
Reasoning about Order Errors in Interaction

Paul Curzon and Ann Blandford

School of Computing Science, Middlesex University, London, UK
{p . curzon. a. blandf ord)@mdx . ac . uk

Abstract. Reliability of an interactive system depends on users as well
as the device implementation. User errors can result in catastrophic sys-
tem failure. However, work from the field of cognitive science shows that
systems can be designed so as to completely eliminate whole classes of
user errors. This means that user errors should also fall within the re-
mit of verification methods. In this paper we demonstrate how the HOL
theorem prover [7] can be used to detect and prove the absence of the
family of errors known as order errors. This is done by taking account
of the goals and knowledge of users. We provide an explicit generic user
model which embodies theory from the cognitive sciences about the way
people are known to act. The user model describes action based on user
communication goals. These are goals that a user adopts based on their
knowledge of the task they must perform to achieve their goals. We use
a simple example of a vending machine to demonstrate the approach.
We prove that a user does achieve their goal for a particular design of
machine. In doing so we demonstrate that communication goal based
errors cannot occur.

1 Introduction

People commonly make mistakes when interacting with computer-based devices.
Whilst some errors cannot always be prevented, such as those caused by users
behaving randomly and maliciously, there are whole classes of error that have
distinct cognitive causes and are predictable 1131. Furthermore, changes t o the
design of systems can eliminate such errors [9,3]. Formal verification aims t o
either detect system errors or show their absence. If user errors can be eliminated
using appropriate design then their detection ought t o be within the remit of
formal verification methodologies. However, formal verification is generally done
in a machine-centered way. A consequence is that avoidable user errors are not
detected or corrected as part of the verification process.

In this paper, we describe a verification methodology for detecting user er-
rors. Our approach is t o formally model rational users as part of the system being
verified. We focus here on errors resulting from a mismatch between the device
design and the order a user expects to supply information or objects. This ex-
tends earlier work concerning a different class of errors known as post-completion
errors [5]. Our verification approach is capable of detecting both classes of error
simultaneously. The verification described has been fully machine-checked using
interactive proof with the HOL theorem prover 171.

We define a generic user model that can be instantiated for different ma-
chines. This user model describes rational user behaviour based on established
results from cognitive science [l l] . The verification approach therefore detects
rational user errors. This differs from similar approaches in which the environ-
ment of the machine is specified to provide the input required (treating users
as logical as opposed to rational agents). With such an approach user errors are
treated as never occurring. Our approach is also different from assuming that
the environment could perform any action a t any time (users as "monkeys at
keyboards"). That would amount to saying that whatever the user's goal and
whatever actions they perform, they will eventually achieve the goal. This is not
appropriate for interactive systems as the functionality of such a system would
need to be trivial for it to be considered "correct". Instead, our approach recog-
nises that users are important but do not act randomly. The user is described in
terms of the things they wish to achieve; the actions they may perform in order
to achieve those goals and in terms of the device-independent knowledge they
have about the task. We are interested in eliminating errors from systems that
occur when users act in this way as such errors are liable to be persistent.

2 Formal User Modelling

There are, broadly speaking, two main approaches to formal reasoning about
the usability of systems. One approach is to focus on formal specification of
the user interface; Campos and Harrison [4] review several techniques that take
this approach. However, such techniques do not support reasoning about errors.
The alternative, which we take in this work, is based on formal user modelling.
This involves generating a formal specification of the user in conjunction with
one of the computer system, in order to support reasoning about their conjoint
behaviour. It should be noted that a formal specification of the user is a de-
scription of the way the user is, rather than one of the way the user should
be, since users cannot be designed in the way that computer systems can [I].
Examples of formal user modelling include the work of Duke e t a1 [6], Butter-
worth e t a1 [2], Moher and Dirda [lo] and Paterno' and Mezzanotte [12]. Each
of these approaches takes a distinctive focus. Duke et a1 [6] use a mathematical
notation to express constraints on the channels and resources within an inter-
active system; this makes their 'syndetic modelling' technique particularly well
suited to reasoning about multi-modal interaction (such as that combining the
use of speech and gesture). Butterworth e t a1 [2] use Lamport's [8] TLA to rea-
son about behaviour traces and reachability conditions within an interaction;
this approach describes behaviour at an abstract level that does not support
re-use of the user model from one computer system to another, so while it can
support reasoning about errors, each model has to be individually hand-crafted.
Moher and Dirda [lo] use Petri net modelling to reason about users' mental
models and their changing expectations over the course of an interaction; this
approach supports reasoning about learning to use a new computer system -
which, in turn may be an important source of errors, but focuses on changes in

user belief states rather than proof of desirable properties. Finally, Paterno' and
Mezzanotte [12] use LOTOS and ACTL to specify intended user behaviours and
hence reason about interactive behaviour; their approach corresponds closely to
that which is done in state space exploration verification, but because their user
model describes how the user is intended to behave, rather than how users might
actually behave, it does not support reasoning about errors.

