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Abstract 

 

The paper argues that much of the existing literature on air pollution and 

mortality deals only with the transient effects of air pollution. Policy, on the other 

hand, needs to know when, whether and to what extent pollution-induced 

increases in mortality are reversed. This involves modelling the entire distributed 

lag effects of air pollution.  

 

Borrowing from econometrics this paper presents a method by which distributed 

lag effects can be estimated parsimoniously but plausibly estimated. The paper 

presents a time series study into the relationship between ambient levels of air 

pollution and daily mortality counts for Manchester employing this technique.  

 

Black Smoke is shown to have a highly significant effect on mortality counts in 

the short term. Nevertheless we find that 80 percent of the deaths attributable to 

BS would have occurred anyway within one week whereas the remaining 20 

percent of individuals would otherwise have enjoyed a normal life expectancy.  



 

 
 

Keywords: Air Pollution and Mortality; Time-Series Analysis; and Distributed 

Lags.  
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1. Introduction 

 

A vast number of epidemiological studies have identified particulate matter and, 

less frequently, other air pollutants as being statistically related to daily mortality 

counts. Examples include Schwartz and Dockery (1992) for Philadelphia, 

Anderson et al (1996) for London, Touloumi et al (1996) for Athens, Cropper et 

al (1997) for Delhi, Saldiva et al (1995) for Sao Paolo and Ostro et al (1996) for 

Santiago to name but a few. Despite the fact that these studies have been 

undertaken in very different locations the methodology followed by these studies 

is generally same. The procedure is to use Least Squares or Poisson regression 

analysis to control for seasonal variations in daily mortality counts along with 

variations in meteorological conditions, day-of-the-week effects and one or two 

pollution variables.  

 

Although these studies have alerted policy makers to the potential harm from 

ambient pollution concentrations the results provided by time-series studies into 

the mortality effects of air pollution are nonetheless turning out to be of limited 

value from the policy perspective. One problem relates to the current emphasis 

on single and dual pollutant models in the epidemiological literature that makes it 

difficult to attribute mortality effects to particular pollutants. The other problem, 

which is the main focus of this paper, involves the way in which air pollution 

impacts are entered into the model. Typically air pollution is included either as a 

contemporaneous variable or with one or two lags. Although such a methodology 

may succeed in demonstrating that air pollution and premature mortality are 

causally linked sensible policy responses cannot be formulated only on the basis 

of knowledge of the transient impact of air pollution on mortality. Policy needs to 
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know when, whether and to what extent pollution-induced increases in mortality 

are reversed.  

 

Being aware of this limitation to their work contributors to the epidemiological 

literature are typically very careful to specify that the empirical evidence, as it 

stands, does not say anything about the extent to which life has been 

foreshortened as a consequence of poor air quality1,2. Indeed the epidemiological 

literature states in a number of places that it is impossible to measure the extent 

of life lost using time series studies (see for example Anderson et al, 1996, or 

McMichael et al, 1998).  

 

The paper introduces a simple modelling technique in which the entire infinite 

lagged response of daily mortality to increases in air pollution is modelled in a 

plausible yet parsimonious fashion. In so doing the technique nests the kind of 

models that have so far been used to explore the links between air pollution and 

mortality as a special case. It argues that such methods provide a far superior 

description of variations in daily mortality rates and yield insights of greater 

relevance to policy. In particular, if one is able approximate the infinite 

distributed lagged impact then one can observe the rate at which excess mortality 

counts attributed to air pollution are reversed. Finally this study provides an 

                                                 
1 An exception is the time series analysis of the link between particulate matter and daily 
mortality counts in Delhi by Cropper et al (1997). Separate regressions are run for daily 
mortality counts in different age groups and the assumption is made that those individuals 
who succumb to the effects of air pollution would otherwise have enjoyed a normal life 
expectancy.  
2 Obviously the extent of life lost due to the chronic effects of air pollution cannot be inferred 
from time series studies. These effects require a completely different approach (see for 
example Pope et al, 1995).  
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illustration of the technique in the context of a study of the links between air 

pollution and mortality in Manchester3.  

