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NONPARAMETRIC TESTS OF CONDITIONAL TREATMENT EFFECTS

SOKBAE LEE AND YOON-JAE WHANG

Abstract. We develop a general class of nonparametric tests for treatment effects con-
ditional on covariates. We consider a wide spectrum of null and alternative hypotheses
regarding conditional treatment effects, including (i) the null hypothesis of the conditional
stochastic dominance between treatment and control groups; (ii) the null hypothesis that
the conditional average treatment effect is positive for each value of covariates; and (iii) the
null hypothesis of no distributional (or average) treatment effect conditional on covariates
against a one-sided (or two-sided) alternative hypothesis. The test statistics are based on
L1-type functionals of uniformly consistent nonparametric kernel estimators of conditional
expectations that characterize the null hypotheses. Using the Poissionization technique
of Giné et al. (2003), we show that suitably studentized versions of our test statistics are
asymptotically standard normal under the null hypotheses and also show that the proposed
nonparametric tests are consistent against general fixed alternatives. Furthermore, it turns
out that our tests have non-negligible powers against some local alternatives that are n−1/2

different from the null hypotheses, where n is the sample size. We provide a more powerful
test for the case when the null hypothesis may be binding only on a strict subset of the sup-
port and also consider an extension to testing for quantile treatment effects. We illustrate
the usefulness of our tests by applying them to data from a randomized, job training pro-
gram (LaLonde, 1986) and by carrying out Monte Carlo experiments based on this dataset.
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1. Introduction

Recent years have witnessed a surge of applied research using data from random assignment

of treatment to a social program as an attempt to provide a credible answer to important

economic questions.1 Randomized programme evaluation is a part of a much larger literature

on econometric evaluation of social programs. For recent reviews of this huge literature, see,

e.g., Abbring and Heckman (2007), Blundell and Costa Dias (2008), Heckman and Vytlacil

(2007a,b), Imbens (2004), and Imbens and Wooldridge (2009), among others. Most of the

literature focused on point or set identification of treatment effect parameters, on estima-

tion of identified parameters, and also on relevance of randomized experiments. However,

there has been much less attention devoted to testing hypotheses regarding treatment effects.

This might be due to the fact that typically the main focus of empirical work has been on

estimation of average treatment effects for the entire population or for the treated.2 For

these parameters, standard inference can be applied to test the null hypothesis of no average

treatment effect. However, one ubiquitous feature of treatment effects in the program evalu-

ation literature is that treatment effects tend to vary across different groups and individuals.

Also, average treatment effects might not provide a full picture of treatment effects since it

is possible to have significant distributional treatment effects at the top or bottom of the

population distribution with zero average treatment effect. For recent empirical evidence on

importance of distributional treatment effects, see, e.g. Bitler et al. (2006, 2007). Therefore,

there are other interesting hypotheses to consider, as emphasized in Imbens and Wooldridge

(2009, Section 3.3).

In this paper we develop nonparametric tests for both average and distributional treat-

ment effects conditional on covariates. We consider a wide spectrum of null and alternative

hypotheses regarding conditional treatment effects, including (i) the null hypothesis of the

conditional stochastic dominance between treatment and control groups; (ii) the null hy-

pothesis that the conditional average treatment effect is positive for each value of covariates;

and (iii) the null hypothesis of no distributional (or average) treatment effect conditional on

covariates against a one-sided (or two-sided) alternative hypothesis.

Although there exists a very large literature on treatments effects and program evalua-

tion, there seem to be only a few related papers in the literature. Abadie (2002) considered

1A few recent examples include: the effects of deworming on health and education with school-based mass
treatment in rural Kenya (Miguel and Kremer, 2004); the impact of women’s leadership on policy decisions
using a unique experiment implemented in India (Chattopadhyay and Duflo, 2004); the experimental impacts
of the earnings subsidy in a Canadian welfare program (Card and Hyslop, 2005); investigation of neighbor-
hood effects based on social experiments using randomized housing vouchers in U.S. cities (Kling et al.,
2007), among many others. See also Glenn and List (2004) for a survey of field experiments and Duflo et al.
(2007) for a review on experimental methods in development economics.
2 For estimation of average treatment effects, see Abadie and Imbens (2006); Chen et al. (2008); Hahn (1998);
Heckman and Todd (1998); Hirano et al. (2003), among others.
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the null hypotheses of the equality and first-order stochastic dominance between treatment

and control groups and developed bootstrap tests. In his setup, there are no covariates and

hence, there is no treatment effect heterogeneity by covariates. Linton and Gozalo (1997)

considered testing for the conditional independence, mentioning that the null hypothesis

of no average treatment effect as an example. Angrist and Kuersteiner (2004, 2008) devel-

oped a semiparametric test for conditional independence in time series models with a binary

or multinomial policy variable. Crump et al. (2008) developed nonparametric tests for the

treatment effect heterogeneity. In particular, they proposed series-estimation-based tests for

the null hypothesis that the treatment has a zero average effect for each value of covariates

and also for the null hypothesis that the average effect conditional on the covariates is con-

stant. Lee (2009) developed a nonparametric test of the null hypothesis of no distributional

treatment effect for randomly censored outcomes.

Except for Abadie (2002), all the null hypotheses considered in the literature are based

on equality between functionals of the distributions of treatment and control groups. They

are relatively easier to deal with using the existing statistical tools.3 However, some of our

null hypotheses of interest are based on inequality between functionals of the distributions of

treatment and control groups. One such example is the conditional stochastic dominance.4

Testing conditional stochastic dominance is important beyond the treatment effect setup.

For example, in auction theory, Guerre et al. (2009) show that there are testable stochas-

tic dominance relations among observed bid distributions if participation is exogenous. As

mentioned in Guerre et al. (2009), if bidders’ participation is independent of bidders’ pri-

vate values only after conditioning on a vector of covariates, then it is essential to consider

conditional stochastic dominance to test the implications of auction theory.

Our proposed statistics are based on L1-type functionals of uniformly consistent nonpara-

metric kernel estimators of conditional expectations that characterize the null hypotheses.

For example, testing the null of zero conditional average treatment effect against an alter-

ative of positive treatment effect for some values of covariates involves a test statistic such as∫∞

−∞
max{τ̂(x), 0}w(x)dx, where τ̂ (x) is a nonparametric estimator of the conditional aver-

age treatment effect and w(x) is a weight function. Testing the same null hypothesis against

an alterative of nonzero treatment effect for some values of covariates can be carried out

3These exists a substantial literature for testing equality between conditional mean functions or between con-
ditional distribution functions. For example, see Delgado and González Manteiga (2001), Lavergne (2001),
Su and White (2004, 2007, 2008), and Song (2007) among others.
4There is a large literature on stochastic dominance without covariates: see McFadden (1989), Klecan et al.
(1991), Kaur et al. (1994), Anderson (1996), Davidson and Duclos (1997, 2000), Barrett and Donald (2003),
Linton et al. (2005), Horváth et al. (2006), Linton et al. (2010), among others. To our best knowledge,
there is no test available for stochastic dominance conditional on continuous covariates, which has been an
important, open question in the literature.
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using a test statistic such as
∫∞

−∞
|τ̂ (x)|w(x)dx. The exact form of the test statistics varies

depending on the type of the null and alternative hypotheses.

To deal with both equality- and inequality-involving null hypotheses, we develop unified

asymptotic theory based on the Poissionization technique of Giné et al. (2003). Our theory

covers test statistics of L1-type forms: e.g.
∫∞

−∞
max{τ̂(x), 0}w(x)dx and

∫∞

−∞
|τ̂(x)|w(x)dx.

In particular, we show that suitably studentized versions of our test statistics are asymptot-

ically standard normal under the null hypotheses and also show that the proposed nonpara-

metric tests are consistent against general fixed alternatives. Furthermore, it turns out that

our tests have non-negligible powers against some, though not all, local alternatives that

are n−1/2 different from the null hypotheses, where n is the sample size. This suggests that

for the null hypothesis of zero conditional average effect, our test could be more powerful

in some directions than that of Crump et al. (2008) for sufficiently large n, since their test

cannot detect n−1/2 alternatives. The asymptotic normality with the n−1/2 consistency for

L1-type functionals are powerful new results and can be of independent interest.

The remainder of the paper is organized as follows. Section 2 gives our testing framework in

the context of program evaluation and Section 3 provides a description of our test statistics.

Section 4 establishes asymptotic theory for our test statistics both when the null hypothesis

is true and when it is false. We provide some informal description of our proof technique and

discuss the choice of the weight function. In the case of the null hypothesis that is expressed

in terms of inequality restrictions, in Section 5 we show that we can improve the power

performance of our test by estimating the “contact set” on which the inequality restriction is

binding. In this section, we also provide test statistics for quantile treatment effects. Section

6 illustrates the usefulness of our testing method by applying it to data from a randomized,

job training program (LaLonde, 1986) and by carrying out Monte Carlo experiments based

on this dataset. Section 7 gives some concluding remarks. Appendix contains all the proofs

of theorems given in the main text.

2. Testing for Conditional Treatment Effects in Program Evaluation

In this section, we describe our hypothesis testing problem in the context of program

evaluation. Let Y1 and Y0 be potential individual outcomes in two states, with treatment and

without treatment. For each individual, the observed outcome Y is Y = D ·Y1 +(1−D) ·Y0,

where D denotes an indicator variable for the treatment, with D = 0 if an individual is not

treated and D = 1 if an individual is treated. We assume that independent and identically

distributed observations {(Yi, Di, Xi) : i = 1, . . . , n} of (Y, D, X) are available, where X

denotes a vector of covariates. Let Y × X denote the support of (Y, X).
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To describe our null hypotheses of interest, let G(Yj, y) be a measurable, known function

of Yj with an index y for j = 0, 1. The first class of tests is concerned with the null hypothesis

(2.1) H0 : E[G(Y1, y) − G(Y0, y)|X = x] ≤ 0 for each (y, x) ∈ W

against the alternative hypothesis

(2.2) H1 : E[G(Y1, y) − G(Y0, y)|X = x] > 0 for some (y, x) ∈ W,

where W := Wy × Wx denotes a subset of Y × X on which one wishes to evaluate the

treatment effect. The hypothesis (2.1) is a strong hypothesis since it needs to hold for all

values of (y, x) in W, but can be reduced in strength by limiting W for which (2.1) holds.

Testing (2.1) is of interest in a number of settings in program evaluation. For example,

if G(Yj, y) ≡ −Yj for j = 0, 1, testing (2.1) amounts to testing the null hypothesis that the

conditional average treatment effect is positive for each x ∈ Wx. If G(Yj, y) = 1(Yj ≤ y) for

j = 0, 1, then testing (2.1) amounts to testing the conditional stochastic dominance between

treatment and control groups.

The second class of tests is concerned with the null hypothesis

(2.3) HD
0 : E[G(Y1, y)− G(Y0, y)|X = x] = 0 for each (y, x) ∈ W

against the alternative hypothesis

(2.4) HD
1 : E[G(Y1, y)− G(Y0, y)|X = x] 6= 0 for some (y, x) ∈ W .

When G(Yj, y) ≡ Yj for j = 0, 1, the null hypothesis (2.3) is previously considered in

Crump et al. (2008). When G(Yj, y) = 1(Yj ≤ y) for j = 0, 1, we test the null hypothesis

of equality between conditional distributions between treatment and control groups. This

hypothesis is mentioned as an interesting hypothesis to consider by Imbens and Wooldridge

(2009, Section 5.12).

In addition, one may consider testing (2.3) against a one-sided alternative such as (2.2).

For example, if G(Yj, y) ≡ Yj for j = 0, 1, testing (2.3) against (2.2) amounts to testing

the null hypothesis that the conditional average treatment effect is zero for each x ∈ Wx

against the alternative hypothesis that the conditional average treatment effect is positive

for some x ∈ Wx. To carry out this, we can use our first class of tests by restricting the null

hypothesis in (2.1) to be the least favorable case.5

In general, treatment effects are evaluated in three setups: one under randomized exper-

iments, another under the unconfoundedness assumption, and the third under selection on

unobservables. For the first two setups and a particular case of the third setup, we develop

hypothesis testing for treatment effects conditional on covariates. Suppose that we have data

5Thus, in this paper, we will not develop tests of (2.3) against (2.2) separately.
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available on random assignment of treatment to a social program. In this case, note that

E[G(Y1, y) − G(Y0, y)|X = x] = E[G(Y, y)|X = x, D = 1] − E[G(Y, y)|X = x, D = 0].

(2.5)

Hence, our test of the null hypothesis (2.1) can be carried out by testing the null hypothesis

(2.6) H0 : E[G(Y, y)|X = x, Z = 1] ≤ E[G(Y, y)|X = x, Z = 0] for each (y, x) ∈ W,

provided that the following standard overlap assumption is satisfied:

0 < Pr(D = 1|X = x) < 1 for all x ∈ Wx.(2.7)

Similarly, a test of (2.3) can be accomplished by testing the null hypothesis

(2.8) HD
0 : E[G(Y, y)|X = x, Z = 1] = E[G(Y, y)|X = x, Z = 0] for each (y, x) ∈ W ,

assuming that (2.7) holds. We are not aware of any existing test that can carry out testing

the null hypothesis (2.6). The test of (2.8) can be viewed as testing for significance of

Z in E[Y |X, Z] when G(Y, y) ≡ Y and also can be regarded as testing for conditional

independence between Y and Z given X when G(Y, y) = 1(Y ≤ y). Existing tests of (2.8)

typically use the L2 norm. Using L1-type functionals, we provide new test statistics for

testing (2.8).

For the second setup, the unconfoundedness assumption, that is Y1 and Y0 are independent

of D conditional on X, implies that

E[G(Yj, y)|X = x] = E[G(Y, y)|X = x, D = j]

for j = 0, 1. Therefore, (2.5) holds under the unconfoundedness assumption and tests of

(2.6) and (2.8) provide tests for (2.1) and (2.3), provided that (2.7) is satisfied.

Finally, our tests are applicable to the local average treatment effect (LATE) setup of

Imbens and Angrist (1994), which is an important special case of selection on unobservables

(see, e.g. Section 6 of Imbens and Wooldridge (2009)). The LATE setup presumes the

existence of a binary instrument variable (IV), say Z, for the treatment assignment. Then

as shown by Abadie (2002), testing (2.6) and (2.8) with D being replaced by Z provides tests

for conditional treatment effects for “compliers”, individuals who comply with their actual

assignment of treatment and would have complied with the alternative assignment. This is

because under the LATE setup, we have that

E[G(Y1, y) − G(Y0, y)|X = x, Population = Compliers]

=
E[G(Y, y)|X = x, Z = 1] − E[G(Y, y)|X = x, Z = 0]

E[D|X = x, Z = 1] − E[D|X = x, Z = 0]

(2.9)



NONPARAMETRIC TESTS OF CONDITIONAL TREATMENT EFFECTS 7

and that the denominator on the right-hand side in (2.9) is assumed to be always strictly

positive in the LATE setup.

We conclude this section by making some remarks regarding how to set up null and

alternative hypotheses in applications. Needless to say, it would depend on the context of

actual applications which null and alternative hypotheses should be considered. However,

generally speaking, when the conditional average treatment effect, E[Y1 − Y0|X = x], is

concerned, it might be natural to consider zero conditional average treatment effect as the

null hypothesis, as in Crump et al. (2008). Our framework allows an applied researcher to

consider both one-sided and two-sided alternatives. When an researcher expects a particular

sign of the conditional average treatment effect for some individuals ex ante, it would be

reasonable to consider a one-sided test since the one-sided test is likely to be more powerful

than the two-sided test. For example, the treatment of interest is designed to increase

the outcome variable on average, then one may consider testing the null hypothesis that

E[Y1−Y0|X = x] = 0 for every x ∈ Wx against the alternative hypothesis that E[Y1−Y0|X =

x] > 0 for some x ∈ Wx. If the conditional distributional treatment effect is considered, then

one may consider the null of stochastic dominance of the treatment group over the control

group against the alternative of no stochastic dominance. In addition, one may consider the

null of equal distributions between the treatment and control groups against the alterative

of unequal distributions.6 Last two examples are conditional versions of null and alternative

hypotheses considered in Abadie (2002).

3. Test Statistics

This section describes our test statistics for the null hypotheses (2.6) and (2.8). To include

all three setups considered in Section 2 in a unifying framework, let Z denote a binary

random variable that can be a treatment indicator, or in some cases, a binary instrument

for treatment assignment.

Define

(3.1) τ0(y, x) = E[G(Y, y)|X = x, Z = 1] − E[G(Y, y)|X = x, Z = 0].

Note that the null hypotheses (2.6) and (2.8) can be equivalently stated as

H0 : τ0(y, x) ≤ 0 for each (y, x) ∈ W ,(3.2)

HD
0 : τ0(y, x) = 0 for each (y, x) ∈ W(3.3)

6 One potential use of testing equality of distributions is to check whether random assignment of treat-
ment is properly done in experimental data. For example, one could test the equality of distributions of
pre-intervention variables between treatment and control groups conditional on some covariates. In this
case, rejecting the null of equality indicates that there is some failure to achieve the random assignment of
treatment.
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with the alternative hypotheses given by the negation of (3.2) and (3.3). For (3.2), we

consider a class of tests based on

(3.4) T̂ =

∫

Rd

∫

R

√
nmax {τ̂ (y, x), 0}w(y, x) dµy(y)dµx(x),

where τ̂ (y, x) is a uniformly consistent estimator of τ0(y, x), w(y, x) is a weight function that

has its support W, and µy and µx are some measures for y and x, respectively. For (3.3),

we consider a class of tests based on

(3.5) D̂ =

∫

Rd

∫

R

√
n |τ̂ (y, x)|w(y, x) dµy(y)dµx(x).

As a baseline case, we consider the case when the distributions of Y and X are absolutely

continuous with respect to Lebesgue measure. In this case, we use the Lebesgue measure

for µy and µx. If either the distribution of Y or the distribution of some elements of X

is discrete, we can modify the integrals in the statistics T̂ and D̂ by using some product

measure between the Lebesgue and the counting measures.7

To construct the test statistics T̂ and D̂, it is necessary to estimate τ0(y, x). There are

several alternatives to estimating τ0(y, x). Specifically, we consider a kernel estimator of

τ(y, x). That is,

τ̂ (y, x) = Ê[G(Y, y)|X = x, Z = 1] − Ê[G(Y, y)|X = x, Z = 0],

where Ê[A|B] denote the usual kernel estimator of the conditional mean function E[A|B].

To describe our estimator of τ0(y, x) in a simple form, define pj(x) := Pr(Z = j|X = x)f(x)

for j = 0, 1 and

φ(x, z) :=
1(z = 1)

p1(x)
− 1(z = 0)

p0(x)
,

where f(x) denotes the density of X. Then τ0(y, x) is estimated by the statistic:

τ̂(y, x) = n−1

n∑

i=1

G(Yi, y)φ̂(x, Zi)Kh (x − Xi) ,

where

φ̂(x, z) =
1(z = 1)

p̂1(x)
− 1(z = 0)

p̂0(x)
,(3.6)

p̂j(x) = n−1
n∑

i=1

1(Zi = j)Kh (x − Xi) ,(3.7)

7 Our test statistics are based on L1-type functionals of nonparametric kernel estimators. Alternatively, one
may consider supremum-type test statistics. It is an open question how to develop general asymptotic theory
using supremum-type statistics for testing (3.2) and (3.3).
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and Kh(·) = K(·/h)/hd. Here, K is a d-dimensional kernel function, h is a bandwidth, and

d is the dimension of X.