3 Classes of User Error

A common form of error made by humans in a wide variety of situations is the
Post-completion Error [3]. Examples include taking the cash but leaving a bank
card in an Automatic Teller Machine and leaving the original on the platen and
walking away with the copies when using a photocopier. Most ATM machines
have been redesigned to force users to remove their cards before cash is delivered
to avoid this problem, but the phenomenon persists in many other environments.
There are of course other situations where a user does not complete all the sub-
tasks associated with a main goal. For example, if a fire alarm went off whilst
a person was using a photocopier, they might not take their original. However,
such an error would not be a post-completion error in our sense as it would have
a different underlying cause. A design that eliminated post-completion errors
would not necessarily guarantee the user would not make the same surface level
"mistake" for other reasons.

Post-completion errors are interesting because they are not predictable (i.e.
they do not occur in every interaction) but they are persistent. They are not
related to missing knowledge so cannot be eliminated by increased user train-
ing. They can, however, be eliminated with careful system design. Curzon and
Blandford [5] illustrate the use of HOL to reason about such errors by consid-
ering alternative device designs. Here we develop that approach by extending
the generic user model to identify a new class of errors with a distinctive cogni-
tive cause. In particular, we look at errors that occur when there is a mismatch
between the design of a device and the knowledge that a user has about the
task (independent of the particular device used to complete that task). A user
will often know of specific information that must be communicated to any such
device for the task to be completed. They may not know precisely how or when
the information must be imparted to a particular machine. They thus maintain a
mental list of communication goals: information that they must communicate a t
some point. If the order that the information must be imparted to the machine
is not known, or the user's mental model of the task suggests a different order
then order errors can result. The user attempts to fulfill their goals in an order
different to that required by the machine.

Order errors can also arise due not to information that must be commu-
nicated, but to objects that must be supplied: an ATM card, coins, etc. For
example, with a vending machine, the user will know they must make a selec-
tion of chocolate and that they must supply money, but for a given machine they
will not necessarily know the order. If they know exactly what they want but not

the price, they may be inclined to press the selection first (some machines would
display the price at this point). Alternatively, they may have the coin in their
hand and so insert it first before working out exactly which buttons to press to
make their selection.

Each of the above classes of errors have distinct cognitive causes. We provide
a verification approach that detects such errors in a structured way. Whilst we
cannot eliminate all user errors, we can eliminate whole classes of error that have
such specific cognitive causes.

4 Proving Usability

A proof of usability, in the sense that particular classes of errors cannot occur,
involves proving a theorem of the form

I- V(ustate: ustate-type) (mstate: mstate-type) .
MACHINE-USER ustate mstate A MACHINE-SPEC s mstate 3

MACHINE-USABLE us ta t e mstate

MACHINESPEC is a traditional machine specification: a relation over an inter-
nal state s and inputs and outputs mstate. The latter represents the interface
between the device and its users. States and signals are represented by history
functions: functions from time to the value at that time. MACHINE-USER is also a
specification of a component of the system: the user of the device. It describes
the actions a rational user might take based on their knowledge and goals. It is
a relation on an internal user state ustate and the inputs and outputs of the
device. We will look a t in more detail in the next section. The conjunction of
these two relations provides a specification of the system as a whole: both device
and user. The conclusion we prove about this combined device is not phrased
in terms of what the device can do, or explicit properties of it. Instead it is
a specification of whether the user achieves their goal in interacting with the
device.

Note that the above usability theorem is of the basic form

I- implementation 3 specification

It can thus easily be combined with a traditional correctness theorem that an
implementation of the machine meets the given specification [5] .

