

1

The IeMRC Opto-PCB Manufacturing Project

David R. Selviah

Department of Electronic and Electrical Engineering, University College London, UCL, UK, d.selviah@ee.ucl.ac.uk

New Developments in PCB and Interconnect Manufacturing, August 4th 2009, NAMTECH, Rotherham © UCL 2009

Outline

- **Optical and Electronic Optical Connector** Interconnects Backplane Mezzanine Board (Daughter Board, Line Card) Connector * Optical Backplan (rear) Connector
- Electronic versus Optical interconnects
- The OPCB project
- OPCB University Research Overview
 - Heriot Watt
 - Loughborough
 - UCL
- System Demonstrator

Copper Tracks versus Optical Waveguides for High Bit Rate Interconnects

- Copper Track
 - EMI Crosstalk
 - Loss
 - Impedance control to minimize back reflections, additional equalisation, costly board material
- Optical Waveguides
 - Low loss
 - Low cost
 - Low power consumption
 - Low crosstalk
 - Low clock skew
 - WDM gives higher aggregate bit rate
 - Cannot transmit electrical power

On-board Platform Applications

On-board Platform Applications

The Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) project

- Hybrid Optical and Electronic PCB Manufacturing Techniques
- 8 Industrial and 3 University Partners led by industry end user
- Multimode waveguides at 10 Gb/s on a 19 inch PCB
- Project funded by UK Engineering and Physical Sciences Research Council (EPSRC) via the Innovative Electronics Manufacturing Research Centre (IeMRC) as a Flagship Project
- 2.9 years into the 3 year, £1.3 million project

Integration of Optics and Electronics

- Backplanes
 - Butt connection of "plug-in" daughter cards
 - In-plane interconnection
- Focus of OPCB project

- Out-of-plane connection
 - 45° mirrors
 - Chip to chip connection possible

Direct Laser-writing Setup: Schematic

- Slotted baseplate mounted vertically over translation, rotation & vertical stages; components held in place with magnets
- By using two opposing 45° beams we minimise the amount of substrate rotation needed

HERIOT

Writing sharply defined features

- flat-top, rectangular laser spot

HERIOT

Laser written polymer structures

SEM images of polymer structures written using imaged 50 µm square aperture (chrome on glass)

- Writing speed: ~75 µm / s
- Optical power: ~100 μW
- Flat-top intensity profile
- Oil immersion
- Single pass

8.0kV ×300 60.0×m

Optical microscope image showing end on view of the 45° surfaces

HERIO

Waveguide terminated with 45-deg mirror

Out-of-plane coupling, using 45-deg mirror (silver)

Microscope image looking down on mirror coupling light towards camera

OPTICAL INPUT

HERIOT

Current Results

Laser-writing Parameters:

- Intensity profile: Gaussian
- Optical power: ~8 mW
- Cores written in oil

Polymer:

- Custom multifunctional acrylate photo-polymer
- Fastest "effective" writing speed to date: 50 mm/s

(Substrate: FR4 with polymer undercladding)

Large Board Processing: Writing

- Stationary "writing head" with board moved using Aerotech sub-µm precision stages
- Waveguide trajectories produced using CAD program

- 600 x 300 mm travel
- Requires a minimum of 700 x 1000 mm space on optical bench
- Height: ~250 mm
- Mass:
 - 300 mm: 21 kg
 - 600 mm: 33 kg
 - Vacuum tabletop

Large Board Processing: Writing

The spiral was fabricated using a Gaussian intensity profile at a writing speed of 2.5 mm/s on a 10 x 10 cm lower clad FR4 substrate. Total length of spiral waveguide is **~1.4 m**. The spiral was upper cladded at both ends for cutting.

Laser Ablation of Optical Waveguides

- Research
 - Straight waveguides
 - 2D & 3D integrated mirrors
- Approach
 - Excimer laser Loughborough
 - CO₂ laser Loughborough
 - UV Nd:YAG Stevenage Circuits Ltd
- Optical polymer
 - Truemode® Exxelis
 - Polysiloxane Dow Corning

Schematic diagram (side view) showing stages in the fabrication of optical waveguides by laser ablation

Machining of Optical Polymer with CO₂ Laser

System

- 10 Watt(max.) power CW beam
- Wavelength = 10.6 µm (infrared)
- Process
 - Thermally-dominated ablation process

Machining quality

- Curved profile
- Waveguide fabrication underway

Ablated profile FR4 layer Mg = 500 X Mg = 500 K Signal A = SE2 Photo No. = 9886

Side view of machined trench

Waveguides (side view)

UV Nd:YAG machining in collaboration with Stevenage Circuits Ltd

- Waveguide of 71 µm x 79 µm fabricated using UV Nd:YAG
- Waveguide detected using back lighting

Side view

Mag = 707 X 20µm EHT = 5.00 kV WD = 10 mm Signal A = SE2 WD = 10 mm Signal A = SE2 Photo No. = 9300

Plan view

- <u>System</u>
 - 355 nm (UV) Pulsed laser with 60 ns pulse width and Gaussian beam (TEM₀₀) or "Tophat" profile at Stevenage Circuits Ltd.