4. Asymptotic Theory

This section provides asymptotic theory for our statistics T̂ and D̂ both when the null

hypothesis is true and when it is false. First, we show in Section 4.1 that, when suitably

normalized, the statistics T̂ and D̂ are asymptotically distributed as the standard normal

under the null hypotheses (3.2) and (3.3), respectively. Second, in Section 4.3, we show

that our tests are consistent against general fixed alternatives and also show that our tests

have non-trivial power against some n−1/2 sequences of local alternatives. For notational

simplicity, unless it is specified otherwise, we sometimes use the indefinite integral
∫
· · ·
∫

notation to denote
∫∞

−∞
· · ·
∫∞

−∞
.

4.1. Assumptions and the Asymptotic Null Distribution. Let

K∗(t) =

∫
K (ξ)K (ξ + t) dξ and ρ0(t) =

K∗(t)

K∗(0)
.

For y, y′, x, define

µ1(y, y′, x) :=
∑

j∈{0,1}

E [G(Y, y)G(Y, y′)|X = x, Z = j]

pj(x)
,(4.1)

µ2(y, y′, x) :=
∑

j∈{0,1}

E [G(Y, y)|X = x, Z = j] E [G(Y, y′)|X = x, Z = j]

pj(x)
.(4.2)

Also, define

ρ1(y, y′, x, t) = {µ1(y, y′, x) − µ2(y, y′, x)}K∗(t),

ρ2(y, x) = {µ1(y, y, x)− µ2(y, y, x)}K∗(0),

ρ̄(y, y′, x) =
{µ1(y, y′, x) − µ2(y, y′, x)}√

{µ1(y, y, x)− µ2(y, y, x)}{µ1(y′, y′, x) − µ2(y′, y′, x)}
,

ρ(y, y′, x, t) =
ρ1(y, y′, x, t)√
ρ2(y, x)ρ2(y′, x)

= ρ̄(y, y′, x)ρ0(t).

Assumption 4.1. i. The distribution of X ∈ R
d is absolutely continuous with respect

to Lebesgue measure and the probability density function f of X is continuously dif-

ferentiable;

ii. The distribution of Y is absolutely continuous with respect to Lebesgue measure;

iii. w(·, ·) is a continuous function with compact support W = Wy ×Wx, where Wy is a

strict subset of Y and Wx is a strict subset of X ;
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iv. (a) p1(·) and p0(·) are bounded away from zero on Wx and ρ2(·, ·) is bounded away

from zero on W; (b) ρ̄(y, y′, x) satisfies ρ̄(y, y′, x) = 1− c1(x) |y − y′|α1 + o(|y − y′|α1)

uniformly in x ∈ Wx as |y − y′| → 0 for some positive constants c1(x) and α1 such

that c1(·) is bounded away from 0 on Wx.

v. (a) K is a s-order kernel function with support {u ∈ R
d : ‖u‖ ≤ 1/2}, symmetric

around zero, integrates to 1 and is s-times continuously differentiable, where s is an

integer that satisfies s > 3d/2; (b) The kernel satisfies ρ0(t) = 1− c0 ‖t‖α0 + o(‖t‖α0)

as t → 0 for some positive constants c0 and α0.

vi. As functions of x, E[G(Y, y)|X = x, Z = j], f(x), pj(x) for j = 0, 1 are s-times

continuously differentiable for each y with uniformly bounded derivatives;

vii. sup(y,x)∈W E
[
|G(Y, y)|3 |X = x, Z = j

]
< ∞ for j = 0, 1;

viii. {G(·, y) : y ∈ Wy} is a VC class of functions with an envelope function M satisfying

supx∈Wx
E[M2(Y )|X = x] < ∞;

ix. The bandwidth satisfies nh2s → 0, nh3d → ∞ and
(
nh2d

)1/2
/ log n → ∞, where

s > 3d/2.

We make some comments regarding the regularity conditions. Most of them are standard

in the literature on kernel estimation. Conditions (i) and (ii) are just convenient assumptions

to present our main result. It is straightforward to extend them to more general settings.

For example, if the distribution of Y or the distribution of some elements of X (but not all)

is discrete, we can modify the test statistics T̂ and D̂ defined in (3.4) and (3.5) with counting

measure in proper directions in a straightforward way.

Condition (iii) assumes continuity of the weight function and also assumes that W is a

strict compact subset of the support of (Y, X). Given the latter condition, it is reasonable to

assume Condition (iv). Part (b) of condition (iv) is automatically satisfied if G(Y, y) ≡ −Y .

The compact support assumption on W is needed to carry out studentization of test statistics.

This is a stringent assumption that keeps us from testing the null hypothesis on the entire

support. However, in practice, it would be difficult to estimate τ̂(y, x) with good precision

at boundary points, and therefore, there is not much of loss of generality by assuming that

W is compact.

Condition (v) can be satisfied easily by choosing a suitable kernel function, and condi-

tions (vi) and (vii) impose some smoothness assumptions and moment restrictions on the

underlying true data generating process. Condition (viii) is satisfied if G(Y, y) ≡ −Y or if

G(Y, y) = 1(Y ≤ y). In view of condition (ix), when d = 1, a usual second-order kernel can
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be used with the bandwidth condition such that h = c1n
−δ for some positive constant c1

with 1/4 < δ < 1/3.8

We first show that, in the least favorable case of the null hypothesis (3.2) (i.e., the case

where τ0(y, x) = 0 for each (y, x) ∈ W), the asymptotic distribution of T̂ is the standard

normal in the sense that
T̂ − an

σ0

d→ N(0, 1),

with the asymptotic bias and variance of T̂ given by, respectively,

an := h−d/2

∫

Rd

∫

R

√
ρ2(y, x)w(y, x)dydx · E max {Z1, 0} ,(4.3)

σ2
0 :=

∫

T0

∫

Rd

∫

R

∫

R

F [ρ(y, y′, x, t)]
√

ρ2(y, x)ρ2(y′, x)w(y, x)w(y′, x)dydy′dxdt,(4.4)

F (ρ) := Cov
(
max{

√
1 − ρZ1 + ρZ2, 0}, max {Z2, 0}

)
.(4.5)

Here, Z1 and Z2 denote mutually independent standard normal random variables and T0 :=

{t ∈ R
d : ‖t‖ ≤ 1}. For practical implementation of our test, we need to estimate the

asymptotic bias and variance consistently. First of all, by calculus, E max {Z1, 0} = 1/
√

2π ≈
0.39894. Note that F (ρ) that appears in the definition of σ2

0 can be approximated for each

value of ρ with arbitrary accuracy by simulating a large number of independent standard

normal random variables (Z1, Z2). On the other hand, under the null hypothesis (3.3), the

asymptotic distribution of D̂ is given by

D̂ − an,D

σ0,D

d→ N(0, 1),

with

an,D = h−d/2

∫

Rd

∫

R

√
ρ2(y, x)w(y, x)dydx · E |Z1| ,(4.6)

σ2
0,D =

∫

T0

∫

Rd

∫

R

∫

R

Cov
(∣∣∣
√

1 − ρ2(y, y′, x, t)Z1 + ρ(y, y′, x, t)Z2

∣∣∣ , |Z2|
)

(4.7)

×
√

ρ2(y, x)ρ2(y′, x)w(y, x)w(y′, x)dydy′dxdt,

where Z1, Z2 and T0 = {t ∈ R
d : ‖t‖ ≤ 1} are defined as above. By calculus, E |Z1| =

2/
√

2π ≈ 0.79788.

8 Methods for selecting h in applications are not yet available. We provide some simulation evidence regarding
sensitivity to the choice of h in Section 6. Generally speaking, an optimal bandwidth for nonparametric
testing is different from one for nonparametric estimation. For example, in order to capture tradeoffs between
the size and power, Gao and Gijbels (2008) derive a bandwidth-selection rule by utilizing an Edgeworth
expansion of the asymptotic distribution of the test statistic concerned. The results of Gao and Gijbels
(2008) are not directly applicable to our tests.
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In the case that G(Y, y) = −Y, we have

ρ(y, y′, x, t) = ρ0(t),

so that the expressions for an and σ2
0 are simplified to:

an = h−d/2

∫

Rd

√
ρ2(x)w(x)dx · 1√

2π
,

σ2
0 =

∫

T0

F [ρ0(t)] dt

∫

Rd

ρ2(x)w2(x)dx,

(4.8)

where w(x) is a weight function for x and

ρ2(x) = K∗(0)
∑

j∈{0,1}

E [Y 2|X = x, Z = j] − (E [Y |X = x, Z = j])2

pj(x)
.

Likewise, analogous simplification occurs for the two-sided test.

The unknown quantities ρ1(y, y′, x, t), ρ2(y, x) and ρ(y, y′, x, t) that appear in (4.3) - (4.7)

can be estimated nonparametrically by:

ρ̂1(y, y′, x, t) = {r̂1(y, y′, x) − r̂2(y, y′, x)}K∗(t),

ρ̂2(y, x) = {r̂1(y, y, x)− r̂2(y, y, x)}K∗(0),

ρ̂(y, y′, x, t) =
ρ̂1(y, y′, x, t)√
ρ̂2(y, x)ρ̂2(y′, x)

,

where

r̂1(y1, y2, x) =
∑

j∈{0,1}

n∑

i=1

G(Yi, y1)G(Yi, y2)1(Zi = j)Kh (x − Xi)

np̂2
j (x)

,

r̂2(y1, y2, x) =
∑

j∈{0,1}

n∑

i=1

n∑

k=1

G(Yi, y1)G(Yk, y2)1(Zi = j)1(Zk = j)Kh (x − Xi)Kh (x − Xk)

n2p̂3
j (x)

,

and p̂j(x) is defined as in (3.7). With these definitions, we estimate (an, σ2
0) and (an,D, σ2

0,D)

by:

ân = h−d/2

∫

Rd

∫

R

√
ρ̂2(y, x)w(y, x)dydx · E max{Z1, 0},

σ̂2 =

∫

T0

∫

Rd

∫

R

∫

R

Cov
(
max

{√
1 − ρ̂2(y, y′, x, t)Z1 + ρ̂(y, y′, x, t)Z2, 0

}
, max{Z2, 0}

)

×
√

ρ̂2(y, x)ρ̂2(y′, x)w(y, x)w(y′, x)dydy′dxdt.

and

ân,D = h−d/2

∫

Rd

∫

R

√
ρ̂2(y, x)w(y, x)dydx · E |Z1| ,
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σ̂2
D =

∫

T0

∫

Rd

∫

R

∫

R

Cov
(∣∣∣
√

1 − ρ̂2(y, y′, x, t)Z1 + ρ̂(y, y′, x, t)Z2

∣∣∣ , |Z2|
)

×
√

ρ̂2(y, x)ρ̂2(y′, x)w(y, x)w(y′, x)dydy′dxdt,

respectively. The integrals appearing above and in the definitions of the statistics T̂ and

D̂ can be evaluated using the composite trapezoid rule or more sophisticated numerical

methods such as Monte Carlo simulation especially when the dimension of X is high.

Now, we consider standardized test statistics of the form

(4.9) Ŝ =
T̂ − ân

σ̂
and ŜD =

D̂ − ân,D

σ̂D
.

Our tests are based on the following decision rules:

Reject H0 if Ŝ > z1−α ,

Reject HD
0 if ŜD > z1−α

at the nominal significance level α, where zα is the α quantile of the standard normal dis-

tribution for 0 < α < 1. The following theorem shows that our tests have an asymptotically

valid size:

Theorem 4.1. Let Assumption 4.1 hold. Then, (a) under the null hypothesis H0,

lim
n→∞

Pr
(
Ŝ > z1−α

)
≤ α,

with equality when τ0(y, x) = 0 for each (y, x) ∈ W and (b) under the null hypothesis HD
0 ,

lim
n→∞

Pr
(
ŜD > z1−α

)
= α.

We prove Theorem 4.1 in three steps whose details are provided in Appendix:

Step 1. The asymptotic approximation of T̂ by Tn using the uniform approximation of τ̂ (y, x)

up to stochastic order op(n
−1/2), where

Tn :=

∫ ∫ √
n max{[τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx,

τn(y, x) :=
1

n

n∑

i=1

[
{G(Yi, y) − E[G(Y, y)|X = x, Z = 1]} 1(Zi = 1)

p1(x)

− {G(Yi, y)− E[G(Y, y)|X = x, Z = 0]} 1(Zi = 0)

p0(x)

]
Kh (x − Xi) .

(4.10)

Step 2. To obtain the asymptotic distribution of T P
n (B), a Poissonized version Tn, where

the sample size n is replaced by a Poisson random variable N with mean n that is

independent of the original sequence {(Yi, Xi) : i ≥ 1} and the integral is taken over

a subset B of W.
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Step 3. To de-Poissonize T P
n (B) to derive the asymptotic normality of Tn(B), and hence that

of T̂ by letting B increase.

Steps 2-3 (“Poissonization” and “de-Poissonization”) require lengthy, nontrivial derivation

using the “Poissonization” technique developed in Giné et al. (2003). Although the above

steps closely follow those of Giné et al. (2003), we need to extend their results to our testing

problem with general multi-dimensional variates d ≥ 1 and statistics that are different

from the L1- norm.9 See Anderson et al. (2009) and Mason and Polonik (2009) for different

applications of the “Poissonization” technique.

4.2. The Weight Function. In this section, we consider the choice of the weight function

w(y, x). There could be potentially many functions one could consider, but at least the

following three functions seem to be natural:

(1) w1(y, x) = 1 on W (a uniform weight function),

(2) w2(y, x) = [ρ2(y, x)]−1/2 (an inverse-variance weight function),

(3) w3(y, x) = p1(x) · p0(x) (a density weight function).

The uniform weight function is simple and there is no need to estimate the unknown

population components. The inverse-variance weight function is a reasonable candidate as

a weight function since it weighs down the values of (y, x) for which τ(y, x) is estimated

imprecisely. As it can be seen from (4.8), the asymptotic distribution of the test statistics

with G(Y, y) ≡ −Y would be completely free from nuisance parameters if w(x) = [ρ2(x)]−1/2.

The density weight function p1(x)·p0(x) is a convenient choice that would remove the random

denominators in τ̂(y, x). Therefore, in this case, it might be possible to take W to be the

whole support of (Y, X) (i.e. W ≡ Y×X ); however, details are not worked out in the paper.

The asymptotic theory developed in Section (4.1) assumes that w(y, x) is known. It is

straightforward to show that the asymptotic null distribution is the same with an estimated

w(y, x) if an estimator of w(y, x) is uniformly consistent at a uniform rate of op(h
d/2) and

w(y, x) is bounded from above and below from zero on W.

4.3. The Asymptotic Power Properties. In this section, we investigate power properties

of our tests. We first establish that the tests ŜD and ŜD are consistent against the fixed

alternative hypotheses

H1 :

∫ ∫
max {τ0(y, x), 0}w(y, x)dydx > 0,(4.11)

HD
1 :

∫ ∫
|τ0(y, x)|w(y, x)dydx > 0,(4.12)

9 We have considered L1-type functionals to construct our test statistics. More generally, one may consider
Lp-type functionals with p ≥ 1. The corresponding asymptotic theory would be different from that obtained
in this paper.
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respectively, where τ0 is defined in (3.1).

Theorem 4.2. Let Assumption 4.1 hold. Then, (a) under the alternative hypothesis H1,

lim
n→∞

Pr
(
Ŝ > z1−α

)
= 1

and (b) under the alternative hypothesis HD
1 ,

lim
n→∞

Pr
(
ŜD > z1−α

)
= 1.

Next, we determine the power of Ŝ and ŜD against some sequences of local alternatives.

Consider the following sequences of local alternatives converging to the null hypothesis at

the rate n−1/2:

Ha : τ0(y, x) = n−1/2δ(y, x),(4.13)

HD
a : τ0(y, x) = n−1/2δD(y, x),(4.14)

where δ(·, ·) is a real non-negative function satisfying
∫ ∫

δ(y, x)w(y, x)dydx > 0 and δD(·, ·)
is a real function satisfying

∫ ∫
|δD(y, x)|w(y, x)dydx > 0. Under Ha, we show that

T̂ − ãn

σ0

d→ N(0, 1),

where σ0 is defined as in (4.4) and

ãn =

∫ ∫
E max

{
δ(y, x) + h−d/2

√
ρ2(y, x)Z, 0

}
w(y, x)dydx.

See proof of Theorem 4.3 for details. Since we have

Ŝ =
T̂ − ãn

σ0

+
ãn − an

σ0

+ op(1)

under Ha and

ãn − an

=

∫ ∫
E
[
max

{
δ(y, x) + h−d/2

√
ρ2(y, x)Z, 0

}
− max

{
h−d/2

√
ρ2(y, x)Z, 0

}]
w(y, x)dydx

≥ 1

2

∫ ∫
δ(y, x)w(y, x)dydx > 0,

we expect that our test Ŝ is powerful against Ha. Similarly, under HD
a , we can show that

D̂ − ãn,D

σ0,D

d→ N(0, 1),
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where σ0,D is defined as in (4.7) and

ãn,D =

∫ ∫
E
∣∣∣δ(y, x) + h−d/2

√
ρ2(y, x)Z

∣∣∣w(y, x)dydx.

Since we have

ãn,D − an,D =

∫ ∫
E
[∣∣∣δ(y, x) + h−d/2

√
ρ2(y, x)Z

∣∣∣− h−d/2
√

ρ2(y, x) |Z|
]
w(y, x)dydx

≥ 0

by the Anderson’s lemma (see, e.g., van der Vaart and Wellner (1996, Lemma 3.11.4)), we

also expect that the test ŜD is powerful against HD
a .

The following theorem formally establishes that our tests have non-trivial local power

against Ha and HD
a in the sense that they are asymptotically locally unbiased.

Theorem 4.3. Let Assumption 4.1 hold. Then, (a) under the alternative hypothesis Ha ,

lim
n→∞

Pr
(
Ŝ > z1−α

)
> α

and (b) under the alternative hypothesis HD
a ,

lim
n→∞

Pr
(
ŜD > z1−α

)
≥ α.

5. Extensions

In Section 5.1, we show that, in the case when the null hypothesis H0 is expressed in terms

of inequality constraints as in (3.2), we can develop a test that is (locally) more powerful

than the test Ŝ defined in (4.9). In Section 5.2, we describe an extension of our tests for

quantile treatment effects.

5.1. A more powerful test for the null hypothesis with inequality constraints.

Define

(5.1) C := {(y, x) ∈ W : τ0(y, x) = 0}

to be the subset of Y ×X on which the null hypothesis (2.6) holds with equality. Note that

C can be written as

C := {(y, x) ∈ C1(x) ×Wx},
where C1(x) := {y ∈ Wy : τ0(y, x) = 0} for each x ∈ Wx.

