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Summary. This study investigates the Information Process Space (IPS) of 
pedestrians, which has been widely used in microscopic pedestrian 
movement simulation models. IPS is a conceptual framework to define the 
spatial extent within which all objects are considered as potential obstacles 
for each pedestrian when computing where to move next. The particular 
focus of our study was identifying the size and shape of IPS by examining 
observed gaze patterns of pedestrians. A series of experiments was conducted 
in a controlled laboratory environment, in which up to 4 participants walked 
on a platform at their natural speed. Their gaze patterns were recorded by a 
head-mounted eye tracker and walking paths by laser-range-scanner–based 
tracking systems at the frequency of 25Hz. Our findings are threefold: 
pedestrians pay much more attention to ground surfaces to detect immediate 
potential environmental hazards than fixating on obstacles; most of their 
fixations fall within a cone-shape area rather than a semicircle; and the 
attention paid to approaching pedestrians is not as high as that paid to static 
obstacles. These results led to an insight that the structure of IPS should be 
re-examined by researching directional characteristics of pedestrians’ vision.  
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1 Background 
Following the trend of sustainable development, pedestrian-oriented planning 
has started attracting much attention in several discourses; transport studies, 
urban planning and architecture. A recent trend in this subject is to develop 
predictive models of pedestrian movement. The subject of how people move 
around encompasses a huge variety of activities, ranging from migration and 
commuting movement between cities to how they manoeuvre themselves in 
crowds. This paper focuses on pedestrian movement at the smallest scale, 
where the individual pedestrians’ movement patterns, more specifically how 
they avoid bumping into each other or how they avoid obstacles, are analyzed. 
At this “microscopic” level there has been a recent surge of studies that 
utilize disaggregated models that represent pedestrians’ dynamics as a series 
of interactions between individual pedestrians’ behaviour [1-10]. 
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Although these models differ in terms of their spatial representation (i.e. 
discrete space or continuous space) as well as in terms of the techniques used 
to incorporate the behaviour model into computational codes, they share a 
common element in modelling individual pedestrians’ behaviour: 
Information Process Space. IPS is essentially an approximation of the 
computational scope limitation in the environment for which modellers 
assume interactions between any given pedestrian and other pedestrians or 
obstacles. In a collision avoidance scenario, it corresponds to how far each 
individual pedestrian pays attention when he/she decides where to move next 
to avoid another pedestrian.  
IPS is conceptualized in various different ways. Most Cellular Automata 
(CA) based pedestrian behaviour models represent pedestrians’ walking paths 
as a chronological transition of the state of cells in a regular 2D space lattice. 
In CA, the cell states are simultaneously updated in discrete time steps and 
the change of the state of each cell depends on some local rules defined 
solely based on its own previous state and that of its neighbouring cells. At 
every step, each of the neighbouring cells is examined as a potential next 
destination in terms of whether it is occupied by other pedestrians or 
obstacles and thus whether potential collision may occur. Therefore 
‘neighbourhood’ is used synonymously in this context for ISP, and is 
modelled as an extension of Moore neighbourhood in which the number of 
cells n in the neighbourhood of cell x (x included) = (2r+1)2 as shown in 
Figure 1. Pedestrians’ natural walking speed is taken into account for the 
selection of radius r [8, 11]. This type of ISP allows pedestrians to “perceive” 
all the information from different directions equally.  

 
 

Fig.  1 IPS represented in Cellular Automata-based models; (a) r=1; (b) r=2 
 
Other models use the analogy of the human field of vision to define the 
topography of neighbourhood. A viewshed or Isovist is an area of continuous 
space that is visible from a fixed vantage point as shown in Figure 2 (a). 
Visual neighbourhood used by Turner and Penn [12] interprets viewsheds 
into 2D discrete space and defines a neighbourhood relationship for any 
given location on the grid-shape graph as shown in Figure 2(b). ISP here is a 
collection of directly visible vertices each of which receives pedestrians’ 
attention equally regardless of the walking direction in the same way as the 
neighbourhood cells do in CA-based models. 