 

The following section offers a discussion and critique of current practice in 

modelling the distributed lag effects of air pollution on mortality. An alternative 

method of modelling the distributed lags is introduced and the relative 

advantages of the method are explained. The remainder of the paper describes the 

empirical implementation of the technique. Section three discusses the data used 

to implement the model along with the econometric modelling techniques 

employed. Section four discusses the implications of the results and the final 

section concludes.  

                                                 
3 Recently, using very different techniques to those proposed here, Zeger et al (1999) claim to 
have have produced ‘harvesting-resistant’ estimates of the effects of air pollution on 
mortality. These authors also recognise the potential policy relevance of whether the victims 
of air pollution are primarily those who are already frail and whose life expectancy is already 
quite short. Their estimates of the health effects of air pollution are larger than those produced 
by conventional modelling techniques.  
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2. Modelling Lags in Time Series Air Pollution-Mortality Studies 

 

Almost without exception standard practice in the statistical modelling of the 

relationship between daily mortality counts and ambient levels of air pollution is 

to include just contemporaneous, once or twice-lagged values for air pollution 

into a regression equation (see Gouveia and Fletcher, 2000 for a recent example). 

In these cases the decision about which lag to select is seldom explained in detail 

but often it seems that the single most significant lag is selected as for example in 

Katsouyanni et al (1996).  

 

It is however unlikely that the researchers who present such models in the 

literature intend them to be taken too literally. For example, a researcher who 

seeks to explain variations in daily mortality rates by the value of a pollutant 

once lagged is presumably not claiming that the totality of the effect is 

experienced precisely one day afterwards – none before and none after. 

Nevertheless what such investigators actually end up estimating is the transient 

impact of air pollution.  

 

An extension of this approach is to estimate the model using single lagged-values 

for air pollutants ever further back in time. In this way one might suppose that the 

lagged impacts of air pollution on mortality would emerge. Using data from 

Barcelona (Sunyer et al, 1996), an example of this approach is contained in 

Appendix 1 of the report of the UK Department of Health’s Committee on the 

Medical Effects of Air Pollution (1998). The problem with this approach is that, 
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to the extent that pollutant variables are auto-correlated over time, the effects of 

adjacent lag terms will also be picked up4.  

 

Running a regression on a moving average of air pollution levels is perhaps a 

small improvement on including just single lags (e.g. Schwartz et al, 1996). But 

since it compels the lagged effects of pollutants to be exactly equal on 

consecutive days and then disappear it cannot be terribly realistic. In other papers 

researchers freely estimate the coefficients on two or more consecutive pollution-

levels and present the cumulated or ‘interim’ impacts of air pollution (e.g. Dab et 

al, 1996). These constitute a further improvement but once again assume that the 

impact of air pollution on mortality is zero after two or three days. A more 

realistic model would allow for the lagged effects of pollutants gradually to 

decay and perhaps turn negative if the deaths of susceptible individuals were 

being brought forward, before vanishing.  

 

In theory the means to explore such a possibility would be to estimate freely a 

model containing many lagged terms for each of the pollutants. In practice 

however analysts have, unsurprisingly, been reluctant to add a large number of 

additional regressors to their models. They claim, quite correctly, that estimation 

of the unrestricted regression will not be able to locate the lag structure because it 

will be plagued by multicollinearity between the lagged regressors.  

 

                                                 
4 In fairness the presence of these diagrams in the report was mainly intended to show that 
whilst variations in daily mortality are correlated with lagged levels of air pollution, future 
levels of air pollution do not correlate with variations in daily mortality. Hence there is 
evidence of causality.  
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These observations on current practice prompt the following questions. First, 

how can a distributed lag structure be modelled parsimoniously in the context 

of air pollution-mortality studies (or indeed any study)? Secondly, how 

sensitive are the estimated relative risk ratios to seemingly arbitrary decisions 

regarding the period of time over which to cumulate the lagged impacts of air 

pollution? Thirdly, to what extent can adding a more realistic lag structure 

reduce the unexplained variance in a model? The first of these questions is 

addressed in the following paragraphs; the latter questions can be answered 

only by empirical research and are deferred to the second half of the paper.  
 