It turns out that the asymptotic distribution of T̂ depends on C when
∫ ∫

C
w(y, x)dydx >

0. In this case, we can show that the asymptotic bias and variance of T̂ (defined in (3.4))



NONPARAMETRIC TESTS OF CONDITIONAL TREATMENT EFFECTS 17

are given by

an(C) = h−d/2

∫

Rd

∫

C1(x)

√
ρ2(y, x)w(y, x)dydx · E max {Z1, 0} ,

(5.2)

σ2
0(C) =

∫

T0

∫

Rd

∫

C1(x)

∫

C1(x)

F [ρ(y, y′, x, t)]
√

ρ2(y, x)ρ2(y′, x)w(y, x)w(y′, x)dydy′dxdt,

(5.3)

respectively, where Z1 and Z2 are mutually independent standard normal random variables

and T0 = {t ∈ R
d : ‖t‖ ≤ 1} as in (4.3) and (4.4). This implies that, when C is a non-

negligible set, we may construct a less conservative test than Ŝ using the bias and variance

formulae of (5.2) and (5.3).

In general, the set C is unknown and has to be estimated. As we explain below, it is

difficult to estimate C. In this paper, we estimate an outer set Cǫ of C, that is Cǫ :=

{(y, x) ∈ W : |τ0(y, x)| ≤ ǫ} for some small constant ǫ > 0. To be precise, we define the

estimator of Cǫ to be

Ĉǫ := {(y, x) ∈ Ĉ1ǫ(x) ×Wx},
where Ĉ1ǫ(x) := {y ∈ Wy : |τ̂ (y, x)| ≤ ηn + ǫ} for each x ∈ Wx. Here, ηn is a sequence of

positive constants that converges to zero at a rate satisfying Assumption 5.1 below. When∫ ∫
Ĉǫ

w(y, x)dydx > 0, we can estimate an(Cǫ) and σ2
0(Cǫ) by

ân(Ĉǫ) = h−d/2

∫

Rd

∫

Ĉ1ǫ(x)

√
ρ̂2(y, x)w(y, x)dydx · E max {Z1, 0} ,

σ̂2(Ĉǫ) =

∫

T0

∫

Rd

∫

Ĉ1ǫ(x)

∫

Ĉ1ǫ(x)

Cov
(
max{

√
1 − ρ̂2(y, y′, x, t)Z1 + ρ̂(y, y′, x, t)Z2, 0}, max {Z2, 0}

)

×
√

ρ̂2(y, x)ρ̂2(y, x)w(y, x)w(y′, x)dydy′dxdt,

where ρ̂2(y, x) and ρ̂2(y, y′, x, t) are defined as in Section 3.1. In this case, we let

ŜC =
T̂ − ân(Ĉǫ)

σ̂(Ĉǫ)
.

Notice that, when
∫ ∫

Ĉǫ
w(y, x)dydx = 0, the estimators ân(Ĉǫ) and σ̂2(Ĉǫ) are degenerate at

zero and hence ŜC is not well-defined. However, the test Ŝ based on the least favorable case

is always well-defined and has an asymptotically valid size, though it may be conservative

when Cǫ is a strict subset of W. Therefore, we suggest the following decision rule:

Reject H0 if Ŝ∗ > z1−α ,
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where

Ŝ∗ =

{
ŜC if

∫ ∫
Ĉǫ

w(y, x)dydx > 0

Ŝ if
∫ ∫

Ĉǫ
w(y, x)dydx = 0

.

To investigate the size and power performance of Ŝ∗, in addition to Assumption 4.1, we need

to impose the following regularity conditions on the contact set C and the tuning parameter

ηn.

Assumption 5.1. i. Whenever the Lebesgue measure λ(Cǫ) of Cǫ is strictly positive,

the boundary of Cǫ satisfies h∗(t) := λ({(y, x) : ǫ < |τ0(y, x)| ≤ ǫ + t}) = O(tγ) as

t → 0 for some constants ǫ > 0 and γ > 0.

ii. The tuning parameter ηn satisfies nhdη2+2γ
n / (log n)2 → 0 and nh2dη2

n/ (log n)2 →
∞ as n → ∞.

To appreciate the degrees of restrictions behind Assumption 5.1 (i), consider the following

example of τ0(y, x) that satisfies Assumption 5.1 (i):

τ0(y, x) =

{
−x1/γ0 if x > 0

0 if x ≤ 0
,

where x ∈ Wx ≡ [−R, R] ⊂ R with some constant R > 0. In this example, the larger γ0

is, the less smooth τ0 is around the “contact point” at zero (x = 0). Note that roughly

speaking, in this example, s < 1/γ0. Recall that in Assumption 4.1 (ix), we need to assume

that s > 3d/2. As d gets large, we need larger s and also larger γ to satisfy both Assumptions

4.1 (ix) and 5.1 (ii). Thus, this is impossible if we consider ǫ = 0, i.e. estimation of C rather

than Cǫ with ǫ > 0. For the latter, regardless of the smoothness of τ0 around zero, one

can choose γ = 1. This is the reason why we consider estimation of the outer set Cǫ of the

contact set C. A similar difficulty arises in nonparametric estimation of an argmin set in

the partial identification setup (Chernozhukov et al., 2009).

Suppose that hn ∝ n−δ for some constant δ > 0. Then Assumption 5.1 (ii) is satisfied, for

example, if ηn ∝ n−ν with

1 − dδ

2 + 2γ
< ν <

1 − 2dδ

2
,

provided that γ > (dδ)/(1 − 2dδ). The constant term (1 − 2dδ) has to be positive under

Assumption 4.1 (ix). Thus, Assumption 5.1 (ii) is less stringent with a larger γ. For example,

if γ = 1, it requires that δ < 1/(3d).

The following theorem shows that the test Ŝ∗ has an asymptotically valid size under the

null hypothesis (3.2) and consistent against the fixed alternative (4.11).



NONPARAMETRIC TESTS OF CONDITIONAL TREATMENT EFFECTS 19

Theorem 5.1. Suppose that Assumptions 4.1 and 5.1 hold. Then, (a) under the null hy-

pothesis (3.2),

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
≤ α,

and (b) under the alternative hypothesis (4.11),

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
= 1.

To investigate the local power properties of Ŝ∗, we consider the following sequence of local

alternatives:

(5.4) H∗
a : τ0(y, x) = µ(y, x) + n−1/2δ(y, x).

Assumption 5.2. The functions µ(·, ·) and δ(·, ·) satisfy the following:

i.
∫ ∫

Ca
w(y, x)dydx > 0, where Ca = {(y, x) ∈ W : −ǫ ≤ µ(y, x) ≤ 0} and ǫ > 0 is the

same constant as in Assumption 5.1.

ii. sup(y,x)∈W µ(y, x) ≤ 0 .

iii. δ(·, ·) is a non-negative function with
∫ ∫

Ca

δ(y, x)w(y, x)dydx > 0 and sup
(y,x)∈W

δ(y, x) < ∞.

iv. The boundary of Ca satisfies h∗∗(t) := λ({(y, x) : ǫ < |µ(y, x)| ≤ t + ǫ}) = O(tγ) as

t → 0 for some constant γ > 0.

The local alternative hypothesis H∗
a in (5.4) is more general than the hypothesis Ha in

(4.13) in the sense that H∗
a allows µ(y, x) to be strictly negative for some (y, x) ∈ W, whereas

Ha sets µ(y, x) = 0 for each (y, x). The following theorem shows that, under the sequence

of local alternatives H∗
a , the test Ŝ∗ is strictly unbiased and can be more powerful than Ŝ

when Ca is a strict subset of W.

Theorem 5.2. Suppose that Assumptions 4.1, 5.1 (ii) and 5.2 hold. Then, under the alter-

native hypothesis H∗
a , we have (a)

lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
> α

and (b)

(5.5) lim
n→∞

Pr
(
Ŝ∗ > z1−α

)
> lim

n→∞
Pr
(
Ŝ > z1−α

)
,

provided ∫ ∫ √
ρ2(y, x)w(y, x)dydx >

∫ ∫

Ca

√
ρ2(y, x)w(y, x)dydx.
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5.2. Testing for quantile treatment effects. Quantile treatment effects are increasingly

popular in empirical research. A recent literature includes, for example, Abadie et al. (2002);

Chernozhukov and Hansen (2005); Firpo (2007); Chernozhukov et al. (2009), among others.

To develop tests for quantile treatment effects, let Q0(τ |x, z) denote the τ -th quantile of

Y conditional on X = x and Z = z for τ ∈ (0, 1). Let

(5.6) θ0(τ, x) = Q0(τ |x, 0) − Q0(τ |x, 1).

Then quantile analogs of the null hypotheses (3.2) and (3.3) are:

H0q : θ0(τ, x) ≤ 0 for each (τ, y) ∈ T ×Wx,(5.7)

HD
0q : θ0(τ, x) = 0 for each (τ, y) ∈ T ×Wx,(5.8)

where T is a strict compact subset of (0, 1). As in Section 3, for (5.7) we consider a class of

tests based on

(5.9) T̂q =

∫

Rd

∫

R

√
n max

{
θ̂(τ, x), 0

}
wq(τ, x) dτdµx(x),

where θ̂(τ, x) is a uniformly consistent estimator of θ0(θ, x), wq(θ, x) is a weight function

that has its support T ×Wx. For (5.8), we consider a class of tests based on

(5.10) D̂q =

∫

Rd

∫

R

√
n
∣∣∣θ̂(τ, x)

∣∣∣wq(τ, x) dτdµx(x).

In this section, we consider the case when quantile treatment effects are evaluated under

randomized controlled experiments or under the unconfoundedness assumption. That is, Y1

and Y0 are independent of D conditional on X, so that Z ≡ D in this section. Also, we

assume that the distributions of Y and X are absolutely continuous with respect to Lebesgue

measure.

Let fY |X,Z(·|x, z) denote the probability density function of Y conditional on X = x and

Z = z. For (τ, τ ′, x), define

ρ1q(τ, τ
′, x, t) =





∑

j∈{0,1}

min{τ, τ ′} − ττ ′

fY |X,Z [Q0(τ |x, j)|x, j]fY |X,Z [Q0(τ ′|x, j)|x, j]pj(x)




K∗(t),

ρ2q(τ, x) =





∑

j∈{0,1}

τ(1 − τ)

f 2
Y |X,Z [Q0(τ |x, j)|x, j]pj(x)




K∗(0),

ρq(τ, τ
′, x, t) =

ρ1q(τ, τ
′, x, t)√

ρ2q(τ, x)ρq2(τ ′, x)
,

ρq(τ, τ
′, x) =

ρq(τ, τ
′, x, t)

ρ0(t)
.
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In addition, define

anq := h−d/2

∫

Rd

∫

R

√
ρ2q(τ, x)wq(τ, x)dτdx · E max {Z1, 0} ,(5.11)

σ2
0q :=

∫

T0

∫

Rd

∫

R

∫

R

F [ρq(τ, τ
′, x, t)]

√
ρ2q(τ, x)ρ2q(τ ′, x)wq(τ, x)wq(τ

′, x)dτdτ ′dxdt.(5.12)

We make the following assumption.

Assumption 5.3. Let conditions i, ii, v, ix of Assumption 4.1 hold. In addition, assume

that conditions iii and iv hold with wq(·, ·) and ρq(τ, τ
′, x). Suppose that a nonparametric

estimator of Q0(τ |x, z) has a Bahadur-type linear expansion of the following form:

Q̂(τ |x, j) − Q0(τ |x, j)

= (nhd)−1
n∑

i=1

[τ − 1{Yi ≤ Q0(τ |Xi, Zi)}]
fY |X,Z [Q0(τ |x, j)|x, j]pj(x)

1(Zi = j)K

(
x − Xi

h

)
+ Rnj(τ, x),

(5.13)

where for each j = 0, 1, fY |X,Z [Q0(τ |x, j)|x, j] is bounded away from zero on T × Wx and

the remainder term Rnj(τ, x) is of order op(n
−1/2) uniformly over τ and x in T ×Wx.

It is a high-level assumption to impose a Bahadur-type linear expansion for the non-

parametric estimator; however, related low-level conditions can be found in the literature.

See, e.g., Chaudhuri (1991), Fan et al. (1994), and Chaudhuri et al. (1997) for Bahadur-type

expansions with a fixed quantile τ . As demonstrated in Hoderlein and Mammen (2009, Ap-

pendix), it is possible to make the Bahadur-type expansion uniform over τ in a compact

subsect of (0, 1).

Theorem 5.3. Let Assumption 5.3 hold. Then, under the null hypothesis H0q,

lim
n→∞

Pr

(
T̂q − anq

σ0q
> z1−α

)
≤ α,

with equality when θ0(τ, x) = 0 for each (τ, x) ∈ T ×Wx. Furthermore, under the alternative

hypothesis H1q:

H1q :

∫ ∫
max {θ0(τ, x), 0}wq(τ, x)dτdx > 0,

we have that

lim
n→∞

Pr

(
T̂q − anq

σ0q

> z1−α

)
= 1.

This theorem establishes analogs of Theorems 4.1 and 4.2 for conditional quantile treat-

ment effects with the statistic T̂q. It is rather straightforward to construct consistent estima-

tors of anq and σ2
0q and show that a feasible version of the test has a valid size under H0q and
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consistent under the fixed alternative. Similar results can be obtained for the test statistic

D̂q.

6. An Empirical Example and Monte Carlo Experiments

This section provides some numerical results that illustrate the usefulness of our proposed

tests. We use experimental data from the National Supported Work (NSW) Demonstration

(LaLonde, 1986). We apply our tests to the NSW data to gain further insights into the

nature of treatment effects. In addition, we carry out some Monte Carlo experiments based

on the NSW data to examine the finite sample performance of our tests.

6.1. The Data. The NSW Demonstration (NSW) was a randomized, temporary employ-

ment program in the U.S. in the mid-1970s designed to help disadvantaged workers. A

highly influential paper by LaLonde (1986) analyzed the NSW data to examine the per-

formance of econometric evaluation estimators based on nonexperimental methods. The

original sample and its subsamples were later reanalyzed by Dehejia and Wahba (1999,

2002), and Smith and Todd (2005). We use the original LaLonde (1986) sample to illus-

trate our proposed tests.10 This sample consists of 297 treatment group observations and

425 control group observations. See LaLonde (1986), Dehejia and Wahba (1999, 2002), and

Smith and Todd (2005) for details on the NSW data.

6.2. Empirical Illustration. We consider two types of outcomes Y : earnings in 1978 and

changes in earnings between 1978 (postintervention year) and 1975 (preintervention year),

both expressed in 1982 dollars, denoted by RE78 and RE78-RE75, respectively, as in Dehejia

and Wahba (1999, 2002). The Z variable is the usual treatment indicator: Z = 1 for the

treatment group and Z = 0 for the control group. There are several covariates available in

the NSW data, such as age, education, earnings in 1975, and other demographic dummy

variables. We use age in years as X to illustrate our tests.

Figures 1 shows nonparametric estimation results for both outcomes, RE78 and RE78-

RE75. The top panel of the figure shows nonparametric estimates of conditional means of

RE78 as functions of age in years (X) for the treatment and control groups, respectively.

The bottom panel shows corresponding estimates for RE78-RE75. The kernel function used

in estimation was

K(u) =
3

2

(
1 − (2u)2

)
1

{
|u| ≤ 1

2

}
.(6.1)

10The dataset is available online at Rajeev Dehejia’s web page at
http://www.nber.org/ rdehejia/nswdata.html. We thank Rajeev Dehejia for making the dataset
available online.
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There are several methods available for choosing a bandwidth in nonparametric kernel re-

gression estimation. Here, we chose the bandwidth h by a simple rule of thumb, as in

Section 4.2 of Fan and Gijbels (1996). To describe the rule-of-the-thumb bandwidth we

used for nonparametric estimation, first note that under random assignment of treatment,

τ0(x) = E[Y1 − Y0|X = x] = E[Ỹ |X = x], where

Ỹ =
Y Z

Pr(Z = 1)
− Y (1 − Z)

Pr(Z = 0)
.

Now the rule-of-the-thumb bandwidth h for estimation of the average treatment effect has

the following form

h = 3.4375




σ̃2
∫

w0(v)dv

n−1
∑n

i=1

{
τ̃ (2)(X̃i)

}2

w0(X̃i)





1/5

n−1/5,

where X̃i’s are studentized Xi’s, τ̃ (2)(·) is the second-order derivative of the global quartic

parametric fit of τ0(x) with studentized Xi’s and with the sample proportion of Z, σ̃2 is the

simple average of squared residuals from the parametric fitting, w0(·) is a uniform weight

function that has value 1 for any X̃i that is between the 10th and 90th sample quantiles

of X̃. This rule of thumb yielded the bandwidth h = 12.679 for RE78 and h = 16.495

for RE78-RE75.11 Estimation results from Figure 1 suggest that there are positive average

treatment effects for both outcomes, especially for old workers.

In Table 1, we report results from nonparametric testing. We consider four different

combinations of null and alternative hypotheses:

(T1) the null of zero conditional average treatment effect (CATE) against the strictly

positive CATE for some age groups (one-sided test);

(T2) the null of zero CATE against nonzero CATE for some age groups (two-sided test);

(T3) the null of the first-order stochastic dominance of the treatment group over the control

group for each age group;

(T4) the null of equality between conditional distributions of treatment and control groups

for all age groups.

For tests of T1 and T2, we used three weight functions described in Section 4.2: (1) the

uniform weight function w1(x) ≡ 1; (2) the inverse-standard-error weight function ŵ2(x) =

[ρ̂2(x)]−1/2; (3) the density weight function ŵ3(x) = p̂1(x) · p̂0(x), where all the weight

functions have the support Wx that is an interval between the 10 and 90 percentiles of X. For

tests of T3 and T4, we used similar three weight functions: (1) the uniform weight function

11We also applied the least cross validation to choose h and it turns out that an optimal value of h from the
cross-validation was unreasonably too large.



24 S. LEE AND Y.-J. WHANG

w1(y, x) ≡ 1; (2) the inverse-standard-error weight function ŵ2(y, x) = [ρ̂2(y, x)]−1/2; (3) the

density weight function ŵ3(y, x) = p̂1(x) · p̂0(x) for each y, where all the weight functions

have the support Wy × Wx. Here, Wx is the same as above, that is the interval between

the 10 and 90 percentiles of X, and Wy is the entire support of Y for the uniform weight

and density weight functions and the interval between the 5 and 95 percentiles of Y for the

inverse-standard-error weight function, respectively.

In general, choosing a bandwidth in nonparametric testing is a difficult problem, since a

good bandwidth in testing is usually different from the optimal bandwidth in estimation.

