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Abstract

This paper examines identi�cation power of the instrument exogeneity assumption in the
treatment e¤ect model. We derive the identi�cation region: The set of potential outcome
distributions that are compatible with data and the model restriction. The model restrictions
whose identifying power is investigated are (i) instrument independence of each of the potential
outcome (marginal independence), (ii) instrument joint independence of the potential outcomes
and the selection heterogeneity, and (iii) instrument monotonicity in addition to (ii) (the LATE
restriction of Imbens and Angrist (1994)), where these restrictions become stronger in the order
of listing. By comparing the size of the identi�cation region under each restriction, we show that
the joint independence restriction can provide further identifying information for the potential
outcome distributions than marginal independence, but the LATE restriction never does since
it solely constrains the distribution of data. We also derive the tightest possible bounds for
the average treatment e¤ects under each restriction. Our analysis covers both the discrete and
continuous outcome case, and extends the treatment e¤ect bounds of Balke and Pearl (1997)
that are available only for the binary outcome case to a wider range of settings including the
continuous outcome case.
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1 Introduction

The method of instrumental variables is one of the most important inventions in econometrics, and
the instrumental variable accompanied with the instrument exogeneity restriction plays a key role
in extracting identifying information for the causal e¤ects in many contexts. This is also the case
in a more recent development of the nonseparable triangular simultaneous equation model (Chesher
(2003, 2005), Imbens and Newey (2008)). Another important class of models where identi�cation
hinges on the instrument exogeneity restriction is the heterogeneous treatment e¤ect model with
selection (Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996), Heckman and Vytlacil
(2001a, 2005)). In the latter model, if the instrument is randomized and every unit in the population
has weakly monotonic selection response to the instrument, then the potential outcome distributions
are identi�ed for the subpopulation of those, so called compliers, whose treatment selection response
is a¤ected by the instrument (Imbens and Rubin (1997), Abadie, Angrist, and Imbens (2002)).
In this paper, we analyze identi�cation of the potential outcome distributions for the entire pop-

ulation instead of the subpopulation of compliers. In particular, the population potential outcome
distributions and the corresponding average treatment e¤ects become the objects of interest when
the policy analyst is interested in predicting the impact of policy intervention or making a statistical
decision on the treatment choice (Manski (2005, 2007)). If the individual treatment e¤ects are het-
erogeneous, however, the population distribution of the potential outcomes Y1 and Y0 is in general
not identi�ed by the instrument exogeneity restrictions. We therefore analyze the problem in the
set-identi�cation framework and our focus is on the identi�cation region of the potential outcome
distributions: The set of potential outcome distributions that are compatible with empirical evidence
(data) and the model restrictions. The model restrictions analyzed in this paper are the following
three types of the instrument exogeneity restriction, (i) the instrument is independent of each of the
potential outcome (marginal independence), (ii) the instrument is jointly independent of the potential
outcomes and the selection heterogeneity, and (iii) the instrument is jointly independent and selection
response is monotonic with respect to the instrument (the LATE restriction). These restrictions are
nested and become stronger in the order of listing. Although these restrictions are mathematically
distinct, they all involve the researcher�s belief that the instrument is assigned randomly irrespective
of individual unobserved heterogeneities that can in�uence the outcomes. The use of instrument in
the program evaluation context always relies on some of these restrictions, while less research has
been done for clarifying what is the maximal identi�cation information for the potential outcome
distributions under each of the instrument independence restriction. The main goal of this paper
is therefore to provide a rigorous identi�cation analysis for the instrument independence restriction
from the perspective of set-identi�cation.
This paper de�nes, formulates, and derives the identi�cation region of the marginal distributions

of the potential outcomes under each of the instrument independence restrictions. We derive a
closed-form expression of the identi�cation region, which is represented as a correspondence from
the distribution of data to a pair of the marginal distributions of the potential outcomes. Our
de�nition of the identi�cation region does not a priori constrain the distribution of data and, there-
fore constructing the identi�cation region can be viewed as an inductive learning process for the
potential outcome distributions. We investigate identi�cation power of each of the instrument in-
dependence restriction by comparing the size of the identi�cation region among these restrictions.
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We also clarify for which data distribution the identi�cation region can or cannot shrink further by
strengthening one restriction to another. We show that for some data generating processes, the
instrument joint independence restriction can yield a narrower identi�cation region than the weaker
restriction of marginal independence. This result contrasts the role of instrument independence
restriction with the one in the missing data context since such identi�cation gain never arises there
(Kitagawa (2009a)). Another important �nding is that the LATE restriction never provides further
identi�cation gain compared with the joint independence restriction, because it only constrains the
distribution of data. In this sense, we demonstrate that instrument monotonicity of the LATE
restriction is redundant for the purpose of nonparametrically identifying the population potential
outcome distributions.
Once the identi�cation region of the potential outcome distributions is obtained, the sharp bounds

of the parameter � de�ned on the potential outcome distributions are constructed by the range
of � with its domain given by the identi�cation region. This implies that the comparative size
relationship of the identi�cation region is preserved as it is for the width of the sharp bounds for
�. As an application of this bounding scheme, this paper derives a closed-form expression of the
bounds for the average treatment e¤ects E(Y1)�E(Y0) under each of the instrument independence
restriction. The obtained bounds not only uni�es the existing results in the literature, but also
generalizes the existing analysis available only for the binary outcome case to the wide range of
setting including the continuous outcome case. Manski (1990, 1994, 2003) derive its bounds under
the restriction of instrument mean independence, E(Y1jZ) = E(Y1) and E(Y0jZ) = E(Y1): For the
binary outcome case, his bounds can be interpreted as the bounds under the instrument marginal
independence restriction. Balke and Pearl (1997) considers bounding the average treatment e¤ects
in the binary outcome case under the instrument joint independence restriction, and shows that their
bounds can be strictly narrower than the Manski�s mean independence bounds.1 In the analysis of
Balke and Pearl (1997), the bounds are obtained by solving a �nite-dimensional linear programming,
and it is not straightforward to extend their procedure to the case where potential outcomes have
continuous variation. This paper, in contrast, provides a closed-form expression of the bounds for
the average treatment e¤ects that covers the continuous outcome case. Moreover, our derivation
does not rely on the machinery of linear optimization, and this will help us develop an intuition
behind the construction of the bounds. Our identi�cation analysis also di¤ers from the analysis
of Heckman and Vytlacil (2001a, 2001b, 2005) since they assume that the population satis�es the
selection equation with the threshold crossing with an additive error. Consequently, their analysis
imposes an assumption on the distribution of data, and the tightest possible property of the bounds
is limited to a certain class of data distributions. Our analysis ,in contrast, does not restrict the
distribution of data so that the identi�cation results presented in this paper are valid for every data
we potentially encounter.
Since this paper exclusively focuses on identifying the marginal distributions of the potential out-

comes, our analysis is free from the structural outcome equation accompanied by some assumptions
on the unobserved outcome heterogeneity. That is, validity of our results does not rely on any as-
sumptions on the dimension of the unobservable heterogeneity and the functional form speci�cation

1Chen and Small (2006) extend the Balke and Pearl�s bound analysis of the binary outcome to the case with three
treatment status.
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of the structural outcome equation. In this sense, the identi�cation results of this paper provides a
benchmark relative to which we can investigate what type of restrictions on the structure provides
identifying power for the causal e¤ects. In particular, for the continuous outcome variable case, the
set-identi�cation results of this paper provides a vivid contrast with the point-identi�cation results
under outcome monotonicity in a scalar unobservable, or equivalently rank invariance restriction
(Chernozhukov and Hansen (2005)). This comparison suggests that the unobservable heterogeneity
and the functional form speci�cation for the structural outcome equation often introduced in the
nonseparable structural equation model plays an essential role in identifying the potential outcome
distributions.
The remainder of the paper is organized as follows. Section 2 introduces the setup and notation

of this paper and provides the formal de�nition of the identi�cation region. In Section 3, we
derive the identi�cation region of the potential outcome distributions under each of the instrument
independence restriction. In Section 4, we compare the obtained identi�cation regions and also
present the sharp bounds for the average treatment e¤ects. Section 5 discusses the link with the
nonseparable structural equation model with a binary endogenous variable, and Section 6 concludes.
Proofs are provided in Appendix A.

2 Analytical Framework

2.1 Data Generating Process and Population

Consider identifying the causal e¤ect of a binary treatment to a measure of outcome. We use
D 2 f1; 0g as the treatment indicator: D = 1 indicates a treated unit and D = 0 indicates a
non-treated unit. Following the Neyman-Rubin potential outcome framework, Let Y1 denote the
outcome that would be observed if the individual receives treatment and let Y0 denote the outcome
that would be observed if the individual does not receive the treatment. The observed outcome in
data is written as Y � DY1 + (1�D)Y0: We let the support of Y1 and Y0 be a subset of Y.2 This
paper focuses on the situation where the treatment status is not randomized. In this case, we are
typically concerned about the selection problem, i.e., the realized treatment status can depend on
the underlying potential outcomes. We suppose that a nondegenerate binary variable Z 2 f1; 0g is
available in data, and we consider to use the binary variable Z as an instrumental variable (Imbens
and Angrist (1994) and Angrist, Imbens, and Rubin (1996)). In the experimental setting with
incompliance, for instance, the initial treatment assignment is often used as an instrumental variable.
Throughout the paper, data is a random sample of (Y;D;Z).
We denote a conditional distribution of (Y;D) given Z by

PY1(B) � Pr(Y 2 B;D = 1jZ = 1) = Pr(Y1 2 B;D = 1jZ = 1);
PY0(B) � Pr(Y 2 B;D = 0jZ = 1) = Pr(Y0 2 B;D = 0jZ = 1);
QY1(B) � Pr(Y 2 B;D = 1jZ = 0) = Pr(Y1 2 B;D = 1jZ = 0);
QY0(B) � Pr(Y 2 B;D = 0jZ = 0) = Pr(Y0 2 B;D = 0jZ = 0):

(1)

2The analytical framework considered in this paper is not restricted to a scalar outcome. We can take Y as an
arbtrary space equipped with the Borel �-algebra B(Y) and a measure �.
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where B is an arbitrary subset of Y. Since P = (PY1(�); PY0(�)) and Q = (QY1(�); QY0(�)) uniquely
characterize the distribution of data except for the marginal distribution of Z, we represent the data
generating process by (P;Q) 2 P where P is the class of data generating processes. We assume
that the researcher has knowledge on the dominating measure � on Y; and we denote the density
functions of PYj (�) and QYj (�); j = 1; 0, with respect to � by pYj (�) and qYj (�). That is, for every
subset B � Y, we have

PY1(B) =

Z
B

pY1(y1)d�; PY0(B) =

Z
B

pY0(y0)d�;

QY1(B) =

Z
B

qY1(y1)d�; QY0(B) =

Z
B

qY0(y0)d�:

It is important to keep in mind that the integration of the density functions pYj (�) and qYj (�) over Y
yield the conditional probabilities of the observed treatment status given Z, Pr(D = jjZ = 1) and
Pr(D = jjZ = 0), that are can be strictly smaller than one. Throughout the analysis, we do not
restrict the class of data generating processes P other than existence of the density functions with
respect to �.

