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Abstract

The tools of representation theory offer us a powerful insight in those terms in a system’s
Hamiltonian which cause it to become ordered. Such is its power that, in many fields, the
vocabulary of representations has become conventional; crystallography remains a notable
exception. This thesis develops the existing methods for applying representation theory to
symmetry lowering phase transitions in crystalline systems, and presents examples of its

use.

The opening section reviews the foundations and previous applications of representation
theory to magnetic and structural phase transitions. Complimentary to the mathematical
framework is a discussion of the physical interpretation of irreducible representations and
basis vectors, the building blocks of any system model constructed in this way. Symmetry
arguments are used to qualitatively discuss the symmetry breaking in ferroelectric materials

and the role of phase factors in the loss of centro-symmetry.

The body of this work is concerned with developing fast, reliable and repeatable methods
for applying representation theory to displacive transitions. Calculation of a system’s basis
vectors requires both a reliable method, and suitable starting resources. In this section,
the first verifiable validation of the tables of Kovalev is presented, along with a strategy
for determining the appropriate set of trial functions for use with the method of projection
operators. Further, a new module in SARAA-Refine has been written which performs basis
vector refinement of powder diffraction data to facilitate quantitative analysis using these

techniques.

Finally, the techniques of representation theory are applied to two experimental investi-
gations: iron oxyborate and potassium selenate. The use of a single symmetry frame-
work to discuss the structural, magnetic and charge-ordering transitions in these systems
demonstrate the power of this technique. Representation theory provides a bridge between

structure and properties; this work aims to strengthen the foundations of that bridge.
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CHAPTER 1

The evolution of crystal symmetry

“I like to recall [M. von Laue’s| question as to which results derived
in the present volume I considered the most important ... I have come
to agree with his answer that the recognition that almost all rules of
spectroscopy follow from the symmetry of the problem is the most re-

markable result”

E. Wigner

1.1. Introduction

Symmetry is integral to many areas of science, drastically simplifying problems in
fields as diverse as density functional theory and X-ray diffraction ( e.g. van Leeuwen,
1998; Buxton, 1976). Almost all selection rules of spectroscopy are defined by sym-
metry, and without it the field of diffraction would probably not exist. The 230
space groups that comprise the classical symmetries of a crystal have been known
for over 100 years, and their application to crystallography is covered in detail in
the International Tables for Crystallography - A (2002). However, there are an ever
increasing number of systems that cannot be fully described using space groups, and

for which we must extend our concepts of symmetry.

In this chapter, we review how diffraction experiments have driven the evolution of
symmetry theory and look at some existing extensions of the space group formalism:

the magnetic and superspace groups. Representation theory is introduced as the

16



7 L Davies The evolution of crystal symmetry

most general treatment of symmetry groups, and we state the aims of this thesis in

extending the use of representation theory in crystallography.

1.2. Symmetry and diffraction

X-rays were first observed by Crookes, who noticed that shadows formed on photo-
graphic plates placed near cathode ray tubes. Despite investigations by Tesla and
Hertz, it was Rontgen who first recognized X-rays to be a form of electromagnetic
wave (Rontgen, 1894); they are sometimes referred to as Rontgen rays. In 1912
Ewald completed his doctoral thesis on the optical properties of periodic arrays of
isotropic resonators (Ewald, 1912). Upon hearing of Ewald’s results, von Laue real-
ized that crystals were precisely such a medium, and that X-rays were of an appro-
priate wavelength to be diffracted by them. Under von Laue’s direction, Freidrich

and Knipping performed the first X-ray scattering experiment upon a single crystal

in 1912 (Friedrich, 1912).

It was immediately apparent that the internal structure of a crystal would determine
the nature of the diffraction pattern, but it took much longer for it to be accepted that
a diffraction pattern could determine the positions of atoms within a crystal. One
of the key problems to overcome in determining crystal structures from diffraction
patterns was the “phase problem”, whose solution in the 1950s led to the award of a
Nobel prize in chemistry to Hauptman (1985, 1990). Hauptman’s key breakthrough
was the realization that: although the X-rays are diffracted by the electron density
function (EDF) of a crystal, it is sufficient to determine the atomic positions which
can be approximated to the maxima in the EDF; and that the EDF is non-negative
everywhere. Indeed, simple structures were already being solved under the basis of

these restrictions, without them being formally stated or recognized.

While crystallography had been a growing science for some years, famously it was the

Braggs who first used X-ray diffraction to study the internal structure of crystalline

17



7 L Davies The evolution of crystal symmetry

materials. When the Braggs first began to publish the structures they had determined
from experiment (Bragg, 1913; 1914), Fedorov wrote a number of papers emphasizing
that all the determined structures belonged to the groups he had derived more than
20 years earlier (Fedorov; 1885, 1891)!. W. L. Bragg said of Fedorov’s preceding
work (Bragg, 1958):

Fedorov was then to me an almost legendary being who had worked out

the 230 crystal classes.

Few people at that time were interested in crystallography. Such in-
terest as did exist was in the outer forms of crystals, not in their inner
structure. When I started analysing crystals with X-rays, I knew noth-
ing at all about their geometry. It was wonderful for us to discover
that great men like Fedorov and Barlow, whom I also got to know, had
studied the inner geometry of crystals and provided a sure theoretical

basis for our work.

The space groups were formalized in the Tables for X-ray crystallography (1952)
and redefined more recently in the International tables for Crystallography (2002).

However, they are fundamentally unchanged since their first publication?.

1.2.1. Frieze and plane groups

The diffraction pattern of aperiodic systems consists of diffuse scattering, and the in-
formation that can be extracted is limited (Welberry, 1976). The greatest amount of
information is obtained from diffraction experiments upon systems that are periodic;

in a static (time independent) system this is usually associated with translational

IThe space groups were derived simultaneously by Schéenflies (1891), and soon after by Barlow
(1894) who used a different method.

>The groups differ only in their choice of axis, origin, or generating elements. The complete groups
contain the same symmetry operations when in the same axis system.

18



7 L Davies The evolution of crystal symmetry

symmetry. Frieze and plane groups describe the symmetry of systems that are peri-

odic in one, or two dimensions respectively.

There are 7 frieze groups and 17 plane groups, which follows from the “crystal-
lographic restriction”. This restriction states that there exists a vector, 7, whose
modulus (length) is smaller than that of any element, t;, of the group of translational

symmetry operators, T:
3 n| < ||  VLeET, O0#£neR (1.1)

Another way of stating the restriction is that the translational period of the system
must be non-zero, and so there exists a “unit cell” of non-zero area which is repeated
throughout the plane. If a space shows translational periodicity along some axis,
then the smallest translation along that axis which leaves the system invariant is
denoted a; the minimal translation along any other periodic axis is denoted b, ¢, etc.
In crystallography it is conventional to use these minimal translations as the axis
system. The span of the minimal translations® forms the group T; the translational
symmetry group. The crystallographic restriction also limits the possible symmetry
operations (combinations of rotations and inversion) that are compatible with a given

lattice (Coexter, 1989).

The frieze and plane groups are perhaps best known for their use in works by M.
C. Escher, such as the examples in Fig.1.1*. In science they are most commonly
encountered in soft-matter systems (e.g. Lowen, 2001), though there are examples
of solid-state systems showing pseudo one- or two-dimensional symmetry which are
expected to show exotic and unusual physics such as high-7, superconductivity (e.g.

Haldane, 1980; Yeom, 1999; Kageyama 1999).

3Here span has a technical meaning: it refers to all linear combinations of the axes with integer
coeflicients. See section 2.8.

4All M.C. Escher works (©2009 The M.C. Escher Company - the Netherlands. All rights reserved.
Used by permission.
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7 L Davies The evolution of crystal symmetry

FicURE 1.1. Some M.C. Escher wallpapers and their plane groups, in this
example we disregard the colour when determining symmetry. Taken, with
permission, from www.mcescher.com

1.2.2. Space groups

Crystalline systems show a periodic arrangement of atoms in three dimensions (or
more, as we shall see shortly). The periodic directions are usually employed as the
crystallographic axes, and their span defines a lattice. The relative orientations and

periods of the translational symmetries define seven crystal systems® (Table 1.1).

System Angles Lengths

Triclinic a# B+ la| # |b] # ||
Monoclinic a=0p=90°#~ |a| # b # || q

Othorhombic ~ a=pF=~7=90° |a| # |b] # ||
Tetragonal a=pF=7y=90° |a| =1b] # ||
Cubic a=pF=7y=90° |a| =1b] = || C

Hexagonal « = (=90°~v=60° |a|=|b] # |c| B

Trigonal a=0=7#90° |a| =1b = || Y o .

TABLE 1.1. The crystal systems (de Wolf, 1985; International Tables, 2002).

These classes can be extended by convoluting their group of translational operators

T with linear combinations of the “centring” translations: 7, g, 5. This proce-

dure generates the Bravais lattices, named after mathematician Auguste Bravais
who demonstrated in 1850 that there are only 14 unique lattices® (Bravais, 1850).

5The number of crystal classes can vary by definition; in minerology the the trigonal class is con-
sidered to be part of the hexagonal family. Further, an alternate subset of the hexagonal family is
the rhombohedral class (Buerger, 1970; de Wolf, 1985).

6More strictly, there are 14 unique lattices up to isomorphism (See Appendix 2).
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7 L Davies The evolution of crystal symmetry

There are 32 point groups which are symmetry groups of one or more Bravais lattices,
combining these with the 14 Bravais lattice generates 73 symmorphic space groups:
the space groups lacking screw axes and glide planes. If glide planes and screw-
rotation axes are included in the analysis, then a new set of non-symmorphic space

groups are generated. In total there are 230 different space groups.

1.3. Extending the space groups

The crystallographic space groups are a complete and comprehensive set of symmetry
information for triply-periodic systems. However, if we wish to consider properties
of an atom other than its position, for example charge or magnetic moment, then we
need to extend this formalism to include other types of symmetry operator. Indeed,
even in analysis of atomic positions, the space groups have proven insufficient in an

increasingly large family of structures: the incommensurate crystals.
1.3.1. Magnetic space groups

With the advent of neutron diffraction, experimentalists were able to gain greater
insight into the structure of materials. In particular, because they possess quantum
mechanical spin, neutrons distinguish between identical nuclei having non-identical
magnetic moments, revealing the presence of long-range magnetic order. Like nuclear

order, the magnetic structure only gives rise to diffraction peaks when it is periodic.

Neutrons were discovered by Chadwick in 1932 (Chadwick; 1932a, 1932b), and were
found to be chargeless particles, having approximately the weight of a proton and a
spin of % The first neutron diffraction experiments were performed by E. O. Wollan
in 1945 (Wollen, 1948), who was later joined by Clifford Shull (Wollen, 1949). In
1949 Shull was able to experimentally demonstrate the antiferromagnetic ordering of
MnO (Shull, 1949) using neutron diffraction. This was the first experimental evidence

of antiferromagnetic ordering as predicted by Néel (Néel, 1932), and contributed to
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7 L Davies The evolution of crystal symmetry

A A

1>

FIGURE 1.2. A magnetic moment shares some of the symmetry of a current
loop: it is invariant under inversion of space; inversion of time causes the
current loop to run in the opposite sense, reversing the magnetic moment.

Shull’s sharing of the Nobel Prize in Physics (1994). It demonstrated the power of
neutron diffraction as a tool for exploring magnetic ordering in crystals, and neutrons

remain the main probe of magnetic structures.

Many of the systems elucidated by early magnetic diffraction studies had simple
magnetic structures: either the magnetic structure had the periodicity of the crystal
lattice; or one or more of the cell parameters were doubled. The doubling of the
minimal translation in one or more directions corresponds to a loss of translational
symmetry, and other symmetry elements can be lost as well. In a Néel antiferromag-
net, these “lost” symmetry operations leave the atomic lattice invariant, but invert

the spin everywhere.

Magnetic moments are unusual in the sense that they transform as azial-vectors; they
are invariant under inversion of space, but change sign under an inversion of time
(Fig. 1.2). Atomic positions are defined by polar-vectors which change sign under
inversion of space, but not under inversion of time. Thus, it is possible to imagine
an operation (such as time-reversal) that inverts all the magnetic moments without
moving any of the atoms. Combinations of the “time-inversion” operator with those
symmetry operations of the lattice which invert the magnetic structure, generates

new symmetry operations which leave the magnetic lattice unchanged (Fig.1.3).

The process of combining space group elements with the operation of “time-reversal”
generates a new set of space groups; variously denoted as the magnetic, Shubnikov,

or the black and white space groups. Extensive work on this problem was performed
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7 L Davies The evolution of crystal symmetry

e
-------------------- itlf

FIGURE 1.3. (a) Part of an infinite line of atoms, the blue dashed lines in-
dicate some of the reflection symmetries of this system. (b) If the atoms be-
come magnetically ordered the symmetry of the system may be lowered, here
some of the reflection planes have been “lost”. (c) The “lost” operations,
such as the translation shown, invert the magnetic structure. Combination
of these operations with inversion of the magnetic moments everywhere
forms new symmetry operations of the magnetic lattice.

by Belov, Shubnikov, and Opechowski (Belov, 1955; Shubnikov, 1964; Opechowski,
1965), who determined and enumerated the 1651 two-coloured space groups’. The
derivation of these groups is relatively straight forward (e.g. Cracknell, 1969); each
operation of the space group either leaves the magnetic structure invariant or in-
verted, and operations which invert the structure are primed. Enumeration of all
possible magnetic space groups is achieved by listing all the ways to prime half of
the generating operators, along with combinations of either the translational group,
or some sub-group of translations which is exactly half the size (the other half, of
course, being primed). The difficulty, as with deriving the original space groups, lies

in determining which of the magnetic groups generated in this way are equivalent.

The formalism of coloured space groups can only represent systems for which the
atomic property (here a magnetic moment, but in general any property) has two
possible states, represented by the colours black and white. For more complex or-
dering one would require a different colour for each possible state, and the magnetic

"This includes the so-called “grey” groups; groups that describe paramagnetic structures.
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symmetries would quickly grow to an unmanageable number. Further, the formalism
is only able to represent systems with a finitely large unit cell, a problem that is

discussed now.

1.3.2. Incommensurate structures

It is the periodic nature of crystals that gives rise to discrete spots in their diffraction
patterns. Usually the pattern of spots is indexible by three vectors: fz, /;, I. The
vectors E, E, [ define the periodicity of the diffraction pattern in reciprocal-space, and

are related to the periodic directions in the crystal by:

ah=>bk=2cl=2nr (1.2)

The v-phase of NayCOj is, therefore, unusual in that each point in its diffraction
pattern has one or more pairs of “satellite” peaks which can not be indexed using
three vectors. In 1964 de Wolff et. al. determined that the diffraction pattern
contained a fourth periodicity, not commensurate with the main lattice (Brouns,
1964). Examples of structural distortions commensurate with the underlying lattice
were widely known, and could be described by an enlarged “supercell”. However, for a
system in which the distortion is incommensurate with the main lattice, the supercell
is infinitely large. Such crystals lack pure translational® symmetry, yet still give rise
to discrete diffraction peaks as they are periodic in four (or more) dimensions. In

total, the analysis of NayCOj3 took nearly 40 years to complete (Dusek, 2003).

It was shown by Janner and Janssen (Janner, 1977) that although systems such as
v-NayCOj3 appear to have no symmetry, their structures could be related to space
groups embedded in a space of higher dimensionality (Brown, 1978). This formalism
is termed superspace group theory, and has been developed by Janner and Janssen
(Janner; 1983a, 1983b, 1983c). In superspace group theory the average structure has

8Translation—identity.
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the symmetry of a space group, but the system is distorted by a periodic modulation.

These perturbations take the form of plane waves:

(7, 75) = fr, ()™ (1.3)

£y

The amplitude of the wave at the position of the j’th atom, in the n’th unit cell
is defined relative to the position of the j'th atom in every other unit cell by the
exponential term; the displacement of the atom is parallel to the vector f;j. k is

termed the propagation vector (Janner and Janssen use ¢ with the same meaning)

and is perpendicular to the wave-fronts of the plane wave.

In magnetic space groups, “lost” symmetry operations are restored by combination
with “time-reversal”; an operation which transforms the magnetic moment. Similarly,
incommensurate structures are symmetric under combinations of the space group
elements with operators that transform the distortion at each atom. We term these
transformations of the distortion “phasing” as they correspond to a change in the
phase of the plane-wave defining it. The (3 + n) dimensional periodicity of such
lattices diffracts X-rays in the same manner as undistorted crystals, but now the

patterns are indexed by (3 + n) integers.

While super space groups are a well founded formalism they are also limited. First,
super-space groups only consider incommensurate structures. Any commensurate
distortion can be expressed as a simple crystal with an enlarged super-cell and so
the space group/super space group approach creates an artificial divide between
commensurate and incommensurate structures. In fact, as we shall see in the next
chapter, this divide is only appropriate when the k-vector lies on a high-symmetry

point of the Brillouin zone:

E.g.

There is no difference, formally, between the rational k-vector (%, 0,0)
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and the irrational k-vector (\%,0,0). However, super space groups

would not consider the k = (3,0,0) case.

The second shortcoming of super-space groups is that they are only concerned with
defining the structure of the incommensurate phase, but not the distortion from which
it arises. However, to understand the energy terms that drive a phase transitions we
should consider the symmetry of the distortion itself. Third, the plane-wave can only
be transformed by “phasing”, chapter 2 will show that this corresponds to distortions
with the symmetry of a one-dimensional irreducible representation. Hence, super-
symmetry is not able to fully describe every possible symmetry of higher-dimensional

spaces’.

Finally, super space groups are only concerned with structural distortions. In fact,
many properties, such as magnetic- and charge-ordering, can show incommensurate
periodicity (e.g. Boehm, 2003; Loudon, 2005; Janssen, 2006; Sénchez, 2008). To
fully understand a system all the ordering phenomena should be considered in a single
symmetry framework, particularly for systems showing multiple ordering phenomena
such as magneto-ferroics (Fiebig, 2005). What is required is a more general symmetry
framework that encompasses both commensurate and incommensurate structures,

and many types of ordered phenomena.

1.4. Representation theory

Magnetic neutron diffraction underwent its own revelation with the discovery of com-
plex magnetic ordering. In 1952 Néel’s model of antiferromagnetism in ferrites was
challenged by Yafet who asserted that there were ordered spin arrangements which
were neither parallel nor anti-parallel, but that they might have a triangular ar-
rangement (Yafet, 1952). Kaplan extended this idea by demonstrating that helical
9This does not imply that super space groups can not define every possible structure. However, use

of a artificially lower symmetry to describe complex order-phenomena involves a loss of symmetry
information.
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ordering was possible in systems of competing exchange interactions (Kaplan, 1959);
this work elucidated the puzzling diffraction pattern of chromium (Corliss, 1959).
Magnetic ordering of this sort was as insoluble to the formalism of magnetic space
groups as incommensurate structures were to space groups, and became a driving

force behind the extension of magnetic space groups.

Much of the work on ordered complex magnetism was developed by Bertaut, who
sought to define magnetic configurations using eigenfunctions of a system’s spin
Hamiltonian (Bertaut, 1962). He developed his “matrix method” of solving spin
configurations into full representation analysis, a mathematical method, and showed
that the magnetic space groups formed a sub-set of the symmetries that could be
expressed using representation theory (Bertaut; 1968, 1981)'°. This technique defines
magnetic ordering using “basis vectors”: complex vectors that define the magnetic
moment at each atom. Magnetic basis-vectors are equivalent to the normal modes

used in vibrational spectroscopy, and are derived using the same techniques.

The interpretation of magnetic neutron diffraction data using representation theory,
and the description of phase transitions with basis vectors was developed further by
Izyumov, Naish, and Syromyatnikov (Izyumov; 1990, 1991). Central to the applica-
tion of representation theory to crystals was the work of Kovalev (Kovalev, 1993) and
Miller and Love (1967) in tabulating the irreducible representations of all possible
k-vectors for every space group. Representation theory is becoming the technique of
choice for analysing magnetic structures, particularly from powder-diffraction data
(e.g. Wills, 2001, 2005; Arkenbout, 2006), and a number of programs have been
developed for its application, such as SARAA (Wills, 2000) and Fullprof (Rodriguez-
Carjaval, 2001).

A major advantage of representation theory is its ability to express any ordered prop-

erty, commensurate or incommensurate, using k-vectors. Bertaut demonstrated that

10 e magnetic point groups comprise exactly those groups generated by the one-dimensional, real
irreducible representations of the crystallographic point groups.
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representation theory could express both magnetic and electronic ordering within a
single symmetry framework, elucidating the mixed terms in magneto-electric systems.
In fact, it is entirely general and can be applied to magnetic ordering, structural dis-
tortions, charge ordering and other phenomena such as quadrupolar ordering (Sikora,
2008). Further, it differs from superspace groups in that it is explicitly concerned

with the order-phenomena driving a phase transition.

1.5. Landau theory

Perhaps the most important contributions to the discussion of symmetry in phase
transitions were made by the work of Landau and colleagues (Landau and Lifshitz
1958, Lyubarskii 1960, Anderson and Blount 1965, Haas 1965). Their work on the
energy expansion of systems close to critical points gave rise to a number of results

including the following theory of second-order phase transitions:

Every second order phase transition must occur according to a single

irreducible representation.

This statement is not completely true; other irreducible representations can be part
of higher-order terms in the Landau expansion of a phase transition (Dimmock,
1963). However, Landau’s work has created a strong incentive to directly analyse the
symmetry of a system’s distortion during a phase change as it provides significant
insight into the transition energetics. Landau-type expansions of a system’s free-

energy are now standard (e.g. Harris, 2004; Chandra, 2007; Tagantsev, 2008)

HThe full symmetry arguments are somewhat more involved (Dimmock 1963, Ascher 1966, Birman
1966).
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In chapter 3 we shall see that the relationship between symmetry adapted functions
and the energetics of phase transitions runs much deeper than simple Landau the-
ory. The language of symmetry describes the eigenspaces of the Hamiltonian, a fact

exploited in spectroscopy when labelling the energy levels of a system.

1.6. Aims and conclusions

In this chapter we have briefly reviewed the use of symmetry in physical chemistry.
As more complex and interesting materials are investigated, our theoretical under-
standing of these systems needs to evolve and grow. While magnetic and super space
groups extend our symmetry framework, they are still too limiting for many sys-
tems. Further, they fail to describe the phenomena driving phase transitions as they
are only concerned with the product of a phase transition. Representation theory
is the most general and complete description of possible symmetries, and it explic-
itly defines the order-phenomena causing a phase transition. What remains is the

development of tools to apply its methods to problems in crystallography.

The use of representation theory is already well established in analysing magnetic
structures and, in particular, magnetic powder diffraction data. However, it is not
limited to analysis of magnetic phenomena and constitutes a symmetry framework
for all phase transitions including charge ordering and displacive phase transitions.

The aims of this thesis are:

(1) To develop a reliable method of generating all the basis-vectors of a system.
(2) To develop a method for analysing structural transitions using powder diffrac-
tion data, parameterized in terms of basis vectors.

(3) To investigate a number of phase transitions using representation theory.

In the next chapter we touch upon the mathematical foundations of representation

theory, and in chapter 3 discuss how basis vectors are related to the Hamiltonian of a
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system. Chapter 4 explores important empirical results that can be derived from very
simple symmetry arguments and an understanding of irreducible representations and
basis vectors. The reliability of methods for deriving the basis vectors of a system
are developed in chapters 5 and 6, before we present a SARAA-Refinement module
developed for use in analysing displacive phase transitions from powder diffraction
data in chapter 7. Finally, chapters 8 and 9 explore two experimental systems: iron

oxyborate and potassium selenate.
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CHAPTER 2

Representation theory: A mathematical review

“I can not conclude this brief account of the early history of direct
methods of X-ray crystallography without also describing the reception
this work received at the hands of the crystallographic community. This
was, simply, extreme scepticism if not outright hostility. In hindsight
I think this reaction was due, first, to the strong mathematical flavour

of this early work.”

H. A. Hauptman, History of X-Ray Crystallography

2.1. Introduction

In this thesis we aim to develop the use of representation theory for describing crys-
talline systems, and their phase transitions. The first step towards our goal is to
derive, from group and representation theory, a set of tools with which we can re-
liably calculate the basis vectors that will describe phase transitions and ordering
phenomena. In this chapter we construct a mathematical framework for describing
systems using vectors and matrices, and derive two key equations: the reduction and
projection operators. Discussion of what basis vectors represent and their relation-

ship to the Hamiltonian is left until the next chapter.
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2.2. Sets and Groups

Representation theory is a sub discipline of group theory, and in this section we

review the basic principles of set and group theory.

A set, G, is a collection of elements, {g1, ..., gn}, such as vectors, operators, or other
sets. The number of elements in the set G is termed the order of the set, n(G). A

group, (G, o), is a set and a binary law of composition, o, which satisfies four axioms:

e Closure : aob=ce G Va,b € G
The product of any two elements of the group, under the law of composition,

is always an element of the group.

e Associativity : (aob)oc=ao(boc) Va,b,ce G

The law of composition is associative.

e Identity : dF € G:aocE=Foa=a Va e G
There is an element F which leaves every other element unchanged under
the law of composition. This element is called the identity, it commutes with

every element of the group and it is unique.

e Inverse : 3o ' € G:a'oca=aoca'=F Va € G

1 also in G, with

For every element in of G there exists some element a~
which its product is the identity. This element is called the inverse of a, and

is also unique.

Some groups have the additional property of commutation, and are termed abelian.

Non-commutative groups are referred to as non-abelian.
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e Commutation : aob=boa Va,b e G
The product of two elements of the group, under the law of composition, is

the same regardless of the order in which they are combined.

Except for reasons of clarity, groups will be referred to by their sets, and the operator

symbol is dropped in equations throughout the remainder of this thesis.
Le. When a, b are members of a group then ab should be read as a o b.

2.2.1. Subgroups and cosets

Imagine two sets G,, and G, if every element in G,, is also an element of G then it is

referred to as a subset of G,,.
G,.cG it g¢geG VgegG, (2.1)

If both (G, o) and (G,,o) form groups, then G, is termed a sub-group of G. All
groups contain the two trivial sub-groups:
G, = {E }

(2.2)
G,=G

Consider a set G with a subgroup G,. The operation ¢G, denotes the action of
applying g to every element in G, and the resulting set of elements is termed the

left-coset.

9Gu =Y 9i (2.3)

gieGn

By Lagrange’s theorem (Appendix 1), all cosets of a subgroup (including EGy) have
the same order and they partition G: each element of the group appears in exactly
one coset of a subgroup. It follows that the ratio the orders of a group and its

subgroup must be an integer:

=ac€Z (2.4)
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A trivial, but important, result is that every coset of G is G:

9G =G, Vg e G (2.5)

2.2.2. Conjugacy

Two elements of a group g;, g; are said to be conjugate if there is some element

gr € G that relates them in the following way:

9 = Gk 959k (2.6)
More generally, two subgroups G;,G; are conjugate if:
39 € G : g 'Gig = G; (2.7)

This is an important relationship as conjugate (sub)groups are isomorphic; they
have the same number of elements and the same group structure. Conjugate groups
are often referred to as being similar, and their conjugacy relationship is termed a

similarity transformation.

2.3. Matrix representations of a group

There are several ways to represent abstract groups, the simplest being a multiplica-
tion table. Consider the group (G, x), where G = {22 = y*> = E;zy = yx}, we can

represent all possible combinations of its elements in a table:

E x y xy
EFElF x y xy

x| E xy vy

zy|lxy y x K
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This approach to defining a group quickly becomes unmanageable as the group grows
in size and complexity. One alternative is to use a set of invertible matrices to
represent elements of the group. For example, our group could be described by the

following matrices:

E: Y T = ) y: Y ‘/L'y:

Such a equivalence is called a map (Appendix 2), as each element of the group has

been mapped to a matrix:

F:.FE— , F:.:z—

Some maps preserve the structure of a group: the multiplication tables of the range
and the image are isomorphic. A map with this property is said to be homomorphic,
a homomorphism, or a representation. More formally, a homomorphic map has the
property that the product of the images of two elements in G is always equal to the
image of their product.

F:g—%(g) 2.4

2(gi) 0%(g5) =%(gi09;) V91,9, €C
For a general matrix representation there will exist some matrix 2, which simulta-
neously transforms every matrix, ¥(g), to the same block-diagonal form. Represen-
tations for which the matrix 2 does not exist are said to be irreducible and have

special significance.
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2%(g)

wisga=| L 29)

2.3.1. Representation theory

Representation theory seeks to solve the following problem:

How many independent ways can we represent a finite group G as a

group of invertible matrices?

A representation I' of the group G is a homomorphism of G to the group of invertible
matrices under matrix multiplication. The matrix representations ¥(g) and ¥'(g) are

independent if there is no matrix 2 which satisfies the following:

T(g) = A 1T(g)A VgeG (2.10)

Independent matrix representations are termed irreducible representations (IRs), T',,.
Every representation of a group consist of some linear combination of irreducible
representations (Maschke’s theorem, Appendix 3), and these correspond to the blocks

of the block-diagonalized matrix in Eq. 2.9:

Fr=e)» CT, (2.11)
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2.3.2. Orthogonality properties of irreducible representations

Irreducible representations have a number of useful orthogonality properties, derived

from Schur’s Lemma (Appendix 4):

Ifo(g) and 0'(g) are matrices from two irreducible matrixz representa-

tions of a group G, and there is some matriz 2 such that:
o)A =A(g), VgeG

Then either A =0, or 0 and 0’ are equivalent and A = n.I, where n is

some constant.

This lemma also tells us, indirectly, that any matrix which commutes with the ma-
trices of an irreducible representation is a linear multiple of the identity matrix. We

make use of this form of the lemma in chapter 3.

Making use of this lemma, we can derive the orthogonality properties of irreducible
representations. Consider the square matrix 2 = 37 0"(g)X0*(g~"), constructed
from the matrices of two representations I',, and I',, and an arbitrary matrix X, all
of order d". This matrix obeys the condition of Shur’s lemma when left-multiplied
by 0”(h), where h is some element of G:

R =" (h)o"(g) X" (g7")

geG

= (h)0"(g)X0" (g~ Yot (" )oH (k)

geG

= (Z a”(hg)xa“(glh1)> 0¥ (h) (2.12)

geG

(Za ) X0k (g )) ()

geG

= A" (h)
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The second last equality holds because, for a fixed h, both summations are over the
whole of G!. For the case v = p, Schur’s lemma states that % = A\, where \ will
depend upon our choice of X. \ is determined by choosing X to have a single non-zero

element, X;,, = 1 and expanding the matrix-multiplication that defines 2.
Q[ij - )\51]

= “(9)X0"(g )]y

geG

=> "> () (X0"(g71))as

(2.13)
=222 Shlo)Xutilo ™)
LA =) 04(g)0
g
Putting 7 = ¢ and summing over all ¢:
Z Za =d"\
mel (97'9) =D 0u(E) = b
g 9
()
A= g Oim
_ n(G
Zazul(g>brunj (g 1) - C(Zn >6lméz]

Finally, consider the case that v # pu, now A = 0. Eq. 2.13 can be rewritten to

include this condition:

Za = A0 (2.15)

IRecall from section 2.2.1 that > 9€G hg = hG, and that every left coset of a group is the group
itself: hG = G.
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Thus, our orthogonality relationship becomes:

_n(©)

n

2> (g (g7 SO (2.16)
g

This is sometimes referred to as the Great Orthogonality Theorem.

