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Bayesianism and the Fixity of the Theoretical Framework

by Donald Gillies, King’s College London

Abstract

This paper compares the Bayesian with the classical approach to statistics.
It is argued that the Bayesian approach works only if new evidence does not
alter the framework of theoretical assumptions. This thesis is illustrated by
two examples. The first is an investigation carried out by Neyman, in which
the results of statistical tests led him to abandon one of his initial
assumptions, and produce a better model based on a different assumption.
It is argued that it would be hard to produce this pattern of reasoning within
Bayesianism. The second example is De Finetti’s use of exchangeability. It
is argued that this gives reasonable answers if the process under
consideration consists of independent events, but can go drastically wrong if
the process is e.g. a Markov chain. This shows that, as regards many
processes whose nature is not exactly known, statistical testing using the
classical methodology is essential.
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1. Introduction. Bayesianism versus Classical Statistics

Bayesianism is a powerful current of thought in quite a number of
different areas, which include: artificial intelligence, decision theory,
economics, philosophy of science, and statistics. In the present paper, I will
deal only with Bayesianism in statistics. In fact since the beginning of this
century, the principal controversy within statistics has been between
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Bayesianism and the so-called classical statistics. I will begin therefore by
attempting to characterise, in outline at least, these two approaches to
statistics.

Let us start with Bayesianism. When this is applied in a particular
problem situation, it is usually assumed that there is a given a set of possible

statistical hypotheses Hwhere I, for some set I, normally an interval of
the real line. Some data or evidence e say is collected and the problem is to
judge the hypotheses in the light of this evidence. To do this, the parameter
 is given a prior probability distribution p() say. This represents the
degree of belief of the statistician that has various values before the
evidence e is considered. Given p(), the posterior probability distribution
given e, i.e. p( | e) is then calculated using Bayes’ Theorem. Our Bayesian
statistician now adjusts his or her beliefs from p() to p( | e), a process
known as Bayesian conditionalisation. The merits of the various hypotheses

Hare now judged using p( | e). Statistical inference on this account

consists essentially of a change from a set of beliefs represented by p() to
another set represented by p( | e), or, to put it another way by a change of
beliefs brought about by Bayesian conditionalisation.

While the concept of change of belief lies at the heart of Bayesianism, the
corresponding concept for classical statistics is, in my view. that of
hypothesis testing. I regard statistical tests as the core of classical statistics.
This means that classical statistics, despite being allegedly ‘classical’, is in
reality much more recent than Bayesianism. Bayesianism began with the
publication of the famous paper of Bayes and Price in 1763. It received a
powerful mathematical development from Laplace in his 1812. By contrast
classical statistics can be dated from 1900 because, in a paper published that

year, Karl Pearson introduced the 

test – the first really important and

widely used statistical test. Further statistical tests and a theory of statistical
testing were subsequently developed by the founders of classical statistics
‘Student’ (W.S.Gosset), R.A.Fisher, E.S.Pearson, and J. Neyman. The
methodology of classical statistics is essentially that of testing. Statistical
hypothesis are put forward tentatively to explain observed data, and are then
subjected to statistical tests. If they pass these tests, they continue to be
held. If they fail the tests, they have to be abandoned or modified. The
method here is that of conjectures and refutations as advocated by Popper in
his 1963.
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Having stated what I see as the difference between Bayesianism and
classical statistics, I will now outline the criticism of Bayesianism which I
wish to develop in this paper. It is not a criticism which attempts to show
that Bayesianism is wrong in all circumstances. Indeed there are some
situations where a Bayesian analysis seems to me quite correct – for just one
example see my joint paper with Phil Dawid, published in 1989. What the
argument seeks to do is to place a limit on the situations in which
Bayesianism should be applied. Roughly the thesis is that Bayesianism can
be validly applied only if we are in a situation in which there is a fixed and
known theoretical framework which it is reasonable to suppose will not be

altered in the course of the investigation.1 I call this the condition of the
fixity of the theoretical framework. For Bayesianism to be appropriate, the
framework of general laws and theories assumed must not be altered during
the procedure of belief change in the light of evidence. If this framework
were altered at any stage, this could lead to changes in the probabilities
which were made not in accordance with Bayes theorem and Bayesian
conditionalisation. It follows that, if we are studying a process whose nature
is not well known, statistical testing using the methodology of classical
statistics is essential.