Our identi�cation framework has the selection equation with the unobserved selection hetero-
geneity V ,

D = Ifu(Z; V ) � 0g;

where u(Z; V ) is the latent utility to rationalize individual�s selection on treatment status, and V is
the unobserved heterogeneities that a¤ect one�s selection response and is possibly dependent on the
potential outcomes. We interpret this equation as structural in the sense that, with V �xed, u(z; V )
gives the counterfactual selection response for each z = 1; 0. Provided that D and Z are binary,
the number of distinct selection responses called type are at most four as de�ned below, and the role
of the unobserved heterogeneity V is to randomly categorize the individuals into one of these four
types. A random category variable T is used to indicate the type,

T =

8>><>>:
c : complier if u(1; V ) = 1; u(0; V ) = 0;
n : never-taker if u(1; V ) = u(0; V ) = 0;
a : always-taker if u(1; V ) = u(0; V ) = 1;
d : de�er if u(1; V ) = 0; u(0; V ) = 1:

If we do not impose any restrictions on the distribution of T , we are free from any assumptions on
the functional form of the latent utility as well as dimensionality of the unobserved heterogeneity V
(Pearl (1994a)).
Every unit in the population of interest has a nonrandom value of (Y1; Y0; T; Z) and the parameter

of interest is de�ned on the distribution of (Y1; Y0; T; Z). In this sense, we de�ne population as a
joint probability distribution of (Y1; Y0; T; Z) 2 Y � Y � fc; n; a; dg � f1; 0g. Hereafter, f denotes
the probability density function of the population variables indicated by the subscripts such as fY1 ,
fY1;T jZ ; etc. We use F to denote the class of populations.
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2.2 De�ning the Identi�cation Region

Model restrictions are imposed in order to extract identifying information for the potential outcome
distributions. Like the instrument exogeneity restriction introduced below, they have the form of
statistical relationships among the population random variables (Y1; Y0; T; Z). Let A be the model
restriction(s) and FA � F be the subclass of populations constrained by the imposed restrictions
A.
For each data generating process (P;Q), the class of observationally equivalent populations

Fo(P;Q) � F is de�ned as the collection of the distribution of (Y1; Y0; T; Z) that generates the
empirical evidence (P;Q). Given a data generating process (P;Q) 2 P, the identi�cation region
under restriction A denoted by IR(P;QjA), is de�ned as the set of populations that are compatible
with the empirical evidence (P;Q) and restriction A. That is, IR(P;QjA) is formulated as the
intersection of FA and Fo(P;Q),

IR(P;QjA) � FA \ Fo(P;Q); (P;Q) 2 P

When IR(P;QjA) thus de�ned becomes empty, it implies that restriction A is not compatible with
the observed data, and therefore we can refute the model restriction A. Since this refuting rule is
based on the emptiness of the identi�cation region, no other testable implications can have more
refuting power than this.
If our interest lies in � : F !�, a feature or parameters of the population, the identi�cation

region of � under A denoted by IR�(P;QjA) is de�ned as the range of �(�) with its domain given
by IR(P;QjA). When IR(P;QjA) is empty, we de�ne IR�(P;QjA) as empty so as to re�ect the
refutability property of the identi�cation region. So, the identi�cation region of � under A is de�ned
as

IR�(P;QjA) �
�
f�(F ) : F 2 IR(P;QjA)g \� if IR(P;QjA) 6= ;;
; if IR(P;QjA) = ;: (2)

In words, IR�(P;QjA) is de�ned as the set of � for each of which we can construct a population F
that is compatible with data P;Q and the imposed restriction A.

The identi�cation region de�ned here does not assume that the true population satis�es the
imposed restrictions. In this regard, our de�nition di¤ers from the one of Heckman and Vytlacil
(2007). This di¤erence in fact matters when the imposed restriction A is observationally restric-
tive (Koopmans and Reiersøl (1951)), i.e., the restrictions constrains the data generating process.
Speci�cally, when A is observationally restrictive, by assuming that the true population satis�es
restriction A, we a priori exclude the possibility of having empty IR(P;QjA); even though data is
potentially informative about it. As an unfavorable consequence of assuming the correct speci�ca-
tion, we may encounter the misspeci�cation problem of the bounds, meaning that the bound formula
for � and its tightest-possible property justi�ed under the correct speci�cation are no longer valid
if IR(P;QjA) = ;. As we discuss further in Section 4, the bounds of the average treatment e¤ects
under the instrument independence restriction provides an example of this type of misspeci�cation
problem. In order to avoid the potential misspeci�cation problem, we do keep the class of data
generating processes P invariant no matter which restriction we impose, and construct the bounds
by explicitly applying the above de�nition (2).
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2.3 Instrumental Variable Restrictions

Regarding the model restrictions, we consider the following three restrictions in all of which the
notion of instrument exogeneity is represented in terms of its statistical independence of the potential
outcomes.

Restriction MSI:
Marginal Statistical Independence Restriction: Z is statistically independent of each Y1 and Y0,

i.e., Z ? Y1 and Z ? Y0:

Restriction RA:
Random Assignment Restriction: Z is jointly independent of (Y1; Y0; T ).

Restriction LATE:
LATE Restriction: Z is jointly independent of (Y1; Y0; T ); and fT (T = d) = 0 or fT (T = c) = 0:

Obviously, these model restrictions are nested and become stronger in the order that they are
listed. The �rst restriction MSI only imposes marginal independence between the instrument and
each of the potential outcome. Since the model restriction has nothing to do with the selection
heterogeneity T , the analysis corresponding to this case is robust to dependence between instrument
and the selection heterogeneity T .3 The second restriction RA; in contrast, embodies a stronger
version of instrument exogeneity such that the instrument is jointly independent of both the outcome
heterogeneities and the selection heterogeneities. RA will be a reasonable restriction if the researcher
believes that the instrument is generated through some randomization mechanism as is often the
case in the (quasi-)experimental setting. The �nal restriction LATE is due to Imbens and Angrist
(1994) and Angrist, Imbens and Rubin (1996), and it plays the fundamental role for identifying the
potential outcome distributions for the subpopulation of compliers.
Our primary interest lies in identifying fY1 and fY0 the marginal distributions of Y1 and Y0.

This is often the case if the goal of analysis is to assess the e¤ect of intervention by comparing the
marginal distributions of the potential outcomes. For example, the average treatment e¤ects is
de�ned as the di¤erence between the mean of fY1 and fY0 . Alternatively, we may be interested in
the � -th quantile di¤erences de�ned as the di¤erence of the � -th quantiles between the two potential
outcome distributions. In case where we are interested in the e¤ect of intervention to the inequality
of outcomes, the variances of fY1 and fY0 may be of our interest. For all these cases, the parameters
of interest are de�ned in terms of the marginal distributions of Y1 and Y0, and therefore we shall
focus on constructing IR(fY1 ;fY0 )(P;Qj�) the identi�cation region of fY1 and fY0 . Note that if our
interest lies in a parameter that is de�ned on the distribution of the individual causal e¤ects Y1�Y0,
IR(fY1 ;fY0 )(P;Qj�) is less useful since the distribution of Y1�Y0 is sensitive not only to the marginals
of Y1 and Y0 but also to dependence between Y1 and Y0. Identi�cation of the distribution of Y1�Y0
is out of scope of this paper.4

3The identi�cation analysis of Cherozhukov and Hansen (2005) and Chesher (2009) is also free from the selection
equation. A di¤erence from their analysis is that our analysis do not impose any assumptions on the association
between Y1 and Y0.

4 In the situation where the marginal distributions of Y1 and Y0 are point-identi�ed, Fan and Park (2008), Firpo
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3 Construction of the Identi�cation Region

For the construction of IR(fY1 ;fY0 )(P;Qj�), our �rst step is to formulate the conditions for F 2
Fo(P;Q), i.e., compatibility of a distribution of (Y1; Y0; T; Z) with the observed data (P;Q). They
are obtained by rewriting the right-hand side of the identities (1) in terms of the distribution of
(Y1; Y0; T; Z).

pY1(y1) = fY1;T jZ(y1; T = cjZ = 1) + fY1;T jZ(y1; T = ajZ = 1);
qY1(y1) = fY1;T jZ(y1; T = djZ = 0) + fY1;T jZ(y1; T = ajZ = 0);
pY0(y0) = fY0;T jZ(y0; T = djZ = 1) + fY0;T jZ(y0; T = njZ = 1);
qY0(y0) = fY0;T jZ(y0; T = cjZ = 0) + fY0;T jZ(y0; T = njZ = 0):

(3)

These four equations are interpreted as compatibility of the population with the data generating
process F 2 Fo(P;Q).
By the law of total probability, fY1jZ(y1jZ = z) =

P
t2fc;n;a;dg fY1;T jZ(y1; T = tjZ = z) and

fY0jZ(y0jZ = z) =
P

t2fc;n;a;dg fY0;T jZ(y0; T = tjZ = z) hold and they imply the di¤erence of fYj jZ
minus the observed densities pYj or qYj also has a similar mixture form,

fY1jZ(y1jZ = 1)� pY1(y1) = fY1;T jZ(y1; T = djZ = 1) + fY1;T jZ(y1; T = njZ = 1);
fY1jZ(y1jZ = 0)� qY1(y1) = fY1;T jZ(y1; T = cjZ = 0) + fY1;T jZ(y1; T = njZ = 0);
fY0jZ(y0jZ = 1)� pY0(y0) = fY0;T jZ(y0; T = cjZ = 1) + fY0;T jZ(y0; T = ajZ = 1);
fY0jZ(y0jZ = 0)� qY0(y0) = fY0;T jZ(y0; T = djZ = 0) + fY0;T jZ(y0; T = ajZ = 0):

(4)

These identities will be used later on to relate the distributions fYj jZ to the distribution of fYj ;T jZ
for a given data generating process.

