 12-month data, unlike figure 4.24 above, which relaxed the thresholds).

Regarding detailed comparisons based on p-values for the six-month interval, figures
are not presented here, but the overall pattern of findings is similar to the longer time-
period. In particular, uncorrected p-value CDFs favour the full Jacobian, followed by the
Hencky tensor, the eigenvalues, and then the determinant, while FWE-corrected results
favour the eigenvalues, followed very closely by the determinant, with H and J performing
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considerably worse, and similarly to each other.
The estimated smoothness values for the statistic images show a similar pattern to the

corresponding results in table 4.12, but at lower levels of smoothness. The geometric mean
FWHM for the four methods considered here are 10.11, 10.93, 12.07 and 12.04 mm. As with
the 12-month data, the smoothness values are larger in the anterior-posterior direction (the
separate x, y, and z geometric means over the four methods are 9.60, 13.31, and 11.16 mm).
It seems unlikely (though possible) that the true smoothness of the underlying random
field for the six-month data should be lower than for the longer interval, which adds weight
to the suggestion above that this form of smoothness estimation directly from an image is
unreliable, and should be replaced with residual-based estimation [29].

Methodological subtleties

Figure 4.26 and table 4.14 compare six different TBM options for the combination of
smoothing and logarithmic transformation of the determinant of the Jacobian. Somewhat
surprisingly, there is no visually discernible difference between these methods in terms
of either the Cramér statistic maps or (absolute log) p-value maps, which are therefore
not shown. Similarly, the CDFs for the uncorrected p-values are virtually identical. The
voxel-matched comparison of uncorrected p-values given in figure 4.26(c) slightly favours
the smoothed log determinant, followed by its exponentiated version. The simplest option,
the smoothed determinant, is slightly worse than the average of the six measures. In terms
of FWE corrected p-values, the CDF in figure 4.26(b) shows a changing pattern over the
different thresholds, with the smoothed log determinant most powerful at significance
levels below about 0.002, but with the simpler smoothed determinant out-performing it
at more lenient thresholds. The exponentiated smoothed log determinant that was among
the best methods in terms of uncorrected p-values is one of the two worst methods based
on FWE performance. Voxel-matched comparison of FWE p-values shows the smoothed
log determinant close to the average of the methods, while the untransformed smoothed
determinant and the theoretically less-appealing log smoothed determinant appear to be
superior. These results are somewhat counterintuitive, though note that the differences
are very small (the y-scale on the p-value comparisons is considerably smaller than for
other similar comparisons presented in this chapter. Given the theoretical appeal of the
smoothed log determinant, and its popularity in the literature, there is insufficient evidence
at this stage to suggest that it should be replaced by any of the other measures.

Equivalent smoothing options for the multivariate strain tensor and its eigenvalues are
presented in figure 4.29 and table 4.15. It is immediately clear from both the uncorrected
and FWE-corrected results that the eigenvalues are more powerful when derived from a
smoothed tensor, than when smoothed directly themselves. Figure 4.28 presents maps
of the statistic values and p-values, which reinforce this finding, and additionally suggest
that the eigenvalues of the smoothed tensor result in a sharper, more anatomically refined
set of results. Smoothness estimates of the Cramér statistic maps using 3dFWHMx support
this, with geometric FWHM values of 14.63 and 16.12 mm respectively. It is interesting in
itself that the differences should be so dramatic regarding the order of the smoothing- and
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Figure 4.26: Comparison of the smoothing/preprocessing options for the scalar determi-
nant TBM measure, in terms of (above) p-value CDFs, and (below) matched voxel p-value
comparisons; for (left) uncorrected and (right) FWE-corrected p-values.

Measure Uncorrected FDR corrected FWE corrected

smth det J 79161 53931 10048*
log smth det J 79157 53888 9929
smth log det J 80536* 55586* 9868

exp smth log det J 80407 55497 9591
det smth J 79223 53757 9384

log det smth J 78874 53705 9489

Table 4.14: Numbers of supra-threshold voxels at p < 0.05 for the three different levels of
correction, for the different options of preprocessing det (J). The maximum within each
column is starred.
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eigenvalue-operators, in contrast to the relatively minor differences found for interchang-
ing the order of smoothing and scalar logarithm above (or even smoothing and matrix
logarithm for the tensor measures shown later in figure 4.29). It is understandable that
the determinant showed small differences, because the scalar logarithm operation is a sim-
ple monotonic one. However, the matrix logarithm might have been expected to make a
greater difference.
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Figure 4.27: Comparison of the smoothing/preprocessing options for the multivariate
TBM measures, in terms of p-value CDFs, for (left) uncorrected and (right) FWE-
corrected p-values.

Measure Uncorrected FDR corrected FWE corrected

smth U 135271 122589 13192
logm smth U 135606 123160 14058
smth logm U 136303* 123816* 13788

expm smth logm U 135754 123379 14628

eig smth H 134333 118735 20731*
smth eig H 111648 84696 4568

Table 4.15: Numbers of supra-threshold voxels at p < 0.05 for the three different levels
of correction. For the multivariate strain tensor measures, including eigenvalues. The
maximum within each column is starred.

Figure 4.29 focusses on the full strain tensor. With uncorrected p-values, the compar-
ison favours the smoothed Hencky tensor, which has the greatest theoretical support; the
simpler smoothed U (recall this is equivalent to testing the Biot strain tensor) performs the
worst. For the FWE-corrected results, the Biot tensor remains poor, but the Hencky ten-
sor becomes almost as bad, with the best measure now being the exponentiated smoothed
log-transformed tensor. While further work is clearly required — not least to thoroughly
search for any potentially misleading aspects of comparing FWE p-values instead of un-
corrected ones — this finding is interesting in relation to results reported by Whitcher
et al. [16]. With unsmoothed DTI data,35 Whitcher et al. found that direct analysis of the

35As an aside, it would be interesting to investigate whether smoothing, perhaps in the log-Euclidean
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Figure 4.28: Statistical results for tensor-based morphometry, using the eigenvalues of
the Hencky strain tensor, with two different smoothing options: left, eigenvalues of the
smoothed H; right, smoothed eigenvalues of H. Top-to-bottom: Cramér statistic, FDR
p-values, and FWE p-values. P-values are displayed in the range 0.05–0.0005 as absolute
log p-values (brighter is more significant).
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tensors preferable to log-Euclidean analysis; however, here, with the need for a smoothing
step, it seems that log-Euclidean smoothing followed by matrix exponentiation improves
upon results from direct analysis. However, finally for this particular study, we remark
that the correction-processing interaction question is of the greatest importance, since
uncorrected (and FDR-corrected) p-values in table 4.15 actually show the log-Euclidean
analysis to be the most powerful approach, by a small margin.
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Figure 4.29: Comparison of the smoothing/preprocessing options for the multivariate
strain tensor measures, including eigenvalues, in terms of matched voxel p-value compar-
isons; for (left) uncorrected and (right) FWE-corrected p-values.

In the previous paragraph we have spoken loosely of log-Euclidean analysis. As dis-
cussed in the theory section of this chapter, there is a subtle difference between analysis
of the unique elements of the Hencky tensor logm (U), and true log-Euclidean analysis of
U , such that

‖vechLE (logm (U))‖ = ‖logm (U)‖F .

We simultaneously address the closely related question of whether the large deformation
tensors derived from U =

(
(I + K)T (I + K)

)1/2 are superior to the small deformation or
infinitesimal strain tensor F = (KT + K)/2 (analogous to the comparison of log |I + K|
to tr (K)).

Figure 4.30 compares MIPs for pFWE < 0.05 for Hencky tensor, the strict log-
Euclidean version of U , the simple smoothed U , and the infinitesimal strain tensor F .
Figure 4.31 quantifies the performance of the same TBM measures in terms of CDFs and
voxel-wise comparisons, for uncorrected and for FWE-corrected p-values. The MIPs are
almost identical, but a slight increase in significance is visible for the true log-Euclidean
analysis. The p-value comparisons clearly favour the log-Euclidean approach; interest-
ingly, this is one of the first such comparisons in this chapter for which the uncorrected
and FWE-corrected results are in agreement. The CDFs and the voxel-matched com-
parisons are also consistent in favouring the log-Euclidean method. The other methods

framework, could help to improve sensitivity in multivariate DTI analyses, as it is known to be an important
issue in scalar DTI-based studies [95].
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Figure 4.30: Maximum intensity projections for different symmetric positive definite strain
tensors. Large deformation tensors are based on U =

(
JT J

)1/2, while the infinitesimal
strain tensor is F = KT +K

2 . The distinction between ‘logm’ and ‘logeuc’ is that the latter
scales the off-diagonal elements in the vectorisation so that the norm is preserved (it is
vechLE (H) instead of vech (H).

are not quite so clearly ordered, and, surprisingly, it appears that the infinitesimal strain
tensor has produced very similar results to the finite strain Hencky tensor. It would be
useful, in future work, to compare these tensors over a longitudinal interval longer than
12 months, and/or to compare them in a cross-sectional setting, to verify whether larger
deformations confer greater benefit to the finite strain tensor.

Now we shift emphasis from the choice of TBM measure to more statistical issues.
Firstly, we compare the Cramér statistic, which is suitable only for the simple two-group
test performed here, with the more general Wilks’ Λ statistic, which could be used for
general MANCOVA designs. Figure 4.32 shows the statistic images, and the FDR and
FWE p-values for two of the lower dimensional measures from table 4.4, while figure 4.33
shows the equivalent information for the two main higher dimensional options.

For the univariate determinant, the results are very similar, with limited evidence
of greater power for the Cramér test. With the three eigenvalues, the Cramér statistic
appears slightly superior in terms of FDR p-values, but quite dramatically better for
FWE results. The full strain tensor and Jacobian matrix show very similar differences,
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Figure 4.31: Comparison of tests using various strain tensors, using (left) uncorrected and
(right) FWE-corrected p-values, in terms of (above) cumulative distribution functions,
and (below) direct voxel-matched comparisons.

but with the nine-dimensional Jacobian leading to a more noticeable difference even in the
FDR results. Note the important fact that Wilks’ Λ exhibits (to an even greater extent)
the phenomenon found earlier with the Cramér statistic: higher dimensional measures
appear better in terms of FDR p-values, but indifferent or worse in terms of FWE; this is
particularly noticeable in figure 4.32.

Figure 4.34 shows p-value CDFs for both statistics on all four TBM measures con-
sidered here. The Cramér statistic is universally superior when considering uncorrected
p-values, and in terms of the FWE CDF, it is more powerful for all but the very strictest
significance levels, below about 0.0004. Matched p-value comparisons (not shown) also
favoured the Cramér test to Wilks’ Λ for all four TBM measures, in terms of either un-
corrected or FWE-corrected p-values.

Figure 4.35 illustrates the advantage of the step-down procedure for deriving FWE-
corrected p-values from the distribution of the maximum-statistic. As expected, the gen-
eral effect is an increase in power, with greater numbers of voxels being found significant
at all levels from about 0.0005 to 0.2 (at which point the step-down procedure was ter-
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Figure 4.32: Statistical results for tensor-based morphometry, using the log determinant
and the eigenvalues of the Hencky tensor, testing with either Wilks’ Λ or the Cramér
statistic. The Wilks-based statistic shown here is actually 1/Λ − 1, which is zero for no
effect, and larger for greater effects, as for the Cramér statistic. P-values are displayed in
the range 0.05–0.0005 as absolute log p-values (brighter is more significant).
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Figure 4.33: Statistical results for tensor-based morphometry, using the Hencky strain
tensor and the full Jacobian matrix, testing with either Wilks’ Λ or the Cramér statistic.
The Wilks-based statistic shown here is actually 1/Λ− 1, which is zero for no effect, and
larger for greater effects, as for the Cramér statistic. P-values are displayed in the range
0.05–0.0005 as absolute log p-values (brighter is more significant).
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Figure 4.34: Comparison of tests using Wilks’ Λ and Cramér statistics, in terms of (left)
uncorrected and (right) FWE-corrected p-value cumulative distribution functions.
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Figure 4.35: FWE-correction with and without the step-down procedure, for the smoothed
log determinant. The higher values in (b) indicate superior significance for the step-down
FWE p-values.

minated due to the fact that p-values over this threshold were considered uninteresting).
For the very smallest p-values, between the minimal value of 1/5000 and about 5/5000,
the step-down procedure reduces power. This would not occur with a true step-down al-
gorithm, but is a consequence of our use of the Belmonte - Yurgelun-Todd approximation
[92], which keeps track only of a certain number (12 here) of secondary-maxima to take
the place of voxels removed during the step-down process, hence forcing a reduction in the
effective number of permutations after all of the reserve voxels for a particular permutation
have been removed. In this particular case, the first permutation to become exhausted
occurs with the 73rd most significant voxel, which has the lowest possible p-value of 0.0002.
The second exhausted permutation occurs with the 78th voxel, at the new lowest possible
value of 1/4999. By the time the FWE p-value rises above 0.05, which occurred for the
9898th most significant voxel, a total of 550 permutations had been removed. The 14113th

most significant voxel was the last to be considered below the arbitrary 0.2 cut-off, at
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which point 4380 of the original 5000 permutations remained. The loss of over 10% of
the permutations by the typical 5% alpha-level is slightly worrying, and perhaps suggests
that for optimal results, either the number of reserves should be increased from 12, or
the original total number of permutations should be increased from 5000 to maintain a
reasonable number throughout the step-down procedure. However, the results here are
more than adequate, as evidenced by the favourable comparisons of the step-down FWE
p-values to the basic ones, in both (a) and (b) of figure 4.35.

Visualisation of orientational measures

Statistical results for generalised TBM on the set of orientational measurements discussed
in section 4.2.9 are presented in the following subsection. First, illustrations of the mea-
sures for a single (quite severe) AD patient are displayed for the purpose of aiding visual-
isation and interpretation of the later findings.

Figure 4.36: (a) Anatomical image, and (b) registered RGB colour overlay denoting di-
rection (red — left/right , green — anterior/posterior, blue — superior/inferior), and
magnitude (brightness) of curl. Anatomical-left is display-right. The cross-hairs are lo-
cated at (33.5, -29.5, 2.5)mm MNI.

Figure 4.36 illustrates the orientation of the curl vector over the brain of a particular
AD subject. For comparison, figure 4.37 shows the orientation of the displacement vector
field. It appears that curl is a much noisier measure, as might be expected given that
the processes of differentiation and of subtraction tend to amplify errors. However, it is
still possible that information accumulated over multiple subjects could lead to significant
levels of signal-to-noise; we later present statistic images and also compare group average
images for curl, and for the other orientation measures illustrated next.

Figure 4.38 shows the (scalar) GA, for the same subject as the earlier figures. Note that
in contrast to Diffusion Tensor studies, we would not necessarily expect clear differences
between grey and white matter in terms of anisotropy of atrophy. Ideally, we would
however see low GA in the CSF, since the fluid must in reality behave isotropically. It
will be of interest to see if the tissue/fluid distinction is more pronounced in the groupwise
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Figure 4.37: (a) Anatomical image with streamlines for displacement field, (b) correspond-
ing RGB colour overlay (see fig.4.36). Anatomical-left is display-right.

Figure 4.38: (a) Anatomical image with streamlines for displacement field, (b) Greyscale
magnitude of log-Euclidean geodesic anisotropy. Anatomical-left is display-right.

results later.
Figure 4.40 shows separate x, y and z components for the principal direction, of the

original (b) and smoothed (c) Hencky strain tensor. The components of the displacement
field are shown for comparison. It is immediately obvious that the principal strain vec-
tors are extremely noisy, compared to the displacement field shown in (a). Smoothing
the tensor helps dramatically, and taking the absolute values further aids visualisation.
Figure 4.39 shows an RGB overlay, which implicitly considers the absolute values.

In section 4.2.9 we suggested to analyse the vector obtained by scaling the principal
direction by the principal strain and then taking the absolute values of the elements.
Figure 4.41 illustrates the proposed measure in the same way as figure 4.40. It is surprising
just how much more anatomically reasonable the results look, particularly when derived
from the smoothed tensor (c). Note that the meaningful non-unit magnitude also justifies
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Figure 4.39: Illustration of the direction of the eigenvector of the Hencky tensor corre-
sponding to the largest eigenvalue, (a) Subject T1, overlaid with streamlines, (b) RGB
colour overlay and streamlines. Anatomical-left is display-right.

conventional smoothing of the three components when derived from an unsmoothed tensor,
and this is shown in (d). Interestingly, smoothing the tensor seems to preserve more
anatomical detail than smoothing the components, without an apparent trade-off in signal-
to-noise. Figure 4.42 presents the view of this measurement corresponding to figure 4.39.
Group-wise averages and statistical results for these two options should help to distinguish
their relative merits.

Results for orientational measures

This section presents statistical results for the types of data discussed in section 4.2.9
and illustrated in the previous subsection. Because these orientational measurements are
harder to interpret than simpler quantities related to displacement or volume change, we
additionally present visualisations of the group-wise arithmetic means for each measure,
similar to the single-subject visualisations given above. Results are shown for the control
and patient averages superimposed on the single overall average T1 image.

First, to aid comparison, the (8 mm FWHM smoothed) displacement field averages
are visualised in figure 4.43, at the same location and in the same way as the subsequent
orientational results. The magnitude is generally larger for the patients, as expected, and
is largest around the ventricles and the cortex, which is biologically plausible, but could
also result from the limited T1-weighted intensity information present in bulk white matter
away from tissue boundaries.

Figure 4.44 shows the magnitude and orientation of the group-average curl of the
smoothed displacement field. Note that curl is a linear operator, so the group-wise averages
of the curl of each subject’s displacement field are the same as the curl of the group-wise
average displacement fields shown in figure 4.43. The results are much harder to interpret,
partly because the curl tends to have larger magnitude where the displacement magnitude
is lower, suggesting that the displacement field has the potential to become more rotational
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Figure 4.40: (a) Displacement field x, y and z components, (b) Principal strain direction
components, (c) Principal direction from smoothed Hencky tensor, (d) Absolute values of
images in (c). Anatomical-left is display-left.

when it is less constrained by the regularisation term; this also might indicate that the
curl is more heavily (perhaps even predominantly) influenced by noise.

The geodesic anisotropy, visualised in figure 4.45 shows a more dramatic difference
between control and patient means, with clear effects present in the hippocampus and
temporal lobe. However, the finding of anisotropy differences within the ventricles is of
course biologically implausible. This should not be surprising though, since the non-
rigid registration software [55] was blind to the different tissue types, employing the same
regularisation (based on logarithmic strains) everywhere in the field of view.

Figures 4.46 and 4.47 compare two of the options suggested in 4.2.9, based on the
principal strain direction. Both measures show patient-control differences, though they
are more pronounced and anatomically more clearly defined for the eigenvalue-scaled eigen-
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Figure 4.41: (a) Displacement field x, y and z components, (b) Absolute values of principal
eigenvalue-scaled strain components, (c) As (b) but from smoothed Hencky tensor, (d)
Smoothed components from (b). Anatomical-left is display-left.

vector shown in figure 4.47. The most easily interpretable difference (visible in the coronal
view of the patient-mean, for both measures, but more so for the scaled one) is the ver-
tical (blue) change in direction around the insula resulting from the opening up of the
CSF space, characteristic of AD. Note that we have only visualised the results of the ab-
solute scaled components of the principal vector from the smoothed Hencky-tensor, as in
fig. 4.41(c), and not the results from smoothing the absolute scaled components from the
unsmoothed tensor, as shown in fig. 4.41(d); the group-wise average results for the latter
are very similar, but slightly less clear than those for the former.

Turning now to the statistical results, figure 4.48 shows images of the test statistic
(Cramér or Watson) and thresholded maps of significance for five different orientational
measures. Figure 4.49 shows corresponding maximum-intensity projections for the same
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Figure 4.42: Illustration of the eigenvector of the Hencky tensor corresponding to the
largest eigenvalue scaled by this eigenvalue, (a) Subject T1, overlaid with streamlines —
same as fig. 4.39(a), (b) RGB colour overlay. Anatomical-left is display-right.

five orientational measures, with the standard log-determinant MIP provided for compar-
ison.

One striking aspect from the MIPs is the greater roughness of the results from the
unscaled principal eigenvector direction in fig. 4.49(c). This is understandable given the
greater roughness apparent in this measure both in an individual subject (fig. 4.39) and
in the group-wise averages (fig. 4.46). Corresponding results from (mis-)using the Cramér
test on these directions (not shown) instead of the Watson test are rougher still, generally
less significant, and anatomically harder to interpret. It appears that although this eigen-
vector comes from a smoothed strain tensor — just like the curl and GA which result in
the smoother MIPs shown in figures 4.49(a) and 4.49(b) — the tensor smoothing is inef-
fective at spatially regularising its principal direction. A procedure for smoothing the unit
vectors themselves, accounting for their manifold structure (i.e. not simply conventional
smoothing followed by renormalisation) could be a useful topic for further research. Work
on regularisation of diffusion direction maps [98] might be helpful in this respect.

The scaled eigenvector results shown in figures 4.49 (d) and (e) are much smoother; in
particular, the former implies that blurring the tensor has a more pronounced smoothing
effect on the principal eigenvalue than on its corresponding direction. Comparison of these
two MIPs and of the results in rows 4 and 5 of figure 4.48 indicates a clear preference for the
measure being derived from the smoothed tensor instead of smoothing the measure itself.
Both scaled eigenvector measures yield results that are broadly similar to the volumetric
log-determinant. This is unsurprising for several reasons, firstly, recall from equation 4.5
that the log-determinant is equal to tr (H) (in the absence of different smoothing or other
preprocessing options) which is heavily influenced by the magnitude of the largest absolute
eigenvalue of H that has been employed to scale the eigenvector direction. Also, taking the
absolute values of the resultant scaled vector (with the intention of making it suitable for
the Cramér test) further reduces the importance of the orientational aspect. In summary,
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(a) Vector streamlines

(b) RGB overlay

Figure 4.43: (a) Anatomical average image with streamlines for group-wise averages of dis-
placement vector fields, (b) corresponding RGB colour overlay denoting direction (red —
left/right, green — anterior/posterior, blue — superior/inferior), and magnitude (bright-
ness) of vectors.

Figure 4.44: RGB colour overlay denoting direction and magnitude of group-wise averages
of the curl of the displacement vector fields. See fig. 4.43(b) for key to colour-code.
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Figure 4.45: Greyscale magnitude visualisation of group-wise averages for geodesic
anisotropy, derived from the smoothed Hencky tensor.

Figure 4.46: The group-wise mean direction from the eigenvector of the Hencky tensor
corresponding to the largest eigenvalue, illustrated with an RGB colour overlay as in
fig. 4.43(b).

Figure 4.47: RGB overlay of the group-wise means from the eigenvector of the Hencky
tensor corresponding to the largest eigenvalue scaled by this eigenvalue. See fig. 4.43(b)
for key to colour-code.
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Figure 4.48: Statistical results for orientational measures. Rows, from top to bottom, are
for: curl, geodesic anisotropy, unscaled principal eigenvector, eigenvalue-scaled principal
eigenvector from smoothed Hencky tensor, and smoothed scaled principal eigenvector from
unsmoothed H. Columns, from left to right, show: test statistic; FDR p-values; FWE p-
values. P-values are displayed in the range 0.05–0.0005 as absolute log10 p-values (brighter
is more significant). Anatomical-left is display-left.
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Figure 4.49: Maximum-intensity projections of absolute log10 FWE p-values, thresholded
at pFWE < 0.05, for the same orientational measures shown in figure 4.48 with the
addition of the log-transformed Jacobian determinant to provide context. Anatomical-left
is display-left.
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introducing the scaling has brought greater spatial regularity and statistical sensitivity,
but at the expense of the pure orientational interpretation and of some potential for the
measure to complement the conventional volumetric one.

Returning briefly to the unscaled eigenvector direction, to address directly the question
of complementarity, the results are in fact surprisingly disappointing; there are virtually
no significant voxels from the Watson test of the eigenvector that are not also present
in the Cramér test of the log-determinant. The removal of numerous voxels from the
volumetric results might nevertheless be helpful in some circumstances due to the more
precise interpretation afforded.

Figure 4.50: Results from the orientational measures of GA and curl overlaid on expan-
sion/contraction coloured hot/cold (see also figure 4.54). All results are absolute log10
p-values for pFWE < 0.05.

The most exciting results from the orientational measures are those for the geodesic
anisotropy and the curl. Figure 4.50 compares these to a volumetric measure (actually a
similar, but more powerful strain measure). Unexpectedly, the GA is found to be more
powerful in some regions than the strain-based measure,36 adding a number of voxels in
biologically plausible regions such as the insula and extending the regions of significance
in the temporal lobes. The results for curl show relatively fewer additional significant
voxels, but, interestingly, those which are added appear to be located with a high level
of anatomically reasonable precision. As shown in the sagittal view and highlighted in
the enlarged coronal image, significant vorticity has been found quite precisely in the gray
matter of the hippocampal head. Intriguingly, reports of visually observed rotation of
atrophying hippocampi have been made by clinicians at the Dementia Research Centre
(private communication) which might be connected with the novel findings shown here,
but further investigation would be needed to support stronger claims of association.

