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Abstract 

 

Most of the epidemiological literature on air pollution and mortality deals only 

with single or dual pollutant models whose results are hard to interpret and of 

questionable value from the policy perspective. In addition, much of the existing 

literature deals only with the very short-term effects of air pollution whereas 

policy makers need to know when, whether and to what extent pollution-induced 

increases in mortality counts are reversed. This involves modelling the infinite 

distributed lag effects of air pollution.  

 

Borrowing from econometrics this paper presents a method by which the infinite 

distributed lag effects can be estimated parsimoniously but plausibly estimated. 

The paper presents a time series study into the relationship between ambient 

levels of air pollution and daily mortality counts for Santiago employing this 

technique which confirms that the infinite lag effects are highly significant.  

 

It is also shown that day to day variations in NO2 concentrations and in the 

concentrations of both fine and coarse particulates are associated with short-

term variations in death rates. These findings are made in the context of a 

model that simultaneously includes six different pollutants. Evidence is found 

pointing to the operation of a very short term harvesting effect.  
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1. Introduction 

 

A vast number of epidemiological studies have identified particulate matter and, 

less frequently, other air pollutants as being statistically related to daily mortality 

counts. Despite the fact that these studies have been undertaken in a variety of 

locations the methodology followed by these studies is generally same. The 

procedure is to use Poisson or Ordinary Least Squares regression analysis to 

control for seasonal variations in daily mortality counts along with variations in 

meteorological conditions, day-of-the-week effects, dummy variables for national 

holidays and one or two pollution variables1.  

 

Although these studies have alerted policy makers to the potential harm from 

ambient pollution concentrations the results provided by time-series studies into 

the mortality effects of air pollution are nonetheless turning out to be of 

surprisingly limited value from the policy perspective. One problem relates to the 

current emphasis on single and dual pollutant models in the epidemiological 

literature. Schwartz et al (1996) remark that “One occasionally sees studies that 

have fitted regression models using four or even more collinear pollutants in the 

same regression… Given the non-trivial correlation of the pollutant variables and 

the relatively low explanatory power of air pollution these for mortality or 

hospital admissions such procedures risk letting the noise in the data choose the 

pollutant”.  

 

                                                 
1 Here and elsewhere we consider only the issue of life lost due to the acute effects of air 
pollution. For evidence on the chronic mortality impacts of air pollution see Pope et al 
(1995).  
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The authors of this paper believe that alternative procedures risk allowing the 

researcher to choose the pollutant. This frustrates attempts to determine which 

out of a range of air pollutants are responsible for the empirically observed 

mortality impacts. With the evidence as it is we cannot be certain of the extent to 

which lowering particle concentrations alone, without other reducing other 

combustion-related pollutants, would lower mortality. The importance to policy 

makers of being able to attribute health impacts to particular pollutants should be 

obvious. Policy makers have before them a range of policy and technology 

options some of which entail reducing emissions of one pollutant whilst leaving 

the emissions of other pollutants unchanged or even increased.  

 

Current practice also prevents researchers from reaching any conclusions 

regarding the overall health burden imposed by pollution-generating activities. 

Given the non-zero correlation that often exists between different air pollutants, 

reliance on the results of single pollutant models risks explaining what are 

essentially the same deaths several times over. Conversely, to assume that one 

pollutant such as PM10 is responsible for all of the observed health impacts risks 

significantly understating the toll of air pollution on health. These problems are 

avoided by multiple pollutant studies.  

 

Matters are admittedly more complicated when one recognises ambient 

concentrations recorded by monitors might be a poor representation of 

individual exposure to a particular pollutant. Furthermore many pollutants 

might need to be included in the same regression some of which will be 

precursors of others included in the same regression. But none of these 

observations justifies the almost complete reliance on single or dual pollutant 
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studies or removes the understandable need that policy makers have to be able 

to attribute health impacts to particular pollutants or to calculate the overall toll 

on health.  