If underlying functions are twice continuously differentiable, our test has a correct size and

consistent for any bandwidth satisfying C1n
−C2 with constants C1 and C2 such that 0 <

C1 < ∞ and 1/4 < C2 < 1/3. To choose a bandwidth among possible values, we may

need to develop a higher-order asymptotic theory based on the tradeoffs between the size

and power of the test. Instead, in Table 1, we report testing results for different values of

bandwidths. In particular, we considered bandwidths of the form h = Ch · ŝX · n−2/7, where

ŝX is the sample standard deviation of the X variable, and Ch is a constant that belongs to

{2, 2.5, 3, 3.5} for the one-sided tests (T1 and T3) and {5, 6, 7, 8} for the two-sided tests (T2

and T4). These values of the bandwidths were used in Monte Carlo experiments, which will

be reported below, and seem to work reasonably well in the Monte Carlo simulations that

mimic the LaLonde data.

The top panel of Table 1 displays the test result for T1. Given Figure 1, it is not surprising

to find out that the null hypothesis of zero CATE is rejected in favor of a positive CATE for

some age groups at the nominal level 10% across all weight functions and bandwidths. The

second panel shows that the evidence is mixed if one uses the two-sided test (T2).12 Given

that we expect a positive effect from the intervention implemented in the data a priori, it

may be more reasonable to consider T1 rather than T2. This suggests that a researcher might

use a one-sided test when she expects a particular sign of the conditional average treatment

effect, since the two-sided test is likely to be less powerful especially when the estimated

CATE is positive for all values of X. The third panel considers the conditional stochastic

dominance (T3) and shows that there is no evidence against the the null hypothesis that the

control group is stochastically dominated by the treatment group for each age group. This

is consistent with the result for T1. The fourth panel shows that there is no strong evidence

against the equality between two conditional distributions. Again, this is in line with the

result for T2.

12One may suspect that this may be due to the lack of the power in our nonparametric tests. However, the
t-statistic for the unconditional average treatment effect (E[Y1 −Y0]) is just 1.818, which means that we fail
to reject the null of zero ATE against the two-sided alternative at the 5% level.
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In summary, our test results suggest that all age groups between the 10 and 90 percentiles

enjoyed positive average treatment effects. This conclusion would not be made possible by

just testing the statistical significance of the unconditional average treatment effect.

6.3. Monte Carlo Experiments. To evaluate the finite-sample performance of our tests

under data generating processes (DGPs) that are similar to that of the NSW data, we treat

the LaLonde (1986) sample as the true DGP in Monte Carlo experiments.

Throughout the experiments, we consider the tests for conditional average treatment ef-

fects (CATEs). In particular, we consider two tests: (i) the null hypothesis of zero CATE for

every x ∈ Wx vs. the alternative hypothesis of positive CATE for some x ∈ Wx (one-sided

test); (ii) the null hypothesis of zero CATE for every x ∈ Wx vs. the alternative hypothesis

of nonzero CATE for some x ∈ Wx (two-sided test).

Two types of data generating processes are considered. First, 10,000 repeated samples are

generated randomly with replacement from the NSW data, with the restriction that (Y, X)

and Z are generated independently. We call this DGP1, which corresponds to the case that

the null hypotheses in (i) and (ii) are true. Second, 10,000 repeated samples are generated

randomly with replacement from the NSW data, with the joint distribution of (Y, X, Z)

being left intact. We call this DGP2 and use the DGP2 to examine the powers of the tests

of (i) and (ii).

In the experiments, we used three weight functions described in Section 4.2: (1) the

uniform weight function w1(x) ≡ 1 on Wx; (2) the inverse-standard-error weight function

ŵ2(x) = [ρ̂2(x)]−1/2; (3) the density weight function ŵ3(x) = p̂1(x) · p̂0(x), where Wx is an

interval between the 10 and 90 percentiles of X.

Also, we used the same kernel as in (6.1) with a bandwidth h = ChŝXn−2/7, where ŝX is

the sample standard deviation of the X variable and Ch is a constant. In the experiments, we

consider a set of different values for Ch: {2, 2.5, 3, 3.5} for the one-sided test and {5, 6, 7, 8}
for the two-sided test. Two sample sizes were considered: n = 722 (the size of the original

sample) and n = 1, 444.

Tables 2 and 3 and Figure 2 summarize the results of experiments. Table 2 shows coverage

probabilities of testing the null hypothesis of zero CATE for every x ∈ Wx against the

alternative hypothesis of positive CATE for some x ∈ Wx (one-sided test). First of all,

note that empirical rejection probabilities are not substantially different from the nominal

ones with DGP1 (This is the case when H0 is true). However, there is some tendency of

overrejection for all levels of tests, especially at the 1% level tests. For DGP1, Figure 2

shows normal P-P plots for the one-sided test with n = 722. Each panel of the figure shows

a P-P plot with a different value of the bandwidth (h). Overall, the empirical probabilities of

the test statistics are similar to the normal probabilities, as asymptotic theory suggests. In
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addition, Table 3 and Figure 2, respectively, report coverage probabilities and the normal P-

P plots of testing the null hypothesis of zero CATE for every x ∈ Wx against the alternative

hypothesis of nonzero CATE for some x ∈ Wx (two-sided test). For DGP1, Monte Carlo

results are similar to those for the one-sided test. For both one-sided and two-sided tests,

there does not seem much difference across different weight functions.

The simulation results for DGP2 suggest that our tests are consistent since the null hy-

pothesis is very unlikely to hold under DGP2 given our empirical analysis in Section 6.2.

It seems that the power is largest with the inverse-standard-error weight function for the

one-sided test and so with the uniform weight function for the two-sided test. There is no

alternative test available in the literature for the one-sided test, but there exist tests for the

two-sided test, for example, tests developed in Crump et al. (2008). The top panel of Table

4 shows coverage probabilities of the nonparametric test of Crump et al. (2008) with their

statistic T for the null hypothesis that the conditional average treatment effect (CATE) is

zero for each value of x. The bottom panel of the table shows coverage probabilities of the

nonparametric test of Crump et al. (2008) with their statistic Q. It can be seen that em-

pirical coverage probabilities of their tests are sensitive to the choice of the order of power

series terms. Furthermore, it seems that our tests reported in Table 3 are more powerful or

at least as powerful as their tests for most cases.

7. Conclusions

We have developed a general class of nonparametric tests for treatment effects conditional

on covariates. We have shown that suitably studentized versions of our test statistics are

asymptotically standard normal under the null hypotheses and have also shown that the

proposed nonparametric tests are consistent against general fixed alternatives and have non-

negligible powers against some local n−1/2 alternatives.

There are several topics for further research. First, it may be an interesting research

topic to develop the asymptotic properties of our tests under a more general data-generating

process that goes beyond the simple random sample setup in this paper. Second, we have

considered some reasonable candidates for the weight function for the test statistics. Perhaps

it might be desirable to choose the weight function optimally by considering a reasonable

criterion such as maximizing an average local power. Third, hypothesis testing alone might

not provide a good guidance for a social planner to choose treatments (Manski, 2004). It

would be an interesting topic to study whether a functional like our statistics can help the

social planner to make an informed decision. Fourth, this paper does not cover marginal

treatment effects that can be identified using the method of local instrumental variables

developed by Heckman and Vytlacil (1999, 2005). It would be important to develop a general

test for marginal treatment effects.



NONPARAMETRIC TESTS OF CONDITIONAL TREATMENT EFFECTS 27

Appendix A. Proofs

We shall give proofs only for the test Ŝ because the proofs for the test ŜD are similar and also

simpler. We also omit the proof of Theorem 5.3 since it can be proved using similar arguments.

A.1. Uniform asymptotic approximation of T̂ by Tn. Write

τ̂(y, x) = τ0(y, x) + [τn0(y, x) − Eτn0(y, x)] + [Eτn0(y, x) − τ0(y, x)] + Rn(y, x),

where

τn0(y, x) :=
1

n

n∑

i=1

G(Yi, y)φ(x,Zi)Kh (x − Xi) ,

Rn(y, x) :=
1

n

n∑

i=1

G(Yi, y)φ(x,Zi)

×
[
1(Zi = 1)

p1(x) − p̂1(x)

p̂1(x)
+ 1(Zi = 0)

p0(x) − p̂0(x)

p̂0(x)

]
Kh (x − Xi) .

Define

ζn(y, x) = E[G(Y, y)|X = x,Z = 1] − E[G(Y, y)|X = x,Z = 0]

− E[G(Y, y)|X = x,Z = 1]
1

np1(x)

n∑

i=1

1(Zi = 1)Kh (x − Xi)

+ E[G(Y, y)|X = x,Z = 0]
1

np0(x)

n∑

i=1

1(Zi = 0)Kh (x − Xi) .

The following lemma shows that Rn(y, x) can be approximated by ζn(y, x) uniformly over (y, x)

at a rate faster than n−1/2.

Lemma A.1. Under Assumption 4.1, we have that

sup
(y,x)∈W

|Rn(y, x) − ζn(y, x)| = op(n
−1/2).

Proof of Lemma A.1. Note that under the conditions on the bandwidth,

max
x∈Wx

|p̂j(x) − pj(x)| = Op

[
hs + (nhd)−1/2(log n)1/2

]
= op(n

−1/4)

for j = 0, 1. Then the following holds uniformly over (y, x):

Rn(y, x) = Rn1(y, x) + Rn2(y, x) + Rn3(y, x) + op

(
n−1/2

)
,

where

Rn1(y, x) :=
1

n

n∑

i=1

G(Yi, y)φ(x,Zi)Kh (x − Xi) ,

Rn2(y, x) :=
1

n2p2
1(x)

n∑

i=1

n∑

j=1

ζ1(Wi,Wj , y, x),
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Rn3(y, x) :=
1

n2p2
0(x)

n∑

i=1

n∑

j=1

ζ0(Wi,Wj , y, x),

with

ζ1(Wi,Wj , y, x) := −G(Yi, y)1(Zi = 1)1(Zj = 1)Kh (x − Xi)Kh (x − Xj) ,

ζ0(Wi,Wj , y, x) := G(Yi, y)1(Zi = 0)1(Zj = 0)Kh (x − Xi) Kh (x − Xj) .

Split Rn2(y, x) as

(A.1) Rn2(y, x) =
1

n2p2
1(x)

n∑

i=1

n∑

j=1,j 6=i

ζ1(Wi,Wj , y, x) +
1

n2p2
1(x)

n∑

i=1

ζ1(Wi,Wi, y, x),

where the second term has the form

1

n2p2
1(x)

n∑

i=1

ζ1(Wi,Wi, y, x) = − 1

n2h2dp2
1(x)

n∑

i=1

G(Yi, y)1(Zi = 1)K2

(
x − Xi

h

)
.

Since K is of bounded variation and {G(·, y) : y ∈ Wy} is a VC class, standard results in empirical

process methods (see. e.g. Theorem 2.14.1 of van der Vaart and Wellner (1996, p.239)) yield

sup
(y,x)∈W

∣∣∣∣∣
1

nhd

n∑

i=1

G(Yi, y)1(Zi = 1)K2

(
x − Xi

h

)∣∣∣∣∣ = Op(1),

which implies that

sup
(y,x)∈W

∣∣∣∣∣
1

n2p2
1(x)

n∑

i=1

ζ(Wi,Wi, y, x)

∣∣∣∣∣ = Op

[
(nhd)−1

]

since p1(·) is bounded away from zero on Wx.

We now move on the first term in (A.1). We will apply the uniform approximation result for

U-processes (see, e.g. Ghosal et al., 2000). To do so, let Un denote the random discrete measure

putting mass 1/n(n − 1) for each of the points {(Wi,Wj) : 1 ≤ i < j ≤ n}. Note that

1

n2

n∑

i=1

n∑

j=1,j 6=i

ζ1(Wi,Wj , y, x) =
1

n2

∑

1≤i<j≤n

ζ1(Wi,Wj , y, x) + ζ1(Wj ,Wi, y, x)

= Unζ̃(y,x)[1 + op(1)],

where ζ̃(y,x)(Wi,Wj) = ζ1(Wi,Wj, y, x) + ζ1(Wj,Wi, y, x).

Consider a class of functions

F = {ζ̃(y,x) : (y, x) ∈ W}.
Note that F is contained in F1 ×F2 ×F3 + F4 ×F2 ×F3, where

F1 = {G(Yi, y) : y ∈ Wy},

F2 =

{
K

(
x − Xi

h

)
K

(
x − Xj

h

)
: x ∈ Wx

}
,

F3 = h−2d1(Zi = 1)1(Zj = 1)1(‖Xi − Xj‖ ≤ h),
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F4 = {G(Yj , y) : y ∈ Wy}.

By Assumption, F1 and F4 are VC classes of functions with the envelope function M. Since K is

of bounded variation, F2 is also a VC class of functions with the bounded envelope function. Note

that F3 is not indexed by (y, x) and is bounded by h−2d1(‖Xi − Xj‖ ≤ h). Hence, we can take an

envelope function F of F to be [M(Yi) + M(Yj)]h
−2d1(‖Xi − Xj‖ ≤ h).

Let

Ûnζ̃(y,x) = n−1
n∑

i=1

E[ζ1(Wi,Wj, y, x)|Wi] + n−1
n∑

j=1

E[ζ1(Wj ,Wi, y, x)|Wj ] − E[ζ1(Wj ,Wi, y, x)].

Then by Theorem A.1 of Ghosal et al. (2000) and comments following this theorem, there exists a

universal constant C < ∞ and such that

E
(
sup

{
Unζ̃(y,x) − Ûnζ̃(y,x)| : ζ̃(y,x) ∈ F

})

≤ Cn−1(EF2)1/2

∫ 1

0
sup
Q

log N
(
ε ‖F‖Q,2 ,F , L2 (Q)

)
dε,

where N (ε,F , L2 (Q)) is the ε-covering number of F with the L2 (Q) norm. Here, Q denotes a

probability. Note that

(EF2)1/2 ≤ Ch−3d/2.

Furthermore, by Lemma A.1 of Ghosal et al. (2000) and also by the fact that the 2ε-covering

numbers of the sum of the two classes are bounded by the product of the ε-covering numbers of

the two classes,
∫ 1

0
sup
Q

log N
(
ε ‖F‖Q,2 ,F , L2 (Q)

)
dε ≤ C

∫ 1

0
log ε−1dǫ < ∞.

Then, combining results above with the bandwidth requirement that nh3d → ∞ gives

sup
(y,x)∈W

∣∣∣∣∣∣
1

n2

n∑

i=1

n∑

j=1,j 6=i

ζ1(Wi,Wj, y, x) − Ûnζ̃(y,x)

∣∣∣∣∣∣
= op(n

−1/2).(A.2)

By standard arguments for kernel estimation,

E[ζ1(Wi,Wj , y, x)|Wi] = −G(Yi, y)1(Zi = 1)1(Zj = 1)Kh (x − Xi) p1(x) + O(hs),

E[ζ1(Wi,Wj , y, x)|Wj ] = −E[G(Y, y)|X = x,Z = 1]p1(x)1(Zj = 1)Kh (x − Xj) + O(hs),

E[ζ1(Wi,Wj , y, x)] = −E[G(Y, y)|X = x,Z = 1]p2
1(x) + O(hs)

uniformly over (y, x). Thus, combining the results above with (A.1)-(A.2) gives

Rn2(y, x) = − 1

n

n∑

i=1

{G(Yi, y) + E[G(Y, y)|X = x,Z = 1]} 1(Zi = 1)

p1(x)
Kh (x − Xi)

+ E[G(Y, y)|X = x,Z = 1] + op(n
−1/2)
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uniformly over (y, x). Arguments identical to prove the equation above yield

Rn3(y, x) =
1

n

n∑

i=1

{G(Yi, y) + E[G(Y, y)|X = x,Z = 0]} 1(Zi = 0)

p0(x)
Kh (x − Xi)

− E[G(Y, y)|X = x,Z = 0] + op(n
−1/2)

uniformly over (y, x). Therefore, combining results all together proves the lemma.

Now define

(A.3) T ∗
n :=

∫ ∫ √
n max{τ0(y, x) + [τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx,

where

(A.4) τn(y, x) := τn0(y, x) + ζn(y, x).

Lemma A.2. Under Assumption 4.1, we have that

T̂ = T ∗
n + op(1).

Proof of Lemma A.2. Since |max{a, 0} − max{b, 0}| ≤ |a − b|, we have

|T̂ − T ∗
n |

≤
∫ ∫ √

n|Eτn0(y, x) − τ0(y, x)|w(y, x)dydx

+

∫ ∫ √
n|Eζn(y, x)|w(y, x)dydx +

∫ ∫ √
n|Rn(y, x) − ζn(y, x)|w(y, x)dydx.

By Lemma A.1, the third term above is asymptotically negligible. Also, by Taylor’s Theorem

and standard arguments for kernel estimation along with the fact that K is a s-order kernel and

nh2s → 0 as n → ∞, we have that
∫ ∫ √

n|Eζn(y, x)|w(y, x)dydx = O
(
n1/2hs

)
= o(1),

∫ ∫ √
n|Eτn0(y, x) − τ0(y, x)|w(y, x)dydx = O

(
n1/2hs

)
= o(1).

Thus, we have proved the lemma.

Hence, under the null hypothesis that τ0(y, x) ≡ 0 on W, we have that T̂ = Tn + op(1), where

Tn was defined in (4.10).

A.2. The Asymptotic Null Distribution. We first establish that the estimators of the asymp-

totic bias and variance are consistent. To do so, the following lemmas are useful.
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Lemma A.3. Under Assumption 4.1, the following holds:

(a) sup
(y,x)∈W

|τ̂ (y, x) − τ0(y, x)| = Op

[(
nhd

)−1/2
log n + hs

]
,

(b) sup
(y,x)∈W

|ρ̂2(y, x) − ρ2(y, x)| = Op

[(
nhd

)−1/2
log n + hs

]
.

Proof of Lemma A.3. We first verify (a). Write

τ̂(y, x) = τ0(y, x) + [τn0(y, x) − Eτn0(y, x)] + [Eτn0(y, x) − τ0(y, x)]

+ [ζn(y, x) − Eζn(y, x)] + Eζn(y, x)

+ [Rn(y, x) − ζn(y, x)] .

Repeated applications of Theorem 37 of Pollard (1984, p.34) give

sup
(y,x)∈W

|τn0(y, x) − Eτn0(y, x)| = O

[(
nhd

)−1/2
log n

]
,(A.5)

sup
(y,x)∈W

|ζn(y, x) − Eζn(y, x)| = O

[(
nhd

)−1/2
log n

]
(A.6)

almost surely. Also, note that by usual bias calculations in kernel estimation,

Eτn0(y, x) − τ0(y, x) = O(hs) and Eζn0(y, x) = O(hs)

uniformly over (y, x). Then part (a) follows from Lemma A.1. The proof of part (b) is similar.

Theorem A.1. Under Assumption 4.1, we have

(a) ân = an + op(1),

(b) σ̂2 = σ2
0 + op(1).

Proof of Theorem A.1. Note that we have
∣∣∣∣
∫ √

ρ̂2(y, x)w(y, x)du −
∫ √

ρ2(y, x)w(y, x)du

∣∣∣∣

≤
∫ ∣∣∣
√

ρ̂2(y, x) −
√

ρ2(y, x)
∣∣∣w(y, x)du

≤
[

inf
(y,x)∈W

|ρ2(y, x)|
]−1/2

sup
(y,x)∈W

|ρ̂2(y, x) − ρ2(y, x)|

= Op(n
−1/2h−d/2 log n + hs) = op(h

d/2)

where the first inequality holds by triangle inequality, the second inequality holds by the simple

inequality
∣∣∣
√

a −
√

b
∣∣∣ =

∣∣∣
√

a +
√

b
∣∣∣
−1

|a − b| ≤ a−1/2 |a − b| for a, b > 0, the first equality holds by

Lemma A.3 and Assumption 4.1 (iv) and (vi), and the last equality holds by Assumption 4.1 (ix).