In one sense the user model fills a similar role to an environment machine
in traditional model-checking based verification. It provides inputs to the device
being verified. The difference is not in the fact that such an environment is pro-
vided but in the kind of environment provided. Rather than providing values
based on what the machine specification requires, or on other devices connected
to the device, it is modelling the way people behave based on results from cogni-
tive science. The user of course may not be providing all the inputs to the device.
Thus unlike with an environment machine, the combined user-device system is
not necessarily closed. We are treating the user as part of the system under ver-
ification, rather than just a test rig to verify the system. The kind of errors we

are looking for are those that result from the user component of the system, but
which can be eliminated by modifying the device component of that system.

5 A Generic User Model

We could adopt the approach of providing a separate user model for each dis-
tinct device that we wish to verify. However, this approach could lead us back
into a machine-centered specification approach, specifying users that do exactly
what the specific device requires of them. Moreover, we wish to detect classes
of user error that are widespread and not just confined to specific devices. It
therefore makes sense to provide once-and-for-all a generic user model that in-
corporates cognitive science theory about the way people behave in general.
Such a generic model can then be targeted to specific machines, simply by pro-
viding details about the machine state, the user's knowledge of the task and
their goals. Higher-order logic provides an elegant framework in which to specify
such a generic model. It allows functions and relations providing details of a
specific interaction to be an argument to the generic user model. For example to
support reasoning about post-completion errors the user model contains general
machinery regarding termination conditions. This is defined in terms of a vari-
able representing an interaction invariant: a relation indicating the part of the
state that should be restored for the task to be considered completed. The user
model takes a specific instance of such an invariant as an argument.

The generic user model is given as a relation USER over the user and machine
states as described above. In addition however, it takes a series of other argu-
ments representing the details of the specific machine. To instantiate the user
model for a given machine, we must provide:

- concrete types for the state of the machine and of the user,
- a list of actions a user might take (inserting coins, pushing buttons, etc),
- a history function to record the communication goals of users of the device

at each instant in time,
- a list giving the user's initial communication goals,
- a list pairing device outputs with user inputs, indicating relationships where

the output is intended to make the user react by taking the action resulting
in the input (for example, a light might be located next to a button, with
the light being on indicating the button should be pressed),

- history functions recording the possessions of the user and how they change
over time as the interaction progresses,

- a history function recording when the user terminates the interaction (by
leaving the device) together with that signal's position in the list of possible
actions,

- the goal users of the device are trying to achieve, and
- a history function describing an interaction invariant that should hold both

at the start and end of the interaction.

We will discuss each of these in more detail below as we describe the definition
of the user model.

The core of the user model is a series of temporally guarded statements
about possible actions a rational user might take. For example, one disjunct is
associated with each of the paired lights and actions, reflecting the fact that a
rational user could react to a light coming on by pressing the associated button.
This is specified by:

k LIGHT user-actions l i g h t action ppos (mstate: 'm) t =
(l i g h t mstate t = T) A
NEXT user-actions (action mstate) ppos t

This states that if the light is on at a time t then the next action performed by
the user from the list of possible actions u s e r a c t i o n s will be the one paired
with the light (act ion). Since this is just one clause of a list of disjuncts, it is not
guaranteed that the action will be taken. A recursive definition LIGHTS forms a
disjunct of all the pairs in the given list of lights and actions. Note that mstate
(similarly ustate) has a polymorphic type in this and the other definitions of this
section representing the fact that we are defining a generic user model that can
apply to machines and users with different states.

The relation NEXT specifies the next action to occur. To define it we first
define relations LSTABLE and LF. The former is used to specify that the signals
do not change in some interval. The latter then states that at the end of that
interval all but one of the signals remains false.

More formally, LSTABLE is a temporal operator that states that all the history
functions in the given list have a value v between the start and end time.

k (LSTABLE [I tl t 2 v = T) A
(LSTABLE (CONS a 1) tl t 2 v =

(Vt. t l <= t A t < t 2 3 (a t = v)) A
(LSTABLE 1 t l t 2 v))

LF states that all but one of the actions in the list (that indicated by position
ppos) are false at a given time. This is defined recursively on the action list.

k (LF n [I P ppos t = T) A
(LF n (CONS a 1) P ppos t =

(((n = ppos) V - (a t)) A (* miss the numbered s ignal *)
LF (n+l) 1 P ppos t))

Note that we can not simply use a list MEMBER function here as it would
check whether the values in the list were equal to one being checked. We wish to
identify a specific action, not the value of an action. In the absence of a syntax
for user actions, we use the position in the list to identify the action.