 

The other problem, which is in some ways the main focus of this paper, involves 

the way air-pollution variables are entered into the model. Typically air pollution 

is included either as a contemporaneous variable or with one or two lags. 

Although such a methodology may succeed in demonstrating that air pollution 

causes a short-run increase in mortality rates policy responses cannot be built 

only on the basis of knowledge concerning the short-run impact of air pollution 

on mortality. Policy needs to the rate at which air pollution-induced increases in 

mortality counts are reversed2.  

 

In the absence of evidence on the rate at which excess mortality counts 

attributable to air pollution are reversed researchers from other disciplines have 

been at a loss to know how to value such deaths from a societal point of view. 

Economists for example are accustomed to valuing small changes in the risk of 

mortality or even small changes in a sequence of risks in which future risks are 

discounted. An air pollution episode is likely to increase the number of deaths in 

the short term but lead to a reduction in the number of deaths in future time 

periods. But unless they know the sequence of changes in risk or equivalently the 

infinite lagged impact of air pollution on mortality economists cannot value the 

air pollution episode correctly. McMichael et al (1998) provides a telling 
                                                 
2 Being aware of this limitation to their work typically contributors to the epidemiological 
literature are very careful to specify that the empirical evidence does not say anything about 
the extent to which life has been foreshortened as a consequence of poor air quality. Indeed 
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summary assessment of early attempts to value the mortality impacts of air 

pollution.   

 

Our paper introduces a simple modelling technique in which the entire infinite 

lagged-response of daily mortality to increases in air pollution is modelled in a 

plausible yet parsimonious fashion. In so doing the technique nests the kind of 

models that have so far been used to explore the links between air pollution and 

mortality as special cases. We argue that such methods provide a far superior 

description of variations in daily mortality rates. And for the reasons given yield 

insights of potentially far greater relevance to policy. This paper further provides 

a demonstration of the technique using data from Santiago3.  

 

Although the modifications to current practice presented in this paper are 

intended to make the evidence offered by epidemiological research more 

relevant to policy, there is no suggestion that the techniques in this paper offer 

anything approaching a ‘get out of jail free’. The multicollinearity between 

different pollutants makes it difficult to ascertain their individual contribution 

as well as the lag effect meaning the results of individual analyses are too 

uncertain to base policy. Only when the results of many different studies are 

combined using meta-analytical procedures will any statistically significant 

effects emerge. Rather that refraining from such ambitious studies, the point is 

                                                                                                                                                        
the epidemiological literature states in a number of places that it is impossible to measure the 
extent of life lost using time series studies (see for example Anderson et al 1996).   
3 It should be apparent that identical issues arise in the analysis of morbidity endpoints. The 
Committee on the Medical Effects of Air Pollution (1998) discusses the importance of 
determining whether additional cases of respiratory hospital admission are caused by air 
pollution or whether these are simply brought forward – in which case the cost to the public 
should not be attributed to air pollution. The same techniques described in this paper could in 
principle be used answer this question.  
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that unless researchers begin to publish such studies then the data for meta-

analyses will never appear in the public domain. Meta-analysis of results 

obtained from conventional studies will, of course, never answer the question 

of the extent of the harvesting effect or the contribution of individual pollutants 

no matter how many studies are undertaken.  

 

The following section offers a discussion and critique of current practice in 

modelling the distributed lag effects of air pollution on mortality. An alternative 

method of modelling the distributed lags is introduced and the relative 

advantages of the method are explained. The remainder of the paper describes the 

empirical implementation of the technique within the context of a multiple 

pollutant model. Section three discusses the data used to implement the model 

along with the econometric modelling techniques employed. Section four 

discusses the implications of the results and the final section concludes.  
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2. Modelling Lags in Time Series Air Pollution-Mortality Studies 

 

The traditional approach to the statistical modelling of the relationship between 

daily mortality counts and ambient levels of air pollution is to include just 

contemporaneous, once or twice-lagged values for air pollution into a regression 

equation. In these cases the choice about which lag to select is seldom explained 

in detail but often it appears that the single most significant lag is chosen as for 

example in Katsouyanni et al (1996).  

