
PUMA Footprints:
linking theory and craft skill in usability evaluation

Ann Blandford, Richard Butterworth & Paul Curzon

Interaction Design Centre, School of Computing Science, Middlesex
University, Bounds Green Road, London N11 2NQ, UK

A.Blandford@mdx.ac.uk

Abstract: ‘Footprints’ are marks or features of a design that alert the analyst to the possible existence of
usability difficulties caused by violations of design principles. PUMA Footprints make an explicit link between
the theory underlying a Programmable User Model and the design principles that can be derived from that
theory. While principles are widely presented as being intuitively obvious, it is desirable that they should have a
theoretical basis. However, working directly with theory tends to be time-consuming, and demands a high level
of skill. PUMA footprints offer a theory-based justification for various usability principles, with guidelines on
detecting violations of those principles.

Keywords: PUM, cognitive modelling, design principles, guidelines, usability evaluation, craft skill

1 Introduction

User modelling has had a small but important place
in Human-Computer Interaction over many years,
providing approaches that support rigorous, user-
centred reasoning about user behaviour with
interactive systems. Examples of such approaches
include GOMS (Card, Moran & Newell, 1983),
Cognitive Walkthrough (Wharton et al., 1994),
Cognitive Reliability and Error Analysis Method
(Hollnagel, 1998), Cognitive Work Analysis
(Vicente, 1999) and Programmable User Modelling
(PUM: Young, Green & Simon, 1989). There are
arguments and counter-arguments about the costs and
benefits of cognitive modelling in design. For
example, advocates of GOMS, which has retained its
explicit link with the underlying theory, make a
point of arguing that the benefits of modelling
outweigh the costs (e.g. Gray et al., 1993; John &
Kieras, 1996). In contrast, the developments in
Cognitive Walkthrough over time (Polson & Lewis,
1990; Lewis & Polson, 1991; Wharton et al., 1992;
Wharton et al., 1994) can be interpreted as a process
of seeking a balance between ease of learning, ease of
application, and depth of understanding obtained
through application. However, May and Barnard

(1995) criticise Cognitive Walkthrough as having
lost touch with its underlying theory, and hence of
having lost its authority. Coming from the other
direction, authors such as Nielsen (1994) propose
lightweight approaches to usability evaluation that
are quick and easy to apply, but that have little
explicit link to any relevant theory. The work of
Connell and Hammond (1999) indicates that
heuristics are sufficient for identifying surface
difficulties, but that more theoretically grounded
usability principles enable expert evaluators to
identify deeper difficulties with a design (though
novices have difficulty applying principles
effectively).

The tensions between theoretical grounding and
ease of application have been experienced in the
development of Programmable User Modelling from
the early aspirations (Young et al., 1989) through
the development of prototype tool support (Blandford
& Young, 1993) and studies of learnability
(Blandford, Buckingham Shum & Young, 1998) to
work on lightweight PUM Analysis (Good &
Blandford, 1999). In this paper, we provide a
collection of (lightweight) usability principles and
inspectable justifications for them based on a simple
(theory-based) representation of the user as a rational
problem solver. With this, we present simple

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1685442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

descriptions of the features of a design that indicate
violations of the principles.

These principles share much in common with the
principles presented by Dix et al. (1998) and
Shneidernman’s (1998) ‘Golden Rules’. Indeed, some
of the principles are identical, the difference being
that we give a theory-based derivation for them while
previous authors have tended to present them without
particular justification beyond their ‘obviousness’.
The principles presented here can be used to identify
‘PUMA footprints’ in design. ‘Footprints’ are the
marks in the design that alert the analyst to particular
potential usability difficulties. The PUMA footprints
do not encapsulate all possible errors, but those that
are a consequence of breakdowns in the user’s
knowledge-based interactive behaviour, which is
what PUM modelling focuses on.

2 PUM Analysis: an Overview

PUMA works from the position that the user is a
rational agent, as discussed more fully by
Butterworth & Blandford (1999). In particular, the
problem-solving of the modelled user is based on
mini-planning (Young et al., 1989).