3.1 Identi�cation Region under Marginal Independence (MSI)

If we impose MSI, fY1jZ = fY1 and fY0jZ = fY0 must hold. Therefore fY1jZ and fY0jZ appearing in
the left hand side of (4) are reduced to the unconditional ones, so we have

fY1(y1)� pY1(y1) = fY1;T jZ(y1; T = djZ = 1) + fY1;T jZ(y1; T = njZ = 1);
fY1(y1)� qY1(y1) = fY1;T jZ(y1; T = cjZ = 0) + fY1;T jZ(y1; T = njZ = 0);
fY0(y0)� pY0(y0) = fY0;T jZ(y0; T = cjZ = 1) + fY0;T jZ(y0; T = ajZ = 1);
fY0(y0)� qY0(y0) = fY0;T jZ(y0; T = djZ = 0) + fY0;T jZ(y0; T = ajZ = 0):

(5)

Given (P;Q) 2 P, any populations contained in IR(P;QjMSI) satisfy (3) and (5). That is, by
noting that the right hand side of (5) has the nonnegative functions, we �nd necessary conditions
for (fY1 ; fY0) to be contained in IR(fY1 ;fY0 )(P;QjMSI);

fY1(y1) � maxfpY1(y1); qY1(y1)g �-a.e. and fY0(y0) � maxfpY0(y0); qY0(y0)g �-a.e.

We hereafter call, for each j = 1; 0, maxfpYj ; qYjg as the density envelope for Yj and �Yj �R
Y maxfpYj ; qYjgd� as the integrated envelope for Yj . The next proposition shows that these con-
ditions are in fact su¢ cient to build up IR(fY1 ;fY0 )(P;QjMSI), i.e., any fY1 and fY0 that each lies

and Ridder (2008), and Heckman, Smith, Clements (1997) analyze identi�cation of the distribution of the individual
causal e¤ects Y1 � Y0:
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above the density envelope constitutes the identi�cation region of (fY1 ; fY0) under MSI. This result
can be seen as a direct extension of Lemma 2.2 of Manski (2003) for the missing data model to the
treatment e¤ect model.

Proposition 3.1 (Identi�cation region under marginal independence) Denote the density en-
velopes by fY1(y1) � maxfpY1(y1); qY1(y1)g and fY0(y0) � maxfpY0(y0); qY0(y0)g, and the integrated
envelopes by �Y1 �

R
Y fY1d� and �Y0 �

R
Y fY0d�: De�ne the sets of probability densities that cover

fY1(y1) and fY0(y0) respectively by

FenvfY1
(P;Q) =

�
fY1 :

Z
Y
fY1(y1)d� = 1, fY1(y1) � fY1(y1) �-a.e.

�
,

FenvfY0
(P;Q) =

�
fY0 :

Z
Y
fY0(y0)d� = 1, fY0(y0) � fY0(y0) �-a.e.

�
.

The identi�cation region under MSI is nonempty if and only if �Y1 � 1 and �Y0 � 1; and it is given
by

IR(fY1 ;fY0 )(P;QjMSI) = F
env
fY1
(P;Q)�FenvfY0

(P;Q):

Proof. See Appendix A.

It is intuitive that the envelope density fY1(y1) provides the maximal identifying information for
Y1�s distribution because under MSI each of the observed density pY1(y1) and qY1(y1) must be a
part of the common density fY1 and taking the envelope can be viewed as �lling out fY1 as much
as possible with the identi�ed objects pY1(y1) and qY1(y1). The result that IR(fY1 ;fY0 )(P;QjMSI)
takes the form of the Cartesian product of FenvfY1

(P;Q) and FenvfY0
(P;Q) implies that the two marginal

independence restrictions never provide a channel through which the identifying information for fY1
contributes to identifying fY0 or vice versa. Therefore, as far as marginal independence is concerned,
we can always separate identi�cation analysis of fY1 from the one of fY0 without losing any identifying
information, and this implication justi�es the bounding strategy of outer bounds of Manski (2003).
The refutability result of the marginal independence coincides with the testability result for the

instrument exclusion restriction analyzed in Pearl (1994b) and is analogous to the missing data case
analyzed in Manski (2003). Kitagawa (2009a) considers estimation and inferential aspect of the
integrated envelope parameter so as to develop a speci�cation test for instrument independence.
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3.2 Identi�cation Region under Random Assignment (RA)

If we strengthen MSI to RA, we can replace the conditional distributions appearing in the right hand
side of (3) and (5) with the unconditional ones,

pY1(y1) = fY1;T (y1; T = c) + fY1;T (y1; T = a);

qY1(y1) = fY1;T (y1; T = d) + fY1;T (y1; T = a);

pY0(y0) = fY0;T (y0; T = d) + fY0;T (y0; T = n);

qY0(y0) = fY0;T (y0; T = c) + fY0;T (y0; T = n);

fY1(y1)� pY1(y1) = fY1;T (y1; T = d) + fY1;T (y1; T = n);
fY1(y1)� qY1(y1) = fY1;T (y1; T = c) + fY1;T (y1; T = n);
fY0(y0)� pY0(y0) = fY0;T (y0; T = c) + fY0;T (y0; T = a);
fY0(y0)� qY0(y0) = fY0;T (y0; T = d) + fY0;T (y0; T = a):

(6)

Any population contained in IR(P;QjRA) must satisfy these equalities so that these consist the
necessary condition for the population to belong to IR(P;QjRA): With the above equations in
mind, we can claim that5 a pair of marginal distributions (fY1 ; fY0) belongs to IR(fY1 ;fY0 )(P;QjRA)
if and only if we can �nd four pairs of nonnegative functions (hY1;t(y1); hY0;t(y0)); t = c; n; a; d; that
satisfy the scale constraintsZ

hY1;t(y1)d� =

Z
hY0;t(y0)d�, t = c; n; a; d; (7)

and the compatibility constraints

pY1(y1) = hY1;c(y1) + hY1;a(y1);

qY1(y1) = hY1;d(y1) + hY1;a(y1);

pY0(y0) = hY0;d(y0) + hY0;n(y0);

qY0(y0) = hY0;c(y0) + hY0;n(y0);

fY1(y1)� pY1(y1) = hY1;d(y1) + hY1;n(y1);
fY1(y1)� qY1(y1) = hY1;c(y1) + hY1;n(y1);
fY0(y0)� pY0(y0) = hY0;c(y0) + hY0;a(y0);
fY0(y0)� qY0(y0) = hY0;d(y0) + hY0;a(y0):

(8)

In the comparison of (8) with (6), we can observe that each hYj ;t in (8) corresponds to the unidenti�ed
population density fYj ;T (yj ; T = t) in (6). This tells the rationale behind the above claim, that is,
for a �xed (fY1 ; fY0), if we can �nd some nonnegative functions (hY1;t(y1); hY0;t(y0)) satisfying all
the above constraints (7) and (8), we can impute fYj ;T (yj ; T = t) by hYj ;t, and propose a compatible
population as,6 for t = c; n; a; d;

fY1;Y0;T (y1; y0; T = t) = fY1;Y0;T jZ(y1; y0; T = tjZ = 1) = fY1;Y0;T jZ(y1; y0; T = tjZ = 0)

=

8<:
hR
Y hY1;t(y1)d�

i�1
hY1;t(y1)hY0;t(y0) if

R
Y hY1;t(y1)d� > 0;

0 if
R
Y hY1;t(y1)d� = 0.

5See Lemma A.1 in Appendix for a formal justi�cation of this claim.
6There are many ways possible for combining the density of (Y1; T ) and (Y0; T ) to obtain the joint density of

(Y1; Y0; T ). The one employed here is one of them, so called the conditional independence coupling: The association
of Y1 and Y0 satis�es Y1 ? Y0jT .
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The population pinned down in this way by construction satis�es RA, and also it is compatible with
the data generating process since it clearly satis�es the constraints (6). Along this line of reasoning,
IR(fY1 ;fY0 )(P;QjRA) is obtained by characterizing the conditions for (fY1 ; fY0) under which we can
�nd such feasible nonnegative functions (hY1;t(y1); hY0;t(y0)), t = c; n; a; d:
The next proposition provides IR(fY1 ;fY0 )(P;QjRA):

Proposition 3.2 (Identi�cation region under random assingment) Let �Y1 be the inner in-
tegrated envelope of pY1 and qY1 de�ned by �Y1 =

R
Y minfpY1(y1); qY1(y1)gd�:

(i) The identi�cation region of (fY1 ; fY0) under RA is

IR(fY1 ;fY0 )(P;QjRA) =

8><>:
F�fY1 (P;Q)�F

env
fY0
(P;Q) if 1� �Y0 < �Y1

FenvfY1
(P;Q)�FenvfY0

(P;Q) if 1� �Y0 = �Y1
FenvfY1

(P;Q)�F�fY0 (P;Q) if 1� �Y0 > �Y1

where F�fY1 (P;Q) and F
�
fY0
(P;Q) are proper subsets of FenvfY1

(P;Q) and FenvfY0
(P;Q) respectively de-

�ned by

F�fY1 (P;Q) =

�
fY1 : fY1 2 FenvfY1

(P;Q),
Z
Y
min

n
fY1 � fY1 ;minfpY1 ; qY1g

o
d� � �Y1 + �Y0 � 1

�
;

F�fY0 (P;Q) =

�
fY0 : fY0 2 FenvfY0

(P;Q),
Z
min

n
fY0 � fY0 ;minfpY0 ; qY0g

o
d� � 1� �Y0 � �Y1

�
:

(ii) IR(fY1 ;fY0 )(P;QjRA) is nonempty if and only if �Y1 � 1 and �Y0 � 1:

Proof. See Appendix A.

The above proposition clari�es that the identi�cation region under RA can be strictly smaller
than the identi�cation region under MSI. In particular, this identi�cation gain arises if the data
reveals 1 � �Y0 6= �Y1 since F�fY1 (P;Q) and F

�
fY0
(P;Q) appeared above are strictly smaller than

FenvfY1
(P;Q) and FenvfY0

(P;Q) due to the inequality constraints appearing in their de�nitions.

A proof of this proposition provided in Appendix A proceeds by the method of "guess and verify,"
so the reader might think an intuition behind this result is rather obscure. Below, for the purpose
of providing an intuition of this result, we provide a geometric illustration that clari�es where the
additional identi�cation gain of RA relative to MSI comes from.
We �rst consider the case of 1 � �Y0 = �Y1 for which Proposition 3.2 says RA does not provide

further identi�cation gain than MSI. Figure 1 draws the data generating process and an arbitrary
(fY1 ; fY0) 2 FenvfY1

(P;Q) � FenvfY0
(P;Q) for this case. There, we partition the subgraph of fY1 into

four, c(1); a(1); n(1); and d(1); and similarly partition the subgraph of fY0 into c(0); a(0); n(0); and
d(0). The condition 1 � �Y0 = �Y1 means that the area of the partition outlined between fY0 and
fY0 is equal to the area of the subgraph of minfpY1 ; qY1g, i.e., the area of a(1) is equal to the area of
a(0). Moreover, it can be shown that, 1��Y0 = �Y1 implies not only a(1) and a(0) but also c(1) and

11



Figure 1: This �gure depicts the data gerating process with 1� �Y0 = �Y1 (the area of a(0) is equal
to the area of a(1)), which corresponds to the case (iii) in Proposition 1.3.1. For each t = c; n; a; d;
t(1) and t(0) have the same area.

c(0), n(1) and n(0), and d(1) and d(0) share the same area. This enables us to pin down hY1;t(y1)
and hY0;t(y0) to the height of the partitions t(1) and t(0) for each t = c; n; a; d, without violating the
scale constraints (7). Moreover, this way of pinning down (hY1;t(y1); hY0;t(y0)) is compatible with
all the constraints of (8) (see also Figure 2). Thus, we can successfully �nd the feasible nonnegative
functions (hY1;t; hY0;t) that allow us to construct a population that is compatible with RA and (P;Q).
Hence, we conclude that the drawn (fY1 ; fY0) belongs to IR(fY1 ;fY0 )(P;QjRA). Note that this way
of imputing hY1;t(y1) and hY0;t(y0) works for arbitrary (fY1 ; fY0) 2 FenvfY1

(P;Q)�FenvfY0
(P;Q); so the

identi�cation region of (fY1 ; fY0) under RA is obtained as the Cartesian product of FenvfY1
(P;Q) and

FenvfY0
(P;Q).