 

It is however improbable that the researchers who present such models in the 

literature intend them to be taken literally. For example, a researcher who seeks 

to explain variations in daily mortality rates by the value of a pollutant once 

lagged is not claiming that the totality of the effect is experienced precisely one 

day afterwards. Nevertheless what such investigators actually end up estimating 

is the ‘transient’ impact of air pollution. An extension of this approach would be 

to estimate the model using single lagged-values for air pollutants ever more 

distant in time. In this way one might suppose that the lagged impacts of air 

pollution on mortality would emerge if the results were plotted on a graph. The 

problem with this approach is that, to the extent that pollutant variables are auto-

correlated over time, the effects of adjacent lag terms will also be picked up.  

 

Regression on a moving average of air pollution levels is perhaps a small 

improvement on including just single lags (e.g. Schwartz 1994). But since it 

impels the lagged effects of pollutants to be exactly equal on consecutive days 

and thereafter constrains them to be zero it cannot be very realistic. In other 

papers researchers estimate the coefficients on two or more consecutive 
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pollution-levels and present the cumulated impact of air pollution (e.g. Dab et al 

1996). These represent a further improvement but once again require that the 

impact of air pollution on mortality is zero after two or three days. A more 

realistic model would allow for the lagged effects of pollutants gradually to 

decay and perhaps turn negative if the deaths of susceptible individuals were 

being brought forward.   

 

In theory the means to explore such a possibility would be to estimate a model 

containing many lagged terms for each of the pollutants. In practice however 

analysts have avoided adding a large number of additional regressor variables to 

their models. They quite rightly claim that estimation of the unrestricted 

regression will not be able to locate the lag structure because it will be beset by 

multicollinearity between the lagged regressors.  

 

These reflections on current practice raise the following questions. First, how 

can a distributed lag structure be modelled parsimoniously in the context of air 

pollution-mortality studies (or indeed any study)? Secondly, how sensitive are 

the estimated relative risk ratios to seemingly arbitrary decisions regarding the 

period of time over which to cumulate the lagged impacts of air pollution? 

Thirdly, to what extent can adding a more realistic lag structure reduce the 

unexplained variance in a model?  
 

A number of techniques to approximate lag structures have been proposed in 

econometrics and these may be helpful in the context of epidemiological 

studies too. This is a view shared by Schwartz et al (1996) who argue that the 

epidemiological literature needs to pay greater heed to econometric approaches 
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to modelling distributed lags. It is also plausible that a more systematic 

approach to specifying lags would allow better comparison between sites. 

However, the main reason for being interested in modelling distributed lags is 

in order to shed light on the question of the amount of life lost per case of 

premature mortality.  
 

One method of estimating lagged impacts is the polynomial approach of Almon 

(1965). The technique involves making the assumption that the distribution of 

lag coefficients can be represented by a polynomial of suitably high order. The 

coefficients of the polynomial are estimated absorbing the order of the 

polynomial plus one degrees of freedom.   

 

In one of the first epidemiological studies to take advantage of this technique, 

Schwartz (2000) employs a quadratic polynomial lag with a maximum lag of five 

days in an analysis of the link between ambient concentrations of particulate 

matter and the deaths of over-65s based on United States data4. He finds that the 

use of the technique increases the measured relative risk ratios associated with 

particulate matter compared to those associated with a one-day lag or a two-day 

moving average. Schwartz argues that this method should become standard 

practice in the epidemiological time-series studies. For a number of reasons we 

do not agree with this view.  
 