2.4. The reduction operator

While it is possible to reduce a general representation, I', to block-diagonal form
using a similarity transform of the type AT, in general 2l is not of interest and
its determination is arduous. Our interest lies in determining the block-diagonalized
representation matrices, and this is equivalent to knowing the coefficients of each

irreducible representation in the linear expansion:
Fr=e)» C'T, (2.17)

Ideally, we would find all the coefficients, C*, without calculating 2[. In this section
the reduction operator is derived from the orthogonality properties of irreducible

representations, with which we can achieve this goal.

The orthogonality relations of IRs are summarized by Eq. 2.16:

v -1y _ |G|
Z ()05 (g7 Y) = W(s,u,l/(gi,j(;l,m

9i€G
Here |G| has the same meaning as n(G). From this, the reduction operator is derived

by putting [ = ¢, m = j and summing over all ¢ and 7. The sum over the spine of a

matrix is termed the trace or character of the matrix, and is denoted Y.
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Z Z > k()0 (g; Z Z |G|

i j gicG
> M (9)x" (97 = G0, (2.18)
9i€G
1 v
[€] D X)X (g") = G
9i€G

The action of the reduction operator can be seen by replacing I',, with some reducible
representation x(g;) = @>_, C*x"(g:). For a particular I', the reduction operator
will determine C":

@{,ZXWX - ZZC“ (97"

9:€G g €G

—ZC“ |Zx 9)X" (g7 (2.19)

9:€G

= ", =C"
w

Hence, by applying this operator over all I',, we can determine the coefficients of the

irreducible representations.

2.5. Fields and vector spaces

Before a matrix representation of the symmetry group can be constructed, we need
to understand the space upon which it acts, and the axis system used to define that
space. In conventional crystallography the space of interest is a vector space, and

the position of every atom of the crystal is defined by a vector.

A field is a structure in which the operations of addition, subtraction, multiplication
and division (except by zero) are defined; examples are the field of real numbers, Z,
and the field of complex numbers, . A vector space V over a field .#, is a set on

which two operations, vector addition and scalar multiplication, are defined.
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The 2- and 3-dimensional Euclidian spaces are the most familiar examples of vector
spaces and the behaviour of geometric vectors under addition and scalar multiplica-
tion is a strong, intuitive model for vector spaces. Within these spaces, vectors are

ordered pairs or triples of real numbers, respectively.

2.6. Affine spaces

In affine geometry there is no notion of length or angle, instead points in space,
denoted over a field .#, are subtracted to generate vectors. Thus, an affine space is

a vector space without a fixed origin; physical space is an affine space.

2.6.1. Affine transformations

An affine transformation is a map between two affine spaces and is comprised of a

linear transformation h;, typically a rotation, followed by a translation? o:
T — o + hix (2.20)

An affine transformation preserves co-linearity and ratios of distance, and is usu-
ally denoted (a;|h;) in crystallography. This follows the mathematical convention of

applying operations from right to left.

If the affine space is of finite dimension n, then h; is represented by an n X n matrix
T(hi), a; by an n x 1 vector @;, and the operator («;|h;) is represented by the
augmented matrix:

T(hi) a;

0.0 1

(2.21)

2Note that « is an operator which acts upon a vector by adding to it the vector @.
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2.7. The affine representation of space groups

Crystals are highly symmetric systems®, consisting of (ideally) infinite lattices of
atoms. A crystal is defined by an infinite set of vectors, each defining the position of
an atom, having some set of symmetry operations that map the set of vectors to itself.
The nature of a crystal lattice is such that this set of vectors is generated from a
finite sub-set of those positions and repeated application of the symmetry operations.

In particular, every proper crystal is invariant under a set of translations:
T = {((0,0,0)|E), ((0,0,1)|E), ..., ((a,],c)|E)},  Va,bceZ (2.22)

The vectors (a,b,c) are defined in the crystallographic axes: a right-handed axis

system parallel to the directions of translational symmetry.

The crystallographic symmetry groups are the direct product of the group of transla-

tions, and a smaller group of symmetry operations G, which is termed the transversal.

G=Gy®T (2.23)

All symmetry operations of the crystallographic space groups leave an affine (phys-
ical) space unchanged; they are affine operations upon 3-dimensional space. Hence,

we can define them with 4 x 4 augmented matrices.

2.8. Span and basis

The span of a set of vectors p € IP, over a field .7, is the intersection of all spaces

containing that set:

Span(ﬁh 7ﬁn) = {Alﬁl + ...+ )\nﬁnHAl? 7)\71 S g} (224)

3Even P1 systems are infinitely symmetric under a set of translations.
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More simply: a set spans all linear combinations of its elements. If none of the vectors
in IP can be removed without changing the span of P then the vectors p’ € P are said to
be linearly independent, and they form a basis for the space they span; every vector
in their span can be written as a unique linear combination of the set elements. Using
Zorn’s lemma (Appendix 5) it can be shown that any vector space has a basis, and
that all bases of a vector space have the same cardinality (the order of the basis set).
Thus, all vector spaces are isomorphic if they have the same cardinal number. This
is an important result; it allows us to select any basis we desire, provided it has the

correct size, without changing the space.

2.8.1. Basis transformation in affine spaces

A point, R, in a 3-dimensional vector space, is defined relative to the origin by the

scalar product of a basis a, as, az and a co-ordinate vector, p.

Xz

R = (a1, a3,a3).p = (a1,a3,a3). | y
(2.25)
z

= zaj + yas + zaz

Let B be an invertible matrix of dimension 4, representing some transformation of
the basis. All vector spaces, and thus all affine spaces, are isomorphic if they are of
the same cardinality. If 8 is chosen such that this is true, then the new basis defines

an isomorphic space and R must be unchanged. It is shown in Appendix 6 that:

xXr xXr
L y o L
R = (a17a2aa'37 1) = (a17a27a37 1)(’]32]3 (226)
z z
1 1
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Where the vectors have been augmented so that the matrix ‘B can act upon them.
Comparing Eq. 2.26 with 2.25, we see that the basis is now (a3, a3, a3, 1)3, and the
vector defining R has been transformed to =15, Note that § and 15 refer to the
same point in space, but using two different axis systems. In crystallography the

matrix P! is usually denoted Q.

Consider a matrix 20(g;) that represents some affine transformation (a;|h;) acting
upon a co-ordinate vector p, in the basis (di,d3,d3). In order to transform a co-
ordinate vector to a new axis with some transformation B then 20(g;) must change
in two ways. First, the operator must act upon a vector defined in original axis
system; in the new axis system the co-ordinate vector has become Qp’ so the vector
is pre-multiplied by ‘P:

W(g:)P x Qp = W(g;)W(E)p
(2.27)

= W(g:)p

Second, the result vector must be in the new basis, requiring the product to be post-
multiplied by 8. Combining these two steps we derive an expression for the operator
matrix in the new axis system:

Q(W(g:)W(E)p) = QW(g:)P x Qp
(2.28)

- B W(g:) — QW(g:)B

Strictly, 8 maps the vector space to itself with a new basis, however, we can sum-
marize its action using a series of maps. While the position is unchanged, the basis
set and co-ordinate vectors are transformed, as is every matrix representation of the

symmetry operations.
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(2.29)

2.9. Describing ordered properties using vector fields

If we wish to define some property upon the atoms within a crystal, such as a displace-
ment or magnetic moment, then a space larger than the vector-space is necessary. A
vector-field is such a space, and which places a vector vz at each point R defining
some property. The dimensionality of Uz determines the types of physical properties
it can describe. 1-dimensional vectors define properties such as temperature or elec-
tron density, while 3-dimensional vectors define properties such as magnetic moments

and atomic motion.

Our goal is to build a representation of the system’s vector field, and from this
derive matrix representations of its symmetry operations. Once these are constructed,
application of the reduction formula will determine the IRs spanned by the system

and its basis vectors (BVs). First, we discuss the symmetry of vector-fields.

2.9.1. Little groups

In general, the symmetry of a vector-field will be lower than that of the lattice
which defines the atomic positions. In particular, the translational symmetry of the
property may differ from that of the lattice. In section 3.3, we shall see that the

appropriate translational symmetry for vector fields of a crystal is defined by:

Gtrans - Rl—>R+O£
(2.30)

- —omik.a —
Gtrans - UR > € 7mko{'UR
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The vector E, called the k-vector or propagation vector, is characteristic of the vector
field and defines the periodicity of the vector-field in reciprocal space, relative to the

crystal lattice.

ie.

k= (%, 0,0) defines a property field with a period of half that of the
lattice in reciprocal space, or twice the period in direct space. A k-
vector of (0,0,0) defines a wave with the same period as the lattice in

direct space.

Because a lattice consists of discrete points, many k are equivalent and by convention
k is chose to lie within the first Brilluoin zone. Any k-vector outside the first Brillouin
zone defines the same translational behaviour as some equivalent k within the first
Brilluoin zone.

—2mi(k+(a,b,0)).& ~

Gtrans - UR > € -UR

_ e—2mk.a'UR€*2ﬂ(a,b,C)~a (231)
— 6727mk.a Va, b, ce?l

This relationship occurs because both (a,b,¢) and @qns are integer triples, and so

their dot product must also be an integer.

For systems in which the vectors vr show long-range order, the transversal of the
system is not Gy but some sub group Gy, defined by k. There exists a surjective
homomorphism from g¢; to its linear transformation h;, generating a group H which
is a point group.

f:G— H

(2.32)
fig—h
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The subgroup Gy, is defined by the action of this map’s image upon the vector k. Tt
consists of all those elements whose point-operation transforms k into itself, plus or

minus some primitive translation:

flg):k—t+k teT, VgeGy (2.33)

2.9.2. The star of k

In general G will be smaller than Gy and we can divide up Gy into left cosets of
Gy. If hGy, is a coset, then h is termed the coset generating element. The set of all
coset generating elements itself generates the “star” of IZ, k+ hik + ... (Fig. 2.9.2).
The symmetry groups of the each arm of the star are equivalent, and defined by the

similarity transforms:

G = b 'Grh; (2.34)

LA
~vY

\V'k

FIGURE 2.1. The “star” of k under the symmetry group Cy, this star has

four arms. For the special case that k= (3, %, $,) where a,b,c = 0,1, then

k = —k and the star will have only two inequivalent arms.

2.9.3. Orbits

Every position R in a crystal generates an infinite number of symmetry equivalent
positions upon repeated application of the crystal’s symmetry operations. The orbit

of R is the set of vectors generated from R by (g, then translated so that every
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FIGURE 2.2. A general point has four images under the group generated by
C4z, the z-axis being perpendicular to the page (left). For k= (%, 0,0), the
little group consists of only two operations: FE, C’fz and does not generate
every image. When this is the case, the positions are split into distinct
orbits (right): within each orbits, the little group generates every position.

fractional co-ordinate lies in the range [0, 1] (termed the 0% unit cell). As G, < Gg
it is not uncommon for the orbit of R under the operations of G, to be smaller than
its orbit under G. When this happens the symmetry equivalent positions of R are
split into several distinct orbits. The principles of orbit-splitting are demonstrated

using a simple example in Fig. 2.9.3.

2.10. Representations of the system and its symmetry operators

Having determined the appropriate symmetry group and space for defining our sys-
tem property, we are ready to build a vector representation of the crystal and matrices
to represent its symmetry properties. Consider a position R, having an orbit of size
m in a 3-dimensional vector field. This system can be described by a vector d;, of
dimension 3m, which can be written as a sum of vectors gg?f for which every element
is 0, apart from the j3’th. In this notation the 7 denotes the j’'th position in R’s orbit

under Gy; 8 denotes the $’th component of the property vector v;. This generates a
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vector that defines the property every position equivalent to R:

B= (2:35)
iB

Consider g € Gy, acting on a position r;, with property vector v;:

g:ri——alg)+hrj=ri+dy;lg)  dylg) €T
(2.36)
g U — hytj
In general the image of the atom, hr; + @;;(g), will lie outside the 0™ unit cell. It

will also be related to some position r;, in the 0 unit cell, by a vector @;;(g) which

is a translation symmetry of the space group.*

A symmetry operation, therefore, has three effects upon an particular atomic posi-
tion: the permutation of the position vector r; to the symmetry equivalent position
r; in the 0™ cell; the rotation of the property vector, #;, upon that position; and a

translation of the image out of the 0" cell, that phases the property® according to

e~2ik.d:5(9)  This is summarized by the equations:

T(g)¢"" = e 2 AN "D 5 (hy)"
7 (2.37)
Tivis(9) = 672mk'a?j(g)©w(hg>5m,gr]~

T(g) is a matrix representation of g = (aylh,) acting upon the system vector d =

>is q_b‘iﬁ, D(h,) is the matrix representation of h, and ®.5(hy) its v4’th element.

The delta-function 6, ... determines wether the image of gr; is equivalent to r;. It is
3,97 J

defined by:
1 (gri—1r;)eT
Orssgry = (g = 73) (2.38)
0 (gri—r) ¢T

4This vector is, misleadingly, referred to as the returning vector by Izyumov. Misleading because
it does not return us to the 0**, but actually takes us out of it.
SRecall the effect of a translation upon the property, as defined by Eq. 2.31
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Thus, we have derived an explicit form for the matrices that represent the symmetry

operations of our vector field.
2.10.1. Reduction of the space group representation

Although construction of ¥(g) is possible, it is also laborious. Determination of the
IRs spanned by a system representation can be significantly simplified with a little
consideration. For a representation of the group Gy, the diagonal elements of T(g)

are derived from Eq. 2.37:
Tinjs(g) = eizmka?j(g)@'yﬁ(hg)érj,grj

) = Z Tirin ()

(2.39)
_ Z e—27rika_i’i(g)5”7gri Zgw(h9>
i v
This implies that XE (g) can be split into two terms:
XE(9) = Xerm (9" ()
) = S50, .

Xg(hg) = Z Dy (hy)

The first term, Xgerm(g), is the character of a matrix representing the permutation
of the position vectors about the orbit of R. The term XE (hg) is the character of the
matrix representation of h,. Therefore, to find the IRs spanned by a crystal’s vector
field it is sufficient to determine the character of these simpler representations, and

then apply the reduction operator to their product.
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Ezample. Consider simple group Gy = {F, I}, k= (0,0, %) The h-matrices for

these operations acting upon a polar vector have characters x(E) = 3 and x () = —3.
1 00 100

Prat(E)=10 1 0 Frae(I)=1| 0 1 0 (2.41)
0 01 001

If our system has a single atom at (0,0,0.25), then its orbit under Gy, consists of the
positions (0, 0,0.25) and (0,0, 0.75) in the 0" cell. The identity operation leaves both

points unmoved, and so can be represented by a permutation matrix of character 2:
Cperm(E) = (2.42)

Inversion transforms the point (0, 0, 0.25) into the point (0,0, —0.25), which we relate
to the 0™ cell by writing it as (0,0, 0.75) - (0,0,1). Similarly the image of the point
(0,0,0.75) under inversion is (0,0,0.25) - (0,0,1). These translations correspond
to a phasing of the field by a factor of e~27(0.0.2)(0.01) — =7 — _1  Hence, the

permutation representation of inversion has a character of 0 and the form:

FPerm(I) = (243)

With this information, application of Eq. 2.40 generates the characters of this rep-
resentation: XE(E) =3 x 2 = 6; and XE(Z) = —3 x 0 = 0. The IRs for this group

are:

E O

(2.44)
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Using the reduction operator, we determine that our system spans the representations
I' = 3I'y + 3T'y. Hence, we have deduced the reduction of our system representation

without having to calculate the representation matrices in full, or diagonalize them.
2.10.2. The action of matrix representations upon the system vector

Consider the action of a representation, ¥(g), upon the state vector ®; (defined in

section 2.10). The new vector is expressible as a linear combination of some basis of

the space: <¢17 77D27 e ¢n|

90 =T(9)® =D Djilg) (2.45)

It should be shown that Eq. 2.45 is a valid definition for the action of symmetry op-
erators upon the system vector. We do this by showing that it is consistent with ¥(g)
being a representation of G, and first by showing that ®(g) form a representation®

of G:
(g20g1)® ng G20 g1)V¥

9291P = go Z D;i(g1);

- Z Z @ji(gl>©kj (92)¢k

k=1 j=1

= (Z gkj(QQ)gji(gl)> U, (2.46)
s Zkakz(gz °g1) Z <Z D1(92)D i 91)) Vi

k=1 k=1 \j=1

gkz 92 091 Z@kj g2 ]z gl)

"~ D(g2091) =D(92)0(91)

6T his proof only holds for linear operators, and therefore does not apply to the anti-linear operators
discussed in section 3.6.
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Knowing that the matrices ®(g) form a representation of G is sufficient to show that

the matrices ¥(g) also form a representation of Gy.

T(92)%T(91)® = T(g2) Z ¥iD;i(g1)

_ Z Z UrDj(92)D;i(g1)

= Z Uy, (Z @kj(92)9j1(91)>

gkl 92 091 ngj g2 ji gl)

(2.47)

" T(g2)%( Z VkDri(g2 © 91)

=%(g20q1)®

Thus, Eq. 2.45 forms our definition of how matrix representations of symmetry

operations transform a system-vector.

2.11. Basis vectors and their calculation

Having constructed and deconstructed a representation of the crystal to determine the
irreducible representations spanned, what remains is to project out the basis vectors.

This is done using the method of projection operators, which we now discuss.

We define the set of vectors (¢}, ¢4, ..., ¢ | as the basis vectors for the representation

I', of G such that:
dV
SDIRAAL) (2.48)
=1
This is Eq. 2.45 when ©;,(g) = 0},(g); we are free to make this substitution as the

matrices D (g) form a representation of the group. Thus, we define basis-vectors by

restricting ®;(g) to being an irreducible representation of ¢ in I',. A set of basis
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vectors that transform as in 2.48 are termed a ‘basis-set”, and the symmetric basis

for a system is a set of basis-sets; this is used explicitly in chapter 6.

Like the reduction operator, the projection operator derives from Schur’s lemma. We

seek to derive a set of basis vectors which observe the following relations:

Tgi) g} = Zo 9:)8%
(2.49)

IGI
Z ng gl ) d“ 5#7 517]5'””

9:€G

Multiplying both sides of the orthogonality relation by 9% (g;!) and summing over

all the operations of the group derives the projection operator, W/,

Z 0ml gz gl (bl/ Z Zoml gz )Qﬁ;j

9:€G gi€G j

G
Z\ !w% 5i0ms (2.50)

G
||¢

Wril¢f = Z ml gz ¢z
Gl et (2.51)

:¢ly5u 0

When a vector of the basis set (¢7,) is known, then the whole basis set is generated
by applying W,,,; over all [:
Wi = ¢/ (2.52)
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However, in general none of the basis vectors are known, and we must consider the

action of the projection operator upon a trial vector’, ¢ = > Efu Cryr:

.
Wi = D> Crwi

J
= Z Z Céjwfém,iéu,u

= Chyy (2.53)

The action of the projection operator is to take the component of ¢ along ¢! and

transform it into ¢;’; all the other components are transformed to zero.

When the IRs spanned by a system are known we can use the method of projection
operators to generate all the basis vectors by varying [, m, u and ¢. Varying [ gener-
ates new members of the same basis-set, while varying the other parameters generate

new basis sets.

2.12. Unitary matrices

When a matrix is the conjugate transpose of its inverse, then it is said to be unitary:

Oni(9s) = V(95 7) (2.54)

An IR composed of unitary matrices is, itself, unitary. It is usual to assume that IRs
used in representation theory are unitary, and under this assumption the projection

and reduction operators can be rewritten:

N dr )
Wi = @ Z 01 (95)%(9s) (2.55)
gs

ﬁZx”(gs)X“*(gs) = Oy (2.56)

gs eG

"Selection of appropriate trial vectors is discussed in chapter 6.
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The projection and reduction operators are almost always used in the form above
for convenience, and occasionally with the complex conjugation dropped if the IRs
are know to be completely real. However, these equations are only valid when the
IRs have been confirmed as being unitary. In chapter 5, the unitary character of
the irreducible representations tabulated by Kovalev (1993) is confirmed for the first

time.

2.13. The stabilizers method

An alternative set of reduction and projection operators have been derived by Izyu-
mov (1960). Rather than considering the whole of the group Gy, his method focuses
upon the action of a special subgroup of Gj, that “stabilizes” one of the atomic posi-
tion vectors Ry. This approach is advantageous in computational work as it reduces
the number of calculations, the concept of stabilizers is exploited in chapter 6. Here,
we derive the stabilizer form of the reduction operator, without discussing Izyumov’s
alternative projection operator. The stabilizer projection involves the explicit genera-
tion of large matrices that are difficult to interpret, where as the method of projection

operators are more intuitive and can be understood graphically (section 3.3).

Consider the sub-group Sqg C Gy, consisting of all those operations in Gy which

permute some position vector rg into itself (within a primitive translation).

S:ro—— 1o+t Vs € Sp,t €T (2.57)

Gy can be decomposed into left co-sets of Sy:

Gk = SO + ngO -+ QQSO —+ ..+ gnSO (258)
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Further, we can generate all the positions in ry’s orbit by acting upon r, with a

member of each left coset in turn:

G1SoT0 = G110 =11 (2.59)

There are n left cosets of order n(Sy), and from Lagrange’s theorem:

_ n(Gy)
n= 2(S0) (2.60)

Every position in the orbit of 7 also has its own set of stabilizing elements S; C Gy,

which is conjugate to Sy:

Siri =11 =gi70

= ngOTo

= g;S0g; 75 (2.61)
.St = g;Sog; "
Sy = gj_lgjgjl'

Expanding Eq. 2.56, using Eq. 2.40:
1 N
n'=—=> X" (gx"(9)

= @ > X (90 (9)x

1 B —~2rika; (9)
= @ Z Xn (9)x™(9) Z € P 0r; g1,

g J

() (2.62)

Here, we have used the idea of stabilizing elements to define the character of the

permutation matrix: d,, 4., = 0 unless g stabilizes r;. Using Eq. 2.61, we write all

60



7 L Davies Representation theory: A mathematical review

stabilizers of r; as similarity transformations of ry, and rearrange the sum over r;.
§ —2mikas;(g) _ —27ik.(grj—r;)
e Y 67”]’797’1' - € Y 59;'7”07991'7’0
J J
_ E 727ril;.(gg'rgfg~ro)
- € ! ! 59jTO,QQjT0

J

) (2.63)
_ Z B—Qﬂikgj .(g;lggﬂo—ro) 5

-1
70,95 99570
J
_ § —Qﬂiﬁg'. Sro—To
- € ! ( )(57"0,51“0
J

The last step is derived from Eq. 2.61, with s € Sy, g € S;. Strictly, this is only valid
when g € S;, however g € S; < 4, 4, = 0. To complete the derivation, we note that

9; € Gy, :>ng: /;—l—t:],;, and s € Sg = srg — 19 + doo(s).

ook (sro— —2mi(k+E 2).(@oo(s
E e “Ti (0 m)éroysro = E e ( gk)( oo ))57“0,57"0

Tj

T3
_ Z edwi%.(doo(s))&wme—2m‘tg,;.(a*oo(s)) (2.64)
T

—2mik.(@oo(s
_ E e (@oo ))5710’57,0
Tj

In a primitive setting both Z,, and @y (s) are primitive translations: vectors com-
prised of integer elements. Hence, the dot-product ¢ 913-6700 is an integer, and the term
62”"’?9’“600(3) is always equal to 1. As a change of basis preserves the dot-product of
two vectors, this holds for any choice of basis. The sum over r; will multiply the

exponential by the number of symmetry equivalent positions, known from Eq. 2.60.
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v 1 s v —2rik.a3;(g)
n=—§x g)x 956 VI, grs
’I’L(G) - h() () - g
1 fox ey - TFi_‘.Eoo S
=0 © > X (90X (g) Y e RO,
g
(2.65)

—2mik.d@oo(s) S

1 R (N
) ;Xh (9)x (g)n(so)e r0,570

1 ks kv —2mik.@oo(s)
= S S)e ’
n(So) ES Xs (8)X™(s)

Therefore, to derive the irreducible representations spanned by this basis at R, one
need only consider the elements that stabilize the point R, simplifying the calculations
considerably. Revisiting the example from section 2.10.1, we can see that the order
of the stabilizing group is 1, as is the character of the permutation representation
when considering only stabilizing elements. Completing the calculations with the

diminished IR tables generates the same reduction: C' = % x3x1=3=C%

2.14. Conclusions

This chapter has reviewed the foundations of representation theory and its application
to crystalline systems. We have not only considered how to describe the positions
of each atom in the crystal, but also properties upon that position. In this way, we
can describe how a system changes during a phase change. Further, we have derived
the reduction and projection operators; tools for constructing the basis vectors of the

little group Gy..

Though equipped with the tools to calculate the basis vectors of a system, we still
lack the raw materials; IRs and trial functions. Chapter 5 will validate a reliable
source of IRs with which to perform these calculations, and in chapter 6 the problem

of what constitutes an appropriate set of trial functions is discussed. Before that,
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chapter 3 will discuss how basis vectors relate to a system’s Hamiltonian and how to

construct completely real symmetry modes from complex basis vectors.
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CHAPTER 3

Representation theory: A physical interpretation

“I fear explanations explanatory of things explained”

Abraham Lincoln

3.1. Introduction

The advantages of using representation theory to describe phase transitions are two
fold. First, representation theory is the only symmetry frame-work which fully de-
scribes all the possible symmetries of a crystal: a point developed by Bertaut (1968,
1981) with particular reference to magnetic structures. Second, the irreducible rep-
resentations of a system are intimately related to the eigenvectors of its Hamiltonian.
Using representation theory, to define how a system changes, indirectly probes the

energy terms driving a phase transition.

In this chapter we derive Wigner’s Theorem (Wigner, 1927), demonstrating the link
between basis vectors and eigenspaces of a Hamiltonian. Then, the use of complex
vectors to define completely real properties is considered, and this apparent contra-
diction resolved using Wigner’s theory of anti-linear operations. This is followed by a
discussion on the use of co-representations, and why work to derive new basis vectors
from them is largely misguided. Finally, some of the qualitative arguments used in

later chapters are developed.
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3.2. Wigner’s theorem

It is hard to overstate the importance of Wigner in bringing group theoretical tech-
niques to physical problems, and a number of lengthy celebrations of his contributions
have been made (e.g. Voight, 1995; Primas, 1997; Chayut, 2001). While his work
has been widely applied in the fields of physics and mathematics, he was introduced
to symmetry theory through crystallography by Weissenberg (Kuhn, 1965). This
chapter will exploit two of Wigner’s most celebrated results, beginning with a proof

of his theorem concerning the subspaces of the Hamiltonian.

Wigner’s theorem (Wigner, 1927), draws a link between the eigensubspaces of a

Hamiltonian, and the representation of its symmetry group.

If G is the symmetry group of a Hamiltonian H, then every degenerate
eigensubspace of H is invariant under G.

i.e. It constitutes a representation of G.

The eigensubspace of a,, is the span of all eigenvectors with eigenvalue a,,.

Proof of Wigner’s theorem consists of three steps: determining the symmetry prop-
erties of operators that commute (the First theorem); showing that operators which
commute have a common set of eigenfunctions (the Great theorem); and finally using
these results to prove Wigner’s theorem. We follow the proof presented by Pfister
(2003, Supporting materials), supplementing the mathematics with a more detailed

discussion.
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3.2.1. The First theorem

If A, B are two operators that commute, then every eigensubspace of

A is invariant under B and vice-versa

Proof

Let |¢,) be an eigenvector of A, eigenvalue a,,, then:

A(B|vn)) = BA[Yy)
= Bay,|,) (3.1)
= an(Bln))

This shows that Bli,,) is also an eigenvector of A. As this holds for any combination
of the eigenvectors of a,,, this entire eigensubspace of A is invariant under B. Further,
the argument holds for any eigenvalue a,, and so every eigensubspace of A is invariant
under B. Trivially, we can reverse this argument with respect to A and B, proving

the First theorem.

3.2.2. The Great theorem

If A, B commute, then we can always find a common eigenbasis.

The eigenbasis of an eigensubspace is the set of linearly independent eigenvectors
from which it is constructed. The Great Theorem tells us that if the operators A,
B commute then one can always find a common set of eigenvectors. This is already
proven when a,, is non-degenerate; in this case a,, has only a single eigenvector, |,),
and so Bli,) must be parallel to it. When a,, is degenerate, there is an additional

step in the proof.
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Proof

Consider some matrix representation of A acting upon the vector:

oy
vy =1 .. (3.2)
[¥m)

Where ;...1,, are the eigenvectors of a,. The action of A upon this subspace can

be represented by the identity matrix:
AlY) = a,T(E)|V) (3.3)

Thus, any similarity transformation leaves A invariant:
AAA™! = Aa, T(E)A ! = (a,ZT(E))(AA )
= AF (3.4)
=A
As A and B have the same eigensubspaces, there also exists a matrix representation of
B upon |¥). The matrix representation of B can be diagonalized by some similarity
transformation, 271 B, and this transformation will leave A and a,, unchanged. The

diagonality of A~!B2l implies that it transforms every |¢) into itself. Hence, there

exists some transformation of B under which it has the same eigenvectors as A.

3.2.3. Wigner’s Theorem

Before First and Great theorems can be used in the proof of Wigner’s theorem, we
must show that a Hamiltonian commutes with its symmetry group. A symmetry
operation of the Hamiltonian acts upon the system co-ordinates in such a way as to

leave the Hamiltonian unchanged (Hammermesh, 1964):

gH(z) = H(g™'x) = H(x) (3.5)
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By representing H(x)y(x) with some function ®(z) the Hamiltonian can be shown

to commute with its symmetry functions:

g®(z) = (g 'x)
L gH ()Y (z) = g®(x) = ®(g'z) = H(g 'z)(g 'x)
= gH(2)g ' gy (x) = gH ()9~ "W (g 'x) (3.6)

LgH(x)g™' = H(g"'z) = H(x)

As H, G commute, they can be substituted for A, B in the First and Great theorems.
Maschke’s Theorem (Appendix 3) states that there exists a similarity transformation
which block-diagonalizes every matrix T(g) in G, and the First Theorem states that
the matrix representation of H must have the same block-diagonal form (the same

invariant subspaces) as the matrices T(g).

To complete the proof, we consider the individual matrix blocks. For the matrices
%(g), the blocks consist of the irreducible representations of G. As H commutes with
every ¢ in G so must its matrix representation; indeed each block of the Hamiltonian
matrix commutes with the corresponding block (irreducible representation) of the
%(g). Shur’s lemma (Appendix 4) implies that any matrix which commutes with an
irreducible representation of G must be some multiple of the identity, hence each

block in the Hamiltonian matrix must be some multiple of an identity matrix.

The transformation that block-diagonalizes the representations of the symmetry op-
erations simultaneously diagonalizes the Hamiltonian, demonstrating that: the IR’s
of G correspond to eigensubspaces of the Hamiltonian. This result is so well known
as to be “hidden in plain view”; in many fields it is conventional to label energy
levels with the irreducible representations that correspond to them (e.g. electronic

and vibrational spectroscopy). Basis vectors transform as irreducible representations,
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which themselves correspond to eigensubspaces of the Hamiltonian. As such, they
have the symmetry of eigensubspaces, and defining a system property using basis

vectors gives us insight into the energy terms under which it is ordering.

3.3. The structure of basis vectors

Wigner’s theorem shows that basis vectors, by transforming as irreducible represen-
tations, capture the symmetry of terms in the Hamiltonian. However, it says nothing
about their form or how to derive them, for this we must turn to Bloch’s theorem

(Bloch, 1928) and the method of projection operators.