Next, let us consider the case of 1 � �Y0 < �Y1 as drawn in Figure 3, i.e., the area of a(0)
is smaller than the area of a(1). The preceding way of pinning down hY1;t(y1) and hY0;t(y0) to
t(1) and t(0) will now violate the scale constraints, so we need to come up with a di¤erent way of
imputing hY1;t(y1) and hY0;t(y0). The following algorithm with graphical assistance of Figure 4
through Figure 7 illustrates a way of imputing hY1;t(y1) and hY0;t(y0) in this case.

Algorithm to impute (hY1;t; hY0;t); t = c; n; a; d:

Step 1: (Figure 4) Draw an arbitrary fY1 2 FenvfY1
(P;Q) and fY0 2 FenvfY0

(P;Q): We �rst set hY0;a
to the height of the partition a(0) and set hY1;a to the height of some subset within minfpY1 ; qY1g
such that its area is equal to the area of a(0): Note that the equal area requirement is due to the
scale constraint

R
hY1;ad� =

R
hY0;ad�. In the top �gure, the subset imputed for hY1;a is labeled as

a. As we pin down hY0;a and hY1;a, we put their copies in the bottom �gure for convenience of the
later steps. How to choose subset a turns out to be a key for this algorithm and it will be further
discussed in Step 4. For now, let us proceed to Step 2 with the drawn subset a.

12



Figure 2: If the data generating process satis�es 1 � �Y0 = �Y1 , we can set hY1;t and hY0;t to the
partitions t(1) and t(0) of Figure 1 without contradicting the scale and compatibility constraints.

Step 2: (Figure 5) Impute hY1;c and hY0;c through the �rst and seventh constraints of (8). That is,
we impute hY1;c to the height of subset c(1) [ (d&c) and hY0;c to the height of subset c(0) as drawn
in the top �gure: The equal area restriction

R
hY1;cd� =

R
hY0;cd� is automatically satis�ed.

Step 3: (Figure 6) Impute hY1;d and hY0;d via the second and eighth constraints of (8). That is,
we impute hY1;d to the height of subset d(1)[ (d&c) and hY0;d to the height of subset d(0) as drawn
in the top �gure. Note that the equal area restriction

R
hY1;dd� =

R
hY0;dd� is again automatically

satis�ed. In the bottom �gure, the imputed hY1;d is piled up on the top of hY1;a and hY1;c.

Step 4: (Figure 7) Since the densities of the other three types have been already imputed, the last
piece of the puzzle, hY1;n and hY0;n must be set at the parts of fY1 and fY0 that were left out from
the other imputed densities. The imputed hY1;n and hY0;n are drawn as the shadow areas in the
top �gure. Algebraically, the imputed hY1;n and hY0;n are expressed as

hY1;n = fY1 �
X

t=a;c;n

hY1;t = fY1 � fY1 � [minfpY1 ; qY1g � hY1;a];

hY0;n = minfpY0 ; qY0g:

Since hY1;n must be nonnegative, hY1;n � 0 yields the inequality constraint for the possible choices
of hY1;a (given the proposed fY1) that has not been considered in Step 1,

hY1;a � max
n
fY1 +min fpY1 ; qY1g � fY1 ; 0

o
: (9)

where the maximum operator is needed in the right hand side since hY1;a must be nonnegative.

Step 5: As seen in Step 1, the integration of hY1;a has been constrained to being equal to
R
hY0;ad� =

13



Figure 3: The drawn data generating process satis�es 1 � �Y0 < �Y1 (the area of a(0) is strictly
smaller than the area of a(1)). Di¤erent from the case drawn in Figure 1, it is not feasible to pin
down (hY1;t; hY0;t) to (t(1); t(0)) for each t = c; n; a; d, because the scale constraints are violated.

1� �Y0 . So, the integration of (9) gives

1� �Y0 �
Z
max

n
fY1 +min fpY1 ; qY1g � fY1 ; 0

o
d�,

and this can be rewritten as

1� �Y0 � �
Z
min

n
fY1 � fY1 ;min fpY1 ; qY1g

o
d�+ �Y1

()
Z
min

n
fY1 � fY1 ;min fpY1 ; qY1g

o
d� � �Y1 � [1� �Y0 ]| {z }

the area of d&c

: (10)

This inequality is exactly the one appearing in the de�nition of F�fY1 (P;Q). If fY1 proposed in Step
1 meets this inequality, it implies that there exists a choice of hY1;a � 0 based on which Step 2
through Step 4 guarantee the existence of feasible (hY1;t; hY0;t); t = c; n; d.

By the implication obtained in Step 5 of the above algorithm, we can claim that the IR(fY1 ;fY0 )(P;QjRA) �
F�fY1 (P;Q) � F

env
fY0
(P;Q). In fact, it is also possible to show IR(fY1 ;fY0 )(P;QjRA) � F

�
fY1
(P;Q) �

FenvfY0
(P;Q) (See the proof of Proposition 3.2 in Appendix A). An interpretation of inequality (10)

is that, any fY1 contained in F�fY1 (P;Q) must spare enough room on the top of the envelope density
fY1 so that the region between fY1 and fY1 can contain the region of d&c

0 shown in the top �gure of
Figure 7, which is the exact copy of d&c: It provides an intuition of why RA yields the identi�cation
gain compared with MSI. Suppose that the overlapping area of pY1 and qY1 is large while the over-
lapping area of pY0 and qY0 is less, implying that the area of n(1) is relatively larger than the area of
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Figure 4: Step 1: Imputation of hY1;a and hY0;a.
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Figure 5: Step 2: Imputation of hY1;c and hY0;c:

16



Figure 6: Step 3: Imputation of hY1;d and hY0;d.
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Figure 7: Step 4: The last piece of puzzle. imputation of hY1;n and hY0;n.
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n(0). Then, under RA, we are able to learn that there exists only a small fraction of never-takers
because the fraction of never-takers is at most the area of n(0). This in turn implies that the entire
part of n(1) cannot be imputed as the never-taker�s outcome density. If the identi�cation region for
fY1 under RA was FenvfY1

(P;Q), then, it must be the case that the entire n(1) can be imputed by the
never-taker�s density hY1;n because hY1;n is the only density whose shape is completely unrestricted.
But, we cannot do so since the fraction of the never takers learned from the area of n(0) is not big
enough to �ll the entire n(1). Therefore the identi�cation region for fY1 becomes strictly smaller
than FenvfY1

(P;Q). Inequality (10) clari�es the channel through which identifying information for fY0
contributes to identifying fY1 .
The symmetric argument works for the case of 1 � �Y0 > �Y1 . By noting that 1 � �Y0 > �Y1

is equivalent to 1 � �Y1 < �Y0 (see Lemma A.2 in Appendix A), the symmetric analysis can be
implemented to construct the identi�cation region. In this case, the identi�cation region for fY0
becomes smaller than FenvfY0

(P;Q), implying that the identifying information for fY1 contributes to
identifying fY0

3.3 Identi�cation Region under the LATE restriction

Proposition 3.2 clari�es that if the observed data meets 1 � �Y0 = �Y1 ; then the di¤erence between
MSI and RA does not matter for identifying fY1 and fY0 . One situation where this condition is
satis�ed is the case of nested densities:

pY1(y1) � qY1(y1) �-a.e. and qY0(y0) � pY0(y0) �-a.e., or
pY1(y1) � qY1(y1) �-a.e. and qY0(y0) � pY0(y0) �-a.e.

(11)

In this section, we shall show that the con�guration of the nested densities is a key for constructing
the identi�cation region under the LATE restriction.
The LATE restriction further constrains the population by deleting one of the selection types.

Speci�cally, in case of Pr(D = 1jZ = 1) � Pr(D = 1jZ = 0), it implies the no-de�er condition
fT (T = d) = 0. Since the analysis of no-compliers case and the no-de�ers case is symmetric, we
without loss of generality consider the case of Pr(D = 1jZ = 1) � Pr(D = 1jZ = 0).
Under the LATE restriction (RA and the no-de�er condition), the equations in the previous

section (6) are simpli�ed to

pY1(y1) = fY1;T (y1; T = c) + fY1;T (y1; T = a);

qY1(y1) = fY1;T (y1; T = a);

pY0(y0) = fY0;T (y0; T = n);

qY0(y0) = fY0;T (y0; T = c) + fY0;T (y0; T = n);

fY1(y1)� pY1(y1) = fY1;T (y1; T = n);
fY1(y1)� qY1(y1) = fY1;T (y1; T = c) + fY1;T (y1; T = n);
fY0(y0)� pY0(y0) = fY0;T (y0; T = c) + fY0;T (y0; T = a);
fY0(y0)� qY0(y0) = fY0;T (y0; T = a):

The �rst four of the above constraints imply that when the population satis�es the LATE restriction,
the data generating process must reveal the nested densities since pY1(y1)� qY1(y1) = fY1;T (y1; T =
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c) � 0 and qY0(y0)� pY0(y0) = fY0;T (y0; T = c) � 0. This is equivalent to saying that observing the
non-nested densities must yield the empty identi�cation region under LATE. On the other hand,
when data reveals the nested densities, then for every (fY1 ; fY0) 2 FenvfY1

(P;Q)�FenvfY0
(P;Q); we can

uniquely solve the above constraints to obtain the nonnegative densities of (Y1; T ) and (Y0; T ), and
they can be combined to obtained the distribution of (Y1; Y0; T ) independent of Z. Accordingly, the
next proposition follows.

Proposition 3.3 (Identi�cation region under the LATE restriction) The identi�cation re-
gion of (fY1 ; fY0) under the LATE restriction is

IR(fY1 ;fY0 )(P;QjLATE) =
(
FenvfY1

(P;Q)�FenvfY0
(P;Q) for nested densities (11),

; otherwise.

Proof. A proof is given in the preceding paragraphs of this section.