The method of polynomial lags suffers from the handicap that it is necessary to 

specify a finite endpoint prior to estimation. There has, in the econometrics 

literature, been an extensive analysis of the consequences of miss-specifying 

                                                 
4 Ostro et al (1996) fit a polynomial distributed lag over the period t = 0-3 to their analysis of 
daily mortality counts in Santiago but provide no further details.  
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the lag length (as well as the order of the polynomial; see for example Hendry 

et al 1984). Simply assuming a maximum lag length is hazardous as the Almon 

lags technique will genially distribute the effects over the entire lag whether 

this is appropriate or not5. Finally, the technique has extreme difficulty in 

capturing any long-tailed lag distribution of the type that might well be 

expected in epidemiological time-series studies (see for example Maddala 

1977).  

 

In the opinion of the authors these features serve to make the polynomial lags 

technique unsuitable for use in epidemiological time-series studies. Partly 

because of these shortcomings the polynomial lags technique has seen relatively 

few recent applications in the field of applied econometrics. Most 

econometricians take recourse in the method of ‘rational lags’ (Jorgenson, 1966) 

in situations in which the modelling of distributed lags is required.  

 

The idea behind rational lags is that any infinite distributed lag function can be 

approximated by the ratio of two finite polynomials in the lag operator and as 

such the rational lags technique involves only the inclusion of additional 

explanatory variables. The lag operator L is defined by LXt = Xt-1. The lag 

operator may be applied more than once so that L2Xt = Xt-2. It may also be 

handled algebraically like an ordinary variable such that L1L2Xt = Xt-3. Consider 

now the following infinite distributed lag model:  

 

                                                 
5 The Schwartz (2000) study might be criticised for simply assuming a maximum lag of five 
days and the appropriateness of a polynomial of degree two. There are protocols for selecting 
the appropriate lag lengths and order of the polynomial but these do not appear to have been 
followed.  
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Rather than estimating the unrestricted model Jorgenson’s Rational Lag 

technique involves estimating the following equation by means of non-linear 

least squares:  
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It is possible to retrieve the implied parameters of distributed lag function in a 

relatively straightforward manner enabling the analyst to observe the lagged 

impact of a pulse change in the independent variable. Given the equivalence 

between the parameters of the distributed lag and the parameters of the rational 

lag function one can rewrite the equation in the following way:  
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By comparing coefficients of the various powers of L one obtains the following:  

 

00 γβ =  

1011 ωβγβ −=  

112022 ωβωβγβ −−=  

12213033 ωβωβωβγβ −−−=  

1322314 ωβωβωββ −−−=  
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Notice that after the fourth term the series follows the simple recursion:  

 

112233 ωβωβωββ −−− −−−= kkkk  

 

These equations may now be solved recursively for each β.  

 

The rational lag technique seems well suited to dealing with issues that arise in 

epidemiological time-series studies. But to the best knowledge of the authors this 

is first occasion on which its use has been seriously proposed in such a context. 

Schwarz et al (1996) does however suggest the use of a geometric lag for use in 

air pollution studies. Such a lag function is in fact the simplest possible example 

of a rational lag formulation. The use of the geometric lag is however deeply 

unappealing in this context since it assumes that the lag coefficients decline 

monotonically. We have argued that a more reasonable formulation would allow 

the lag coefficients to first increase and then decrease perhaps becoming negative 

if the deaths of vulnerable people are being brought forward. In the next section 

we illustrate the use of the technique of rational lags using data from Santiago.  
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3. The Empirical Analysis  

 

Santiago is a city with very high levels of particulate air pollution, related in 

part to its geographic situation and climatic conditions. One study showing the 

relationship between levels of particulate air pollution and mortality in Santiago 

has already been published (Ostro et al 1996). Using a single pollutant model 

this paper shows a strong association between PM10 and daily deaths.  