I will try both to elaborate this criticism and to render it plausible by
considering two examples, one in each of the next two sections. The first of
these examples is of an investigation carried out by an eminent classical
statistician, and the second by an eminent Bayesian. Our eminent classical
statistician is Jerzy Neyman, and his investigation was into the distribution
of larvae in the plots of an experimental field. I will try to show in section 2
that this investigation was an admirable one, and that its success depended
crucially on the use of the methodology of testing employed in classical
statistics. Our eminent Bayesian is Bruno De Finetti, and in section 3 I will
consider his use of exchangeability in his 1937. I will argue that this gives
reasonable answers if the process under study consists objectively of
independent events, but can go drastically wrong if the process is e.g. a
Markov chain. This shows that we have to be very sure of the correctness of
our theoretical framework (in this case that the process consists of
independent events) before applying Bayesianism. After going through
these two examples, I will conclude the paper in section 4, by considering
some ways in which Bayesianism might be defended against the criticisms
presented.
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2. An Investigation of Neyman’s

Neyman describes his investigation in his 1952, 33-7. His account begins
as follows (1952, 33):

‘Problems of pest control led to studies of the distribution of larvae in
small plots. An experimental field planted with some crop is divided
into a number of small plots, …. Then all the larvae found in each
plot are counted. Naturally the number of larvae varies considerably
from one plot to another.’

Neyman wanted to find a mathematical model which would account for this
variation. The first such model which suggested itself to him was the
Poisson distribution, according to which the probability of there being a

number n of larvae in a small plot (pn) is given by pn = exp(-) 
n
/n! for

some value of the parameter . In a loose sense this corresponds to the
assumption that the larvae are distributed randomly throughout the field. It
was thus a very plausible hypothesis, and indeed Neyman says explicitly that
it was (1952, 33) ‘… one strongly suggested by intuition.’ Neyman had
moreover used the same hypothesis of a Poisson distribution for a very
similar problem concerned with the distribution of bacteria on a Petri-plate,
and there it had proved very successful. Despite these favourable a priori
indications, Neyman followed the methodology of classical statistics by
subjecting the hypothesis of a Poisson distribution to a series of tests, and,
rather surprisingly, these showed that the hypothesis was false.

In his 1952, Neyman gives the results of 5 trials of the Poisson
distribution hypothesis. In each case this hypothesis was subjected to a



test. In one case the test resulted in a confirmation with a value of 


of

4.0 with 2 degrees of freedom, corresponding to 13.5%. The remaining four

tests, however, were clear refutations with 

values corresponding to

around 0.1% or less, resulting in falsifications even at a 1% level of
significance. There could be no doubt in the light of these results that the
hypothesis of a Poisson distribution was incorrect. As Neyman says (1952,
34):

‘In all cases, the first theoretical distribution tried was that of
Poisson. It will be seen that the general character of the observed
distribution is entirely different from that of Poisson. There seems to
be no doubt but that a very serious divergence exists between the
actual phenomenon of distribution of larvae and the machinery
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assumed in the mathematical model. When this circumstance was
brought to my attention by Dr. Beall, we set out to discover the
reasons for the divergence.’

As the last sentence of the quotation shows, Neyman did not consider any
hypotheses other than that of the Poisson distribution until after the Poisson
distribution hypothesis had been refuted by statistical tests. As so often in
science, it was the falsification of a hypothesis which stimulated theoretical
reasoning. This point will be important when we consider how this case
might be analysed from the Bayesian point of view. Let us now see how
Neyman continued with the investigation. He describes his next steps as
follows (1952, 34-5):

‘ … if we attempt to treat the distribution of larvae from the point of
view of Poisson, we would have to assume that each larva is placed on
the field independently of the others. This basic assumption was flatly
contradicted by the life of larvae as described by Dr. Beall. Larvae
develop from eggs laid by moths. It is plausible to assume that, when
a moth feels like laying eggs, it does not make any special choice
between sections of a field planted with the same crop and reasonably
uniform in other respects. Therefore, as far as the spots where a
number of moths lay their eggs is concerned, it is plausible that the
distribution of spots follows a Poisson Law of frequency, depending
on just one parameter, say m, representing the average number of
spots per unit area.

However, it appears that the moths do not lay eggs one at a time. In
fact, at each “sitting” a moth lays a whole batch of eggs and the
number of eggs varies from one cluster to another. Moreover, by the
time the counts are made the number of larvae is subject to another
source of variation, due to mortality.

After hatching in a particular spot, the larvae begin to look for food
and crawl around. Since the speed of their movements is only
moderate, it is obvious that for a larva to be found within a plot, the
birthplace of this larva must be fairly close to this plot. If one larva is
found, then it is likely that the plot will contain more than one from
the same cluster.’

It is worth noting here that in his attempt to find a new better hypothesis to
describe the distribution of the larvae, Neyman made use of background
knowledge about the larvae obtained from the domain expert, Dr Beall. This
led him to suppose that the larvae would be distributed in clusters round
points where batches of eggs had been laid. The points where the eggs were
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laid would follow a Poisson distribution, but not the larvae themselves.
Neyman produced a mathematical model of this situation which led to the
conclusion that the larvae would be distributed in what he called a ‘Type A
distribution’ depending on two parameters. Using the same data as before,

Neyman again applied the 

test in the 5 cases, and this time all the tests

confirmed the hypothesis. Neyman had clearly succeeded in explaining a
surprising experimental finding, and his successful investigation shows the
merits of classical statistics, or, what is the same thing, Popper’s
methodology of conjectures and refutations applied using statistical tests to
obtain the refutations.