Basis vectors represent long range order, in particular translational periodicity. In
section 2.9.1 the translational symmetry of the vector-field representing our property
was defined in the following way:

Gtrans - E = ﬁ + Atrans
(3.7)

Gtrans - UR ? 6727T’Lk.atmns-7jR

R is the position of some atom in the crystal, and vg defines the system property
at that point. Previously, no justification was given for the periodic nature of basis
vectors, but this is a natural result of Wigner’s theorem. Bloch’s Theorem states

that the wave-functions of periodic systems have the form:

U = U g(R)e™ " (3.8)

-

kR captures the translational symmetry of the wave

In this equation the term e’
function, while u,_;(R) is a function that defines the shape of the wave function. As
basis vectors have the symmetry of the eigenfunctions, the basis vectors of crystals

must have the same translational properties as these Bloch waves.
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The form of Eq. 3.8 suggests a system property could defined using Bloch waves in
which u,_z(R) is very simple:

i = Ae~2mik-R (3.9)

We have chosen u,z(R) = A, a vector that defines the amplitude and the orientation
of the property vector at a position in the 0** primitive unit cell'. The property at
the equivalent position in every other primitive cell is defined by its translational

relationship to the 0" cell.

Eq. 3.9 only applies to those positions which are related by translational symmetry,
and not to other positions in an atom’s orbit or atoms in other orbits. As our model
is quite general, the entire system can be defined using a series of these simple Bloch
waves upon each atom in the 0** primitive unit cell. However, we might expect the
Bloch waves of symmetry related positions within the 0 unit cell to have well defined
relationships. Indeed they do and these relations can be determined by consideration

of how basis vectors are constructed using the method of projection operators.

Consider a crystal with space group G = {F,Cy} ® T, consisting of a single atom at

the position R, ordering under k= (0, %, 0). For this k-vector, Gy, = Gy and has two

IRs:

IThe constant factor of —27 in the exponent denotes a change from the wave-vector ¢ to the reduced
wave-vector k = 54 which is more convenient to work with in these calculations.
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The unitary projection operator (section 2.12), acting on a trial vector ¢, has the

form:

d
W = @ S0 (9)T(9)0 (3.10)
g

It is important to note that, for any real system, the symmetry group considered
when applying Eq. 3.10 is G,. Construction of a basis vector transforming as I's is
illustrated in Fig. 3.1. (a)First, our trial function, consisting of a property vector g
at the position R , is transformed by the operation g to some new position gﬁ with
property hvg . (b)The image of the trial function is then multiplied by a complex
number 7% (¢); the complex number “phases” the Bloch wave, translating it relative
to the atomic-lattice . (c¢)This process is repeated over all g € Gy, and the sum of
all the images forms a basis-vector . (d)The property at every other position in the

crystal is defined by the basis vector’s translational symmetry under k.

Thus, the form of basis vectors is a set of Bloch-waves, with a single k-vector, upon
every symmetry related position in an orbit under Gy. The relative orientations and
phases of the Bloch waves are strictly defined by the symmetry operations of the

group and the irreducible representation from which it has been projected.
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%—>b %\\3/@\

FIGURE 3.1. A graphical illustration of the method of projection operators.
(a) A trial vector upon a single atom is transformed to a symmetry related
position by the operation Cs. (b) The image is then multiplied by the ma-
trix element 035(C2) = —1. (c) The basis vector comprises the sum of all the
images generated by the elements of G. (d) The property vectors of equiva-

lent positions outside the 0" cell are defined according to the translational

symmetry: ¥ (r;) = e~2mk-ai5 I this example k = (0, 1.0
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3.4. Constructing completely real basis vectors

In general, basis vectors derived from the method of projection operators are com-
plex, as are their coefficients in the linear expansion of an ordered state. For many
properties this represents an unphysical result, and the basis vectors must be brought
into a form that is completely real everywhere. This is done by forming linear com-
binations of each basis vector with a basis vectors ordering under —k. These basis

vectors are the complex conjugates of the +k basis vectors (Wills, 2001):

U=+ 1

= Vg + %

(3.11)

This definition does not uniquely determine ¥, as one must decide how to handle

complex coefficients of 1. There are two possibilities:

U = Cyp+ (Cyp)”

= Cyp+ Oy (3.12)
Vo= O+ Ol (3.13)

In the second case, ¥ will still be complex when C' becomes complex. To achieve our
aim of a completely real construction, we must either restrict C' to being completely

real or use the “standing wave” approach.

U =Cy +¢7) + C* (Y + 97) (3.14)

In this section we consider the construction proposed in Eq. 3.12, termed the plane-
wave construction as it behaves like a plane-wave when 1) is complex. In particular,
the complexity of C'in Eq. 3.12 is realized as a phasing of the wave; a translation of

the property wave relative to the crystal lattice.
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FIGURE 3.2. A graphical representation of symmetry breaking through
phase displacement. A line of atoms is depicted by the filled and unfilled
circles, and some axial-vector property by the cosinusoidal wave. In (a) both
the atomic positions atoms and the property wave are symmetric under in-
version about the unfilled red circles. In (b) a phase-displacement of the
wave eliminates inversion symmetry. In (b), any inversion which leaves the
lattice invariant transforms the spin density wave, and vice-versa.

The transformation properties of basis vectors are defined by the equation:

g = Z 045(9)¥; (3.15)

From Eq. 3.15 it is clear that the symmetry of a basis vector is strictly defined by
the irreducible representation from which it is projected. A plane-wave, as defined
in Eq. 3.11, is inconsistent with this constraint when we allow the coefficients, C,
to be complex. Figure 3.2 depicts a cosinusoidal basis vector representing a pseudo-
vector property (Fig. 1.3), such as a spin-density wave, with the symmetry of a
one-dimensional irreducible representation. In (a) the spin density wave is related
to the lattice such that their inversion centres are coincident, and both lattice and
spin density wave are invariant under the operation of inversion about the red circles.
This relationship is encapsulated in the irreducible matrix representation of I (section

3.8):

(3.16)
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A complex-coefficient of 1 displaces the wave relative to the lattice, and the symmetry
of the system is changed (Fig 3.2b). For the displaced wave, the matrix representation
of I is now:

IV = o0 = ¥

(3.17)
Lo(l) = e

While a completely-real construction of basis-vectors is required to describe physical
systems, they must retain the symmetry properties of their constituent basis vectors.
The plane-wave construction violates this rule, and therefore can not be used as a

definition for completely real symmetry modes.

3.5. Standing wave constructions

The definition of how a system responds to complex basis vector coefficients given by
3.14 will be termed the standing wave construction. Standing waves differ from plane-
waves in that they do not propagate through a system, instead complex coefficients
of ¥ modulate the amplitude of the mode. This is most readily demonstrated using

the trigonometric form for standing waves.

C = Ae™
U = C(; +97) + C* (g + ¥7) (3.18)
= Acos(w) cos(kR)

The term that transforms in space, cos(l;R), is unchanged by a complex coefficient,
indicating that the wave does not move relative to the origin. This spatial invariance
with respect to phase demonstrates that the symmetry of the standing-wave con-
struction is not changed by complex coefficients of ¢ (Figure 3.3). By constructing
completely real basis vectors using the standing wave form, we ensure that they have

the correct symmetry. Further, there is no need to consider complex coefficients of
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FIGURE 3.3. Figures (a) and (b) depict the same standing wave when
has coefficients 1, and e respectively. The symmetry of a standing wave
does not vary with the phase of the coefficient, instead complexity is indis-
tinguishable from a change in the wave amplitude.

1, as they are indistinguishable from real coefficients when we form ¥. Hence, we
have restricted the coefficient of ¥ to being completely real, without restricting the

coefficients of 1. 2

3.6. Anti-linear symmetry

Though we have determined how to construct completely real modes from complex
basis vectors, it has not shown that the basis vectors of k and —Fk are degenerate. To
show that both —k and —Fk reside within the same eigensubspace of the Hamiltonian,

requires consideration of the anti-linear symmetry operations of the Hamiltonian.

The invariance of a system’s Hamiltonian under inversion of time was first discussed
by Wigner (1959) and formalized through the theory of co-representations. He also
derived a general framework for using anti-linear operations®, and his results have
been widely discussed throughout both the physics and mathematical communities

°In practise, it is usual to construct completely real symmetry modes as ¥ = Y + 1/1;’;‘ and restrict
the coeflicients of U. We have shown that does not cause a loss of generality in the results.

3More specifically, anti-unitary operations. Those anti-linear operations which leave the transition
probability between any two states invariant: |(®1,Ps)| = [(K Py, KP2)|
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(e.g. Bargmann, 1964; Lajos, 1998; Jinxiu, 2006; Simona, 2008). While the impor-
tance of anti-linear symmetry has been recognized for many years (Landau, 1960;
Bertaut, 1971), it is still relatively undiscussed in crystallography. Recently, it has
received increasing attention (e.g Schweizer, 2005, 2007; Stewart, 2007; Radaelli,
2007; ; Harris, 2008a, 2008b), but a considerable amount of confusion about this

symmetry remains in the literature.

One common misconception is that the degrees of freedom of a system can be reduced
by consideration of anti-linear symmetry; this is not correct. When using basis
vectors to define the structure of some ordered property of a system, the degrees
of freedom are exactly the coefficients of the basis-vectors (which may be complex).
If the property is defined by an n-dimensional vector and the unit-cell contains m
atoms, then there are nm degrees of freedom. The only way to reduce the number
of free parameters is to restrict them by making assumptions about the symmetry of
the final structure?. The number of independent atoms in the system-vector depends
only upon the assumptions made about the symmetry of the daughter phase, and

not the symmetry operators of the parent phase.

3.6.1. Irreducible co-representations

Anti-linear operators behave in the following way:
Kayp = a" K1 (3.19)

The most prominent example of an anti-linear operation is complex-conjugation.
However, the choice of anti-unitary operator is relatively unconstrained and in crys-

tallography it is conventionally chosen such that:

K:k— —k (3.20)

4 fact, a system has nM degrees of freedom, where M is the total number of atoms in the system
(and not just the unit cell). This is reduced to nm by the assumption that the daughter phase
orders under some k-vector k
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This operation is equivalent to complex-conjugation, and the choice is useful as

diffraction data can not determine whether a system orders under k or -k.

The element K is referred to as the anti-unitary generating element. As the symmetry
elements of a system must form a group, when we consider anti-linear symmetry we
not only include K, but the set KG: a set of anti-linear operations generated by K.
When K is an element of Gy, then KGy = Gy (section 2.2.1) and the little group
is left unchanged. Otherwise, the symmetry group of a system is expanded to the

union G, & KGy, doubling its size.

Consideration of anti-linear operations enlarges the symmetry group of the system to
the union (G @ KG)®. As usual, matrix representations of this group can be reduced
to a block-diagonal form, but now the blocks constitute irreducible co-representations
(ICRs). The ICRs of a group are defined by the following relations:

c(up)e(uy) = e(ujuz) c(u)c(a) = c(ua)
(3.21)

c(a)c(u)" = c(au) c(ar)c(az)” = c(ajas)
The u are linear operations of G, and the a are anti-linear operations of KG; ¢(g) is
the irreducible co-representation of g € (G® KG). It is important to note that ICRs
do not form representations of the group; as such we cannot use the reduction or
projection operators during this type of analysis. The effect of anti-unitary symmetry

upon the basis vectors is discussed in section 3.7.

Rigorous derivation of ICRs is lengthy (Wigner, 1959), but the method can be sum-
marized as follows. Using the relations in Eq. 3.21, and Eq. 3.15 it is possible
to construct the irreducible representations of G in two ways: d(u) and 0(K 'uK).

From these three general types of ICR are derived.

5This is exactly analogous to the construction of magnetic space groups (section 1.3.1), in particular
the grey-groups. For the non-grey groups G is replaced by some subgroup of G containing exactly
half of the symmetry operations.
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o Type A

¢(u) is the same order as 0(u), and d(u) is equivalent to 3(K ~luK):
WK uK) =7 o(u)p

¢(u) = 2 (u) (3.22)

e Type B

c(u) is the twice the order of 0(u), and d(u) is equivalent to d(K ~uK):

A(K"uk) = B "0(u)

(W) o(u) 0
c(u) =
0  o(u) (3.23)

o Type C
c(u) is the twice the order of d(u); 9(u) and 9(K ~'uK) are inequivalent irreducible

representations:

(3.24)
o) - ( 0 o(aK) )
(K~ ta)* 0

Note that K'uK, K~'a,aK etc. are all members of Gy, so we can fully determine

the ICRs of a group from the IRs of Gy.

3.6.2. Degeneracies from co-representations

Within Wigner’s theorem we can replace IRs with ICRs (Wigner, 1959), and each
type of ICR will have a distinct effect upon the degeneracies of a system. The

simplest are type A ICRs, which mix a single IR of k and the same IR of —E; this
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generates new basis functions without creating additional degeneracies. Type B are
constructed from equivalent IRs of k and —qk; within this space, an IR of k and —k
become degenerate. Type C' ICRs bring together inequivalent IRs, again representing
k and —k. Like type B ICRs, type C ICRs form new dengeracies between the IRs of
+k. For this type of ICR, a second-order phase transition involving two distinct IRs

joined by anti-unitary symmetry would be possible (Landau theory, section 1.5).

Returning to the problem of completely real symmetry modes, inclusion of anti-
linear symmetry is sufficient to justify the standing wave construction. For all types
of ICR, both ¢ and 1_; reside within the same eigensubspace and are therefore
necessarily degenerate, as is any linear combination of their basis vectors. Hence,
the construction of modes as described in section 3.5 does not mix eigensubspaces

(energy levels).

3.6.3. Free phase-factors in anti-linear symmetry

One element of anti-linear symmetry that has, until recently, been overlooked are the
free phase factors when choosing K and 3 (Stewart, 2007; Wills, 2009). Any choice
of K could be replaced by an element that inverts k and then adds a phase to the
basis vector (in the manner of super-space groups). Equally, 3 is restricted such that

83" = +£1 leaving only its modulus defined.

It should be noted that these degrees of freedom are equivalent. Suppose that we
chose f = w, so that ¢(K) = w. In this case, Eq. 3.15 states that, for a 1 dimensional

ICR of type A, the effect of K is to phase the basis vector by w:
Ky =uwy (3.25)

If we now redefine K such that the operation itself phases the basis vector by —w then
the action of this new operation, K’, will leave the basis vector unchanged. Hence,

the representation of K’ must be: ¢(K’) = 1. As inversion symmetry can have an
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important influence upon a systems properties (chapter 4), we usually ignore the free
phase in K and consider, instead, the phase to reside within 3. This free phase is

important: it makes it impossible to uniquely define “co-basis vectors”.

3.7. The effect of anti-linear symmetry upon a system’s basis vectors

It has been suggested that anti-linear symmetry operations redefine a system’s basis
vectors and a significant body of work has discussed the use of basis vectors derived
from co-representations (e.g. Kovalev 1980, 1983). In this section we use simple

considerations to show that such an approach is largely misguided.

The definition of ICR matrices given in Eq. 3.21 makes it clear that, in general,
ICRs do not form a representation of G & KG, and so the projection or reduction
operators can not be applied. Indeed the orthogonality properties of ICRs are quite
distinct from those of simple IRs (Dimmock, 1963), and any attempts to derive
general operators for ICRs (e.g. Kotzev, 1980) are “untenable” (Dimmock, 1963).
When the ICR matrices are all completely real then they become representations
once more, and in this case the projection operator can be used in the usual way.
However, we shall see that this does not alter the system’s basis vectors, except in

the case of type A co-representations.

Type A ICRs are constructed from two equivalent IRs, one from each of G, and G_y.
Projection from them generates “co-basis vectors”, (¥, which are the direct sum of

two basis vectors projected from IRs:
¢V =+ (KK Ky (3.26)

The coefficient ¢(K K1) comes directly from the definition of type A ICRs (Eq.
3.22) and Kt will be some other basis vector of the system, but not a new basis

vector. Recognizing that ¢(KK~!) = ¢(E) = 1 and that for completely real ICRs
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8 = £1, it is possible to form the combinations ¢, = w% + K sz. This is analogous

to the mixing of wave functions during bonding interactions.

It is important to note that, under the arguments of 3.6.3 these linear combinations
are not unique. If we do not restrict the ICRs to being completely real, then there
is a free phase factor between the cojoined basis vectors. Under the standing wave
construction (section 3.5) this corresponds to a free amplitude, decoupling the mag-
nitude of @ZJ% and ¢” 7 Hence, we cannot determine a priori the exact form of A-type

co-basis vectors.

ICRs of type B and C bring four IRs into degeneracy: two IRs of G, and two IRs
of G_j. If we consider the form of the ICR matrices (Eq. 3.23 and 3.24) then it

becomes clear that:

(1) For linear operators, the top-right and bottom-left quadrants are null.

(2) For anti-linear operators, the top-left and bottom-right quadrants are null.

Hence, depending upon which column of the matrices used, the matrix element for
every element in either G or KG will be 0. During projection, half of the symmetry
operations contribute nothing to the form of the “co basis vectors”:
¢ =g +0
(3.27)
=0+ wik
This implies that, under type B and C' ICRs, anti-linear symmetry brings basis

vectors of a system into degeneracy without changing their form

In conclusion, co-representations bring into degeneracy several basis sets of k and
—k. While this allows us to form linear combinations that are completely real, the
form of a systems basis vectors are usually unchanged. Further, even in the case of
completely type A ICRs, for which we can project new basis vectors, their form is

not uniquely defined. To summarize these results, we present a simplified example.
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Ezxample:
Consider a simple system with symmetry G = {E,Co,,1,0,,} ® T, ordering under k=
(%, 0,0). For this group, Gy = {F, Ca,} and has IRs:

(3.28)

Now consider the point (0.25,0.25,0), which splits into two orbits under Gg: (0.25,0.25,0)
and (0.25,—-0.25,0); (—0.25,—0.25,0) and (—0.25,0.25,0). These four positions will be
denoted Ag, A1, Ay and As respectively. If we wish to represent a polar vector property,
then the basis vectors for this system are very simple: for each, the property vectors upon
the two related positions are either parallel or anti-parallel. One such basis vector from
each orbit is given, projected from a trial parallel to the a-axis.
U1 (Ao () = Ao(E) + Ar(—F)
(3.29)
U1 (A2()) = Ao(Z) + A3(—7)
In this notation, the basis vector @ij(gb) was projected from the ij*" elements of T', using
the trial function ¢. It consists of a series of property vectors ¢ upon the positions A,

denoted A, (7).

Rather than use the correct ICRs for this system, let’s consider the possible scenarios. In

this example, completely real type A ICRs would have the form:

E 025 I Oyz

|1 1 1 1
ol 1 1 -1 —1 (3.30)
Torn| 1 -1 1 -1

Ty n| 1 -1 -1 1
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Projection from I's4 9 and I'y_5 generates basis vectors which are clearly linear combinations

of those presented in Eq. 3.29.
T2(Ao(E)) = Ao(®) + AL(=F) + Az (Z) + A3(—7)
= 11(T) + 971 (2)

ST (Ao(F)) = Ao() + A1 (—T) + Ao(—T) + A3(Z)

(3.31)

= 11(@) — V1 (7)

Now let us consider the case of completely real type B ICRs, which would have the form:

10 1 0 0 1 0 -1 (3.32)
I'ip

Projection from I'y g generates the following basis vectors, identical to those in Eq. 3.29:

1B(Ao(®) = Ag(F) + Ar(—7) + 0+ 0 = ¢ (Ag(2) s
18(A0(#)) = Ag(#) + As(—7) + 0+ 0 = 93 (Ax()) |

These results, concerning the form of “co-basis vectors”, are observed in calculations upon

real systems (e.g. Samokhin, 2002; Schweizer, 2005).

3.8. Qualitative analysis of phase transitions using irreducible representations

While completely real basis vectors are required for any quantitative analysis, a great deal
can be determined from qualitative arguments based upon the irreducible representations of
a system. In particular, when we know the symmetry of the parent phase and the daughter
phase, the IR symmetries that could bring about that phase transition can be deduced.
These ideas have been used both explicitly and implicitly in previous work (e.g. Birman,

1966; Aroyo 1998).

The simplest approach is to start by solving a very similar problem; predicting the possible

symmetries of the daughter phase using the irreducible representations of the parent phase.
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The behaviour of a basis-vector under the symmetry operations is well defined Eq. 3.15:

gy = Omi(g)vh,

Under the symmetry operation g, the basis vector is transformed into a linear combination
of the members of its basis set; the coefficients are defined by a single column of the
irreducible matrix representation of g. The only symmetry operations of the little group
Gy, preserved by a distortion with the symmetry of a single IR are those that leave the

distortion unchanged: i.e. those for which:

gt = vl =y,  1=1,2,....d" (3.34)

And it follows that:

Dml(g) = Oml (335)

We conclude that the irreducible matrix representation of any preserved symmetry opera-

tion must be the identity matrix.

When the symmetry of the parent and daughter phase is known the above argument can be
reversed; for a well defined group-subgroup relationship the system can only order under
IRs in which every symmetry operation of the daughter-phase is represented by the identity
matrix. Thus, we have a powerful tool for determining which irreducible representations

can drive a phase-transitions between two known symmetries.

3.9. Conclusions

In this chapter we have shown the intimate relationship between a system’s Hamiltonian
and the irreducible representations of its symmetry group. Basis vectors have the symme-
try of eigensubspaces and they represent families of Bloch waves with which it is possible
to define a property showing a long-range order, characterized by a wave-vector k. Further,
by exploiting the anti-linear symmetry of a system, we have arrived at a method for con-
structing completely real modes from complex basis vectors that have the correct symmetry

properties; this symmetry of a system is often over-looked and widely misunderstood.
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Our discussion of irreducible co-representations has shown that, apart from the case of ICRs
of type A, anti-linear symmetry does not alter a system’s symmetry modes. Further, the
“co-basis vectors” of type A ICRs are not uniquely defined because of the free-phase of .
Indeed, rather than new basis vectors, co-representational analysis defines new degeneracies:

all types of ICR bring distinct energy subspaces of k and —k into coincidence.

Finally, we have developed qualitative arguments for defining phase-transitions using the
irreducible representations of the parent phase. Understanding the symmetry information
encoded in IRs allows us to predict either the symmetry of the daughter phase, or the
distortion relating two phases. The qualitative arguments of sections 3.4 and 3.8 are used in
the next chapter to gain considerable insight into magnetic and structural phase transitions
in an important class of materials, magneto-electrics. More generally, an understanding of

the symmetry of IRs will underline almost all of the work in this thesis.
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CHAPTER 4

The role of phase dislocation in symmetry breaking

“I'm just going through a phase right now. Fverybody goes through

phases and all, don’t they?”

J. D. Salinger

4.1. Introduction

Before turning our attention to quantitative methods of analysis in chapters 5, 6
and 7, it is worth pausing to discuss some important results that can be derived
from purely qualitative symmetry arguments of the type used in sections 3.4 and
3.8. Ferroelectric systems are a classic example in which interesting new physical
properties arise from a displacive phase transition. This chapter explores how “phase
displacements” can give rise to ferroelectricity in multi-ferroic materials, and their

interpretation in the representation theory formalism.

4.2. Ferroelectricity and centro-symmetry

Ferroelectric materials have a spontaneous electric polarisation and are of consider-
able technological interest in areas such as data storage (e.g. Spaldin 2005; Kanareykin,
2006). Their electric polarization often arises from a coherent displacement of ions

within the structure, during a displacive phase transition. It is simple to show, using
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symmetry considerations, that a ferroelectric material must lack inversion symme-
try. The presence of inversion symmetry would require every displacement associated
with a local electric dipole to have a matching displacement generating an opposed
dipole (Fig. 4.1); the sum polarisation of such displacements would be nil. There-
fore, the absence of centro-symmetry is a necessary, but not sufficient, condition upon
the emergence of spontaneous electric polarisation (Harris, 2008a)’. As a result, the
emergence of a ferroelectric phases is often characterized by a transition in which

centro-symmetry is lost.

FIGURE 4.1. A simple model of two distortions (blue arrows): in (a) centro-
symmetry about the white circles is destroyed; in (b) the distortion preserves
centro-symmetry. Retention of centro-symmetry ensures that the electric
dipoles (red arrows), at positions related by inversion, sum to zero.

4.2.1. Multi-ferroic materials, and the magneto-electric effect

Ferroelectric materials that are simultaneously magnetically ordered are one class of
multi-ferroics: materials that show two or more simultaneous ferroic phenomena (fer-
roelectricity, ferroeleasticity, ferromagnetism). The coupling of internal magnetic and
electric fields in such materials is termed the magneto-electric effect and has gener-
ated significant interest, as the ability to manipulate a material’s magnetic field using
an external electric field (and vice-versa) has potential application in technological
areas such as data storage (e.g. Sakai, 2007; Vopsaroiu, 2007). Such materials are

extremely rare, and their magneto-electric coupling is often weak (Khomskii, 2001).

1Other symmetry elements can forbid polarization to occur along certain directions
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A new generation of materials, in which the centro-symmetry of the system is broken
by magnetic ordering, with strong magneto-electric coupling has spurred the most
recent work in this field. Systems such as ThMnOj; (Kajimoto, 2004; Kenzelmann,
2005; Duque, 2006; Yamasaki, 2007) and MnWO, (Lautenschl ager, 1993; Heyer,
2006), are notable for their large magneto-electric coupling and complex, frustrated

magnetic ordering (Kimura, 2003, 2006a; Hur, 2004; Eerenstein, 2006; Cheong, 2007).

For these “new” multi-ferroics the electric polarisation is intimately related to the
symmetry of the magnetic ordering, emerging at magnetic phase transitions which are
symmetry lowering. The distribution of magnetic moments throughout these mate-
rials can be described using spin-density waves (SDW), so-called because magnetism
arises from the spin of unpaired electrons. One simple model for a spin-density wave

is a plane wave of the form:

W = Ae2r(—kT+0) (4.1)

In this description ¢ is an arbitrary phase-factor that defines the plane wave at
the 0" atom. A review of more detailed models of the magneto-electric effect, in
the next section, shows that ¢ appears to have a central role to the emergence of
ferro-electricity in these new multi-ferroic materials. The importance of this term
has previously been touched upon by Chapon (2006, and Betouras (2007) who have
shown that phase displacements can give rise ferroelectricity in two specific cases: a

single commensurate SDW; and two incommensurate SDWs.

In this chapter we use symmetry arguments to explore the general role of phase
displacements in symmetry-breaking, including systems that order under one or sev-
eral commensurate or incommensurate spin density waves. We consider how these
arguments can be interpreted when using representation theory to define the mag-
netic ordering of a system with basis vectors and derive simple rule for determining

whether centro-symmetry is lost during phase transitions. Further, we use our model
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of phase displacements to explain the relationship between the elipticity of magnetic

spirals and electric polarisation observed in TbhMnOs.

4.3. Quantitative models of the ferroelectric effect

There exist several quantitative models of the magneto-electric effect in the litera-
ture. Kimura (2006b) broadly separates these into two exchange mechanisms: par-
allel spins are able to interact via super-exchange (SE) (Goodenough, 1963); while
perpendicular spin components experience Dzyaloshinsky-Moriya (DM) interactions
(Dzyaloshinsky, 1958; Moriya, 1960). These models vary in their detail, but share a

common motif: in each, a phase displacement, ¢, is key.

The works of Chapon (2006), Mostovoy (2006) and Betouras (2007) exemplify current
models of the SE interaction and resulting electric polarisation. The quantitative

elements of these works are summarized by the three equations:

P = yxeMM[Q x [@; x @]]sin ¢ (4.2)
. 1
PIOM — 4CSy.S,cos(2m (Z + 5Z> 2")cos(2m0,(1 — x)).cos(e)sing  (4.3)

M e
Po = T sin(2¢) (4.4)

—

In each, the terms M,, are amplitudes of the magnetic components, S,, are spins on
the n'" atom, and the other terms are constants. The term sin(n¢) appears in all of
these equations and corresponds to some form of phase displacement: in Eq. 4.4 the
dislocation is between the SDW and the lattice; in the Eqs. 4.2 & 4.3 it defines a
dislocation between two independent SDWs. Phase dislocation defines the presence,

or absence, and magnitude of ferroelectric polarisation in these models
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Alternate to super-exchange, spins can interact via the Dzyaloshinsky-Moriya mech-
anism. For a quantitative model of DM exchange we refer to the one-hole (Eq. 4.5)
and two-hole (Eq. 4.6) models of Katsura (2005), and have expanded the vector

product term:

B eV dax ek 15
3A |COS%

. de (V°

P ~ —56 (Z) Ie15 x 7léi]|€[singro (4.6)

7L é,é

These models are derived from a quantum mechanical treatment of the Hamiltonian,
and their physical interpretation is a “reverse” DM interaction in which magnetic
exchange causes displacement of the atom mediating magnetic exchange. Again, a

term involving ¢ is central to the emergence of net electric polarisation.

4.4. Phase dislocations of the spin-density wave

A function of ¢ appears ubiquitous in all of the quantitative models of the magneto-
electric effect. In this section, we develop simple qualitative symmetry arguments
as to why this should be the case and what ¢ corresponds to. Symmetry analysis
of phase dislocation will allow us to explain some interesting features in existing
TbMnO3 data, and develop a “selection” rule for the emergence of net electric po-

larisation.

Net polarisation arises from a uniform distortion of the crystal and so can be expected
to arise from an homogenous interaction between spins. For DM type interactions
the constant angular differential between interacting spins gives rise to a homogenous
interaction along the chain. The spatially invariant term in SE interactions is less
obvious. Simple spin-spin interaction has the form (§Z . gj), where each of the spins

is described by a spin-density wave of the form sin(k.7). For two colinear spins, with
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a phase displacement ¢, this expression separates into two terms:

S; - S; = sin(k.7).sin(k.7 + ¢)

~ cos (W) o (g) (4.7)

The second term in this expansion is a function of ¢, but invariant with respect to
any translation 7. Hence, it represents a spatially invariant interaction of the type
from which ferroelectricity can arise. A physical interpretation of the SE and DM

interactions are depicted in Figure 4.2.

FI1GURE 4.2. An illustration of phase-dislocation between interacting mag-
netic atoms. Each diagram depicts lines of magnetic atoms, interacting with
their partner in the other line. (a) For colinear spins, phase displacement
gives rise to interactions between spins of varying size and sign. (b) Phase
separated spiralling spins are characterised by a constant angular differen-
tial, as depicted in the lower superposition (Davies, 2009).

For “new” multi-ferroics, it is magnetic order that destroys the centro-symmetry
of the parent phase. In the quantitative expressions of section 4.3, this symmetry
breaking is encapsulated by the term sin(n¢); when sin(n¢) = 0 there is no net
polarization. Hence, a phase-dislocation of the SDW is central to the symmetry
breaking in magneto-ferroic materials. If we express the spin density wave as a
plane-wave (Eq. 4.1), then ¢ represents the phase of the plane-wave at the 0* atom.
This can be interpreted as the displacement of the spin density wave’s relative to the

atomic lattice (Figure 4.3), breaking the symmetry of the system.
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FIGURE 4.3. We can interpret a phase change of the SDW as a displacement
of the wave relative to the lattice. The empty circles denote inversion centers
of the spin density wave (axial-vector wave), which lie upon atomic positions
in (a). In (b) a phase displacement of the wave has moved the symmetry
centers away from the atomic positions.

4.4.1. Systems ordering a single spin-density wave

The symmetry of a multi-ferroic material is defined by the symmetry of the spin-
density wave convoluted with the lattice; any symmetry operation must leave both
wave and lattice invariant. The precise nature of this symmetry will depend, in part,
upon ¢; in particular, according to the equations of section 4.3, the system should be
acentric except for special values of ¢. For a system ordering under a single SDW,
centro-symmetry of the system is preserved when both the wave and the lattice are
simultaneously invariant under inversion about a single point. This occurs in two
cases: when the components of the k-vector are all multiples of one-half, and the
atoms lie upon inversion centers; or an inversion center of the lattice and the SDW

are coincident.

