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Abstract

The thesis concentrates on two problems in discrete geometry, whose solutions are

obtained by analytic, probabilistic and combinatoric tools.

The first chapter deals with the strong polarization problem. This states that for

any sequence u1, . . . , un of norm 1 vectors in a real Hilbert space H , there exists a unit

vector v ∈ H , such that X 1
〈ui, v〉2 6 n2.

The 2-dimensional case is proved by complex analytic methods. For the higher di-

mensional extremal cases, we prove a tensorisation result that is similar to F. John’s

theorem about characterisation of ellipsoids of maximal volume. From this, we deduce

that the only full dimensional locally extremal system is the orthonormal system. We

also obtain the same result for the weaker, original polarization problem.

The second chapter investigates a problem in probabilistic geometry. Take n in-

dependent, uniform random points in a triangle T . Convex chains between two fixed

vertices of T are defined naturally. Let Ln denote the maximal size of a convex chain.

We prove that the expectation of Ln is asymptotically α n1/3, where α is a constant

between 1.5 and 3.5 – we conjecture that the correct value is 3. We also prove strong

concentration results for Ln, which, in turn, imply a limit shape result for the longest

convex chains.
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Foreword

The two topics discussed in this thesis are of a quite different character. Chapter 1

is concerned with functional analytic properties of discrete point sets. Chapter 2 be-

longs to the area of probabilistic discrete geometry, and it reflects a more quantitative

approach. This difference is by virtue of my having two supervisors. However, in all

the subsequent results, the main motivating force is the underlying, clear and beautiful

geometric structure, that provides a natural bond of the dissertation.
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Chapter 1

Polarization problems

The original polarization problem states the following: for any sequence u1, . . . , un

of unit vectors in Rn, there exists a unit vector v ∈ Rn, for whichY
|〈ui, v〉| > n−n/2.

We will also study the following stronger conjecture, that we call the strong polarization

problem. This asserts that under the above conditions, there is a a unit vector v, such

that X 1
〈ui, v〉2 6 n2.

After giving a picture of the state of the art of the problem, in Sections 1.2 and 1.3

we give a complex analytic proof for the strong polarization problem in the case, when

all the vectors are in a plane. The proof depends on the structure of equioscillating

functions. For the higher dimensional problem, by linear algebraic transformations

described in Section 1.5, we arrive to conjectures about the location of inverse eigen-

vectors of Gram matrices. This is followed by a geometric interpretation, where the

difference between the two conjectures becomes apparent as well. In Section 1.6, by an

argument similar to F. John’s theorem, we deduce that the only full dimensional ex-

tremal vector system for the polarization problem is the orthonormal system. Finally,

in Section 1.7, we prove the analogous statement for the strong polarization problem,

and we characterise the locally extremal cases, regardless of their dimension.

1.1 History

Polarization problems originate from the theory of infinite dimensional Banach

spaces. The reason for the term is that they are relatives of the general polarization

inequality, which relates the norm of a homogeneous polynomial to the norm of its

associated symmetric linear form. This inequality and other related topics can be

found in the monograph of Dineen [21], see Section 1.3 therein.
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The first articles about the polarization problem have been published roughly at

the same time, in 1998, by Ryan and Turett [38] and by Beńıtez, Sarantopoulos and

Tonge [19]. They introduced the following notion.

Definition 1.1 ([19]). Let X be a Banach space and X∗ its dual space. The nth linear

polarization constant of X, to be denoted by cn(X), is given by

cn(X) = inf{M > 0 : ‖φ1‖ . . . ‖φn‖ 6 M‖φ1 . . . φn‖, ∀φ1, . . . , φn ∈ X∗}.

The polarization constant of X is

c(X) = lim sup
n→∞

(cn(X))1/n.

Ryan and Turett investigate the geometric structure of spaces of polynomials and

their preduals, and they prove that cn(X) < ∞. The paper [19] is devoted to the polar-

ization constant, and among more general results, the authors show that for complex

Banach spaces, cn(X) 6 nn. For Banach spaces in general, this is the best possi-

ble upper bound, as is shown by choosing X = l1, and φi to be different coordinate

functionals. On the other hand, for arbitrary spaces, we have the trivial lower bound

cn(X) > 1.

Révész and Sarantopoulos showed [36] that in Definition 1.1, the “lim sup” can be

changed to “lim”.

For real Banach spaces, K. Ball’s affine plank theorem [8] applies, and it yields a

stronger result: for any set of functionals φ1, . . . , φn in X∗, there is a point x ∈ BX ,

such that |φi(x)‖ > ‖φi‖/n for every i. Thus, for real and complex Banach spaces the

same result holds: cn(X) 6 nn.

The next stage was investigating Hilbert spaces. Let H be a (real or complex)

Hilbert space. By the Riesz Representation Theorem, elements of H ∗ are obtained by

taking inner products with elements of H . Therefore, if SH denotes, as usual, the

unit sphere of H , then

cn(H ) = inf
§
M > 0 : ∀u1, . . . , un ∈ SH ,∃ v ∈ SH : |〈u1, v〉 . . . 〈un, v〉| > 1

M

ª
.

The statement means that for any set of n unit vectors in H , there exists a unit vector

which is “far away” from subspaces orthogonal to the given vectors. Considering an

orthonormal system u1, . . . , un, the inequality between the geometric and the quadratic
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means implies that if dimH > n, then for any unit vector v,���Y〈ui, v〉
��� 6 1

nn/2

X
〈ui, v〉2 =

1
nn/2

,

and hence cn(H ) > nn/2. On the other hand, using Dvoretzky’s theorem, it is not

hard to show that if X is an infinite dimensional Banach space, then cn(X) > cn(ln2 ),

where ln2 is Cn endowed with the l2 norm. Either by this result, or from the complex

version of Bang’s Lemma, it follows that cn(H ) 6 nn.

It is natural to conjecture that the “worst” case arises when (ui)n
1 is the n-

dimensional orthonormal system: one would think that the orthogonal subspaces of

the vectors are “spread out” the most in this case. Arias-de-Reyna proved in 1998 [6],

that for complex Hilbert spaces, indeed, the right constant is nn/2, and cn(H ) = nn/2,

if H is at least n dimensional. His pretty proof is based on estimating the variance

of products of complex Gaussian random variables with the aid of Lieb’s inequality

on permanents. He also conjectured that, as in the case of Banach spaces, the best

possible constant for real Hilbert spaces agrees with the one for complex Hilbert spaces.

Assuming that the dimension of the space is at least n, and that v is in the subspace

spanned by u1, . . . un, the statement goes as follows.

Conjecture 1.2 (Real polarization problem). For any collection u1, . . . , un of unit

vectors in Rn, there exists a unit vector v ∈ Rn, such that

nY
i=1

|〈ui, v〉| > n−n/2. (1.1)

Informally, the conjecture says that for any system of unit vectors in Rn, there is

a unit vector that has “large” inner product with them in the above sense. We will see

that it cannot be required that the all the inner products are large, unlike in the case

of the plank problems.

As a converse of this statement, it is true, and a well-known fact, that there is a

unit vector v, for which |〈ui, v〉| 6 1/
√

n for all i. For a generalisation of this, see Ball

and Prodromou [12].

The complex plank theorem of K. Ball, published in 2001 [11], states that if

u1, . . . , un are unit vectors in a complex Hilbert space H , and (ti)n
1 is a sequence

of positive reals satisfying
P

t2i = 1, then there exists another unit vector v ∈ H , for

which |〈ui, v〉| > ti for every i. On one hand, it immediately implies Arias-de-Reyna’s
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estimate for the polarization constant of complex Hilbert spaces. On the other hand,

the result of Beńıtez, Sarantopoulos and Tonge for complex Banach spaces also follows

from it. To this end, let φ1, . . . , φn ∈ X∗, and for each i, let xi be a point in BX

where φi attains its norm. We shall search for a point x in span{x1, . . . , xn}, where

|φ1(x) . . . φn(x)| is large. Hence we may assume that X is an n-dimensional Banach

space. If X and Y are isomorphic Banach spaces, then their Banach–Mazur distance

d(X, Y ) is given by

d(X, Y ) = inf{‖T‖‖T−1‖ : T : X → Y is an isomorphism}

Now, the well-known result of F. John [26] about characterization of simplices of maxi-

mal volume in convex bodies implies that if X is an n-dimensional Banach space, then

d(X, ln2 ) 6 √
n. Applying the complex plank theorem, it easily follows (see [36]), that

there exists a point x in the unit ball of X, for which |φi(x)| > 1/n for every i, which,

in turn, implies that cn(X) 6 nn for any complex Banach space.

The real polarization problem has been investigated in many articles. The complex

result applied to the natural complexification of Rn yields that cn(Rn) 6 2n/2−1nn/2

(this was already mentioned in [38], see also Révész and Sarantopoulos [36]). Pappas

and Révész proved in [33] the following result: if K denotes C or R, then

c(Kd) = e−L(d,K),

with

L(d,K) =
Z

SKd

log |〈x, u〉| dσ(x),

where u is an arbitrary vector of SKd and σ denotes the normalised surface area measure.

It turns out that if the number of dimensions is at most 5, then Conjecture 1.2 can

be proved by choosing a unit vector v which is obtained by normalising one point of the

Bang system B generated by u1, . . . , un (see Pappas and Révész [33]). Matolcsi and

Muñoz showed [32], that this approach fails to prove the general conjecture in higher

dimensions; as a positive result, they managed to derive from it that the orthonormal

system is locally extremal with respect to the polarization problem.

Another approach is to relate the best constant in (1.1) to eigenvalues and the

determinant of the Gram matrix of the vector system (u1, . . . , un), using a method that

is similar to the one presented in Section 1.5. This idea has been raised by Marcus (see
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[36]), and later elaborated by Matolcsi ([30] and [31]). However, due to the difficulties

of estimating the various quantities related to the eigenvalues, the resulting inequalities

do not seem to be more approachable than the original one.

In 2008, P. Frenkel [24] returned to the method of Arias-de-Reyna used for the

case of complex Hilbert spaces. He managed to strengthen Hadamard’s inequality

on determinants and Lieb’s inequality on permanents with the aid of pfaffians and

hafnians. These results led to the following bound:

cn(Rd) 6
È

n(n + 2)(n + 4) . . . (3n− 2) <

�
3
√

3
e

n

�n/2

≈ (1.91)n/2nn/2

At the moment, this is the strongest general bound on the real polarization constant.

Also in 2008, Leung, Li, and Rakesh proved that if Conjecture 1.2 fails, then the

minimising vector system (u1, . . . , un) must be linearly dependent. Their approach is

similar to the one in Section 1.5.

It was observed by P. Frenkel and K. Ball, that the following, stronger alternative

of the polarization problem has remarkable geometric properties. We will mainly devote

our attention to this problem.

Conjecture 1.3 (Strong polarization problem). For any set u1, . . . , un of unit vectors

in Rd, there exists a unit vector v ∈ Rd, such that

nX
i=1

1
〈ui, v〉2 6 n2.

By the arithmetic mean–geometric mean inequality, we immediately see that the

strong polarization problem is indeed stronger than Conjecture 1.2, the real polarization

problem. The advantage of this version over the older one will become apparent in the

subsequent sections. For illustration, let us present one aspect here.

It is conjectured that the only extremal vector system in the real polarization

conjecture is the orthonormal system consisting of n unit vectors in Rn. Therefore, if

the number of vectors is larger than the dimension of X, we expect a stronger inequality

to hold. The simplest example of this phenomenon is obtained when X = R2: If

(u1, . . . , un) be a system of vectors on the unit circle, then, via the connection to the

Chebyshev constant, the best constant turns out to be 2n−1, see [4]. This is obtained

when the point set (u1,−u1, . . . , un,−un) is equally distributed on the unit circle. The

same example shows as well that the assertion of the affine plank theorem is essentially
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sharp, and nothing close to the estimate of the complex plank problem is true in the

real setting.

Considering the strong polarization problem, the picture is entirely different. As

will be proved in Section 1.3, the best constant obtained for systems of n vectors

on the unit circle is the same as the one we get for the n-dimensional orthonormal

system! Therefore, we “don’t gain anything” by leaving the 2-dimensional space for

Rn, although, intuitively, one would think that in the latter it is possible to go “much

farther away” from the orthogonal subspaces than in the plane. This rather remarkable

geometric property was the first to suggest that the strong polarization problem is a

good deal more natural than its original version, and in some sense it serves as the real

analogue of the complex plank problem.

1.2 Complex analytic tools

The planar, d = 2 case of the polarization problems can perhaps be most naturally

formulated on the complex unit circle T , that we sometimes identify with the interval

[0, 2π] via the formula z = eit. Suppose that the norm 1 vectors u1, . . . , un on S1 are

given by

uj =
�
cos

tj
2

, sin
tj
2

�
.

We shall search for the vector v ∈ S1 in the form

v =
�
cos

�
t

2
− π

2

�
, sin

�
t

2
− π

2

��
.

Define the complex numbers zj and z on T by

zj = eitj , z = eit.

Then, with the above notations,

〈uj , v〉 = sin
�

t− tj
2

�
=
|z − zj |

2
. (1.2)

Thus, the d = 2 case of the polarization problems can be formulated as statements

about trigonometric polynomials (see the definition below). It is natural, and indeed

fruitful, to consider the analytic continuation of these functions from T to the complex

plane, resulting in complex rational functions. By this means, we derive alternate
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formulations of the original statements that can be tackled by strong complex analytic

tools. For an illustration of the power of this method, let us mention one example.

As we have discussed earlier, it is conjectured that the only extremal vector system

for the original polarization problem is the n-dimensional orthonormal system. There-

fore, if all the vectors (ui)n
1 are on the plane, we expect a stronger inequality to hold.

The following statement gives the estimate that is the best possible.

Proposition 1.4 ([4]). For any set u1, . . . , un of unit vectors on S1, there exists v ∈ S1,

such that Y
|〈uj , v〉| > 2−(n−1).

Proof. Using (1.2), it suffices to prove that for any set z1, . . . , zn of complex numbers

of norm 1, there exists z ∈ T , for which

|(z − z1) . . . (z − zn)| > 2.

Define the complex polynomial Q(z) :=
Q

(z − zj). Then for any complex number

w ∈ T , we have
1
n

nX
k=1

Q(w ei2πk/n) = wn + (−1)nz1 . . . zn.

Choose w so that wn = (−1)nz1 . . . zn. Then, by the above formula,

2 = |wn + (−1)nz1 . . . zn| =
����� 1n nX

k=1

Q(w ei2πk/n)

����� 6 1
n

nX
k=1

|Q(w ei2πk/n)|.

Therefore there exists a k, for which |Q(w ei2πk/n)| > 2. Also, if we take zj = ei2πj/n,

then it is easy to see that the estimate is sharp.

We note that the quantity

Mn(S1) = inf
x1,...xn∈S1

sup
x∈S1

‖x− x1‖ . . . ‖x− xn‖.

is called the nth Chebyshev constant of the unit circle. Also, the statement implies that

the polarization constant of R2 is 2. The same result for C2 can be obtained by a

similar approach [4].

For the planar case of the strong polarization problem, we do not know such a

simple proof as the one above. Still, a complex analytic proof can be achieved, which
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will be presented in Section 1.3. For convenience, we establish the necessary complex

analytic tools in the present chapter.

Some of the following results had been proved in the early 20th century in connec-

tion with the theory of orthogonal polynomials, and the others are of a similar spirit

as well. In definitions, we mostly follow the manuscripts of Szegő [39] and Pólya and

Szegő [34].

A complex polynomial is a polynomial with complex coefficients. The quotient

of two complex polynomials is called a (complex) rational function. A trigonometric

polynomial of degree n is a 2π-periodic function defined on the real line given by

f(t) = a0 + a1 cos t + b1 sin t + · · ·+ an cos(nt) + bn sin(nt),

where the coefficients are real numbers. We mention that sometimes the coefficients

are allowed to be arbitrary complex numbers, however, we do not need this generality.

Also, via the formula z = eit, a trigonometric polynomial can be understood as a

function defined on T .

Any trigonometric polynomial of degree n can also be written in the form

f(t) =
nX

j=−n

αje
int =

p(z)
zn

,

where z = eit and p(z) is a polynomial of degree 2n. In particular, f(t) cannot have

more than 2n zeroes on the interval [0, 2π]. Moreover, since all the coefficients of f(t)

are real, in the above representation αj = ᾱ−j holds for every j. This property turns

out to be of special importance in view of the following definition [39].