NEXT uses the above definitions to specify that there is a time later than that
given when the action identified by the position occurs (its history function is
true), the other actions do not occur (their history functions are false), and for
which all the actions do not occur in all the intervening time instances.

I- NEXT a1 P ppos t i =
3 2 . t l <= t 2 A (LSTABLE a1 t l t 2 F) A (LF 0 a1 P ppos t 2) A (P t 2)

If the temporally guarded statements that make up the user model were based
only on the pairs of lights and actions as defined above, we would be specifying
a reactive user who did exactly what was required. However, other clauses are
included to reflect rational behaviour based on user goals and knowledge. The
first such disjunct describes the fact that a rational user may terminate the
interaction on achieving their goal. If this action is taken, before the user's
interaction invariant is restored, a post-completion error is made.

COMPLETION user-actions f in ished finishedpos goalachieved ustate t =
(goalachieved ustate t = T) A
NEXT user-actions (f inished ustate) f inishedpos t

In this paper we are primarily concerned with errors that result from devices not
taking communication goals of users into account. For more detail of verification
of designs with respect to post-completion errors see [5].

As discussed earlier, a user of a device generally enters into an interaction
with some knowledge about the task. Specifically they are likely to know of some
of the information that must be communicated to the device, because they know
the task cannot be completed, whatever the device design, unless it receives this
information. They will not necessarily know the order the information must be
communicated, however.

We model this using a list of actions, corresponding to the communication
goals. We first extract the communication goal list from the user state for the
time of interest. This allows COMMGOALS to be defined recursively on that argu-
ment.

I- COMMGOALER user-actions actions goal ustate mstate t =
COMMGOALS user-actions (actions ustate t) goal ustate mstate t

This gives a list of communication goals with their position in the list of all
possible actions the user could perform. We recurse on this list to produce a list
of action disjuncts based on the communication goals.

1- (COMMGOALS userac t ions [I goal ustate mstate t = F) A
(COMMGOALS user-actions (CONS a actions) goal ustate mstate t =

((COMMGOALS user-actions actions goal ustate mstate t) V
(COMMGOAL user-actions (FST a) (SND a) goal ustate mstate t)))

COMMGOAL describes a temporally guarded action similar to LIGHT and COMPLETION
given earlier. A separate relation is defined for this for consistency throughout
the user model: each guarded action is given by a similar definition. Provided
the user's main goal has not yet been achieved, the next action they will take if
this disjunct is activated (i.e. true) is the given communication goal.

I- COMMGOAL user-actions action n goal ustate mstate t =
-(goal ustate t) A
NEXT user-actions (action mstate) n t

Since all the communication goals are disjuncts and all have the same guard,
no ordering of them is prescribed by these definitions. The user may attempt
to complete them in any order. Once a communication goal related action has
been completed, it will cease to be a communication goal. We examine how this
is specified below.

Each of the actions that a rational user might make when confronted with the
machine are combined in a single definition GENERAL-USER-CHOICE. It contains
a final default disjunct, ABORTION. It asserts that if none of the guards of the
other disjuncts hold (and so no rational action is available) then the user will
terminate the interaction without having achieved their goal.

I- GENERAL-USER-CHOICE user-actions comgoals lights-actions
finished finishedpos goalachieved mstate ustate t =

COMMGOALER user-actions commgoals goalachieved ustate mstate t V
LIGHTS user-actions lights-actions 0 mstate t V
COMPLETION user-actions finished finishedpos goalachieved ustate t V
ABORTION user-actions finished finishedpos goalachieved commgoals

lights-actions ustate mstate t

This relation describes the series of options that a user has open to them on
any given cycle. There are other conditions that must apply at every instance
in time, however. For example, we assume it is always the case that if the user
terminates the interaction then they cannot then continue with it.

Vt. finished ustate t 3 finished ustate (t+l)

We similarly assume various rules about the possessions of a user. For exam-
ple, we assume it is always the case that if a user gives up a possession then they
have one less of that possession. These rules are encapsulated into a relation
POSSESSIONS. We omit the details of this relation here.

We also assert universal properties of the communication goal list. It is not a
constant over time. As the user performs the actions associated with a commu-
nication goal, that goal is discharged and so is removed from the user's internal
list of things to do: it ceases to be a communication goal. This behaviour is
modelled by asserting that if an action that appears on the communication goal
list occurs at a time t , then that action will be removed from the communication
goal list on the subsequent cycle.