This proposition states that if the data generating process reveals the nested densities, the iden-
ti�cation region under LATE coincides with the identi�cation region under MSI. Moreover, the fact
that the nested densities satisfy 1��Y0 = �Y1 implies that the identi�cation region under LATE also
coincides with the identi�cation region under RA (Proposition 3.2 (i)). If the nested densities are
not observed, then LATE restriction is refuted while the identi�cation region under RA or MSI can
yield the nonempty identi�cation region. Put another way, as far as the population distributions
of the potential outcomes are concerned, adding instrument monotonicity, or equivalently threshold
crossing selection with an additive error, to the instrument independence restriction only constrains
the data generating process without helping us learn about (fY1 ; fY0) further than MSI or RA. In
this sense, we can safely drop the instrument monotonicity restriction from the analysis if the goal
of analysis is to acquire the maximal identifying information for the potential outcome distributions.
Note that the refutability result of the LATE restriction is not new in the literature. Heckman
and Vytlacil (2005, Theorem 1 in Appendix A) demonstrates a testable implication for the LATE
restriction, which is equivalent to the nested density condition given here.7

4 Bounding Causal Parameters

By appropriately de�ning the outcome support and its dominating measure �, the identi�cation
regions obtained in the previous section can be applied to the wide range of settings including
discrete, unbounded, and even multi-dimensional outcomes. Moreover, for a parameter (vector) �
that maps (fY1 ; fY0) to �; we can make a comparison of the size of the sharp bounds of � without
explicitly computing the bounds.

7The emptiness result of Proposition 3.3 implies that the con�guration of the nested densities is interpreted as a
necesarry testable implication for the LATE restriction. Since the LATE assumption plays a crucial role in validating
the Wald type instrumental variable estimator to be consistent to the local average treatment e¤ects, we can use this
testable implication to develop a necessary speci�cation test for the instrument validity in the context of the LATE
estimation. See Kitagawa and Hoderlein (2009) for a test procedure for the nested con�guration of the densities.
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Figure 8: The classi�cation of the data generating processes in Theorem 1.

Theorem 1 Let � be a parameter (vector) that maps (fY1 ; fY0) to �. Then, for each layer of the
data generating process (see Figure 8), the sharp bounds of � under MSI, RA, and LATE meet the
following relationships.
(A) If �Y1 > 1 or �Y0 > 1, then

IR�(P;Qj�) = ; for all of MSI, RA, and LATE:

(B) If �Y1 � 1 and �Y0 � 1, and
(i) if 1� �Y0 6= �Y1 ; then,

IR�(P;QjMSI) � IR�(P;QjRA) 6= ;, IR�(P;QjLATE) = ;:

(ii) if 1� �Y0 = �Y1 and the data generating process does not reveal the nested densities, then

IR�(P;QjMSI) = IR�(P;QjRA) 6= ;, IR�(P;QjLATE) = ;:

(iii) if the data generating process reveals the nested densities,

IR�(P;QjMSI) = IR�(P;QjRA) = IR�(P;QjLATE) 6= ;:

Proof. By the de�nition of IR�(P;Qj�) given in (2) these results are implied by Proposition 3.1,
3.2, and 3.3.

Provided that the outcome is a scalar with compact support Y = [yl; yu], this theorem clearly
applies to the sharp bounds of the average treatment e¤ects (ATE) � = E(Y1)� E(Y0): Below, we
shall present the formula for the sharp ATE bounds under each restriction.
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In order to simplify the expression of the sharp ATE bounds, we introduce the �-th left- or
right-trimming of a nonnegative integrable function g : Y ! R. For � <

R
Y gd�, let q

left
� �

inf
n
t :
R
(�1;t]

gd� � �
o
, and de�ne the �-th left-trimming of g by

[g]
ltrim
� (y) � g(y)1

�
y > qleft�

	
+

 Z
(�1;qleft� ]

g(y)d�� �
!
1
�
y = qleft�

	
.

Similarly, with qright� � sup
n
t :
R
[t;1)

gd� � �
o
, we de�ne the �-th right-trimming of g by

[g]
rtrim
� (y) � g(y)1

�
y < qright�

	
+

 Z
[qright� ;1)

g(y)d�� �
!
1
�
y = qright�

	
.

In words, the �-th (right-) left-trimming is obtained by trimming the (right-) left-tail part of the
function g with the trimmed masses equal to �. Note that if the underlying measure has point
masses the second terms in the right-hand side of the above de�nitions can be nonzero, and these
adjustment terms are needed to make the trimmed area exactly equal to �.

Proposition 4.1 (The sharp ATE bounds) Assume Y1 and Y0 have the compact support Y = [yl; yu]
and their distributions are absolutely continuous with respect to the measure � that allows the point
masses at yl and yu. We also assume that the data generating process meets �Y1 � 1 and �Y0 � 1
so as to exclude Case (A) of Theorem 1.
(i) The sharp ATE bounds under MSI are

IRATE(P;QjMSI) =

�
(1� �Y1)yl +

Z
Y
y1fY1d��

Z
Y
y0fY0d�� (1� �Y0)yu;Z

Y
y1fY1d�+ (1� �Y1)yu � (1� �Y0)yl �

Z
Y
y0fY0d�]

�
: (12)

(ii) The sharp ATE bounds under RA are, for 1� �Y0 = �Y1 ;

IRATE(P;QjRA) = IRATE(P;QjMSI);

for 1� �Y0 < �Y1 ;

IRATE(P;QjRA)

=

�Z
Y
y1

�
fY1 + [min fpY1 ; qY1g]

rtrim
1��Y0

�
d�+ �Y0yl �

Z
Y
y0fY0d�� (1� �Y0)yu;Z

Y
y1

�
fY1 + [min fpY1 ; qY1g]

ltrim
1��Y0

�
d�+ �Y0yu �

Z
Y
y0fY0(y0)d�� (1� �Y0)yl

�
; (13)

and, for 1� �Y0 > �Y1 ;

IRATE(P;QjRA)

=

�Z
Y
y1fY1d�+ (1� �Y1)yl �

Z
Y
y0

�
fY0 + [min fpY0 ; qY0g]

ltrim
1��Y1

�
d�� �Y1yu;Z

Y
y1fY1d�+ (1� �Y1)yu �

Z
Y
y0

�
fY0 + [min fpY0 ; qY0g]

rtrim
1��Y1

�
d�� �Y1yl

�
; (14)
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(iii) The sharp ATE bounds under LATE are

IRATE(P;QjLATE)

=

8>>>>>>><>>>>>>>:

�
maxzfE(Y jD = 1; Z = z) Pr(D = 1jZ = z) + yl Pr(D = 0jZ = z)g
�minzfE(Y jD = 0; Z = z) Pr(D = 0jZ = z) + yu Pr(D = 1jZ = z)g;
minzfE(Y jD = 1; Z = z) Pr(D = 1jZ = z) + yu Pr(D = 0jZ = z)g
�maxzfE(Y jD = 0; Z = z) Pr(D = 0jZ = z) + yl Pr(D = 1jZ = z)g

�
for nested densities,

; otherwise.

Proof. See Appendix A.

When the data generating process reveals 1 � �Y0 6= �Y1 , the ATE bounds under RA is strictly
narrower than the bounds under MSI. For instance, in case of 1� �Y0 < �Y1 , the comparison of the
lower bounds of (13) and (12) shows that the former is larger than the latter by

[�Y1 � (1� �Y0)]�
Z
y1

(y1 � yl)
[min fpY1 ; qY1g]

rtrim
1��Y0

[�Y1 � (1� �Y0)]
d�:

By noting [min fpY1 ; qY1g]
rtrim
1��Y0

=[�Y1 � (1 � �Y0)] to be a probability measure, this expression im-
plies that the identi�cation gain for ATE becomes more as [�Y1 � (1 � �Y0)] gets bigger and/or
[min fpY1 ; qY1g]

rtrim
1��Y0

becomes more spread than the degenerate function at the lower bound yl.
On the other hand, when (P;Q) reveals the nesting con�guration, the ATE bounds are given by

(12) irrespective of the imposed restrictions as claimed in Theorem 1. Moreover, it can be shown
that the con�guration of the nested densities reduces the bound formula (12) to the ATE bounds of
Manski (1994) under the mean independence restriction, E(Y1jZ) = E(Y1) and E(Y0jZ) = E(Y0).
This observation supports the result of Heckman and Vytlacil (2001a, 2001b, 2007), which says
that the sharp ATE bounds under the LATE restriction coincides with Manski�s mean independence
bounds. Validity of this statement, however, relies on the situation where the data reveals the
nested densities. When the data does not, then, the LATE restriction is misspeci�ed and a naive
implementation of the formula of the Manski�s mean independence bounds no longer yields the
tightest possible bounds. Furthermore, the formula of Manski�s mean independence bounds do
not necessarily become empty even though IR(fY1 ;fY0 )(P;QjLATE) is empty. These phenomena
raise some concern about the misspeci�cation problem of the bound formula justi�ed under the
observationally restrictive assumptions, and also highlight the advantage of constructing the sharp
bounds with being explicit about its de�nition given in Section 2.
In the special case where the outcome variables are binary, the sharp ATE bounds under RA

presented above coincide with the treatment e¤ect bounds of Balke and Pearl (1997) (see Appendix
B for details). Since the analysis of Balke and Pearl (1997) relies on a linear optimization procedure
with the �nite number of choice variables, their approach cannot be straightforwardly applied to the
case in which the outcome variables have continuous variation. Thus the bound formula obtained
here can be seen as a nontrivial generalization of the Balke and Pearl�s bounds to the continuous
outcome case.
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5 Discussion: The Source of Identi�cation Gain in the Struc-
tural Equation Model

In this section, we shall discuss the link between the counterfactual causal model analyzed in this
paper and the nonseparable structural equation model with a binary endogenous variable. Speci�-
cally, we compare our identi�cation regions with some identi�cation results known in the literature
of the nonseparable structural equations.
Let Y = �(D;U) be the structural outcome equation where U represents the unobserved hetero-

geneity that a¤ects one�s outcome response. The structural outcome equation and the counterfac-
tural outcomes are linked by Y1 = �(1; U) and Y0 = �(1; U) (see, e.g., Athey and Imbens (2006),
Chernozhukov and Hansen (2005), and Pearl (2000)). Therefore, the potential outcome distributions
fY1 and fY0 correspond to the marginal distributions of the transformed random variables �(1; U)
and �(0; U) where U�s distribution is the unconditional one.
Structure is absent in our identi�cation analysis. That is, validity of our results does not rely

on any type of assumptions including the dimension of U , distribution of U; and the functional form
speci�cation of �(j; U), j = 1; 0. In this sense, the identi�cation results of this paper provide a
benchmark compared with which we are able to analyze what type of restrictions on the structure
in addition to instrument independence plays a crucial role for identifying the causal e¤ects. One
insightful comparison we shall make for this purpose is with the restriction of outcome monotonicity
in unobservable.
Monotonicity in unobservable assumes that �(1; U) and �(0; U) are increasing with respect to

a scalar unobservable term U following uniform distribution on the unit interval. In other words,
we interpret �(1; �) and �(0; �) as the � -th quantile of the distributions of Y1 and Y0.8 When the
outcome is binary, Chesher (2009) obtains the bounds of the average treatment e¤ects that can be
substantially narrower than the one presented in this paper (see Hahn (2009) for the comparison
between these bounds).9 Moreover, in the continuous outcome case, Chernozhukov and Hansen
(2005) shows that rank invariance and independence of Z and U can point-identify �(1; �) and �(0; �),
implying point-identi�cation of the potential outcome distributions. This transition from the set-
identi�cation result of Proposition 3.2 of this paper to the point-identi�cation result of Chernozhukov
and Hansen (2005) highlights strong identi�cation power of outcome monotonicity in unobservable
(or equivalently rank invariance between Y1 and Y0). This in turn implies that identi�cation in this