 

Daily data on non-accidental (ICD9 ≥ 800) mortality for all ages was taken from 

the metropolitan area of Santiago from the start of 1988 to the end of 1996 – a 

period of some 3,288 days6. Air pollution and temperature data were obtained 

from the records of the urban air pollution monitoring-network. From 1988 to 

1996 this network operated five monitoring stations.  Four of the monitors are 

closely located around downtown Santiago, and the fifth is in the far northeast 

of the city. Twenty-four hour averages were obtained for PM2.5, PM10, SO2, 

NO2, CO and O3 concentrations from all five stations. Measures of mean 

temperature were obtained from four of the five monitoring stations. The data 

are described in tables 1 and 2. Note that some missing observations have been 

completed using first order regression techniques (see Maddala, 1977).  

                                                 
6 The metropolitan area of Santiago includes 34 municipalities but only 32 of them were 
included in the analysis. Two were excluded for being mostly rural with low air pollution 
levels.  Deaths of residents of Santiago that occurred outside of Santiago were also excluded.  
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Table 1:  Descriptive Statistics 

Variables Mean Std. 

Deviation 

Minimum Maximum 

MORT 56.6 12.4 22.0 116.0 

TEMP (°C) 15.9 4.8 4.0 27.0 

PM2.5 (µg/m3) 57.2 40.5 7.0 341.0 

PM10 (µg/m3) 102.4 52.3 16.0 438.0 

CO (ppb) 2.5 1.8 0.2 12.8 

SO2 (ppb) 18.0 12.3 1.0 87.0 

NO2 (ppb) 41.0 26.7 9.0 299.0 

O3 (ppb) 90.2 63.0 3.0 963.0 
Source: See text.  
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Table 2:  The Correlation Matrix 

 MORT TEMP PM2.5 PM10 CO SO2 NO2 O3 

MORT         

TEMP -0.52        

PM2.5 0.46 -0.51       

PM10 0.41 -0.38 0.96      

CO 0.50 -0.49 0.82 0.81     

SO2 0.24 -0.26 0.65 0.65 0.56    

NO2 0.40 -0.26 0.62 0.70 0.64 0.45   

O3 -0.22 0.46 -0.04 0.03 -0.05 0.21 0.04  
Source: See text.  



 

 

 
 15

The following regression equation was estimated in which L is the lag operator 

and µt represents the combined influence of cyclical components and the 

autonomous trend7:  

This equation employs the rational lag technique to approximate an infinite 

distributed-lag on both the temperature and the pollution variables. Note that 

choosing i = 0-3 for both the numerator and denominator one is able to capture 

quite complicated lag patterns. Choosing i = 0-3 also has the advantage of 

encompassing the finite lag models typically encountered in epidemiological 

research (e.g. Katsouyanni et al, 1996). Note that the same parameters ω1, ω2 

and ω3 appear in the denominator of each term. This is sufficient to generate 

                                                 
7 The cyclical components and autonomous trends are the fitted values obtained by regressing 
the log of mortality on six dummy variables for different days of the week; a dummy variable 
for national holidays; a cubic time trend and sine and cosine terms of various frequencies. 
The coefficients on the sine and cosine terms were allowed to vary over the years. In this way 
the presence or absence of epidemics and changes in the timing of the seasonal peak and the 
size of the seasonal peak to trough ratio were accounted for.  
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infinite lagged effects for every variable but an even more flexible model would 

allow them to vary.  

 

The influence of temperature on mortality is well documented. The association 

is not linear, with some studies reporting a U-shaped relationship. We 

accommodate this by including a quadratic term for temperature with the mean 

subtracted. Rather than include PM10 and PM2.5 as separate regressors we 

include PM2.5 (fine particles) and PM10-2.5 (coarse particles) in an attempt to 

reduce the level of multicollineary between these regressors.  

 

The error term was assumed to be normally identically and independently-

distributed and estimates of the parameters were obtained by using maximum 

likelihood estimation techniques8. Examination of the residuals yields no 

evidence of autocorrelation (the Durbin-Watson statistic is 2.02). This also 

suggests that the cyclical components and autonomous trends have been 

satisfactorily controlled for. The R2 statistic was 0.04. Full details of the 

estimation results are available from the authors on request.  

