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A V1 model of pop out and asymmetry invisual searhZhaoping LiUniversity College London, z.li�ul.a.ukAbstratVisual searh is the task of �nding a target in an image against abakground of distrators. Unique features of targets enable themto pop out against the bakground, while targets de�ned by laks offeatures or onjuntions of features are more diÆult to spot. It isknown that the ease of target detetion an hange when the rolesof �gure and ground are swithed. The mehanisms underlyingthe ease of pop out and asymmetry in visual searh have beenelusive. This paper shows that a model of segmentation in V1 basedon intraortial interations an explain many of the qualitativeaspets of visual searh.1 IntrodutionVisual searh is losely related to visual segmentation, and therefore an be used todiagnose the mehanisms of visual segmentation. For instane, a red dot an pop-out against a bakground of green distrator dots instantaneously, suggesting thatonly pre-attentive mehanisms are neessary (Treisman et al, 1990). On the otherhand, it is muh more diÆult to searh for a red `X' among green `X's and red`O's { the time it takes to detet the target's presene inreases with the number ofbakground distrators, suggesting some form of attentive serial searh. Sometimes,the searh times hange when the role of the �gure (target) and ground (distrators)are swithed | asymmetry in visual searh. For instane, it is easier to �nd a longerbar in a bakground of shorter bars than vie-versa.It has been unlear whih visual areas or neural mehanisms are responsible forthe pop out and asymmetry in visual searh. There are, however, psyhophysi-al theories (Treisman et al 1990, Treisman and Gormian 1988) whih argue thatvisual inputs are oded in a number of primitive or basi feature dimensions: ori-entation, olor, brightness, motion diretion, disparity, line ends, line intersetions,and losure. A target an pop-out preattentively if it has a feature in one of thesedimensions, suh as a partiular olor or orientation, whih is absent in the distra-
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tors. Hene, a red dot pops out among green ones. However, red `X' is diÆultto spot among green `X's and red `O's beause neither being red nor being `X' isunique for the target, and therefore serial searh is required. While a vertial linepops out of horizontal ones and vie versa without any searh asymmetry, searhasymmetry will arise when a single feature in whih target and distrators di�er ispresent in one of the two and absent or redued in the other. Hene, a long line ismore easily spotted among short lines than the reserve. This theory has been veryhelpful in understanding searh phenomena. However, it has to make assumptionsabout what are the primitive feature dimensions, as well as what onstitutes largeror smaller values along a given dimension. For instane, to explain that a urvedline is more easily spotted among straight lines than the reverse, the theory hasto de�ne straightness as the default or standard, and urvaiousness as the devi-ation from this standard and thus an added feature. Empirially, other pairs ofstandard and deviant properties inlude vertial versus tilted, parallel versus on-vergent, short vs long lines, irle vs ellipse, and omplete versus inomplete irles.The basis behind these assumptions are not ompletely lear. Other related theorieshave similar problems. For instane, Julesz's texton theory (Julesz 1981) for visualsegmentation or pop out starts o� by assuming a omplete set of speial featuresthat onstitute textons.This paper proposes and demonstrates in a model that pre-attentive mehanismsin V1 an qualitatively explain many of the phenomena of visual searh. It isassumed that the ease of searh is determined by the relative salienies of the targetand distrators. Intraortial interations in V1 alter the salienies of targets anddistrators aording to their own image features as well as those of the distratoror targets images that form the