In principle, a PUM analysis involves
‘programming’ a cognitive architecture that
implements rational problem-solving behaviour with
knowledge. This helps to identify difficulties in
creating that ‘user program’: if it is difficult to define
the user knowledge, then it is likely to be difficult
for the user to acquire and apply the necessary
knowledge. In addition, the resulting ‘user model
program’ can be run with a device program to
identify likely interactive behaviours, as discussed by
Monk (1999). In practice, when conducting analyses
of substantial designs it is more common to identify
potential problem areas without conducting a full
analysis, relying on a measure of craft skill; once the
main problem areas are identified, then a fuller
analysis may be conducted to investigate them
further. PUMA footprints are a product of reflecting
on that process: given an understanding of how
rational users apply their knowledge in working with
a design, how does that appear in a craft-based
analysis? What is it that a PUM analyst is doing in
the early stages of evaluating a system design?
There are clearly at least two aspects to early
analysis: one is gaining a deep understanding of the
design; another is considering that design from a
particular standpoint. Taking the PUM standpoint,
the design is viewed from the perspective of users’
mini-planning.

As illustrated in Figure 1, mini-planning goes,
broadly speaking, through the following stages:
♦ Given a goal, the user identifies conceptual

operations that will make progress towards the
goal state. An operation comprises linked
knowledge about actions, preconditions and
effects, as shown in Table 1. Depending on the
style of interaction, the identified operation is
likely to be one of:
♦ An immediately doable step (this is typical

of display-based interaction); or
♦ An operation that deals with the biggest

difference between the current state and the
goal state (e.g. most travellers will worry
about booking their airline tickets before
the relatively small problem of how to get
to the airport when travelling abroad). This
is standard means-ends analysis.

♦ If there are multiple candidate operations then
the user has to select between them. The choice
may involve additional knowledge, or it may be
arbitrary (the user does not have knowledge to
distinguish between the operations), in which
case there is a space of possible behaviours.

♦ If the operation can be performed immediately,
then it will be; the user has to perform the
action(s) corresponding to the operation.

♦ If the operation cannot be performed
immediately, the user adopts the preconditions
as goals and aims to address them too.

♦ The user’s knowledge of the state of the device
is updated by observing visible changes, and by
tracking known (predictable) changes.

The ‘cycle’ of rational interactive behaviour,
which involves a mix of mini-planning and reacting,
is more fully described elsewhere (e.g. Blandford,
Buckingham Shum & Young, 1998); here we have
outlined it just to derive a set of usability properties
from it.

Knowledge of

state & goals

Outstanding

goals

Goal

Possible
operations

Doable
operation

Device state

Updated

device state

User Device

Not doable
operation

action

perceive
new state

update

select

identify

select

subgoal

invoke

track
predictable

changes

Figure 1: approximate cycle of interactive
behaviour

PUM Analysis involves considering how the
user exploits knowledge within the interaction, and
hence what properties the device and task structure
must have to support the user effectively. By

considering a range of tasks the device is intended to
support, we can use this basic understanding of user
cognition and user needs to identify possible
breakdowns. Full PUM analysis involves laying out
the user’s knowledge using an ‘Instruction Language’
(IL). We can use this to structure our derivation of
footprints and principles. Table 1 lays out the types
of knowledge needed and the section of this paper in
which each knowledge type is discussed. For each of
these classes of knowledge, we can identify possible
breakdowns that correspond to violations of design
principles.

Knowledge type Sec.

domain and device concepts the user has to, or
does, work with

3.1

relationships between those concepts that the
user has to understand

3.1

user’s knowledge of operations, consisting of:

the parameters of an operation (i.e. the
concepts it manipulates)

3.2

the purpose of the operation (what goal
does it address?)

3.3

tracked (predicted) effects 3.3

subgoaling preconditions (what does the
user have to make true before this
operation can be applied?)

3.4

actions to be performed to execute
operation

3.5

the filtering conditions (what has to be
true before this is a sensible operation to
apply?)

3.6

user’s initial knowledge of state 3.6

device commands and their effects, including
what is displayed and the initial device state

3.6

user’s task 3.7

Table 1: Summary of knowledge types.

3 Footprints

As outlined in the introduction, footprints are marks
of the design that alert to the possible presence of a
usability difficulty. If we start from the high-level
design principle that users should be able to apply
their knowledge within the interaction to achieve
their goals, we can identify lower level design
principles that relate to particular aspects of the goals

and knowledge and hence to features of the device –
for example, that features should be discoverable, and
the state observable. If the device does not support
the user well in applying knowledge to achieve goals
in a particular way, then that is the footprint of a
particular difficulty. Each of the following sections
discusses one class of difficulties and their
corresponding footprints.