                                                 
8 In many empirical analyses the error term is assumed to be a Poisson variable. In this 
analysis the daily number of deaths is typically very large and there is probably no discernible 
difference from modelling the error term as a Normal variable.  
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4. Discussion 

 

The main point of interest is whether the exclusion of those additional terms that 

allow for infinite lagged impacts represents a statistically significant loss of fit. 

The alternative is a model, like those currently encountered in the literature, in 

which the effects of air pollution and meteorological variables can be 

satisfactorily represented by allowing for only three lagged terms. A likelihood-

ratio test suggests that the loss of fit from setting parameters ω1, ω2 and ω3 

equal to zero is significant at the one-percent level9. This finding provides 

strong support for the use of the rational-lags technique in the context of air 

pollution mortality studies.  

 

Turning to the question of whether individual air pollutants are statistically 

significant or not, the results of a suite of likelihood ratio tests are presented in 

table 3. This table suggests that when tested against a model containing all six 

air-pollutants three out of six air pollutants are statistically significant at the one-

percent level of significance. The remaining air pollutants are not statistically 

significant even at the ten-percent level of significance. Beyond this it is difficult 

to compare these results to the existing literature. First and foremost this is 

because most researchers are measuring either the transient impact of air 

pollution at variety of lag lengths or the interim impact cumulated over an 

arbitrary number of days. The rational-lags technique by contrast calculates a 

different transient impact at each lag length. Secondly, unlike most other 

                                                 
9 The χ2 Statistic is 11.56 against a critical value of 11.34 at the one-percent level of 
significance with 3 degrees of freedom.  
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analyses, this study calculates the mortality effects of air pollution within the 

context of a multiple pollutant rather than a single pollutant model.  

 

Table 4 presents the lag coefficients cumulated over different lag lengths. The 

first observation is that the lag coefficients cumulated over t = 0-7 differ from 

the coefficients at time t = 0. More specifically they are reduced not only in 

terms of their significance but also in terms of their absolute value. Furthermore 

the cumulative lag coefficients do not appear to change even to two significant 

figures when cumulated over periods between t = 0-7 and t = 0-∞. This is 

evidence consistent with the existence of a very short term harvesting effect.  

 

Note that the cumulated coefficients over the period t = 0-∞ are not restricted to 

sum to zero even though common sense suggests that this restriction should hold. 

In fact, although it is easy to restrict the model such that the lag coefficients 

cumulated over the period t = 0-∞ sum to zero we prefer to test the hypothesis 

using a Wald test. The hypothesis is not rejected even at the 10 percent level of 

significance10. We do not however recommend imposing this restriction as a 

matter of course since it might sometimes interfere with the ability of the model 

to represent short-term lags.  

 

There are a number of other interesting points that emerge from the current 

analysis. The first is that whereas the majority of attention has been focussed on 

particulate matter, an increased concentration of NO2 is also seen to result in a 

significant variation in short term mortality rates. Other researchers have also 
                                                 
10 The statistic is 9.92 against a critical value of 10.64 at the ten-percent level of significance 
with 6 degrees of freedom.  
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identified NO2 as a significant cause of premature mortality: for a survey and 

meta-analysis see Touloumi et al (1997). Secondly, whilst CO is associated 

with a significant effect at lag t = 0 according to the Likelihood Ratio test CO is 

statistically insignificant. As an empirical matter it is not unusual for a Wald 

test and a Likelihood Ratio test to give different results although here the 

difference is quite pronounced.  

