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Abstract

This paper investigates the effect that covariate measurement error has on a conventional treat-
ment effect analysis built on an unconfoundedness restriction that embodies conditional indepen-
dence restrictions in which there is conditioning on error free covariates. The approach uses small
parameter asymptotic methods to obtain the approximate generic effects of measurement error.
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1 Introduction

In the absence of randomized assignment to treatment a commonly used strategy for identifying

the causal effect of participation relies on an independence restriction requiring that counterfactual

outcomes under “treatment” and “no treatment” are independent of treatment status conditional on a

list of covariates. Different versions of this assumption are referred to as ignorability (Rubin, 1974, and

Rosenbaum and Rubin, 1983), selection on observables (Heckman and Robb, 1985, and Heckman et al.,

1998), conditional independence (Lechner, 2001) or unconfoundedness (Imbens, 2004). The analysis

is thus conditional on covariates that capture aspects of individuals’ characteristics and environment

which predispose individuals towards assignment rather than non-assignment or participation rather

than non-participation.

This paper investigates the effect that covariate measurement error has on the conclusions drawn

from a conventional treatment effect analysis that exploits independence restrictions that are condi-

tional on error free covariates. The relevance of the problem for empirical applications rests upon

the evidence on the extent of measurement errors in survey reports provided by several studies in

the literature (see, for example, Bound et al., 2001). We show that in most interesting scenarios

the identifying restriction which holds when conditioning is on error free covariates fails to hold once

conditioning is on error contaminated covariates. This is the case even when measurement error is

simple in form and classical.

It thus follows that commonly employed procedures for estimating causal parameters employing

propensity score matching or re-weighting using cross section or panel data may give misleading

results when there is covariate measurement error. The precise effect of measurement error depends on

detailed aspects of the data generating process about which there is little information in practice. This
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paper thus focuses on approximations which are informative about the generic effects of measurement

error in treatment effect analysis. The approximations provide the basis for sensitivity analysis which

can highlight cases where the impact of measurement may be severe.

The main results of the paper can be summarized as follows. First, we show that measurement

error does not necessarily imply attenuation effects for the causal parameters of interest. The net

effect of measurement error varies in sign and magnitude from case to case, resulting from a complex

combination of effects on the propensity score, on the densities of observed covariates and on the

regression equations relating counterfactual outcomes to covariates and the treatment indicator. Since

the estimation of treatment effects based on conditional independence assumptions generally involves

complex functionals of the data, much of the simplicity of having classical errors is lost. However, we

provide a simple rule to sign measurement error bias that is valid if the propensity score for error-free

data follows a logit model and the no-treatment outcome equation is approximatively linear in the

covariates needed to achieve identification.

Second, we show that there is information in the distributions of observable outcomes and measure-

ment error contaminated covariates that can be used to obtain an indication of the direction and size

of the measurement error bias in any particular case. This can be used to produce a partial correction

which can readily be implemented using existing software, thus making our results operational.

Much of the recent work has considered identification and estimation of treatment effects in a

general non-parametric setting (see Heckman et al., 1999, and Imbens, 2004, for a review). However,

measurement error in the treatment effect context has been little studied. For example, in the review

paper by Bound et al. (2001) there is no mention of the problem. While there are recent results

regarding misclassification of treatment indicators (see, for example, Mahajan, 2006, Lewbel, 2007,

Hu, 2008, Molinari, 2008, and Battistin and Sianesi, 2009), to the best of our knowledge the only paper
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to study covariate measurement error within a programme evaluation context is Cochran and Rubin

(1973).1 In reviewing the effectiveness of regression adjustment to control for confounding variables

in observational studies, Cochran and Rubin (1973) exploit parametric (linear) regression equations

relating potential outcomes to covariates and deal with the complication of having covariates affected

by (not necessarily classical) measurement error. Their result can be obtained as a special case of the

results presented in this paper. In fact, the expression for the bias derived by Cochran and Rubin

(1973, page 431) coincides with the expression for the bias that we derive for a simple parametric case

that we will use throughout this paper to set the methods developed in a familiar context.

Measures of causal effects such as the average treatment effect (ATE) and the average effect of

treatment on the treated (ATT) are related to distributions of observables in a rather complex fashion

which involves essential non-linearities. Recent results in the statistical literature on measurement

error in non-linear models are surveyed in Carrol et al. (2006) but there are no results there on the

treatment effect problem. In the econometrics literature the focus has mainly been on measurement

error effects in the context of estimation of regression functions; see for example Hausman et al. (1991),

Hausman et al. (1998), Li (2002), Hong and Tamer (2003), and Schennach (2004). Chesher (1991)

gives results on the approximate effects of measurement error in a wide variety of contexts. Chesher

and Schluter (2002) use these results in a study of the impact of measurement error on inequality

and poverty measurement. This paper makes use of these results to study the impact of measurement

error on treatment effect analysis. The strategy employed is briefly outlined in the next section.

1.1 The strategy

The notation employed in the potential outcome approach to causal inference is used throughout.2 Y1

and Y0 are scalar random variables denoting the potential outcomes from respectively receiving and
1Heckman and Robb (1985) mention the problem very briefly.
2For reviews of the evaluation problem see Heckman et al. (1999), Heckman (2000) and Imbens (2004).
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not receiving treatment. Binary D ∈ {0, 1} indicates treatment status, with D = 1 for treated units

and D = 0 otherwise. X is a vector of characteristics which may be observed after contamination by

measurement error U . The vector Z ≡ X + σU denotes the error contaminated X and σ ≥ 0 is a

scalar determining the magnitude of measurement error.

The treatment effect β ≡ Y1 − Y0 is not observable because realisations of Y1, respectively Y0,

are only observable when D is 1, respectively 0, and so without further restriction causal parameters

such as the ATE: βe ≡ EY1−Y0(Y1 − Y0), and the ATT: βt ≡ EY1−Y0|D(Y1 − Y0|1) are not identified.3

Models incorporating the strong ignorability restriction by Rosenbaum and Rubin (1983) identify these

causal parameters. This restriction comprises the conditional independence condition: (Y0, Y1) ⊥ D|X

and the support condition that for all x: P (D = 1|X = x) ∈ (0, 1). When this condition holds

values of causal parameters can be uniquely determined from FY DX , the joint distribution function

of the observable outcome Y ≡ DY1 + (1 − D)Y0, D and X, through correspondences of the form

θ = H(FY DX) where θ denotes a causal parameter and H is a point identifying functional, that is a

functional delivering a unique value.4

Various estimators follow on particular applications of the analogue principle. For example βe

could be estimated by calculating non- or semi-parametric estimates of the regressions of Y on X

for the treated and of Y on X for the untreated and averaging differences in their predictions across

the values of X. Other estimators, for example propensity score based procedures, are prompted

by alternative ways of writing the identifying functional H and estimating its components using the
3The notation EA|B(g(A, B)|b) indicates the conditional expectation of g(A, B) given B = b.
4There is for example the correspondence:

βe = EX{EY |DX(Y |1, x)− EY |DX(Y |0, x)},
for the ATE, and the correspondence:

βt = EX|D{EY |DX(Y |1, x)− EY |DX(Y |0, x)|1},
for the ATT (see Section 2).
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properties of the propensity score (Rosenbaum and Rubin, 1983).

When realisations of measurement error contaminated Z are used in place of X, analogue estima-

tors will typically estimate θZ ≡ H(FY DZ) rather than the desired θ ≡ H(FY DX), FY DZ being the

joint distribution function of Y , D and Z. In order to gain understanding of the impact of covariate

measurement error on treatment effect estimators this paper studies the measurement error “bias”:

∆ ≡ θZ − θ. The value of ∆ depends on features of the distribution of Y , D and Z and a case by

case analysis is required if exact results are to be obtained.5 The focus here is on the generic effect

of measurement error and information about this is obtained by considering its approximate effect as

it comes to be a significant element, that is by considering the value of ∆ when U has classical form

and σ is small (note that when σ is zero there is no measurement error).