ontext. Hene, the relative salieny depends onthe partiular target-distrator pair involved. In partiular, asymmetry is a naturalonsequene of ontextual inuenes.2 The V1 modelWe use a V1 model of pre-attentive visual segmentation whih has been shown tobe able to detet and highlight smooth ontours in noisy bakgrounds and �ndboundaries between texture regions in images (Li 1998a, 1998b). Its behavioragrees with physiologial observations (Knierim and van Essen 1992, Kapadia etal 1995). Without loss of generality, the model ignores olor, motion, and stereodimensions, inludes mainly layer 2-3 orientation seletive ells, and ignores theintra-hyperolumnar mehanism by whih their reeptive �elds are formed. Inputsto the model are images �ltered by the edge- or bar-like loal reeptive �elds (RFs)of V1 ells.1 The ells inuene eah other ontextually via horizontal intra-ortialonnetions (Rokland and Lund 1983, Gilbert, 1992), transforming patterns of in-puts to patterns of ell responses. Fig. 1 shows the elements of the model and theirinterations. At eah loation i there is a model V1 hyperolumn omposed of Kneuron pairs. Eah pair (i; �) has RF enter i and preferred orientation � = k�=Kfor k = 1; 2; :::K, and is alled (the neural representation of) an edge segment.Based on experimental data (White, 1989, Douglas and Martin 1990), eah edgesegment onsists of an exitatory and an inhibitory neuron that are interonneted,and eah model ell represents a olletion of loal ells of similar types. The exi-tatory ell reeives the visual input; its output is used as a measure of the responseor saliene of the edge segment and projets to higher visual areas. The inhibitoryells are treated as interneurons. Based on observations by Gilbert, Lund and theirolleagues (Rokland and Lund, 1983, Gilbert 1992) horizontal onnetions Ji�;j�01The terms `edge' and `bar' will be used interhangeably.
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receptive fields, to the excitatory cells.Figure 1: A: Visual inputs are sampled in a disrete grid of edge/bar detetors.Eah grid point i has K neuron pairs (see C), one per bar segment, tuned todi�erent orientations � spanning 180o. Two segments at di�erent grid points aninterat with eah other via monosynapti exitation J (the solid arrow from onethik bar to anothe r) or disynapti inhibition W (the dashed arrow to a thikdashed bar). See also C. B: A shemati of the neural onnetion pattern from theenter (thik solid) bar to neighboring bars within a few sampling unit distanes.J 's ontats are shown by thin solid bars. W 's are shown by thin dashed bars. Theonnetion pattern is translation and rotation invariant. C: An input bar segmentis diretly proessed by an interonneted pair of exitatory and inhibitory ells,eah ell models abstratly a loal group of ells of the same type. The exitatoryell reeives visual input and sends output gx(xi�) to higher enters. The inhibitoryell is an interneuron. Visual spae is taken as having periodi boundary onditions.(respetively Wi�;j�0) mediate ontextual inuenes via monosynapti exitation(respetively disynapti inhibition) from j�0 to i� whih have nearby but di�erentRF enters, i 6= j, and similar orientation preferenes, � � �0. The membranepotentials follow the equations:_xi� = ��xxi� �X��  (��)gy(yi;�+��) + Jogx(xi�) + Xj 6=i;�0 Ji�;j�0gx(xj�0) + Ii� + Io_yi� = ��yyi� + gx(xi�) + Xj 6=i;�0 Wi�;j�0gx(xj�0) + Iwhere �xxi� and �yyi� model the deay to resting potential, gx(x) and gy(y) aresigmoid-like funtions modeling ells' �ring rates in response to membrane poten-tials x and y, respetively,  (��) is the spread of inhibition within a hyperolumn,Jogx(xi�) is self exitation, I and Io are bakground inputs, inluding noise andinputs modeling the general and loal normalization of ativities (see Li (1998b)for more details). Visual input Ii� persists after onset, and initializes the ativitylevels gx(xi�). The ativities are then modi�ed by the ontextual inuenes. De-pending on the visual input, the system often settles into an osillatory state (Gray