Neyman himself observes (1952, 37): ‘In this example, in order to
have agreement between the observed and predicted frequencies, it was
imperative to adjust the mathematical model.’ Moreover far from being
dogmatic about his new Type A distribution, he is anxious to point out that
it, like the Poisson distribution, has its limitations. Indeed he says (1952,
37):

‘… there are organisms (e.g., scales) whose distribution on units of
area of their habitat does not conform with type A. An investigation
revealed that the processes governing the distribution of these
organisms were much more complex than that described and
therefore, if a statistical treatment is desired, a fresh effort to construct
an appropriate mathematical model is necessary.’

That concludes my account of Neyman’s investigation of the
distribution of larvae in a field, and I now turn to the question of whether a
Bayesian statistician could have carried out this investigation as successfully
as the classical statistician Neyman. I do not see how this could have been
possible. A Bayesian would start in the same way by formulating a set of

possible hypotheses H where 0 <  < ∞ . Here H is just the Poisson

distribution with parameter . The next step would have been to set up a
prior probability distribution p() representing the Bayesian statistician’s
prior degree of belief in the various hypotheses. This would have been
changed in the light of the evidence e to a posterior distribution p( | e). Yet
it is difficult to see how all these changes in degrees of belief by Bayesian
conditionalisation could have produced the solution to the problem, namely
a Type A distribution. The Bayesian mechanism seems capable to doing no
more than change the statistician’s degree of belief in particular values of .
This illustrates very nicely my thesis that Bayesianism requires the fixity of
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the theoretical framework. The theoretical framework at the beginning of
the investigation was the assumption of a Poisson distribution. If this
framework had been adequate, as it was in the example of bacteria in a Petri-
plate, then Bayesianism would have dealt with the problem satisfactorily.
However the theoretical framework was not adequate for the example of
larvae in a field. It had to be changed from the assumption of a Poisson
distribution to that of a Type A distribution, and the procedure of Bayesian
conditionalisation cannot cope with such a change in belief.

To this it might be objected by a Bayesian that the initial set of
possible hypotheses should have included both Poisson distributions and
Type A distributions. If this had been done, then Bayesian
conditionalisation would have dealt with the problem in a perfectly
satisfactory manner. However, the difficulty with this proposal is that, as
already pointed out, Neyman only thought of his Type A distribution after
the assumption of a Poisson distribution had been refuted by a series of



tests. Neyman certainly did not consider Type A distributions as an a

priori possibility at the beginning of the investigation. Indeed Type A
distributions did not exist in the literature of probability and statistics at the
beginning of Neyman’s investigation. It was his analysis of the particular
problem with the help of the domain expert Mr Beall, which caused Neyman
to introduce Type A distributions for the first time. Moreover it was only
the stimulus provided by the falsification of his initial hypothesis which led
Neyman to carry out the subtle analysis which led him to formulate the Type
A distribution.

A persistent defender of Bayesianism might still argue that a proper
analysis of the problem at the beginning of the investigation could have led
to the introduction of the Type A distribution at that stage. I rather doubt
whether this is a serious possibility, but let us suppose for the moment that it
is. The methodology corresponding to this approach would be for the
Bayesian statistician to begin with a lengthy analysis of the problem,
consulting domain experts, and introducing all the various distributions
which might be relevant. While the views of Dr Beall suggested the Type A
distributions, the views of other domain experts, since domain experts often
disagree, might have suggested further possible distributions, say
distributions of types B, C, and D. Moreover distributions other than Type
A are sometimes necessary for problems of this kind, as Neyman’s
discussion of the distribution of scales, quoted earlier, shows. The Bayesian
could then formulate his prior belief distribution over all these hypotheses,
and proceed from there. Unfortunately such an approach could very often
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prove a complete waste of time. Suppose a Bayesian statistician had tried
such an approach on the example of bacteria on a Petri-plate. By the time he
or she had formulated the first one or two of the hypothetical new
distributions which might be possible, Neyman would already have

confirmed by a series of 

tests that the simple Poisson distribution was

quite adequate in this case. This shows how easy and straightforward is the
methodology of classical statistics. It allows us to start with a simple
conjecture such as the Poisson distribution, provided only we obey the
golden rule of testing our conjecture severely. If the conjecture passes our
tests, then it can be accepted provisionally until some further investigations
suggest the need for a modification. In the interim we have found a
workable hypothesis without the need for elaborating a whole series of
possible alternatives. Since Bayesianism depends on the fixity of the
theoretical framework, Bayesian statisticians are faced with an awkward
choice. Either they must, at the very beginning of the investigation, consider
a whole series of arcane possible hypotheses, or they must risk never
subsequently arriving at the hypothesis which constitutes the solution of the
problem. Their difficulty here arises from the very essence of Baysianism,
namely its limitation of changes of belief to those produced by Bayesian
conditionalisation.