This establishes part (a) of Theorem A.1. The proof of part (b) is similar since

F (ρ) = Cov
(
max{

√
1 − ρZ1 + ρZ2, 0},max {Z2, 0}

)
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is a continuous functional of ρ on T0 and ρ̂2(·, ·, ·, ·) is consistent for ρ2(·, ·, ·, ·) uniformly over

Wy ×Wy ×Wx × T0 using Lemma A.3 and Assumption 4.1 (iv) and (vi).

We need to show that the asymptotic distribution of Tn is normal:

Theorem A.2. Under Assumption 4.1, we have

Tn − an

σ0

d→ N(0, 1).

The proof of Theorem A.2 is lengthy and will be given below in Section A.3. Given Theorems

A.1 and A.2, we can establish Theorem 4.1.

Proof of Theorem 4.1. We have

Pr
(
Ŝ > z1−α

)
= Pr

(
T̂ > ân + σ̂z1−α

)

= Pr (T ∗
n > ân + σ̂z1−α) + o(1)

≤ Pr (Tn > ân + σ̂z1−α) + o(1)

→ α,

where the second equality holds by Lemma A.2, the inequality holds since τ0(y, x) ≤ 0 for each

(y, x) ∈ W under the null hypothesis (with inequality replaced by equality if τ0(y, x) = 0 for each

(y, x) ∈ W), and the last convergence to α follows from Theorems A.1 and A.2. This gives the

desired result of Theorem 4.1.

A.3. Proof of Theorem A.2. We now establish Theorem A.2. For this purpose, we need several

lemmas. The first lemma is related to the Berry-Esseen theorem.

Lemma A.4. Let {W̃i = (W̃1i, W̃2i)
′ : i ≥ 1} be a sequence of i.i.d. random vectors in R

2 such

that each component has mean 0, variance 1, and finite absolute moments of third order. Let

Z̄ = (Z̄1, Z̄2)
′ be multivariate normal with mean vector 0 and variance-covariance matrix

Σ = EZ̄Z̄ ′ = EW̃W̃ ′ =

(
1 ρ

ρ 1

)
.

Let µ1 and µ2 be finite constants. Then there exist universal positive constants A1, A2, A′
2, A3 and

A′
3 such that

∣∣∣∣∣E max

{
1√
n

n∑

i=1

W̃1i + µ1, 0

}
− E max

{
Z̄1 + µ1, 0

}
∣∣∣∣∣ ≤

A1√
n

E
∣∣∣W̃1

∣∣∣
3

(A.7)

and, whenever ρ2 < 1,
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∣∣∣∣E
[
max

{
1√
n

n∑

i=1

W̃1i + µ1, 0

}
max

{
1√
n

n∑

i=1

W̃2i + µ2, 0

}]

− E
[
max

{
Z̄1 + µ1, 0

}
max

{
Z̄2 + µ2, 0

}] ∣∣∣∣

≤ A2

(1 − ρ2)3/2

log n√
n

(
E
∣∣∣W̃1

∣∣∣
3
+ E

∣∣∣W̃2

∣∣∣
3
)

+
A′

2

(1 − ρ2)3
(log n)2

n

(
E
∣∣∣W̃1

∣∣∣
3
+ E

∣∣∣W̃2

∣∣∣
3
)2

(A.8)

and
∣∣∣∣∣E
[
max

{
1√
n

n∑

i=1

W̃1i + µ1, 0

}
1√
n

n∑

i=1

W̃2i

]
− E

[
max

{
Z̄1 + µ1, 0

}
Z̄2

]
∣∣∣∣∣

≤ 1

(1 − ρ2)3/2

A3√
n

(
E
∣∣∣W̃1

∣∣∣
3
+ E

∣∣∣W̃2

∣∣∣
3
)

+
A′

3

(1 − ρ2)3
(log n)2

n

(
E
∣∣∣W̃1

∣∣∣
3
+ E

∣∣∣W̃2

∣∣∣
3
)2

.

(A.9)

Proof of Lemma A.4. We prove this lemma using the results in Bhattacharya (1975). In particular,

special cases of the main theorem of Bhattacharya (1975) provide the following facts.

Fact A.1. Let ‖·‖ denote the Euclidean norm in R
k. Let X̃1, . . . , X̃n be n independent and iden-

tically distributed random vectors in R
k with EX̃1 = 0 and Cov(X̃1) = I, where I is the identity

matrix. Let Z be a vector of independent standard normals in R
k.

(a) Assume that k = 1 and that a function h : R 7→ R satisfies

|h(x) − h(y)| ≤ C1 ‖x − y‖ , sup
x∈R

|h(x)|
1 + ‖x‖r ≤ C2

for some positive, finite constants C1 and C2 and some integer r, 0 ≤ r ≤ 3. Then there exists a

universal constant C3 < ∞ such that
∣∣∣∣∣E

[

h

(
1√
n

n∑

i=1

X̃i

)]

− E [h(Z)]

∣∣∣∣∣ ≤ C3E
∥∥∥X̃1

∥∥∥
3
n−1/2.

(b) Now assume that k = 2 and that a function h : R
2 7→ R satisfies

(i) h(x1, x2) = h1(x1)h2(x2);

(ii) |hj(xj) − hj(yj)| ≤ C1|xj − yj| for j = 0, 1;

(iii) The following holds uniformly in (y1, y2) such that ‖(x1, x2) − (y1, y2)‖ ≤ ε:

sup
(y1,y2):‖(x1,x2)−(y1,y2)‖≤ε

|h(x1, x2) − h(y1, y2)| ≤ C1

{
ε [|h1(x1)| + |h2(x2)|] + ε2

}
;

(iv) sup(x1,x2)∈R2(1 + ‖(x1, x2)‖r)−1|h(x1, x2)| ≤ C2

for some positive, finite constants C1 and C2 and some integer r, 0 ≤ r ≤ 3. Then there exists

a universal constant C3 < ∞ such that
∣∣∣∣∣E

[

h

(
1√
n

n∑

i=1

X̃i

)]

− E [h(Z)]

∣∣∣∣∣
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≤ C3

[
E
∥∥∥X̃1

∥∥∥
3
n−1/2 + E

∥∥∥X̃1

∥∥∥
3
n−1/2 log n E

{
|h1(Z

(1))| + |h2(Z
(2))|

}

+

{
E
∥∥∥X̃1

∥∥∥
3
}2

n−1(log n)2
]
,

where Z
(j) is the j-th element of Z.

Fact A.1 (a) comes from Section 2.2 of Bhattacharya (1975) and Fact A.1 (b) follows from

equation (1.11) of Bhattacharya (1975). Now the first conclusion (A.7) of the lemma follows

directly from Fact A.1 (a) with h(x) = max{x + µ1, 0} and r = 1 since

|max{x + µ1, 0} − max{y + µ1, 0}| ≤ |x − y| and
|max{x + µ1, 0}|

1 + |x| ≤ 1 + |µ1|.

To show the second conclusion (A.8) of the lemma, let h(x1, x2) = max{x1 +µ1, 0}max{x2 +µ2, 0}.
Then it is straightforward to show conditions (i)-(iii). For condition (iv), choose r = 2. Note that

|h(x1, x2)|
1 + |x1|2 + |x2|2

≤ |x1 + µ1||x2 + µ2|
1 + |x1|2 + |x2|2

≤ |x1||x2|
1 + (|x1| − |x2|)2 + 2|x1||x2|

+
|µ1||µ2|

1 + |x1|2 + |x2|2

+ |µ1|
|x1|21{|x1| ≥ 1} + 1{|x1| < 1}

1 + |x1|2 + |x2|2
+ |µ2|

|x2|21{|x2| ≥ 1} + 1{|x2| < 1}
1 + |x1|2 + |x2|2

≤ 1 + |µ1||µ2| + 2|µ1| + 2|µ2|.

Hence, we have verified condition (iv). Then as long as ρ2 < 1, (A.8) follows from Fact A.1 (b)

using the change of variables based on X̃ = Σ−1/2W̃ . The third conclusion (A.9) of the lemma can

be proved using arguments similar to those used in the proof of (A.8).

We omit the proof of the following Lemma since it is similar to that of Lemma 6.1 of Giné et al.

(2003).

Lemma A.5. Suppose H is a finite class of uniformly bounded functions H : R
d → R, which are

equal to zero outside of a compact set. Also, suppose g(y, x)f(x) is continuously differentiable in

x with sup(y,x)∈B |Dxg(y, x)f(x)| < ∞, where B ⊂ R
d+1 is a compact set. Then, uniformly in

H ∈ H,

(A.10) sup
(y,x)∈B

∣∣∣∣
1

hd

∫ ∞

−∞
g(y, z)f(z)H

(
x − z

h

)
dz − J(H)g(y, x)f(x)

∣∣∣∣ → 0 as h → 0,

where

J(H) =

∫

Rd

H(u)du.

We prove Theorem A.2 by extending the “Poissonization” result of Giné et al. (2003). We first

introduce some concepts used throughout the proof. Let N denote a Poisson random variable with

mean n, defined on the same probability space as the sequence {Wi : i ≥ 1} and independent of
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this sequence. Define

χj :=
E[G(Y, y)|X = x,Z = j]

pj(x)
,

χ(z, y, x) := χ1(y, x)1(z = 1) − χ0(y, x)1(z = 0),

ϕ(Wi, y, x) := [G(Yi, y)φ(x,Zi) − χ(Zi, y, x)] Kh (x − Xi) + τ0(y, x).

Recall that τn(y, x) is defined in (A.4). Then

τn(y, x) = τn0(y, x) + ζn(y, x) =
1

n

n∑

i=1

ϕ(Wi, y, x).

Now we will Poissonize τn(y, x). To do so, define

(A.11) τN (y, x) =
1

n

N∑

i=1

ϕ(Wi, y, x),

where the empty sum is defined to be zero. Notice that

EτN (y, x) = Eτn(y, x) = E [ϕ(W,y, x)] ,(A.12)

kτ,n(y, x) := nV ar (τN (y, x)) = E
[
ϕ2(W,y, x)

]
,(A.13)

nV ar (τn(y, x)) = E
[
ϕ2(W,y, x)

]
− {E [ϕ(W,y, x)]}2 .(A.14)

Let ε ∈
(
0,
∫
Wx

f(x)dx
)

be an arbitrary constant. For constant {Mj > 0 : j = 1, ..., d},

let B(M) =
d∏

j=1
[−Mj,Mj ] ⊂ Wx denote a Borel set in R

d with nonempty interior with finite

Lebesgue measure λ(B(M)). For v > 0, define B(M,v) to be the v-contraction of B(M), i.e.,

B(M,v) = {x ∈ B(M) : ρ(x, Rd\B(M)) ≥ v}, where ρ(x,B) = inf{‖x − y‖ : y ∈ B}. Choose

M,v > 0 and a Borel set B0 such that

B0 ⊂ B(M,v),(A.15)
∫

Rd\B(M)
f(x)dx := α > 0,(A.16)

∫

B0

f(x)dx >

∫

Wx

f(x)dx − ε.(A.17)

Such M,ν, and B0 exist by the absolute continuity of the density f , see also Lemma 6.1 of Giné et al.

(2003).

Let B = R × B0 and define a Poissonization version of Tn (restricted to B) to be:

TP
n (B) =

∫

B0

∫

R

√
n max{[τN (y, x) − Eτn(y, x)] , 0}w(y, x)dydx

−
∫

B0

∫

R

√
nE max{[τN (y, x) − Eτn(y, x)] , 0}w(y, x)dydx.(A.18)
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Also, let

(A.19) σ2
n(B) = V ar

(
TP

n (B)
)
.

The following lemma derives the asymptotic variance of TP
n (B).

Lemma A.6. If Assumption 4.1 holds and B satisfies (A.15)-(A.17), we have

(A.20) lim
n→∞

σ2
n(B) = σ2

0,B,

where

σ2
0,B =

∫

T0

∫

B0

∫

R

∫

R

Cov
(
max{

√
1 − ρ2(y, y′, x, t)Z1 + ρ(y, y′, x, t)Z2, 0},max {Z2, 0}

)

×
√

ρ2(y, x)ρ2(y′, x)w(y, x)w(y′, x)dydy′dxdt.(A.21)

Proof of Lemma A.6. To show (A.20), notice that, for each (y, x), (y′, x′) ∈ R
d+1 such that

‖x − x′‖ > h, the random variables τN (y, x) − Eτn(y, x) and τN (y′, x′) − Eτn(y′, x′) are inde-

pendent because they are functions of independent increments of a Poisson process and the kernel

K vanishes outside of the closed ball of radius 1/2. Therefore,

V ar
(
TP

n (B)
)

= n

∫

B0

∫

B0

∫

R

∫

R

Cov
(
max{[τN (y, x) − Eτn(y, x)] , 0},max{

[
τN (y′, x′) − Eτn(y′, x′)

]
, 0}
)

× w(y, x)w(y′, x′)dydy′dxdx′

= n

∫

B0

∫

B0

∫

R

∫

R

1
(∥∥x − x′

∥∥ ≤ h
)

× Cov
(
max{[τN (y, x) − Eτn(y, x)] , 0},max{

[
τN (y′, x′) − Eτn(y′, x′)

]
, 0}
)

× w(y, x)w(y′, x′)dydy′dxdx′.

Let

(A.22) Sτ,N (y, x) =

√
n {τN(y, x) − Eτn(y, x)}√

kτ,n(y, x)
,

where kτ,n(y, x) = nV ar (τN (y, x)) is given by (A.13). We have that, with λ(Wy × B0) < ∞,

sup
(y,x)∈Wy×B0

∣∣∣∣
√

kτ,n(y, x) − h−d/2
√

ρ2(y, x)

∣∣∣∣ = O
(
hd/2

)
,(A.23)

∫

B0

∫

B0

∫

R

∫

R

1
(∥∥x − x′

∥∥ ≤ h
)
w(y, x)w(y′, x′)dydy′dxdx′ = O(hd),(A.24)

sup
{(y,x),(y′,x′)}∈(Wy×B0)2

∣∣Cov
(
max{Sτ,N (y, x), 0},max{Sτ,N (y′, x′), 0}

)∣∣ = O(1),(A.25)

where (A.23) holds by Lemma A.5 and (A.25) follows from Cauchy Schwartz inequality. Therefore,

from (A.23) - (A.25), we have that

V ar
(
TP

n (B)
)

= σ2
n,0 + o(1),
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where

σ2
n,0 =

∫

B0

∫

B0

∫

R

∫

R

1
(∥∥x − x′

∥∥ ≤ h
)
Cov

(
max{Sτ,N (y, x), 0},max{Sτ,N (y′, x′), 0}

)

×h−d
√

ρ2(y, x)ρ2(y′, x′)w(y, x)w(y′, x′)dydy′dxdx′.(A.26)

Now, let (Z1n(y, x), Z2n(y′, x′)) for (y, x), (y′, x′) ∈ R
d+1, be a mean zero multivariate Gauss-

ian process such that, for each (y, x) ∈ R
d+1 and (y′, x′) ∈ R

d+1, (Z1n(y, x), Z2n(y′, x′)) and

(Sτ,N (y, x), Sτ,N (y′, x′)) have the same covariance structure. That is,

(
Z1n(y, x), Z2n(y′, x′)

)

d
=

(√
1 − (ρ∗n(y, y′, x, x′))2Z1 + ρ∗n(y, y′, x, x′)Z2, Z2

)
,

where Z1 and Z2 are independent standard normal random variables and

ρ∗n(y, y′, x, x′) = E
[
Sτ,N (y, x)Sτ,N (y′, x′)

]
.

Let

τ2
n,0 =

∫

B0

∫

B0

∫

R

∫

R

1
(∥∥x − x′

∥∥ ≤ h
)
Cov

(
max{Z1n(y, x), 0},max

{
Z2n(y′, x′), 0

})

×h−d
√

ρ2(y, x)ρ2(y′, x′)w(y, x)w(y′, x′)dydy′dxdx′.

By a change of variables x′ = x + th, we can write

τ2
n,0 =

∫

T0

∫

B0

∫

R

∫

R

1(x ∈ B0)1 (x + th ∈ B0) Cov
(
max{Z1n(y, x), 0},max

{
Z2n(y′, x + th), 0

})

×
√

ρ2(y, x)ρ2(y′, x + th)w(y, x)w(y′, x + th)dydy′dxdt.

Note that

nE
[
{τN (y, x) − E [τN (y, x)]}

{
τN(y′, x′) − E

[
τN (y′, x′)

]}]

= E

{
[G(Y, y)φ(x,Z) − χ(Z, y, x)]

[
G(Y, y′)φ(x′, Z) − χ(Z, y′, x′)

]
Kh (x − X)Kh

(
x′ − X

)}
.

Then, by Lemma A.5 and a change of variables x′ = x + th, we have, for almost every (y, y′, x, t),

(A.27) ρ∗n(y, y′, x, x + th) → ρ1(y, y′, x, t)√
ρ2(y, x)ρ2(y′, x)

= ρ(y, y′, x, t).

uniformly over (y, y′, x, t) ∈ Wy ×Wy × B0 × T0. Therefore, as in the proof of (6.35) of Giné et al.

(2003), by the bounded convergence theorem, we have

lim
n→∞

τ2
n,0 = σ2

0,B.

Now, the desired result (A.20) holds if we establish

(A.28) τ2
n,0 − σ2

n,0 → 0.
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To show (A.28), set

Gn(y, x, y′, t) :=
√

ρ2(y, x)ρ2(y′, x + th)w(y, x)w(y′, x + th).

Notice that
∫

T0

∫

B0

∫

R

∫

R

1(x ∈ B0)1 (x + th ∈ B0)Gn(y, y′, x, t)dydy′dxdt

≤ λ(T0 × B0 ×Wy ×Wy) sup
(y,x)∈R×B0

∣∣ρ2(y, x)w2(y, x)
∣∣ =: β̄ < ∞.

(A.29)

Let εn = (ε1n, ε2n)′,where ε1n and ε2n ∈ (0, h] be arbitrary positive sequences such that ε1n → 0 and

ε2n/h → 0. Define

Γ1(εn) :=
{
(y, y′, x, t) ∈ Wy ×Wy × B0 × T0 :

∣∣y − y′
∣∣ ≤ ε1n, ‖t‖ ≤ ε2n/h, x + th ∈ B0

}
,

Γc
1(εn) :=

{
(y, y′, x, t) ∈ Wy ×Wy × B0 × T0 :

∣∣y − y′
∣∣ > ε1n or ε2n/h < ‖t‖ ≤ 1, x + th ∈ B0

}
.