A variety of techniques to approximate lag structures have been proposed in the 

econometrics literature and these may be useful in the context of 

epidemiological studies too. This is a view shared by Schwartz et al (1996) who 

argue that the epidemiological literature needs to pay greater attention to 

econometric approaches to modelling distributed lags. It is also plausible to 

assume that a more systematic approach to specifying lags would allow better 

comparison between sites.  
 

One widely explored method of estimating lagged impacts is the polynomial 

approach of Almon (1965). The technique involves making the assumption that 

the distribution of lag coefficients can be represented by a polynomial of 

sufficiently high order. The coefficients of the polynomial are estimated 

absorbing the order of the polynomial plus one degrees of freedom.   

 

In apparently the first epidemiological study to utilise this technique, Schwartz 

(2000) employs a quadratic polynomial lag with a maximum lag of five days in 
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an United States based analysis of the link between ambient concentrations of 

particulate matter and the deaths of over-65s. He finds that the use of the 

technique increases the measured relative risk ratios associated with particulate 

matter compared to those associated with a one-day lag or a two-day moving 

average. Schwartz argues that this method should become standard practice in the 

epidemiological time-series studies.  
 
The method of polynomial lags however suffers from the defect that it is 

necessary to specify a finite endpoint prior to estimation. There has, in the 

econometrics literature, been an extensive analysis of the consequences of 

miss-specifying the lag length (as well as the order of the polynomial; see for 

example Hendry et al, 1984). Simply assuming a maximum lag length is 

hazardous as the Almon lags technique will genially distribute the effects over 

the entire lag whether this is appropriate or not5. Finally, the technique is 

acutely sensitive to missing observations and has extreme difficulty in 

capturing any long-tailed lag distribution of the type that might be expected in 

epidemiological time-series studies (see for example Maddala, 1977).  

 

In the opinion of the author these features serve to make the polynomial lags 

technique quite unsuitable for use in epidemiological time-series studies. Partly 

because of these shortcomings the polynomial lags technique has seen 

relatively few recent applications in the field of applied econometrics either. 

Most econometricians resort to the method of ‘rational lags’ (Jorgenson, 1966) 

in situations in which the modelling of distributed lags is called for.  
                                                 
5 The Schwartz study might be criticised for simply assuming a maximum lag of five days 
and the appropriateness of a polynomial of degree two. There are protocols for selecting the 
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The idea behind rational lags is that any infinite distributed lag function can be 

approximated by the ratio of two finite polynomials in the lag operator6. As such 

the rational lags technique involves nothing more than the inclusion of additional 

explanatory variables. Testing the significance of these extra variables is 

therefore very straightforward. Furthermore it is possible to retrieve the implied 

parameters of distributed lag function in a relatively straightforward manner 

enabling the analyst to observe the lagged impact of a pulse change in the 

independent variable (see appendix 1). The rational lag technique seems well 

suited to dealing with issues that arise in epidemiological time-series studies. But 

to the knowledge of the author this is first occasion on which its use has been 

proposed in such a context.  

 

Before moving to an empirical demonstration of the use of rational lags, it is 

appropriate to note one further issue that was hinted at in the introduction. 

Although it is not the main focus of this paper, the empirical analysis that follows 

features an important difference that distinguishes it from much of the existing 

empirical literature. This is the fact that no less than four different air pollutants 

are simultaneously included in the model. The existing literature is by contrast 
                                                                                                                                                        
appropriate lag lengths and order of the polynomial but these do not appear to have been 
followed.  
6 The lag operator L is defined by LXt = Xt-1. The lag operator may be applied more than once 
so that L2Xt = Xt-2. It may also be handled algebraically like an ordinary variable such that 
L1L2Xt = Xt-3. Consider the following infinite distributed lag model:  
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Rather than estimating the unrestricted model Jorgenson’s Rational Lag technique involves 
estimating the following equation by means of non-linear least squares:  
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characterised by one and two-pollutant models. But given the non-zero 

correlations which often exist between different air pollutants single-pollutant 

models risk explaining what are essentially the same deaths several times over7. 