This paper contributes to the literatures on treatment effects and on measurement error by deriving

two results of theoretical and practical relevance. First, we will show that under sufficient smoothness

there is the approximation:

∆ ≡ H(FY DZ)−H(FY DX) = σ2H∗(FY DX) + o(σ2), (1)

where the term indicated as o(σ2) has the property limσ→0 o(σ2)/σ2 = 0 and the functional H∗ is

known. Properties of H∗ are explored to shed light on the “first order”impact of measurement error

and the way in which this depends upon features of FY DX . This characterization represents the first

contribution of this paper. Second, we will show that, since FY DZ differs from FY DX by at most

O(σ), H∗(FY DX) can be replaced by H∗(FY DZ) in equation (1) without disturbing the order of the

approximation error leading to the following approximation:

∆ = σ2H∗(FY DZ) + o(σ2).
5Alternatively, under certain conditions on the distribution of the measurement error ∆ could be obtained via simu-

lation using SIMEX (see, for example, Carrol et al., 2006).
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Since the available data on Y , D and Z are informative about FY DZ , one can estimate H∗(FY DZ)

and so gain a view of the likely first order effect of measurement error at conjectured values of σ and

calculate a range of “bias corrected”estimates for a range of plausible values of σ. This measurement

error bias correction represents the second contribution of this paper.

1.2 Plan of the paper

The remainder of the paper is organised as follows. Section 2 provides alternative expressions for

the causal parameters of interest in terms of the joint distribution of Y , D and X when the strong

ignorability restriction is maintained. These motivate a variety of estimators of the parameters βe

and βt. Section 3 sets out the measurement error model considered here and presents small-variance

approximations to the “large sample measurement error bias” ∆. In Section 4 a procedure for assessing

the potential impact of measurement error is proposed. Throughout the paper we study a particular,

simple, case in which expressions for the exact and approximate effects of measurement error for the

parameters βe and βt can be derived. These are helpful in setting the methods developed here in a

familiar context. Section 5 builds upon this example and presents numerical calculations of the exact

effects of measurement error and of the errors incurred using the approximations proposed here. In

Section 6 an empirical application of the method proposed is presented to estimate the returns to

educational qualification for the UK, while Section 7 concludes.

2 Identification in the absence of measurement error

This section sets out identifying correspondences for the ATE and the ATT when there is a strong

ignorability restriction with respect to variables X, and X is observed without measurement error.

This prepares the way for the study of the effect of measurement error.

Recall that the observable random variables are: the binary treatment status indicator, D, the
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covariates X and the outcome Y ≡ DY1 + (1−D)Y0. Let eX(x) denote the propensity score:

eX(x) ≡ P [D = 1|X = x],

that is the probability of receiving treatment conditional on having values of X equal to x. The strong

ignorability restriction with respect to X, which we will refer to by IX , comprises the following two

conditions which hold for all values x:

(Y0, Y1)⊥D|X = x, (2)

eX(x) ∈ (0, 1). (3)

The former condition states that potential outcomes are conditionally independent of the treatment

status given observable characteristics X, whereas the latter condition ensures that treated are ob-

served at all values x.6 If IX holds, then for all (d, d′) ∈ {0, 1} there is:

EYd|X(Yd|x) = EYd|DX(Yd|d′, x),

so that by defining:

Λ1
X ≡

∫ (
EY |DX(Y |1, x)−EY |DX(Y |0, x)

)
fX(x)dx, (4)

Γ1
X ≡

∫ (
EY |DX(Y |1, x)−EY |DX(Y |0, x)

)
fX|D(x|1)dx, (5)

the following identifying correspondences hold:7

Λ1
X = βe,

Γ1
X = βt.

6Throughout this paper we will not consider the case of conditional mean independence, which is weaker than (2) and
is sufficient to identify the ATE and the ATT. The key results on the effects of measurement error that are presented in
what follows would however hold under suitably defined mean independence restrictions.

7Here and later integrals are definite over the full support of the variables of integration. Note also that the corre-
spondence Γ1

X = βt only requires eX(x) ∈ [0, 1) and Y0⊥D|X = x.
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Analogue estimators of the ATE and the ATT can be obtained by considering the empirical counter-

parts of (4) and (5), respectively.

Alternative equivalent representations of Λ1
X and Γ1

X lead to alternative analogue estimators of βe

and βt. For example, provided that the support condition in (3) holds, for all values x there is:

EY D|X(Y D|x) = EY |DX(Y |1, x)eX(x),

EY D|X(Y (1−D)|x) = EY |DX(Y |0, x) [1− eX(x)] ,

that can be used in (4) and (5) to write:

Λ2
X =

∫ (
EY D|X(Y D|x)

eX(x)
− EY D|X(Y (1−D) |x)

1− eX(x)

)
fX(x)dx,

Γ2
X =

∫ (
EY D|X(Y D|x)

P (D = 1)
− EY D|X(Y (1−D) |x)

1− eX(x)
eX(x)

P (D = 1)

)
fX(x)dx,

so that Λ2
X = Λ1

X and Γ2
X = Γ1

X . An alternative representation can be obtained by using the balancing

property of the propensity score. Theorem 3 by Rosenbaum and Rubin (1983) states that under the

restriction IX for all (d, d′) ∈ {0, 1} there is:

EYd|eX
(Yd|η) = EYd|DeX

(Yd|d′, η),

that is if treatment assignment is strongly ignorable given x, then it is also strongly ignorable given

the propensity score eX(x). Thus by defining:

Λ3
X ≡

∫ (
EY |DeX

(Y |1, η)− EY |DeX
(Y |0, η)

)
feX (η)dη,

Γ3
X ≡

∫ (
EY |DeX

(Y |1, η)− EY |DeX
(Y |0, η)

)
feX |D(η|1)dη,

and by using the fact that treatment assignment and covariates are conditionally independent given

the propensity score (see Theorem 2 by Rosenbaum and Rubin, 1983) we also have Λ3
X = Λ1

X and

Γ3
X = Γ1

X .
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Λ1
X and Λ3

X motivate “matching” estimators for the ATE which average differences of values of

the outcome across the treated and untreated at common values of, respectively, the vector X and

the scalar propensity score. Λ2
X motivates estimators which difference weighted averages of treated

and untreated outcomes. Similarly, Γ1
X and Γ3

X motivate “matching” estimators for the ATT, and

Γ2
X motivates weighted estimators for the ATT.8 The three representations for the ATE and the ATT

are equivalent provided that the support condition in (3) is satisfied, and the analogue estimators

variously based on them will converge to the same limit but, unless IX holds, that limit will not in

general be the causal parameter of interest.

3 The effect of measurement error

We now study the effect of conditioning on measurement error affected covariates when their error

free counterparts satisfy a strong ignorability restriction.

First, we show that if the strong ignorability restriction IX holds when X is error-free, it does not

hold when some elements of X are error contaminated. This result implies that there are measurement-

error-induced inconsistencies in matching or similar type of estimators of the ATE or the ATT. Second,

we characterise the bias induced by measurement error on the estimation of the ATE (Proposition 1)

and of the ATT (Proposition 2). As explained in Section 3.2 the results rest upon the assumption of

classical measurement error in covariates and are approximations designed to be accurate for small

values of the measurement error variance.

For both the ATT and the ATE the impact of measurement error is small when a variable measured

with error has little effect either on the outcomes or on the propensity score but in this situation the

variable is of little help in identifying the ATT and ATE. When the variable susceptible to measurement
8See for example Horvitz and Thompson (1952), Rosenbaum (1987), Dehejia and Wahba (1995), Hahn (1998), and

Hirano et al. (2003).
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error has strong identifying power the impact of measurement error is greatest. The sign of the

effects depends on the directions of the effect of the variable susceptible to measurement error on the

propensity score and in the regressions of Y0 and Y1 on X. As a result it is not possible to sign the

bias induced by measurement error without information about the case in hand. Estimates of the

approximations we develop deliver information about the sign of measurement-error-induced bias and

its magnitude at specified values of the measurement error variance.