Figure 4.51 further investigates the extent to which different analyses might be com-
plementary, focussing on the three measures proposed by Chung et al. [50], and expanded
upon in section 4.2: the three components of the displacement field; its (scalar) diver-
gence or volume dilatation; and its curl, equal to the three distinct elements of the in-

36Note though that the p-value CDF plots shown later (fig. 4.55) indicate that the full Hencky tensor
(or its set of eigenvalues) are more powerful overall than the geodesic anisotropy.
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Figure 4.51: Venn diagram illustration of significant voxels (pFWE < 0.05) for the three
measures proposed by Chung et al. [50]. (Anatomical-left is display-right.)

finitesimal rotation tensor. This figure is particularly noteworthy because Chung et al.
themselves showed results only for displacement and dilatation, neglecting to present or
discuss findings for curl. While the displacement field yields larger regions of significance,
their anatomical interpretability is questionable, both in terms of the regions found, and,
a priori, in the sense that they are expected to result from repositioning following volu-
metric changes. Vorticity suffers from the same difficulty that it may be driven largely by
volumetric changes and associations with the regularisation method of the registration,
but, at least in this case, the regions found are visually appealing. It is interesting to see
how little spatial overlap is present between all three measures (cyan); this is an interest-
ing practical analogue to the theoretical arguments in [50] that the measures should be
statistically independent in terms of their random fields. Of course, statistical indepen-
dence, a priori, is a distinct issue from spatial ‘independence’ of results, a posteriori; so it
is not surprising that there are relatively large areas of overlap between two of the three
measures (shown in yellow in figure 4.51).

The emphasis here is on the potential for orientational measures to find different pat-
terns of significance to strain-based measures, in the hope of either locating additional
areas, or of focussing the interpretation of common areas; the overall statistical power of
the orientational measures is of less interest. Nevertheless, for completeness, figure 4.52
compares the observed sensitivities of the different orientational measures. The results
serve mainly to reinforce earlier conclusions — that the geodesic anisotropy is the most
sensitive of these measures, and that the scaled eigenvector is more powerful when the
smoothing is performed on the tensor rather than the result.

Cross-methodological comparisons

We have thus far considered DBM and a wide range of TBM measures largely in isolation.
In the comparison of orientational measures, figure 4.51 illustrated the complementary
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Figure 4.52: Statistical power of the different orientational measures illustrated via cumu-
lative distribution functions of their uncorrected (permutation-based) p-values. The curve
for log-determinant (which is similar to those for dilatation or the three components of
the displacement) is shown for comparison.

nature of the curl and divergence of the displacement field with respect to the displace-
ment vector field components. The purpose of this section is to briefly perform similar
comparisons across the range of morphometry measures investigated here.

Figure 4.53 follows the same approach as figure 4.51, though the conclusions drawn
from it are quite different. Whereas the orientational curl, and volumetric dilatation
naturally contain different (and hence potentially complementary) information to the dis-
placement, in this figure all three measures are quite closely related to strain. There
are barely any voxels which are significant only for an individual measure; almost all of
the voxels that are significant for the scalar measure are also present in both the higher
dimensional measures, leading to a large core of cyan voxels. Furthermore, most of the
voxels added to the classical measure by either of the generalised TBM measures are in
fact common to both multivariate options, represented by the yellow areas.

An apparent disadvantage with multivariate generalised TBM measures, is that they
lose the straightforward ability to interpret TBM findings in terms of expansion or con-
traction. However, we argue (novelly) here that there is a simple yet mathematically
consistent way of providing this interpretation for several of the multivariate measures.
First, we emphasise that this is not always straightforward: for example, it would not be
reasonable to analyse the smoothed Biot tensor and then colour-code the results based on
whether the smoothed determinant of J was above or below unity; the reason being that
of the four operations involved, only the smoothing operation is linear, the inner-product
and matrix square-root involved in U =

(
JT J

)1/2 and the determinant operation are all
nonlinear, and hence may not be simply interchanged with each other or with smooth-
ing. In the theory section of this chapter, equation 4.5 shows that log |J | = tr (logm (U)),
which is also clearly equal to the sum of the eigenvalues of H = logm (U). Therefore, if the
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Figure 4.53: Venn diagram illustration of significant voxels (pFWE < 0.05) for the log-
determinant, Log-Euclidean analysis of U , and the full Jacobian tensor. (Anatomical-left
is display-right.)

Figure 4.54: Significant voxels (0.0005 < pFWE < 0.05, on a log-scale) for Log-Euclidean
analysis of U , colour-coded by the all-subject average map of tr (logm (U)).
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smoothing is applied to the Hencky tensor, one may linearly derive a quantity meaningfully
related to log |J | (though note it will not be the same as the smoothed log-determinant)
whose sign may then be used to colour-code analyses based linearly on H. Furthermore,
the linear connection of the trace with the eigenvalues allows this powerful measure to be
colour-coded by the sign of the sum of the eigenvalues. Equation 4.9 even shows that the
geodesic anisotropy could be colour-coded in the same way, though this would not be easy
to interpret. Figure 4.54 shows an example using vechLE (logm (U)), which informatively
distinguishes between expansion of the CSF spaces, contraction in the temporal lobes, and
regions of presumably more complicated anisotropic strain sandwiched between expansion
and contraction.
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Figure 4.55: Comparison of deformation-based morphometry, tensor-based morphometry
using log-determinant, and the geodesic anisotropy and eigenvalues of the Hencky strain
tensor, using the Cramér test. P-value CDFs, and (below) matched voxel p-value com-
parisons; for (left) uncorrected and (right) FWE-corrected p-values.

Due to the similarity of the (non-orientational) Jacobian-derived measures, the key
question becomes which of them is most powerful. Figure 4.55 presents CDFs and voxel-
matched comparisons of uncorrected and FWE-corrected p-values. The superiority of the
full Jacobian and the eigenvalues respectively for uncorrected and FWE-corrected p-values,
as well as this discrepancy, has already been discussed; here, we focus on the relative merits
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Figure 4.56: Comparison of deformation-based morphometry, tensor-based morphometry
using log-determinant, and the geodesic anisotropy and eigenvalues of the Hencky strain
tensor, using the Cramér test. P-values are displayed in the range 0.05–0.0005 as abso-
lute log10 p-values (brighter is more significant). The final row shows the template, and
Boolean unions overlaid with intersections (cyan) of the significant FDR and FWE results
of the first four rows.
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of DBM and the orientational GA among the other TBM measures. Uncorrected CDFs
and voxel-matched comparisons show the GA to be slightly inferior to the eigenvalues,
but clearly better than the log-determinant (the only measure here which shares its scalar
dimensionality). The displacement field components perform marginally better than the
log-determinant. Considering the corrected p-value CDFs, the displacement field moves up
to be the second most powerful measure considered, and is closer to the eigenvalues than
the tensors are to it. The geodesic anisotropy performs very similarly to H and J at strict
thresholds, but is less powerful above about 0.002, it is below the determinant for levels
stricter than about 0.0007 (as are the two tensors). For the voxel-matched comparison of
pFWE, the displacement field performs worse than average, and the GA performs worst
of all. However, this is more an indication of a problem with this kind of comparison than
it is of disadvantages for these measures. The voxels considered are those for which the
averages of all six measures’ p-values were below 0.1 (and are sorted and binned based on
this average). However, here, the displacement field and GA show quite different patterns
to the four main TBM measures, and since there are twice as many of the latter, they
dominate in the mean. If the p-value comparison was sorted by the displacement field,
then it would probably appear to be one of the best measures. We nevertheless include this
imperfect but useful summary, because it accounts for some spatial information missing
from the CDFs (which are presented in isolation in [23]), since the latter wholly ignore
the locations of the p-values, which are sorted independently for each measure.

Finally, figure 4.56 summarises the statistical findings for the cross-methodological
comparisons considered here. The large differences between the union and overlaid in-
tersection in the bottom row of the figure suggests once again that the alternative ap-
proaches may complement each other. In particular the displacement field has quite a
different character (including, apparently, a difference in underlying smoothness, though
it was smoothed with the same 8 mm FWHM Gaussian kernel) to the TBM measures,
suggesting that it could usefully complement any analyses based on one or more of them.
Interestingly, it appears that some, but not all, of the additional significance found for
the eigenvalues compared to the log-determinant (equivalent to the sum of the eigenval-
ues in the absence of smoothing) can be explained as voxels with significant anisotropy.
Since the eigenvalues have quite modest dimensionality compared with the Hencky or
Jacobian tensors, and can be used to derive the GA and an optional measure of volumet-
ric expansion or contraction, they seem to be the most appealing of the TBM measures
considered in this chapter, and hence the strongest candidate for possible replacement of
the standard log-determinant. The displacement field and its curl find different patterns
of change, and hence are potentially important partners of generalised TBM using the
Hencky eigenvalues.

4.5 Further work

We have mentioned several times through this chapter the need to evaluate the same
methods again on different data-sets. However, now that the software and performance
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quantitation techniques have been developed, this task could be performed as part of
other work with a more applied nature. For example, clinical colleagues interested in the
potentially greater power of generalised cf. standard TBM, might evaluate some of the
different multivariate measures within a non-methodologically focussed paper.

One area where further technical development could be of great practical benefit to
clinicians is in the realm of visualisation techniques. We attempted in section 4.4.4 to
illustrate the orientational measures whose interpretation is particularly challenging, but
there is undoubtedly room for improvement. We briefly mention the work of Wünsche
et al. [53], who explore the use of a strain tensor (G in section 4.2.5) for the study of
myocardial strain in a finite element model of the heart. Their paper presents numerous
approaches for computer visualisation, including strain ellipsoids and ‘hyperstreamlines’,
which could usefully be employed for visualising TBM data and results.

4.5.1 Diffeomorphic mappings

A particularly important topic for future research would be to investigate the potential
for statistical analysis of diffeomorphisms (the theory of which was introduced briefly in
section 1.5.1). The most accessible variant of these methods are those which produce dif-
feomorphic transformations via exponentiation or integration of stationary velocity vector
fields [99]. This corresponds to analysing one-parameter subgroups of diffeomorphisms
in their tangent space at the identity, and could be achieved relatively easily in practice
thanks to the availability (in SPM5) of Ashburner’s fast DARTEL algorithm [37].

There is scope for both high-dimensional multivariate analysis of complete velocity
fields and for local voxel-wise analysis of the vectors, or measures derived from them, in
place of the products of the resultant displacement vector fields analysed here. Arsigny
et al. [100] provide algorithms for computing the logarithmic map (from a deformation to
the velocity field or tangent space) as well as the exponential map (which corresponds to
integrating the velocity field); these could potentially be used to derive diffeomorphism-
group representations for analysis from conventionally computed deformation fields.

As mentioned in [37], momentum maps from the more mathematically sophisticated
diffeomorphic metric mapping framework [101, 102, 103] could provide a spatially sparser
representation of large deformations, potentially better suited to statistical analysis (par-
ticularly classification approaches [104]). These methods allow more general diffeomor-
phisms (not contained in one-parameter subgroups) that correspond to integrating a time-
varying velocity field, though Hernandez et al. [99] found only a very minor improvement
in accuracy from this significantly more computationally-demanding setting.

4.5.2 Alternative statistical methods

A potentially powerful extension would be the consideration of cluster extent within the
multivariate morphometry framework; for example using the permutation distribution of
cluster size [93] or mass [105, 106] to provide FWE corrected inferences that favour larger
connected components of morphometric change. Alternatively, voxel intensity and cluster
extent information could be fused using the combining function approach of Hayasaka and
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Nichols [107]. For larger multivariate observations (e.g. the full Jacobian matrix) at high
resolutions, these techniques will be very computationally demanding; particularly since
the need to determine the size of connected components complicates the use of memory-
efficient blocking strategies (appendix D.3), because the connected components could cross
over the predefined block boundaries.

The searchlight, smoothing, and Bayesian methods

The searchlight technique [1] investigated here is one attempt to improve upon the short-
comings of conventional spatial smoothing. Its principal advance is that by replacing
simple weighted-averaging by multivariate analysis of the data, it should have the po-
tential to detect more complex high-resolution patterns of effect. However, it has not
performed particularly well on our morphometric data, in comparison to simple Gaussian
smoothing. The most notable limitations of the searchlight method, with particular rele-
vance to inter-subject studies that are almost universally performed for structural imaging,
are that it remains stationary, isotropic, and purely distance-based.

Recent Bayesian formulations of statistical parametric mapping techniques [108, 109,
110] have overcome some of the limitations with smoothing in classical SPM analyses,
and may also represent an improvement over the searchlight method. In particular, by
including a model of the signal’s spatial regularity (in subtle distinction with the standard
attempt to smooth away the noise) it becomes possible to adaptively learn the smoothness
from the data itself [111, 112], to separately model signal and noise process regularity
[113], and even to estimate a non-stationary local smoothness [114, 115]. Perhaps most
impressively, recent work by Harrison et al. [116, 117, 118] allows Bayesian estimation of
non-stationary anisotropic smoothness, similar to early work on anisotropic filtering [119],
but replacing arbitrary preprocessing decisions with principled Bayesian model comparison
(e.g. using the Bayesian evidence framework to infer that a particular fMRI study is better
modelled with non-stationary processes [117]). This exciting work has yet to be applied to
inter-subject analyses or structural data, to the best of our knowledge, but it seems likely
that it could contribute dramatically to morphometry.

Novel measures and tests

We now propose the use of some new TBM options, which have not, to the best of our
knowledge, been mentioned elsewhere.

Note that the fractional anisotropy can be rewritten as the magnitude (Frobenius
norm) of a normalised ‘deviatoric tensor’ [62]

FA =
√

3√
2
‖D − Iλ̄‖F

‖D‖F
=
∥∥∥∥ D − Iλ̄

‖D‖F

√
2/3

∥∥∥∥
F

where λ̄ = tr (D) /3 is the mean eigenvalue. Similarly, the geodesic anisotropy can be
expressed as the magnitude of logm (D)−Itr (logm (D)) /3 — essentially an unnormalised
equivalent on a logarithmic deviatoric tensor. A natural extension from univariate analysis
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of FA or GA would therefore be to consider multivariate statistical analysis of all six
unique components of the (normalised or logarithmic) deviatoric tensors. This offers no
dimensionality reduction over analysis of the original tensors themselves, but may allow
more precise interpretation of significant findings stemming from differences in anisotropy
instead of differences in the tensor eigenvalue magnitudes or eigenvector orientations. This
could be usefully applied in both TBM and diffusion tensor imaging.

Regarding testing of general (SPD) tensors, in the special case of a two-sample design,
we have used the Cramér test with Euclidean distances, as it is was originally defined,
and also with (effectively) log-Euclidean distances,37 as was done by Whitcher et al. [16].
On a related, but distinct point, it was outlined in section 4.3.3 that that the Euclidean
distances can be subsequently transformed through the use of a kernel function, with the
aim of sensitising the test to a particular form of alternative hypothesis.

Surprisingly, it would appear that we are the first to recognise that the test seems only
to depend on the concept of inter-point distances; not specifically on Euclidean inter-point
distances. This means that in addition to simple preprocessing of the data, or postprocess-
ing of the distances, it should also be possible (in fact quite simple) to base the test directly
on a Riemannian distance metric. This is a particularly appealing combination; firstly, the
full affine-invariant tensor distance [58, 60] promises superior theoretical properties. Sec-
ondly, the use of a Riemannian Cramér test brings an additional practical benefit: within
the framework for Riemannian analysis proposed in the literature to date [58, 60] it is
necessary to iteratively compute an estimate of the mean — an expensive procedure when
it must be done at every voxel; however, the Cramér test requires only the Riemannian
inter-point distances themselves, not the mean, and these can be computed in closed form.

This novel Riemannian Cramér test also offers an alternative to the Watson test
for testing principal strain (or diffusion) axes. The test presented in section 4.3.3 from
Schwartzman et al. [64], computes a ‘mean’ direction and estimates of ‘dispersion’ based
on the Bipolar Watson distribution, and involving eigenvalues of various matrices. The
dispersions are then used to construct an approximate F-statistic (which we test with
permutation, avoiding the need for parametric assumptions). It is not clear what, if any,
Riemannian metric has this mean as its geodesic barycentre, nor whether the dispersion
relates to any geodesic measure of distance between axes. Excitingly, there is a trivially
simple natural Riemannian distance between axes, simply given by the angle between
them (e.g. computed from the inverse-cosine of the dot-product of the unit vectors); we
are not aware that it leads to any simple concept of a mean direction (for more than two
axes), but it would seem to be enough to base a two-sample Cramér test upon. In future
work, we will directly compare log-Euclidean and affine-invariant Cramér testing of strain
tensors, and the Watson and our new Riemannian Cramér test on principal axes of strain.

37The distance used was actually still Euclidean, but the data had been log-transformed in advance.
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4.6 Conclusions

In this chapter, we have explored several multivariate generalisations of deformation- and
tensor-based morphometry. We have presented original results for searchlight DBM and
TBM, and the first application to morphometry of some orientational measures proposed
for diffusion tensor imaging. Capitalising on the work in chapter 2, we derive the first
family-wise error corrected results for the Cramér and Watson statistical tests. We have
shown that the Cramér statistic outperforms the more general Wilks’ Λ statistic, in the
two-sample situation for which it is appropriate, particularly when the dimensionality
of the data causes the number of unique covariance matrix elements to approach the
number of observations. We have also suggested a novel Riemannian formulation of the
Cramér test, which we believe could have great potential in both generalised TBM and
DTI analysis.

Some limitations must be admitted, the gravest of which is probably our use of low-
dimensional DCT-based spatial normalisation instead of modern high-dimensional group-
wise registration methods [37, 48, 120]. The resulting lack of precise spatial correspon-
dence,38 is also the cause of the second major limitation, which is our use of a relatively
large spatial smoothing kernel. We have ameliorated this issue to some extent through our
consideration of the searchlight technique, though it is likely that more precise registration
would result in better performance of the searchlight, as well as decreasing the size of the
optimal smoothing kernel.

Regarding the discrepancy between uncorrected/FDR and FWE performance of the
multivariate measures, the failure of either smoothness or the maximum distribution to
account for this motivates further research. It will be important to see if this phenomenon
is replicated using other data-sets (though note that we have already replicated it using
the searchlight technique in section 4.4.3 and using generalised TBM over both the 12 and
6 month intervals). In addition to analysing further real data-sets, it would be particularly
helpful to investigate simulated data. For example, one could sample multiple Gaussian
random fields with different levels of spatial correlation and explore how both the smooth-
ness and an increasing number of multivariate components affect the distribution of the
maximum statistic, and whether dimensionality interacts with the estimated roughness
(using residual-based estimation [29]. In particular, if increasing dimensionality increases
the kurtosis of the maximum-distribution more severely than the per-voxel distributions,
then this could explain the relatively worse FWE performance.

One might argue that uncorrected p-values should be sufficient for methodological
comparisons, since controlling the false-positive rate is not of particular importance when
the results are only used to compare methods, and not reported as clinical findings. How-
ever, if different methods lead to different levels of spatial regularity in their results, this is
of methodological interest. As argued by Poldrack et al. [121],39 uncorrected p-values lead

38The distinction between ‘precise’ and ‘accurate’ registration must be emphasised here; we use the term
precise with regard to fine-scale alignment and a sharp average atlas, but this does not imply accurate
registration in terms of identifiable landmarks or true underlying anatomical correspondences.

39One of the coauthors, Brett, argues still more forcefully in unpublished comments online http://

imaging.mrc-cbu.cam.ac.uk/imaging/UncorrectedThreshold.

http://imaging.mrc-cbu.cam.ac.uk/imaging/UncorrectedThreshold
http://imaging.mrc-cbu.cam.ac.uk/imaging/UncorrectedThreshold
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to unquantified false-positive rates, due to the potential for different studies to have dif-
ferent effective degrees of multiplicity. As discussed in section 4.3.3 the signal-adaptivity
of FDR procedures makes them problematic for method comparison. We therefore place
more weight on our FWE-corrected results, which favour a balance between more informa-
tion in the higher dimensional measures versus more reliable estimation and testing in the
more parsimonious ones. There is a clear need for deeper understanding of the discrepancy
though, so our results should not be overstated. At this stage, it seems fair to conclude
only that Lepore et al. [23] might possibly have exaggerated the benefits of generalised
TBM versus conventional scalar TBM, by not considering FWE-corrected significance.

As well as the many avenues for further experimental work and performance charac-
terisation, there remain several open theoretical questions regarding the mathematics of
Jacobian matrices. Some of this theory is expanded upon in chapter 5.
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Chapter 5

Further Developments

This final chapter presents two distinct contributions which are in fact only the beginnings
of work for which much more is planned. Neither section is complete, but they are included
in the hope that they complement the more thorough investigations presented earlier in
the thesis.

Firstly, the interesting mathematical issues surrounding analysis of the full Jacobian
tensor are returned to, in a section which attempts to include both a review of some of the
more theoretical issues, and some more intuitive discussion and practical examples that
should help to put the theory in context.

Secondly, we thoroughly review the literature and begin to propose new methods within
the important topic of differential bias correction. Longitudinal registration is the essential
foundation of both chapters 3 and 4 (as well as much more beyond the scope of the present
thesis), and the incorporation of better modelling or correction of differential bias should
provide substantial improvements to this key technology.

5.1 Further tensor-based morphometry theory

Chapter 4 provided a reasonably thorough presentation of the theory for multivariate
tensor-based morphometry, including some of the more mathematical aspects related to
Riemannian geometry and suitable distance metrics. However, there are many issues
that were not adequately analysed, and a number of possible practical methods for TBM
analysis that we did not have time for in section 4.3. We now attempt to probe deeper
into some of these mathematical issues, without performing any further experimental TBM
work, with the main purpose of clarifying possible paths for future developments.

5.1.1 Distances and means for Jacobian matrices

In section 4.2.6, it was mentioned that there is no bi-invariant Riemannian metric for
general matrices with positive determinant, such as Jacobian matrices [1]. More formally,
we consider the group of 3×3 real matrices with positive determinant, denoted GL+(3, R)
or GL+(3) for brevity. We will now discuss this in greater detail. Consider a cross-sectional
data-set, where registrations have been computed from a chosen target to each of a set of n
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images. Denoting the target as image 1 (so T11 is an identity transformation), this gives rise
to a set of Jacobian matrices at each voxel {J11(x, y, z) = I, J21(x, y, z), . . . , Jn1(x, y, z)}.1

Since the choice of target image is arbitrary, it is desirable that an analysis based on
these Jacobian matrices should be invariant to this choice. If one considers changing
to the second image as the target, then the new transformations can be computed by
composing the transformations from image 1 to each other image with the transformation
from image 2 to image 1: Ti2 = Ti1T12 = Ti1T

−1
21 , which results in the new set of Jacobian

matrices becoming {J12 = J−1
21 , J22 = I, J32 = J31J

−1
21 . . . , Jn2 = Jn1J

−1
21 }, i.e. each matrix

has been right-multiplied by J−1
21 . If the distance between Jacobians can be quantified

with a metric that is invariant to such right-multiplication (i.e. a right-invariant metric)
then the resulting Fréchet mean is also right-invariant, in the sense that the mean of
{JijQ}n

i=1 will be given by the mean of {Jij}n
i=1 right-multiplied by Q. The Jacobian

matrices corresponding to the transformations from a hypothetical mean image to each of
the images are then given by Jim = JijJ

−1
mj , which are invariant to the right-multiplication

(of both Jij and Jmj) by Q, or equivalently, invariant to the choice of image j.
In addition to the arbitrary choice of target image, one could argue that the decision

to analyse transformations from target to each other image, instead of from each image
to the target, is also arbitrary. The set of Jacobians that arise from considering the
mapping in the other direction are inverted. E.g. using image 1 as the target again
yields: {J−1

11 = I, J12 = J−1
21 , . . . , J1n = J−1

n1 }. Woods [1] argues that the mean of these
inverted matrices should equal the inverse of the mean of the originals, and hence that the
distance metric should be invariant under inversion; Arsigny proves that right-invariance
and inversion-invariance together imply bi-invariance (i.e. left- and right-invariance) [2].