3.1 Domain-Device Misfits
Many usability problems derive from a mismatch
between the user’s and the device’s conceptualisation
of the entities and operations available. In an ideal
world, where a thorough task analysis has been
completed, including an identification of all the
important concepts users are working with,
mismatches should pose few user problems. In
practice, this is rarely achieved: the user is working
with the device to achieve their domain goals, and
has to be aware of device concepts and device
commands as well as domain ones.

There may be essential concepts that the user has
to work with to achieve their domain goals that are
not clearly represented at the interface – i.e. that are
not immediately visible to (and readily interpreted
by) the user. This indicates a problem of
discoverability. For example, the user of a drawing
package may have to learn about layers, about
‘handles’ to manipulate objects and about how to
indicate that an object is a ‘special case’ (e.g. a circle
is a special case of an oval; a square is a special case
of a rectangle). We can express this in terms of
principles and footprints as follows:

Principle: Features should be discoverable.
Violation: Poor discoverability.
Footprint: Essential conceptual objects not
clearly presented at the interface.

Discoverability applies mainly to device entities
that have no real-world significance, where the
designer’s aim is to make the device learnable.
However, it does not relate to the domain-relevant
concepts the user is manipulating; there are often
misfits between the concepts that users actually work
with and the ones available at the interface. To take a
simple example: the instructions for preparing a
conference paper typically define the size of the text
area, but the word processor may only allow the user
to specify paper size (e.g. A4) and margin sizes;
therefore many authors will have to get a ruler and
manually calculate margin sizes, or find some other
work-around, to achieve the desired domain goal.

Deeper misfits can result in problems such as
viscosity (Green, 1990): the property that a simple

domain-level change may require multiple actions at
the interface. For example, standard drawing packages
are not well suited for drawing organisation charts
that express relationships between people, as adding
a new role in the organisation can involve creating
space by moving many other people and links around
on the page; this is typically very time-consuming
unless the package has (and the user has used) an
explicit representation of links between people so
that these are automatically preserved.

In essence, if the user is manipulating domain
concepts via this device, the mappings between them
have to be clear and simple if the planning problem
is to remain simple; if the relationships are unduly
complex, this will cause user difficulties. In terms of
the PUM Instruction Language, we can identify
difficulties with the objects and relationships the user
has to know about and work with. Such complex
relationships are the footprint of mismatch in
conceptual representation.

Principle: There should be a good fit between
domain and device concepts.
Violation: Mismatch in conceptual
representation.
Footprint: Conceptual objects include domain
concepts that have no close device analogue;
relationships are difficult to express clearly.

To work with the device, the user may have to
make explicit data about the domain or device that
would more naturally remain unstated. For example,
the user of a database may be required to specify a
maximum field size (information that is only device-
relevant), while the user of an electronic personal
organiser will usually have to specify an end time for
every event entered even though this information
may not be known at the time of entering the event.
So, for example, the conceptual operation associated
with creating a new event in the diary would have to
include a parameter – end time – that is not
important to the user.

Principle: The user should not be required to
provide unnecessary information.
Violation: Enforced explicitness.
Footprint: Conceptual objects required include
ones that would not naturally be considered
important by the user.

3.2 Parameters to Operations and
Communication Goals
If the user’s task goal includes known parameters
then the user will seek an opportunity within the
interaction to communicate that information
(Blandford & Young, 1998). For example, the

amount of money to be withdrawn from an ATM,
the number that calls from a telephone are to be
diverted to, or the name of the person to whom an
electronic mail message is to be sent are all such
parameters. The user will experience difficulty if
their expectations are not satisfied: if they cannot
find the point at which to communicate the identified
information, if they identify an apparently
appropriate point that is actually incorrect, or if they
are required to enter information that seems irrelevant
to them. In addition to the mismatches in conceptual
representation discussed in section 3.1, we identify a
principle concerning such communication goals.

Principle: The user can easily identify the point
at which to communicate information to
computer system.
Violation: Breakdown in communication goals.
Footprint: There is a mismatch between the
point in the interaction where a user would
naturally communicate certain data and the point
where the device demands it.