I- (FILTER [I mstate t = [I) A
(FILTER (CONS a actions) mstate t =

if (FST a) mstate t then (FILTER actions mstate t)
else (CONS a (FILTER actions mstate t)))

I- FILTERHLIST mstate hlist = Vt. hlist (t+l) = FILTER (hlist t) mstate t

I- FILTER-USERHLIST ustate mstate hlist = FILTERHLIST mstate (hlist ustate)

The separate relations describing universal properties are cojoined together
into a single relation GENERAL-USER-UNIVERSAL.

I- GENERAL-USER-UNIVERSAL commgoals possessions finished ustate mstate =
(Vt . finished ustate t 3 finished ustate (t+l)) A
(POSSESSIONS possessions ustate mstate) A
(FILTER-USERHLIST ustate mstate commgoals)

We need two further elements to our generic user model, however. We must
assert that at the start of the interaction, the user's communication goals are in
fact those supplied as the initial list.

I- USER-INIT cgoals init-cgoals ustate = (cgoals ustate 0 = init-cgoals)

Finally we must describe the situation where the user terminates the inter-
action normally. We have considered the situation where a user completes their
goal and leaves. However, we argued that this may lead to post-completion er-
rors. Normal, non-erroneous termination involves leaving not just when the goal
is completed, but also when any necessary house-keeping tasks have been com-
pleted. A non-device specific way of describing this is by using the notion of
an interaction invariant that the user wishes to maintain. The invariant may be
perturbed in the course of the interaction, but must be reinstated by the time
the interaction is terminated.

If the goal is achieved and the interaction invariant satisfied, then we assume
that the rational user will always terminate the interaction as the next action.
If either condition is not fulfilled, the user will take some action from the set of
options. This is combined with the initialisation and universal relations to give
the complete generic user model.

I- USER user-actions commgoals init-commgoals lights-actions possessions
finished finishedpos goalachieved invariant ustate mstate =

(USER-INIT commgoals init-commgoals ustate) A
(GENERAL-USER-UNIVERSAL commgoals possessions finished ustate mstate) A
(Vt .

if ((invariant ustate t = T) A (goalachieved ustate t = T))
then NEXT user-actions (finished ustate) finishedpos t
else GENERAL-USER-CHOICE user-actions commgoals lights-actions

finished finishedpos goalachieved mstate ustate t)

This user model, instantiated with the details of a specific machine, specifies
aspects of a general rational user of that machine. Because all the options are
modelled as guarded disjuncts, the model does not specify that users always
make mistakes, just that they are capable of making mistakes of specific kinds. To
verify that the modelled user always achieves their goal, the device specification
must be such that the opportunities for such errors are not present. For example,
if a chocolate machine design always gives out change before chocolate, the guard
on the COMPLETION disjunct will only be activated when the interaction invariant
has already been restored. In this way we have provided a facility which can be
used to verify that whole classes of errors cannot occur with a given design.

6 Case Study: A Chocolate Machine

To demonstrate how our user model can be used to verify the absence of classes
of errors we will look at a simple case study. In [5] we used an earlier, less
sophisticated version of the user model to investigate the verification of simple
vending machines with the potential for post-completion errors. Here we consider
a similar example, but instead concentrate on communication goal related errors.
The design consists of features that appear in real machines. However, it has been
reduced to the simplest form with which to demonstrate our approach.

Our chocolate machine takes exact money only and it is assumed it will only
take a single coin of that value. To release the chocolate a button must be pressed
(this is intended as a simplified version of the selection that most machines would
offer). The design of the machine could require a specific ordering: coin inserted,
then button pressed, or button pressed then coin inserted. In either case order
errors could result. The problem can be eliminated if either order is allowed. We
verify here a machine that does allow either ordering. We will also discuss the
effect of trying to verify faulty designs. We assume for the sake of simplicity that
the chocolate machine always contains chocolate.

We formally specify the chocolate machine using a traditional finite state
machine description (see Figure 1) within higher order logic. The specification is
represented by a relation on the machine's inputs and outputs. We group these
inputs and outputs into a tuple of history functions to represent the machine
state. We define a new type mstate-type to represent this. The machine has
two inputs indicating that the button has been pressed and that the coin has
been inserted. It has a single output that releases chocolate. Each of the history
functions is a function from time (a natural number) to booleans indicating
the value of the signal at that time. We define a series of accessor functions to
obtain the values of particular components of the state. For example the function
Insertco in extracts from a machine state the history function representing the
coin slot.