Definition 1.5. Let g(z) = a0+a1z+· · ·+anzn be a complex polynomial. Its reciprocal

polynomial of order n is defined by

g∗(z) = ān + ān−1z + · · ·+ ā0z
n.

It is easy to see that g∗(z) = g(1/z)zn. Note that we do not require an 6= 0, and

hence if g(z) has precise degree n, then its reciprocal polynomials can be defined of any

order at least n. However, if we do not specify otherwise, the order will always be the

precise degree of g(z).
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For any non-zero complex number z, let z∗ denote its image under the inversion

with respect to complex unit circle T :

z∗ =
1
z̄
.

It is easy to see that if the non-zero roots of g(z) are α1, . . . , αk, then the non-zero

roots of g∗(z) are α∗1, . . . , α∗k. Moreover, if |z| = 1, then z̄ = 1/z, and therefore

g∗(z) = zng(z), (1.3)

consequently, |g∗(z)| = |g(z)|. Since z∗ = z for any z ∈ T , the roots of g(z) and g∗(z)

agree. Therefore we immediately obtain

Lemma 1.6. If all zeroes of the complex polynomial g(z) have modulus 1, then

g∗(z) = γg(z)

for a complex constant γ with |γ| = 1.

Now, if f(t) is a trigonometric polynomial of degree n, then f can be written as

f(t) =
p(eit)
eint

where p(z) is a complex polynomial of degree 2n with p(z) = p∗(z). It is easy to see

that this relation is, in fact, an equivalence (see [34], Problem VI. 12). Equation (1.3)

now induces a close connection between trigonometric polynomials and the real and

imaginary parts of arbitrary polynomials. Let g(z) be a polynomial of degree n. If

|z| = 1, then

<g(z) =
1
2

�
g(z) + g(z)

�
=

1
2

�
g(z) +

g∗(z)
zn

�
=

h(z)
2zn

,

where h(z) is a polynomial of degree 2n with h(z) = h∗(z). Therefore the real part of

a polynomial of degree n on the unit circle T is a trigonometric polynomial of degree

n. A similar argument yields that the imaginary part can be represented in the same

way.

It also follows that if f(t) is a trigonometric polynomial of degree n, then the set

of zeroes of its holomorphic continuation F (t) from T to the complex plane is invariant

15



under the inversion to T . Therefore, if α1, . . . , αm are the non-zero roots of F (t) in the

open unit disc, then writing g(z) =
Q

(z − αj), F (t) can be factorized as

z−ng(z)g∗(z)h(z), (1.4)

where h(z) is a polynomial with zeroes only on T . Moreover, if f(t) is non-negative,

then all the zeroes on T are of even multiplicity, and therefore f(t) can be written as

f(t) = |g(eit)|2,

where g(z) is a polynomial of degree n. This is Fejér’s representation theorem, see

Szegő [39] 1.2.

The following observation is the converse of Lemma 1.6. It can be found for

example in the first edition of [34].

Lemma 1.7. Suppose that the non-zero polynomial g(z) has no zeroes in the open unit

disc. Then for any complex number γ of modulus 1, all zeroes of g(z) + γg∗(z) lie on

the unit circle T .

Proof. We may assume that γ = 1 and that g(z) has no zeroes on T , therefore

g(z)/g∗(z) maps the unit circle continuously onto itself. Since g(z) has no zeroes in the

unit disc, the winding number of the curve {g(z) : z ∈ T} with respect to the origin is

0. By virtue of (1.3), the winding number of g(z)/g∗(z) is −n. Therefore there are at

least n points on T , where g(z) + g∗(z) = 0, and since it is a polynomial of degree n,

all of its zeroes have modulus 1.

We will be interested in rational functions that possess an interesting oscillation

property. Bearing this in mind, we introduce the following concept. The definition is

slightly modified compared to that in [25].

Definition 1.8. The real valued function f on T is equioscillating of order n, if there

are 2n points w1, w2, . . . , w2n on T in this order, such that

f(wj) = (−1)j‖f‖T

for every j = 1, . . . , 2n, and |f(z)| < ‖f‖T if z 6= wj for any j.

Although equioscillation in general is not a very specific property (plainly, any real

valued function on T whose level sets are finite has a shift which is equioscillating of

16



some order), equioscillation of a possible maximal order is a strong condition. This

becomes apparent in the context of rational functions.

Suppose that R(z) is a rational function, whose numerator is of degree k and whose

denominator has degree l; then the real and imaginary parts of R(z) are the quotients of

two trigonometric polynomials of degrees k and l, and therefore <(R(z)) and =(R(z))

cannot be equioscillating of order larger than max{k, l}. A characterization of those

rational functions whose real and imaginary parts are oscillating with this maximal

order was given by Glader and Högnäs in 2000 [25]. In order to formulate their result,

we need the definition of Blaschke products.

Definition 1.9. A finite Blaschke product of order n is a rational function of the form

B(z) = ρ zk
n−kY
j=1

z − αj

1− ᾱjz
, (1.5)

where ρ, α1, . . . , αn−k are complex numbers with |ρ| = 1 and 0 < |αj | < 1.

Clearly, the zeroes of the numerator and those of the denominator are images of

each other under the inversion with respect to T . Furthermore, B(z) maps the unit

circle onto itself. Therefore, it can be written in the form

B(z) = γ
g(z)
g∗(z)

, (1.6)

where |γ| = 1 and g(z) is a polynomial of degree n. This is the crucial property that

we shall use later.

With Blaschke products in our arsenal, we can formulate the result about maxi-

mally equioscillating rational functions.

Theorem 1.10 (Glader, Högnäs, [25]). If R(z) is a rational function with numerator

and denominator degrees at most n, and <(R(z)) and =(R(z)) are equioscillating func-

tions on T of order n, then R(z) = cB(z) or R(z) = c/B(z), where c is a real constant

and B(z) is a finite Blaschke product of order n.

This essentially means that Blaschke products are in some sense the complex ana-

logues of Chebyshev polynomials.

The proof of Theorem 1.10 involves several combinatorial steps, most of which boil

down to counting zeroes of rational functions. By taking advantage of the perspective
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of reciprocal polynomials, we give an alternative proof for the main constructive lemma.

This result will serve as the crux of our proof for the planar case of Theorem 1.3.

Lemma 1.11. Suppose that 1 = w1, w2, . . . , w2n are different points on T in this order.

Let w be a point on T different from each wj. Then there exists a complex polynomial

h(z) of degree n, such that
h(wk)
h∗(wk)

= (−1)k+1

for each k = 1, . . . , 2n, and
h(w)
h∗(w)

= i.

Proof. Introduce the polynomials

g1(z) = h(z) + h∗(z),

g2(z) = h(z)− h∗(z).

The original problem is equivalent to finding g1(z) and g2(z) with the following prop-

erties:

(i) The zeros of g1 are (w2k), where 1 6 k 6 n;

(ii) The zeros of g2 are (w2k−1), where 1 6 k 6 n;

(iii) g1(z) = g∗1(z)

(iv) g2(z) = −g∗2(z)

(v) g1(w) + i g2(w) = 0.

In order to fulfill property (i), we search for g1(z) in the form

g1(z) = α
nY

k=1

(z − w2k), (1.7)

where α is a complex number of modulus 1. Lemma 1.6 implies that property (iii) is

satisfied if the leading coefficient and the constant term of g1(z) are conjugates of each

other, that is,

ᾱ = α(−1)n
Y

w2k.

This is achieved by choosing α such that

α2 = (−1)n
Y

w2k. (1.8)
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Similarly, conditions (ii) and (iv) are fulfilled if g2(z) is defined by

g2(z) = cβ
nY

k=1

(z − w2k−1),

where c is a non-zero real and β is a complex number with |β| = 1 satisfying

β2 = (−1)n+1
Y

w2k−1. (1.9)

Using the fact that for any complex numbers u 6= v of modulus 1,

arg(u− v) ≡ arg u + arg v

2
+

π

2
(mod π), (1.10)

we obtain that if α and β satisfy (1.8) and (1.9) respectively, then

arg g1(z) ≡ n arg z

2
(mod π) (1.11)

and

arg g2(z) ≡ n arg z

2
+

π

2
(mod π) (1.12)

for any z ∈ T (these also follow from (1.3), since arg g(z) + arg g∗(z) = n arg z). Thus

arg g1(z) ≡ arg(i g2(z)) (mod π)

on the unit circle. Since w ∈ T , g1(w) 6= 0 and g2(w) 6= 0, c can be chosen so that

property (v) holds.

1.3 The planar case

After preparing the complex analytic apparatus, the goal of this section is to prove

the d = 2 case of Conjecture 1.3. Referring to (1.2), it can be stated in the complex

setting as follows.

Theorem 1.12. For any set z1, . . . zn of complex numbers of modulus 1, there exists a

complex number z of norm 1, such thatX 1
|z − zj |2 6 n2

4
. (1.13)
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First, we make use of the special structure of the function to be estimated. For

any sequence (zj)n
1 = z ∈ Tn, let

Gz(z) =
X 1

|z − zj |2 (1.14)

be a function defined on T , and denote

M(z) = min
z∈T

Gz(z).

Our aim is to prove that

M(z) 6 n2/4 (1.15)

for any z ∈ Tn.

Let T be the usual product topology on the space Tn. A sequence z ∈ Tn is locally

extremal, if there exists a neighbourhood U of z in T , such that for any z′ ∈ U ,

M(z) > M(z′).

It clearly suffices to prove the inequality (1.15) for locally extremal sets.

A real-valued function g(z) defined on T is called convex, if it is a convex function

of the argument of z. It is easy to see that 1/|z− zj |2 is convex on T \ zj , and therefore

Gz(z) is convex on the arcs between the consecutive points of z. Since Gz(z) has poles

at each zj , we obtain that it has exactly one local minimum on each arc of T between

consecutive points of z. (If two points of z coincide, then the local minimum between

them is defined to be ∞.) For locally extremal sets, these minima follow a certain

behaviour. The information provided by the next lemma will make it possible to apply

the result of the previous section about equioscillating functions.

Lemma 1.13. If (zj)n
1 = z is a locally extremal set, then the local minima of Gz(z) on

the arcs of T between consecutive points of z are all equal.

Proof. Suppose on the contrary that z1 = eit1 and z2 = eit2 are two consecutive points

such that the local minimum of Gz(z) on the arc øz1z2 is strictly larger than M(z); this

also implies that z1 6= z2. We can assume that 0 6 t1 6 t2 < 2π and that øz1z2 is the

set of points of T with argument between t1 and t2. Let ε be a small positive number,
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and consider the new set of points z′ obtained from z by exchanging z1 and z2 for

z′1 = ei(t1−ε) , z′2 = ei(t2+ε).

Let us compare the values of Gz′(z) to those of Gz(z). First, suppose that z ∈ øz1z2,

where z = eit. By symmetry, it suffices to consider the case t1 6 t 6 (t1 + t2)/2. Then,

1
|z − z1|2 >

1
|z − z′1|2

,

and furthermore, by convexity and symmetry,���� 1
|z − z1|2 −

1
|z − z′1|2

���� > ���� 1
|z − z2|2 −

1
|z − z′2|2

���� .

Thus
1

|z − z1|2 +
1

|z − z2|2 >
1

|z − z′1|2
+

1
|z − z′2|2

and hence

Gz(z) > Gz′(z).

Interchanging the roles of zj and z′j (j = 1, 2) yields that if z ∈ øz′2z′1, then

Gz(z) < Gz′(z).

If ε is sufficiently small, then the minimum of Gz(z) is attained on the arc øz′2z′1, while

the local minimum of Gz′(z) on øz′1z′2 is still larger than the minimum on øz′2z′1. Therefore

M(z) < M(z′),

which contradicts the extremality of (zj)n
1 .

We note that Lemma 1.13 remains valid for any function instead of Gz(z) that is

obtained by taking the sum of translated copies of a convex, axis-symmetric function

on T with one pole.

Proof of Theorem 1.12. We may assume that z = (zj)n
1 is a locally extremal set,

and therefore it necessarily consists of n different points. Setting

m = 2
È

M(z),
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the inequality (1.15), that we wish to prove, is equivalent to the statement m 6 n.

For any z and zj on T ,

|z − zj |2 = (z − zj)(z − zj) = (z − zj)
�

1
z
− 1

zj

�
= −(z − zj)2

z zj
. (1.16)

Thus, defining the rational function

R(z) =
Qn

j=1(z − zj)2

−z
Pn

j=1 zj
Q

k 6=j(z − zk)2
, (1.17)

we obtain by (1.14) that R(z) = 1/Gz(z) for every z on T .

The degrees of the numerator and the denominator of R(z) are 2n and at most

2n − 1, respectively. The zeroes are (zj)n
1 with multiplicity 2, and R(z) assigns real

values on the unit circle. Moreover, Lemma 1.13 implies that the function

R(z)− 2
m2

,

which is a rational function as well, oscillates equally between −2/m2 and 2/m2 of

order n. Let w1, . . . , w2n be the equioscillation points such that w2k = zk for every

k = 1, . . . , n, and let w be a further point on T satisfying R(w) = 2/m2. Applying

Lemma 1.11 yields a polynomial h(z) of degree n, such that

R(z)− 2
m2

=
2

m2
<
�

h(z)
h∗(z)

�
(1.18)

for every z = w1, . . . , w2n, w. Moreover, both functions assign real values on T , and

they have local extrema at the points (wj)2n
1 , therefore their derivatives vanish at these

places.

Since |h(z)| = |h∗(z)| on the unit circle,

2
m2

+
2

m2
<
�

h(z)
h∗(z)

�
=

1
m2

�
2 +

h(z)
h∗(z)

+
h∗(z)
h(z)

�
=

(h(z) + h∗(z))2

m2 h(z)h∗(z)
.

Thus, from (1.18) we deduce that the rational function

R(z)− (h(z) + h∗(z))2

m2 h(z)h∗(z)

has double zeroes at all the points w1, . . . , w2n, and it also vanishes at w. On the

other hand, its numerator is of degree at most 4n. Hence, it must be constantly 0, and
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using (1.17), we obtain thatQn
j=1(z − zj)2

−z
Pn

j=1 zj
Q

k 6=j(z − zk)2
=

(h(z) + h∗(z))2

m2 h(z)h∗(z)
. (1.19)

In the rest of the proof, we investigate this equation; however, there is still a fairly long

way to go.

As in the proof of Lemma 1.11, we introduce the functions g1(z) = h(z) + h∗(z)

and g2(z) = h(z)− h∗(z). Then by (1.7) and (1.8),

g1(z) = α
nY

j=1

(z − zj),

where α is a complex number of norm 1 satisfying

α2 = (−1)n
Y

zj . (1.20)

According to properties (iii) and (iv) of the proof of Lemma 1.11, g1(z) = g∗1(z) and

g2(z) = −g∗2(z), hence they have the form

g1(z) = αzn + · · ·+ ᾱ,

g2(z) = βzn + · · · − β̄.
(1.21)

Substituting g1(z) and g2(z), equation (1.19) transforms toQn
j=1(z − zj)2

−z
Pn

j=1 zj
Q

k 6=j(z − zk)2
=

g1(z)2
m2

4 (g1(z)2 − g2(z)2)
. (1.22)

Since the degree of the denominator on the left hand side is at most 2n−1, from (1.21)

we deduce that

α = ±β. (1.23)

The quotient of the leading coefficients of the numerators on the two sides of (1.22),

which is α2, is the same as the quotient of those of the denominators. Therefore

−α2z
nX

j=1

zj

Y
k 6=j

(z − zk)2 =
m2

4
(g1(z)2 − g2(z)2).
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Substituting z = zj and taking square roots yields

α zj

Y
k 6=j

(zj − zk) = ±m

2
g2(zj).

Observe that this is equivalent to

zj g′1(zj) = εj
m

2
g2(zj), (1.24)

where εj = ±1.

Next, we show that εj = εk for any j and k. First, for any j,

arg(g′1(zj)) = lim
δ→0+

�
arg

�
g1(zje

iδ)
�
− arg(zje

iδ − zj)
�

= lim
δ→0+

arg
�
g1(zje

iδ)
�
− arg zj − π

2

and therefore

arg(zjg
′
1(zj)) = lim

δ→0+
arg

�
g1(zje

iδ)
�
− π

2
. (1.25)

Second, from (1.11) and (1.12) it follows that

arg
g1(z)
g2(z)

≡ π

2
(mod π)

on the unit circle. Since g1(z) and g2(z) are polynomials with single zeroes only, their

arguments change continuously on T apart from their zeroes, where a jump of π occurs.