There are some further ways in which Bayesianism might be defended
in the context of this particular example, but it will be convenient to
postpone their consideration until section 4, and proceed in the next section
to give my second example. In the first example, I have tried to show the
merits of the methodology of classical statistics when applied by a leading
classical statistician. In the second example I will move in the opposite
direction by giving an analysis by a leading Bayesian, namely De Finetti’s
use of exchangeability, and then trying to show that this analysis only give
satisfactory results if no changes are needed in the theoretical framework
which is implicitly assumed.

3. De Finetti on Exchangeability

In Chapter III of his 1937, De Finetti poses the question (118): ‘Why are
we obliged in the majority of problems to evaluate a probability according to
the observation of a frequency?’, commenting that this question (119):
‘includes in reality the problem of reasoning by induction.’ He continues
(119):
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‘In order to fix our ideas better, let us imagine a concrete example, or
rather a concrete interpretation of the problem, which does not restrict
its generality at all. Let us suppose that the game of heads or tails is
played with a coin of irregular appearance.’

We will now explain how De Finetti analyses this example of the biassed
coin from his subjective Bayesian point of view. It will emerge that this
concrete example does, in a significant respect, fail to represent the full
generality of the problem of reasoning by induction.

De Finetti’s first step is to consider a sequence of tosses of the coin
which we suppose gives results: E1, ... , En, ..., where each Ei is either heads

(Hi) or tails (Ti). So, in particular, Hn+1 = Heads occurs on the n+1th toss.

Further let e be a complete specification of the results of the first n tosses,
that is a sequence n places long, at the ith place of which we have either Hi

or Ti. Suppose that heads occurs r times on the first n tosses. The subjective

Bayesian’s method is to calculate P(Hn+1| e), and to show that under some

general conditions which will be specified later P(Hn+1| e) tends to r/n for

large n. This shows that whatever value is assigned to the prior probability
P(Hn+1), the posterior probability P(Hn+1| e) will tend to the observed

frequency for large n. Thus different individuals who may hold widely
differing opinions initially will, if they change their probabilities by
Bayesian conditionalisation, come to agree on their posterior probabilities.
Such is the argument. Let us now give, in our simple case, the mathematical
proof which underpins it.

Suppose that P(Ei) ≠  0 for all i, so that also P(e) ≠ 0.  We then have 

by the definition of conditional probability

P(Hn+1| e) =
P( Hn+1& e)

P(e)
(1)

To proceed further we introduce the condition of exchangeability. Suppose
Mr B is making an a priori bet that a particular n-tuple of results (Ei1 Ei2 ...

Ein say) occurs. Suppose further that heads occurs r times in this n-tuple.

Mr B’s betting quotients are said to be exchangeable if he assigns the same
betting quotient to any other particular n-tuple of results in which heads
occurs r times, where both n and r can be chosen to have any finite integral
non-negative values with r ≤ n. Let us write his prior probability (or betting
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quotient) that there will be r heads in n tosses as r(n). There are nCr

different ways in which r heads can occur in n tosses, where, as usual, nCr =

n!
(n-r)! r!

=
n(n-1)...(n-r+1)

r(r-1)...1
. Each of the corresponding n-tuples must, by

exchangeability, be assigned the same probability, which is therefore
r

(n)/nCr. Thus

P(Ei1 Ei2 ... Ein) =
r

(n)

nCr
(2)

Now e, by definition, is just a particular n-tuple of results in which heads
occurs r times. Thus, by exchangeability,

P(e) = P(E1 E2 ... En) =
r(n)

nCr
(3)

Now Hn+1& e is an (n+1)-tuple of results in which heads occurs r+1 times.

Thus, by the same argument,

P(Hn+1& e) =
r+1(n+1)

n+1Cr+1
(4)

And so, substituting in (1), we get

P(Hn+1| e) =
nCr

n+1Cr+1

r+1
(n+1)

r(n)

=
n!

(n-r)! r!
(r+1)! (n-r)!

(n+1)!

r+1
(n+1)

r
(n)

P(Hn+1| e) =
r+1
n+1

r+1(n+1)

r
(n) (5)

Formula (5) (which is De Finetti’s formula (6), 1937, 122 with a slightly

different notation) gives us the result we want. Provided only
r+1(n+1)

r
(n)

-> 1 as n -> ∞ ( a very plausible requirement), we may choose our prior
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probabilities r(n) in any way we please, and still get that, as n -> ∞ ,

P(Hn+1| e) -> r/n (the observed frequency), as required.

We can, however, obtain an even simpler result if we choose the prior
probablities in a particular way. In n tosses, we can have either 0, 1, 2, ..., or
n heads. So, by coherence,

o
(n) + 1

(n) + 2
(n) + ... + r

(n) + ... + n
(n) = 1 (6)

In the subjective theory, we can choose the r
(n) (the prior probabilities) in

any way we choose subject only to (6). However we can also, though this is
not compulsory, make the ‘principle of indifference’ choice of making them
all equal so that

o(n) = 1(n) = 2(n) =... = r(n) = ... = n(n) = 1/(n+1) (7)

Substituting this in (5), we get

P(Hn+1| e) =
r+1
n+2

(8)

This is a classical result - Laplace’s Rule of Succession, which De Finetti
derives in the above way (1937, 144).