Let

σ2
n,0 =

(∫ ∫ ∫ ∫

Γ1(εn)
+

∫ ∫ ∫ ∫

Γc
1
(εn)

)

Cov
(
max{Sτ,N (y, x), 0},max{Sτ,N (y′, x′), 0}

)

×
√

ρ2(y, x)ρ2(y′, x + th)w(y, x)w(y′, x + th)dydy′dxdt

=: σ2
n,0(εn) + σ2

n,0,c(εn)

and

τ2
n,0 =

(∫ ∫ ∫ ∫

Γ1(εn)
+

∫ ∫ ∫ ∫

Γc
1
(εn)

)

Cov
(
max{Z1n(y, x), 0},max

{
Z2n(y′, x + th), 0

})

×
√

ρ2(y, x)ρ2(y′, x + th)w(y, x)w(y′, x + th)dydy′dxdt

=: τ2
n,0(εn) + τ2

n,0,c(εn).

Then, using (A.25), we have

σ2
n,0(εn) = σ2

n,0(0) + O

(
ε1n

(ε2n

h

)d
)

= σ2
n,0(0) + o (1) ,(A.30)

τ2
n,0(εn) = τ2

n,0(0) + O

(
ε1n

(ε2n

h

)d
)

= τ2
n,0(0) + o(1).(A.31)

Notice that σ2
n,0(0) = τ2

n,0(0) since E max{Sτ,N (y, x), 0}2 = E max{Z1n(y, x), 0}2 = 1. Therefore,

to show (A.28), it suffice to establish

(A.32) τ2
n,0,c(εn) − σ2

n,0,c(εn) → 0.

Notice that

∣∣τ2
n,0,c(εn) − σ2

n,0,c(εn)
∣∣

=

∣∣∣∣

∫ ∫ ∫ ∫

Γc
1
(εn)

[
Cov

(
max{Z1n(y, x), 0},max

{
Z2n(y′, x + th), 0

})
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−Cov
(
max{Sτ,N (y, x), 0},max{Sτ,N (y′, x + th), 0}

)]
Gn(y, y′, x, t)dydy′dxdt

∣∣∣∣

≤
∫ ∫ ∫ ∫

Γc
1
(εn)

∣∣E max{Z1n(y, x), 0}E max
{
Z2n(y′, x + th), 0

}

−E max{Sτ,N (y, x), 0}E max{Sτ,N (y′, x + th), 0}
∣∣Gn(y, y′, x, t)dydy′dxdt

+

∫ ∫ ∫ ∫

Γc
1
(εn)

∣∣E max{Z1n(y, x), 0}max
{
Z2n(y′, x + th), 0

}

−E max{Sτ,N (y, x), 0}max{Sτ,N (y′, x + th), 0}
∣∣Gn(y, y′, x, t)dydy′dxdt

=: ∆1n + ∆2n.

We first establish that ∆1n = o(1) as n → ∞. Let η1 denote an independent Poisson random

variable with mean 1 that is independent of {Wi : i ≥ 1}and set

(A.33) Qτ,n(y, x) =




∑

j≤η1

ϕ(Wj , y, x) − Eϕ(W,y, x)



 /
√

Eϕ2(W,y, x)

Note that V ar (Qτ,n(y, x)) = 1 and for some constant A1 > 0 independent of Qτ,n and (y, x),

E |Qτ,n(y, x)|3 ≤ A1

h−3d/2
{

E |G(Y, y)φ(x,Z)K ((x − X) /h)|3 + E |χ(Z, y, x)K ((x − X) /h)|3
}

(
h−dE [{G(Y, y)φ(x,Z) − χ(Z, y, x)}K ((x − X) /h)]2

)3/2

Combining this with Lemma A.5 and Assumption 4.1, we have

(A.34) sup
(y,x)∈Wy×B0

E |Qτ,n(y, x)|3 = O(h−d/2).

Let Q
(1)
τ,n(y, x), ..., Q

(n)
τ,n(y, x) be i.i.d. copies of Qτ,n(y, x). Then obviously, we have

Sτ,N(y, x) =

√
n {τN (y, x) − Eτn(y, x)}√

h−2dE [{G(Y, y)φ(x,Z) − χ(Z, y, x)}K ((x − X) /h)]2

d
=

∑n
i=1 Q

(i)
τ,n(y, x)√
n

.

Therefore, by (A.7) and (A.34), we have

(A.35) sup
(y,x)∈Wy×B0

|E max{Sτ,N (y, x), 0} − E max{Z1n(y, x), 0}| ≤ O

(
1√
nhd

)
.

The results (A.29) and (A.35) imply that ∆1n = o(1) as desired.
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We next consider ∆2n. We have

∆2n ≤ sup
(y,y′,x,t)∈Γc

1
(εn)

∣∣E max{Z1n(y, x), 0}max
{
Z2n(y′, x + th), 0

}

−E max{Sτ,N (y, x), 0}max{Sτ,N (y′, x + th), 0}
∣∣ · β

≤ O

(
ε
−3α1/2
1n +

(ε2n

h

)−3α0/2
)
· O
(

log n√
nhd

)

+ O

(
ε−3α1

1n +
(ε2n

h

)−3α0

)
· O
(

(log n)2

nhd/2

)
,

(A.36)

where the first inequality uses (A.29) and the second inequality holds by (A.8) of Lemma A.4,

(A.27), (A.34) and Assumption 4.1. Now, since εn is arbitrary, we can choose ε1n = d1h
d/(3α1) and

ε2n = d2h
1+d/(3α0) for some constants d1 > 0 and d2 > 0. Then, the right hand side of (A.36) is o(1)

by our bandwidth condition (Assumption 4.1 (ix)). This establishes (A.32) and hence completes

the proof of Lemma A.6.

Let M be defined as in (A.15)-(A.17) and let

Un :=
1√
n






N∑

j=1

1 ((Yj ,Xj) ∈ R × B(M)) − n Pr ((Y,X) ∈ R × B(M))




 ,

Vn :=
1√
n






N∑

j=1

1
(
(Yj ,Xj) ∈ R

d+1\ (R × B(M))
)
− n Pr

(
(Y,X) ∈ R

d+1\ (R × B(M))
)



 .

Also, define

Sn :=
1

σn(B)
TP

n (B).

We next establish the following weak convergence result.

Lemma A.7. Under Assumption 4.1, we have

(Sn, Un)
d→ (Z1,

√
1 − αZ2),

where Z1 and Z2 are independent N(0, 1) random variables and α is defined as in (A.16).

Proof of Lemma A.7. Let

∆n(y, x) =
√

n [max{[τN (y, x) − Eτn(y, x)] , 0}
− E max{[τN (y, x) − Eτn(y, x)] , 0}] w(y, x).

(A.37)

We first construct a partition of R × B(M). Consider the regular grid

Gi = (xi1 , xi1+1] × · · · × (xid , xid+1],

where i = (i1, ..., id), i1, ..., id are integers and xi = ih for some integer i. Define

Ri = R × (Gi ∩ B(M)) ,

In = {i ∈ Z
d : (Gi ∩ B(M)) 6= ∅}.
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Then, we see that {Ri : i ∈ In ⊂ Z
d} is a partition of R × B(M) with

λ(Ri) ≤ A1h
d

mn := #(In) ≤ A2h
−d

for some positive constants A1 and A2, see Mason and Polonik (2009) for a similar construction of

partitions in a different context. Letting u = (y, x), set

αi,n =

∫
Ri

1(u ∈ B)∆n(u)du

σn(B)
,

ui,n =
1√
n






N∑

j=1

1 ((Yj ,Xj) ∈ Ri) − n Pr ((Y,X) ∈ Ri)




 .

Then, we have

Sn =
∑

i∈In

αi,n and Un =
∑

i∈In

ui,n.

Notice that

V ar(Sn) = 1 and V ar(Un) = 1 − α.

For arbitrary λ1and λ2 ∈ R, let

yi,n = λ1αi,n + λ1ui,n.

Notice that {yi,n : i ∈ In} is an array of mean zero one-dependent random fields. Below we will

establish that

(A.38) V ar




∑

i∈In

yi,n



 = V ar(λ1Sn + λ2Un) → λ2
1 + λ2

2(1 − α),

(A.39)
∑

i∈In

E |yi,n|r = o(1) for some 2 < r < 3.

Then, the result of Lemma A.7 follows from the central limit theorem of Shergin (1990), which is

for a triangular array of mean zero m-dependent random fields, and Cramér-Wold device.

We first establish (A.38), which holds if we have

(A.40) Cov (Sn, Un) = O

(
1√

nh2d

)
.

Now, (A.40) holds if

(A.41) Cov

(∫

R

∫

B0

√
n max{[τN (y, x) − Eτn(y, x)] , 0}w(y, x)dxdy, Un

)
= O

(
1√

nh2d

)
.

For any (y, x) ∈ Wy × B0, we have

(A.42)

(
Sτ,N(y, x),

Un√
Pr ((Y,X) ∈ R × B(M))

)
d
=

1√
n

n∑

i=1

(
Q(i)

τ,n(y, x), U (i)
)

,
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where
(
Q

(i)
τ,n(y, x), U (i)

)
for i = 1, ..., n are i.i.d. copies of (Qτ,n(y, x), U), with Qτ,n(y, x) defined

as in (A.33) and

U =




∑

j≤η1

1 ((Yj,Xj) ∈ R × B(M)) − Pr ((Y,X) ∈ R × B(M))



 /
√

Pr ((Y,X) ∈ R × B(M)).

Let (Z1n(y, x), Z2n) for (y, x) ∈ R
d+1, be a mean zero multivariate Gaussian process such that,

for each (y, x) ∈ R
d+1 , (Z1n(y, x), Z2n) and the left-hand side of (A.42) have the same covariance

structure. That is,

(Z1n(y, x), Z2n)

d
=

(√
1 − (γ∗

n(y, x))2Z1 + γ∗
n(y, x)Z2, Z2

)
,

where Z1 and Z2 are independent standard normal random variables and

γ∗
n(y, x) = E

[
Sτ,N (y, x)

Un√
Pr ((Y,X) ∈ R × B(M))

]
.

Notice that we have

(A.43) sup
Wy×B0

|γ∗
n(y, x)| = O(hd/2),

which in turn is less than or equal to ε for all sufficiently large n and any 0 < ε < 1/2. This result

and (A.9) imply that

sup
Wy×B0

∣∣∣∣∣Cov

(

max{Sτ,N (y, x), 0}, Un√
Pr ((Y,X) ∈ R × B(M))

)

− E max{Z1n(y, x), 0}Z2n

∣∣∣∣∣

≤ O

(
1√

nh2d

)
.

(A.44)

On the other hand,

sup
Wy×B0

|E max{Z1n(y, x), 0}Z2n| = sup
Wy×B0

|γ∗
n(y, x)E max{Z1n(y, x), 0}Z1n(y, x)|

≤ sup
Wy×B0

|γ∗
n(y, x)|EZ2

1n(y, x)

= sup
Wy×B0

|γ∗
n(y, x)| = O(hd/2),(A.45)

using the law of iterated expectations and (A.43). Therefore, (A.44) and (A.45) imply that

sup
Wy×B0

∣∣Cov
(√

n max{[τN (y, x) − Eτn(y, x)] , 0}, Un

)∣∣ ≤ O

(
1√
nh2d

+ hd/2

)
,

which, when combined with λ(Wy × B0) < ∞, yields (A.41) and hence (A.38), as desired.

We next establish (A.39). Notice that, with 2 < r < 3,

σr
n(B)E |αi,n|r
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≤
(∫

Ri

∫

Ri

∫

Ri

1B(u)1B(v)1B(w)E |∆n(u)∆n(v)∆n(w)| dudvdw

)r/3

,(A.46)

where 1B(u) = 1(u ∈ B) by the Liapunov inequality. Also, using Jensen’s inequality and the

elementary result |max{X, 0}| ≤ |X| , we have:

(A.47) E |∆n(y, x)|3 ≤ 8n3/2E |τN(y, x) − Eτn(y, x)|3 .

By Rosenthal’s inequality (see, e.g., Lemma 2.3 of Giné et al., 2003), we have:

(A.48) sup
Wy×B0

n3/2E |τN (y, x) − Eτn(y, x)|3 ≤ O

(
1

h3d/2
+

1

n1/2h2d

)
.

Now, (A.46), (A.47), (A.48), the elementary result E|XY Z| ≤ E (|X| + |Y | + |Z|)3 and the facts

that λ(Ri) ≤ A1h
d, nhd → ∞, and σr

n(B) = O(1) imply that

(A.49) E |αi,n|r ≤ O(hrd/2) uniformly in i ∈ In.

Therefore, we have

(A.50)
∑

i∈In

E |αi,n|r ≤ O(mnhrd/2) = O(h(r/2−1)d) = o(1).

On the other hand, set

pi,n = Pr ((Y,X) ∈ Ri) .

Then, by the Rosenthal’s inequality, there exists a constant D1 > 0 such that
∑

i∈In

E |ui,n|r ≤ D1n
−r/2

∑

i∈In

(
(npi,n)r/2 + npi,n

)
(A.51)

≤ D1 max
i∈In

(
(pi,n)(r−2)/2 + n−1/2

)
→ 0.

Therefore, combining (A.50) and (A.51), we have (A.39). This now completes the proof of Lemma

A.7.

Lemma A.8. Under Assumption 4.1, we have

lim
n→∞

∫

B0

∫

R

[√
nE max{[τN (y, x) − Eτn(y, x)] , 0} − E max {Z, 0} k1/2

τ,n (y, x)
]
w(y, x)dydx = 0,

lim
n→∞

∫

B0

∫

R

[√
nE max{[τn(y, x) − Eτn(y, x)] , 0} − E max {Z, 0} k1/2

τ,n (y, x)
]
w(y, x)dydx = 0,

where Z is a standard normal random variable.

Proof of Lemma A.8. This result follows from Lemma A.4 and an argument similar to proof of

Lemma 6.3 of Giné et al. (2003).

Let

Ln(B) =

√
n

σn(B)

∫

B0

∫

R

[max{[τn(y, x) − Eτn(y, x)] , 0}(A.52)

−E max{[τn(y, x) − Eτn(y, x)] , 0}] w(y, x)dydx.
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Lemma A.9. Under Assumption 4.1, we have

Ln(B)
d→ Z

as n → ∞, where Z stands for the standard normal random variable.

Proof of Lemma A.9. Notice that

Sn =

√
n

σn(B)

∫

B0

∫

R

[max{[τN (y, x) − Eτn(y, x)] , 0}

−E max{[τN (y, x) − Eτn(y, x)] , 0}] w(y, x)dydx.

Conditional on N = n, we have

Sn
d
=

√
n

σn(B)

∫

B0

∫

R

[max{[τn(y, x) − Eτn(y, x)] , 0}

−E max{[τn(y, x) − Eτn(y, x)] , 0}] w(y, x)dydx.(A.53)

By Lemma A.6 and the de-Poissonization argument of Beirlant and Mason (1995) (see also Lemma

2.4 of Giné et al., 2003), we have
√

n

σn(B)

∫

B0

∫

R

[max{[τn(y, x) − Eτn(y, x)] , 0}

−E max{[τN (y, x) − Eτn(y, x)] , 0}] w(y, x)dydx
d→ Z.

Now the result of Lemma A.9 follows from Lemma A.8, which implies

lim
n→∞

∫

B0

∫

R

[√
nE max{[τN (y, x) − Eτn(y, x)] , 0}

−√
nE max{[τn(y, x) − Eτn(y, x)] , 0}

]
w(y, x)dydx = 0.

Lemma A.10. Let {Wj ∈ R
k : j = 1, ..., n} be i.i.d random vectors with E ‖W‖ < ∞. Let

h : R
k × R

k → R be a real function such that Eh(W,w) = 0 for all w ∈ R
k. Let

Tn =

∫

B
max






n∑

j=1

h(Wj , w), 0




 dw,

where B ⊂ R
k is a Borel set. Then, for any convex function g : R → R, we have

Eg(Tn − ETn) ≤ Eg



2
n∑

j=1

εj

∫

B
|h(Wj , w)| dw



 ,

where {εj : j = 1, ..., n} are i.i.d random variables with Pr(ε = 1) = Pr(ε = −1) = 1/2, independent

of {Wi : i = 1, ..., n}.

Proof of Lemma A.10. We can establish Lemma A.10 by modifying the majorization inequality

results of Pinelis (1994). Let (W ∗
1 , ...,W ∗

n ) be an independent copy of (W1, ...,Wn). For i = 1, ..., n,
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let Ei and E∗
i denote the conditional expectations given (W1, ...,Wi) and (W1, ...,Wi−1,W

∗
i ). Let

ξi = EiTn − Ei−1Tn,(A.54)

ηi = Ei (Tn − Tn,−i) ,(A.55)

where

Tn,−i =

∫

B
max






n∑

j 6=i

h(Wj , w), 0




 dw,

Then, we have

Tn − ETn = ξ1 + · · · ξn,(A.56)

ξi = ηi − Ei−1ηi,(A.57)

|ηi| ≤
∫

B
|h(Xi, w)| dw,(A.58)

where (A.56) follows from (A.54), (A.57) holds by independence of Wj ’s, and (A.58) follows from

the elementary inequality |max{a + b, 0} − max{a, 0}| ≤ |b|. Let

η∗i = E∗
i

(
T ∗

n,i − Tn,−i

)
,

where

T ∗
n,i =

∫

B
max






n∑

j 6=i

h(Wj , w) + h(W ∗
i , w), 0




 dw.

Notice that the random variables ηi and η∗i are conditionally independent given (W1, ...,Wi−1), and

the conditional distributions of ηi and η∗i given (W1, ...,Wi−1) are equivalent. Therefore, for any

convex function f : R → R, we have

Ei−1f(ξi) = Ei−1f(ηi − Ei−1ηi)

≤ Ei−1f(ηi − Ei−1ηi − η∗i − Ei−1η
∗
i )

≤ 1

2
Ei−1 [f(2ηi) + f(−2η∗i )]

≤ 1

2
Ei−1

[
f

(
2

∫

B
|h(Xi, w)| dw

)
+ f

(
−2

∫

B
|h(Xi, w)| dw

)]

= Ef

(
2εi

∫

B
|h(Xi, w)| dw

)
,

where the first inequality follows from Berger (1991, Lemma 2.2), the second inequality holds by

the convexity of f and the last inequality follows from the convexity of f and (A.58). Now, the

result of Lemma A.10 holds by (A.56) and Lemma 2.6 of Berger (1991).

Lemma A.11. Let Assumption 4.1 hold. Then, for any Borel subset A0 ⊂ R
d and A1 ⊂ R, we

have

lim
n→∞

E

(√
n

∫

A0

∫

A1

{hn(y, x) − Ehn(y, x)}w(y, x)dydx

)2
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≤ C0

∫

A0

∫

A0

∫

A1

∫

A1

f(x)g(x, y, y′)w(y, x)w(y′, x′)dydy′dxdx′

for some constant C0 > 0, where

hn(y, x) = max{τn(y, x) − Eτn(y, x), 0},
g(x, y, y′) = g1(x, y, y′) + g2(x, y, y′),

g1(z, y, y′) = E
[∣∣G(Y, y)φ(x,Z)G(Y, y′)φ(x,Z)

∣∣ |X = z
]
,

g2(z, y, y′) = E
[∣∣χ(Z, y, x)χ(Z, y′, x)

∣∣ |X = z
]
.