It is easy to see that the zeroes of g2(z) are the local minimum places of Gz(z), and

therefore the zeroes of g1(z) and g2(z) are alternating on T . This implies that

lim
δ→0+

arg
g1(zje

iδ)
g2(zjeiδ)

is the same for every j modulo 2π. Now (1.25) yields that

arg
zjg

′
1(zj)

g2(zj)

is the same modulo 2π for every j. A quick look at (1.24) reveals that, indeed, εj is

constant for all j. Let this constant be ε = ±1.
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From (1.24), we conclude that the polynomial

z g′1(z)− ε
m

2
g2(z)

of degree n attains 0 at all (zj)n
1 , and hence its zeroes agree with those of g1(z).

Therefore there exists a complex number γ, such that

z g′1(z)− ε
m

2
g2(z) = γ g1(z),

and thus

ε
m

2
g2(z) = z g′1(z)− γ g1(z). (1.26)

Equating the leading coefficients, referring to (1.21), gives

ε
m

2
β = (n− γ)α, (1.27)

which, with the aid of (1.23), yields that γ ∈ R.

Finally, by comparing the leading coefficients and the constant terms in (1.26) and

using the form (1.21), we deduce that (n− γ)α = γα and, since α 6= 0,

γ =
n

2
.

Taking absolute values in (1.27) and bearing (1.23) in mind, we obtain that m = n,

which is even stronger than the desired inequality in the sense, that it shows that every

locally extremal set is an extremal set.

1.4 Remarks about the complex proof

The proof of Theorem 1.12 in the previous section does not give a characterization

of the extremal cases. However, in Section 1.7, by a different method, we shall prove

that the inequality (1.13) is sharp only if there exists a complex number ρ of modulus

1 such that the set {zj/ρ} equals to the set of unity roots of order n. From this, via

(1.22) and (1.11), we obtain that

g1(z) = iρn/2
��

z

ρ

�n

− 1
�

.
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Hence, by (1.26),

g2(z) = iρn/2
��

z

ρ

�n

+ 1
�

.

Therefore, again by (1.22) and by (1.16), it follows that for any z ∈ T ,X 1
|z − zj |2 =

1
R(z)

=
−n2ρnzn

(zn − ρn)2
=

n2

|zn − ρn|2 .

Setting ρ = 1 and translating the result back into the real setting yields the formula

nX
j=1

�
sin2

�
t

2
− jπ

n

��−1

=
2n2

1− cosnt
, (1.28)

that can also be obtained by comparing the values of the left hand side and its derivative

to those of the Chebyshev polynomial at the points t = jπ/n. The special case of

t = π/n can be also be derived from the Riesz Interpolation Formula, that was proved

in 1914 by Marcel Riesz [37]. This states that for any trigonometric polynomial f(t) of

degree n, where n is even,

f ′(t) =
1
n

nX
j=1

(−1)j+1λjf(t + tj)

with

λj =
�
2 sin2

�
tj
2

��−1

and tj =
(2j − 1)π

n
.

Setting f(t) = sin(nt/2) and t = 0, we arrive at the desired case of (1.28):

nX
j=1

�
sin2

�
jπ

n
− π

2n

��−1

= n2.

Our next remark concerns formula (1.26). The first question that comes to one’s

mind is probably the following:

For which polynomials g(z) of degree n does the polynomial

h(z) = z g′(z)− n

2
g(z) (1.29)

have zeroes only on the unit circle?

At first glance, the question seems to be connected to Bernstein’s inequality about

the derivatives of polynomials, the most relevant version of which reads as follows: If
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p(z) is a polynomial of degree n, then

‖p′‖T 6 n‖p‖T .

Although this inequality is sharp (as shown by p(z) = zn), under certain constraints on

the location of the zeroes of p(z), a stronger statement holds. Erdős conjectured and

Lax proved (see [27], and the article of Erdélyi [23]) that if p has no zeroes in the open

unit disc, then

‖p′‖D 6 n

2
‖p‖D,

where D is the closed unit disc. The factor n/2 is familiar from (1.29). However, since

the statement is about the maximum norms, it cannot exclude the possibility of the

existence of a zero of h(z) inside the unit circle.

In the present situation, we know that the zeroes of g(z) all lie on T . Quite

surprisingly, this condition turns out to be sufficient.

Proposition 1.14. If g(z) is a polynomial of degree n with zeroes z1, . . . , zn on the

unit circle, then all zeroes of h(z) = z g′(z)− n/2 g(z) lie on the unit circle as well.

Proof. The following argument is based on the idea of Pólya and Lax [27]. Let

g(z) = c
nY

j=1

(z − zj),

where c ∈ C and |zj | = 1 for all j. Let w1, . . . , wn be points on T where |g(z)| has local

maxima on the unit circle. We shall show that the polynomial h(z) attains 0 at every

point wj .

By (1.10),

arg g(z) ≡ n

2
arg z + ϕ (mod π)

with the constant

ϕ = arg c +
X arg zj

2
+

nπ

2
.

Therefore the function

p(z) = e−iϕ g(z)
zn/2
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is real for every z ∈ T . Moreover, |p(z)| = |c| |g(z)| on the unit circle, and hence

p′(wj) = 0 for every j. Thus,

h(wj) = wj g′(wj)− n

2
g(wj) = eiϕ n

2
w

n/2
j p(wj)− n

2
eiϕw

n/2
j p(wj) = 0,

and hence the zeroes of h(z) are w1, . . . , wn.

Proposition 1.14 implies that starting from any polynomial g1(z) of degree n with

zeroes on the unit circle, the rational function R(z) defined via (1.26), (1.22) and

(1.17) is oscillating between 0 and 4/n2 of order n on the unit circle. In Figure 1.1, we

illustrate 1/Gz(z) and the equioscillating R(z) derived from g1(z), with the choice of

z1 = 1, z2 = ei2π/5, z3 = i, z4 = ei3π/4, z5 = ei5π/4. (1.30)

1 2 3 4 5 6

0.05

0.10

0.15

0.20

Figure 1.1: 1/Gz(z) and its equioscillating approximation (dotted)

It is easy to check that the condition of Proposition 1.14 on the position of the

zeroes of g(z) is not necessary. Comparing the coefficients in (1.29) yields that if n is

odd, then (1.29) gives a one-to-one relation between g(z) and h(z), while if n is even,

say n = 2k, then regardless of the coefficient of zk in g(z), we obtain the same h(z) (in

which the coefficient of zk is zero.) From this, with Lemma 1.6, we can also see that

g∗(z) = γg(z) for some constant γ of modulus 1, and hence the set of zeroes of g must

be symmetric with respect to the unit circle. However, it is unclear that among such

polynomials which ones generate h(z) with zeroes on T only.

Finally, we note that the above proof of Theorem 1.12 suggests an algorithm that,

starting from an initial set z of n points on T , transforms it into a new set Φ(z); extremal
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sets are unaltered, and numerical experiments suggests that M(z) 6 M(Φ(z)), therefore

Φ(z) is an “improvement” of z. The algorithm goes as follows.

1 2 3 4 5 6
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0.15

0.20

Figure 1.2: First three steps of the iteration (plain, dashed, dotted)

With the aid of the identities (1.2) and (1.16), we obtain the formula

nX
j=1

Y
k 6=j

sin2
�

t− tk
2

�
=

(−1)n−1

4n−1zn−1
Q

zj

nX
j=1

zj

Y
k 6=j

(z − zk)2,

where, as usual, z = eit and zj = eitj . Let α be a complex number satisfying (1.20).

Since the left hand side is a strictly positive trigonometric polynomial, using the Fejér

representation (1.4) (or just by calculating the coefficients of the right hand side), we

obtain that there exists a polynomial g(z) of degree n with roots in the unit disc only

(here 0 is not excluded), such that

−α2z
nX

j=1

zj

Y
k 6=j

(z − zk)2 = g(z)g∗(z).

The polynomial g(z) is unique up to change of sign, and its leading coefficient is ±α.

Let Φ(z) be the set of the zeroes of the polynomial g(z)+g∗(z); according to Lemma 1.7,

Φ(z) ⊂ T . If z is an extremal set, then (1.19) implies that g(z) = mh(z), and therefore

z = Φ(z). If, however, the initial set is not extremal, then we conjecture that the

successive iteration of Φ is converging toward the (essentially unique) extremal case

via sets with larger and larger M(z). To illustrate this phenomenon, on Figure 1.2 we

plot, on the unit circle, the functions 1/Gz(z) generated by the point sets z, Φ(z) and

Φ(Φ(z)), where z is given by (1.30).
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1.5 Linear algebraic transformations

We return to the high dimensional cases of the polarization problems. Clearly, the

complex analytic proof cannot be applied here. However, the characterisation results

that we will obtain, especially Theorem 1.27, are very similar in spirit to Lemma 1.13:

they essentially state that for the locally extremal vector systems (ui), there are “suf-

ficiently many” points v on the unit sphere, where
Q |〈ui, v〉|, or

P
1/〈ui, v〉2, attains

its extremal value.

In the present section, we transform the conjectures to purely linear algebraic

forms. The methods are closely related to the ones in K. Ball’s paper [11], see also the

article of Leung, Li and Rakesh [28].

Regarding the strong polarization problem, Conjecture 1.3, it will suit our purposes

better to work with the following equivalent formulation:

Given a set u1, . . . , un of unit vectors, there is a vector v of norm
√

n, for which

nX
i=1

1
〈ui, v〉2 6 n. (1.31)

Extremal examples we have seen so far are n-dimensional orthonormal systems,

and sets for which (±u1, . . . ,±un) is equally distributed on the unit circle. Next, we

show that the orthogonal sums of extremal sets are also extremal, and hence there exist

extremal examples of any dimension up to n.

Proposition 1.15. Suppose that (u1, . . . , un) ⊂ Rn and (ũ1, . . . , ũm) ⊂ Rm are ex-

tremal with respect to (1.31). Then the system

U = (u1 × 0̃, . . . , un × 0̃,0× ũ1, . . . ,0× ũn),

where 0 and 0̃ are the origin of Rn and Rm, is also extremal in Rn+m.

Proof. Let ∨ = v× ṽ be a point of Rn+m of norm
√

n + m, where v ∈ Rn and ṽ ∈ Rm.

Then ‖v‖2 + ‖ṽ‖2 = n + m, andX
u∈U

1
〈u,∨〉2 =

nX
i=1

1
〈ui, v〉2 +

mX
j=1

1
〈ũi, ṽ〉2 > n

‖v‖2

n
+ m

‖ṽ‖2

m
= n + m.

Equality is achieved by taking v and ṽ to be the points of norm
√

n and
√

m in Rn and

Rm, so as equality holds in (1.31).
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We conjecture that all the extremal cases of the strong polarization problem can

be obtained this way, starting from point sets of the unit circle, whose symmetrized

copies are equally distributed.

The obvious choice of the vector v to satisfy (1.31) would be the one which min-

imises
P

1/〈ui, v〉2. However, this property does not lead to conditions on v that are

simple to exploit. Instead, we choose a vector v for which the function
Q〈ui, v〉 is

locally extremal. Our goal is to show that among these vectors there is one for which

(1.31) holds. The reason for this approach is that for vectors which are locally extremal

with respect to the product, the following useful fact holds.

Proposition 1.16. Let (u1, . . . , un) be a system of unit vectors in Rd, and suppose that

for the vector v ∈ Rd of norm
√

n, the function���Y〈ui, v〉
���

is locally maximal. Then

v =
X ui

〈ui, v〉 . (1.32)

Proof. The Lagrange multiplier method yields that for a stationary v, the gradient

vectors of
Q〈ui, v〉 and ‖v‖ are in the same 1-dimensional subspace: for some λ ∈ R,

v = λ
nX

i=1

ui

〈ui, v〉
Y
〈ui, v〉.

Taking inner products of both sides with v,

‖v‖2 = nλ
Y
〈ui, v〉.

Since ‖v‖2 = n, (1.32) follows from the previous two equations.

Defining

αi =
1

〈ui, v〉 (1.33)

and α = (αi)n
1 , formula (1.32) transforms to¬

ui,
X

αjuj

¶
=

1
αi

. (1.34)

The following definition is of great importance.
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Definition 1.17. The vector α is an inverse eigenvector of the matrix M , if

Mα = α−1, (1.35)

where

α−1 =
� 1

α1
, . . . ,

1
αn

�
.

For two vectors y, z ∈ Rn, we define their product yz ∈ Rn by (yz)i = yizi. Under

this multiplication, 1 is the unit element, and the inverse is given by the above formula.

The notion of inverse eigenvectors turned up in the solution of the complex plank

problem by K. Ball [11]. We will see that they play a central role in the forthcoming

discussion as well. Essentially, both the complex plank problem and the polarization

problems can be formulated as geometric estimates about the location of inverse eigen-

vectors, which indicates that these are very natural objects. As we shall see at the

end of the section, there is a “duality relation” between ordinary eigenvectors and in-

verse eigenvectors, that is in some sense the same as the duality relation between the

Euclidean ball and the hyperboloid.

If M denotes the Gram matrix of (ui), that is, (M)ij = 〈ui, uj〉, then the vector

α satisfying (1.34) is an inverse eigenvector of M . On the other hand, for any such α,

the vector v given by

v =
X

αiui

satisfies (1.32) and (1.33), thus ‖v‖2 = n. Hence the polarization problem follows from

the next statement:

Conjecture 1.18. For any real n×n Gram matrix M with 1’s on the diagonal, there

exists an inverse eigenvector α = (αi)n
1 , for which���Yαi

��� 6 1.

The strong polarization problem is implied by the following conjecture:

Conjecture 1.19. For any real n×n Gram matrix M with 1’s on the diagonal, there

exists an inverse eigenvector α = (αi)n
1 , for whichX

α2
i 6 n.
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As we have mentioned earlier, the key step in proving the complex plank theorem

is to transform the original problem to the following statement:

Theorem 1.20 ([11]). Let H = (hjk) be an n × n complex Gram matrix. Then there

are complex numbers w1, . . . , wn of absolute value at most 1, for which

wj

X
k

hjkw̄k = 1

for every j.

The theorem states that every complex Gram matrix with diagonal 1 has an inverse

eigenvector in the complex l∞ unit ball. Now, Conjecture 1.19 is the real analogue of

Theorem 1.20 in the sense that the complex l∞-ball is replaced with the appropriately

scaled real l2-ball; both of these statements give fundamental estimates about the

location of inverse eigenvectors.

The geometric difference between the original polarization problem and the strong

version is apparent: the first essentially asserts that Gram matrices have an inverse

eigenvector in the hyperboloid with boundary

H =
n
x = (xi)n

1 ∈ Rn :
���Yxi

��� = 1
o

, (1.36)

while the latter states that there is such a vector even in the inscribed ball of H, that

is, the standard Euclidean ball of radius
√

n centred at the origin.

We shall call real, symmetric, positive semi-definite matrices simply positive ;

hence, every positive matrix is a Gram matrix (of a system not necessarily consist-

ing of unit vectors).

Inverse eigenvectors of positive matrices possess a useful geometric property. Ob-

serve that the proof of Proposition 1.16 and (1.33) yields that if the point α is locally

extremal for the function
Q

αi, subject to the conditionXαiui

 =
√

n, (1.37)

which is equivalent to α>Aα = n, then α is an inverse eigenvector. Proposition 1.16

would then suggest to look for minimisers of |Qαi|. However, the minimum of the

modulus of the product, subject to the criterium (1.37), is clearly 0, and one rather
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would like to maximise it to obtain meaningful information. The following lemma is a

slight modification of the one in [11].

Lemma 1.21. Suppose that M = (mij) is a positive n × n matrix and that x =

(x1, . . . , xn) is a local maximum point for to the function���Yxi

���
on the (n− 1)-dimensional manifold defined by

x>Mx = n.

Then

xi

X
j

mij xj = 1

for every i, that is, x is an inverse eigenvector of M .

Proof. By the Lagrange multiplier method, just as in the proof of Proposition 1.16,

we immediately obtain that there exists a λ > 0, for which

xi

X
j

mijxj = λ

for every i. Summing these equations for all i, and comparing with x>Mx = n, yields

that λ = 1.