In the above calculations, De Finetti appears to show that subjective
Bayesians will be led by the process of Bayesian conditionalisation to
choose posterior probabilities which approximate to the observed frequency.
He thus appears to have provided a foundation for reasoning by induction. I
next want to argue that these calculations, despite their seeming generality,
are only appropriate within a specific theoretical framework, and can lead us
astray if used when that framework does not hold in reality. In order to
identify this framework, I will now give some further results from De
Finetti’s 1937. These relate the concept of exchangeability, which De
Finetti himself had introduced, to the older concept of independence. De
Finetti’s ideas on the relationship between exchangeability and
independence are discussed in Galavotti (2001).

De Finetti proved a general theorem showing exchangeability and
independence are linked, I will now state his result. Let us first define
exchangeability for a sequence of random variables (or random quantities as
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De Finetti prefers to call them) X1, ... , Xn, ... . These are exchangeable if,

for any fixed n, Xi1, Xi2, ... , Xin have the same joint distribution no matter

how i1, ... , in are chosen. Now let Yn be the average of any n of the random

quantities Xi i.e. Yn = (1/n)(Xi1 + Xi2 + ... + Xin), since we are dealing

with exchangeable random quantities it does not matter which i1, ... , in are

chosen. De Finetti first shows (1937, 126) that the distribution n() =

P( Yn ≤ ) tends to a limit () as n -> , except perhaps for points of

discontinuity. He goes on to say (1937, 128-9):

‘Indeed, let P(E) be the probability attributed to the generic event E

when the events E1, E2, ... , En, ... are considered independent and

equally probable with probability ; the probability P(E) of the same
generic event, the Ei being exchangeable events with the limiting

distribution (), is

P(E) = P (E)d()
0

1

 .

This fact can be expressed by saying that the probability distributions P
corresponding to the case of exchangeable events are linear
combinations of the distributions P corresponding to the case of

independent equiprobable events, the weights in the linear combination
being expressed by ().’

This general result can be illustrated by taking a couple of special cases.
Suppose that we are dealing with a coin tossing example and the generic
event E is that heads occurs r times in n tosses. Then

P(E) = nCr r (1 - )n-r

So

P(E) =  r

(n) = n C r  r(1 )n-r d()
0

1



If, in particular, () is the uniform distribution, we have

 r

(n) = nC r  r (1 - )n-r d
0

1


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= nCr B(r+1, n-r+1), where B is the Beta function

= 1/(n + 1) (cf. formula 7 above)

Comparing these results with our earlier calculations involving
exchangeability, we can see how exchangeability and independence are
related.

Roughly speaking we can say that the situation which an objectivist
would describe as one of independent events in which particular outcomes
have fixed but unknown probabilities corresponds to what De Finetti would
describe as one of exchangeable events. Of course De Finetti would not
have liked this formulation, since he regarded the ‘unknown probabilities’
postulated by objectivists and classical statisticians as metaphysical and
meaningless. Thus he says (1937, pp. 141-2):

‘If … one plays heads or tails with a coin of irregular appearance, …,
one does not have the right to consider as distinct hypotheses the
suppositions that this imperfection has a more or less noticeable
influence on the “unknown probability”, for this “unknown
probability” cannot be defined, and the hypotheses that one would like
to introduce in this way have no objective meaning.’

De Finetti therefore concludes (1937, 142):

‘ … the nebulous and unsatisfactory definition of “independent events
with fixed but unknown probability” should be replaced by that of
“exchangeable events”.’

Naturally I cannot agree with De Finetti’s attempt to eliminate the
concept of unknown probability. To postulate such probabilities, as is done
in classical statistics, is neither meaningless nor metaphysical. Conjectures
about such unknown probabilities can be tested statistical tests, and either
confirmed or refuted, and this shows that such conjectures are scientific
rather than metaphysical. It is thus both meaningful and scientific to
postulate that a particular process consists of independent events with fixed
but unknown probability. My thesis is that this postulate gives the
theoretical framework within which De Finetti’s calculations using
exchangeability lead to sensible results. If we try to use these calculations in
situations where this theoretical framework does not hold objectively, they
are liable to give absurd and quite inappropriate conclusions. This can be
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easily shown by seeing what happens when we apply the exchangeability
calculations to a situation which is not one of independent events but of
dependent events.