and Singer, 1989, see the details in Li 1998b). Temporal averages of gx(xi�) overseveral osillation yles are used as the model's output. The nature of the ompu-tation performed by the model is determined largely by the horizontal onnetionsJ and W , whih are loal (spanning only a few hyperolumns), and translation androtation invariant (Fig. 1B).A: Pop outInput (Îi�)
Output

(r; z) = (2:5; 3:3)

B: No pop outInput (Îi�)
Output

(r; z) = (0:38;�0:9)

C: Cross among barsInput (Îi�)
Output

(r; z) = (2:4; 7:1)

D: Bar among rossesInput (Îi�)
Output
(r; z) = (1:5; 0:8)Figure 2: Visual searh examples plotted by the model inputs and outputs. A: A singledistintive feature, the horizontal bar in the target, enables pop out. This target is themost salient (measured as the salieny of the horizontal bar in target) spot in the image.B: The target does not pop out sine neither of its features, a horizontal and a 45o bars,is unique in the image. The target is less salient than average in the image. C and Ddemonstrate the asymmetry in a target-distrator pair. C: The ross is the most salient(measured by the salieny of the horizontal bar) spot in the image. The popout strengthis stronger than in A. D: The target bar does not pop out,The model was applied to a variety of input patterns, as shown in examples in the�gures. The input values Îi� are the same for all visible bars in eah example. Thedi�erenes in the outputs are aused by intraortial interations. They beomesigni�ant about one membrane time onstant after the initial neural response (Li,1998b). The widths of the bars in the �gures are proportional to input and outputstrengths. The plotted region in eah piture is often a small region of an extendedimage. The same model parameters (e.g. the dependene of the synapti weightson distanes and orientations, the thresholds and gains in the funtions gx() andgy(), and the level of input noise in Io) are used for all the simulation examples.We de�ne the net salieny Si at eah grid point i as that of the most ativated bar.De�ne �S and �s be the mean and standard deviation of the salienies of all gridpoints with visible stimuli. Let ri � Si= �S and zi � (Si � �S)=�s. A highly salientpoint i should have large values of (ri; zi) { in partiular, both ri and zi should belarger than 1. For larger targets that oupy more than one grid point, the relativesalieny measure of the target is that of the most salient grid point on the target.Fig. (2)A,B ompare the state of the target ` ' in two di�erent ontexts. Against atexture of ` ' it is highly salient beause of its unique horizontal bar. Against ` ' and` ' it is muh less salient beause only the onjuntion of ` ' and ` ' distinguishesit. Fig. (2)C,D exhibit searh asymmetry. The horizontal bar in the target is uniquein the image of Fig. (2)A,C, whih leads to pop out, and eah target sits at the mostsalient loation in the respetive images. On the other hand, no feature in the targetsof Fig. (2)B,D is unique. These examples are onsistent with the psyhophysial
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Figure 3: Five typial examples, one olumn eah, of visual searh asymmetry as sim-ulated in the model. The input stimuli are plotted, the target salieny r; z sores areindiated below eah of them. All input bars are of the same intermediate input ontrast.The role of �gure and ground is swithed from the top to the bottom rows.theories mentioned in introdution. Further, we note that beause intraortialinterations link mostly neurons preferring similar orientations, two very di�erentorientations an be viewed as independent features. The pop out is stronger in Fig.(2)C than Fig. (2)A sine horizontal di�ers more from vertial (90o) than from 45o.The V1 orientation seletive RFs and orientation spei� horizontal onnnetionsprovide the neural basis for orientation as one of the primitive feature dimensions.In fat, the ontextual inuenes between image features imply that salieny valuesdepend on detailed geometrial relationships between features within and between atarget or distrator and its nearby target or distrators (see Fig. (2)B). The relativeease in searhes varies ontinuously from extreme pop out to slow serial searhesdepending on the spei� stimuli, as suggested by Dunan and Humphreys (1989).Further interesting examples of searh asymmetry inlude ases for whih neithertarget nor distrators have a primitive feature (suh as olor or orientation) thatis absent in the other. Asymmetry is muh weaker but still present. Figure 3shows some typial examples. Although the salienies of the more salient targetsare only frationally higher than the average feature salieny in rest of the image,this fration is signi�ant when the standard deviation �s of the salienies is smallor when z is large enough, thus making the searh task easier.3 Summary and DisussionEarly psyhophysial studies (Treisman et al 1990) suggested that most aspets ofvisual searh involve mehanisms of early vision. However, it has never been learwhih visual areas or neural mehanisms might be responsible. To the best of myknowledge, this model is the �rst non-phenomenologial model to understand the
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Figure 4: Four examples of model performane under various inputs. Eah plots the visualinput image at the top and the most ativated bars in V1 ell outputs (using a threshold)at the bottom. Every visible bar in a given input image has the same input strength. A, B,and C demonstrate that the texture region boundaries have the highest output salienies.D shows that the smooth ontours are deteted as the most salient against a bakgroundof noise.neural bases of visual searh phenomena (see Rubenstein and Sagi (1990) for amodel of asymmetry using varianes of the loal image �lter responses). This pa-per has shown that intra-ortial interations in V1 an aount for the qualitativephenomena of pop-out and asymmetry in visual searh, assuming that the ease ofdetetion is diretly determined by the salienies of targets. Of ourse, the taskof searh requires deision making and often visual attention, espeially when thetarget does not spontaneously pop-out. The quantitative searh times an only bemodeled on the basis of an assumption of spei� mehanisms for attention and de-ision making. Our model suggests, nevertheless, that pre-attentive V1 mehanismsplay a signi�ant and ontrolling role in suh tasks. Furthermore, it suggests thatsome otherwise intratable phenomena an be understood without resorting to ad-ditional onepts suh as textons (Julesz 1981) or de�ning ertain image properties(suh as losure and straightness) as having standard or referene values.Our urrent implementation of V1 is still very simplisti. We have not yet in-luded olor, motion, or stereo inputs, nor multisale sampling. Further, our inputsampling density is very low. Consequently, the model annot simulate many ofthe more omplex input stimuli used in psyhophysial experiments (Treisman andGormian, 1988). An extended implementation is needed to test whether V1 meh-anisms alone an qualitatively aount for all or most types of searh pop-out andasymmetries. Physiologial evidene (Gilbert 1992) suggests that intraortial on-netions tend to link neurons with similar seletivities in other dimensions, suh asolor and stereo, in addition to orientation. This supports the idea that olor, mo-tion, and disparity are also primitive visual oding dimensions like orientation. We