3.3 Purpose and Tracked Effects:
Side Effects and Predictability
In order to maintain awareness of the state of the
systems they are working with (so as to make
informed choices about future actions), users need a
means of updating their knowledge of the state. This
may be by observing the state through the display
(or other output device), or through predicting the
effects of actions. Predictability depends on the user’s
knowledge of the current state and of the effects of
operations. The effect of an action is predictable if
the user knows all the factors that determine the
effect, and is aware of the current state of all those
factors. Thus, if all relevant state components are
observable (see section 3.6) then predictability is
unlikely to be a problem, but if some are not, or if
the user is likely not to realise the significance of
certain components relative to the action, then the
device will not be predictable to that user. If user-
significant aspects of the resulting state after any
action are neither predictable nor observable then the
device is not usable.

In many interactions, total predictability is not a
requirement; for example, the fact that the user does
not know what web page will be displayed when
selecting a link, or that the results of submitting a
database query cannot be anticipated, is not a
problem: indeed, if such devices were completely
predictable, they would be useless. Conversely, the
user of a web form should be able to predict, and
have confidence, that the form entry is being sent to

the intended destination when the ‘submit’ button is
pressed.

Principle: The device should be predictable.
Violation: Breakdown of predictability.
Footprint: User may not have sufficient
knowledge of current state of device or of effect
of operation to appropriately predict effect of
action.

One of the heuristics when producing an IL
description is that users will generally track the main
effects (the user purpose) of operations, whether or
not the effect is visible. However, users are liable to
miss, or forget about, side-effects unless they are
very visually salient; even expert users are liable to
forget about such effects occasionally (Blandford &
Young, 1996). Therefore, a particular class of
predictability problems is raised by side-effects. The
footprint of unnoticed side effects is that there are
effects of conceptual operations that are not part of
the purpose of the operation and are either not visible
to the user or are not particularly visually salient.

Principle: Side-effects should be avoided.
Violation: Unnoticed side effects.
Footprint: Action corresponding to a conceptual
operation has effects that are not part of the user
purpose, and are not visually salient.

3.4 Subgoaling Preconditions: Order
Errors

Another common class of errors relates to the
order of operations. For example, when using the
particular word processor with which this text is
being written, if a user creates a paragraph with the
properties of a level two heading (as defined in the
instructions for authors), then decides to specify a
‘Heading2’ style to look like that, all the details
(12pt bold italic Times font) will be lost, whereas if
the same user specifies first that the style is to be
called ‘Heading2’ and then defines the details of the
font etc., the intended effect will be achieved.

The ‘footprint’ of an order error is that there are
circumstances in which doing A then B has a
different effect from doing B then A , that the actions
can be performed in either order, and that the user
may not be aware of the order constraint.

Principle: The device should not provoke order
errors.
Violation: Likelihood of order errors.
Footprint: There exist actions such that the
effect depends on the order of application, but
the user may have insufficient knowledge (of
state or operations) to reliably choose the order.

Mode errors are a particular class of errors related
to subgoaling, in that the user may not be aware that
the device has alternative modes and that being in the
correct mode is a precondition of the action achieving
the intended effect. Similarly, the user may not be
aware of the mode the device is currently in due to
lack of observability. The footprint of a mode error
is that the same device action has different effects
depending on the mode – which the user may be
unaware of (for whatever reason); they have been
implicated in human errors in a range of situations,
including aircraft accidents.

Principle: The risk of mode errors should be
minimised.
Violation: Likelihood of mode errors.
Footprint: The effect of an action depends on a
mode setting whose value the user may be
unaware of.

3.5 Domain-Device Misfits: Actions
Just as users may have to learn about conceptual fit,
so they also have to relate conceptual operations to
device actions – that is, how to make domain-
relevant changes using a particular device. This topic
has been addressed by various researchers over the
years; for example, Norman (1986) discusses the
‘gulf of execution’: the difficulty users may have in
working out how to achieve their domain goals
using a particular device; Payne & Green (1986)
developed a Task Action Grammar that aimed to
focus attention on consistency across a set of tasks
(similar tasks should be achieved in similar ways). In
PUMA terms, the question is: when the analyst
specifies a conceptual operation, is it easy to define
the actions that go with it?