8This restriction has been employed in Chesher (2003, 2005) and it is also refered to as the rank invariance restriction
considered in Chernozhukov and Hansen (2005), i.e., the individual ranked at � in terms of the value of Y1 and the
one ranked at � in terms of the value of Y0 share the same unobservable characteristics U:

9 If the outcome is binary, monotonicity in unobservable implies monotonic outcome response to treatment, which
means that �(j; U) is weaky monotonic with respect to j. That is, �(1; U) � �(0; U) for every U or �(1; U) � �(0; U)
for every U , and, in terms of the potential outcome notation, it is equivalently stated as Y (1) � Y (0) with probability
one or Y (1) � Y (0) with probability one. In a more general setting, Heckman and Vytlacil (2007) and Bhattacharya,
Shaikh, and Vytlacil (2008) demonstrate that imposing monotonic outcome response to treatment in addition to
the LATE restriction can further narrow the ATE bounds. Although it is not as powerful as point-identifying the
causal e¤ects, it indicates that the monotonic outcome response to instrument contributes to identifying the potential
outcome distributions. Note that they assume the speci�cation of threshold crossing with an additive error for the
selection equation so that their analysis is restricted to the case where the data generating process reveals the nested
densities.
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case largely relies on the assumptions on the association between the individual potential outcomes,
and this point should be acknowledged if the researcher imposes it without a convincing economic
theory or sound background knowledge for it.

6 Concluding Remarks

From the perspective of partial identi�cation, this paper clari�es identi�cation power of the in-
strument independence assumptions in the heterogeneous treatment e¤ect model. We derive the
identi�cation region of the marginal distributions of the potential outcomes under each restriction,
and compare the size of the identi�cation region among them. We clarify for which data generating
process the identi�cation region can be further tightened or not. We show that for some data gener-
ating processes the instrument joint independence restriction can provide further identi�cation gain
than instrument marginal independence. Another important �nding is that adding the instrument
monotonicity restriction to instrument independence restriction is redundant for identifying the po-
tential outcome distributions because it only constrains the data generating process without further
identifying the potential outcome distributions. We also present the sharp bounds for the aver-
age treatment e¤ects under each restriction. Our analysis covers binary, discrete, and continuous
outcome support, and our bounds under joint independence extend the bounds of Balke and Pearl
(1997) for the binary outcome case to a more general setting including the continuous outcome case.
Our identi�cation framework exclusively focuses on the causal e¤ects de�ned in terms of the pop-

ulation distribution of the potential outcomes, and our analysis does not impose any assumptions
that constrain the association of the potential outcomes. This would be a reasonable approach if
the researcher has little knowledge on the association of the potential outcomes, but a disadvantage
is that we may have to give up drawing an informative conclusion out of data. If one can justify the
association of Y1 and Y0 based on an economic theory or some causal knowledge, then it is possible to
increase informativeness of the conclusion. For example, in case of the continuous outcome, adding
the rank invariance assumption of Chernozhukov and Hansen (2005), i.e., individual�s rank of the
outcome does not vary with treatment status, gives point-identi�cation of the potential outcome
distributions (Chernozhukov and Hansen (2005)). The comparison of their result with our identi�-
cation result highlights strong identi�cation power of the rank invariance assumption, which is worth
attention if the researcher imposes it without a convincing economic theory or sound background
knowledge about it.

Appendix A: Proofs

The proofs of constructing IR(fY1 ;fY0 )(P;Qj�) proceed in the manner of "guess and verify." We
�rst propose a guess for IR(fY1 ;fY0 )(P;Qj�), say, IR

guess
(fY1 ;fY0 )

(P;Qj�). In order to verify that the

guess IRguess(fY1 ;fY0 )
(P;Qj�) is correct, we need to show the two things. First, for an arbitrary

(fY1 ; fY0) 2 IR
guess
(fY1 ;fY0 )

(P;Qj�), we shall show that there exists a distribution of (Y1; Y0; T; Z) that
is compatible with (P;Q) and the imposed restrictions. This �rst step proves IRguess(fY1 ;fY0 )

(P;Qj�) �
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IR(fY1 ;fY0 )(P;Qj�). Next, in order to prove IRguess(fY1 ;fY0 )
(P;Qj�) � IR(fY1 ;fY0 )(P;Qj�), it su¢ ces

to show that every (fY1 ; fY0) 2 IRguess(fY1 ;fY0 )
(P;Qj�) meet a necessary condition for (fY1 ; fY0) 2

IR(fY1 ;fY0 )(P;Qj�) (e.g., Proof for Proposition 3.1 and 3.3). Alternatively, we may demonstrate that
any (fY1 ; fY0) =2 IR

guess
(fY1 ;fY0 )

(P;Qj�) bring up contradiction to some of the imposed restrictions (e.g.,
Proof of Proposition 3.2.). In either way, we can conclude IRguess(fY1 ;fY0 )

(P;Qj�) � IR(fY1 ;fY0 )(P;Qj�).
By combining them, we conclude that the guess is correct, IRguess(fY1 ;fY0 )

(P;Qj�) = IR(fY1 ;fY0 )(P;Qj�):

Proof of Proposition 3.1. Fix (P;Q) 2 P, and guess the identi�cation region under MSI to be
IRguess(fY1 ;fY0 )

(P;QjMSI) = FenvfY1
(P;Q) � FenvfY0

(P;Q): Clearly, IRguess(fY1 ;fY0 )
(P;QjMSI) is nonempty if

and only if �Y1 � 1 and �Y1 � 1; since otherwise no probability densities can cover the entire density
envelopes. Let us pick an arbitrary (fY1 ; fY0) 2 FenvfY1

(P;Q)�FenvfY0
(P;Q). Consider the distribution

of (Y1; Y0; T ) given Z as follows.

fY1;Y0;T jZ(y1; y0; T = ajZ = 1) =
1

Pr(D = 1jZ = 1)pY1(y1)[fY0(y0)� pY0(y0)];

fY1;Y0;T jZ(y1; y0; T = ajZ = 0) =
1

Pr(D = 1jZ = 0)qY1(y1)[fY0(y0)� qY0(y0)];

fY1;Y0;T jZ(y1; y0; T = njZ = 1) =
1

Pr(D = 0jZ = 1) [fY1(y1)� pY1(y1)]pY0(y0);

fY1;Y0;T jZ(y1; y0; T = njZ = 0) =
1

Pr(D = 0jZ = 0) [fY1(y1)� qY1(y1)]qY0(y0);

fY1;Y0;T jZ(y1; y0; T = cjZ = z) = 0 for z = 1; 0;

fY1;Y0;T jZ(y1; y0; T = djZ = z) = 0 for z = 1; 0:

By noting
R
pY1d� = Pr(D = 1jZ = 1);

R
pY0d� = Pr(D = 0jZ = 1),

R
qY1d� = Pr(D = 1jZ = 0);

and
R
qY0d� = Pr(D = 0jZ = 0), we can see that the constructed population meets the constraints

(3). Furthermore, by plugging the constructed population densities into the identities, fY1jZ =P
t2fc;n;a;dg

R
y0
fY1;Y0;T jZd� and fY0jZ =

P
t2fc;n;a;dg

R
y1
fY1;Y0;T jZd�, we claim that the constructed

population meets MSI. Therefore, IRguess(fY1 ;fY0 )
(P;Qj�) � IR(fY1 ;fY0 )(P;Qj�): The other direction is

straightforward since if (fY1 ; fY0) 2 IR(fY1 ;fY0 )(P;QjMSI) fY1 � fY1 and fY0 � fY0 must hold as
discussed in the main text. Hence, IRguess(fY1 ;fY0 )

(P;Qj�) � IR(fY1 ;fY0 )(P;Qj�), and the conclusion
follows.

The following lemma are used for the proof of Proposition 3.2, and 4.1

Lemma A.1. Let the data generating process (P;Q) 2 P be given. Fix fY1 and fY0 the mar-
ginal probability densities of Y1 and Y0. There exists a joint distribution of (Y1; Y0; T; Z) that is
compatible with the data generating process, satis�es RA, and whose marginal distributions of Y1
and Y0 coincide with the provided fY1 and fY0 if and only if we can �nd nonnegative functions
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f(hY1;t; hY0;t); t = c; n; a; dg that satisfy the following constraints �-a.e.

pY1(y1) = hY1;c(y1) + hY1;a(y1); (15)

qY1(y1) = hY1;d(y1) + hY1;a(y1); (16)

pY0(y0) = hY0;d(y0) + hY0;n(y0); (17)

qY0(y0) = hY0;c(y0) + hY0;n(y0); (18)

fY1(y1)� pY1(y1) = hY1;d(y1) + hY1;n(y1); (19)

fY1(y1)� qY1(y1) = hY1;c(y1) + hY1;n(y1); (20)

fY0(y0)� pY0(y0) = hY0;c(y0) + hY0;a(y0); (21)

fY0(y0)� qY0(y0) = hY0;d(y0) + hY0;a(y0); (22)Z
Y
hY1;c(y1)d� =

Z
Y
hY0;c(y0)d�; (23)Z

Y
hY1;n(y1)d� =

Z
Y
hY0;n(y0)d�; (24)Z

Y
hY1;a(y1)d� =

Z
Y
hY0;a(y0)d�; (25)Z

Y
hY1;d(y1)d� =

Z
Y
hY0;d(y0)d�: (26)

Proof of Lemma A.1. The "only if" part is implied by the equations (6) in the main text. So,
we focus on proving the "if" part of the lemma. Given the nonnegative functions f(hY1;t; hY0;t); t =
c; n; a; dg satisfying the above constraints, let �t =

R
Y hY1;td� =

R
Y hY0;td� � 0 for t 2 fc; n; a; dg:

Consider the conditional densities of (Y1; Y0; T ) given Z constructed by

fY1;Y0;T jZ(y1; y0; T = tjZ = 1) = fY1;Y0;T jZ(y1; y0; T = tjZ = 0)

=

�
��1t hY1;t(y1)hY0;t(y0) if �t > 0;

0 if �t = 0.