We define a new enumerated type ChocState to represent the 4 finite state
machine states (as opposed to the state representing the values input and output
discussed above).

ChocState = RESET-STATE I COIN-STATE I CHOC-STATE I DONE-STATE

The RESET state is the initial state. In the DONE state the chocolate is released.
The COIN state is the state in which a coin has been inserted but the button
not pressed and vice versa for the CHOC state.

For each state we define a relation indicating the value on the single output
in that state, together with a relation indicating the next state. These are then
combined in a relation giving the full specification for that state. For a small
example such as that considered here, it might be simpler to just have one
definition giving the whole automaton. However such an approach would not
scale: in particular the resulting specification would be much less readable.

For example when in the RESET state the machine does not release chocolate
so the value of the output is false.

-1nsertCoin and
-PushChoc

Insertcoin

-Insertcoin

\4c/ GiveChoc

Fig. 1. Finite State Machine Specification of the Chocolate Machine

I- RESET-OUTPUTS (m s t a t e : m s t a t e - t y p e) t = (G i v e C h o c m s t a t e t = F)

We also give a relation representing the next state for each state. If a coin is
entered it moves to a COIN state in the next cycle, if the button is pressed it
moves to the CHOC state and otherwise it remains in the RESET state.

k RESET-TRANSITION s m s t a t e t =

if Insertcoin m s t a t e t t h e n (s (t + l) = COIN-STATE)
else if P u s h C h o c m s t a t e t t h e n (s (t + l) = CHOC-STATE)

else (s (t + l) = RESETSTATE)

For each state these two relations are combined in a relation that gives the whole
behaviour (for example RESETSPEC for the RESET state). A single definition
then gives the full specification of the machine in terms of these definitions.

I- CHOCJlACHINE-SPEC s m s t a t e =
V t . if (s t = RESET-STATE) t h e n RESET-SPEC s m s t a t e t

else if (s t = COIN-STATE) t h e n COIN-SPEC s m s t a t e t
else if (s t = CHOC-STATE) t h e n CHOC-SPEC s m s t a t e t

else DONE-SPEC s m s t a t e t

7 Instantiating the User Model

To target the generic user model to a given machine we must provide values for
all the arguments to USER except for the user state and machine state. For these
we provide concrete types to instantiate the type variables given as their type.

The type of the machine state is just that used in the machine specification
defined above: a tuple of history functions. For the user state we must provide
a state consisting of a tuple of 6 elements. These elements are history functions
that record for each time instance whether the user has chocolate, whether they

have a coin, whether they have terminated the interaction, a count of the amount
of chocolate they possess, a count of the number of coins they possess, and a
list of their communication goals paired with numbers giving the position of the
corresponding action in the full list of actions. An accessor function for each part
of the state is defined. For example, Usercommgoals extracts the communication
goal list from the state.

The first argument we provide to USER is a list of all the possible user actions
indicated by their history functions: the state extractor applied to the appropri-
ate state tuple.

[InsertCoin mstate; PushChoc mstate; UserFinished ustate]

The second argument is the state extractor for the communication goals,
Usercommgoals. We must also provide the initial communication goal list with
which the user enters the interaction. In this case we assume that the user knows
they must insert a coin at some point and that they must make a selection (push
the chocolate button). This would be determined using a device-independent task
analysis of the task of getting chocolate. We use the state extractor function to
represent each communication goal. These are paired with a number giving their
position in the full action list.

[(InsertCoin, 0) ; (PushChoc, 111

Note that, strictly speaking, inserting a coin is not a communication goal as
it is concerned with property rather than information about a selection to be
made. We intend in a later version of the user model to deal with these two
kinds of knowledge separately. The main ramification for the theorem proved
here is that as a communication goal no check is made in the user model as to
whether the user has a coin as one of its possessions. This means the correctness
theorem though not explicitly stating it says nothing about what happens if the
user tries to insert a coin that they do not have.

Our particular machine provides no output to the user to indicate what
must be done so an empty list is provided as the next argument for the pairings
between outputs and the corresponding reactive input. A case study concerning
post-completion errors where reactive pairings are provided can be found in [5].

We must also indicate the possessions of the user and how they are affected by
particular actions. A relation CHOCPOSSESSIONS gathers this information into
an appropriate form, given the history functions for the user having chocolate
and coins, the machine giving chocolate, the user inserting a coin and counts of
the number of coins and chocolate bars possessed.