Principle: The mapping between task and action
should be simple.
Violation: Poor task-action mapping.
Footprint: It is difficult to specify the action
sequence that corresponds to a conceptual
operation.

One particular case of poor task-action mappings
is found in label-following behaviour, where the user
is expected to identify the label at the interface that
corresponds to them making progress towards their
goal.

Principle: All labels should be clear.
Violation: Labels may be confusable.
Footprint: Labels on actions have poor
correspondence with domain-relevant conceptual
operations.

3.6 Filtering Preconditions and
Knowledge of State: Observability
One oft-stated requirement on a device (e.g. Dix et al,
1998) is that the state should be observable, without
reference to the purpose of the interaction. A PUM
analysis says that if the user has particular domain
goals, and achieving those goals involves
manipulating (or otherwise being aware of) particular
concepts, then the state of the device as represented
through those concepts should be observable.
Therefore, a system fails the observability criterion if
there are essential aspects of the state of the device
(or domain) that are not observable at the time when
they are needed. For example, users often experience
difficulties with drawing packages if they need to
manipulate objects on layers without being able to
inspect those layers. More importantly, operators of
safety-critical devices may have difficulty diagnosing
faults if essential components of the system state are
not directly accessible to them (e.g. Reason, 1990).

In the short term, there are cases where
observability is not essential: the user may be able
to predict the effects of actions without observing the
state change (e.g. copying text to a hidden buffer;
sending a document to a remote printer). However,
users may be interrupted or be distracted from their
work; the observability requirement dictates that non-
observable goal-related state components should be
easily restored or inspected on task resumption.

Conversely, there are cases where observability –
or at least immediate feedback – is particularly
important. For example, the user entering a password
should not be able to see the characters entered, but
may need to know that they have entered the correct
number of characters. Norman (1986) discusses this
in terms of the ‘gulf of evaluation’: that the user
must be able to evaluate the current state of the
system with respect to their goals.

Principle: Device state should be observable.
Violation: Breakdown of observability.
Footprint: Device does not display the current
settings of all state components that the user
needs to know to make an informed choice of
operation, or to identify when a goal has been
achieved.

3.7 Termination Errors
There are various sources of what Thimbleby (1990)
terms ‘termination errors’ – referred to generally as
errors that involve the user considering a task to be
completed before it actually is. Some of these errors
are knowledge-based and others are a consequence of
the user’s cognitive architecture.

Post-completion errors, which are persistent but
intermittent errors that appear to derive from the
user’s cognitive architecture (Byrne & Bovair, 1997)
can be viewed as arising because of a ‘trailing
subgoal’. That is: the main goal of the interaction
can only be achieved by satisfying some precondition
(subgoal), which in turn perturbs the state in some
way (e.g. there is now an original on the photocopier
glass, or a card in the ATM), and when the main
goal has been completed the user may terminate the
interaction without correcting the perturbation. In
terms of PUMA footprints, post-completion errors
are unusual, in that they appear to depend on features
of the cognitive architecture that go beyond the
simple rational problem-solver. However, they can
be derived from the representation of the task goal
(which leaves under-specified which other aspects of
the initial state may be perturbed from their original
values, and should be restored).

Principle: Avoid post-completion errors.
Violation: Design may provoke post-completion
errors.
Footprint: There is a precondition to the
conceptual operation that achieves the main goal,
but satisfying the precondition perturbs the state,
and a clean-up action is needed after achievement
of the main goal.

Post-completion errors are the result of one class
of ‘implicit’ goal (i.e. the total goal is not stated
quite precisely). Other classes result from simplified
representations of goals that result in error-prone
approximations. Such simplified representations are
typically provoked by the device design. For example
Butterworth, Blandford & Duke (in press) describe
the design of an electronic diary that allows the user
to enter a regular series of events; the device
representation of an event series can provoke the user
into focusing on getting all the events from a paper
diary entered into the electronic diary without
noticing that this results in surplus ‘ghost’ events
being entered (for instance, if the meetings are
monthly but there is no meeting in August).

Principle: Avoid goal confusion.
Violation: Device may provoke incorrect task
formulation.
Footprint: Precise statement of task goal is
complex but device supports a similar task goal
that can be clearly expressed and can be confused
with task goal.