Process

Loughborough University

- Photochemically-dominated ablation process.
- Waveguide quality
 - Minimum Heat Affected Zone
 - Propagation loss measurement underway

Machining of Optical Polymer with Excimer Laser

- Straight structures machined in an optical polymer.
- Future work to investigate preparation of mirrors for in and out of plane bends.

Machined trenches

Loughborough University

Waveguide structure

Loughborough University

Inkjetting as a Route to Waveguide Deposition

Challenges of Inkjet Deposition

- Viscosity tailored to inkjet head via addition of solvent
- "Coffee stain" effects

Loughborough University

Changing Surface Wettability

Contact Angles

Core material on cladding

Large wetting - broad inkjetted lines

Core material on modified glass surface (hydrophobic)

Reduced wetting – discrete droplets

Identical inkjetting conditions - spreading inhibited on modified surface

Towards Stable Structures

Stable line structures with periodic features

Cross section of inkjetted core material surrounded by cladding (width 80 microns)

A balance between wettability, line stability and adhesion

Waveguide components and measurements

- Straight waveguides 480 mm x 70 µm x 70 µm
- Bends with a range of radii
- Crossings
- Spiral waveguides
- Tapered waveguides
- Bent tapered waveguides
- Loss
- Crosstalk
- Misalignment tolerance
- Surface Roughness
- Bit Error Rate, Eye Diagram

Optical Power Loss in 90° Waveguide Bends

- Radius R, varied between 5.5 mm < R < 35 mm, ΔR = 1 mm
- Light lost due to scattering, transition loss, bend loss, reflection and backscattering
- Illuminated by a MM fiber with a red-laser.

BPM, beam propagation method modeling of optical field in bend segments

Differences in misalignment tolerance and loss as a function of taper ratio

- Graph plots the differences between a tapered bend and a bend
- There is a trade off between insertion loss and misalignment tolerance Copyright © 2009 UCL

Crosstalk in Chirped Width Waveguide Array

100 μm 110 μm 120 μm 130 μm 140 μm 150 μm

- Light launched from VCSEL imaged via a GRIN lens into 50 µm x 150 µm waveguide
- Photolithographically fabricated chirped with waveguide array
- Photomosaic with increased camera gain towards left

Surface roughness

RMS side wall roughness: 9 nm to 74 nm

• RMS polished end surface roughness: 26 nm to 192 nm.

Design rules for waveguide width depending on insertion loss and cross-talk

Bit error rate for laterally misaligned 1550 nm 2.5 Gb/s DFB laser

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

Contour map of VCSEL and PD misalignment

- (a) Contour map of relative insertion loss compared to the maximum coupling position for VCSEL misalignment at z = 0.
- (b) Same for PD misalignment at z = 0. Resolution step was $\Delta x = \Delta y = 1 \ \mu m$.
- Dashed rectangle is the expected relative insertion loss according to the calculated misalignments along *x* and *y*.
- The minimum insertion loss was 4.4 dB, corresponded to x = 0, y = 0, z = 0

Coupling Loss for VCSEL and PD for misalignments along optic axis

Fabrication Techniques and Waveguides Samples

Straight waveguides – Optical InterLinks

90° Crossings – Heriot Watt University

90° Crossings – Dow Corning

Photolithographic Fabrication of Waveguides

Copyright © 2009 UCL

Optical Loss Measurement

VCSEL Array for Crosstalk Measurement

Design Rules for Inter-waveguide Cross Talk

- 70 μ m \times 70 μ m waveguide cross sections and 10 cm long
- \bullet In the cladding power drops linearly at a rate of 0.011 dB/µm
- Crosstalk reduced to -30 dB for waveguides 1 mm apart

Schematic Diagram Of Waveguide Crossings at 90° and at an Arbitrary Angle, θ

Design Rules for Arbitrary Angle Crossings

- Loss of 0.023 dB per 90° crossing consistent with other reports
- The output power dropped by 0.5% at each 90° crossing
- The loss per crossing (L_c) depends on crossing angle (θ) , $L_c=1.0779 \cdot \theta^{-0.8727}$

Loss of Waveguide Bends

Width (µm)	Optimum Radius (mm)	Maximum Power (dB)		
50	13.5	-0.74		
75	15.3	-0.91		
100	17.7	-1.18		