For any positive n× n matrix M , the domain

E = {x ∈ Rn : x>Mx = n} (1.38)

is a (possibly infinite) n-dimensional ellipsoid in the sense that if M is singular, say

rkM = k < n, then the ellipsoid is obtained by the direct product of a non-degenerate

k-dimensional ellipsoid, and Rn−k. In this case, we say that (n−k) axes of the ellipsoid

are of infinite length.

The structure of the inverse eigenvalues of M has been described by Leung, Li

and Rakesh in [28], see Proposition 3 therein. Let us call the set of points of Rn of

coordinates with fixed signs, a quadrant of Rn. Then Rn consists of 2n quadrants. It is

not complicated to show that quadrants which intersect kerM do not contain inverse
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eigenvectors, while the others contain exactly one inverse eigenvector. For quadrants

Q which do not intersect kerM , the intersection Q ∩ E is finite and compact, and by

convexity, it is clear that there is exactly one point x that maximises |Qxi| on E . By

Proposition 1.21, this point is the unique inverse eigenvector in Q.

The “duality” between eigenvectors and inverse eigenvectors in some sense is equiv-

alent to the relation between the Euclidean ball Bn
2 and the hyperboloid H, since the

eigenvectors are the stationary points on E with respect to the Euclidean norm, while

the inverse eigenvectors are the stationary points with respect to the “product norm”,

that is, the modulus of the product of the coordinates. However, we do not believe

that the role played by inverse eigenvectors is fully understood yet.

1.6 The polarization problem

Our goal in this section is to tackle Conjecture 1.18, which implies the original

polarization problem, Conjecture 1.2. We shall show that the only full-dimensional

extremal vector system is the orthonormal system.

In view of the previous discussion, using formulas (1.38) and (1.36), Conjecture 1.18

is equivalent to the following statement:

For any positive matrix M with 1’s on the diagonal, there is a branch of the hy-

perboloid H that does not intersect the ellipsoid E given by x>Mx = n.

The condition mii = 1 is equivalent to the fact that
√

n ei ∈ E for every i, where

(ei)n
1 is the standard orthonormal basis of Rn.

From now on, 1 denotes the vector (1, . . . , 1) in Rn. By scaling, the statement can

be transformed to the following form:

Conjecture 1.22. Suppose that the matrix M has λ1 as diagonal. If the ellipsoid

E = {x ∈ Rn : x>Mx = n}

meets every branch of the hyperboloid H, then λ 6 1.

Suddenly, we find ourselves in a convenient setting: we can try to characterize the

ellipsoids with maximal diagonal entries among those, that satisfy the above conditions.

Such an approach was first used by Fritz John in his seminal 1948 paper [26], in which

he managed to characterize ellipsoids of maximal volume inscribed in a convex body.

The following formulation of his result appears in the article of K. Ball [9].
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Theorem 1.23 (John [26]). Each convex body K contains an unique ellipsoid of max-

imal volume. This ellipsoid is Bn
2 if and only if Bn

2 ⊂ K and there are vectors (ui)m
1

of norm 1 on the boundary of K and positive numbers (ci)m
1 satisfyingX

ciui = 0

and X
ci ui ⊗ ui = In. (1.39)

Here In denotes the n × n identity map, and u ⊗ u is the rank one orthogonal

projection onto the subspace spanned by u. In general, for two vectors x, y ∈ Rn, the

linear transformation x⊗ y is given by

x⊗ y (z) = x 〈y, z〉.

Of course, the matrix of this transformation is the tensor product of the two vectors:

if x = (xi)n
1 and y = (yi)n

1 , then

(x⊗ y)ij = xi yj .

The trace of u⊗v is 〈u, v〉. In particular, taking traces of both sides in (1.39) yields

that
P

ci = 1, hence the identity map arises as a convex combination of the orthogonal

projections.

An equivalent formulation of condition (1.39) is that for each x ∈ Rn,X
ci〈x, ui〉2 = |x|2.

Hence, the condition essentially says that the contact points between K and Bn
2 behave

like an orthonormal basis.

We do not elaborate on the far reaching generalisations of John’s theorem that

have been obtained so far; the general method of proving these results is well described

in Ball [9] or, for instance, Bastero and Romance [18].

Now, for the polarization problem. Our goal is to characterize the ellipsoids with

maximal corresponding diagonal entries among those, that satisfy the conditions of

Conjecture 1.22. We call E locally extremal with respect to Conjecture 1.22, if E is given
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by x>Mx = n, where diagM = λ1, and for any other ellipsoid in a small neighbourhood

of E satisfying the conditions, the diagonal entries are at most λ.

Theorem 1.24. Suppose that the ellipsoid E, given by x>Mx = n, is locally extremal

with respect to Conjecture 1.22. If the matrix M is not singular, then the diagonal of

M is at most 1, and equality holds only if

E =
√

nBn
2 .

Proof. Assume that the ellipsoid E given by x>Mx = n meets every branch of H,

the diagonal of M is of the form λ1 for some λ, and it is locally extremal among

such ellipsoids. Let (ui)m
1 be the set of contact points between E and H, that is, the

collection of the discrete points of H ∩ E . (To visualise, the ui are contained in the

quadrants where E does not “reach over” H.) Note that by Lemma 1.21, the ui are

inverse eigenvectors of M .

The extremality condition yields that for any real, symmetric, n × n matrix H

with 0 as diagonal and for any positive number δ > 0 one of the following is violated:

(a) the matrix M + δH is positive semi-definite;

(b) u>i (M + δH) ui < n for every i = 1, . . . , m.

Since u>i Mui = n for each i, (b) is equivalent to u>i Hui < 0, for every i. Also, if M+δH

is not positive semi-definite, then there exists an x ∈ Bn
2 , for which x>(M + δH) x < 0.

This, by compactness, implies, that if for a fixed matrix H, the matrix M + δH is not

positive semi-definite for any positive δ, then there exists a point x ∈ Bn
2 for which

x>(M + δkH) x < 0 for a sequence δk → 0. Since δkx
>Hx → 0, we necessarily have

x>Mx = 0.

Therefore, the following holds true:

There is no real, symmetric, n× n matrix H with 0’s on the diagonal, for which

u>i Hui < 0

for every i, and

x>Hx > 0.

for any vector x ∈ kerM .
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This formulation clearly shows the right direction: separation of convex domains.

Introduce the inner product on the space of n× n real matrices by

〈M, H〉 = tr (MH) =
X
i,j

mijhij . (1.40)

Sometimes, this is called trace duality. Clearly,

u>Hu = 〈H,u⊗ u〉.

Note that since u⊗u is symmetric, we can drop the symmetry condition on H. Therefore

we obtain that for any extremal matrix M , the positive cones

pos {u⊗ u : u ∈ Rn is a contact point between H and E}

and

pos {x⊗ x : x ∈ kerM}

are not separable with a linear functional of the form A → 〈A,H〉, whose kernel contains

all the matrices ei ⊗ ei. This implies that there is a matrix K and a diagonal matrix

D such that

K ∈ pos {x⊗ x : x ∈ kerM}

and

K + D ∈ conv{u⊗ u : u ∈ Rn is a contact point between H and E}.

Since for every x ∈ kerM , we have 〈M,x⊗ x〉 = 0,

〈M, K〉 = 0. (1.41)

On the other hand, let

K + D =
mX

i=1

ciui ⊗ ui (1.42)

with
P

ci = 1, and ci > 0. Then, since u>i Mui = n for every i,

〈M, K + D〉 =
X

ci〈M, ui ⊗ ui〉 = n.
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Comparing to (1.41), we obtain that

〈M, D〉 = λ trD = n. (1.43)

Now, if M is not singular, then kerM = {0}, hence K = 0 ⊗ 0. Since ui ∈ H for

every i,

trui ⊗ ui = ‖ui‖2 > n,

and therefore, from (1.42) we obtain that

trD > n.

Comparing this to (1.43) yields that λ 6 1, which is the desired inequality. If equality

holds, then ‖ui‖2 = n for every i, which yields that the contact points are vertices

of the cube {−1, 1}n. On the other hand, E is compact, and therefore there exists a

contact point in all the quadrants; hence, E contains all the points whose coordinates

are 1 or −1. From this, by an inductive argument, it easily follows that E =
√

nBn
2 .

Theorem 1.24 was first proved by Leung, Li and Rakesh [28]. If M is degenerate,

then the above proof does not go through: by (1.43), we would have to estimate the

trace of D, and hence, by (1.42), it would be necessary to determine the “diagonal

distance” of the matrices ui ⊗ ui from the positive cone pos {x ⊗ x : x ∈ kerM}. On

the other hand, this depends on the size of the diagonal of M .

It might be possible to rule out the lower dimensional extremal cases by a different

argument, although our efforts in this direction have not been successful yet.

In our opinion, the condition diagM = λ1 is too strong and too weak at the same

time. It is too strong, because it limits the possible modifications of the ellipsoid too

much. On the other hand, it is too weak to rule out the lower dimensional extremal

cases: if the number of dimensions is large, then the fixed diagonal provides almost no

information about the kernel of M , or, what is the same, the infinite axes of E . In view

of these facts, a relaxation on the diagonal condition (and hence, posing a stronger

problem) may be fruitful. We shall see in the next section, that the similar statement

derived from the strong polarization problem indeed provides such an option.
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1.7 The strong polarization problem

In this section, we transform the strong polarization problem to a geometric setting,

and obtain a characterisation result for the locally extremal systems; however, this is

not explicit enough to actually determine these systems. We also give a new proof for

the planar case. The failure of the previous proof for the lower dimensional extremal

cases indicate that we have to pay special attention to these.

Recall that according to Conjecture 1.19, we have to prove that any n × n real

Gram matrix of a system of unit vectors has an inverse eigenvector in the ball
√

nBn
2 .

In order to handle this problem in a way that is similar to the previous section, we

transform it once more. To this end, we have to extend the definition of inverse matrices

to singular matrices.

Definition 1.25. Let M be a real, symmetric, positive semi-definite n×n matrix with

eigen-decomposition

M = EDE>,

where D is a diagonal matrix, with the eigenvalues λ1, . . . , λn of M , as diagonal entries.

The generalised inverse of M is given by

M−1 = ED−1E>,

where D−1 = diag(1/λ1, . . . , 1/λn) with the convention that 1/0 is understood as an

abstract symbol ∞.

If M is singular with image space H, then M−1 maps H onto itself, and for any

x ∈ H, we have M−1 M x = x. If x /∈ H, then the ∞ symbol does not cancel in M−1x,

and we define M−1x to be ∞.

If M is not singular, then there is a natural bijection between the inverse eigen-

vectors of M and M−1: if α is an inverse eigenvector of M , then according to (1.35),

M α = α−1,

and hence,

M−1α−1 = α,

therefore α−1 is an inverse eigenvector of M−1. Clearly, this is reversible, giving a

bijection.
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If M is singular, then M−1 has no inverse eigenvectors in general. However, the

geometric definition extends to this case as well: Let E be the ellipsoid defined by the

equation x>Mx = n, and let

E∗ = {x ∈ Rn : x>M−1x = n}

be its dual ellipsoid: the polar with respect to
√

nBn
2 . If M is singular, then E∗ is

lower dimensional: dim E∗ = rkM . If u is a contact point between E and H, then by

Lemma 1.21, u is an inverse eigenvector of M . It simply follows by an approximation

argument, that regardless of the dimension of E∗, u−1 is a contact point between E∗
and H, and this gives a bijection between contact points of E and E∗.

Lemma 1.21 finds the inverse eigenvectors by maximising |Qxi| on E . Now, if M

is singular, then E is not compact, and the maximum in question is ∞. Therefore,

we rather would like to find the contact points of H and E∗, as the latter is always

compact.

Assume that x ∈ E∗, and |Qxi| is locally maximal. Then x−1 is an inverse eigen-

vector of M . Recall that for two vectors y, z ∈ Rn, their product is taken coordinate-

wise. For any y ∈ H, we have |Q(yx)i| = |Qxi|, and thus by the maximality condition,

for any y ∈ H in a sufficiently small neighbourhood of 1,

(yx)>M−1(yx) > n. (1.44)

Define the matrix fM by (fM)ij = (M)ij/(xixj). It is easy to check that fM is a positive

matrix as well, and its inverse is given by

(fM)−1
ij = M−1

ij xixj .

Therefore, (1.44) is equivalent to that for every y ∈ H in a neighbourhood of 1,

y>(fM)−1y > n.

If diagM = 1, then

tr fM =
X 1

x2
i

= ‖x−1‖2.
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Moreover, since x−1 is an inverse eigenvector of M ,

(fM 1)i =
(Mx−1)i

xi
= 1

for every i, and hence fM 1 = 1.

It would suffice to prove that there exists a contact point of E∗, for which the

matrix fM derived in the above way has trace at most n. The natural choice for this

contact point is the global maximiser of the product norm. Then (1.44) holds for every

y ∈ H, meaning that the ellipsoid given by y>(fM)−1y = n is inside H. Note that

instead of working with the original pair of ellipsoids E and E∗, we search for a new,

different pair.

We shall write E ⊂ intH, if the intersection of E and H consists of discrete points

only. Also, for the sake of simplicity, from now on, we simply write M for the matrixfM , and E and E∗ for the dual pair of the ellipsoids defined by y>fMy and y>(fM)−1y.

The strong polarization problem then follows from the next statement.

Conjecture 1.26. Assume that the positive matrix M satisfies M1 = 1, and that for

every y ∈ H, y>M−1y > n. Then trM 6 n.

The condition M1 = 1 means that 1 is a contact point between E and H. Some

condition of this type is clearly necessary, since diagonal matrices with diagonal of the

form (a, 1/a, . . . , 1/a), where a is a large positive number, can have arbitrarily large

trace, without E∗ intersecting H.

Note, that the contact points between E and H represent the inverse eigenvectors

of the original Gram matrix: we obtain them by multiplying the original contact points

with the inverse of the original maximiser x.

The quantity trM has a plainly geometric interpretation: if the axes of E∗ are of

length a1, . . . , an, where ai > 0, then

n trM =
X

a2
i .

A related result of K. Ball and M. Prodromou [12] states in the present situation

that for any positive matrix M of trace n, there is a vertex of the cube {−1, 1}n that is

not contained in E . This, by duality, implies, that if trM > n, then E∗ is not contained

in the scaled copy of the n-dimensional cross-polytope, which contains the vertices of

{−1, 1}n on its boundary.
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Next, we give a proof for the planar case of the strong polarization problem, by

proving the above statement in the case when the rank of M is 2.

Proof of Conjecture 1.26 in the case of dim E∗ = 2. The condition M1 = 1

implies that one axis of E∗ is 1. Let v denote the other axis; then v ⊥ 1, that is,X
vi = 0. (1.45)

The goal is to show that ‖v‖2 > n(n − 1). It suffices to prove, that for any vector

v ∈ Rn with ‖v‖2 = n(n− 1), there exists an angle ϕ ∈ [0, 2π], for which����� nY
i=1

(vi sinϕ + cos ϕ)

����� > 1.

Let fv(ϕ) =
Q

(vi sinϕ + cosϕ). Then f(ϕ) is a trigonometric polynomial of degree at

most n. Expanding the product and using (1.45), we obtain that

fv(ϕ) = cosn ϕ + cosn−2 ϕ sin2 ϕ
X
i6=j

vivj + sin3 ϕQ(ϕ), (1.46)

where g(ϕ) is a trigonometric polynomial of degree 6 n−3. We proceed as in the proof

of the extremality of the Chebyshev polynomials. Again by (1.45),

n(n− 1) = ‖v‖2 =
X
i 6=j

vivj ,

which implies that the first two terms in the expansion of fv(ϕ) are independent of v.

Now, from Section 1.4 we know, that if for the original vector system (ui), (±ui) is

equally distributed on the unit circle, then there are 2n contact points between E∗ and

H. This can also be checked by a straightforward calculation. Let v0 be the axis in

this extremal case; then fv0(ϕ) is equioscillating between 1 and −1 of order n (and it is

a multiple of the Chebyshev polynomial). Assume that for a vector v, ‖fv(ϕ)‖∞ < 1.

Then fv0(ϕ) − fv(ϕ) has at least 2n zeroes, 2n − 4 of which are different from 0 or

π. On the other hand, by (1.46), it can be written as sin3 ϕh(ϕ) for a trigonometric

polynomial h(ϕ) of degree at most n−3. Since h(ϕ) can have at most 2n−6 zeroes, the

difference fv0(ϕ)− fv(ϕ) can have at most 2n− 2 zeroes, and thus fv0(ϕ) ≡ fv(ϕ).
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The proof also shows that for the extremal vector systems (ui), the set (±ui) is

equally distributed on T . Also, the ease with which we have obtained the result com-

pared to Section 1.3, well illustrates the advantage of this form of the strong polarization

conjecture over the original formulation.