Incorrect termination can also be a result of a
breakdown in predictability or observability, as
discussed above.

4. Discussion

In section 2, we presented the knowledge
components required for PUM analysis, and used that
as a basis for identifying classes of usability
problems that derive from breakdowns in the user’s
knowledge. In section 3, we laid out and discussed a
list of design principles, relating them to knowledge
requirements derived from PUM theory. We have
also related them to the work of others so as to
present an integrated set of principles that derive
from user knowledge; few of the principles are new
and none are surprising or inconsistent with past
work in the area. For example, Dix et al. (1998)
discuss observability and predictability, while
Shneiderman’s (1998) Golden Rules include ‘Offer
informative feedback’. Here, they have been brought
together and presented in terms of rational user
behaviour. In addition, we have presented PUMA
footprints as a way of characterising the design
features that denote violations of principles. While
many of the principles are not new, they are
explicitly justified and described in terms of a theory
of human problem solving and interaction.

We have introduced the term ‘footprint’ to refer
to the features of a design that alert the analyst to the
possibility of a particular type of difficulty.
Footprints are similar in spirit to Hollnagel’s (1998)
genotypes: Hollnagel refers to the manifestation of
an erroneous action as a phenotype, and the
underlying cause as the genotype; while he uses the
term to refer principally to underlying cognitive
causes, footprints focus more on features of design
that provoke errors in the interaction. Footprints
generally signify the failure to apply a corresponding
design principle earlier in the design process. While
there are ‘common sense’ understandings of many
design principles, we have aimed to provide theory-
based definitions of them that support reasoning.

A recent study of applying the PUMA approach
within the early stages of design, working within the
constraints (time and cost) imposed by the demands
of the ongoing design process, led us to identify
three ‘knowledge questions’ that could be used to
guide a user-centred view on the design (Good &
Blandford, 1999):
• ‘What does the user need to know?’,
• ‘How does the user know?’, and
• ‘What are the consequences of the user not

knowing?’
The footprints demand a deeper and more

analytical approach than the three questions, but are
also more directly related to the underlying theory.

The footprints do not cover all design principles.
They take as their starting point a particular
perspective on the design, which is assuming that
the user is rational and applies their knowledge. They
do not deal with the full richness of natural human
behaviour; they do not, for example, deal with ‘slips’
(Reason, 1990), issues of interpretation of
information (beyond simple semantic matching of
labels to goals), or choice of colour or graphic
design. Similarly, they do not aim to support
reasoning about the complex interactions that are the
focus of Cognitive Work Analysis (Vicente, 1999).
However, they address one important set of
requirements on design, relating to the user’s goals
and knowledge. Given this focus, footprints provide
descriptions of design features that are likely to result
in difficulties for rational users of a device. They
thus provide a theory-grounded way that makes
explicit the craft skill used in early stages of a PUM
analysis. They also provide a point on the
continuum of evaluation techniques in which ease of
use is traded off against theoretical grounding of
analysis.

Acknowledgements

This work was supported by EPSRC Grants
GR/L00391 and GR/M45221. David Duke, Jason
Good, Thomas Green, Sue Milner, Harold
Thimbleby, Richard Young and anonymous
reviewers have all helped clarify the ideas presented
here.

References

Blandford, A. E., Buckingham Shum, S. & Young, R. M.
(1998) Training software engineers in a novel
usability evaluation technique. International
Journal of Human-Computer Studies 45, 245-279

Blandford, A. E. & Young, R. M. (1993). Developing
runnable user models: Separating the problem
solving techniques from the domain knowledge.
in J. Alty, D. Diaper and S. Guest, Eds. People and
Computers VIII, 111-122 Cambridge: CUP.

Blandford, A. E. & Young, R. M. (1996) Specifying user
knowledge for the design of interactive systems.
Software Engineering Journal. 11.6, 323-333.

Blandford, A. E. & Young, R. M. (1998) The role of
communication goals in interaction. In Adjunct
Proceedings of HCI’98.

Butterworth & Blandford (1999) The principle of
rationality and models of highly interactive
systems. In M. A. Sasse & C. Johnson (Eds.)
Human-Computer Interaction INTERACT’99. 417-
242. Amsterdam: IOS Press.

