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ABSTRACT

This thesis explores the properties of distant galaxies in the Universe, in particular their red-

shifts, morphologies, evolutionary history and star formation processes within them.

The first part is concerned with photometric redshift estimation. I present different photo-z

methods and compare them using a sample of Luminous Red Galaxies (LRGs). Photo-z design

studies are then carried out for the upcoming Dark Energy Survey as well as the planned space-

based Euclid mission. I show the importance of adding near infra-red data to optical data in

obtaining accurate redshift estimates for both these projects and how this may prove crucial for

some of the cosmological analysis intended with them.

In Chapter 5, I present automated morphological classifications for ∼ 1 million objects from

the Sloan Digital Sky Survey and compare them to visual classifications of the same objects ob-

tained as part of the Galaxy Zoo project. I find that a neural network is able to reproduce the

human classifications to an accuracy of better than 90%.

In Chapter 6 I study the evolution of the luminosity and mass functions of LRGs using spec-

troscopic data. I find that these objects are mainly composed of old stars that were formed very

early in the history of the Universe and also that the most massive objects were already well as-

sembled at redshifts of ∼0.8 in direct contradiction with predictions of most current models of

galaxy formation.

Chapter 7 presents an alternative means of determining the approximate nature of the stellar

initial mass function of extragalactic systems by considering timescales for low-mass star forma-

tion in different environments. I find that a galaxy’s metallicity is a key parameter in determining

the shape of its IMF and make some predictions about trends in molecular emission in different

extragalactic systems with different IMFs.
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CHAPTER 1

INTRODUCTION

In this introductory chapter, I provide some of the theoretical framework necessary to understand

the work presented in this thesis. I start with an overview of the current standard model of cosmol-

ogy set within the framework of Einstein’s theory of relativity. I then move on to a discussion of

galaxies in our Universe and the tools used to infer their properties and evolution. Bearing in mind

the close link between galaxy evolution and star formation, I introduce some of the key physical

processes involved in the collapse of a molecular cloud and formation of a star. The last part of this

chapter is dedicated to a description of current and future data sets that are becoming available to

astronomers over the entire range of the electromagnetic spectrum and that will allow us to make

significant strides in the fields of cosmology and galaxy evolution.

1.1 Cosmology

Cosmology refers to the study of the Universe in its entirety - how it came to be, what it is made

of and where it is headed. While such a study has a long history in the pages of both religion and

philosophy, the study of observational or physical cosmology is a much more recent phenomenon.

It was not until the early 1920s that Edwin Hubble discovered that there existed galaxies outside

our own Milky Way. By observing special kinds of stars known as Cepheid variables whose

intrinsic luminosity follows a well-known trend (such objects are called standard candles) he was

able to infer their distances from their measured luminosities and concluded that they lay outside

the confines of our own Milky Way (Hubble 1925). It is probably fair to say that observational

cosmology began around the same time when the work of Vesto Melvin Slipher and then Hubble

1
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led to the discovery that distant galaxies in our Universe are receding away from us with a recession

velocity, v, that is proportional to their distance, d (Hubble & Humason 1931).

v = H0d, (1.1)

The proportionality constant is known as Hubble’s constant and is the Hubble parameter at the

present day, t0. This Hubble’s law isn’t exact. It doesn’t hold for example for nearby galaxies

which typically posess random motions known as peculiar velocities. However, for the majority

of the galaxies studied in this thesis, Hubble’s law can be taken to be fairly universal and the latest

datasets suggest a Hubble constant of H0 = 70.1 ± 1.3 km s−1 Mpc−1 (Dunkley et al. 2009)

where 1pc � 3×1016m. Due to the uncertainties in the Hubble constant, cosmologists often work

in terms of h, where H0 = 100hkm s−1 Mpc−1. The fact that all distant galaxies follow Hubble’s

law, tells us that we live in an expanding Universe. Due to this expansion, an object emitting

light at a wavelength of λe would have this light observed with a different wavelength of λo. The

change in wavelength defines the redshift, z

z =
λo

λe
− 1. (1.2)

For an expanding Universe, λo > λe i.e. a shift towards longer and redder wavelengths - hence

the term redshift. The redshift of a galaxy is typically calculated by looking at the shift in standard

spectral lines in a galaxy’s spectrum - see § 1.2. However, this method of calculating redshifts

involves obtaining a high-resolution spectrum of each galaxy using a spectrograph which can be

a time-consuming process. This makes it unfeasible for many future galaxy surveys that aim to

study hundreds of millions and even billions of galaxies in our Universe. We really have come a

long way from the days of Hubble! In Chapters 2, 3 and 4, a new method of calculating redshifts

from the colours of galaxies will be discussed and applied to future galaxy surveys.

The expansion rate of the Universe is measured in standard cosmology using a quantity called

the scale factor, a(t). Cosmologists most often work in terms of comoving coordinates which

are carried along with the expansion and the relationship between the real distance between two

points, x and the comoving distance, χ is:

x = a(t)χ. (1.3)
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If the Universe is expanding today this must mean that early in its history, all points in the

Universe were much closer together. In 1949, Fred Hoyle, in a popular radio broadcast used

the term Big Bang to describe the origin of the Universe from some hot dense initial condition

although he continued to be a proponent of the steady-state theory where the Universe does not

change its look over time. The Universe is now thought to have originated from the Big Bang

some 14 billion years ago and the Big Bang model has become the standard model to describe

the origin and evolution of our Universe. This model has as its framework, Einstein’s general

theory of relativity, a geometric theory of gravitation which introduced the revolutionary idea of a

four dimensional spacetime manifold with three spatial and one temporal coordinate. Within this

theory, any non-trivial mass distribution will induce a non-trivial curvature on the manifold much

in the same way a ball placed on a rubber sheet curves the sheet around it.

The expansion of the Universe whose discovery gave birth to the field of observational cos-

mology, is a logical outcome of Einstein’s theory of relativity. The cosmological principle states

that the Universe is both homogenous (i.e. uniform in both composition and density) and isotropic

(i.e. has no preferred direction) on large scales (> 100 h−1Mpc). The latter is verified by obser-

vations of the cosmic microwave background, a uniform radiation bathing the sky in all directions

with a temperature of about 3K that was discovered accidentally by Penzias & Wilson (1965)

and predicted to be a relic of the Big Bang (Dicke et al. 1965). Homogeneity is implied by

the assumptions of isotropy and the Copernican principle which states that we do not occupy a

privileged position as observers of the Universe. Solving Einstein’s equations after assuming the

cosmological principle gives rise to the Friedmann equations:

ȧ

a

2

= H2 =
8πGρ

3
− k

a2
, (1.4)

ä =
−4πG(ρ + 3p)a

3
, (1.5)

where ρ is the mean energy density of the Universe which is composed of components from matter,

ρm as well as any other unknown energy often referred to by cosmologists as dark energy, ρΛ. p

is the associated pressure, k is the curvature of the Universe, a = a(t) is the scale factor and G

is the gravitational constant. The curvature, k relates to the geometry of the Universe such that

k = 0 corresponds to a flat Universe where parallel light remains parallel, k < 0 corresponds to an

open Universe where parallel light rays will eventually diverge and k > 0 corresponds to a closed

Universe where parallel light rays eventually converge.
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The Big Bang theory gave rise to a number of problems which were eventually solved by a

theory proposed by Guth & Tye (1980); Guth (1981) known as inflation. In inflationary theories,

the Universe is subject to a phase of accelerated expansion very early in its history and this helps

explain among other things the growth of inhomogenous structures such as stars and galaxies from

the early homogenous Universe.

1.1.1 The Standard Cosmological Model

The standard model of cosmology was born from observational evidence that the Universe was

correctly described by the equations of general relativity. Inflation predicts that the Universe

should be flat with k = 0 and this is confirmed by observations of the cosmic microwave back-

ground (Bennett et al. 2003; Dunkley et al. 2009) after assuming a prior on h. For convenience,

we define the matter energy density, Ωm = 8πGρm/3H2, the dark or vaccum energy density,

ΩΛ = 8πGρΛ/3H2 and the curvature, Ωk = −k/(aH)2. Therefore, Eq 1.4 simplifies to

Ωm + ΩΛ + Ωk = 1. (1.6)

Assuming a flat Universe with Ωk = 0 means Ωm + ΩΛ = 1. For many years it was believed

that ΩΛ = 0 and that the Universe’s energy density was composed entirely of matter. It was

not until the early 1990s that several authors (Efstathiou et al. 1990; Carroll et al. 1992; White

et al. 1993; Ostriker & Steinhardt 1995) found evidence for a non-zero ΩΛ from measurements

of the large-scale structure of the Universe, the age of the Universe and the baryonic content of

galaxy clusters. See Calder & Lahav (2008) for a review of the history of dark energy. A non-zero

ΩΛ was confirmed later by the studies of Riess et al. (1998); Schmidt et al. (1998); Perlmutter

et al. (1999) and since then observational evidence from many independent experiments has been

mounting in favour of Ωm = 0.3 and ΩΛ = 0.7. The matter part of this equation can also be split

into further components. Baryons such as the protons and neutrons that make up atoms, molecules

and us, only account for 4% of the Universe’s energy density (Ωb = 0.04). The rest of the matter

(Ωc = 0.26) is invisible or dark - it interacts only gravitationally but not electromagnetically and

was first discovered by Zwicky in 1933 by studying the velocities of galaxies in the Coma Cluster

(Zwicky 1933). Zwicky called this dark matter the missing mass. The dark matter is thought to be

cold which means that the particles that it is composed of travel at slow speeds which are much

smaller than the speed of light. This assumption is necessary to explain the observed structures

of our Universe. Galaxies in our Universe clump together to form clusters and superclusters of
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galaxies that exist in huge filaments punctuated by massive voids. As the galaxies formed these

structures through gravitational interaction between both the dark and baryonic matter that makes

them up, the scale of the structures they form depends crucially on the velocity of the dark matter

particles.

The aim of many modern cosmology experiments is to pin down the cosmological parameters

such as Ωm, ΩΛ and h to the utmost precision. Different cosmological probes are now used to

constrain the values of these parameters. These include the clustering pattern of galaxies in our

Universe e.g. (Eisenstein et al. 2005; Cole et al. 2005) which will be described in more detail in §

1.1.4 as well as Chapter 3 of this thesis. Other probes include weak gravitational lensing (Wittman

et al. 2000; Bacon et al. 2000; Van Waerbeke et al. 2000; Hoekstra et al. 2006; Semboloni et al.

2006) which involves measuring the bending of light from distant galaxies by the intervening

dark matter (see Chapter 4), counting the number of galaxy clusters as well as measuring the

light from supernovae in distant galaxies which are known to act as standard candles (Riess et

al. 1998; Perlmutter et al. 1999; Schmidt et al. 1998). The latter has proven to be the major

observational evidence for a non-zero ΩΛ as these observations show that distant galaxies are

not only receding away from us but that their expansion is now accelerating. This can only be

explained if the Universe has in addition to its baryonic and dark matter, some additional and

mysterious form of dark energy. By designing experiments that aim to probe both the nature of

dark energy and dark matter, cosmologists hope to better understand these elusive entities and

perhaps even challenge the current standard cosmological model. Throughout this thesis however,

I work within the framework of the standard cosmological model with Ωb = 0.04, Ωc = 0.26,

ΩΛ = 0.7 and h = 0.7.

1.1.2 The Age of the Universe

Distant galaxies in our Universe are observed as they were very early in the history of the Universe

due to the finite amount of time that it takes for the light from them to reach us. In observational

cosmology therefore, it is important to be able to link the distance or redshift of a galaxy to the

epoch at which it is observed to be. The lookback time is defined as the difference in time between

an event which happened at redshift, z and today. It is given by:

∆t =
1

H0

� z

0

(1 + z)−1dz

(1 + z)2(1 + Ω0
mz − z(2 + z)Ω0

Λ)
, (1.7)

assuming a Universe composed of matter and some form of dark energy. The age of the Universe
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is simply the integral evaluated to ∞.

1.1.3 Distance Measures in Cosmology

In an expanding and possibly curved space-time, the distance between two objects is not uniquely

defined as is the case in standard Euclidean geometry. As the Universe is expanding, one can

work either in terms of the comoving distance which remains fixed as the Universe expands or the

physical distance which grows as the Universe expands. The study of observational cosmology

considers how distant objects with given properties such as luminosity and size would appear to

us given the geometry and composition of the Universe. In this section, some standard distance

measures are described that will be used throughout this thesis.

The redshift has already been described as involving the ratio of the wavelength of light emitted

by a distant object to the wavelength at which the light is observed - Eq 1.2. The redshift in turn

is related to the scale factor a(t) by:

1 + z =
a(to)
a(te)

. (1.8)

The comoving distance, χ is the simplest measure of distance and is the distance between two

points measured along a path defined at the present cosmological time. For objects moving with

the Hubble expansion, the comoving distance remains constant with time.

χ =
� t

te

cdt�

a(t�)
=

� 1

a

da�

a�2H(a�)
=

c

H0

� z

0

dz�

h(z�),
(1.9)

where a is the scale factor, te is the time at which the light from the object is emitted and t is the

present day. The integral is often more usefully expressed as an integral over the scale factor or

redshift.

The luminosity distance, Dl is a way of expressing the amount of light received from a distant

object. If we assume that the flux of an object decreases with distance according to an inverse

square law, Dl is the distance that the object would consequently appear to have. This is not in

fact the actual distance both because the Universe need not be flat and due to the fact that it is

expanding. The luminosity distance is related to the comoving distance as follows

Dl = (1 + z)χ. (1.10)
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The angular diameter distance, DA is a measure of how distant objects of a known physical

size appear to be once again under the assumptions of Euclidean geometry. For a flat Universe, it

is related to the comoving distance and the luminosity distance by

Dflat
A =

χ

(1 + z)
=

DL

(1 + z)2
. (1.11)

If the Universe is curved, the equation for DA becomes

DA =
a

H0

�
|Ωk|





sinh(

√
ΩkH0χ) Ωk > 0

sin(
√
−ΩkH0χ) Ωk < 0

For objects at low redshift that are relatively nearby, the separations are approximately Eu-

clidean and so these three distance measures roughly coincide.

1.1.4 Galaxy Clustering as a Cosmological Probe

One of the most remarkable features of our Universe is the degree to which galaxies are clustered

given the initial homogeneities in the early Universe that they grew out of. In order to understand

this clustering pattern, one has to understand the process of structure formation in our Universe.

After inflation has taken place, the Universe is thought to consist of a soup of hot thermal particles

and the energy density is entirely dominated by radiation. As the Universe cools and expands, the

particles begin to slow down and ordinary matter starts to dominate. Eventually atoms form as free

electrons bind to nuclei. The photons that were previously scattering off the free electrons through

Thomson scattering are no longer bound to the matter and escape making the Universe transparent.

The time at which this occurs is known as the epoch of recombination. These photons are today

seen as the cosmic microwave background. As the matter starts to dominate, tiny inhomogeinities

left by inflation are amplified by gravitational collapse. Matter falls towards denser regions making

the rarefied regions even more rarefied. The density inhomogeneities go from being described by

simple linear differential equations to highly non-linear equations and it is in the non-linear regime

that structures such as galaxies and galaxy clusters begin to grow. As stars form and light up the

galaxy, electromagnetic processes become important and drive the evolution of the galaxies and

clusters (§ 1.2).

In this section however, we are concerned with how the large-scale structure of galaxies in

our Universe can be used to constrain the cosmological parameters that define our Universe. The
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clustering pattern of galaxies is often measured in terms of two variables that condense the vast

amounts of information present in large galaxy samples to easily quantifiable properties. The two-

point correlation function, ξ(r) measures the excess probability above random of two galaxies

having a given separation, r and the power spectrum, P (k) decomposes the clustering pattern into

waves with wavenumber, k = 2π/λ and gives the typical amplitude at a particular wavenumber.

Mathematically, transforming from the distance space to a wavelength space is equivalent to taking

a Fourier transform of the correlation function to give the power spectrum.

The initial power spectrum of density fluctuations in the early Universe is given by

P (k) = AknT 2(k), (1.12)

where T (k) is known as the transfer function and encompasses important physics from the very

early Universe. This function depends crucially on the matter density of the Universe as well

as the Hubble parameter. In Chapter 3, I will be using the analytical expression for the transfer

function derived by Eisenstein & Hu (1998). The parameters, A and n define the form of the

initial density perturbations of the Universe and can be constrained using cosmological data sets.

In 1977 Harrison & Zeldovich proposed a value of n = 1 which is also consistent with inflationary

theories. There are many codes such as CMBFAST (Seljak & Zaldarriaga 1996) that exist for

computing the theoretical matter power spectrum given a set of cosmological parameters. What

one measures from a galaxy survey however, is the galaxy power spectrum which has the same

shape as the matter power spectrum but may be biased with respect to the matter power spectrum.

This is because the galaxy power spectrum gives the statistical distribution of luminous matter in

our Universe which may or may not be the same as the distribution of dark matter. If we assume

that the galaxies linearly trace the underlying matter distribution and that the bias is independent

of scale, the galaxy power spectrum in the linear regime is given by:

Pg(k, z) = D2(z)b2(z)P (k), (1.13)

where D(z) is the linear growth factor normalised to the present day and b(z) is the bias. The

growth factor describes the growth of the initial density fluctuations over time as these evolve to

form the galaxies, clusters and superclusters we see today and therefore it modifies the amplitude

of the observed galaxy power spectrum. The presence of dark energy changes the growth factor at

late times. The bias tells us how the galaxy clustering is different from the dark matter clustering.
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Although this bias can be redshift dependent, in Chapter 3 where I compute the galaxy power

spectrum, I assume a constant bias.

1.2 Galaxies

Galaxies in our Universe not only act as beacons of light that can be used to probe the dark

Universe but they are themselves very interesting and complicated systems to study. While the

distribution of mass in our Universe is governed by the laws of gravity and is thought to be rela-

tively well understood owing mainly to progress in the field of N-body simulations (Aarseth 2003;

Springel et al. 2005), the distribution of light depends on more complicated and non-linear pro-

cesses such as gas cooling, star formation, supernova feedback and dust obscuration which are

much harder to model and often require a semi-analytic approach (Somerville 1997; Bower et al.

2006). However, as the light from distant galaxies has taken a finite amount of time to reach us,

distant galaxies are seen as they were several millions or billions of years ago. By observing these

galaxies in a careful and well-defined manner and comparing them to models, we can therefore

hope to understand how they form and evolve into structures like our own Milky Way.

1.2.1 Morphological Classification

Edwin Hubble was the first man to classify galaxies according to their morphology and devised the

now well known tuning fork diagram shown in Figure 1.1 (Hubble 1926). He originally thought

that the elliptical galaxies to the left of the tuning fork were younger systems that evolved into

the spirals on the right. Even though we now know that this is not the case and in fact that the

opposite is true in some sense, the nomenclature of describing elliptical galaxies as early types

and spiral galaxies as late types has stuck. There are many sub-divisions within ellipticals and

spirals. However in most of this thesis, I will make reference to only early and late type systems.

In Chapter 5, I attempt to classify galaxies morphologically by means of automated machine-

learning algorithms.

The morphological classifications are also correlated in some sense with more fundamen-

tal properties of the galaxies themselves. For example, most present day elliptical galaxies are

thought to be composed of old stars such as red giants and are not thought to have experienced any

recent episodes of star formation. These red giants give elliptical galaxies their characteristic red

colours and a spectrum that is dominated by the 4000 Åbreak. Most of these early type systems

also contain little gas or dust. Such systems are thought to have formed through the merging of
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Figure 1.1: Hubble’s tuning fork diagram for morphological classification of galaxies. Image
provided courtesy: skyserver.sdss.org

two or more similarly-sized component galaxies. Spiral galaxies on the other hand like our own

Milky Way, are actively star forming and tend to have bluer colours. These galaxies contain nu-

merous clouds of gas and dust and their spectrum is dominated by the presence of emission lines

originating from the significant gas component. While elliptical galaxies are found to be more

common in dense clusters, spirals tend to vastly outnumber them in the field. This is known as the

morphology-density relation where the morphology of a galaxy is correlated with the density of

the environment in which it lives (Dressler 1980). Much of this thesis deals with elliptical galaxy

populations and I therefore describe these objects now in a little more detail.

Elliptical Galaxies: As elliptical galaxies are some of the oldest objects in our Universe, they

are often considered testbeds for theories of galaxy formation and evolution. There are currently

two highly debated views as to how these objects formed and evolved. In the ΛCDM cosmol-

ogy already described, elliptical galaxies are thought to be built up through successive mergers

of smaller components (Toomre & Toomre 1972). This hierarchical picture of massive galaxy

formation is supported by the detailed simulations of White & Rees (1978); Croton et al. (2006);

De Lucia et al. (2006). Although observations of massive elliptical galaxies suggest that the stars

in these objects are very old and were formed in a burst very early in the history of the Universe,
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this can be reconciled with the simulations by requiring that the stars are formed early in relatively

small units before merging at later times to form the massive ellipticals we see today. The forma-

tion of more younger stars during the merging process can be switched off in the simulations by

invoking feedback processes that suppress the condensation of gas in massive halos for example

the presence of active galactic nuclei (AGN). However, some recent observations suggest not only

that these massive ellipticals contain old stars, but also that they were already well assembled at

high redshifts with the most massive objects being the first ones to be assembled (Cimatti et al.

2006). This is in direct contradiction to the hierarchical picture of galaxy formation and requires

a different more classical formation theory known as the monolithic collapse scenario where the

galaxies are formed and assembled at very high redshifts and have been passively evolving since

then (Larson 1975). In Chapter 6, I study a sample of massive ellipticals in order to distinguish

between these two theories of galaxy formation.

1.2.2 Galaxy Evolution

Galaxy evolution is a complicated and as yet poorly understood process and so far it has mainly

been approached from two points of view. Studying the dynamical evolution of galaxies involves

understanding its formation, collapse and the distribution of mass and light within the galaxy.

On the other hand, spectral evolution deals with the study of the galaxy’s stellar populations and

how they evolve over time and hence analysing the evolution of the galaxy’s combined spectrum,

luminosity and colour. In this thesis, I will primarily be concerning myself with the latter and so

I describe spectral evolution models of galaxies in more detail. However, note that in Chapter 5,

I look at the morphologies of distant galaxies in our Universe which are predominantly shaped by

their dynamical rather than star formation history.

1.2.2.1 Evolutionary Synthesis Modelling

The spectral evolution of galaxies is most often studied using evolutionary synthesis modelling.

Originally developed by Tinsley (1972a,b), this method involves modelling the galaxy’s spectrum

at different epochs after assuming an analytical expression for the initial mass function - the mass

distribution of the galaxy’s stellar population - as well as the star formation rate of the galaxy.

Together, the initial mass function and the star formation history tell us the relative numbers of

stars of different masses in the galaxy at a given epoch. The other important ingredients in an

evolutionary synthesis model are the stellar evolutionary tracks e.g. (Alongi et al. 1993; Bressan

et al. 1993; Girardi et al. 1996) of one or more metallicities (Schaller et al. 1992; Charbonnel et al.
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1996), stellar spectral libraries e.g. (Lejeune et al. 1997, 1998; Prugniel & Soubiran 2001) and

some sort of chemical enrichment law. The stars evolve according to these prescriptions and at

any given epoch, the galaxy’s spectrum can then be built up by adding the spectra of all the stars.

In such models, the galaxy is taken to be a closed system and it is assumed that the gas returned

by dying stars is transformed back into new stars. I will now describe three of the fundamental

inputs into these spectral evolution models in more detail, which will be relevant in discussions

throughout the rest of this thesis.

The Star Formation Rate: There are two main prescriptions that are commonly used to model

the star formation rate of a galaxy in evolutionary synthesis models. The first is where all the stars

are formed in a single burst of star formation occuring at the age of the galaxy. This prescription is

usually used to model very old elliptical galaxies. If however there is some residual star formation

still occurring, an exponentially declining star formation rate is used such that SFR(t)∝exp(-t/τ ).

The star formation timescales, τ required to reproduce the observed broadband colours of differ-

ent galaxy types shown in Figure 1.1 are given in Figure 1.2 along with the galaxy spectra sub-

sequently produced using the PEGASE (Fioc & Rocca-Volmerange 1997) evolutionary synthesis

code. These star formation timescales for each galaxy type have been taken from the HyperZ

photometric redshift package user manual1. An irregular galaxy has constant star formation.

The Initial Mass Function: The initial mass function in evolutionary synthesis models is often

stated in terms of a series of power-laws where N(M)dM , the number of stars with masses in the

range M to M + dM is proportional to M−α. The work of Edwin Salpeter favoured an IMF with

α = 2.35 now known as the Salpeter function (Salpeter 1955). Later authors extended this work

by discovering variations in α for different mass ranges - e.g. Kennicutt (1983); Kroupa et al.

(1993); Baldry & Glazebrook (2003); Chabrier (2003). The IMF cannot be directly observed but

rather is inferred from looking at the luminosity function of stars - the number of stars per unit

brightness - and converting this to a mass function after assuming a mass-to-light ratio based on

stellar evolution models. In Chapter 7, an alternative way of determining the approximate nature

of the IMF by looking at the efficiency of low-mass star formation in different environments, will

be introduced.

Dust Extinction: The term extinction in astronomy is used to describe the absorption and scat-

tering of electromagnetic radiation emitted by astronomical objects, by intervening dust and gas

between the emitting object and the observer. It is usually expressed in terms of visual magni-

tudes. The extinction mainly arises due to the interstellar medium and the interstellar extinction
1http://webast.ast.obs-mip.fr/hyperz/manual.html
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Figure 1.2: Spectra for galaxies of different morphological types with different star formation his-
tories as output by the PEGASE (Fioc & Rocca-Volmerange 1997) evolutionary synthesis model.

varies with wavelength such that the extinction is stronger and therefore light is more attenuated at

shorter wavelengths. Superimposed on this trend are various absorption features arising from for

example dust grains in the interstellar medium. The extinction in our own Milky Way is fairly well

characterised and dust maps have been constructed for the distribution of dust in our ISM (Schlegel

et al. 1998). This extinction is usually represented by the single parameter, R(V)=Av/(AB − Av)

� 3.1. The extinction is also related to the column density of hydrogen atoms, n(H) by n(H)/Av

� 1.8 × 1021 atoms cm−2 mag−1. However, as will be seen in Chapter 7, the properties and

composition of the ISM can be very different in external galaxies outside our Milky Way and sig-

nificant star formation in such systems can lead to heavy obscuration by dust. Therefore, one may

also have to account for dust extinction produced in the host galaxies from which the light is being

emitted. As the dust preferentially attenuates light at shorter wavelengths, the light appears redder

and therefore the term reddening is often used to signify dust extinction in external galaxies. The

way in which the light is attenuated may also depend on the geometry and the angle at which we

are viewing the galaxy. Some common extinction laws used to model the reddening of light from

external galaxies are those of Allen (1976); Seaton (1979); Fitzpatrick (1986); Prevot et al. (1984);

Calzetti et al. (2000). In almost all of this thesis, I will be using the Calzetti et al. (2000) law where
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necessary.

Spectral evolution models have been widely developed in the literature and are commonly

available as public packages - e.g. GALAXEV (Bruzual & Charlot 2003), PEGASE (Fioc &

Rocca-Volmerange 1997), Starburst (Leitherer et al. 1999), GALEV (Kotulla et al. 2009) and the

models of Maraston (1998, 2005) to name a few. Once a library of theoretical spectra has been

built up using these models, these can be matched to observations in order to infer the spectral

type, age, metallicity and other fundamental properties of the observed galaxy. These models can

also be used in conjunction with broadband photometric observations where the galaxy is imaged

in a set of broadband filters instead of obtaining a high resolution spectrum using a spectrograph.

In the remainder of this section, I provide some technical details on calculating theoretical or syn-

thetic magnitudes and colours from spectral evolution models in order to compare to photometric

observations.

Synthetic Photometry: In order to obtain the theoretical fluxes in each of the broadband filters,

i, from the model spectra, the filter transmission function, Si(ν) is convolved with the spectrum,

F (ν). The apparent magnitude of the galaxy seen through band i is then calculated after nor-

malising the flux through the filter. The normalisation that is chosen depends on the particular

photometric system that is being used. In the Vega system, the fluxes are normalised to the flux of

the standard star Vega. In this thesis, I mainly work in the AB magnitude system which is defined

such that a spectrum with constant flux per unit frequency has zero colour. In most spectral evo-

lution models however, the flux density is given per unit wavelength. The magnitude in the AB

system is then related to the flux per unit wavelength of the spectrum, Fλ by:

mAB = −2.5 log10

� �
λ
hcFλSi,λdλ

�
λ
hcF

0
AB,λSi,λdλ

�
, (1.14)

(Girardi et al. 2002). The factors of λ
hc come because in modern surveys, CCDs are used instead of

bolometers that count the number of photons instead of measuring the total energy. The normali-

sation, F 0
AB,λ = F 0

AB,νc/λ2 where F 0
AB,ν=3.631×10−20 erg s−1 cm−2 Hz−1 is chosen such that

a spectrum with constant flux per unit frequency has zero colour. For a CCD detector therefore Eq



1.3. Star Formation 15

1.14 simplifies to:

mAB = −2.5 log10

��
λ
hcFλSi,λdλ�

1
hλSi,λdλ

�
− 48.6 (1.15)

The magnitudes obtained using this prescription from theoretical spectra of galaxies generated

using evolutionary synthesis models, can be compared to observed magnitudes in order to infer a

host of different galaxy properties including the age, metallicity, star formation history and stellar

masses (see Chapter 6) and even a crude estimate of the redshift (see Chapter 2).

1.3 Star Formation

Galaxies are essentially huge conglomerations of ∼ 1010 to 1012 stars. As well as stars, galaxies

may contain vast amounts of gas and dust from which the stars have been or are presently be-

ing formed. In the last section, it has already been demonstrated how the distribution of light in a

galaxy and its observed broadband properties such as luminosity and colour depend fundamentally

on the masses and ages of the stars that make it up. This forms the basis of evolutionary synthesis

modelling of galaxies described in the previous section. Clearly an understanding of galaxy evo-

lution requires a detailed understanding of the processes involved in star formation. While current

telescopes allow us to look deep into molecular clouds - the birthplaces of stars - within our own

galaxy (see Figure 1.3) and even some other nearby galaxies, such systems are difficult to resolve

in galaxies in the distant Universe. However, an understanding of the processes involved in star

formation allow us to make some reasonable guesses as to how these processes could be different

in distant galaxies with properties that are quite different from our own Milky Way. I briefly de-

scribe some of the key processes involved in star formation here. For a more detailed description

of star formation processes and the timescales involved, see Chapter 7.

The main driver for the collapse of a molecular cloud and formation of a star is clearly grav-

ity. When a molecular cloud reaches a certain critical density, it collapses under its own weight

leading to the dissipation of gravitational potential energy. Although the collapse may be hindered

somewhat by thermal and turbulence pressures within the molecular cloud, in general the time

taken for this collapse to occur can be roughly underestimated by considering the free-fall time

which just depends on the density of the collapsing gas, ρ. This corresponds to a scenario with
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Figure 1.3: The Pillars of Creation: star-forming regions within the Eagle Nebula in our own
Milky Way imaged using the Hubble Space Telescope. Image provided courtesy hubblesite.org

zero pressure.

tff =
�

3π

32Gρ
. (1.16)

There are two main factors that oppose the collapse of a molecular cloud under its own weight.

Firstly, in order for the gas cloud to continue to collapse, it must lose energy through radiative cool-

ing. This cooling process usually occurs through line emission in various atomic and molecular

transitions or thermal emission from dust grains. The atomic and molecular transitions have char-

acteristic spectral signatures that can be observed as tracers of star formation. If the gas cloud is

unable to cool however, the high temperatures and densities will serve to stop the collapse and

formation of the star.

Secondly, magnetic fields threading the cores of dense molecular clouds play an important role

in supporting these clouds and many of the fragments within them (Mouschovias & Ciolek 1999).

Magnetic field support was first invoked into star formation processes in order to solve two main

problems. In a fully formed star, thermonuclear reactions in the core of the star balance the inward
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pull of gravity but this is not the case in molecular clouds. If there were no other forces supporting

molecular clouds, they would have collapsed into stars a long time ago. A process called ambipolar

diffusion is responsible for the magnetic pressure that balances gravity within molecular clouds.

In a star-forming region, ions and electrons are tied to the magnetic field and therefore resist

collapse. Neutral particles are also indirectly tied to the magnetic field through collisions with the

ions. However, if the fractional ionisation in a molecular cloud is low, the neutral particles are

relatively unhindered and can therefore collapse due to gravitational instabilities.

The ability of magnetic fields to provide support against gravitational instability is determined

by the ratio of the mass contained within an enclosed region of gas to the magnetic flux passing

through the surface. The critical value of this ratio below which a cloud will be supported against

gravitational collapse is given by

�
M

Φ

�

crit

=
0.79√
πµ0G

, (1.17)

where M is the mass enclosed, Φ is the magntic flux, µ0 is the permeability of free space and

G is the gravitational constant (Mouschovias & Spitzer 1976; Mestel 1999; Mac Low & Klessen

2004). Less than this critical value, the cores are subcritical and stable against collapse and above

this the cores are supercritical and collapse on the free-fall timescale. Magnetic field support and

therefore ambipolar diffusion is only important in critical and subcritical cores.

A second problem in the absence of magnetic fields arises due to angular momentum. As

molecular clouds coalesce to form stars, the material rotates faster and faster creating extra angular

momentum. This angular momentum must be transferred in some way otherwise the star would

fly apart. Results of detailed simulations of star formation show that by flinging a small amount

of matter outwards along magnetic field lines, the magnetic waves can remove a huge amount of

angular momentum thus making star formation possible (Price & Bate 2007).

Magnetic fields have now been measured in different interstellar molecular clouds of different

densities (Crutcher et al. 1987; Crutcher 1999) thus supporting the idea that they play a crucial

role in star formation processes. However, a recent and slightly more controversial view is that

the magnetic fields in star-forming regions are weak and it is turbulence pressure that inhibits

the collapse of a molecular cloud (Elmegreen 2000; Mac Low & Klessen 2004). See McKee &

Ostriker (2007) for a comprehensive review of the theory of star formation and the role of both

magnetic fields and turbulence.

The balance of gravity, cooling as well as magnetic pressure determines the efficiency of the
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formation of stars of different masses and therefore the form of the stellar initial mass function.

Hydrodynamical simulations of star formation have already been relatively successful in repro-

ducing the form of the observed IMF (Bate et al. 2003) although these simulations do not include

the effects of magnetic or radiative pressure. In Chapter 7, I take a predominantly analytical ap-

proach incorporating all the relevant physical mechanisms involved in star formation, including

magnetic and radiative pressure, in order to make predictions for the form of the IMF in different

environments.

1.4 The Golden Age of Data

This is indeed an opportune time for the study of cosmology and galaxy evolution! Less than a

hundred years ago, Edwin Hubble signalled the birth of observational cosmology by discovering

that there are other galaxies outside our own Milky Way. Today we have datasets of millions of

galaxies and in the next decade we will be pushing the boundaries of our observable Universe

even further by observing hundreds of millions and even billions of galaxies back to a time when

the Universe was only a fraction of its present age. This golden age of data will allow us to test

with unprecedented accuracy both the standard model of cosmology as well as theories of galaxy

formation and evolution. In this section I highlight some of the different data sets becoming

available across the full range of the electromagnetic spectrum that will enable us to make new

strides in observational cosmology. This thesis focusses on fully exploiting many of these new

data sets.

1.4.1 Optical and Near Infra-red Wide-Field Imaging Surveys

The discovery of a non-zero ΩΛ in the late nineties heralded the birth of a new generation of exper-

iments designed to pin down the exact nature of this mysterious dark energy. Most cosmological

probes require statistically significant samples of galaxies in order to map out the distribution of

dark matter and dark energy in the Universe. Therefore there has been a great push to design

galaxy surveys that can image hundreds of millions and even billions of galaxies across our ob-

servable Universe. The current largest data set is that from the Sloan Digital Sky Survey which has

just been completed and has obtained photometric data in five different bands for ∼ 360 million

celestial objects (Abazajian et al. 2009). About 1 million of the galaxies also have high resolution

spectra available. This data set has already been used to constrain cosmological models through

measurements of the galaxy power spectrum (Percival et al. 2007) as well as for countless studies
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of galaxy formation and evolution.

In the next generation, a number of large wide-field imaging surveys are being designed that

will push the limits of these current data sets. In addition, spectroscopic surveys will also provide

complementary means of constraining cosmological models as well as providing useful calibration

sets for the photometric surveys. A summary of upcoming imaging and spectroscopic surveys is

provided in Table 1.1.

The Dark Energy Survey (DES) due to start in 2011 (Annis et al. 2005) is an optical ground-

based imaging survey covering around two fifths of the southern hemisphere. This survey will

obtain photometric data in five optical bandpasses for around 300 million galaxies out to a redshift

of 2. The survey will be complemented with data in the near infra-red bands from the Vista

Hemisphere Survey (VHS) due to start in late 2009 (Arnaboldi et al. 2007). In Chapter 3, I look at

the power of this combined data set in constraining cosmological models through measurements

of galaxy clustering. Other larger and deeper ground-based optical photometric surveys such as

the Large Synoptic Survey Telescope (LSST) are also planned over the next decade (Ivezic et al.

2008). LSST will image the entire southern sky and obtain photometric data of unprecedented

depth (∼ hundred million times fainter than can be seen by the unaided eye) for almost a billion

galaxies in the Universe. Figure 1.4 gives a taste for what the night sky will look like with LSST.

The survey however will cover an area 50,000 times greater than is shown in this image and in six

optical bands.

Other experiments are planned that involve putting large mirrors into space to conduct all-

sky galaxy surveys. The lack of an atmosphere in space means the image quality is far superior

than is obtained from the ground allowing us to measure tiny distortions in the galaxy images

induced as a result of the intervening dark matter between us and the observed galaxy. A space-

based experiment called Euclid that has been designed to study exactly such distortions will be

discussed in more detail in Chapter 4.

All these wide optical and near infra-red imaging surveys both from the ground and space,

when combined with data from experiments that measure the cosmic microwave background and

its temperature fluctuations, will enable us to test the standard model of cosmology to the utmost

precision and perhaps even lead to the dawn of alternative theories of gravity to Einstein’s GR.

1.4.2 Deep Spectroscopic Surveys

Although wide-field imaging surveys are extremely powerful in terms of obtaining statistically

significant numbers of galaxies to test cosmological models, spectroscopy still remains the most
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Survey Area (deg2) Depth (Mag or Redshift) Filters/Resolution Schedule

KIDS (+Viking) 1500 r < 24.4 ugri ZY H 2008-2013

DES (+VHS) 5000 r < 24 grizY JHK 2011-2016

Pan-STARRS1 (PS1) 15000 r < 24 grizy 2008-2012

Pan-STARRS4 (PS4) 30000 r < 25.6 grizy 2012-2017

SkyMapper 15000 g < 22.9 uvgriz 2008-2011

HyperSuprime 2000 r < 25 BV Riz 2011-2016

PAU 8000 i < 23 50 narrow bands 2010-2015

LSST 30000 g < 26 ugriz 2014-2018

SNAP 4000 R < 28.3 9 visible & IR 2015-2021

Euclid - Photometric 20000 RIZ < 24.5 RIZ +Y JH 2017-2020

WiggleZ 1000 r < 22.5 (+UV) ∼400 2006-2009

BOSS (SDSSIII) 10000 r < 20 (LRG) 2000 2009-2014

HetDex 200 1.8 < z < 3.8 850 2009

WFMOS (z=1) 2000 R < 22.7 5000 2011-2016

WFMOS (z=3) 300 R < 24.5 2011-2016

SNAP 4000 0.3 < z < 1.7 ∼200 2015-2021

ADEPT 2000 z > 0.8 2015

SKA 20000 z < 1.5 2020

Euclid - Spectroscopic 20000 z < 2.1 400 2017-2020

Table 1.1: Summary of upcoming imaging and spectroscopic surveys
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Figure 1.4: Taste of what the night sky will look like with the next generation Large Synoptic
Survey Telescope (LSST). Image provided courtesy the LSST website: www.lsst.org

efficient means of understanding a galaxy’s evolutionary history mainly owing to the richness of

information encoded in a galaxy’s spectrum. A galaxy spectrum can be thought of as containing

the unique fingerprints of a galaxy’s stellar population. Spectroscopic data sets although much

smaller than photometric data sets due to the time involved in obtaining spectra, often go down

to much fainter flux limits e.g. (Le Fèvre et al. 2005, 2004; Davis et al. 2003) than the wide-field

surveys previously mentioned. This depth allows us to collect galaxy spectra over several epochs

and by matching them to theoretical models such as those described in § 1.2.2.1, we are able to

build up a picture of the evolutionary history of galaxies in our Universe.

Modern surveys are able to use multi-object spectrographs where the light from several hun-

dred galaxies can be collected simultaneously and fed to a spectrograph using fiber optic cables.