CHOCPOSSESSIONS UserHasChoc GiveChoc CountChoc
UserHasCoin InsertCoin Countcoin

We specify which accessor functions to the user state indicate when the user
has terminated the interaction, UserFinished, together with the number of its
position in the list of actions (as with the communication goals). We also specify

the state accessor specifying the user's main goal in taking part in the interaction,
UserHasChoc.

Finally we must provide the invariant that the user wishes to restore by the
end of the interaction. For vending machines this can be based on the value
of the user's possessions. After interacting with a vending machine a user does
not wish the value of their total possessions to be less than they were at the
start. This is described by a history predicate VALUE-INVARIANT. We omit the
definition here.

The general model for the chocolate machine is specified by providing each
of the arguments discussed above to the generic user model and restricting the
types of the states to be the concrete types for the chocolate machine.

k CHOCAACHINE-USER (ustate:ustate-type) (mstate:mstate-type) =
USER [Insertcoin mstate; PushChoc mstate; UserFinished ustate]

UserComgoals [(Insertcoin. 0); (PushChoc. 111
. . . ustate mstate

8 Verifying Usability

The usability correctness theorem we have proved in HOL has the following
form:

k 'dustate mstate s.
CHOCAACHINE-USER ust ate mstate A CHOCAACHINE-SPEC s mstate 3

(S 0 = RESET-STATE) A ~(UserHasChoc ustate 0)
3 (3 2 . UserHasChoc ustate t2)

This is of the general form discussed earlier. The usability specification part
of the theorem states that if we assume the vending machine starts in its reset
state, and the user does not have chocolate but has communication goals of
inserting a coin (paying money) and pushing the chocolate button (making a
selection), then there will exist some time at which the user does have chocolate
(i.e., has achieved their main goal).

This theorem is essentially proved using simulation by proof. An induction
principle concerning the stability of a signal is used repeatedly. This essentially
states that:

- if the value of some boolean signal P is stable over an interval,
- a second signal, Q, is true at the start of that interval, and
- if Q is true at some time, but P has the stable value at that time, then Q will

be true at the subsequent time,
- then Q will be stable over an interval starting at the same point but extending

one cycle later.

This is used to step the simulation over periods of inactivity.
In proving the usability theorem we have not proved that users using the

machine will never make an error. We have, however, proved that no user will
make the classes of errors with known cognitive causes specified in the user

model. In particular, we have proved that a user will not make order errors
due to communication goal mismatches, provided they start with the stated
communication goals. If these communication goals are identified using a device-
independent task analysis then they will be consistent with the majority of users.
Since such errors are both common and persistent as discussed in Section 3 the
reliability of the system as a whole is consequently improved.

Consider an attempt to verify a design which requires the coin to be inserted
before the button was pushed. This proof attempt would fail because the user
model allows the user to do either of the communication goals first. If they
pushed the button first, this action would be removed from their list of goals:
they would believe the selection made. On then inserting a coin to complete
their other goal, there would be no longer anything in the user model to compel
them to press the button. We thus would be required to prove that they pushed
the button, with no assumptions with which to do this. Of course a real user
would in this case eventually work out the problem and go on to complete the
interaction. However, the user error has already occurred.

9 Conclusions

We have described a formal verification methodology which detects classes of
user error. In particular we have so far considered order errors based on com-
munication goal mismatches and post-completion errors. These classes of errors
are considered because they can be eliminated by appropriate design.

Our approach involves defining a generic user model which describes the be-
haviour of rational users. As with real users, erroneous behaviour is not specified
to occur during every interaction. It is just specified as a potential behaviour.
Given that potential behaviour exists, if it can be proved that the user does even-
tually achieve their goal, then it has been proved that the erroneous behaviour
cannot manifest itself with the device under verification.

The use of a generic user model reduces the work required to produce a user
model for each new device considered. More importantly, it reduces the chances
that the user model is created in a device-centered way, specifying that the user
behaves as expected by the designer of the device. It is based only on cognitive
science theory that is generally applicable.

As alternative approach would be to write liveness properties corresponding
to a list of known user errors for each system to be verified. However, to do so
would require informal reasoning to determine the manifestation of the error from
rational behaviour for every new device considered. For example, the order errors
considered here are errors because the user does not have perfect knowledge of
the design. Post completion errors are errors dependent on the user's goals. It is
only by reasoning about the user's goals and knowledge that we determine the
actions for which the ordering is important and determine what that ordering
should be. In our approach, this reasoning is formalised and machine-checked.
The general rational behaviour is specified once and the errors emerge.