As the main result of the section, we prove a characterisation result for the extremal

cases, that is similar to Fritz John’s theorem. First, we get rid of the condition M 1 = 1.

Whenever this holds, 1 is an axis of E∗. Therefore the “scaled projection” P : Rn → Rn

to the orthogonal subspace of 1, defined by

P (x) =
�

x− 1
〈x,1〉

n

�
1È

1− (〈x,1〉/n)2
,

maps E∗ into E∗∩1⊥. The condition that E∗ ⊂ intH is equivalent to P (E∗) ⊂ intP (H).

Clearly, this projection preserves the duality of E and E∗: the ellipsoids P (E) and P (E∗)
are polar to each other in 1⊥ with respect to

√
nBn−1

2 . Further, the inverse image

under P of any symmetric ellipsoid that is inside P (H) is an ellipsoid that satisfies the

conditions of Conjecture 1.26.

Let P (M) be the matrix, for which

P (E) = {x ∈ Rn : x>P (M)x = n};

then

P (M) = M − 1⊗ 1
n

.

Similarly, P (M−1) = M−1 − 1 ⊗ 1/n, is the matrix of E∗. If M is not singular, then

P (M) and P (M−1) are inverses of each other in the sense that

P (M) P (M−1) = In − 1⊗ 1
n

, (1.47)

where the matrix on the right hand side is the matrix of the projection onto 1⊥.

The goal is to prove that for any ellipsoid that is inside P (H), the sum of the

squares of the axis-lengths is at most n(n − 1); that is, the trace of the matrix of the

dual ellipsoid in 1⊥ is at most n − 1. The advantage is that at this point, there is no

extra assumption on the ellipsoid; on the other hand, the geometric structure of P (H)

is more complicated than that of H; see the beautiful object on Figure 1.3.
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If u is a contact point between E and H, then u is an inverse eigenvector of M ,

that is, Mu = u−1. Now, if u and v are contact points, then

〈u, v−1〉 = 〈u,Mv〉 = 〈Mu, v〉 = 〈u−1, v〉,

because M is symmetric. In particular, choosing v = 1, we obtain that for any contact

point u,

〈u,1〉 = 〈u−1,1〉. (1.48)

If u is a contact point between E and H, then P (u) is a contact point between P (E) and

P (H), u−1 is a contact point between E∗ and H, and P (u−1) is a contact point between

P (E∗) and P (H). A straightforward calculation, using the equation 〈u, u−1〉 = n, and

(1.48), reveals that

〈P (u), P (u−1)〉 = n.

Figure 1.3: P (H) in the 3-dimensional case

Local extremality with respect to Conjecture 1.26 is defined usually. Locally ex-

tremal matrices (and ellipsoids) are characterised via the following theorem; note that

the result holds for lower dimensional extremal cases as well.
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Theorem 1.27. Assume that the ellipsoid E∗, given by x>M−1x = n, is locally extremal

with respect to Conjecture 1.22. Let (u−1
i )m

1 be the set of contact points between E∗ and

H. Then there exist a series of positive numbers (ci)m
1 , such that

P (M) =
mX
1

ci P (ui)⊗ P (u−1
i ). (1.49)

Proof. If E∗ is locally extremal, then P (E∗) is locally extremal in P (H) as well. The

set of contact points between P (E∗) and P (H) are (P (u−1
i )). Moreover, the duality

relation implies that the normal direction to H at ui is parallel to u−1
i , and accordingly,

the normal to P (H) at P (ui) is parallel to P (u−1
i ).

We are going to use a different optimisation argument as in the proof of Theo-

rem 1.24; the advantage is that this approach automatically works for lower dimensional

extremal ellipsoids as well, therefore, there will be fewer assumptions on the separating

matrix H. Moreover, H will not be required to be symmetric either.

In order to move the ellipsoid P (E∗) so that it stays in P (H), the original con-

tact points cannot cross the local separating hyperplanes. Since the matrix P (M) is

symmetric and positive semi-definite, it has a symmetric, positive semi-definite square-

root A, for which P (E∗) = ABn
2 . Let H be an arbitrary n × n matrix. We modify

the matrix A to (I + δH)A, where δ > 0. The image of the contact point P (u−1
i ) is

P (u−1
i ) + δHP (u−1

i ). Then P (M) is modified to

((I + δH)A)2 = P (M) + δHP (M) + δAHA + δ2HAHA.

The derivative of the above expression with respect to δ at δ = 0 is HP (M) + AHA.

Therefore, if the trace increases for small δ, then

trHP (M) + trAHA = 2trHP (M) > 0.

On the other hand, if the image of P (E∗) stays in the bounding box determined by the

separating hyperplanes at the contact points, then for every i,

〈P (ui), P (u−1
i ) + δHP (u−1

i )〉 6 〈P (ui), P (u−1
i )〉 = n.
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Therefore, if E∗ is locally extremal, then there is no real n× n matrix H, for which

〈P (ui),HP (u−1
i )〉 6 0

for every i, and

trHP (M) > 0.

The only fact we need is that for two vectors x, y ∈ Rn,

〈Hx, y〉 = 〈H, x⊗ y〉,

where the inner product of matrices is defined by (1.40). Therefore, P (M) is not

separable from the matrices P (ui)⊗ P (u−1
i ) by a linear functional, which implies that

P (M) ∈ pos {P (ui)⊗ P (u−1
i )} .

Note that in the above representation of P (M), the traces of the matrices are n:

trP (ui)⊗ P (u−1
i ) = 〈P (ui), P (u−1

i )〉 = n.

Hence it would suffice to show that for the coefficients in (1.49),X
ci 6 n− 1

n
.

If M is not singular, then we obtain the result which is analogous to Theorem 1.24.

Corollary 1.28. The only non-degenerate ellipsoid E∗, that is locally extremal with

respect to Conjecture 1.26, is the unit ball Bn
2 .

Proof. We shall use that for x, y ∈ Rn and a real symmetric n× n matrix A,

(x⊗ y)A = x⊗ (Ay).

Assume that M is not singular, and multiply both sides of (1.49) by P (M−1). Then

P (M−1)P (u−1
i ) = P (ui), and by (1.47), we obtain that

In − 1⊗ 1
n

=
X

ciP (ui)⊗ P (ui). (1.50)
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Since Bn
2 ⊂ intH, the norm of every point of P (H) is at least

√
n. Therefore,

trP (ui)⊗ P (ui) = 〈P (ui), P (ui)〉 > n.

On the other hand,

tr
�

In − 1⊗ 1
n

�
= n− 1.

Thus, (1.50) implies that
P

ci 6 (n− 1)/n.

If M is singular, then proceeding the above way, instead of obtaining a represen-

tation of the projection onto 1⊥, we derive a representation of the projection onto the

subspace of P (E∗). The problem is that we cannot estimate the norms of vectors in this

subspace; moreover, in the lower dimensional extremal spaces, the norms of the contact

points are not equal. Some relation connected to the scaling is missing. However, the

fact that the characterisation of Theorem 1.27 works for any extremal case, give us

hope that this approach for the polarization problems will eventually reach its goal.
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Chapter 2

The problem of the longest convex chains

We discuss the following problem. Let T be the triangle with vertices (1, 0), (0, 0)

and (0, 1). Choose n independent, uniform random points from T , the collection of

which is denoted by Xn. A subset Y ⊂ Xn is a convex chain, if the points are the

vertices of a convex path from (0, 1) to (1, 0). We are interested in the behaviour of

the longest convex chains, where length is measured by the number of vertices. The

maximal length is denoted by Ln. In Section 2.3, we prove an asymptotic result for

the expectation of Ln. It turns out that Ln is highly concentrated about its mean;

this is the main content of Section 2.4. With the aid of this property, we show that

the longest convex chains are in a small neighbourhood of a special parabolic arc with

high probability. The proof of this theorem, that is presented in Section 2.6, is based

on a conditional probabilistic method, to be found in Section 2.5. Finally, Section 2.7

contains numerical results obtained by computer simulations.

Most of these results were published in the joint article with Imre Bárány [3].

However, the material has been almost completely reorganised, and besides other mod-

ifications, the limit shape result is proven by a new method. Hopefully, these changes

led to a more clarified exposition of the topic.

2.1 Introduction and related results

The area of probabilistic discrete geometry has a history that is almost 150 years

old. In 1864, Sylvester posed the following problem in the Educational Times: “Show

that the chance of four points forming the apices of a reentrant quadrilateral is 1/4 if

they be taken at random in an indefinite plane”. It turned out immediately that the

problem was wrongly formulated, as the underlying distribution on the plane was not

specified. There are several ways to correct the question, the most popular of which has

been the following: “Let K be a convex body in the plane, and n points independently

from K with uniform distribution. What is the probability that they are in convex

position?” This question was fully answered by Bárány in 1999 [14]. The situation of

choosing finitely many, independent, uniform random points in a convex body has been
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extremely fertile, and hundreds of papers have been written on related questions. For

an excellent survey of some topics in the area, see e.g. Bárány [15].

In the present chapter we consider the following problem. Let T ⊂ R2 be a triangle

with vertices p0, p1, p2 and let X = Xn be a random sample of n independently chosen

random points from T with uniform distribution. A subset Y ⊂ Xn is a convex chain

in T (from p0 to p2) if the convex hull of Y ∪ {p0, p2} is a convex polygon with exactly

|Y | + 2 vertices. A convex chain Y gives rise to the polygonal path C(Y ) which is the

boundary of this convex polygon minus the edge between p0 and p2. The length of the

convex chain Y is just |Y |. We shall investigate the length of a longest convex chain in

Xn, which will be denoted by Ln.

An equally plausible and natural question would be the following. Let K be

an arbitrary convex region in the plane, and choose n random, uniform, independent

points from K. What is the expectation of the largest subset of the random points in

convex position? We will explain later in the section, that using standard methods,

this question immediately boils down to the one above for triangles. We mainly chose

to work with the random variable Ln because of the similarity to the famous problem

of the longest increasing subsequences in random permutations.

This connection is easily established. Indeed, let Xn is a uniform sample of n

independent points from the unit square, and call a chain from (0, 0) to (1, 1) monotone,

if the slope of every edge in it is positive. By ordering the points of Xn according

to their x-coordinates, the order of their y-coordinates represents a permutation σ

of {1, . . . , n}, where the longest monotone chain from Xn corresponds to the longest

increasing subsequence of σ. It is easy to check that the resulted distribution on Sn is

the uniform distribution.

The problem of the longest increasing subsequences is over 40 years old, in which

period, it has been linked to various parts of mathematics, e.g. Young tableaux, pa-

tience sorting, planar point processes, and the theory of random matrices. In 1977,

independently of each other, Logan and Shepp [29] and Vershik and Kerov [43] proved

that the expectation is 2
√

n(1 + o(1)). After a variety of related results, the limit dis-

tribution was determined by Baik, Deift and Johansson in 1999 [7]. Surprisingly, this

turned out to be the same as the limit distribution of the largest eigenvalue of random

n × n Hermitian matrices, which was determined by Tracy and Widom in 1994 [41].

More details about the problem can be found in the excellent survey paper by Aldous

and Diaconis [1].
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Let us return now to random points in a planar convex body. We need some

notation to formulate the results. The (Lebesgue) area of K will be denoted by A(K).

Next, we define the affine perimeter of a planar convex body S, see e.g. [13] or [17];

there are many ways to do it, of which we choose the one which is most relevant.

Choose a partition x1, . . . , xm, xm+1 = x1 of the boundary ∂S, and for every i, let the

line li support S at xi. Denote by Ti the triangle enclosed by li, li+1, and the segment

x1 xi+1. The affine perimeter of S is then defined by

AP (S) = 2 lim
mX
1

3
È

A(Ti), (2.1)

where the limit is taken over a sequence of partitions whose mesh tends to 0. The

existence of the limit is showed in the above cited papers. We also mention that if the

boundary of S is twice differentiable, then AP (S) =
R
∂S κ1/3ds, where κ denotes the

curvature of ∂S and the integral is taken with respect to the arc length. Naturally,

the affine length can be defined in the same manner for convex curves. Finally, for a

convex body K ⊂ R2, let

A∗(K) = sup{AP (S) : S ⊂ K convex}. (2.2)

Because of compactness, the supremum in the above definition is attained. Further-

more, Bárány proved in [13] the maximiser is unique: there is exactly one convex body

contained in K, say K0, for which A∗(K) = AP (K0). Now, the structure of K0 is well

known as well [13]. If T is the triangle with vertices p0, p1, p2, then among all convex

curves connecting p0 and p2 within T , the unique parabola arc Γ ⊂ T that is tangent

to the sides p0p1 at p0 and p1p2 at p2 has the largest affine length. The parabola arc Γ

will be called the special parabola in T , see Figure 2.1. From this fact, it simply follows

that ∂K0 \ ∂K consists of parabola arcs that are tangent to ∂K at their endpoints.

The importance of affine perimeter was first pointed out in the work of Rényi and

Sulanke [35]. They proved that if K is a smooth convex body in the plane, and Xn is a

uniform sample of n points in K, then the expected number of the vertices of convXn

(the convex hull of Xn) is asymptotically

Γ
�5

3

�
3

r
2
3

(A(K))−1/3 AP (K) 3
√

n. (2.3)

Here of course Γ stands for the Gamma function.
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p0

p1 p2

T

Γ

Figure 2.1: The special parabola

Now, let K ⊂ R2 be an arbitrary convex body. Bárány [14] proved that if we take

all the convex polygons spanned by points of Xn, then the majority of them is close to

K0. Therefore, K0 is the limit shape of the random convex polygons inside K. In the

article [16], strengthening this result, an almost sure limit theorem and a central limit

theorem for convex chains are proved.

Next, we give an alternative model for obtaining a sample from K, by choosing

lattice points. The connection between this and the uniform model motivates a strong

inspiration on both sides. Consider the lattice (1/t)Z2, where Z2 is the usual integer

lattice in R2 and t > 0 is large, and set X = T ∩ (1/t)Z2. The same questions can be

formulated for X as for Xn. For instance, Andrews [5] proved an upper estimate for

the number of vertices of the integer convex hull:

|convX| 6 cA(K)1/3

for some constant c. This shows that the two models do not behave necessarily in the

same way. However, for the convex lattice polytopes of X, the same limit shape result

holds as for the uniform model. This, in full generality, was proved in [13].

Regarding the present problem, there exists a result about convex lattice chains.

Let T be the usual triangle, and consider the lattice points in T . Let n = |X|; clearly,

for large t, n ≈ A(T ) t2. Write Yn ⊂ X for a longest convex chain in T . It is shown by

Bárány and Prodromou [17] that, as t →∞ (or n →∞),

|Yn| = 6
(2π)2/3

3
È

t2A(T )(1 + o(1)) =
6

(2π)2/3
n1/3(1 + o(1)). (2.4)
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Next, we list our results. First, in Section 2.3, we prove an asymptotic result about

the expectation of Ln. In view of (2.4), we expect the order of magnitude to be n1/3.

This is indeed so:

Theorem 2.1. There exists a positive constant α, for which

lim
n→∞

ELn
3
√

n
= α .

We also establish the estimates 1.57 < α < 3.43. Numerical experiments suggest

that α = 3 and we venture to conjecture that this is the actual value of α, which would

nicely match the expectation of the longest increasing subsequences.

We have seen that the convex chains are located close to the parabolic arc Γ in

both the uniform and the lattice models. Although this does not imply that the longest

convex chains are close to Γ, it is reasonable to guess so. Indeed, we will essentially

prove that if C(Xn) is the collection of all longest convex chains from Xn, then for every

ε > 0,

lim
n→∞P

�
dist(C(Y ), Γ) > ε for some Y ∈ C(Xn)

�
= 0, (2.5)

where dist(., .) stands for the Hausdorff distance. In order to achieve this result, we need

strong concentration results in the sense of Talagrand’s inequality, that are established

in Section 2.4. Sections 2.5 and 2.6 contain the proof of the following quantitative limit

shape theorem.

Theorem 2.2. Let γ > 1 and define ε = 2γ1/2 n−1/12(log n)1/4. Then there exists

N > 0, depending on γ, such that for every n > N ,

P
�
dist(C(Y ), Γ) > ε for some Y ∈ C(Xn)

�
< n−γ2/14.