3.1 The general problem

When error contaminated data are used, that is when realisations of Z are employed instead of

realisations of X, the various analogue estimators of the ATE and the ATT presented in Section 2 can

be regarded as estimators of the parameters obtained when, in the definitions above, the probability

law for (Y,D, Z) is employed in place of the probability law for (Y, D, X).

Define the propensity score with respect to Z as:

eZ(z) ≡ P [D = 1|Z = z],

and define Λi
Z , Γi

Z , i ∈ {1, 2, 3}, by analogy with the definitions given in the previous section, where

for example there is:

Λ1
Z ≡

∫ (
EY |DZ(Y |1, z)− EY |DZ(Y |0, z)

)
fZ(z)dz.

Using arguments similar to those employed above, if for all z we have eZ(z) ∈ (0, 1), then Λ1
Z = Λ2

Z =

Λ3
Z ≡ ΛZ and Γ1

Z = Γ2
Z = Γ3

Z ≡ ΓZ (the proof of this result is reported in the Appendix). The various

analogue estimators of the ATE and ATT using error contaminated Z in place of error free X will be

consistent estimators of respectively ΓZ and ΛZ which will generally deviate from βe and βt. In what

follows we give approximations to ΛZ and ΓZ , thereby shedding light on the inconsistency induced by

the presence of measurement error.
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3.2 The measurement error model

Particular attention is given to the case in which one scalar element, X∗ of X ≡ [X∗, X∗] is observed

with error, the remaining elements X∗ being observed without error.9 The observable measurement

error contaminated variable Z∗ is defined as Z∗ = X∗ + σU where E[U ] = 0, V ar[U ] exists and is

normalised to one, and U is distributed independently of (Y0, Y1, D, X).10 The vector Z ≡ (Z∗, X∗) is

thus observable.

The variable measured with error and the measurement error are continuously distributed both

with unbounded support. The approximation method of Chesher (1991) employed here requires this,

and also requires that various moments of distributions, and derivatives of functions, up to third

order exist. Most importantly, the continuous distribution and support restrictions ensure that the

common support condition is satisfied for error contaminated Z if it is satisfied for error free X. If the

distributions of X conditional on D = 1 and D = 0 share the same support and the distribution of U

is independent of D, then the values x in the two groups are contaminated by realisations drawn from

the same continuous distribution. It thus follows that the distributions of Z conditional on D = 1 and

D = 0 must preserve the support property.

The approximations exploited below involve derivatives of distribution (F ), density (f) and log
9Extension to cases with more than one variable observed with error is straightforward, but notationally more de-

manding.
10The independence restriction could be relaxed, for example by allowing the variance of measurement error to depend

on D or X∗. This would introduce additional (unidentifiable) parameters whose values would need to be specified when
investigating the potential impact of measurement error.

12



density (g) functions for which there is the following notation with d ∈ {0, 1} and i ∈ {1, 2}:

F
(i)
Yd|X(y|x) ≡ ∂i

∂xi∗
FYd|X(y|x),

f
(i)
X|D(x|d) ≡ ∂i

∂xi∗
fX|D(x|d),

f
(i)
X (x) ≡ ∂i

∂xi∗
fX(x),

gX|D(x|d) ≡ ∂

∂x∗
log fX|D(x|d) =

f
(1)
X|D(x|d)

fX|D(x|d)
.

Note that all partial derivatives are with respect to the variable subject to measurement error, that

the distribution function derivatives, unlike the density function derivatives, are with respect to a

conditioning argument, and that the function gX|D(x|d) can be written as the X∗-derivative of the log

conditional density of X∗ given D and X∗.

3.3 Example

This example is simple and convenient, in that it allows us to derive analytical expressions for the

exact bias and the approximations discussed below. We will return to the case dealt with here to set

the methods presented in a familiar context. Moreover, the example considered allows us to establish

a link with the results by Cochran and Rubin (1973). To ease notation, suppose that X consists of

just one variable and that the regression functions of Y on X for the groups D = 0 and D = 1 are

linear, as follows:

EY0|DX(Y0|0, x) = α0 + γ0x,

EY1|DX(Y1|1, x) = α1 + γ1x.

The extension to the case of multidimensional X and (or) polynomial regression functions proceeds

along the same lines, but is notationally more demanding.11 Assume that Z is observed in place of
11Cochran and Rubin (1973) consider the case of one continuous covariate X and regressions of Y on X linear and

parallel for the population of the treated and the untreated (i.e. γ0 = γ1).
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X and that, conditional on D, (X, U) are normally distributed random variables with group specific

parameters, implying that for d ∈ {0, 1} we have:

[
X
Z

]
|D = d ∼ N

([
µd

µd

]
,

[
λ2

d λ2
d

λ2
d λ2

d + σ2

])
,

and:

EX|DZ(X|d, z) = µd +
λ2

d

λ2
d + σ2

(z − µd) .

Define p ≡ P [D = 1]. The following expressions follow under IX when X is measured without error.

EY0(Y0) = α0 + γ0[(1− p)µ0 + pµ1],

EY1(Y1) = α1 + γ1[(1− p)µ0 + pµ1],

EY0|D(Y0|1) = α0 + γ0µ1.

These lead to the following expressions for the ATE and the ATT.

βe = (α1 − α0) + (γ1 − γ0) ((1− p)µ0 + pµ1) ,

βt = (α1 − α0) + (γ1 − γ0)µ1.

3.4 The effect on the strong ignorability condition

First consider the effect of measurement error on the strong ignorability condition. The general

question we will provide an answer to is the following: does strong ignorability with respect to X

ensures strong ignorability with respect to error ridden covariates Z? Applying the approximation of

Chesher (1991) for conditional distribution functions with covariates measured with error gives the

following approximation for the distribution functions of potential outcomes Yd conditional on D and

Z:

FYd|DZ(y|d′, z) ' FYd|X(y|z) + σ2F
(1)
Yd|X(y|z)gX|D(z|d′) +

σ2

2
F

(2)
Yd|X(y|z), (6)
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where (d, d′) ∈ {0, 1} and, here and later, A ' B indicates A = B + o(σ2). Strong ignorability with

respect to X has been exploited in producing this approximation. The first term on the right hand side

of (6) is the conditional distribution of Yd given X and D evaluated at X = z which, by virtue of the

strong ignorability restriction, is equal to the conditional distribution of Yd given X alone evaluated at

X = z. Strong ignorability also makes conditioning on D irrelevant in the first and second derivative

terms.

Dependence on D can arise through the second term of the approximation to FYd|DZ because of

the appearance of the log density derivative gX|D. It follows that, by considering only terms of order

o(σ2), there is not strong ignorability with respect to Z local to σ2 = 0 unless for all z and y we have:

F
(1)
Yd|X(y|z)

[
gX|D(z|1)− gX|D(z|0)

]
= 0, d ∈ {0, 1}

for which a sufficient condition is that either:

F
(1)
Yd|X(y|z) = 0, d ∈ {0, 1} (7)

for all z and y, or:

gX|D(z|1) = gX|D(z|0), (8)

for all z.

The condition (7) virtually requires potential outcomes to be independent of X∗, while the condition

(8) requires X∗ to be independent of D in which case the propensity score does not depend on X∗.

In neither case is X∗ influential in identifying the causal parameters of interest. We conclude that

identifying power vested in a variable X∗ by virtue of a strong ignorability restriction is lost when X∗

is measured with error of the simple form studied here.
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3.5 The effect on regression and density functions

Now consider the effect of measurement error on the regressions of Y0 and Y1 on D and X which

appear in the identifying correspondences for the ATE and ATT. The same approach that leads to

(6) gives the following approximation for the regression functions of Yd, d ∈ {0, 1}, when conditioning

is on error contaminated Z rather than error free X:

EYd|DZ(Yd|d′, z) ' EYd|X(Yd|z) + σ2E
(1)
Yd|X(Yd|z)gX|D(z|d′) +

σ2

2
E

(2)
Yd|X(Yd|z). (9)

Here d′ ∈ {0, 1}, and the terms E(1) and E(2) are first and second derivatives of the regression functions

with respect to X∗, as follows:

E
(i)
Yd|X(Yd|x) ≡ ∂i

∂xi∗
EYd|X(Yd|x), d ∈ {0, 1}, i ∈ {1, 2}.