 
Fig.  2 IPS represented by viewshed (a) and visual neighbourhood (b) 
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The aforementioned two models assume an even distribution of pedestrians’ 
attention to the surrounding environment. There are several models that allow 
its uneven distribution. Utility-maximization-based models regard pedestrian 
behaviour as an optimization process of the cost functions for each 
alternative walking path. The model proposed by Hoogendoorn et al [5, 13] 
applies a three-tiered structure for the utility calculation: strategic, tactical 
and operational levels. The first strategic level concerns the choice of general 
behavioural and activity area. It sets an activity for a pedestrian to perform, 
for which he or she needs to make decisions optimizing expected subjective 
utility. The second level is for way-finding to reach the activity area chosen 
in the previous process. It is in the third operational level, where a pedestrian 
computes desired velocity at each time instant and location based on 
kinematic costs and psychological discomfort, that ISP is implemented. The 
negative utility (cost) due to walking too close to obstacles and other 
pedestrians is integrated into the calculation by applying a scaling parameter 
that describes the proximity discomfort reduction rate as a function of the 
distance between two objects; in other words, pedestrians and obstacles in the 
vicinity yield stronger negative proximity cost than those in the distance. The 
parameters are called region of influence of obstacle and spatial discount 
factor, respectively. These parameter values are further influenced by two 
anisotropy factors [5]. They are the abstract form of the biased pedestrians’ 
perception of the objects which are located in front of and behind them as 
shown in Figure 3, and are provided as the ratio to the perception level of the 
stimuli coming from their sides, which is given as 1. The “behind” anisotropy 
can be interpreted as how much sensory information other than optical  data 
(e.g. sounds) pedestrians use for negotiating their way in collision avoidance 
behaviour. 

 
 

Fig.  3 Even and uneven distribution of pedestrians’ perception represented 
with three different values for the front and back anisotropy factors; (a) ff = 

fb = 1; (b) ff = 2, fb = 1; (c) ff = 1, fb = 0.5. 
 
Similar parameters are adopted by Social Force models [9, 10] to 
accommodate the difference in pedestrians’ perception of other pedestrians  
in relation to those approaching from the front or those approaching from 
behind. Social Force-based models that represent crowd motion by 
interaction of particles according to the laws of Newtonian mechanics were 
first proposed by Helbing et al [14]. The fundamental concept of this type of 
model is that pedestrians feel and exert social force, either repulsive or 
attractive, on each other. The size and the shape of ISP is represented in the 
form of a parameter called Fall-Off Length of Social Repulsion Force 
weighted by two coefficients that determine which of the face-to-face and 
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face-to-back forces will be used in the computation of the strength of social 
force based on the relative angle of their body directions. 
The analogy of human vision field for IPS is more explicitly used in other 
models [2, 4] by setting a fan-shaped area around the body of an individual 
pedestrian. The area is a direct approximation of the field of vision of 
pedestrians (FOV), which is defined by its sectional angle and radius as 
shown in Figure 4. The difference between FOV and the aforementioned 
visual neighbourhood lies in the definitive shape of FOV, which is based on 
the cognitive studies on the physical characteristics of human perceptions. 
Unlike other models, pedestrians’ attention ranges only to the front and 
partially to both sides of the body in the FOV-based models. 
 

 
Fig.  4 Field of vision around a pedestrian 

 
Despite the fact that IPS forms the core of most microscopic pedestrian 
behaviour models, neither its validity nor the details of the parameters of IPS 
have been fully examined by comparison with actual data. Consequently the 
focus of previous microscopic pedestrian behaviour models was on recreating 
“realistic” movement patterns with a selected number of pre-defined 
behaviour rules. The assessment of the behaviour rules is based solely on its 
performance, which is subjectively evaluated from the viewpoint of visual 
similarity with reality. This is partly due to the difficulties in obtaining 
datasets of pedestrian movements at a scale fine enough to analyze the details 
of IPS.  
This study utilizes an automatic tracking system based on laser range 
scanners to document pedestrians’ walking trajectories as well as utilizing a 
head-mounted eye tracking device to register their gaze patterns while 
walking. The application of such technologies is expected to be useful for the 
investigation of ISP. Our particular interests are in measuring its size and 
shape as well as identifying any potential environmental factors that exercise 
influence on it. Our research questions include: 
1. What is the distance between a pedestrian and an obstacle when he or she 

first pays attention to it? 
2. How long does a pedestrian look at an obstacle while avoiding it? 
3. Are there any variations in the result of question 1 between when the 

participant avoids static obstacles and when he or she avoids other 
pedestrians? 