Note that this is much stronger than (2.5), since here ε → 0 as well.

Once Theorems 2.1 and 2.2 for triangles are known, it is not too hard to extend

the results for arbitrary convex sets: the method is illustrated for example in [17]. We

give a sketch here. Let K ⊂ R2 be a convex body, and K0 its convex subset of maximal

affine perimeter. Let Xn be a uniform sample from K, and assume that Y is a largest

subset of Xn in convex position. Let C(Y ) be the polygonal path of Y . Let m be

fixed, and for every k = 1, . . . , m, let lk be a tangent to C(Y ) of direction 2πk/m,

with contact point xk. Let Tk be the triangle delimited by lk, lk+1, and the segment

xk xk+1. It is easy to check that Y ∩ Tk is a maximal convex chain in Tk. For n À m,

53



the number of points in Tk is about nA(Tk)/A(K), and by Theorem 2.1 and formulas

(2.1) and (2.2),

|Y | ≈ α n1/3

3
È

A(K)

mX
1

3
È

A(Tk) 6 α n1/3A∗(K)

2 3
È

A(K)
,

where α is the constant from Theorem 2.1. On the other hand, by choosing the points

x1, . . . , xm on ∂K0, the quantity on the right hand side can be achieved. Therefore,

lim
n→∞n−1/3E|Yn| = αA∗(K)

2 3
È

A(K)
.

Moreover, this is achieved only if C(Y ) is sufficiently close to K0; therefore, the limit

shape of the maximal convex polygons is necessarily K0.

The above argument serves as the basis for the subsequent proofs as well. However,

there are many non-trivial details, and tricky proofs, to come.

Finally, we mention another model, that is often used in probabilistic geometry,

although in the present case we will not apply it. Let X(n) be a homogeneous planar

Poisson process of intensity n/A(T ). Then given a domain D in the plane, the number

of points in D, that we denote by m(D), has Poisson distribution with parameter

λ = nA(D)/A(T ):

P
�
m(D) = k

�
= e−λλk/k! .

We can also think of the Poisson model as follows: for a domain D, we first pick

a random number m according to the corresponding Poisson distribution, and then

choose m random, independent, uniform points in D. As is well known, the uniform

model Xn and the Poisson model X(n) behave very similarly. In particular, Theorems

2.1, 2.2, and 2.8 remain valid for the latter as well, with essentially the same quantitative

estimates. Obtaining these results from the ones presented here is straightforward. An

equally standard way is to prove the theorems for the Poisson model, and then transfer

the results to the uniform model. The disadvantage of obtaining slightly weaker results

is balanced by the fact that under the Poisson model, the number of points of X(n) in

two disjoint domains are independent random variables.

The longest increasing subsequence problem has been almost completely solved

by now, see [1]. In this respect, our results only constitute the first, and perhaps the

simplest, steps in understanding the random variable Ln.
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2.2 Geometric and probabilistic tools

When choosing a random point in the triangle T , the underlying probability mea-

sure is the normalized Lebesgue measure on T . Most of the random variables treated

in this chapter (e.g. Ln) are defined on the nth power of this probability space, to be

denoted by Tn. In this case P denotes the nth power of the normalized Lebesgue mea-

sure on T . Plainly, choosing n independent random points in T , the number of points

in any domain D ⊂ T is a binomial random variable of distribution B(n,A(D)/A(T )),

and the expected number of points in D is nA(D)/A(T ).

For binomial random variables we have the following useful deviation estimates,

which are relatives of Chernoff’s inequality, see [2], Theorems A.1.12 and A.1.13. If K

has binomial distribution with mean value k > 1 and c > 0, then

P
�
K 6 k − c

È
k log k

�
6 k−c2/2. (2.6)

On the other hand, for c > 1,

P
�
K > ck

�
6
�

e

c

�ck

. (2.7)

We will use (2.6) often, mainly with c = 1.

p0

p1
p2

q0

q1

q2

`

c : (1 − c)

T1

T21 − a

a

b 1 − b

a) b)

p0

Ti

p1
p2

qi−1

qi

Figure 2.2: Characterisation of Γ

As we have mentioned earlier, the special parabola arc Γ ⊂ T is characterized by

the fact that it has the largest affine length among all convex curves connecting p0 and

p2 within T . This is a consequence of the following theorem from [20]. Assume that a

line ` intersects the sides p0p1 resp. p1p2 at points q0 and q2. Let q be a point on the
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segment q0q2 and write T1 resp. T2 for the triangle with vertices p0, q0, q resp. q, q2, p2,

see Figure 2.2 a).

Theorem 2.3 ([20]). Under the above assumptions

3
È

A(T1) + 3
È

A(T2) 6 3
È

A(T ).

Equality holds here if and only if q1 ∈ Γ and ` is tangent to Γ at q1.

The equality part of the theorem implies the following fact. Assume that p0 =

q0, q1, . . . , qk = p2 are points, in this order, on Γ. Let Ti be the triangle delimited by

the tangents to Γ at qi−1 and qi, and by the segment qi−1qi, i = 1, . . . , k; see Figure 2.2

b).

Corollary 2.4. Under the previous assumptions
Pk

i=1
3
È

A(Ti) = 3
È

A(T ). In particu-

lar, when A(Ti) = t for each i = 1, . . . , k−1 and A(Tk) < t, then k−1 ≤ 3
È

A(T )/t < k.

We will need a strengthening of Theorem 2.3. Assume q0 resp. q2 divides the

segment p0p1 resp. p1p2 in ratio a : (1− a) and b : (1− b), see Figure 2.2 a).

Theorem 2.5. With the above notation

3
È

A(T1) + 3
È

A(T2) 6 3
È

A(T )− 3
È

A(T )
1
3
(a− b)2.

Proof. Let c be a number between 0 and 1, so that q1 divides the segment q0q2 in

ratio c : (1− c). Then, writing A(xyz) for the area of the triangle with vertices x, y, z,

A(p0q0q1) = aA(p0p1q1) = acA(p0p1q2) = abcA(p0p1p2),

showing A(T1) = abcA(T ). Similarly, A(T2) = (1−a)(1−b)(1−c)A(T ). Hence we have

to prove the following fact: 0 6 a, b, c 6 1 implies

1− 3
√

abc− 3
È

(1− a)(1− b)(1− c) > 1
3
(a− b)2. (2.8)

Denote Q the left hand side of (2.8). By computing the derivative of Q with respect to

c yields that for fixed a and b, Q is minimal when

c =

√
ab√

ab +
È

(1− a)(1− b)
.
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It is easy to see that with this c,

3
√

abc + 3
È

(1− a)(1− b)(1− c) =
�√

ab +
È

(1− a)(1− b)
�2/3

.

Now, denote
�√

ab +
È

(1− a)(1− b)
�2

by 1− u, that is,

u = a + b− 2ab− 2
È

ab(1− a)(1− b).

We claim that u > (a− b)2: this is the same as

a− a2 + b− b2 > 2
È

(a− a2)(b− b2),

which is just the inequality between the arithmetic and geometric means for the num-

bers a− a2, b− b2 ≥ 0. Therefore, using u 6 1,

Q > 1− (1− u)1/3 > 1
3

u > 1
3

(a− b)2.

Theorems 2.3 and 2.5 imply the following statement.

Corollary 2.6. If q ∈ Γ and ` is tangent to Γ at q, then with the above notations,

a = b.

Since an affine transformation does not influence the value of Ln, the underlying

triangle T can be chosen arbitrarily. Our standard model for T is the one with p0 =

(0, 1), p1 = (0, 0), p2 = (1, 0) as the vertices of T . In this case the special parabola Γ is

given by the equation
√

x +
√

y = 1.

Finally, we will give strong concentration results for Ln with the help of Talagrand’s

following inequality [40]. Suppose that Y is a real-valued random variable on a product

probability space Ω⊗n, and that Y is 1-Lipschitz with respect to the Hamming distance,

meaning that

|Y (x)− Y (y)| 6 1

whenever x and y differ in one coordinates. Moreover assume that Y is f -certifiable.

This means that there exists a function f : N → N with the following property: for

every x and b with Y (x) > b there exists an index set I of at most f(b) elements, such

that Y (y) > b holds for every y agreeing with x on I. Let m denote the median of Y .
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Then for every s > 0 we have

P(Y 6 m− s) 6 2 exp
� −s2

4f(m)

�
,

P(Y > m + s) 6 2 exp
� −s2

4f(m + s)

�
.

(2.9)

2.3 Expectation

The aim of this section is to prove of Theorem 2.1. We also establish upper and

lower bounds for the constant α.

Proof of Theorem 2.1. We start with an upper bound on ELn:

lim sup
n→∞

ELn
3
√

n
6 3
√

2e = 3.4248 . . . . (2.10)

It is shown in [14], equation (5.3) (cf. [16] as well) that the probability of k uniform

independent random points in T forming a convex chain is

2k

k! (k + 1)!
.

Therefore we can estimate the probability that a convex chain of length k exists:

P(Ln ≥ k) ≤
�

n

k

�
2k

k! (k + 1)!
.

We use this estimate and Stirling’s formula to bound ELn. Assume γ > 3
√

2e. Then

ELn =
nX

k=0

P(Ln > k) 6
nX

k=0

P(Ln ≥ k)

6 γ 3
√

n +
X

k>γ 3√n

P(Ln ≥ k)

6 γ 3
√

n +
X

k>γ 3√n

�
n

k

�
2k

k! (k + 1)!

6 γ 3
√

n +
X

k>γ 3√n

(2n)k

(k!)3

6 γ 3
√

n +
X

k>γ 3√n

1È
(2πγ)3n

�
2 e3

γ3

�k

6 γ 3
√

n + n−1/2C,
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where C = γ3/(γ3−2e3) is a positive constant. Since this holds for arbitrary γ > 3
√

2 e,

(2.10) is proved.

Next, we give a lower bound for ELn. We apply Corollary 2.4 with t = 2A(T )/n,

obtaining a set of triangles {T1, . . . , Tk}, where for 1 6 i 6 k−1, the area of Ti is t, and

the area of Tk is less than t. By (2.4), k > 3
È

n/2. Let Xn be the uniform independent

sample from T . Let qi be a point of Ti ∩Xn, provided that Ti ∩Xn 6= ∅. The collection

of such qi’s forms a convex chain. Hence, the expected length of the longest convex

chain is at least the expected number of non-empty triangles Ti:

ELn >
kX
1

P
�
Ti ∩Xn 6= ∅

�
> (k − 1)

�
1−

�
1− 2

n

�n�
≥
�

3

É
n

2
− 1

� �
1− e−2

�
≈ 0.6862n1/3.

What we have proved so far is that

α = lim inf
n→∞ n−1/3ELn > 0.6862, and α = lim sup

n→∞
n−1/3ELn < 3.4249.

We show next that the limit exists. Suppose on the contrary that α < α.

The idea of the proof is to use Corollary 2.4 again with parameters chosen so that

the expected length of the longest convex chains in the small triangles is close to α,

while for the triangle T , ELn is close to α. This will result in a contradiction.

Choose a large n with ELn > (1 − ε) α 3
√

n, and an N much larger than n with

ELN ≤ (1 + ε) α 3
√

N . Here ε is a suitably small positive number. Define n1 by the

equation n = n1 −
√

n1 log n1.

Choose N uniform, independent random points from triangle T . Define t = n1/N .

Hence the expected number of points in a triangle of area t (contained in T ) is n1.

Applying Corollary 2.4 with this t yields the set of triangles T1, . . . , Tk, where

k > 3
È

N/n1.

Denote by ki the number of points in Ti, and by ELi the expectation of the length

of the longest convex chain in Ti. Clearly, ki has binomial distribution with mean n1,

except for the last triangle where the mean is less than n1.

59



Since the union of convex chains in the triangles Ti is a convex chain in T between

(0, 0) and (1, 1), by the estimate (2.6) we have

ELN >
X
i6k

ELi ≥
X

i6k−1

P(ki > n)ELn

>
X

i6k−1

�
1− n

−1/2
1

�
(1− ε) α 3

√
n

>
�

3
È

N/n1 − 1
� �

1− n
−1/2
1

�
(1− ε) α 3

√
n

= α
3
√

N(1− ε)
�
1− n

−1/2
1

� �
3
È

n/n1 − 3
È

n/N
�

≥ α
3
√

N(1− 2ε),

where the last inequality holds if n is chosen large enough and N is chosen even larger

with n/N very small. Thus (1+ε) α ≥ (1−2ε)α which, for small enough ε, contradicts

our assumption α < α.

The lower bound ELn ≥ 0.6862n1/3 is probably the easiest to prove. A better

estimate, also mentioned by Enriquez [22], can be established by the following sketch.

Assume T is the standard triangle and let D denote the domain of T lying above Γ.

Then A(D) = 1/3, so the expected number of points in D is 2n/3, and the number

of points is concentrated around this expectation. The affine perimeter of D is 2 3
È

1/2

(see [14]), and (2.3) yields that the expected number of vertices of conv(D ∩ Xn) is

about

Γ
�5

3

�
3

r
2
3

�1
3

�−1/3

2 3
È

1/2 3
È

2n/3 ≈ 1.5772 3
√

n.

Since most vertices are located next to the parabola, the majority of them form a

convex chain, and so

lim inf
n→∞

ELn
3
√

n
> 1.5772 . . . . (2.11)

This estimate leads to slightly stronger quantitative results, and thus from now on, we

will use it instead of α > 0.6862.
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2.4 Concentration results

In this section, we prove strong concentration results for Ln and related variables.

We will use Talagrand’s inequality (2.9), see Section 2.2. When applied to Ln, this

yields a concentration result about the median, what we denote by mn. However, we

want to prove that Ln is close to its expectation. Luckily, concentration ensures that the

mean and the median are not far apart; in fact, it will turn out that limn−1/3mn = α.

First, we need a lower bound on mn.

Lemma 2.7. Suppose that log n > 25. Then

mn ≥ 3
È

3n/ log n.

Since this is a special case of Lemma 2.9, the proof will be given there.

Here comes our first, basic concentration result for Ln.

Theorem 2.8. For every γ > 0 there exists a constant N , such that for every n > N ,

P
�
|Ln − ELn| > γ

È
log n n1/6

�
< n−γ2/14.

Proof. The statement cries out for the application of Talagrand’s inequality. The

random variable Ln satisfies the conditions with f(b) = b, since fixing the coordinates

of a maximal chain guarantees that the length will not decrease, and changing one of

the points changes the length of the maximal chain by at most one. Write m = mn

for the median in the present proof. Setting s = β
√

m log m where β is an arbitrary

positive constant, (2.9) implies that

P
�
|Ln −m| > β

È
m log m

�
< 4 exp

¨ −β2m log m

4(m + β
√

m log m)

«
= 4 exp

� −β2 log m

4(1 + β
È

m−1 log m)

�
Define now β0 = c

È
m/ log m with a constant c > 0, which will be specified at the end

of the proof in order to give the correct estimate. If β 6 β0, then β
È

m−1 log m ≤ c,

and the denominator in the exponent is at most 4(1 + c). Thus

P
�
|Ln −m| > β

È
m log m

�
< 4m

−β2

4(1+c) . (2.12)
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On the other hand, for β > β0 we have

P
�
|Ln −m| > β

È
m log m

�
< P

�
|Ln −m| > β0

È
m log m

�
(2.13)

= 4 exp
�
−m

c2

4(1 + c)

�
.

Next, we compare the median and the expectation of Ln using the following inequality:

|ELn −m| 6 E|Ln −m| =
Z ∞

0
P(|Ln −m| > x)dx.

The range of Ln is [1, n], so the integrand is 0 if x > n. Substitute x = β
√

m log m,

and divide the integral into two parts at β0:

|ELn −m| 6 4
È

m log m(I1 + I2),

where

I1 =
Z β0

0
m−β2/4(1+c)dβ <

Z ∞

0
m−β2/4(1+c)dβ =

s
π(1 + c)
log m

, (2.14)

and

I2 =
Z n/

√
m log m

β0

exp
�
−m

c2

4(1 + c)

�
dβ < n exp

�
−m

c2

4(1 + c)

�
. (2.15)

By Lemma 2.7, n < m4, so I2 < m4 exp(−mc2/4(1 + c)). Since mn goes to infinity

as n increases (again by Lemma 2.7), the bound on I2 is eventually much smaller than

the one on I1:

|ELn −m| 6 4
È

m log m(I1 + I2)

< 4
È

π(1 + c)m + 4
È

m log mm4 exp
�
−m

c2

4(1 + c)

�
(2.16)

≤ 5
È

π(1 + c)
√

m

for all large enough n. Hence ELn is of the same order of magnitude as mn, and we

obtain

limn−1/3ELn = limn−1/3mn = α. (2.17)
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For fixed γ and for large enough n, (2.16) implies

P
�
|Ln − ELn| > γ

È
log n n1/6

�
6 P

�
|Ln −m| > γ

È
log n n1/6 − |ELn −m|

�
6 P

�
|Ln −m| > γ

È
log n n1/6 − 5

È
π(1 + c)

√
m
�
.