This hampers attempts to determine which out of a range of air pollutants are 

responsible for the empirically observed mortality impacts and prevents 

researchers from reaching any conclusions regarding the overall health burden 

imposed by pollution-generating activities. These criticisms of current practice 

are also reflected in the report of the UK Department of Health’s Committee on 

the Medical Effects of Air Pollution (1998).  
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7 Schwartz et al (1996) remark that “One occasionally sees studies that have fitted regression 
models using four or even more collinear pollutants in the same regression… Given the non-
trivial correlation of the pollutant variables and the relatively low explanatory power of air 
pollution these for mortality or hospital admissions such procedures risk letting the noise in 
the data choose the pollutant”. The author however believes that alternative procedures risk 
letting the researcher choose the pollutant. Matters are less clear when one recognises that 
ambient concentrations recorded by monitors may be a poor representation of the typical 
individual’s exposure.  
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3. The Empirical Analysis  

 

Daily data on non-accidental all-cause mortality (MORT) is taken from 

Manchester from the start of 1988 to the end of 1992 – a period of some 1,825 

days8. Measures of 24-hour averages for SO2 and black smoke both in µg/m3 are 

taken from three different sites9. For both pollutants a single index was formed 

taking the geometric mean. An issue arises in the case of the SO2 measures in that 

an unusual number of observations indicate zero concentrations of SO2. These 

readings were thought to be indicative of alkaline contamination and in what 

follows these observations are treated as if they were missing10. Data on NO2 is 

taken from Manchester Town Hall and data on 8-hour maximum O3 is taken from 

the suburban site of Glazebury11. Both of these records are in terms of ppb and 

are highly fragmented. Data on daily mean temperature (TEMP) in °C and 

relative humidity (HUMID) as a percentage are taken from Manchester Ringway 

airport. The data are described in tables 1 and 2.  

                                                 
8 The areas covered include Bolton, Bury, Manchester, Oldham, Rochdale, Salford and 
Stockport. I am grateful to Trevor Morris of the UK Department of Trade and Industry for 
supplying these data.  
9 These sites are Manchester 11, Manchester 15 and Manchester 21.  
10 I am grateful to Alison Loader of AEA Technology for advice on this point. Even after 
these observations have been discarded the SO2 monitors continue to show only a low 
correlation with one another.  
11 During the period January 1988 to December 1992 there were no O3 monitors operating in 
the centre of Manchester. Monitors established at a later date show a high correlation of 0.82 
with the monitor in Glazebury.  
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Table 1:  Descriptive Statistics 

Variables Mean Std. Dev.  Minimum Maximum 

MORT 57.95 11.03 30.00 120.00 

TEMP (°C) 10.41       4.92 -3.10 26.70 

HUMID (%) 65.89      15.47 24.00 100.00 

BS (µg/m3) 16.10 14.75 1.00 179.85 

SO2 (µg/m3) 42.93 18.84 8.46 241.32 

NO2 (ppb) 27.12 11.75 5.83 116.25 

O3 (ppb) 32.32 13.97 3.00 96.00 
Source: See text.  
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Table 2:  The Correlation Matrix 

 MORT TEMP HUMI

D 

BS SO2 NO2 O3 

MORT 1.00       

TEMP -0.47 1.00      

HUMID 0.27 -0.34 1.00     

BS 0.21 -0.36 0.21 1.00    

SO2 0.11 0.01 -0.08 0.45 1.00   

NO2 0.07 -0.22 0.02 0.68 0.42 1.00  

O3 -0.23 0.46 -0.57 -0.40 -0.08 -0.08 1.00 
Source: See text.  
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Apart from pollution and meteorological variables, a number of other variables 

were incorporated into the regression analysis. Six dummy variables (SUN, 

MON, TUE etc) were included for different days of the week. The method used 

to control for seasonal variations in mortality was to include eleven dummy 

variables for each of the different months (JAN, FEB, MAR etc)12. A linear 

time trend (TIME) was also included to capture autonomous changes in the 

daily mortality rate. Finally, a dummy variable (FLU) was included to test for 

the possibility of a structural break during the three-month influenza epidemic 

during the winter of 1989/90. The following equation was estimated in which L 

is the lag operator:  