By construction the constructed population satis�es RA. Also, the constraint (15) implies

pY1(y1) = hY1;c(y1) + hY1;a(y1)

= fY1;T jZ(y1; T = cjZ = 1) + fY1;T jZ(y1; T = ajZ = 1);

and a similar result holds for pY0 ; qY1 ; and qY0 . Hence, the constructed population is compatible with
the data generating process. Lastly, this way of constructing the population distribution gives the
proposed distribution of Y1 since

P
t=c;n;a;d

R
y02Y fY1;Y0;T (y1; y0; t)d� =

P
t=c;n;a;d hY1;t(y1) = fY1

as implied by the constraints (15) and (19). This is also the case for fY0 . Thus, the given (fY1 ; fY0)
belongs to IR(fY1 ;fY0 )(P;QjRA): This completes the proof.

Lemma A.2. Let �Y1 , �Y0 , �Y1 , be the parameters de�ned in the statement of Proposition 3.1 and
3.2. In addition, de�ne �Y0 �

R
Y minfpY0 ; qY0gd�.

�Y1 + �Y0 + �Y1 + �Y0 = 2:
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Proof of Lemma A.2.

Pr(D = 1jZ = 1) + Pr(D = 1jZ = 0) =

Z
Y
[pY1 + qY1 ]d�

=

Z
Y
[maxfpY1 ; qY1g+minfpY1 ; qY1g]d�

= �Y1 + �Y1 :

On the other hand,

Pr(D = 1jZ = 1) + Pr(D = 1jZ = 0) = 2� Pr(D = 0jZ = 1) + Pr(D = 0jZ = 0)

= 2�
Z
Y
[pY0 + qY0 ]d�

= 2�
Z
Y
[maxfpY0 ; qY0g+minfpY0 ; qY0g]d�

= 2� �Y0 � �Y0 :

Hence, �Y1 + �Y1 = 2� �Y0 � �Y0 holds.

Proof of Proposition 3.2. As shown in Proposition 3.1, if the data generating process reveals
�Y1 > 1 or �Y0 > 1, no population is compatible with MSI, and this clearly implies IR(fY1 ;fY0 )(P;QjRA)
is empty. So, we precludes this trivial case from the proof and focus on the data generating process
with �Y1 � 1 and �Y0 � 1.
First, let us consider the data generating process with 1 � �Y0 < �Y1 , and guess the identi�cation
region to be IRguess(fY1 ;fY0 )

(P;QjRA) = F�fY1 (P;Q) � F
env
fY0
(P;Q). Note that F�fY1 (P;Q) is nonempty

since it always contains fY1 = fY1 +
1��Y1
�Y1

minfpY1 ; qY1g.
Pick an arbitrary fY1 from F�fY1 (P;Q) and an arbitrary fY0 from F envfY0

(P;Q): De�ne a nonnegative
function

gY1 =
�Y1 + �Y0 � 1R

Y min
n
fY1 � fY1 ;minfpY1 ; qY1g

o
d�
min

n
fY1 � fY1 ;minfpY1 ; qY1g

o
; (27)

and consider the following choice of f(hY1;t; hY0;t); t = c; n; a; dg;

hY1;c = pY1 �minfpY1 ; qY1g+ gY1;
hY1;n = fY1 � fY1 � gY1 ;
hY1;a = minfpY1 ; qY1g � gY1;
hY1;d = qY1 �minfpY1 ; qY1g+ gY1 ;
hY0;c = qY0 �minfpY0 ; qY0g;
hY0;n = minfpY0 ; qY0g;
hY0;a = fY0 � fY0 ;
hY0;d = pY0 �minfpY0 ; qY0g:

(28)

Since gY1 � minfpY1 ; qY1g and gY1 � fY1 � fY1 by construction, fhY1;t(y1); t = c; n; a; dg are all
nonnegative functions. It can be seen that the constraints (15) through (22) are satis�ed. Also,
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by utilizing Lemma A.2, we can check the scale constraints (23) through (26) are satis�ed. Hence,
by Lemma A.1, we conclude that the proposed (fY1 ; fY0) belongs to IR(fY1 ;fY0 )(P;QjRA) so that
IRguess(fY1 ;fY0 )

(P;QjRA) � IR(fY1 ;fY0 )(P;QjRA).

Next, consider fY1 that does not satisfy
R
Y min

n
fY1 � fY1 ;minfpY1 ; qY1g

o
d� � �Y1 + �Y0 � 1 and

fY0 2 FenvfY0
(P;Q): Suppose that the nonnegative functions f(hY1;t; hY0;t); t = c; n; a; dg satisfying the

constraints (15) through (22) exist. Then, the constraints (21) and (22) imply that
R
Y hY0;ad� �

1� �Y0 . Moreover,

fY1 =
X

t=c;n;a;d

hY1;t

� pY1 + qY1 � hY1;a
= fY1 +minfpY1 ; qY1g � hY1;a;

implies

fY1 � fY1 � minfpY1 ; qY1g � hY1;a: (29)

Now, since fY1 =2 F�fY1 (P;Q), it follows that

�Y1 + �Y0 � 1 >

Z
Y
min

n
fY1 � fY1 ;minfpY1 ; qY1g

o
d�

�
Z
Y
min fminfpY1 ; qY1g � hY1;a;minfpY1 ; qY1gg d�

=

Z
Y
[minfpY1 ; qY1g � hY1;a]d�

= �Y1 �
Z
hY1;ad�:

where the second line follows by the inequality (29). Hence,
R
hY1;ad� > 1 � �Y0 : This andR

Y hY0;ad� � 1 � �Y0 violates the scale constraint for t = a. So, we conclude that there are
no feasible f(hY1;t; hY0;t); t = c; n; a; dg that meets the constraints of Lemma A.1. Note fY0 =2
FenvfY0

(P;Q) immediately implies violation of Y0 ? Z. Therefore, we conclude IRguess(fY1 ;fY0 )
(P;QjRA) �

IR(fY1 ;fY0 )(P;QjRA).
By combining these results, we conclude that F�fY1 (P;Q)�F

env
fY0
(P;Q) is the identi�cation region of

(fY1 ; fY0) under RA.
For the case of 1 � �Y0 > �Y1 , the identi�cation region is derived by a symmetric argument to the
case of 1� �Y0 < �Y1 . So, for the sake of brevity we omit a proof.
Lastly, consider the case of 1� �Y0 = �Y1 : As we presented in the main text and Figure 3, for every
fy1 2 F envfY1

(P;Q) and fY0 2 F envfY0
(P;Q), we can �nd f(hY1;t; hY0;t); t = c; n; a; dg that satis�es all the

constraints of Lemma A.1. Hence, FenvfY1
(P;Q)�FenvfY0

(P;Q) is the identi�cation region of (fY1 ; fY0)
under RA.

Proof of Proposition 4.1. The mean parameter respects stochastic dominance (Manski (2003)).
So, the sharp upper (lower) bounds of E(Y1) are obtained by �nding fY1 within the identi�cation
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region that (is) �rst-order stochastically dominates (dominated by) the others in the identi�cation
region. Consider bounding the mean of Y1 when the density fY1 belongs to the class of densities
FenvfY1

(P;Q) and F�fY1 (P;Q) respectively. For the former, it is known that the bounds of E(Y1) is
given by

(1� �Y1)yl +
Z
Y
y1fY1d� � E(Y1) � (1� �Y1)yu +

Z
Y
y1fY1d�:

See Lemma 2.2.2 in Manski (2003) for the discrete outcome case and Kitagawa (2009) for the con-
tinuous outcome case. For the latter, deriving the bounds is slightly more involved. Consider the
density

f lowerY1 (y1) = �Y01fy1 = ylg+ fY1(y1) + [min fpY1 ; qY1g]
rtrim
1��Y0

(y1):

Note f lowerY1
� fY1 andZ

Y
min

n
f lowerY1 � fY1 ;minfpY1 ; qY1g

o
d� = �Y1 � (1� �Y0);

so f lowerY1
2 F�fY1 (P;Q). By applying the decomposition trick (28) proposed in the proof of Propo-

sition 3.2, we can decompose f lowerY1
into the nonnegative functions fhlowerY1;t

g. That is, for t = a and
t = n, we obtain

hlowerY1;a = minfpY1 ; qY1g � [min fpY1 ; qY1g]
rtrim
1��Y0

;

hlowerY1;n = �Y01fy1 = ylg.

Furthermore, f lowerY1
is expressed as

f lowerY1 =
X
t

hlowerY1;t

= pY1 + qY1 � hlowerY1;a + hlowerY1;n : (30)

where in the second line we use the constraints (15) and (16). Let ~fY1 be an arbitrary element
in F�fY1 (P;Q): By Lemma A.1 and Proposition 3.2, there exist nonnegative functions f

~hY1;t; t =

c; n; a; dg by which ~fY1 can be represented as

~fY1 =
X
t

~hY1;t

= pY1 + qY1 � ~hY1;a + ~hY1;n; (31)

and, again, by applying the decomposition trick (28) of the proof of Proposition 3.2, ~hY1;a and ~hY1;n
can be expressed as

~hY1;a = minfpY1 ; qY1g � ~gY1 ;
~hY1;n = ~fY1 � fY1 � ~gY1 :
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where ~gY1 is obtained by plugging ~fY1 into (27). From (30) and (31), for t 2 [yl; yu], the di¤erence
between

R
[yl;t]

f lowerY1
d� and

R
[yl;t]

~fY1d� is written asZ
[yl;t]

f lowerY1 d��
Z
[yl;t]

~fY1d�

=

Z
[yl;t]

[hlowerY1;n � ~hY1;n]d�+
Z
[yl;t]

[~hY1;a � hlowerY1;a ]d�

= �Y0 �
Z
[yl;t]

�
~fY1 � fY1 � ~gY1

�
d�+

Z
[yl;t]

�
[min fpY1 ; qY1g]

rtrim
1��Y0

� ~gY1
�
d�: (32)

Regarding the second term of (32), since ~fY1 � fY1 � ~gY1 � 0; it can be bounded above byZ
[yl;t]

�
~fY1 � fY1 � ~gY1

�
d� �

Z
Y

�
~fY1 � fY1 � ~gY1

�
= 1� �Y1 � �Y1 � 1 + �Y0 .