To illustrate my argument, it would be possible to use any one of a
wide variety of sequences of events which are dependent rather than
independent. To be concrete, I have first selected the simplest type of
dependent sequence, namely a Markov chain, and then chosen one very
simple and at the same time striking example of a Markov chain. This is the

game of ‘Red or Blue’.
2

At each go of the game there is a number s which is
determined by the previous results. A fair coin is tossed. If the result is
heads, we change s to s’ = s+1, and if the result is tails, we change s to s’ =
s-1. If s’ ≥ 0, the result of the go is said to be blue, while if s’ < 0, the result
of the go is said to be red. So, although the game is based on coin tossing,
the results are a sequence of red and blue instead of a sequence of heads and
tails. Moreover, while the sequence of heads and tails is independent, the
sequence of red and blue is highly dependent. We would expect much
longer runs which are all blue, than runs in coin tossing which are all heads.
If we start the game with s = 0, then there is a slight bias in favour of blue
which is the initial position. However, it is easy to eliminate this by
deciding the initial value of s by a coin toss. If the toss gives heads we set
the initial value of s at 0, and if the toss gives tails we set it at -1. This
makes red and blue exactly symmetrical, so that the limiting frequency of
blue must equal that of red and be 1/2. It is therefore surprising that over
even an enormously large number of repetitions of the game, there is high
probability of one of the colours appearing much more often than the other.
Feller (1950, 82-3) gives a number of examples of these curious features of
the game. Suppose for example that the game is played once a second for a
year, i.e. repeated 31,536,000 times. There is a probability of 70% that the
more frequent colour will appear for a total of 265.35 days, or about 73% of
the time, while the less frequent colour will appear for only 99.65 days, or
about 27% of the time.

Let us next suppose that a subjective Bayesian (Mr B) is asked to
analyse a sequence of events, each member of which can have one of two
values. Unknown to them this sequence is in fact generated by the game of
red or blue. Possibly the sequence might be produced by a man-made
device which flashes either 0 (corresponding to red) or 1 (corresponding to
blue) onto a screen at regular intervals. However, it is not impossible that
the sequence might be one occurring in the world of nature. Consider for
example a sequence of days, each of which is classified as ‘rainy’ if some
rain falls, or dry otherwise. In a study of rainfall at Tel Aviv during the
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rainy season of December, January, and February, it was found that the
sequence of days could be modelled successfully as a Markov chain. In fact
the probabilities found empirically were: probability of a dry day given that
the previous day was dry = 0.75, and probability of a rainy day given that the
previous day was rainy = 0.66. (For further details see Cox & Miller,1965,
78-9.) It is clear that this kind of dependence will give longer runs of either
rainy or dry days than would be expected on the assumption of
independence. It is thus not impossible that the sequence of rainy and dry
days at some place and season might be represented quite well by the game
of red or blue.

Let us now return to our subjective Bayesian Mr B, who has been
asked to deal with a process which is really governed, unknown to Mr B, by
the game of ‘Red or Blue’. Being an admirer of De Finetti’s, Mr B will
naturally make an assumption of exchangeability. Let us also assume that he
gives a uniform distribution a priori to the r

(n) (see formula 7 above) so

that Laplace’s rule of succession holds (formula 8). This is just for
convenience of calculation. The counter-intuitive results would appear for
any other coherent choice of the r

(n). Suppose that we have a run of 700

blues, followed by 2 reds. Mr B would calculate the probability of getting
blue on the next go using formula 8 with n = 702, and r = 700. This gives
the probability of blue as 701/704 = 0.996 to 3 significant figures. Knowing
the mechanism of the game, we can calculate the true probability of blue on
the next go, which is very different. Go 700 gave blue, and go 701 gave red.
This is only possible if s on go 700 was 0, the result of the toss was tails, and
s became -1 on go 701. The next toss must also have yielded tails or there
would have been blue again on go 702. Thus s at the start of go 703 must be
-2, and this implies that the probability of blue on that go is zero. Then
again let us consider one of Feller’s massive sessions of 31,536,000 goes.
Suppose the result is that the most frequently occurring colour appears 73%
of the time (as pointed out above there is a probability of 70% of this result
which is thus not an unlikely outcome). Mr B will naturally be estimating
the probability of this colour at about 0.73 and so much higher than that of
the other colour. Yet in the real underlying game, the two colours are
exactly symmetrical.

We see that Mr B’s calculations using exchangeability will give
results at complete variance with the true situation. The reason for this is
clear. By making the assumption of exchangeability, Mr B is implicitly
assuming that the process he is considering consists of independent events
with a fixed but unknown probability. As long as this theoretical framework
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holds, his Bayesian calculations will give him reasonable results, but if the
theoretical framework does not hold in a particular case, then the same
Bayesian calculations will give him completely inappropriate results. My
conclusion is, once again, that Bayesianism only works if the condition of
the fixity of the theoretical framework is satisfied.