The second term in (9) captures local attenuation effects of measurement error while the third term

captures the local smoothing induced by measurement error (Chesher, 1991). The strong ignorability

restriction pertaining to error free X has been exploited in producing this approximation, removing

dependence on D from the conditional expectation and its two derivatives on the right hand side of

(9). Outside the sort of special cases discussed in the previous section, the outcomes Y0 and Y1 are

locally dependent on D given error contaminated Z even though they are independent of D given error

free X, this dependence arising via the log density derivative gX|D.12

The marginal density function of X and its conditional density given D also appear in the iden-

tifying correspondences for the ATT and ATE set out in Section 2 and they always differ from their
12Along the lines of what discussed in the previous section, it thus follows that the conditioning on error ridden

variables also invalidates causal inference based on mean independence restrictions.
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counterparts involving Z. Define the following second partial derivatives of density functions:

f
(2)
X (x) ≡ ∂2

∂x2∗
fX(x),

f
(2)
X|D(x|d) ≡ ∂2

∂x2∗
fX|D(x|d), d ∈ {0, 1}.

There are the following approximations (see Chesher, 1991) which capture the general spreading effect

of measurement error, lowering (raising) the density functions where they are concave (convex):

fZ(z) ' fX(z) +
σ2

2
f

(2)
X (z),

fZ|D(z|d) ' fX|D(z|d) +
σ2

2
f

(2)
X|D(z|d), d ∈ {0, 1}.

It is clear that measurement error in conditioning variables perturbs the identifying correspon-

dences for the ATE and ATT which lie at the heart of matching and other procedures built on the

foundation of a strong ignorability restriction. In general analogue estimation using error contam-

inated Z instead of error free X will result in inconsistent estimation. The magnitude of, and the

influences on this inconsistency are studied in the next section using the approximations derived for

the regressions and for the density functions.

3.6 The effect on the identification of the causal parameters of interest

This section gives approximations to ΓZ − βe and ΛZ − βt. To this end we develop approximations to

the following objects:

∆0 ≡
∫

EY |DZ(Y |0, z)fZ(z)dz − EY0 [Y0],

∆1 ≡
∫

EY |DZ(Y |1, z)fZ(z)dz − EY1 [Y1],

∆0|1 ≡
∫

EY |DZ(Y |0, z)fZ|D(z|1)dz − EY0|D[Y0|1],

from which the desired results follow on noting that for the ATE: ΛZ − βe = ∆1 − ∆0 and for the

ATT: ΓZ −βt = −∆0|1. The approximations involve the first partial derivative of the propensity score

17



with respect to error contaminated X∗:

e
(1)
X (x) ≡ ∂

∂x∗
eX(x).

Proposition 1 and 2 give results for the ATE and ATT, respectively.

Proposition 1 (Effects on the ATE) If (i) there is the strong ignorability restriction IX and (ii)

for d ∈ {0, 1} the following conditions hold:

lim
z→±∞EYd|X(Yd|z)f (1)

X (z) = 0, lim
z→±∞E

(1)
Yd|X(Yd|z)fX(z) = 0, (10)

then:

∆0 ' −σ2

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

1− eX(z)
fX(z)dz,

∆1 ' σ2

∫
E

(1)
Y1|X(Y1|z)

e
(1)
X (z)
eX(z)

fX(z)dz,

so that:

ΛZ − βe ' σ2

∫ 
E

(1)
Y1|X(Y1|z)

eX(z)
+

E
(1)
Y0|X(Y0|z)

1− eX(z)


 e

(1)
X (z)fX(z)dz.

The proof of the proposition is reported in the Appendix. The approximations are obtained

by substituting in the expressions for ∆0 and ∆1 the approximations to the regression functions

EY |DZ(Y |0, z) and EY |DZ(Y |1, z) and the approximation to the density function fZ(z) given in Section

3.5, deleting terms of order o(σ2) and integrating with respect to z, exploiting the conditions (10) which

place restrictions on the large X behaviour of the regression functions and the tail behaviour of the

density of X.13

13These conditions will be satisfied if, for example, the regression function is a polynomial in Z and the tails of the
density function decrease at an exponential rate (see Chesher, 1991). The same conditions are exploited in Proposition
2.
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The measurement error inconsistency is larger the greater is the sensitivity of the propensity

score and the regression functions of Y0 and Y1 on X to changes in X∗, the variable susceptible to

measurement error, and of course the larger is the measurement error variance.

Proposition 2 (Effects on the ATT) If (i) there is the strong ignorability restriction IX and (ii)

the following condition holds:

lim
z→±∞E

(1)
Y0|X(Y0|z)fX|D(z|1) = 0,

then:

ΓZ − βt = −∆0|1 ' σ2

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

eX(z)[1− eX(z)]
fX|D(z|1)dz.

The proof, which proceeds along the same lines as the proof of Proposition 1, is reported in the

Appendix. It follows that the measurement error induced inconsistency of the ATT is larger the

greater is the sensitivity of the propensity score and the regression of Y0 on X to changes in X∗. Note

that here and before the sign of the bias depends on the particular application at hand. However, it

is worth noting that the following rule of thumb for the ATT can be derived that may turn out useful

for empirical applications. If the propensity score follows a logit model and the regression of Y0 on

X is approximatively linear in X∗, then the approximation in Proposition 2 simplifies to σ2γ∗δ∗ (see

the Appendix), where γ∗ is the coefficient of X∗ in the regression of Y0 on X and δ∗ is the coefficient

of X∗ in the propensity score. This result may be helpful in signing the bias on the ATT induced by

measurement error. Note also that an alternative expression for the approximation to the bias ΓZ−βt

is the following (see the Appendix):

σ2

P [D = 1]

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

1− eX(z)
fX(z)dz,
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which can be obtained by applying the Bayes’ theorem to fX|D(x|1), thus implying that the approxi-

mation to ΓZ − βt equals the approximation to ∆0 times − 1
P [D=1] (see Proposition 1).

3.7 Example (continued)

3.7.1 Exact expression for the bias induced by errors in covariates

Note that for the regression functions of Y on Z there is, for d ∈ {0, 1}:

EY |DZ(Y |d, z) =
∫

EY |DX(Y |d, x)fX|DZ(x|d, z)dx,

= αd + γdEX|DZ(X|d, z),

= αd + γdµd +
γdλ

2
d

λ2
d + σ2

(z − µd) ,

which exhibits the usual attenuation. We therefore have the following expressions for the exact bias

introduced by measurement error:

∆0 = −pγ0(µ1 − µ0)
σ2

λ2
0 + σ2

,

∆1 = (1− p)γ1(µ1 − µ0)
σ2

λ2
1 + σ2

,

∆0|1 = −γ0(µ1 − µ0)
σ2

λ2
0 + σ2

.

Note that all these expressions are zero when σ2 = 0, which is as it should be. The expression for

the bias induced by measurement error in Cochran and Rubin (1973, page 431) corresponds to the

difference between ∆1 and ∆0 imposing classical measurement error and parallel regressions of Y on

X for the population of the treated and the untreated.

3.7.2 Approximation to the bias using Propositions 1 and 2

We now derive an approximation to the bias in the example. This depends on functionals of the

unobserved variable X and we use results from the previous section. First, note that under the distri-

butional assumptions made in this example the regularity conditions in Proposition 1 and Proposition
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2 are met, implying that the approximations for ∆0, ∆1 and ∆0|1 can be re-arranged to get:14

∆i ' σ2

∫ [
E

(1)
Yi|D,X(Yi|i, z)gX|D(z|i) + E

(2)
Yi|D,X(Yi|i, z)

]
fX(z)dz,

for i ∈ {0, 1}, and:

∆0|1 ' σ2

∫ [
E

(1)
Y0|D,X(Y0|0, z)gX|D(z|0) + E

(2)
Y0|D,X(Y0|0, z)

]
fX|D(z|1)dz. (11)

Using this result and the linearity of the regression functions, it also follows that:

∆i ' σ2γi

∫
gX|D(z|i)fX(z)dz, i ∈ {0, 1}

∆0|1 ' σ2γ0

∫
gX|D(z|0)fX|D(z|1)dz.