In Chapter 6, I will be using a spectroscopic data set of a particular class of galaxies known as

Luminous Red Galaxies to understand their spectral evolution. These galaxies are some of the

brightest and most massive objects known in our Universe and can therefore be observed out to a

much higher redshift than most other data sets. Being early type systems, they are also very old

and thereby allow us to place stringent constraints on theories of galaxy formation.
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Spectroscopic data sets are also useful for photometric surveys. In Chapters 2, 3 and 4, I will

be discussing redshift estimation techniques for photometric surveys and will show that the more

accurate redshifts obtained from galaxy spectra are in fact required to calibrate the photometric

redshift estimates.

1.4.3 Radio and Sub-mm Surveys

Much of the power of current astronomical data sets lies in the fact that they encompass the full-

range of the electromagnetic spectrum. While optical data allows us to look at the stars in a galaxy,

moving to the infra-red and radio and sub-mm surveys allows detection of dust and molecular gas

- the fuel for star formation. As already mentioned, the process of star formation is accompanied

by radiative cooling through various atomic and molecular line transitions. The main molecule

present in molecular clouds is hydrogen but this does not emit under the conditions typically

present in molecular clouds and therefore cannot be detected. The next most abundant molecule,

CO has a weak dipole moment which means that its rotational levels are easily excited by collisions

with hydrogen molecules. The lower rotational levels are easily observed at radio and sub-mm

wavelengths with ground-based telescopes and can be used to trace regions with a high density of

molecular hydrogen that are likely to be star forming. The molecule CO has now been detected

in systems out to a redshift of ∼6.4 (Bertoldi et al. 2003) which corresponds to a lookback time

of ∼12.6 Gyr! This has provided us with compelling evidence that star formation was already

taking place very early in the Universe’s history. Recently other molecules such as HCN (Gao

& Solomon 2004), HCO+ (Garcı́a-Burillo et al. 2006) and CS (Bayet et al. 2008a) have also

emerged as tracers of very high-density regions of star formation in distant galaxies. While these

molecules are readily observed in nearby galaxies, current instruments are unable to detect them

easily in the distant Universe and they are only seen in the most luminous systems at high redshift.

New radio and sub-mm facilities such as the Atacama Large Millimeter Array (ALMA) (Carilli

et al. 2008), currently under construction, and the Square Kilometer Array (SKA) which is in its

design phase, will allow us to detect molecules in star forming galaxies like our own Milky Way

out to very high redshifts. This will present us with an opportunity to detect the first signals from

some of the very first galaxies to be formed in our Universe. In Chapter 7, I make some predictions

for these upcoming radio and sub-mm surveys in terms of the molecules that could be observed

with them and how they can be used to infer the physical conditions of their host galaxies.
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1.5 Thesis Layout

In this thesis I study galaxies in the distant Universe focusing in particular on their redshifts,

colours, morphologies and star formation processes within them.

• In Chapter 2 I start by describing the photometric redshift estimation technique for ob-

taining redshifts of galaxies from their broadband colours and discuss the different methods

currently used for this problem.

• Chapter 3 applies one photometric redshift algorithm based on artificial neural networks

to simulations for the upcoming Dark Energy and Vista Hemisphere Surveys. In particular,

I consider the requirements on this photometric redshift estimate for measurements of the

clustering pattern of galaxies in our Universe.

• Chapter 4 describes photometric redshift design studies undertaken for the space-based

Euclid mission concept.

• In Chapter 5 I move on to applying the artificial neural network algorithm to a different

problem - the morphological classification of almost 1 million objects from the Sloan Dig-

ital Sky Survey. I compare results obtained using the machine learning algorithm to those

obtained by the human eye as part of the web-based Galaxy Zoo project2 and consider

whether the human classifications can be used to train machine learning codes for future

surveys.

• In Chapter 6 I study the evolution of the luminosities, colours and stellar masses of Lumi-

nous Red Galaxies from the 2dF and SDSS LRG and QSO (2SLAQ) spectroscopic survey

and show that these observations present a significant challenge for current models of galaxy

formation.

• Finally in Chapter 7 I focus on studying star formation processes in distant galaxies. A

chemical model is used to calculate various timescales associated with star formation, the

balance of which tells us the ratio of low to high-mass stars in galaxies with different phys-

ical conditions and therefore the form of the initial mass function. The final part of this

chapter looks at some molecular tracers of different kinds of initial mass functions and

makes predictions for observations that could be made with the next generation of radio and

sub-mm surveys.
2www.galaxyzoo.org
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I conclude this thesis with a summary of the key results and some discussion about future work

which will be interesting to conduct in order to follow-up some of the results presented here.



CHAPTER 2

PHOTOMETRIC REDSHIFT ESTIMATION

METHODS

The work described in this chapter is an extended version of the publications: Abdalla, Banerji,

Lahav & Rashkov 2009, MNRAS, Submitted, arXiv:0812.3831 as well as Chapter 13 of Bayesian

Methods in Cosmology (Cambridge University Press) by Lahav, Abdalla & Banerji.

2.1 Introduction

Estimating the distance to an astronomical object is a fundamental problem in Astronomy. Dis-

tances to galaxies are usually estimated from their redshifts as defined in Eq 1.2. Ideally the

redshift is derived from a high resolution spectrum. The alternative is the photometric redshift

technique. Using the colours of a galaxy in a selection of medium- or broad-band filters we can

gain a crude approximation of the galaxy’s spectral energy distribution or SED, from which its

redshift and spectral type may be found. Figure 2.1 illustrates how the colours of a galaxy change

with redshift and how the major spectral features can be picked up in each band.

The technique is very efficient compared with spectroscopic redshifts, since the signal-to-noise

in broad-band filters is much greater than the signal-to-noise in a dispersed spectrum. Further-

more, a whole field of galaxies may be imaged at once while spectroscopy is limited to individual

galaxies or those that can be positioned on slits or fibres. However, photometric redshifts are only

approximate at best and are sometimes subject to large errors. For many applications though, large

sample sizes are more important than precise redshifts and photometric redshifts may be used to

good effect.

25
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Figure 2.1: The SED of an elliptical galaxy at redshift z = 0 (solid line) and the same galaxy at
z = 3 (dashed line) as seen through a set of broad-band optical (griz) and near infra-red (JHKs)
filters. The 4000Å break moves from the g-band at z = 0 to the NIR bands as the galaxy is
redshifted to z = 3.

Photometric redshifts date back to Baum (1962). For reviews see Weymann et al. (1999);

Koo (1999). The methods have been used extensively in recent years on the ultra-deep and well-

calibrated Hubble Deep Field observations (e.g. Connolly et al. (1998)).

The photo-z approach has re-gained popularity with the planning of wide field deep imaging

surveys such as those summarised in Table 1.1. The accuracy with which photometric redshifts

can be calculated for these surveys is crucial for the determination of cosmological parameters

such as the Dark Energy equation of state. This point will be addressed in detail in Chapters 3 and

4.

For a statistician, photo-z estimation is an inverse problem: going from the colour space to the

redshift, type and other galaxy properties. There are two common approaches to the problem: (1)

Template methods (e.g. Hyper-Z) and (2) Training methods (e.g. ANNz) as described below. Note

that training methods can also be used on synthetic data, so they are not necessarily ‘empirical’ as
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they are sometimes referred to as.

There are also different deliverables required from the photo-z estimation technique, e.g., a

catalogue where a photo-z and associated error is given per galaxy, or, as required for certain

applications, just the redshift distribution N(z). A final comment is that different techniques have

been developed for the photo-z for field galaxies and clusters of galaxies. The focus of this chapter

and much of the rest of the thesis is predominantly on field galaxies.

In the remainder of this chapter, the different methods for photometric redshift estimation are

described. Details of specific publicly available photometric redshift packages are also given and

some of these are used in a comparison study. Photometric redshifts are calculated using these

codes for a sample of luminous red galaxies for which spectroscopic redshifts are already avail-

able thereby allowing an assessment of the relative performance of each of the different public

codes. Luminous red galaxies have been chosen for this comparison as the presence of a strong

4000 Åbreak in these galaxies means the photometric redshift estimates for these objects are likely

to be reasonably accurate. The codes are also used in the construction of a new photometric red-

shift catalogue of more than 1.5 million luminous red galaxies using photometric data from the

Sloan Digital Sky Survey, Data Release 6. Finally, some work undertaken as part of the Pho-

tometric Redshift Accuracy Testing (PHAT) program1 is presented before drawing some general

conclusions about photometric redshift methods and their relative performance.

2.2 Methods

As already stated, there are two main methods for photometric redshift estimation although exten-

sions and modifications to these have also been developed. In this section, the principles behind

the two methods will be outlined.

2.2.1 Template Fitting Methods

These methods involve compiling a library of template spectra which can be either theoretical

SEDs from population synthesis models (e.g. GISSEL – Bruzual & Charlot (1993) - BC hereafter)

or empirical SEDs (e.g. Coleman et al. (1980) - CWW hereafter). The expected flux through each

survey filter is calculated for each template SED on a grid of redshifts, with corrections for the

interstellar medium (ISM), intergalactic medium (IGM) and galactic reddening where necessary.

A redshift and spectral type are estimated for each observed galaxy by minimizing χ2 with respect
1http://www.astro.caltech.edu/twiki-phat/bin/view/
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to redshift, z, and spectral type, SED, where

χ2(z,SED) =
�

i

�
fi − α(z,SED)ti(z,SED)

σi

�2

, (2.1)

fi is the observed flux in filter i, σi is the error in fi, ti(z,SED) is the flux in filter i for the template

SED at redshift z and α(z,SED) ,the scaling factor normalizing the template to the observed flux,

is determined by minimizing Equation 2.1 with respect to α, giving

α(z,SED) =

�
�

i

fiti(z,SED)
σ2

i

�
/

�
�

i

ti(z,SED)2

σ2
i

�
. (2.2)

The template-fitting photometric redshift technique makes use of the available and reasonably

detailed knowledge of galaxy SEDs and in principle it may be used reliably even for populations

of galaxies for which there are few or no spectroscopically confirmed redshifts. However, cru-

cial to its success, is the compilation of a library of accurate and representative template SEDs.

Empirical templates are typically derived from nearby bright galaxies, which may not be truly rep-

resentative of high redshift galaxies. Conversely, while theoretical SEDs can cover a large range

of star formation histories, metallicities, dust extinction models and other input parameters, not

all combinations of these parameters at any particular redshift are realistic, and the ad hoc inclu-

sion of superfluous templates increases the potential for errors when using observations with noisy

photometry.

2.2.2 Bayesian Methods

An extension of the above maximum likelihood approach is to incorporate priors, through the

Bayesian framework. Benitez (2000) formulated the problem as follows. The probability of a

galaxy with colour C and magnitude m having a redshift z is

p(z|C,m) =
p(z|m)p(C|z)

p(C)
∝ p(z|m)p(C|z), (2.3)

where the term p(C|z) is the conventional redshift likelihood employed in simple template-fitting

methods, and p(C) is just a normalization. The new important ingredient is p(z|m) , which

brings in the prior knowledge of the magnitude redshift distribution. With the aid of the extra

information (prior), this approach is effective in avoiding catastrophic errors of placing a galaxy

at an unrealistic redshift given its magnitude and colours.

Although a magnitude or luminosity prior is used in the most common implementations of

this method, recently, a new idea has been proposed - to use the galaxy surface brightness as a

prior (e.g. Kurtz et al. (2007); Stabenau et al. (2008)). As the surface brightness dimming is
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proportional to (1 + z)−4 in any conventional cosmology, it can serve as a natural prior. Indeed,

using this prior eliminates a large fraction of outliers.

2.2.3 Training Set Methods

When a sufficiently large and representative sample of galaxies with spectroscopic redshifts is

available, one can use these to derive a functional relation between the colours and redshifts of the

galaxies. This forms the basis of the training set method. The functional relation could be a simple

polynomial fit (Connolly et al. 1995) or a more complicated mapping as is the case for training

set methods such as artificial neural networks (e.g. Collister & Lahav (2004)) and support vector

machines (e.g. Wadadekar (2005)). Once the redshift is known as a function of the magnitude,

this relation can be applied to a data set where only the magnitude is known in order to determine

the redshift.

When a representative and well calibrated training set is available, this method generally pro-

vides more accurate photometric redshifts than the traditional template fitting codes. Furthermore,

the method is flexible in that other galaxy properties such as size (e.g. Firth et al. (2003)), con-

centration indices (e.g. Oyaizu et al. (2008b)) and radial light profiles (e.g. Wray & Gunn (2008))

can also be used to derive a functional relationship for the redshift.

2.3 Publicly Available Photometric Redshift Codes

In recent years, many photometric redshift packages have been developed and made publicly avail-

able to the community via web-based interfaces. Table 2.1 provides a list of those that are currently

available online.
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In addition, the literature gives numerous examples of photometric redshift codes that have

been used on large data sets but are as yet not publicly available e.g. Wadadekar (2005); Kurtz

et al. (2007); Carliles et al. (2008); Way et al. (2009) etc. Given the plethora of codes now

available to the user, it is important to understand and quantify similarities and differences between

them. This section provides a description of some of the public codes available. In the next

section, results from comparing all the codes on a sample of Luminous Red Galaxies from the

2SLAQ survey, is presented. In order to perform the comparison, all codes were run in various

different configurations and the configuration found to produce the best photometric redshifts was

subsequently used to obtain the final result for that code. In this section therefore, the optimal

configuration in which each of these codes was run, is also described. It has to be stressed that

these configurations only apply for the particular sample on which the code is being run, in this

case the Luminous Red Galaxies.

2.3.1 HyperZ

HyperZ (Bolzonella et al. 2000) was the first publicly available photo-z code and has consequently

been widely used in the literature for photometric redshift estimation. It is a simple template fit-

ting code that can be used in conjunction with two sets of basis SEDs, namely the observed CWW

templates or the synthetically generated BC templates. HyperZ takes as its inputs the photomet-

ric catalogue of galaxies with magnitudes and errors on magnitudes through the different filters

specified in the filter set, as well as a list of spectral templates to be used in the χ2 minimisation.

Various different reddening laws can also be implemented in order to account for the effect of

interstellar dust on the shape of the SED. The damping of the Lyα forest increasing with redshift

is modelled according to Madau (1995).

The code was run on the sample of Luminous Red Galaxies in conjunction with a variety

of different basis template sets including the four CWW templates and interpolations between

them as well as the 8 synthetic BC templates. The BC templates produced considerably better

photo-z’s with a smaller scatter than the CWW and interpolated CWW template sets. In order to

demonstrate the effects of using two different template sets to calculate photometric redshifts with

the same code, results obtained using both the four CWW templates roughly corresponding to

types E,Sbc,Scd and Im and the eight BC templates roughly corresponding to types Single Burst,

E, S0, Sa, Sb, Sc, Sd and Im, are presented.

Photo-z outputs with no correction for galactic reddening and with a Calzetti reddening law

(Calzetti et al. 1994) applied to the templates, were both considered. In all cases it was found that
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including a reddening correction slightly worsened the photometric redshift estimate. The final

HyperZ outputs therefore make no correction for the galactic reddening due to dust in external

galaxies. Magnitudes in all five SDSS optical bands have been used even though the photomet-

ric uncertainties in the u-band are large and therefore would contribute to a larger scatter in the

photo-z estimate. Removing the noisier u-band photometry actually worsens the photo-z estimate

due to the corresponding loss in colour information.

Other simple template-based methods are also available for photo-z estimation such as ImpZ

(private communication: M. Rowan-Robinson), k-correct (Blanton & Roweis 2007), EAZY (Bram-

mer et al. 2008) and the LRT Libraries (Assef et al. 2008). These are not presented in this com-

parison study.

2.3.2 BPZ

BPZ (Benı́tez 2000) was the first Bayesian code developed for photometric redshift estimation

and allows the implementation of a luminosity prior. In its publicly available form however, only

a luminosity function prior from HDF-N or a flat prior can be incorporated. BPZ can function in

a Bayesian and Maximum Likelihood (ML hereafter) module and therefore produces two outputs

for the photometric redshift. The ML method simply picks the highest maximum over all the

likelihoods as its redshift estimate whereas the Bayesian method averages over all the likelihoods

after weighting them by their prior probabilities.

BPZ also takes as its input a photometric catalogue with magnitudes in different filters and

their corresponding errors. The BPZ templates include the four CWW templates as well as the

spectra of two star-bursting galaxies from Kinney et al. (1996). In this study nine interpolations

between each of the four CWW templates were added to the BPZ template list to produce a more

complete list of basis SEDs. This gives a set of 38 basis templates for BPZ to use. It was found

that ∼17 of these templates concentrated towards the early types are sufficient to produce the

best photometric redshift estimate for our sample of LRGs. Adding more templates does not

improve the photo-z scatter. Two further points of interpolation between each of the templates in

colour space were also used as specified by the INTERP parameter in BPZ. A flat prior was used

throughout the calculation resulting in very similar results from the Bayesian and ML runs.

The BPZ output includes two photo-z estimates from the Bayesian and ML runs as well as

a quantity called odds that is the amount of probability contained between −0.12(1 + z) and

0.12(1 + z) around the Bayesian photo-z estimate. In order to select galaxies which only have
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a single compact peak in their probability distribution, one needs to consider those galaxies with

odds > 0.95 at the very least and odds > 0.99 for a robust estimate (private communication:

N.Benitez). In the first case, 4811 of the 5482 galaxies are selected and in the second case there

are 3689 of the 5482 galaxies. The Bayesian output from BPZ with galaxies with odds > 0.99

selected, gives the best photo-z estimate and it is this result that is used as the BPZ output in the

comparison plots.

2.3.3 Le PHARE - PHotometric Analysis for Redshift Estimations

Le PHARE is very similar to HyperZ in that a set of template SEDs together with a filter set are

used to determine a set of model magnitudes used in the photometric redshift calculation. These

are then compared to the observed magnitudes using a χ2 minimisation in order to compute the

redshift of an object. The Le PHARE package includes various template sets used to construct

the library of model magnitudes. These include the CWW and Kinney et al. (1996) star-burst

templates, an extended CWW template set with 72 interpolations between the standard CWW

templates, 42 synthetic GISSEL templates as well as the observed templates of Poggianti et al.

(2001). All of these template sets were used to derive photometric redshifts for the sample of

LRGs. The best photometric redshifts were obtained using the 8 Poggianti templates correspond-

ing to galaxy types Ell, S0, Sa, Sb, Sc, Sd, SB2 and SB1. The 42 GISSEL templates give slightly

worse photo-z’s than the Poggianti templates but the scatter on the photometric redshift when us-

ing the extended sample of 72 interpolated CWW templates is ∼30% worse than that obtained

using the 8 Poggianti templates. Therefore it can be seen that in a template-based method, one

does not necessarily gain in redshift accuracy by adding more model SEDs to the library as this

probably introduces additional degeneracies.

Le PHARE also includes various prescriptions to correct for galactic reddening but the photo-

metric redshift estimate is always worsened when correcting for the reddening using any of these

prescriptions. The final Le PHARE output is therefore obtained using the 8 Poggianti templates

and neglecting the effects of galactic reddening. 5-band ugriz photometry in the SDSS filters

is used as this gives significantly more accurate photometric redshifts compared to if the u-band

photometry with the largest photometric errors was removed.
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2.3.4 SDSS template fitting code.

This code is a hybrid template fitting and training code that was developed and has been applied to

data from the Sloan Digital Sky Survey (SDSS) (Padmanabhan et al. 2005). A linear combination

of templates is used and the photometric redshift is found via χ2 minimisation. The greatest dis-

advantage of the traditional χ2 fitting techniques is the potential mismatch between the templates

used for the fitting and the properties of the sample of galaxies for which one wants to estimate

the redshifts. In a hybrid method, the templates are calibrated using a training set with known

spectroscopic redshifts and similar properties to the galaxies whose redshifts need to be estimated,

in order to better represent the studied galaxy sample. The SDSS code used here applies a hybrid

method to the LRG sample using a modified elliptical galaxy template, adjusted to represent an

LRG spectrum after three iterations of correction (Padmanabhan et al. 2005). Given that early

type galaxies evolve passively, only one template is necessary for this galaxy sample.

2.3.5 ZEBRA - Zurich Extragalactic Bayesian Redshift Analyzer

The Zurich Extragalactic Bayesian Redshift Analyzer (Feldmann et al. 2006) is a more sophisti-

cated Bayesian template-fitting photometric redshift code compared to its predecessor, BPZ. The

basic principles of estimating redshifts using templates and Bayesian priors remains as described

in §2.3.2 but among the novel techniques employed within the ZEBRA package are the photome-

try check mode that checks and corrects the photometry in certain filters, a template optimisation

mode to improve the standard set of templates in specified redshift bins using a training set of

galaxies with spectroscopic redshifts and the ability to calculate a prior self-consistently from the

photometric catalogue when ZEBRA is run in its Bayesian mode.

The photometry check mode of ZEBRA is not employed in this analysis as applying a correc-

tion to the catalogues using this mode in fact produces less accurate photometric redshifts.

ZEBRA’s template set consists of the standard E, Sbc, Scd and Im galaxies (Coleman et al.

1980) as well as the SEDs of the two star-bursting galaxies SB2 and SB3 (Kinney et al. 1996).

These are further interpolated in logarithmic space by ZEBRA during the photo-z estimation.

Including the E, Sbc and Scd templates produces better results than including all six templates.

Furthermore, ZEBRA’s template optimization mode is used to construct improved templates from

these three basis templates in two redshift bins - 0 < z < 0.5 and 0.5 < z < 1.0. A regularisation

parameter of ρ = 0.05 and a pliantness parameter of σ = 2 are used. Feldmann et al. (2006) gives

details of these parameters and how to optimise them so as to produce the most realistic templates
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and the values adopted here are taken directly from this paper. The effects of IGM absorption

are not included in the templates as this produces better photometric redshifts. The optimisation

procedure produces 39 basis templates and these are used along with the three original templates

in the photometric redshift calculation.

The Bayesian mode of ZEBRA produces considerably better photometric redshifts than the

Maximum Likelihood mode and only the outputs from the Bayesian mode are presented in the

comparison plots and used when calculating figures of merit. The Bayesian mode is run using

four iterations to calculate the prior self-consistently from the photometric catalogue. Further

iterations slightly worsen the photo-z estimate. A smoothing kernel is also used to smooth the

prior after every iteration.

2.3.6 ANNz

When a representative training set is available training methods become a viable option to use

instead of template-fitting methods. Artificial Neural Networks (Collister & Lahav 2004) have

been shown to produce competitive results compared to other training set methods (Firth et al.

2003) and have been used for photo-z estimation on current data sets (Collister et al. 2007) as well

as forecasts of photometric redshifts for future surveys (Abdalla et al. 2008a; Banerji et al. 2008).

The neural network is made up of several layers, each consisting of a number of nodes. The first

layer receives the galaxy magnitudes in different filters as inputs and the last layer outputs the

estimated photometric redshift. All nodes in the hidden layers in between are interconnected and

connections between nodes i and j have an associated weight, wij . Each node i is assigned a value

ui and an activation function gi(ui)

gi(ui) =
1

1 + exp(−ui)
. (2.4)

The value of a subsequent node j is then calculated as the summation of the weighted values of the

activation functions of all nodes i pointing to it:

uj =
�

i

wijgi(ui). (2.5)

ANNz, like all other empirical methods, requires a training set that is used to minimise the
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cost function, E (Eq. 2.6) with respect to the free parameters wij .

E =
�

k

(zphot(wij ,mk)− ztrain,k)2 (2.6)

To avoid an over-fitting, every network is tested on a validation set of galaxies, whose spec-

troscopic redshifts are also known. The network with the lowest value of E as calculated on the

validation set is selected and the photometric sample is run through it for redshift estimation (Col-

lister & Lahav 2004).

The neural network setup is illustrated in Figure 2.2. During the initial setup, one has to

specify the architecture of the neural network - the number of hidden layers and nodes in each

hidden layer. This is chosen to be N:2N:2N:1 throughout this work unless otherwise mentioned,

where N is the number of filters used for photometry. Note that changing both the number of

hidden layers as well as the number of nodes in each hidden layer makes very little difference to

the photometric redshift estimate as the chosen architecture is probably complex enough to be able

to reproduce the relationship between the redshift and the galaxy magnitudes.

The neural network code also produces an estimate of the error associated with each photo-

metric redshift estimate in addition to the photo-z estimate. This error depends on the noise on

the neural network inputs and not on the difference between the spectroscopic and photometric

redshifts. The variance that this noise on the input would introduce into the output of the network

is given by a simple chain rule expression as follows:

δz
2 =

�

i

�
∂z

∂mi

�2

, δ2
mi

(2.7)

where the sum i is a sum over all the network inputs and δmi is the photometric error on the

magnitude in band i. The derivative ∂z
∂mi

is obtained using the formalism described in Bishop

(1995). This algorithm is fully implemented within ANNz (Collister & Lahav 2004).

2.4 Errors on photo-z

Each different method described above has a way of obtaining error estimates which reflects the

degree of confidence with which one can rely on the photometric redshift obtained.

In template methods the χ2 can be computed for each potential redshift value. This produces a

probability distribution function and the errors are obtained from the points where the probability
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Figure 2.2: Schematic diagram of neural network as implemented by ANNz from Collister &
Lahav (2004). The input layer consists of nodes that take magnitudes in the different filters used
for photometry. A single hidden layer consisting of p nodes is shown here although more hidden
layers could be used. The output layer has a single node that gives the photometric redshift. Once
again further nodes for more outputs such as spectral type could be added to this layer. Each
connecting line between nodes carries a weight, wij . The bias node allows for an additive constant
when optimising weights.

falls 1σ away from the best fit value. As other techniques use different methods for photomet-

ric redshift estimation they have to obtain error estimates in a different way. For example, in a

neural network method, the error estimate is obtained through a chain rule which relates errors in

the original magnitudes to errors on the final redshift (Collister & Lahav 2004). The estimated

magnitude errors can then be used to obtain a redshift error estimate. Recently a more general

method based on nearest neighbours has been devised and can be applied to any sample with a

training set independently of the photo-z estimator used. This method, described in Oyaizu et al.

(2008a), uses the differences between the spectroscopic redshift and the photometric redshift of

the galaxies in a training set as a function of the magnitudes. An error estimate is obtained by a

nearest neighbour interpolation of this training data in magnitude space and produces very good

results.

The error, or more generally the probability distribution function attached to each redshift, is a

a very important quantity. For example, galaxies with large errors in the photo-z can be removed
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(clipped) from the sample before using them for any kind of cosmological analysis. Depending

on the science question being addressed, there will be a trade-off between the amount of clipping

applied to remove undesired outliers, and the number of galaxies required to keep the shot-noise

levels low. For an illustration of the clipping procedure as applied to weak lensing studies and

galaxy power spectrum measurements, see Abdalla et al. (2008a) and Chapter 3 of this thesis,

respectively.

2.5 Comparison of Codes on the 2SLAQ LRG Sample

The beginning of this chapter has already illustrated the many different methods currently used for

photometric redshift estimation and the many public codes that are available for these purposes. In

this section, the publicly available codes already described are run in their optimal configuration

on a sample of Luminous Red Galaxies from the 2dF and SDSS LRG and QSO (2SLAQ) survey

(Cannon et al. 2006). This is a spectroscopic survey with redshifts measured for ∼ 13000 LRGs

for which photometric redshift estimates are expected to be reasonably good given the presence

of a strong 4000 Åbreak in these objects. The 2SLAQ LRGs are selected using colour cuts that

are described in detail in Cannon et al. (2006) and Chapter 6 of this thesis. For the purposes of

this chapter however, the important point is that these early type galaxies are expected to produce

reasonably accurate photometric redshift estimates that can then be used for cosmology (Blake

et al. 2007, 2008; Cabré & Gaztañaga 2009).

The 2SLAQ LRGs have been subdivided into a training and a testing sample. The training

sample is used in those codes that need a training set of galaxies with spectroscopic redshifts. The

testing sample of 5482 LRGs chosen at random from the entire data set, is consistently used as the

evaluation set in all codes. All magnitudes have been corrected for dust extinction in the Milky

Way using the maps of Schlegel et al. (1998).

It should be emphasised that this comparison study is a high-level comparison. In other words,

we are comparing end products (the photometric redshift estimate) without decomposing the prob-

lem into smaller parts in order to determine where discrepancies in the codes are arising. The codes

plus galaxy libraries supplied with them are essentially treated as a black box in such an analysis.

This, however, is still a valid comparison as we compare what is available to the photo-z user

online. A fuller analysis is no doubt needed in order to have the highest level of confidence in

photometric redshift estimates. This work is being carried out as part of the PHAT collaboration2

2http://www.astro.caltech.edu/twiki-phat/bin/view/
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and some of the preliminary work undertaken as part of this collaboration is presented at the end

of the chapter.

For the purposes of our high-level analysis, each of the photo-z codes detailed in § 2.3 have

been run several times using different parameters in order to optimise them to produce the best

photo-z estimate. The final output files from each code used in this analysis are ones that gave

the best photo-z estimate. Hence this is not only a code comparison it is a code plus library

comparison which is the final publicly available product to the non-expert on-line. It should also

be noted that this is not a comparison which is meant to contrast equal values. For instance it is

already well accepted that training codes work much better within the redshift and spectral energy

distribution range present in the training set but template methods are superior if there are objects

in the survey outside this range. Also, codes such as BPZ provide an automatic selection of the

objects with the best photo-z’s via for example the odds parameter. The purpose here is to compare

the full packages, including SEDs and features available from different codes. Furthermore, the

chosen sample of Luminous Red Galaxies has a very narrow range of SEDs and this comparison

therefore does not highlight the strength of photometric redshift codes with a broad range of library

templates that would be more suitable for other samples.

Figure 2.3 shows density plots of the spectroscopic redshift versus photometric redshift for

each of the six different codes. The HyperZ outputs have been presented using two different

template sets. The redshift resolution for all codes has been chosen so as to ensure that the main

uncertainty is related to the photo-z uncertainty and not to numerical effects.

In order to evaluate the precision with which each of these different codes calculates the pho-

tometric redshift, several different figures of merit are defined and evaluated. Many of these will

also be used throughout the next two chapters of this thesis.

For example, one can consider the 1σ scatter between the true (spectroscopic) redshift and the

photometric redshift in each spectroscopic redshift bin. This is defined as follows:

σz =
�
(zphot − zspec)2

� 1
2
. (2.8)

This quantity is plotted in the left-hand panel of Figure 2.4. As expected, the empirical photo-z

estimator, ANNz seems to work best at intermediate redshifts (0.5 ≤ zspec ≤ 0.7) where there

are a large number of representative training set galaxies. At high redshifts (zspec > 0.7), HyperZ

BC provides the best estimates of the photometric redshift. At low redshifts (z < 0.5), the SDSS

code and Le PHARE template fitting codes perform the best. None of these codes use the more
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Figure 2.3: Density plots of spectroscopic versus photometric redshift for each of the public photo-
z codes described in § 2.3. The plots are colour-coded and the scale is exponential. A colour
difference of one is equivalent to the density being decreased by a factor of e. The solid black
lines show where the spectroscopic redshift is equal to the photometric redshift.
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Figure 2.4: 1σ scatter on the photometric redshift around the true spectroscopic redshift defined
as per Eq.2.8 for each of the public photo-z codes described in § 2.3 in the left-hand panel and σ68

as a function of the spectroscopic redshift for each of the public photo-z codes described in § 2.3
in the right-hand panel.

standard CWW templates suggesting that these templates are not a good match to the LRGs that

are being analysed in this study.

As can be seen in Figure 2.3 however, there are many outliers present in our sample. Another

useful quantity to consider is therefore σ68 which is the interval in which 68% of the galaxies have

the smallest difference between their spectroscopic and photometric redshifts. This will give some

indication of the scatter in the photometric redshift estimate once the outliers have been removed

and is plotted in the right-hand panel of Figure 2.4. A similar trend is seen as was observed with

the 1σ scatter.

The bias on the photometric redshift estimate in each spectroscopic redshift bin is defined as:

bz = �zphot − zspec� . (2.9)

This quantity is plotted for each of the different codes, in the right-hand panel of Figure 2.5.

All codes are seen to give a bias that is a strong function of the spectroscopic redshift. Low

redshifts are systematically overestimated and high redshifts are systematically underestimated.

Both Padmanabhan et al. (2005) and Ilbert et al. (2006) show that the bias can be systematically

corrected for by adapting the template set and correcting for photometric offsets. In order to get a

feel for the error on the photometric redshift once this bias has been corrected for, the 1σ scatter

around the mean photometric redshift estimate in each spectroscopic redshift bin is plotted in the
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left-hand panel of Figure 2.5. This is defined as follows:

σz2 =
�
(zphot − z̄phot)2

� 1
2
. (2.10)

As can be seen, the scatter is now reduced for most of the codes as one is not accounting for

any systematic shift that can be corrected for. The bias is largest at high redshifts for the SDSS

and Le PHARE template fitting codes and these codes have the biggest improvement in the scatter

at high redshifts when one takes the moment around the mean rather than the true redshift.

A more useful quantity in terms of future surveys is to plot the bias and scatter as a function of

the photometric redshift as in Figure 2.6. The 1σ scatter around the mean spectroscopic redshift

estimate in each photo-z bin is defined as follows:

σz3 =
�
(zspec − z̄spec)2

� 1
2
. (2.11)

One can also compare the right-hand panels of Figure 2.5 and Figure 2.6 to each other. It

can be seen that the bias follows the same trend as a function of spectroscopic redshift for all the

different photo-z codes and is fairly similar for all these codes. However, the bias as a function

of the photometric redshift is very different for the different photo-z codes and more indicative of

how much the photo-z estimate has to be corrected for systematic errors. This bias is almost flat

for the training method which has enough training set galaxies to effectively minimise the bias

through the training process. The integral under the curve is also small for ZEBRA as shown in

Table 2.3 as the template optimisation technique here was able to remove the average bias for the

entire redshift range. However, a remaining bias was found at high and low redshifts with the

values of the ZEBRA configuration parameters used in this analysis3.

As an alternative statistic, Table.2.2 presents the fraction statistics for the methods described

in § 2.3. The fractions fi are defined as the fraction of galaxies in certain regions of the photo-

z/spec-z plane. If one divides this plane in rectangular regions by binning galaxies both in photo-z

and spec-z, the fraction f0 is the fraction of galaxies which is on the diagonal of the matrix defined

by the rectangles. The fraction f1 is the fraction of galaxies in bins adjacent to the diagonals and

so on for f2, f3 etc. The area could have been subdivided along the diagonals and this would have
3It is possible that a better choice of template optimisation parameters could be found resulting in a removal of the

bias at low and high redshifts. However, as the philosophy of this work is to perform a code comparison from the point

of view of the photo-z user rather than the photo-z developer, and it is not obvious what this better choice of parameters

would be, the results are presented as they are.



2.5. Comparison of Codes on the 2SLAQ LRG Sample 43

0.3 0.4 0.5 0.6 0.7 0.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Spectroscopic Redshift

1σ
 s

ca
tte

r a
ro

un
d 

m
ea

n 
ph

ot
o−

z

ANNz
SDSS Template
HyperZ − Bruzual Charlot
HyperZ − CWW
BPZ
LePhare
ZEBRA

0.3 0.4 0.5 0.6 0.7 0.8−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Spectroscopic Redshift

Bi
as

ANNz
SDSS Template
HyperZ − Bruzual Charlot
HyperZ − CWW
BPZ
LePhare
ZEBRA

Figure 2.5: 1σ scatter around the mean photometric redshift plotted as a function of spectroscopic
redshift according to Eq.2.10 (left panel) and bias as a function of spectroscopic redshift (right
panel).
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Figure 2.6: 1σ scatter around mean spectroscopic redshift as a function of photometric redshift
according to Eq.2.11 in the left panel and bias as a function of photometric redshift in the right
panel.
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Method f0 f1 f2 f3 f4

ANNz 37% 28% 31% 4% 0.02%

SDSS 27% 31% 37% 4.5% 0.8%

HyperZCWW 24% 32% 35% 7% 1.5%

HyperZBC 26% 32% 32% 7% 1.5%

LePHARE 26% 34% 34% 4% 0.5%

ZEBRA 26% 34% 34% 5% 0.8%

BPZ 24% 32% 36% 6% 1%

Table 2.2: Fraction statistics for the different public photo-z codes presented and compared in this
chapter.

been a suitable statistic as well. However there are reasons for which the statistic that is quoted in

Table 2.2 is interesting. For instance if one is interested in cosmological probes where the galaxies

are separated in photo-z bins then a subdivision along the photo-z axis is more natural. Given that

these galaxies have relatively good photometric redshifts, one can see that the fraction of outliers

is small for all estimators. However there is still a difference between different implementations

of publicly available codes.

The integrated bias and scatter for all the codes and libraries used is presented in Table 2.3. It

can be seen that the training code performs best which is to be expected with a complete training set

and that the bias here is very small. However this statistic does not show the redshift dependence

of the scatter or bias which may be of interest depending on the application.

2.6 MegaZ LRG DR6: Photometric Redshift Catalogue for LRGs in

SDSS DR6

Given the differences in photometric redshift estimates that are present between different pub-

licly available codes, it seems sensible to construct photometric redshift catalogues with estimates

from more than one code. Having tested six publicly available codes on a sample of LRGs with

spectroscopic redshifts from the 2SLAQ survey, all six codes are now used in the construction of

a photometric catalogue of over 1.5 million LRGs from SDSS DR6 with redshift estimates and

errors on these. The 2SLAQ galaxies are used as a training set for the photometric sample. The
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Method σz bias

ANNz 0.0575 0.0014

SDSS 0.0808 -0.0264

HyperZCWW 0.0973 -0.0076

HyperZBC 0.0862 0.0160

LePHARE 0.0718 -0.0302

ZEBRA 0.0898 0.0013

BPZ 0.0933 0.0112

Table 2.3: Average 1σ scatter (Eq. 2.8) and bias (Eq. 2.9) for the entire sample for different
methods. Note that the definition of the 1σ scatter here is different from that in Collister et al.
(2007) Eq. 10

increase in area surveyed when going from the spectroscopic sample to the photometric sample,

is clearly illustrated in Figure 2.7 which maps the 2SLAQ and SDSS DR6 LRGs in the sky.

The catalogue, MegaZLRG DR6, is an extension to the MegaZ LRG catalogue of Collister

et al. (2007). The photometric sample has been extended from SDSS DR4 to SDSS DR6 imaging

thereby allowing the addition of∼300,000 LRGs to the original sample. Furthermore redshift esti-

mates from six publicly available codes are provided along with errors on these. Trained empirical

values are also provided to perform star/galaxy separation based on a set of 15 photometric param-

eters as in Collister et al. (2007). The extended MegaZ-LRG catalogue contains 1543596 objects

over more than 8000 square degrees of the sky. As in previous studies, LRGs are expected to be

about 95% of the sample and M type stars are expected to be 5% of the sample. All the parameters

included in the revised catalogue are described in Table 2.4. The data is publicly available from

the following website4.

Table 2.4: Parameters included in the updated MegaZ-LRG DR6

photometric redshift catalogue.

SDSS Parameter Description

objID SDSS objID

Continued on next page
4www.star.ucl.ac.uk/∼mbanerji/MegaZLRGDR6/megaz.html
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Table 2.4 – continued from previous page

SDSS Parameter Description

ra J2000 right ascension

dec J2000 declination

dered u

dered g

dered r Dereddened model magnitudes

dered i

dered z

err u

err g

err r Magnitude errors

err i

err z

deVMag i Dereddened de Vaucouleurs magnitude

z annz ANNz photometric redshift

z annz err ANNz photometric redshift error

delta sg ANNz galaxy probability

delta err sg ANNz galaxy probability error

z sdss SDSS photometric redshift

z sdss err SDSS photometric redshift error

z hzcww Hyper-z CWW photometric redshift

z hzcww chi Hyper-z CWW chi squared

z hzcww errl Hyper-z CWW photometric redshift 68% lower confidence limit

z hzcww errh Hyper-z CWW photometric redshift 68% higher confidence limit

z hzbc Hyper-z BC photometric redshift

z hzbc chi Hyper-z BC chi squared

z hzbc errl Hyper-z BC photometric redshift 68% lower confidence limit

z hzbc errh Hyper-z BC photometric redshift 68% higher confidence limit

z bpz bayes BPz bayesian photometric redshift

z bpz errl BPz photometric redshift 90% lower confidence limit

Continued on next page
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Table 2.4 – continued from previous page

SDSS Parameter Description

z bpz errh BPz photometric redshift 90% higher confidence limit

z bpz odds BPz bayesian odds parameter

z bpz ml BPz maximum likelihood photometric redshift

z bpz chi BPz chi squared

z zebra ZEBRA photometric redshift

z zebra errl ZEBRA photometric redshift 68% lower confidence limit

z zebra errh ZEBRA photometric redshift 68% higher confidence limit

z lp Le PHARE photometric redshift

z lp prob Le PHARE percentage PDF between dz = zbest ± 0.1(1 + zbest)

A comparison of the different photometric redshift estimates from each code is now presented

for the MegaZLRG DR6 catalogue. Figure 2.8 shows histograms of the difference between photo-

z for each pair of codes that have been used in the analysis.

For instance, comparing ANNz to other codes there seem to be some outliers at a redshift

difference of 0.1 compared to Hyperz CWW, BPZ and Hyperz BC. Similarly other pairs of codes

produce outliers which indicates that this is not only a difference between template codes and

training codes. Note that for instance comparing ZEBRA with codes such as HyperZ CWW or

SDSS code there is a good agreement on the scatter but there is a small bias between the codes

which may suggest that the templates used might not have been optimal in some codes.