Using mn ≤ 3.43n1/3 from (2.10) and (2.17), it is easy to see that

γ
È

log n n1/6 − 5
È

π(1 + c) m ≥ γ
√

m

�Ê
3 log m− log 41

3.43
− 5

È
π(1 + c)

γ

�
≥ γ

r
3

3.44

È
m log m.

Since for large enough n, γ
È

3/3.44 < β0 = c
È

m/ log m, (2.12) finally implies

P
�
|Ln − ELn| > γ

È
log n n1/6

�
6 P

�
|Ln −m| ≥ γ

r
3

3.44

È
m log m

�
6 4m−3γ2/13.76(1+c) < n−γ2/14,

where the last inequality follows from (2.17) and choosing c = 0.01.

We remark that the constant in the exponent is far from being the best possible,

and we have made no attempt here to find its optimal value. In general, Talagrand’s

inequality is too general to give the precise concentration, see Talagrand’s comments

on this in [40]. Also, we note that the proof of Theorem 2.8 also yields the slightly

stronger estimate n−γ2(1/14+ϑ) for a sufficiently small ϑ.

For the proof of Theorem 2.2 we need to consider subtriangles S of T , that is,

triangles of the form S = conv {a, b, c} with a, b, c ∈ T , while Xn is still a random

sample from T . We will need to estimate the concentration of the longest convex chain

from Xn in S. Since this random variable depends only on the relative area of S, we may

and do assume that T is the standard triangle and S = conv{(0,√s), (0, 0), (
√

s, 0)}.
Thus A(S) = s/2. Write Ls,n for the length of the longest convex chain in S from

(0,
√

s) to (
√

s, 0), and ms,n for its median. In the following statements, we consider

the situation when sn/2, the expected number of points from Xn in S, tends to infinity.
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As in the proof of Theorem 2.8, we need two estimates: a lower bound for the

median guarantees that the mean and the median are close to each other, while an

upper bound for the expectation (or for the median) is needed to derive the inequality

in terms of n. Here comes the lower bound; the case s = 1 is Lemma 2.7.

Lemma 2.9. Suppose that log(ns) > 25. Then

ms,n ≥ 3
È

3ns/ log(ns).

Proof. Set t = (A(S) log(ns))/(3ns), and apply Corollary 2.4 to the triangle S, re-

sulting in the set of triangles T1, . . . Tk. Then for the number of triangles we have

3
È

3ns/ log(ns) < k 6 3
È

3ns/ log(ns) + 1.

For any i ∈ {1, . . . , k}, the probability that Ti contains no point of Xn is

P(Ti ∩Xn = ∅) 6
�

1− log(ns)
3ns

�n

< exp
�− log(ns)

3s

�
= (ns)−1/3s < (ns)−1/3.

Hence the union bound yields

P
�
Ln,s > 3

È
3ns/ log(ns)

�
≥ 1− P(Ti ∩Xn = ∅ for some i ≤ k)

≥ 1− k (ns)−1/3

≥ 1−
�

3
È

3/ log(ns) + (ns)−1/3
�
,

which is greater than 1/2 by the assumption.

Obtaining an upper bound for the mean is slightly more delicate; note that in the

lemma below, s need not be fixed.

Lemma 2.10. Assume ns →∞. Then

lim (ns)−1/3ELs,n = α

where α is the same constant as in Theorem 2.1.

Proof. Take any ε > 0 and choose N0 (depending on ε) so large that for every k > N0,

(1 − ε)α < ELk k−1/3 < (1 + ε)α. The random variable K = |Xn ∩ S| has binomial
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distribution with mean ns. When ns is large enough, ns − √ns log ns > N0, and we

use (2.6) for a lower estimate:

ELs,n =
nX

k=0

P(K = k)ELk

> P(K > ns−
È

ns log ns)(1− ε) α (ns−
È

ns log ns)1/3

> (1− (ns)−1/2)(1− ε) α (ns−
È

ns log ns)1/3

> (1− 2ε) α (ns)1/3.

For the upper bound, Jensen’s inequality applied to 3
√

x comes in handy:

ELs,n =
nX

k=0

P(K = k)ELk

6 N0 P(K < N0) +
nX

k=N0

P(K = k)ELk

6 N0 +
nX

k=N0

P(K = k) (1 + ε) α
3
√

k

6 N0 + P(K > N0) (1 + ε) α

�
nX

k=N0

P(K = k)
P(K > N0)

k

�1/3

6 N0 + P(K > N0)2/3 (1 + ε) α (EK)1/3

6 N0 + (1 + ε) α (ns)1/3 6 (1 + 2ε) α (ns)1/3.

Next, we derive the strong concentration property of Ls,n, the analogue of Theo-

rem 2.8.

Theorem 2.11. Suppose τ is a constant with 0 6 τ < 1. Then for every γ > 0 there

exists a constant N , such that for every n > N and every s > n−τ ,

P
�
|Ls,n − ELs,n| > γ

È
log ns (ns)1/6

�
< (ns)−γ2/14.

Proof. This proof is almost identical with that of Theorem 2.8. Since Ls,n is a random

variable on T⊗n, we can apply Talagrand’s inequality with the certifying function f(b) =

b in the same way as in the proof of Theorem 2.8. Write again m for ms,n, the median

of Ls,n. Define β0 = c
È

m/ log m with c = 0.01; then the estimates (2.12) and (2.13)
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remain valid with Ls,n in place of Ln. Just as before,

|ELs,n −m| 6 E|Ls,n −m| =
Z ∞

0
P(|Ls,n −m| > x)dx

= 4
È

m log m(I1 + I2)

where I1 and I2 are defined the same way as in (2.14) and (2.15). Moreover, I1 satisfies

the inequality (2.14). With I2 we have to be a bit more careful.

Note that s > n−τ with τ < 1 guarantees that Lemma 2.9 is applicable for n >

exp(25/(1− τ)). As x/ log x is monotone increasing for x > e,

m ≥ 3

Ê
3ns

log(ns)
≥ 3

s
3n1−τ

(1− τ) log n
>

3

Ê
n1−τ

n(1−τ)/2
= n(1−τ)/6

for large enough n, and therefore by (2.15)

I2 < m6/(1−τ) exp
�
−m

c2

4(1 + c)

�
where of course 6/(1 − τ) < ∞. Lemma 2.9 implies that m = ms,n → ∞, thus the

bound on I2 is much smaller than the one on I1 for large enough n. Therefore, just as

in (2.16),

|ELs,n −m| 6 4
È

m log m(I1 + I2)

< 4
È

π(1 + c)m + 4
È

m log mm6/(1−τ) exp
�
−m

c2

4(1 + c)

�
≤ 5

È
π(1 + c)

√
m.

Hence ELs,n is of the same order of magnitude as m = ms,n. Since sn > n1−τ → ∞,

we can use Lemma 2.10, yielding that for large enough n,

ms,n ≤ 3.431 3
√

ns. (2.18)

Again for fixed γ and for large enough n,

P(|Ls,n − ELs,n| > γ
È

log ns (ns)1/6)

6 P(|Ls,n −m| > γ
È

log ns (ns)1/6 − |ELs,n −m|)
6 P(|Ls,n −m| > γ

È
log ns (ns)1/6 − 5

È
π(1 + c)

√
m),
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and, by (2.18),

γ
È

log ns (ns)1/6 − 5
È

π(1 + c)
√

m ≥ γ

r
3

3.44

È
m log m.

Since for large enough n, γ
È

3/3.44 < β0 = c
È

m/ log m, (2.12) applied to Ls,n and

(2.18) finally implies

P
�
|Ls,n − ELs,n| > γ

È
log ns (ns)1/6

�
6 P

�
|Ls,n −m| ≥ γ

r
3

3.44

È
m log m

�
6 4m−3γ2/13.76(1+c) 6 (ns)−γ2/14.

We note that the proof also implies that for any 0 < A < B < ∞, there exists an

N (depending on A and B only), such that the inequality of Theorem 2.11 holds for

any γ ∈ [A,B] and for every n > N .

2.5 The conditional approach

Our proof of Theorem 2.2 is based on the following idea. Assume that Y is a

longest convex chain. Recall that C(Y ) is its convex polygonal path. Suppose that

C(Y ) contains a point q that is far from Γ, and let ` be a tangent line of C(Y ) at q.

By Theorem 2.5 we know that if T1 and T2 denote the two triangles determined by `

and q, then 3
È

A(T1) + 3
È

A(T2) is substantially smaller than 3
È

1/2. Therefore, if Li

denotes the length of the longest convex chain in Ti, then the expectation of L1 + L2

is small as well, as it follows from the strong concentration property of the binomial

distribution and Theorem 2.1. On the other hand, C(Y ) ⊂ T1 ∪ T2, and hence L1 + L2

is at least as large as Ln, whose expected value is – depending on the choice of the

neighbourhood of Γ – much larger than E(L1)+E(L2). Therefore, either L1, L2, or Ln

is far from its expectation, which, according to the strong concentration results of the

previous sections, has exponentially small probability.

The technical realisation of the above sketch is not trivial. One is tempted to

proceed in the following way. Define the random variable Z as the indicator function

of the existence of a long convex chain:

Z =

(
1 if Ln > ELn − γ

√
log n n1/6

0 otherwise.
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Recall that C(Xn) is the collection of the longest convex chains in a given sample.

The random variable Q is defined as the (almost surely, unique) farthest point ofS{C(Y ) : Y ∈ C(Xn)} from Γ in Euclidean distance.

Now, our aim is to show that if q is “far” from Γ, then the conditional probability

P(Z = 1 |Q = q) – or, what is the same, the conditional expectation of Z – is exponen-

tially small. At first glance, the area estimate of Theorem 2.5 plus the concentration

results are sufficiently strong to derive this statement. However, some thinking reveals

that this is not the case: since the condition on the farthest point modifies the un-

derlying distribution, the previous results obtained for the uniform sample cannot be

applied.

There are (at least) two ways to correct this reasoning. First, instead of estimating

the conditional expectation in question at every point, we can use a finite approxima-

tion by estimating the (positive) probabilities that a longest convex chain intersects

a small convex set far from Γ. This method was accomplished in our article [3]; it

involves several tricks for choosing the right partitioning of T , and it reaches the goal

via elementary, but tedious technical calculations.

For the purpose of the present thesis, a different method has been developed, still

along the line of conditional probabilities. Note that the independence of the points

of Xn allows us to condition on the location of a point of the sample: the remaining

n− 1 points have the same joint distribution as Xn−1. Therefore we can estimate the

probability of the existence of a long convex chain through a fixed point, given that the

sample contains this point. This is the motivating idea.

By default, every result from now on is understood to hold when n is large enough,

where the bound on n depends on γ only. Also, with some ambiguity, we shall say that

a convex chain contains a point, if its polygonal path contains it – it will be clear from

the context if we require the point to be a vertex of the path.

Fix the constant γ ≥ 1, and set

b = γ n1/6
È

log n. (2.19)

We shall call a convex chain Y ⊂ Xn long if its length is at least ELn − b. The strong

concentration result of Theorem 2.8 directly shows that the probability of the existence

of long chains is large:

P(Ln < ELn − b) ≤ n−γ2/14. (2.20)
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q

`(q)

(0, 1)

(0, 0) (1, 0)

Γ

(0, 1 + r)

(1 + r, 0)

Γr

Figure 2.3: The parabola Γr

In measuring distances from Γ it will be convenient to use the parabolic arcs

Γr = {(x, y) ∈ T :
√

x +
√

y =
√

1 + r},

where r ∈ (−1, 1). Then Γ0 = Γ, and Γr is the homothetic copy of Γ with ratio of

homothety 1 + r, and center of homothety at the origin, see Figure 2.3. Assume the

point (p, q) is on Γ. Then the point
�
(1 + r) p, (1 + r) q

�
is on Γr, and the tangent line

to Γr at this point is given by the equation

x√
p

+
y√
q

= 1 + r. (2.21)

It follows that the distance between parallel tangent lines to Γ and Γr is

|r|È
1/p + 1/q

≤ |r|√
8
. (2.22)

Theorem 2.2 asserts that for a given γ, the longest convex chains are within the

ε-neighbourhood of Γ with probability n−γ2/14, where ε = 3/2γ1/2 n−1/12(log n)1/4.

Define

ρ =
√

8 ε = 4
√

2γ1/2n−1/12(log n)1/4. (2.23)

Formula (2.22) immediately implies that if a convex chain C(Y ) lies between Γ−ρ

and Γρ, then dist(C(Y ),Γ) ≤ ε. Therefore, in order to obtain Theorem 2.2, we shall

prove that all the longest convex chains are between Γ−ρ and Γρ with large probability

(meaning that the polygonal paths of the chains are in the required region).
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For any point q ∈ T , we define the line `(q) as the tangent to Γr at q, where r is

the unique parameter such that q ∈ Γr.

Let Y be a convex chain. By continuity and compactness, the set of r’s such that

C(Y )∩Γr 6= ∅ is a closed sub-interval [r1, r2] of [−1, 1]. The set of lower extremal points

of C(Y ) is defined by

El(Y ) = C(Y ) ∩ Γr1 ,

and similarly, the set of upper extremal points of C(Y ) is given by

Eu(Y ) = C(Y ) ∩ Γr2 .

We shall simply call elements of El(Y ) ∪ Eu(Y ) extremal points of Y . Plainly, if q is

an extremal point, then `(q) is a tangent to C(Y ), and C(Y ) ⊂ T1 ∪ T2, where T1 and

T2 are the triangles determined by q and `(q), see Figure 2.3 a). There are two cases:

if q is a lower extremal point, then by convexity, q must be a vertex of C(Y ), that is,

q ∈ Y . On the other hand, if q is an upper extremal point, then there are two points

y1 and y2 of Y such that q ∈ y1y2, the segment between y1 and y2. We shall handle

these cases separately.

For a point q ∈ T with q ∈ Γ%, we naturally say that q is below or above Γr

depending on whether % 6 r or % > r. For a given q ∈ T , let `(q) ∈ E(Xn) denote the

event that there are two points p1, p2 ∈ Xn ∩ `(q), for which q ∈ p1p2. We introduce

the conditional probabilities P (q) for q ∈ T by

P (q) =

(
P(∃ long convex chain Y ⊂ Xn with q ∈ El(Y ) | q ∈ Xn) for q below Γ;

P(∃ long conv. chain Y ⊂ Xn, q ∈ Eu(Y ) | `(q) ∈ E(Xn)) for q above Γ.

Let S denote the subset of T below Γ−ρ and U denote the part of T above Γρ,

where ρ is given by (2.23). The next theorem provides a natural and essential link to

the conditional probabilities P (q), and it serves as the key to Theorem 2.2.

Theorem 2.12. With the above notations,

P(∃ long convex chain not entirely between Γ−ρ and Γρ)

6 n
Z

S
P (q)dµ(q) + 10 n2

Z
U

P (q)dµ(q),
(2.24)

where µ stands for the normalised Lebesgue measure on T .
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Proof. This is the moment to use a finite approximation. Let δ be a small positive

number, and cover T with a disjoint union of squares with axis-parallel sides of length δ.

The set of the squares in the cover is called D . Now, the probability on the left hand

side of (2.24) is certainly smaller thanX
D∈D :D∩S 6=∅

P(∃ long convex chain Y ⊂ Xn with D ∩ El(Y ) 6= ∅ )

+
X

D∈D :D∩U 6=∅
P(∃ long convex chain Y ⊂ Xn with D ∩ Eu(Y ) 6= ∅ )

For squares D ∈ D intersecting S, the lower extremal point in D is an element of

Xn, and hence

P(∃ long convex chain Y ⊂ Xn with D ∩ El(Y ) 6= ∅)
= P(∃ long convex chain Y ⊂ Xn, D ∩ El(Y ) 6= ∅ and Xn ∩D 6= ∅)
= P(∃ long convex chain Y ⊂ Xn, D ∩ El(Y ) 6= ∅ | Xn ∩D 6= ∅) P(Xn ∩D 6= ∅).