4. Are there any variations in the result of question 2 between when the 
participant avoids the static obstacles and how long he or she looks at other 
pedestrians?   



2 Methodologies 
The datasets used for this study are taken from two-day observation studies 
of pedestrian microscopic movement that were conducted at the Pedestrian 
Accessibility and Movement Environment Laboratory (PAMELA) at 
University College London. The surveys consisted of sets of walking 
sessions on the platform (WL: 3.6m x 15.6m) in PAMELA. There were two 
types of platform setting: with and without two mannequins used as obstacles 
(WLH: 0.4m x 0.4m x 1.5m) placed in the middle of the platform. he number 
of pedestrians on the platform also varied from 1 to 4. In each session, the 
participants were instructed to walk at natural speed from one end of the 
platform to the other and to repeat until receiving a further instruction to stop. 
Each session took approximately two minutes. Their positions on the 
platform were observed manually and also recorded by infra-red laser range 
scanners (LD-A Maker manufactured by IBEO Automobile Sensor, 
Germany) every 0.1 second. The scanners were pre-installed on the outer 
wall of the platform as part of PAMELA facilities. The information was sent 
from the scanners to a computer via Ethernet cable. A piece of custom-made 
software provided by the company arsenal research GmbH (Austria) was 
used to extract each pedestrian’s walking path on the platform from the time-
series laser point dataset. 
Amongst the participants in each session, one person (three in total for the 
whole study) wore an eye tracker. The eye tracker used was an iViewX Head 
Mounted Eye Tracking device (HED) manufactured by SensoMotoric 
Instruments GmbH (Germany). The device was to measure the gaze position 
of the participant, which is a point in a person’s field of view. It consists of a 
lightweight helmet, an eye movement tracking camera, and a scene camera 
that captures the field of view. The gaze position is provided every 0.04 
second (25 frames per second) in the form of a cursor inside Bitmap images 
(see Figure 5). 

 
Fig.  5 An example of the field of view recorded by Eye tracker 

 
The eye movement data and positional data (re-sampled and interpolated at 
the interval of 0.04 seconds) were then integrated by time-synchronization 
processes. A continuous gaze at the same point for more than 0.08 of a 
second was regarded as a fixation. If the gaze point in the next frame fell on 
the same object and within the range of 3.0 degrees (roughly 10cm) from the 
axis to the original gaze position, the participant was regarded as gazing at 
the same point (and thus fixating). The threshold values and other definitions 
of pedestrians’ fixation in this study follow those in a previous study [15]. All 
the fixations were identified with time information (when it occurred), 



location (where on the platform it occurred), and the type of object (e.g. other 
pedestrians, mannequins, etc). 

3 Results 

3.1 General fixation behaviour 
During the observation, the following points were found: 
• Fixation on the static obstacles on the platform was often observed at the 

beginning of each walking session 
• Fixation on the platform surface was often observed during the walking 

session 
• Fixation on the parapet (hand rail of the platform) located around the 

perimeter of the platform at waist level was observed  
These results vary from those of other pedestrian simulations due to the fact 
that few of them take account of objects other than fellow pedestrians or 
boundary walls. 

3.2 Fixations by the object type 
Figure 6 shows the observed fixations classified into 7 different categories: 
other pedestrians in the same walking session, side and facing parapets, 
platform surface, static objects (mannequins), and other objects such as a 
building wall, survey staff, and the area outside of the platform. “No gaze” 
includes gazes that did not last for two or more frames, which means that 
their duration was less than our definition of fixation. “No gaze” also 
includes observations in which the eye tracking system could not analyse 
where the participant gazed. Figure 6 clearly illustrates that the participants 
often fixated on the platform surface as well as on other objects on the 
platform. 
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Fig.  6 Observed fixations by object types 