The first condition arises from the symmetry of a sine function. When the k-vector
consists of multiples of one half, then every lattice translation corresponds to a phase-
factor of nm. In this case, the phase of the SDW at the 0'* atom is given by ¢, and

at every other position by ¢ + nm, n € Z. Further, simple trigonometry reveals that:

sin(¢ + m) = —sin(¢)

S, =S, Yo
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b ¢ s ¢

/ \_/

FIGURE 4.4. A line of magnetic atoms (black circles) whose moments (blue
arrows) ordering under k = (%,0,0). In (a) the wave is related to the
lattice in such a way that the system is centro-symmetric about the positions
marked with red circles. In (b) this symmetry has been broken by the
displacement of the wave relative to the lattice.

This shows that every position the SDW has a moment equal to 4 the moment at the
0 position for any value of ¢. Hence, a phase dislocation cannot be distinguished
from a change of the SDW’s amplitude. The second condition simply restates that
the SDW and lattice must share a common center of inversion, otherwise there is no

inversion operation which leaves both the lattice and the SDW invariant.

When neither of these conditions are satisfied, the relative magnitudes of the SDW
upon each atomic position varies with ¢ and the effect of a phase dislocation can be

expressed by:

sin(f + ¢) = sin(6)cos(¢p) + cos(6)sin(0) (4.8)

For a general k-vector, the phase between two positions can take many values 6.
Now, varying ¢ causes some moments to become larger, and others smaller, breaking
centro-symmetry (Fig 4.4). Hence, phase displacements of the SDW form a simple
mechanism for the emergence of spontaneous electric polarisation in systems ordering
under a single, commensurate spin-density wave. This result was reached quantita-

tively by Betouras (2007).
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4.4.2. Systems ordering under more than one spin-density wave

The arguments about a single, commensurate SDW can be extended to systems that
order under an incommensurate SDW, or many SDWs of either type. The inversion
centers of an incommensurate SDW are evenly distributed along lines passing through
the inversion centers of the lattice. Hence, there will be at least one inversion center
of the SDW that is, within experimental uncertainty, coincident with an inversion
center of the lattice; an incommensurate spin density wave does not break inversion
symmetry. When a system orders under several SDWs, then the inversion centers
of all the SDWs must coincide with the inversion center of the lattice, and therefore
with each other, hence ferroelectricity may arise when the waves are phase-displaced

relative to each other (Chapon, 2006).

A special case of the symmetry breaking that can arises by phase separation of two

SDWs is spiral ordering. The standard expression for a magnetic spiral is:
M = Mlgl SIH(EI) + M2€2 Sln(]gl') + M3€3 (49)

Where €7, €3, €5 are mutually orthogonal vectors and k is the propagation vector
of magnetic order. This equation can be rewritten in a form that contains a phase

dislocation between two perpendicular spin density waves:
M = M[(&) + &) sin(k.z) + (&, — &) sin(k.x + ¢)] + Mses (4.10)

The magnetisation M is defined as the sum of three components. Two are perpen-
dicular sine waves, that are ¢ radians out of phase, and the third is a static term,

present in magnetic cones. The effect of ¢ in Eq. 4.10 is demonstrated in Figure 4.5.

The phase term moderates the elipticity of the spiral, and its limiting values of Omodn

and Fmod gives rise to colinear ordering and circular spirals respectively?.

2Here, “mod” refers to modular (or remainder) arithmetic. a(modb) returns the remainder when a
is divided by b
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-0.5

-15 -

FiGURE 4.5. The eliptic curves defined by Eq. 4.10 for different values
of ¢: (a) ¢ = 0; (b) ¢ = §; (c) ¢ = §; (d) ¢ = 5. In this example,
the magnetization axes e, ey are parallel to the graph axes. The magnetic
orbits evolve continuously with ¢, which has the limiting values Omodn and

Smodr. (Davies, 2009)

Ferroelectricity can arise from spiralling magnetic moments through DM-type inter-
actions, appearing at the phase transition to spiral magnetic order. Such transitions
are observed in the rare-earth manganates RMnOs (R=Tb, Dy) (Goto, 2004; Kimura,
2005; Cheong, 2007; Yamasaki, 2007) and CoCrO, (Yamasaki, 2006). This result is
apparent from both Eqgs. 4.5 and 4.6, and from the qualitative argument we have
presented; colinear ordering implies that ¢ ( and sin ¢) are 0, and no polarisation is
observed. In DM exchange, electric polarisation arises from the evolution of a phase

difference between perpendicular SDWs.

We can use this qualitative model to make a simple prediction. The elipticity of the
magnetic spiral (defined as the ratio of the shortest and longest diameters) is an al-

most linear function of ¢ (Figure 4.6). In the DM model polarization, is proportional
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FIGURE 4.6. A plot of elipticity (vertical axis) against phase displacement
¢, using the expressions in Eq. 4.10. We can see that the relationship is
almost linear giving rise to a pseudo-proportionality between them.

to sin(¢), therefore we can hypothesise that the polarization of such systems should
be related to the elipticity of the magnetic spiral. This correlation between elipticity
and electric polarization is clearly seen in the TbMnOj (Yamasaki (2007), Figure

4.7), supporting our hypothesis.

4.5. The meaning of phase in a basis-vector description

This chapter has discussed how phase dislocations of spin density waves can lower
a symmetry’s system. However, section 3.4 noted that the plane wave construction,
used throughout this chapter, is not appropriate for basis vectors; precisely because
their symmetry would change according to their phase. When using basis vectors
to define the magnetic ordering of a system, phase displacements correspond to a
lowering of symmetry. In the basis vector formalism this must arise from the presence

of another basis vector of differing symmetry: a basis vector from another irreducible
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FI1GURE 4.7. The plot in Figure 4.6 implies a pseudo-proportionality be-
tween spiral elipticity and ¢, the phase displacement of two perpendicular
spin density waves. As ¢ also determines the magnitude of electric polar-
isation in DM model of multiferroic materials, we predict a positive cor-
relation between elipticity and ferroelectric polarisation. This prediction
is supported by ThMnOgs data collected (Yamasaki, 2007). On the left is
a graph of polarisation against temperature, on the top right elipticity is
plotted against temperature. The similarity is quite striking.

representation (or more strictly, ICR, section 3.6.1). Under representation theory,
therefore, ¢ is interpreted as the perturbation of the magnetic order by a second

irreducible representation.

D =¥ + Sy (4.11)

Typically, materials which become ferroelectric at a magnetic phase transition do so
in one of two ways. The first class undergo an incommensurate to commensurate
magnetic transition, e.g. HoMnyOs (Kimura, 2006c). Within our simple model,
the emergence of ferroelectricity arises from the symmetry reduction when moving
from an incommensurate to a displaced, commensurate SDW. In the second case,
ferroelectricity appears at a colinear to spiral magnetic phase transition, such as

in (Tb/Dy)MnOj (e.g. Goto, 2004; Kimura, 2005; Cheong, 2007; Yamasaki, 2007)
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systems. Such materials are expected to obey DM-type interactions and symmetry

breaking arises due to a second, phase dislocated, SDW.

In the language of representation theory these cases are equivalent. For both types
of phase transition, ferroelectricity arises from the appearance of a second IR in
the decomposition of the magnetic order®. The coefficient of the second irreducible
representation determines the magnitude of the phase-dislocation, and hence the
electric polarisation. This provides a qualitative explanation for the strong magneto-
electric coupling in such materials; both the magnetic and electric polarization are

4

determined by the magnitude of the “perturbation”.

The importance of a second irreducible representation in the magnetic ordering has
been derived quantitatively by Harris et. al. and is referred to as tri-linear coupling
(Kenzelmann, 2005; Harris, 2008b). Under tri-linear coupling, net electric polarisa-
tion must arise from an interplay between two different irreducible representations,

in exactly the manner described here through a purely qualitative approach.*

4.6. Symmetry breaking rules

The results of this chapter can be neatly summarized in a simple “selection rule”
for multiferroic materials, to determine whether centro-symmetry is broken by the
magnetic ordering. For these materials, [ is in the parent phase transversal Gy, and
it must therefore either be in either G or form the anti-unitary generating element
K. Following the arguments of section 3.8 it is simple to define a symmetry-rule for

these transitions:

3There is also a change of k-vector in the incommensurate to commensurate transition, but unless k
rests upon a symmetry point of the Brillouin zone this does not change Gy. Hence it is considered
to be equivalent except for the special case that Ecomwmnsurate lies on a high-symmetry point.
4Tri-linear coupling also explicitly includes the influence of the —k component of a basis-vector,
discussed in sections 3.4 and 3.6.
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Ferroelectricity can only arise when the inversion operator is not rep-
resented by an identity matriz in every irreducible (co)representation

present in the magnetic ordering.

For each IR identified as contributing to the magnetic ordering of a system, we
should inspect the matrix representing the inversion operator and confirm that it is
the identity matrix. If any one of them does not obey this restriction, the system
can not be centro-symmetric. Further, as all the preceding arguments are entirely
general, they are not restricted to systems ordering magnetically; they also hold for
systems in which centro-symmetry is broken by charge ordering or other ordered

phenomena.

4.7. Conclusions

In this chapter we have reviewed the role of symmetry breaking phase transitions
in the emergence of ferroelectricity. From quantitative models in the literature we
have extracted symmetry arguments that provide us with a simple and physically
meaningful mechanism for symmetry breaking using the concept of phase disloca-
tion. Consideration of phase factors allows the construction of simple models which
explanation the emergence of ferroelectricity at incommensurate to commensurate
and colinear to spiral magnetic phase transitions. These arguments have been dis-
tilled into a simple rule for determining if centro-symmetry is lost during at a phase
transition. Of course, to apply this selection rule one must describe the phase tran-
sition using basis vectors and irreducible representations; in the following chapters

we will develop the methods for reliably performing this analysis.

Our new approach to symmetry breaking in these materials also helps explain why
their magneto-electric coupling is so strong: ferroelectricity arises from the presence

of a second order parameter which determines both the magnetic structure and the
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electric-polarization. It has also allowed us to explain the near proportionality of
elipticity and polarization observed in TbhMnOg, and derive the symmetry elements

of tri-linear coupling (Harris, 2008b) form purely qualitative arguments.

Much of the work presented in this chapter has been previously published in the

proceedings of the Highly Frustrated Magnetism conference (Davies, 2009).
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CHAPTER 5

Irreducible representations: Validating the tables of Kovalev

The Captain... with a great effort, that made his face very red, pulled
up the silver watch, which was so big, and so tight in his pocket, that it
came out like a bung. “Walr,” said the Captain, handing it over and
shaking him heartily by the hand, “a parting gift, my lad. Put it back
half an hour every morning, and about a quarter towards the afternoon,

and its a watch thatll do you credit.”

Charles Dickens, Dealings with the Firm of Dombey and Son, Ch. 19

Quoted in “Representations of the Crystallographic Space Groups”

5.1. Introduction

Having constructed a representation of some system, we can dissect it and construct
a symmetric basis using the reduction and projection operators. To make use of
this method we require access to a reliable source of irreducible representations,
along with an appropriate set of trial functions. In this chapter we validate the
tabulated source of irreducible representations collated by Kovalev (1993) for use
with the crystallographic space groups and all little groups. We also confirm that
the representations in these tables are unitary, and so can be used with the operators
presented in section 2.12: the form in which the projection and reduction operators

are most commonly encountered.

The International Tables for Crystallography, volume A (IT-A)(2002) form the most

widely accepted definition of the crystallographic space groups. In contrast, there
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is no such agreement over the representations of the space groups, and a number
of alternate listings exist: Kovalev (1993), Miller and Love (1967), Bradley and
Cracknell(1969), Zak (1969). This has lead to the use of conflicting notations, settings
and vocabulary in the reporting of symmetry analysis work, causing unnecessary
confusion and complication. The most widely used tables are those published by
0.V. Kovalev in 1960, and since reprinted and translated into English. They are
notable for their completeness, their independent validation and correction by the
editors of the English translation, and because a digital form of the tables exists

making them particularly convenient for use in computer programs.

A number of programmes have been developed based upon the tables of Kovalev,
using the unitary form of the projection and reduction operators (Eq. 5.1), section

2.12): SARAA (Wills, 2000), MODY (Sikora, 2004), Isotropy (Stokes, 2002).

Wi = G| > ol (9.)%(gs)
” (5.1)

For all of these programs there exist example systems for which this method generates
obviously wrong solutions (e.g non-integer coefficients for IRs in the reduction step);
and the number of these systems has brought into question the validity of the tables
of Kovalev. As the method of previous validations is undocumented (Stokes, 2007), it
became necessary to validate independently the tables in order to better understand
the problems encountered by these programs. In particular, we undertook the task
of validating that the irreducible representations presented by Kovalev are unitary
homomorphisms of the little groups they corresponded to. The use of incorrect
IRs will, in general, produce basis vectors which do not have the desired symmetry

properties and so the correctness of our IR tables is paramount.
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5.2. Loaded irreducible representations

We have already encountered the irreducible representations (IRs) of a space group
G, and the small irreducible-representations (SIRs) of its little groups Gy. In practice
many little groups have SIRs which are identical except for a phase factor related
to the translational component of each symmetry operation. Making use of this
equivalence to reduce the size of his publication, Kovalev’s lists only the Loaded IRs
(LIRs), 7; of each group G;. The LIR, 7;, of an operation g; = {«;|h;} is related to

its SIR, 7;, in the following way:
T, = 722'.6727”%'& (5.2)

The exponent is called the “load”, and 7; has the same meaning as 0(g;) in the
preceding chapters. In this chapter we will use Kovalev’s notation (7;) to make any

references to his work as clear as possible.
5.2.1. Composition of Loaded Irreducible Representations

Despite their name, LIRs are, in general, not a representation of the little group.
However, they do have a law of composition derived from the homomorphism of

SIRs. If 7; is a representation of the operation (a;|h;) then:

T; X Tj = Tioj

(5.3)
Tioj = {O./Z' + hl&3|hlh]}
Substituting this into Eq. 5.2:
%i.efZMk.ai % 7A_j.672mk.aj _ %ioj'€727rzk.(ai+hi><o¢j)
722‘ % 7A-j — %ioj.6727rzk.(ai+hiXaj).€27rzk.ai.627rzk:.aj
(5.4)
— 7110]6—27”]{3(51—&]—0_21-"-]11 XO_ZJ')
— %ioj'€27rzk.(aj—hi><ozj)
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The last line gives defines the “LIR-factor”, W = e2mik-(d; —hixd;) that is introduced
by the non-homomorphism of LIRs. We make use of this relationship in validating

the homomorphism of Kovalev’s tables.

5.3. The KovCheck applet

Validation of the tables of Kovalev was performed upon the digital data set from
SARAA (Wills, 2000)!, using the custom utility “KovCheck” written in Visual Basic
6.0 (Microsoft, 1998). KovCheck has a simple GUI interface (Figure 5.1) in which the
user can define a range of space groups to check, and some of the output details. The
output is a text file that lists all of the calculations in which KovCheck determines
that the LIR tables do not define an SIR which is a unitary homomorphism of the
little group. There are also additional output options, such as a debugging mode

which outputs details of every calculation regardless of the result.

The body of the KovCheck programme is a family of nested loops which loads the
LIR matrices sequentially. The parent loop runs over a range of space groups and,
for each space group, daughter-loops run over: the distinct k-vector types; all IRs
for each k-vector; and all combinations of operators in G,. The code for KovChek
is provided in the “Supporting materials” appendix, and a schematic overview of
the programme is given in Figure 5.2. The following sections aim to give as much
information as possible on the strategy employed, while keeping technical details of

the code to a minimum.

1A small number corrections to these files were made when they were not consistent with the printed
versions of the tables. These corrections have been incorporated into a new release of SARAA
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1o

Exit

— Space Groups

Start |1 Finish {230

— Option
Detailed eror messages [
Shi all calculations '
Usze International Tables akes spstem Ird
Confirn [Rs are unitary [
Check for Hermitian IR's '

FiGURE 5.1. The Graphical User Interface for KovCheck. Users input a
range of space groups to check, defined by the first and last space group
fields. The checkboxes allow the user to toggle various output options such
as the detail level on error reporting.

5.3.1. Validation of homomorphism

The strategy for validating homomorphism follows from the relationship derived in
section 5.2.1. Two separate methods of generating the “LIR-factor”, W, are com-

pared to determine any inconsistencies between the tables and the law of composition

(Eq. 5.4).

1) The LIRs of two operators g;,g9; € Gj are multiplied to generate a prod-
9is 9j g
uct matrix, M. M is expressed as the LIR of the product operator, gio;,
multiplied by a coefficient: the “LIR-factor”, Wj.

7A_i X 7A_j =M= Wl'f-product (55)
(2) The load is calculated according to Eq. 5.4.

W, = GQTFiE.(aj_hiX&j) (56)
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FIGURE 5.2. This flowchart depicts the various loops and steps in the
KovCheck algorithm. The loops cycle over all combinations of space group,
k-vector, irreducible representation and symmetry operators. In each loop
the homomorphism and unitary nature of the SIR matrices is tested in the
manner described in the text (section 5.3.1 and 5.3.2).
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If, during a calculation, KovChek can not find a W; that satisfies Eq. 5.5, or if
Wy # Wy then a homomorphism error code is printed to the output file along with

details of the spacegroup, IR, and operators used

An example of the calculations performed is given below, with space groups P2;2:2;.

The operators are gy and g4 (following Kovalev’s notation) and kag = (3.3, 3)-

92 - (%a %7 0|CL’, -Y, _Z)
94 - (%’ 07 %| -, —y,z)
R 1 0 0 ¢
712 X Ty =
0 —1 7 0
0 —1 R 0 1
- Toos =
1.0 ~1 0
— —1’7A'204
627riE.(&4—h2><&4) 62wi(%,%,%).((%,0,%)—h2X(%,O,—%))
— 27mi(3:33)-((3.0.5)=(3.0,-3))

Hence, W; = W5 = —1 and the LIR passes the homomorphism check in this example.

5.3.2. Confirmation of unitary SIR matrices

As with homomorphism, brute-force calculation was used to confirm that the tabu-
lated LIRs correspond to unitary SIR matrices. For each symmetry element ¢, € Gy,

KovCheck finds a symmetry element g, € Gy, such that g;¢» is an identity-translation.
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1 0 0 T,
01 0 T,
T(g1) x T(g2) =
00 1 T,
000 1 (5.7)

2(g1)0(g2) = Co(E)
2 0(g2) = Co(g )

—onk.a

All translations are represented by CZ(E), where C' = e , and their irreducible

matrix representation is Co(F).

ccr=1

If the IR is unitary then the C*0(E) represents the inverse translation and, from the
homomorphism of SIRs, combines with 9(gs) to form d(g;'). Further, for unitary

representations, 0(g; ') is will be equal to the conjugate transpose 0f(g;):

2 0(gr ) = C70(g2)

= DT(Ql)
T (5.9)
2 01(g1) = 0(g0) x exp | 27 x (ka, Ky, ko) - T,
T,

KovCheck tests the final equality explicitly, and outputs a unitary check error when

it does not hold.
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5.4. Results

The final version of KovCheck, and the input files, output no errors except for the
few cases in which two equivalent forms of the same k-vector are included, but LIR
tables have been tabulated for only one of them. This work shows that that the IRs
presented in Kovalev’s tables constitute unitary homomorphisms of the little groups
Gy, under his definition of the space group operators. This work therefore validates
both the tables themselves and the use of projection and reduction techniques in

computer codes based upon them.

5.5. Discussion

Kovalev’s tabulated representations were verified as part of an effort to resolve prob-
lems in calculations based upon them. In doing so, we have found that (without
exception) errors arise from how the calculations are performed and not the tables
of Kovalev. The tables are entirely consistent within those definitions laid out by
Kowalev; problems arise from user preference for the space group definitions laid out
by the International Tables for Crystallography, A (IT-A) (2002). The transforma-
tion from these settings to Kovalev’s alternative, but equally valid, definitions is not

always performed correctly, causing the projection and reduction operators to fail.

The fundamental obstacle to moving correctly between the various axis systems is,
in fact, a lack of clarity in Kovalev’s tables as to which information is given in which

setting. Thorough review of his work leads to the following conclusions:

e Kovalev’s fundamental periods define his primitive lattice, and are listed in
the Kovalev defined cubic/hexagonal axis system.
e The translational element of operators in the tri- and monoclinic space

groups are defined in the Kovalev primitive axis systems; they are tabulated
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as linear combinations of the fundamental reciprocal periods to indicate this.
Operators for all other SGs are in the cubic/hexagonal axis system: these
are tabulated as numbers.

e Where the Kovalev centred setting differs from the IT setting, Kovalev list
transformations between them. However, when doing so, Kovalev always
refers to settings defined in the International tables for X-Ray Crystallogra-
phy (IT-X) (1952) rather than those in IT-A (2002).

e Due to differences in space groups definitions between in I'T-X and IT-A,
many of the current software programs available do not correctly transform
co-ordinates and k-vectors from the IT-A settings to the Kovalev setting.
An additional transformation from the IT-A setting to the I'T-X setting is
required before the transformations listed in Kovalev’s work.

e The tables of Kovalev are, unsurprisingly, intolerant to redefinitions of the

axes or the operators.

5.6. Conclusions

This work reinforces the earlier, indeterminate validation of Kovalev’s tables; the LIR
tables, combined with Kovalev’s definition of the space group operators, proginate
SIR matrices that are both unitary and homomorphic to the groups they represent.
The validity of the tables, demonstrates that examples in which existing software
fails to calculate the correct basis vectors usually arise from a failure to correctly
transform the problem into Kovalev’s setting. Used with care, Kovalev’s tables form
a complete and validated source of unitary irreducible representations for all the little

groups of the crystallographic space groups.

Having sourced a complete and reliable set of irreducible representations, in the next
chapter we discuss the other ingredient of basis-vector calculations: the selection

of an appropriate set of trial functions. This will include a discussion of another
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common problem in the calculation of basis vectors by software, projection of an

incorrect number of solutions.

The validation of homomorphism has been previously published (Davies, 2008), while

the check for unitary character has been submitted to a peer reviewed journal as part

of a larger paper (Davies, 2009).
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CHAPTER 6

Suitable trial functions for the method of projection

operators

“Any man who can drive safely while kissing a pretty girl is simply

not giving the kiss the attention it deserves.”

Albert Einstein

6.1. Introduction

A reliable source of irreducible representations is just one of the ingredients required
to generate the basis vectors of a system; the other is a suitable set of trial vectors.
Prior to this work, the meaning of “suitable” has been left undefined and received
little consideration. Indeed, the choice of trial functions is conspicuously absent in
both textbooks and journal papers (e.g. Hamermesh, 1964; Bertaut 1962, 1981;
Izyumov 1990,1991; Wills, 2005; Kenzelmann, 2006).

Explicit definition of what constitutes a suitable set of trial vectors is important
because the calculation of basis vectors is arduous, making automation desirable,
and any software applying the method of projection operators requires a defined
set of trial functions. A number of such routines already exist (e.g MODY (Sikora,
2004), BASIREPS(Rodriguez-Carvajal, 2004), SARAh(Wills; 2000,2005))* and, for
all of them, there exist a number of systems for which they derive an incorrect number
of basis vectors. We will show that this can be resolved by a better choice of trial

vectors.

IThese are reviewed in section 7.3, along with other software.
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Further, the selection of trial functions has implications beyond solving problems
during calculation. The general method of representation theory, and in particular
the projection of basis vectors, does not make allowance for the influce of an atoms
local environment. One way we might better represent the role of local symmetry,

and in particular covalent bonds, is through the choice of trial functions.

In this chapter, we present an example where the “standard” trial functions cause
difficulties during computation of the basis vectors and derive a method for calculat-
ing “symmetry adapted trial functions”. In particular, an algorithm for generating
suitable trial functions is derived, allowing us to reliably automate the calculation
of basis vectors using software. We also discuss how selection of trial functions can

help represent the local anisotropy of an atom.

6.2. Properties of basis sets

Before considering some difficulties that may occur when using the method of projec-
tion operators, it is useful to remind ourselves about the properties of basis vectors.

A basis set, {Y, ¥y, ... ¥4}, is defined by the relationship:
dl/
gl =Y On9)h, Y9 eGy (6.1)
m=1

Gy, is the little group of a system ordering under IZ, 0”(g) is the matrix representation

of g in the irreducible representation I',, and d” is the order of T',,.

Basis vectors are representations of a system’s eigensubspaces, and Eq. 6.1 shows
that each basis set must have the same order as the irreducible representation it is
projected from. It is central to the correct application of representation theory that
the set of all basis vectors is a set of basis sets, and that each basis set has the correct
order. If this not the case, then the basis chosen can not have the correct symmetry

properties.
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6.3. Over-generation

Reduction of a system’s representation to a linear combination of irreducible repre-
sentations defines exactly the number of basis vectors we need to derive from each IR.
When the method of projection operators defines more BVs than required, then the
basis has been over-generated and some of the calculated BVs are linearly related?.
The problem is, therefore, to reduce the set of solutions to one of the correct size

while preserving all the desired symmetry properties.

The first step is to determine which basis vectors are equivalent. When the solutions
occur in pairs, related by a complex coefficient 1y = [y, the equivalence relation-
ships are simple to determine. If three or more BVs are linearly related, then the
relationship must be derived by the solution of simultaneous equations (with complex
coefficients). However, determination of equivalencies is not sufficient to determine
which of the basis vectors should can be discarded. An arbitrary elimination of

equivalent solutions will not, in general, result in a set of basis sets.

When over-generation occurs, there are two problems to resolve. The first is how to
identify complex linear relations of the type ¥ = > . l;1)i when n > 1; when n = 0, 1
equivalencies are quick and simple to determine.. Having determined which basis
vectors are equivalent, we then require a elimination procedure that ensures only
complete basis sets remain. Further, any solution should be simple to implement

within a computational routine.

Rather than inspecting the projected basis vectors, we might instead consider the

trial functions used to generate them. The projection operators derives a set of

3

solutions of order d” or 0 for any trial vector’. As the size of each trial’s image is

fixed, over-generation must arise from equivalent trial functions. If, through judicious

2There is always some linear relationship. Any correct basis spans the entire eigensubspace; as such
any other vector can be expressed as some linear combination of this basis.
3Varying over all 4, with a fixed IR v and column index j. See the end of section 6.5
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choice of trial vectors, we can reduce all BV equivalencies to a relationship of the
form v; = I, then it becomes simple to determine which trial vectors generate
equivalent solutions, and to eliminate all but one of them. Removing trial vectors,

rather than basis vectors, ensures that a set of basis-sets is generated.

6.3.1. Symmetry Adapted Trial vectors

The trial vectors used within MODY, BASIREPS, SARAhA and the majority of pre-
vious work are unit vectors that lie parallel to the crystallographic axis system. We
will term these the “standard” trial functions, and they lead to over-generation in
a significant number of systems. Our goal is to determine a method for construct-
ing alternate trial functions, having the property that every basis vector projected
from them is linearly related to exactly one or less of the other projected basis vec-
tors. Such a set of trial vectors would make it trivial to identify any equivalent basis

vectors, and hence eliminate equivalent trial vectors.

When two BVs are linearly related, then the property at each atomic position they
describe has that same linear relationship. Thus, by controlling how the property at
a single point is generated, we can control the relationships between basis vectors.
Under the method of projection operators, the property at a single point is generated
by the sum action of all the operators which generate that point from an initial
position Ag; if we consider Ay itself then these operators are the “stabilizers” of Ay,

denoted Sy.

s:Ag—— Ag+1t teT,Vs eSSy

(%}

d* _ y
by | Ao = @ Z 0,,.(9; 1)‘3(91')@

9i€So

(6.2)

Co
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The property at atom Aq is defined, relative to the crystallographic axes, by the
vector (ag, bo, ¢o). It is is constructed by the action of the projection operator over
the elements of Sy, which map Ay to itself or a position related by a lattice translation.
As noted in section 2.13, Izyumov (1990) has developed a complete formalism for the

reduction and projection operators in terms of the stabilizers of the 0'* atom.

Sg is a group and thus divides the space around Ag into invariant subspaces. By
selecting our trial vectors to lie within lines and planes of invariance of Sy we natu-
rally simplify projection of that position, and hence the relationships between BVs.
In many cases the invariants of the stabilizer group will be obvious. When they
are not, they can be found by projection from the point group Hj; using the trial
vectors ¢1=(1,0,0), ¢2=(0,1,0), ¢3=(0,0,1). In either case, the invariants can be
used as “symmetry adapted trial functions” from which the system basis-vectors are

projected.

e.g.
If the stabilizers of a position are {E, Cy,, C%,,C2 }, then its invariants
are the line (1,0,0) and the plane [1,1,1] perpendicular to it. The
symmetry adapted trial functions for this position would lie parallel

and perpendicular to (1,0, 0).

This technique is particularly appropriate when the lowering of a system’s symmetry
divides related positions into several distinct orbits. Consider the position A; = g;Ag
which is related to Ag by an operation of Gy not in Gy. If S; is the group of operations
“stabilizing” A; then S; = ¢;Sog; * (section 2.13). Thus, if two orbits are related by

the operation g;, then appropriate trial functions are also related by g;.

¢orbit¢ = gi¢orbit0 (63)
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The next section will work through an example where standard trial functions pro-
duce an excess of solutions, and determine the symmetry adapted trial functions.
This example splits into two orbits under k and Eq 6.3 defines appropriate trial

functions for the second orbit.

Worked example

Consider the space group 14,32 (214), ordering under the k-vector k= (%, %, %),
with an atom at the position (0,0,0). Under the operations of the little group, Gy,
there are three equivalent positions at (%, %, ), (0, %, %), and (%, 0, %) Using SARAR

(Wills, 2000), the decomposition of possible atomic displacements is given as:
[ potar = 2171 + 215 + 2173 (6.4)

The IRs are labelled using the numbering scheme of Kovalev (1993), and each is of

order 2; correspondingly, we expect 2 x 2 =4 BVs to be projected from each IR.

The basis vectors generated for I'; using the standard trial vectors ¢;=(1,0,0),

$2=(0,1,0), ¢3=(0,0, 1) are listed in Table 6.1, using the notation:

Qo

Co

The BV 97 (z,y, z) has been projected from the IR T',,, using the i 7" matrix element
of each TR matrix, and the trial vector (x,y,z) at the position Ay = (0,0,0). It
consists of a series of vectors (ay, by, ¢,), defined with respect to the crystallographic
axes, at the positions A,. Projection using the standard trial functions generates six

apparently distinct BVs, rather than the four required by the reduction formula. It
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can be shown, by solution of simultaneous equations, that:

@D%l (07 07 1) = egﬂ—.iwil(l? 07 0) + e_%mi@bil (07 1a O)
(6.6)

¢ (0,0, 1) = 373 (1,0,0) + €573, (0,1,0)
For this system, two of the six basis vectors must be eliminated and the four retained
must form a set of basis sets. Following the strategy of section 6.3.1, we will determine
a set of symmetry-adapted trial functions that simplify the BV relationships and

eliminate one of the trial functions.