Here,

P(Xn ∩D 6= ∅) 6 1− (1− 2δ2)n 6 n 2 δ2 = nµ(D), (2.25)

and taking limits when δ → 0, we obtain the first term of the right hand side of (2.24).

Now, let D ∈ D intersect U . If D contains an upper extremal point of a long

convex chain, then there exists q ∈ D and p1, p2 ∈ Xn, such that p1, p2 ∈ l(q) and

q ∈ p1p2. Let

`(D) =
[
{`(q) ∩ T : q ∈ D}

be the “double cone” centred at D, see Figure 2.4 a). Then `(D) \ D splits into two

disjoint parts, that we call “left” and “right” parts. Let Dl be the union of the left part

with D, and similarly, Dr be the union of the right part with D. As above,

P(∃ long convex chain Y ⊂ Xn with D ∩ Eu(Y ) 6= ∅ )

= P(∃ long conv. chain Y ⊂ Xn, D ∩ Eu(Y ) 6= ∅, and Dl ∩Xn 6= ∅, Dr ∩Xn 6= ∅)
= P(∃ long conv. chain Y ⊂ Xn, D ∩ Eu(Y ) 6= ∅ | ∃q ∈ D : `(q) ∈ E(Xn)

·P(Dl ∩Xn 6= ∅, Dr ∩Xn 6= ∅).
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By taking limits when δ → 0, the correlation of the events Dl∩Xn 6= ∅ and Dr∩Xn 6= ∅
tends to 0. Therefore, the proof will be completed as above if we show that

P(Dl ∩Xn 6= ∅) P(Dr ∩Xn 6= ∅) 6 20n2δ2

for every D ∈ D intersecting U . Similarly to (2.25),

P(Dl ∩Xn 6= ∅) P(Dr ∩Xn 6= ∅) 6 4n2A(Dl)A(Dr),

and hence the inequality to prove is

A(Dl)A(Dr) 6 5 δ2 . (2.26)

Dl

D

Dr

o

p1

p2

ϕ

ψ

σ

a) b)

D

Γ

`(D)

Figure 2.4: Squares above Γ

Let the vertices of D in counter-clockwise order be (x, y), (x, y+δ), (x−δ, y+δ) and

(x−δ, y). It is easy to see that among the lines `(q) with q ∈ D, the ones with extremal

slopes are the ones belonging to (x, y) and (x − δ, y + δ). Let us call p1 = (x, y), the

lower right vertex, and p2 = (x− δ, y + δ), the upper left vertex of D, see Figure 2.4 b).

Let ϕ be the slope of the ray o p1, where o is the origin. By symmetry, we may assume

that ϕ 6 π/2.

Denote ψ the angle between the rays o p1 and o p2. If δ is small enough, then both

p1 and p2 are above Γ, and hence their distance from o is at least 1/(2
√

2). On the

other hand, |p1p2| =
√

2δ. Therefore

ψ 6 arcsin 4δ ≈ 4δ. (2.27)
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By formula (2.21), for any point p on the ray o p1, the lines `(p) and `(p1) are

parallel, and their slope is

ν(ϕ) = − arctan(
√

tanϕ).

The slope of `(p2) is ν(ϕ + ψ). Now,

ν ′(ϕ) = − 1
2(sin ϕ + cosϕ)

√
sinϕ cosϕ

.

As it can easily be checked, ν ′(ϕ) is a concave function, and |ν ′(ϕ)| 6 1/
√

2 sin 2ϕ.

Therefore the angle between `(p1) and `(p2) is

σ = ν(ϕ)− ν(ϕ + ψ) 6 ψ√
2 sin 2ϕ

. (2.28)

Dl

Dr

D

T

Figure 2.5: Covering `(D) with a bow-tie

We divide the rest of the argument into two parts depending on the size of ϕ. If

ϕ > 0.17, then 1/
√

2 sin 2ϕ < 1.23 <
√

5− 1, and hence by (2.27),

σ 6 4(
√

5− 1) δ.

Therefore Dl ∪ Dr can be covered with a “bow-tie”: the union of two oppositely

placed trapezoids with shorter base length at most
√

2δ, whose angle between the

non-parallel opposite sides is less than 4(
√

5 − 1) δ, and the sum of their altitudes is

at most
√

2, see Figure 2.5. A straightforward calculation reveals that under these
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conditions, A(Dl)A(Dr) is maximal when both the altitudes are 1/
√

2, and then

A(Dl)A(Dr) < 5 δ2.

Finally, when ϕ 6 0.17, then 2ϕ/ sin 2ϕ 6 1.02, and hence (2.27) and (2.28)

essentially imply that

σ 6 2δ√
ϕ

.

We shall justify the use of this estimate by leaving a sufficient gap at the end. Recall

that x and y are the coordinates of the vertex p1. Since p1 is above Γ, they satisfy the

inequality
√

x+
√

y > 1. On the other hand, tanϕ = y/x. These relations immediately

yield that

x > cosϕ√
cosϕ +

√
sinϕ

≈ 1
1 +

√
ϕ

.

Moreover, the slopes of the tangent lines `(p1) and `(p2) are at most 0.4. Therefore,

Dr is covered by a trapezoid, whose shorter base is of length at most 1.1δ, the angle

between its non-parallel opposite edges is at most 2δ/
√

ϕ, and its altitude is at most

1.1
�

1− 1
1 +

√
ϕ

�
6 1.1

√
ϕ.

Hence, A(Dr) 6 2.5 δ
√

ϕ. On the other hand, Dl is covered by a trapezoid with shorter

base-length 1.1δ, opening angle at most 2δ/
√

ϕ and altitude at most 1.1, therefore

A(Dl) 6 1.21 δ

�
1 +

1√
ϕ

�
.

Altogether,

A(Dr)A(Dl) 6 3.025(1 +
√

ϕ) δ2 < 4.3 δ2,

therefore (2.26) holds for sufficiently small δ, and the proof is complete.

2.6 Limit shape

In this section we finally prove Theorem 2.2. The first lemma formalises the

intuitive idea that was presented at the beginning of Section 2.5. Let q ∈ T be an

arbitrary point, and as usual, let T1 and T2 denote the two triangles determined by

`(q) and q. Let Xn be a random sample of n points from T and let Li denote the length

of the longest convex chain in Ti, i = 1, 2.
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Lemma 2.13. For sufficiently large n, if |r| ≥ n−1/12, then

EL1 + EL2 ≤ ELn − 0.52 r2 3
√

n.

Proof. Let ti = µ(Ti) for i = 1, 2. We want to apply Theorem 2.5. It is not hard to

see (using Corollary 2.6 for instance) that what is denoted by |a− b| there, is equal to

|r| here. Consequently

3
È

t1/2 + 3
È

t2/2 6 3
È

1/2− 3
È

1/2
1
3

r2. (2.29)

Write Li for the longest convex chain in the triangle Ti. By affine invariance, Li

has the same distribution as Lti,n (from Section 2.4) for i = 1, 2. We need to estimate

ELn − (EL1 + EL2) from below.

q0

q1

q2

q3

S1

S2

S3

Γ

Figure 2.6: Estimating the expectations

For four points q0 = (0, 1), q1, q2 and q3 = (1, 0) in this order on Γ, denote Si

the triangle delimited by the tangents to Γ at qi−1, qi, and by the segment qi−1qi,

i = 1, 2, 3; see Figure 2.6. Choose q1 and q2 so that A(S1) = t1/2 and A(S2) = t2/2.

Then Corollary 2.4 and (2.29) imply that

3
È

A(S3) > 3
È

1/2
1
3

r2.

Let now Λi denote the length of a longest chain in Si for i = 1, 2, 3. For i = 1 and 2,

Λi has the same distribution as Lti,n (and as Li). Therefore ELi = ELti,n = EΛi for

i = 1, 2. Further, Λ1 + Λ2 + Λ3 ≤ Ln follows from concatenating the longest convex
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chains in the triangles Si. Thus we have

EL1 + EL2 + EΛ3 =
3X

i=1

EΛi 6 ELn. (2.30)

The random variable |Xn ∩ S3| has binomial distribution with mean 2A(S3)n which is

at least κ = (1/3)3r6n ≥ (1/3)3n1/2. Set N = κ − √κ log κ. Thus we obtain that for

all large enough n,

N > 0.99 κ =
0.99
27

r6n,

and N tends to infinity with n. Using the estimates (2.6) and (2.11), again for large n

we have

EΛ3 > P(|Xn ∩ S3| > N)ELN > (1− κ−1/2) 1.57N1/3

> 1.569N1/3 > 0.52 r2 3
√

n.

Hence, by (2.30)

EL1 + EL2 6 ELn − 0.52 r2 3
√

n.

Next, we estimate the conditional probabilities P (q) from Section 2.5 for points q

that are far from Γ.

Lemma 2.14. For any fixed γ > 0, there exists an N , such that for every n > N ,

P (q) 6 n−31γ2/14

for every q, that is below Γ−ρ or above Γρ.

Proof. Assume that Y is a long convex chain that contains q. If q is below Γ−ρ,

then Xn \ q is distributed as Xn−1. Therefore if L̃1 and L̃2 denote the length of the

longest convex chains in T1 and T2, then L̃i is distributed as Lti,n−1 for i = 1, 2, where

ti = µ(Ti). Moreover, |Y ∩ Ti| 6 L̃i. Recall that, since Y is a long convex chain, its

length is at least ELn − b, where b is given by (2.19). Thus,

ELn − b 6 |Y | 6 |Y ∩ T1|+ |Y ∩ T2| 6 L̃1 + L̃2 + 1.

Therefore,

P (q) 6 P(L̃1 + L̃2 + 1 > ELn − b).
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Since n, b → ∞, the term “+1” makes no difference at the estimates. Furthermore,

P(L̃1 + L̃2 > ELn − b) 6 P(L1 + L2 > ELn − b), and hence

P (q) 6 P(L1 + L2 > ELn − b). (2.31)

When q is above Γρ, then there are two points y1, y2 ∈ Xn on l(q) such that q ∈ y1y2,

and Y is contained in the triangles T̃1 and T̃2 determined by `(q), y1 and y2. Now,

Xn\{y1, y2} is distributed as Xn−2, and T̃1 ⊂ T1, T̃2 ⊂ T2. Therefore a similar reasoning

as above results in (2.31).

Lemma 2.13, (2.19) and (2.23) gives that

EL1 + EL2 6 ELn − 0.52 ρ2n1/3 < ELn − 13b,

therefore
P (q) 6 P(L1 + L2 > ELn − b)

6 P(L1 + L2 > EL1 + EL2 + 12b)

6
X

i=1,2

P(Li ≥ ELi + 6b).

(2.32)

Next, we estimate P(Li ≥ ELi + 6b). When ti = 2A(Ti) ≥ n−5/6, we use Theo-

rem 2.11 with τ = 5/6:

P(Li ≥ ELi + 6b) = P(Li > ELi + 6γ
È

log n n1/6)

6 P(Li > ELi + 6γ
È

log n/ log(nti)
È

log(nti) (nti)1/6)

6 (nti)−γ236 log n/14 log(nti) = n−36γ2/14.

The last inequality holds according to the remark following Theorem 2.11, since

1 6 6γ
È

log n/ log(nti) 6 γ 63/2.

Finally, when ti < n−5/6, the expected number of points in Ti is tin < n1/6. So for the

random variable |Ti ∩Xn| inequality (2.7) implies that

P
�
|Ti ∩Xn| > 6γ

È
log n n1/6

�
6
�

e tin

6γ
√

log n n1/6

�6γ
√

log n n1/6

6
�

e

6γ
√

log n

�n1/6

< n−32γ2/14
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for large enough n, as it can easily be seen by taking logarithms.

Therefore, in both cases

P
�
Li > ELi + 6 b

�
< n−32γ2/14,

and by (2.32),

P (q) < 2n−32γ2/14 < n−31γ2/14.

Proof of Theorem 2.2. We have to estimate the probability that there is a longest

convex chain not lying between Γ−ρ and Γρ. This event splits into two parts: either

the longest convex chain has less than ELn − b points, or there is a long convex chain

not entirely between Γ−ρ and Γρ. By Theorem 2.8 and the remark following it,

P(Ln < ELn − b) < n−γ2(1/14+ϑ)

for some positive ϑ > 0. On the other hand, Theorem 2.12, Lemma 2.14 and the

condition γ > 1 imply that

P(∃ long convex chain not entirely between Γ−ρ and Γρ)

6 10n2 n−31γ2/14 6 n−2γ2/14.

Therefore the probability in question is at most

n−γ2/14n−γ2ϑ + n−2γ2/14 = n−γ2/14
�
n−γ2ϑ + n−γ2/14

�
< n−γ2/14 .

2.7 Numerical experiments

In the final section we summarize the observations obtained by computer simula-

tions.

The search for the longest convex chains can be accomplished by an algorithm

which has running time O(n2). This algorithm works as follows. We order the points

by increasing x coordinate, and then recursively create a list at each point. The kth

element on the list at point p contains the minimal slope of the last segment of chains

starting at p0 and ending at p whose length is exactly k, and a pointer to the other

endpoint of this last segment. For creating the list at the next point q, we have to
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search the points before q, and check if q can be added to their minimal slope chains

while preserving convexity.

This algorithm can be speeded up with some (not fully justified, but useful) tricks.

First of all, Theorem 2.2 guarantees that we have to search only among the points

close to Γ. The simulations show that most longest convex chains are located in a

small neighbourhood of Γ, whose radius is in fact of order approximately n−1/3, much

smaller than the width of order n−1/12 given by Theorem 2.2. Therefore the search

can be restricted to a subset of the points with cardinality of order n2/3. Second, when

looking for the longest chain, we have to search only points relatively close to p, and

chains which are already relatively long, thus reducing memory demands.
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25 50 75 100

Figure 2.7: Results for n−1/3ELn, illustrated as a function of n1/3.

With the above method, the search can be executed for up to 5 · 104 active points,

in which case examining one sample takes about 2 minutes. As the experiments show,

this provides a good approximation for n’s up to order 106. In each experiment, we

increased the width of the searched neighbourhood until the increment did not generate

a significant change in the average length of the longest convex chain. The results

obtained by this method, although giving only a lower bound for ELn, are heuristically

close to it.

Our largest search was done for n = 106. The number of samples was 250 except

for the cases n = 253 and n = 106, where we used 500 samples in order to model the

distribution of Ln (see Figure 2.8).

The obtained numerical results well illustrate what the proof of Theorem 2.1 sug-

gests, namely, that n−1/3ELn is increasing with n. Also, the data seem to confirm that

α = 3.
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n n−1/3ELn dn Distance/
√

2 Deviation

1000 2.532 4 0.270 1.254
10000 2.768 5 0.200 1.383
15625 2.813 5 0.150 1.293
50000 2.885 5 0.100 1.411
75000 2.906 5 0.070 1.580
100000 2.917 5 0.060 1.431
125000 2.926 5 0.050 1.637
421875 2.959 5 0.012 1.732

1000000 2.976 6 0.012 2.023

Table 2.1: Results obtained by the simulation

On Table 2.7 we list the results obtained by the program. The first column is

the number of points chosen in T , the second is the average of n−1/3Ln. The third

column contains the half-length of the interval of the values of Ln, that is, dn =

bmax |Ln − ELn|c. This is noticeably small even for n = 106. In the fourth column we

list 1/
√

2 times the radius of the neighbourhood of parabola we used for the search (the

term
√

2 comes from a transformation of coordinates). The last data are the standard

deviation of the set of values of Ln, ie. the square-root of its variance.

Figure 2.7 illustrates the linear interpolation of n−1/3ELn as a function of n1/3. It

is based on the data shown on Table 2.7.

As we know from Theorem 2.8, Ln is highly concentrated about its expectation.

This phenomenon is well recognizable on Figure 2.8, where we plot the distribution in

the cases n = 253(= 15625) and n = 106 with 500 samples.
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Figure 2.8: Distribution of Ln, 500 samples, n = 253 and n = 106.
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[23] T. Erdélyi, Extremal properties of polynomials. In: A Panorama of Hungarian
Mathematics in the 20th Century, János Horváth (Ed.), Springer Verlag, New
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C. R. Acad. Sci. Paris 158 (1914), 1152–1154.

[38] R. Ryan and B. Turett, Geometry of Spaces of Polynomials. J. Math. Anal. Appl.
221 (1998), 698–711.
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