Woods [1] states that there is no bi-invariant Riemannian metric for matrices in
GL+(3), and Arsigny [2] proves that no metric exists for the special case of rigid body
motions in any dimension. Taking the invariance of the mean as being more important
than the metric property of the distance, Woods relaxes the requirement for a metric on
a Riemannian manifold to allow a pseudo-metric on a semi-Riemannian manifold [1]. The
pseudo-metric can be negative, meaning that distinct points can be separated by zero or
negative ‘distance’ — i.e. the concept of distance has been lost. The concept of the Fréchet
mean as the point which minimises the squared distances from itself to the observations is
not applicable in the semi-Riemannian case. However, it is still possible to define geodesics
as paths of constant velocity.2 In Riemannian manifolds (/Euclidean space) the Fréchet
(/arithmetic) mean also has the property that vectors in the tangent space (/original
space) from the mean to each observation sum to zero. The constant velocity property of
geodesics in semi-Riemannian manifolds allows the definition of a local ‘Karcher mean’ as
a point from which velocity vectors in the tangent space associated with geodesics to each
observation sum to zero. Woods furthermore states that the ‘barycentric equation’ (given

1We will henceforth drop the dependence on voxel (x, y, z).
2A simple analogy might help to clarify this rather abstract concept. Consider satellites orbiting the

Earth, they trace great circles (like the equator) which are geodesics within the surface of the sphere. Not
only are great circles distance-minimising geodesics, but they also have constant velocity in the tangent
plane to the sphere, i.e. although the 3D motion of the satellite features centripetal acceleration towards
the centre of the Earth, its acceleration in the two perpendicular dimensions is zero.
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in section 4.2.7) can be used to find such a mean, provided the observations are ‘close’
enough on the manifold,3 [1]

J̄t+1 = expm

(
1
N

N∑
i=1

logm
(
JiJ̄

−1
t

))
J̄t.

Woods [1] shows that Jacobian matrices in GL+(3) can be embedded in the semi-simple Lie
group SL(4) (of 4× 4 unity-determinant matrices) and states that semi-simple Lie groups
have bi-invariant pseudo-metrics, suggesting (somewhat implicitly) that the barycentric
equation therefore yields a bi-invariant mean. Arsigny’s PhD thesis [2] contains an entire
chapter on ‘Bi-Invariant Means in Lie Groups’, deriving them from a (Lie) algebraic per-
spective, rather than from the (semi-Riemannian) geometric perspective used by Woods.

Deviations from the bi-invariant mean

Woods framework initially seems theoretically very appealing. However, the mean Jaco-
bian is itself of very limited practical interest. Morphometry requires more general analysis
of the distribution of Jacobians, for example, the difference of the means of two or more
groups, or the correlation of the distribution of Jacobians with some other covariates.
Woods suggests that ‘deviations’ from the mean can be characterised with the ‘initial
velocities of the acceleration-free geodesics that carry the mean Jacobian matrix to the
individual Jacobian matrices’ [1]

Xi = logm
(
JiJ̄

−1
)
. (5.1)

These Xi lie in the tangent space, and can hence be treated as points in a nine-dimensional
Euclidean vector space.

We observe two problems with this suggestion. Firstly, the use of multivariate statistics
on these deviations seems to implicitly assume that their norm can be treated as a distance
from the mean. For example, Woods suggests principal component analysis (sometimes
known as principal geodesic analysis when performed on a manifold [3]) can be performed
on the Xi; however, the principal directions would intuitively be those along which the
distances ‖Xi‖ would be maximised — yet these are not distances, since the (Frobenius)
norm of (5.1) is not a metric, as shown in section 4.2.6. Arsigny’s thesis provides fur-
ther reason to doubt this approach, explaining that although bi-invariant means can be
defined without a metric, higher order moments do require a Riemannian metric, because
they involve inner products of vectors — a concept intimately connected with norms and
hence metrics for differences in vectors [2]. Arsigny states that left- or right-invariant
Riemannian metrics may be used where no bi-invariant one is available, but it seems that
Woods’ deviations are not based on such a metric.4 A second apparent problem with

3‘Close’ might sound a poorly defined concept given the lack of distance metric, however Woods provides
a procedure for checking that the mean is unique, as well as rough arguments regarding its existence. A
more thorough mathematical analysis of existence and uniqueness has been given by Arsigny [2].

4In fact, Woods does not explicitly state the form of the bi-invariant pseudo-metric on which the
deviations are based either [1].
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the deviations in (5.1) is that although they involve the bi-invariant mean, they do not
appear to be bi-invariant themselves. This is surprising, given Woods emphasis on the
need for bi-invariance, and his decision to abandon the concept of a metric in order to
achieve it. Considering transforming the set of Jacobian matrices to {PJijQ}n

i=1, their
mean transforms to P J̄Q, giving

XPQ
i = logm

(
PJi Q

(
P J̄Q

)−1
)

= logm
(
PJiJ̄

−1P−1
)

= P logm
(
JiJ̄

−1
)
P−1.

Hence the deviations are right-invariant (since this corresponds to P = I), but generally
not bi-invariant. Ignoring the complication that the norm of the deviation cannot be
interpreted as a distance, we also observe that

‖Xi‖2F = tr
((

logm
(
JiJ̄

−1
))T logm

(
JiJ̄

−1
))

;

‖XPQ
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P logm
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−1
)
P−1

))
= tr

(
P−T

(
logm

(
JiJ̄

−1
))T

P T P logm
(
JiJ̄

−1
)
P−1

)
= tr
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(
JiJ̄
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)
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(
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−1
))

,

which are only identical in general if P T P = sI, i.e. the norm of the deviation is left-
invariant to geometric similarity transformations.

Log-Euclidean analysis of Jacobian matrices

While Woods [1] opted for a semi-Riemannian analysis of Jacobian matrices, in section
4.2.7 we chose to focus on symmetric positive definite (SPD) strain tensors, for which a
bi-invariant Riemannian metric is available. Furthermore, motivated by reduced compu-
tational burden, and the fact that bi-invariance is less important for longitudinal TBM,
we elected to use the simpler log-Euclidean framework, as in [4].

Since we have shown in the preceding subsection that Woods’ framework does not in
fact obtain complete bi-invariance, the log-Euclidean approach deserves closer considera-
tion. In particular, it is natural to ask whether the log-Euclidean metric is suitable for
general Jacobian matrices in GL+(3) rather than SPD matrices. The answer is yes, but
with some caveats, which we will now discuss. Firstly, we note that Lepore et al. [4] did
discuss this possibility:

By examining the deformation tensor in this work, we are examining only
the SPD part of the Jacobian matrix, and three remaining degrees of free-
dom (a rotational term) are still discarded and not used. The Log-Euclidean
framework can be extended to analyse the full Jacobian matrices, perform-
ing computations on that space (see [2] for extensions of the Log-Euclidean
framework to general matrix spaces).
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They go on to argue that the three additional parameters may increase power (as appears
to be the case from our experimental results) but may also require a greater number of
images.

Arsigny [2] investigates the log-Euclidean metric, and corresponding mean, for gen-
eral linear transformation matrices, in the context of a poly-affine registration framework.
Arsigny’s group appear not to have applied their techniques to TBM, though they have
investigated the morphometry of (manually-traced) sulci [5]. In addition to the reduced
number of invariance properties, Arsigny notes that the log-Euclidean mean is limited to
transformations close enough to the identity, while the bi-invariant mean of rigid trans-
formations ‘exists if and only if the bi-invariant mean of their rotation parts exists’ [2]. In
simple terms, we believe the bi-invariant mean requires logm

(
JiJ̄

−1
)

is real for all Ji, while
the log-Euclidean mean requires that logm (Ji) itself is real. For matrices (or quotients
of matrices like JiJ̄

−1) with positive determinants, eigenvalues must either be positive,
paired complex conjugates, or repeated values on the negative-real line; only the final case
precludes existence of a real matrix logarithm, and this case corresponds to rotations of
180 ◦ [1]. In other words, a unique bi-invariant mean exists so long as the rotational parts
of the transformations are close enough to each other, while the log-Euclidean mean re-
quires them also to be close enough to the identity. To give two simple examples, rotations
around the z-axis of 170 ◦ and −170 ◦ have a bi-invariant mean of 180 ◦, while rotations of
90 ◦ and −90 ◦ do not have a unique mean, since both 0 ◦ and 180 ◦ are at equal distance
[6].

Intuitively, it seems reasonable that at least some of the Jacobians at each voxel will
in practice be near or at the identity, so it appears that the bi-invariant mean will be only
marginally more widely applicable than the log-Euclidean one. However, we will show
below that there can be problems with the log-Euclidean distance between transformations
far from the identity, even when they are close enough for the log-Euclidean mean to be
well-defined. First, we consider the invariance properties in more detail.

In the case of SPD tensors, it is well-known that the log-Euclidean distance is only
invariant to a matrix congruence with a geometric similarity transformation, as shown
in section 4.2.7. For Jacobian matrices, a change of coordinates does not result in a
congruence (T x→Ax−−−−→ ATAT ) but in a matrix similarity, J

x→Ax−−−−→ AJA−1. Just as for
tensors, if we consider a geometric similarity A = sR where RT = R−1, then the matrix
similarity reduces to a congruence:

AJA−1 = sRJ(sR)−1 = sRJR−1/s = RJRT ,

and so the distance is unchanged. For more general A, the distance will vary. However,
Arsigny points out that the mean actually enjoys greater invariance properties than the
distance upon which it is based [2]. This somewhat counter-intuitive result is actually
quite trivial to prove, since the matrix logarithm of the log-Euclidean mean is linear in the
matrix logarithms of the individual matrices, and the matrix similarity can be brought
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outside of each individual log (equation B.8) giving (for any invertible A)

logm
(
J̄
)

=
1
N

N∑
i=1

logm (Ji)

logm
(
AJA−1

)
=

1
N

N∑
i=1

logm
(
AJiA

−1
)

=
1
N

A

(
N∑

i=1

logm (Ji)

)
A−1

= A logm
(
J̄
)
A−1.

However, we note, with reference to Woods [1], that a change of template subject in
a cross-sectional TBM study does not result in a similarity. Instead, one must consider
transformations such as Ji → JiJ

−1
t , under which the log-Euclidean mean is not invariant.

A similar point is made in [7] regarding diffeomorphisms, i.e. log-Euclidean analysis of
diffeomorphic transformations as exponentiated constant velocity fields [8] is not invariant
to the choice of subject.

Furthermore, with reference to Moakher [6], simple examples with rotations can show
paradoxical results from both the log-Euclidean metric and its mean. For example, con-
sider again rotations about the z-axis. Moakher’s distance between a rotation of 10 ◦ and
−10 ◦ is simply 20 ◦,5 and the average of these two rotations is the identity. If we rotate
both rotations by 60 ◦, so that they become 70 ◦ and 50 ◦, then the bi-invariant distance
of course remains at 20 ◦ and the mean moves to 60 ◦. Interestingly, all these results also
hold for the log-Euclidean case. This is only true for the special case of rotations around
a common axis though, for which the (2−1/2 scaled) log-Euclidean distance gives the same
value as Moakher’s distance. For more general rotations the two distances differ, as one
would expect. For example, rotating the plus and minus 10 ◦ z-axis rotations by 60 ◦

around the x-axis results in the log-Euclidean distance between them increasing by just
under one degree. More importantly, the results break down for large rotations; while
the rotation by 60 ◦ around the z-axis showed the same results for bi-invariant and log-
Euclidean distances and means, rotating by 180 ◦ results in the distance between the plus
and minus 10 ◦ rotations (transformed to −170 ◦ and 170 ◦ respectively) becoming 340 ◦.
Informally, the log-Euclidean distance is measured the ‘long way round’, i.e. via that part
of the great circle geodesic that avoids passing through the ‘antipodal’ point [6] or ‘cut lo-
cus’ [2] opposite the identity, not that part which is shortest. Similarly, the log-Euclidean
mean of Rz(d ◦)Rz(10 ◦) and Rz(d ◦)Rz(−10 ◦) is given by Rz(d ◦) for |d ◦| < 170, but by
Rz(180 ◦)Rz(d ◦) for 170 < |d ◦| ≤ 180. This problem of discontinuity in the mean under
transformation might be avoidable by ensuring that rotations (or more generally, Jaco-
bians) lie within a small enough region of the manifold around the identity, as suggested
by Woods [1]. However, there is no avoiding the fact that the distance measure itself is

5The normalisation by
√

2 in Moakher’s distance [6] achieves the intuitive result that two rotations
around a common axis by θ1rad and θ2rad have a distance of |θ2 − θ1|. We report the results in degrees
for convenience.
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less appropriate for more widely-separated elements, even when they are technically ‘close
enough’ to the identity. This point was raised in the context of rotations and more general
transformations (with application to interpolation in computater animation) by Alexa [9],
who proposed that a simple solution could be found. Unfortunately, this proposal has
since been rejected by Bloom et al. [10]. The latter paper instead favoured a return to
quaternion-based interpolation of rotations, however, this is of limited use for more general
transformation matrices such as the Jacobian tensor.

5.1.2 An illustrative experiment

To further investigate the adequacy of the log-Euclidean metric on general affine trans-
formations, a short Monte Carlo experiment can be performed. In section 4.2.9, the
fractional and geodesic anisotropies were respectively related to the Euclidean and Rie-
mannian distances between a general tensor and the closest isotropic tensor. Motivated
by this, consider the following interesting question in the context of geometric transfor-
mations: can we find a purely rigid transformation that best approximates a more general
affine transformation? First, note that the best translation in the approximating trans-
formation would depend on the object, or region of space, to which the transformations
are applied. In particular, given an optimality criterion of least squared error between
landmark points that correspond under the affine transformation, the translation must be
chosen so that the rigid transformation matches the centroids of the sets of landmarks
[11]. This means that the essence of the problem is to find the closest rotation to a general
linear transformation. The aforementioned lack of a bi-invariant Riemannian metric for
matrices in GL+(3) is significant here; a pseudo-metric is of no use since the concept of
‘closeness’ requires a true distance metric.

Procrustes analysis — described in appendix C — provides a unique closed form solu-
tion for the rotation matrix that minimises the sum squared error between corresponding
landmarks. Interestingly, like the translation, it turns out that the best rotation in this
sense depends on the landmarks; there is no unique rotation that best approximates a
linear transformation. We have not pursued a mathematical proof of this statement, but
it is easily verified by simulating different sets of points and their linearly transformed
corresponding sets, finding each time the rotation from the Procrustes method. Such re-
peated simulations allow us to compare the results of the optimal Procrustes fit (based
on each set of corresponding points) to various other ‘optimal’ approximating rotations
(based only on the affine transformation). For greater validity, we generate 50 random
affine transformations (constrained to have no negative-real eigenvalues, and hence a real
matrix logarithm), each of which is evaluated with 50 random sets of points. The num-
ber of pairs of points only needs to be two or more, to estimate a rotation in 3D, but
we arbitrarily simulate ten pairs per set, to provide more accurate Procrustes fits. The
point-sets allow the computation of the root-mean-square error (RMSE) for each of the
rigid approximations, in addition to that of the RMSE-optimal Procrustes fit.

We argue that there are two reasonably obvious but somewhat ad hoc approaches
for approximating a linear transformation with a rotation, without relying on an explicit
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concept of distance. Based on the singular value decomposition (or alternatively, the polar
decomposition presented in section 4.2.5) given that L = USV T = (USUT )(UV T ), one
candidate for an approximate rotation is R = UV T . Another option derives from the fact
that the Lie algebra for the Lie group of rotation matrices is the space of skew-symmetric
matrices [6], or, in other words, rotation matrices have skew-symmetric matrix logarithms,
logm (R) = K = −KT , and the rotation can be recovered from expm (K). Therefore, a
rotation that approximates a linear transformation L could be generated from

K = logm (L) (Not generally skew-symmetric)

R = expm
(

K −KT

2

)
.

There are also two obvious distance metrics: the basic Euclidean one afforded by the
Frobenius norm of the difference, and the Riemannian log-Euclidean metric. Hence we
may use numerical optimisation methods to solve

arg min
R∈SO(3)

d2(R,L) (5.2)

for either dEuc(R,L) = ‖R − L‖F or dLE. In fact, since both metrics involve a sum
of squares, efficient Levenberg-Marquardt algorithms [12] can be employed, such as that
available in MATLAB’s lsqnonlin.

Table 5.1 presents results from all five methods. Interestingly, the log-Euclidean ‘clos-
est rotation’ exhibits worse performance than the näıve Euclidean one. This provides
further fuel to the argument mentioned in section 4.3.6 (that log-Euclidean analysis has
actually been found to be less powerful than using a Euclidean metric on diffusion tensor
imaging data [13]) and additional motivation to investigate these issues, both in theory and
in practice. Furthermore, the relatively good performance of the decomposition-based ap-
proximation could motivate a search for a suitable metric (or perhaps bi-invariant pseudo-
metric) for which this is the closest rotation, providing a theoretical basis for this ad hoc
approach.

RMS Error Rank RMSE
Method Mean (Std) Mean (Std)
Procrustes 1.605 (0.668) 1 (0)
Decomposition 1.668 (0.667) 2.86 (0.95)
Lie algebra 1.918 (0.887) 3.82 (1.06)
Minimum dEuc 1.694 (0.674) 3.31 (1.09)
Minimum dLE 1.863 (0.805) 4.01 (1.00)

Table 5.1: Comparison of different methods to compute the ‘closest’ rotation to a given
linear transformation. 50 different affine transformations were simulated (with no negative-
real eigenvalues), and 50 sets of 10 corresponding points were computed for each one. The
table reports the mean and standard deviation of the root-mean-square errors, and also
the mean and standard deviations of the ranks of the different methods based on their
RMS errors.
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5.1.3 A theoretical connection and a practical compromise

We have described how Jacobian matrices or transformations far away from the identity
can lead to problems with the log-Euclidean distance and consequently the log-Euclidean
mean. On the other hand, the bi-invariant mean is suitable for almost all valid Jacobians,
but cannot lead to second-order statistics without a Riemannian metric. It is therefore
useful to try to combine the advantages of both approaches. If Woods’ method is used
to ‘centre’ each Jacobian matrix, replacing Ji with JiJ̄

−1 using the bi-invariant mean
J̄ , then the new bi-invariant mean of the centred matrices becomes the identity [1]. It
is then tempting to consider the log-Euclidean statistics between these centred matrices,
as a pragmatic compromise between full affine-invariance and the triangle inequality. In
particular, we observe here that

dLE(JiJ̄
−1, I) = ‖logm

(
JiJ̄

−1
)
− logm (I)‖F = ‖logm

(
JiJ̄

−1
)
‖F , (5.3)

which provides an interesting new justification for Woods’ deviations, since their Frobenius
norms are the log-Euclidean distances from the identity to the centred Jacobians. The
distance between different centred Jacobians is then not ‖logm

(
JiJ

−1
k

)
‖F , but

dLE(JiJ̄
−1, JkJ̄

−1) = ‖logm
(
JiJ̄

−1
)
− logm

(
JkJ̄

−1
)
‖F . (5.4)

Since the motivation for centring here is simply to bring the matrices closer to the
identity, rather than to consider the Jacobians of the transformation from a hypothetical
mean volume to the volumes under study (as in the original paper, which analysed cross-
sectional data [1]), it would appear that the method is motivated even in the case of
analysing longitudinal Jacobians.

5.1.4 Conclusion

In light of (a) the significant challenges, arising from the absence of an ideal metric and
the open mathematical questions posed in the most recent work [2]; (b) the dearth of
experimental results, notably, to the best of our knowledge, a complete absence of data
analysed using Woods’ method; and (c) the relatively large number of potentially compet-
ing or complementary methods available, and the number of possible extensions of them
to serial imaging; it is clear that there is a major need for future research in this area,
encompassing both theoretical investigation and experimental comparison of the different
methods and their variations.



CHAPTER 5. FURTHER DEVELOPMENTS 312

5.2 Differential Bias Correction

5.2.1 Introduction

Magnetic resonance images of spatially uniform objects typically exhibit intensity non-
uniformity (INU). This arises from several different physical sources [14], and is typically
assumed to be a smoothly varying multiplicative gain or bias field. It has been commonly
observed that while INU appears to have little impact on expert interpretation of MRI
(including neurological examinations), it can be of major importance in computational
analysis, such as automatic brain-tissue segmentation or the quantification of longitudinal
tissue loss [15, 16]. Segmentation methods based on intensity thresholds, or more complex
fuzzy or probabilistic models of the intensity distribution are severely hindered by the
spatial variation in signal intensity within homogeneous tissue, which blurs the intensity
histogram and reduces the separability of the tissue classes. Techniques which attempt to
measure volume loss through shifting boundaries using direct analysis of MR intensity [15]
or edge detection [17] can be confounded by intensity differences due to inhomogeneity.
A less frequently made point is that INU may also have detrimental impact on non-rigid
registration: Studholme et al. [18] noted that voxel-wise maps of volume change from fluid
registration can exhibit significant errors in the presence of local intensity variations, even
when the registration is driven by an entropy-based similarity criterion such as normalised
mutual information. Due to its importance, many approaches for the reduction or ret-
rospective correction of INU have been proposed, as well as approaches which attempt
to account for or reduce the impact of inhomogeneity within other procedures [18, 19].
Vovk et al. [20] provide a recent review, in which they distinguish between prospective and
retrospective correction. Examples of prospective correction (or calibration) include the
acquisition of uniform phantom images [21], the correction of highly non-uniform surface-
coil data using more homogeneous body-coil images [22], and the use of modified pulse
sequences (especially important at high-field [23]). Vovk et al. [20] focus on retrospective
correction, which they further categorise into methods based on spatial filtering [24], fitting
surfaces to data-points [25], segmentation models [26, 27], and on the intensity histogram
[28]. The review by Vovk et al. [20] also includes a discussion of metrics for performance
evaluation, and a comprehensive survey of publications and available software, but no di-
rect comparison of methods is presented. The most complete qualitative and quantitative
evaluation of retrospective bias correction algorithms appears to be Arnold et al. [29],
which compared six algorithms on real and simulated data, and found the locally adaptive
methods N3 [28] and BFC [30] to be the most successful.

Application to serial imaging

For longitudinal analysis of MRI, it is the differential intensity non-uniformity between the
two (or more) images of a single subject which is of greatest importance. The boundary
shift integral (BSI) [15], SIENA [17], and serial rigid or non-rigid registration algorithms
driven by intensity differences or correlations [31, 32, 33], should be insensitive to the



CHAPTER 5. FURTHER DEVELOPMENTS 313

component of the two images’ bias fields which is common to them both.6 For this reason,
the focus here will be on methods for differential bias correction (DBC), proposed by
Lewis and Fox [16]. Little research has been reported specifically on this topic, though
very relevant methodological work has been published for related techniques, such as
multi-image and template-based non-uniformity correction schemes (reviewed below). The
central problem in DBC is separating intensity differences due to the bias field (assumed to
be relatively smoothly varying) from those due to noise or brain volume change, which will
generally be of much higher spatial frequency. Greater amounts of brain atrophy make the
differential bias harder to estimate due to larger areas with unaligned tissue boundaries,
and lower spatial frequency of the resulting atrophic component. In this work, a new
approach of integrating DBC with intra-subject non-rigid registration is proposed; the
key motivation being that even partial removal of differential bias should improve non-
rigid registration, and similarly, even incomplete image alignment will greatly enhance
DBC, as it will dramatically reduce the intensity differences from originally unregistered
tissue boundaries.

5.2.2 Background

Physics and nature of inhomogeneity

There are a number of complex physical processes underlying the observed intensity non-
uniformity [14, 23, 28, 34, 35]. In this brief review, the focus will be on the magnitude and
character of the non-uniformity, particularly those aspects which may be object-dependent,
or less consistent with the typical assumptions. Effects are more severe (and harder to
characterise) at higher field strengths. Since the aim of this work is to develop improved
correction methods, which in turn require means of evaluation, particular emphasis is
placed on the use of simulation techniques in the literature.

Sled et al. [28] listed the following basic physical sources of intensity non-uniformity:

• frequency response of the receiver

• spatial sensitivity profile of unloaded receive coil

• induced currents, standing wave effects (also known as dielectric resonance, but now
more properly understood as field focusing)

• excitation field inhomogeneity

With surface coils, the effect of spatially variable receive coil sensitivity is dramatic and
dominates the other sources (as utilised in some multi-image correction approaches dis-
cussed later). Head coils also show signal reductions (though much less dramatic) toward
the boundaries of the coil [36]. Some intensity variation can be caused by geometric dis-
tortion; Wang and Doddrell investigate the characterisation and correction of this using
phantom-based methods [37].

6Strictly, the BSI is invariant to the arithmetic average bias field, but not the geometric average, which
may be considered more natural, given the positive multiplicative nature of INU.
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Induced currents, and RF focusing effects depend on the electrical and geometric prop-
erties of the imaged object, as well as the pulse sequence and coil polarisation [34]. These
effects are less consistent with the common assumption of a smoothly varying multiplica-
tive field, and may also produce tissue-dependent contrast changes. Simmons et al. [14]
considered ‘standing wave’ effects and RF penetration or skin-depth phenomena; they
found these to be negligible in the human head at 1.5T, but other authors have since
discovered such sources of inhomogeneity to be more significant at higher field strengths.
At 3T or above, intensity non-uniformity is particularly problematic [23, 35, 38]. Cohen
et al. [38] reported that inversion-prepared low flip angle (FLASH-type) sequences seem to
be especially sensitive. Both field inhomogeneity and susceptibility artefacts increase with
field strength, and above 1.5 T it is not possible to neglect RF eddy currents induced in
the body, or ‘standing wave’ effects along the sample [35]. RF focusing effects exacerbate
B1 inhomogeneity at high field strengths; Thomas et al. [23] develop a modified pulse
sequence to reduce problems in T1-weighted MDEFT imaging at 4.7 T. For T2-weighted
imaging, fast spin echo sequences can be relatively insensitive to inhomogeneity, due to
coherency in partial echoes [39].