Although all the photometric redshift estimates are of relatively good quality, there are still

considerable differences between the codes. There is therefore a need to deconstruct the effects of

the algorithm and the template libraries in order for one to understand these differences and have

even more reliable photo-z’s in the future.

2.7 The Photometric Redshift Accuracy Testing Program

The Photometric Redshift Accuracy Testing Program is a large community-based project to test

and improve the accuracy of photometric redshifts. The objective is to test the different codes

currently used for photometric redshift estimation, different template sets, the influence of noise

on the photometry on redshift estimates, different approaches to galaxy photometry as well as



2.7. The Photometric Redshift Accuracy Testing Program 48

Figure 2.7: Map of the MegaZ-LRG sample (blue) covering the SDSS DR6 area as well as the
2SLAQ sample (red). For clarity only a random subsample of galaxies have been plotted.

different filter sets. So far, there have been two testing steps within PHAT. These are described

and some preliminary results presented in this section.

2.7.1 Phase0

The first step, Phase0, was to run different photometric redshift codes on a very simple basic

simulation generated using the LePhare code by Stephane Arnouts. This was used to investigate

the lowest level of accuracy between codes. The simulations were created based on six templates

from Coleman et al. (1980) and Kinney et al. (1996). The filter set comprised of optical ugriz

filters from the CFHTLS survey, near infra-red Y JHK filters modelled as idealised filter curves as

well as the Spitzer IRAC 3.6µ and 4.5µ bands. The magnitudes were corrected for IGM absorption

according to Madau (1995) and the objects distributed in the mock catalogue according to an SED

dependent luminosity function. Finally the sample was flux limited at r < 24 and noise was

added.

Fifteen different photometric redshift estimates were obtained in Phase0 from different mem-

bers of the community. The photometric redshifts from the neural network code, ANNz are plotted

in Figure 2.9 along with those obtained using LePhare from which the simulations were generated.

A complete training set has been assumed for the neural network. Note that differences between

the model and photometric redshifts in this case indicate that the codes are inconsistent with Le-
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Figure 2.8: Histogram of the difference between the photometric redshift estimation between all
pairs of codes used in this analysis.
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Figure 2.9: Results of PHAT Phase0 testing from LePhare (right) which has been used to create
the basic simulations and ANNz (left). Deviations from the y = x line on the left occur due to the
addition of noise to the photometry.

Phare but not necessarily incorrect. Figure 2.9 indicates however that the results from ANNz and

LePhare are consistent for this initial, basic simulation assuming a complete and representative

training set is available for ANNz.

2.7.2 GOODS-N Catalogue

In the second stage of PHAT, photometric redshift estimates were produced for real observational

data obtained in the GOODS-N field. The catalogue contains photometry in 18 bands for 1984 ob-

jects originating from many different observing programs and spanning a wide redshift range. One

quarter of the objects have spectroscopic redshifts available for training purposes which is proba-

bly not sufficient for most training methods and therefore will highlight the impact of incomplete

training sets on the photometric redshift estimate in these codes. The photometry available is in

bands: U (Kitt Peak National Observatory), BVRIZ (Subaru), JH (WFCAM), H/K, K, F435W,

F606W, F775W, F850LP (ACS), IRAC 3.6µ, IRAC 4.5µ, IRAC 5µ and IRAC 8µ (Spitzer).

So far, photometric redshifts have been obtained from this data set from nine members of the

community. The results of running ANNz on this data set with and without the four Spitzer IRAC

bands, are illustrated in Figure 2.10. As can be seen, the results are now considerably worse than

was the case for the basic simulations highlighting the importance of a complete training set for
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Figure 2.10: Results of running ANNz on the GOODS-N catalogue with (left) and without(right)
far-infra red data from Spitzer IRAC.

ANNz. No particular improvement in the photometric redshift estimates is seen on addition of the

mid-infrared data from Spitzer.

The photometric redshift estimates obtained from different codes are considerably discrepant

from each other for this observational data set. Future testing steps within PHAT will investigate

the cause of these discrepancies in more detail.

2.8 Conclusions

In this chapter, the different methods for photometric redshift estimation have been introduced and

several publicly available codes for photo-z estimation described in detail. Six publicly available

codes have been compared on a sample of luminous red galaxies from the 2SLAQ survey with

available spectroscopic redshifts. This black box comparison of the code and template library en-

semble has illustrated the need for a more thorough comparison where the effects of these two

components can be distentangled. Several figures of merit have been used to assess the photomet-

ric redshift performance of each code for the sample of LRGs leading to the following specific

conclusions:

• As expected the availability of a complete training set for this sample means the training

method, ANNz performs best in intermediate redshift bins where there are plenty of spec-
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troscopic redshifts available.

• Le Phare performs very well, particularly in the lower redshift bins suggesting that the

Poggianti templates may be a better fit to the LRGs at these redshifts compared to the other

templates used in this comparison.

• HyperZ run with the BC templates produces considerably better results than using the same

code with the CWW templates once again highlighting the importance of template choice

in photometric redshift estimation.

• The SDSS template code gives very good results compared to other codes at the highest

photo-z bins despite having only one evolving template for the LRGs. Given the narrow

range in SEDs of our sample of Luminous Red Galaxies, the strengths of template-based

codes with extensive template libraries are not adequately highlighted by this comparison.

• ZEBRA shows a small average bias indicating the importance of the template optimisation

technique in removing biases.

• There is a discrepancy between the scatters found for all the codes and the values range from

0.057 to 0.097. Both are considered good results for photo-z estimates as one would expect

from LRGs.

• The six public codes have been used to construct a new photometric redshift catalogue

of ∼1.5 million LRGs from SDSS DR6 (MegaZLRG-DR6). This catalogue contains the

photometric redshift as well as error estimates from all the codes and will no doubt prove

valuable for studies of both cosmology and galaxy formation and evolution.

Given that all the differences illustrated between the codes will also depend on galaxy type and

training set size, it is imperative that a more thorough comparison is carried out where the effects

of codes and templates are deconstructed, in order to understand what factors affect the photo-z

accuracy. Preliminary results have been shown from the Photometric Redshift Accuracy Testing

Program (PHAT) which is currently in the process of carrying out such a comparison. In the next

two chapters of this thesis, photometric redshifts are forecast for future galaxy surveys and the

implications of photometric redshift errors on cosmological parameter constraints are investigated

in some detail.



CHAPTER 3

PHOTOMETRIC REDSHIFTS FOR THE DARK

ENERGY SURVEY AND VISTA AND

IMPLICATIONS FOR COSMOLOGY

The work described in this chapter is an extended version of the paper Banerji, Abdalla, Lahav

& Lin, 2008, MNRAS, 386, 1219

3.1 Description of Surveys

The Dark Energy Survey is a proposed ground-based photometric survey that will image 5000deg2

of the South Galactic Cap in the optical griz bands as well as the Y -band. The survey will be

carried out using the Blanco 4-m telescope at the Cerro Tololo Inter-American Observatory (CTIO)

in Chile. The main objectives of the survey are to extract information on the nature and density of

dark energy and dark matter using galaxy clusters, galaxy power spectrum measurements, weak

lensing studies and a supernova survey. This will be achieved by measuring redshifts of some 300

million galaxies in the redshift range 0 < z < 2, tens of thousands of clusters in the redshift range

0 < z < 1.1 and about 2000 Type 1a supernovae in the redshift range 0.3 < z < 0.75 (The Dark

Energy Survey Collaboration 2005). Observations will be carried out over 525 nights spread over

five years between 2011 and 2016 and when completed, DES will provide a legacy archive of data

extending around two magnitudes deeper than the Sloan Digital Sky Survey which is currently

the largest existing CCD survey of the Universe by volume. The DES volume is estimated to be

53
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23.74h−3Gpc3 in the range 0 < z < 2, about ten times that of the SDSS LRG sample (Blake

et al. 2007). This is assuming a 10σ AB magnitude limit of r � 24.

The DES survey area overlaps with that of several other important current and future surveys,

for example, the southern equatorial strip of the Sloan Digital Sky Survey and the South Pole

Telescope SZE cluster survey. The entire DES region will also be imaged in the near infra-red

bands on two public surveys being conducted on the Visible and Infra-Red Survey Telescope for

Astronomy (VISTA) at ESO’s Cerro Paranal Observatory in Chile.

Most of the time on the VISTA telescope has been dedicated to large-scale public surveys.

Two of these surveys that are relevant to cosmology are the Vista Hemisphere Survey (VHS) and

the Vista Kilo-Degree Infra-red Galaxy Survey (VIKING) - (Arnaboldi et al. 2007).

The VISTA Hemisphere Survey is a proposed panoramic infra-red survey that will image the

entire southern sky (∼20000deg2) in the near infra-red Y JHKs bands when combined with other

public surveys. About 40% of the total VHS time has been dedicated to VHS-DES, a 4500deg2

survey being carried out in the DES region over 125 nights in order to complement the DES optical

data with near infra-red data. The initial proposal is for the survey to image in the JHKs bands

with 120s exposure times in each band reaching 10σ magnitude limits of J = 20.4,H = 20.0

and Ks = 19.4. A second pass may then be obtained with 240s exposures in each of the three

NIR filters in order to reach the full-depth required by DES. The VHS-DES survey assumes that

Y -band photometry will come from the Dark Energy Survey.

The remaining 500deg2 of the DES area not covered by VHS-DES, will be imaged by VIKING

which is a near infra-red survey designed to provide an important complement to the optical KIDS

project being carried out on the VST. The details for all these surveys are summarised in Table

3.1.

3.2 Simulating Mock Data

In this work, two sets of mock galaxy samples have been used as simulations of data from DES

and VHS. In this section the way in which these data samples are generated is described. Both

catalogues are generated using Monte Carlo methods after assuming relevant redshift, magnitude

and type distributions.
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Survey Bands 10σ magnitude lims Area

DES g 24.6 5000deg2

r 24.1

i 24.3

z 23.9

Y 21.6

VHS-DES J 20.4 4500deg2

H 20.0

Ks 19.4

VIKING Z 22.4 1500deg2

Y 21.6

J 21.4

H 20.8

Ks 20.5

KIDS u� 24.1 1500deg2

g� 24.6

r� 24.4

i� 23.4

Table 3.1: Areas and 10σ magnitude limits for the surveys discussed in this chapter. The magni-
tudes are in the AB system.

3.2.1 DES5yr Sample

The first mock catalogue is that of Oyaizu et al. (2006) and Lin et al. (2004a) - DES5yr here-

after. It adopts the galaxy magnitude-redshift distribution derived from the luminosity functions

of Lin et al. (1999) and Poli et al. (2003) and a type distribution derived using data from the

GOODS/HDF-N field (Capak et al. 2004; Wirth et al. 2004; Cowie et al. 2004) and the CWW

template SEDs (Coleman et al. 1980). A flux-limited sample is constructed with 0 < z < 2 and

20 < i < 24. The photometric errors on each object are computed according to the DES 10σ griz

magnitude limits. Note, no attempt is made here to fit a reddening value to each galaxy.
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Figure 3.1: The distributions characterising our simulated catalogues for the DES and DES+VHS
samples. The left-hand panel shows the redshift distribution for ∼ 30000 galaxies in the DES5yr
and JPLCAT simulations. All galaxies have 20 < i < 24 and 0 < z < 2. The right-hand panel
shows the distribution of galaxies as a function of the extinction parameter, Av for the JPLCAT
sample.

3.2.2 JPL Mock Catalogue

The second catalogue is described in Abdalla et al. (2008a) - JPLCAT hereafter. Templates con-

structed from broadband photometry using a method similar to Budavári et. al (1999) were fit to

real objects from the GOODS-N spectroscopic sample (Cowie et al. 2004; Wirth et al. 2004) in

order to generate this catalogue. The templates were de-reddened and at the time of fitting, the best

fit SED and reddening value were found simultaneously. A Calzetti reddening law (Calzetti 1997)

was used. Further details of the method used to create photometric data for the catalogue with the

correct redshift distribution and luminosity evolution, can be found in §2 of Abdalla et al. (2008a).

For the purposes of this chapter, however, the important difference between this and the DES5yr

sample is the fact that the galaxies are reddened and corrected for dust extinction. The JPLCAT

sample also uses two more templates from Kinney et al. (1996) to fit the galaxies in addition to the

CWW templates used for the DES5yr sample. For the work described in the rest of this chapter,

the JPLCAT sample when used has been cut so as to have the same magnitude and redshift limits

as the DES5yr sample. The redshift distribution for both samples cut to include the same number

of galaxies, as well as the distribution of galaxies in the JPLCAT sample for different values of the

extinction parameter, Av, are shown in Figure 3.1.
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Note that the JPLCAT sample is more complex and hence the results from it are likely to be

more pessimistic than those for the DES5yr sample. However, both catalogues are generated by

fitting models to real data and it is not obvious which of these models captures the true colour

variance best. Hence both can be taken as realistic possibilities for modelling the DES and VHS

data samples. 1

3.3 Photometric Redshift Analysis

The artificial neural network method for photometric redshift estimation, ANNz (Collister & La-

hav 2004) is used to calculate photometric redshifts in all the work that is described in this chapter.

The code has already been introduced in § 2.3.6 in the previous chapter and is used as described

there.

3.3.1 Choice of Filters

In this section the impact of different filter combinations and survey depths on the photometric

redshift estimate is considered. This is done by running the neural network code described in

§2.3.6 on the DES5yr sample described in §3.2. ANNz was run on the mock data for five different

filter configurations. These are summarised in Table 3.2. Photometric redshifts were computed for

each of these cases and from the available true redshifts, the scatter on the photo-z estimate, σz ,

(Eq 2.8) was also determined.

Figure 3.2 and Figure 3.3 show the results of this study. It can be seen that inclusion of the NIR

filters leads to an improvement in σz by ∼30% for z > 1. σz is 0.2 for z > 1 for the DES only

sample and 0.15 for the DES+VHS sample in the same redshift range. Increasing the exposure

time in the NIR also leads to improved scatter on the photometric redshift. The scatter is high at

low redshifts due to lack of u-band imaging. These results are consistent with those of Abdalla

et al. (2008a), The Dark Energy Survey Collaboration (2005) and Oyaizu et al. (2006).

As can be seen in Figure 3.2 however, there are many outliers present in the sample. Therefore,

the quantity σ68 defined in § 2.5 is also considered. For DES grizY photometry, σz is 0.13 across

the entire redshift range of 0 < z < 2 whereas σ68 is 0.08. When one adds the VHS JHKs

photometry to this, σz improves to 0.11 across the entire redshift range and σ68 improves to 0.07.
1Since this study was completed, more sophisticated simulations of the Dark Energy Survey data have become

available through a series of Dark Energy Survey Data Challenges. However, these are not used in this analysis.
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Figure 3.2: Scatter plots of photometric redshifts as a function of the true redshifts for each of the
different survey configurations detailed in Table 3.2. These plots are generated for a sample of
5000 randomly selected galaxies.
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No. Filters Exposure Time 10σ magnitude limits

1 DES g 400s 24.6

DES r 400s 24.1

DES i 1200s 24.3

DES z 1600s 23.9

2 DES griz As in 1 As in 1

DES Y 400s 21.6

3 DES griz As in 1 As in 1

VHS J 120s 20.4

VHS H 120s 20.0

VHS Ks 120s 19.0

4 DES griz As in 1 As in 1

DES Y As in 2 As in 2

VHS JHKs As in 3 As in 3

5 DES griz As in 1 As in 1

DES Y As in 2 As in 2

VHS J 240s 21.2

VHS H 240s 20.8

VHS Ks 240s 20.2

Table 3.2: Summary of filter configurations of DES and VHS considered in §3.3.1.

3.3.2 Impact of Galactic Reddening

In this section, the impact of reddening on the photometric redshift estimate is considered. The

DES5yr and JPLCAT samples differ in their inclusion of reddening in the galaxy samples and this

has already been described in § 3.2. In order to assess how this difference affects the photo-z esti-

mate, the neural network code is run on the JPLCAT sample with 5-band DES optical photometry

as well as 8-band DES+VHS photometry with an exposure time of 120s in the NIR. The results

are shown in Figure 3.4 where the 1σ scatter defined in Eq. 2.8 is plotted as a function of the

spectroscopic redshift for both the DES5yr and JPLCAT samples for each of the two filter config-

urations. Note that before comparing the two catalogues, the JPLCAT sample has been cut to have

the same magnitude and redshift limits as the DES5yr sample i.e. 0 < z < 2 and 20 < i < 24.
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Figure 3.3: The 1σ scatter on the photometric redshift as a function of the spectroscopic redshift
for each of the survey configurations detailed in Table 3.2. Curves are labelled 1 to 5 corresponding
to the numbers in Table 3.2.

Although the same improvement is noted with inclusion of the NIR filters as discussed in

§3.3.1, the effects of reddening worsen the photo-z scatter overall by ∼ 30% in some regions.

This can be explained by the fact that there exists a degeneracy between redshift and galaxy red-

dening which means that faint reddened galaxies at low redshift can often appear to have the same

colours as brighter galaxies at high redshift with no reddening (Abdalla et al. 2008a). However

Figure 12 of Abdalla et al. (2008a) shows that this degeneracy is broken in the redshift range

1.1 < z < 1.5 and the reddened DES only catalogues have a similar scatter to their unreddened

counterparts in this redshift range. These authors have also shown that galaxies with small values

of Av have relatively good photo-z estimates whereas those with high Av are scattered towards

higher photometric redshifts. Figure 3.1 shows that most of the galaxies in the JPLCAT sample

have relatively small values of Av and therefore while one needs to be aware that any amount of

dust extinction is likely to affect the photo-z estimate, this effect should only be small for the DES

sample.

In order to account for this effect of the dust extinction on the photometric redshift estimate,

some authors attempt to include the dust extinction, Av as a free parameter in their codes (e.g.
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Figure 3.4: The 1σ scatter on the photometric redshift for DES with and without VHS NIR data
for two different mock catalogues. The black lines are produced by DES5yr catalogues that do
not include the effects of reddening. The green lines are produced by the JPLCAT mocks which
include the effect of reddening. The solid lines show the scatter without VHS NIR data while the
dashed lines include VHS NIR data.

Rowan-Robinson (2003); Bolzonella et al. (2000)) and simultaneoulsy solve for this and the pho-

tometric redshift. The neural network code has been modified to produce estimates for the Av

and SED type of the galaxy using the JPLCAT sample with 8-band DES+VHS photometry. A

8:16:16:2 architecture is used for the neural network and this marginalises over the galaxy redshift

which isn’t constrained.

The results are shown in Figure 3.5 where density plots of the true Av against the predicted

Av and the true type against the predicted type are shown.

The rms scatter around the mean of the Av estimate is found to be 0.27 and the bias to be

0.0031. The predicted Av is found to be biased towards lower values of Av for galaxies with

a high degree of reddening and towards higher values of Av for galaxies with a low value of

reddening. The scatter on the type is found to be 7.7 and the bias to be -0.0048. The JPLCAT

sample has been generated using six SED templates - E, Sbc, Scd, Im (Coleman et al. 1980) and

SB2, SB3 (Kinney et al. 1996) corresponding to types 0, 10, 20, 30, 40 and 50. As the error on

the type is smaller than the difference between these templates, ANNz can effectively be used to
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Figure 3.5: Density plot of the ANNz output when the neural network code is used to simultane-
ously predict the Av and type of an object. The left-hand plot shows the predicted dust extinction,
Av as a function of the true Av. The right-hand plot shows the predicted SED type of each galaxy
as a function of the true type. The plots are colour-coded and the scale is exponential; a colour
difference of one is equivalent to the density being decreased by a factor of e. The solid black
lines show where the true Av and true type are equal to the predicted Av and predicted type.

classify these galaxies into 50/7.7 = about six or seven spectral types within the context of DES.

Note that in this work, no attempt has been made to optimise the neural network for the cal-

culation of the Av and type as the objective is to demonstrate that it is possible to use the neural

network code to produce estimates for these quantities as well as the redshift and that this may be

useful for samples where there is a high degree of reddening.

Through the rest of this work, the DES5yr sample which does not include the effects of red-

dening has been used for all the analysis.

3.3.3 Clipped Catalogues

In the previous sections it was seen that catastrophic errors in the photometric redshift estimate

can arise depending on the exact filter configuration and the galaxy formation science encoded

within mock catalogues. Given that there are likely to be a host of different reasons why the

photometric redshift estimate may be prone to large errors, a lot of which are not fully understood,

it seems sensible to devise some way of clipping a sample. This is done by removing galaxies

with large photo-z errors before using the photo-z estimate for cosmological analysis. In most

situations where photometric redshift analysis is particularly powerful, the spectroscopic redshift

of the galaxies is not known and therefore there is no way of using this information to assess
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Figure 3.6: The left hand plot shows the scatter, σz , and σ68 as a function of the clipping threshold,
which is the threshold on the neural network error defined in Eq 2.7. The right-hand plot shows the
fraction of galaxies remaining in the sample as a function of the clipping threshold when galaxies
with neural network errors above the clipping threshold are removed from the sample.

whether the photo-z estimate is accurate. However, the photo-z prediction will depend strongly on

the errors in the photometry and this information could potentially be used to clip the sample as

in Abdalla et al. (2008a). In order to do this, the neural network error estimate on the photometric

redshift for each galaxy is used, as given by Eq. 2.7. All galaxies that have an estimated neural net

error greater than a chosen threshold are removed from the sample, therefore resulting in a clipped

catalogue of galaxies. The quantity, σ68 introduced in § 2.5 is used to quantify the scatter in the

photometric redshift estimate once the outliers have been removed. In this section, the variation

of the scatter with different clipping thresholds for the neural network error is considered.

Figure 3.6 illustrates the results of this study. In this figure the fraction of galaxies that remain

in the sample once the clipping thresholds are applied, is also plotted. In each case, the results

of using a 5-band DES optical grizY catalogue as well as an 8-band DES+VHS optical and NIR

catalogue are illustrated.

As expected, applying smaller threshold errors at which to cut the sample results in galaxies

with poor photometry being removed from the sample and consequently a fall in the 1σ scatter

on the photometric redshift for the entire sample. σ68 also decreases as one reduces the threshold

error although this decrease is less steep than the decrease in σz . Both the scatter and σ68 are

larger for the DES sample compared to the DES+VHS sample. It can be seen that applying a

fairly conservative cut of 0.1 to the neural network error estimate for these mock samples results

in a reduction in σz by a factor of ∼ 1.5 for both the DES and DES+VHS samples. In both
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cases about 80% of the original sample is retained after this cut. Smaller threshold errors can

also be applied in order to reduce the scatter on the photometric redshift estimate even further.

However, this results in more and more galaxies being lost from the original sample and at some

point the number of galaxies remaining will prove insufficient for statistical analysis. This point

is addressed in more detail in §3.4.1.

3.3.4 Impact of Training Sets

3.3.4.1 Effect on the Photo-z Scatter

All the photometric redshift analysis carried out in the previous sections assume that the training

set used to train the neural network is totally representative of the testing set. However in reality,

this may not always be the case. In this section, the impact of using different training sets with

different imposed colour and magnitude cuts on the photometric redshift estimate, is considered.

The Dark Energy Survey region overlaps with that of several other current and future photo-

metric and spectroscopic surveys thereby providing it with a fairly complete sample of training set

galaxies. Some of these are detailed in Table 3.3. Here, two of the deeper surveys, namely DEEP2

and VVDS-Deep are considered and the training sets are modelled on the redshift distributions of

these surveys before performing the usual photometric redshift analysis. Note that as DES over-

laps the VVDS-Deep and DEEP2 fields, it is assumed that objects in these spectroscopic surveys

will be imaged in all the DES bands and spectroscopic redshifts will be obtained with the highest

level of confidence for all these objects. This is an idealised situation and unlikely to be the case

for a real survey. As the DES5yr sample is magnitude limited as described in §3.2, the SDSS and

2dFGRS training sets are not considered as these objects are brighter than the mocks considered

here.

DEEP2 is an ongoing spectroscopic survey being carried out by the DEIMOS spectrograph on

the Keck II telescope. On completion, it will have obtained spectroscopic redshifts for ∼ 54000

objects over an area of 3.5deg2. The survey has been designed to sample the redshift range of

0.75 < z < 1.5 and the spectrograph is capable of obtaining moderately high resolution spectra

between 6300Å and 9100Å. Targets are pre-selected using BRI imaging on the CFH12k camera

on the Canada-France-Hawaii Telescope with a magnitude limit of RAB < 24.1 and the colour

cuts detailed in Table 3.3 imposed in order to sample the redshift range of interest.

In this study, 4681 objects with spectra from DEEP2 DR1 (Davis et al. 2003) are used to

construct the normalised redshift distribution for the DEEP2 survey. This is plotted in Figure 3.7.
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REDSHIFT SURVEY SELECTION CRITERIA NO.OF REDSHIFTS

SDSS Stripe 82 r < 20 70000

2dFGRS bJ < 19.45 90000

VVDS Shallow IAB < 22.5 ∼ 26000

VVDS Deep IAB < 24 ∼ 60000

DEEP2 (B −R) < 0.4 ∼ 54000

(R− I) > 1.25

(B −R) < 2.35(R− I)− 0.54

Table 3.3: Summary of some of the spectroscopic surveys that will provide useful training sets
for DES along with their imposed colour and magnitude cuts and the number of redshifts they are
expected to obtain on completion.

As can be seen, there are very few objects with redshifts less than ∼ 0.7 and greater than ∼ 1.4.

This is because the wavelength range for the spectrograph has been chosen such that the strong

[OII] doublet which has a rest-frame wavelength of 3727Å lies outside these wavelengths for all

other redshifts. Note that data from the Groth Survey Strip region has not been included in this

study. This survey field has no imposed colour cuts and therefore may be useful for sampling the

low-redshift range of DES.

The VVDS spectroscopic surveys are being carried out using the VIMOS spectrograph on the

Very Large Telescope (VLT). There is a shallow survey out to IAB = 22.5 planned in 5 fields and a

deeper survey out to IAB = 24 in a single field. Targets are pre-selected using magnitudes from the

imaging survey being carried out in the UBV RI bands using the CFH12k camera on the CFHT.

The latest catalogue contains 8981 objects upto IAB = 24 in the redshift range 0 < z < 5.228

(Le Fèvre et al. 2005, 2004) and has been used to construct the normalised VVDS-Deep redshift

distribution plotted in Figure 3.7. Note that for both the DEEP2 and VVDS-Deep samples, stars

and other objects with very low redshifts as well as high-redshift objects with z > 2 have been

removed before plotting the redshift distributions so as to match the redshift range of the DES5yr

sample.

Having obtained the redshift distributions for both DEEP2 and VVDS-Deep, accurate training

sets are constructed, that simulate these surveys and that are to be used in the training of the neural

network. This is done as follows. The DES5yr sample of 1 million objects is first separated
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Figure 3.7: The normalised redshift distributions for DES, VVDS-Deep and DEEP2 surveys be-
tween 0 < z < 2.

into two equal sized training and testing sets. The training set is then divided into 20 redshift

bins and from the DEEP2 and VVDS-Deep redshift distributions, Ni, the number of galaxies

from these surveys that would be present in each redshift bin, i once the survey is complete,

is calculated. This assumes that on completion each survey will have obtained spectra for the

number of objects given in Table 3.3. Ni galaxies are then randomly chosen from the DES5yr

training set to be put into redshift bin i and in this way a new training set of galaxies that has

the same redshift distribution as the real spectroscopic surveys, is constructed. The new training

sets are then split further in order to create validation sets for ANNz to run on. This is done

for a DES catalogue with optical grizY photometry as well as a DES+VHS catalogue with 8-

band optical and NIR JHKs photometry. The simulated DEEP2 sample has many more galaxies

at intermediate redshifts whereas the simulated VVDS-Deep survey samples the low and high

redshift regimes better than DEEP2.

The neural network code is then run on the two DES catalogues using three different training

sets each time - a training set with a DES redshift distribution, one with a DEEP2 redshift distribu-

tion and one with a VVDS-Deep redshift distribution. The results are shown in Figure 3.8 where

the scatter on the photometric redshift is plotted as a function of the spectroscopic redshift for all
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Figure 3.8: The scatter on the photometric redshift as a function of the spectroscopic redshift when
the DES, DEEP2 and VVDS-Deep redshift distributions are used to construct the training set used
by the neural network. The left-hand plot shows the scatter for a catalogue with optical grizY

photometry and the right-hand panel shows the scatter for a catalogue with 8-band optical and
NIR JHKs photometry.

these cases.

At low redshifts, the scatter is large for all three training sets due to lack of u-band data. At

intermediate redshifts of 0.75 < z < 1.4, the DEEP2 sample does better than the other training

sets by ∼ 40% as all its galaxies are concentrated in this region. As one moves to even higher

redshifts, the DEEP2 sample gives very poor results due to a lack of training set galaxies in this

redshift range whereas the DES and VVDS-Deep samples perform better. For 1.4 < z < 2, the

DEEP2 scatter is worse by a factor of ∼2 compared to the VVDS-Deep and DES training sets.

As expected, the scatter is smaller overall when NIR photometry is included for all three training

set scenarios. The improvement is particularly noteworthy in the high redshift regime. Here, the

scatter is reduced more for the VVDS-Deep and DES training sets with the addition of the NIR

and not as much for the DEEP2 training set.

Assuming that both DEEP2 and VVDS-Deep obtain good quality spectroscopic redshifts

across their entire redshift range, using a combination of these surveys to calibrate the DES pho-

tometric redshifts, is already as good as having a training set that is complete in redshift space.

However, it should be noted that very few VVDS objects at z > 1 are likely to have high confi-

dence redshifts. Also, this study has neglected other sources of incompleteness - e.g. the spectro-

scopic surveys may not obtain data for the full range of galaxy types covered by DES. However,

it is promising that different methods have recently been developed to deal with this problem of
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incomplete spectroscopic training sets e.g. (Newman 2008; Lima et al. 2008).

3.3.4.2 Effect on the Photo-z Bias

The bias on the photometric redshift estimate, bz , in a given redshift bin between z1 and z2 is

given by Eq 2.9. This bias can arise from various sources. The performance of the neural network

will introduce some difference between the photometric and spectroscopic redshifts. Furthermore,

having an incomplete training set or a cosmic variance limited sample also leads to biases in the

photometric redshift estimate. If this bias does not depend on the testing set however, it can be

quantified exactly using the training set and consequently subtracted from the photometric redshift

estimate no matter how large it is. This method of removing the bias has already been shown to

be effective in different photo-z codes described in Chapter 2. Once this bias has been removed,

the residuals give some indication of the dependance of the photo-z error on the testing set. This

error on the bias cannot be corrected for and it is this quantity that is evaluated in this section. In

particular the effects of size and incompleteness of both the training and testing sets is considered.

All the analysis carried out here is for the DES+VHS dataset and the incomplete training sets are

modelled by imposing the DEEP2 colour cuts detailed in Table 3.3 on galaxies from the DES5yr

catalogue.

The standard deviation on the bias in each bin can be defined as follows assuming Poisson

statistics:

rms(bz) =
σz√
Ns

, (3.1)

where σz is the 1σ scatter on the photometric redshift given by Eq. 2.8 and Ns is the number of

spectroscopic training set galaxies. This is a reasonable approximation to the error arising from

the neural network and the analytical expression for the error on the bias agrees with the error

from the neural network to within 15%. Given a suitably large number of training set galaxies

with spectroscopic redshifts, this error on the bias can be effectively ignored as it does not depend

on the testing set. In order to better understand some of the other sources of error on the bias that

do depend on the testing set, the samples detailed in Table 3.4 are studied.

The first exercise is to quantify the differences in photometric redshift bias that arise when

using different numbers of galaxies in the training set. Note that the differences in the bias cal-

culated here are used as empirical estimators of the systematic shift one would get when dealing

with data. SET3 and SET4 are used as training sets to calculate photometric redshifts for SETe.
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Number of Galaxies Colour Cuts

SET1 50000 None

SET2 50000 Same as DEEP2

SET3 70000 None

SET4 200000 None

SETa 250000 None

SETb 250000 None

SETc 102643 Same as DEEP2

SETd 102589 Same as DEEP2

SETe 500000 None

Table 3.4: Summary of training (1-4) and testing (a-e) sets used to quantify differences in estimates
of the photometric redshift bias.

All three samples are complete and have no imposed colour cuts. In Figure 3.9 the biases obtained

for each of the two cases and the difference between these is plotted. This shows that changing the

size of the training set by a factor of ∼ 3 leads to a difference in the biases of the order of 10−3.

Next, the effects of incomplete training sets on the photometric redshift bias is considered.

SET1 and SET2 are used as training sets to calculate the photometric redshifts for samples SETa,

SETb, SETc and SETd. SET1 is a complete training set while SET2 has been cut to reflect the

colour cuts of the DEEP2 survey. SETa and SETb are both complete testing sets with different

galaxies in them from the DES5yr mock catalogue, while SETc is generated by imposing the

DEEP2 colour cuts on SETb and SETd by imposing the DEEP2 colour cuts on SETa. The biases

on the photo-z estimate obtained for each of the different configurations of training and testing

sets, are shown in Figure 3.10. Note that throughout this analysis, bins of width 0.04 in redshift

space have been used.

From Figure 3.10 the following general conclusions can be drawn. Changing the galaxies that

are present in the testing set when training with a complete and fully representative training set,

leads to a change in the bias of the order 10−3. Using an incomplete training set on these samples

also leads to the same difference in the bias between them (Figure 3.10 - right panel, broken line).

When using an incomplete training set such as that provided by the DEEP2 survey (SET2) on a

testing set of galaxies with no imposed colour cuts (SETa and SETb), the bias in the photometric
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Figure 3.9: The bias on the photometric redshift estimate when using a training set of 70000
galaxies (SET3) and when using a training set of 200000 different galaxies (SET4) on the same
testing set. The right hand panel plots the difference between the two biases.
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Figure 3.10: The left-hand panel shows the biases on the photometric redshift estimate when using
each of the different configurations of training and testing sets detailed in Table 3.4. The right-
hand panel plots the difference in the bias when using two different sets of DES5yr galaxies with
an incomplete training set (broken line), two different sets of DEEP2 galaxies with an incomplete
training set (green solid line) and the difference in the bias when using a complete testing set and
a testing set with the same colour cuts as the incomplete training set (black solid line). These plots
are generated using bins of width 0.04 in redshift space.
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redshift is worsened as expected. However, if the same colour cuts as DEEP2 are imposed on the

testing set (SETc), the bias is improved by ∼20% for z < 0.7 and by ∼40% for z > 1.4 - i.e. in

the redshift ranges where the training set is incomplete. The difference in the bias when using a

testing set with no colour cuts and one with imposed colour cuts to match those of the incomplete

training set, is of the order of 5 × 10−3 and always smaller than 10−2 in the redshift range of the

incomplete training set - inset, left-hand panel of Figure 3.10.

In §3.4.2, the propagation of these errors on the photometric redshift bias onto estimates of the

dark energy equation of state parameter, w, will be considered.

3.4 Implications for Cosmology

3.4.1 Optimal Estimation of the Galaxy Power Spectrum

In this section, the impact of photometric redshift estimation on dark energy science is considered,

the emphasis being on the measurement of dark energy using galaxy power spectra and baryon

acoustic oscillations.

The galaxy angular power spectrum is a measure of the clustering in the galaxy population

within time bins extending from the present to a time when the Universe was only a fraction of

its present age. Large-scale surveys like DES provide ideal data sets for studying the clustering

properties of galaxies and therefore the clustering properties of their underlying dark matter distri-

bution and hence are useful probes for mapping how the dark matter distribution evolves with time.

Furthermore, many characteristic features appear in the power spectrum which provide standard

rulers that can be used to determine the angular diameter distance, DA, as a function of redshift.

Baryon acoustic oscillations are one such feature of interest which appear as wiggles on the power

spectrum. These wiggles result from oscillations in the photon-baryon fluid at the epoch of re-

combination when the radiation decouples from the matter. The position of the peaks and troughs

of these wiggles in Fourier space can be used to determine a set of cosmological parameters (e.g.

Blake & Glazebrook (2003) and Seo & Eisenstein (2003)).

The accuracy with which one can measure this typical acoustic scale is proportional to the

average fractional error in the power spectrum, δP/P . The fractional error on the power spectrum

arises from two sources. Firstly, the number of independent spatial modes that can be measured in

a given volume, V , is finite and this will lead to errors in the power spectrum that are proportional

to 1/
√

V . This is known as cosmic variance. Secondly, there is a contribution from shot noise

due to imperfect sampling of the fluctuations as one only has a finite number of tracers of these
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fluctuations within a given volume. If one assumes a density field that follows Gaussian statistics,

Feldman et al. (1994) show that the error on the power spectrum measurement, P is weighted in

the following way:

δP

P
∝ 1√

V

�
1 +

1
nP

�
, (3.2)

where n is the mean number density in a given volume as seen by an observer and can be written

in terms of the galaxy redshift distribution as follows:

dN

dz
= fsky

dV

dz
n(z), (3.3)

where fsky is the fraction of the sky covered by the survey and dV/dz is the comoving volume

element.

The first term in Eq. 3.2 denotes the effect of cosmic variance while the second term is the

contribution from shot noise. In order to minimise the error on the power spectrum, one has to

design a survey with maximum volume provided there are enough sources within this volume for

the shot noise contribution to be minimal. If nP > 3 the power spectrum is well estimated and

there is no significant advantage to be gained with more galaxies (Seo & Eisenstein 2003). In

this work, it is assumed that to obtain a reasonable estimate of the power spectrum one needs to

satisfy the condition, nP � 1. Taking into account the galaxy bias, b that scales the galaxy power

spectrum to the matter power spectrum, and including the scaling of the matter power spectrum

with redshift as a linear growth factor, D(z) the following expression for nPgal is obtained:

n(z)Pgal(k∗) = n(z)b2(z)D2(z)P (k∗). (3.4)

The formalism for the transfer function set out in Eisenstein & Hu (1998) has been used to

calculate the power spectrum at k∗ = 0.1hMpc−1 as this is well within the linear regime of

the power spectrum. At larger values of k, non-linearities due to clustering and other structure

formation start to dominate and make it harder to detect the BAO signal.

A survey with 0 < z < 2 and fsky = 0.119 is considered. The bias is assumed to be 1.2 2.

In Figure 3.11, nPgal is plotted as a function of the redshift. This is done for the entire catalogue

2While it is true that these results are dependent on the bias, it is difficult at this point to make an educated guess of

what b will be for DES galaxies. A reasonable scale independent bias has therefore been used in these calculations.
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Figure 3.11: nP as a function of the redshift for different levels of clipping. The left-hand plot
is generated using DES grizY photometry only whereas the right-hand plot is produced from a
catalogue with 8-band DES+VHS photometry.

and for clipped catalogues with different clipping thresholds. The same analysis is performed for

optical only DES data as well as optical and NIR data from DES+VHS. The results are summarised

in Table 3.5 and Figure 3.11.

From these results it can be seen that applying a threshold error at which to cut the photometric

redshift catalogue proves effective in removing outliers from the sample before performing any

kind of cosmological analysis on it. For the DES catalogue of redshifts obtained using grizY

photometry, all galaxies with a threshold error of more than ∼ 0.03 can be removed in order to

obtain an accurate measurement of the galaxy power spectrum out to a redshift of 1. This results in

only 10% of the original sample remaining but this sample has a scatter on its photometric redshift

that is a factor of∼ 2.7 times better than that of the original sample and is therefore more effective

in constraining the cosmology. For the DES + VHS catalogue, a threshold error of 0.025 can be

applied to effectively constrain the galaxy power spectrum to redshift 1. In this case, only 3% of

the original sample remains, but the overall scatter on the photometric redshift has been reduced

by a factor of ∼ 2.75. This is equivalent to performing an LRG selection on the survey as these

galaxies have more accurate large-scale structure signals and more accurate photometric redshifts

due to the prominence of their 4000Å break (Blake et al. 2007; Padmanabhan et al. 2005).

In order to provide a reasonable measurement of the galaxy power spectrum for the entire DES

redshift range of 0 < z < 2, a threshold error cut of > 0.1 can be applied to the DES only sample

and most of the galaxies used in the analysis. When NIR photometry from VHS is added to this

sample, a less conservative clipping cut of 0.05 can be applied and only 37% of the galaxies used
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DES grizY photometry

Threshold Error Redshift Range for nP � 1 σ σ68 Fraction of Galaxies Remaining

None 0 < z < 2 0.128 0.08 1

0.100 0 < z < 1.7 0.084 0.065 0.79

0.050 0 < z < 1.3 0.058 0.052 0.38

0.040 0 < z < 1.1 0.055 0.047 0.24

0.030 0 < z < 1.05 0.048 0.044 0.095

0.025 0 < z < 0.95 0.047 0.043 0.035

0.020 0 < z < 0.8 0.047 0.045 0.007

DES grizY + VHS JHKs photometry

Threshold Error Redshift Range for nP � 1 σ σ68 Fraction of Galaxies Remaining

None 0 < z < 2 0.11 0.074 1

0.100 0 < z < 1.9 0.074 0.062 0.80

0.050 0 < z < 1.4 0.054 0.048 0.37

0.040 0 < z < 1.3 0.049 0.043 0.22

0.030 0 < z < 1.1 0.043 0.039 0.09

0.025 0 < z < 1.0 0.041 0.037 0.03

0.020 0 < z < 0.65 0.041 0.037 0.005

Table 3.5: Summary of the redshift ranges over which optimal measurements of the galaxy power
spectrum can be obtained for different clipping threshold errors along with the corresponding
values of σ, σ68 and the fraction of galaxies remaining in the sample for each of these cases. The
top table is for DES grizY photometry and the bottom table for DES+VHS JHKs photometry.
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to reduce the scatter on the photometric redshift by a factor of∼ 2. Note that σ68 is also reduced in

these cases although not to the same extent as the reduction in σ. A reduction in σ68 corresponds

to a reduction in the intrinsic scatter of the sample minus the outliers.

