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1. INTRODUCTION 

Procedures for computing the full information maximum likelihood (FIML) 
estimates of the parameters of a system of simultaneous regression equations 
have been described by Koopmans, Rubin, and Leipnik [5], Chernoff and 
Divinsky [2], Brown [1], and Eisenpress [4]. However, all of these methods 
are rather complicated since they are based on estimating equations that are 
expressed in an inconvenient form. In this paper, a transformation of the 
maximum likelihood (ML) equations is developed which not only leads to 
simpler computations but which also simplifies the study of the properties 
of the estimates. The equations are obtained in a form which is capable of 
solution by a modified Newton-Raphson iterative procedure. The form 
obtained also shows up very clearly the relation between the maximum likeli- 
hood estimates and those obtained by the three-stage least squares method 
of Zellner and Theil [9]. 

2. MAXIMUM LIKELIHOOD EQUATIONS 

The problem we shall study is the estimation of the parameters of the model 

YA + XB = U, (1) 

where Y is a T x p matrix of T observations of each of p jointly-dependent 
variables and X is a T x q matrix of observations of q predetermined vari- 
ables. A and B are matrices of regression coefficients and U is a matrix of 
disturbances. We make the following assumptions: 

a. A is nonsingular. 
b. Each equation of the system is identified by virtue of the fact that certain ele- 

ments of A and B are known to be equal to zero. (This assumption is relaxed 
to permit consideration of underidentified equations in Section 7.) In addition, 
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we follow the normalizing convention according to which every element in the 
leading diagonal of A is unity. 

c. The elements of X are either fixed constants or are lagged values of the depen- 
dent variables. In the latter case, values of the dependent variables occurring 
prior to the Ttime periods under study are assumed to be fixed constants. The 
columns of X are supposed to be linearly independent. 

d. The rows of U are independently and normally distributed with vector mean 
zero and nonsingular variance matrix V. (This assumption is relaxed to permit 
the inclusion of identities in Section 6.) 

Based upon these assumptions, the density is proportional to I V-1 i /2T x 

exp(-jtr U'UV1-) and the Jacobian of the transformation form U to Y is 
A IT; consequently, 

log L = constant + TloglA + - Tlogl V-1 

- tr(YA + XB)'(YA + XB)V-', (2) 

where I | denotes the determinant of a matrix and tr denotes its trace. The 
maximum likelihood estimates are obtained by equating to zero the deriva- 
tives of this with respect to the elements of A, B, and V-1. Let the matrix 
of derivatives of log L with respect to the elements of a matrix H be denoted 
by alog L/3H. We then have 

ogL = TA'- - Y' ( YA + XB)V-1, (3) 
aA 

dlog L o 
= -X' ( YA + XB)V-', (4) 

aB 

alog L 1 1 
av - = - TV- 2 (YA +XB)'(YA +XB). (5) 

These results are obtained by the application of the following rules, which 
may be verified directly, for the differentiation of functions of matrices: 

l?oglal ,-1 a logIa l 
,(6a) 

aa 

atr Se tr y, (6b) 

atr p'6be = 26fe, (6c) ao 

where ao is a square matrix, 0 and y are matrices such that 0/ is square, and 
6 and e are symmetric matrices. 

When equating the elements of (3)-(5) to zero, the restrictions on A and 
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B arising from the fact that some of their elements are known to be unity or 
zero have to be allowed for. It is only the derivatives with respect to 
unknown elements which are equated to zero. The estimating equations 
therefore take the form 

TA'- + Y'(YA + XB)V-1 = 0, ()7) 

X'(YA + XB)V- = 0, (**) (8) 

TV- (YA + XB)'(YA + XB) =0, (9) 

where (*) indicates that only elements corresponding to unknown elements 
of A are taken and (**) that only elements corresponding to unknown ele- 
ments of B are taken. No restrictions apply to (9) since throughout this paper 
V is taken to be unrestricted. The "0" on the right-hand sides of (7)-(9) indi- 
cates a matrix of zero elements of appropriate order in each case. 