BV Ag = (0,0,0) =

041
—0.683 + 0.183¢

0.683 + 0.1831

=(3,0,3)
0.183 + 0.683i
—0.683 — 0.183i
—0. 683 0.183i —0.183 + 0.683i 0.683 + 0.183i
—0. 683 + 0 183i —0.683 + 0.183i —0. 183 —0.683i
—0.183 — 0.683i 0.683 — 0.183¢ 0.183 + 0.683i
¥1,(0,0,1) —0. 183+0 683i 0683+0 1834 0. 683+0 183i

l\‘:h—t
m\»—t
[\3\»—‘
w\»—t

—0. 183 0.6831
—0.183 + 0.683¢

0.683 — O 1832
—0.183 + 0.683:

¥1,(1,0,0)

—0.183 + 0.6831
%1,(0,1,0)
—0. 183 0.6834

—0.683 + 0.183:
0.183 — 0 6831

—0. 183 0.683¢
—0.683 — 0.1831

¥3,(1,0,0) —o. 683+0 183i

—0.683 + 0.1831 —0. 183 - 0 68317
—0.183 + 0.683¢ 0.683 + 0.183¢ —0.183 + 0.683:
0.183 — 0 6831 0.683 + 0.183¢ 0.183 — 0.683¢
-1 0—1
—-0.683 + 0.183¢ 0.683 — 0.183¢ 0.183 + 0.6831¢
—0.183 — 0.6831 0.683 — 0.183¢ 0.683 — 0.183¢ —0.183 — 0.683¢
1&%1(0, 0,1) —0.683 — 0.183¢ —0.183 + 0.683: —0.683 — 0.183¢ 0.183 — 0.683¢

0 0 1 041

-0. 683 0.1831
w%l (07 17 D)
—0. 183 0.6831

TABLE 6.1. The projected basis vectors for the position (0,0, 0) in the space

group 14132, ordering under k= (2, %, ;) In this projection, the trial

vectors lie parallel to the crystallographic axes.

The stabilizer group of the position Aq is the group of Cj rotations about (1,1,1),
whose invariant subspaces are the line (1,1,1) and the perpendicular plane [1,1,1].
Thus, we select one trial vector to lie along (1,1, 1) and the other two to lie in [1, 1, 1]

such that they form a right-hand set: ¢1=(1,1,1), ¢o=(1,—1,0), ¢p3=(1,1,—-2) all
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BV Ag = (0,0,0) A =(%,1,0 Ay =(0,1,3) Az =(3,0,1)
.366 .3667 —0.5+ 0.5 0.5+ 0.5¢

%;{1%1(1, 1,1) .366 —.3661 0.5 — 0.5¢ 0.5+ 0.5¢
.366 —.36617 —0.5+ 0.5 —0.5—0.52

0.837 — 0.483¢ 0.483 + 0.837¢ 0.129 — 0.483¢ —0.483 — 0.129¢

%1[1%1(1, —1,0) —0.837 — 0.483¢ —0.483 + 0.837¢ 0.483 — 0.129¢ 0.129 + 0.483¢
0+ 0.9661 0.966 0.354 + 0.354¢ —0.354 + 0.3544

0.483 + 0.837: —0.837 +0.483: 0.483 + 0.129:¢ 0.129 — 0.483:
%1&%1(1, 1,-2) 0.483 — 0.837¢ —0.837 — 0.483¢ 0.129 + 0.483¢ —0.483 + 0.129¢

—0.966 0 + 0.9661 —0.354 + 0.3544 —0.354 — 0.3541¢

TABLE 6.2. The projected basis vectors for the position (0,0, 0) in the space

group [4:32, ordering under k= (%, %, %) In this projection, symmetry

adapted trial vectors were used.

upon the position Ay. In Table 6.2, these trial vectors have been renormalized to have
modulus 1, and the BVs generated from these trial functions are listed. Inspection
of the alternate basis vectors reveals that: %wh(l,—l,O) = —i.\/iéwh(l, 1,-2).
Hence, we can eliminate either ¢, = (1, —1,0) or ¢3 = (1,1, —2) from our projection;
symmetry adapted trial functions have produced a set of BVs in which equivalent

trial functions are readily discernable and discarded.

Our example is split into two orbits, the second orbit being related to the previously

considered set of atomic positions by the operation:

01 0 025
10 0 0.75
95 = (6.7)
00 —1 0.7
00 0 1

The trial vectors for this orbit are derived from Eq. 6.3: ¢1=(1,1, —1), ¢po=(—1,1,0),
¢s=(1,1,2) upon the position A; = (1, 3, 3). The BVs calculated for the second orbit
are presented in Table 6.3. Inspection reveals that \/Liwh(—l, 1,0) = i.\/igwh(l, 1,2),

and again we can eliminate either ¢5 or ¢3.
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BV A4:(%7%7%) A5:(%7%7i) AGZ(%7%7%) A7:(i7%7%)
1.366 1.3661 —0.5 - 0.52 —0.5+40.5¢

Ll (1,1,-1) 1.366 —1.366i 0.5+ 0.5 —0.5 + 0.5i
—1.366 1.3661 0.540.5¢ —0.5 4 0.5¢

—0.354 — 0.3541¢

0.483 + 0.129¢
—0.129 4 0.4831

—0.354 + 0.3544

—0.224 + 0.129i —0.129 — 0.224i —0.483 — 0.129i

2591 (=1,1,0) 0.224 + 0.129; 0.129 — 0.2245 —0.129 — 0.483i
0.259i 0.259 —0.354 + 0.354i

0.129 + 0.2244 —0.224 + 0.129; —0.129 + 0.483i

20l (1,1,2) 0.129 — 0.2245 —0.224 + 0.129i —0.483 + 0.129i

0.259 —0.259: +0.354 + 0.3544

—0.129 + 0.4831
0.483 — 0.129¢

TABLE 6.3. The projected basis vectors for the position (%, %, %) in the

space group I4;32, ordering under k = ( %, %, %) In this projection, symme-

try adapted trial vectors were used.

6.3.2. Testing for bad projections using SARA#A

Our method of symmetry adapted trial functions was tested using SARAA’s “batch
mode”. This mode allows users to define a range of space groups, k-vectors and
atomic positions for which SARAA projects the basis vectors for every combination
of these variables. When SARAA is unable to define the correct number of basis

vectors during a calculation an error code is printed to the output file.

A batch test was run over all the space groups, using more than 30 k-vectors with
30 atomic positions. Points and k-vectors were chosen to represent possible points of
symmetry, e.g. (0,0,0), (%, 0,0), (}1, 0,0), etc, including systems known to cause over-
generation errors when the standard trial functions are used. When using the method

presented above to select trial functions, no cases of over- or under- generation were

found by SARAA.
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6.4. Other considerations in the choice of trial functions

Simplifying the determination of equivalent basis vectors is not the only consideration
when selecting trial functions. Observe the basis vectors of a water molecule, as
projected using standard trial functions (Fig. 6.1). While they have the correct
symmetry, the vibrational motions are not parallel or perpendicular to the hydrogen-
oxygen bonds as might be expected. An atom’s stretching and bending modes are
usually considered to be largely distinct (e.g. Choudhury, 2009), but are mixed in

the vibrational modes determined by these trial vectors.

FIGURE 6.1. The basis vectors of water, as projected from trial functions
that lie parallel to the axis system defining Co, symmetry: + and — indicate
motion into and out of the plane of the page. The left column depicts the
translational modes, the middle rotational modes, and the right column
vibrational modes. While these basis vectors have the correct symmetry
properties, they poorly represent the motions of the atoms because they do
not consider the influence of the OH bond.
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-

FIGURE 6.2. The vibrational motions of water, projected from trial func-
tions that lie parallel to the OH bonds. These better represent the system,
but are equivalent to, the basis vectors in Fig. 6.1.

Motions that correspond to stretching and bending vibrational motions can be ob-
tained by projection from a set of trial functions lying parallel or perpendicular to
the OH bonds (Fig. 6.2). This occurs because basis sets from the same IR, although
they are not degenerate, they can be freely mixed to generate new basis sets of the
correct symmetry. We cannot uniquely define, a priori, the basis set of an IR, only

its symmetry®.

The role of local symmetry is an important, but often overlooked, problem in the
application of representation theory to magnetic ordering and displacive phase tran-
sitions. The local environment of an atom has a strong influence upon its behaviour,
but not the form of its basis vectors which derive from the crystal symmetry. One
approach is to select trial vectors in a manner that represents interactions such as
directional bonding, and crystal field anisotropy. Currently there is no software that
will generate basis vectors from user-defined trial functions, and we consider this a

significant omission from existing tools for representation theory.

4Except in the case of a 1 dimensional IR which occurs exactly once in the reduction of the system
representation
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6.5. Under-generation

Under-generation is the apparent inability to generate sufficient basis vectors to fully
span a system’s decomposition. For the projection operator I/VZ’”; changing i generates
a basis set with a different symmetry, while varying ¢ generates further members of
the same basis-set. Hence, the only free variable which to generate new basis sets
is j. This point has been thoroughly explored by Stokes et. al (1991), who define
when varying the column index j will generate new basis vectors. Here, we briefly
discuss the problem using basis sets to complete our understanding the method of

projection operators.

Basis vectors occur in basis sets which transform under two relations:

dM

gl = dh(g)uy

j (6.8)
From consideration of these two equations, it is apparent that the enumeration of
BVs is not arbitrary; it defines how they inter-relate within the basis set to which
they belong. Further, in a system spanning the reduction I' = > C*T,, there are
C" basis sets with the symmetry of each I',. Within each basis set the BV’s will be

labelled 1,2, ...,d", and so their numbering is neither arbitrary nor unique.

The action of W™ on a general vector ¢ is to project the component of ¢ parallel to
Yy into Y similarly, W5 projects the component along ¢4 into ¢!'. However, there
s no restriction that 11 and 1o are from the same basis set. Hence, by varying j we

can project two basis vectors, 1!, which may belong to different basis sets.

We now understand the influence of each term in the projection operator. Varying
the row-index 7 generates another member of the same basis-set, while varying the
column-index j generates a BV from a different basis set (which may be equivalent).

Varying p changes the symmetry of the projected basis vectors, and changing the
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trial vectors generates basis sets that are linearly related to any other choice of trial

vectors.

6.6. Conclusions

The role of trial vectors in defining symmetry modes of a system is a long-neglected
subject, often relegated to the single word “suitable”. In this chapter we have applied
an understanding of the method of projection operators, and in particular stabilizers,
to resolve the problems of over-generation that occur when trial functions are not
carefully chosen. Moreover, we have developed an algorithm which has been imple-
mented in SARAA and tested using the batch mode. Our new approach makes the

calculation of a systems’ basis vectors significantly more reliable.

The importance of trial functions is not only limited to simplifying the results of
basis vector calculation. They also represent an opportunity to include the influence
of covalent bonds and local symmetry; indeed, they are the only way to do this
when using the method of projection operators. Currently, the ability to define trial
functions in this way is not supported in any existing software and we consider this

a significant area for development.
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CHAPTER 7

Normal Mode Parameterization of Powder Diffraction Data:

A New Module for SARAR GSAS

Part of the inhumanity of the computer is that, once it is competently

programmed and working smoothly, it is completely honest.

Isaac Asimov

7.1. Introduction

Displacive phase transitions are characterised by small, symmetry breaking, distor-
tions of a crystal. During such a phase transition, the mean position of each atoms is
displaced by a softening phonon whose frequency tends to zero lowering the symme-
try of the crystal (Putnis, 1992; Dove, 1997a, 2003). Classic examples of second- or
almost second-order displacive transitions include quartz (Dolino, 1990), and SrTiO;
(Cowley, 1996). The aim of this thesis is to develop the use of representation the-
ory in defining displacive phase transitions. In particular, we aim to express how a
system changes during a phase transition in terms of a linear combination of basis

vectors:

.
A=Y e 7.1

So far, this thesis has focused on developing tools for constructing all of the v for
any system. What remains is determination of the basis vector coefficients. The
structure of crystalline systems is usually investigated using diffraction techniques,

and it is from diffraction patterns that we will extract the basis vector coefficients.
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7 L Davies Normal mode parameterization using SARAh-GSAS.

In particular we focus upon powder diffraction experiments, as these are common in
the study of complex magnetic systems for which single crystals are often difficult to

synthesize.

This chapter will briefly review popular software for constructing the basis vectors
of physical systems, and for using these modes to analyze powder-diffraction data.
We then present a new module for the SARAA-Refine (Wills, 2000) software suite
that performs Monte-Carlo Rietveld refinement of displacive phase transitions us-
ing normal-mode coefficients, within the GSAS programme suite. Also presented
are three example refinements, based upon simulated data, and a discussion of the

software’s limitations.

Simultaneous to our work on symmetry mode refinements in GSAS, other groups
independently developed software for the TOPAS and Fullprof refinement engines
(Campbell, 2007, 2008; and Rodriguez-Carvajal, 2008). The net result of these
works is that symmetry-mode parameterisation is now supported by three of the

most popular powder-diffraction refinement routines.

7.1.1. Determinable properties of the phase transition

When discussing the symmetry-mode approach to phase transitions, it is important
to be clear exactly what new information such an analysis can determine. In section
6.4 we noted that basis vectors cannot be uniquely assigned to each occurence of an
IR!. If the distortion of an atom involves many basis vectors of the same symmetry,
then the basis vectors can always be redefined such that, under the new definitions,

the distortion is defined a single basis vector of that symmetry?. Therefore, we can

IThe exception to this is when a 1-dimensional IR occurs exactly once. It this case it must be
uniquely defined, as there are no other basis vectors of the same symmetry.

2It is interesting to note that, though this basis transformation is always possible it may not ap-
propriate. For example, it may be desirable to separate the stretching and bending components of
a molecular ion species. As always, the axis system should be appropriate to the problem being
investigated.
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only uniquely define the number of irreducible representations that are components

of the displacement of each position, and the vector defining the distortion.

With this in mind, during the example symmetry-mode refinements presented within
this chapter we focus our attention upon determining the number of distinct IR
symmetries involved in each distortion: i.e. does Landau theory (section 1.5) allow
this transition to be second order. We also consider the “shape” of the distortion, and
the position of the atoms within the daughter phase. There is no emphasis placed

upon the coefficients of individual distortion modes.

7.2. Powder diffraction experiments

Powder diffraction experiments are relatively simple when compared to single crystal
work; the sample does not need to be aligned with any great care and powdered sam-
ples are usually less challenging to prepare (IUCr, 2002). Conversely, the analysis
of powder-diffraction data can be far more difficult. While the diffraction pattern of
a single crystal comprises a pattern of discrete intensity spots, in a powdered sam-
ple each particulate generates its own diffraction pattern and is orientated randomly
relative to all of its neighbours. Resultantly, the diffraction pattern consists of con-
centric spheres, observed as circles upon a two dimensional detector (Fig. 7.2). As
the diffraction pattern is radially symmetric, data is usually collected along a single
radius as a one-dimensional plot of intensity against d-spacing (the distance between

planes of atoms in the crystal).

7.2.1. Rietveld refinement

In a diffraction experiment, the cell parameters and space group can be determined
from the spatial distribution of diffraction peaks, while the position of atoms within
the unit cell is encoded in the peak intensities. For a single crystal experiment,

the peaks are sufficiently spread in reciprocal space that the integrated intensity
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FiGure 7.1. In a powder diffraction experiment, the sample is placed in the
path of a radiation beam and before a detector (top-left). The diffraction
pattern of powders, as observed by a 2-dimensional detector, consists of
concentric circles (top-right). Each radius of the pattern is identical, and
the path along one can be described by a graph of intensity against angular
position (main).
of individual diffraction peaks can be calculated, allowing the position of atoms and
other crystallographic parameters to be determined. Direct methods (Woolfson, 1971;
Hauptman, 1986) and analytic methods such as charge-flipping (Oszlényi, 2008) solve

single-crystal data from integrated peak intensities.

When using powder diffraction data, the determination of individual peak intensities
is often impossible, because the overlapping of many peaks within the diffraction
pattern correlates their integrated intensities. The number of independent intensities

is usually insufficient to define the large number of the structural parameters using
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algebraic or analytical methods. Instead, structures are resolved using model-fitting,
also known as Rietveld refinement in this context (Rietveld, 1967). Rather than
attempting to separate the individual contributions to each peak, Rietveld methods
model the whole of the diffraction pattern simultaneously. To do this, the Rietveld
method models not only the system, but also the shape of diffraction peaks, which
is a function of both the radiation source and sample parameters such as strain and

preferential orientation of the crystallites.

In crystallography, model-fitting involves the generation of an initial model of the
system using chemical and crystallographic knowledge, and methods such as Le Bail
extraction (Le Bail, 1988). The diffraction pattern of this model is then calculated
using Rietveld methods, and the model is iteratively “refined” to match its calculated
pattern to the observed diffraction data. Refinement involves varying the model
parameters, such as the position of atoms and the cell parameters, and the fidelity of
the calculated diffraction pattern is measured by “goodness of fit” parameters. These
parameters quantify the statistical quality of the match between the calculated and

observed diffraction data.

There are several approaches to the iteration process. Least-squares is a specialized
technique for rapidly optimising models already close to the “true” structure using
parameter derivatives. All of a model’s free parameters are refined simultaneously,
leading to a rapid convergence in the calculations. However, least-squares refinements
are often unstable and may “diverge”, with the goodness of fit parameter becoming
worse after each step. Alternatives to the least-squares method include the Monte-
Carlo (Metropolis, 1949; 1963)* and Simulated Annealing (Kirkpatrick, 1983; Cerny,
1985) techniques. These methods optimise structure through a serious of random

distortions, rather than by calculating parameter derivatives.

3More strictly, for data refinement reverse Monte-Carlo methods are applied. Monte-Carlo methods
select a large number of randomly determined initial conditions, and then minimize that system in
a deterministic way (such as least squares refinement). This generates a range of solutions, which
occur with some well defined statistical distribution. Reverse Monte Carlo involves using a number
of random steps to reach a pre-defined goal; in this case to fit the observed diffraction pattern.
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Use of Rietveld methods in the analysis of powder-diffraction data has been popu-
larized by a number of software programs based upon them. The most commonly
encountered refinement engines for the analysis of powder diffraction data are: GSAS
(Larson, 1994); FullProf (Rodriguez-Carvajal, 1993); and TOPAS (Cheary, 1990).
Of these GSAS is currently the most widely used, followed by Fullprof; TOPAS is
largely supported by users in industry. Refinements are usually perfomed using the
crystallographic axes, however the use of symmetry modes has become established
for magnetic structures (e.g. Wills, 2002; Kenzelmann, 2005; Poole, 2008) since its
establishement by SARAA (Wills, 2000) and later support in Fullprof (Rodriguez-
Carvajal, 2001). The extension of representation theory to atomic displacements has
been discussed in the literature (Dove, 1997a; Wills, 2001, 2005), but has not been

supported by any of the popular data analysis tools until recently.

Currently, two software routines support the calculation and use of normal-modes
in Rietveld refinement in the Fullprof and TOPAS engines and are reviewed in the
next section. Our goal was to write a new module for SARAA that would extend
this functionality to the GSAS software suite, by defining the position of a system’s
atoms in the lower-symmetry phase as a distortion from its co-ordinates in the higher

symmetry phase:

¥ =xo+ 1) + ...

»
=zt > CYuf

The distortion from the initial position, x, is parameterized by the coefficients, C7,

(7.2)

of each normal mode, 1)?. Defining a phase transition in this way allows us to identify

the irreducible representations active during a displacive phase transition.
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7.3. Review of existing software

The calculation of basis vectors by hand is an arduous process, consequently a num-
ber of algorithms exist to perform this work. These routines vary slightly in their
construction and many (as noted in chapter 6) are known to have a problems in a
small number of instances. In this section, we review the most popular of these pro-
grams, along with existing support for representation theory in defining displacive

transitions.

MODY (Sikora et al., 2004), generates magnetic BVs using Izyumov’s method of
stabilizers (Izyumov, 1960; section 2.13) and Kovalev’s table of irreducible represen-
tations (Kovalev, 1993). SARAR (Wills, 2005) uses both the tables of Kovalev and
IRs generated by a modified routine from KAREP (Hovestreydt, 1992) to calculate
magnetic and atomic BVs using the method of projection operators. BASIREPS
(Rodriguez-Carvajal, 2004) also uses KAREP, along with the methods of Izyumov
(1991) to generate a system’s basis vectors. The IRs of both KAREP and Kovalev
were constructed using Zak’s method (Zak, 1960; Klauder, 1968).

ISODISPLACE (Stokes, 2007a) differs from other basis-vector calculators in that it
does not define all the basis vectors of the parent phase. Instead, the symmetry of
the daughter phase and k-vector of the distortion are pre-defined, and only those BV
compatible with the symmetry of the daughter phase are returned. These modes are
retrieved from pre-prepared tables, based upon the so-called physically irreducible
representations (Stokes, 1987). A printed version these tables have been published
by Stokes (1988), along with an electronic version (Stokes, 2007b). AMPLIMODES
(Aroyo et al., 2003, 2006a, 2006b) approaches phase transitions in a similar manner to

ISODISPLACE. From a defined parent and daughter phase, the structural distortion
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is calculated by bringing both phases into the same axis system. The possible k-
vectors and IRs which can bring about such a symmetry reduction are then read

from pre-prepared tables*.

While there are numerous options for generating basis vectors, the opportunities to
use them in data refinement are more limited. The parameterization of a general
refinement using symmetry modes was first supported by SARAA and is now well
developed in magnetic refinement, but extension of this technique to atomic distor-
tions has only become possible in the last two years. It is now supported in TOPAS
using ISODISPLACE (Campbell, 2007, 2008), and in Fullprof using AMPLIMODES
(Rodriguez-Carvajal, 2008). Both routines perform least-squares Rietveld refinement
upon a daughter phase of defined symmetry. In the next section we report a new
application which makes this approach practical for GSAS users for the first time.
Our routine performs reverse Monte-Carlo Rietveld refinement, taking a distinctly

different and more general approach to symmetry mode refinement.

7.4. Structural refinement in SARAAR

SARAR-Refine is a modular front-end to GSAS and Fullprof that manipulates their
runfiles to parameterize refinements using symmetry modes. We have developed a
new module which refines structural distortions in GSAS, complimenting SARAA’s
existing magnetic structure routines. A schematic overview of how this module per-

forms structural refinements is given in Figure 7.2.

During each refinement cycle, the module generates a random set of basis-vector
coefficients that define a distortion. This distortion is applied to the existing struc-

tural model and the new structure is written to a name.EXP file, which is read by

4These are presented using the notation of ISOTROPY (Stokes 2007b), and presumably the
ISOTROPY tables are used in the calculations.
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the GENLES applet within GSAS. GENLES performs a least-squares Rietveld re-
finement upon the distorted structure, to determine how well it fits the diffraction
data; during this refinement almost all of the model parameters are fixed®. The re-
fined model and the y? goodness of fit parameter for the least-squares refinement are
then passed back to SARAR; if the fit has improved the new structure is accepted,

otherwise it is rejected.

>w(lo — 1)
LR v (73)

Here I, I. are the observed and calculated intensities at each point, Nyus, Ny, are

the number of observations and variables and w is a weighting for that data point.

Overall, our refinement strategy comprises a reverse Monte-Carlo walk through the
coefficient space of a system. In order to concentrate the majority of these steps
about any refinement minima, the size the distortion changes dynamically. During
each cycle, the generated distortion is reduced in magnitude by a function of y?; it
is also controlled by a slider in the graphical user interface. Several functions are
used for different ranges x? and these were determined empirically by studying the

evolution of example refinements.

The step functions were tailored by observing a large number of refinements. In
particular, the functions were “smoothed” over several ranges when refinements were
regularly observed to become “stuck”. They were also designed to become flat as >
approached 0: small values of x? are assumed to be close to a minima. The set of
functions used was that which appeared to converge in the fewest average number of
steps, and is presented in Table 7.1. Figure 7.3 plots the step size as a function of

x?, and a hypothetical walk for a 2-dimensional refinement.

5The scale factor and background function are usually allowed to refine. 3-5 least-squares cycles are
sufficient when there are very few free parameters.
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SARAh-Refine GENLES
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Calculate the new
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FIGURE 7.2. Schematic representations of SARAA, and her interaction with
GENLES via the name.EXP file (top). During each cycle, the new mod-
ule generates a structural distortion which is written to an name. EXP file,
GENLES performs a least-squares Rietveld refinement upon on the run-
file before it is passed back to SARAA for the next cycle (bottom). The
batch-file is used to call GENLES during each cycle.

x> | Divisor | Step Size

X2 > 220 1 1
97 < x? <220 | 3 x 1.0057%" | 1 x 1.005%°

X2 <97 900 x 1.07X | 5k x 1.07¢°

TABLE 7.1. The effect of x? upon step size. Each distortion is reduced in

magnitude by a function of x2, as given above. Reducing the step size when

x? is small concentrates most of the random walk around any minima.

138



7 L Davies Normal mode parameterization using SARAh-GSAS.
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FIGURE 7.3. (Left) A possible random walk through the coefficient space
of a two basis-vector refinement, the contours represent points of equal X2-
Note that, the step size decreases as a function of x2. (Right) The step-size
reduces smoothly and continuously, as defined by the functions in Table 7.1.

SARAR has a simple graphical user interface (GUI), allowing users to select which basis-
vectors to include in a refinement and other details such as the number of cycles to perform
(Figure 7.4). Basis vectors and system information are loaded from two pre-prepared files: a
name.MAT generated by SARAh-Representational Analysis; and a name.EXP generated in
GENLES and containing the position of all the atoms in the parent phase. The undistorted
low-symmetry phase is generated in the name.EXP by a supporting routine that calculates
the position of every atom in the unit cell using the symmetry operations of the parent

space group.

Our approach to refinements within SARAR is significantly different to those of ISODIS-
PLACE and AMPLIMODES. First, it is not a least-squares refinement, but a reverse
Monte-Carlo walk; this makes refinements significantly more computationally expensive.
Second, SARAR makes no assumptions about the symmetry of the daughter phase: the
refinement is performed using a P1 cell and every possible distortion mode of the parent
phase. Both ISODISPLACE and AMPLIMODES define the symmetry of the daughter
phase before refining the diffraction data, and limit their focus to the “obvious” modes
that maybe involved. The examples in this chapter will highlight potential weaknesses in

this approach.
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FIGURE 7.4. The two main tabs for using SARAA-GSAS. (Top) The dis-
placements tab contains the scale slider along with the number of cycles
field. (Bottom) The main tab is where users select or de-select basis-vectors
for inclusion in a refinement.
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7.4.1. Limitations

SARAR-Refine edits name. EXP runfiles, which are then computed upon by GENLES.
As such, it inherits a number of GENLES’ limitations. Most significantly, because
the refinement is formally performed using a unit-cell with P1 symmetry, refinement
of cell parameters and atomic thermal parameters must be restrained to prevent them
diverging®. Further, as atomic positions are not refined within GENLES, refinements

do not return any uncertainties.

A more significant problem is that the x? minima is often shallow and/or broad, and
the refinement can fail to find the best model. In particular, some BVs have only a
very small influence on the goodness of fit parameter. When a refinement contains
weakly correlated modes then there are many structural models with the same Y2,
broadening the structural minima. This also makes it uncertain as to whether or
not a such modes are present in the distortion. Further, SARAA-GSAS is prone
to becoming trapped in local-minima as there is no route by which the routine can

“climb” out of them; this is also true of least-squares Rietveld methods.

7.5. Determination of the dominant k-vector and basis vectors

Systems have an infinite number of possible k-vectors and associated basis vectors. In
order to reduce this set to a manageable size we must employ qualitative symmetry
arguments to minimize the number of basis vectors and k-vectors considered during
a refinement. This requires prior knowledge of the low-symmetry, “daughter” phase

as well as the high-symmetry “parent” phase.

The k-vector of a perturbation defines the translational symmetry of the daughter
phase relative to its parent. In particular it defines the reciprocal space periodic-

ity of the distortion, and when this differs from that of the underlying lattice the

In practise, if the cell parameters of the daughter-phase are known, the cell parameters are usually
fixed and thermal parameters assumed to be the same in both the daughter and parent phase.
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cell parameters of the system in direct space are enlarged (its translational period

increases).

E.g

A k-vector of (%, 0,0) induces modes which double the cell parameter
in the a direction.

A k-vector of (0,0,0) would leave the translational symmetry of a sys-

tem unchanged.

Reversing this argument, we can determine the k-vector by considering the change
in lattice parameters of the primitive unit cell during a phase change, disregarding

the small changes caused by thermal expansion.

We can deduce the irreducible representation likely to define a phase transition using
the arguments of section 3.8: for a symmetry operation to persist after a phase tran-
sition, it must be represented by the identity matrix within that IR. If the symmetry
group of the daughter phase is already known, it is possible to define which IRs (and
hence which basis vectors) are compatible with the phase transition. This approach
may still return a large number of BVs, therefore a routine to determine the effect of
each BV on the refinement has been provided. The procedure identifies which BVs
which generate the largest improvement in y?, as those basis-vectors which have a

marked influence on y? are more likely to be involved in the final structure.

During a refinement users can add or remove BVs and, when the refinement has
converged, weakly correlated modes (those which have negligible influence on x?)
should be removed. These modes contribute insignificantly to the quality of the final
fit, while complicating the distortion model. Identification of such modes is aided by
another routine, which determines the effect on x? of removing each BV from the
refinement. Those BVs which can be removed without a significant change in x? (less

than 1%) can usually be ignored.
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The final outputs from each refinement are: a filename.EXP file which contains the
final structure in P1 symmetry; a filename.MAT file which stores the BVs and their
refined coefficients; and two filname.FST files which contain fullprof-studio structures
of the cell and of the distortion. The fullprof-studio files can be used to visualize the

distortion and final structure.

7.6. Examples

To test SARAA-Refine, a number of powder-diffraction spectra were simulated us-
ing the GSAS software suite. All of the structures used were taken form the Inor-
ganic Crystallographic Database Service (Allen, 2002). Powder diffraction patterns of
structures were simulated using the GSAS, by outputting the calculated spectra via
POWPLOT. The POWPLOT outputs were then run through a custom conversion

routine, SIMGEN (Supporting Material), to generate a new histogram file.

Simulated histograms were refined using GSAS to ensure their fidelity, and to gen-
erate a target value’ for x2. x? is a function of counting statistics (usually referred
to as the scale factor): if both I, and I, are increased, then x? also increases. By
simulating data using very large scale-factors we were able to make minima in the

x2-space deeper, improving the speed at which calculations converged.

The first two examples were chosen based upon a number of criteria. First, they
were selected to have a small number of atoms in the unit cell: this kept the number
of basis vectors low, improving the speed at which calculations converged. Second,
they were chosen to be well studied systems for which high-quality data had been
collected and whose structures are “known” with confidence. Third, they were chosen

to be transitions which were nearly second-order, to test how reliably SARAA could

7Although Nyar differs for GSAS and SARAPR refinements, in general N5 > 10,000 while N, <
100 hence the effect upon 2 is negligible

143



7 L Davies Normal mode parameterization using SARAh-GSAS.

identify the number of distinct symmetries present within the phase transition. The

third transition was chosen because it had a non-zero k-vector.

7.6.1. Quartz

One of the oldest known, and most widely discussed, phase transitions is the quartz
a-f transition, from P6922(180) to P3222(154), which has been subject to great
interest since its discovery (Le Chatelier, 1889, 1890a, 1890b; Dolino, 1990). Despite
the large body of work on this sytem, there is still disagreement over the short
and long-range nature of this phase transition. The diffraction pattern of the lower-
symmetry [(-phase was simulated from using the structure reported by Kihara (1990),

GSAS refinement of the simulated data gave a x? of 1.575.