Our situation involving the game of ‘Red or Blue’ does not pose the
same problems for a classical statistician. Suppose such a statistician (Ms C
say) is confronted with a sequence of events which, unknown to her, is really
governed by the game of ‘Red or Blue’. It would be perfectly reasonable for
Ms C to begin by making the simplest and most familiar conjecture, namely
that the events are independent. Thus Ms C starts tackling the problem in
much the same was as Mr B. However, being, unlike Mr B, a good
Popperian, Ms C will test her conjecture rigorously with a series of statistical
tests for independence. It will not be long before she has rejected her initial
conjecture, and she will then start exploring other hypotheses involving
various kinds of dependence among the events. If she is a talented scientist,
she may soon hit on the red or blue mechanism, and be able to confirm that
it is correct by another series of statistical tests. In this case the classical
statistician seems better equipped to deal with the problem than the
Bayesian. However there are some replies to this argument which could be
made from the Bayesian point of view, and I will consider them in the final
section of the paper (section 4).

4. Possible Defences of Bayesianism

De Finetti himself does say one or two things which are relevant to the
problem. Having shown that exchangeable events are the subjective
equivalent of the objectivist’s independent and equiprobable events, he
observes that one could introduce subjective equivalents of various forms of
dependent events, and, in particular, of Markov chains. As he says (1937,
Footnote 4, 146):

‘One could in the first place consider the case of classes of events
which can be grouped into Markov “chains” of order 1,2, ... , m, ... , in
the same way in which classes of exchangeable events can be related to
classes of equiprobable and independent events.’

We could call such classes of events Markov-exchangeable. De Finetti
argues that they would constitute a complication and extension of his theory
without causing any fundamental problem (1937, 145):
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‘One cannot exclude completely a priori the influence of the order of
events ... . There would then be a number of degrees of freedom and
much more complication, but nothing would be changed in the setting
up and the conception of the problem ... , before we restricted our
demonstration to the case of exchangeable events ...’

Perhaps De Finetti has in mind something like the following. Instead of just
assuming exchangeability, we consider not just exchangeability but various
forms of Markov-exchangeability. To each of these possibilities we give a
prior probability. No doubt exchangeability will have the highest prior
probability. If the case is a standard one, like the biased coin, this high prior
probability will be reinforced, and the result will come out more or less like
that obtained by just assuming exchangeability. If, however, the case is an
unusual one, then the posterior probability of exchangeability will gradually
decline, and that of one of the other possibilities will increase until it
becomes much more probable than exchangeability.

This approach to the problem is basically the same as that we
attributed to the Bayesian in our discussion of Neyman’s investigation in
section 2, and it is liable to the same difficulties which we noted there. If a
Bayesian is to adopt this approach seriously, he or she must begin every
investigation by considering all possible hypotheses which might be
encountered in the course of the investigation. This is scarcely possible,
and, even if it were possible, it would often be a waste of time. There are
many situations in which the most obvious and straightforward hypothesis
actually works so that a consideration of a large number of arcane
alternatives would be useless toil. The classical statisticians do not need to
indulge in such toil. They can begin with any assumption (or conjecture)
they like, provided only they obey the golden rule of testing it severely. If
the assumption passes such tests, it can be provisionally adopted. If it fails,
some other better assumption must be sought. Thus the classical statistician
proceeds, so to speak, one step at a time, and there is never any need to
engage in the hopeless and time-wasting task of surveying all possible
hypotheses which might apply to the problem in hand.

There are moreover, as Albert has shown in his contribution to the
present volume, further difficulties in this defence of Bayesianism. To see
what these are, let us go back to the formulation of Bayesianism given at the
beginning of the paper. As I said there, it is usually assumed in a Bayesian
statistical analysis that there is a given a set of possible statistical hypotheses
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Hwhere I, for some set I, normally an interval of the real line. The

problem we are now considering is how the set Hwhere I should be

chosen. If we select a rather narrow set Hwe may leave out the hypothesis

which would provide the required solution. If we try to make Hbroad and
inclusive, we set ourselves a very difficult task which may well prove a
waste of time in a case in which the most simple and obvious solution
actually works in practice. What Albert shows in his 2001 is that the second

strategy of searching for a broad and inclusive set His liable to a further
difficulty.

Albert considers the possibility of extending the set Hby including
hypotheses involving chaos theory. Specifically he defines in section 4 of
his paper what he calls a ‘Chaotic Clock’. In a simple case in which we are
considering a sequence of 0’s and 1’s generated by some unknown process,

Albert formulates a set Hof hypotheses based on a mechanism involving a
chaotic clock. He then gives in section 5.1 of his paper a remarkable result
called the Anything Goes Theorem. Suppose Mr B adopts any learning
strategy whatever, i.e. he chooses his conditional probabilities given
evidence in any arbitrary way. There then exists a prior probability

distribution p over the set Hof hypotheses based on the chaotic clock such
that Mr B’s probabilities are produced by Bayesian conditioning of p.

Albert’s result is very striking indeed. His chaotic clock hypotheses
are by no means absurd. After all chaos theory is used in both physics and
in economics. Indeed hypotheses involving chaos are quite plausible as a
means of explaining, for example, stock market fluctuations. If Mr B were
really faced with a bizarre sequence of 0’s and 1’s, why should he not
consider a hypothesis based on chaos theory? Yet if Mr B is allowed to
consider the chaotic clock set of hypotheses, then any learning strategy he
adopts becomes a Bayesian strategy for a suitable choice of priors. In effect
Bayesianism has become empty.