By clipping catalogues in this way before performing any kind of cosmological analysis on

them, the errors in the measurement of the galaxy power spectrum have been effectively reduced

without compromising on the precision with which this measurement has been made. Adding

NIR data from VHS to the DES photometry has also allowed the catalogues to be clipped more

effectively and therefore enabled more precise measurements of the galaxy power spectrum out to

higher redshifts. However, in all these calculations, there is no explicit dependance of δP/P on

the photo-z scatter.

The formalism of Blake et al. (2006) and Blake & Bridle (2005) is now followed whereby

the photometric redshift errors are explicitly accounted for in the galaxy power spectrum analysis.

These authors have shown that the fractional error on the galaxy power spectrum is related to the

photometric redshift error as follows:

δP

P
∝
√

σr, (3.5)

where σr is the rms error in comoving coordinates in units of h−1Mpc. This can be related to the

redshift error already introduced in Eq. 2.8 as follows:

σr = σz
c

H(z)
=

σzc

H0

�
(Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ)

. (3.6)

The fractional error in the power spectrum is now given by:

δP

P
∝

�
σr

V

�
1 +

1
nP

�
. (3.7)

The usable volume is now modified by an additional factor of
√

σr which represents the fact

that the number of usable spatial modes is diminished due to the photometric redshift error which

smears out the signal in the radial direction. Fourier modes on small scales with k � 1/σr are

damped out by the photometric redshift error and the number of usable spatial modes therefore

needs to be reduced by a factor of σr.

The fractional error on the power spectrum can be calculated for different values of the clipping

threshold. This is done for an optical DES sample as well as an optical and NIR DES+VHS sample
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in redshift bins of width 0.02. A DES comoving survey volume, V of 23.7h−3Gpc3 is assumed

between 0 < z < 2. This choice of redshift is motivated by Figure 3.11 where it can be seen

that there are enough galaxies in the survey out to a redshift of 2 for shot-noise errors not to be

significant, provided that the sample is not clipped. As the fractional error in the power spectrum

is being calculated in redshift bins, the effective volume in a redshift bin is defined as follows:

δVeff =
�

n(z)P
(n(z)P + 1)

�2

δV. (3.8)

The fractional error on the power spectrum in a redshift bin can then be re-written as:

δP

P
∝

�
σr

δVeff
. (3.9)

As can be seen, decreasing the threshold error at which to clip the sample reduces the scatter

on the photometric redshift and therefore σr leading to smaller fractional errors on the power

spectrum. However this also reduces nP and therefore δVeff , thereby increasing the shot-noise

contribution to the error in the power spectrum due to a lack of sufficient galaxies in the sample.

Clearly, there is an optimum threshold error that needs to be determined.

The results of determining this optimum threshold error are shown in Figure 3.12 and Table

3.6 where the fractional error in the power spectrum, (δP/P )clip, is plotted for different levels of

clipping divided by the fractional error in the power spectrum obtained using the entire sample,

(δP/P )0. This is only done for clipping thresholds greater than or equal to 0.03 as below this,

shot noise is dominant across the entire redshift range. If the plotted quantity is less than one for

a given clipping threshold, the fractional error after clipping is smaller than the fractional error

before clipping and cutting the sample using this threshold improves the constraints on the galaxy

power spectrum.

From these results it can clearly be seen that there exists a trade-off between the shot-noise

contribution to the error on the power spectrum and the contribution from cosmic variance. At

high values of the threshold error, most of the galaxies in the sample are used for analysis and

shot-noise is not a problem. However, the scatter on the photometric redshift is large leading to

larger errors in the power spectrum measurement. At very low values of the threshold error, the

photo-z scatter is reduced but there are too few galaxies in the sample and shot noise begins to

dominate. There is an optimum value of the threshold error at which the fractional errors in the

power spectrum are at a minimum. This value is different for different redshift ranges as well as

for the two different catalogues.
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Figure 3.12: Ratio of fractional error on the galaxy power spectrum pre and post clipping, as
a function of the redshift. The left-hand plot is generated using DES grizY photometry only
whereas the right-hand plot is produced from a catalogue with 8-band DES+VHS photometry.

DES grizY photometry

Redshift Range Optimum Clipping Threshold Fraction of galaxies used Improvement in δP/P

0 < z < 0.1 0.025 4% 75%

0.1 < z < 0.9 0.03 10% 20-30%

0.9 < z < 1.0 0.04 24% 35%

1.0 < z < 1.2 0.05 38% 10-15%

1.2 < z < 1.4 0.1 79% 4%

1.4 < z < 2 None 100% None

DES grizY + VHS JHKs photometry

Redshift Range Optimum Clipping Threshold Fraction of galaxies used Improvement in δP/P

0 < z < 1 0.03 8% 30%

1 < z < 1.3 0.05 37% 10-15%

1.3 < z < 2 0.1 80% 15-20%

Table 3.6: Summary of the optimum threshold error to be applied in different redshift ranges in
order to minimise the fractional error on the power spectrum. The top table is for DES grizY

photometry and the bottom table for DES+VHS JHKs photometry.
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When the VHS NIR data is added to the DES optical catalogue, one can apply a smaller clip-

ping threshold out to the same redshift range compared to the DES only case in order to minimise

the error in the power spectrum. This means more outliers are removed from the DES+VHS

catalogue and thereby the photometric redshift errors are reduced without compromising on the

precision with which one can do cosmology. Also, it can be seen that using the DES only cata-

logue, it is not possible to clip in the highest redshift bin of 1.4 < z < 2 as this increases the shot

noise errors in the power spectrum. However, when one adds the VHS NIR photometry, ∼20% of

the galaxies can be removed in this bin to produce a power spectrum that is 15-20% more accurate

than that obtained using all the galaxies.

This analysis shows that in the absence of large spectroscopic surveys like the proposed WF-

MOS survey (Bassett et al. 2005), photometric surveys could prove competitive in constraining

dark energy through galaxy power spectrum measurements if the outliers were effectively re-

moved.

It is worth noting though that when applying this clipping procedure to a real survey, one

would choose the optimal clipping threshold based on the training sets available and not from

simulations as is the case here.

3.4.2 Effect of Photometric Redshift Bias on Dark Energy Equation of State

In this section the effect of the photometric redshift bias on the dark energy equation of state

parameter, w is considered. In §3.3.4.2 it was already seen that systematic errors in the photometric

redshift bias can arise when different numbers of galaxies are used in the training and testing sets

and also when one or both of these samples is in some way incomplete. The errors in the bias

given by the right hand panels of Figure 3.9 and Figure 3.10 can be translated into an error on

the the value of w calculated using baryon acoustic oscillations as a probe. The position of the

BAO peaks can be used to find the angular diameter distance, DA which in turn gives information

about the expansion history of the Universe and hence w. If there is a systematic uncertainty on

the photometric redshift bias, ∆b, this can be related to the uncertainty in w using the angular

diameter distance, in the following way:

∆w =
∂DA

∂z

∂w

∂DA
∆b. (3.10)

By assuming that ∆b is given by the difference curves plotted in the right hand panels of

Figure 3.9 and Figure 3.10, an estimate of ∆w for each of the cases investigated in §3.3.4.2 can be
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Figure 3.13: The error in w as a function of redshift due to the photometric redshift bias arising
from different sources.

found. This is shown in Figure 3.13. Note that throughout this calculation all other cosmological

parameters are fixed and a standard cosmology with Ωm=0.3, ΩΛ=0.7 and h=0.7 is used.

For interest, the product of the two derivatives in Eq. 3.10 is also plotted for four different

cosmologies in Figure 3.14 as this is what links the error in the photometric redshift to the error

on w. This assumes a flat universe with varying amounts of matter and dark energy as specified

by the four different values of Ωm.

It can be seen that using different size training sets or different testing sets leads to an error in

w at a given redshift 3 that is of the order of 0.01 for z > 0.5. The error in w is of the order of 0.08

for 0.5 < z < 1 and z > 1.5 when an incomplete testing set is used with an incomplete training

set as opposed to a complete testing set with an incomplete training set. The error is smaller -

around 0.01 in the redshift range 1 < z < 1.5. The error in all cases is very large at z < 0.5. As

using different training and testing sets is equivalent to using galaxies from different patches of the

sky and therefore having a cosmic variance limited sample, it is concluded that systematics on the

photo-z bias due to cosmic variance do not hinder the calibration of w to a percent level. However,
3This does not correspond to the error one would get from fitting a constant w but rather the error of measuring w

at that given redshift.
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the black solid line of Figure 3.13 shows that using a training set that is incomplete in redshift

space, to calibrate photometric redshifts for DES would lead to large uncertainties in w unless the

sample being tested was cut to match the training set. These results are relatively insensitive to

the clipping procedure introduced in § 3.3.3 and therefore have been carried out in all cases for the

unclipped catalogues of galaxies.

Although this is a rough calculation, it gives a feel for the uncertainties in calculating the dark

energy equation of state that can arise due to the differences in the photometric redshift bias. In

order to get the exact uncertainty on w due to uncertainties in the photometric redshift, one would

have to conduct a full Fisher matrix analysis applied to baryon acoustic oscillations such as that

done by Ma et al. (2006) for weak lensing. This involves translating the error on the bias and

scatter in the photometric redshift to an error on w by marginalising over all other cosmological

parameters.

From this work, it can be seen that neural networks can be used to obtain photometric redshifts

by extrapolating from an incomplete training set. If this is done with a survey such as DES it will

create systematic errors on w of the order of ∼10%. Template-fitting methods such as the SDSS

template-fitting method (§ 2.3.4) and ZEBRA (§ 2.3.5) that use optimised templates to calculate
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photometric redshifts in regions where the training set is incomplete, may prove more useful for

such purposes.

3.5 Conclusions

This work has demonstrated the key role of near infra-red photometry from the VISTA Hemi-

sphere Survey, in constraining photometric redshifts for the Dark Energy Survey. The effects of

galaxy reddening and training sets on the photo-z estimate has been examined and the biases in the

photometric redshift estimate when using training and testing sets with different sizes and levels

of completeness, quantified. The error in the dark energy equation of state parameter, w that arises

from differences in these biases has also been crudely calculated.

A method of clipping galaxy catalogues by removing outliers based on the ANNz error esti-

mate on the photometric redshift has been introduced. Applying a threshold error to the catalogues

and rejecting all objects with errors bigger than this threshold error, allows us to effectively reduce

the overall scatter on the photometric redshifts of our sample.

Finally, a full galaxy power spectrum analysis has been conducted using the DES and DES+VHS

catalogues and it has been shown that the clipping method can improve the uncertainties on our

galaxy power spectrum measurements. There is an optimum threshold error at which one should

clip catalogues and this error depends on the catalogue being used and the redshift range in which

we are evaluating the power spectrum. If a high value for the threshold error is used, the scatter

on the photometric redshift estimate is high leading to large positional uncertainties and there-

fore large errors in the power spectrum due to cosmic variance. However, if we adopt a very low

value for the threshold error, we remove most of the galaxies from our sample before calculating

the power spectrum and the resulting uncertainties in the power spectrum are dominated by shot

noise. The optimum threshold error is found to be smaller for the DES+VHS catalogues compared

to the DES only catalogues in the same redshift range and hence more outliers are removed from

this sample before analysis. Adding the VHS NIR data thus helps to compute the galaxy power

spectrum more accurately out to higher redshifts than for the DES only case.

In summary, the main conclusions from this work are as follows:

• NIR data from VISTA VHS helps to reduce the scatter on DES photometric redshifts by

∼30% for z > 1.

• Reddening the galaxies can increase the photo-z scatter of DES by ∼ 30% in some redshift
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ranges due to the degeneracy between redshift and reddening that exists in these redshift

ranges. However, this is unlikely to be a major issue as most of the mock DES galaxies do

not suffer from heavy extinction.

• ANNz can be used to predict the extinction, Av of DES galaxies to an accuracy of 0.27 and

to classify them into six spectral types - E, Sbc, Scd, Im, SB2 and SB3.

• The VVDS-Deep and DEEP2 spectroscopic surveys, when finished will provide a training

set for DES that is reasonably complete in redshift space out to a redshift of 2. However,

this assumes that all redshifts are obtained with high confidence and there isn’t any incom-

pleteness in e.g. SED type.

• Using different numbers of training set galaxies can lead to a difference in the photometric

redshift bias of the order of 10−3.

• If an incomplete training set is used, the photometric redshift estimate can be improved by

imposing the same colour cuts on the testing set as are applied to the training set. When this

is done, the improvement in the photometric redshift bias is of the order of 10% compared

to if we used a complete testing set with no imposed colour cuts.

• The clipping method introduced by Abdalla et al. (2008a) can be effectively applied to the

DES+VHS sample and applying a threshold error of 0.1 at which to cut our sample, reduces

the scatter on the photometric redshift by ∼50% by removing ∼ 20% of the galaxies.

• A clipping threshold of 0.1 is optimal for calculating the DES power spectrum out to a

redshift of 1.4. Applying this clipping threshold reduces δP/P by ∼20%. When the VHS

NIR data is added to the DES sample, the optimal clipping threshold in the same redshift

range is 0.05 and this reduces the fractional error in the power spectrum by ∼20-30%. In

order to calculate the power spectrum out to a redshift of 2, the addition of VHS NIR data

is crucial. In this redshift range, applying the optimal clipping threshold of 0.1 results in an

improvement in δP/P by ∼15-20%.

• Systematic errors on the photometric redshift bias arising from cosmic variance lead to

uncertainties in the dark energy equation of state parameter, w, of about a percent.

• However if an incomplete training set is used to determine photometric redshifts on a testing

set that hasn’t been cut to match the training set, the resulting uncertainties in the photomet-

ric redshift bias can lead to errors in w of the order of ∼10% if all other cosmological
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parameters are fixed. Note however that this result is model specific and depends to a cer-

tain extent on the choice of mock catalogues and the algorithm used to calculate photometric

redshifts, in this case, the neural networks.

In conclusion it is fair to say that this work has demonstrated that in the absence of large

spectroscopic surveys, the DES and VHS datasets, when combined, will prove extremely effective

in constraining dark energy through large scale structure signals like baryon acoustic oscillations.

By clipping photometric redshift catalogues and carefully removing a suitable number of outliers,

one can achieve reasonably precise measurements of the galaxy power spectrum out to a redshift

of 2.



CHAPTER 4

PHOTOMETRIC REDSHIFT DESIGN STUDIES

FOR Euclid (DUNE)

The work described in this chapter is unpublished and was undertaken by Banerji, Abdalla & La-

hav as part of design studies within the photometric redshift working group of the Euclid Imaging

Consortium (EIC).

4.1 Introduction

The work described in this chapter has formed part of key design studies for the imaging consor-

tium within the planned space-based Euclid mission. The filter design for this mission concept has

been driven primarily by the required photometric redshift performance for weak lensing analy-

sis. Therefore the task of the photometric redshift working group was to investigate the following

issues:

• The near infra-red filter configuration required to be added to the single space-based optical

filter on this mission in order to achieve the required accuracy in photometric redshifts

• Requirements on optical ground-based complements to the space-based mission for optimal

photometric redshift performance

• The availability and requirements on spectroscopic training sets for the calibration of pho-

tometric redshifts.

84
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Below I describe some of my investigations into these issues that have helped shape the design

of the Euclid mission. All of the photometric redshift analysis described in this chapter has been

carried out using the training set method, ANNz (Collister & Lahav 2004) already described in

detail in § 2.3.6.

4.2 The Euclid Mission

Euclid is a European Space Agency space-based mission concept that aims to understand how

the Universe originated and what it is made of by mapping the geometry of the dark Universe.

This mission concept has resulted from the merging of two separate missions - the Dark UNiverse

Explorer (DUNE) and the SPectroscopic All-sky Cosmology Explorer (SPACE).

SPACE proposed to perform the first all-sky spectroscopic survey of the Universe by taking

spectra between 1.6µm and 1.8µm with a spectral resolution of R=400 for more than half a billion

galaxies.

DUNE was designed as a mission optimised for weak gravitational lensing studies of dark

matter and dark energy. It consists of an optical and near infra-red imager on a 1.2m telescope

with four broadband filters that will carry out a photometric survey of the entire sky down to a

depth of 24.5 in the single broad optical filter. The stability of the PSF from space will enable

high-precision measurements of small distortions in the images of distant galaxies induced due

to the intervening large-scale structure. These distortions can then be used to directly map the

distribution of dark matter in our Universe and to study dark energy which affects the growth

of structure. The large area of the survey will also provide the necessary statistics to control

systematic errors.

Euclid now incorporates both the spectroscopic (SPACE) and imaging (DUNE) capabilities

and will require accurate photometric redshifts in order to estimate distances to all the galaxies

and achieve its various science goals. The work described in this chapter was undertaken as part

of early design studies for the DUNE mission concept which is now included in Euclid. It focusses

on photometric redshift optimisation for weak lensing studies in particular the requirements on the

near infra-red filters as well as ground-based complements to the space-based mission. In the

rest of this chapter, the mission is referred to as DUNE as the design studies presented here were

carried out before the merging of DUNE and SPACE into the Euclid mission concept.
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4.3 Mock Catalogues and Filters

The mock catalogues used in this chapter have been simulated as described in Abdalla et al.

(2008a) and § 3.2.2. In order to simulate these catalogues, the GOODS-N spectroscopic sample

(Cowie et al. 2004; Wirth et al. 2004) was used. This is a flux limited sample with R < 24.5

and redshifts z < 4. The broadband photometry available for this sample in multiple wavebands,

was used to generate a series of galaxy templates using a method similar to Budavári et. al (1999)

but assuming a prior set of templates consisting of the observed Coleman et al. (1980) templates

and the starburst galaxies of Kinney et al. (1996). Any reddening is removed from the photometry

before template construction and the new templates used to calculate a best-fit SED value and

reddening for each object assuming the reddening law of Calzetti (1997) as well as a correction

for the IGM absorption according to the prescription of Madau (1995).

The model assumed for the luminosity function evolution is taken to be an interpolation be-

tween the local r-band luminosity function at redshift 0 and the Steidel et al. (1999) luminosity

function at redshift 3. This is then used to estimate the RIZ magnitude and redshift distribution

from which galaxies are drawn using a Monte Carlo technique. The fluxes for each galaxy are then

calculated based on the redshift, SED type, reddening and filter profiles specified after normalising

to the DUNE RIZ filter. Gaussian noise is added to the fluxes before calculating magnitudes and

errors for the noisy sample in order to produce the final catalogue.

Figure 4.1 shows the filter transmission curves assumed for some of the surveys studied in this

work. Ground-based optical surveys such as DES, PanStarrs and LSST have between four and

six broadband filters whereas the design assumed for the space-based DUNE mission consists of

a single broad optical RIZ filter and between two and four near infra-red filters. In most of the

simulations presented in this chapter, the three NIR filter configuration shown in the bottom right

panel of Figure 4.1 has been used.

Table 4.1 provides the assumed 10σ AB magnitude limits in each of the different filters for

different surveys that are described in this work.

4.4 The Near Infra-Red Filter Configuration

The aim of this section is to determine the optimum near infra-red filter configuration for DUNE in

terms of photometric redshift performance. The mock catalogues described in the previous section

have been used after assuming different filter configurations in the near infra-red for DUNE and

LSST ground-based data. The NIR filter configurations are illustrated in the top panel of Figure
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Figure 4.1: Filter transmission curves assumed for PanStarrs (top left), LSST (top right), DES
(bottom left) and DUNE (bottom right).

4.2. Five different filter configurations are studied, details of which have been provided in Table

4.2. In all cases except N3, a total exposure time of 1500s split equally between all the NIR filters

is assumed. Filter configuration N3 corresponds to the exposure time in the NIR being reduced

to 75% of its original value. The magnitude limits are calculated from the exposure times using a

DUNE exposure time calculator 1 (Fontana et al.) after assuming an efficiency of 0.7 in the filters,

average background zodiacal light and an extended source.

The filter configurations as well as the bias, 1σ scatter on the photometric redshift and σ68 in

different spectroscopic redshift bins, are plotted in Figure 4.2. From this figure it is clear that the

photometric redshift estimate is not particularly sensitive to the near infra-red filter configuration

chosen. Clearly there is a trade-off between colour and depth so adding more filters doesn’t really

improve the photo-z’s as this means integrating for less time in each filter. However, reducing the
1http://lbc.oa-roma.inaf.it/cgi-bin/ETC DUNE.pl
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Band DES PanStarrs LSST CFHT Deep Opt DUNE

u - - 23.9 - - -

g 24.6 24.4 26.1 25.0 25.5/26.0 -

r 24.1 23.9 27.4 25.0 25.5/26.0 -

i 24.3 23.0 26.2 - 26.0 -

z 23.9 22.5 25.1 - - -

y - 21.0 24.3 - - -

RIZ/F814 - - - - - 24.5

Y - - - - - 23.5

J - - - - - 24.0

H - - - - - 23.2

Table 4.1: 10 σ AB magnitude limits for the different surveys considered in this chapter.

NO. FILTER CENTRAL λ (Å) Exposure Time (s) Magnitude Limit (10σ AB)

N1. J 11750 750 24.2

H 15250 750 23.5

N2. Y 10250 500 23.5

J’ 12500 500 23.6

H 15250 500 23.2

N3. Y 10250 375 23.3

J’ 12500 375 23.4

H 15250 375 23.0

N4. Y’ 10375 375 23.4

J” 12125 375 25.7

J”’ 13875 375 25.5

H’ 15625 375 25.3

N5. Y 10250 500 23.5

J 11750 500 24.0

H 15250 500 23.2

Table 4.2: Summary of near infra-red filter configurations
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Figure 4.2: The top left panel shows four different NIR filter configurations considered for DUNE.
In the top right, bottom left and bottom right panels the bias, 1σ scatter and σ68 are plotted as a
function of the spectroscopic redshift for each of the different NIR filter configurations detailed in
Table 4.2 with ground-based LSST data.

total exposure time in the near infra-red to 75% of its original value also does not seem to affect

the photometric redshifts if one assumes that deep photometry e.g. from LSST is available from

the ground. The trade-off between exposure time in the near infra-red and ground-based optical

filters will be studied in more detail in § 4.5.2.

The effect of removing the DUNE Y-filter is illustrated in Figure 4.3. A PanStarrs1 type

ground-based optical complement to DUNE is now assumed. The loss of the Y-filter is not here

compensated with an increase in exposure time in the other two NIR filters and consequently, a

degradation in the photometric redshift accuracy is seen particularly at large spectroscopic red-

shifts although this degradation is by no means severe. This illustrates that two near infra-red

bands almost certainly capture most of the variance in the SEDs of the simulated galaxies over the

DUNE redshift range. This hypothesis can be tested for example by using principal component
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analysis.

In the remainder of this chapter, the DUNE near infra-red filter configuration is chosen to be

N5 unless otherwise stated.

4.5 Ground-based Optical Complements

4.5.1 Optical Photometry - Depth vs Colour

In order to assess the depths necessary in ground-based optical photometry to provide accurate

photometric redshifts for DUNE, several configurations of deep ground-based optical data are

considered in this section. A CFHT like survey is simulated by assuming deep optical photometry

in the g and r-bands with a 10σ AB magnitude limit of 25.0 in each. In addition, fiducial deep

optical surveys with 10σ AB magnitude limits in the r-band of 25.5, in g and r of 25.5 and in

g,r and i of 26.0 are also considered. The 1σ scatter, bias and σ68 versus spectroscopic redshift

for each of these filter combinations is shown in Figure 4.3 alongside the same quantities plotted

assuming a relatively shallow ground-based complement such as PanStarrs1. While the deep

optical surveys are restricted to three bands or less, PS1 has five optical bands thereby giving

more colour information. Note that for both DES and PS1, using only the 10σ objects down to

the expected magnitude limits will almost certainly result in samples that are much too shallow

to complement DUNE. However, the raw images from these ground-based surveys will include

low signal-to-noise galaxies as well which can be used for calibration, particularly if multi-epoch

data is available. All the simulations used throughout this chapter therefore include these low

signal-to-noise objects.

Figure 4.3 illustrates several key points. Firstly, increasing the limiting magnitude in the two

optical filters, g and r from 25.0 to 25.5 results in an improvement in the photometric redshift

scatter as well as the bias. At 1 < z < 1.5, the photo-z scatter is better with two shallow optical

filters e.g. from a CFHT like survey compared to one deep optical filter. The bias is also improved

at z > 1 with two shallow optical filters indicating that at large spectroscopic redshifts, the colour

information is more important than depth in constraining the photometric redshifts. This is also

illustrated by the fact that the relatively shallow PS1 optical data produces a smaller bias than is

achieved with two deep optical bands. There is not much improvement in the photometric redshift

performance when going from two optical filters with 10σ AB magnitude limits of 25.5 in each to

three filters with 10σ magnitude limits of 26.0 for this redshift range and the photometric redshift

estimates are only slightly worse if not comparable when five shallow optical bands such as those
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Figure 4.3: 1σ scatter, bias and σ68 versus spectroscopic redshift for different deep optical filter
configurations (left) as well as a relatively shallow multi-band survey such as PS1 (right) when
combined with DUNE.
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Band Exposure 10σAB

Y 25% 22.8

J 25% 23.2

H 25% 22.5

Table 4.3: 10σAB magnitude limits for 25% exposure in DUNE near infra-red filters.

from PS1 are present. This illustrates that the photometric redshift performance saturates after

some reasonable amount of depth and colour has been obtained in the optical filters. Beyond

this, there is no real further improvement from either increasing the exposure time in the filters or

adding more filters.

The plots of σ68 help assess the quality of the photometric redshifts once catastrophic outliers

have been removed from the sample. Unlike the 1σ scatter and the bias, this quantity is smaller

when two or three deep optical bands are present rather than five shallow bands such as those in

PS1.

4.5.2 Optical from the ground vs Near Infra-red from space

Abdalla et al. (2008a) have studied how data from various upcoming ground-based optical sur-

veys can be used to complement data from DUNE. In this chapter, different near infra-red filter

configurations as well as deep ground-based complements to DUNE have already been studied.

This work is now extended by looking at the trade-off between depth in the ground-based optical

filters and depth in the space-based NIR filters. Simulated data for DES, PanStarrs and LSST are

used as the ground-based complements and the NIR exposure time reduced from 100% signified

by the 10σ AB magnitude limits given in Table 4.1 to 25% and finally to 0%. The resulting change

in the magnitude limit is given by Eq 4.1.

log10

��
t1
t2

�1/2
�

= 0.4(m1 −m2), (4.1)

where t1 and t2 are the total integration times in the filter being considered and m1 and m2 are

the 1σ AB magnitude limits. The resulting 10σ AB magnitude limits in the DUNE NIR bands are

summarised in Table 4.5.2. It has already been noted that reducing the NIR exposure time to 75%

makes very little difference to the photometric redshifts assuming deep optical photometry from
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LSST from the ground.

A plot of the 1σ scatter on the photometric redshift versus the spectroscopic redshift for all

the survey cases considered is plotted in Figure 4.4. The quantity σ68 defined to be the interval in

which 68% of the galaxies have the smallest difference between their spectroscopic and photomet-

ric redshifts is also plotted along with the bias on the photometric redshift estimate as well as the

1σ scatter as a function of the photometric redshift. It is apparent from this plot that the sensitivity

of the photometric redshifts to a loss in depth in the near infra-red filters depends crucially on the

quality of the complementing ground-based photometry. More specifically, one can conclude that

a 25% exposure in the NIR filters is probably sufficient for photometric redshift accuracy provided

there is also some deep optical photometry available from the ground.

Figure 4.4 illustrates that the photometric redshifts from DUNE only (100% NIR) are almost

as good as those from DES+DUNE (0% NIR) out to z∼1.2. This highlights the key point that how

much one benefits from adding NIR photometry to DUNE either in terms of filters or exposure time

in each filter, depends crucially on what photometry is assumed from the ground. For example,

for LSST+DUNE one might argue that there is almost nothing to be gained from increasing the

exposure time in the NIR and the improvement in photo-z from adding NIR at all is nowhere near

as marked as for the shallower DES+DUNE case.

Another interesting feature in Figure 4.4 is that one can constrain photo-z’s using a single

RIZ filter using the artificial neural network code, ANNz even though there is essentially no

colour information present. This is because the neural network is just fitting a simple curve to the

magnitude-redshift relation illustrated in Figure 4.5 and using this to derive redshifts. This curve

shows the mean redshift of objects in a given magnitude bin for the DUNE mock sample. This

kind of information could not be extracted from a template based method as in a template method,

the actual amplitude of the flux is not related to the redshift as it is usually normalised by the error

on the flux and is therefore dimensionless.

4.6 Calibrations for Weak Lensing

The photometric redshift accuracy is a crucial systematic that needs to be controlled for a pho-

tometric survey such as DUNE. The level of photo-z error that is permissible in turn depends on

the specific science goals of the survey. As the DUNE part of Euclid is primarily a weak-lensing

survey, the propagation of photometric redshift errors to the analysis of weak lensing tomography

is briefly considered in this chapter. The requirements on the photometric redshift error are then
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Figure 4.4: The 1σ scatter (top-left), σ68 (top right) and bias (bottom left) on the photometric red-
shift as a function of the spectroscopic redshift and 1σ scatter as a function of photometric redshift
(bottom-right) for various different ground-based optical surveys when combined with DUNE.
The solid lines correspond to 100% exposure in the near infra-red, the dashed lines correspond to
25% exposure in the near infra-red and the dot-dashed lines correspond to 0% exposure in the near
infra-red.

used to crudely determine the number of spectroscopic redshifts that will be required to calibrate

the photometric redshift estimate.

In weak lensing surveys, the key observable is the lensing power spectrum. This is essentially

an integral over the lensing kernel multiplied by the matter power spectrum. The lensing kernel

in turn depends on the cosmological parameters as well as the redshift distribution of the survey.

In a spectroscopic survey, this redshift distribution is well characterised but for a photometric sur-

vey, one needs to estimate, the photometric redshift probability distribution p(zp|z) using a finite

number of galaxies with spectroscopic redshifts that form the training set. As only a finite number

of galaxies are available to determine this distribution, there will be uncertainties associated with
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Figure 4.5: The magnitude-redshift relation for DUNE mock galaxies.

its estimate. These uncertainties in determining for example the mean and variance of this distri-

bution will propagate into uncertainties in cosmological parameter estimates using weak lensing

(Amara & Réfrégier 2007). This is because the parameters that determine the photo-z distribu-

tion, p(zp|z) are themselves degenerate with the dark energy parameters (Ma et al. 2006). These

authors conclude that the limiting systematic error in degrading the cosmological parameter con-

straints is not the absolute size of any photo-z bias or scatter, but rather the uncertainty in knowing

what that bias or scatter is. Cosmological parameter estimates could also suffer from the fraction

of catastrophic outliers.

In order to quantify these systematics, the galaxy sample is divided into photometric redshift

bins. Given a redshift distribution, n(z) for a galaxy sample, one can define four redshifts - z1,

z2, z3, z4 - where if cuts are made in the true redshift, would result in five bins each containing

the same number of galaxies. These bin boundaries are defined in Table 4.4 for a DUNE type

survey. However, when the cuts are made in photometric redshift, the galaxy distributions in each

of the bins will ’leak’ into other bins due to the photometric redshift error. This ’leaking’ can be

quantified by considering the fraction of galaxies, fi in each bin which is simply the integral of

the redshift distribution over the bin boundaries. The fraction of galaxies from this bin that have
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z 0 - 0.561 0.561 - 0.741 0.741 - 0.931 0.931 - 1.181 1.181 - 3.531

Table 4.4: DUNE redshift bins.

fi fi±1 fi±2 fi±3 fi±4

WL Req > 78% < 10% < 5% < 1% < 1%

DES 63.3% 17.9% 3.46% 2.87% 3.98%

DES+IR 75.6% 14.3% 0.59% 0.52% 1.02%

PS4+IR 87.5% 7.63% 0.14% 0.09% 0.26%

LSST 85.9% 8.32% 0.34% 0.25% 0.51%

Table 4.5: The fraction of galaxies in each redshift bin, fi and leakage into neighbouring bins,
fi±1, fi±2 etc. for four of the simulated surveys as compared to the weak lensing requirements.

leaked into adjacent bins are given by fi±1 and for bins beyond, fi±2 etc. For the purposes of a

weak lensing survey, one can place stringent requirements on these fractions based on the precision

needed in the cosmological parameter estimates. These requirements are given in the top line of

Table 4.5. The rest of Table 4.5 gives the fractions obtained from the photometric redshift output

of the neural network code, ANNz, using several of the mock catalogues already detailed.

One can see that with the presence of near infra-red data e.g. from DUNE or u-band data e.g.

from LSST, the weak lensing requirements on the fraction of catastrophic outliers can be met.

The two other photometric redshift statistics required for a DUNE type weak lensing survey,

are calibration of the mean of the redshift probability distribution, pi(z) to be less than 0.001, and

the calibration of variance of pi(z), to be less than 0.008.

The mean of the distribution can be defined as follows:

z̄ =
1

Ns

Ns�

j=1

zsj . (4.2)
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One can also define the kth moment of the distribution, µk, as follows:

µk = (z − z̄)k =
1

Ns

Ns�

j=1

(zsj − z̄)k. (4.3)

As only a finite number of galaxies with spectroscopic redshifts, Ns are available to determine

this distribution, assuming Poisson statistics, the standard deviation on the mean redshift of each

bin is given by:

rms(z̄) =
√

µ2√
Ns

, (4.4)

and similarly the standard deviation of the variance is given by:

rms(µ2) =

�
Ns − 1

N3
s

[(Ns − 1)µ4 − (Ns − 3)µ2
2]. (4.5)

In the limit of large Ns this becomes:

rms(µ2) =
�

µ4 − µ2
2�

Nspec
. (4.6)

One can marginalize over both these uncertainties. The dependence on the number of spectro-

scopic redshifts is really an indirect expression of the scatter in z̄ and in µ2.

Using the ANNz output for DUNE with near infra-red data and various ground-based optical

complements, the number of spectroscopic training set galaxies required in each redshift bin can

be calculated using the weak lensing requirements. The ANNz output is used to define the prob-

ability distribution function whose variance and kurtosis can be calculated. Estimates of Ns from

equations 4.4 and 4.6 are given in Table 4.6 assuming rms(z̄) < 0.001 and rms(µ2) < 0.008. As

the requirements on the spectroscopic training set is roughly the same for any optical survey with

DUNE NIR photometry, an average value for Ns is quoted in Table 4.6 across all the surveys.

The requirements for the calibration of the mean are clearly more demanding than those for

calibrating the variance and it can be seen that a total of ∼ 105 spectroscopic training set galaxies

are required for calibration of a weak lensing survey such as DUNE assuming five redshift bins. If

higher order moments are investigated therefore, they should only be important if the number of

galaxy spectra available is very small. These results are consistent with the more detailed analysis
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z-range µ2 µ4 Ns from mean Ns from variance

0-0.561 0.013 0.0006 13000 7

0.561-0.741 0.02 0.001 20000 9

0.741-0.931 0.036 0.0035 35000 30

0.931-1.181 0.06 0.008 60000 70

1.181-3.531 0.14 0.07 140000 800

Table 4.6: The second (variance) and fourth (kurtosis) moments about the mean of the redshift
distributions in each of the redshift bins and resulting requirements on the size of the spectroscopic
training set, Ns. These moments are found to be roughly the same for all the mock surveys listed
in Table 4.1 and the results are averages over all these surveys.

of Abdalla et al. (2008a); Ma et al. (2006) and Amara & Réfrégier (2007) using a Fisher matrix

formalism.

These calibrations have also been carried out by other groups within the Euclid photo-z work-

ing group using their own photometric redshift codes and mock catalogues. Overall, the results

from the different groups are very similar and lead to the same conclusions as those stated above.

4.7 Conclusions

The work described in this Chapter has helped shape the design concept for the imaging compo-

nent of the Euclid mission which is referred throughout this chapter as DUNE. Specifically, the

following conclusions can be drawn from this photometric redshift analysis:

• The photometric redshift estimate for a weak lensing survey such as the DUNE mission con-

cept is not very sensitive to the near infra-red filter configuration as long as deep photometry

for example from an LSST type survey is assumed to complement it from the ground. Re-

ducing the exposure time in the near infra-red to 75% of its original value also does not

seem to affect the photometric redshift performance when combining with data from a deep

optical survey with multiple bands.

• The photometric redshift estimate is sensitive to both depth (increasing the exposure time

in each filter) and colour (increasing the number of filters) in the optical bands. Two deep

optical filters with 10σ AB magnitude limits of 25.5 in each produces comparable scatter
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and bias on the photometric redshifts as five shallower optical bands from a survey such as

PanStarrs1. However once catastrophic outliers have been removed and the quantity, σ68 is

considered, it is seen that it is more beneficial to have depth in the ground-based data rather

than colour information.

• There is a trade-off between depth in the space-based near infra-red filters and ground-based

optical filters for a mission design such as DUNE. If there is some deep optical photometry

available from the ground, e.g. from LSST or DES, even 25% exposure in the near infra-

red produces good photometric redshift estimates. If the optical photometry is shallower,

e.g. for a PS1 type survey, an improvement in photometric redshift performance is seen on

increasing the exposure time in the near infra-red. Therefore a survey like LSST is ideal as

a ground-based complement to DUNE in order to provide accurate photometric redshifts.

A survey like DES would also be suitable although shallower optical surveys such as PS1

require considerable exposure in the near infra-red to meet the necessary requirements on

photometric redshift performance.

• Cosmological parameter constraints from weak lensing tomography depend on the photo-

metric redshift distribution. In order for a survey like DUNE to achieve its science goals

with regards to these constraints, the error on the mean of the photometric redshift distri-

bution has to be less than 0.001 and on the variance, less than 0.008. ∼105 galaxies with

spectroscopic redshifts will need to be available in order to meet these requirements.

• Cosmological parameter constraints can also be affected by the fraction of catastrophic out-

liers in the photometric redshift estimate. The requirements on these fractions can however

be met with a DUNE type survey assuming there is deep optical data available from the

ground, particularly in the u-band, as well as near infra-red data from space.

As a consequence of this and other work undertaken by the photometric redshift working

group, the current imaging component design for Euclid consists of a broad optical RIZ filter as

well as three near infra-red Y JH bands. There are also plans for separate ground-based programs

that will be undertaken as part of both the Dark Energy Survey as well as PanStarrs1, that will be

able to provide multi-band optical data for the Euclid objects to the necessary depths required to

calibrate the Euclid photometric redshifts.



CHAPTER 5

REPRODUCING GALAXY MORPHOLOGIES

VIA MACHINE LEARNING

The work described in this chapter is an extended version of the paper Banerji et al., 2009,

arXiv:0908.2033

5.1 Introduction

The work presented thus far in this thesis has shown that machine-learning algorithms such as arti-

ficial neural networks can be extensively applied to the problem of photometric redshift estimation

with considerable success. However, artificial neural networks were first applied to astronomical

data sets in order to classify objects including stars (von Hippel et al. 1994; Bailer-Jones et al.

1998) and galaxies (Storrie-Lombardi et al. 1992; Lahav et al. 1995; Naim et al. 1995; Folkes

et al. 1996; Lahav et al. 1996). Astronomical data sets have grown considerably in size in the

last decade owing largely to the advent of mosaic CCDs that can be used on large telescopes in

order to image large areas of the sky down to very faint magnitudes. The Sloan Digital Sky Survey

(SDSS) has led to the construction of a data set of around 230 million celestial objects. Future

generations of wide-field imaging surveys such as the Dark Energy Survey, PanStarrs and LSST

will reach new limits in terms of the size of astronomical data sets. Clearly, automated classifi-

cation algorithms will prove invaluable for the analysis of such data sets and yet these algorithms

are yet to be applied on such scales.

The Galaxy Zoo project1 launched in 2007 has led to morphological classification of nearly
1www.galaxyzoo.org
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1 million astronomical objects from the SDSS data set through visual inspection by more than

100,000 users (Lintott et al. 2008). This project has resulted in a remarkable data set that can

be used for studies of the formation and subsequent evolution of galaxies in our Universe. This

data set however also presents us with the unique opportunity to compare human classifications

to those from automated machine learning algorithms, on an unprecedented scale. If the neural

network is shown to be as successful as humans in separating galaxies into morphological classes,

this could save considerable time and effort for future surveys while ensuring uniformity in the

classifications.