The difficulties in solving these equations arise partly from the presence 
of the term A'-1 in (7) and partly from the restrictions in (7) and (8). We 
shall aim at removing each of these sources of difficulty in turn. 

Equation (9) can be rewritten as 

TV- A'Y'(YA + XB) = B'X'(YA + XB). 

Premultiplying by A'-' and postmultiplying by V-~, we obtain 

TA'-~ - Y'(YA + XB)V-1 = A'-B'X' (YA + XB)V-1. (10) 

Since (9) is unrestricted so is (10), i.e., every element on the left-hand side 
of (10) equals the corresponding element on the right-hand side. Conse- 
quently, (7) and (10) together imply 

A'-1B'X'(YA + XB)V- = 0. (*) (11) 

Like (7) this is a restricted matrix equation the interpretation of which is that 
elements of the left-hand side of (11) corresponding to unknown elements of 
A are equated to zero, but that elements corresponding to zero or unit ele- 
ments of A need not be equal to zero. 

The basic proposal of this paper is that (11) should replace (7) in the esti- 
mation procedure, i.e., that the maximum likelihood estimates should be 
obtained from (8), (9), and (11) rather than from (7)-(9). The advantage of 
doing so will emerge when, in the next section, the equations are expressed 
in an unrestricted form. 

3. THE EQUATIONS IN UNRESTRICTED FORM 

Let W denote the matrix [Y:X] and W the matrix [Y:X] obtained by 
replacing Y by the set of reduced-form regressions Y = -XBA-1, i.e., W = 
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A 
-XBA-1 :X]. Denote the matrix by C. Then (8) and (11) can be writ- 

B 
ten together as 

W'WCIV- = , (***) (12) 

where (***) indicates that only elements of the left-hand side of (12) corre- 
sponding to unknown elements of C are equated to zero. 

Let cj denote the jth column of C (j = 1,... ,p). The jth element of cj is 
known to equal unity since all elements of the leading diagonal of A are 
unity; other elements of cj are zero by virtue of the prior restrictions on A 
and B. Let mj be the number of unknown elements in cj and let the mj x 1 
vector of these unknown elements be denoted by -bj. Thus, -6j is simply 
the vector of unknown coefficients in the jth equation of the original model. 
Let the columns of W corresponding to unknown elements of Cj be 
arranged as a T x mj matrix Zj. Finally, let yj denote the jth column of Y. 
Thus, in the product Wcj, yj has a coefficient of unity and the columns of 

Zj have coefficients equal to the elements of -6j; all other columns of W 
have zero coefficients. We therefore have Wcj - yj - Zj6j. Consequently, 

WC = [y, - Z161,Y2 - Z262, .. ,Yp - Zp6p]. (13) 

The advantage of this representation, which is the one used by Zellner and 
Theil [9], is that the restrictions on A and B are allowed for automatically 
in the sense that all elements of 61,..., p are unknown coefficients to be 
estimated. 

Substituting into (12), we have 

p 

W' E (Yk - Zkbk) [Vkl,. .., Vkp] = 0, (***) (14) 
k=l 

where vki is the kjth element of V-~. To take account of the restrictions 
(***), we have to pick out elements of the left-hand side of (14) correspond- 
ing to unknown elements of C and equate them to zero. The jth column 

p 
of the left-hand side of (14) is W' (Yk - Zkk)vk. We require the ele- 

k=l 
ments of this corresponding to the mj unknown elements of Cj. Let Zj be 
the T x mj matrix formed by the columns of W corresponding to unknown 
elements of ci, i.e., Zj is obtained from W by the same process as Zj is 
obtained from W. Thus, Zj is the same as Zj except that every dependent 
variable in Zj is replaced by its reduced-form regression. The mj elements of 

p 
W' (Yk - Zkk)Vki corresponding to unknown elements of Cj are there- 

k=l 
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p 
fore the elements of the mj x 1 vector ZJ' (Yk - Zkbk)ki. Consequently, 

k=l 

(14) is equivalent to 

p 

Zj E (Yk- )Zktk)k =0, (j= 1,...,p). (15) 
k=l 

The set of equations (15) is identical with the set specified by (8) and (11). 
The advantage of the form (15) is that it is an unrestricted set of equations, 
the restrictions on A and B having been taken care of by the notation 
employed. 