These expressions can be used to study the accuracy of the approximation, that is the ratio between

either of the approximations to ∆0, ∆1 or ∆0|1 and the exact value of the bias that has been derived

for this example. Since by using the properties of the normal distribution we have:

gX|D(x|i) ≡
f

(1)
X|D(x|i)

fX|D(x|i) = −x− µi

λ2
i

, i ∈ {0, 1}

the approximations to the bias derived in Proposition 1 and Proposition 2 can be written as:

∆0 ' −pγ0(µ1 − µ0)
σ2

λ2
0

,

∆1 ' (1− p)γ1(µ1 − µ0)
σ2

λ2
1

,

∆0|1 ' −γ0(µ1 − µ0)
σ2

λ2
0

.

14The use of probit or logit specifications for the propensity score would require numerical integration for some of the
steps that follow. For this reason, in the remainder of this example we will use alternative expressions for the bias in
Proposition 1 and Proposition 2 that corresponds the approximations (16) and (17) in the Appendix.
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It is worth noting that the approximation error is of order O(σ4), as the symmetric distribution of U

causes O(σ3) terms to disappear (see Chesher, 1991). Moreover, we have that the terms:

−pγ0(µ1 − µ0)σ2

λ2
0

∆0
= 1 +

σ2

λ2
0

,

(1− p)γ1(µ1 − µ0)σ2

λ2
1

∆1
= 1 +

σ2

λ2
1

,

−γ0(µ1 − µ0)σ2

λ2
0

∆0|1
= 1 +

σ2

λ2
0

,

represent the accuracy of the approximations to ∆0, ∆1 and ∆0|1, respectively, which depends on the

noise-to-signal ratio.

4 Accounting for measurement error

In this section a method is proposed for obtaining estimates of the treatment effects which are purged

of the major part of the effect of the measurement error, reducing the order of bias to terms which are

o(σ2). Our strategy uses quantities constructed from non-parametric estimates of functionals of the

probability law (Y, D, Z), and thus exploits nothing but the error contaminated data without requiring

any functional assumptions on the regression of Y on D and X nor additional information (such as

instrumental variables or validation data).15 In Section 4.1 we show how the measurement error bias

can be reduced using the approach suggested by Chesher and Schluter (2002). The general idea is

then applied within the context of the running example in Section 4.2.

4.1 Measurement error bias correction

Since X can be replaced by Z in expressions multiplied by σ2 without altering the order of the

approximation error (see Chesher and Schluter, 2002), we can modify expressions in Proposition 1
15The most common solution to the bias introduced by the measurement error in linear regression models is to exploit

instrumental variables. However, it is well known that they do not yield consistent estimators of the parameters of
interest in non-linear models (see, for example, Hausman et al., 1998). As pointed out by Chesher (2000), when the
error free regression function of Y on X is linear in X, the method proposed here can be combined with conventional
instrumental variables methods.
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and Proposition 2 to get:

∆0 ' −σ2

∫
E

(1)
Y0|DZ(Y0|0, z)

e
(1)
Z (z)

1− eZ(z)
fZ(z)dz, (12)

∆1 ' σ2

∫
E

(1)
Y1|DZ(Y1|1, z)

e
(1)
Z (z)
eZ(z)

fZ(z)dz, (13)

where for i ∈ {0, 1} and j ∈ {1, 2}:

E
(j)
Yi|DZ(Yi|i, z) ≡ ∂

∂zj
∗
EYi|DZ(Yi|i, z),

e
(j)
Z (z) ≡ ∂

∂zj
∗
eZ(z),

and the approximation to ∆0|1 is obtained by multiplying the approximation to ∆0 by − 1
P [D=1] .

It follows that, for known values of the measurement error variance σ2, the quantities above are

identified from observed data neglecting terms which are o(σ2). This implies that approximately cor-

rected causal effects can be obtained by estimating the bias for the ATE (i.e. ∆1 −∆0) and the bias

for the ATT (i.e. −∆0|1) for σ2 passing through a range of plausible values. Note that these approxi-

mations require knowledge of the first derivative of the regressions EY1|DZ(Y0|0, z) and EY0|DZ(Y0|0, z)

as well as of the propensity score eZ(z). The quantities above are weighted averages (over the entire

population or over the population of the treated) of first derivatives of regression functions, where

weights are defined from the propensity score. The approximate impact of measurement error can be

estimated for any candidate value of the measurement error variance using only error contaminated

data, thus allowing investigation of the sensitivity of the causal parameter of interest to the presence

of measurement error.16

16As the propensity score is a conditional expectation for which the approximation discussed in Section 3.5 applies,
using the same approach as in Chesher and Schluter (2002) there is:

ẽZ(z) ≡ eZ(z)− σ2e
(1)
Z (z)gZ(z)− σ2

2
e
(2)
Z (z),

where:

f
(1)
Z (z) ≡ ∂

∂zi∗
fZ(z), gZ(z) ≡ ∂

∂z∗
lnfZ(z) =

f
(1)
Z (z)

fZ(z)
.
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When non-parametric estimation is feasible, one could estimate derivatives with respect to Z∗

of the regression of Y on Z for non-participants (D = 0) and for participants (D = 1) by local

polynomials (see Fan and Gijbels, 1996). Alternatively, one could specify a fairly flexible parametric

model for EY |DZ(Y |i, z), for i ∈ {0, 1}, from which the required derivatives are easily obtained. A

similar argument applies to the estimation of the propensity score, though having a parametric model

(e.g. a logit model) for the regression of D on Z can be rather convenient.

4.2 Example (continued)

The correction consists of two steps. First, the following approximations to the bias introduced by

measurement error are considered:

∆i ' σ2

∫ [
E

(1)
Yi|DZ(Yi|i, z)gZ|D(z|i) + E

(2)
Yi|DZ(Yi|i, z)

]
fZ(z)dz,

for i ∈ {0, 1}, and:

∆0|1 ' σ2

∫ [
E

(1)
Y0|DZ(Y0|0, z)gZ|D(z|0) + E

(2)
Y0|DZ(Y0|0, z)

]
fZ|D(z|1)dz, (14)

which are obtained by replacing X with Z in equations (16) and (17) in the Appendix. Second, the

terms on the right hand side of these expressions, which are identified from observable variables, are

subtracted from the expressions for EY0(Y0), EY1(Y1) and EY0|D(Y0|1) obtained from raw data. The

resulting expressions are still different from the quantities of interest, but such difference comes from

terms which are of order o(σ4).

Since for i ∈ {0, 1} we have:

E
(1)
Yi|DZ(Yi|i, z) =

γiλ
2
i

λ2
i + σ2

, E
(2)
Yi|DZ(Yi|0, z) = 0,

This result suggests that one could match treated to the untreated with respect to values of the pseudo propensity score
ẽZ(z) to reduce the order of measurement error bias. We did not pursue further this idea, as its proof would involve
stochastic expansions rather than moment expansions as those in Chesher (1991).
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gZ|D(z|i) ≡
f

(1)
Z|D(z|i)

fZ|D(z|i) = − z − µi

λ2
i + σ2

,

the approximation to the bias based on functionals of the observed variable Z results in the following

expressions:

∆0 ' −pγ0(µ1 − µ0)
σ2λ2

0

(λ2
0 + σ2)2

, ∆1 ' (1− p)γ1(µ1 − µ0)
σ2λ2

1

(λ2
1 + σ2)2

,

∆0|1 ' −γ0(µ1 − µ0)
σ2λ2

0

(λ2
0 + σ2)2

.