3.3 Location of the observed fixations 
Figure 7 shows the fixation at each point along the walking path of a 
pedestrian in one of the sessions (session 09). Point (0, 0) in the figure 
indicates the origin of our coordinate system on the platform. It is located at   
one end of the long side of the platform (x-axis) and in the middle of its short 
side (y-axis). The figure illustrates that the participant started fixating on a 



static obstacle (mannequin) at a distance of several meters when approaching 
it. 
Figure 8 shows the numbers of observed fixations on a static obstacle in 
relation to distances between the participant and the obstacle. The data used 
for this analysis includes all the fixations in all the sessions of the experiment. 
The fixations were aggregated and divided into the distance categories. For 
instance, category “0” includes the fixations with the distance value between 
0.00 and 0.99 (m).  
On the other hand, Figure 9 shows the numbers of observed fixations on 
another participant in relation to distances between the fixated participant and 
the eye-tracker participant. In this analysis, we did not distinguish between 
oncoming participants and leading participants, who walked in front of the 
eye-tracker participant and in the same direction. Comparison between the 
two figures leads us to notice that distances at which the participant fixated 
on another participant were shorter than those on a static obstacle. 
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Fig.  7 Trajectory and fixation object in Session 09 
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Fig.  8 The number of observed fixations on a static obstacle by distance 
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Fig.  9 The number of observed fixations on other pedestrians by distance 

 
Table 1 shows the average distances at which the eye-tracker wearers first 
fixated on the other pedestrians who were walking in the same direction in 
front (leading participants), on those who were approaching head-on, and on 
the static obstacles. From all the fixations, the location and time information 
of the first frame was extracted to calculate the distance between the 
participant and the object. Table 1 indicates that the participant fixated on a 
static obstacle at the greatest distance, followed by an approaching 
participant and then a leading participant. 
 

Table 1 The number of observed fixations on other pedestrians by distance 
 Leading 

participants 
Approaching 
participants 

Static obstacles 

The number of data 24 3 60 
Average distance (m) 1.90 3.97 4.58 
Standard Deviation 0.71 0.54 1.89 
 
Figure 10 plots the relative position of the fixated object in each observed 
fixation on another participant or a static obstacle. Positions of objects are 
relative to the position of the eye-tracker participant, and therefore the 
position of the participant is always (0.0). The walking direction of the 
participant is set to be toward (1, 0). In the calculation, we assumed that the 
participant always walked parallel to the longitudinal edge of the platform as 
the platform shape is a long rectangle. In the figure, filled-diamonds 
represent positions of static obstacles, with filled-squares representing 
leading participants and filled-triangles oncoming participants. The figure 
also includes “ignored participants” as well as “ignored obstacles” plotted 
with cross marks. These are other participants or static obstacles in the sight 
of the participant but not fixated because the participant fixated on another 
participant or static obstacle. Note that in some cases in which there was 
more than one participant or obstacle in the eye-tracker participant’s sight, 
the eye-tracker participant at first fixated on one object (say, an obstacle) for 
a while and then fixated on another participant or obstacle although the 
obstacle was still in the eye-tracker participant’s sight. In these cases, the first 



fixated obstacle was plotted in the figure as fixated  but later plotted as an 
“ignored obstacle”, which means that a line of consecutive diamond marks in 
the figure becomes a line of consecutive cross marks at a certain point. Figure 
11 is a schematic representation of this. 
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Fig.  10 Relative position of fixated or ignored objects 
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Fig.  11 Schematic representation of transition of an object from “fixated” to 

“ignored” 
 
Interestingly, the figure shows that there were few ignored oncoming 
participants and obstacles in the area directly in front of the participant 
(longitudinal coordinate: 0.0 to around 4.5m, lateral coordinate: 0.5m to 
0.5m). Also we can observe that there was no fixated participant or obstacle 
in the area with an angle of 45° or more from the walking direction of the 
participant. 

4 Discussion 
In this paper, we have explored the size and the shape of Information Process 
Space, in which a pedestrian takes account of other pedestrians and obstacles. 
We conducted an experiment wherein a participant wore an eye tracker and 
avoided collision with other participants and obstacles on the platform. The 
results led to 3 interesting insights on Information Process Space.  
Firstly, we expected that the eye-tracker participant would frequently fixate 
on static objects or pedestrians. The results show, however, that there were 
also many fixations on the platform surface or the facing parapet. 
Interestingly, when the participant first came to the platform before starting 
to walk, it was observed that the participant fixated on objects on the 
platform. It is speculated that the pedestrian with the eye tracker obtained the 
basic information about objects on the platform (e.g. the existence and the 
approximate location of other pedestrians and obstacles) before the start of 