We now write (15) in the more compact form 

Z'G(y - Z6) = 0, (16) 

i.e., 

Z'GZ6 = Z'Gy, (17) 

where Z and Z are the pT x m matrices 

Z1 0 * * 0 Z1 0 0* 

0 Z2 . 0 Z2 
and 

* 0 0 

0 ... 0 Zp 0 ... 0 Zp 

p 
m = E mj being the total number of regression coefficients being estimated; 

j=1 
G is the pT x pT matrix 

vllI V12I ... vlPI 

vlPI ... vPPI 

where I is the T x T unit matrix, i.e., G is the Kronecker product of V-~ 
and I. Finally, 6 and y are the m x 1 and pT x 1 vectors [6;,..., bp]' and 

[y; , .. , ]' . 
From now on we use a circumflex to indicate a maximum likelihood esti- 

mate; thus, 6 is the maximum likelihood estimate of 6, A of A, G of G, etc. 
In order to avoid an over-elaborate notation, however, the maximum likeli- 
hood estimate of W = [-XBA-':X] is denoted not by Wbut by W; it is 
given by W = [-XBA ~-:X]. Similarly, the estimate of Z, which is an ar- 
rangement of the columns of W, is denoted by Z, which is the same arrange- 
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ment of the columns of W. In this notation, the maximum likelihood estimate 
of 6 is the solution 6 of the equations 

Z'GZb = Z'Gy, (18) 

where G is obtained from V = T-'(YA + XB)'(YA4 + XB), the ijth ele- 
ment of which is vii = T -(yi - Zii)' (yj - Zjj). 

The form of (18) shows up very clearly the relation of Zellner and Theil's 
three-stage least squares estimates [9] to the full information maximum likeli- 
hood estimates 6. The Zellner-Theil estimates 6 are, in fact, the solution of 
the equations 

Z'GZ6 = Z'Gy (19) 

(Zellner and Theil [9], Eq. 2.16) where G is the same as G except that the 
two-stage least squares estimator of V is used in place of the maximum likeli- 
hood estimator V, and Z is the same as Z except that the unrestricted 
reduced-form regressions X(X'X)-'X'Y are used in place of the regres- 
sions XBA - based on the maximum likelihood estimators A and B; these, 
of course, take account of the restrictions on A and B whereas the unre- 
stricted regressions X(X'X)-'X'Y do not. Comparing (18) and (19), we see 
that the magnitudes of the difference between 6 and a is of second-order 
only, the consequence of which is that the three-stage least squares estimates 
are asymptotically efficient. This has recently been demonstrated indepen- 
dently by a number of different methods (Madansky [6], Rothenberg and 
Leenders [7], and Sargan [8]). 

4. ITERATIVE SOLUTION 

We now discuss the solution of the equations (18) by iteration and for sim- 
plicity of presentation we shall assume that the moment matrix of predeter- 
mined variables T-'X'X converges in probability to a finite positive-definite 
matrix. In practice, this is a rather mild restriction since, even if at the out- 
set it is violated, a transformation of variables will usually enable it to be 
satisfied. For example, suppose one column of X is composed of the values 
x, = t, then T- 1T1 x2 -, oo. However, if x, is replaced by x* = T- x, with 
a consequential change of the coefficient of this variable in each equation in 
which it occurs, then the model is essentially unaltered but the condition can 
now be satisfied since T-~ET=lxx2 -_ 1/6. One might also remark that the 
iterative method to be described is likely to work well under a much greater 
range of circumstances than that indicated by the assumption even after 
transformations of the kind mentioned. 