                                                 
12 Most epidemiologists would agree that controlling for seasonal effects is of paramount 
importance. There are many different ways of doing this and some researchers prefer to 
regress daily mortality on sine and cosine terms of differing frequencies. Others use the 
monthly dummy variable approach adopted here (see for example Schwarz, 1994) although 
note that this approach imposes the same seasonal pattern across each year. A yet more 
general analysis would allow the monthly dummies to vary across years. More recent 
applications have employed non-parametric smoothing techniques. The author has also used 
sine and cosine terms at frequencies of one, two, three, four, six and twelve months to control 
for seasonal effects. All the important results contained in this paper appear to be completely 
unaffected (further details are available upon request).  
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This regression equation uses the rational lag technique to approximate an 

infinite distributed lag on both the weather and the pollution variables. Note that 

a maximum lag length of i = 3 for both the numerator and denominator of the 

terms in air pollution and weather is sufficient to capture quite complicated lag 

patterns such as that described in the preceding section. This also has the 

advantage of encompassing the lag lengths typically encountered in 

epidemiological research without any restriction being imposed (e.g. 

Katsouyanni et al, 1996).  

 

Initially the error term was assumed to be normally identically and independently 

distributed and estimates of the parameters were obtained by using maximum 
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likelihood estimation techniques13. Examination of the residuals however pointed 

to the presence of autocorrelation. This phenomenon, which is by no means 

unusual in time series analyses of air pollution and mortality, was dealt with by 

quasi-differencing the data and estimating no less than four autocorrelation 

parameters as part of the maximum-likelihood estimation routine.  

 

Last of all, whilst non-linear higher order effects were obvious for temperature, 

adding higher order terms for the time trend, humidity and the pollution variables 

did not result in a statistically significant increase in fit14. The fit of the regression 

was quite good (the R2 statistic is 0.47) but given the fragmented nature of the 

data set, the corrections for autocorrelation and the desire to treat missing values 

correctly (as opposed to imputing them) only 1,047 observations were used in the 

analysis. Full details of the estimation results are available from the author on 

request.  

                                                 
13 In many empirical analyses the error term is assumed to be a Poisson variable. In this 
analysis the daily number of deaths is typically very large and there is probably no discernible 
difference from modelling the error term as a Normal variable.  
14 More specifically annually averaged mean temperature was subtracted from daily 
temperature and then squared. The resulting variable was then added to the equation.  
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4. Discussion 

 

The statistical analysis reveals that non-accidental mortality counts in 

Manchester are primarily influenced by seasonal factors. The statistical model 

fails to detect any autonomous change in daily mortality rates although there is 

evidence of elevated death rates corresponding to the influenza epidemic of 

1989/90. Meteorological factors also appear to be important with terms in both 

daily mean temperature and its squared value highly significant. But neither 

humidity nor day-of-the-week effects are present. 

 

The prime question of interest is whether the exclusion of those additional 

terms that allow for the possibility of infinite lagged impacts represents a 

statistically significant loss of fit. A likelihood-ratio test suggests that the loss 

of fit is highly significant, a finding that provides strong support for the use of 

the rational-lags technique in this context15.  

 

Another important question is whether the exclusion of the air pollution variables 

would result in a statistically significant decrease in fit. Employing a Likelihood 

Ratio test it can be shown that both Black Smoke and NO2 are statistically 

significant at the 1 percent level of significance (see table 3). Ozone is 

statistically significant at the 5 percent level and SO2 is not significant even at the 

10 percent level. This indicates that, at least at conventional levels of statistical 

significance, three out of four pollutants have at least short-term effects on 

mortality.  

                                                 
15 The χ2 Statistic is 73.47 against a critical value of 38.93 at the one-percent level of 
significance with 21 degrees of freedom.  
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It is difficult to compare these results to the existing literature in anything other 

than purely qualitative terms. First and foremost this is because most researchers 

are measuring either the transient impact of air pollution at variety of lag lengths 

or the interim impact cumulated over an arbitrary number of days. This 

technique, by contrast, calculates a different relative risk ratio at each lag length. 