Magnitude and scale of intensity non-uniformity

Sled et al. [28] used manually fitted bias fields (the model fitted was not specified) to
investigate the typical properties of non-uniformity in twelve individuals, each scanned on
a different MR machine. Scanner manufacturers included Philips, Siemens, and GE. The
paper does not indicate the field strength(s) of these scanners, but 1.5T seems likely for
research institutions in the mid-nineties. Histograms were presented for non-uniformity
field strength, showing approximately unimodal distributions with FWHM ranging from
about 10% to 20% for 3D gradient echo T1 volumes, up to around 40% for T2 images
coming from a multi-slice dual echo (T2/PD) spin echo sequence. Alecci et al. [35] investi-
gated the relative magnitude of the B1 field using numerical simulation and measurement
in phantoms and volunteers, imaging with a birdcage coil at 3T. They found variation of
15% across the brain in the transverse plane, and large variation along the z-axis of the
coil (less than 10% over 7cm, but rising to around 35% over 15cm). Little research seems
to have been reported on the typical spatial frequency characteristics of the bias field.

Inhomogeneity simulation

Controlled generation of artificial intensity non-uniformity is very useful for evaluation
(see below) but has typically been quite simplistic to date, with little attempt to model
either the underlying physics or the complexities of the observed phenomenon. As Sled
et al. [28] state, characterising the physics is difficult. Balac and Chupin [40] have devel-
oped numerical methods for determining object-dependent RF inhomogeneity artefacts,
which they propose to implement in an advanced MR simulator [41], but this work has
not yet been used for comparison or refinement of bias correction algorithms. Following
investigation of the nature manually extracted real bias fields, Sled et al. [28] simulated
two non-uniformity fields using combinations of quadratic and Gaussian terms, varying
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in magnitude by 20% within the brain volume (similar to their observed FWHM of 10–
20% for T1 volumes). It appears from figures in the paper that the fields are intended
to exhibit typical patterns of diagonal variation (see [34]) and field-focussing ‘hot-spots’
[23], though this is not explicitly stated. The extremely popular MNI BrainWeb [42] has
its simulated INU fields available for download. These were derived from actual scans,
so are realistically complex, but little is said about their extraction or parametrisation.
They have been subsequently normalised to exhibit the same 20% within-brain variation
that Sled simulated [28]. Note that by multiplying the fields and then offsetting them to
restore the unity gain level, it is possible to generate arbitrary levels of inhomogeneity,
though such simplistic adjustment will obviously not account for the changes in the nature
of the inhomogeneity at higher field strength. Note too, that if such fields are applied to
different subjects (especially scans with different fields of view or orientation), they may
no longer have realistic relationships to the subject geometry or other properties. Arnold
et al. [29] simulated two different types of fields. The first used ‘orthogonal’ polynomials
(presumably orthogonal in terms of being independent in the three dimensions, with no
cross terms; rather than anything to do with Legendre polynomials or similar), and the
second was a sum of orthogonal sinusoids, with periods from 0.8 to 1.2 times the field of
view. Both fields were generated with three magnitudes of 4, 8 and 16% total variation
(apparently over the entire field of view (FOV), not the brain region). These magnitudes
are obviously smaller than those proposed by Sled et al. [28], or offered by default in Brain-
Web; no motivation from either physics or empirical data is given for this choice. Arnold
et al. [29] do not clarify whether these simulated fields are intended to partially account
for the geometry or other properties of subject. Both a simulated field and a phantom-
measured prototype were applied to simulated brain phantoms in Brinkmann et al. [24].
Their simulated field was a simple linear ramp which they created in versions with 22%
and 96% variation over the FOV. The phantom-measured field came from phased array
surface coil imaging of a uniform water phantom; it originally exhibited variation of 329%,
after which they created three reduced versions (186%, 38%, 10%). Clearly neither field
related to the (phantom) brain properties.

5.2.3 Correction methods

Simmons et al. [14] concluded their investigation of the physics of intensity non-uniformity
at 1.5 T by stating that the use of uniform oil phantoms is ‘generally more appropriate
than correction based on low pass filtering’. However, other authors have pointed out that
phantom-based methods are unable to correct for object-dependent inhomogeneities, which
may be significant [43]. Particularly at higher field strengths, RF-focusing and other effects
motivate the use of retrospective correction algorithms. In addition, automatic methods for
bias correction have increased in theoretical sophistication and computational capabilities
since the 1994 publication of Simmons et al. [14]. Techniques for non-uniformity correction
are too numerous to review comprehensively here; instead, a few notable algorithms are
discussed, with emphasis on the phenomenological models they employ, and a particular
focus on methods developed for multi-image situations.
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Sled et al.’s [28] nonparametric nonuniform intensity normalisation algorithm (N3)
appears to be the most popular bias correction software [20], and one of the most suc-
cessful approaches [29]. It is based on the premise that the presence of the bias field
blurs the intensity histogram, as pure tissue peaks are spread out by the range of their
non-uniformity. N3 sharpens the histogram by iteratively deconvolving narrow Gaussian
distributions, smoothing the estimates between each iteration by fitting a cubic B-spline
(200mm spline support, corresponding to 50mm knot-spacing). The algorithm does not
require a tissue model, nor the identification of pure tissue regions. N3 has also been stud-
ied with particular reference to the imaging of AD [44]. The bias field corrector (BFC) [30]
attempts to match local histograms to the overall intensity distribution, again fitting a
cubic B-spline with 64mm knot-spacing. Ashburner and Friston [27] introduced a unified
approach that combines spatial normalisation, tissue segmentation, and bias correction
into a single generative model, implemented in the SPM5 software. They parametrise the
bias field with a Fourier (Discrete Cosine Transform) basis, regularised following a model
of smoothed Gaussian noise. The model’s highest frequency basis function has a period
of 60mm by default. No comparisons of SPM5’s bias-correction performance relative to
SPM2 and/or other bias correction techniques seem to have been published thus far.

Multi-image techniques

Bromiley and Thacker [45] developed the method of Vokurka et al. [46] into a specialised
algorithm for situations in which it is possible to acquire multiple images of the same
object with approximately the same INU but differing tissue contrast. The main case in
which this approximation may reasonably be assumed is surface coil imaging, since the
overriding inhomogeneity of the receive coil sensitivity is largely independent of the changes
in pulse sequence needed to alter image contrast. Lai & Fang focus exclusively on surface
coil images; their correction technique uses a lower resolution body-coil image which they
treat as being free from inhomogeneity for the purpose of correcting the far greater non-
uniformity of the surface coil image. They align the two images with a rigid+scaling
transformation model, then select points for which the surrounding region can be well
approximated by a plane, and then fit a membrane spline model to the ratio of surface-
to body-coil images at these points using a preconditioned conjugate gradient optimiser.
The complete algorithm appears to be very fast, though the authors only report results
in 2D on relatively small images (with a 64 × 64 body-coil acquisition and a 128 × 128
surface-coil image, run time is only a few seconds). The paper appears not to mention
the typical spacing or number of the points used to fit the spline, though the figures show
extracted bias fields that appear relatively complex, compared to low-order polynomials
or Fourier bases. An interesting and unusual multi-image approach has been developed by
Learned-Miller and Jain [47], they consider a set of images of different subjects (around
20), and reduce the bias from each down to the set’s shared common component. In stark
contrast to methods that assume homogeneous tissue regions can be found, they treat each
voxel as being independent; instead considering the entropy of each voxel’s intensity over
the set of images. They note that minimising the sum of all these voxel-wise entropies
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will tend to remove intensity variations not shared by all images. Their method requires
the images to be approximately, but not perfectly, aligned — misregistration will increase
the entropy over the image set, but they assume that additional intensity non-uniformity
would further increase entropy. The inhomogeneity field is modelled with a DCT basis,
with shortest period equal to half the FOV. Experiments on a set of infant brain scans
show impressive results, with large inhomogeneities apparently removed, while genuine
developmental differences in white matter intensity remain.

Differential bias correction

The particular multi-image problem focused on here is the correction of differential bias
in longitudinal MRI data. The original DBC algorithm developed by Lewis and Fox [16]
uses median filtering of the difference image from log-transformed originals (equivalent
to filtering the log of the image ratio). The exponential of the processed result is then
applied equally to baseline and repeat images (multiplying by the square root and its
reciprocal respectively). Smoothing is performed with an 11 × 11 × 11 voxel box kernel
median filter, carried out over a particular region, with zeros outside the region being
included for voxels near the border. The region is created by dilating (with a 6-connected
3D cross structuring element) the binary union of the baseline and repeat brain regions.
As a preprocessing step, the original images are first normalised to have the same mean
intensity over their respective brain regions (justifying the inclusion of zeros when filtering
the log ratio image). A related approach has been implemented by Gaser7 for application
to longitudinal voxel-based morphometry. Gaser applies a 30mm FWHM Gaussian to
smooth the difference image (in original, not log-space) over the intracranial region, and
then uses this to correct the image pair. Methodologically, the most closely related paper
to the work discussed here is actually a single-image bias correction method [48], which
uses non-rigid registration of the image to a manually bias-corrected template image,
allowing differential correction to remove the bias in the original source image. Studholme
et al. [48] implemented this approach by filtering the original and registered template
images separately, before taking the ratio. Smoothing is performed over a template-space
brain mask using a Gaussian kernel, including re-normalisation of the kernel to account
for missing data outside of the mask. Comparison to manual correction showed that a
kernel of only 20mm FWHM gave the best results, in surprising contrast to the common
assumption of a much smoother bias field, and the empirical results of Brinkmann et al.
[24] mentioned below. The non-rigid registration algorithm uses a B-Spline Free-Form
Deformation model, with multi-level and multi-resolution optimisation at knot-spacings
halving from 14.4 to 1.8mm, and Gaussian blurring with FWHM of 4, 2.4, 1.2 and 0.6mm.
A bending energy term is used to regularise the transformation. Studholme et al. [48]
optimised their algorithm specifically for elderly subjects or those with neurodegenerative
disease.

7http://dbm.neuro.uni-jena.de/vbm/vbm2-for-spm2/longitudinal-data/

http://dbm.neuro.uni-jena.de/vbm/vbm2-for-spm2/longitudinal- data/
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Relevant research on filtering

While not addressing the DBC problem itself, there is useful literature related to the
smoothing or filtering used in the above-mentioned differential techniques. Implementation
choices such as the filtering method are likely to be of importance in DBC performance
[16]. Several simple, fast, and popular techniques for single-image bias correction involve
the use of a low-pass filtered version of the image to correct the original version. One of
the earliest such methods is known as homomorphic unsharp masking (HUM) [49], which,
in essence, simply divides the original by its smoothed version. HUM has been referred
to as an approximation to true homomorphic filtering [24], in which the convolution is
performed in log-space [50]. Brinkmann et al. [24] investigated the use of either mean
or median filtering for HUM, at a range of different spatial scales. They worked in 2D,
using only square box kernels, with voxel-dimensions from 5× 5 to 383× 383. They found
that the mean almost invariably outperformed the median filter (something worthy of
further investigation with DBC), and that much larger kernels (e.g. 64×64) outperformed
those reported in past literature. Working in 3D, and on 3T images, Cohen et al. [38]
used efficient FFT-based Gaussian convolution, after filling background voxels with the
foreground mean. Their kernel size was chosen in proportion to the image field of view,
having a ‘half-width’ of 3/8 times the FOV in voxels.

5.2.4 Evaluation methods

Vovk et al. [20] review evaluation in depth, discussing: qualitative analysis; intensity based
statistics, such as coefficient of variation within tissue classes, or coefficient of joint varia-
tion between two classes; indirect measures of bias correction performance via subsequent
segmentation results; and quantitative comparison of corrected images or extracted bias
fields, using either simulated or carefully measured ‘gold-standard’ data. The latter seem
the most direct quantitative measure, though gold-standard data is difficult to obtain
validly. Oil or water phantoms (as used e.g. by [14, 24]) may not relate well to real brain
images. Painstakingly manually corrected data such as that used by Studholme et al.
[48] has several advantages, but may introduce potential bias in terms of matching of the
evaluated models to that used for the gold-standard. Reliability of the manual estima-
tion is also likely to be spatially varying, due to variable ease of selecting regions of pure
tissue. Simulated bias fields are attractive, in that the ground truth is precisely known,
and the parametrisation of the gold standard can be easily varied independently from the
correction models being evaluated. If simulated fields are applied to real scans, the overall
inhomogeneity is then unknown, which has motivated the popular application of simulated
bias to simulated images [24, 28, 29]. Note however that for DBC, a single real image with
an added simulated field has a known differential bias, regardless of the inhomogeneity of
the original scan.
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Metrics for quantitative evaluation

Sled et al. [28] suggest that the best evaluation approach is to compare the estimated and
true field, if the latter is known. They note that constant scale-factor differences between
bias fields are of no interest; motivated by this the metric they use is the coefficient of
variation of the ratio of estimated to the actual field. Studholme et al. [48] measure
the RMS error between their manually corrected gold standard intensities and the output
images from the automatic methods, computed over a manually defined intracranial region.
The images are globally rescaled to match their within-brain mean intensities, due to the
fact that constant overall scaling of the intensities is irrelevant. They also report the
coefficient of variation of intensities within manually identified regions of supposedly pure
white matter, with the view that all variation within this region comes from the bias field.
This assumption is slightly inconsistent with their later work [18], which highlights the
potential for genuine variability in tissue intensity (for example due to development, aging
or disease), but the metric nevertheless provides useful additional information. Shattuck
et al. [30] also consider the RMS error, between the unbiased BrainWeb phantom and the
corrected images; they suggest an affine or Procrustes transformation to match the original
and corrected intensities, on the basis that constant intensity offsets would not affect their
subsequent automatic segmentation process. Note that measuring errors in the corrected
intensities instead of the recovered non-uniformity field, effectively weights the bias field
errors by the tissue intensity — the same magnitude of error in the field estimate will be
more significant within white matter than in grey matter (on T1 scans). This might give
an overly favourable impression of methods which fit models to segmented white matter or
selected points within it, compared to those which do not distinguish between tissue types,
though the effect is probably minor. On the other hand, correction of non-uniformity in
regions with very low signal intensity may genuinely be less important, as these are often
not the focus of further analysis. Note also that estimation of the bias field is inherently
less reliable in low intensity regions; there is less information in the quantised MR signal,
and the Rician distributed noise [51] is more heavily skewed.

An interesting complement to the direct measures thus far described is the stability
analysis of Arnold et al. [29]. They observe that an ideal bias correction technique would
not only remove most of the bias in a single application, but that repeated applications
of the technique should not continue to have major effects on the corrected volume. They
discover that HUM fails to meet this desideratum.

5.2.5 Preliminary investigation

Introduction

In this section, a new approach for combined longitudinal bias correction and registration
is described, and a pilot study to explore the technique’s potential is reported. The
method interleaves the DBC method of Lewis & Fox [16] between the stages of a multi-
level B-Spline FFD non-rigid registration algorithm [52, 53]. The increasingly precise
alignment should allow progressively better bias correction performance, which in turn,
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should improve the accuracy and validity of the subsequent registration steps.

Method

At this stage, the DBC procedure has been reimplemented closely based on that from Lewis
and Fox [16]. The only modification being the use of a spherical kernel with variable radius
in place of the cubic kernel with 11 voxel side-length. Since the amount of unregistered
voxels that need filtering out should reduce with each registration stage, the kernel size
is decreased at each iteration. It would be possible to initiate the iteration with either
non-rigid registration or bias correction first; here, the images used for testing are rigidly
registered to begin with, so it was decided to start with a bias correction step. A B-Spline
FFD non-rigid registration algorithm is used [52], with Normalised Mutual Information [54]
as the similarity function. Based on the work of Boyes et al. [55] on longitudinal B-Spline
registration, the sequence of control-point spacings used in the multi-level optimisation is
10, 5, and 2.5mm. Following the finest FFD level, a final DBC step is performed. The five
DBC steps use kernel radii of 7, 6, 5, 4, and 3 voxels, where the first of these corresponds
to a volume slightly larger than the 11-voxel cubic kernel used by Lewis and Fox [16].8 In
the first four DBC steps, the reciprocal of the estimated differential bias field is applied
entirely to a copy of the target; the original source image is then re-registered to this copy,
with the aim of avoiding the accumulation of bias field errors in the imperfectly registered
source. After the final step, the estimated bias field could be split between the target
and transformed source as in the original method of Lewis and Fox [16], with the slight
complication that the inverse of the non-rigid registration would be required to map the
bias field to the untransformed source space. Methods for the direct inversion of B-Spline
FFDs seem not to have been published; dense voxel-wise fields can be inverted [56, 57]
and then re-approximated with B-Splines [58].

The method has been tested on three pairs of images with simulated Alzheimer-type
atrophy. The baseline images are real images of patients with probable AD, and the
repeat scans are generated from these to mirror the subjects’ real measurements of whole-
brain and hippocampal volume loss over a period of one year, using the thermoelastic
phenomenological model of Camara et al. [59]. Amounts of simulated brain atrophy for
the three subjects were: 3.15, 1.47, 2.05 per cent of original whole brain volume. Because
the repeat scans are simply deformed versions of the original, there is no true differential
bias (though there will initially be some due to misregistration of the original bias present).
Simulated bias was applied using a version of the BrainWeb 20% INU field (‘rf20 A’). The
field image was geometrically scaled along each axis to cover the FOV of each patient image
and resampled using linear interpolation (the resultant slight blurring is of no concern since
the field contains only low spatial frequencies). Following the simulation of atrophy and
the addition of the multiplicative bias field, Rician noise is simulated in the baseline and

8A 7mm sphere has volume 4πr3/3 = 1436.8mm3, and a discretised version contains 1419 voxels; an
11-voxel cube contains 1331 voxels.
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repeat images by adding independent Gaussian variates to each voxel in quadrature [28],

s →
√

(s + n1)2 + n2
2, where

(
n1

n2

)
∼ N(0, σ2I).

The Gaussian standard deviation was set proportional to a datum of the 95th percentile of
image intensities, as this should be more robust than the potentially unreliable maximum
intensity (e.g. in the presence of a few unnaturally bright voxels from pulse artefact).
Standard deviations of 1 and 1.5% of datum were used for the baseline and simulated
repeat images respectively, with greater noise in the repeat in an attempt to compensate
for the interpolation-based smoothing of the original noise present in the baseline when
this is transformed into the repeat image. Because of the simulated nature of the atrophy,
bias field, and noise, ground truth results are available for comparison with the estimated
deformation and bias fields. The results can be quantified over either the original base-
line subjects’ semi-automatic brain tissue segmentations, or over propagated BrainWeb
intracranial volume labels, used in the atrophy simulation meshing process.
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Figure 5.1: Pearson correlation of estimated with true bias field after each registration step.
The metric has been evaluated over a tight brain-mask and a more inclusive intracranial
region.

Results

Figure 5.1 shows bias correction results for the three subjects, before registration, and
after each of the three registration levels, with both masks, in terms of the correlation
of estimated and true bias fields. Figure 5.2 shows two further metrics: coefficient of
variation of the ratio (as used by Sled et al. [28]) over the brain mask, and RMS Error
between estimated and true fields over the intracranial mask (note that no scaling has
been deemed necessary here, since DBC does not add arbitrary multiplicative constants).
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Results have also been produced for the remaining combinations of mask and metric; these
are very similar, and are not shown here.
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Figure 5.2: Coefficient of variation (std/mean) of the ratio of estimated to true bias field,
evaluated over the brain mask, and RMS error between estimated and true fields over the
intracranial mask.

Figure 5.3 presents registration results in terms of average Euclidean distance between
estimated and true displacements, evaluated over the intracranial mesh, for the three reg-
istration levels, both with (left) and without (right) interleaved differential bias correction.
Figure 5.4 gives similar results quantified in terms of the RMS error in log-transformed
Jacobian determinants, over the brain tissue mask. Displacement fields evaluated over the
brain tissue, and Jacobians compared over the intracranial mesh exhibit similar patterns.

Discussion

At this stage, with only a small number of subjects analysed, the results should not be
interpreted too strongly; they are, nonetheless, very encouraging. Regardless of the exact
metric used to quantify the bias correction performance, or the mask region over which it
is analysed, results for all three subjects show an almost universally monotonic increase
in bias correction performance with more precise registration. In all cases, the final bias
correction is significantly better than the original use of DBC on the images with only
rigid registration.

At each level of registration, the addition of interleaved DBC seems to improve the
accuracy of the registration results (compared the FEM gold-standard). There appears to
be some evidence that without DBC (right-hand plots of figures 5.3 & 5.4) the registration
accuracy degrades with finer control-point spacings, as the algorithm begins to register the
bias (an example of over-fitting, since the similarity measure is increasing all the time).
With DBC however, the accuracy (as well as the NMI objective function) increases with
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Figure 5.3: Error in estimated deformations (Euclidean distance between estimated and
true displacement vectors), evaluated over the intracranial mask. Results are shown for
each registration level, with (left) and without (right) differential bias correction.
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Figure 5.4: Error in volume change maps (RMS error in log |Jacobian|) after each regis-
tration level, evaluated over the brain mask. Left: with DBC; right: without.
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every finer level of registration, whether measured via direct displacement field agreement
or Jacobian determinants. This suggests that registration in the presence of bias might be
genuinely improved through the use of DBC, in terms of more accurate correspondence,
rather than just better image similarity. See Crum et al. [60] for detailed discussion
regarding registration performance. Final NMI image similarities for the three subjects
are given in table 5.2, showing that DBC also significantly improved image similarity —
even though NMI should be relatively insensitive to bias, compared to simpler measures
such as summed squared error or intensity correlation.

Method subject 1 subject 2 subject 3
with DBC 1.72805 1.77095 1.74017

without 1.62507 1.64478 1.63176

Table 5.2: Final values of the Normalised Mutual Information similarity criterion, at the
finest level of the FFD registration, with and without the interleaved use of differential
bias correction.

Interestingly, in their work on template-based single-image bias correction, in which a
single multi-level registration step is followed by a single bias correction step, Studholme
et al. [48] commented that further registration and bias correction appeared to be gen-
erally unrequired. However, the crucially important distinction here is that they did not
have access to gold standard registration results; only their bias field gold standard. So
their comment may simply indicate that iterated registration and bias correction did not
improve the similarity criterion in their case — the registration accuracy may actually
still improve. It is possible to get gold standard registration results for inter-subject corre-
spondence, for example, via the simulation of deformation fields from population statistics
[61], so this could be investigated more carefully.

Another interesting comment made by Studholme et al. [48] is that B-Spline models
with energy-based regularisation terms (cf. the volume preservation terms used in [62,
63]) may wrongly attribute volume changes to volume-preserving displacements. Here,
we have found the multi-level B-Spline model [53] sufficiently robust to require no such
regularisation term, though this question may be worthy of further investigation.

5.2.6 Plan of future work

Further research on this topic will involve both modification of the techniques, and much
more thorough optimisation and evaluation of the results. The combination of non-rigid
registration and differential bias correction opens up a bewildering array of options re-
garding the exact methodology, since both registration parameters (such as the choice of
control-point spacings) and bias correction parameters (such as kernel size) are very likely
to interact. Thanks to the possibility of simulating bias fields and quantitatively measur-
ing performance, it may be feasible to do much of the parameter tuning automatically,
using a powerful computing cluster to perform numerous runs of the algorithm. However,
simulated data has its limitations, so manual qualitative assessment of the effect on real
images will also be necessary.
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The specific objectives of further work should be to firstly determine good, if not
perfect, settings for the existing methodology, then to demonstrate through careful evalu-
ation that the technique offers sufficient benefits to either (ideally both) bias correction or
non-rigid registration of typical brain images to be worth the extra computing resources re-
quired. Following that stage, more novel methodological development could be considered,
for which some initial ideas are presented next.