Proof of Lemma A.11. We have

E

(√
n

∫

A0

∫

A1

{hn(y, x) − Ehn(y, x)}w(y, x)dydx

)2

≤ 8E

(
1

hd

∫

A0

∫

A1

∣∣∣∣K
(

x − X

h

)
G(Y, y)φ(x,Z)

∣∣∣∣w(y, x)dydx

)2

+ 8E

(
1

hd

∫

A0

∫

A1

∣∣∣∣K
(

x − X

h

)
χ(Z, y, x)

∣∣∣∣w(y, x)dydx

)2

≤ 8

(
sup

u
|K(u)|

)

×
{

E

∫

A0

∫

A0

∫

A1

∫

A1

∣∣∣∣
1

hd
K

(
x − X

h

)∣∣∣∣
∣∣G(Y, y)φ(x,Z)G(Y, y′)φ(x′, Z)

∣∣w(y, x)w(y′, x′)dydy′dxdx′

+ E

∫

A0

∫

A0

∫

A1

∫

A1

∣∣∣∣
1

hd
K

(
x − X

h

)∣∣∣∣
∣∣χ(Z, y, x)χ(Z, y′, x′)

∣∣w(y, x)w(y′, x′)dydy′dxdx′

}

≤ 8

(
sup

u
|K(u)|

)2

×
{∫

A0

∫

A0

∫

A1

∫

A1

1

hd
E

[
1

(
X ∈

[
x − h

2
, x +

h

2

]d
)

g(X, y, y′)

]
w(y, x)w(y′, x′)dydy′dxdx′

}

≤ 8

(
sup

u
|K(u)|

)2 ∫

A0

∫

A0

∫

A1

∫

A1

f(x)g(x, y, y′)w(y, x)w(y′, x′)dydy′dxdx′ + o(1)

as n → ∞, where the first inequality follows from Lemma A.10 and the inequality (a + b)2 ≤
2(a2 + b2) and the last convergence holds by bounded convergence theorem. Now, take C0 =

8 (supu |K(u)|)2 to get the desired result of Lemma A.11.

We are now ready to prove Theorem A.2.

Proof of Theorem A.2. Let {B0k : k ≥ 1} be a sequence of Borel sets in R
d that has finite Lebesgue

measure λ(B0k) < ∞ and satisfies (A.15)-(A.17) with B0 = B0k for each k and

(A.59) lim
k→∞

∫

Bc
0k

∩Wx

f(x)dx = 0.
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Let Bk = R × B0k. Then, for each k ≥ 1, by Lemma A.9, we have

Ln(Bk)
d→ Z

and, by Lemma A.6,

lim
n→∞

σ2
n(Bk) = σ2

0,Bk
.

By Lemma A.11, we have

lim
n→∞

E

(
√

n

∫

Bc
0k

∫

R

{max{τn(y, x) − Eτn(y, x), 0} − E max{τn(y, x) − Eτn(y, x), 0}}w(y, x)dydx

)2

≤ C1

∫

Bc
0k

∩Wx

∫

Bc
0k

∩Wx

∫

R

∫

R

f(x)g(x, y, y′)w(y, x)w(y′, x′)dydy′dxdx′

≤ C2λ(Wy ×Wy ×Wx)

(

sup
(x,y,y′,x)∈Wx×Wy×Wy

g(x, y, y′)

)∫

Bc
0k

∩Wx

f(x)dx,

(A.60)

where C1 and C2 are positive constants. Also,

(A.61) lim
k→∞

σ2
0,Bk

= σ2
0.

Therefore, by (A.59), (A.60), (A.61) and Theorem 4.2 of Billingsley (1968), we conclude that
∫ ∫ √

n [max{[τn(y, x) − Eτn(y, x)] , 0} −E max{[τn(y, x) − Eτn(y, x)] , 0}] w(y, x)dydx

d→ σ0Z.

Now, the proof of Theorem A.2 is complete since, using Lemma A.8, we have

lim
n→∞

∣∣∣∣

∫ ∫ √
nE max{[τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx − an

∣∣∣∣ = 0.

A.4. The Asymptotic Power Properties.

Proof of Theorem 4.2. Using Lemma A.7 and Assumption 4.1 (iii), we have
∣∣∣∣n

−1/2T̂ −
∫ ∫

max {τ0(y, x), 0}w(y, x)dydx

∣∣∣∣

≤
∫ ∫

|τ̂(y, x) − τ0(y, x)|w(y, x)dydx

p→ 0.

(A.62)

Therefore,

Pr
(
Ŝ > z1−α

)
= Pr

(
T̂ > ân + σ̂z1−α

)

= Pr
(
n−1/2T̂ > n−1/2 (ân + σ̂z1−α)

)

= Pr
(
n−1/2T̂ > 0

)
+ o(1)

→ 1,
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where the third equality holds by Theorem A.2 and Assumption 4.1 (ix) which implies (nhd)−1/2 →
0 and the last convergence to one follows from (A.62) and the definition of the alternative hypothesis

H1 :
∫ ∫

max {τ0(y, x), 0}w(y, x)dydx > 0.

Proof of Theorem 4.3. Under Ha : τ0(y, x) = n−1/2δ(y, x), we will show below that

(A.63)
T ∗

n − ãn

σ0

d→ N(0, 1),

where σ0 is defined in the main text and

ãn =

∫ ∫
E max

{
δ(y, x) + h−d/2

√
ρ2(y, x)Z, 0

}
w(y, x)dydx.

Notice that

ãn − an

=

∫ ∫
E
[
max

{
δ(y, x) + h−d/2

√
ρ2(y, x)Z, 0

}
− max

{
h−d/2

√
ρ2(y, x)Z, 0

}]
w(y, x)dydx

≥ 1

2

∫ ∫
δ(y, x)w(y, x)dydx > 0,

(A.64)

where the inequality holds by the general result that a ≥ [max{a + b, 0} − max{b, 0}] ≥ a1(b ≥ 0)

for a > 0 and E1(Z ≥ 0) = 1/2. Therefore, we have

Pr
(
Ŝ > z1−α

)
= Pr

(
T̂ > ân + σ̂z1−α

)

= Pr (T ∗
n > ân + σ̂z1−α) + o(1)

= Pr

(
T ∗

n − ãn

σ0
>

ân − an

σ0
+

σ̂

σ0
z1−α − ãn − ân

σ0

)

> Pr

(
T ∗

n − ãn

σ0
>

ân − an

σ0
+

σ̂

σ0
z1−α

)

= 1 − Φ (z1−α) + o(1) → α,

where the second equality holds by Lemma A.6, the third equality holds by rearranging terms, the

inequality holds by (A.64), and the last equality follows from (A.63) and Theorem A.1, as desired.

It now suffices to establish (A.63). Its proof is similar to that of Theorem A.2 and we briefly sketch

the main difference. Notice first that Lemmas A.1-A.3 hold under Ha without any modification.

Define B as before and now set a poissonization version of T ∗
n (restricted to B) to be:

T ∗P
n (B) =

∫

B0

∫

R

max{δ(y, x) +
√

n [τN (y, x) − Eτn(y, x)] , 0}w(y, x)dydx

−
∫

B0

∫

R

E max{δ(y, x) +
√

n [τN (y, x) − Eτn(y, x)] , 0}w(y, x)dydx.(A.65)

Using (A.23) - (A.25), we have that

V ar
(
T ∗P

n (B)
)
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=

∫

B0

∫

B0

∫

R

∫

R

1
(∥∥x − x′

∥∥ ≤ h
)

×Cov

(

max

{
δ(y, x)√
kτ,n(y, x)

+ Sτ,N (y, x), 0

}

,max

{
δ(y′, x′)√
kτ,n(y′, x′)

+ Sτ,N (y′, x′), 0

})

×
√

kτ,n(y, x)kτ,n(y′, x′)w(y, x)w(y′, x′)dydy′dxdx′

= σ2
n,0 + o(1),

where σ2
n,0 is defined as in (A.26). Then, using the same arguments as in Lemma A.6, we can see

that

(A.66) lim
n→∞

V ar
(
T ∗P

n (B)
)

= lim
n→∞

σ2
n(B) = σ2

0,B,

where σ2
0,B is defined in (A.21). Lemma A.7 also holds under Ha with Sn and ∆n(y, x) now defined

by

Sn =
1

σn(B)
T ∗P

n (B)

and

∆n(y, x) =
[
max

{
δ(y, x) +

√
n [τN (y, x) − Eτn(y, x)] , 0

}

E max
{
δ(y, x) +

√
n [τN (y, x) − Eτn(y, x)] , 0

}]
w(y, x),

respectively, and by applying the CLT for 1-independent triangular arrays. On the other hand,

Lemma A.8 should be modified to:

lim
n→∞

∫

B0

∫

R

[
E max

{
δ(y, x) +

√
n
[
τN (y, x) − Eτn(y, x)

]
, 0
}

−E max
{

δ(y, x) + h−d/2
√

ρ2(y, x)Z, 0
} ]

w(y, x)dydx = 0,

lim
n→∞

∫

B0

∫

R

[
E max{δ(y, x) +

√
n [τn(y, x) − Eτn(y, x)] , 0}

−E max
{

δ(y, x) + h−d/2
√

ρ2(y, x)Z, 0
} ]

w(y, x)dydx = 0.

Also, Lemma A.9 should hold with Ln(B) now defined by

Ln(B) =
1

σn(B)

∫

B0

∫

R

[
max{δ(y, x) +

√
n [τn(y, x) − Eτn(y, x)] , 0}

−E max{δ(y, x) +
√

n [τn(y, x) − Eτn(y, x)] , 0}
]
w(y, x)dydx.

The remaining proof of (A.63) is analogous to the proof of Theorem A.2. This completes the proof

of Theorem 4.3.

A.5. Proofs for Section 5.1. For r > 0, define the r-enlargement of the contact set C to be

C(r) = {(y, x) ∈ W : |τ0(y, x)| ≤ r}.
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Also, let

1n = 1

(∫ ∫

C((1−ε)ηn+ǫ)
w(y, x)dydx > 0

)

,

1n = 1

(∫ ∫

C((1+ε)ηn+ǫ)
w(y, x)dydx > 0

)
,

1̂n = 1

(∫ ∫

Ĉǫ

w(y, x)dydx > 0

)
,

where 1(·) denotes the indicator function. The following lemmas are useful to prove Theorem 5.1.

Lemma A.12. Under Assumption 4.1, for each ε > 0,

Pr
{

C ((1 − ε) ηn + ǫ) ⊂ Ĉǫ ⊂ C ((1 + ε) ηn + ǫ)
}
→ 1.

Proof of Lemma A.12. Using Lemma A.3, we have

(A.67) Pr{ sup
(y,x)∈W

|τ̂ (y, x) − τ0(y, x)| > εηn} → 0

by the choice ηn which satisfies (nhd)1/2ηn/ log n → ∞ and h−sηn → ∞ by Assumptions 4.1 (ix)

and 5.1 (ii). Therefore, (A.67) implies that, for any (y, x) ∈ C ((1 − ε) ηn + ǫ) , by the triangle

inequality,

|τ̂(y, x)| ≤ (1 − ε)ηn + ǫ + |τ̂(y, x) − τ0(y, x)| ≤ ηn + ǫ,

with probability approaching one. Thus we deduce that Pr
{

C ((1 − ε) ηn + ǫ) ⊂ Ĉǫ

}
→ 1 . Now,

for any (y, x) ∈ Ĉǫ, by the triangular inequality,

|τ0(y, x)| ≤ ηn + ǫ + |τ̂ (y, x) − τ0(y, x)| ≤ (1 + ε) ηn + ǫ,

with probability approaching one. Therefore, Pr
{
Ĉǫ ⊂ C ((1 + ε) ηn + ǫ)

}
→ 1, as desired.

Lemma A.13. Suppose Assumptions 4.1 and 5.1 hold. Then, we have

(a) ân(Ĉǫ) = an(Cǫ) + op(1),

(b) σ̂2(Ĉǫ) = σ2
0(Cǫ) + op(1).

Proof of Lemma A.13. Let u = (y, x) and, for a Borel set A ⊂ R
d+1, define λρ(·) to be

λρ(A) =

∫

A

√
ρ2(u)w(u)du.

By the triangle inequality, we have
∣∣∣∣

∫

Ĉǫ

√
ρ̂2(u)w(u)du −

∫

Cǫ

√
ρ2(u)w(u)du

∣∣∣∣

≤
∫

Ĉǫ∆Cǫ

√
ρ2(u)w(u)du +

∫

Ĉǫ

∣∣∣
√

ρ̂2(u) −
√

ρ2(u)
∣∣∣w(u)du

=: D1n + D2n,
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where ∆ denotes the symmetric difference.

Let

C̃ǫ = {u ∈ W : |τ0(u)| ≤ 2ηn + ǫ} ,

En = {u ∈ W : |τ̂(u) − τ0(u)| > ηn} .

We first establish D1n = op(h
d/2) by extending the result of Cuevas and Fraiman (1997, Theorem

1). We have

D1n = λρ(Ĉǫ∆Cǫ) = λρ(Ĉǫ ∩ Cc
ǫ ) + λρ(Ĉ

c
ǫ ∩ Cǫ)

≤ λρ(Ĉǫ ∩ C̃c
ǫ ) + λρ(C̃ǫ ∩ Cc

ǫ ) + λρ(Ĉ
c
ǫ ∩ Cǫ)

= λρ(Ĉǫ ∩ C̃c
ǫ ∩ En) + λρ(C̃ǫ ∩ Cc

ǫ ) + λρ(Ĉ
c
ǫ ∩ Cǫ ∩ En)

≤ 2λρ(En) + bn,

(A.68)

where bn = h∗(2ηn), the first inequality uses Cǫ ⊂ C̃ǫ, the third equality follows from the facts that

λρ(Ĉǫ ∩ C̃c
ǫ ∩ Ec

n) = 0 and λρ(Ĉ
c
ǫ ∩ Cǫ ∩ Ec

n) = 0 and the last inequality holds by λρ (A) ≤ λρ(B)

for A ⊂ B and Assumption 5.1 (ii).

Now, using Lemma A.3, we have that

(A.69)

∫
|τ̂(u) − τ0(u)|

√
ρ2(u)w(u)du = Op

[(
nhd

)−1/2
log n + hs

]
.

Let ρn = min{
(
nhd

)1/2
(log n)−1 , h−s}. Then, for any ε > 0,

Pr
(
h−d/2D1n > ε

)
≤ Pr

(
2λρ(En) + bn > εhd/2

)

≤ Pr

(
1

ηn

∫
|τ̂(u) − τ0(u)|

√
ρ2(u)w(u)du >

εhd/2 − bn

2

)

≤ Pr

(
ρn

∫
|τ̂(u) − τ0(u)|

√
ρ2(u)w(u)du >

ερnηnhd/2

2

)
+ o(1)

→ 0,(A.70)

where the first inequality holds by (A.68), the second inequality holds by the inequality 1(En) ≤
|τ̂(u) − τ0(u)| /ηn, the third inequality follows from Assumption 5.1 (ii) which implies ρnηnbn → 0,

and the last convergence to zero holds by (A.69) and ρnηnhd/2 → ∞. This now establishes that

D1n = op(h
d/2).

We next consider D2n. We have

h−d/2D2n ≤
[

inf
u∈W

|ρ2(u)| + op(1)

]−1/2

h−d/2

∫
|ρ̂2(u) − ρ2(u)|w(u)du

= Op(n
−1/2h−d log n + hs−d/2) → 0,(A.71)
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where the inequality holds with probability that goes to 1 using Lemma A.3, the equality holds by

Lemma A.3 and the last convergence to zero holds by our assumption on h. (A.69) and (A.71) now

establish part (a) of Theorem B.2. The proof of part (b) is similar.

Lemma A.14. Suppose Assumptions 4.1 and 5.1 hold and
∫ ∫

Cǫ
w(y, x)dydx > 0. Then, under

the null hypothesis H0, we have

(A.72) T ∗
n = T̃n(Cǫ) + op(1),

where T ∗
n is defined in (A.3) and

(A.73) T̃n(Cǫ) =

∫ ∫

Cǫ

√
nmax{τ0(y, x) + [τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx.

Proof of Lemma A.14. Under the null hypothesis, we have τ0(y, x) ≤ 0 for all (y, x) ∈ Y × X .

Therefore, for each ε > 0, we can write
∣∣∣T ∗

n − T̃n(Cǫ)
∣∣∣(A.74)

=

∫ ∫
1 ((y, x) ∈ A1ǫ(ε))

√
n max{τ0(y, x) + [τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx

+

∫ ∫
1 ((y, x) ∈ A2ǫ(ε))

√
n max{τ0(y, x) + [τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx

=: D1n + D2n,

where

A1ǫ(ε) = {(y, x) ∈ W : −ε − ǫ ≤ τ0(y, x) < −ǫ},
A2ǫ(ε) = {(y, x) ∈ W : τ0(y, x) < −ε − ǫ}.

Choose ε = εn such that h−d/2 (log n) εγ
n → 0 and (nhd)1/2 (log n)−1 εn → ∞. Then, we have

D1n ≤
∫ ∫

1 ((y, x) ∈ A1ǫ(εn))
√

nmax{[τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx

≤ sup |w(y, x)| · √n sup
(y,x)∈W

|τn(y, x) − Eτn(y, x)| · λ (A1ǫ(εn))(A.75)

≤ Op

[
h−d/2 log n

]
· O(εγ

n) = op(1),

where the last inequality holds by (A.5) and Assumption 5.1 (ii). Also, we have

Pr (D2n > δ) ≤ Pr

(

sup
(y,x)∈W

{[τn(y, x) − Eτn(y, x)] − εn − ǫ} > 0

)

≤ Pr

(
sup

(y,x)∈W
|τn(y, x) − Eτn(y, x)| > εn + ǫ

)
→ 0,(A.76)

where the convergence to zero holds by (A.5) and by the choice of εn. This establishes Lemma

A.14.
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Define

(A.77) Tn(Cǫ) =

∫ ∫

Cǫ

√
n max{[τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx.

Lemma A.15. Suppose Assumptions 4.1 and 5.1 hold and
∫ ∫

Cǫ
w(y, x)dydx > 0. Then, we have

Tn(Cǫ) − an(Cǫ)

σ0(Cǫ)
⇒ N(0, 1).

Proof of Lemma A.15. The proof of Lemma B.4 is similar to that of Theorem A.2.

Proof of Theorem 5.1. Consider part (a) first. Write

Ŝ∗ = ŜC1̂n + Ŝ
(
1 − 1̂n

)

By Lemma A.12, we know that

1n ≤ 1̂n ≤ 1n wp → 1.