Butterworth, R., Blandford, A. & Duke, D. (in press)
Demonstrating the cognitive plausibility of
interactive system specifications. To appear in
Formal Aspects of Computing.

Byrne, M. D. & Bovair, S. (1997) A working memory
model of a common procedural error. Cognitive
Science. 21.1, 31-61.

Card, S. K., Moran, T. P. and Newell, A. (1983). The
Psychology of Human Computer Interaction,
Hillsdale : Lawrence Erlbaum.

Connell, I. W. & Hammond, N. V. (1999) Comparing
Usability Evaluation Principles with Heuristics:
Problem Instances vs. Problem Types. In M. A.
Sasse & C. Johnson (Eds.) Human-Computer
Interaction INTERACT’99. 621-629. Amsterdam:
IOS Press.

Dix, A., Finlay, J., Abowd, G. & Beale, R. (1998)
Human Computer Interaction. Prentice Hall
International. 2nd Edition.

Good, J. P. & Blandford, A. E. (1999) Incorporating
Human Factors Concerns into the Design and
Safety Engineering of Complex Control Systems.
In J. Noyes & M. Bransby (Eds.) People in
Control, IEE Conference Publication Number 463,
IEE, London, 51 - 56.

Gray, W., John, B & Atwood, M. (1993) ‘Project
Ernestine: Validating a GOMS Analysis for
Predicting and Explaining Real-World Task
Performance’, Human-Computer Interaction, 8.
237-309.

Green, T R G (1990) The Cognitive Dimension Of
Viscosity: A Sticky Problem for HCI. In D.
Diaper, D. Gilmore, G. Cockton and B. Shackel
(Eds.) Human-Computer Interaction – INTERACT
’90. Elsevier.

Hollnagel, E. (1998). Cognitive Reliability and Error
Analysis Method (CREAM). Oxford : Elsevier.

John, B. & Kieras, D. E. (1996). Using GOMS for User
Interface Design and Evaluation? Which
Technique. ACM ToCHI , 3.4, 287-319.

Lewis, C. & Polson, P.G. (1991). Cognitive
Walkthroughs: A method for theory based

evaluation of user interfaces. Tutorial presented at
ACM CHI ‘91.

May, J., and Barnard, P.J (1995) Towards supportive
evaluation during design. Interacting with
Computers, 7, 115-143.

Monk, A. (1999) Modelling cyclic interaction.
Behaviour and Information Technology. 18. 127-
139.

Nielsen, J. (1994) Heuristic Evaluation. In J. Nielsen &
R. Mack (Eds.), Usability Inspection Methods.
25-62. New York: John Wiley.

Norman, D. (1986). Cognitive Engineering. in Norman,
D.A. and Draper, J.W., Eds. User Centered System
Design, 31-62 Hillsdale NJ: Lawrence Erlbaum.

Payne, S. J. and Green, T.R.G. (1986). Task-Action
Grammars: a model of mental representation of
task languages. Human-Computer Interaction, 2 ,
93-133.

Polson, P. & Lewis, C. (1990) Theory based design for
easily learned interfaces. Human Computer
Interaction, 5, 191-220.

Reason, J. (1990) Human Error. Cambridge : Cambridge
University Press.

Shneiderman, B. (1998) Designing the User Interface :
Strategies for Effective Human-Computer
Interaction Addison Wesley Publishing Company

Thimbleby, H. (1990) User Interface Design, ACM
Press Frontier Series, Addison-Wesley.

Vicente, K. (1999) Cognitive Work Analysis. Mahwah,
NJ : Lawrence Erlbaum.

Wharton, C., Bradford, J., Jeffries, R. and Franzke, M.
(1992). Applying cognitive walkthroughs to
more complex user interfaces: experiences, issues
and recommendations. In Proc. CHI’92, 381-388.

Wharton, C., Rieman, J., Lewis, C. and Polson, P.
(1994) The Cognitive Walkthrough method: a
practitioner’s guide. In J. Nielsen and R. Mack,
Eds. Usability Inspection Methods.105-140.
Wiley : New York.

Young, R.M., Green, T.R.G. & Simon, T. (1989)
‘Programmable user models for predictive
evaluation of interface designs’ in Bice, K. and
Lewis, C. (eds.) Proceedings of CHI ‘89, 15-19,
New York : ACM.