5.2.7 Methodological development

Modification of the existing technique

The most obvious area for potential improvement is in the choice of smoothing method.
The original paper on differential bias correction [16] speculated that frequency domain
filtering could be more successful, as it can explicitly separate different components of the
spatial frequency spectrum, with the possibility to distinguish bias from atrophy, regis-
tration error, and noise. Filtering can be done either in log-space (homomorphic filtering
[50]) as used by Lewis and Fox [16], or in the original intensity space (as for homomorphic
unsharp masking [24, 49]). There is also a decision to be made whether the ratio of the
original images is filtered, as in Lewis and Fox [16], or whether the ratio is taken after
filtering the originals, as in Studholme et al. [48]. The size of the filtering kernel can be
easily adjusted, though finding theoretical support for the choice is harder. The original
DBC paper states that the 11×11×11 voxel cube was chosen on the qualitative basis of ap-
parent removal of anatomical structure. The work of Brinkmann et al. [24] on single-image
correction suggested kernels should be larger than typically used. However, the problem of
filtering the differential bias is clearly different to that of smoothing the original image; only
the moving boundaries of atrophic regions need to be smoothed out, rather than the main
structure of the brain. Brinkmann et al. [24] found that large (64× 64 voxel) mean filters
performed best for the HUM examples they investigated. They worked only in 2D though,
and it seems conceivable that the use of 3D filtering might alter the optimal kernel size,
since many more voxels are included in cubes of equivalent side-length. Disappointingly,
they also neglected to compare HUM with homomorphic filtering, despite commenting
that HUM is an approximation to it (the ‘unapproximated’ convolution in log-space is by
no means computationally demanding). So there is clearly scope for further research here,
both in the single image case and for differential bias correction. The other main option
if convolution filtering is used is whether to use the median, mean, or something else.
Lewis and Fox [16] used the median filter due to its desirable characteristics of removing
Gaussian noise (the Rician distribution of MRI magnitude data is approximately Gaussian
in foreground voxels) and erasing structures smaller than the kernel radius. Studholme
et al. [48] used Gaussian (weighted mean) filtering in their template-based bias correction,
but without theoretical justification. Considering Brinkmann et al.’s finding that median
filtering is sub-optimal [24] (perhaps due to being constrained to choosing its output from
among the input values), but in light of the obvious problems in differential bias correc-
tion of outlying atrophic voxels biasing the mean, an appealing alternative might be the
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investigation of robust statistics such as the trimmed mean [64, 65]. A trimmed-mean
filter could reject outlying intensity differences from atrophy, while maintaining some of
the mean filters apparently superior bias field estimation properties. A number of other
robust statistics may be worth investigation [66, 67].

Another important aspect with convolution filter smoothing is masking. Lewis and Fox
[16] mask the log ratio-image (as described earlier) before filtering it; for boundary voxels,
neighbouring zero-voxels outside the mask are included in the computation of the median.
Including zeros has the effect of pulling the estimated bias field toward unity (after the
anti-log transform), which is unlikely to be harmful, but may be worse than treating data
outside the mask as being censored, and computing the median only of the valid data.
Studholme et al. [48] use masking with Gaussian filtering, before dividing by the filtered
mask image, which is equivalent to re-normalising the truncated Gaussian kernel near the
boundaries to have unit sum. This also allows the estimate to be extrapolated beyond the
original mask, and possibly beyond the region for which it is reasonable. Borrowing the
mathematical terms domain and range, the domain mask could be defined to include the
set of input voxels which can be considered to provide useful information for the estimate,
while the range mask (which could be smaller or larger) would define the set of voxels for
which an output is desired and/or for which the extrapolation may be trusted. At this
stage, an intuitively appealing idea is that the domain mask should be the intersection
of the two brain masks, while the range mask would cover at least their union, probably
dilated. Outside the range mask the estimate of a unity gain field seems most reasonable.
Note also that masking choices exist with the registration algorithm too. In the work
reported above masking was not used for registration, but doing so may improve the
results by ensuring that irrelevant extracranial changes cannot influence brain structures.
The B-Spline FFD algorithm of Schnabel et al. [53] allows for voxels outside a target-
space mask to be ignored in the similarity criterion, and/or for masked-out control-points
to be made passive. The use of a source-space mask would require minor changes to
the code. On the other hand, the procedure used to generate the above results included
transformation, B-Spline interpolation, and subsequent re-binarisation of the source mask
after each registration level, so that both target and source masks could be used for the
DBC step, which may be an unnecessary computational burden (especially with shrewd
use of separate domain and range masking).

Model-fitting

As an alternative to convolution (or FFT) based filtering methods, smoothing can also be
effected by fitting parametric models to the data — often fitted directly to the intensity
non-uniformity (see e.g. [25]; Vovk et al. [20] mention many others), here they could be
used to model the differential bias field. B-Spline models are used in the popular and
high-performing N3 [28] and BFC algorithms [30]. Note that control-point spacings for
bias field models tend to be much higher (of the order of 50 or 60mm [28, 30]) than those
used for non-rigid registration (typically below 20mm and sometimes as low as 1.8 mm,
[48]), though the manually corrected gold standard data of Studholme et al. [48] utilised
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a B-Spline with 10mm control-point spacing. It seems possible that Studholme et al.
[48] might have over-corrected their gold standard, removing genuine anatomical tissue
variation, and that their subsequent finding of small kernels to be optimal could simply
reflect this, but much more work (ideally grounded in the theory of MR physics) would
be needed to support this speculation.

Using a model-fitting technique instead of filtering allows an alternative (possibly more
principled) approach to outlier detection and removal. Instead of using median filtering
or robust statistics to remove extreme values, the goodness of fit can identify, and either
remove or down-weight, outliers to the model. Techniques such as iteratively-reweighted
least squares [68], the robust mixture-model based GLM implemented as an extra in
SPM5, or the RANSAC algorithm popular in computer vision [69], might all be worth
consideration. A related idea was used in the dual image approach of Lai and Fang [22],
for the correction of a surface-coil image using a body-coil reference. They fit a membrane
spline to points in the ratio-image which are ‘locally predictable’ (based on the size of
the error from fitting a plane within a local window around each point). This concept
may also be useful for longitudinal differential correction, since atrophic and artefactual
changes other than INU are likely to be less locally predictable than the more smoothly
varying bias field.

DBC’s relation to registration

There is also the potential to incorporate iterative differential bias correction within a
fluid-registration algorithm [70]. Large-deformation techniques typically include multiple
re-gridding steps [32] which involve the generation of a new source image (and the ac-
cumulation of displacement fields); at each of these re-griddings it would be possible to
interleave either the simple filter-based DBC procedure used thus far, or a more complex
model-based algorithm. Interestingly, however, Studholme et al. [48] advise against the
use of such highly localised registration techniques in the presence of regional tissue vari-
ations. Instead, they went on to develop a new regionally-computed variant of mutual
information [18], this RMI similarity criterion also aims to cope with true local tissue
intensity variability arising from neurodegenerative disease or developmental processes –
effects which may be of too fine a scale for common retrospective intensity correction
methods to model. It may be important to consider such an approach, and possibly other
further removed alternatives, such as feature-based non-rigid registration techniques like
those of Xue et al. [71] and Cachier et al. [72]. Similar to the work of Studholme et al.
[18],9 Loeckx et al. [73] develop a measure of conditional mutual information (CMI), in
which the intensity-based MI is essentially computed locally from conditional probabilities
within spatial ‘Parzen window’ kernels.

The most ambitious goal for future work would be the development of a fully integrated
— rather than just interleaved — combined longitudinal non-rigid registration and bias
correction. Like the unified segmentation model of Ashburner and Friston [27], a single

9In fact, it appears equivalent, but correspondence with Loeckx reveals that this appearance is due to
an error in [18].
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generative model could be optimised (albeit perhaps with an Iterated Conditional Modes
algorithm as they used), but in this case tailored to the analysis of serial MRI. There
is limited work in the literature on combining bias correction and registration, the most
notable work appears to be that of Knops et al. [74], who show that the incorporation of
a bias correction method reduces the number of misregistrations without loss of accuracy
in already-successful ones, and some currently unpublished developments by Andersson
et al., which are available in the software tool fnirt within FSL.10 The review by Vovk
et al. [20] contains a suggestion that combined information theoretic registration and bias
correction should be explored. Lewis and Fox [16] also mentioned the possible use of
joint intensity histogram sharpening as a bias correction optimisation criterion. Since
joint entropy based methods have proven successful for non-rigid registration, the use of a
single mutual information (or similar) objective function for both tasks is very appealing,
and, apparently, unexplored thus far. It might also be possible to include segmentation
into a longitudinal registration and bias correction technique, combining the approach of
CLASSIC [75] with that of SPM5 [27], though further work would be required to explore
the feasibility and desirability of such a complex model.

Finally, the question of whether sets of more than two images can be treated in any
better way than via separate pairwise differential bias correction should be addressed. Note
that Learned-Miller and Jain [47] developed a method that can use multiple subject images
(not necessarily serial repeat scans), but this method requires of the order of 20 or more
images, which would very rarely be applicable to single-subject longitudinal correction.
Their technique is also more focussed on statistically removing common components of
bias from potentially quite different images, rather than more directly eliminating the
differential bias between approximately similar images. Combined multi-image DBC and
registration would be a challenging task, since registration techniques for more than two
images are themselves a topic of current research [76].

5.2.8 Future Experiments

To begin with, the experiment discussed here should additionally evaluate the use of bias
correction after a complete multi-level non-rigid registration step without interspersed bias
correction, to prove that the interleaved method is beneficial. It would also be interest-
ing to test the effect of the combined algorithm on the simulated atrophy data without
simulated bias — does the method falsely detect differential bias? And how does the reg-
istration performance compare without bias correction on this data without differential
bias. Beyond these investigations, there is great scope for further experimental research.

The pilot study presented above used only a very small number of images, simply
to see whether the observed behaviour showed any apparently consistent trends. Future
work should involve a much greater number of simulated atrophy images, mimicking a
range of disease severities and perhaps healthy controls. Severe atrophy, and perhaps
the presence of additional artefacts such as simulated motion or pulsatile flow [77], would
present interesting challenges to the combined DBC and registration approach. It will also

10Further details can be found at http://www.fmrib.ox.ac.uk/fsl/fnirt/index.html.

http://www.fmrib.ox.ac.uk/fsl/fnirt/index.html
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be important to test the algorithm on real data, though indirect methods of performance
quantification will then be required. Lewis and Fox [16] reported two such quantitative
tests, using the alteration in results from brain BSI [15] to reflect on bias correction
performance. In the first, same-day scan pairs were used to investigate whether DBC
induced false changes in brain volume. In the second, the effect of DBC on brain BSI
was investigated in one group of subjects with negligible visually-assessed differential bias,
and one group with more significant differential bias. They found that DBC reduced the
amount of atrophy found in both groups, suggesting that some genuine atrophy was being
removed by the process. There is reason to hope that combined longitudinal registration
and bias correction will be more successful here, since the final bias correction step on the
aligned images will have greatly reduced opportunity to ‘correct’ for intensity differences
due to the atrophic mis-alignment of the original image pair. The experiments of Lewis
and Fox [16] should therefore be replicated with the new algorithm. Similar data could
be used to optimise filtering and masking options discussed above.

Both the simulated atrophy images and the real scans used in the original DBC paper
were acquired at 1.5T, an interesting and important avenue for further investigation is
the correction of higher field image sets. The Neurogrid project [78] has images of the
same subjects acquired at both 1.5 and 3T, which could allow a useful comparison of
performance; broadly speaking, the better the algorithm, the more similar the two field
strength’s images should appear (though other changes in contrast and SNR will of course
mean that identical images cannot be the goal). In Huntington’s Disease [79], there is great
interest in the caudate — a structure whose main source of confounding artefact in MRI
is intensity non-uniformity. The HADNI project within the TrackHD venture11 could be
a very important opportunity for serial registration-based bias correction to contribute to
clinical research. The data includes 3T images. It may also be a valuable contribution to
the field to investigate more realistic simulation of intensity non-uniformity at high field,
perhaps including a simple brain segmentation to model object-dependent RF penetration
and/or standing wave effects, if feasible. Lewis and Fox [16] did not compare the use of
their differential bias correction algorithm to the separate application of any single-image
bias correction techniques. Such comparison, with a popular and respected algorithm such
as N3 [28], seems essential to motivate the use of DBC. It would also be interesting (if
possible) to compare the method to the implementation of template-based bias correction
by Studholme et al. [48], which appeared to be particularly successful.

5.2.9 Conclusion

The important problem of correcting differential bias in serial MR images. has been in-
troduced, and background information on the sources of the bias field, and on existing
bias correction methods has been given. An existing DBC method has been extended and
integrated within a multi-level non-rigid registration algorithm. Evaluation on simulated
atrophy data showed improvements to both bias-correction and registration from their
combination. Potential ideas for more novel developments have been explored. In closing,

11http://www.track-hd.net

http://www.track-hd.net
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it is important to reiterate that this work is of great relevance to other research in this the-
sis. More accurate longitudinal registration and differential bias correction would directly
impact on deformation- or tensor-based morphometry, as well as longitudinal methods of
voxel-based morphometry. The information derived from the deformation fields should
be more reliable and valid, whether used directly (for example in multivariate analysis
of the strain tensor) or indirectly (such as through Jacobian-modulation of grey-matter
segments).
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Chapter 6

Conclusion

In this thesis, an attempt has been made to address a particularly broad range of is-
sues, even within a field that is well-known for requiring inter-disciplinary approaches and
varied expertise. New permutation-testing strategies for general linear models have been
developed and thoroughly evaluated, and theoretical connections between existing meth-
ods strengthened. Practical methodological developments have been made with regard to
the popular technique of voxel-based morphometry, and the resulting improvements have
been demonstrated on real and simulated data. Generalised tensor-based morphometry
methods and theory have been advanced, particularly with regard to the number and type
of measurements available for testing different aspects of morphometric change. We have
begun to address the problem of differential bias, considered to be of great importance to
the subsequent analysis of longitudinal MRI data. Despite the attempt at breadth, several
parts of the work have been performed in great depth and with close attention to detail.
We have detected some flaws in published methods of tensor reorientation, and explained
carefully how they may be rectified. We have also endeavoured, especially during the first
chapter, but also throughout the thesis, to keep in mind the possible clinical applications
of the work. This is most obvious in the chapter on voxel-based morphometry, where
the masking section directly studies and solves a problem identified in VBM of neurode-
generation, but further examples can be found in the attempts to visualise and interpret
complex findings from generalised TBM.

Another goal of this thesis has been to open up avenues for further exploration. Every
major segment of work has been accompanied with suggestions or more detailed plans for
future research. Several of the ideas proposed seem to have major potential, including the
suggestion that a particular permutation-testing strategy could allow much more rigor-
ous analysis of unnormalised ‘contrast’ maps than is currently available in the literature.
Another particularly notable new idea is the potential for Riemannian Cramér testing of
strain (or diffusion) tensors and their principal eigenvectors.

The original aim of the work was to develop methods of voxel-wise statistical anal-
ysis for application to data derived from longitudinal structural MRI. In fact, most of
the significant developments in the thesis are more general than this, for example with
application to cross-sectional morphometry or even functional imaging. Much of the work
on tensor-based morphometry is of immediate relevance to diffusion tensor image analy-
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sis. The permutation-testing methods are of very wide applicability, though, somewhat
ironically, are not particularly well-suited to longitudinal data, which typically requires
iteratively computed mixed-effects models, with which the additional computational de-
mands of resampling methods are not currently compatible. We hope to begin to ad-
dress this challenging task in further work, though we note that a simple approach using
(longitudinal) summary statistics is immediately available within the permutation-testing
framework proposed here.

We believe that serial MR imaging still has much more to offer in the analysis of neu-
rodegenerative diseases, and that both the image processing and the statistical modelling
must be further tailored to the longitudinal nature of the data in order to draw the most
value from such studies. It is hoped that this thesis contributes both to this application
and to its supporting methodology.

6.1 Summary of contributions by chapter

6.1.1 Introduction

• Concise summary of clinical challenges.

6.1.2 Permutation Testing

• Theory of permutation testing methods for arbitrary linear models, including mul-
tivariate data. FSL’s randomise and SnPM only handle univariate data, and have
previously been incorrect for arbitrary linear models.

• Thorough Monte Carlo evaluation of different permutation strategies, including novel
formulations.

• Implementation of permutation testing. General code, allowing non-standard statis-
tics such as Cramér, and the use of searchlight neighborhoods. Time- and memory-
efficient parallel code (allows higher-resolution data than randomise/SnPM).

6.1.3 Voxel-based Morphometry

• Discovery of potential problem with standard SPM mask-creation strategy, and de-
velopment of two original solutions.

• Implementation of new methods for combined longitudinal registration and VBM
preprocessing, one is entirely novel, the rest are newly implemented to work with
SPM5’s unified segmentation.

• Investigation of the relative performance of the VBM methods using a novel approach
to the generation of gold standard results, employing an atrophy simulation model.

• An original summary of important aspects related to reporting VBM studies (joint
work with others at DRC).
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6.1.4 Multivariate Morphometry

• Theoretical concepts. Synthesis of Hencky tensor (from solid mechanics) and log-
Euclidean analysis of strain tensor (mathematically motivated). Clarification and
extension of methods of tensor reorientation.

• Presentation of FWE-corrected results on multivariate tensor-based morphometry.
Other work has used less strict FDR-correction or no correction at all for multiple
comparisons.

• First use of Cramér test and Watson test for morphometry data.

• Use of searchlight method on structural imaging data, plus extension to FWE cor-
rection, and use of scale-pyramid approach.

6.1.5 Further Developments

• Explanation of cutting edge theory regarding the semi-Riemannian or affine-invariant
mean of Jacobian tensors.

• Practical suggestion for implementation of above Jacobian tensor analysis.

• Differential bias correction. Iterative registration and differential bias correction.
Novel proposal to extend existing work. Basic implementation, using multi-level
Free-Form Deformation registration. Original ideas for further work, in particular
the use of novel trimmed-mean filtering for DBC.

6.2 Coauthored Publications

6.2.1 Journal

• An investigation into a potential problem with the standard method for defining the
set of voxels analysed in VBM, with suggestions of an improved technique [1].

• Guidelines for reporting VBM studies, discussing some of the more subtle issues and
highlighting some potential pitfalls [2].

• Fronto-temporal lobar degeneration investigated using vertex-wise statistical analy-
sis of cortical thickness [3].

• A VBM study of Huntington’s disease (HD), looking for relationships between re-
gional brain volumes and a measure of the genetic severity of the disease[4].

• A VBM study of facial emotion recognition in HD[5].

• Evaluation of brain boundary shift integral and Jacobian integration atrophy mea-
surement techniques using realistic simulated atrophy [6].

• Post-mortem imaging, including non-invasive thermometry using the apparent dif-
fusion coefficient, and temperature-adjusted FLAIR imaging [7].
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• The simulation of serial MRI exhibiting AD-like atrophy, using a finite element
method to deform the baseline image [8].

• A fast implementation of a B-spline free-form deformation registration algorithm on
multi-core graphics hardware [9].

6.2.2 Refereed conference

• A formulation of the analytical gradient of the normalised mutual information reg-
istration criterion, suitable for parallel implementation on a graphics card [10].

• Evaluation of atropy measurement using simulated atrophy [11].

• Evaluation of atropy measurement using simulated atrophy (MIUA Best Paper
Award) [12].

• Implementation and comparison of four methods of longitudinal VBM evaluated
using simulated atrophy [13].

• Simulation of motion and pulsation artefacts in MRI, and investigation of their effect
on automatic atrophy measurement [14].

6.2.3 Conference abstracts

• Posterior cortical atrophy (the ‘visual AD’) studied with VBM and vertex-wise anal-
ysis of cortical thickness [15].

• Exploration of common morphometric ‘nuisance’ covariates (age, gender and head
size) in a healthy control population [16].

• Multivariate generalised TBM and searchlight-based morphometry on a longitudinal
AD cohort (NIH Travel Award) [17].

• Monte-Carlo evaluation of size and power of different strategies for permutation-
testing with general linear models [18].

• Comparison of different approaches for longitudinal VBM, and TBM-like voxel-
compression mapping on real AD data [19].

• A VBM study of the morphometric effect of a candidate anti-amyloid drug, compar-
ing treatment- and placebo-group AD patients [20].
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Appendix A

Mathematics for the linear model

This appendix presents some mathematical background, together with key results and
derivations, where relevant to other topics considered in the thesis. In particular, it fo-
cuses on the general linear model, and the supporting concepts of subspaces and projection
matrices. It includes material on the multivariate general linear model which is less com-
mon in the neuroimaging literature. An attempt has been made to provide more thorough
and/or more logically motivated derivations of results that are frequently stated in iso-
lation, as well as a more complete presentation of reformulated variants and extensions.
Section A.4.8 includes a novel proof of a simplified result for the partitioned form of a
linear model corresponding to an arbitrary estimable contrast.

A.1 Vector spaces

Consider a general n × p matrix X, made up of the p columns xi. Pre-multiplication
by X takes a vector from Rp to Rn: w = Xv. In general only a subspace of Rn may
be reached, consisting of all the vectors which can be constructed as linear combinations
of the columns of X, and hence the dimension of this subspace is the number of linearly
independent columns of X. This subspace is known as the range or column-space of X, and
denoted C(X), and its dimension is called the rank of X. Clearly r = rank(X) ≤ p, and
in the case of equality we say X has full column rank. The number of linearly independent
rows rank(XT ) can be shown to equal the number of linearly independent columns [1],
and hence r ≤ n is also true.

If r < n, then n− r of the rows are linearly dependent, i.e. they can be made up from
linear combinations of the other rows. This means that in some linear combination of all
the rows wT X, we can find w such that the dependency allows us to cancel some rows
with others, giving wT X = 0, and the dimension of the subspace of all such w is given
by n − r. This subspace is known as the left null space of X; every vector w within it is
orthogonal to every vector u in C(X) because wT u = wT (Xv) = (wT X)v = 0, and we
therefore say that this subspace is the orthogonal complement of the column space, which
we denote C(X)⊥. Because the bases of these two spaces are orthogonal, together, they
include rank(X) + n− rank(X) = n linearly independent vectors, and therefore span the
whole of Rn.
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There are naturally an equivalent pair of orthogonal subspaces within Rp given by the
column space of XT , or the row space of X, and the left null space of XT , which we call
simply the null space of X, N(X). Any vector v ∈ Rp can be written as the sum of a vector
in the null space and another vector in the row space, and the action of pre-multiplication
with X maps the null space component to zero, and the row space component to a vector
in the column space. There is actually a one-to-one mapping from the row space to the
column space, which are both rank(X)-dimensional, and the pseudo-inverse which will
be introduced below inverts this mapping [1]. These four subspaces are the fundamental
subspaces of the matrix X; to summarise their properties:

C(X)⊥ = N(XT )

C(X) = N(XT )⊥

C(X) ∪N(XT ) = Rn

C(XT )⊥ = N(X)

C(XT ) = N(X)⊥

C(XT ) ∪N(X) = Rp.

Considering the rank(X) linearly independent columns of X, we may choose these
vectors so that they are mutually orthogonal unit vectors, i.e. an orthonormal basis for
C(X), and we may collect them into a matrix U , such that UT U = I. Any vector in
C(X) can be represented as u = Uv, and we observe that the matrix P = UUT maps
these vectors onto themselves Pu = UUT Uv = U(UT U)v = Uv = u. Furthermore, due
to the orthogonality of the subspaces, any vector in the left null space will be mapped to
zero, and hence any general vector y ∈ Rn, which has components in the column space and
left null space, will be mapped solely to its component in the column space, i.e. P projects
onto the column space. Because the (left null space) component removed in the projection
is orthogonal to the (column) space projected to, P is called the perpendicular projection
matrix onto C(X) [2]. P is symmetric (P T = (UUT )T = UUT = P ) and idempotent
(PP = UUT UUT = UUT = P ) and, interestingly, given the non-uniqueness of the basis
U , is unique.1

The projection matrix P has rank(X) eigenvalues of one, corresponding to vectors in
the column space (e.g. the orthonormal vectors in U), and n−rank(X) eigenvalues of zero,
corresponding to vectors in the left null space. This means rank(X) = rank(P ) = tr (P ),
since the trace of any matrix is equal to the sum of its eigenvalues.

Any vector y ∈ Rn can be written as Iy = (P +I−P )y = Py+(I−P )y, since Py is the
component in the column space, (I−P )y must be the orthogonal component in the left null
space (and indeed, these components are orthogonal since (Py)T (I−P )y = yT P T (I−P )y

1To prove the uniqueness, hypothesise the existence of a different projection matrix Q; for any vector
y ∈ Rn we have Py = Qy, since they project to the same vector (the component of y in the column space);
however, there is no restriction on y, so we may for example choose a vector with zeros everywhere apart
from a single one in the ith element, such a vector simply picks out the ith column of Py and of Qy,
implying that these columns are equal, and hence, given the free choice of i, that all columns of P and Q
are the same.
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and P T (I − P ) = P (I − P ) = P − P = 0). The matrix R = I − P is symmetric and
idempotent, and is the unique perpendicular projection matrix onto C(X)⊥.

An orthonormal basis Un for R = UnUT
n , can be found from the n− rank(X) linearly

independent vectors in the left null space. The orthogonality of the subspaces means that
U and Un would be mutually orthogonal, and hence that Uf = [U Un] satisfies UT

f Uf = I,
and also Uf spans the whole of Rn, meaning that its perpendicular projection matrix
UfUT

f is also an identity.
We can similarly find orthonormal matrices V , Vn and Vf = [V Vn], such that V T

f Vf = I

and VfV T
f = I, where V and Vn are respectively bases for the row space and null space of

X.