believe that the example in Fig. 2A,B demonstrating pop-out versus serial searhwould be more onvining if olor were inluded to simulate, for instane, a red`X' among green `X's with and without red `O's in the bakground. Our urrentmodel does not explain why a slightly tilted line pops out more readily from ver-tial line distrators than the reverse. This is beause our V1 model idealistiallyassumes rotational symmetry, and so vertial is not distinguished from other orien-tations. Neither our visual environment nor our visual system is in fat rotationallyinvariant.The V1 model was originally proposed to aount for pre-attentive ontour en-hanement and visual segmentation (Li 1998a, 1998b). The ontextual inuenesmediated by the intraortial interations enable eah V1 neuron to proess inputsfrom a loal image area larger than its lassial reeptive �eld. This enables ortialneurons to detet image loations where translation invariane in the input imagebreaks down, and highlight these image loations with higher neural ativities, mak-ing them onspiuous. These highlights mark andidate loations for image region(or objet surfae) boundaries, smooth ontours and small �gures against bak-grounds, serving the purpose of pre-attentive segmentation. Fig. 4 demonstratesthe performane of the model for pre-attentive segmentation. In eah example, thevisual inputs and the most salient outputs are shown. All examples are simulatedusing exatly the same model parameters as those used in examples of visual searh.It is not too surprising that a model of pre-attentive segmentation in V1 an ex-plain visual searh phenomena. Indeed, pop out has been ommonly understood asa sign of pre-attentive segmentation. Our model further suggests that asymmetryin visual searh is partly a side-e�et of pre-attentive segmentation. Our V1 modelan in turn be improved using visual searh as a diagnosti tool.Referenes[1℄ R. J. Douglas and K. A. Martin (1990) \Neoortex" in Synapti Organization ofthe Brain ed. G. M. Shepherd. (Oxford University Press), 3rd Edition, pp389-438[2℄ Dunan J. Humphreys G. Psyhologial Review 96: p1-26, (1989).[3℄ C. D. Gilbert (1992) Neuron. 9(1), 1-13.[4℄ C. M. Gray and W. Singer (1989) Pro. Natl. Aad. Si. USA 86, 1698-1702.[5℄ B. Julesz. (1981) Nature 290, 91-97.[6℄ M. K. Kapadia, M. Ito, C. D. Gilbert, and G. Westheimer (1995) Neuron.15(4), 843-56.[7℄ J. J. Knierim and D. C. van Essen (1992) J. Neurophysiol. 67, 961-980.[8℄ Z. Li (1998a) in Theoretial aspets of neural omputation Eds. Wong, K.Y.M,King, I, and D-Y Yeung, Springer-Verlag, 1998.[9℄ Z. Li (1998b) Neural Computation 10(4) p 903-940.[10℄ K.S. Rokland and J. S. Lund (1983) J. Comp. Neurol. 216, 303-318[11℄ Rubenstein B. and Sagi D. J. Opt. So. Am. A 9: 1632-1643 (1990).[12℄ Treisman A, Cavanagh, P, Fisher B, Ramahandran V.S., and R. von derHeydt in Visual pereption, the Neurophysiologial Foundations Eds. L. Spill-mann and J S. Werner, 1990 Aademi Press.[13℄ Treisman A. and Gormian S. (1988) Psyhologial Rev. 95, 15-48.[14℄ E. L. White (1989) Cortial iruits (Birkhauser).