Secondly, unlike most other analyses, this study calculates the mortality effects 

of air pollution within the context of a multi-pollutant rather than a single-

pollutant model16.  

 

The long run effect (i.e. the cumulated lag from time t=0 to infinity) associated 

with a pulse increase in each air pollutant is tested using a Wald test (see table 

4)17. Only in the case of NO2 is the long run impact found to differ significantly 

from zero and even then only at the 10 percent level of significance. The 

implication is that over the long term the deaths associated with air pollution 

are brought forward rather than caused.  

 

In a sense however, the distinction between ‘deaths brought forward’ and 

‘deaths caused’ is a false one. In the long run we are all dead and the fact that 

the long run impact is zero is quite different from saying that air pollution is 

unimportant from a public health perspective. What matters is the amount of 
                                                 
16 The data was also analysed in the ‘traditional’ way by running single and dual-pollutant 
models. In these models the single most significant lagged value of each air pollutant was 
included as a regressor variable. The results are quite similar to those found in the literature 
(further details are available upon request).  
17 Following on from footnote 6 the long run impact of a unit change in variable X is given 
by: 
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life lost18. This can best be appreciated by calculating the implied relative risk 

ratio at each lag length following a pulse increase in pollution.  

 

Table 5 indicates that the most pronounced impact of BS on mortality occurs on 

the same day (the relative risk ratio is 1.05 per 100 µg/m3 with a 95 percent 

confidence of 1.09 to 1.02). There is then a marked reduction in the number of 

deaths on the fourth day and from that point onwards the cumulative impacts of 

BS differ insignificantly from zero. Cumulating the lags over a period of seven 

days the relative risk ratio is 1.01 per 100 µg/m3 with a 95 percent confidence 

of 1.03 to 0.99. One therefore cannot exclude the possibility of very small 

health impacts extending over a period of up to one week. Indeed, the 

cumulated risk is essentially unchanged as one increases the period over which 

the risks are cumulated from one week to infinity. The implication is that 

although the majority of deaths involve short term harvesting the remainder of 

the victims might otherwise have enjoyed a normal life expectancy. Another 

way of expressing the findings is to say that for every five-individuals who die 

as a consequence of the acute effects of air pollution, only one would have 

survived for more than seven days (and probably much longer). Results similar 

                                                                                                                                                        

k

j

ωωω
γγγγ

++++
++++

�

�

21

210

1
 

18 The statistical significance of the long run impact of air pollution on mortality might be 
interpreted as a test of model specification. It would be very peculiar if the model suggested 
that air pollution caused deaths that would otherwise never have occurred. On the other hand 
it must be remembered that technique of rational lags provides only an approximation to the 
true lag function. Restricting the model in order to ensure that the long-run impact of air 
pollution on mortality is always zero might interfere with the ability to approximate short-run 
impacts.  
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to those for BS emerge for NO2 and O3, namely that we cannot reject the 

hypothesis that the short-run effects are quickly reversed19.  

 

It is worthwhile reiterating that these results are not a consequence of the 

modelling strategy adopted: the only restriction imposed is that the lag 

coefficients should move in geometric progression after lag four.  

 

Katsouyanni et al (1997) provide estimates of the cumulative impacts of BS on 

mortality for 8 different cities. These impacts are cumulated over two to four 

days depending upon whatever yielded the ‘best estimate’ and presumably 

therefore involve only the positive impacts of air pollution. Table 5 illustrates 

that in the case of Manchester cumulating the impacts of BS even over the first 

two rather than the first four days could, inadvertently, give policy-makers and 

researchers from other disciplines a totally different impression of the health 

risks posed by the acute effects of air pollution. The results in this paper 

highlight danger of policy-makers over-reacting to the kind of results that have 

so far characterised the literature reflecting only very short-term impacts.  