A.2 The Singular Value Decomposition

It can be shown [1] that these bases can be chosen such that X = UfSfV T
f = USV T ,

where S is a (unique)2 diagonal matrix with rank(X) positive values on the diagonal,
known as the singular values, and Sf is an n ×m matrix with S as its upper-left block
and zeros elsewhere. X = UfSfV T

f is known as the singular value decomposition (SVD)
of X, and X = USV T is the compact SVD.3

A.2.1 Numerical precision

Among the strengths of the SVD is that has good numerical properties [1]. In particular,
the orthogonal matrices U and V preserve lengths of vectors they multiply, while the ma-
trix of singular values S clearly characterises the relative scalings involved for the original
matrix. The SVD provides a good measure of the ‘effective rank’ of a matrix in the case
that some rows or columns are almost linearly dependent. Such ‘ill-conditioned’ matrices
might appear to have different rank depending on the exact operation, algorithm or com-
puter platform. By considering singular values below a certain threshold to be equivalent
to zero, the resulting modified decomposition approximates in the original matrix in an
optimal way (in terms of the Frobenius norm of the difference) and has a clear and nu-
merically stable rank.4 Furthermore, the condition number of a matrix (the ratio of its
largest to smallest singular values) can be used to bound the error of a solution that uses
its inverse [1].

A.2.2 Related eigen-decompositions

We find that XXT = UfSfST
f UT

f and XT X = VfST
f SfV T

f , which are both in the form
of eigen-decompositions for symmetric matrices. SfST

f is an n× n matrix, while ST
f Sf is

2The matrices U and V are not unique, for example columns corresponding to the same singular value
can be negated without changing the product or the spaces spanned. More general results regarding
equivalent SVDs can be found in [3].

3We use the subscript f on the full SVD instead of the more obvious approach of using a subscript r
on the reduced SVD, because the derivations later make extensive use of the reduced form, and hence look
less cluttered without the subscript.

4For example, MATLAB defines the rank as the number of singular values above a tolerance t, given
by t = max(m, n)×maxi si × ε where ε is the machine precision (2.2e−16 for 64-bit IEEE floating point).
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m×m. However, they both have S2 as their upper-left blocks, implying that the non-zero
eigenvalues of XT X and XXT are the same. We can also observe

XV = USV T V = US

UT X = UT USV T = SV T

which allow us to derive either set of singular vectors corresponding to non-zero singular
values from the other set together with S.

A.2.3 The SVD of a projection matrix

A general projection matrix P is symmetric and idempotent, so the eigen-decompositions
discussed above, PP T and P T P , are both decompositions of P , meaning that U and V in
the compact SVD of P are the same.5 Futhermore, a projection matrix has eigenvalues
of either zero or one, meaning the compact SVD’s S = I. This gives the compact SVD
as P = UUT , where U is an n × rank(P ) matrix. Note that we previously defined a
particular projection matrix, onto the space spanned by an orthonormal basis U , as UUT ;
here we have shown that the SVD allows us to recover an orthonormal basis for a general
projection matrix.

A.3 The Moore-Penrose Pseudoinverse

This section presents some material relating to generalised inverses, and more specifically
the Moore-Penrose pseudoinverse, which is useful elsewhere in the thesis.

For a full rank square matrix X, there is a unique inverse X−1 such that X−1X = I =
XX−1. For a ‘thin’ rectangular matrix of full column rank, i.e. an n×m matrix X with
rank(X) = m < n, XT X is an m×m matrix with rank m [1], and is hence invertible, which
means we can find a ‘left-inverse’ XL = (XT X)−1XT such that XLX = I. Similarly, a
‘wide’ rectangular matrix with full row rank has a right-inverse, XR = XT (XXT )−1 such
that XXR = I.

For any rank-deficient matrix X (whether square, thin or wide), we may find a non-
unique generalised inverse X− such that XX−X = X [4]. The Moore-Penrose pseudo-
inverse X+ is the unique generalised inverse which satisfies three additional properties:

X = XX+X

X+ = X+XX+

(XX+)T = XX+

(X+X)T = X+X.

The pseudo-inverse can be computed in practice via the compact singular value de-
composition X = USV T .6 We show that X+ = V S−1UT satisfies all four necessary

5Since N(P ) and N(P T ) are the same, the full SVD’s Uf and Vf can also be chosen to be equal.
6Considering small singular values to be zero (see A.2.1), and hence not part of the compact SVD,
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properties:

XX+ = USV T V S−1UT = UUT

XX+X = UUT USV T = USV T = X (i)

X+XX+ = V S−1UT UUT = V S−1UT = X+ (ii)

(XX+)T = (UUT )T = UUT = XX+ (iii)

X+X = V S−1UT USV T = V V T

(X+X)T = (V V T )T = V V T = X+X. (iv)

We can also prove some useful additional identities. Since XT = V SUT is already in
the form of a compact SVD, its pseudoinverse is US−1V T which is (V S−1UT )T = (X+)T ,
showing that the pseudo-inverse and transpose operators commute. We can similarly show
that (X+)+ = X, and that

(XT X)+ = (V S2V T )+

= V S−2V T

= X+(XT )+ = X+(X+)T (A.1)

(XT X)+XT = V S−2V T V SUT

= V S−1UT = X+ (A.2)

where (A.2) automatically recovers the left-inverse in the case that it exists, and

(XXT )+ = (US2UT )+

= US−2UT

= (XT )+X+ = (X+)T X+ (A.3)

XT (XXT )+ = V SUT US−2UT

= V S−1UT = X+ (A.4)

with (A.4) recovering the right-inverse where it exists.
Note that X+ also reduces to the standard inverse in the case that it exists, since

for square full rank X the ‘compact’ SVD is actually the full SVD, for which UUT = I

and V V T = I and therefore USV T V S−1UT = I and V S−1UT USV T = I implying
V S−1UT = X+ = X−1. Also, it is interesting to note that a projection matrix is its own
pseudo-inverse, which can be verified by checking the basic properties, or observed from
the fact that its compact SVD has an identity matrix for S.

Note that (A.1) and (A.3) do not imply that (AB)+ = B+A+, which holds only in
some special cases [5]; a necessary and sufficient condition is

(A+A)BBT AT A(BB+) = BBT AT A. (A.5)

provides a numerically stable pseudo-inverse.
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We observe that XX+ = UUT = P — the perpendicular projection matrix onto
C(X), but note that the SVD furnishes a means of computing P = UUT , that is more
computationally efficient than computing the pseudo-inverse. We will later also require
the projection matrix for C(X)⊥, which is R = I − P . Again, the full SVD allows us
to directly compute R = UnUT

n . While this is no more efficient in itself, it is useful for
implementing an efficient permutation test, as described in section D.2.1.

A.4 The General Linear Model

In this section we derive the common t- and F-statistics, and their less commonly consid-
ered multivariate generalisation, for contrasts of parameters in a general linear model.

We begin with maximum likelihood solutions for the parameters, and then show that
the likelihood ratio principle leads to test statistics of a certain form. Distributional results
then motivate the definition of the F-statistic as the most convenient rearrangement of this
form. The two-tailed and single-tailed t-statistics are seen to be a simple special case of
the F-statistic. Some helpful alternative formulations and extensions are then considered.
Results are related to the multivariate case where appropriate.

A.4.1 Notation

There is no universally adopted standard for statistical notation, though some aspects are
reasonably consistent. In keeping with [1] and [2], no distinction is made here between
scalars and vectors, though we will denote matrices using capital letters. For this reason,
we use B and b for the parameters in a multivariate or univariate model,7 instead of β,
which is more common within the literature for univariate data. Following [2], random
variables will not be highlighted, since these should be clear from the context.

It is essential to distinguish between the additive Gaussian errors in the linear model,
denoted as ε (E in the multivariate case), and the least-squares residuals from the fitted
model, denoted e or E. For example, the (multivariate) model assumed is Y = XB + E ,
the model fitted is Ŷ = XB̂ and the ‘error’ in this fitted model is the matrix of residuals
E = Y −XB̂.

Notational clashes have been avoided where confusion may occur. For example, P is
reserved for projection matrices, while permutation matrices are written S, for ‘shuffle’.
However, S has also been used in the singular value decomposition, as there should be
little risk of confusion between permutation and the SVD.

A.4.2 Maximum Likelihood for the Multivariate GLM

Consider n independent observations of an m-variate random column vector. The complete
data, given by the n-by-m matrix Y = [y1 y2 . . . yn]T , is modelled as a linear combination

7To avoid confusion later, we mention here that the dimensionality of a contrast of the parameters may
vary independently of the dimensionality of the parameters themselves, i.e. cT b is scalar, CT b a column
vector, cT B a row vector, and CT B a matrix.
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of some unknown parameters with additive error,

Y =


yT
1

yT
2
...

yT
n

 = XB + E =


xT

1

xT
2
...

xT
n

B +


εT
1

εT
2
...

εT
n

 .

X is an n-by-p design matrix and B is the corresponding p-by-m matrix of unknown
parameters. We assume εi ∼ N(0, V ) with m-by-m positive definite covariance matrix V .
The independence of the observations gives Cov[εi, εj ] = 0 for i 6= j, and means that the
complete likelihood factors into a product over the observations (rows of Y ):

p(Y |B, V ) =
n∏

i=1

N(yT
i |xT

i B, V ) =
n∏

i=1

N(yi|BT xi, V )

=
n∏

i=1

(2π)−m/2|V |−1/2 exp−1
2(yi −BT xi)T V −1(yi −BT xi)

Denoting the cost function L(B, V ) = −2 log p(Y |B, V ), we seek to minimise:

L =
n∑

i=1

(
m log(2π) + log |V |+ (yi −BT xi)T V −1(yi −BT xi)

)
= nm log(2π) + n log |V |+

n∑
i=1

(yi −BT xi)T V −1(yi −BT xi)

= nm log(2π) + n log |V |+
n∑

i=1

tr
(
(yi −BT xi)T V −1(yi −BT xi)

)
= nm log(2π) + n log |V |+

n∑
i=1

tr
(
V −1(yi −BT xi)(yi −BT xi)T

)
= nm log(2π) + n log |V |+ tr

(
V −1

n∑
i=1

(yi −BT xi)(yi −BT xi)T

)
= nm log(2π) + n log |V |+ tr

(
V −1(Y −XB)T (Y −XB)

)
.

Now, we wish to expand the quadratic form

D = (Y −XB)T (Y −XB)

= Y T Y + BT XT XB − Y T XB −BT XT Y,

and complete the square in B (with analogy to the scalar case in x, ax2 + 2bx = a(x −
b/a)2 − (b/a)2). Recalling section A.3, it is trivial to see that

(X+)T XT = (XX+)T = P (A.6)
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and that the following therefore hold:

X = PX = (X+)T XT X,

XT = XT XX+.
(A.7)

We use (A.7) to expand each term so as to contain XT X, and we then complete the
square by collecting these terms together:

BT XT XB − Y T XB −BT XT Y

=BT XT XB − Y T (X+)T XT XB −BT XT XX+Y,

=(B −X+Y )T XT X(B −X+Y )− Y T (X+)T XT XX+Y.

From equation A.6 we simplify

Y T (X+)T XT XX+Y = Y T XX+Y

giving

D = Y T Y − Y T XX+Y + (B −X+Y )T XT X(B −X+Y )

= Y T RY + (B − B̂)T XT X(B − B̂)

where we have defined B̂ = X+Y and R = I − P = I − XX+, and we note that R is
a perpendicular projection matrix, which projects onto the space orthogonal to C(X),
forming the mulitivariate residuals E = Y −XB̂ = RY .

The cost function may now be written

L = nm log(2π) + n log |V |+ tr
(
V −1Y T RY + V −1(B − B̂)T XT X(B − B̂)

)
L = nm log(2π) + n log |V |+ tr

(
V −1Y T RY

)
+ tr

(
X(B − B̂)V −1(B − B̂)T XT

)
the last term is the trace of a quadratic form with positive definite V −1, and therefore
reaches its minimum at B = B̂, independently of V . This gives the maximum likelihood
solution for the parameters,8 and leaves us to minimise the remaining terms with respect
to V , or equivalently with respect to V −1. Using some standard matrix calculus results9

∂ log |V |
∂V

= (V T )−1,

∂tr (V A)
∂V

= AT ,

8B̂ is also the least squares estimator of the parameters, and the best linear unbiased estimator [2].
9These were taken from http://www.cs.toronto.edu/∼roweis/notes/matrixid.pdf; related results

with a slightly more formal notation can be found in [6].

http://www.cs.toronto.edu/~roweis/notes/matrixid.pdf
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we have

L(B̂, V ) = l(V −1) = nm log(2π)− n log |V −1|+ tr
(
V −1Y T RY

)
∂l

∂V −1
= −nV + Y T RY,

and, setting the gradient to zero, we find the maximum likelihood estimate of the covari-
ance matrix, V̂ = Y T RY/n, and hence the value of the likelihood at its maximum:

L(B̂, V̂ ) = nm log(2π) + n log |Y T RY |+ tr (nI)

p(Y |B̂, V̂ ) = exp−L/2 = (2π)−nm/2|Y T RY |−n/2e−nm/2. (A.8)

A.4.3 The Likelihood Ratio Test

The Neymann-Pearson Lemma states that in order to compare two simple hypotheses
H0 : θ = θ0 and H1 : θ = θ1, a test based on the ratio of the values of the likelihood under
these hypotheses, which rejects H0 if

p(Y |θ0)
p(Y |θ1)

< c

for some constant c ≥ 0, will be the most powerful test for a given size α [7].10 For more
general null and alternative hypotheses, H0 : θ ∈ Θ0 and H1 : θ ∈ Θ, this optimality prop-
erty holds approximately for large samples when using the likelihood ratio test criterion
[8]:

maxθ∈Θ0 p(Y |θ)
maxθ∈Θ p(Y |θ)

< c.

In the case of the (multivariate) linear model Y = XB + E we wish to test the null
hypothesis that a simplified model Y = X0Br + E holds,11 where we assume C(X0) ⊂
C(X), or that the hypothesis is ‘nested’. To compare different non-nested designs X and
Z it is necessary to resort to more general model comparison techniques such as the various
information criteria (Akaike’s IC, Bayesian IC, etc.) or fully Bayesian model comparison
[9].

The reduced model can be equivalently viewed as a restricted design matrix or as
a restriction on the parameters B, as will become clearer below. The maximum of the
likelihood from (A.8) becomes

p(Y |B̂r, V̂0) = (2π)−nm/2|Y T R0Y |−n/2e−nm/2,

where R0 = I −X0X
+
0 is the residual forming matrix for the reduced model. This gives

10The sampling distribution of the likelihood ratio statistic must be known in order to determine c such
that the significance level is α.

11The notation Br is used for the parameters in the reduced model, to avoid confusion with B0 which is
used elsewhere to denote parameters corresponding to X0 in a model with X partioned into X1 and X0.
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the likelihood ratio statistic (and its scaled version, known as Wilks’ Λ [8]) as:

Λ∗ =
(
|Y T RY |
|Y T R0Y |

)n/2

(A.9)

Λ =
|Y T RY |
|Y T R0Y |

(A.10)

A.4.4 Distributional Results

Because C(X0) ⊂ C(X), P0 = X0X
+
0 ∈ C(X) and hence

PP0 = P0 = P0P (A.11)

PR0 = P (I − P0) = P − P0 = R0 −R (A.12)

RR0 = (I − P )R0 = R. (A.13)

R and R0 − R are orthogonal because R(R0 − R) = R − R = 0, and this orthogonality
endows the matrices Y T RY and Y T (R0 − R)Y with independent Wishart distributions
(central under the null hypothesis) [10].

In the univariate case, the scalar quadratic forms yT Ry and yT (R0 − R)y have inde-
pendent χ2 distributions (central under H0) with degrees of freedom respectively tr (R) =
tr (I − P ) = n− rank(X) and tr (R0 −R) = tr (P − P0) = rank(X)− rank(X0). Hence by
definition of the F-distribution as the distribution of the ratio of two such independent χ2

variables divided by their degrees of freedom, we see that

Λ−1 − 1 =
yT R0y

yT Ry
− 1

=
yT (R0 −R)y

yT Ry

ν2

ν1

1− Λ
Λ

=
yT (R0 −R)y/ν1

yT Ry/ν2

is F distributed with ν1 = rank(X)− rank(X0) and ν2 = n− rank(X) degrees of freedom
[2].

In summary, the test statistic can be written as

F =
MSH

MSE
=

SSH/DFH

SSE/DFE
=

yT (R0 −R)y
yT Ry

/
rank(X)− rank(X0)

n− rank(X)
(A.14)

where the Sums of Squares, and Mean-Squares are labelled for ‘hypothesis’ or ‘error’,
and we note the restricted or total sums of squares and degrees of freedom are SSR =
SSH + SSE = yT R0y and DFR = DFH + DFE = n− rank(X0).12

12The common terminology ‘total’ makes more sense in the context of ANOVA main effects tests, where
the reduced model contains only the mean, and hence MSR = V [y].
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Rao’s F approximation

In the multivariate case, the distribution of Λ is much more complicated. In this thesis,
the permutation framework is used for multivariate models, allowing direct testing of Λ
without knowing (assuming) its parametric distribtion. However, for completeness, we
briefly describe a parametric approach. Λ can be transformed to a statistic with an exact
F distribution in special cases where: m = 1 or m = 2 with arbitrary ν1; or: ν1 = 1
or ν1 = 2 with arbitrary m. Rao’s F approximation reproduces these exact cases and
provides a reasonable approximation in other situations [4].13

Rao’s F-approximation defines

t = n− rank(X0)

k = t− ν1 + m + 1
2

λ =
ν1m− 2

4

s =


1 if min (ν1,m) = 1√

ν2
1m2−4

ν2
1+m2−5

otherwise

ν∗1 = ν1m

ν∗2 = ks− 2λ

F =
1− Λ1/s

Λ1/s
/
ν∗1
ν∗2

resulting in F approximately (or exactly, as noted above) distributed as F(ν∗1 , ν∗2).

A.4.5 Estimable contrasts

Our derivation of B̂ = X+Y = (XT X)+XT Y above used a property of the (unique
Moore-Penrose) pseudo-inverse. In fact, the necessary properties apply to a group of non-
unique generalised inverses [4], meaning that B̂ = X−Y is in turn not unique.14 If the
design matrix is full column rank then the square matrix XT X is full rank and hence
invertible, leading to a unique solution B̂ = (XT X)−1XT Y . For rank-deficient X, we
find that although different choices of generalised inverse lead to different B̂, the fitted
data, Ŷ = PY = XB̂, is invariant to these choices. If we replace the projection matrix
P = XX+ = X(XT X)+XT with P = X(XT X)−XT , we can use the result that for any
generalised inverse G of XT X, XGXT = XGT XT is invariant to G [11], to show that PY

13Symbols have been translated to avoid conflicts elsewhere in this chapter; Rao ↔ here: q ↔ m, m ↔ k,
p ↔ ν1.

14Strictly, we should not refer to this solution as an estimate or estimator because of its non-uniqueness;
some texts also avoid the ‘hat’ notation for this reason.
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is unique. Alternatively, observe

E[Ŷ ] = E[PY ] = E[XB̂]

= E[XX−Y ] = XX−E[Y ]

= XX−XB = XB,

independently of the choice of generalised inverse.
Since we can uniquely estimate XB, we can naturally estimate expressions of the form

KT XB. Therefore a linear compound of the unknown parameters CT B for a column
vector or matrix C is ‘estimable’ if and only if we can write CT = KT X — i.e. a linear
combination of the rows of the design matrix. It is common in the neuroimaging commu-
nity to refer to such an estimable linear function as a ‘contrast’ [12], and we adopt this
terminology here, although in the more general statistics literature a contrast is usually
defined as a linear compound whose weights sum to zero [13].

The focus here has been on the conventional definition of estimability, which is con-
cerned only with the theoretical presence of the contrast in the row-space of the design.
In practice, machine precision must be taken into account, as discussed briefly in A.2.1,
for example considering a contrast to be estimable if its projection perpendicular to the
row-space is sufficiently small with respect to numerical precision. More practically still,
Smith et al. [14] argue that estimability and efficiency are more meaningful when taking
into account the noise or variability, i.e. considering whether a contrast can be estimated
with sufficient power to be experimentally useful.

A null hypothesis specified by a contrast CT B = 0 places a restriction on the space in
which the solution lies, and hence can be equivalently considered via a restricted design
matrix, as employed above to derive the test statistic. It is only the space spanned by
the restricted design that matters, and not the exact reduced model X0, which is non-
unique (even for full column rank X). In the following subsections an argument based on
subspaces is used to derive an equivalent form of the test statistic (A.14) in terms of the
contrast.

The hypothesis subspace

Considering the univariate case,15 yT Ry = (Ry)T (Ry) = eT e = |e|2, and hence the test
statistic is function of the squared lengths of the residual vectors e and e0 = R0Y . The
residual vectors lie in vector subspaces perpendicular to the space spanned by their design

15In the multivariate case, the determinants of the form |Y T RY | are not so easily interpreted, but the
interpretation of the spaces of C(X) etc. remains the same.
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matrices. Considering the numerator of the test statistic,

SSH = yT (R0 −R)y

= yT Phy

= |h|2

Ph = R0 −R = P − P0

= PR0 = R0P = PR0P = R0PR0 (A.15)

h = PR0y

= R0Py

= R0XB̂. (A.16)

Where (A.15) continues from the manipulations in (A.12). The hypothesis sum of squares
is therefore the squared length of a vector which lies in a subspace both orthogonal to
that of X0 and within that of X, i.e. h ∈ C(X0) ∩C(X) which we denote the orthogonal
complement of C(X0) with respect to C(X): h ∈ C(X0)⊥C(X) [2]. For finite dimensional
spaces, the orthogonal complement of the orthogonal complement returns the original
space [2], i.e.

Γ = C(X0)⊥C(X) ⇐⇒ Γ⊥C(X) = C(X0). (A.17)

In terms of the perpendicular projectors, P −P0 projects onto C(X0)⊥C(X), and we observe
P − (P − P0) = P0 projects onto the original space C(X0).

As an aside, note that (A.16) gives SSH = B̂T XT R0XB̂ (valid also in the multivariate
case), which provides a computationally efficient way of calculating SSH from previously
estimated B̂ images and a suitable p × p matrix XT R0X [15]. The following section
effectively provides a formula for directly computing this matrix from a hypothesis CT B =
0.

The test statistic for a contrast

We seek a null hypothesis equivalent to E[Y ] = X0Br or E[Y ] ∈ C(X0) of the form: CT B =
KT E[Y ] = 0 in conjunction with E[Y ] = XB. It is apparent that E[Y ] ∈ C(K)⊥ ∩C(X),
but this is unhelpful because we have not ensured that C(K) is a subset of C(X). The
key is to note that the contrast can equivalently be written:

CT B = 0

= KT XB

= KT PXB

= (PK)T E[Y ]
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where PK ∈ C(X) gives

E[Y ] ∈ C(PK)⊥ ∩C(X)

∈ C(PK)⊥C(X)

The equivalence of C(PK)⊥C(X) with C(X0) and (A.17) imply C(PK) = C(X0)⊥C(X), and
therefore that the projection matrix Ph = R0 − R is equivalent to projection onto the
space spanned by PK, implying

Ph = PPK = PK(PK)+ = PK(KT PK)+KT P. (A.18)

Recalling KT X = CT , P = X(XT X)+XT and PY = XB̂, we rewrite:

SSH = Y T PhY

= Y T PK(KT PK)+KT PY

= B̂T XT K(KT X(XT X)+XT K)+KT XB̂

= B̂T C(CT (XT X)+C)+CT B̂. (A.19)

Since each independent column of the contrast C places one restriction on the form of X0,
we also have DFH = ν1 = rank(X) − rank(X0) = rank(C), and therefore the hypothesis
mean-square is expressed only in terms of the contrast and the original design matrix.
Finally, for the univariate case, we may write equation (A.14) as:

F =
MSH

MSE

=
b̂T C(CT (XT X)+C)+CT b̂

Y T RY
/

rank(C)
n− rank(X)

=
b̂T C(CT (XT X)+C)+CT b̂/rank(C)

MSE
(A.20)

Note that the expression for SSH , equation A.19, also gives the sums of squares and
products matrix in the multivariate case.

In the univariate case, the overall expression for the F-statistic can also be moti-
vated in terms of a Wald pivot for the contrast [16]. Given y ∼ N(Xb, σ2I), the basic
properties of expectation give CT b̂ = CT X+Y ∼ N(CT X+Xb, σ2CT X+(X+)T C). For
an estimable contrast, CT X+Xb = KT XX+Xb = KT Xb = CT b as expected (i.e. the
natural estimator of an estimable compound is unbiased). Using identity (A.1) we have
CT b̂ ∼ N(CT b, σ2CT (XT X)+C). From this multivariate normal distribution, the squared
Mahalanobis distance of the estimate from the null hypothesis of CT b = 0 is given by:

b̂T C(CT (XT X)+C)+CT b̂/σ2,

which is simply a scaled version of SSH , or equivalently, a scaled version of the F-statistic
if σ2 is replaced with the estimate MSE .
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The t-statistic

Considering univariate data and a single column vector contrast C = c, equation (A.20)
simplifies because cT b̂ and cT (XT X)+c are scalar, giving:

F =
(cT b̂)2

MSE cT (XT X)+c
,

which is the square of

t =
cT b̂√

σ̂2 cT (XT X)+c

. (A.21)

The above shows the equivalence between the two-tailed t-test and the F-test for the same
contrast. Since cT b̂ is a scalar with the desired sign of a one-tailed contrast, we may
implement a one-sided test with the above equation or using the full and reduced models
form (A.14) with the sign of

√
F set to match that of cT b̂.