 

Finally, even though they are to some extent collinear it nonetheless appears 

useful to distinguish between fine particles and coarse particles. More 

specifically it appears that whereas fine particles are significantly associated 

with short term increases in mortality, coarse particles are associated with a 

significant reduction in short term mortality. One interpretation might be that 

whilst fine particulate matter is harmful to health coarse particulate matter is 

not. Furthermore the fact that coarse particulate matter has a negative 

coefficient might indicate that only very fine particulate matter is an important 

cause of premature mortality.  
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Table 3:  The Individual Significance of Different Air Pollutants 

Variables Likelihood Ratio Test 
Statistic 

Degrees of Freedom 

PM2.5  
 

15.30*** 4 

PM10-2.5  
 

15.52*** 4 

CO  
 

7.40 4 

SO2  
 

5.36 4 

NO2  
 

14.34*** 4 

O3  
 

4.46 4 

 Source: see text. Note that *** means significant at the one-percent level of significance, ** 
means significant at the five-percent level of significance and * means significant at the 10 
percent level of significance. 
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Table 4:  Air Pollution as an Influence on Mortality Rates (All Ages) 

Variables Cumulated Over  
t = 0 

Cumulated Over  
t = 0-7 

Cumulated Over  
t = 0-∞ 

PM2.5  
 

0.35E-03** 
(0.14E-03) 

-0.13E-03 
(0.16E-03) 

-0.13E-03 
(0.16E-03) 

PM10-2.5  
 

-0.64E-03*** 
(0.25E-03) 

-0.26E-03 
(0.30E-03) 

-0.26E-03 
(0.30E-03) 

CO  
 

0.62E-02** 
(0.31E-02) 

0.51E-02 
(0.32E-02) 

0.51E-02 
(0.32E-02) 

SO2  
 

0.22E-03 
(0.38E-03) 

0.11E-03 
(0.31E-03) 

0.11E-03 
(0.31E-03) 

NO2  
 

-0.35E-03** 
(0.17E-03) 

0.30E-03* 
(0.18E-03) 

0.30E-03* 
(0.18E-03) 

O3  
 

0.38E-05 
(0.23E-04) 

0.11E-03 
(0.86E-04) 

0.11E-03 
(0.86E-04) 

 Source: see text. Figures relate to the estimated lag coefficients. Standard errors are in 
parentheses and have been calculated using the delta method. Note that *** means significant 
at the one-percent level of significance, ** means significant at the five-percent level of 
significance and * means significant at the 10 percent level of significance.  
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 5. Conclusions 

 

This paper has noted the problem of interpretation that the use of single pollutant 

models presents policy makers. The simple solution is for epidemiologists to 

present the results of multiple pollutant models and for policy makers to base 

their results exclusively upon them.  

 

This paper has also noted that much of the existing epidemiological literature 

estimates only the very short-term transient or cumulative impacts of air 

pollution. But cumulating the impacts of air pollution over the very short term 

or presenting only the transient impacts at lags t = 0 or t = 1 could inadvertently 

give policy-makers or those from other disciplines a misleading impression of 

the health risks posed by the acute effects of air pollution. The most probable 

reason for the focus on the very short-term impacts is that epidemiologists have 

hitherto not known how to model infinite lags in a parsimonious manner.  

 

Noting the deficiencies of alternative techniques, this paper has used the method 

of rational lags to approximate the infinite distributed lag impact of a change in 

air pollution. The method is straightforward and involves including additional 

terms that permit one to approximate the entire distributed lag. In the case of 

Santiago these are shown to dramatically improve the fit of the regression 

equation even in the context of a multiple pollutant model.  

 

Because the results from any one study are too uncertain to be used as a basis for 

policy it would be interesting to reanalyse the data from existing studies using 

this technique. By computing the cumulated impact of air pollution at fixed 
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intervals (e.g. up to one day, one week and one month) and combining the results 

it may be possible to determine the speed with which excess mortality attributed 

to the acute impacts of air pollution is reversed. The standard errors of the 

parameters of interest in this study suggest that large numbers of studies would 

be required in order for statistically significant results to emerge. Fortunately 

there are many data sets available for analysis. But in order to be meaningful 

such comparisons must be careful to compare the impacts cumulated over 

identical periods of time and, if they intend to be policy relevant, should certainly 

avoid focussing solely on the very short-term impacts.  
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