In this chapter the ability of artificial neural networks in classifying astronomical objects from

the SDSS into three morphological types - ellipticals, spirals and stars/unique objects - is explored.

5.2 The Galaxy Zoo Catalogue

Galaxy Zoo is a web-based project that aims to obtain morphological classifications for roughly

a million objects in the Sloan Digital Sky Survey by harnessing the power of the internet and

allowing members of the public to perform these classifications by eye. The first part of this project

is now complete and the morphological classifications subsequently obtained have been described

in detail in Lintott et al. (2008). These classifications have already been used in a number of

interesting science papers e.g. in the identification of a sample of blue early type galaxies in the

nearby Universe (Schawinski et al. 2009) and to study the spin statistics of spiral galaxies (Land

et al. 2008) and the power of this data set is already proving enormous for studies of both galaxy

formation and evolution. The goal is now to assess whether such morphological classifications

can be reproduced for even larger data sets likely to become available with the next generation of

galaxy surveys through the use of automated machine learning algorithms such as artificial neural

networks.

The Galaxy Zoo catalogue that is used in this chapter is the combined weighted sample of

Lintott et al. (2008). This contains morphological classifications for 893,212 objects into three

morphological classes - ellipticals, spirals and star/other unique objects. The classification by

each user on each object is weighted such that users who tend to agree with the majority are given

a higher weight than those who don’t. The final probability of the object is then a weighted mean

of the classifications of all users who analysed it. Full details of the weighting scheme are provided

in Lintott et al. (2008). The weighted catalogue of objects contains the SDSS object ID and three

additional columns with the probability of the galaxy being an elliptical, spiral or star/other object



5.3. Artificial Neural Networks 102

between 0 and 1. If the sum of the probabilities in each of these three classes is less than 1, the

remaining probability is assigned to the merger class. Figure 5.1 shows examples of the different

kinds of objects classified by Galaxy Zoo users.

The Galaxy Zoo catalogue was matched to the SDSS DR7 PhotoObjAll catalogue in order to

obtain input parameters for the neural network code. Before input into the neural network, cuts

are applied on the sample in order to remove objects that are not detected in the g, r and i bands

and those that have spurious values for some of the other parameters used in this study. This leads

to a sample of ∼800,000 objects. Further cuts are then applied to define a gold sample where

the weighted probability for each object belonging to any one of three morphological classes, is

always greater than 0.8. This gold sample contains∼315,000 objects and by construction therefore

has no mergers within it. The neural network is run on both the gold sample as well as the entire

sample. Darg et al. (2009) have already discussed issues to do with merger classification within

Galaxy Zoo and constructed a sample of ∼3000 merging pairs from the Galaxy Zoo data. In this

chapter, I classify objects as ellipticals, spirals or stars, as was done by Galaxy Zoo users, using a

neural network. Note that the Darg et al. (2009) data set may be used in future for the classification

of mergers but this has not been attempted here due to the sparsity of well-classified mergers in

the original Galaxy Zoo data of Lintott et al. (2008).

It is also the case that faint objects that are unresolved are more likely to be classified as

ellipticals unless the spiral arms can be clearly seen. For this reason, a sample of objects with

r < 17 is also considered, which is defined as the bright sample. This magnitude limit is the same

as that imposed on objects that were used to determine user weights in Lintott et al. (2008). The

bright sample contains ∼340,000 objects and has many fewer well classified ellipticals than the

gold sample - see Table 5.3 in § 5.5.

5.3 Artificial Neural Networks

An artificial neural network code similar to the one used in Chapters 2, 3 and 4 (Ripley 1981, 1988;

Bishop 1995; Lahav et al. 1995; Naim et al. 1995; Collister & Lahav 2004) is used to classify the

astronomical objects. A training set is used to minimise the cost function, E (Eq. 5.1) with respect

to the free parameters wij .

E =
�

k

(TNN (wij , pk)− Teye,k)2, (5.1)
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Figure 5.1: The different kinds of objects classified as part of the Galaxy Zoo project - elliptical
(top left), spiral (top right), star (bottom left) and merger (bottom right)
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Figure 5.2: Cartoon schematic of how both the human eye as well as machine learning algorithms
such as artificial neural networks perform morphological classification and determine parameters
such as those listed in Table 5.1 and 5.2 from the galaxy images.

where TNN is the neural network probability of the galaxy belonging to a particular morphological

type, pk are the input parameters to the network and Teye,k are the probabilities in the training set

in this case assigned by Galaxy Zoo users.

The architecture is chosen to be N:2N:2N:3, where N is the number of input parameters. The

three nodes in the output layer give the probability of the galaxy being an elliptical, spiral and

star/unique object respectively. As is the case for the Galaxy Zoo weighted probabilities, if the

sum of the three probabilities does not add up to 1, the remainining probability is assigned to the

merger class.

5.4 Input Parameters

When using an automated machine learning algorithm, the choice of input parameters may be

crucial in determining how well the network can perform morphological classifications. Ideally,

one wishes to choose a set of parameters that show marked differences across the three morpho-

logical classes. In addition, it may be useful to define a set of parameters that is independent of

the distance to the object. Figure 5.2 illustrates the key role that the input parameters play in the
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morphological classification. The human eye sees a galaxy image and performs morphological

classifications. The same image is also used to derive input parameters such as those that will

be discussed in this section. The neural network uses both these parameters as well as a train-

ing set based on the human classifications to derive its own morphological classifications, TNN .

These are then compared to the human classifications, Teye in order to assess the success of the

machine-learning algorithm in reproducing what is seen by the human eye.

In this section, two sets of input parameters are considered that are based on these criteria but

no additional effort is made to fine-tune and optimise these parameters to perform this morpho-

logical classification. The first set of parameters listed in Table 5.1 have been used extensively in

the literature for morphological classification in the SDSS e.g. (Ball et al. 2004). They include

the (g-r) and (r-i) colours derived from the dereddened model magnitudes although these have not

been k-corrected to the rest-frame, as well as the axis ratios and log likelihoods associated with

both a deVacouleurs and exponential fit to the two-dimensional galaxy image. The deVaucouleurs

profile is commonly used to describe the variation in surface brightness of an elliptical galaxy as

a function of radius whereas the exponential profile is used to describe the disk component of a

spiral galaxy. In addition, the log likelihood of the object being a star, lnLstar, helps in perform-

ing star-galaxy separation. The equations representing both a deVaucouleurs and an exponential

profile are given by Eq 5.2 and 5.3. The (g-r) and (r-i) colours have been chosen as the images

used in the Galaxy Zoo classifications were composites of images in these three bands. The final

parameter in Table 5.1 is the concentration parameter given by the ratios of radii containing 90%

and 50% of the Petrosian flux in a given band.

IdeV (r) = I0exp

�
−7.67

�
r

re

�1/4
�

, (5.2)

Iexp(r) = I0exp

�
−1.68

�
r

re

��
. (5.3)

The distributions of each of these parameters for the four morphological classes - ellipticals,

spirals, star/other and mergers - are illustrated in Figure 5.3. These histograms are constructed

using only objects with a weighted probability of greater than 0.8 in each of the four classes from

Galaxy Zoo. It can immediately be seen that the different parameters allow us to distinguish

between different morphological classes. While the stars and other unique objects have a very

broad distribution in colour, the spirals and ellipticals have a much narrower range. The axis



5.4. Input Parameters 106

Name Description

dered g-dered r (g-r) colour

dered r-dered i (r-i) colour

deVAB i DeVaucouleurs fit axis ratio

expAB i Exponential fit axis ratio

lnLexp i Exponential disk fit log likelihood

lnLdeV i DeVaucouleurs fit log likelihood

lnLstar i Star log likelihood

petroR90 i/petroR50 i Concentration

Table 5.1: First Set of Input Parameters based on profile fitting

ratios for ellipticals is also found to be generally larger than that for spirals, stars and mergers.

Finally the average concentration parameter illustrated in the first panel of Figure 5.4 is found to

be much larger for ellipticals, smaller for spirals and even smaller for the mergers and stars. This

is consistent with the previous studies by Shimasaku et al. (2001) and Strateva et al. (2001) who

find the inverse concentration index to be larger for spirals than for ellipticals.

The second set of input parameters described in Table 5.2 do not use the colours of galaxies or

any parameters associated with profile fitting for morphological classification. Instead a new set

of shape and texture parameters are used as well as the concentration from Table 5.1. mRrCc i is

the second moment of the object intensity in the CCD row, x and column, y, directions measured

using a scheme designed to have optimal signal-to-noise ratio (Bernstein & Jarvis 2002).

mRrCc =< y2 > + < x2 >, (5.4)

where for example,

< y2 >=
�

I(y, x)w(y, x)y2

�
I(y, x)w(y, x)

. (5.5)

Moments are measured using a radial gaussian weight function, w(y, x) interactively adapted

to the shape and size of the object. The ellipticity components, mE1 i and mE2 i defined in Eq
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Figure 5.3: Histograms of the various input parameters in Table 5.1 for the four morphological
classes.
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Name Description

petroR90 i/petroR50 i Concentration

mRrCc i Adaptive (+) shape measure

mE1 i Adaptive E1 shape measure

mE2 i Adaptive E2 shape measure

mCr4 i Adaptive fourth moment

texture i Texture parameter

Table 5.2: Second Set of Input Parameters based on adaptive moments

5.6 and Eq 5.7 and a fourth order moment (Eq 5.8) are also specified.

mE1 =< y2 > −< x2 >

mRrCc
, (5.6)

mE2 = 2
< xy >

mRrCc
, (5.7)

mCr4 =
< (y2 + x2)2 >

σ4
, (5.8)

where σ is the size of the gaussian weight. The final parameter in Table 5.2 is the texture or

coarseness parameter described in Yamauchi et al. (2005). This essentially measures the ratio of

the range of fluctuations in the surface brightness of the object to the full dynamic range of the

surface brightness and is expected to vanish for a smooth profile but become non-zero if structures

like spiral arms appear.

The distribution of each of these parameters constructed using only those objects in the Galaxy

Zoo catalogue with a probability of greater than 0.8, are shown in Figure 5.4. Both the ellipticity

parameters have the broadest distribution for the spirals followed by mergers and then the stars

and ellipticals. The adaptive moments too are large for spirals and mergers compared to stars and

ellipticals. The texture parameter is found to be much smaller for stars than for galaxies but similar

for spirals and ellipticals in this sample.

The artificial neural network is run on the Galaxy Zoo catalogue in three configurations - 1)

using the seven parameters specified in Table 5.1 that depend on the colours and profile fits to
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Figure 5.4: Histograms of the various input parameters in Table 5.2 for the four morphological
classes.
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Name Number of Objects Flux Limit No. of Ellipticals No. of Spirals No. of Stars/Other

Entire 876,374 r<17.77 186,728 92602 7405

Gold 313,701 r<17.77 155,328 77191 6182

Bright 343,489 r< 17 71980 53489 4228

Table 5.3: Samples on which morphological classifications are performed by the neural network.
The number of ellipticals, spirals and stars are calculated assuming a weighted probability of
greater than 0.8 assigned by Galaxy Zoo users.

the 2D images 2) the six parameters specified in Table 5.2 that use an adaptive weighted fit to the

images and 3) a combined set of 13 parameters. Note, that the concentration parameter is common

between 1) and 2). The results are summarised in the next section.

5.5 Results

The neural network code is run on three samples for each set of input parameters. The first sample

is the entire catalogue of∼800,000 objects out of which 50,000 are used for training and 25,000 for

validation. This is found to be a sufficiently large training set for these purposes and no significant

improvement in the classifications is seen on increasing the size of the training set further. The

second sample defined as the gold sample contains only objects with a weighted probability of

greater than 0.8 assigned to them in any one of the three morphological classes by Galaxy Zoo

users. This gold sample contains ∼315,000 objects and once again 50,000 are used for training

and 25,000 for validation. Finally, a bright sample with r < 17 only is also considered. These

various samples are summarised in Table 5.3 along with the number of ellipticals, spirals and

star/other objects with a weighted probability of greater than 0.8 in each of the samples.

5.5.1 The Entire Sample

The neural network code is run on the entire sample of objects using (i) colours, concentration and

profile-fitting parameters (ii) concentration and adaptive shape parameters and (iii) a combination

of (i) and (ii). In Figures 5.5, 5.6 and 5.7, I plot the NN probability of the galaxy belonging

to a morphological class versus the percentage of both Galaxy Zoo objects in that class that are

discarded on applying this probability threshold as well as percentage of contaminants that enter

the sample. This allows us to determine the optimum probability threshold for the neural network
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that should be chosen for membership into each morphological class. This threshold is such that

it minimises both the number of contaminants as well as the number of Galaxy Zoo objects in that

class that are discarded. The optimum threshold is found to be ∼0.72 for ellipticals, ∼0.53 for

spirals, ∼0.25 for stars and ∼0.05 for mergers when using the parameters in Table 5.1 and ∼0.68

for ellipticals,∼0.50 for spirals,∼0.10 for stars and∼0.04 for mergers when using the parameters

in Table 5.2. The low neural network probability threshold found for mergers is consistent with the

fact that Galaxy Zoo users failed to classify mergers with a high probability (Lintott et al. 2008).

Given the extremely low optimum neural network probability required for mergers and the fact

that using even this optimum probability there are ∼25% contaminants and ∼25% of Galaxy Zoo

mergers discarded, I do not attempt to perform merger classifications with this sample. I simply

note that a larger training set of visually classified mergers will be required for such purposes.

For the Galaxy Zoo classifications, the probability threshold is considered to be 0.8 for the

galaxy belonging to a particular morphological class. In Tables 5.4, 5.5 and 5.6, the results from

running ANNz on the entire sample using the three different sets of input parameters are sum-

marised. The tables give the percentage of ellipticals, spirals and stars (weighted probability>0.8)

that are put into the different classes by the neural network after assuming the optimum NN proba-

bilities already mentioned in each of the three classes. Throughout this work, the lowercase names

- Elliptical, Spiral, Star/Other - correspond to the Galaxy Zoo classifications and the upper case

names - ELLIPTICAL, SPIRAL, STAR/OTHER - correspond to the neural network classifica-

tions. Note that as the objective is to simultaneously minimise both the number of contaminants

as well as the number of genuine objects discarded in each of the three classes, the sum of the

probabilities of each object over all three classes does not necessarily add up to 100%. This is be-

cause an object with a neural net probability of greater than 0.3 for example in the STAR/OTHER

class, could potentially, also have a neural net probability of greater than 0.5 in the SPIRAL class

and therefore be classified as both. In the tables presented throughout this analysis, I am not sum-

marising the results of unique classifications for every single object but rather the best results that

could be obtained for each subsample assuming neural network threshold probabilities that min-

imise both the plotted quantities in Figure 5.5 for example. If one was to consider the best results

for the entire sample as a whole, the chosen probability thresholds would probably be different.

Using the traditional colour and profile-fitting parameters, 88% of spirals, 88% of ellipticals

and 95% of stars/unique objects are correctly classified by the neural network. Note however that

while colours are sensitive to the star-formation history of a galaxy, the morphology essentially

measures the dynamic history. Although the two are correlated, they are not necessarily the same
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Figure 5.5: The neural network probability of a galaxy being a elliptical (top left), spiral (top
right), star/other (bottom left) or merger (bottom right) versus the percentage of contaminants as
well as the percentage of Galaxy Zoo objects in these classes that are discarded. These results are
obtained using the 7 input parameters in Table 5.1 - colours and traditional profile-fitting.

GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 88% 0.2% 0.3%

N SPIRAL 0.5% 88% 1.3%

N STAR/OTHER 0.4% 0.5% 95%

Table 5.4: Summary of results for entire sample when using input parameters specified in Table
5.1 - colours and traditional profile-fitting.
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Figure 5.6: The neural network probability of a galaxy being an elliptical (top left), spiral (top
right), star/other (bottom left) and merger (bottom right) versus the percentage of contaminants as
well as the percentage of Galaxy Zoo objects in these classes that are discarded. These results are
obtained using the 6 input parameters in Table 5.2 - adaptive moments.

GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 84% 0.5% 85%

N SPIRAL 0.9% 86% 0.7%

N STAR/OTHER 28% 7% 28%

Table 5.5: Summary of results for entire sample when using input parameters specified in Table
5.2 - adaptive moments.
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Figure 5.7: The neural network probability of a galaxy being a elliptical (top left), spiral (top
right), star/other (bottom left) or merger (bottom right) versus the percentage of contaminants as
well as the percentage of Galaxy Zoo objects in these classes that are discarded. These results are
obtained using the combined set of 13 input parameters from Tables 5.1 and 5.2.

GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 91% 0.08% 0.5%

N SPIRAL 0.1% 93% 0.2%

N STAR/OTHER 0.3% 0.3% 96%

Table 5.6: Summary of results for entire sample when using input parameters specified in Table
5.1 and Table 5.2
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and therefore it is important to use colours in conjunction with other parameters when performing

morphological classifications. Looking more closely at the Galaxy Zoo ellipticals that were mis-

classified by the neural net as spirals as well as the spirals that are misclassified by the neural net

as ellipticals, there is some evidence that these galaxies may be red spirals or blue ellipticals. 45

Galaxy Zoo ellipticals are classified as spirals with a probability of greater than 0.8 by the neural

net. Similarly, 40 Galaxy Zoo spirals are classified as ellipticals with a probability greater than 0.8.

Out of these, 21 ellipticals and 9 spirals have SDSS spectra available. Using the criterion in Baldry

et al. (2004) to isolate red and blue galaxies, 6 out of the 9 spirals are found to be red and 10 out

of the 21 ellipticals are blue. In other words, the colour information used as an input to the neural

network may be biasing the morphological classification. However, due to the small numbers of

misclassified galaxies with SDSS spectra available, a definite statement cannot be made.

The adaptive shape parameters are very good for distinguishing between spirals and ellipticals

and these parameters result in accurate classifications for 84% of ellipticals and 86% of spirals.

However, this set of parameters gives very poor results for stars and only 28% are correctly clas-

sified by the neural network. This is because, these parameters are very similar for stars and

ellipticals as can be seen in the histograms in Figure 5.4. As there are many more ellipticals in

the training set compared to stars/unique objects, the neural network cannot differentiate between

the two and assigns most of the stars to be ellipticals. Also Figure 5.6 shows that the optimum

neural network probability for star classification using this set of input parameters is as low as

0.1. This means that many objects will be classified both as a star and a galaxy assuming this

probability and for this reason, the sums of the columns in Table 5.5 are always greater than 100%

as there are objects in common between the classes. I also investigate whether the evidence for a

bias due to colour in the morphological classifications is removed once the colours are removed

as input parameters to the network. With the adaptive shape parameters as inputs 208 Galaxy Zoo

ellipticals are found to be misclassified as spirals with a probability greater than 0.8 by the neural

network and similarly, 26 spirals are misclassified as ellipticals with the same probability. Out

of these 116 ellipticals and only 8 spirals have SDSS spectra. 2 out of the 8 spirals are red but

46 of 116 ellipticals are blue once again suggesting that there may still remain a bias, especially

against blue ellipticals even when the colour parameters are removed as inputs to the neural net.

Hence atleast some blue ellipticals may be distinguishable from their red counterparts by structure

as well as colour.

On adding the profile-fitting and colour parameters to the adaptive shape parameters, the re-

sults are now considerably improved for all three classes. 91% of ellipticals, 93% of spirals and
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GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 95% 0.4% 1.1%

N SPIRAL 0.3% 92% 0.9%

N STAR/OTHER 0.04% 0.04% 85%

Table 5.7: Summary of results for gold sample when using input parameters specified in Table 5.1
- colours and traditional profile-fitting.

96% of stars are correctly classified by the neural network. Lintott et al. (2008) have compared

the Galaxy Zoo classifications to those by professional astronomers and find an agreement of bet-

ter than 90% between these samples. However, the samples used in Lintott et al. (2008) are the

MOSES sample of Schawinski et al. (2007) whose objective was to generate a very clean set of el-

liptical galaxies, and the detailed classifications of Fukugita et al. (2007) which are very sensitive

to the E/Sa boundary. If the professional astronomers were set the same task as the Galaxy Zoo

users - i.e. a clean division of spirals and ellipticals in SDSS - the scatter between them and the

Galaxy Zoo users may well be worse than 90%. It has been shown that with a set of thirteen intel-

ligently chosen parameters, that are easily available but still by no means optimal for performing

morphological classification, the neural network results agree to better than 90% with those from

Galaxy Zoo.

5.5.2 The Gold Sample

The results of running ANNz on the gold sample using the three different sets of input parameters

are now described. These results are summarised in Tables 5.7, 5.8 and 5.9 where we consider

the percentage of Galaxy Zoo ellipticals, spirals and stars/unique objects that have also been put

into these classes by the neural network assuming a probability of greater than 0.8 for the neural

network classification. Once again it can be seen that the second set of input parameters involving

just the concentration and the adaptive shape parameters, performs very poorly in classifying the

stars/unique objects. However, the combined set of input parameters leads to correct neural net-

work classifications for 97% of ellipticals and 96% of spirals. The success for stars is somewhat

lowered compared to using the entire sample. This is because when considering the entire sample

it has been assumed that all objects with a neural network star probability of greater than 0.2 are
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GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 91% 0.7% 91%

N SPIRAL 0.6% 88% 0.5%

N STAR/OTHER 0% 0% 0%

Table 5.8: Summary of results for gold sample when using input parameters specified in Table 5.2
- adaptive moments.

GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 97% 0.2% 1.2%

N SPIRAL 0.1% 96% 0.4%

N STAR/OTHER 0.04% 0.01% 85%

Table 5.9: Summary of results for gold sample when using input parameters specified in Table 5.1
and Table 5.2

indeed stars whereas in this section we require the probability to be greater than 0.8.

5.5.3 The Bright Sample

In this section, the neural network code is run on the bright sample r < 17 using the combined

set of thirteen input parameters. This allows us to perform two tests. Firstly, I look at whether

the bright galaxies in general have better classifications compared to the entire sample. This is

done by comparing Tables 5.6 and 5.10. Secondly, the neural network is trained on the bright

sample and this trained network is used to perform morphological classifications for the entire

sample. This allows us to quantify the effects of magnitude incompleteness in the training set on

the morphological classifications. The results are summarised in Table 5.11.

Comparing Tables 5.6 and 5.10, it can be seen that the results are very similar when performing

morphological classsifications on the entire sample with r < 17.77 and the bright sample with

r < 17, in both cases using a complete training set. When the training is performed using an

incomplete training set with r < 17 and all objects with r < 17.77 classified, the neural network
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GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 93% 0.08% 0.4%

N SPIRAL 0.2% 96% 0.5%

N STAR/OTHER 0.2% 0.2% 98%

Table 5.10: Summary of results for bright sample when using input parameters specified in Table
5.1 and Table 5.2

GALAXY ZOO

Elliptical Spiral Star/Other

A ELLIPTICAL 92% 0.08% 1%

N SPIRAL 0.2% 96% 0.5%

N STAR/OTHER 3% 0.2% 96%

Table 5.11: Summary of results for entire sample when using input parameters specified in Table
5.1 and Table 5.2 and only bright galaxies with r < 17 to train the network.

still manages to perform these classifications with more than 90% agreement with Galaxy Zoo

users. The magnitude incompleteness in the training set doesn’t seem to affect the classifications

as most of the input parameters to the neural network considered in this study have been chosen

to be distance independent and so their distribution doesn’t really change from a shallow to a

deeper sample. This is promising for using automated machine learning algorithms to perform

morphological classsification for future deep surveys using the Galaxy Zoo classifications on the

shallower SDSS survey as a training set.

5.6 Conclusion

In this study, a machine-learning algorithm based on artificial neural networks has been used to

perform morphological classifications for almost 1 million objects from the Sloan Digital Sky

Survey that were classified by eye as part of the Galaxy Zoo project. Similar work was already

done for example by Naim et al. (1995); Lahav et al. (1995, 1996) where galaxies were classified

into up to 16 different morphological types with considerable success. However, the size of current
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astronomical data sets means these methods can now be applied on unprecedented scales. The

neural network is trained on 75000 objects and using a well defined set of input parameters that

are also distance independent, the human classifications can be reproduced for the rest of the

objects to better than 90% in three morphological classes - spirals, ellipticals and stars/unique

objects. Specifically, the following conclusions can be drawn:

• Using colours and profile-fitting parameters as inputs to the neural network, 88% of elliptical

classifications, 88% of spiral classifications and 95% of star/other classifications agree with

those obtained by the human eye. However, there is some evidence to suggest that a non-

negligible fraction of red spirals and blue ellipticals are misclassified by the network when

using this set of parameters.

• When parameters that rely on an adaptive weighted scheme for fitting the galaxy images are

used, the neural network is unable to distinguish between ellipticals and stars.

• A combination of the profile fitting and adaptive weighted fitting parameters results in better

than 90% agreement between classifications by humans and those by the neural network for

all three morphological classes. This is comparable to the success of Galaxy Zoo users in

reproducing the classifications by professional astronomers.

• The optimum neural network probability for a galaxy belonging to a particular morpho-

logical class is such that it minimises both the percentage of contaminants as well as the

percentage of genuine objects in that class that are discarded on cutting the sample using

this threshold. This optimum probability depends both on the input parameters as well as the

morphological class of the object. Ellipticals are generally found to have a high optimum

probability (∼ 0.7) whereas stars/other objects have a very low optimum probability (∼ 0.2)

Therefore the same object could be put into more than one class by the neural network if the

classifications were performed using the optimum threshold probabilities.

• For the gold sample, the spiral and elliptical classifications by the neural network match

those by the human eye to better than 95%.

• Using a bright sample to train the neural network and performing morphological classifica-

tions for a deeper and fainter sample still results in better than 90% agreement between the

neural network and human classifications in all three morphological classes. This is because

the input parameters have deliberately been chosen to be distance independent.
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• However, other sources of incompleteness in the training sets also need to be examined be-

fore the role of the Galaxy Zoo data in training morphological classifiers for future surveys,

can be fully understood.

The penultimate point in particular illustrates the power of the machine learning algorithm in

fully exploiting data from future wide-field imagning surveys. Such surveys will obtain images

for hundreds of millions of objects down to very deep magnitude limits. It has been shown that

by using the wealth of information made available through the Galaxy Zoo project as a training

set, the machine learning algorithm can quickly and accurately classify the vast numbers of ob-

jects that will make up future data sets into ellipticals, spirals and stars. However, if the Galaxy

Zoo catalogue is to be used as a training set for automated machine learning classifications of

mergers with the next generation of galaxy surveys, a more robust catalogue of visually classified

mergers needs to be obtained. Also, it is worth emphasising that the images obtained from the

next generation of wide-field surveys will need to have the necessary pixel size and resolution

required to derive photometric parameters such as those used as inputs to the neural network in

this chapter. This work has also examined the effect of magnitude incompleteness in the train-

ing set on automated morphological classifications. In the future, more work needs to be done

on investigating other sources of incompleteness in the training set before this data can be used

effectively to train machine-learning morphological classifiers for future surveys. For example,

in this work some evidence has been found that a non-negligible proportion of galaxies that are

misclassified by the neural network are either red spirals or blue ellipticals. By training on a sam-

ple of red ellipticals and using them for morphological classification of blue ellipticals such as

those identified by Schawinski et al. (2009) for example, we can hope to quantify the colour bias

in morphological classifications. Provided this is done, morphological classification via machine-

learning looks promising in allowing for many more detailed studies of the processes involved in

galaxy formation and evolution with the next generation of galaxy surveys.



CHAPTER 6

THE EVOLUTION OF LUMINOUS RED

GALAXIES

The work described in this chapter is an extended version of the paper Banerji, Ferreras, Abdalla,

Hewett & Lahav, 2009

6.1 Introduction

Luminous Red Galaxies are arguably some of the brightest galaxies in our Universe allowing us

to study their evolution out to much higher redshifts than is possible with samples of more typical

galaxies. LRGs are known to form a spectroscopically homogenous population that can be reliably

identified photometrically by means of simple colour selections (Eisenstein et al. 2001; Cannon

et al. 2006). The presence of a strong 4000 Å break in these galaxies also means that accurate

photometric redshifts can be derived for large samples where spectroscopy is difficult to obtain

(Chapter 2 and Padmanabhan et al. (2005); Collister et al. (2007)). Consequently, samples of

luminous red galaxies have emerged as an important data set both for studies of cosmology (Blake

et al. 2007, 2008; Cabré & Gaztañaga 2009) and galaxy formation and evolution (Wake et al.

2006; Cool et al. 2008).

The study of massive galaxies in our Universe is particularly interesting since these galaxies

present a long-standing problem for models of galaxy formation. While in the standard ΛCDM

cosmology, galaxies that reside in massive halos are thought to be built up through successive

mergers of smaller systems (White & Rees 1978), many observations now suggest that these

galaxies were already well assembled at high redshifts (Glazebrook et al. 2004; Cimatti et al.

121
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2006; Scarlata et al. 2007; Ferreras et al. 2009b; Pozzetti et al. 2009). At the same time, star for-

mation and merging activity has also been seen in such systems between z ∼ 1 and the present day

(Lin et al. 2004b; Stanford et al. 2004) and the studies of Bell et al. (2004) and Faber et al. (2007)

have found evidence that the luminosity density of massive red galaxies has remained roughly

constant since z∼1 implying a build up in the number density of these objects through mergers.

Most observational results now support downsizing in star formation - i.e. galaxies in the most

massive halos having lower specific star formation rates than their less massive counterparts - and

many galaxy formation models are able to reproduce these observations e.g. by invoking quench-

ing mechanisms such as AGN feedback (Croton et al. 2006; De Lucia et al. 2006). However, the

more recently observed trend of downsizing in the mass assembly (Cimatti et al. 2006) presents

more of a challenge for galaxy formation models which generally predict that the most massive

galaxies were assembled later than their less massive counterparts.

Many of the contradictions in observational studies of massive galaxy formation arise prin-

cipally for two reasons. Firstly, the way in which early-type galaxies are selected in different

surveys can be considerably different. Morphological selection compared to colour selection of

such objects will almost certainly result in different samples being chosen, particularly at high

redshifts. The colour selection is also usually different for different samples of massive galaxies

as I will point out later in this chapter. Secondly, many of the studies of massive galaxy formation

mentioned so far are deep and narrow spectroscopic samples that will suffer from biases due to

the effects of cosmic variance. In addition, one has to be careful in interpreting observational re-

sults as in current galaxy formation models, star formation and mass assembly in galaxies are not

necessarily concommitant. So while the stars in early-type galaxies may have formed very early

in the Universe’s history, they may have formed in relatively small units and only merged at lower

redshifts to create the massive early-type galaxies we see today.

Studies of the evolution of luminous red galaxies such as those analysed in this chapter have

already supported the evidence that massive galaxies have been passively fading and show very

little recent star formation (Wake et al. 2006; Cool et al. 2008). In this analysis, the work of these

authors is extended by also considering the mass assembly of these systems. The 2dF and SDSS

LRG and QSO (2SLAQ) survey presents a comprehensive improvement in volume for massive

galaxy samples. The survey covers an area of 186 deg2 and reaches out to a redshift of 0.8 mak-

ing it a promising data set to study the evolution of massive red galaxies. Furthermore, much of

the 2SLAQ area is now covered by the UKIDSS Large Area Survey (LAS) that provides comple-

mentary data in the near infra-red bands for the optically selected LRGs. The advantage of near
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infra-red data is that the mass-to-light ratios and k-corrections are largely insensitive to the galaxy

or stellar type and therefore the total infra-red flux in for example the K-band provides a good

estimate of the total stellar mass of the galaxies. This stellar mass estimate allows us to study

not only the star formation history but also the mass assembly history of these systems. As is the

case for optically selected spectroscopic samples of massive galaxies, the K-band selected surveys

have so far been restricted to relatively small and deep patches of the sky (Mignoli et al. 2005;

Conselice et al. 2007). Clearly a large spectroscopic survey of massive galaxies with optical and

near infra-red photometry, will allow for better constraints on the evolution of these systems.

In this chapter, I utilise a spectroscopic sample of colour-selected massive red galaxies from

the 2SLAQ survey between redshifts 0.4 and 0.8. Optical photometry is obtained from the Sloan

Digital Sky Survey supplemented with near infra-red data from the UKIDSS Large Area Survey

(LAS). I consider the evolution of these galaxies in terms of their observed colours, luminosities

and comoving number densities focussing particularly on the effects of colour selection on the

inferred evolution. Wake et al. (2006) have presented a comprehensive analysis of the luminosity

function of Luminous Red Galaxies using data from both the Sloan Digital Sky Survey and the

2SLAQ Survey. These authors use a subset of data from the 2SLAQ survey in the redshift range 0.5

to 0.6 and by comparing this galaxy population to a lower redshift population at 0.17 < z < 0.24

from SDSS, they are able to establish that the LRG LF does not evolve beyond that expected

from a simple passive evolution model at these redshifts. Meanwhile, Cool et al. (2008) have

compared the low-redshift SDSS LRG population to their own high-redshift sample at redshifts

of ∼ 0.9 and once again find little evidence for evolution beyond the passive fading of the stellar

populations. I extend the work of these authors by considering now most of the galaxies available

in the 2SLAQ data set. This enables the redshift range of 2SLAQ galaxies used to be broadened

to 0.4 ≤ z < 0.8. The 2SLAQ luminosity function is presented for 8625 LRGs as compared to

the 1725 used by Wake et al. (2006). These results are useful in filling the gap between redshift

0.4 and 0.5 and redshift 0.6 and 0.8 in the Wake et al. (2006) and Cool et al. (2008) data sets.

The sample is split into four redshift bins and the evolution of the luminosity and colour of LRGs

between these redshift bins is considered. In addition, I also consider the evolution of the stellar

mass function of these galaxies with redshift. Furthermore, various different stellar population

synthesis models that are commonly used in the literature are utilised in order to model the LRGs,

including the new models of Maraston et al. (2009). The sensitivity of the luminosity function

estimate to changes in these models is also quantified. The optical colours of LRGs have long

been difficult to model using standard spectral evolution models (Eisenstein et al. 2001) and this
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problem has only recently been solved (Maraston et al. 2009) thereby allowing us to utilise the

most accurate spectral evolution models of LRGs to date in order to infer their evolution.

6.2 Data

The dataset used in this analysis is a sample of Luminous Red Galaxies from the 2dF and SDSS

LRG and QSO (2SLAQ) survey (Cannon et al. 2006). This is a spectroscopic survey conducted

on the 2-degree Field (2dF) spectrograph on the 3.9m Anglo-Australian Telescope. The survey

recorded spectra for ∼10000 LRGs with a median redshift of 0.55 and ∼10000 faint z < 3 QSOs

selected from SDSS imaging data. The survey covers an area of 186 deg2 and extends to a redshift

of ∼ 0.8 for the LRGs. This section provides a description of the 2SLAQ data as well as optical

and near infra-red photometry for these galaxies obtained using the SDSS and UKIDSS LAS

respectively.

In the 2SLAQ survey, the following colour and magnitude cuts have been applied using SDSS

DR4 photometry in order to isolate the main LRG population to target with spectroscopy (Cannon

et al. 2006):

c� = 0.7(g − r) + 1.2(r − i− 0.18) ≥ 1.6, (6.1)

d⊥ = (r − i)− (g − r)/8.0 > 0.65, (6.2)

17.5 ≤ ideV −Ai ≤ 19.8, (6.3)

where ideV is the i-band deVaucouleurs magnitude and Ai is the extinction in the i-band. These

cuts are for the primary sample defined as Sample 8 in Cannon et al. (2006) which has the highest

completeness and this is the sample that is used throughout this chapter. Note that these colour

cuts are usually different for different surveys. For example the colour cuts used to isolate LRGs

in the SDSS LRG sample (Eisenstein et al. 2001) results in a distribution that is redder than that

of the 2SLAQ galaxies. If these different LRG samples are to be compared therefore, further cuts

must be applied to them to ensure a consistent colour selection as in Wake et al. (2006).

In the case of the 2SLAQ LRGs, the effect of the d⊥ cut is to select early-type galaxies at

increasingly high redshifts whereas the c� cut eliminates late-type galaxies from the sample. Most
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Figure 6.1: The (g-r) versus (r-i) colours of 2SLAQ galaxies in the observed frame in four redshift
bins - 0.4 ≤ z ≤ 0.5 (top left), 0.5 ≤ z ≤ 0.6 (top right), 0.6 ≤ z ≤ 0.7 (bottom left) and
0.7 ≤ z ≤ 0.8 (bottom right). The dark points correspond to all galaxies in that redshift bin
whereas the light points show the brightest galaxies with MideV < −22.5.

of the sample has redshifts of 0.2 < z < 0.8 with∼5% contamination from M-type stars (Cannon

et al. 2006). In order to capture the main redshift distribution of this primary sample, only galaxies

with 0.4 ≤ z < 0.8 are used in this work. Furthermore, only galaxies with a redshift quality flag

of greater than 2 have been selected. This results in a sample of 8625 LRGs and the redshift

completeness for this sample is 76.1% (David Wake:private communication).

In Figure 6.1, the LRGs are plotted in the observed (g-r) versus (r-i) plane in redshift bins

of width 0.1. Isolating bright galaxies only with MideV < −22.5 and plotting them in the same

colour-colour plane shows clearly how the red sequence is truncated in the lowest redshift bin due

to the redshift dependent colour selection. The effect of this truncation on the luminosity function

estimate will be described in more detail in § 6.4.

In order to obtain accurate stellar masses for the LRGs, the 2SLAQ data is matched to near
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Figure 6.2: Figure showing the 2SLAQ LRGs studied in this chapter in RA and DEC and the
overlap with UKIDSS DR5 K-band data.

infra-red data from the UKIDSS Large Area Survey (LAS) DR5 which has a depth of KV ega=18.4.

The galaxies are matched to within 1.1 arcsecs in position using the WFCAM science archive1 and

only galaxies with detections in the K-band are selected. Figure 6.2 overplots the 2SLAQ LRGs for

which K-band detections have been obtained using UKIDSS DR5 on all the 8625 2SLAQ LRGs

considered in this chapter. Out of our total sample of 8625 2SLAQ LRGs, K-band data is available

for 6476 galaxies which represents ∼75% of the sample. The UKIDSS K-band magnitudes are in

the Vega system and have been corrected to the AB system using the corrections of Hewett et al.

(2006).

6.2.1 Photometric Errors

Wake et al. (2006) have conducted a detailed analysis of the effect of photometric errors on the

2SLAQ LRG sample. These photometric errors could induce a systematic bias in the sample

by scattering galaxies both in and out of the sample across the colour selection boundaries. For

i < 19.3, the effect of the photometric errors is relatively insignificant and the colour-magnitude

distributions of LRGs selected using single-epoch photometry and those selected using multi-
1http://surveys.roe.ac.uk/wsa/index.html
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epoch photometry are almost identical (Wake et al. 2006). Fainter than this however, the pho-

tometric errors may present a significant systematic bias to the inferred colour and luminosity

evolution of LRGs in this survey. The effect of these photometric errors on the luminosity func-

tion estimate is considered in § 6.4.2.5. It turns out that different estimators of the luminosity

function have different sensitivity to the photometric errors and this point is addressed in more

detail later in the chapter.

6.3 K+e Corrections

In order to calculate the rest-frame properties of LRGs and infer their evolution, the observed

properties need to be transformed into the rest-frame by means of a k-correction. In addition, one

can also correct for any evolutionary changes expected in the galaxy spectra by means of an e-

correction. Motivated by the work of Padmanabhan et al. (2005), I start by using a Pegase (Fioc &

Rocca-Volmerange 1997) template to model the spectral evolution of the LRGs. In this template,

the stars are formed in a single burst 11Gyr ago (z � 2.5). A Salpeter (1955) IMF is assumed as

well as solar metallicity and no galactic winds or substellar objects.

However, it has been noted by several authors that stellar population synthesis models such

as Pegase and those of Bruzual & Charlot (2003) fail to reproduce the observed colours of LRGs

(Eisenstein et al. 2001; Maraston 2005). Improvements to these models have subsequently been

made that involve changes to the input stellar libraries as well as including an additional metal-

poor sub component to the stellar population in order to create a composite model (Maraston et al.

2009). Such models predict siginificantly bluer (g-r) colours compared to simple stellar population

models and are better able to reproduce the observed broadband colours of individual LRGs. For

this reason, a Maraston model of age 12Gyr corresponding to a galaxy mass of 1012 M⊙ is also

considered in this work.

Finally, the models of Charlot & Bruzual 2007 (Bruzual & Charlot 2003; Bruzual 2007) -

CB07 hereafter - are also considered. These models have a range of different metallicities and

star formation histories and these are used to quantify the systematics associated to the different

prescriptions, isochrones and stellar libraries of the population synthesis models. All the CB07

templates assume a formation redshift of zF = 3 and a Chabrier (2003) IMF.