A.4.6 Extended hypotheses

We will now consider testing some different forms of null hypothesis, with the purpose
of drawing attention to some less commonly used tests, which are unavailable in some
standard neuroimaging statistics software (such as SPM and FSL).

Following the subsection above, one might observe that the standard t-statistic for a
mean is valid for testing departure from any hypothesised value, not necessarily zero, in
which case the numerator of (A.21) would be b̂−b̄ for scalar b = b̄ under the null hypothesis.
This generalises to contrasts of a vector b, and of a matrix in the multivariate case [10].
For an estimable contrast CT = KT X, to test the null hypothesis CT B = CT B̄ one can
use either of the following forms of SSH in the (possibly multivariate) test statistics:

SSH = (B̂ − B̄)T C(CT (XT X)+C)+CT (B̂ − B̄)

= (Y −XB̄)T (R0 −R)(Y −XB̄).

The expressions may also be used for hypotheses of the form CT B = γ where CT B̄ = γ

has at least one solution B̄ [10].
In the multivariate case two further extensions may be of interest. For a null hypothesis

of the form CT BD = B̄, where D is a p×q matrix with rank(D) = q < p one can consider
the transformed model Y D = XBD + ED [10], because the covariance matrix of the
vectorised ED retains its block diagonal structure (Cov[εiD, εjD] = 0 for i 6= j). Hence
the sums of squares and products are simply modified to:

SSH = (B̂D − B̄D)T C(CT (XT X)+C)+CT (B̂D − B̄D)

= (Y D −XB̄)T (R0 −R)(Y D −XB̄),

SSE = (Y D)T RY D.

Secondly, one might ask whether a subset of the dependent variables contains all the
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significantly useful information about XB. Partioning the model as:

[YA YB] = X[BA BB] + [EA EB],

the conditional distribution of YB given YA is itself a multivariate linear model of the form:

YB = YAΓ + X∆ + EB|A.

Considering the above as a standard multivariate linear model with the design partitioned
into interest X and nuisance YA, a significance test of ∆ can be used to determine the
importance of the subset YB [10] (pp.64–68).

A.4.7 Explicit forms for X0 and Xh

Equation (A.20) allows for the computation of the F-statistic from a contrast, but we have
not yet given an explicit reduced design matrix X0 (recall that this is not unique). One such
option, motivated from C(X0) = C(PK)⊥C(X), is X0 = RPKX, with RPK = I−PK(PK)+

as usual [2].
Another option, more common in the SPM literature, derives from the following ar-

gument: the constraint CT B = 0 restricts the parameters to be in the left null space
of the contrast [1], for which the perpendicular projection matrix is I − CC+, and the
reduced model projecting the parameters into this restricted space can be seen to be
Y = X(I − CC+)B + E , which immediately gives X0 = X(I − CC+). The disadvantage
of this formulation, is that it is not at all obvious how to relate the two equivalent forms
of SSH :

SSH = Y T (R0 −R)Y = Y T P − P0Y

= Y T (XX+ −X0X
+
0 )Y

= Y T (XX+ −X(I − CC+)(X(I − CC+))+)Y,

SSH = B̂T C(CT (XT X)+C)+CT B̂

= Y T (X+)T C(CT (XT X)+C)+CT X+Y.

One may also find several different matrices or bases Xh that span the same space and
have the same (unique) perpendicular projection matrix R0 −R = Ph = XhX+

h . We have
already seen in equation A.18 that PK is one such solution, Kiebel et al. [17] also give
R0XC in their equation 39. Andrade et al. [15] give PR0X, which can be simplified as
PR0X = R0PX = R0X. The equivalence of the spaces spanned by these two matrices
can be observed from:

C(X) = C([XC X0])

C(R0X) = C([R0XC 0])

= C(R0XC),



APPENDIX A. MATHEMATICS FOR THE LINEAR MODEL 361

where the last line follows from the fact that appending the matrix of zeros adds nothing
to the column space of R0XC.

To see the equivalence of the spaces spanned by R0X and PK we show that the
projector for R0X leads to Ph as follows:

(R0X)(R0X)+ = (R0X)(XT R0X)+XT R0

= PR0X(XT R0X)+XT R0P

= X(XT X)+XT R0X(XT R0X)+XT R0X(XT X)+XT

= X(XT X)+(XT R0X)(XT R0X)+(XT R0X)(XT X)+XT

= X(XT X)+(XT R0X)(XT X)+XT

= PR0P = Ph.

We may also express PK more directly in terms of X and C by noting the following:

CT = KT X

C = XT K

(XT )+C = (XT )+XT K

= PK,

where the the last equality results from interchanging the transpose and pseudoinverse
operations and using (A.6). Xh = (XT )+C is Poline et al.’s H, though their derivation
seems less clear [18].

A.4.8 Partitioned reparameterisation

We showed above that a suitable reduced design matrix is X0 = XC0 where C0 = I−CC+.
It might reasonably be assumed that the partitioned matrix Xp = [X1 X0] with X1 = XC

would give the same results for a contrast CT
p = [Ir1 0r1×r0 ],

16 as the original design X

would for the contrast C. It turns out that this is true in terms of the spaces spanned
by the full and reduced models, and therefore in terms of the test statistics. Suprisingly
however, it is not true for the estimate of the contrast itself: CT

p X+
p Y 6= CT X+Y . This

property can be important in some circumstances, for example Smith et al. [14] required
it for their characterisation of design efficiency. Beckmann et al. [19] showed in their
appendix B that a suitable partitioned model can be found. They assumed full column
rank X, and derived rather complicated expressions. We can simplify the expressions
slightly by defining a function f such that

f(C) = (XT X)−1C(CT (XT X)−1C)−1.

16r1 and r0 are respectively the number of interest and nuisance covariate columns in the partitioned
design. Typically, the interest will have full column rank, r1 = rank(X1) = rank(C), but the nuisance will
be rank-deficient, with r0 ≥ rank(X0). For example, X0 = XC0 will have r0 = p.
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The expressions from [19] can then be written

X1 = Xf(C)

X0 = Xf((I − Cf(C)T )C2),

where C2 is a matrix such that [C C2] is square and full rank (and hence invertible). C2

may be taken as the basis for the left null space (e.g. from the SVD) of C, and hence is
related to the previously defined C0 = I − CC+ by C0 = C2C

+
2 .

Here, we extend the results of [19] to general rank-deficient X, and we find a simpler
and more intuitive expression for Xp. We start by defining the matrix ΓT = [C C0]. Note
that C0 = I − CC+ is a p× p symmetric idempotent projection matrix, with rank(C0) =
p− rank(C). Furthermore, C0 and C are orthogonal since CT

0 C = C0C = (I −CC+)C =
C −CC+C = C −C = 0, which means that the number of linearly independent rows in Γ
(and hence its rank) is the sum of the ranks of C and C0, which is p, showing that Γ has
full column rank.

For a partitioned matrix with orthogonal submatrices such as Γ, it can be shown
that the Moore-Penrose pseudo-inverse consists of the pseudo-inverses of the blocks [6]:
Γ+ = [(CT )+ (CT

0 )+].17 In this case, (CT
0 )+ = C0 thanks to its status as a projection

matrix.
Note that ΓX+Y contains the contrast of interest CT X+Y in its first rank(C) rows.

If we can show that Γ and Z = X+ satisfy the condition of (A.5), then we have ΓZ =
(Z+Γ+)+ where the matrix

Xp = Z+Γ+ = XΓ+

= X[(CT )+ C0]

= [X(CT )+ X0] (A.22)

therefore produces the contrast of interest in the first rank(C) rows of X+
p Y . Furthermore,

we can verify that Xp spans the same space as X, as required, because

XpX
+
p = X[(CT )+ C0]ΓZ

= X[(CT )+ C0][C C0]T X+

= X((CT )+CT + C0)X+

= X((CC+)T + I − CC+)X+

= X(CC+ + I − CC+)X+

= XX+.

17We have observed that the following seems to hold: [X1 X0]
+ = [((R0X1)

+)T ((R1X0)
+)T ]T , which

demonstrates the simpler form if the blocks are orthogonal (RiXj = Xj − PiXj = Xj), as well as helping
to clarify that estimated B̂ are based on what is explained uniquely by each block, i.e. for the orthogonal
parts of the blocks, and hence the interest B̂1 are unchanged by explicit orthogonalisation of X1 with
respect to X0. However, this identity is not present in an obvious form in [6], and we have so far been
unable to prove it.
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Hence, the final step in proving the validity of the expression in (A.22), which has
replaced X1 = XC with X1 = X(CT )+, is to show that the condition of (A.5) does
indeed hold. We begin by noting that because Γ is full column rank it has a left-inverse,
or equivalently Γ+Γ = I. Equation (A.5) therefore requires that the matrix ZZT ΓT Γ is
invariant to post-multiplication by ZZ+ = X+X.

ΓT Γ = [C C0][C C0]T

= CCT + CT
0

= CCT + I − CC+

= CCT + I − C(CT C)+CT .

At this point, because we are considering an estimable contrast, we have CT = KT X, and
we note that

CT ZZ+ = CT X+X = KT XX+X = KT X = CT , (A.23)

demonstrating that all terms of ZZT ΓT Γ ending with CT are invariant as required, leaving
us only with the term ZZT . Using the first property of the pseudo-inverse and noting ZZ+

is symmetric, we have

Z = ZZ+Z

ZT = ZT ZZ+

ZZT = ZZT ZZ+

which shows the last remaining necessary invariance.
In comparison to appendix B of Beckmann et al. [19], we must make two further

observations. Firstly, Beckmann et al. allowed for non-scalar covariance V using weighted
least squares (WLS), whereas we have assumed ordinary least squares (OLS). However,
the pre-whitening (using W such that WW T = V −1) that leads to WLS depends only
on V , so may be applied to Y and Xp just as easily as to Y and the original X. The
second point is that Beckmann’s X1 and X0 are orthogonal to each other, while this is
not true of our expressions. Appendix A of [19] showed that the interest covariates could
be orthogonalised with respect to the nuisance without changing the interest parameters
or overall residuals. Technically, that proof assumed a full rank Xp, but we have observed
(though not proven) that the same appears to be true with either or both X1 and X0

rank-deficient.18

Slightly more generally, we note (without proof) that adding any amount of any vector
in the column-space of the nuisance to either the data and/or the interest covariates
changes only the parameter estimates for the nuisance, and pre-multiplication with R0

can be seen to subtract a linear combination of the columns of X0 weighted by X+
0 post-

multiplied by the data or interest covariate.
18It should be relatively straight-forward to adapt the proof from [19] to use expressions valid for the

pseudo-inverse [6], but we have not pursued this here, since the result is already quite intuitive with a
subspace interpretation of linear modelling.
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A.4.9 Orthogonalised reparameterisation

If we consider the explicitly orthogonalised X∗
1 = R0X1 = R0X(CT )+, then X∗

p = [X∗
1 X0]

has orthogonal partitions, and hence its pseudo-inverse consists of the pseudo-inverses
of the partitions, as described above. Hence the interest B̂1 may be computed via
(R0X(CT )+)+Y alone, and the corresponding nuisance will become B̂∗

0 = X+
0 Y .

Now, consider orthogonalising the data with respect to the nuisance, first in terms of
the sums of squares for the original reduced and full models:

SSR = Y T R0Y = (R0Y )T R0(R0Y ),

SSE = Y T RY = Y T R0RR0Y = (R0Y )T R(R0Y ),

where R = R0RR0 follows from (A.12) and (A.15). This shows that orthogonalising the
data has no effect on the residuals or test statistics.

Next, consider the effect of data-orthogonalisation on the estimated interest parameters
using the orthogonalised interest covariates:

X∗
1Y = (R0X(CT )+)+Y

= ((R0X(CT )+)T R0X(CT )+)+(R0X(CT )+)T Y

= (C+XT R0X(CT )+)+C+XT R0Y

= X∗
1R0Y,

i.e. B̂1 is also unchanged by orthogonalisation of the data. The estimated nuisance pa-
rameters for the orthogonalised data are equal to

B̂∗
0 = X+

0 R0Y = (XT
0 X0)+XT

0 R0Y = 0,

because XT
0 R0 = R0X0 = 0. This means that the nuisance covariates are no longer needed

if both the interest covariates and the data have been orthogonalised using R0. Hence the
regression of Y on [X1 X0] is equivalent to that of R0Y on R0X1 alone, in terms of B̂1

and the sums of squares. For parametric equivalence of the t or F statistics, note that
the error degrees DFE = tr (R0) would be wrong if they were calculated anew for this
interest-only model, i.e. the r0 columns of zeros in R0Xp = R0[X1 X0] = [X∗

1 0n×r0 ] would
need to be counted as rank(X0).
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A.4.10 Summary of alternative regression models

The following regression models are all equivalent in terms of the estimated interest pa-
rameters, contrast, and test statistics (using the notation data:design:contrast)

Y : X : C (A.24)

Y : [X1 X0] : Cp (A.25)

Y : [X∗
1 X0] : Cp (A.26)

R0Y : X∗
1 : Ir1 , (A.27)

where, as defined earlier (and taking one particular option for X0)

X1 = X(CT )+ ∈ Rn×r1 ,

X∗
1 = R0X1,

X0 = X(I − CC+) ∈ Rn×p,

Cp = [Ir1 0r1×p]T .

A.4.11 Other reparameterisations

Kiebel et al.’s form of Xh = R0XC emphasises that the contrast tests what can be
explained by part of the design (XC) over and above what is explained by the null model
X0 (by orthogonalising XC using R0). Poline et al. [18] therefore argue that to test for all
the variance explained by XC, without adjusting for X0, it is necessary for Xh to be given
by XC alone. Using the other form Xh = PK = (XT )+C they show that the contrast
CF = XT XC, achieves the desired result since it gives rise to XF

h = (XT )+XT XC =
PXC = XC. This means that one can use CF with the estimated parameters from
the full model to get results equivalent to those from fitting a new model which has X0

orthogonalised with respect to X1 = XC.
More generally, Poline et al. [18] state (unfortunately without proof or reference) that

the equivalent of a contrast Ca in an alternative transformed model Xa = XT is given
by19

CT = CT
a (T T XT XT )+T T XT X.

This equation can be simplified from the above form given in [18]:

CT = CT
a (XT

a Xa)+XT
a X = CT

a X+
a X. (A.28)

Note that this reparameterisation is going in the other direction to that in section
A.4.8; this expression does not allow us to determine T or Xa from knowledge of C and
Ca.

Importantly, only SSH is altered by this reparameterisation, and not SSE , so one can-
not directly achieve the equivalent of e.g. simple regression by reparameterising a multiple
regression model to contain a single non-constant vector. It should be possible to find a

19There is an error in equation 19 of [18], which neglects the transposes on C and Ca.
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suitable transformation of multiple F-statistics each resulting from different reparameter-
isations of the complete model X to achieve this, and in general to test any contrast for
any model nested within X without needing to re-fit the new model(s). This might be a
useful area for further work.
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Appendix B

The matrix exponential

This appendix presents the matrix generalisations of the exponential and natural logarithm
functions, which play a key part in Riemannian analysis of strain tensors and the treatment
of matrices in Lie groups, relevant to chapters 4 and 5.

B.1 Matrix powers

The matrix exponential and logarithm can be defined as infinite power series, exactly
as for their scalar counterparts. We first note that only for square A may one define
A2 = AA, with the obvious extension to higher powers. Diagonalisable A — which
includes symmetric positive definite (SPD) matrices — are a useful special case. For
A = UDU−1 we have, for the square and the general power:

A2 = UDU−1UDU−1 = UD2U−1 (B.1)

Ak = UDkU−1, (B.2)

where the power of the diagonal matrix simply involves the powers of the terms on the
diagonal, i.e. in terms of eigenvalues,

λ(Ak) = λk(A), (B.3)

which can be seen to be true even for non-diagonalisable A, since

Av = λv ⇒ A2v = A(λv) = λ2v.

This may further be generalised to fractional and negative powers, i.e. the inverse of
a diagonalisable matrix has the same eigenvectors with the reciprocals of the eigenvalues.
Note though that not all invertible matrices are diagonalisable; the former property re-
quires only non-zero eigenvalues, while the latter requires a complete set of eigenvectors.
To give a simple example, the matrix [1 1; 0 1] has a repeated eigenvalue of 1, and hence
is invertible, but it has only one eigenvector ([1; 0]) so it cannot be diagonalised.

368
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B.1.1 Matrix square roots

We observe from (B.2) that a diagonalisable matrix with non-negative eigenvalues has a
real matrix square root given by A1/2 = UD1/2U−1; it can also be shown that a symmetric
positive semidefinite (SPS) matrix has a unique SPS square root [1]. Square roots for
general matrices may be complex and non-unique, and even when real square roots exist
they may be difficult to find. Consider a geometric example, a 180 ◦ rotation around the z-
axis in 3D (denoted Rz(180)) can clearly be obtained from the square of a rotation around
z by plus or minus 90 ◦. The homogeneous matrix for Rz(180) is diag([-1 -1 1 1]),
which is already diagonalised (with pairs of repeated eigenvalues, -1 and 1, an identity
matrix of eigenvectors). However, this leads to a complex square root, diag([j j 1 1]).
Instead of the diagonalisation approach, one could attempt to use the Denman-Beavers
iteration [2], which, in one form (equation 6.7 of [2]), uses the identity A1/2 = A−1/2A to
provide an iteration:

A
1/2
k+1 = (A1/2

k + A
−1/2
k A)/2.

This iteration is typically initialised with either A
1/2
0 = I or A

1/2
0 = A, but unfortunately,

either of these leads to the first iteration computing (A+I)/2 which is the singular matrix
diag([0 0 1 1]) for Rz(180), preventing further iterations. If the iteration is instead
initialised with a 45 ◦ rotation around z, then Rz(90) is correctly recovered; initialisation
with Rz(−45) converges to Rz(−90).

While we have demonstrated non-uniqueness, and numerical challenges, it is not im-
mediately clear whether any real invertible matrix would fail to have a real square root.
Smith et al. [3] state without reference that ‘not all affine transformations have exact
matrix square roots that are also affine transformations’. We briefly consider a related
question in section B.3 below.

B.2 Series definitions

The matrix exponetial function is defined as:

expm (A) = I + A +
A2

2
+ · · · =

∞∑
k=0

Ak

k!
. (B.4)

Expression (B.2) allows diagonalisable matrices to be exponentiated simply by exponen-
tiating their eigenvalues. For more general matrices, efficient scaling-and-squaring ap-
proaches can be used instead of näıve evaluation of the series [4].

The matrix logarithm may be defined with the following power series [1]:

logm (I −A) =
∞∑

k=1

Ak

k
, (B.5)

which is guaranteed to converge if all of the eigenvalues of A have magnitude strictly less
than one. This would imply that the eigenvalues of B = I − A satisfied |1 − λ(B)| < 1,
but the logarithm can be computed for more general matrices, as we shall see next.
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The definition of the matrix logarithm as the inverse of the matrix exponential func-
tion means that for diagonalisable (n × n) matrices we need only compute the (scalar)
logarithms of their eigenvalues:

logm (A) = logm
(
UDU−1

)
= U logm (D) U−1 =

n∑
i=1

ui log(λi)vT
i , (B.6)

where V = U−1 and ui and vi represent the ith columns of their respective matrices.
This implies that all SPD matrices have real and symmetric matrix logarithms (with
real, but not necessarily positive eigenvalues), regardless of the magnitude of the matrix’s
eigenvalues.

In general, the (possibly complex) matrix logarithm of A exists if and only if A is
invertible [5]. There can be infinitely many matrix logarithms due to the non-uniqueness
of the scalar logarithms of complex eigenvalues.

For real and invertible (but not necessarily diagonalisable) A, if none of the eigenvalues
of A are on the negative real line, then A has real logarithms; the principal logarithm is
the unique such real logarithm whose complex eigenvalues have imaginary part in the
open interval (−π, π) [6]. Note that this also implies that for an SPD matrix written
A = UDUT , there is a unique principal logm (A) = U logm (D) UT .

B.3 Properties of the matrix exponential and logarithm

Under a matrix similarity transform of A → MAM−1, both the matrix exponential and
logarithm transform in the same way:

expm
(
MAM−1

)
= M expm (A)M−1, (B.7)

logm
(
MAM−1

)
= M logm (A)M−1. (B.8)

This is obvious for the exponential, where the similarity terms cancel in the power series
just like the eigenvector terms in (B.1). For the logarithm, the series (B.5) allows a similar
argument, noting that

B = I −A → I −MAM−1 = M(I −A)M−1 = MBM−1.

Alternatively, for diagonalisable matrices, it is easy to see that the similarity transform
M can be absorbed into the diagonalising similarity U :

logm
(
MAM−1

)
= logm

(
MUDU−1M−1

)
= logm

(
CDC−1

)
with C = MU , then (B.6) gives

logm
(
CDC−1

)
= C logm (D) C−1 = MU logm (D) U−1M−1 = M logm (A)M−1.

For diagonalisable A, the fact that powers, exponential and logarithm all act on the
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eigenvalues gives the following useful relationships:

tr (logm (A)) =
n∑

i=1

log λi = log
n∏

i=1

λi = log|A|, (B.9)

|expm (A)| =
n∏

i=1

exp(λi) = exp
n∑

i=1

λi = exp tr (A) ; (B.10)

logm
(
Ak
)

= U logm
(
Dk
)

U−1 =
n∑

i=1

ui log(λk
i )v

T
i

=
n∑

i=1

uik log(λi)vT
i = k logm (A) . (B.11)

The last relationship holds for negative and/or fractional powers, meaning that expm (A)
and expm (−A) are inverses of each other, and that the matrix square root can be easily
computed from the logarithm. The existence of the principal logarithm then implies that
a real square root exists for any diagonalisable matrix with no eigenvalues on the closed
negative real line.

The most notable property which does not fully generalise from the scalar to the matrix
exponential is that, in general, expm (A + B) 6= expm (A) expm (B). If A and B commute
then the terms are equal, though their equality does not imply that the matrices must
commute [7]:

AB = BA ⇒ expm (A + B) = expm (A) expm (B) = expm (B) expm (A) , (B.12)

If A and B are diagonalisable and commute, then they are jointly diagonalisable [8], i.e.
there exists some U which simultaneously gives A = UDAU−1 and B = UDBU−1. In this
case, we have:

logm (AB) = logm
(
U(DADB)U−1

)
= U logm (DADB) U−1

=
n∑

i=1

ui log(λA
i λB

i )vT
i =

n∑
i=1

ui

(
log(λA

i ) + log(λB
i )
)
vT
i

=
n∑

i=1

ui log(λA
i )vT

i + ui log(λB
i )vT

i = logm (A) + logm (B) .

(B.13)

The special case of a matrix commuting with itself implies

expm (kA) = (expm (A))k , (B.14)

which can be used to show that even for non-diagonalisable A (B.11) holds (at least for
integer powers):

expm (k logm (A)) = expm

(
k∑

i=1

logm (A)

)
=

k∏
i=1

expm (logm (A)) = Ak

k logm (A) = logm
(
Ak
)

.
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The special case of commutation between A and −A gives

expm (0n) = expm (A−A) = expm (A) expm (−A) = In. (B.15)

A trivial case of (B.6) gives

logm (kI) = I log(k), (B.16)

and then using (B.13) with the fact that kI commutes with any matrix gives

logm (kA) = logm (kI A) = logm (kI) + logm (A) = I log(k) + logm (A) . (B.17)
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Appendix C

Procrustes Analysis

This short appendix presents results related to the problem of finding a matrix that best
transforms one set of points into another, and the related problem of finding a constrained
matrix that best approximates a more general one. The results have obvious application
to point-based registration [1], but also relate to tensor reorientation [2] and to the removal
of ‘pose’ in morphometric analysis [3].

C.1 Introduction

‘Procrustes analysis’, or the ‘orthogonal Procrustes problem’, refers to finding a matrix
with orthonormal columns, (e.g. a rotation matrix, if square), which best relates two point-
sets in terms of their summed squared error [4]. The ‘extended orthogonal Procrustes’
problem additionally allows (isotropic) scaling [5]. Generalised procrustes analysis can
refer, for example, to finding a matrix with orthogonal, but not orthonormal columns [6],
to the problem with more than two point-sets/matrices [7], or to weighting (also known
as weighted Procrustes analysis) [8, 9].

The requisite mathematical tools, comprising some basic matrix calculus results and
the method of Lagrange multipliers, are presented first, followed by the simple (uncon-
strained) case of finding the best (least-squares) affine transformation. Various cases of
constrained transformations are then derived.