It follows that, after our correction procedure, the O(σ2) biases generated by measurement error –

whose exact expressions have been derived above – are replaced by O(σ4) biases as follows:

for EY0(Y0) : −pγ0(µ1 − µ0)
(

σ2

λ2
0 + σ2

)2

,

for EY0(Y0) : (1− p)γ1(µ1 − µ0)
(

σ2

λ2
1 + σ2

)2

,

for EY0|D(Y0|1): − γ0(µ1 − µ0)
(

σ2

λ2
0 + σ2

)2

.

5 Exact calculations

This section reports exact calculations designed to investigate the accuracy of the approximations

proposed. We have already studied the exact values of the bias and of the approximation to such bias

in the fully Gaussian case by deriving their analytical expressions within the context of the leading

example that we considered throughout the paper. These expressions depend on features of the joint

distribution of the covariates X and of the measurement error U , as well as on assumptions on the

conditional expectation of Y given D and X, and cannot be solved analytically in general. In what

follows we present results from numerical calculations obtained for the simple setup maintained in

the leading example allowing for departures from normality for both the distribution of X and the

distribution of U . The general setup is described in Section 5.1 and the results of the exercise are

reported in Section 5.2.
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5.1 Set up

To ease calculations parallel regressions of Y of X as in Cochran and Rubin (1973) are considered,

that is we set:

EY1|DX(Y1|1, x) = α1 + γx,

EY0|DX(Y0|0, x) = α0 + γx,

for the treated and for the untreated, respectively, with γ = 1. Under this specification the average

outcome difference between the treated and the untreated does not change with X, so that the ATE

and the ATT coincide and are equal to α1 − α0. Exact and approximate biases are invariant with

respect to α1 − α0.

We obtain the exact value of the bias for the ATT:17

ΓZ − βt = µ1 −
∫ ∫

xfX|DZ(x|0, z)fZ|D(z|1)dxdz, (15)

µ1 being the mean of X for the treated. To this end, we use the exponential power (EP) family of

distributions (see Box and Tiao, 1973) to model the distribution of X given D and the distribution

of U , from which the density functions fX|DZ(x|0, z) and fZ|D(z|1) in (15) can be obtained. The EP

family is a three parameter family of symmetric distributions. Its density function will be denoted by

EP (µ, λ, ζ). It has mean µ, variance λ2 and ζ ∈ (−1, 1) is a shape parameter. Setting ζ = +1 yields

a Laplace (double exponential), high tailed density. Setting ζ = 0 yields a normal density. Setting

ζ = −1 there is a uniform density on (µ−√3λ, µ +
√

3λ).18

We assume that X|D = d and U are distributed according to an EP (µd, λd, ζx) distribution and
17The same numerical results are obtained using the expressions for the ATT and the ATE which have the same value

in this example.
18Let A ∈ (−∞,∞) have an exponential power distribution with parameters (µ, λ, ζ), ζ ∈ (−1, 1). Then the density

function of A is as follows:

fA(a) ≡ G exp

(
−H

∣∣∣a− µ

λ

∣∣∣
2

1+ζ

)
,
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an EP (0, 1, ζu) distribution, respectively, and we set µ0 = 0 and λ2
1 = λ2

0 = 1. The analytic expression

for (15) in the ζx = ζu = 0 (everything normal) case have been already discussed in the example

described above. In all remaining cases numerical integration is required, and accuracy of numerical

computations can be checked against the exact result obtained for the ζx = ζu = 0 case.

The (infeasible) approximation to (15) based on the result in Proposition 2 is obtained using (11),

so that there is:19

ΓZ − βt ' σ2

∫
gX|D(x|0)fX|D(x|1)dx.

Similarly, we use (14) to compute the value of the approximation to (15) from raw data.

5.2 Results

Results are reported in Table 1 by row for different values of the parameter µ1 (µ1 = 1, 2, 3), and by

column for increasing values of the measurement error variance, expressed in the table as percentages

(10%, 20% and 30%) relative to the variance of error free X.20 The calculations are reported for

different combinations of the shape parameters (ζx, ζu) and, since there are analytic results for the

fully Gaussian case, we checked that numerical computations can reproduce those results for the

ζx = ζu = 0 case. Since all the exact and approximate biases in the cases considered are negative

we report their absolute values to improve the readability of the table. For the example considered,

where:

G ≡ 1

λ
× Γ(3(1 + ζ)/2)1/2

(1 + ζ)Γ((1 + ζ)/2)3/2
,

H ≡
(

Γ(3(1 + ζ)/2)

Γ((1 + ζ)/2)

) 1
1+ζ

.

19The following expression involves a straightforward one dimensional numerical integration after noting that, if A has
an EP (µ, λ, ζ) distribution, the first derivative of its log density is:

−sign(a− µ)
2

λ(1 + ζ)
H

∣∣∣a− µ

λ

∣∣∣
1−ζ
1+ζ

.

All calculations were done using Mathematica 7.0, Wolfram Research Inc., (2008). More details on the computational
aspects of our exercise, on the accuracy of the computations as well as the Mathematica programmes that we used are
available upon request.

20For example since V ar(X|D = d) = 1 in the example for d ∈ {0, 1} in the columns headed 10% the measurement
error variance is 0.1.
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measurement error results in under -estimation of the ATT and ATE.

The measurement error bias can be substantial. For larger values of the measurement error vari-

ance the bias on the ATT increases but not quite as fast as linearly and this pattern is robust to

characteristics of distributions X and U . The feasible approximation is generally closer in absolute

terms to the exact value of the bias than the infeasible approximation even for large values of the

measurement error variance. However, in many cases the former approximation slightly understates

and the latter approximation slightly overstates the magnitude of the bias. As expected, the accuracy

of both approximations tends to worsen as the measurement error variance increases. In most cases

both approximations are quite accurate. The only really poor cases are in the top block of the table

in which the error free covariate X has a relatively high tailed distribution (ζx = −0.5).

6 Empirical application

In this section we present an application of the measurement error correction procedure to the es-

timation of the returns to educational qualifications in the UK using data from the National Child

Development Survey (NCDS) and building on previous work by Blundell et al. (2005). As causal ef-

fects are defined as the difference between the outcome following from the realisation of a certain state

of the world and the counterfactual outcome that would have resulted had the state been different,

the assessment of differences in earnings arising from alternative educational choices fits well in the

causal framework.

We will maintain the assumption that the information available from the NCDS is enough to

correct for ability and omitted variables bias (see the discussion in Blundell et al., 2005). This consists

of individuals’ gender, age and ethnicity, family background, mother’s and father’s age and education,

father’s social class, mother’s employment status and number of siblings at age 16. Most importantly,
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Table 1: Exact calculations for the example considered

error variance σ2 error variance σ2 error variance σ2

10% 20% 30% 10% 20% 30% 10% 20% 30%
µ1 ζx = −0.5, ζu = −0.5 ζx = −0.5, ζu = 0 ζx = −0.5, ζu = +0.5

exact value of the bias 1 0.118 0.194 0.254 0.126 0.206 0.268 0.136 0.218 0.279
approximation using (Y, D, X) 1 0.183 0.366 0.548 0.183 0.366 0.548 0.183 0.366 0.548
approximation using (Y, D, Z) 1 0.107 0.164 0.202 0.095 0.138 0.167 0.084 0.123 0.150

exact value of the bias 2 0.280 0.434 0.549 0.344 0.515 0.636 0.418 0.591 0.708
approximation using (Y, D, X) 2 0.640 1.280 1.919 0.640 1.280 1.919 0.640 1.280 1.919
approximation using (Y, D, Z) 2 0.325 0.468 0.553 0.216 0.280 0.317 0.140 0.186 0.220

exact value of the bias 3 0.483 0.715 0.882 0.693 0.967 1.142 0.922 1.181 1.341
approximation using (Y, D, X) 3 1.645 3.290 4.935 1.645 3.290 4.935 1.645 3.290 4.935
approximation using (Y, D, Z) 3 0.783 1.088 1.245 0.365 0.420 0.446 0.155 0.186 0.210