The volume of the primitive cell does not change significantly during the phase tran-
sition, therefore we assign to it the k-vector (0,0,0). Refinement was initially per-
formed using the basis vectors of I's, the only IR of P6,22 which generates a daughter
phase with the symmetry P3,22, resulting in a fit of x? = 2.506 (Figure 7.5, top).
To improve the fit, modes associated with I'; were added to the refinement as these
do not lower the symmetry of the daughter phase. This lowered x? to 1.575 (Figure
7.5, bottom). The final atomic positions are compared with those reported in the
literature in Table 7.2, and the distortions are depicted in Figure 7.6. The distortion
was completely defined using 4 basis vectors from two irreducible representations and
convergence was achieved in less than 1000 cycles.
Atom | Xobs Yobs Zobs Xcalc Yeale Zeale | Ox oy oz

Si | 0.48547 0.00000 0.16667 0.48547 0.00000 0.16667 | 0.00000 0.00000 0.00000
O 0.41732 0.23956 0.30889 0.41735 0.23950 0.30892 | -0.00003 0.00006 -0.00003

TABLE 7.2. A comparison of the atomic positions in #-quartz as reported
by Kihara (1990, denoted by obs), and those refined using SARAA-refine
(denoted by calc). All of the co-ordinates are reported the P3221 axis
system
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FI1GURE 7.5. Refinement plots of simulated neutron diffraction data for 3-
quartz, space group P3922(154). The structure was refined in SARAR using
I's (upper) and I'; + I's (lower). The lower line in each plot indicates the
difference between the observed and the calculated diffraction patterns.
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—*'("'

FIGURE 7.6. This figure represents the atomic displacements that occur
in the quartz a-8 phase transition. The red spheres and arrows represent
the initial position of the oxygen atoms, and their displacement; the green
arrows and spheres represent the silicon atoms and displacements. Arrows
have been increased in magnitude by a factor of 10 for clarity.

Historically, quartz was believed to go through a single, second-order phase tran-
sition, mediated by soft-phonon modes of the high-symmetry phase (Axe, 1970).
However, it has been shown that quartz passes through a short-lived (c.a. 1.4K)
incommensurate phase (Heaney, 1991) which is responsible for the observed opales-
cence (Dolino, 2001), and that one of these transitions is first-order. Our analysis
demonstrates that, for an idealized data set, it is possible to detect elements of a
second-IR in the phase transition and so confirm that, according to Landau theory
(section 1.5), the transition could not be second order. However, it is questionable
whether the influence of I'; would be distinguishable in a real data set; difference
between the plots in figure 7.5 is very small. The refined structure is in very close

agreement to that used in the histogram simulation.
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7.6.2. Arsenic Oxide

Arsenic oxide undergoes a phase change consisting of a small distortion from P4,2,2(92)
(Igartua, 1996) which has been considered to be a model for the ideal ferro-elastic
transition (Redfern, 1990). A simulated spectra of the P2,2,2,(19) daughter phase
was generated from the structures of Jansen (1979), and refinement in GSAS gave a

target 2 of 0.3891.

During this transition the volume of the primitive cell is approximately constant and
is assigned k-vector (0,0,0). I's is the only IR of P4,2,2(92) to precipitate a group-
subgroup transition to P2,2,2;, and refinement of the data using these basis vectors
gave an initial x? of 27.95 (Figure 7.7, top), which fell to 0.2620 when the modes of T’y
were added. This rose to 0.3044 when those BVs which contributed less than 1% of
the displacement were culled (Figure 7.7, bottom). Table 7.3 reports the final atomic
positions, and compares them with those reported in the literature. The distortion
are depicted in Figure 7.8, and was defined using 19 coefficients from two distinct

irreducible representations. Convergence was achieved in less than 5,000 cycles.

The important role of the introduction of a second IR upon reducing x? is more
apparent in the displacive phase transition of As;O5 than in quartz, although visu-
ally the difference between the two refinement plots is even more vanishing. The
arithmetic result agrees with the work of Redfern; although second-order Landau
behaviour of the system is observed over a large temperature range, the transition
is not described by a single irreducible representation. Again, the refined structure

was in very close agreement to that used in the histogram simulation.
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FIGURE 7.7. Refinement plots of simulated neutron diffraction data for
As905. The structure was refined in SARAR using the I's (upper) and
I's + I'; (lower) irreducible representations. The lower line in each plot
indicates the difference between the observed and the calculated diffraction
patterns.
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Atom Lobs Yobs Robs Lcalc Ycalc Zcalc dx 5y 6z
As 0.4016 0.4024 0.003 0.40187 0.40213 0.00358 | -0.00027 0.00027 -0.00058
As 0.7838 0.7827 0.0088 0.78366 0.78254 0.00896 | 0.00014 0.00016 -0.00016

0.5400 0.4349 0.7197 0.53983 0.43495 0.71927 | 0.00017 -0.00005 0.00043

0.7465 0.1426 0.4865 0.74625 0.14256 0.48686 | 0.00025 0.00005 -0.00036

0.8318 0.2668 -0.042 0.8318 0.26694 -0.04158 0 -0.00014 -0.00042

0.7487 0.4737 0.3363 0.7465 0.47382 0.33573 | 0.00220 -0.00012 0.00057

0.5254 0.2555 0.1774 0.52529 0.2535 0.17694 | 0.00011 0.00200 0.00046

clololoNe)

TABLE 7.3. A comparison of the atomic positions in AssO5 as reported
by Jansen (1979, denoted by obs), and those refined using SARAh-refine
(denoted by calc). All of the co-ordinates are reported the P4;2,2 axis
system

FiGurg 7.8. This figure represents the atomic displacements that occur in
the arsenic oxide phase transition. The red spheres and arrows represent
the initial position of the oxygen atoms, and their displacement; the blue
arrows and spheres represent the arsenic atoms and displacements. The
arrows have been increased in magnitude by a factor of 10 for clarity.
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7.6.3. Cristobalite

Cristobalite undergoes a phase transition from Fd3m (227) to P4;2,2 in the region
of ca. 500-550K (Swainson, 2003), during which the volume of the primitive cell
increases significantly. GSAS refinement of the simulated P4,2,2 phase (Schmahl et.
al 1992) provided a reference x? of 0.2679.

The k-vector relating the primitive cells of Fd3m and P4,2,2 is kpyin, = (3, 3,0)

N |—=

in the primitive setting®, and this corresponds to a doubling of the crystallographic
primitive cell in two directions. The k-vector also indicates that adjacent primitive
unit-cells of the high-symmetry phase show anti-symmetric distortions. Thus, the
twist/anti-twist rotations observed in this structure, and related structures such as
the distorted perovskites, arise naturally from the k-vector. Indeed, anti-phase rela-
tions must occur during this group-subgroup transition, a result only obtained when

a k-vector is used to define the distortion.

There are no IRs of G, which correspond to a transition between the literature
parent and daughter space groups, so we utilized the basis vector search routine
which indicated that only the basis vectors of I'; had a strong influence on 2 .
Symmetry-mode refinement using these basis vectors converged on a x? of 3.775
(Fig. 7.9). Combinations of I's with the remaining IRs, 'y, I's and T’y all showed
small improvements in y?. However, the change in x?was less than 10% (x? > 3.4),

after more than 200,000 cycles.

Inspection of the refinement plot indicates that I'y is unlikely to completely define
the distortion in cristobalite, even when making allowance for noise in real data.
Therefore, the parameterization of this distortion was performed by-hand (Tables
7.4, 7.5, 7.6), and derived two results. First, the displacement of the silicon atoms is

defined by a single basis vector. Second, the motion of the oxygen atoms is defined by

8Corresponding to k = (0,0,1) in the face-centered setting.
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FIGURE 7.9. Refinement plots of simulated neutron diffraction data for
low-symmetry Cristobalite. The structure was refined in SARAh using us-
ing the I'y irreducible representation. The lower line indicates the difference
between the observed and the calculated diffraction patterns for that refine-
ment.

no less than eight modes in the ab plane, but only one in the c-axis. The refinement
failed to converge because, while x? is strongly correlated to I's, there are many
weakly correlated modes present in the distortion. The convolution in the ab-plane,
can be interpreted as an averaging of rotational disorder about the ¢ axis. This is
consistent with the suggestion that [ cristobalite is orientationally disordered (Dove,

1997b).

Our analysis disagrees with that of Hatch (1994) who found that the system ordered
under a single six-dimensional irreducible representation. We find that there are no 6
dimensional representations for this little group and the lowering of symmetry occurs

according to the two-dimensional representations I'y, I'y, I's and ['y.
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Atom Lobs Yobs Zobs Lcal Yeal Zcal ox §y 0z
Si 0.125 0.125 0.125 0.125  0.1707  0.125 | 0.00000 0.04570  0.00000
Si 0.375 0.375 0.875 0.4207 0.375  0.875 | 0.04570 0.00000  0.00000
(0] 0 0 0 -0.0433 -0.0528 0.0497 | 0.05280 0.04330 -0.04970
(0] 0.75 0.75 0 0.7933 0.8028 0.0497 | 0.04330 0.05280  0.04970
(0] 0.75 0 0.75 0.7933 -0.0528 0.7003 | 0.04330 -0.05280 -0.04970
0] 0 0.75 0.75 0.0528 0.7067 0.7997 | 0.05280 -0.04330 0.04970
TABLE 7.4. A comparison of the atomic positions in the P412;2 and Fd3m
phases of cristobalite Schmahl (1992). All of the co-ordinates are reported
the Fd3m axis system
Distortion Y3 C C x
ox oy 0z x Y z x y z
Si | 0.0000 0.0457 0.0000 | 0.0000 1.0000 0.0000 || 0.0457 | 0.0000 0.0457 0.0000
Si | 0.0457 0.0000 0.0000 | 1.0000 0.0000 0.0000 0.0457 0.0000 0.0000
v
O | 0.0528 0.0433 -0.0497 | 0.0000 0.0000 2.0000 |l -0.0249 | 0.0000 0.0000 -0.0497
O | 0.0433 0.0528 0.0497 | 0.0000 0.0000 -2.0000 0.0000 0.0000 0.0497
O | 0.0433 -0.0528 -0.0497 | 0.0000 0.0000 2.0000 0.0000 0.0000 -0.0497
O | 0.0528 -0.0433 0.0497 | 0.0000 0.0000 -2.0000 0.0000 0.0000 0.0497
TABLE 7.5. Comparison of silicon and oxygen distortions with single modes
of Fd3m cristobalite. The distortion of each atom is defined along with a
single basis vector for the silicon and oxygen positions. The distortion of
the silicon atoms is defined completely by assigning to these basis vectors
the coefficient C, as is the distortion of the oxygen atoms parallel to the c.
Distortion Symmetry mode Total
Ui ¥ vh V5 Py V3 11 V5
Coeff 0.02403  0.00238 0.00238  0.02403 0.02165 -0.02640 -0.02165 0.02640
x || 0.0528 | 0.02403 0.00238 0.00238 0.02403 0.02165 0.00000 -0.02165 0.00000 | 0.0528
O y| 00433 |-0.02403 -0.00238 0.00238 0.02403  0.02165 0.00000 0.02165 0.00000 | 0.0433
z | -0.0497 | 0.00000 0.00000  0.00000  0.00000  0.00000 0.00000  0.00000  0.00000 | 0.0000
x || 0.0433 | 0.02403 -0.00238 -0.00238 0.02403 0.00000 -0.02640 0.00000  0.02640 | 0.0433
O y| 00528 | 0.02403 -0.00238 0.00238 -0.02403 0.00000 0.02640  0.00000  0.02640 | 0.0528
z || 0.0497 | 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000  0.00000 0.00000 | 0.0000
x || 0.0433 | 0.02403 -0.00238 -0.00238 0.02403  0.00000  0.02640  0.00000 -0.02640 | 0.0433
O y| -00528 | 0.02403 -0.00238 0.00238 -0.02403 0.00000 -0.02640  0.00000 -0.02640 | -0.0528
z || -0.0497 | 0.00000 0.00000  0.00000  0.00000 0.00000 0.00000  0.00000  0.00000 | 0.0000
x || 0.0528 | 0.02403 0.00238 0.00238  0.02403 -0.02165 0.00000 0.02165  0.00000 | 0.0528
O y| -0.0433 |-0.02403 -0.00238 0.00238 0.02403 -0.02165 0.00000 -0.02165 0.00000 | -0.0433
z || 0.0497 | 0.00000 0.00000 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 | 0.0000
TABLE 7.6. Parameterization of oxygen distortions in the ab-plane using

symmetry modes of Fd3m cristobalite. The final solution is highly convo-
luted, with 7 terms. This is consistent with there being considerable disorder

in the low

-symmetry phase.
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7.7. Conclusions

Description of displacive phase transitions is a complex and contentious issue. The
examples discussed show that the use of symmetry modes can give significant insight
into the symmetry of these phase transitions, though there are experimental limita-
tions upon the precision of this analysis. In each case, we determine that the phase
transition is not second order, however, legitimate questions remain as to whether
these conclusions would be supported by experimental data. In general, our results
agree with earlier work, though we disagree with the symmetry analysis of the a-(3

cristobalite transition performed by Hatch.

The importance of this work is, perhaps, best demonstrated by independent and si-
multaneous work of three groups to develop this method. Use of a particular refine-
ment engine (TOPAS, Fullprof, GSAS, etc.) often amounts to a choice of familiarity
or convenience, making cross-platform support for basis vector analysis is a signifi-
cant advancement in the accessibility of this technique. We hope that, together, these
programmes will encourage broader use of representation theory of when analysing

powder diffraction data.

Finally, we have discussed the limitations of our method. SARAA is an effective tool
for analysing phase transitions when the parent phase is well defined, and the cell pa-
rameters of the daughter phase known. However, the reverse Monte-Carlo approach
is computationally expensive, and system properties such as the cell parameters must
be tightly constrained or not refined. Further, the ability to identify or exclude basis
vectors which make only small contributions to a distortion is limited, even for highly

ideal data.
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In the next two chapters, both structural and magnetic transitions are analysed from

powder diffraction data using SARAA. We also make extensive use of the qualitative

arguments from this chapter and chapter 3.
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CHAPTER 8

Experimental application: Iron oxyborate

“Measure what is measurable, and make measurable what is not so.”

Galileo

8.1. Introduction

Chapters 8 and 9 present examples in which the methods of representation the-
ory are used to analyse real systems and, in particular, neutron powder diffraction
data collected from them. First, we investigate the structural, electronic and mag-
netic transitions of iron oxyborate, using both qualitative and quantitative methods
to determine its magnetic and charge-ordered structure. Chapter 9 will study the
structural distortion of potassium selenate during its transition to a ferroelectric

phase.

8.2. Iron oxyborate, Fe;OBO3

The influence of a material’s electronic structure upon its physical properties is pro-
found. The Verwey transition, in which magnetite (Fe3O4) becomes insulating upon
becoming charge ordered (Verwey, 1939), is the classic example of this relationship.
Charge ordering, and its role in the emergence of properties such as colossal magneto-
resistance and high temperature super-conductivity, is of great current interest (e.g.

Salkola, 1996; Emerya, 1996; Vojta, 2000; Howald, 2003).
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7 L Davies Experimental application: Iron oxyborate

FIGURE 8.1. The suggested structure of FesOBO3 below 155K from Attfield
et. al (1998a). Iron atoms exist in two symmetry distinct sites, shaded in
light and dark grey respectively. The 4+ and - symbols denote the relative
orientations of the magnetic moments parallel to the a-axis.

Iron-oxyborate (FeoOBOj3) shows structural and magnetic phase transitions which,
like magnetite, are thought to be driven by charge ordering upon the iron atoms. At
high temperature it is an orthorhombic semiconductor with the Warwickite structure,
consisting of ribbons of four edge sharing octohedra running parallel to the a-axis
(Bertaut, 1950; Fig 8.1). Upon cooling, iron oxyborate displays a number of distinct
transitions. The structural phase transition, from Pmecn (62) to P21/c (14), occurs at
317K, roughly in the middle of a broad semi-conductor to semi-conductor transition

(Attfield, 1999).

Magnetic order emerges at 155K and was first described as antiferromagnetic (At-
tfield, 1992), then later as ferrimagnetism (Attfield, 1998a). The ferrimagnet model

is based upon SQUID magnetometry data which indicates a saturation magnetic
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moment of around 0.14up per formula unit (Continentino, 2001). More recently, a
canted antiferromagnetic structure has been proposed on the basis of Mossbauer data
and features in the susceptibility curve near T (Suda, 2003). This has brought back

into question the true magnetic structure of this system.

Initial Mossbauer studies suggested that the structural phase transition was con-
comitant with the onset of short-range charge ordering (Douvalis, 2000), and that
charge ordering became long-ranged at the magnetic transition (Rivas-Murias, 2006).
However, super-structure peaks corresponding to charge-ordering have been observed
using X-rays at 270K, above the magnetic transition temperature (Angst, 2007a).
There also exists an incommensurately charge-ordered phase from 280K to 340K
(Angst, 2007b), that is likely to arise from frustration within the pseudo-triangular

lattices along the length of the ribbon (Leanov, 2005).

There remain significant unanswered questions about this system, in particular:
whether the magnetic moments order in a ferrimagnetic or canted antiferromagnetic
manner; the intra-layer motif of the charge-ordered structure; and the relationship
between the magnetic and charge-ordering. The aim of this experiment was to in-
vestigate, using neutron powder diffraction and symmetry analysis, the magnetic,

structural and charge-order transitions of iron oxyborate.

The chapter is structured as follows: in sections 8.3 and 8.4 we report the method
of synthesis and data collection, the results of which are analysed using Rietveld
refinement in section 8.5. In section 8.6 we perform a full symmetry analysis of all

the phase transitions and discuss the results.
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7 L Davies Experimental application: Iron oxyborate

8.3. Synthesis

A powdered sample of iron oxyborate was synthesised following the method of Attfield

et. al. (1998), in two-steps:

F6203 + 2H3B03 [— “F@BO;),” + 3HQO
3“F€B03” + Fe + F€203 — 3F€20B03

Naturally occurring boron has a high-neutron absorbance due to the 1°B isotope; the
neutron absorbance of !B is six orders of magnitude smaller (3835barn vs 0.0055barn
for 2200 m/s neutrons (Sears, 1992)). To minimise the sample absorbance, thereby
improving the counting statistics during data collection, 99.95% isotopically enriched

H3BO;3 (supplied by Cambridge Isotope Laboratories') was used in the synthesis.

32.2mmol of powdered Fe;O3 was ground in an agate pestle and mortar with 64.3mmol
of H3BOs3, placed in a crucible boat and heated to 700°C using a muffle furnace. On
reaching 700°C the heater element was turned off and the mixture left in the closed
furnace to cool. The intermediate formed was analysed by X-ray diffraction on a
D5000 laboratory diffractometer, in a flat plane geometry using cobalt K, radiation?
(A = 1.7902A ). Comparison of the diffraction data with the D5000’s diffraction li-
brary (ICCD, 2009) showed it to consist predominately of BoO3 and Fe;O3 with a
small amount of mixed iron borates; pelleting the mixture did not have any measur-

able effect on the product’s diffraction pattern.

The intermediate mixture was ground with stoichiometric amounts of Fe and Fe,O3
powder in a ball mill and separated (initially) into 2g samples that were heated
in evacuated, sealed silica tubes at 1050°C for 4 days. The black product of this

step was ground and any Fe3O4 by-product removed using a magnet. Analysis of

Thttp:/ /www.isotope.com
2Copper K, is not appropriate for iron containing samples as it lies close to an absorption edge.
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7 L Davies Experimental application: Iron oxyborate

the product on the D5000, using the diffractometer’s library, showed the remaining
product to be primarily iron-oxyborate with a significant impurity phase identified

as the Ludwigite Fe3O,BOs3.

The second step of the synthesis was significantly more difficult than anticipated,
largely due to the nature of the borate mixture intermediate. Boron oxide melts at
440°C forming a liquid that can react with silica to form the more brittle and lower
melting-point boro-silicate glass. Combined with the vapour pressure of liquefied

boron oxide at 1050°C this caused many of the silica tubes to fail.

A number of steps were taken to prevent tube explosions. First, the reactants were
wrapped in a platinum foil jacket to keep the boron oxide off the surface of the
silica. Second, pressure within the tube was moderated by using smaller samples
in each silica tube (0.5g). Third, 10mm thick silica was used to form the tubes
(twice the standard 5mm). While these steps stabilized the reaction, the synthesis
generated significant amounts of two by-products; Fe3O4 and Fe30,BO3. The iron-
oxide impurity was removed using a permanent magnet, but the Ludwigite could not
be separated and formed an impurity phase in the collected diffraction data. Due to

these synthetic problems each sample was kept separately.

8.4. Experimental

Several samples were taken to the D2B diffractometer at the Institut Laue Langevin
and diffraction data was collected from them for 1 hour. After inspecting the col-
lected data, and under advice from the instrumental support staff, the samples were
determined to be sufficiently different that they should not be mixed. Instead, the

product showing the smallest impurity phase fraction was used.

The experimental sample weighed 0.240g and its small size had a significant negative

impact upon the statistics of our data. It was loaded into a cylindrical vanadium
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canister with an internal diameter of 3mm, and data was collected at four temper-
atures (140K, 200K, 330K, 350K) using a standard crystat/cryofurnace. Diffraction
data was collected at each temperature using neutrons with a wavelength of 1.6A for
8 hours. The magnetic phase (140K) was then scanned a second time using neutrons

with a wavelength of 2.4A as this gave a greater resolution at large d-spacing.

8.5. Results and analysis

The diffraction data collected on D2B were analysed using FullProf (Rodriguez-
Cavajal, 1993). Refinement showed that there were two significant contaminants
in the data: peaks from the cryostat’s aluminium sample container; and peaks from
a second phase, identified as iron Ludwigite: Fe3O,BO3 (Pbam, a=9.42, b=12.299,
¢=3.073) , Mir (2006). The diffraction peaks from the impurities, combined with
the poor counting statistics from a small sample, made the analysis considerably
more difficult. Further, the narrow peaks were not well modelled by any of Fullprof’s
peak profile functions. We attempted to fit the data using the alternate peak profile
functions in GSAS (Larson, 1994), however GSAS refinements proved unstable with

respect to both atomic positions and thermal parameters.

Reasonable fits to the data sets at each temperature were achieved, and are presented
in Tables 8.3 - 8.2, Figures 8.2-8.5. The final y? parameters for the 350K, 330K and
200K data were: 2.5, 2.518 and 2.482 (Table 8.1). We had hoped to observe some
change in the structure of the oxyborate at the incommensurate charge-ordering
phase transition at around 340K. However there is no significant difference between
the structures refined using data at 330K and 350K. The structure of Fe;OBOj at
each temperature was in good agreement with that of previous work (Attfield, 1992),
as were the structures of Fe30,BO3 (Mir, 2006) and Al. The thermal parameters of
Al are large at every temperature because the aluminium can was poorly crystalline,

causing its diffraction peaks to be broad and diffuse.
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T(K) Phase Brag R (%) RF-factor(%) x?

350 FeoOBO3 7.560 5.833
Fe302BO3 14.87 9.363

Al 3.169 0.259 2.50
330 FesOBO3 7.467 5.751
F6302B03 15.90 9.572

Al 1.859 0.168 2.518
200 FesOBO3 7.480 4.977
Fe302B03 11.95 7.082

Al 3.248 0.371 2.482
140 FesOBO3 4.964 3.307

Magnetic Phase 8.602 -

Fe302B0s3 7.801 5.060

Al 3.004 0.352 2.134

TABLE 8.1. The goodness of fit parameters for the data refinements of the
iron oxyborate sample at each experimental temperature. x? is a measure
of the fit of the overall data set, while the R and RF-factors measure the
statistical fit of individual phases.

T(K) Phase S. G. a(A) b(A) c(A) a(®) B8(°) ~7(°)
350 Fe;OBO3  Pmen | 3.17381(3)  9.39019(9)  9.24376(9) 90 90 90
Fes02BO3  Pbam | 9.4520(3)  12.2992(5) 3.0728(1) 90 90 90

Al Fm3m | 4.0108(4) 4.0108(4) 4.0108(4) 90 90 90

330  Fe,OBO3;  Pmen | 3.1738(1)  9.3902(1)  9.2438(1) 90 90 90
Fe;0,BO3; Pbam | 9.4519(4) 12.2989(6)  3.0728(1) 90 90 90

Al Fm3m | 4.0108(5)  4.0108(5) 4.0108(5) 90 90 90

200 Fe2OBOs  P2y/c | 3.16921(3) 9.37398(9)  9.23398(9) 90 90.4255(6) 90
Fes0,BO3  Pbnm | 9.4381(1)  12.2726(2)  6.1446(2) 90 90 90

Al Fm3m | 3.9968(4)  3.9968(4)  3.9968(4) 90 90 90

140  FesOBO3  P2i/c | 3.16716(3)  9.37486(7) 9.240191 90 90.4141(6) 90
Fe30oBO3  Pbnm | 9.4415(5)  12.2711(7) 6.1457(3) 90 90 90

Al Fm3m | 3.9932(4) 3.9932(4) 3.9932(4) 90 90 90

TABLE 8.2. The space groups and refined lattice parameters all phases
identified in the diffraction data.
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Atom T Y z Biso Atom T y z Biso
Fe(1) | 0.7500 0.0679(4) 0.1177(5) 1.41(7) Fe(1) | 0.0000 0.0000 0.0000 4.1(7)
Fe(2) | 0.2500 0.1960(5) 0.3990(5) 1.47(7) TFe(2) | 0.5000  0.0000  0.5000 0.4(4)
B(1) 0.7500  0.3787(9) 0.1654(5) 0.65(8) Fe(3) | 0.999(3) 0.270(2) 0.0000 3.3(4)
0(1) 0.2500 0.118(1) 0.9871(7) 1.8(1) Fe(4) | 0.741(2) 0.392(1) 0.5000 0.9(2)
O(2) | 0.2500 0.0084(8) 0.2645(9) 1.6(1)  B(1) | 0.266(2) 0.368(2) 0.5000 0.0(4)
0(3) 0.7500  0.2507(7) 0.2423(8) 1.6(1) O(1) | 0.649(4) 0.433(3) 0.5000 1.2(4)
0(4) 0.7500 0.371(1) 0.0181(7) 1.8(1) 0O(2) | 0.395(3) 0.073(2) 0.0000 0.8(4)

0O(3) |0.621(3) 0.132(2) 0.5000 1.3(5)
Atom T y z Biso O(4) | 0.106(5) 0.154(4) 0.0000 2.1(7)
Al(1) [ 0.00000 0.00000  0.00000  42(6) O(5) | 0.841(3) 0.241(2) 0.5000 0.5(4)

TABLE 8.3. The refined atomic parameters of FeoOBOj3, Fe3O2BO3 and Al
(top, middle, bottom) at 350K. Lattice parameters are given in Table 8.2.
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FIGURE 8.2. The Rietveld refinement of neutron diffraction data collected
on the D2B diffractometer at 350K, A = 1.6A . The refined values of the
sample parameters are listed in Tables 8.3 and 8.2.
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Atom x Y z Biso Atom T y z Biso
Fe(1) | 0.7500 0.0676(4) 0.1176(6) 1.39(3) TFe(1) | 0.0000  0.0000 _ 0.0000 3.4(9)
Fe(2) | 0.2500 0.1960(5) 0.3989(6) 1.47(7) Fe(2) | 0.5000  0.0000  0.5000 0.4(4)
B(1) | 07500 0.379(1) 0.1653(6) 0.61(8) Fe(3) | 0.995(5) 0.278(3) 0.0000 2.5(6)
O(1) | 02500 0.119(1) 0.9870(8) 1.8(1)  Fe(4) | 0.740(2) 0.391(5) 0.5000 0.5(3)
0(2) | 0.2500 0.0086(8) 0.264(1) 1.7(1)  B(1) | 0.267(3) 0.367(3) 0.5000 0.3(3)
0(3) | 07500 0.2508(8) 0.2421(9) 1.5(1)  O(1) | 0.646(5) 0.433(3) 0.5000 0.9(5)
O(4) | 0.7500 0.371(1) 0.0186(8) 1.8(1) O(2) | 0.395(3) 0.075(2) 0.0000 1.2(5)
0(3) |0.622(3) 0.132(3) 0.5000 1.7(4)
Atom | @ y P Bio  O(4) | 0.104(5) 0.157(4) 0.0000 1.9(5)
AI(1) | 0.00000 0.00000  0.00000  43(3)  O(5) | 0.841(3) 0.241(2) 0.5000 0.5(4)

TABLE 8.4. The refined atomic parameters of FeoOBOj3, Fe3O2BO3 and Al
(top, middle, bottom) at 330K. Lattice parameters are given in Table 8.2.

5170 — i _
g 1 AR mwwwwwmmé

Q(A-1)

FIGURE 8.3. The Rietveld refinement of neutron diffraction data collected
on the D2B diffractometer at 330K, A = 1.6A. The refined values of the
sample parameters are listed in Tables 8.4 and 8.2.
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Atom T Y z Biso

Fe(1) 0.5000 0.5000 0.0000 3.3(4)

rtom | o Y . B Fe(2) |0.979(1) 050201 02500  2.9(5)

Fe(1) | 0.755(2) 0.0683(4) 0.1173(5) 0.37(6) 528;) 8'3%8 g'zgggg g'gggé‘g) ;1'(‘135)

Fe(2) | 0.248(2) 0.1986(4) 03963(6) 081(7) i | o onl (ol e

B(1) | 0.743(2) 03733(8) 01635(6) 0.19(8) pn? | T A (000 ae)

O(1) | 0.239(2) 0.118(1)  0.9892(9) 13(1)  poob | e e ol

O(2) | 0:242(4) 0.0120(7) 0.269(1)  13(1) G | reni (L en ol

0(3) | 0.752(3) 0.2510(6) 02425(8) 0.7(1)  Ju® | R U (N s

O() | 0747(2) 0.37200) 0.0176(6) 05(1) oo | FTEE IO aste) 04(3)

atom | o y . - O(3a) | 0.857(6) 0.643(6) 0.2500  1.8(3)

iso__ (O(3b) | 0.083(5) 0.373(4) 0.2500  1.4(8)

AI(1) | 0.00000.0000 00000 50(8) 4y | 5g8(3) 0.366(3) 0.023(3) 1.9(4)
O(5a) | 0.87(1)  0.240(8) 0.2500  5(1)

O(5b) | 0.176(7) 0.756(5) 0.2500  5.2(8)

TABLE 8.5. The refined atomic parameters of FeoOBOg3, Al and Fe30,BO3
(top left, bottom left, right) at 200K. The lattice parameters are given in
Table 8.2.
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FIGURE 8.4. The Rietveld refinement of neutron diffraction data collected
on the D2B diffractometer at 200K, A = 1.6A . The sample parameters are
listed in Tables 8.5 and 8.2.
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8.5.1. Determination of the magnetic ordering

The diffraction data collected at 140k was initially compared to the nuclear-only
structural model refined from the 200K diffraction data. As iron oxyborate does not
undergo a structural phase transition over this temperature range, any additional
diffraction peaks, or peak intensity, can be attributed to long-range magnetic order.
This step revealed three distinct “magnetic”® peaks in the range @ = 0.6 to 1.6 A ~!
(Fig. 8.5). Our analysis of the magnetic ordering focused on fitting these peaks using
symmetry modes from SARAA (Wills, 2000) within Fullprof.
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FIGURE 8.5. The Rietveld refinement of neutron diffraction data collected
on the D2B diffractometer at 140K, A = 2.4A . The structural parameters
from the 200K refinement, Table 8.5, were used without a magnetic phase.
Three distinct magnetic peaks are observed in the range Q = 0.6 to 1.6A 1,

3These are not magnetic peaks in the usual sense: that they arise from an increase in the system’s
unit cell parameters. In this case they correspond to peaks for which almost all of the intensity can
be attributed to the long-range magnetic order and not nuclear diffraction.
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IR |E Cy Cy Cy, I o, o, o0,
Iy 1 1 1 1 1 1 1 1
Iy 1 1 1 1 -1 -1 -1 -1
I's 1 1 -1 -1 1 1 -1 -1
r, |1 1 -1 -1 -1 -1 1 1
1 -1 1 -1 1 -1 1 -1
T'g 1 -1 1 -1 -1 1 -1 1
I'; 1 -1 -1 1 1 -1 -1 1
1

-1 -1 1 -1 1 1 -1

TABLE 8.6. The irreducible representations of the space group Pnma, or-

dering under k = (0,0,0). These are the small irreducible representations
from the tables of Kovalev (1993).