K and k+e corrections in the r-band derived from each of these models, are illustrated in

Figure 6.3. In addition, k-corrections are also derived from stacked LRG spectra from the SDSS

LRG survey (Eisenstein et al. 2001) at redshifts 0.2 and 0.5. These are very similar to each other
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Figure 6.3: The k and k+e corrections in the r-band for LRGs derived using stacked SDSS spectra
as well as various spectral evolution models with different star formation histories and metallici-
ties, ξ.

suggesting that there is little or no colour evolution in the SDSS LRGs between redshifts of 0.2 and

0.5. As the 2SLAQ LRG spectra are not flux calibrated, a similar derivation of the k-corrections

using these was not possible. Although the SDSS LRGs are selected using different colour cuts,

it is still interesting to compare their k-corrections to the ones derived using the various spectral

evolution models and it can be seen that the empirical k-corrections best match those derived from

a Maraston model. For this reason, the composite 12Gyr model from Maraston et al. (2009) has

been used throughout this chapter unless otherwise stated. One can also see from the right-hand

panel of Figure 6.3 that the e-correction is very sensitive both to the star-formation history of the

galaxy as well as the metallicity as galaxies with some residual star formation as well as those at

high metallicity have more negative e-corrections.

Figure 6.4 illustrates the rest-frame (g-r) and (r-i) colours of LRGs derived using the different

spectral evolution models as a function of redshift. Once again it is seen that the Maraston model

is able to reproduce the colours derived from SDSS composite spectra almost exactly unlike the

Pegase model. However, note that unlike in Maraston et al. (2009), it is found that including the

evolutionary correction to the Maraston models, creates a mismatch in the colours of the model and

the SDSS composite spectra. The SDSS observed colours are found to be redder than the evolving

Maraston model. It has already been noted that the SDSS LRG colour distribution is redder than

that of the 2SLAQ galaxies used in Maraston et al. (2009) for comparison to their models so this

difference is perhaps to be expected. It should also be noted that the observed colours derived

from the spectra are derived from the fiber magnitudes of the galaxies. As the fibers only enclose
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Figure 6.4: The (g-r) and (r-i) colours of LRGs as a function of redshift.

light within a 3” aperture and it is well known that early type galaxies have colour gradients (Vader

et al. 1988; Franx & Illingworth 1990; Ferreras et al. 2005, 2009a), this could be why the colours

appear redder but it is unlikely that this effect would be significant especially at redshifts of 0.5.

Finally, the redshift 0.5 LRGs in the SDSS survey are the brightest and therefore expected to be

the reddest galaxies in this survey (Bernardi et al. 2005; Gallazzi et al. 2006). All these factors

may help explain the discrepancy in the observed and model colours derived using the evolving

Maraston model.

Figure 6.5 shows the 2SLAQ LRGs in the observed (g-r) versus (r-i) colour-colour plane along

with the main colour selection boundaries as well as the tracks produced in this plane by different

stellar population synthesis models as well as SDSS composite spectra. It can be seen that both

the Maraston as well as Pegase burst models only enter the d⊥ selection at redshifts of∼0.45. Star

forming galaxies with τ > 2Gyr are clearly excluded at all redshifts by the c� selection.

6.4 The Optical Luminosity Function

The luminosity function for 2SLAQ LRGs is calculated in this section in order to infer any evolu-

tion in the observed number density of these objects. The non-parametric Vmax estimator is used

to calculate luminosity functions and a gaussian parametric form is fit to the Vmax data points by

means of a χ2 minimisation where appropriate. The gaussian parametric form provides a better fit

to the luminosity function of early-type galaxies compared to the more commonly used Schechter
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function and has three free parameters, φ∗, M∗ and σg. The parametric form is given by:

Φ(M) =
φ∗

σg

√
2π

exp
�
−(M −M∗)2

2σ2
g

�
. (6.4)

The commonly used parametric estimator of Sandage et al. (1979) (STY hereafter) is prone to

biases for this data set and therefore has not been presented in most of the figures. Details of the

STY estimator and the biases induced on it are given in § 6.4.2.5.

The Vmax estimator relies on measuring the maximum volume occupied by a galaxy given

the survey selection criteria. For the 2SLAQ survey, this depends on the maximum redshift out

to which the galaxy could be observed given the flux limit of idev − Ai < 19.8 as well as the

minimum redshift at which the galaxy would be included in the survey given the d⊥ and c� colour

selection criteria. The maximum volume for each galaxy is then given by:

Vmax =
� ∞

0
Sd⊥(z)Sc�(z)SideV (z)

dV

dz
dz, (6.5)
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where Sd⊥(z), Sc�(z) and SideV (z) are the selection functions for each galaxy due to the two

primary colour cuts (Eq 6.1 and 6.2) and the flux limit (Eq 6.3). Once this maximum volume has

been derived for every galaxy in the sample, the luminosity function which is simply the number

density of galaxies per unit brightness, is given by:

Φ(M)dM = c
�

i

1
Vmax,i

, (6.6)

where c is the redshift completeness of the sample assumed to be 76.1% and the index, i runs over

all galaxies in the absolute magnitude bin dM .

The errors on the luminosity function are assumed to be Poissonian unless otherwise stated

and are given by:

σΦ(M)dM = c

��

i

1
V 2

max,i

. (6.7)

The best-fit parametric form is derived using a χ2 fit to the Vmax data points where appropriate.

I marginalise over the normalisation, φ∗ which is determined independently from the observed

number density of galaxies. The marginalised χ2 to be minimised is:

χ2
marg =

�
j

�
i σ

2
V,iΦm,jΦV,j(Φm,iΦV,j − Φm,jΦV,i)/σ2

V,j�
j Φ2

m,j/σ2
V,j

, (6.8)

where Φm refers to the parametric luminosity function which is assumed to be a gaussian function

and ΦV represents the Vmax data points with errors σV . Once the best fit parameters have been

determined, the normalisation of the luminosity function, φ∗ is then determined by matching the

parametric estimate of the luminosity function to the observed number density of galaxies using

Eq. 6.9.

φ∗ =
Ng�

dzfs
dV
dz

�
dMf(M, z)Φ(M)

, (6.9)

where Ng is the number of galaxies, fs is the fraction of sky covered by the survey and f(M, z)

represents the colour selection function obtained by summing the product of Sd⊥(z) and Sc�(z)

over all galaxies in the sample. The errors on the gaussian parameters M∗ and σg are calculated

using the 1σ error ellipsoid obtained by performing the minimisation using a Markov Chain Monte

Carlo (MCMC) method. The main sources of error on φ∗ come from cosmic variance and the
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Figure 6.6: The 2SLAQ luminosity function at a rest-frame redshift 0 after k-correction (left) and
k+e correction (right) assuming passive evolution.

covariance of φ∗ with M∗. In § ?? I will show that for a large survey such as 2SLAQ, cosmic

variance is unlikely to be a dominant systematic. The errors for φ∗ quoted throughout this chapter

are therefore calculated from the 1σ errors on M∗.

The dependance of the luminosity function on redshift is considered and possible sources of

systematic errors to these estimates examined in this section.

6.4.1 Redshift Evolution

I examine the redshift evolution of the 2SLAQ LRG luminosity function in four redshift bins

between redshift 0.4 and 0.8. The luminosity function estimates are obtained using the Vmax

estimator described above. Due to the different absolute magnitude ranges in each redshift bin, no

χ2 fits to the data points are shown as the inferred parameters would not be comparable.

In the left-hand panel of Figure 6.6 the luminosity function is plotted in four redshift bins after

K correcting to redshift 0 using the 12Gyr Maraston composite model. The number density of

galaxies is found to increase slightly with redshift particularly in the brightest absolute magnitude

bins. In the faintest bins there is a drop in the observed number density due to the effects of

downsizing in the star formation. The fainter galaxies are expected to be reside in less massive

halos and therefore bluer due to their higher specific star formation rates and such objects are

excluded from this sample by the colour selection criteria which only select out the reddest objects.

It has also been seen in Figure 6.1 how the red sequence is truncated in the lowest redshift bin due

to the redshift dependent colour selection. This is what leads to a drop in the number density in
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the lowest redshift bin relative to the other bins which is not due to any evolution in the underlying

galaxy population.

In the right-hand panel of Figure 6.6, the luminosity functions are plotted after correcting

for passive evolution assuming the same Maraston model. The luminosity functions change little

on inclusion of this evolutionary correction suggesting it is small in these redshift ranges but in

general the data points for galaxies with MideV < −22.5 in the different redshift bins now agree

better. As it is very likely that incompleteness does not affect this bright galaxy sample, these

results suggest that this LRG population is evolving consistently with the assumptions of a passive

evolution model.

6.4.2 Sources of Systematic Error

In this section I examine potential sources of systematic error that could bias the luminosity func-

tion estimates presented above.

6.4.2.1 Cosmic Variance

One of the main drawbacks of the Vmax estimator is that it can suffer from biases due to cosmic

variance. As massive galaxies such as the ones in this sample are thought to be strongly clustered,

the evolution in their number density will be very sensitive to large-scale structure. Traditionally,

this has posed a problem for many small surveys but the 2SLAQ survey should cover a significant

enough volume to make this an unlikely source of problem for the LRGs being studied. In order

to test this hypothesis, the LRG sample is split by declination to create two subsamples of galaxies

with dec < −0.2 (4340 objects) and dec ≥ −0.2 (4285 objects) respectively. A luminosity func-

tion is then calculated for each of these subsamples as well as the total luminosity function for the

2SLAQ sample. These are plotted in Figure 6.7. No notable differences can be seen in the three

luminosity function estimates confirming that cosmic variance is not a dominant systematic in this

sample.

6.4.2.2 K+e Corrections: Spectral Evolution Model

In order to test whether the choice of spectral evolution model used to compute K+e corrections

significantly affects the estimate of the luminosity function, luminosity functions are computed for

all the 2SLAQ galaxies between redshift 0.4 and 0.8 using the 12Gyr Maraston composite model

as well as a Pegase burst model, a Pegase model with an exponentially declining star formation
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Figure 6.7: The 2SLAQ luminosity function calculated for the entire sample and in two different
patches in the sky in order to assess the effects of cosmic variance.

history with τ = 1Gyr and a CB07 model with an exponentially declining star formation history

with τ = 1Gyr. Both Pegase models have an age of 11Gyr while the CB07 model has a formation

redshift of 3 corresponding to an age 11.35Gyr in the chosen cosmology. The results are illustrated

in Figure 6.8 and the best-fit Gaussian parameters to these luminosity functions are summarised

in Table 6.1. Both the Pegase burst and Maraston models have similar ages and star formation

histories. The difference between them is the introduction of a metallicity poor sub-component to

the Maraston model and the use of improved stellar librarires in order to better match the observed

colours of LRGs. However, it can be seen from Figure 6.8 that there is very little difference in the

luminosity function estimate obtained from using these two models.

The Pegase and CB07 models with τ=1Gyr produce very similar luminosity functions despite

having different initial mass functions as the K+e corrections and therefore the luminosity function

estimate is not very sensitive to the number of low mass stars. The main difference between the

Salpeter IMF (assumed in the Pegase models) and the Chabrier IMF (assumed in the CB07 models)

is the mass distribution for stars below 1M⊙. Changing the star formation history to have a little

residual star formation shifts the luminosity function to slightly fainter absolute magnitudes and

the number density in the brightest bins decreases. This is because including recent star formation



6.4. The Optical Luminosity Function 135

−24 −23.5 −23 −22.5 −22 −21.5 −21−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

MideV(k+e)−5log10(h)

lo
g 1
0(Φ

(M
))

M09 12Gyr
Pegase Burst 11Gyr
Pegase τ=1Gyr
CB07 τ=1Gyr

Figure 6.8: The 2SLAQ luminosity function computed using K+e corrections from different spec-
tral evolution models along with the best χ2 gaussian fits to these. Note that this simple Gaussian
form does not adequately fit the bright-end of the luminosity function for some of the data points.

σg M∗ φ∗/h3Mpc−3mag−1

Maraston 12Gyr 0.44 ± 0.01 -21.93 ± 0.03 3.73 ±0.24
0.23 ×10−4

Pegase Burst 11Gyr 0.41 ± 0.01 -22.04 ± 0.03 3.59 ±0.22
0.20 ×10−4

Pegase τ=1Gyr 0.41 ± 0.01 -21.76 ± 0.03 3.58 ±0.25
0.23 ×10−4

CB07 τ=1Gyr 0.40 ± 0.01 -21.77 ± 0.03 3.98 ±0.28
0.25 ×10−4

Table 6.1: Summary of best-fit gaussian parameters to the luminosity function derived using dif-
ferent spectral evolution models
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or younger stars in the model means that the luminosity of the galaxy evolves faster and the galaxy

fades quicker than in a purely passive evolution scenario.

6.4.2.3 K+e Corrections: Metallicity

The colour-magnitude relation (CMR) of early-type galaxies can be interpreted as a metallicity

sequence and variations in the metallicity, ξ, dominate the slope of the CMR (Kodama & Arimoto

1997; Bower et al. 1992). The metallicity may therefore be an important parameter to vary in

stellar population synthesis models when trying to model the spectral evolution of LRGs. In order

to assess the importance of metallicity in the luminosity function estimate, luminosity functions

are calculated after K+e correcting galaxies using a CB07 model at solar metallicity as well as one

with variable metallicity. Both assume a formation redshift of 3 and an exponentially declining

star formation history with a timescale, τ of 1Gyr. In the variable metallicity model, the metallic-

ities are derived from the absolute magnitudes using the colour-magnitude relation of early-type

galaxies in the Virgo Cluster from Bower et al. (1992):

log10

�
Z

Z⊙

�
= −0.11(Mi + 21.0)− 0.18. (6.10)

The effect of metallicity on the luminosity function estimate is illustrated in Figure 6.9. It

is obvious from this figure that the metallicity is not likely to be important in the evaluation of

the luminosity function for the 2SLAQ LRGs studied here. The LRGs are all found to have

metallicities between 0.6 and 1.5 Z⊙ with a mean metallicity of roughly solar.

6.4.2.4 K+e Corrections: Age

Figure 6.10 plots the Vmax estimate of the luminosity function after K+e corrections to redshift

0 assuming a Pegase single burst model at three different ages ranging from 9 to 11Gyr. In the

cosmological model assumed throughout this thesis, these correspond to formation redshifts for

the galaxy of between ∼ 1.4 and 2.6.

It is obvious from Figure 6.10 that changing the formation redshift of the galaxy to later times

results in the luminosity function moving to fainter absolute magnitudes or alternatively, a decrease

in the number density at a given absolute magnitude. As is the case for models with some residual

star formation, the introduction of younger stars into the models means that they fade quicker

thereby shifting the luminosity function estimate to fainter absolute magnitudes.
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Figure 6.9: The 2SLAQ luminosity function calculated using spectral evolution models with solar
and variable metallicity.
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Figure 6.10: The 2SLAQ luminosity function calculated using spectral evolution models of differ-
ent ages.
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6.4.2.5 Photometric Errors and The STY Estimator

In order to assess the bias that photometric errors will introduce into the luminosity function

estimate, the LRG sample is cut at i < 19.3 and the luminosity function is calculated for this

reduced sample of galaxies. Note that in § 6.2.1 I have already drawn attention to the fact that

previous studies (Wake et al. 2006) have shown that fainter than i = 19.3, galaxies selected

through single and multi-epoch photometry start differing considerably from each other suggesting

that photometric errors are significant. However, cutting the sample according to the SDSS g, r,

i-band magnitude errors results in a very different sub-sample to that obtained through the i-band

cut suggesting that the magnitude errors quoted are not entirely reliable in removing galaxies with

large photometric errors and it is therefore essential to have multi-epoch data for these purposes.

The luminosity functions for the entire sample as well as the i < 19.3 sample are plotted

in Figure 6.11 along with the best χ2 gaussian fits to the data points. The i < 19.3 sample has

2131 galaxies as opposed to the 8625 galaxies in the entire sample. The space densities from the

i < 19.3 sample have been renormalised by the inverse of the fraction of galaxies in the complete

sample that contribute at each absolute magnitude bin. The χ2 fit to the reduced sample with small

photometric errors yields values of σ = 0.61± 0.05, M∗ = −21.49± 0.17 and φ∗ = 5.95× 10−4

where the normalisation for the i < 19.3 sample has also been corrected for the smaller space

density of this sample. In this case however, a constant average correction factor is used rather

than the absolute magnitude dependent corrections applied to the Vmax data points in order to

ensure that the shape of the gaussian is maintained. The χ2 fit to the entire sample on the other

hand gives σ = 0.44 ± 0.01, M∗ = −21.93 ± 0.03 and φ∗ = 3.73× 10−4.

As can be seen, faint galaxies are removed from the sample on applying the i-band cut, as they

typically have larger photometric errors. The χ2-fits to the two samples also yield very different

values for the parameters of the gaussian and the faint-end downturn due to incompleteness is no

longer present in the reduced sample with small photometric errors. This tells us that the K+e

corrected luminosity function estimates are only reliable brighter than MideV ∼ −21.75 where

the space density for the entire sample matches that of the sample with small photometric errors.

However, throughout this chapter the luminosity and mass functions are presented for the entire

sample of galaxies although readers should note that the data points in the faintest magnitude bins

may suffer highly from incompleteness and photometric errors.

It has already been seen that the faintest galaxies in the sample suffer from large photometric

errors. In Figure 6.12 these faintest galaxies with MideV > −21.75 are plotted in the observed
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Figure 6.11: The 2SLAQ luminosity function calculated for the entire sample and galaxies with
i < 19.3 for which photometric errors are thought to be insignificant along with the best χ2

gaussian fits to these.

colour-colour plane. These galaxies are also the lowest redshift galaxies in the sample. It can

immediately be seen that these faint galaxies occupy fairly large volumes and do not all lie as

one would expect, close to the colour selection boundaries. In particular, the objects seem to be

scattered away from the c� selection boundary. These faint galaxies are clearly being scattered into

the sample and away from the colour selection boundaries due to photometric errors. Comparing

Figure 6.12 to Figure 6.5, it can also be seen that the location of these faint, low-redshift galaxies

in the colour-colour plane is inconsistent with the predictions of a Maraston model which would

only enter the 2SLAQ colour boundaries at a redshift of∼0.45. These faint galaxies are in fact not

LRGs at all but happen to have similar colours to LRGs due to the photometric errors. Many of

their spectra show evidence for the presence of strong emission lines suggesting that they are star-

forming and this has already been found by Roseboom et al. (2006). However, as these galaxies

are scattered to large volumes, the Vmax estimator remains relatively insensitive to differences in

the selection function that would arise if it was inferred using late rather than early-type spectral

evolution models as seems appropriate for these objects. Therefore the Vmax estimator remains

reliable despite the photometric errors in the sample.
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Figure 6.12: The faintest 2SLAQ LRGs with MideV > −21.75 in the observed colour-colour
plane. The points are colour-coded according to the Vmax of the objects calculated assuming the
12Gyr Maraston template.

The most common parametric estimator of the luminosity function is that of Sandage et al.

(1979) (STY). A parametric form is assumed for the luminosity function e.g. a gaussian as in this

chapter. The parameters, a are then solved for by maximising the likelihood:

L(a) =
�

i

pi, (6.11)

where pi is the probability of a galaxy with absolute magnitude, M being selected in the flux

limited, colour cut sample and is given by Eq 6.12

pi =
Φ(Mi,a)f(Mi, zi)�
Φ(M,a)f(Mi, zi)dM

, (6.12)

where f(Mi, zi) is the apparent magnitude incompleteness function for objects with absolute mag-

nitude, Mi and redshift, zi. This incompleteness occurs due to various reasons. Firstly, not all

galaxies targetted in a survey will have redshifts determined succesfully. Wake et al. (2006) have

considered this incompleteness function for 2SLAQ LRGs using carefully constructed 2SLAQ

survey masks. Although they find a slight dependance of this incompleteness function on the (g-r)
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Figure 6.13: The non-parametric Vmax data points for the LRGs in the entire sample as well as the
sample with small photometric errors and i < 19.3 along with the STY gaussian fit for the entire
sample.

colour, including this functional dependance as opposed to considering a constant incompleteness

of 76.1% introduces less than a 1% change in their luminosity function estimate. I therefore as-

sume a constant redshift incompleteness of 76.1% that is independent of both the redshift and the

absolute magnitude.

In the case of a colour-selected sample such as 2SLAQ however, there may be additional

sources of incompleteness as the space density of these galaxies is a function of both the flux

limit and the colours. The 2SLAQ LRGs at different redshifts occupy different distributions in

the colour absolute magnitude plane due to the redshift dependent colour selection. This colour

selection could introduce an incompleteness function that is both a function of absolute magnitude

as well as redshift and this selection function has to be explicitly included in the integral in Eq

6.12. I have checked that using the absolute magnitude averaged selection function rather than the

2d function f(Mi, zi), makes very little difference to the STY estimate of the luminosity function.

In this case, the galaxy incompleteness can be taken outside the integral and the likelihood in the
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STY method adjusted directly e.g. (Zucca et al. 1994; Willmer et al. 2006).

L(a) =
�

i

pwi
i , (6.13)

where the weights associated with each individual galaxy are wi = 1/S(mi) and S(mi) repre-

sents the apparent magnitude incompleteness for galaxy i. All luminosity functions are initially

calculated assuming wi = 1 for the entire sample and this is shown by the dashed line in Figure

6.13. This clearly illustrates that the Vmax and STY estimators differ considerably from each other

at the faint-end. The STY fit parameters are M∗ = −21.32,σ = 0.65,φ∗ = 9.97 × 10−4 for the

entire sample. Figure 6.13 also illustrates that this STY fit matches well all the Vmax data points

for the sample with small photometric errors and i < 19.3 introduced earlier. It has already been

noted that fainter than i ∼ 19.3, photometric errors may become significant in scattering LRGs

both in and out of the colour selection boundaries thereby rendering the luminosity function esti-

mate unreliable. This analysis therefore suggests that the STY estimator is particularly sensitive to

photometric errors for colour selected samples and the weights wi start to differ significantly from

1 for galaxies with large photometric errors. In order to calculate these weights, one would have

to do a Monte Carlo simulation of galaxies assuming a certain spectral evolution model, add noise

to this simulation and then look at the completeness function S(mi) for each galaxy by consider-

ing which galaxies are selected on applying the 2SLAQ colour selection criteria e.g. (Fried et al.

2001; Wolf et al. 2003). This is the subject of future work. The STY estimator in its traditional

form is clearly biased for a colour-selected sample with non-negligible photometric errors and for

this reason, it has not been presented in most of the plots in this chapter. Note however that when

we move to high redshift bins where the galaxies are generally brighter and the photometric errors

smaller, the STY estimator and Vmax estimator agree very well as it is clearly reasonable in these

regimes to assume wi = 1.

6.5 The Infra-Red Luminosity Function and Stellar Mass Function

So far this study has considered the evolution of the 2SLAQ LRG optical luminosity function

with redshift and quantified various sources of systematic error that could arise for this estimate.

This analysis shows little evidence that the LRG population evolves beyond that expected from a

simple passive evolution model between a redshift of 0.4 and 0.8. However, such an analysis does

not fully exploit all the available information as the evolution of elliptical galaxy populations is
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Figure 6.14: The relationship between the SDSS deVaucouleurs i-band absolute magnitude and
stellar mass (left) and the UKIDSS Petrosian K-band magnitude and stellar mass (right). The
gradients of the straight line fits give some indication of the stellar mass-to-light ratio.

known to be a strong function of mass (De Lucia et al. 2006; Cimatti et al. 2006; Ferreras et al.

2009b). The availability of near infra-red data for a sizeable subsample of these LRGs means we

can calculate accurate stellar masses for these objects from their K-band luminosities in order to

study the evolution of the stellar mass function of these galaxies.

The mass function analysis in this section is carried out for the subset of LRGs for which

near infra-red photometry is available from UKIDSS DR5. This reduced sample contains 6476

galaxies. As the Maraston models do not extend to near infra-red wavelengths, the CB07 mod-

els have been used in this section to calculate the mass-to-light ratios for the LRGs. Following

Ferreras et al. (2009b), the stellar masses are computed by comparing the SDSS g, r, i, z fiber

magnitudes with a set of 10 τ -models with solar metallicity, formation redshifts of 3 and expo-

nential timescales between 0 (i.e. corresponding to a Simple Stellar Population) and 10Gyr. The

CB07 models are used to generate the composite populations. The best-fit model, almost always

corresponding to short formation timescales, is then used to determine the mass-to-light ratio in

the K-band of the UKIDSS survey assuming a Chabrier or Salpeter IMF. This best-fit along with

the K-band Petrosian magnitude allows us to determine the stellar mass of the galaxy. Note that

no total model magnitudes are available in the UKIDSS survey. However, the difference between

the total model magnitudes in the SDSS i-band and the Petrosian magnitudes in the same band are

found to be of the order of 15%. Both magnitudes can be used as reasonable estimates for the total

light from the galaxy.

The relationship between both the SDSS deVaucouleurs i-band absolute magnitude as well
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Figure 6.15: The 2SLAQ mass function calculated using the Vmax method when Vmax is evalu-
ated using a single Maraston model of age 12Gyr for all the LRGs and when Vmax is evaluated
using the best-fit CB07 τ model for each LRG.

as the UKIDSS Petrosian K-band absolute magnitude and the stellar mass is illustrated in Figure

6.14. The mass functions are calculated as before using the Vmax method described in detail in §

6.4. The difference in the mass function when Vmax is determined using the best-fit CB07 models

as opposed to a single Maraston model of age 12Gyr, is illustrated in Figure 6.15. From this

figure, it can be seen that the difference is minimal when using the two different spectral evolution

models. Note, however that this may not remain the case if stellar masses could be calculated

directly from the Maraston models as well as determining Vmax from it.

The mass function for the 2SLAQ LRGs in two redshift bins - 0.4 ≤ z < 0.55 and 0.55 ≤ z <

0.8 - is illustrated in the left-hand panel of Figure 6.16. These redshift limits have been chosen so

as to ensure that incompleteness does not affect the high-mass end in either of these bins. On this

plot, I also show the mass functions derived in two redshift bins for red sequence galaxies in the

COMBO-17 survey (from Figure 9 of Borch et al. (2006)). For illustrative purposes, the 2SLAQ

K-band luminosity function has been plotted in the two redshift bins in the right-hand panel of

Figure 6.16. The K-band absolute magnitudes are also determined using the best-fit CB07 model

for each LRG and after correcting to the AB system using the correction of Hewett et al. (2006).
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Figure 6.16: The 2SLAQ stellar mass function in two redshift bins of - 0.4 ≤ z ≤ 0.55 and
0.55 ≤ z ≤ 0.8 along with the COMBO-17 red sequence stellar mass functions in redshift bins
0.4 ≤ z ≤ 0.6 and 0.6 ≤ z ≤ 0.8 from Borch et al. (2006). The right-hand panel shows the
2SLAQ K-band luminosity function in the same two redshift bins.

Figure 6.16 clearly shows that the 2SLAQ data set extends to much higher stellar masses

than the COMBO-17 survey occupying a very different stellar mass range to the COMBO-17 red

sequence and thereby allowing us to effectively probe the high-mass end of the mass function.

These most massive galaxies are the ones expected to place the most stringent constraints on cur-

rent models of galaxy formation. As is the case with the COMBO-17 data, there is little evidence

for any evolution in the number density at the high-mass end between a redshift of 0.4 and 0.8.

This is consistent with the findings of Ferreras et al. (2009b) who find that the number density

does not evolve in the highest stellar mass bins. Below ∼ 1011M⊙ however, this sample is likely

to be highly incomplete due to the redshift dependent selection criteria involved in isolating LRGs.

The discrepancy between the 2SLAQ mass function presented in this chapter and the COMBO-

17 mass function of Borch et al. (2006) may arise due to the differing choices of IMF used in the

two studies. While this study uses the Chabrier (2003) IMF, Borch et al. (2006) use a truncated

version of the Salpeter (1955) IMF to calculate stellar masses. In order to estimate how this would

affect the mass function estimate, in Figure 6.17 I plot the 2SLAQ mass function over the entire

redshift range of 0.4 ≤ z < 0.8 calculated using both the Salpeter and Chabrier IMF. The Salpeter

IMF pushes the mass function towards higher masses and this results in a bigger discrepancy

between the COMBO-17 and 2SLAQ data points. It is well known that the simple power-law

form of the Salpeter IMF overestimates the number of low-mass stars in galaxies and therefore

the stellar mass (Cappellari et al. 2006; Ferreras et al. 2008) and more recent analytical forms of
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Figure 6.17: The 2SLAQ mass function calculated using the Vmax method over the redshift range
0.4 ≤ z < 0.8 when using a Salpeter and a Chabrier IMF.

the IMF such as those of Chabrier (2003) have fewer low-mass stars and therefore predict lower

stellar masses. In Chapter 7, I look at an alternative means of determining the number of low-mass

stars in different extragalactic systems.

The increased number density of 2SLAQ galaxies seen at∼ 3×1011M⊙ to∼ 1012M⊙ where

it overlaps with COMBO-17 could be due to various reasons. Firstly, the COMBO-17 area is

much smaller than that of 2SLAQ and so it is possible that there could be some incompleteness

at the high-mass end of the COMBO-17 red sequence mass function due to the effects of cosmic

variance. More likely however, the discrepancy probably arises due to the complicated selection of

LRGs which makes it difficult to obtain a proper estimate of the volume probed. As the LRGs are

selected through colour cuts in addition to the flux limit and the colour cuts remove the volume at

low redshifts, the 2SLAQ galaxies will on average have a smaller Vmax then a flux-limited sample

such as COMBO-17. This will result in a larger inferred number density at any given mass.



6.6. Discussion 147

6.6 Discussion

In this chapter I have presented luminosity and stellar mass function estimates for a sample of

8625 Luminous Red Galaxies with spectroscopic redshifts between 0.4 and 0.8 in the 2SLAQ

survey. The evolution of the optical luminosity function between redshift 0.4 and 0.8 is found to be

consistent with the assumptions of a passively evolving model with very little evidence for recent

star formation. The number density of LRGs shows a downturn at faint magnitudes due to the

effects of downsizing in the star formation whereby the less massive galaxies which are also less

luminous, are bluer and therefore excluded from an LRG sample by the imposed colour selection

criteria which select the reddest objects. There is also some evidence that the faint galaxies are

scattered into the sample due to their non-negligible photometric errors.

The sensitivity of the optical luminosity function to changes in the spectral evolution models

has also been studied. The results of this analysis are summarised in Figure 6.18 where I show

the best gaussian fit parameters to the Vmax data points for LRGs when the luminosity function

is computed assuming different spectral evolution models. M∗ is found to move towards brighter

absolute magnitudes if a Pegase burst model is assumed instead of the Maraston model, and to-

wards fainter magnitudes if one assumes a model with some residual star formation signified by a

star formation timescale of τ = 1Gyr. The width of the gaussian is also found to be slightly larger

when using the Maraston models.

The K-band luminosity function is calculated for about three quarters of the LRGs for which

infra-red data is available from the UKIDSS LAS DR5. The K-band luminosity function also

shows little evidence for evolution in this redshift range. The K-band luminosities are used to

derive mass-to-light ratios for the LRGs by fitting CB07 spectral evolution models to the multi-

band optical photometry. These are then used to calculate mass functions in redshift bins. Using

the best-fit CB07 model instead of the Maraston models in the estimate of the mass function,

makes very little difference to the mass function. It is found that the most massive galaxies with

M > 3 × 1011M⊙ are already well assembled at redshifts of 0.8 and their number density does

not change much in the redshift range considered in this work.

The 2SLAQ sample probes the most massive end of the mass function and can therefore be

used to place stringent constraints on models of massive galaxy formation and evolution. In Figure

6.19 I plot the comoving number density of 2SLAQ galaxies as a function of redshift obtained by

integrating the mass functions presented in Figuure 6.16. Note that the horizontal errorbars simply

represent the size of the redshift bin in our plots. Only galaxies with 3×1011M⊙ < M < 1012M⊙
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Figure 6.18: Summary of best-fit gaussian parameters assuming different spectral evolution mod-
els.

are chosen for which the redshift dependent selection criteria do not impose any incompleteness

into the sample. The estimates of the comoving number density are compared with those from

other surveys of massive galaxies as well as predictions from models of galaxy formation. All

data points presented in this figure have been corrected to the Chabrier IMF. Table 6.2 summarises

the samples plotted in Figure 6.19. The unique position of 2SLAQ among these surveys can

immediately be seen. Due to the large volume this data set occupies, the vertical errorbars in

Figure 6.19 are significantly reduced as compared to other massive galaxy samples.



6.6. Discussion 149

0 0.2 0.4 0.6 0.8 1 1.2−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

Redshift

lo
g(
n)
/h
3  M

pc
−3

 d
ex
−1

2SLAQ
COMBO−17
GOODS−MUSIC
GOODS Massive Galaxies
Palomar/DEEP2
Khochfar & Silk Model
DeLucia Model

Figure 6.19: The comoving number density of massive galaxies as a function of redshift for the
2SLAQ survey - found by integrating the mass functions presented in Figure 6.17 upwards of
3 × 1011M⊙ along with the comoving number density from other surveys of massive galaxies as
well as models of galaxy formation.
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From Figure 6.19 it can be seen that this work agrees well with that of Borch et al. (2006);

Conselice et al. (2007) and Ferreras et al. (2009b) and shows that the most massive galaxies were

already well assembled at redshift 0.8 and there is little evidence for their number density having

changed since then. Fontana et al. (2006) on the other hand find some evolution in the number

density of massive galaxies with redshift albeit mild up to redshifts of∼1.5. The differing comov-

ing number densities for the different samples can be attributed to the fact that these samples have

all been selected in very different ways as summarised in Table 6.2. However, it is encouraging

that the comoving number density for this colour selected sample of LRGs agrees well with that

inferred from the visually classified sample of Ferreras et al. (2009b).

These observational results seem to match well the predictions from the semi-analytical mod-

els of Khochfar & Silk (2006) which are better at reproducing observations at moderate redshifts

but fail at low redshifts. These models follow the merging history of dark matter halos generated

by the extended Press-Schechter formalism. The baryonic physics is modeled according to the

prescriptions of Khochfar & Burkert (2005) and references therein. This model predicts that the

number density of massive galaxies is almost constant upto redshifts of∼1 as the number of galax-

ies entering a given mass bin from lower mass bins through mergers is counteracted by the number

of galaxies leaving this mass bin for higher mass bins. If this were the case, one would expect the

number density of galaxies in the highest mass bin to decrease as a function of redshift even if it

is constant in the intermediate mass bins. The comoving number density is therefore computed in

the higher mass bin of 12 < log10(M∗) < 12.5 and in the same two redshift bins - 0.4 ≤ z < 0.55

and 0.55 ≤ z < 0.8. The number densities per unit dex in stellar mass thus obtained are log(n)/h3

Mpc−3 dex−1 = −5.39±0.10
0.13 and log(n)/h3 Mpc−3 dex−1 = −5.56±0.08

0.09 respectively. Therefore

there is no evidence that the comoving number density of the most massive galaxies is decreasing

with increasing redshift. The agreement between the 2SLAQ data points and the Khochfar & Silk

(2006) models shown in Figure 6.19 should therefore be treated with caution as the constant num-

ber density of massive galaxies in the models, is only maintained due to a fine-tuning of objects

between mass bins and these observations find no evidence that this fine-tuning actually occurs.

The results also do not match at all those generated from models based on the Millennium

simulations (De Lucia et al. 2006) which predict a much lower merger rate at moderate redshifts

as compared to the Khochfar & Silk (2006) models. In the Millennium models, AGN feedback

is invoked to shut off star formation after a characteristic mass scale in order to reproduce the

observed colour-bimodality and luminosity function at redshift 0. The Khochfar & Silk (2006)

models presented here overpredict the number of massive late type galaxies in the local Universe.
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Due to AGN feedback in the De Lucia et al. (2006) models, the downsizing in star formation is

reproduced but the growth of massive galaxies at high redshifts of greater than 0.5 is prohibited

and dry mergers become the most dominant mechanism for mass growth in such galaxies. This is

clearly inconsistent with our observations which suggest not only that significant star formation in

massive galaxies has ceased at a redshift of 0.8 but also that these galaxies were already well as-

sembled at these redshifts. The difference between the De Lucia et al. (2006) and Khochfar & Silk

(2006) models arise due to the differing star formation prescriptions rather than the fact that the

former follows a numerical simulation for the evolution of the dark matter halos whereas the latter

relies on an analytical approach. Therefore the star formation and quenching mechanisms invoked

in the different galaxy formation models need to be revisited in light of these new constraints on

the very high mass end of the stellar mass function.

Granato et al. (2004) on the other hand have proposed a way in which to bring about the anti-

hierarchical formation of the baryonic component of galaxies in models while still working within

the framework of the ΛCDM cosmology. This is essentially done by invoking feedback from

supernovae as well as the nuclear activity in massive galaxies. These processes slow down star

formation in the least massive halos and drive gas outflows thereby increasing the stellar to dark

matter ratio in the more massive halos and ensuring that the physical processes acting on baryons

are able to effectively reverse the order of formation of galaxies compared to dark matter halos.

These models have already been shown to match the local K-band luminosity function of massive

galaxies (Granato et al. 2004) as well as the luminosity function at redshifts of∼1.5 (Granato et al.

2004; Silva et al. 2005). Reproducing our observational results for the most massive galaxies at

intermediate redshifts would therefore be an important test for these models.

Recently Dekel et al. (2009) have also proposed an alternative galaxy formation model whereby

bursts of star formation can occur in massive galaxies without the need for violent merging events.

These authors suggest that the massive galaxies, which reside in the centers of filaments, are fed

by cold gas streams that penetrate the shock heated media of massive dark matter halos thereby

inducing star formation.

Given the small errorbars in these estimates of the comoving number density compared to

previous studies and the fact that this sample has secure spectroscopic redshifts for all objects and

a massive area that reduces errors due to cosmic variance, this new observational result presents a

significant challenge for many current models of galaxy formation and requires a reinvestigation

of the feedback mechanisms involved.
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6.7 Conclusion

This study has examined the evolution of the optical and near infra-red luminosity function as well

as the stellar mass function of 8625 LRGs from the 2SLAQ survey between redshift 0.4 and 0.8.

I have demonstrated the unique position of 2SLAQ LRGs among other massive galaxy samples

due to the large volume probed by the sample as well the availability of spectroscopic redshifts

for all galaxies and near infra-red data for ∼75% of them. This has allowed us to probe the very

high-mass end of the stellar mass function which places the most stringent constraints on models

of galaxy formation. The spectral evolution models of Maraston et al. (2009) have also been used

to study the evolution of these objects and these are the most accurate models of LRGs to date.

However, the conclusions of this analysis change little if other models are used instead.

• The evolution of the optical luminosity function of LRGs between redshifts 0.4 and 0.8 is

consistent with the assumptions of a passive evolution model where the stars were formed

at high redshift with little or no evidence for recent episodes of star formation.

• A downturn is seen at the faint end of the LRG luminosity function around MideV (k + e) ∼

−21.75. This is due to the effects of downsizing in the star formation. The faintest galaxies

are expected to be reside in less massive halos and are therefore bluer than the bright objects.

Such objects are excluded from the LRG sample due to the imposed colour selection of these

objects which selects only the reddest galaxies.

• The LRG luminosity function is found to be unaffected by cosmic variance due to the mas-

sive volume occupied by the sample.

• The luminosity function is also relatively insensitive to the choice of spectral evolution

model and the metallicity although models with some residual star formation and/or younger

stars shift the luminosity function towards fainter absolute magnitudes.

• Photometric errors are found to induce a significant bias into the LRG sample causing con-

tamination from star forming galaxies. The luminosity function estimates can therefore only

be considered reliable brighter than MideV (k + e) ∼ −21.75 where the effects of incom-

pleteness and photometric errors is minimal.

• The stellar mass function for these LRGs above 3× 1011M⊙ also shows little evidence for

evolution between redshifts 0.4 and 0.8 suggesting that these most massive systems were
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already well assembled at redshifts of 0.8. This is consistent with the emerging picture of

downsizing in the mass assembly of massive galaxies.

• The stellar mass function estimate is also relatively insensitive to the choice of spectral

evolution model assumed in the calculation of Vmax. However, different choices of the

stellar initial mass function will shift the mass function estimate as found in previous studies.

• The comoving number density of LRGs with 3 × 1011M⊙ < M∗ < 1012M⊙ has changed

little between redshifts 0.8 and 0.4. The same is true for the most massive LRGs with

M > 1012M⊙ which place more stringent constraints on galaxy formation models. This is

consistent with other observational results for massive galaxy samples and does not agree

with the predictions of most current galaxy formation models. The models of Granato et al.

(2004) however may be promising in matching these observations although they are yet to

be compared with massive galaxy samples at intermediate redshifts.

Overall, these results support the emerging picture of downsizing in both the star formation

and mass assembly of galaxies and present a significant challenge for current models of galaxy

formation. It has been shown that these findings are robust to changes in spectral evolution models,

cosmic variance and photometric errors and it can therefore be concluded that these new observa-

tions of the most massive and most luminous galaxies in our Universe will need to be reconciled

with the models if progress is to be made in the field of massive galaxy formation and evolution.



CHAPTER 7

LOW-MASS STAR FORMATION AND THE

STELLAR INITIAL MASS FUNCTION

The work described in this chapter is an extended version of the publications: Banerji, Viti,

Williams & Rawlings, 2009, ApJ, 692, 283 and Banerji, Viti & Williams, 2009, ApJ, 703, 2249

7.1 Introduction

Recent multi-wavelength studies of galaxies have permitted estimates to be made of the evolution

of the space density of the massive star formation rate (Hopkins & Beacom 2006; Lilly et al.