Regarding the third term of (32), if t is strictly less than the (1 � �Y0)-th right-trimming point
qright1��Y0

= sup
n
s :
R
[s;yu]

min fpY1 ; qY1g d� � 1� �Y0
o
, then [min fpY1 ; qY1g]

rtrim
1��Y0

= min fpY1 ; qY1g �
~gY1 holds on y1 2 [yl; t]: So the integral is nonnegative. On the other hand, if t � q

right
1��Y0

,Z
[yl;t]

�
[min fpY1 ; qY1g]

rtrim
1��Y0

� ~gY1
�

= �Y1 � (1� �Y0)�
Z
[yl;t]

~gY1d�

� �Y1 � (1� �Y0)�
Z
Y
~gY1d�

= �Y1 � (1� �Y0)� [�Y1 � (1� �Y0)] = 0.

By combining them, for each t 2 [yl; yu], (32) is bounded below by �Y0 + �Y1 + �Y1 + �Y0 � 2, and
this is zero by Lemma A.2: Therefore, we conclude that f lowerY1

�rst order stochastically dominates
~fY1 , and the mean of Y1 with respect to f

lower
Y1

minimizes E(Y1) over fY1 2 F�fY1 (P;Q).
Next, we shall �nd the upper bound of E(Y1) by essentially repeating the same procedure as above.
De�ne

fupperY1
(y1) = fY1(y1) + [min fpY1 ; qY1g]

ltrim
1��Y0

(y1) + �Y01fy1 = yug;

which is shown to belong to F�fY1 (P;Q). Similarly to the lower bound case (31), represent f
upper
Y1

by

fupperY1
=

X
t

hupperY1;t

= pY1 + qY1 � h
upper
Y1;a

+ hupperY1;n
;

hupperY1;a
= minfpY1 ; qY1g � [min fpY1 ; qY1g]

ltrim
1��Y0

;

hupperY1;n
= �Y01fy1 = yug.
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For an arbitrary ~fY1 2 F�fY1 (P;Q), consider the di¤erence between
R
(t;yu]

fupperY1
d� and

R
(t;yu]

~fY1d�.
Analogous to (32), we obtainZ

(t;yu]

fupperY1
d��

Z
(t;yu]

~fY1d�

= �Y0 �
Z
(t;yu]

�
~fY1 � fY1 � ~gY1

�
d�+

Z
(t;yu]

�
[min fpY1 ; qY1g]

ltrim
1��Y0

� ~gY1
�
d�:

Now, by repeating the same procedure as above, the right hand side is bounded below by �Y0 +
�Y1 + �Y1 + �Y0 � 2 = 0. Hence, we conclude that f

upper
Y1

is �rst order stochastically dominated by
~fY1 , and the mean of Y1 with respect to f

upper
Y1

maximizes E(Y1) over fY1 2 F�fY1 (P;Q).
The bounds for E(Y0) when the density fY0 belongs to the class of densities FenvfY0

(P;Q) and
F�fY0 (P;Q) are derived by a symmetric argument to the case of E(Y1); so we do not duplicate
the proof here.
In order to combine the bounds of E(Y1) and E(Y0), we note that the identi�cation region of
(fY1 ; fY0) takes the form of the Cartesian product of FenvfY1

(P;Q) or F�fY1 (P;Q) and F
env
fY0
(P;Q) or

F�fY0 (P;Q). Hence, by applying the argument of the outer bounds of (Manski (2003)), it is valid to
bound E(Y1) � E(Y0) by subtracting the upper (lower) of E(Y0) from the lower (upper) bound of
E(Y1) for each corresponding underlying identi�cation regions of fY1 and fY0 . This completes the
proof of the sharp bounds under MSI and RA.
As for the bounds under LATE, the bounds become empty when the nested densities are not observed
because the identi�cation region of (fY1 ; fY0) in this case is empty (Proposition 3.3). On the other
hand, when the data generating process exhibits the nested densities, the formula of the sharp ATE
bounds corresponding to FenvfY1

(P;Q)�FenvfY0
(P;Q) is reduced to the presented formula since for j =

1; 0, we have �Yj = maxzfPr(D = jjZ = z)g and
R
Y y1fY1d� = maxz fE(Y jD = j; Z = z) Pr(D = jjZ = z)g :

Appendix B: Binary Y : A Comparison with the Balke and
Pearl�s bounds

In this appendix, we shall show that when the outcome is binary the bound formula for IRATE(P;QjRA)
presented in Proposition 4.1 coincides with the Balke and Pearl�s bounds (Balke and Pearl (1997)).
Now, the dominating measure � puts point masses on f1; 0g. Accordingly, each pYj (yj) or qYj (yj)
for yj 2 f1; 0g and j = 1; 0, represents probability masses Pr(Y = yj ; D = jjZ = 1) or Pr(Y =

yj ; D = jjZ = 0) :
By solving a linear optimization, Balke and Pearl (1997, pp.1172) derives the following bound
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formulas for E(Y1) and E(Y0).

max

8>><>>:
qY1(1)

pY1(1)

�qY0(0)� qY1(0) + pY0(0) + pY1(1)
�qY1(0)� qY0(1) + pY0(1) + pY1(1)

9>>=>>; � E(Y1) (33)

� min

8>><>>:
1� pY1(0)
1� qY1(0)

qY0(0) + qY1(1) + pY0(1) + pY1(1)

qY1(1) + qY1(1) + pY0(0) + pY1(1)

9>>=>>; (34)

and

max

8>><>>:
pY0(1)

qY0(1)

qY0(1) + qY1(1)� pY0(0)� pY1(1)
qY1(0) + qY0(1)� pY0(0)� pY1(0)

9>>=>>; � E(Y0) (35)

� min

8>><>>:
1� pY0(0)
1� qY0(0)

qY1(0) + qY0(1) + pY0(1) + pY1(1)

qY0(1) + qY1(1) + pY1(0) + pY0(1)

9>>=>>; : (36)

In addition, Balke and Pearl show that the bounds for E(Y1)� E(Y0) is obtained by the di¤erence
of these bounds, that is, the lower bound of E(Y1)�E(Y0) is equal to the lower bound of E(Y1) less
E(Y0)�s upper bound, and the upper bound of E(Y1)�E(Y0) is equal to the upper bound of E(Y1)
less E(Y0)�s lower bound.
In order to make the comparison of our bounds with their bounds easier, we rewrite the above

bounds as follows. First, consider the lower bound of E(Y1). The �rst two elements in the maximum
operator can be combined and written as a single element maxfpY1(1); qY1(1)g: As for the third and
the forth elements in the maximum operator, we plug in pY0(0) = 1� pY1(0)� pY1(1)� pY0(1) and
pY1(1) + qY1(1) = maxfpY1(1); qY1(1)g+minfpY1(1); qY1(1)g, and take their maximum. As a result,
the maximum of the third and the forth elements is written as

max

�
pY1(1)

qY1(1)

�
+min

�
pY1(1)

qY1(1)

�
� 1 + max

�
pY0(0)

qY0(0)

�
+max

�
pY0(1)

qY0(1)

�
= max

�
pY1(1)

qY1(1)

�
+min

�
pY1(1)

qY1(1)

�
� (1� �Y0): (37)

Regarding the E(Y1)�s upper bound (34), the minimum of the �rst two elements is written as

1�max fpY1(0); qY1(0)g = max fpY1(1); qY1(1)g+ 1� �Y1 ; (38)

and, by noting pY1(1) + qY1(1) = maxfpY1(1); qY1(1)g + minfpY1(1); qY1(1)g; the minimum of the

33



third and fourth elements becomes

max

�
pY1(1)

qY1(1)

�
+min

�
pY1(1)

qY1(1)

�
+min

�
pY0(0)

qY0(0)

�
+min

�
pY0(1)

qY0(1)

�
= max

�
pY1(1)

qY1(1)

�
+min

�
pY1(1)

qY1(1)

�
+ �Y0 . (39)

By taking the maximum of maxfpY1(1); qY1(1)g and (37), and the minimum of (38) and (39), we
obtain an alternative expression for the Balke and Pearl�s bounds of E(Y1),

maxfpY1(1); qY1(1)g+max
�

0

minfpY1(1); qY1(1)g � (1� �Y0)

�
� E(Y1) (40)

� max fpY1(1); qY1(1)g+min
�

(1� �Y1)� �Y0
minfpY1(1); qY1(1)g

�
+ �Y0 :

Similarly, we consider the same type of transformations on the bounds of E(Y0). That is, we
express the maximum over the �rst two elements and the maximum over the latter two elements
in (35). Also, we take the minimum of the �rst two elements and the latter two elements of (35)
separately. Then, Balke and Pearl�s E(Y0) bounds are written as

maxfpY0(1); qY0(1)g+max
�

0

minfpY0(1); qY0(1)g � (1� �Y1)

�
� E(Y0) (41)

� max fpY0(1); qY0(1)g+min
�

(1� �Y0)� �Y1
minfpY0(1); qY0(1)g

�
+ �Y1 :

Now, consider the data generating process that satis�es 1��Y0 = �Y1 , which also implies 1��Y1 = �Y0
by Lemma A.2. In this case, the transformed Balke and Pearl�s bounds (40) and (41) yield

maxfpY1(1); qY1(1)g � E(Y1) � max fpY1(1); qY1(1)g+ 1� �Y1 ; (42)

maxfpY0(1); qY0(1)g � E(Y0) � max fpY0(1); qY0(1)g+ 1� �Y0 : (43)

We can see these bounds yields the bound formula for ATE (12), and therefore, we obtain the
consistent result with the �rst case of Proposition 4.1 (ii).
Next, consider the case for 1 � �Y0 < �Y1 ; which also implies 1 � �Y1 > �Y0 . In this case, the

bounds for E(Y0) is the same as (43), while E(Y1)�s bound can di¤er from (42) since the second
terms of the expression of the lower and the upper bound of (40) can be nonzero. In fact, the second
term of the lower bound of (40) is seen as the probability mass on y1 = 1 for (1��Y0)-right-trimming
of minfpY1 ; qY1g. Also, the second term of the upper bound of (40) is seen as the probability mass
on y1 = 1 for the (1 � �Y0)-left-trimming of minfpY1 ; qY1g. Therefore, the resulting bounds of
E(Y1)� E(Y0) coincide with (13), the second case of Proposition 4.1 (ii).
Last, consider the case for 1 � �Y0 > �Y1 ; which also implies 1 � �Y1 < �Y0 . Contrary to the

previous case, the bounds for E(Y1) becomes the same as (42), while E(Y0)�s bound is not always
given by (43). Note that the second term of the lower bound of (41) is seen as the probability mass
on y0 = 1 for (1� �Y1)-right-trimming of minfpY0 ; qY0g. Also, the second term of the upper bound
of (41) is seen as the probability mass on y1 = 1 for the (1 � �Y0)-left-trimming of minfpY1 ; qY1g.
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Therefore, the resulting bounds of E(Y1) � E(Y0) coincide with (14), the third case of Proposition
4.1 (ii).
Thus, we conclude that, for every possible data generating process with the binary outcome, the

bound formula of Proposition 4.1 (ii) yields the same bounds as Balke and Pearl (1997).
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