µ1 ζx = 0, ζu = −0.5 ζx = 0, ζu = 0 ζx = 0, ζu = +0.5
exact value of the bias 1 0.090 0.164 0.226 0.091 0.167 0.231 0.092 0.170 0.236
approximation using (Y, D, X) 1 0.100 0.200 0.300 0.100 0.200 0.300 0.100 0.200 0.300
approximation using (Y, D, Z) 1 0.083 0.141 0.182 0.083 0.139 0.178 0.082 0.137 0.173

exact value of the bias 2 0.175 0.314 0.429 0.182 0.333 0.462 0.193 0.363 0.507
approximation using (Y, D, X) 2 0.200 0.400 0.600 0.200 0.400 0.600 0.200 0.400 0.600
approximation using (Y, D, Z) 2 0.168 0.291 0.384 0.165 0.278 0.355 0.161 0.259 0.317

exact value of the bias 3 0.251 0.441 0.597 0.273 0.500 0.692 0.311 0.601 0.842
approximation using (Y, D, X) 3 0.300 0.600 0.900 0.300 0.600 0.900 0.300 0.600 0.900
approximation using (Y, D, Z) 3 0.256 0.453 0.614 0.248 0.417 0.533 0.234 0.353 0.410

µ1 ζx = +0.5, ζu = −0.5 ζx = +0.5, ζu = 0 ζx = +0.5, ζu = +0.5
exact value of the bias 1 0.090 0.164 0.226 0.090 0.165 0.228 0.090 0.166 0.230
approximation using (Y, D, X) 1 0.099 0.197 0.295 0.099 0.197 0.295 0.099 0.197 0.295
approximation using (Y, D, Z) 1 0.082 0.138 0.295 0.082 0.137 0.176 0.082 0.137 0.175

exact value of the bias 2 0.142 0.265 0.375 0.144 0.275 0.392 0.148 0.288 0.416
approximation using (Y, D, X) 2 0.150 0.300 0.450 0.150 0.300 0.450 0.150 0.300 0.450
approximation using (Y, D, Z) 2 0.138 0.252 0.345 0.082 0.248 0.334 0.136 0.243 0.320

exact value of the bias 3 0.179 0.320 0.456 0.180 0.339 0.494 0.183 0.371 0.556
approximation using (Y, D, X) 3 0.179 0.358 0.537 0.179 0.358 0.537 0.179 0.358 0.537
approximation using (Y, D, Z) 3 0.170 0.324 0.463 0.170 0.320 0.449 0.169 0.312 0.424

Note. All values, excluding those for the ζx = ζu = 0 case, are obtained via numerical integration. The exact calculations

for the ζx = ζu = 0 case are derived in Section 3.7 and Section 4.2. The exact value of the bias is obtained from (15), the

infeasible approximation to the bias using (Y, D, X) is obtained from (11), and the feasible approximation to the bias

using (Y, D, Z) is obtained from (14).
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information is available on the types of schools attended by individuals as well as on scores at math

and reading ability tests taken at age 7 and age 11.

The information used here comes from a sample of 2, 682 working males at age 33 for whom

non-missing information on educational qualifications and test scores is available. Four incremental

categories of education are considered: no qualifications, O Level qualifications, A Level qualifications

and Higher education.21 We focus on the estimation of the ATTs relative to these categories, which

represent the average payoff to individuals’ own educational choices. Specifically, we consider the

estimation of three ATT parameters, defined by having O Level qualifications vis-à-vis having no

qualification, having A Level qualifications vis-à-vis having O Level qualifications and moving to

Higher education vis-à-vis stopping at A Level qualifications.

The set of regressors X controlled for in the analysis has been chosen to match closely the specifi-

cation in Blundell et al. (2005), though we consider raw scores at verbal and math tests taken at age

7 and age 11 instead of quartiles of these scores (as in their application). This allows us to define a

continuous measure of ability for individuals in the sample by combining results across all tests. First,

verbal and math scores at both ages have been standardized so that they take values on the same scale

(between 0 and 10). Second, the average verbal and average math scores have been computed from

the two tests taken at age 7 and age 11. Finally, the logged sum of the two mean scores is considered.

The resulting distribution of the ability score is reported in the first panel of Figure 1, while sample

size by educational groups is in Table 2.22 We investigate the sensitivity of point estimates of returns

to measurement error in the above defined indicator of ability.

The top panel of Table 2 presents estimation results from raw data (i.e. not accounting for mea-
21A detailed description of NCDS data, the variables being used in our application and more details about the

educational categories considered can be found in Blundell et al. (2005).
22A negligible fraction of individuals in each group have been dropped from the analysis to ensure common support

with respect to individuals in the adjacent educational category (see the graphical evidence reported in Figure 1).
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Table 2: Incremental returns to O Levels, A Levels and Higher Education and the effect of measurement
error in the ability score

O Level A Level HE
Raw Estimates

ATT Std.Err. ATT Std.Err. ATT Std.Err.
OLS 0.1567 0.0277 0.0781 0.0199 0.1951 0.0239
Matching 0.1732 0.0288 0.0809 0.0198 0.2002 0.0257
Weighting 0.1763 0.0286 0.0829 0.0203 0.1925 0.0280
Stratification 0.1846 0.0264 0.0827 0.0212 0.1984 0.0264

Approximation to measurement error bias
Extent of error Bias Std.Err. Bias Std.Err. Bias Std.Err.
10% 0.0037 0.0015 0.0015 0.0005 0.0057 0.0011
20% 0.0073 0.0030 0.0030 0.0010 0.0114 0.0022
30% 0.0110 0.0045 0.0045 0.0015 0.0171 0.0033

Treated on support 96.45% 99.32% 99.09%
Sample Size 732 737 768
Sample size for the ‘No qualifications’ group: 445

Note. Educational categories are defined in Section 6. The extent of measurement error is defined as the noise-to-signal

ratio. The measurement error correction is obtained by considering the empirical analogue of the quantity in Proposition

2. Bootstrap standard errors based on 500 replications reported throughout.
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Figure 1: Distribution of the raw ability score and common support issues for the educational categories
considered
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surement error) for the incremental returns “O Level vs None”, “A Level vs O Level” and “Higher

Education vs A Level”. Four estimation methods are considered. First, results from an OLS regres-

sion of wages on X and a dummy for the educational qualification of interest fully interacted with X

are considered (OLS ). Second, we report results from matching individuals on the propensity score

predicted from a logit specification (Matching); the distance between individuals in adjacent educa-

tional categories has been defined using a normal kernel function. Third, results from a weighting

procedure based on the estimated score are considered (Weighting). Finally, estimation based on

stratification on the estimated score is considered (Stratification). Bootstrap standard errors based

on 500 replications are reported throughout. Results appear to be rather robust with respect to the

estimation method considered and in line with those in Blundell et al. (2005).

We then allow for classical measurement error in the raw indicator of ability and implement the

correction procedures described in Section 4. The impact of measurement error is investigated by

means of a sensitivity analysis with respect to three values of the measurement error variance σ2,

corresponding to 10, 20 and 30 percent of the variance of the raw ability indicator. In bottom panel

of Table 2 we report an approximation to the bias estimated from the following quantity:

σ2 1
n1

n∑

i=1

diê
(1)
Z (zi)

êZ(zi)[1− êZ(zi)]
Ê

(1)
Y0|D,Z(Y0|0, zi),

that is by considering the analogue estimator of the expression derived in Proposition 2 when X is

replaced by Z. In particular, we assumed a logit specification for eZ(z) and that the relationship

between the outcome Y and the regressors Z for the group D = 0 is linear.23 It turns out that the

bias is always positive and small - about one percentage point in value - and statistically different

from zero in all cases.
23The group D = 0 comprises individuals with no qualification, O levels and A levels depending on the ATT parameter

being estimated. Results from alternative specifications of the regression function and of eZ(z) can be derived along the
same lines, but are not reported here as they proved qualitatively similar to those in Table 2.