We shall derive the iterative procedure by applying a form of the 
Newton-Raphson method to the solution of (18). Let b(1) be an initial esti- 
mate of 6 whose elements differ from the corresponding elements of 6 by 
quantities O(T- /2);1 for example, two-stage least squares could be used to 
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provide such an estimate. Let 6(2) = 6(1) + d6 be the second approximation. 
Substituting 6(2) for 6 in (18) and taking the first two terms only in the Tay- 
lor expansion, we have 

Z(i)G(i)(Z6(1) -y) + Z(1)G(i)Zd6 + (dZ'G(1) + Z(l)dG)(y- Z6()) = 0, 

where Z(1),G(I) are the values of Z,G calculated by taking 6 = 6(1), and 
dZ, dG are the increments in Z and G due to the change from 6(1) to 6(2). 
Because the elements of dZ'G(l) and Zi) dG are small compared with those 
of Z(I) G(I) we have, to the first order of approximation, 

d6 = (Z'l) G(1)Z)-'Z() G(l)(y - Z6(1)), 

i.e., 

6(2) = (Z (1)G()Z ) Z GG(1) y. (20) 

By repeated application of this result, we obtain the following general for- 
mulae for the (r + 1)th-round estimates in terms of the rth 

6(r+1) = 6(r) + (Zr) G(r)Z)-Z(r) G(r) (y - Z6(r)), (21) 

i.e., 

6(r+i) = (Z (r) G Z) Zzr) G(r) Y, r = 1,2,.... (22) 

The simplest way of carrying out the iteration is to continue applying (22) 
until the difference between successive sets of values is sufficiently small. In 
practice, however, it is not necessary to compute the matrix (Z(r) G(r) Z)-1 
at each step of the iteration. One may instead use the same value of this 
matrix for a number of successive steps, n say, giving the iteration 

6(nr+s+1) = (nr s) + ((nr) s) + (Z (nr+l )) Z) (nr+s) G(nr+s) (Y - 6(nr+s) ) 

r =0,1,2,..., s= 1,2,...,n. (23) 

The iterations (22) and (23) are variants of the Newton-Raphson method 
which previous investigations have found to have good asymptotic conver- 
gence properties for the present problem (Koopmans, Rubin, and Leipnik 
[5], Section 4.35; Chernoff and Divinsky [2], Section 7; and Crockett and 
Chernoff [3]). In practice, it will generally be advisable to incorporate 
modifications designed to speed up convergence and to inhibit oscillations. 
Examples of the type of modification required are given in Section 8. 
Asymptotically, the rate of convergence is very fast as can be seen from the 
following heuristic argument which indicates that 6(r) differs from 6 by 
quantities O(T-r/2). 

The original model (1) can be written in the form y = Z6 + u, where u is 
the pT x 1 vector composed of the columns of U placed under one another. 
Substituting in (18), we have 

6 = 6 + (Z'GZ)-1Z'Gu, (24) 
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while substituting in (20), gives 

6(2) = 6 + (Zil)G(1)Z)- ZI) G() u. 

Thus, 

6(2) - 6 = H1 u, 

where H1 = (Zl) G(l)Z)-'Z2) G(i) - (Z'GZ)- Z'G and is therefore the 
difference between two matrices the elements of which differ only because 
those of one are functions of 6(i) and those of the other are functions of 6. 
Now the elements of both b(i) and 6 differ from those of 6 by quantities 
O(T-1/2) and they therefore differ from each other by quantities of the 
same order. By the mean-value theorem, each element of Hi has the form 
a' (6(1) - 6) where a is a vector of derivatives of the corresponding element 
of (Z'GZ)-'Z'G with respect to elements of 6 and evaluated at a point 
intermediate between b(1) and 6. Thus, the ratio of each element of H1 to 
the corresponding element of (Z'GZ)-1 ZG is a quantity O(T- 12). But the 
elements of (Z'GZ)-'ZGu are O(T- 12). The elements of Hlu are there- 
fore O(T-1). 

Similarly, 

6(3) = 6 + (Z2)G(2)Z)-2) G(2) U, 

= + H2u, 

where H2 = (i2) G(2) Z)-1Z 2)G2) - (Z'GZ)- ZG. Because the elements 
of 6(2) - 6 are O(T-1), the ratio of elements of H2 to corresponding ele- 
ments of (Z'GZ)-'ZG are O(T-1). Thus, the elements of H2u are 
O(T-3/2). Continuing in this way, it follows that the elements of 6(r) - 
are 0(T-r/2) for r = 1,2,.... 