The parent, non-magnetic phase has the symmetry P2;/c and the observation of
an uncompensated magnetic moment (Attfield et. al.) requires the magnetic k-
vector to be (0,0,0). This k-vector corresponds to the little group Gy = Gy, as k is
invariant under every operation in the point-group Hy. The operators and irreducible
representations of this group are given in Table 8.6 and, as the little group contains
the inversion operator, anti-unitary symmetry does not expand the group or alter the
basis vectors. For the P12;/cl phase, both iron atoms are in the (x,y,z) Wyckoff
position and so have the same decomposition and basis vectors. The basis vectors that
define axial vectors upon the (x,y, z) position are listed in Table 8.7, corresponding

to the decomposition (the IR notation follows Kovalev, 1993):

I =3r® +3r® 4 3r® + 3rW

Four refinements of the 140K data were performed within Fullprof, each using all
the basis vectors from a single irreducible representation (Fig 8.6). From these re-
finements it was clear that I's was sufficient to fit the magnetic phase. Refinements
using I'; and T’y generated too litte intensity upon the (0,2,0) peaks. The I'y refine-
ment left small but significant residuals at three peaks, while refinement using the

I's closely matched the observed data at all of the peaks in this Q) range.
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Intensity (arb. units)

Intensity (arb. units)

B.V. A Ay As Ay B.V. A As As Ay
1 1 1 1 1 1 1 1

iy (z) 0 0 0 0 3 () 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

P11 (y) 1 1 1 1 f1(y) 1 1 1 1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

P11 (2) 0 0 0 0 P (2) 0 0 0 0
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

3 (z) 0 0 0 0 h(x) 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Pi(y) 1 1 1 1 Vi (y) 1 1 1 1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

P (2) 0 0 0 0 P (2) 0 0 0 0
1 1 1 1 1 1 1 1

TABLE 8.7. Basis vectors of the P12;/cl phase, k= (0,0,0). These basis
vectors represent the ordering of axial vectors on the Wyckoff position: A; =
(.Z',y,Z), A2 = ('i.—i_ %,Zj,Z‘i‘ %)7 A3 = (i.vgvz)v A4 = ($+ %7y72+ %)
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FIGURE 8.6. These plots show the best fits for the three distinct magnetic
peaks in the 140K data set, using basis vectors from only a single irreducible
representation. The fits made use of I'1, I'g, I's and I'y (top-left, top-right,
bottom-left, bottom-right). It is clear that I's is sufficient to fit these peaks.
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Further refinements showed that the 1% () basis-vector was sufficient to define the
magnetic order at both iron positions, with coefficients 2.5(1) and -1.9(1) upon Fe(1)
and Fe(2) (Figure 8.8). This corresponds to a ferrimagnetic arrangement of spins
aligned parallel to the a-axis (Figure 8.7). Once the magnetic ordering was deter-
mined, the other structural parameters were allowed to refine simultaneously, and

the refined structure is reported in Table 8.8.

Other models of the magnetic ordering, having non-zero k-vectors, were considered
using SARAA-Refine’s k-vector search function (Wills, 2009). This routine performs
a Monte-Carlo type search for possible magnetic ordering with each k-vector type
in the Brillouin zone. Performing 500 cycles at each special point in the Brillouin
zone failed to generate any feasible alternative magnetic structures. From this we
conclude that the k-vector assigned on the basis of SQUID data best fits the observed

powder-diffraction data.
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FIGURE 8.7. A graphical representation of the ferrimagnetic structure of
iron oxyborate, with moments parallel to the a-axis.
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FIGURE 8.8. The Rietveld refinement of neutron diffraction data collected
on the D2B diffractometer at 140K, A = 2.4A , modelling the magnetic phase
defined with the basis vector 17, (y) at both iron atoms. The refined values
of the sample parameters are listed in Tables 8.8 and 8.2.
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Atom x Yy z 11 B22 B33 B12 B13 B23
Fo(1) | 0.751(2) 0.0673(6) 0.1179(8) 0.018(6) 0.0012(6) 0.0014(7) _ 0.000(2) 0.000(2) 0.0004(
Fe(2) | 0.248(3) 0.1970(6) 0.3985(8) 0.000(8) 0.0188(6) 0.0012(8)  0.000(2) 0.005(2) 0.0000(
B(1) | 0.742(3) 0.378(3) 0.1650(9) 0.024(1) 0.000(7)  0.0001(9)  0.000(4) 0.000(2) 0.0000(
O(1) |0.248(4) 0.117(2) 0.986(1) 0.03(1) 0.003(1) 0.003(1)  0.000(4) 0.003(3) 0.003(1
0(2) |0253(5) 0.011(1) 0.262(1) 0.05(1) 0.002(1) 0.004(1)  0.000(4)  —0.009(3) 0.001(1
0(3) | 0.754(5) 0.2501(9) 0.242(1) 0.05(1) 0.002(1) 0.004(1) —0.001(3)  —0.002(3)  —0.003(1
0(4) | 0.744(4) 0.375(2) 0.0192(9) 0.034(8) 0.003(1) 0.003(1)  0.000(4) 0.000(3) 0.003(1
Atom T y z B11 Ba22 B33 B12 B13 B23
Fe(1) | 0.5000  0.5000  0.0000  0.00(7) _ 0.007(5) 0.01(1)  0.003(5)  —0.010(9)  —0.008(9)
Fe(2) | 0.98(1) 0.50(1) 02500  0.01(1) 0.004(5) 0.02(1) —0.005(8) 0.0000 0.0000
Fe(3) | 0.005(4) 0.725(3) 0.986(7) 0.011(6) 0.003(2) 0.02(1) —0.004(3) —0.013(9)  0.006(5)
Fe(4a) | 0.746(9) 0.399(5) 0.2500  0.005(9) 0.003(4) 0.03(2)  0.000(5) 0.0000 0.0000
Fe(4b) | 0.264(8) 0.616(2) 0.2500  0.012(2) 0.000(3) 0.02(2)  0.00(4) 0.0000 0.0000
B(1) | 0.75(1)  0.649(6) 0.2500  0.008(9) 0.000(3) 0.2(1) 0.010(2) 0.0000 0.0000
B(2) | 0.270(9) 0.370(7) 0.2500  0.00(1)  0.001(5) 0.01(2)  —0.003(6) 0.0000 0.0000
O(1a) | 0.650(9) 0.558(5) 0.2500  0.001(1) 0.005(4) 0.001(4)  0.003(4) 0.0000 0.0000
O(1b) | 0.34(1)  0.457(6) 0.2500  0.00(9)  0.006(5) 0.22(9)  0.002(5) 0.0000 0.0000
0(2) | 0.124(9) 057(2) 0.00(1) 0.02(1) 0.013(4) 0.00(1) —0.003(6) 0.00(1) 0.010(9)
O(3a) | 0.88(1)  0.658(8) 0.2500  0.00(1) 0.004(6) 0.02(3)  0.004(5) 0.0000 0.0000
O(3b) | 0.11(1)  0.369(6) 0.2500  0.03(1) 0.02(3) 0.02(2)  0.00(6) 0.0000 0.0000
0(4) | 0587(2) 0.37(6)  0.96(1) 0 01(1) 0.0L(1) 0.01(4) —0.01(1) 0.01(2)  —0.01(2)
O(5a) | 0.87(5) 0.20(4) 02500 04(2)  03(1)  0.02(5) —0.3(1) 0.0000 0.0000
O(5b) | 0.143(9) 0.755(2) 02500  0.00(1)  0.000(4) 0.03(1)  0.010(5) 0.0000 0.0000
Atom ‘ T z Biso

Al(1) ‘ 0.00000 000000 0.00000 42(10)

TABLE 8.8. The refined atomic parameters of FeoOBOj3, Fe3O2BO3 and Al
(top, middle, bottom) at 140K. The lattice parameters are given in Table
8.2.

The refined magnetic structure is in agreement with that of Attfield et. al, but with
reduced moment size. For a system of mixed Fe?* and Fe** we would expect a
moment size of of 4-5up, rather than the 2-2.5up observed. Possible explanations
of this reduced moment are delocalization of the electron density on the iron, or a
dynamic spin state in which the moments precess about the a-axis. Further work,
possibly using inelastic neutron scattering or muon spin resonance, is required to

identify cause of the reduced moments.

Analysis of our diffraction data has confirmed the atomic structure of iron borate
above and below the magnetic transitions to be that presented by Atfield et. al. In
particular the structure shows no evidence of the canted-magnetic structure suggested
by Suda (2003), but is well modelled by a ferrimagnetic ordering parallel to the a-
axis, with a reduced moment at each iron atom. In the next section we make use

of the experimental data from this and previous studies to make a full symmetry
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analysis of the structural phase transition and the charge-ordering at 140K. We also
compare the irreducible representations that the system orders under at each phase

transition.

8.6. Symmetry analysis of the phase transitions

Having confirmed the atomic and magnetic structure of iron oxyborate using powder
diffraction data, we performed a symmetry analysis of the structural, magnetic and
charge-ordering phase transitions and discuss their relations. This section makes use

of both current and previous work.

8.6.1. The structural phase transition

Previous studies of iron oxyborate have used the space group Pmcn, a non-standard
setting of Pnma (62). As SARAA and the tables of Kovalev use the standard settings,
some manipulation of the settings is required. Careful consideration of these steps

allows identification of the symmetry of the displacive phase transition.

The structural phase transition in iron oxyborate at around 320K does not change
the volume of the primitive unit cell, and so is assigned the k-vector (0,0,0). The
maximal sub-groups of Pmna, as listed in the International tables of crystallography

- A (2002), reveal two possible paths from Pmna to P12, /cl:

Pnma +—— P112y/a

— P2, /nll

Both P112;/a and P2;/nl11 are alternate settings for P12;/cl, related by opposite
rotations of the axis set: {z,z,y} and {y, z, ¢} respectively, in the Jones faithful

representation. These can be expressed as group sub-group relations, allowing us to
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determine the irreducible representations that can represent these transitions. Listing

the elements of each space group in the same manner as above:

{E, 029[:7 02y7 0227 I, Oz, Uya Uz} D {E> C?Za Ia Uz}

D {Eachajaax}

Referring to the irreducible representations of Pnma, for k= (0,0,0) (Table, 8.6),
the possible symmetry reductions correspond to I'; and I's respectively. From the
positions of atoms in the lower phase it is clear that there is no redefinition of the
axis system during the phase transition. Hence, the axes of P12;/cl and Pmen must
coincide and we can distinguish between the two possibilities. Consider the following
scheme, where 9 is represented by the left-to-right mappings and is the same axis

transformation in each case:

m
P112,/a +— P12,/cl

T T
Pnma +——  Pmcen
!

P2,/nll — P112,/a

Under M, P112;/a becomes P12;/cl with the same axis system as Pmcn, while
P2, /n11 becomes P112;/a. The distortion of the system must result in a daughter

phase with the symmetry P112;/a and, therefore, corresponds to I';.

8.6.2. Magnetic ordering

We have already determined that the magnetic moments order under ¥3, (z) (Table
8.6) from the powder diffraction data. This corresponds to ferrimagnetic ordering,
with moments of differing sizes parallel to the a-axis at each of the two iron sites.

Table 8.9 lists the axial basis-vectors of the (x,0.25, z) position in Pnma, these are the
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same for both iron sites and so are listed only once. The a-axis of Pmcn corresponds
to the b-axis in Pnma, thus the mode 9, (y) of Pnma is equivalent to ¥3 (z) in
Table 8.6. This is confirmed by their IR tables (taking note of the change of axis for
I3, P112;/a):

I.R. FE sz ng CQZ I Oz Oy O,

Is, Pnma | 1 -1 1 -1 1 -1 1 -1
I3, P112y/a | 1 -1 1 -1

We can conclude that, using the basis vectors of Pnma, the magnetic structure
is ordered ferrimagnetically under the representation I's, according to ?,(y). By
bringing the displacive and magnetic phase transitions into equivalent settings we

deduce that they order under differing IRs.

8.6.3. Charge ordering

The charge ordering of iron oxyborate is particularly interesting because of the in-
commensurate phase observed by Angst (2007b), however we cannot determine the
charge-ordering motif from the collected powder diffraction data. Instead we will
use symmetry arguments based upon the SQUID data reported in previous work to
identify the charge-ordering motif in the commensurately charge-ordered phase. If
the iron atoms were charge-uniform then the observed anti-parallel magnetic struc-
ture would be antiferromagnetic.Consideration of which charge-order motifs can give
rise to a net magnetic moment is sufficient to determine the symmetry of the charge

ordering.

The presence of charge-order has been confirmed by single-crystal diffraction (Angst
2007a, 2007b). However, the observed k-vector was (%,0,0) and such a charge-
ordering can mot give rise to a net ferrimagnetic moment. Under k= (%, 0,0) any

moment arising in a plane from charge-order will be cancelled by the plane above in
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B.V. Pos.1 Pos.2 Pos.3 Pos.4
0 0 0 0
Pi1(y) 2 2 2 2
0 0 0 0
2 2 2 2
PT () 0 0 0 0
0 0 0 0
0 0 0 0
Pii(2) 0 0 0 0
2 2 2 2
2 2 2 2
PP () 0 0 0 0
0 0 0 0
0 0 0 0
PP (2) 0 0 0 0
2 2 2 2
0 0 0 0
P11 (y) 2 2 2 2
0 0 0 0
0 0 0 0
P11 (y) 2 2 2 2
0 0 0 0
2 2 2 2
P9 () 0 0 0 0
0 0 0 0
0 0 0 0
P91 (2) 0 0 0 0
2 2 2 2
2 2 2 2
P11 () 0 0 0 0
0 0 0 0
0 0 0 0
P11 (2) 0 0 0 0
2 2 2 2
0 0 0 0
P (v) 2 2 2 2
0 0 0 0

TABLE 8.9. The basis vectors of Pnma, ordering under k= (0,0,0). The
basis vectors represent the ordering of an axial vector on the equivalent
positions (0.1176,0.75,0.0676) and (0.3989, 0.25,0.1960), both of which have
four distinct images under the operations of the space group.

which the charge-order (and so the ferrimagnetism) is reversed. Indeed, only charge-
ordering under k= (0,0,0) could give rise to a net ferrimagnetic moment. Such an
ordering would be almost unobservable because the diffraction cross-sections of Fe?*
and Fe3T are nearly identical, and it would not give rise to any new peaks in the

diffraction pattern.
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By calculating the possible charge-ordering schemes using the basis-vectors for a
scalar property, we can determine which IR the charge orders under. The possible
charge-ordering schemes are depicted in Fig. 8.9, and it is clear that only I'; gives rise
to a net ferrimagnetic moment within the plane; all the other symmetry modes form a
pattern of charge for which there is no net-magnetic moment. The net-magnetisation
must, therefore, arise from a charge-ordering phenomena with a k-vector of (0,0, 0)

and the symmetry of I'y.

AV Vg
AN A

N7 W&
ANV

F1GURE 8.9. Possible charge-order motifs of the iron oxyborate structure
under the k-vector (0,0,0). There is only a single basis vector for each
irreducible representation. The +/— refer to relative orientations of the
magnetic moments, relative to one another. The colour schemes denote the
nominally +2/ + 3 iron ions. From left to right, top to bottom; I'y, I'y, I's,
Iy.
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8.6.4. Symmetry relations

Our symmetry analysis has revealed that the structural, magnetic and charge-ordering
phase transitions are all dominated by different irreducible representations. However,
while the charge and magnetic ordering of iron borate do not occur within the same
irreducible representations, this does not mean they are unrelated. At a naive level,
the net ferrimagnetic moment arises from the excess of charge at positions with a spe-
cific moment orientation; the magnetic and charge ordering are distributed through

the system in the same manner, despite their differing IR labels.

If the distribution of charge and moment orientation are coincident, how can they
have differing symmetries? The divergence of charge and magnetic labelling arises
because they behave in fundamentally different ways under symmetry operations:
charge is a scalar and therefore invariant under all operations of the point group,
while magnetic moments act as axial vectors. At a, perhaps, more fundamental level
the charge and spin are differentiated not by how they are physically ordered, but
how mathematics formally represents that order, and this can be seen if we consider
only the permutation representation. Both the charge and magnetic ordering are

permuted according to I';.

I'= FPerm X FRot
FScalar = Fl ® Fl (81)
[ aziat = 't @ (I'y + 2T3)

The equivalence of their permutation representations implies that both charge and
magnetic moment are distributed in the same way amongst the various iron atoms.
Where they differ is how their representations transform under the symmetry oper-

ations of the space group (I'rey)-

This abstraction back to the permutation representation has been considered in a

different context by Izyumov (1991), who notes that the energetics of simple exchange
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are unchanged by a global rotation of every spin about a parallel local axes. If

exchange is expressed as:

stj = |S¢||S¢j|COS@Z‘j (82)

Then, as a global rotation changes neither the magnitude of any moment nor the an-
gles between them, one could view this as another symmetry element of the Hamil-
tonian. This is, mathematically, same the abstraction we have performed above,
and it draws together basis vectors that come from the same IR of the permutation

representation (so called “exchange multiplets”).

In fact, Izyumov’s arguments are unphysical. While in theory the global rotation is
a symmetry operation, it is not observed as one in real systems. Magnetic atoms do
not exist in vacuo, and their local environment will cause particular orientations of
the moments to represent an energetic minima. Were this not true then the system
would be an ordered paramagnet; every orientation of the ordered spin state relative
to the lattice would be degenerate and the system would move freely about that
space. For any system with static moment ordering, crystal field anisotropy and spin

orbit coupling determine the moment orientations, and this effect can be enormous.

In contrast, our arguments in the case of iron borate rest not upon the isotropy of
space, but the scalar nature of charge density waves. The rotation of a scalar at a
point in space is meaningless and therefore cannot cost energy, unlike the rotation of

a moment.

8.7. Conclusions

We have used representation theory to analyze the phase transitions of iron oxybo-
rate, and to interpret data collected from a powdered sample using the D2B diffrac-
tometer at the ILL. The synthesis was significantly more taxing that previous litera-

ture had reported, and the product was not 100% pure. Despite synthetic difficulties,
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both the Pmen and P12;/cl phases were refined and the magnetic ordering shown
to be ferrimagnetic. Further, we have shown that the ferrimagnetic moment must
arise from a k = (0,0,0) charge-ordering that has not been previously discussed.
Consideration of the basis vectors describing such an ordering has allowed us to

unambiguously determines the charge-ordering motif.

Symmetry analysis of the structural, magnetic, and charge ordering transitions re-
veals that charge and magnetic ordering are related when considered them within
an appropriate symmetry frame-work. This involves recognizing that charge and
magnetism are fundamentally different in behaviour and that it is not sufficient to
just consider their IR labels. Within the permutation representation both charge and
magnetic moments are distributed amongst the atomic positions in the same manner,
a result that is self-evident when considering the physical origin of ferrimagnetism in

iron oxyborate.

Finally, the magnetic moments observed by powder diffraction were approximately
half their expected value. Further work is required, using other techniques such as
inelastic neutron scattering and muon spin resonance, to explain this observation.

Without an explanation for the reduced moments our model remains unphysical.
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CHAPTER 9

Experimental application: Potassium selenate

“I love fools’ experiments. I am always making them.”

Charles Darwin

9.1. Introduction

The second system studied experimentally in this thesis is potassium selenate, which
undergoes two displacive phase-transitions thought to be driven by soft phonon
modes. Potassium selenate is particularly important for two reasons: the soften-
ing of phonon branches at the transition temperature has been directly observed
using inelastic neutron scattering techniques (lizumi, 1977); and the second tran-
sition appears to be a k-vector transition, where the only change of symmetry is
a discontinuous jump in k. Such symmetry-transitions are only describable using
representation theory and may be important in a wide range of systems (Cowley,

1980).

9.2. Potassium Selenate

Potassium selenate, along with its structural isomorphs, has been extensively studied
over the past 30 years. In particular, the work by lizumi et al. (1977) has formed the
basis of many computational studies into this and related systems (e.g Mashiyama,
1983; Kunz, 1992; Zinenko, 1998). At room temperature KySeQ, is isomorphic to
B3-K5S0y, with space group Pnam' (Kdlman, 1970): this is referred to as the P-

IThis is an alternative setting of Pnma(62)
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7 L Davies Experimental application: Potassium selenate

or paraelectric-phase of potassium selenate. Upon cooling, K2SeO,4 undergoes phase
transitions at 129.5K and 93K (Aiki; 1969a, 1969b). The first of these is to an
incommensurately modulated structure (lizumi, 1977; Yamada, 1984), termed the I-
phase. Observation of a strongly-softening phonon mode at the P—I phase transition,
by lizumi et al., has generated much work towards the identification of this mode and
its involvement in the phase transitions of the system (e.g. Dvorak, 1978; Sannikov,

1978; Fleury, 1979; Massa, 1983; Pérez-Mato, 1985).

Below the P—1I transition, the k-vector of the incommensurate modulation is (%‘;, 0,0),
where ¢ varies continuously with temperature over the range 0.04 — 0.08 (Iisumi,
1977). At 93K 0 jumps, discontinuously to the commensurate value 0. This low
temperature phase is ferroelectric and its symmetry was hotly debated (Shimoaka,
1972; Yamada, 1984; Aiki 1969b), but is now accepted as being Pna2;. The be-
haviour of the system at the ferroelectric (or F-phase) transition is notable because
both k = (¢,0,0) and k= (%,0,0) have the same little group. Therefore, if the
distortions in both the I- and the F- phases are described by the same irreducible
representation, there may be no formal change of symmetry associated with the F—I

phase transition.

In this chapter we highlight flaws in previous symmetry analysis performed by lizumi
(1977) and Pérez-Mato (1985) and show there is no single phonon mode that can give
rise to a distortion with the symmetry Pna2,. Having derived the correct irreducible
representations and basis vectors for this system, the symmetry of the F-phase and
the modes generating its ferroelectric distortion are determined from new powder
neutron diffraction data using the SARAA-GSAS routines developed as part of this

thesis (chapter 7).
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7 L Davies Experimental application: Potassium selenate

9.3. Symmetry analysis

Symmetry analysis of the KySeO, phase transitions was first performed by lizumi
et al.(1977), who experimentally determined that in the I- and F-phases the system
ordered under a distortion with wave-vector k ~ (%, 0,0). In the I-phase § ranges
from 0.04 — 0.08A jumping to 0 at the I-F transition. Observation, using inelastic
neutron scattering, of a soft phonon with the symmetry of I'; at the P—1I transition
lead to the assignment of I'y symmetry to the distortion of the I- and F-phase?. This
assessment was challenged by PérezMato et al. (1985), who performed a symme-
try mode analysis of both the I- and F- phase structures reported by lizumi and
found elements of the I-phase distortions had I'; symmetry. Further, the I—=F phase
transition was reported to be driven by I's and I'y. In this section we highlight sig-
nificant errors in the analysis by both lizumi and PérezMato, before performing a

new co-representational analysis of potassium selenate in section 9.3.1.

Careful inspection of the literature reveals that lizumi et al. mistakenly performed
their analysis using the loaded irreducible representations (LIRs) of Kovalev®. Correct
irreducible representations for this little group are significantly different from those
reported in their work (Table 9.1); in particular, the daughter phases associated
with each IR are much less symmetric. From the IRs, it is clear that any distortion
involving only I'y must reduce the system to P1 symmetry (section 3.8). These
incorrect representations also appear in the work of Pérez-Mato et al. and, as a

result, their symmetry modes are significantly more symmetric than they should be.

The symmetry-mode analysis of KoSeO, by Pérez-Mato et al. concluded that the I
phase ordered under two IRs; the “completely symmetric” I'; and the low-symmetry

I's. The F-phase was reported to order under elements of all the IRs of G;. However,

°In the original work the branches are labelled as ¥, but with the same meaning.
3See chapter 5.
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(B0} {Colid+ 10+ L8 {o.|3a+Ld} {o,|ib}
LIR
| 1 1 1 1
Iy| 1 1 —1 —1
Iy 1 —1 1 —1
Iy 1 —1 -1 1
SIR
| 1 e " 1 e Im
Iy 1 e " -1 —e 7
I's 1 —e 7 1 —e 97
ry 1 e I -1 e
SIR
Iy 1 e~ 3 1 e~ 3
I'y 1 e~ 3 -1 —e”3
I's 1 —e73 1 —e73
Iy 1 —e7 3 -1 e~ 3

TABLE 9.1. The top table lists the LIRs of Pnam, for k = (¢,0,0); in-
correctly listed as the IRs for this group by lizumi (1977) and Pérez-Mato
(1985). Middle and bottom list the SIRs for £ = (¢,0,0), and the case

q=3.

his basis vectors were incorrect, due to an incorrect use of the LIR tables presented
by Kovalev. As a result his conclusions are brought in to doubt and we have per-
formed a new symmetry mode analysis using fresh experimental data. Further, due
to the complex nature of the basis vectors projected from Gy, we have extended our

consideration to the anti-unitary operations of this system (section 3.6).

9.3.1. Co-representational analysis of potassium selenate

The irreducible corepresentations (ICRs) of Pmna, k= (%,0,0) are all of type A
(Table 9.2). In our analysis we have chosen [ = 1, however the choice of phase
factor does not affect our discussion or quantitative results (see sections 3.6.3, 3.7).
Inversion is a symmetry operation of Gy but not Gy, so we take I as our anti-unitary

generating element and it doubles the size of the symmetry group.
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E Co 0y o, I or Oy Cy,
Iy| 1 e3 1 e35 1 e35 1 e3
i1 e3 1 e35 -1 —e5 —1 —e3
[opo| 1 €35 -1 —e5 1 e35 —1 —e75
I'hy o | 1 e3 —1 —e 3 —1 —e 3 1 e~ 3
g5/ 1 —e3 1 —e™35 1 —e™35 1 —e3
I3 5] 1 —e 3 1 —e 3 —1 e s —1 e 3
[ypg | 1 —e"3 —1 e~ 3 1 —e 3 —1 e~ 3
Tysl 1 —e 5 —1 e s —1 e~ 3 1 —e73

TABLE 9.2. The irreducible co-representations of Pnam, for k = (3,0,0).

The subscripts denote the IRs of k and —Fk that are mixed by anti-linear
symmetry, and how they combine. lL.e. T'y_; is a short-form notation for
r

.
ry-r;

The ICRs of this group are complex, and so the reduction and projection operators
can not be used. Instead, we must perform a “simple” symmetry reduction and form
the co-representations from the IRs spanned (section 3.7); normal representation
analysis was performed using SARAA (Wills, 2000). Atoms upon the Wyckoff posi-
tion (z,0.25, z) split into two orbits under G and, using polar vectors to represent

possible displacements, each orbit spans the reduction:

'=2I" +1I'y + 2I's + 1Ty (9.1)

For this system, the anti-unitary generating operator brings the split orbits together
under A co-representations, forming the combinations 0x(¢) £0_x(g) (again, we chose

B =1 for convenience). Hence, the (z,0.25, z) position spans the following ICRs:

I'=201 11 +20 1 + 1940 + 1T 9 + 20343 + 21733 + 11y44 + 1174 (9.2)

This analysis can be repeated for the (x,y, z) position, generating the reduction:

F - 3F1+1 + 3F1_1 + 3F2+2 + 3F2—2 + 3F3+3 + 3F3_3 + 3F4+4 + 3F4_4 (93)
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(2,0.25,2) (z,—0.25,—2) (x,—0.25,z) (x,0.25, —2)
P *(x) [ (2,0,0) (1,0,0) (1,0,0) (1,0,0)
PH(z) | (0,0,2) (0,0,1) (0,0,1) (0,0,1)
@) | (2,0,0) (1,0,0) (1,0,0) (1,0,0)
»(2) | (0,0,2) (0,0,1) (0,0,1) (0,0,1)
V22 (y) | (0,2,0) (0,1,0) (0,1,0) (0,1,0)
¢2_2(y) (0,2,0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
¢3+3(1’) (2,0,0) (i, 0,0) (1,0,0) (1,0,0)
¢3+3(z) (0,0,2) (0,0,1) (0,0,1) (0,0, I)
V33 x) | (2,0,0) (1,0,0) (1,0,0) (1,0,0)
V*(2) | (0,0,2) (0,0, 1) (0,0,1) (0,0,1)
P (z) | (0,2,0) (0,1,0) (0,1,0) (0,1,0)
¢4_4(z) (0,2,0) (0, 1, 0) (0,1,0) (0,1,0)

TABLE 9.3. Basis vectors of the position (x,0.25,z) in Pnma, ordering
under k = (%, 0,0). These have been projected from the type A ICRs for

this group, and made real by linear combination with their —k conjugates
(section 3.4). For the position (z,y, z), there are 24 basis vectors spanning
8 equivalent positions.

In total there are 84 basis vectors for the system, this differs noticeably from the 63
calculated by Pérez-Mato et al. whose analysis is flawed in two ways. First it assumes
that the F-phase symmetry Pna2;, limiting itself to motions with that symmetry.
Second, they use 21 atoms to define their proposed structure. As the distortion is
periodic, with a well defined k-vector, there are only 7 independent atoms in the
Pna2; structure; the distortion of the remaining atoms is defined by k. “Co-basis
vectors” for the position (x,0.25, z), f = £1 are presented in Table 9.3; these describe

every atom in the potassium selenate structure, except for O(1)%.

In concluding our qualitative analysis of this system, we note that Pna2; contains

the operations:

1. 1- 1. 1. 1. 1-
Pna2, = {{E|0}, {Coul5a+ 55+ 58 {0l 5a+ 5 {am|§b}} (9.4)

4The co-basis vectors of O(1) have not been included for brevity, and in consideration of the com-
ments in section 3.7 and 6.4. Our interest lies in the IRs/ICRs spanned and the distorted structure
rather than the form of the symmetry modes (see section 7.1.1).
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Or, in the same setting as Pnma:
1 1- 1 1 1- 1
Pn2ja = {{E Sd+ b+ Sehonl5a+ Shh ol 57 .
n2ia { |0},{C’2y|2a—|— 264— 20} {o |2a+ 2b} {o |20 } (9.5)

Considering the ICRs presented in table 9.2 reveals that there is no single-IR, route
from Pnma to Pna2,. The non-zero phase difference associated with 9(o) in every
ICR prohibits the retention of this operation. Hence, there is no single distortion

symmetry that can give rise to a Pna2; phase from Pnma.

9.4. Experimental and results

A polycrystalline sample of approximately 15g of 99.95% pure® K»SeO, (Absco Mate-
rials®) was scanned on the High-Resolution Powder Diffraction (HRPD) time-of-flight
(ToF) instrument at ISIS. The sample was held in a vanadium can, and data was
collected at three different temperatures (150K, 110K, 50K). Each experiment lasted
8 hours, the long exposure ensured the statistical quality of the data despite the mild
neutron absorbance of selenium (11.7barn at 2200m/s). From this data, the P- and
F- phases were refined using GSAS (Larson, 1994) with the space groups Pnma and

Pna2, respectively (lizumi, 1977).