                                                 
19 One cannot reject the hypothesis that the mortality impacts of NO2 and O3 are reversed 
within two days.  
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Table 3:  Air Pollution as an Influence on Daily Mortality Rates 

Air Pollutant Number of Restrictions χ2 Statistic 

BS 7 29.28*** 

SO2  7 9.87 

NO2 7 26.71*** 

O3 7 17.74** 
Source: see text. Note that *** means significant at the 1 percent level of significance; ** 
means significant at the 5 percent level of significance; and * means significant at the 10 
percent level of significance.  
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Table 4:  The Long Run Effects of Air Pollution 

Air Pollutant Number of Restrictions χ2 Statistic 

BS 1 0.53 

SO2 1 1.46 

NO2 1 3.73* 

O3 1 1.50 
Source: see text. Note that *** means significant at the 1 percent level of significance; ** 
means significant at the 5 percent level of significance; and * means significant at the 10 
percent level of significance.  
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Table 5:  The Cumulated Impacts of Black Smoke 

Lag Length in Days Cumulated Coefficient T-statistic 

0 5.19E-04 2.85*** 

1 3.83E-04 2.82*** 

2 4.99E-04 2.88*** 

3 7.93E-05 0.78 

4 7.41E-05 0.72 

5 7.49E-05 0.73 

6 7.43E-05 0.73 

7 7.42E-05 0.72 
Source: see text. Note that *** means significant at the 1 percent level of significance; ** 
means significant at the 5 percent level of significance; and * means significant at the 10 
percent level of significance.  
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5. Conclusions 

 

This paper has noted that much of the existing epidemiological literature 

estimates only the very short-term transient or interim-lag impacts of air 

pollution. Arguably however, knowledge of these impacts is not of much policy 

relevance. One needs to know how soon, whether and to what extent any increase 

in mortality is reversed and this requires estimating the entire distributed lagged 

impact of air pollution on mortality 

 

Noting the deficiencies of alternative techniques, this paper has used the method 

of rational lags to approximate the infinite distributed lag impact of a change in 

air pollution. The method is straightforward and involves including additional 

terms that permit one to approximate the entire distributed lag. These are shown 

to dramatically improve the fit of the regression equation. Using the method of 

rational lags we find that 80 percent of the deaths attributable to BS would have 

occurred anyway within one week whereas the remaining 20 percent of 

individuals would otherwise have enjoyed a normal life expectancy. No 

generality is claimed for these results which in any case have wide confidence 

intervals attached to them.  

 

An obvious application of the technique of rational lags would be to the 

analysis of the link between air pollution and various morbidity endpoints. For 

example, the technique of rational lags appears able to answer the following 

important question: are respiratory hospital admissions caused by air pollution 

or merely advanced (in which case air pollution imposes no additional costs on 

the National Health Service)?  
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Because the results from any one study are too uncertain to be used as a basis for 

policy it would be interesting to reanalyse the data from existing studies using 

this technique. By computing the cumulated impact of air pollution at fixed 

intervals (e.g. three days, one week and one month) and combining the results it 

may be possible to determine the speed with which excess mortality attributed to 

the acute impacts of air pollution is reversed. But in order to be meaningful such 

comparisons must be careful to compare impacts cumulated over identical 

periods of time and should avoid focussing solely on the very short-term impacts.  
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Appendix 1: Calculating the Implied Lag Coefficients in the Rational Lag 

Model 

 

Given the equivalence between the parameters of the distributed lag and the 

parameters of the rational lag function one can rewrite the equation shown in 

footnote 6 in the following way:  

( )( ) ( )3
3

2
210

3
3

2
21

3
3

2
210 1 LLLLLLLL γγγγωωωββββ +++=+++++++ �  

By comparing coefficients of the various powers of L one obtains the following:  

00 γβ =  

1011 ωβγβ −=  

112022 ωβωβγβ −−=  

12213033 ωβωβωβγβ −−−=  

1322314 ωβωβωββ −−−=  

Notice that after the fourth term the series follows the simple recursion:  

112233 ωβωβωββ −−− −−−= kkkk  

These equations may now be solved recursively for each β.  

 