32



7 Conclusions

There has been much theoretical and applied work focussed on the evaluation problem, that is on the

measurement of the causal impact of a generic ‘treatment’ on outcomes of interest. This paper has

proposed a method for bias reduction in estimation of treatment effects built on the assumption of

ignorable assignment given a set of covariates when they may be affected by measurement error.

The method can be used to explore the sensitivity of results to the presence of measurement error

after having estimated the returns to ‘treatment’ employing propensity score matching, stratification

matching and conditional differences in differences estimators. The procedure exploits nothing but

the error contaminated covariate data, and can be easily implemented using available software.

We show that measurement error in general invalidates restrictions that would be identifying were

data error-free. This results in biased estimates of the causal parameters of interest such as the average

treatment effect or the average treatment effect on the treated. As empirical applications typically

make use of estimators that are defined from non-linear functionals of raw data (e.g. propensity score

matching), this bias is difficult to sign. Our results provide a first order approximation to this bias

for small values of the measurement error variance, and the evidence we provide indicates that the

approximation is still valid when measurement error explains 30% of the variance of the error-ridden

covariate.
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Appendix

Proof of Proposition 1

Using the approximations in Section 3.5 and neglecting terms which are o(σ2) we have the following

expression for i ∈ {0, 1}:

∆i ' σ2

2

∫
EYi|X(Yi|z)f (2)

X (z)dz + σ2

∫
E

(1)
Yi|X(Yi|z)gX|D(z|i)fX(z)dz

+
σ2

2

∫
E

(2)
Yi|X(Yi|z)fX(z)dz.

Use the assumptions:

lim
z→±∞EYi|X(Yi|z)f (1)

X (z) = 0,

lim
z→±∞E

(1)
Yi|X(Yi|z)fX(z) = 0,

and integrate by parts to get:

∫
EYi|X(Yi|z)f (2)

X (z)dz = −
∫

E
(1)
Yi|X(Yi|z)f (1)

X (z)dz =
∫

E
(2)
Yi|X(Yi|z)fX(z)dz,

so that for i ∈ {0, 1}:

∆i ' σ2

∫
E

(1)
Yi|X(Yi|z)gX|D(z|i)fX(z)dz + σ2

∫
E

(2)
Yi|X(Yi|z)fX(z)dz. (16)

Since by the Bayes’ theorem one can write:

gX|D(x|d) ≡ ∂

∂x∗
lnfX|D(x|d) =

∂

∂x∗
lnfD|X(i|x) +

∂

∂x∗
lnfX(x),

it also follows that:

∆i ' σ2

∫
E

(1)
Yi|X(Yi|z)

∂

∂x∗
lnfD|X(i|z)fX(z)dz + σ2

∫
E

(1)
Yi|X(Yi|z)f (1)

X (z)dz

+ σ2

∫
E

(2)
Yi|X(Yi|z)fX(z)dz.
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Integrating by parts again we have:

∆i ' σ2

∫
E

(1)
Yi|X(Yi|z)

∂

∂x∗
lnfD|X(i|z)fX(z)dz.

It therefore follows that the following expressions for ∆0 and ∆1 hold:

∆0 ' −σ2

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

1− eX(z)
fX(z)dz,

= σ2

∫
E

(1)
Y0|X(Y0|z)gX|D(z|0)fX(z)dz + σ2

∫
E

(2)
Y0|X(Y0|z)fX(z)dz,

∆1 ' σ2

∫
E

(1)
Y1|X(Y1|z)

e
(1)
X (z)
eX(z)

fX(z)dz,

= σ2

∫
E

(1)
Y1|X(Y1|z)gX|D(z|1)fX(z)dz + σ2

∫
E

(2)
Y1|X(Y1|z)fX(z)dz,

from which the expression for ΛZ − βe is obtained.

Proof of Proposition 2

Use the same argument as in Proposition 1 to get:

∆0|1 ' σ2

∫
E

(1)
Y0|X(Y0|z)gX|D(z|0)fX|D(z|1)dz + σ2

∫
E

(2)
Y0|X(Y0|z)fX|D(z|1)dz. (17)

Use the assumption:

lim
z→±∞E

(1)
Y0|X(Y0|z)fX|D(z|1) = 0,

and integrate by parts to write:

∫
E

(2)
Y0|X(Y0|z)fX|D(z|1)dz = −

∫
E

(1)
Y0|X(Y0|z)gX|D(z|1)fX|D(z|1)dz.

As by using the Bayes’ theorem we have:

gX|D(z|1)− gX|D(z|0) =
∂

∂x∗
ln

fX|D(z|1)
fX|D(z|0)

,

=
∂

∂x∗
ln

eX(z)
1− eX(z)

,
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we can write:

∆0|1 ' −σ2

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

eX(z)[1− eX(z)]
fX|D(z|1)dz,

= σ2

∫
E

(1)
Y0|X(Y0|z)gX|D(z|0)fX|D(z|1)dz + σ2

∫
E

(2)
Y0|X(Y0|z)fX|D(z|1)dz,

from which the expression for ΓZ − βt is obtained.

Show that Λ1
Z = Λ2

Z = Λ3
Z and Γ1

Z = Γ2
Z = Γ3

Z

Start from the following definitions:

Λ1
Z ≡

∫ (
EY |DZ(Y |1, z)−EY |DZ(Y |0, z)

)
fZ(z)dz,

Γ1
Z ≡

∫ (
EY |DZ(Y |1, z)−EY |DZ(Y |0, z)

)
fZ|D(z|1)dz,

and use:

EY D|Z(Y D|z) = EY |DZ(Y |1, z)eZ(z),

EY D|Z(Y (1−D)|z) = EY |DZ(Y |0, z) [1− eZ(z)] ,

to write:

Λ1
Z = Λ2

Z =
∫ (

EY D|Z(Y D|z)
eZ(z)

− EY D|Z(Y (1−D) |z)
1− eZ(z)

)
fZ(z)dz,

Γ1
Z = Γ2

Z =
∫ (

EY D|Z(Y D|z)
P (D = 1)

− EY D|Z(Y (1−D) |z)
1− eZ(z)

eZ(z)
P (D = 1)

)
fZ(z)dz.
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Finally, use the balancing property of the propensity score eZ(z) (Rosenbaum and Rubin, 1983) as

well as the fact that z is finer than eZ(z) to write:

Λ3
Z ≡

∫ (
EY |DeZ

(Y |1, η)− EY |DeZ
(Y |0, η)

)
feZ (η)dη,

=
∫ (∫

EY |DZeZ
(Y |1, z, η)− EY |DZeZ

(Y |0, z, η)fZ|eZ
(z|η)dz

)
feZ (η)dη,

=
∫ (∫

EY |DZ(Y |1, z)−EY |DZ(Y |0, z)fZ|eZ
(z|η)dz

)
feZ (η)dη,

=
∫

EY |DZ(Y |1, z)− EY |DZ(Y |0, z)
(∫

fZeZ
(z, η)dη

)
dz,

=
∫

EY |DZ(Y |1, z)− EY |DZ(Y |0, z)fZ(z)dz,

= Λ1
Z .

A similar argument applies to Γ3
Z .

Proof of results in the discussion after Proposition 2

If the true propensity score eX(x) is a logit:

eX(x) =
eδx

1 + eδx
,

there is:

e
(1)
X (x) = δ∗eX(x)[1− eX(x)],

and thus:

e
(1)
X (z)

eX(z)[1− eX(z)]
= δ∗.

Note also that the expression for the bias can be rearranged to get:

ΓZ − βt ' σ2

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

eX(z)[1− eX(z)]
fX|D(z|1)dz,

= σ2

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

eX(z)[1− eX(z)]
eX(z)fX(z)
P [D = 1]

dz,

=
σ2

P [D = 1]

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

1− eX(z)
fX(z)dz,
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and:

− ∆0

P [D = 1]
' σ2

P [D = 1]

∫
E

(1)
Y0|X(Y0|z)

e
(1)
X (z)

1− eX(z)
fX(z)dz,

the last expression following from Proposition 1.
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