First, suppose that
∫ ∫

Cǫ
w(y, x)dydx > 0. Then, 1n = 1 and hence 1̂n = 1 wp→ 1. Therefore,

we have

Pr
(
Ŝ∗ > z1−α

)
= Pr

(
ŜC > z1−α

)
+ o(1)

= Pr

(
T̃n(Cǫ) − an(Cǫ)

σ0(Cǫ)
> z1−α

)
+ o(1)

≤ Pr

(
Tn(Cǫ) − an(Cǫ)

σ0(Cǫ)
> z1−α

)
+ o(1)

= α + o(1),

(A.78)

where the second equality follows from Lemmas A.2, A.13 and A.14, the inequality is due to the

fact that Tn(Cǫ) ≥ T̃n(Cǫ), and the last equality holds by Lemma A.15.

Next, suppose that
∫ ∫

C w(y, x)dydx = 0. Then, 1n = 0 for n sufficiently large and hence 1̂n = 0

wp→ 1. Therefore,

Pr
(
Ŝ∗ > z1−α

)
= Pr

(
Ŝ > z1−α

)
+ o(1)

≤ α + o(1),(A.79)

by Theorem 4.1 (a). Now, (A.78) and (A.79) combine to yield the desired result.

Part (b) can be proven in the same manner as the proof of Theorem 4.2 (a), except that we now

have that

Pr
(
Ŝ∗ > z1−α

)
= Pr

(
T̂ >

(
ân(Ĉǫ) + σ̂(Ĉǫ)z1−α

)
1̂n + (ân + σ̂z1−α)

(
1 − 1̂n

))

= Pr
(
n−1/2T̂ > 0

)
+ o(1) → 1,

since n−1/2T̂ converges in probability to a positive constant under H1.
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Proof of Theorem 5.2. We first establish part (a). Using Lemma A.3 and Assumption 5.1 (ii),

under H∗
a , we have

Pr{ sup
(y,x)∈W

|τ̂(y, x) − µ(y, x)| > εηn}(A.80)

≤ Pr{ sup
(y,x)∈W

|τ̂(y, x) − τ0(y, x)| > εηn − n−1/2 sup
(y,x)∈W

|δ(y, x)|}

→ 0,

since n−1/2 sup(y,x)∈W |δ(y, x)| can be made arbitrarily small for n sufficiently large using Assump-

tion 5.2 (iii). Let

Ca(r) = {(y, x) ∈ W : |µ(y, x)| ≤ r}.
Then, under H∗

a , we have that for each ε > 0,

(A.81) Pr
{

Ca ((1 − ε) ηn/2 + ǫ) ⊂ Ĉǫ

}
→ 1

because for any (y, x) ∈ C ((1 − ε) ηn/2 + ǫ) ,

|τ̂(y, x)| ≤ (1 − ε)ηn + ǫ + |τ̂(y, x) − τ0(y, x)| ≤ ηn + ǫ,

wp → 1. Since 0 <
∫ ∫

Ca
w(y, x)dydx ≤

∫ ∫
Ca((1−ε)ηn/2+ǫ) w(y, x)dydx, (A.81) implies that 1̂n = 1

wp → 1. Therefore, it follows that,

(A.82) Ŝ∗ = ŜC wp → 1 under Ha.

Below, we shall establish that

(A.83) T̂ = T ∗
n(Ca) + op(1),

ân(Ĉǫ) = an(Ca) + op(1),(A.84)

σ̂2(Ĉǫ) = σ2
0(Ca) + op(1),(A.85)

and

(A.86)
T ∗

n(Ca) − ãn(Ca)

σ0(Ca)

d→ N(0, 1),

where

T ∗
n(Ca) =

∫ ∫

Ca

max{δ(y, x) +
√

n [τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx.

ãn(Ca) =

∫ ∫

Ca

E max
{
δ(y, x) + h−d/2

√
ρ2(y, x)Z, 0

}
w(y, x)dydx.

Now, we can get the desired result of part (a) because

Pr
(
Ŝ∗ > z1−α

)
= Pr

(
ŜC > z1−α

)
+ o(1)(A.87)

= Pr
(
T̂ > ân(Ĉǫ) + σ̂(Ĉǫ)z1−α

)
+ o(1)

= Pr (T ∗
n(Ca) > an(Ca) + σ0(Ca)z1−α) + o(1)
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= Pr

(
T ∗

n(Ca) − ãn(Ca)

σ0(Ca)
>

an(Ca) − ãn(Ca)

σ0(Ca)
+ z1−α

)
+ o(1)

> Pr

(
T ∗

n(Ca) − ãn(Ca)

σ0(Ca)
> z1−α

)
+ o(1)

→ α,

where the first equality holds by (A.82), the second equality follows from the definition of ŜC , the

third equality holds by (A.83), (A.84) and (A.85), the last convergence to α holds by (A.86) and

the inequality holds because

ãn(Ca) − an(Ca)

=

∫ ∫

Ca

E
[
max

{
δ(y, x) + h−d/2

√
ρ2(y, x)Z, 0

}
− max

{
h−d/2

√
ρ2(y, x)Z, 0

}]
w(y, x)dydx

≥ 1

2

∫ ∫

Ca

δ(y, x)w(y, x)dydx > 0.

(A.88)

It remains to establish (A.83) - (A.86). First, (A.83) follows by Lemma A.2 and a modification

of the proof of Lemma A.14. In particular, Cǫ is replaced by Ca, τ0(y, x) in A1ǫ(ε) and A2ǫ(ε) is

replaced by µ(y, x). Then (A.75) is replaced by

D1n ≤
∫ ∫

1 ((y, x) ∈ A1ǫ(ε)) max{δ(y, x) +
√

n [τn(y, x) − Eτn(y, x)] , 0}w(y, x)dydx

≤ sup |w(y, x)| ·
{

sup
(y,x)∈W

|δ(y, x)| + √
n sup

(y,x)∈W
|τn(y, x) − Eτn(y, x)|

}

· λ (A1ǫ(ε))

= op(1),

using Assumption 5.2 (iv), and the inequality (A.76) is replaced by

Pr (D2n > δ) ≤ Pr

(

sup
(y,x)∈W

{
n−1/2δ(y, x) + [τn(y, x) − Eτn(y, x)] − ε − ǫ

}
> 0

)

≤ Pr

(
sup

(y,x)∈W
|τn(y, x) − Eτn(y, x)| > ε0 + ǫ

)
,

for some ε0 > 0 and n sufficiently large, using the assumption sup(y,x)∈W |δ(y, x)| < ∞. Second,

(A.84) also holds by a modification of the proof of Lemma A.13. That is, C̃ǫ is now defined with

τ(u) replace by µ(u) = µ(y, x), En is defined with τ̂(u)−τ0(u) replaced by τ̂(u)−µ(u), bn is defined

as bn = h∗∗(2ηn), and the inequality (A.70) is replace by

Pr
(
h−d/2D1n > ε

)
≤ Pr

(
2λρ(En) + bn > εhd/2

)

≤ Pr

(
1

ηn

∫
|τ̂(u) − µ(u)|

√
ρ2(u)w(u)du >

εhd/2 − bn

2

)

≤ Pr

(

ρn

∫ {
|τ̂(u) − τ0(u)| + n−1/2 |δ(u)|

}√
ρ2(u)w(u)du >

ερnηnhd/2

2

)

+ o(1)
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→ 0

using the condition ρnn−1/2 → 0. (A.85) can be verified in a similar fashion. Finally, (A.86) can

be verified following the same steps using those in the proof of Theorem A.2. This establishes part

(a) of Theorem 5.2.

We next consider part (b). Let

ε = σ−1
0 (Ca)

∫ ∫

Ca

δ(y, x)w(y, x)dydx > 0.

Note that

(A.89) 0 <
1

2
ε ≤ d1n :=

ãn(Ca) − an(Ca)

σ0(Ca)
≤ ε < ∞,

For n sufficiently large, we have

(A.90)

d2n :=
an − an(Ca)

σ0(Ca)
= h−d/2

∫ ∫

R2\Ca

√
ρ2(y, x)w(y, x)dydx · E max {Z1, 0} σ−1

0 (Ca) > 2ε > 0.

Let

Qn =
T ∗

n(Ca) − ãn(Ca)

σ0(Ca)
.

Then, we have

lim
n→∞

[
Pr
(
Ŝ∗ > z1−α

)
− Pr

(
Ŝ > z1−α

)]

= lim
n→∞

[
Pr (Qn > −d1n + z1−α) − Pr

(
Qn > d2n − d1n +

σ0

σ0(Ca)
z1−α

)]

≥ lim
n→∞

[Pr (Qn > −d1n + z1−α) − Pr (Qn > d2n − d1n + z1−α)]

> lim
n→∞

[
Pr
(
Qn > −ε

2
+ z1−α

)
− Pr (Qn > 2ε − ε + z1−α)

]

= lim
n→∞

[
Pr
(
Qn ∈ [−ε + z1−α,−ε

2
+ z1−α)

)]

= Pr
(

Z ∈ [−ε + z1−α,−ε

2
+ z1−α)

)
> 0,

where the first equality holds by Theorem A.1, (A.83), and (A.87), the first inequality uses the fact

σ0/σ0(Ca) ≥ 1, the second inequality holds by (A.89) and (A.90) and the last equality holds by

(A.86). This completes the proof of Theorem 5.2.
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Table 1. Nonparametric tests using data from LaLonde (1986)

outcome (Y ): RE78 outcome (Y ): RE78-RE75
p-values P-values

Bandwidth weight function weight function
(h) Uniform Inverse S.E. Density Uniform Inverse S.E. Density

H0 : E[Y1 − Y0|X = x] = 0 for each x ∈ Wx vs.
H1 : E[Y1 − Y0|X = x] > 0 for some x ∈ Wx

2.021 0.042 0.019 0.021 0.003 0.003 0.026
2.526 0.032 0.021 0.030 0.002 0.005 0.036
3.031 0.032 0.029 0.050 0.003 0.009 0.058
3.537 0.032 0.037 0.073 0.004 0.017 0.089

H0 : E[Y1 − Y0|X = x] = 0 for each x ∈ Wx vs.
H1 : E[Y1 − Y0|X = x] 6= 0 for some x ∈ Wx

5.052 0.233 0.329 0.452 0.078 0.267 0.492
6.063 0.198 0.277 0.395 0.089 0.271 0.489
7.073 0.177 0.240 0.347 0.079 0.226 0.423
8.084 0.162 0.211 0.306 0.073 0.200 0.379

H0 : E[1(Y1 ≤ y)|X = x] ≤ E[1(Y0 ≤ y)|X = x] for each (y, x) ∈ W vs.
H1 : E[1(Y1 ≤ y)|X = x] > E[1(Y0 ≤ y)|X = x] for some (y, x) ∈ W

2.021 0.840 0.851 0.846 0.817 0.697 0.699
2.526 0.930 0.910 0.849 0.855 0.781 0.642
3.031 0.948 0.932 0.870 0.903 0.850 0.668
3.537 0.937 0.925 0.860 0.891 0.837 0.658

H0 : E[1(Y1 ≤ y)|X = x] = E[1(Y0 ≤ y)|X = x] for each (y, x) ∈ W vs.
H1 : E[1(Y1 ≤ y)|X = x] 6= E[1(Y0 ≤ y)|X = x] for some (y, x) ∈ W

5.052 0.150 0.623 0.124 0.032 0.145 0.117
6.063 0.148 0.601 0.120 0.034 0.140 0.123
7.073 0.153 0.592 0.128 0.037 0.147 0.130
8.084 0.154 0.572 0.140 0.042 0.147 0.144

Note: The table shows p-values for four different combinations of null and alternative hypotheses.

Three types of weight functions were used: the uniform weight, the inverse standard-error weight,

and the density weight.
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Table 2. Results of Monte Carlo experiments [one-sided test].

DGP1: H0 is true DGP2: Mimicking
Sample (least favorable case) the NSW data

Size Bandwidth Nominal Probabilities Nominal Probabilities
(n) (h) 0.10 0.05 0.01 0.10 0.05 0.01

Uniform weight w1(x) ≡ 1
722 2.019 0.113 0.064 0.021 0.848 0.763 0.547

2.524 0.109 0.064 0.021 0.836 0.750 0.537
3.028 0.103 0.060 0.021 0.806 0.716 0.506
3.533 0.103 0.060 0.021 0.780 0.683 0.481

1444 1.656 0.120 0.068 0.021 0.976 0.967 0.910
2.070 0.106 0.062 0.018 0.987 0.972 0.900
2.484 0.108 0.063 0.019 0.980 0.958 0.878
2.898 0.107 0.064 0.020 0.971 0.945 0.851

Inverse-standard-error weight ŵ2(x) = [ρ̂2(x)]−1/2

722 2.019 0.107 0.062 0.021 0.887 0.821 0.649
2.524 0.101 0.058 0.019 0.865 0.779 0.588
3.028 0.097 0.058 0.018 0.815 0.722 0.519
3.533 0.096 0.058 0.018 0.771 0.670 0.471

1444 1.656 0.109 0.060 0.018 0.981 0.979 0.960
2.070 0.102 0.054 0.016 0.996 0.989 0.952
2.484 0.101 0.054 0.017 0.991 0.977 0.921
2.898 0.100 0.055 0.017 0.980 0.958 0.880

Density weight ŵ3(x) = p̂1(x) · p̂0(x)
722 2.019 0.109 0.062 0.019 0.850 0.772 0.575

2.524 0.107 0.065 0.021 0.816 0.717 0.517
3.028 0.106 0.064 0.021 0.741 0.636 0.436
3.533 0.106 0.064 0.022 0.679 0.574 0.379

1444 1.656 0.104 0.063 0.018 0.979 0.971 0.931
2.070 0.106 0.064 0.019 0.991 0.976 0.913
2.484 0.105 0.065 0.020 0.979 0.955 0.868
2.898 0.104 0.063 0.019 0.956 0.916 0.794

Note: The table shows coverage probabilities of testing the null hypothesis of zero CATE for

every x ∈ Wx against the alternative hypothesis of positive CATE for some x ∈ Wx (one-sided

test). Three types of weight functions were used: the uniform weight, the inverse standard-error

weight, and the density weight.
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Table 3. Results of Monte Carlo experiments [two-sided test].

DGP1: H0 is true DGP2: Mimicking
Sample (least favorable case) the NSW data

Size Bandwidth Nominal Probabilities Nominal Probabilities
(n) (h) 0.10 0.05 0.01 0.10 0.05 0.01

Uniform weight w1(x) ≡ 1
722 5.047 0.109 0.066 0.021 0.520 0.416 0.245

6.056 0.106 0.064 0.021 0.510 0.407 0.240
7.066 0.105 0.062 0.020 0.501 0.399 0.233
8.075 0.102 0.059 0.020 0.493 0.388 0.229

1444 4.140 0.107 0.061 0.018 0.826 0.747 0.577
4.967 0.102 0.060 0.018 0.814 0.737 0.567
5.795 0.101 0.059 0.018 0.807 0.729 0.554
6.623 0.101 0.058 0.020 0.796 0.718 0.541

Inverse-standard-error weight ŵ2(x) = [ρ̂2(x)]−1/2

722 5.047 0.113 0.066 0.023 0.486 0.380 0.218
6.056 0.110 0.063 0.022 0.471 0.372 0.210
7.066 0.108 0.064 0.021 0.462 0.364 0.206
8.075 0.109 0.064 0.021 0.455 0.358 0.211

1444 4.140 0.110 0.063 0.018 0.814 0.732 0.544
4.967 0.108 0.062 0.018 0.784 0.696 0.507
5.795 0.106 0.061 0.019 0.773 0.679 0.494
6.623 0.105 0.060 0.019 0.757 0.668 0.482

Density weight ŵ3(x) = p̂1(x) · p̂0(x)
722 5.047 0.109 0.063 0.022 0.403 0.309 0.163

6.056 0.110 0.065 0.022 0.393 0.300 0.160
7.066 0.109 0.064 0.024 0.388 0.298 0.166
8.075 0.110 0.065 0.024 0.386 0.299 0.171

1444 4.140 0.107 0.062 0.021 0.698 0.596 0.409
4.967 0.108 0.064 0.021 0.655 0.552 0.370
5.795 0.107 0.065 0.023 0.641 0.539 0.359
6.623 0.109 0.066 0.024 0.628 0.528 0.354

Note: The table shows coverage probabilities of testing the null hypothesis of zero CATE for

every x ∈ Wx against the alternative hypothesis of nonzero CATE for some x ∈ Wx (two-sided

test). Three types of weight functions were used: the uniform weight, the inverse standard-error

weight, and the density weight.
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Table 4. Results of Monte Carlo experiments: Coverage Probabilities of Non-
parametric Tests of Crump et al. (2008)

DGP1: H0 is true DGP2: Mimicking
Sample Order of (least favorable case) the NSW data

Size Power Series Nominal Probabilities Nominal Probabilities
(n) (K − 1) 0.10 0.05 0.01 0.10 0.05 0.01

H0: the CATE is zero for each x (Test Statistic T )
722 1 0.099 0.072 0.028 0.512 0.432 0.293

2 0.108 0.068 0.022 0.452 0.368 0.236
3 0.064 0.045 0.023 0.163 0.127 0.069
4 0.063 0.039 0.018 0.136 0.096 0.056
5 0.065 0.040 0.020 0.459 0.403 0.301

1444 1 0.114 0.080 0.042 0.798 0.741 0.626
2 0.114 0.075 0.040 0.740 0.653 0.516
3 0.071 0.051 0.026 0.218 0.173 0.100
4 0.049 0.032 0.016 0.169 0.120 0.051
5 0.051 0.028 0.014 0.725 0.671 0.573

H0: the CATE is zero for each x (Test Statistic Q)
722 1 0.098 0.042 0.004 0.504 0.362 0.140

2 0.100 0.045 0.007 0.443 0.295 0.113
3 0.059 0.034 0.013 0.153 0.097 0.033
4 0.059 0.030 0.010 0.131 0.074 0.029
5 0.061 0.031 0.011 0.453 0.355 0.231

1444 1 0.109 0.059 0.013 0.794 0.686 0.409
2 0.105 0.055 0.012 0.725 0.587 0.336
3 0.065 0.036 0.010 0.211 0.138 0.049
4 0.045 0.021 0.004 0.166 0.086 0.024
5 0.046 0.020 0.004 0.714 0.626 0.462

Note: The top panel of the table shows coverage probabilities of the nonparametric test of

Crump et al. (2008) with their statistic T for the null hypothesis that the conditional average

treatment effect (CATE) is zero for each value of x. The bottom panel shows coverage probabilities

of the nonparametric test of Crump et al. (2008) with their statistic Q.
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Figure 1. Nonparametric estimation of conditional treatment effects

Note: The top panel shows nonparametric estimates of conditional means of earnings in 1978

(Y , in thousand dollars) as functions of age in years (X) for the treatment and control groups,

respectively. The bottom panel shows nonparametric estimates of conditional means of changes in

earnings between 1978 and 1975.
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Figure 2. Results of Monte Carlo experiments: normal P-P plots

Note: The top four figures show normal P-P plots for the one-sided nonparametric test of the

null hypothesis that the conditional average treatment effect (CATE) is negative for each value of

x. Each panel of the figure shows a P-P plot with a different value of the bandwidth (h). These

figures corresponds to the results reported in the top panel of Table 2 with n = 722. The bottom

four figures show normal P-P plots for the two-sided test. These figures correspond to the results

reported in the bottom panel of Table 3 with n = 722.
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