System Demonstrator

Fully connected waveguide layout using design rules

Power Budget

Input power (dBm/mW)	-2.07 / 0.62							
	Bend 90°							
Radii (mm)	15.000	15.250	15.500	15.725	16.000	16.250		
Loss per bend (dB)	0.94	0.91	0.94	0.94	0.95	0.95		
	Crossings							
Crossing angles (°)	22.27 29.45		5 36	.23	42.10	47.36		
Loss per crossing (dB)	0.078	0.056	6 0.0)47	0.041	0.037		
Min. detectable power (dBm)	-15 / 0.03							
Min. power no bit error rate	-12 / 0.06							

Demonstrator Dummy Board

The Shortest Waveguide Illuminated by Red Laser

Waveguide with 2 Crossings Connected 1st to 3rd Linecard Interconnect

Output Facet of the Waveguide Interconnection

Optical Backplane Connection Architecture

Backplane and Line Cards Orthogonal Connector housing **Parallel optical** transceiver **Copper layers** FR4 layers **Optical layer** Lens Backplane Interface xyratex.

Optical Backplane Connection Architecture

Butt-coupled connection approach without 90° deflection optics

Waveguide illuminated through buttcoupled fibre connection

xyratex•

ELECTRO-OPTICAL BACKPLANE

Hybrid Electro-Optical Printed Circuit Board

□ Standard Compact PCI

backplane architecture

□ 12 electrical layers for power

and C-PCI signal bus and peripheral connections

□ Electrical C-PCI connector slots

for SBC and line cards

□ 1 polymeric optical layer for

high speed 10 GbE traffic

- □ 4 optical connector sites
- Dedicated point-to-point optical

waveguide architecture

Compact PCI slot for single board computer

Optical

connector site

Compact PCI slots for line cards

C XYRATEX 2007

xyratex•

V_10 🕢

• 3V3 🕤 • 3V3 🕤

GND 😨

•5V 💿

12V

ELECTRO-OPTICAL BACKPLANE

Hybrid Electro-Optical Printed Circuit Board

□ Standard Compact PCI

backplane architecture

□ 12 electrical layers for power

and C-PCI signal bus and peripheral connections

□ Electrical C-PCI connector slots

for SBC and line cards

□ 1 polymeric optical layer for

high speed 10 GbE traffic

- 4 optical connector sites
- Dedicated point-to-point optical

waveguide architecture

Compact PCI slot for single board computer

Optical

connector site

Compact PCI slots for line cards

 \odot

Ο

00

• •

xyratex.

C XYRATEX 2007 Pb

• •

• •

Polymer optical waveguides on optical layer

V_10 🕢

GND

· 3V3

+3V3

GND 😨

+5V 💿

120 6

. 190

PARALLEL OPTICAL PCB CONNECTOR MODULE

Parallel optical transceiver circuit

Small form factor quad parallel optical transceiver

- □ Microcontroller supporting I²C interface
- □ Samtec *"SEARAY™"* open pin field array

connector

- Spring loaded platform for optical engagement mechanism
- Custom heatsink for photonic drivers

Backplane connector module

Samtec / Xyratex collaborate to develop optical PCB connector

□ 1 stage insertion engagement mechanism developed

X-V

52

Active Pluggable Optical Connector

Engagement process

- Optical transceiver interface floats
- □ Backplane receptacle "funnels" connector
- □ Cam followers force optical interface up
- Optical transceiver lens butt-couples to

backplane lens

xyratex•

HIGH SPEED SWITCHING LINE CARD

xyratex•

Research and Development Overview | **Richard Pitwon**

Demonstrator with Optical Interconnects

DEMONSTRATION ASSEMBLY

xyratex•

Research and Development Overview | Richard Pitwon

Demonstrator Management Software

GUI control interface

- □ Remote admin
- □ XFP control
- □ Crosspoint switch configuration
- □ Full transceiver control (VCSEL/PIN settings)

Acknowledgments

- University College London, UK
 - Kai Wang, Hadi Baghsiahi, F. Aníbal Fernández, Ioannis Papakonstantinou (now at CERN, Geneva, Switzerland)

Loughborough University, UK

- David A. Hutt, Paul P. Conway, John Chappell, Shefiu S. Zakariyah
- Heriot Watt University
 - Andy C. Walker, Aongus McCarthy, Himanshu Suyal
- BAE Systems, UK
 - Henry White
- Stevenage Circuits Ltd. (SCL), UK
 - Dougal Stewart, Jonathan Calver, Jeremy Rygate, Steve Payne
- Xyratex Technology Ltd., UK
 - Dave Milward, Richard Pitwon, Ken Hopkins
- Exxelis Ltd
 - Navin Suyal and Habib Rehman
- Cadence
 - Gary Hinde
- EPSRC and all partner companies for funding + IBM Zurich for fab.