1996; Madau et al. 1996). While these rates are at present poorly constrained, there is currently

no information on the formation at high redshift of low mass stars, a process that in the Milky

Way is known to accompany the formation of massive stars. The low mass stars may be optically

insiginificant, but they modify the physics of the host galaxies rather significantly. In particular,

the shape of the stellar initial mass function (IMF) and its slope as specified by the ratio of low-

mass to high-mass stars, are crucial for determining the star formation history and stellar mass

density of a galaxy. There has been much interest in varying the stellar IMF (Elmegreen 2008;

Wilkins et al. 2008; Davé 2008; van Dokkum 2008) and recent studies have suggested that the

IMF must be top-heavy at high redshifts to explain the counts of faint submillimeter galaxies and

the luminosity function of Lyman break galaxies (Baugh et al. 2005). However, this has by no

means been proven true for all high redshift environments.

Studies of low mass star formation in the Milky Way have shown that it arises in the interplay

of a number of competing processes including gravitational collapse and thermal and magnetic
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support. Thermal support at the low temperatures of interstellar clouds is determined by the cool-

ing mechanisms, while magnetic support is controlled by the ionization fraction; both are largely

determined by chemistry which itself is moderated by cosmic ray and photon fluxes, and metallic-

ity. A consideration of the timescales appropriate for the Milky Way indicates - as it should - that

low mass star formation takes place under Milky Way conditions. However, the physical proper-

ties in high redshift galaxies may depart significantly from the Milky Way values. In this chapter,

therefore, the variation of these relevant timescales is considered when the physical conditions of

the star forming regions are modified from Milky Way values. The results are used to determine

the regions of parameter space in which low mass star formation is unlikely to occur. By doing so,

the form of the IMF in high redshift galaxies is crudely determined.

In addition, the star formation models used to derive timescales are also used to predict trends

in molecular emission arising from extragalactic environments with different stellar IMFs. By

looking at the chemistry associated with the different extragalactic systems studied, possible

molecular tracers of different types of IMF can be identified, which can be used to direct ob-

servations with future projects such as ALMA. In particular, the rotational transitions of 12CO as

well as molecular abundances of certain key species are considered.

7.2 Timescales for Star Formation

Star formation is a complex process. While gravity is the main driver, there are many other mech-

anisms that compete to aid and oppose the collapse of molecular clouds. Cooling by molecular

radiation leads to thermally induced collapse of a molecular cloud and if the timescale associated

with this process is longer than the free-fall time, the collapse will be halted. The rate of cooling

in turn is determined by the abundances of the various different molecular coolants such as CO

and so we can see the role that chemistry plays. The chemistry itself is driven by cosmic ray

ionisation of molecular hydrogen. In some circumstances, the surfaces of dust grains can become

coated with ice due to the freeze out of different species onto the grains. This process is effec-

tive in removing coolant molecules from the gas phase. Energy released from H2 formation can

liberate the frozen species into their gaseous phase. Interstellar magnetic fields too can affect the

collapse of molecular clouds. The ions are coupled to field lines and neutral atoms to the ions via

collisions. The fractional ionisation therefore determines the magnetic pressure and the level of

ion-neutral friction which in turn can halt collapse.

In the local universe, the timescales associated with these various competing processes are
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found to be roughly of the same order of magnitude -∼ 105 yrs (Williams 1998) for a core density

of ∼ 104cm−3. This balance of timescales is clearly conducive to star formation. By exploring

the change in these timescales for a range of initial conditions, we can effectively explore different

regions of redshift space and hope to learn something about when and how the first low mass stars

started to form. Note that the formation of high-mass stars occurs on much shorter timescales than

those considered in this work.

7.2.1 Collapse

Low mass star formation essentially occurs by the collapse of a molecular cloud under its own

weight accompanied by the dissipation of gravitational potential energy. In any situation where

the star formation is not externally triggered by a violent event, for example the passage of a shock,

the actual collapse time will be somewhat longer than the free-fall time due to turbulence within

the cloud. In this work, the free-fall time is used as an under-estimate of the typical collapse time

for a molecular cloud undergoing quiescent star formation.

The free-fall time of a collapsing core is related to the number density of hydrogen nuclei as

follows:

tff =
�

3π

32Gρ
= 0.52× 108/(nH)

1
2 yrs, (7.1)

where nH = (n(H)+2n(H2)) is the local number density of hydrogen nuclei in cm−3 (Dyson

& Williams 1997).

7.2.2 Cooling

In order for a cloud of gas to continue to collapse and form a star, the cloud must continue to

lose energy, otherwise, the high temperatures and densities within the cloud would halt collapse

before the formation of a star could occur. Energy loss occurs via different atomic and molecular

transitions, while at high densities, collisions between hot gas and cooler dust grains can also be

efficient in cooling the gas. The rate at which energy is lost depends on the cooling function, Λtot/

erg cm −3 s−1, which in turn depends on the abundance of various different molecular coolants.

The temperatures considered in this work are too low for any cooling through the hydrogen and

helium lines to be efficient and cooling through metal lines is therefore considered to be dominant.
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The total cooling time is then given by:

tcool =
5
2nHkT

ξΛtot
yrs, (7.2)

where k is the Boltzmann constant, T is the gas temperature and ξ is the metallicity in units of

solar metallicity. The quantity, 5
2nHkT represents the total energy, both thermal and internal, of

the system and ξΛtot is the total interstellar cooling rate. Note that this analytical expression is

crude in nature and does not hold at zero metallicity.

Note that the chemical models described in § 7.3, do not include the effects of removing

molecular coolants from the gas phase by freeze-out. If freeze-out occurs, the cooling timescale

will be underestimated in regions of parameter space where there is significant ice-formation.

7.2.3 Freeze-out

A detailed calculation of the rate per unit volume at which a species freezes out can be found in

Rawlings et al. (1992). This quantity depends on the relative abundance of dust grains compared

to hydrogen nuclei, the physical properties of the grain as well as the species whose freeze-out

is being considered, and electrostatic effects to take into account the fact that ionic species will

freeze-out at a different rate to neutral species. Due to the presence of more than one grain pop-

ulation in most systems, the grain properties need to be averaged over the grain size distribution.

Rawlings et al. (1992) relate this size distribution to the depletion coefficient, D which depends

on the abundance of very small grains and on the metallicity.

Taking these assumptions into consideration, the freeze-out timescale can be derived from the

rate of freeze-out given by Rawlings et al. (1992):

tfo =
0.9× 106(mX/28)

1
2

(T/10)
1
2 (nH/104)D

yrs, (7.3)

where mX is the molecular mass of the species whose freeze-out is being considered and T is

the gas temperature.

7.2.4 Desorption

Desorption is the process by which molecules in ices on the surface of dust grains, are returned

to the ISM. The mechanism through which heat is generated for this desorption, is still debated

(Roberts et al. 2007). In this work, only one mechanism for desorption is considered, namely
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exothermic reactions occurring on the grain surface. More specifically, the liberation of energy

from H2 formation on dust grains results in a proportion of the frozen molecules on the dust grain

being returned to the gas phase.

The desorption rate of CO which is the most abundant molecular species besides hydrogen, is:

dn(CO)
dt

|des = 3× 10−17n(H)nHξγ

�
T

100
. (7.4)

The rate depends on the metallicity which scales linearly with the dust to gas ratio, the abun-

dance of both molecular and atomic hydrogen, the temperature, T and the number of CO molecules

desorbed for every H2 formed, γ. The coefficient 3×10−17 represents the canonical H2 formation

rate in the Milky Way.

From this expression, a typical timescale associated with desorption can be calculated:

tdes =
1× 109

[nHn(H)(T/100)
1
2 γξ]

yrs, (7.5)

where nH is the local number density of hydrogen nuclei and n(H) is the column density

of hydrogen atoms only. The number of CO molecules desorbed per H2 formation, γ can be

constrained by considering a pre-stellar core in the Milky Way like L1689B where significant

depletion of CO molecules has been directly observed (Redman et al. 2002). Assuming for such

an object with nH ∼ 104−105cm−3, that the timescale for freeze-out is less than half the timescale

for desorption gives an upper limit on γ of ∼0.25. A γ = 0.2 is used throughout this work and

it is assumed that this number does not change in high redshift systems. This is plausible as one

expects the microscopic properties of the dust in high redshift galaxies to be fairly similar to those

in the Milky Way. Both the freeze-out and desorption timescales depend on these microscopic

properties.

7.2.5 Ambipolar Diffusion

Magnetic fields may play an important role in supporting dense molecular clouds and many of the

fragments within them. The magnetic field lines are coupled directly to the ions and indirectly

to the neutral matter through frequent ion-neutral collisions. At low ionisations, the frequency

of the ion-neutral collisions becomes less regular and the field lines decouple from the neutral

matter thereby allowing the matter to drift in response to the gravitational potential. This process
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is known as ambipolar diffusion and plays an important role in determining the rate of quiescent

star formation.

The characteristic timescale associated with this process of decoupling the field from the neu-

tral matter will depend on the relative drift velocities of the ions and neutral particles. Hartquist &

Williams (1989) define the ambipolar diffusion timescale as follows:

tamb = 4× 105(xi/10−8)yrs. (7.6)

This is a function only of the fractional ionisation, xi within the cloud and is consistent with

the more detailed treatment of Mouschovias (1979). However, in the earlier paper, the ambipolar

diffusion timescale is shown to be a function of position within the cloud. Therefore variations in

the degree of ionisation as a function of cloud depth become important. For the purposes of the

rather crude calculations presented in this chapter, the positional dependence is neglected. Eq. 7.6

therefore corresponds to the Mouschovias (1979) timescale at an intermediate position towards

the interior of the core. It should be noted that this timescale is only relevant for magnetically

sub-critical cores.

7.2.6 Ion-Molecule Chemistry

The chemical timescale is the time taken to create molecular coolants from the initially atomic

gas assuming that nearly all of the hydrogen is molecular. In other words, it is the time taken to

ionise sufficient hydrogen to allow complete chemical conversion of C and O to molecular form.

It is assumed from studies of star formation in the Milky Way that roughly 10−3 hydrogen atoms

per cm−3 need to be ionised in order for this chemical conversion to occur. Cosmic rays are

responsible for ionising the hydrogen. The relative abundances of carbon and oxygen will scale

with the metallicity, ξ. The chemical timescale is

tchem � 3ξ(ntot
C + ntot

O )
n(H2)ζ

=
5× 106ξ

ζ/1× 10−17
yrs. (7.7)

The chemistry is important for providing the coolant molecules and therefore must not be too

long if star formation is to occur. The analytical expression for the chemical timescale represented

by Eq. 7.7 depends only on the metallicity and cosmic ray ionisation rate and is rather crude. The

chemical timescale is less relevant in cores than in the parent cloud which may be collapsing from

a diffuse to a dark state as there isn’t much change in the chemistry once cores begin to form.
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7.3 Modeling

In order to model the various different timescales discussed in § 7.2 a time and depth-dependent

chemical code for molecular clouds and photon-dominated regions (PDR hereafter) is used to

solve simultaneously for the chemistry, thermal balance and radiative transfer within a cloud. This

UCL PDR code models the gas phase chemistry inside the cloud which is treated as a 1D semi-

infinite slab of gas illuminated by a uni-directional flux of FUV photons incident on its outer

surface (Bell et al. 2006). Differences in model geometry are unlikely to affect the chemistry

significantly enough to influence these rather qualitative results (See Röllig et al. (2007) for a PDR

benchmarking code comparison). The FUV radiation field is taken to be the standard interstellar

radiation field (Draine 1978) multiplied by a factor of χ where χ = 1.7 corresponds to a flux

of 1.6 × 10−3 erg s−1 cm−2, appropriate for the unshielded interstellar medium in the Milky

Way. The radiation field strength declines exponentially with increasing depth within the cloud

and therefore depends on the visual extinction Av. No grain chemistry is included and hence the

freeze-out and desorption of species is ignored in these models. Various different heating and

cooling mechanisms are invoked within the code. Photoejection of electrons from dust grains and

polycyclic aromatic hydrocarbons (PAHs) and FUV pumping and photo-dissociation of H2 are the

dominant heating mechanisms while the gas is mainly cooled through emission from collisionally

excited atoms and molecules and by interactions with the cooler dust grains. The gas temperature

is determined at each depth point by using an iterative procedure to balance the total heating and

cooling rates. Although the chemical model is also time dependent, all outputs are considered at

steady state unless otherwise stated, which is assumed to correspond to a time of 1Gyr.

The code takes as its inputs the number density of hydrogen nuclei, nH , the metallicity, ξ,

the cosmic ray ionisation rate, ζ, the strength of the incident FUV radiation field, χ, the turbulent

velocity, v within the cloud and the redshift, z. As this study considers quiescent low-mass star

formation only, the turbulent velocity is fixed at a value of v = 1.5 km s−1. The redshift, z

is only important in determining the contribution of the cosmic microwave background to the

temperature of the various rotational lines and this effect is only significant at low densities and

low visual extinctions. As most of the models described in this work looks at molecular clouds

with relatively high densities and/or visual extinctions, the redshift parameter is always set to 0

and the other parameters modified in order to mimic a high-redshift system. Variations in the

remaining four parameters and implications for the star formation timescales are considered in §

7.4.
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The chemistry consists of a chemical network containing 83 species. These species interact

in over 1300 reactions, whose rates are taken from the UMIST99 database (Le Teuff et al. 2000).

Initially, hydrogen is assumed to be in atomic form.

Central to much of the work presented in the latter half of this chapter, are the model predic-

tions for parameters associated with the rotational lines of CO and I therefore describe how these

are obtained in more detail. The gas in PDRs mainly cools through emissions from collisionally

excited atoms and molecules as well as through interactions with cooler dust grains. The code

calculates the emission from the [OI], [OII] and [CII] fine structure lines as well as the CO rota-

tional lines at each depth and time step. This is done using the escape probability formalism of de

Jong et al. (1980) to solve the radiative transfer equations. Non local thermodynamic equilibrium

(non-LTE) level populations are determined by solving the equations of statistical equilibrium us-

ing rate coefficients for CO collisions with H2, H and He from Flower & Launay (1985), Green

& Thaddeus (1976) and Green & Chapman (1978) respectively. The solutions of the radiative

transfer equations give the emissivity, Λ, the intensity, I and the opacity, τ for every line at every

depth and time step. Several of these outputs are used in this chapter.

Although this chapter makes references to models of extragalactic systems, it should be em-

phasised that we are modeling the various PDR components that make up external galaxies rather

than the galaxy as a whole. Our chosen input parameters therefore mimic the average conditions in

individual PDRs within a galaxy. The outputs are considered at two visual extinctions of Av ∼ 3

and Av ∼ 8. These roughly correspond to the translucent and dense PDR gas components within

a galaxy. Atomic and molecular emissions from different components within the galaxy will con-

tribute independently to the line emissions detected from the galaxy as a whole and studied in

detail in § 7.5. Also, due to the fact that the PDR is modeled as a semi-infinite slab, a given visual

extinction will correspond to different physical distances within the cloud under different physical

conditions as the Av depends on both the number density and the metallicity of the cloud in our

models. I come back to this point later in this chapter.

7.4 Variation of Star Formation Timescales

This section describes how the various timescales associated with low mass star formation and

detailed in § 7.2 change as the input parameters to the chemical model are varied. Variations

in the number density of hydrogen nuclei, nH , the metallicity, ξ, the cosmic ray ionisation rate,

ζ and the strength of the incident FUV radiation field, χ are considered. When varying any of
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the four parameters, the others are fixed at their local values namely nH = 105 cm−3, ξ = ξ⊙,

ζ = 10−17 s−1 and χ = 1.7 appropriate for a Milky Way cloud. All outputs are considered at

steady state corresponding to a time of 1Gyr and at two depths corresponding to Av � 3 and

Av � 8. Outputs of the code include the cooling function, Λtot, the fractional ion abundance, xi,

the gas temperature T and the column density of hydrogen atoms n(H) and these values can be

substituted into equations 7.2, 7.3, 7.5 and 7.6 to calculate the cooling, freeze-out, desorption and

ambipolar diffusion timescales.

For each set of initial conditions, some references are made to extragalactic objects that may

exhibit these properties and hence we are able to infer if low mass star formation is likely to be

encouraged or inhibited in such objects. It should be noted that these calculations are relatively

crude in nature and therefore only instructive in terms of observing general trends.

7.4.1 Varying the Gas Density

The hydrogen nuclei number density is varied between 100 cm−3 and 106 cm−3 in this study

and the effect of this variation on the low mass star formation timescales are considered. Higher

density clouds are only likely to be relevant for high-mass star formation and are therefore not

considered. The results are summarised in Figure 7.1.

As expected, the free-fall time decreases with increasing number density and is ∼ 106 yrs at

104 cm−3 typical of a Milky Way cloud. At this density, all the different timescales converge to

roughly the same order of magnitude. Thus both freeze-out and desorption proceed with desorp-

tion a slightly slower process so that molecular ices do form. Desorption maintains a population

of molecular coolants in the gas phase. The free-fall time is comparable to the cooling time,

thermally induced collapse occurs and stars are able to form. The ambipolar diffusion timescale

is comparable to the dynamical free-fall time and star-formation can occur in magnetically sub-

critical couds. These conditions are appropriate for a Milky Way type galaxy and therefore this

approach indicates as expected that low mass star formation is reasonably efficient in Milky Way

type systems.

However, at very high densities, the free-fall time is shorter than the cooling time and the cores

will heat up during the collapse which is then arrested.

The freeze-out timescale and desorption timescale are comparable and both decrease with

increasing density at the same rate suggesting that molecular ices are able to form at all densi-

ties between 100 cm−3 and 106 cm−3. This also implies that the cooling time is systematically

under-estimated as ice formation, which is not included in the chemical model, removes molecular
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Figure 7.1: Variation of timescales relevant to star formation with number density of hydrogen
at Av ∼3 (solid lines) and Av ∼8(dotted lines). The metallicity, cosmic ray ionisation rate and
incident FUV radiation intensity are fixed at ξ = ξ⊙, ζ = 10−17s−1 and χ = 1.7.

coolants from the gas phase at all densities.

Looking deeper into the cloud, i.e. going from Av � 3 to Av � 8 does not seem to affect

significantly the freeze-out or desorption timescales. However, the cooling time is slightly larger

at higher visual extinctions as the cooling function decreases with increasing Av. This is probably

due to increased radiation trapping in the cooling lines.

The ambipolar diffusion timescale is much longer than the other timescales at very low den-

sities. This suggests as expected that star formation cannot occur in clouds with nH < 103 cm−3

that are magnetically sub-critical as the field is very slow to decouple.

7.4.2 Varying the Metallicity

The metallicity, ξ, is another important physical property that will affect low mass star formation.

This parameter is particularly important for modeling high redshift systems as the primordial gas

from which these objects formed is likely to be less chemically enriched than the interstellar

medium in the Milky Way in some cases, and will therefore have lower metallicities. As we are

interested in low metallicity objects that formed early in the history of the Universe, metallicities
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Figure 7.2: Variation of timescales relevant to star formation with metallicity at Av ∼3 (solid
lines) and Av ∼8(dotted lines). The number density of hydrogen, cosmic ray ionisation rate and
incident FUV radiation intensity are fixed at n = 105cm−3, ζ = 10−17s−1 and χ = 1.7.

as low as 10−4ξ⊙ are considered. Metallicities enhanced above solar values to upto 3ξ⊙ are also

considered. In the chemical model, it is assumed that the elemental abundances of all metals

scale linearly with metallicity. The dust to gas mass ratio is also assumed to scale linearly with

metallicity. The results from this study are summarised in Figure 7.2.

As expected, the cooling time falls with increasing metallicity due to the increased abundance

of molecular coolants. At metallicities below ξ = 0.1ξ⊙,the cooling time is much longer than

the free-fall time and collapse and star-formation are likely to be impeded by gas pressure. The

freeze-out time also decreases with increasing metallicity due to the presence of more dust grains

but the desorption time is independent of metallicity. At low metallicities, freeze-out is slower

than desorption so ice-formation is inhibited. Temperatures however remain high due to the long

cooling timescales.

The ambipolar diffusion timescale remains fairly insensitive to the metallicity. The fractional

ionisation is much higher at low visual extinctions so the ambipolar diffusion timescale falls with

increasing depth into the cloud. Note that the visual extinction scales linearly with metallicity so

high visual extinctions in low metallicity clouds will correspond to larger physical distances within
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the cloud. Hence, the calculations for Av � 8 are probably unfeasible for low metallicity clouds.

But as the cloud is likely to be optically thick even at lower depths, the chemistry is unlikely to be

very different to the Av � 8 case and the timescales will therefore remain roughly the same.

The chemical timescale increases linearly with metallicity as expected. Low metallicity sys-

tems therefore convert a significant fraction of available elements into molecular coolants.

7.4.3 Varying the Cosmic Ray Ionisation Rate

Although little is known about the origin of extragalactic cosmic rays, they are very important in

ionising hydrogen and driving the chemistry during star formation. The level of ionisation within

a dark cloud may determine whether or not the cloud is stable against gravitational collapse if

magnetic fields are present.

An estimate for the cosmic ray ionisation rate in the Galaxy is ∼ 10−17 s−1 (Hartquist et al.

1978). In this study, the cosmic ray ionisation rate is varied between 10−18 s−1 and 10−13 s−1

in order to mimic both quiescent star forming systems such as those in our own galaxy as well as

starburst regions and AGN which are expected to have cosmic ray fluxes of the order of 10−15s−1

to 10−13s−1 (Meijerink et al. 2006; Suchkov et al. 1993; Bradford et al. 2003). The results of

varying the cosmic ray ionisation rate are summarised in Figure 7.3.

As the cosmic ray ionisation rate is increased, the cooling time falls and at ζ ∼ 10−16 s−1, it

drops below the free-fall time. Cores cool more and more quickly and are therefore able to collapse

to form stars. The chemical timescale is small at high values of the cosmic ray ionisation rate

explaining the low cooling times as molecular coolants are quick to form in such circumstances.

The freeze-out time is greater than the desorption time and the propensity for ice-formation

is reduced thereby allowing molecular coolants to remain in the gas phase to effectively cool the

collapsing gas. Desorption is therefore unlikely to be a significant process. However, formally, the

desorption time becomes shorter as expected with increasing cosmic ray ionisation rate as more

and more hydrogen molecules are ionised thereby increasing the abundance of atomic hydrogen

as well as the temperature of the gas. If ices could be formed, they would therefore be quick to

evaporate off the dust grains once again replenishing the gas phase with molecular coolants and

encouraging star formation.

The ambipolar diffusion timescale becomes very large as the fractional ionisation increases

and the magnetic field is slow to be released from the collapsing core. Based on the results of

Crutcher et al. (1987) and Athreya et al. (1998), the magnetic field strength, B of molecular clouds

varies between 1µGauss and 100µGauss for densities between 1cm−3 and 105 cm−3. This field
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Figure 7.3: Variation of timescales relevant to star formation with the cosmic ray ionisation rate at
Av ∼3 (solid lines) and Av ∼8 (dotted lines). The number density of hydrogen, metallicity and
incident FUV radiation intensity are fixed at n = 105cm−3, ξ = ξ0 and χ = 1.7.

strength, B scales with the density as B ∝ (nH)κ where 1
3 ≤ κ ≤ 1

2 (Mouschovias 1976) is

consistent with observations. In this study, based on various observations (Crutcher et al. 1987;

Bourke et al. 2001; Beck et al. 2005; Kim et al. 1990) a value of κ ∼ 0.4 is considered. The ratio

of the magnetic pressure to the thermal pressure, α can be calculated using Eq. 7.8:

α =
B2

8πnHkT
. (7.8)

For α >> 1 the magnetic pressure dominates and for α << 1, the thermal pressure dominates.

For high cosmic ray fluxes and at a constant density of nH=105 cm−3, α is computed to be ∼ 0.4.

This suggests that the magnetic pressure may in some cases be sufficient to halt the collapse but

in other cases, depending on the temperature of the core and the exact value of κ, low-mass star

formation can proceed unimpeded.

7.4.4 Varying the FUV Radiation Field

The FUV radiation field is a significant source of heating of neutral interstellar gas. As explained

in § 7.3, the radiation field is taken to be the standard interstellar radiation field (Draine 1978)
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Figure 7.4: Variation of timescales relevant to star formation with the FUV radiation field strength
at Av ∼3 (solid lines) and Av ∼8 (dotted lines). The number density of hydrogen, metallicity and
cosmic ray ionisation rate are fixed at n = 105cm−3, ξ = ξ0 and ζ = 1× 10−17s−1.

multiplied by a factor of χ where χ = 1.7 corresponds to a flux of 1.6× 10−3 erg s−1 cm−2. The

FUV radiation field strength is linked to the number of massive stars in the Galaxy and given the

presence of many massive stars at high redshift (Abel et al. 2002; Bromm et al. 1999) is likely

to be large in these systems. In this study, χ is varied between 1.7 and 1.7×104 in order to study

the effect of this parameter on the star formation timescales. The results are summarised in Figure

7.4.

At Av � 10, the FUV radiation is sufficiently attenuated to not affect the chemistry within

the cloud and all the timescales therefore remain fairly constant with FUV flux strength. At lower

visual extinctions, the cooling time is almost always smaller than the free-fall time and collapse

and star formation are therefore encouraged. The freeze-out time is also almost always smaller

than the desorption timescale except at very high FUV radiation field strengths. This suggests

that the formation of icy mantles on dust grains is possible even at FUV radiation field strengths

of χ = 1.7 × 103 at Av ∼ 3. The desorption time and freeze-out time are fairly comparable at

all radiation field strengths so any icy mantles deposited on the dust grain are quick to evaporate.

At very high FUV flux strengths, the desorption time is shorter than the freeze-out time and ice
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Table 7.1: Star Formation Timescales at High-Redshift

Timescale Model I Model II Model III

Years Av ∼ 3 Av ∼ 8 Av ∼ 3 Av ∼ 8 Av ∼ 3 Av ∼ 8

Free-Fall 5.2× 105 5.2× 105 1.6× 105 1.6× 105 1.6× 105 1.6× 105

Cooling 6.8× 105 8.0× 105 4.3× 105 6.8× 106 3.3× 103 1.1× 104

Freeze-out 1.7× 106 1.4× 106 5.2× 105 1.4× 105 4.0× 104 3.9× 104

Desorption 3.1× 102 1.9× 102 1.1× 102 2.4× 101 1.4× 102 1.8× 102

Ambipolar Diffusion 7.1× 1010 8.6× 1010 1.8× 108 2.5× 107 1.4× 109 1.9× 107

Chemistry 2.5× 101 2.5× 101 2.5× 102 2.5× 102 5.0× 103 5.0× 103

formation is inhibited. Both these processes mean that the ISM is always rich in molecular coolants

at high FUV radiation field strengths and collapse is encouraged.

The ambipolar diffusion timescale is very large for high radiation field strengths and at low

Av. This once again suggests that magnetically super-critical cores will be stable against col-

lapse. However, at high Av where the radiation field cannot penetrate the cloud, the ambipolar

diffusion timescale is comparable to the dynamical timescale and the magnetical criticality is less

significant.

Both the FUV radiation field strengths and the cosmic ray ionisation rate are linked with the

presence of massive stars in this rather simplistic analysis and therefore it is not surprising that

both parameters have similar effects on the star formation timescales. The presence of massive

stars resulting in an elevated FUV flux strength, therefore serves to encourage quiescent low-mass

star formation in every possible way at low Av provided the residual magnetic pressure implied

by the long ambipolar diffusion timescale, does not halt collapse. The ratio of the magnetic to

thermal pressure for χ = 1.7× 104 is computed to be α ∼ 0.5 and so the magnetic pressure may

in some cases be sufficient to halt collapse.

7.4.5 Modeling a High Redshift Object

Bayet et al. (2008b) have identified the Cloverleaf (z � 2.6) and APM08279 (z � 3.9) as possible

examples for high redshift sources. Although the physical properties of these sources are not well
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constrained, molecular detections suggest that they are actively forming stars (Lutz et al. 2007;

Gao & Solomon 2004; Wagg et al. 2005). Such objects are expected to have a range of different

metallicities with galaxies with significant observed dust obscuration such as HCM6A (z = 6.56,

Chary et al. (2005)) likely to be more chemically enriched. The presence of many massive stars

in these systems will also result in high FUV radiation field strengths and cosmic ray ionisation

rates. Collapse is likely to occur at moderately high densities due to the lack of available molecular

coolants compared to a Milky Way type object.

In order to model such a system, the star formation timescales are calculated for three different

models - (I) n = 104 cm−3, ξ = 0.05ξ⊙, ζ = 10−13 s−1 and χ = 1.7× 104 , (II) n = 105 cm−3,

ξ = 0.05ξ⊙, ζ = 10−14 s−1 and χ = 1.7 × 103 and (III) n = 105 cm−3, ξ = ξ⊙, ζ = 10−14

s−1 and χ = 1.7 × 103 - at depths corresponding to Av ∼ 3 and Av ∼ 8. As previously stated,

the presence of many massive stars in high redshift systems justifies a choice of elevated FUV

radiation field strengths when modeling such systems. In order to mimic starburst galaxies with

high cosmic ray fluxes such as M82 (Suchkov et al. 1993) and NGC253 (Bradford et al. 2003) at

high redshift, high cosmic ray ionisation rates are also adopted. Meijerink et al. (2006) estimate

a cosmic ray ionization rate of 5 × 10−15s−1 for a star formation rate of ∼100M⊙ yr−1 and one

expects high redshift galaxies with higher star formation rates to have elevated cosmic ray fluxes.

Finally, there is evidence that high redshift galaxies exist at a range of metallicities with galaxies

with significant observed dust obscuration likely to be more chemically enriched and therefore

both solar and sub-solar metallicities are considered in these models. The results are summarised

in Table 7.1.

It can be seen that for the first model, the free-fall time is comparable to the cooling time

and cores can collapse to form stars even at depths as low as Av ∼ 3. The formation of icy

mantles is likely to be inhibited in such systems as the freeze-out time is very large compared to

the desorption time.

The second model has slightly lower cosmic ray fluxes and FUV radiation field strengths but

is considered to be at a higher density. In this case, the free-fall timescale is only slightly shorter

than the cooling time at low Av and cores can collapse to form stars but at Av ∼ 8, the cooling

time is larger and the propensity for low mass star formation is reduced. Once again, the formation

of icy mantles is inhibited in such a system.

The third model also has elevated FUV radiation field strengths and cosmic ray fluxes but is

now considered at solar metallicity. The cooling time is now significantly lower than the free-

fall time at all depths and low-mass star formation is unimpeded by thermal pressure while ice



7.5. Trends in the 12CO Rotational Spectrum 171

formation still remains inhibited.

In all three cases, the ambipolar diffusion timescale is very large so the residual field may be

able to halt collapse. Using the temperatures and densities of these model runs, the thermal and

magnetic pressure can be calculated for each of the models in the same way as in § 7.4.3 as well

as their ratio, α. In both the sub-solar metallicity models, α is computed to be ∼ 0.05 so the

thermal pressure dominates over the magnetic pressure. The cooling times are comparable to the

dynamical free-fall time, particularly at low Av and low-mass star formation is encouraged. The

third model at solar metallicity has α ∼ 0.6 suggesting that in this case the magnetic pressure

may be sufficient to halt collapse. This suggests that recent evidence for a top-heavy IMF is only

supported by this study if high-redshift galaxies are considered to be at solar metallicities in which

case the magnetic pressure may halt the collapse and formation of low-mass stars.

7.5 Trends in the 12CO Rotational Spectrum

Carbon monoxide is one of the most commonly used tracers of molecular gas and its various

rotational J transitions have been detected in many extragalactic systems both nearby (Bradford

et al. 2003; Bayet et al. 2004, 2006) and in the distant Universe (Bertoldi et al. 2003; Nesvadba

et al. 2009; Daddi et al. 2009; Knudsen et al. 2009). In Milky Way type conditions, the column

density of molecular hydrogen along a line of sight is often related to the velocity integrated

antenna temperature, TA for the CO(1-0) transition, using the CO-to-H2 conversion factor or X

factor (Strong & Mattox 1996; Dame et al. 2001). The CO(1-0) line is used as it is known to

be the dominant CO cooling line with the highest antenna temperature under physical conditions

appropriate for a Milky Way cloud. However, this is not necessarily the case for high redshift

systems with significantly different physical conditions and higher order transitions of CO may

become more relevant (Sakamoto 1999; Bell et al. 2006, 2007). It is already known that galaxies

with elevated cosmic ray fluxes have larger high-J CO line ratios (Meijerink et al. 2006) and

that the higher order CO transitions trace denser gas than their lower order counterparts. In this

section, CO rotational line transitions and ratios are examined in the context of the stellar initial

mass function. We consider which of the CO transitions, if any, can be used as diagnostics for

regions of both enhanced and inhibited low-mass star formation as studied in § 7.4. This study is

conducted both for systems where one physical parameter is varied at a time while keeping the

others fixed at their local values as well as the three high redshift systems modeled in § 7.4.5.

The UCL PDR code outputs the integrated line intensity of the CO rotational lines with 1
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≤ Jupper ≤ 9 in units of erg s−1 cm−2 sr−1 after solving the radiative transfer equations. The

intensity is related to the emissivity Λ by

I =
1
2π

�
Λ(L)dL, (7.9)

where L is the depth into the cloud and the factor of 1/2π takes into account the fact that the

photons only emerge from the outer edge of the cloud due to the cloud being modeled as a semi-

infinite slab. Integrating over larger depths will therefore obviously result in higher intensities.

In order to calculate the relative velocity integrated antenna temperature from the intensity the

following equation is used:

�
(TA)reldv = 10−6 c3I

2kBν3LAv

Kkms−1pc−1, (7.10)

where c is the speed of light and kB is the Boltzmann constant. As the UCL PDR code models

the PDR as a semi-infinite slab and the visual extinction, Av in the slab is related to both the

number density as well as the metallicity, a fixed Av will correspond to different physical distances,

L, for different values of the density and metallicity. In order to derive values for the relative

temperatures that are comparable and independent of the size of the emitting region, the relative

velocity integrated antenna temperatures are divided by the distance in parsec corresponding to

the Av at which the temperature is calculated, LAv . This distance will obviously be much larger

for low density and low metallicity systems for a fixed Av. All figures showing the variation of

the CO SED with different physical conditions, therefore represent the relative velocity integrated

antenna temperatures for the different 12CO transitions per unit parsec except in Figure 7.10 where

the relative velocity integrated temperatures is plotted as a function of Av.

Note that the numbers calculated using Eq 7.10 are important only in terms of observing trends.

In order to match the absolute values of the theoretical velocity integrated antenna temperature to

those from observations, one has to consider several other factors. Firstly, all models used in this

chapter assume a turbulent velocity of 1.5 km s−1 typical for a giant molecular cloud in the Galaxy.

In reality, observed lines of CO in extragalactic sources typically have widths of several 100 km

s−1 due to contributions from several PDR regions within the galaxy and the temperature has to

be scaled accordingly. Secondly, we need to account for a surface filling factor which takes into

account the size of the source as well as the telescope beam. Finally, all observational results will

be affected by factors such as the atmospheric conditions and the telescope efficiency. One way of
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comparing the theoretical predictions to observations however, is to consider line ratios rather than

the intensities and brightness temperatures of individual lines. Assuming the emission from both

lines comes from the same clouds, the various factors discussed above should cancel out when

computing the ratio of either the intensity or the integrated temperature. Theoretical predictions

are therefore compared to observed line ratios in § 7.5.6.

7.5.1 Density

The hydrogen atom number density of the molecular cloud is once again varied between 100 cm−3

and 106 cm−3 while keeping the metallicity, cosmic ray ionisation rate and FUV flux fixed at ξ =

ξ⊙, ζ=10−17 s−1 and χ=1.7 Draine (Draine 1978). The effect on the relative velocity integrated

antenna temperature,
�

(TA)reldv, of the different CO rotational transitions, is illustrated in Figure

7.5. The CO(1-0) line is seen to be the brightest line at all densities and the CO SED falls off with

increasing J . Higher density clouds also produce brighter antenna temperatures as expected. As

the Av is increased, the relative integrated temperatures per unit parsec drop, particularly for the

higher density clouds. This is telling us that in these high density clouds, most of the emissivity in

these CO rotational lines is coming from the lower Av regions. This is also the case for the high-J

transitions in the lower density clouds.

7.5.2 Metallicity

The metallicity is varied between ξ = 10−4ξ⊙ and ξ = 3ξ⊙ while keeping the density, cosmic ray

ionisation rate and FUV flux fixed at n=105 cm−3, ζ=10−17 s−1 and χ=1.7 Draine (Draine 1978)

. The dependence of
�

(TA)reldv on the metallicity is illustrated in Figure 7.6. In § 7.4.2 it was

found that low-mass star formation is likely to be inhibited at very low metallicities resulting in a

top-heavy IMF, provided the cloud is at moderately high densities and low cosmic ray fluxes and

FUV field strengths. The form of the CO SED is quite different at different metallicities. While

the higher metallicity clouds produce SEDs that peak at the lower rotational numbers and drop

off sharply after that, the lower metallicity clouds have flatter SEDs. For the highest rotational

transitions with Jupper > 7, the sub-solar metallicity clouds actually produce emission that is

brighter than that from solar metallicity clouds. As we approach sub-solar metallicities, the ratio

of the high-order CO transitions to the peak CO transition tends towards unity whereas at solar

metallicities it is much smaller. The physical conditions in sub-solar metallicity counterparts of

Milky Way type galaxies are thought to be appropriate for the production of top-heavy IMFs.



7.5. Trends in the 12CO Rotational Spectrum 174

2 4 6 810−5

100

105

Jupper

∫ T
A 

dv
 / 

K 
km

 s
−1

 p
c−
1

n=100 cm−3

n=1000 cm−3

n=104 cm−3

n=105 cm−3

n=106 cm−3

Figure 7.5: Variation of relative velocity integrated CO antenna temperature per unit parsec with
number density of hydrogen at Av ∼3 (solid lines) and Av ∼ 8 (dashed lines). The metallicity,
cosmic ray ionisation rate and incident FUV radiation intensity are fixed at ξ = ξ⊙, ζ = 10−17s−1

and χ = 1.7.

7.5.3 Cosmic-Ray Ionisation Rate

The cosmic ray ionisation rate is varied between ζ=10−18 s−1 and ζ=10−13 s−1 with the rest of

the input parameters fixed at n=105 cm−3, ξ = ξ⊙ and χ=1.7 Draine. The results are shown in

Figure 7.7.

Apart from the highest cosmic-ray ionisation rates, the CO(1-0) line dominates the emission in

almost all cases. The relative antenna temperature increases with increasing cosmic ray ionisation

rate. At ζ = 10−14 s−1, the CO(2-1) transition just starts to dominate over the CO(1-0) line

but by ζ = 10−13 s−1, the CO(5-4) line is now the brightest CO line. This line can therefore

be used to trace high density systems at solar metallicity with extremely high cosmic-ray fluxes

such as sources with AGN or a starburst nucleus. In § 7.4.2 it was noted that systems such as

this show some evidence for having top-heavy IMFs depending on the exact core temperature and

magnetic field within these galaxies. In some active galaxies with physical conditions similar to

that considered here, the magnetic pressure created through ambipolar diffusion may be sufficient

to halt core collapse and formation of low-mass stars.
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Figure 7.6: Variation of relative velocity integrated CO antenna temperatures per unit parsec with
metallicity at Av ∼3 (solid lines) and Av ∼ 8 (dashed lines). The number density of hydrogen,
cosmic ray ionisation rate and incident FUV radiation intensity are fixed at n = 105cm−3, ζ =
10−17s−1 and χ = 1.7.

7.5.4 FUV Radiation Field Strength

The FUV radiation field strength is varied between χ=1.7 Draine and χ=1.7×104 Draine (Draine

1978) with the rest of the input parameters fixed at n=105 cm−3, ξ = ξ⊙ and ζ=10−17 s−1. The

dependence of the CO SED on the FUV radiation field strength, is illustrated in Figure 7.8.

Increasing the FUV radiation field strength results in similar behaviour as increasing the cos-

mic ray ionisation rate. Higher-order lines become more and more dominant and the antenna

temperature increases with χ. At the maximum FUV field of ξ = 1.7 × 104 considered here, it

is the CO(8-7) line that is dominant but for a FUV radiation field that is an order of magnitude

weaker, the CO(3-2) line dominates. The high-order CO transitions can therefore be used as trac-

ers of extremely high FUV radiation fields associated with the presence of massive stars. Such

systems may also have top-heavy IMFs depending on whether the magnetic pressure is sufficient

to halt the collapse and formation of low-mass stars.

Note that due to the large parameter space that is modeled in this study, there will inevitably
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be degeneracies and the CO SEDs produced by models with χ = 1700 and ζ = 10−14s−1 may be

observationally indistinguishable. However, as large values for both these parameters are associ-

ated with active galaxies producing massive stars in this rather simplistic analysis, it is probably

fair to say that the form of the CO SED observed in these models can be taken to be roughly

representative of such active systems.