C.1.1 Selected results from matrix calculus

The only results needed for this appendix are two basic expressions for the derivatives of
traces [10]. For ease of reference, they are presented with various forms arising from the
invariance of the trace to transposition or cyclic permutation. In the following, A and B

are matrices which do not depend on the matrix X.

∂tr (AX)
∂X

=
∂tr (XA)

∂X
=

∂tr
(
AT XT

)
∂X

=
∂tr
(
XT AT

)
∂X

= AT . (C.1)
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∂tr
(
AXBXT

)
∂X

=
∂tr
(
XBXT A

)
∂X

=
∂tr
(
XT AXB

)
∂X

= AXB + AT XBT .

(C.2)

Simplifications of (C.2) for the special cases of A = I or B = I are frequently of use:

∂tr
(
XT AX

)
∂X

= (A + AT )X,

∂tr
(
XBXT

)
∂X

= X(B + BT ).

Note that the first of these also gives the derivative of a quadratic form in the column
vector x, since a scalar is equal to its own trace:

∂xT Ax

∂x
=

∂tr
(
xT Ax

)
∂x

= (A + AT )x.

C.1.2 Constrained optimisation

The method of Lagrange multipliers can be used to minimise a cost function while satis-
fying equality constraints [10].1

To minimise a scalar function of a matrix φ(X), subject to an m× p matrix function
of equality constraints G(X) = 0, the Lagrangian is given by

L(X) = φ(X)− tr
(
ΛT G(X)

)
, (C.3)

where Λ is an m× p matrix of unknown Lagrange multipliers.
Note that (C.1) gives

∂L

∂Λ
= G(X),

i.e. zeroing the derivative with respect to the Lagrange multipliers recovers the constraint.
Equating the derivative with respect to X to zero, gives a set of equations in X and Λ,
which can be solved for X by employing the constraint to eliminate Λ.

C.2 Affine and linear transformations

Consider n pairs of approximately corresponding points {ai, bi}n
i=1 each in Rm. To find

the affine transformation (x → Tx + t) that best relates the point-sets, it is necessary to
minimise a suitable norm of the matrix E that collects together all of the column vectors

1Technically, the stationary points of the Lagrangian are not necessarily minima of the cost function.
In this appendix, we assume that stationary points represent optimal solutions, though a more rigorous
development would prove this in each case.



APPENDIX C. PROCRUSTES ANALYSIS 375

of correspondence error components:

Tai + t = bi + ei

TA + t1T = B + E,

where 1 denotes the length n column vector of ones.2

It is common to minimise the root-mean-square of the correspondence error vector
magnitudes, which is equivalent to the Frobenius norm of E. For simplicity, its square is
minimised:

‖E‖2F = tr
(
ET E

)
= tr

(
(TA + t1T −B)T (TA + t1T −B)

)
(C.4)

Considering first the translation:

∂‖E‖2F
t

= 0

=
∂

∂t
tr
(
1tT t1T − 21tT (TA−B)

)
=

∂

∂t
tr
(
tT t1T 1− 2tT (TA−B)1

)
= 2nt− 2(TA−B)1

t = TA1/n−B1/n,

which shows the intuitive result that the translation aligns the centroids of the point-sets
TA and B, since e.g. B1/n simply averages B’s columns.

For the linear part of the transformation

∂‖E‖2F
T

= 0

=
∂

∂T
tr
(
AT T T TA− 2AT T T (t1T −B)

)
=

∂

∂T
tr
(
T T TAAT − 2T T (t1T AT −BAT )

)
= 2TAAT − 2t1T AT + 2BAT

= 2TAAT − 2
n

(TA−B)11T AT + 2BAT

TAAT = TA1 1T AT /n−B1 1T AT /n + BAT

TA(I − 1 1T /n)AT = B(I − 1 1T /n)AT

TAM̄AT = BM̄AT ,

which has minimum-norm solution

T = BM̄AT (AM̄AT )+,

where M̄ = I−1 1T /n = I−1 1+ is the projection matrix onto the null space of 1 or in other
2This is written as 1n×1 elsewhere in this thesis, but compactness is helpful in the derivations here.
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words, the matrix which removes the mean column when used to post-multiply. Since this
is a (symmetric and idempotent) projection matrix (see section A.1), one can split the
products, e.g. BM̄AT = BM̄M̄AT = BM̄(AM̄)T , meaning that the above expression is
the usual least-squares solution after the centroids have been removed from the point-sets.

Considering TA = B +E as a general matrix approximation problem (where A and B

need not have the same number of rows, i.e. T may be rectangular) it is possible to swap
the order of TA, i.e. AT = B+E. Since the Frobenius norm is unaffected by transposition,
‖TA−B‖F can be written ‖AT T T −BT ‖F = ‖CF −D‖F , with solution

F = T T = (AM̄AT )+AM̄BT = (CT M̄C)+CT M̄D,

which is easily recognised as the familiar least-squares solution, corresponding to the
maximum-likelihood solution under a Gaussian assumption, as derived in section A.4.2.

C.3 Orthogonal and orthonormal transformations

If the matrix is restricted to have orthonormal columns, corresponding, in the square case,
to a rotation (possibly with reflection, see below) then the method of Lagrange multipliers
can be used to solve the constrained optimisation. Naturally, a translation would still
align the centroids, and the matrix could be derived from the centred point-sets [3], so
translation can be ignored henceforth.

Consider the case of a geometric similarity transformation; this can be written as fR

where f is a scale-factor and R is a rotation, hence constrained to satisfy RT R = I.3 The
more general case of orthogonal but not orthonormal columns (i.e. different scaling factors
for each column) does not give rise to a closed-form solution, but numerical methods can
be found in [6].

The Lagrangian is given by

L = ‖fRA−B‖2F + tr
(
ΛT (RT R− I)

)
, (C.5)

where, as usual, zeroing of the partial derivative with respect to Λ recovers the constraint.
3The geometric similarity transformation is a scaled square rotation matrix fR, additionally satisfying

RRT = I, but the derivations here are valid for rectangular R with orthonormal columns.
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Expanding the first term of the Lagrangian, and differentiating with respect to R:

L = tr
(
(fRA−B)T (fRA−B)

)
+ tr

(
ΛT (RT R− I)

)
= tr

(
BT B

)
+ f2tr

(
AT RT RA

)
− 2ftr

(
AT RT B

)
+ tr

(
ΛT (RT R− I)

)
(C.6)

∂L

∂R
= 0

= f2 ∂tr
(
RAAT RT

)
∂R

− 2f
∂tr
(
RT BAT

)
∂R

+
tr
(
RΛT RT

)
∂R

= 2f2R(AAT )− 2fBAT + R(Λ + ΛT )

BAT = R

(
f2AAT +

Λ + ΛT

2

)
.

Now, using RT R = I, and noting the symmetry of both AAT and Λ + ΛT

(BAT )T (BAT ) =
(

f2AAT +
Λ + ΛT

2

)2

= (RT BAT )2

and then using the compact singular value decomposition of BAT = USV T ,

V S2V T = (RT USV T )2

V SV T = RT USV T

V = RT U

UV T = UUT R.

It can now be observed that R = UV T is a sufficient solution. If BAT is full rank, then
the compact and full SVD coincide (see section A.2) implying UUT = I and hence that it
is also a necessary solution.

At this point, note that the above result is independent of the value of f , including if
it is set a priori to unity, and hence R = UV T is the optimal solution with orthonormal
columns. Continuing with the orthogonal solution, differentiating the Lagrangian (C.6)
with respect to f , before substituting in R = UV T and BAT = USV T

∂L

∂f
= 0

= 2ftr
(
AT RT RA

)
− 2tr

(
AT RT B

)
f =

tr
(
AT RT B

)
tr (AT RT RA)

=
tr
(
RT BAT

)
tr (AAT )

=
tr
(
V UT USV T

)
tr (AAT )

=
tr (S)

tr (AAT )

As with the affine/linear case, the Procrustes problem is sometimes presented with
the transformation on the right, i.e. E = AT − B, for which the relevant SVD becomes
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USV T = AT B, after which R = UV T and f = tr (S) /tr
(
AAT

)
remain the same.

The above derivations find a matrix R satisfying RT R = I, or |R| = ±1; it is often
geometrically desirable to find a pure rotation without reflection, i.e. a special orthogonal
matrix R with |R| = 1. From the matrix-approximation property of the singular value
decomposition BAT = USV T , it is intuitively clear if the matrix R = UV T has negative
determinant, it can be reflected with least additional squared error by replacing the positive
unity element corresponding to the smallest singular value in an implicit identity matrix
(made explicit in UIV T ) with −1. I.e. instead of USV T → UV T , the approximation is
USV T → US̃V T , where S̃ is a diagonal matrix with positve 1 everywhere except for the
element corresponding to the final (smallest) element of S, which has -1. This result has
been derived more rigorously by Umeyama [11].

C.3.1 Closest orthogonal matrix

An interesting special case of the objective function in equation (C.5) occurs if A is set
to an identity matrix. Then, the problem is to approximate an arbitrary matrix B with
a matrix fR satisfying RT R = I. A special case of this problem is to find the closest
rotation (or geometric similarity) to a general linear transformation. The solution is
given by R = UV T and f = tr (S) /tr (I), where USV T = B is the SVD of the linear
transformation (potentially the linear part of a homogeneous affine transformation matrix)
and f is the arithmetic mean of its singular values.
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Appendix D

Permutation test implementation

Chapter 2 contains theoretical derivations of various permutation-testing strategies for
general linear models, and chapter 4 proposes two more specialised test statistics for
application to multivariate two-sample problems on general data and on directional data.
In this appendix, we discuss practical computational issues in the implementation of these
methods. All of this work is novel in the sense of being done from scratch, but most of the
software remains relatively simple, so no great novelty in implementation can be claimed.
Nevertheless, this appendix contains details that are often omitted from published papers,
so should be of use to others attempting to implement permutation tests for imaging or
other computationally-demanding applications.

D.1 Introduction

For large imaging data-sets it is crucial that the implementation is efficient in terms of
both memory usage and computational speed. In some circumstances, the complete data
matrix (with dimension n×m× v for n subjects, m multivariate measurements per voxel,
and v voxels) could be too large to fit into the available memory. A basic implementation
would result in the operating system swapping data to and from disk, which is unlikely to
occur in an optimal way, hence degrading computational speed. In particular, if we wish
to loop over voxels within an outer loop over permutations (see below) swapping would
be catastrophic for performance. A solution to this will be presented below.

High-performance computing clusters are becoming commonplace in academia and
industry, allowing considerable reductions in overall computation time if code can be
distributed to run in parallel across multiple processing cores. The large numbers of
both voxels and desired permutations immediately suggests such parallelisation should be
possible, but care must be taken to distribute data and processing tasks in the correct
way, and this will be addressed in D.5.

We first comment very briefly on the relative efficiency of the different general linear
model permutation methods presented in chapter 2, and outline a general way to make
the computation of the test statistic less costly.
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D.2 Efficiency for general linear model permutation

For voxel-wise nuisance covariates, ter Braak’s method is more computationally efficient
than Freedman-Lane, since different contrasts (which alter the reduced- but not the full-
model residuals) can be computed simultaneously. The Shuffle-Z method is perhaps better
still, since it doesn’t require that the data be orthogonalised with respect to the (varying)
nuisance. Importantly, note that while the Shuffle-Z like reformulation of Huh-Jhun may
appear almost as efficient as Shuffle-Z, it suffers slightly with voxel-wise nuisance, since a
new U0 transformation matrix must be computed for each voxel. In practice, this probably
necessitates the inner-permutation implementation (see section D.4 below) for Huh-Jhun
with voxel-wise covariates, while Shuffle-Z could use either implementation.

D.2.1 Effect of permutation on projection matrices

The Wilks’ Λ statistic (and also the less general F- or t-statistics) require the computation
of perpendicular projection matrices. We presented computationally efficient formulations
in terms of the singular value decomposition at the end of appendix A.3, of the form
P = UUT and and R = UnUT

n , where U and Un are respectively orthonormal bases for
the column-space and left-null-space. The t-statistic additionally requires the estimated
parameters that are obtained via the pseudo-inverse of the design matrix X+ = V Σ−1UT .1

With large imaging data-sets it is undesirable to actually permute the observed data,
so one would naturally permute the rows of the design matrix, and then recompute the
singular value decomposition and pseudo-inverse. In fact, one can do this much more
efficiently. The key is to begin by considering permutation of the data, so as to see the
effect not on the design itself, but on the derived projection matrices or pseudo-inverse.
For example, under permutation of the data,

B̂S = X+SY = V Σ−1UT SY,

and it is immediately obvious that we can simply permute the columns of UT and avoid re-
computing the singular value decomposition or pseudo-inverse. Similarly for the quadratic
forms that occur in the conventional statistics, we have, for example,

(SY )T R(SY ) = Y T ST UnUT
n SY,

meaning that we can permute just the precomputed n × (n − r) matrix Un compute the
(n− r)×m term UT

n SY , and then form the m×m matrix of sums of squares and cross-
products very efficiently.

D.3 Blocking

To illustrate the need for blocking, consider the following large but realistic data-set.
Whole-brain images resampled in the space of the 2 mm isotropic MNI/ICBM 152 template

1Here, we use Σ in the SVD, and S for a ‘shuffling’ or permutation matrix.
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have 91×109×91 = 902629 voxels; if each voxel contains a complete 3×3 Jacobian matrix,
and calculations are performed in double-precision, then 66 scans exceed the 4GB limit
addressable with 32-bit architectures. Higher resolution may be desirable, particularly
with searchlight-mapping of unmoothed data (see Chapter 4); with 1mm isotropic data,
the above example would require 32 GB, which is far from universally available even on
modern high-performance cluster nodes. Sixty subjects may seem large in comparison
to the average published neuroimaging experiment, but there is in fact a trend towards
even larger structural MRI projects, for example over 400 subjects are available from the
OASIS project [1], while the Alzheimer’s Disease Neuroimaging Initiative [2] has recruited
800.

There are virtually limitless ways in which large data-sets could be split into blocks
of a certain size, but the layout of voxels within memory means that reading one or
more planes together will result in faster contiguous memory access. The current version
of SPM (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) performs its statistics
with a single plane (or potentially even smaller blocks per plane) in memory at a time,
but this is very conservative.

While most voxel-wise statistical analyses could be performed with a simple strategy
of loading neighbouring collections of planes, the searchlight (4) requires access to all
voxels within a certain spherical neighborhood around each voxel. This means firstly that
including data from multiple planes is essential, even if it means that entire planes cannot
be read at once for very large data-sets, and secondly that each block of data must overlap
the adjacent block(s) by the radius of the neighborhood in voxels. We have implemented a
general blocking strategy, favouring planar blocks but accounting for overlap if necessary,
which can access multiple three, four or five dimensional NIfTI volumes, using the SPM5
@nifti class. Blocks are permuted so that scan and variable indices are faster changing
than voxel-indices, as this should improve performance of multiple voxel-wise statistical
tests. Voxel data (possibly multivariate) within a specified spherical neighborhood are
automatically combined into (larger) multivariate observations, with standard voxel-wise
analysis then simply becoming the special case of a zero-radius neighborhood.

D.3.1 Relation to FWE and step-down procedures

Use of the maximum-distribution for family-wise error control [3] clearly interacts with
the need for blocking; the distribution of interest is the maximum from anywhere in the
image, not simply the currently considered block. This is trivial to deal with though, since
the maximum over the maxima of the separate blocks is clearly the overall maximum, so
it is only necessary to record separate permutation distributions of the maximum-statistic
in each block, and take the maximum over this when all permutations and blocks have
been completed.

The step-down FWE procedure of Belmonte and Yurgelun-Todd [4] discussed in sec-
tion 2.3.1 complicates this slightly, since it requires a number of ‘secondary maxima’ to
be recorded. It would not be correct to extend the above approach to first compute the
overall maximum by merging the maxima from the blocks and then the overall secondary

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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maximum by merging the secondary maxima, since one of the secondary maxima from
one block could be larger than the primary maximum from another. However, a little
thought reveals that if we record the top Nr statistics for every block, these must jointly
contain the top Nr statistics for the whole image. So an efficient step-down procedure is
straightforward even with very large data-sets.

Sorted lists of secondary maxima should ideally be maintained in sophisticated data-
structures, like the double-keyed binary tree structure used by Belmonte and Yurgelun-
Todd [4], which allows both insertion of statistic values and later removal of voxel locations
to be performed in logarithmic time. However, such pointer-based structures are not
easily available within MATLAB. We observe though, that if each voxel’s statistic is
simply swapped with the current minimum value in a simple vector data-structure when
it exceeds this minimum, then on completion, the vector will contain the correct set of
values for each permutation, albeit not in the correct order. However, outside of the
parallelisation and other loops, these vectors can simply be sorted as a post-processing
step, independent of the number of blocks or nodes, which provides a reasonably efficient
and easily implemented compromise.

D.4 Looping over permutations and voxels

It may initially appear arbitrary whether one loops over all of the voxels in the mask,
considering for each one a loop over the permutations, or vice versa. However, the order
of the loops can have a significant effect on the the computational efficiency. Interestingly,
the generic Wilks’ Λ statistic and the two special-purposes statistics employed in chater 4
are suited to different choices here.

For Wilks’ Λ, even with the computational simplifications presented in section D.2.1 it
is still more efficient to compute the statistics on all the voxels (or at least, all within the
current block) with the same permuted design, since the permuted basis matrices are then
only computed Np times instead of Np × Nv, and the multiplications of these matrices
with the data are performed the same number of times.

However, regarding the Cramér statistic in the permutation framework, we note that
relabelling of the group 1 and group 2 observations doesn’t change the actual set of inter-
point distances computed, it only selects in which summations they appear. This means
that for a particular voxel, with the multivariate observations collected into the n-by-m
matrix Y, we can precompute a matrix of all the kernelised distance values in φ. In
MATLAB code:

K = Y*Y’; % inner-products

S = diag(K)*ones(1, n1+n2); % squared norm of each vector, replicated

D = S + S’ - 2 * K; % squared distances between all observations

Phi = phi(D); % matrix Phi from (element-wise) function phi(z)

Following that, for any permutation of the vector g of boolean indicator variables denoting
memebership of group G1 (with the rest of the observations in G2 being indicated by the
Boolean complement ~g, we can evaluate the Cramér statistic by:
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GX = sum(sum(Phi(g, ~g))) / (n1*n2);

G1 = sum(sum(Phi(g, g))) / (n1^2);

G2 = sum(sum(Phi(~g, ~g))) / (n2^2);

T = (n1*n2 / (n1+n2)) * (2 * GX - G1 - G2);

Note that the first term of T can be dropped for permutation-testing of the Cramér statistic,
as the group numbers are constant over both permutations and voxels. It is clear from this
that, in contrast to Wilks’ Λ above, the Cramér test is more efficient if the permutation
loop occurs within the data loop, since then the matrix Phi need only be computed once
per voxel.

Finally, the Watson statistic, presented in section 4.3.3 for comparing the principal
axes of strain, requires computation of the eigenvalues of Y T Y , Y T

1 Y1 and Y T
2 Y2. For

the larger of the two groups (assumed to be group 1, without loss of generality), we may
compute

S1 = Y T
1 Y1 = Y T Y − Y T

2 Y2,

i.e. a subtraction of two 3-by-3 matrices: the permutationally invariant Y T Y term which
can be precomputed, and the Y T

2 Y2 term for the smaller group, which is needed anyway.
This suggests that permuting within the data loop, as for the Cramér statistic, will be
more efficient, since Y T Y is constant over permutations for each voxel, while both Y T Y

and Y T
1 Y1 change over voxels. Note that the Cramér and Watson tests form respectively

the n×n matrix Y Y T and the m×m (for m = 3 typically) matrix Y T Y . It is of academic
interest to note that the non-zero (and hence maximal) eigenvalues of these two matrices
are in fact the same — they are the singular values of Y (see section A.2.2). So, instead
of repeatedly computing Y T

1 Y1 for every permutation, using it to get Y T
2 Y2, and then

computing the eigenvalues of both of these matrices, one could compute the largest singular
value for each of Y1 and Y2. Alternatively, one could compute Y Y T as for the Cramér
statistic, and then compute the maximal eigenvalues of its groups’ partitions. However, in
practice, these approaches would probably not improve upon the simpler implementation,
since they require eigen- or singular-value decompositions of larger matrices, which are
typically more expensive than the matrix multiplications that they save.

D.5 Parallelisation

Given the large numbers of voxels and of permutations, for which essentially the same
statistical test must be performed, there is obvious potential to exploit parallel computing
architectures. There is also clearly a choice as to whether to allocate parallel tasks over
voxel-space or design-space. With a simple permutation-test from which only uncorrected
inference is required, it would be trivial to do either or even both. However, with a
maximum-statistic based FWE procedure, it becomes much less efficient to distribute
voxels (or planes or other sub-blocks) since each parallel task would need to contribute
to the overall record of each permutation’s image-wise maximum. With the step-down
procedure employed here, this would essentially mean allowing all the parallel units to
write anywhere within the same shared-memory data-structure for the maxima and the
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reserves. Some form of locking would be required to prevent race conditions: consider
one task swapping an existing maximum (or secondary reserve maximum) in the array
for one that it has just found, while another task simultaneously wishes to do likewise; it
would be possible for the second task to perform its swap in the time between the first
task checking that its maximum value is larger than the one originally in the list and
actually performing its swap, hence the first task could incorrectly move the potentially
larger maximum from the second. This complication, and the likely reduction in speed
caused by a suitable locking mechanism, essentially precludes the use of this form of
parallelisation. Note though, that for efficient computation of uncorrected p-values, the
complete statistic image for the original (identity permutation) labelling must be computed
before any of the permutations are performed, so that for the permutations one need only
count the numbers of times the original statistic is exceeded for each voxel (and keep
track of maxima) instead of having to record the entire permutation distribution. For
this identity-permutation statistic image, all voxel values are kept, hence there are no
complications related to tracking the maximum statistic and its reserves, so it is trivial to
distribute voxels or blocks of data here. With small data-sets the overhead in distributing
parallel tasks might outweigh the benefits from parallelisation, but with large numbers of
high-resolution images, there can be a noticeable speed-up.

Distributing permutations in parallel is relatively straightforward. Each parallel node
keeps a record of the maxima over its set of permutations, as well as a count of the times the
original statistics are exceeded. When all nodes have finished, their arrays of maximum-
statistic information are simply concatenated in the permutations dimension, and their
exceeded-counts are summed together. There is one slight complication, which is the
interaction between the blocking strategy (required if each individual node has insufficient
memory to hold the complete data, regardless of the amount of memory available in total
in the computing cluster) and the distribution of permutations. Multiple blocks cannot
run in parallel with the same set of permutations, since they would require simulatenous
access to the same part of the recorded maximum-distribution. To save each node reading
the data from disk, and performing the blocking themselves, we use one node to control the
blocking in an outer loop, broadcasting (with MATLAB’s labBroadcast) each block to all
nodes, which then complete their sets of permutations. All nodes are then synchronised
(using labBarrier) before the next block is broadcast.

D.6 Validation

It is clearly important that newly developed software is validated carefully, and this is
particularly true in situations such as statistical testing, where small errors could produce
results which are superficially apparently reasonable, and yet statistically invalid and
potentially misleading. The basic Wilks’ Λ and Cramér statistics have been checked using
other independent software implementations. To be precise, only various special cases of
our general Wilks’ Λ code are easily available as MANOVA tests in MATLAB’s statistical
toolbox, but in addition, more general designs and contrasts have been evaluated in the
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special case of univariate F-statistics with SPM. Between these two verifications it seems
reasonable to conclude that the basic statistics are correct.

Validation of the multivariate permutation test is more difficult, due mainly to its
greater novelty. For the univariate case, we tested that it replicates the results of FSL’s ran-
domise (http://www.fmrib.ox.ac.uk/fsl/randomise/index.html) with regard to the
voxel-level uncorrected and FWE corrected p-values, on data-sets that are small enough
to permit exhaustive permutation. At present, neither non-exhaustive permutation, nor
the step-down FWE correction procedure have been validated. The former is difficult
to test experimentally, so might best be verified from careful inspection of the code; the
requirement is that there are no mistakes or biases in the generation of random design
matrices.

One of the simplest but perhaps most important means for validating the software, is
to compare the results of the parallel code, with blocking, searchlight, etc. to simpler im-
plementations on data where the aforementioned features are unnecessary. This has been
done as the software progressed, for example checking that the parallel implementation
reproduced the results of an earlier non-parallel version.

D.7 Further work

The most obvious potential improvement of the algorithms would be reimplementation in
a programming language better suited than MATLAB to the task of iterating over a large
number of permutations and voxels. A language with efficient pointer-based binary-tree
structures such as C would be ideal. Our current software runs in parallel on a dedicated
computing cluster; an appealing alternative would be a general purpose graphics processing
unit implementation, such as that developed in CUDA2 for non-rigid registration by Modat
et al. [5].
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