each session, and during the experiment the pedestrian fixated on other 
pedestrians/obstacles when it was really necessary for collision avoidance. 
On the other hand, the pedestrian often fixated on the platform surface 
because walking safely on the platform surface may be an immediate issue 
for the pedestrian.  
 As mentioned in the Introduction section, Hoogendoorn et al suggested three 
levels of pedestrians’ decision making process while walking: strategic, 
tactical and operational level [5, 13, 16]. A comparison between our results 
indicates that there may be one level below these three levels i.e. checking 
environments (e.g. surface) for safe walking. Indeed, this finding makes us 
recall an important fact: pedestrians take account not only of collision 
avoidance but also of immediate environmental hazards (e.g. a gap in the 
surface). It would be interesting to investigate how these levels interact with 
each other. Previous studies [17, 18] suggested that, in low lighting 
conditions, pedestrians fixate on “hazard” objects longer than “orientation” 
objects. It is speculated that the more attention a pedestrian pays to a hazard 
object, the less attention may be paid to other pedestrians or obstacles. There 
is room for further research into how to model pedestrians’ attention in a low 
visibility environment.  
Secondly, the results of our experiment give insights into the shape of 
Information Process Space. Many pedestrian simulations have assumed it is a 
semicircle, whereas the results imply that pedestrians are more interested in 
objects directly in front to which the relative lateral distance is small. Also, 
the participants seldom fixated on objects to which the angle from the 
walking direction was more than 45 degrees. These observations suggest that 
IPS may have a different form from a homogeneous semicircle. It seems that 
some areas, especially the exact front area, have higher priority in 
pedestrians’ attention than other areas.  
It is noteworthy that there was no fixation observed within the immediate 
vicinity (the area in front of the body within a radius of 1.5m). Patra and 
Vickers conducted a series of experiments in which participants were asked 
to approach and to step over an obstacle, or to step on specific locations [19, 
20]. They found that participants fixated on the landing target on average two 
steps ahead. Two steps may be necessary for the human body to control limb 
trajectory and then to successfully step over/on a target. On the other hand, 
collision avoidance requires more movements and more time because a 
person needs to displace himself/herself away from an oncoming pedestrian 
or an obstacle. If there is an object directly in front to which the distance is 
less than 1.5m, it may be too late to fixate on another pedestrian or an 
obstacle and then avoid collision.  
Thirdly, according to our results, durations of first fixations on leading 
participants were less than those on other oncoming participants. This could 
be because of a smaller possibility of colliding with a leading participant than 
with another oncoming participant. On the other hand, first fixations on static 
obstacles were slightly greater than those on oncoming participants. This 
could be because the participants also recognised static obstacles as objects 
that they might be more likely to collide with. We had expected that first 
fixations on oncoming participants might take place at an earlier stage than 
static obstacles because relative velocities to an oncoming participant were 
greater than those to static obstacles. However, our results did not match with 
this hypothesis.   



It should be noted that the fixations we observed might mainly be fixations at 
the collision avoidance or surface-check level. The shape of the information 
process space at the strategic or tactical level (to find a destination or to 
understand the approximate location of other pedestrians or obstacles) may 
be different. Also, this paper presents preliminary observations based on a 
limited number of samples. Future works order to understand the exact size 
of Information Process Space, further investigation is In order to understand 
the exact size and shape of Information Process Space, a further investigation 
is necessary.   

5 Conclusions 
This research empirically investigated the Information Process Space of 
pedestrians. Many pedestrian simulations assume a certain area, but little 
research has empirically investigated this. By analysing fixation behaviour of 
pedestrians using an eye camera, we examined the Information Process Space 
of pedestrians in the real world. 
As pedestrian simulations become more and more sophisticated and used for 
various situations, it is necessary to understand how real pedestrians perceive 
other pedestrians and environments. Such knowledge would help further 
precise representation of pedestrians in simulations. Especially, as our study 
pointed out, pedestrians perceive not only other pedestrians or obstacles but 
also other environmental information, such as hazards on the floor surface. It 
would be of interest to model such whole environmental recognition systems 
and to integrate them into pedestrian simulations. In other words, pedestrian 
simulations can be a platform of knowledge of such human behaviour or 
human perception about environments. 
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