5. VARIANCE MATRIX OF THE ESTIMATES 

The approach of the last section furnishes us with a simple heuristic deriva- 
tion of the asymptotic variance matrix of the estimates. From (24), we have 

6-6= (Z'GZ)-lZ'Gu, 

= (Z'GZ)-Z'Gu + K1u, 

where the elements of K1 = (Z'GZ)-1Z'G - (Z'GZ)-'Z'G are O(T-1/2) 
compared with those of (Z'GZ)-'Z'G. Now 

Z 0 * - ... V - Z1 0 ** O0 
-vu v* vlPI 

0 Z . . . 0 Z2 
Z'GZ= . . 

0'* _ VIPI ... vPPI 

o . * z - - o *... zp 
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a typical submatrix of which is v"Z,Zj = v'Z/Zj + v"Z/(Zj - Zj). Each 
column of Zj - Zj consists either of zeros or of independent normal vari- 
ables with zero means and constant variance. Because T-'X'X converges 
to a finite positive-definite matrix so does T-'Z/Zi. Consequently, the ele- 
ments of Zi(Zj - Zj) are O(T-1/2) compared with those of Z/Z. Thus, the 
elements of Z'GZ differ from those of Z'GZ by terms of relative order 
O(T- 12). Consequently, (Z'GZ)-IZ'G = (Z'GZ)-1Z'G + K2u where K2 is 
a matrix whose elements are O(T- 12) compared with those of (Z'GZ)- Z'G. 
Thus, 

6 - 6 = (Z'GZ)-'Z'Gu + (K1 + K2)u. 

Taking the leading term only, we have for the variance matrix of b, 

V(6) = E(6 - )( - 6)', 

= E[(Z'GZ)-1Z'Guu'GZ(Z'GZ)- ], 

i.e., 

V(6) = (Z'GZ)-1 (25) 

to the first order since E(uu') = G. This result is the same as that obtained 
by Rothenberg and Leenders ([7], Formula 4.27) by inverting the matrix of 
expected values of the second derivatives of the concentrated log-likelihood. 
It is asymptotically equivalent to the expression for the variance matrix of 
three-stage estimates obtained by Zellner and Theil [9]. The estimated large- 
sample variance is i(b) = (ZGZ)-1. 

6. TREATMENT OF IDENTITIES 

The results obtained so far have been derived on the assumption that the 
variance matrix V is nonsingular. However, models constructed for econo- 
metric applications frequently contain identities in which all coefficients are 
known and the disturbances are identically zero. In principle, it is usually a 
simple matter to substitute for some of the dependent variables from the 
identities into the remaining equations to give a new model, equivalent to the 
old one, with fewer equations and with disturbances possessing a nonsingular 
variance matrix. Nevertheless, as with three-stage least squares it can be 
shown that this elimination procedure is strictly speaking unnecessary since 
the estimation methods developed in Sections 2-4 can be applied as they 
stand to the equations of the original model which possess stochastic distur- 
bances. The only point at which the identities are required is in the estima- 
tion of the reduced-form vectors of Z. 

We justify this claim by an argument similar to that used by Rothenberg 
and Leenders [7]. Suppose that of the p equations in the original model p, 
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are stochastic and P2 are identities. The model can then be written in the 
partitioned form 

Y1A, + Y2A2 + XB, = U, (26) 

Y,A3+ Y2A4 + XB2 = 0, (27) 

where (26) represents the stochastic equations with unknown coefficients and 
(27) the identities with known coefficients. The rows of U are supposed to 
be independent normal vectors with zero means and nonsingular variance 
matrix V as before. 