7.5.5 Trends in 12CO Line Emission at High-z

The relative velocity integrated CO antenna temperatures is now considered for the high redshift

models described in § 7.4.5. The physical parameters associated with these models are also given

in § 7.4.5 along with the IMFs associated with them. All models represent active galaxies with

high cosmic ray fluxes and FUV radiation fields. Densities are also moderately high while both

sub-solar and solar metallicities have been considered as the metallicity of high redshift systems

still remains debated. Once again it is emphasised that these parameters are not meant to be rep-

resentative of particular high redshift galaxies that have been observed in 12CO but rather crudely
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the FUV radiation field strength at Av ∼3 (solid lines) and Av ∼ 8 (dashed lines). The number
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and ζ = 1× 10−17s−1.

represent our best guess as to the parameters that are likely to be associated with high redshift sys-

tems. In § 7.4.5 it was found that while there is no evidence for Models I or II having a high-mass

biased IMF, Model III may have a high-mass biased IMF if the magnetic pressure is sufficient to

halt the collapse and formation of low-mass stars. In other words, the physical conditions asso-

ciated with Model III are likely to be necessary but not sufficient for a top-heavy IMF to exist.

Differences in CO antenna temperatures in these three models are now considered as a possible

means of distinguishing between the two IMF scenarios and the differing physical conditions in

these galaxies.

Figure 7.9 plots the relative velocity integrated CO antenna temperature for the different CO

rotational lines for the three high-z models. Solid lines correspond to Av ∼ 3 while dashed lines

correspond to Av ∼ 8. It can immediately be seen that the CO SEDs have very different forms for

the three models.

Model I has very low velocity integrated antenna temperatures compared to the other two

models. This is because the extreme cosmic ray fluxes and FUV fields invoked in this model



7.5. Trends in the 12CO Rotational Spectrum 178

1 2 3 4 5 6 7 8 90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jupper

∫ T
A 

/ K
 km

 s−
1  p

c−
1

Model I

Av~3

Av~8

1 2 3 4 5 6 7 8 9100

200

300

400

500

600

700

Jupper

∫ T
A 

/ K
 km

 s−
1  p

c−
1

Model II

Av~3
Av~8

1 2 3 4 5 6 7 8 91000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Jupper

∫ T
A 

/ K
 km

 s−
1  p

c−
1

Model III

Av~3
Av~8

Figure 7.9: Variation of relative velocity integrated CO antenna temperatures for high redshift
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destroy most of the CO, resulting in very low line intensities. The highest J transitions are found

to be the brightest for this model but the temperatures associated with the lines are always very low

probably indicating that such extreme conditions may be unphysical even in high redshift systems.

Model II and Model III both have the same densities, cosmic ray fluxes and FUV fields, while

Model II is at sub-solar metallicity, Model III has solar metallicity. The solar metallicity model is

seen to produce brighter
�

(TA)reldv than the sub-solar metallicity model. However, in both cases,

it is the intermediate transitions that dominate the CO emission although the drop in the SED at

high J is much sharper for the solar-metallicity model. At Av ∼8, the CO SED for Model II peaks

at J=5 before remaining roughly constant whereas the CO SED for Model III drops significantly

at high J at the same Av. These trends may be used to distinguish between solar and sub-solar

metallicity active galaxies at high redshift. Figure 7.9 clearly illustrates that the ratio of high-order

CO transitions to the peak CO transition will be close to unity for physical conditions associated

with an unbiased IMF at high redshift. However, this ratio is likely to be smaller (∼ 0.5) for

physical conditions associated with a top-heavy IMF at high redshift. Unless such low CO J-ratios

are seen in active galaxies at high redshift, an unbiased IMF cannot be ruled out. Note however

that the physical conditions assumed in the models in this chapter seem necessary but may not be

sufficient to produce the IMFs associated with them in § 7.4.5. Also, in § 7.4.2, it was concluded

that sub-solar metallicity counterparts of Milky Way type galaxies may also produce top-heavy

IMFs but in this case the ratio of the high-J CO lines to the peak CO line is likely to be close to

unity. Larger ratios of the CO high-J to peak transitions therefore seem to imply that the galaxy

is at sub-solar metallicity and while such galaxies with normal levels of cosmic ray ionisation and

FUV flux show evidence for producing top-heavy IMFs, the same galaxies at high-redshifts with

elevated cosmic ray and FUV fluxes, may produce unbiased IMFs. The high-J to peak CO ratio

therefore provides an useful indication of the metallicity of a galaxy and assuming it is known

whether the galaxy is active, e.g., due to the presence of an AGN or starburst nucleus, the form of

the IMF may be crudely inferred.

In Figure 7.10 variations in the relative velocity integrated antenna temperatures are shown for

the three models as a function of depth within the cloud. In all three models, the CO rotational

lines get brighter with increasing depth within the cloud. Note that due to the differing number

densities and metallicities of each model, the same Av corresponds to different physical distances

for these models and figure 7.11 illustrates the relationship between Av and size of the emitting

region for the high redshift models.

The difference in the relative velocity integrated antenna temperatures of Model II (sub-solar
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Figure 7.10: Variation of relative velocity integrated CO antenna temperatures with Av for high
redshift models described in § 7.4.5.

metallicity and unbiased IMF) and Model III (solar metallicity, top-heavy IMF) is greater for the

higher order CO transitions deep within the cloud. At Av � 4, the temperatures associated with

the CO(1-0) line for Model II and Model III are almost the same. However, the emitting region

in Model II is several orders of magnitude larger than in Model III. The CO(7-6) or CO(9-8)

transition on the other hand produces markedly different antenna temperatures at all depths for the

three high-redshift models.

7.5.6 Comparison to Observations

As previously mentioned, 12CO line ratios are a good way of comparing theoretical predictions

directly to observations. In this section, I consider line ratios for two types of observed extragalac-

tic sources using where available line intensities or integrated temperatures measured through the

same beam size for calculating these ratios. Once again it is emphasised that none of the models
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mimic the exact physical conditions in the galaxies described in this section. Rather, they may

crudely represent the average conditions within a PDR in a galaxy of that type.

7.5.6.1 Nearby Starburst Galaxies - e.g. NGC253

The nearby starburst galaxy NGC253 has been extensively mapped in 12CO emission by various

authors (Bayet et al. 2004; Bradford et al. 2003; Güsten et al. 2006). Bradford et al. (2003)

compute line intensities for various CO transitions corrected to a 15” beam. These values are used

from their Table 3 (Column 6) to derive line intensity ratios for a few of the CO lines and observed

line intensity ratios are found to be: CO(2−1)
CO(1−0) ∼ 8.0 and CO(7−6)

CO(4−3) ∼ 3.3. In § 7.4.2, NGC253

was cited as an example of a galaxy with a high cosmic-ray ionisation rate due to the presence of

a starburst nucleus. The cosmic ray ionisation rate for this galaxy is thought to be ∼ 800 times

greater than in the Galaxy (Bradford et al. 2003). The theoretical line intensity ratios derived from

a model with a cosmic-ray ionisation rate of ζ = 10−14 s−1 described in § 7.4.3 are CO(2−1)
CO(1−0) ∼ 8.3

and CO(7−6)
CO(4−3) ∼ 4.1 at Av ∼ 8. Taking the ratio of intensities from Table 3 of Bayet et al. (2004),

CO(2−1)
CO(1−0) is found to be ∼ 9.3 for a beam size of 23” (Mauersberger et al. 1996; Harrison et al.



7.5. Trends in the 12CO Rotational Spectrum 182

1999) in both cases and CO(7−6)
CO(4−3) ∼ 4.5 for a beam size of 21.9” (Güsten et al. 1993) in both

cases. The ratio of fluxes given in Table 1 of Güsten et al. (2006) gives CO(7−6)
CO(4−3) ∼ 2. Given

that we have not attempted to accurately model the physical conditions of this particular galaxy,

the agreement between the observed and theoretical results is remarkably good. Note that these

ratios are the ratios of the line intensities, I , rather than the velocity integrated temperature plotted

in the figures as only the intensities in Table 3 of Bradford et al. (2003) are all corrected to the

same beam size. The ratios of the velocity integrated temperatures agree with those in Bayet et al.

(2004) to the same level as the intensity ratios. The predicted line intensities and ratios also agree

with the theoretical work of Meijerink et al. (2006) (Tables 2, 3 and 4) who have looked at the

effect of high cosmic-ray ionisation rates and FUV radiation fields on the 12CO lines.

7.5.6.2 High Redshift Galaxies - e.g. Cloverleaf

The gravitationally lensed QSO, Cloverleaf (H1413+117) at a redshift of ∼ 2.5, was cited as an

example of a high-redshift source in § 7.4.5. Barvainis et al. (1997) report CO observations for this

source and find the CO(4-3) line to be the strongest line in terms of the brightness temperature.

These authors compute brightness temperature ratios of CO(3−2)
CO(4−3) = 0.83 ± 0.16, CO(5−4)

CO(4−3) =

0.73± 0.16 and CO(7−6)
CO(4−3) = 0.68± 0.13 relative to the brightest line. There is therefore, a definite

drop in the ratios relative to the brightest line when going from the low-J to the high-J transitions

in this source. Figure 7.9 shows that for Model II at both Av ∼ 3 and Av ∼ 8 as well as Model

III at Av ∼ 3, the CO(5-4) line is the strongest line. For Model III at Av ∼ 8, the CO(3-2) line is

marginally brighter than the CO(4-3) line and is now the strongest line. I compute ratios relative

to the brightest line for both the high redshift models II and III. For Model II which shows little

evidence for having a high-mass biased IMF, the ratios go from ∼0.7 for the low-J transitions to

∼1 for the CO(7-6) transition relative to the brighest line. For Model III which has some of the

physical conditions necessary for producing a top-heavy IMF, the ratios go from∼0.9 for the low-

J transitions to ∼0.7 for the CO(7-6) line relative to the brightest line. Thus, the trends predicted

by Model III seem to match the observations for this source better than those predicted by Model

II. Once again, it should be emphasised that no attempt has been made in the models to match

the physical conditions for this source in any way whatsoever or to try and reproduce the observed

SED of this galaxy. However, this theoretical work does present some evidence, albeit speculative,

that the Cloverleaf source at redshift∼2.5 has roughly solar metallicity and potentially a top-heavy

IMF. Very recently, the observational work of Bradford et al. (2009) has presented some evidence

that the IMF is indeed top-heavy in this source and it is expected that future observational studies
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will be able to further test the validity of this prediction.

7.6 Molecular Tracers of the IMF at High-z

Although the focus of the latter half of this chapter has been on the 12CO SED associated with dif-

ferent physical conditions, the UCL PDR code includes a network of 83 chemical species whose

abundances are also output by the code. This section considers how the fractional abundances of

some of these different molecular species that could potentially be observed with future surveys,

change for different IMFs at high redshift. The fractional abundance is defined to be the abun-

dance of the molecule relative to the total hydrogen abundance, nH = n(H)+n(H2). Once again

Models I, II and III in § 7.4.5 are studied. In Table 7.2 the fractional abundances of some key

species are listed for all three models both at Av ∼ 3 and Av ∼ 8 typical of the translucent gas

component and dense PDR gas component of galaxies respectively. In Figure 7.12 the variation

of the molecular abundances of these species is also plotted as a function of depth inside the cloud

for the different high-redshift models.



7.6. Molecular Tracers of the IMF at High-z 184

Ta
bl

e
7.

2:
Fr

ac
tio

na
lM

ol
ec

ul
ar

A
bu

nd
an

ce
s

fo
rd

iff
er

en
tI

M
F

M
od

el
s

M
ol

ec
ul

e
M

od
el

I
M

od
el

II
M

od
el

II
I

A
v
∼

3
A

v
∼

8
A

v
∼

3
A

v
∼

8
A

v
∼

3
A

v
∼

8

H
C

N
5.

59
8
×

10
−

15
2.

81
3
×

10
−

14
6.

93
1
×

10
−

12
2.

86
9
×

10
−

9
4.

75
3
×

10
−

10
2.

25
3
×

10
−

9

H
N

C
6.

28
4
×

10
−

17
3.

49
8
×

10
−

17
1.

47
5
×

10
−

11
1.

77
0
×

10
−

9
4.

75
3
×

10
−

10
2.

65
5
×

10
−

9

C
S

2.
90

5
×

10
−

18
7.

07
7
×

10
−

18
2.

31
6
×

10
−

13
6.

40
5
×

10
−

12
9.

49
6
×

10
−

10
3.

71
9
×

10
−

10

C
N

3.
00

8
×

10
−

13
1.

15
3
×

10
−

12
2.

09
4
×

10
−

10
4.

47
4
×

10
−

9
4.

02
9
×

10
−

8
1.

75
8
×

10
−

9

H
C

O
+

3.
27

9
×

10
−

13
2.

68
5
×

10
−

13
1.

55
3
×

10
−

9
1.

43
8
×

10
−

8
1.

41
3
×

10
−

10
7.

83
2
×

10
−

8

C
O

8.
03

7
×

10
−

9
1.

05
0
×

10
−

8
5.

06
3
×

10
−

6
5.

59
1
×

10
−

6
3.

18
3
×

10
−

5
1.

39
7
×

10
−

4



7.6. Molecular Tracers of the IMF at High-z 185

From Table 7.2 and Figure 7.12, the following trends are observed. Assuming a limit of

detectability of 10−12 in fractional abundance which is arbitrary but roughly satisfied in our own

galaxy (Bayet et al. 2009), all the species apart from CO are below this limit for Model I where

the extremely high cosmic ray fluxes and FUV fields serve to destroy molecules effectively even

deep within the cloud. Note that these qualitative results do not change if a slightly higher or lower

detectability limit is assumed.

For Model III, the fractional abundances of all molecules considered here are above the de-

tectability limit even at low Av where we normally do not expect complex molecules to be present.

However, the high density in this model means that the systems considered here are always likely

to be compact rather than diffuse and the size of the cloud is smaller than for any of the other high

redshift models at a given Av as is illustrated by Figure 7.11. The high fractional abundance of CO

in this model also traces a high abundance of H2 even at small Av as illustrated by Figure 7.13.

While HCN and HNC are detectable in Model III at all Av, these molecules only start becom-

ing detectable in Model II at Av ∼ 2. However, the size of the emitting region in Model II is much

larger than in Model III. At high Av, the abundances of both HCN and HNC are almost the same

in Models II and III corresponding to unbiased and high-mass biased IMFs respectively.

The abundance of CO and CS is found to scale linearly with the metallicity - these abundances

are about two orders of magnitude greater for Model III compared to Model II at all depths and the

metallicity in Model III is also about two orders of magnitude greater than in Model II. A detection

of CS at a much higher level than otherwise expected in a high redshift active galaxy, may therefore

signal that it is at roughly solar metallicity and has some of the physical conditions necessary for

producing a top-heavy IMF. However, note that the predicted CS fractional abundance may be

sensitive to the assumed initial abundance of sulphur in the models which is taken to be 2× 10−7

here. This fractional abundance reproduces roughly the observed abundance of CS seen in TMC-

1 (Ohishi & Kaifu 1998) but is still highly uncertain (Ruffle et al. 1999). These results for the

abundance of CO and CS are consistent with the findings of Bayet et al. (2009) who use the same

UCL PDR code as in this work. These authors have studied the molecular tracers of various PDR

dominated galaxies with different physical conditions. For a density of 104 cm−3, a cosmic ray

ionisation rate of 5 × 10−17 s−1 and a FUV radiation field strength of χ = 1.7 × 103, they find

that CO and CS are linear tracers of the metallicity while CN and HCN are relatively insensitive

to the metallicity. For Av � 5, the CN and HCN abundance are indeed found to be roughly the

same for Models II and III. However, at lower Av, both CN and HCN are much more abundant in

Model III.



7.6. Molecular Tracers of the IMF at High-z 186

1 2 3 4 5 6 7 8 9−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Av

lo
g 1
0(n

(C
O)

)

CO

Model I
Model II
Model III

1 2 3 4 5 6 7 8 9−15

−14

−13

−12

−11

−10

−9

−8

Av

lo
g 1
0(n

(H
CN

))

HCN

Model I
Model II
Model III

1 2 3 4 5 6 7 8 9−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

Av

lo
g 1
0(n

(H
NC

))

HNC

Model I
Model II
Model III

1 2 3 4 5 6 7 8 9−18

−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

Av

lo
g 1
0(n

(C
S)

)

CS

Model I
Model II
Model III

1 2 3 4 5 6 7 8 9−13

−12

−11

−10

−9

−8

−7

Av

lo
g 1
0(n

(C
N)

)

CN

Model I
Model II
Model III

1 2 3 4 5 6 7 8 9−13

−12

−11

−10

−9

−8

−7

Av

lo
g 1
0(n
(H
CO
+ )
)

HCO+

Model I
Model II
Model III

Figure 7.12: Variation of fractional abundances of different molecular species with depth, Av for
high-redshift models (Table 7.1). The solid black line indicates the assumed limit of detectability
of 10−12
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Figure 7.13: The number density of H2 as a function of Av in high redshift models II and III.

The trend of HCO+ with Av provides another possibly interesting diagnostic for different

IMFs at high redshift. This molecule is more abundant at low Av (Av � 3.5) in the sub-solar

metallicity model which is thought to produce an unbiased IMF. However at Av � 3.5 it becomes

more abundant in the solar metallicity model which is thought to produce a top-heavy IMF. For

Model III, there is an obvious change in the chemistry at Av ∼ 3.5 and a sharp change in the

abundance of all the molecules is seen at this Av. It is well known that the attenuation of the

FUV flux with distance in a photon-dominated region, produces a characteristic depth dependent

chemical structure with well-defined chemical zones. At Av ∼ 3.5 in this model, we witness

the transition from a cloud layer of singly ionized carbon produced by photo-ionization of carbon

atoms by the FUV photons, to a layer where most of the atomic carbon becomes locked up in the

stable molecule CO due to the inability of the FUV field to penetrate the cloud further. It should

be noted that in both of the other high redshift models, which are at sub-solar metallicities, this

transition between chemical zones is not seen to occur within the Av range considered in Figure

7.12.

Although the variation of molecular fractional abundances with Av demonstrates some inter-

esting differences between the various IMF models, in reality these trends may be hard to observe.
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Most observations of extragalactic sources lead to measurements of the total column density of

different molecules integrated over the depth of the cloud. Therefore, the observed column den-

sity of molecules such as HCO+ for example in two extragalactic sources with different IMFs may

actually be very similar and therefore not a good diagnostic for the form of the IMF.

7.7 Conclusions

If top-heavy IMFs arise from the suppression of low-mass star formation then the galactic physical

conditions that inhibit star formation may be crudely defined. Physical conditions in which low-

mass star formation is permitted are here assumed to give rise to unbiased IMFs. Since the physical

conditions determine the chemistry, potential molecular diagnostics of various types of IMF can

be deduced. This study of low-mass star formation in extragalactic environments leads to the

following specific conclusions:

• Increasing the density results in the cooling time becoming longer than the free-fall time,

so that cores tend to heat up and star formation is inhibited. Assuming that the microscopic

properties of dust are similar in extragalactic environments to that in our own galaxy, it is

found that the formation of molecular ices is likely to occur at all densities between 100

cm−3 and 106 cm−3. The ambipolar diffusion timescale is comparable to the free-fall time

except at very low densities where it is much longer, suggesting that low mass star-formation

is allowed in magnetically sub-critical clouds with densities above 103 cm−3.

• Low metallicity systems are characterised by long cooling times compared to the free-fall

timescale. Collapsing cores tend to heat up thus inhibiting star formation and collapse.

These physical conditions may therefore be suitable for the production of a top-heavy IMF.

Due to the low dust grain number density, the desorption time is much shorter than the

freeze-out time in low metallicity systems and there is less ice formation than in the Milky

Way.

• High cosmic ray ionisation rates and high FUV radiation field strengths are associated with

the presence of massive stars. Such systems show rapid cooling times compared to their

free-fall timescales and star formation is unimpeded by thermal pressure. The propensity

for ice formation is reduced in systems with cosmic ray ionisation rates that are much larger

than those in the Milky Way. Freeze-out occurs over long timescales and if any ice was

formed, it would evaporate quickly; molecular coolants would be returned to the ISM fur-
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ther increasing the star formation efficiency. The freeze-out and desorption timescales are

comparable for systems at almost all FUV radiation field strengths so that icy mantles are

able to form except at very high values of χ. The ambipolar diffusion timescale is very long

for high values of the cosmic ray ionisation rate and radiation field strength. This implies

that star-formation may not be viable in clouds that are magnetically sub-critical under these

conditions.

• High redshift systems are characterised by high cosmic ray fluxes and FUV radiation field

strengths and can be considered to exist at a range of metallicities. All such systems will

show enhanced low-mass star formation with the propensity for star formation increasing

with the metallicity of the galaxy provided thermal pressure dominates the magnetic pres-

sure. This is certainly shown to be the case in active high redshift galaxies at sub-solar

metallicities. However, in active galaxies at solar metallicities, the magnetic field can im-

pede the formation of low-mass stars resulting in a high-mass biased stellar IMF.

While this study is relatively crude in nature, it is instructive in terms of making some predic-

tions about essentially unobservable low-mass star formation in extragalactic environments that

are different from our own Galaxy. The kinds of systems in which star formation is likely to be

enhanced or inhibited have been defined by considering changes in various timescales relevant for

star formation. It has been found, among other things, that low-mass star formation is likely to

be encouraged in host galaxies of massive stars and AGN and inhibited in low metallicity systems

with low cosmic ray fluxes and FUV radiation field strengths. This study finds some evidence for

a top-heavy stellar IMF at high redshifts but only if galaxies at high redshift are considered to be

at near solar metallicities.

The sensitivity of the 12CO rotational spectrum to changes in gas number density, metallicity,

and cosmic ray and far-UV fluxes are presented and used as a basis for predicting the relative

velocity-integrated antenna temperature of the CO rotational spectrum in three models of high

redshift active galaxies. While active galaxies with near-solar metallicity (and top-heavy IMFs)

produce higher antenna temperatures than those with sub-solar metallicity (and unbiased IMFs)

the actual rotational distribution is fairly similar. In sub-solar metallicity counterparts of Milky

Way type galaxies, the high-J to peak CO line ratio approaches unity. These physical conditions

are thought to produce top-heavy IMFs. However, sub-solar metallicity active galaxies at high

redshift also have high-J to peak CO line ratios that approach unity and these physical conditions

are thought to produce unbiased IMFs. Solar metallicity active galaxies at high redshift have high-
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J to peak CO ratios that drop well below unity and these conditions may produce top-heavy IMFs.

The form of the CO SED therefore clearly depends strongly on the metallicity of the galaxy and

provided it is known whether the galaxy is active or quiescent, the form of the IMF that may be

produced under such physical conditions, can be crudely inferred. High order CO transitions are

also found to provide a good diagnostic for high far-UV intensity and low metallicity counterparts

of Milky Way type systems both of which show some evidence for producing high-mass biased

stellar IMFs.

It is shown that the theoretical predictions for the 12CO rotational spectrum can be matched

to observed line ratios of different kinds of extragalactic sources both nearby and in the distant

Universe. Potentially exciting new evidence is presented for the Cloverleaf QSO at z∼ 2.5 having

the physical conditions necessary for producing a top-heavy IMF. This is consistent with the work

of Davé (2008); Wilkins et al. (2008) and van Dokkum (2008) who require a top-heavy IMF at

z > 1 and very recent observations also suggest that the Cloverleaf QSO does indeed have a

top-heavy IMF (Bradford et al. 2009) - a result that will undoubtedly be further tested with future

projects such as ALMA.

Molecular tracers of dense gas are predicted to differ markedly between galaxies with top-

heavy and unbiased IMFs. In particular, CO and CS differ significantly over the Av range 1 to

9 visual magnitudes with these molecules acting as linear tracers of the metallicity. As solar

metallicity active galaxies at high redshift are thought to have physical conditions necessary for

a top-heavy IMF, detection of elevated levels of CO and CS in high-redshift active galaxies may

signal that such physical conditions exist in these sources. HCN, HNC and CN differ between

solar and sub-solar metallicity active galaxies at high redshift for small visual extinctions but at

large depths, these molecules are found to be independent of the IMF shape. Finally, HCO+ is

more abundant in active galaxies with unbiased IMFs at low Av but, at high Av, the abundance of

this molecule is greater in active galaxies with top-heavy IMFs. Unless the Av of the host galaxy

can be directly measured, this molecule is probably not a good diagnostic for the shape of the IMF

as the integrated HCO+ column density that would arise from the two high-redshift models II and

III with different IMFs, would probably be very similar.

It can therefore be seen that chemistry may provide a simple and independent means of deter-

mining the approximate nature of the IMF of a high redshift galaxy.



CHAPTER 8

SUMMARY AND FUTURE WORK

In this thesis I have explored the properties of distant galaxies in our Universe, in particular their

colours, redshifts, morphologies and star formation processes within them. Much of the work car-

ried out has been in the context of current and future astronomical surveys whether they be wide-

field imaging surveys from the ground or space that aim to understand the mysterious properties

of dark energy or deep spectroscopic surveys that will fathom the processes of galaxy formation

and evolution or radio and sub-mm surveys that will allow us to better understand star formation.

8.1 Photometric Redshifts

The first part of the thesis (Chapters 2 to 4) is concerned with photometric redshift estimation

techniques. A comparison of different photometric redshift methods on a sample of Luminous

Red Galaxies has shown that there still exist many differences between the methods that need to

be well understood. While training set methods perform well in regimes where a complete and

representative training set is available, template-based codes overtake them when this is no longer

the case. If photometric redshift estimates are to be rendered reliable in the future, a more thorough

comparison of codes needs to be undertaken and I am currently participating in such a comparison

through the Photometric Redshift Accuracy Testing Program (PHAT). The field is also slowly

moving towards the development of more hybrid template and training methods for photometric

redshift estimation but much work still remains to be done in this area. In particular some of the

issues that need to be addressed include modifying training set methods such as artificial neural

networks to output the full probability distribution associated with each photo-z estimate as well

as devising better error diagnostics for photometric redshift estimates.

191
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Recent applications of photometric redshift methods to cosmological studies has illustrated

that the most relevant question is not “What is the best photo-z one can estimate?” but rather “Is

the photo-z accuracy sufficient to achieve the desired science goal?”. In the case of future surveys

such as the Dark Energy Survey and Euclid for which I have undertaken preliminary design stud-

ies in this thesis, the goal is the calibration of the dark energy equation of state parameter, w at

the percent level using various cosmological probes such as galaxy clustering, weak gravitational

lensing, galaxy cluster counts and Type 1a supernovae. For these purposes, the machine-learning

algorithm, ANNz used in most of this thesis has been shown to perform with reasonable success.

Using this neural network method and combining data from the near infra-red Vista Hemisphere

Survey to the optical data from the Dark Energy Survey allows for an improvement in the photo-

metric redshift scatter of ∼30% in the redshift range 1 < z < 2. I have introduced a method for

removing catastrophic outliers by clipping photo-z catalogues according to their photometric er-

rors. Clipping the catalogue as opposed to using the entire sample has allowed for an improvement

of ∼15-20% in the fractional error on the galaxy power spectrum computed using the DES+VHS

dataset out to a redshift of 2. I have shown that in the absence of large spectroscopic surveys, the

DES+VHS datasets, when combined, will therefore prove extremely effective in constraining dark

energy through large-scale structure signals in the galaxy power spectrum.

I have also shown in Chapter 4 that the choice of filters can be crucial to the photo-z accuracy

and there is a trade-off between depth in each filter and the colour information gained by having

a larger number of filters. A deep optical ground-based survey like LSST has been shown to

provide the ideal complement to a space-based near infra-red survey such as Euclid in terms of

photometric redshift performance although a survey like DES would also suffice. For shallower

ground-based optical surveys such as PS1, considerable exposure in the space-based near infra-red

filters will be required to match the required photometric redshift precision. Both the DES+VHS

and Euclid design studies have focussed on photometric redshift estimation for field galaxies but

new approaches for estimating the photometric redshifts of clusters of galaxies as well as hosts of

Type 1a supernovae will also need to be tested for future cosmological surveys such as these.

Much of the focus of the first part of this thesis has also been on the availability of spectro-

scopic training sets for future surveys. I have shown that if an incomplete training set is used to

determine photometric redshifts for a testing set that has not been cut to match the training set, the

resulting uncertainties in the photometric redshift bias could lead to errors in w of the order of 10

percent for a DES+VHS type survey. For a Euclid type survey, of the order of 105 spectroscopic

redshifts will be required for calibration of the photometric redshift estimate. The crucial role that
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current data sets play in calibrating future surveys is clearly demonstrated.

8.2 Machine Learning Approaches to Morphological Classification

Another example of an application where current data sets prove invaluable for future surveys is

in the morphological classification of astronomical objects. In Chapter 5, almost 1 million astro-

nomical objects in the Sloan Digital Sky Survey are classified using an artificial neural network.

These objects have already been visually classified by over 100,000 users as part of the Galaxy

Zoo project. This vast sample of visually classified objects provides an invaluable training set for

machine-learning codes and I have shown that by training on ∼10% of this sample, an artificial

neural network is able to reproduce the classifications for the remaining objects into three classes

- ellipticals, spirals and stars - to an accuracy of better than 90%. Furthermore, if the parameters

used as inputs to the neural network are chosen to be distance independant e.g colours rather than

magnitudes and ratios of radii rather than the absolute radius, the neural network output is not af-

fected by using a training set that is incomplete in magnitude. While this study has shown that the

Galaxy Zoo dataset provides a promising training set for automated morphological classification

in future surveys, more work remains to be done. For example, other sources of incompleteness

also need to be investigated. In particular, it would be interesting to investigate the success of the

neural network in identifying blue ellipticals and red spirals as well as other unusual objects when

such objects are likely to only sparsely populate the training sets. Moving to high-redshift sources

means one also has to deal with seeing limited samples of galaxies and machine-learning codes

need to be adapted for such purposes (Huertas-Company et al. 2008).

Finally, in this work only parameters derived from astronomical images have been used for

morphological classification. Much of the work in this thesis has demonstrated the considerable

wealth of information contained in astronomical spectra as compared to images. A logical pro-

gression of this work would therefore be to apply machine-learning algorithms to galaxy spectra

for the purposes of morphological classification and to determine what combination of images and

spectra allows for the most accurate classifications of astronomical objects.

8.3 Massive Red Galaxies and the Stellar Mass Function

In Chapters 6 and 7, I move from statistical studies of distant galaxy populations, to studying the

astrophysical processes within them. I start by looking at the evolution of a sample of luminous
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red galaxies from the 2dF and SDSS LRG and QSO survey. This sample of LRGs occupies a very

unique position within current massive galaxy samples. Firstly, the galaxies occupy a very large

volume. I study 8625 LRGs over a survey area of 186 deg2 in the redshift range 0.4 ≤ z < 0.8.

This massive volume makes it unlikely that any of the properties inferred from this sample are

affected by large-scale structure and cosmic variance. Secondly, all galaxies in the sample have

secure spectroscopic redshifts. Finally, a sizeable subset of the LRGs also have near infra-red

photometry available from the UKIDSS Large Area Survey making it possible to estimate stellar

masses for these objects. I consider the evolution of the luminosity function and stellar mass

function of these objects over this redshift range and find not only that these galaxies show very

little evidence for recent star formation, but also that galaxies with stellar masses of greater than

3 × 1011M⊙ were already well assembled at redshifts of 0.8. This observational result presents

a significant challenge for current models of galaxy formation which predict that galaxies that

reside in the most massive halos are built up through successive mergers of smaller objects until

the present day.

In Chapter 6, I also show how colour selected samples of galaxies such as the LRGs which also

have non-negligible photometric errors may be contaminated by other sources. This contamination

presents a significant problem for some luminosity function estimators such as the STY estimator

which can be biased as a result of the photometric errors. In the future, I propose to develop a

more robust maximum likelihood estimator for luminosity function estimates of such samples.

This will be done by using Monte Carlo techniques to study the selection function of LRGs with

non-negligible photometric errors as already discussed in Chapter 6. Finally, in Chapter 2 I have

presented the MegaZLRG DR6 photo-z catalogue of LRGs constructed using the 2SLAQ galaxies

as a training set. In the future, I hope to use this larger catalogue of 1.5M LRGs to estimate the

LRG luminosity and mass functions after deconvolving the photo-z errors according to the method

of Sheth (2007). The photo-z errors for this sample have already been well quantified in Chapter

2 of this thesis.

The final part of Chapter 6 studies the evolution of the LRG mass function. Estimates of the

stellar mass-to-light ratio and therefore the mass function are shown to be sensitive to the choice

of the stellar initial mass function the form of which still remains highly debated, particularly in

high redshift systems. In Chapter 7, I present an alternative way of deriving the approximate shape

of the stellar IMF by considering the balance of timescales associated with low-mass star forma-

tion in different extragalactic environments. These timescales are calculated from the outputs of a

radiative transfer model for photon-dominated regions within galaxies. I find that while low metal-
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licity systems with normal levels of cosmic ray and FUV flux show evidence for low-mass star

formation being impeded by thermal pressure resulting in a top-heavy IMF, the same metallicity

active galaxies such as those likely to be found at high redshifts, will probably have an unbiased

IMF. In fact active galaxies at nearly solar metallicities show the necessary physical conditions

required to halt low-mass star formation through magnetic pressure resulting in a top-heavy IMF.

However, these physical conditions may not be sufficient for such an IMF to be present. The last

part of Chapter 7 explores trends in molecular emission resulting from these different IMFs. I find

that while active galaxies at sub-solar metallicities have high-J to peak CO line ratios of close to

unity, the same galaxies at solar metallicities have much lower high-J to peak CO line ratios. The

solar metallicity active galaxies also show evidence for elevated levels of the molecules CO and

CS. Detections of these molecules in anomalously large quantities in high redshift active galaxies

may therefore signal the presence of a top-heavy IMF.

In Chapter 7 I have shown that PDR models can be successfully applied to galaxies in the

distant Universe and provide a plethora of information about the astrochemistry of such systems.

In the future, I hope to apply these models to massive galaxies such as those studied in Chapters

2 and 6. As already pointed out in this thesis, the formation of such galaxies presents a major

conundrum for current theories of galaxy formation. Depending on whether these galaxies were

assembled through dry or wet mergers, we would expect them to have very different astrochemical

signatures. I propose to use the PDR model used in Chapter 7 to predict the chemical signatures

associated with both intense bursts of star formation arising from gas rich mergers as well as those

associated with gas poor mergers. By matching these theoretical predictions to observations, we

can hope to understand the formation and assembly of the most massive galaxies in our Universe.

We are now entering a new age of astronomical surveys. The plethora of astronomical data

that will overwhelm us in coming years covering the entire range of the electromagnetic spectrum

and pushing the boundaries of our observable Universe, will need to be fully exploited if we are

to make new strides in the fields of observational cosmology and galaxy evolution. In this thesis

I have presented some ideas for studying distant galaxies in our Universe using future astronom-

ical surveys. These studies have ranged from photometric redshift estimation and dark energy

constraints using optical and near infra-red wide field imaging surveys to studying star formation

processes in galaxies using radio and sub-mm surveys. In this chapter, I have concluded this thesis

by also presenting some ideas for future work that can be undertaken and results that will be inter-

esting to follow-up in coming years in order that the full potential of future astronomical surveys
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can be extracted.
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Borch, A., Meisenheimer, K., Bell, E. F., Rix, H.-W., Wolf, C., Dye, S., Kleinheinrich, M., Kovacs,

Z. & Wisotzki, L., 2006, A&A, 453, 869

Bourke, T. L., Myers, P. C., Robinson, G. & Hyland, A. R., 2001, ApJ, 554, 916

Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole, S. &

Lacey, C. G., 2006, MNRAS, 370, 645

Bower, R. G., Lucey, J. R. & Ellis, R. S., 1992, MNRAS, 254, 601



BIBLIOGRAPHY 200

Bradford, C. M., Aguirre, J. E., Aikin, R., Bock, J. J., Earle, L., Glenn, J., Inami, H., Maloney,

P. R., Matsuhara, H., Naylor, B. J., Nguyen, H. T. & Zmuidzinas, J., 2009, ArXiv e-prints

Bradford, C. M., Nikola, T., Stacey, G. J., Bolatto, A. D., Jackson, J. M., Savage, M. L., Davidson,

J. A. & Higdon, S. J., 2003, ApJ, 586, 891

Brammer, G. B., van Dokkum, P. G. & Coppi, P., 2008, ApJ, 686, 1503

Bressan, A., Fagotto, F., Bertelli, G. & Chiosi, C., 1993, A&AS, 100, 647

Bromm, V., Coppi, P. S. & Larson, R. B., 1999, ApJL, 527, L5

Bruzual, A. G., 2007, in A. Vazdekis & R. F. Peletier (eds.), IAU Symposium, volume 241 of IAU

Symposium, pp. 125–132

Bruzual, A. G. & Charlot, S., 1993, ApJ, 405, 538

Bruzual, G. & Charlot, S., 2003, MNRAS, 344, 1000
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E., Falcón-Barroso, J., Krajnović, D., Kuntschner, H., McDermid, R. M., Peletier, R. F., Sarzi,

M., van den Bosch, R. C. E. & van de Ven, G., 2006, MNRAS, 366, 1126

Carilli, C. L., Walter, F., Wang, R., Wootten, A., Menten, K., Bertoldi, F., Schinnerer, E., Cox, P.,

Beelen, A. & Omont, A., 2008, ApSS, 313, 307
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Knudsen, K. K., Nerié, R., Kneib, J.-P. & van der Werf, P. P., 2009, 496, 45

Kodama, T. & Arimoto, N., 1997, A&A, 320, 41

Koo, D. C., 1999, in R. Weymann, L. Storrie-Lombardi, M. Sawicki & R. Brunner (eds.), Pho-

tometric Redshifts and the Detection of High Redshift Galaxies, volume 191 of Astronomical

Society of the Pacific Conference Series, pp. 3–+

Kotulla, R., Fritze, U., Weilbacher, P. & Anders, P., 2009, MNRAS, 396, 462

Kroupa, P., Tout, C. A. & Gilmore, G., 1993, MNRAS, 262, 545

Kurtz, M. J., Geller, M. J., Fabricant, D. G., Wyatt, W. F. & Dell’Antonio, I. P., 2007, AJ, 134,

1360

Lahav, O., Abdalla, F. B. & Banerji, M., 2009, Chapter 13: Photometric Redshift Estimation

Methods, Bayesian Methods in Cosmology (CUP)

Lahav, O., Naim, A., Buta, R. J., Corwin, H. G., de Vaucouleurs, G., Dressler, A., Huchra, J. P.,

van den Bergh, S., Raychaudhury, S., Sodre, Jr., L. & Storrie-Lombardi, M. C., 1995, Science,

267, 859
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Le Fèvre et al., 2005, A&A, 439, 845

Le Teuff, Y. H., Millar, T. J. & Markwick, A. J., 2000, A&AS, 146, 157

Leitherer, C., Schaerer, D., Goldader, J. D., Delgado, R. M. G., Robert, C., Kune, D. F., de Mello,

D. F., Devost, D. & Heckman, T. M., 1999, ApJS, 123, 3

Lejeune, T., Cuisinier, F. & Buser, R., 1997, A&AS, 125, 229

Lejeune, T., Cuisinier, F. & Buser, R., 1998, A&AS, 130, 65

Lilly, S. J., Le Fevre, O., Hammer, F. & Crampton, D., 1996, ApJL, 460, L1+

Lima, M., Cunha, C. E., Oyaizu, H., Frieman, J., Lin, H. & Sheldon, E. S., 2008, MNRAS, 390,

118

Lin, H., Cunha, C., Lima, M., Oyaizu, H., Frieman, J., Collister, A., Lahav, O. & Dark Energy

Survey, 2004a, in Bulletin of the American Astronomical Society, volume 36 of Bulletin of the

American Astronomical Society, pp. 1462–+

Lin, H., Yee, H. K. C., Carlberg, R. G., Morris, S. L., Sawicki, M., Patton, D. R., Wirth, G. &

Shepherd, C. W., 1999, ApJ, 518, 533

Lin, L., Koo, D. C., Willmer, C. N. A., Patton, D. R., Conselice, C. J., Yan, R., Coil, A. L., Cooper,

M. C., Davis, M., Faber, S. M., Gerke, B. F., Guhathakurta, P. & Newman, J. A., 2004b, ApJL,

617, L9

Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M. J.,

Nichol, R. C., Szalay, A., Andreescu, D., Murray, P. & Vandenberg, J., 2008, MNRAS, 389,

1179

Lutz, D., Sturm, E., Tacconi, L. J., Valiante, E., Schweitzer, M., Netzer, H., Maiolino, R., An-

dreani, P., Shemmer, O. & Veilleux, S., 2007, ApJL, 661, L25

Ma, Z., Hu, W. & Huterer, D., 2006, ApJ, 636, 21



BIBLIOGRAPHY 208

Mac Low, M.-M. & Klessen, R. S., 2004, Reviews of Modern Physics, 76, 125

Madau, P., 1995, ApJ, 441, 18

Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C. & Fruchter, A., 1996,

MNRAS, 283, 1388

Maraston, C., 1998, MNRAS, 300, 872

Maraston, C., 2005, MNRAS, 362, 799
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