During the refinements, a number of peaks generated by the sample environment
were excluded, in the ranges: 1.239 - 1.239A ; 1.642 - 1.652A ; 2.128 - 2.138A 7.
Further, for both refinements a small correction for absorption was included in the
model, using GSAS function 0 (Coefficient_-1 = 0.150). Refinement of the P-phase
structure (Fig 9.1, Table 9.5) converged with a x? of 1.924 (Table 9.4), using 57 model
parameters. For the F-phase, a goodness of fit of x? = 6.275 was achieved using 83

model parameters, including isotropic thermal parameters and a unit-cell tripled in

"Metal-base.

Ohttp: //www.abscomaterials.com/

"The peak at 2.128 - 2.138A was not excluded in the F-Phase refinement, as it overlapped with a
large peak from the selenate.
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x> wR, R,
150K | 1.924 3.60% 3.71%
50K | 6.275 4.61% 4.49%

TABLE 9.4. The goodness of fit parameters for the structural models at
150K and 50K, refined from powder diffraction data.

the a direction (Fig 9.2, Table 9.6). Isotropic thermal parameters were used in the

F-phase refinement, as anisotropic thermal parameters made it unstable.

The F-phase refinement was challenging for two reasons: the large number of atoms
in the tripled unit cell; and the peak profiles. The peak-shapes varied with d-spacing
and none of the GSAS peak profiles were able to accurately reproduce their shape over
the full range of d. In particular, there was evidence of a broad Lorentzian component
at the base of peaks at large d-spacing (Fig. 9.3) that was not well modelled. FullProf
(Rodriguez-Carvajal, 1993) and TOPAS (Cheary, 1990) were also unable to model

this peak shape over the full range of d.

We had hoped to fit the I-phase data from HRPD using JANA (Petiicek, 1985),
however previous versions of JANA are not compatible with time of flight data (such
as that from HRPD). The newest version, JANA2006 (Petticek, 2006), will support
ToF data, but was not brought into a workable state in time to complete this anal-

ysis. A considerable amount of time was spent communicating with the author of

JANA2006 to help develop support for HRPD data.

Overall, the refined structures were in a good agreement with those previously re-
ported (lizumi, 1977). The broadening of the peak-bases could be an instrument
artefact, or be indicative of a short-range ordering superimposed upon the long-range

structure; data from a second instrument might help establish its origin.
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FIGURE 9.1. The Rietveld refinement of neutron diffraction data collected
on the HRPD diffractometer from KoSeOjat 150K. The refined structure
had symmetry Pnma and the sample parameters are listed in Tables 9.5

T Y z U1 Ua2 Uss Uiz Uis Uas

Se 0.2230(1) 0.25 0.4105(1)  0.77(3) 0.33(3) 0.63(3) —0.14(3) 0 0
K(1) | —0.0041(2) 025  —0.2021(1)  1.06(8) 0.70(7) 0.88(7)  0.11(6) 0 0
K(2) | 01674(1) 0.25 0.0826(1)  1.00(7) 1.27(8) 1.46(7)  0.23(7) 0 0
O(1) | 02022(1)  0.0268(1)  0.3442(1)  2.61(4) 2.20(4) 1.21(4)  1.18(4)  0.10(4) —0.64(3)
0(2) | 0.3078(1) 0.25 ~0.4361(1)  1.62(6) 0.90(5) 2.76(5) —0.55(5) 0 0
0(3) | 0.0096(1) 0.25 0.4271(1)  0.65(5) 2.37(6) 3.78(7) —0.05(6) 0 0
Cell | 7.57657(3) 5.94662(2) 10.36115(5)

TABLE 9.5. The structural parameters of KoSeOys (Pnma), refined from
neutron powder diffraction data collected at 150K. All of the thermal pa-
rameters are in units of x1072.
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FIGURE 9.2. The Rietveld refinement of neutron diffraction data collected
on the HRPD diffractometer from KoSeOgat 50K. The refined structure had
symmetry Pna2; and the sample parameters are listed in Tables 9.6

T y z Uiso(x1072)

Se(la) | 0.0753(2)  0.4114(5)  0.2482(8) 0.75(9)
Se(1b) | 0.4059(2)  0.4203(5)  0.2675(9) 0.83(9)
Se(le) | 0.7400(2)  0.4217(5)  0.2456(8) 0.7(1)
K(la) | 0.0577(5)  0.078(1)  0.263(2) 1.9(2)
K(1b) | 0.3844(4)  0.076(1) 0.253(2) 1.5(2)
K(lc) | 0.7232(4)  0.0828(7)  0.253(2) 0.0(1)
K(2a) | 0.0009(5)  0.7109(8)  0.269(1) 0.1(2)
K(2b) | 0.3314(5)  0.711(1)  0.226(2) 1.1(2)
K(2¢) | 0.6677(5)  0.699(1)  0.251(2) 1.7(2)
O(1a) | 0.0995(3)  0.3431(9)  0.026(1) 2.4(2)
O(1b) | 0.4273(2)  0.3391(7)  0.036(1) 1.1(1)
O(1c) | 07531(3)  0.3252(7)  0.032(1) 1.6(1)
o(1d) | 0.0902(3)  0.3352(8)  0.470(1) 1.1(1)
O(le) | 0.4345(2)  0.3386(6)  0.474(1) 0.6(1)
O(1f) | 0.7708(2)  0.3549(6)  0.478(1) 1.2(1)
O(2a) | 0.1075(3)  0.5576(6)  0.290(1) 0.8(1)
O(2b) | 0.4370(3)  0.5649(6)  0.270(1) 0.6(1)
O(2¢) | 0.7703(4)  0.5619(7)  0.220(1) 2.0(2)
O(3a) | 0.0033(3)  0.4382(7)  0.208(1) 1.8(1)
O(3b) | 0.3361(2)  0.4259(6)  0.280(1) 0.9(1)
O(3¢) | 0.6701(3)  0.4316(8)  0.291(1) 1.5(1)
Cell | 22.70589(7) 10.32936(5) 5.97230(3)

TABLE 9.6. The structural parameters of F-KoSeO4 (Pna2;), refined from
neutron powder diffraction data collected at 50K.
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F1GURE 9.3. An illustration of GSAS’s inability to model the peak profiles
at high d-spacings. The peak shape used, function 1, is too narrow at
the base and too broad at the top leading to a characteristic “W” in the
difference plot.

9.5. Analysis of the phase transition using SARAA-GSAS

The flaws in previous work prompted a new analysis of potassium selenate and the
role of phonon modes in the distortion of the F-phase, using SARAA-GSAS. P-
KsSe0O, has 84 “co-basis” vectors, and (as discussed in section 9.3.1), the ICR indi-
cates that no single phonon mode can give rise to a daughter phase with symmetry
Pna2;. To determine which symmetry modes had the greatest influence upon the
refinement’s goodness of fit, an initial search over all of the basis vectors was per-
formed using the search routine in SARAA-GSAS. This indicated clearly that, while
no one ICR dominated the refinement, 'y, 5 and I's_5 had the greatest effect upon

X2
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FIGURE 9.4. The SARAA-GSAS refinement of neutron diffraction data col-
lected on HRPD at 50K.

From the initial (undistorted) structure defined by the GSAS refinement of the 150K
powder diffraction data, distortions with the symmetry of I's;5 and I's_5 improved
the goodness of fit to y? = 18.97, far above the fit achieved by GSAS. More modes
were gradually added to the refinement, until all 84 modes had been included. The
final refinement was performed using 200,000 cycles, with the background and scale
parameters allowed to refine during each cycle for 3 least-squares steps (section 7.4).
The refinement converged upon x? = 7.621, with wRp = 5.12%, Rp = 4.69% (Fig,
9.4).

The final refinement used 84 basis vectors, none of which were removed by the elim-
ination routine in SARAA-GSAS (section 7.4). This indicates that the distortion of

the F-Phase involves elements of every possible ICR symmetry.
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Atom SARAh GSAS A
T y z T y z ox oy 0z
Se(la) | 0.0740 0.2446 0.4232 | 0.0753 0.2476 0.4118 0.0014 0.0030 —0.0114
Se(1b) | 0.4084 0.2555 0.4157 | 0.4057 0.2659 0.4203 | —0.0027 0.0105 0.0046
Se(le) | 0.7415 0.2552 0.4158 | 0.7401 0.2449 0.4215 | —0.0014 —0.0103 0.0057
K(la) | 0.0542 0.2419 0.0853 | 0.0573 0.2619 0.0783 0.0031 0.0200 —0.0070
K(1b) | 0.3909 0.2586 0.0786 | 0.3850 0.2520 0.0770 | —0.0059 —0.0066 —0.0015
K(lc) | 0.7242 0.2585 0.0787 | 0.7230 0.2288 0.0825 | —0.0012 —0.0298 0.0038
K(2a) | 0.0009 0.2533 0.7006 | 0.0005 0.2689 0.7109 | —0.0004 0.0155 0.0103
K(2b) | 0.3311 0.2463 0.7154 | 0.3318 0.2276 0.7108 0.0007 —0.0187 —0.0046
K(2¢c) | 0.6674 0.2534 0.7004 | 0.6680 0.2491 0.6994 0.0006 —0.0043 —0.0010
O(la) | 0.0992 0.3413 0.0324 | 0.0998 0.3425 0.0211 0.0006 0.0012 —0.0113
O(1b) | 0.4290 0.3469 0.0213 | 0.4270 0.3392 0.0381 | —0.0021 —0.0077 0.0168
O(1c) | 0.7624 0.3467 0.0212 | 0.7526 0.3272 0.0367 | —0.0099 —0.0194 0.0154
O(1d) | 0.0982 0.3543 0.4831 | 0.0910 0.3338 0.4755 | —0.0072 —0.0205 —0.0076
) | 0.4293 0.3339 0.4636 | 0.4341 0.3383 0.4747 0.0048 0.0044 0.0111
O(1f) | 0.7627 0.3337 0.4632 | 0.7710 0.3557 0.4733 0.0083 0.0220 0.0101

O(2a) | 0.1021 0.5675 0.2140 | 0.1080 0.5578 0.2908 0.0059 —0.0097 0.0768

O(2b) | 0.4378 0.5612 0.2860 | 0.4371 0.5641 0.2714 | —0.0007 0.0029 —0.0146

O(2¢) | 0.7712 0.5613 0.2860 | 0.7700 0.5621 0.2219 | —0.0012 0.0008 —0.0640

O(3a) | 0.0044 0.4267 0.2359 | 0.0035 0.4377 0.2102 | —0.0009 0.0111 —0.0257

O(3b) | 0.3354 0.4282 0.2638 | 0.3359 0.4261 0.2790 0.0005 —0.0021 0.0151
)

0.6690 0.4282 0.2640 | 0.6701 0.4312 0.2907 0.0011 0.0030 0.0267

TABLE 9.7. A comparison of the GSAS (Left), and SARAA (Middle) refine-
ments of KoSeOy, from neutron powder diffraction data collected at 50K.
The right-most column lists the differences.

9.6. Discussion

While the SARAA refinement was, numerically, worse than that achieved by GSAS,
the structures are in good agreement (Table 9.7). This is strong evidence that, to
a first approximation, the systems symmetry is indistinguishable from Pna2;, with
k-vector (%, 0,0). The F-phase distortion is a mixture of all the possible distortion

symmetries of the parent phase, and can arise from a single IR or ICR.

Inspection of the refined distortions reveals further incompatibilities between our
distortion model and that presented by lizumiet al.. First, we note that the dis-
placements of the potassium atoms are clearly orientated in a number of directions.
Around half of the potassium atoms have been displaced approximately in the a-b
plane while some displacements lie in the a-c plane, and others at obtuse angles to
any of the crystallographic axes (Fig 9.5). In contrast, the displacements reported

by lizumi all lay parallel to the crystallographic axes.
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7 L Davies Experimental application: Potassium selenate

F1cURE 9.5. A view of the distortions of each potassium ion in the F-phase
of KySeO, relative to its position in the P-phase. These distortions were
defined from powder-diffraction data using SARAA-GSAS.

o)
C’J\ &° <«--0
oy } o” 'S o‘// Y\\\o

FIGURE 9.6. The distortions of a single selenate unit in the F-phase
of KoSeOy relative to its position in the P-phase, refined from powder-
diffraction data using SARAA-GSAS. (Left) There is a clear component that
displaces the entire unit to the right as viewed. (Middle) Under a “rigid-
body” approximation, the motion of the selenate atom has been subtracted
from each position, revealing the motion of the oxygen ions relative to the
selenium. (Right) A cartoon of the anti-symmetric stretch and the sym-
metric bending modes of a tetrahedral molecular ion, these show a striking
similarity to the observed displacements.
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Further, the distortions of the selenate tetrahedra are quite complex and show signs
of both translation and stretching/bending displacements (Fig 9.6). Isolating one
of the tetrahedra from the rest of the material and inspecting the distortions at
each atom reveals that the largest distortion is at the selenate, and not the oxygens.
Indeed, in a “rigid body” approximation, there is clear evidence of a displacement
of the selenate tetrahedra. Further, if we “remove” the translational component of
the displacements there is clear evidence of symmetric and anti-symmetric bending
modes in the oxygen displacements. This contrasts starkly with the model of selenate

rotations about the a-axis put forward previously.

9.7. Conclusions

In this chapter we have revisited earlier work on potassium selenate and highlighted
flaws in the symmetry analysis performed. A more careful approach demonstrates
that, despite evidence of soft phonon modes at the first phase transition, the F-phase
structure can not be brought about by a single IR. Full co-representational analysis
of the Pnma phase generates 8 irreducible co-representations which are all involved,

to a lesser or greater extent, in the structure of the F-Phase.

New powder-diffraction data from this system, collected on the high-resolution powder-
diffractometer instrument at ISIS, was refined using both GSAS and SARAA-GSAS.
The symmetry mode refinement of SARAA is in good agreement with the Pna2,
based refinement of GASAS, allowing us to conclude that all the co-representations

are involved in the structure of the ferroelectric phase. Further, the internal-displacements
of the selenate bear a close resemblence to bending/stretching modes, rather than

the rotational motions previously reported.

We were unable to analyse the incommensurate phase as time-of-flight data is not yet

supported in JANA. Further, no refinement routines support the use of symmetry
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7 L Davies Experimental application: Potassium selenate

modes for incommensurate structures and this represents an obvious absence in the

tools of representation theory. However, the flaws in previous symmetry analysis

extend to the I-phase and warrent further investigation.
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CHAPTER 10

Conclusions

“Any fool can make things bigger, more complex, and more violent. It
takes a touch of genius - and a lot of courage - to move in the opposite

direction.”

Albert Einstein

10.1. Review of thesis

Symmetry is a powerful tool for understanding displacive phase transitions; as shown
in chapter 4, even qualitative symmetry arguments can derive important results.
Representation theory is the most general framework for considering the symmetry
of crystalline systems and it provides an insight into the energetics of phase transitions

through Wigner’s theorem (chapter 2).

The aims of this thesis were set out in the conclusion of chapter 1:

(1) Development of a reliable method for generating all the basis-vectors of any
crystalline system.

(2) Development of a method for analysing powder diffraction data using sym-
metry modes.

(3) Application of the representation theory technique to a number of example

phase transitions.

These represent separate elements of an overall goal: making the technique of rep-

resentation theory more reliable and accessible. Towards this goal we verified the
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tables of Kovalev (1993) in chapter 5 and developed reliable algorithms for construct-
ing appropriate trial functions (chapter 6). Representation theory often involves the
arduous execution of complex vector arithmetic and the ability to reliably automate
these calculations is, possibly, the most important step in opening up this field of

analysis to a broader community.

The work presented in chapters 5 and 6 has been implemented within the SARAA
software suite (Wills, 2000), forming a reliable source of basis vectors for use with
Fullprof (Rodriguez-Carvajal, 1993) and SARAhA-Refine. We hope that this work
will be incorporated into other routines such as MODY (Sikora et al., 2004) and
BASIREPS (Rodriguez-Carvajal, 2004)*.

We also discussed the role of anti-unitary symmetry and co-representations in physi-
cal systems. This symmetry is already, unknowingly, used widely in the construction
of completely real symmetry modes from complex basis vectors. While anti-linear
symmetry is fundamental, in practical calculations it has a limited influence upon
the form of basis vectors. Indeed, we argue that only type A ICRs can change the
form of basis vectors (section 3.7); in contrast, type B and C' ICRs define additional

degeneracies in the system.

10.2. Qualitative and quantitative analysis

This thesis has discussed and applied qualitative symmetry arguments to explore the
relationship between a system’s IRs, its possible distortions and the symmetry of
resulting daughter phases. Clear understanding of the symmetry of irreducible rep-
resentations can provide a great deal of information qualitatively. These arguments

were used in chapter 8 to determine the structural distortion and charge-ordering

1Tt is not clear whether ISODISPLACE (Stokes, 2007) and AMPLIMODES (Aroyo; 2006a, 2006b)
calculate basis vectors, or reproduces them from the printed tables of Stokes (1988).
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in iron oxyborate; including the identification of a previously undiscussed charge-
ordering with k-vector (0,0,0). They were further applied in the refinements of

chapters 7 and 9, and a generally underline all the work presented.

Quantitatively, the new module for SARAA-Refine (Chapter 7) is a unique tool
for analysis of powder-diffraction data. Simultaneous independent development of
ISODIPLACE (Campbell, 2007, 2008), AMPLIMODES (Rodriguez-Carvajal, 2008)
and SARAA-GSAS for the Rietveld programs TOPAS (Cheary, 1990), Fullprof (Rodriguez-
Carvajal, 1993), and GSAS (Larson, 1994) highlights an increasing appreciation of
representation theory by the crystallographic community. SARAA-Refine is unique
amongst the three; it makes no assumption about the symmetry of the daughter
phase, instead using reverse Monte Carlo techniques to refine data. As such it is the
most general, if also the slowest/least reliable, application of representation theory
to structural phase transitions. Our work also highlights the problem of weakly cor-
related variables; weak correlation between structure parameters and the goodness
of fit is an inherent part of the Rietveld method, yet the estimated errors are often

(flatteringly) small.

While SARAA-GSAS can determine the coefficients of symmetry modes in a dis-
placive phase transition, we have seen that individual basis vector coefficients are,
surprisingly perhaps, of little significance on their own as basis vectors are not unique?
(section 6.4). Indeed, redefinition of basis vectors allows them to represent the influ-
ence of an atoms local symmetry or directional bonding. The significant contribution
of representation theory is the determination of which irreducible representations are

present in displacive phase transitions

Finally, we have applied the theory and tools of representation theory to the phase

transitions of iron borate (chapter 8) and potassium selenate (chapter 9). In iron

2Except in the case of a 1-dimensional representation occurring exactly once
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oxyborate we identified the magnetic and charge-ordering motifs using both quali-
tative and quantitative symmetry analysis. The work on potassium selenate showed
that even apparently simple phase transitions can be highly-complex, and how easily

mistakes in symmetry analysis can occur.

10.3. Publications

Much of the work presented from chapter 3 onwards has been prepared, submitted
or accepted for publication in peer reviewed journals; two topics have been published
to date. The work on validating the tables of Kovalev, presented in chapter 5,
was published in part in the proceedings of the European Conference on Neutron
Scattering (ENCS): Davies, 2008. The discussion of the role of phase displacements
in multi-ferroic systems (chapter 4) was published as part of the proceedings of the

Highly Frustrated Magnetism (HFM) meeting: Davies, 2009.

10.4. Future work

There is ample opportunity to expand upon the work presented in this thesis, and
the use of representation theory in general. Some areas we hope to see explored
further include: the application of these symmetry analysis to many more systems,
both old and new; development of tools for analysing single-crystal data using rep-
resentation theory; and development of a programme to apply representation theory

to incommensurate structures.

For the two systems studied, further work is needed to complete our understand-
ing. For iron oxyborate, the “missing” magnetic moment on the iron sites needs
to be investigated and explained. Further, an investigation of the charge-ordering
motif within the plane (perhaps using surface techniques) could refute or confirm our

proposed structure as it is the only structure that would not show distinct charge
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striping. For potassium selenate, there remains the analysis of I-phase powder diffrac-
tion data. It could also be revealing to perform analysis of this system using basis
vectors projected form trials parallel to the Si-O bonds, which would reflect the in-
fluence of silicate bonding. More generally, we would like to see support for custom

trial functions within popular basis-vector generating routines.

There are also significant areas in which the SARAA-Refine module could be de-
veloped. In particular it would benefit from an analysis algorithm that is faster,
and that scales more efficiently (SARAA-Refine scales pseudo-exponentially with the
number of refined basis vectors). It would also benefit from a step-size profile derived
from a theoretical foundation, rather than the current profile which was determined

empirically.

10.5. Concluding remarks

Symmetry is a powerful tool when defining physical systems, yet its deceptive sim-
plicity could lead to the erroneous assumption that the problems with which it is
concerned are trivial. In fact, the symmetry of a system is entirely fundamental,
and there are many pitfalls that lie in wait for the incautious user. Only by a clear
understanding of group and representation theory can we hope to reach the right

alnswers.

Conversely, for a technique to be widely used it must be accessible. It is our hope
that, by developing a simple, straightforward approach to applying representation
theory along with software supporting its use, this thesis has made the technique
more useable. Further, we hope that this will promote wider use of these methods

in future work.
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Appendix 1: Lagrange’s theorem

Lagrange’s theorum of subgroups states that the order of every subgroup H of a finite

group G subdivides the order of G.

The proof of this theorem begins with showing that cosets are disjoint. Suppose that

giH N go.H = 0:
S 3giha = gaho
g = gahahi?
S € goH (10.1)

Further, g1h € goHh Vh € H
SogilH C goH
However, we can reverse the argument and thus:
giH C goH

gH C g H (10.2)

The left cosets of H form a partition of G, they are mutually disjoint, and therefore
we need only to show that every left coset has the same number of elements and we

are done, since H is itself a coset of H. If aH and bH are two cosets of H then there
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exists a map between them:

f:aH — bH
(10.3)
f(z) =ba '
There also exists a map:
f:bH — aH
(10.4)
f(z)=ab'x

Therefore, the mapping has an inverse and must be bijective. Thus we have proved

that every coset has the same order, and that order divides the order of G
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Appendix 2: Maps

Maps associate each element of a set C with a single element of a set . The set
C over which a function f is defined is termed the the domain, and the set D the

co-domain. There are several categories of mapping:

e Injective: floy=f() = e¢c=¢ VeeC
A mapping is injective if the image of each element ¢ € C is unique: no two

elements have the same image.

e Surjective: df(c)=d VdeD

The image of a surjective map spans the whole of the co-domain.

e Bijective
A mapping is bijective if it is both injective and surjective. That is, every
element in C has a unique image, and the image of C is the set . Bijective

functions have an inverse mapping from D to C.

e Homomorphic: fler)f(e2) = fler1 o) Vey,co € C
A homomorphic mapping is a map between two groups in which the struc-

ture of the domain is retained.

All transformations considered in this work are isomorphisms of Euclidean spaces.
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Appendix 3: Maschke’s theorem

Mashke’s theorem is central to representation theory and states that every represen-
tation of a finite group is completely reducible. That is, if we construct any faithful,
finite representation of a finite group, then it is reducible to a direct sum of irreducible
representations. It is, of course, critical to our application of representation theory
to phase transitions that we can reduce a system representation to a direct sum of
irreducible representations. However, the space groups are infinite groups, and thus
appear to be excluded from Maschke’s theorem. Fortunately Mashke’s theorem has

a more general formulation [1]:

Let A be a finite group and %" a field whose characteristic does not di-
vide the order of A. Then J# A, the group algebra of A, is a semisimple
algebra.

In the case of space groups, A is the finite group Gy and % is T, the set of all
primative translations. Thus our space group is represented by the group algebra
7 GO0, and is semisimple which implies it is reducible. These results follow from the
fact that our space group is, in fact, a module; this fact is used more explicitly in the

formulation of superspace group theory.

References

[1] Maschke’s theorem,

http://en.wikipedia.org/w/index.php ?title=Maschke %27s_theorem&oldid=267859266
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Appendix 4: Schur’s lemma

Shur’s lemma is a generic name applied to several related theorums from different
branches of mathematics, and with a correspondingly wide number of proofs. In
its most intuitive form it states: for an irreducible representation of a group G, the
only matrices which commute with the representation of every element are scalar

multiples of the identity matrix. This is useful as a test of irreducibility.

Proof

Consider a representation of some group G, with a symmetric basis ©s (s = 1,...,n):

Ty =Y _ v Dy(g) (10.5)

Presume that ¥ is reducible, such that it can be written as the linear sum of a

smaller set of vectors (@7, ¢, ..., o% |:

m
W= da
t=1

N (10.6)
Tg)ey =Y ¢/ D (9)
=1
Hence,
T(g)! =T(9) Y dlaws =Y Y ¢/ Dy aw(g)
§ = tn:l f:l (10.7)
= W Di(9) =) dauDy,(g)
k=1 k=1 t=1
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Thus,

n

ZZ@/DZ&(Q)%S = Z(b?atkDZ;(g) (10.8)

t=1 =1 k=1 t=1

Now, as the ¢} are linearly independent:

> " Di(g)as = > anDy.(9)
t=1 k=1 (10.9)

D¥A(g) = AD" (g)

Thus if D” is reducible we can find some matrix A which commutes with D"(g) for

all g € G.

If there exists A such that it satisfies our condition, then:

Z Dy(g)ats = Z atka;(g)
o = (10.10)
Z Z ¥/ Dy(g)as Z T(9) (Y] as)
=1 t=1 t=1
Thus the m vectors:
¢ =) P (10.11)
t=1
form a basis of the space D¥" which obeys our restriction.
T(g)g! =Y vy Di(g) (10.12)

t=1

Consider the case that D is an irreducible representation. Then we have a contra-
diction unless A = 0, or D = AD'A™! and the two representations are equivalent.
Further it can be shown that if A # 0 then it must be a multiple of the identity

matrix; A = ¢Z(F).
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Appendix 5: Zorns lemma

This appendiz is a summary of wikipedia articles:
http://en.wikipedia.org/w/index.php ?title=Zorn%27s_lemmaédoldid=262758135
http://en.wikipedia.org/w/index.php ?title= Well-ordering_theoremé&oldid=267651043
http://en.wikipedia.org/w/index.php ?title=Aziom_of_choice&oldid=270377362

Zorn’s lemma is a proposition of set theory, that is related to the well-ordering theory
or the axiom of choice. All of these are equivalent in that each is sufficient to prove

the other two, but none have been independantly proven.

The simplest of the three is the axiom of choice which states:

Let S be a set of non-empty sets;

we can chose a single element from each set in S

This may appear a self evident statement, but it has not been proven in the case that
the order of X is infinite. Indeed the axiom of choice can lead to some apparently
absurd results such as the Banach-Tarski paradox, which demonstrates that if the
axiom of choice is true, then we can decompose a three dimensional Euclidean space
into two identical spaces. Thus using only rotations and translations we can transform

an object into two copies of itself.

The well-ordering theorem states that every set can be well ordered in the sense

that: it is totally ordered; and every non-empty subset has a smallest element. For

211



7 L Davies Appendix 5: Zorns lemma

a totally ordered set, the following statements are true for all elements of the set:

a<b b<a = a=)b
a<b b<c = a<c (10.13)

a<b or b<a or a=0b

This theorem is more obviously counter-intuitive than the axiom of choice if we

consider the meaning of the set of real numbers R being well-ordered.

Zorn’s Lemma states that for a set S in which every non-empty, totally ordered subset
has a largest element, the group itself has a largest element. It occurs in the proof of

several crucial theorems, including the theorem that every vector space has a basis.

A simple outline of the proof, using the axiom of choice, is as follows. Consider the
lemma to be false, then there exists a partially ordered set P such that every subset
has an upper bond, and for every element there exists a larger one. Consider that
P is a subset of itself, then for every element p € P we may define a bigger element
f(p). If we index the elements defined by f(p) we find that the indices span not
just the natural numbers, but all ordinal numbers. The number of elements is thus
greater than the largest possible order of P (although a counter-intuitive concept,
infinite sets can be contained within larger infinite sets), and thus contradicts our

assumption that every totally ordered subset has an upper bound.
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Appendix 6: Scalar products under affine transformations

Here we present a proof of this equation for matricies of dimension 3:
T BP0, = U,.0 (10.14)

For a 4 dimensional matrix on a 4 dimensional vector the proof would be somewhat
lengthier and harder to follow. However, generality may be assumed from a simple
consideration. A change of basis is an isometry of the n-dimensional vector space V,,,
so lengths and angles are unchanged. The dot product of two vectors v,, U} can be

expressed:

Uy Uy = |Uy||Up|cosO © = arccos ( i]a'v_lf ) (10.15)
| T[]

Thus a change of basis must leave the dot product unchanged.

The case V3
(1 aix G2 @13
k= (kl, kQ, kg) v = V2 ‘33_1 = Q21 Q22 A3
U3 asy azz asg
(a22a33 - a32a23) —(a12a33 - CL32CL13) (Cl12(l23 - a22a13)
SP=C —(a21a33 - a31a23) (a11a33 - a31a13) —(a11a23 - a21a13)
(Cl21a32 - a31a22) —(al1a32 - @31a13) (CL11CL22 - a21a12)
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1

a11(a22a33 - a32a23) - azl(a12a33 - a,32a13) + a31(a12a23 - a22a13)

O:

kB =(k1(axass — azaags) — ka(azass — azias3) + ks(aziass — aziazs),
— ki(a12a33 — azpa13) + ka(arazs — aziarz) — ks(anass — azai3)
k1(a12a23 — aa13) + ka(ai1ass — aziaiz) + ks(aiiazs — aiai2)
a11v1 + a12V2 + a13V3

‘1371?) =C a91V1 + Q99U + Q933

a31V1 + azaVs + assvs

We now have everything in place to demonstrate equality:

KRR
=C ([k1(agza33 — aszazs) — ka(ag1ass — asiazs) + ks(agiase — asiag)][a1ivr + a1avs + a13vs]
+ [—k1(a12a33 — azga13) + k2(a11a33 — asz1a13) — ks(ar1asz — asiai3)][agivr + axve + azsvs]
+ [k1(a12a23 — agoai3) + ka(ar1ass — azia13) + kz(anass — asiar2)]asivr + asave + assvs])
=C(k1v1[a11(ag2as3 — az2a3) — az1(aizass — asza13) + azi(ai12az3 — azai3)]
— kova[a11(agzass — az2a23) — ag1(ai2asz — asza13) + azi(aizazs — azais)]
+ k3vs[ai1(azoas3 — azpas3) — azi(ai2as33z — aszaiz) + azi(aizazs — agzaiz)])
=C (k1v1 + kova + k3vs) c!
=kiv1 + kava + k3vs

Q.E.D
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Supporting Material

Documents

WignerTheory.pdf

Pfister, O., http://www.math.virginia.edu/Institute/MathSeminar2003-04_23.pdf.

A detailed derivation of Wigner’s theory and discussion of its importance in quantum

mechanics.

Programs

SARAhA-Representational Anaylsis, SARAh-Refine

Wills, A. S., ftp://ftp.ucl.ac.uk/pub/users/uccaawi/setup.exe

Compiled versions of SARAA which utilize the verified tables of Kovalev and his settings,
and which incorporate options for normal-mode refinement of powder-diffraction data. Also
included is an uncompiled copy of the normal-mode refinement module for independent

validation.

KovCheck
Davies, Z. L.

Compiled and uncompiled versions of the validation routine used in chapter 5.

SimGen CW
Davies, Z. L.

Compiled and uncompiled versions of routine used in chapter 7.
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7 L Davies Supporting Material

Experimental

Potassium Selenate

This folder includes the histogram files from HRPD for K9SeOy, along with refinements in
GSAS, and SARAh-Refine.

Iron Borate
This folder includes the histogram files from D2B for FesOBOj3, along with refinements in
Fullprof.
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