Suppose that we had substituted for Y2 from (27) into (26). The coeffi- 
cient matrix of Y1 in the new equations would be A1 - A2A41A3, where we 
assume A4 to be nonsingular. The Jacobian of the transformation from U 
to Y1 would then be IA - A2A4 A3 1. Taking determinants of both sides 
of the matrix identity 

-A A2- - I 0 A1 -A2A41A3 A2 

A3 A4 -A41A3 I 0 A4 

gives IA, -A2A-4A3l = \AI A4l-1. Because JA41 is known, we therefore 
have for the log-likelihood 

log L = constant + TloglA + - Tlogl V-'1 

- tr(YiA1 + Y2A2 + XB )'(Y1AI + Y2A2 + XB2)V 1. (28) 

Differentiating with respect to the unknown elements of the matrices A, B, 
and V-1 we have 

alog = TA'-1 - Y'(Y,AI + Y2A2 + XB,)V-, (*) (29) 
aA 

alogL -X'(Y,A, + Y2A2 + XB1)V-1, (**) (30) 
aB 

alog =TV-1 - (Y,AI + Y2A2+ XBI)'(YA1 + Y2A2 + XB2), a v 

where (*) and (**) indicate that we are only taking elements corresponding 
to unknown elements of A and B. Equating the elements of alog L/d V-1 to 
zero and augmenting, we have 

V 0 
T = (YA + XB)'(YA + XB), 0 

= A'Y' ( YA + XB) + B'X'(YA + XB). 
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V-1 0- 
Pre-multiplying by A'-1 and post-multiplying by , we have 

0 0 

TA'-1 - Y' (Y1AI + Y2A2 + XB1)V-1 

= A'-'B'X' (YlA1 + Y2A2 + XB1)V-1, 

where A'-1 indicates the first pi columns of A'-". Substituting in (29) gives 

alog = A' -B'X'(Y1A1 + Y2A2 + XB)V-', (*). (31) aA 

The implication of these results is that the basic estimating equations (18) 
remain valid when applied to the stochastic equations of a system contain- 
ing identities, on the understanding that Z is calculated from the reduced- 
form values -XBA-' obtained from the entire system. 

7. JUST-IDENTIFIED AND UNDER-IDENTIFIED EQUATIONS 

In this section, we consider the special features which arise when the system 
contains just-identified and under-identified equations. For simplicity let us 
suppose that the system contains no identities. The complete p-equation 
model YA + XB = U can then be written in the form 

Y[Al i A2 A3] + X[B1 i B2 i B3] = [ul I u2 I U3], (32) 

where [A1B1], [A2B2], and [A3B3] are the coefficient matrices of p1 over- 
identified equations, P2 just-identified equations, and p3 under-identified 
equations, respectively. The reduced form can be partitioned correspond- 
ingly, i.e., 

Y[I I2 Ii3] = X[r, i r2 * r3] + [u1 i u2 i u*], (33) 

where [Ii . 2 : 13] denotes the p x p unit matrix partitioned into Pl, P2, and 
P3 columns while [Fri r2 i. 3] and [u i. u* i u ] are the partitioned forms 
of the coefficient matrix F = -BA-~ and the matrix of reduced-form dis- 
turbances U* = UA-'. 

Because the coefficients of the under-identified equations cannot be esti- 
mated, and since the coefficients of the just-identified equations are easily 
recoverable from the reduced form, it is advantageous to replace both sets 
of equations by their reduced forms and consequently to apply the estima- 
tion procedure to the equivalent model 

Y[A, i :2 I3] = X[B1 r2 i 3] + [Ul U; U3 (34) 

instead of the original model (32). The coefficient matrices A2 and B2 of the 
just-identified equations are then obtained from the complete reduced-form 
matrix r, which is estimated when fitting model (34), by virtue of the relation 

B2 = -rA2. (35) 
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The advantage of following this procedure, instead of fitting the model in 
which the just-identified equations occur in their original form, is that the 
more reduced-form equations there are in the model fitted by the iterative 
procedure described in Section 4, the simpler are the calculations. 

NOTES 

1. We say that a quantity g(T) is O(T-S) if T'g(T) is either nonstochastic and bounded or 
is a random variable with bounded mean square. 
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