It follows that a Bayesian (Mr B say) is caught on the horns of a
dilemma. Mr B may adopt a rather limited set of hypotheses to perform his
Bayesian conditionalisation, but then, as the example of the game of Red or
Blue shows, if his set excludes the true hypothesis, his Bayesian learning
strategy may never bring him close to grasping what the real situation is.
This is the first, or ‘Red or Blue’, horn of the dilemma. If Mr B responds by
saying he is prepared to consider a wide and comprehensive set of
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hypotheses, these will surely include hypotheses from chaos theory and thus
anything he does will become Bayesian, making the whole approach empty.
This is the second, or ‘Chaotic Clock’, horn of the dilemma.

The Bayesian is faced with quite severe difficulties here, but there is
one further way out which is sometimes suggested, and I will conclude the
paper by giving it a brief consideration. The suggestion is that in we should

start with a reasonably specific set of initial hypotheses Hbut add to this set
a ‘catch all’ hypothesis K, which simply says that some hypothesis other

than the His correct. We then give our prior distribution over the Hand

K. If it is a standard case, then one of the Hwill emerge as the most
probable hypothesis given the evidence. If, however, we are dealing with a
non-standard case, then K will gain in probability while the probability of

each of the Hbecomes very small. In such a situation, we will divide up K

into some specific set Jsay, and a new catch all K’, and repeat the process.
In this way we should, even in a problematic situation, be led to the correct
hypothesis.

While such a procedure sounds very reasonable when stated in
outline, any attempt actually to implement it in detail brings to light a whole
host of difficulties and complexities, and it is not surprising that there is no
instance to my knowledge of such a plan being actually carried out in detail
by a Bayesian. Let us begin by considering how the prior probabilities

should be divided between the set Hand the catch all K. Surely K should
have a very large prior probability since our background knowledge
concerning the development of science would suggest that most hypotheses
considered at a particular time are eventually shown to be inadequate to
some degree or in some respects. Yet if K is given a large prior probability,

this may prevent any of the Hever acquiring a large probability, even in a
straightforward case.

Suppose this initial difficulty is overcome, we are the faced with
another. Let us take one of the problematic cases in which we assume to

begin with one set of hypotheses Hsay, and another set Jare in fact

correct. Hcould be Poisson distributions and Jcould be Type A

distributions, or Hcould be the hypothesis of independent events with fixed

probability  and Jcould be hypotheses of a Markov chain of some type.
In this case we have got to show how the probability of the catch all K
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changes from its prior value p(K) say to a posterior value p(K | e) in the light
of evidence. How is such a calculation to be carried out? It is no easy
matter, and it must be done in such a way that p(K | e) increases to such a

value that we decide to abandon the Hand subdivide K into Jand the new
catch all K’. I really think such a calculation is scarcely possible. Of course
a Bayesian could show that I am wrong by carrying out such a calculation in
one of the cases dealt with in this paper, but the result would undoubtedly be
very complicated. At this point one can reasonably ask why the Bayesian
wants to get involved in such complexities rather than to adopt the methods
of classical statistics which, as I have shown, deal with the problem in an
extremely simple and straightforward way, using the method of conjectures
and refutations.

My conclusion is that Bayesianism should only be applied if we are in
a situation in which there is a fixed and known theoretical framework which
it is reasonable to suppose will not be altered in the course of the
investigation, that is to say if the condition of the fixity of the theoretical
framework is satisfied. As regards many processes whose nature is not
exactly known, statistical testing using the methodology of classical
statistics is essential.
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Notes

1. The phrase ‘a fixed theoretical framework’ comes from Lakatos
(1968, 161), although he uses it in a somewhat different sense.
Lakatos is criticising Carnap’s inductive logic, and points out that
Carnap’s confirmation function (c-function) depends on the language
employed so that it cannot cope with changes in the language.
Lakatos puts the argument like this (1968, 161):

‘Although growth of the evidence within a fixed theoretical
framework (the language L) leaves the chosen c-function
unaltered, growth of the theoretical framework (introduction of
a new language L*) may change it radically.’

Lakatos here identifies a theoretical framework with a language. By
contrast I am using ‘theoretical framework’ to refer to the set of
theories under consideration. Thus a theoretical framework in my
sense changes when a new theory is introduced even though the
language does not change. Despite this difference, the general
structure of Lakatos’ argument is quite similar to that of the argument
developed in this paper.

2. The game of ‘Red or Blue’ is described in Feller,1950, 67-95 which
contains an interesting mathematical analysis of its curious properties.
Popper read of the game in Feller, and had the idea of using it to argue
against various theories of induction. In his 1957, 358-60 (reprinted
in his 1983, 301-5) he uses the game to criticize what he calls ‘the
simple inductive rule’. I have adapted this argument of Popper’s to
produce the critique of De Finetti’s use of exchangeability given here.
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