The fact that a common user model is used means that the proofs for different
devices are very uniform, increasing the possibilities for automation of the proof.
For examples as simple as that presented here to illustrate the ideas it is likely
that fully automated model checkinglstate-space exploration based verification
tools could be used. However, when more realistic devices are considered it is
likely that the additional power of an interactive theorem prover will be required.
Furthermore, higher-order logic provides an elegant way in which a generic user
model can be specified. It seems likely that this kind of proof would be a good
application for a combined verification tool. The instantiated user model would
be instantiated in HOL and exported to the automated system. Higher level
details of the proof would be dealt with in HOL, with state exploration con-
ducted in the automated tool. HOL could also be used to combine the usability
correctness theorem with more traditional system verification theorems.

We used a very simple example of a chocolate machine to demonstrate the
approach. We instantiated the generic user model with the details of a specific
machine designed to avoid order errors. Despite the machine giving no indication
of the steps required, because its design works with the communication goals of
the task, it is usable. We also discussed how the proof would fail if other er-
roneous designs were considered. The design works because it has a permissive
interface, allowing users to supply information in any order. It might be argued
that such an approach could always be used. However, post-completion errors
occur if the ordering of actions by the user is such that the user can complete
their main goal before other required actions have been completed. Thus to avoid
post-completion errors we must do the opposite of making the interface permis-
sive. We must instead force a specific order. For example, if a machine dispensed
change, it would be important that it was not dispensed before the chocolate.
We investigated the verification of post-completion errors in an earlier paper (51.
There we investigated vending machines with and without post-completion er-
rors. Our present user model has the ability to simultaneously detect order errors
and post-completion errors. In future work we will investigate more complex ma-
chines and other classes of user errors. We will also look at machine designs with
the potential for making multiple classes of errors. When considering a single
class of error in isolation, it is relatively easy to ensure it is not present. When
multiple kinds of errors are considered it is very easy to remove one kind of error,
only to introduced another. This is where having a single generic user model is
beneficial, since it ensures errors are not missed. It is in this situation that our
verification approach will be of most use.

Acknowledgements This work is funded by EPSRC grants GRIM45221 and
GR/L00391. The work was done in part whilst the first author was visiting
Cambridge University Computer Laboratory.

References

1. R. Butterworth, A. Blandford, and D. Duke. Demonstrating the cognitive plausi-
bility of interactive system specifications. Submitted to FACS journal. Available

from http://www.cs.mdx.ac.uk/puma/ as working paper WP25.
2. R.J. Butterworth, A.E. Blandford, and D.J. Duke. Using formal models to explore

display based usability issues. Journal of Visual Languages and Computing, 10:455-
479, 1999.

3. M. Byrne and S. Bovair. A working memory model of a common procedural error.
Cognitive Science, 21(1):31-61, 1997.

4. J.C. Campos and M.D. Harrison. Formally verifying interactive systems: a review.
In M. D. Harrison and J. C. Torres, editors, Design, Specification and Verification
of Interactive Systems '97, pages 109-124. Wien : Springer, 1997.

5. Paul Curzon and Ann Blandford. Using a verification system to reason about post-
completion errors. Presented at Design, Specification and Verification of Interactive
Systems 2000. Available from http://www.cs.mdx.ac.uk/puma/ as working paper
WP31.

6. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-
Computer Interaction, 13(4):337-394, 1998.

7. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

8. L. Lamport. The temproal logic of actions. ACM Transactions on Programming
Languages and Systems, 16:872-923, 1994.

9. W - 0 Lee. The effects of skills development and feedback on action slips. In Monk,
Diaper, and Harrison, editors, People and Computers VII. Cambridge University
Press, 1992.

10. T.G. Moher and V. Dirda. Revising mental models to accommodate expectation
failures in human-computer dialogues. In Design, Specification and Verification of
Interactive Systems '95, pages 76-92. Wien : Springer, 1995.

11. A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.
12. F. Paterno' and M. Mezzanotte. Formal analysis of user and system interactions

in the CERD case study. In Proceedings of EHCIJ95: IFIP Working Conference on
Engineering for Human-Computer Interaction, pages 213-226. Chapman and Hall
Publisher, 1995.

13. J. Reason. Human Error. Cambridge University Press, 1990.

