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Abstract 
Proteins are frequently composed of multiple domains which fold 

independently. These are often evolutionarily distinct units which can be 

adapted and reused in other proteins. The classification of protein domains 

into evolutionary families facilitates the study of their evolution and function. 

In this thesis such classifications are used firstly to examine methods for 

identifying evolutionary relationships (homology) between protein domains. 

Secondly a specific approach for predicting their function is developed. 

Lastly they are used in studying the evolution of protein complexes. 

Tools for identifying evolutionary relationships between proteins are 

central to computational biology. They aid in classifying families of proteins, 

giving clues about the function of proteins and the study of molecular 

evolution. The first chapter of this thesis concerns the effectiveness of cutting 

edge methods in identifying evolutionary relationships between protein 

domains. 

The identification of evolutionary relationships between proteins can 

give clues as to their function. The second chapter of this thesis concerns the 

development of a method to identify proteins involved in the same biological 

process. This method is based on the concept of domain fusion whereby 

pairs of proteins from one organism with a concerted function are sometimes 

found fused into single proteins in a different organism. Using protein 

domain classifications it is possible to identify these relationships. 

Most proteins do not act in isolation but carry out their function by 

binding to other proteins in complexes; little is understood about the 

evolution of such complexes. In the third chapter of this thesis the evolution 

of complexes is examined in two representative model organisms using 

protein domain families. In this work, protein domain superfamilies allow 

distantly related parts of complexes to be identified in order to determine 

how homologous units are reused. 



 4

 

This work was generously supported by the Biotechnology and Biological 

Sciences Research Council. 



 5

Acknowledgements 
Firstly, many, many thanks to Professor Christine Orengo for allowing me to 

join the group, guiding me through my PhD and helping me to produce a 

good body of work. It has been an honour to work in such a prestigious 

group. 

 

Thanks go to Orengo and Martin group members past and present who have 

helped me out with problems of all sorts and provided an excellent working 

environment: Mark Dibley, Oliver Redfern, Timothy Dallman, Ian Sillitoe, 

Sarah Addou, Michael Maibaum, Russell Marsden, Tony Lewis, Alison Cuff, 

Andy Clegg, Jon Lees, Benoit Dessailly, David Lee, Stathis Sideris, Stephano 

Lise, Phil Carter, Robert Rentzsch, James Perkins, Lisa McMillan, 

Abhinandan Raghavan, Anya Baresic, Jakob Hurst and Ilhem Diboun. 

Thanks to Michael Wright for his top notch administration. Many thanks to 

Jesse Oldershaw, Tom Knight, Jahid Ahmed, Donovan Binns and Duncan 

McKenzie, members of the IT team past and present for keeping our farms 

and other machines running. 

 

Special thanks to Ian Sillitoe for, amongst other things, his dedication to 

CATH and his awesome script for generating figures based on SSAP 

alignments. Tim Dallman for inviting me to join his awesome band (Party in 

Hiroshima!). Oliver Redfern for long, interesting chats about science and 

helping revise my thesis. Corin Yeats for important early guidance in my 

work. Many thanks to Juan Antonio Garcia Ranea for a great deal of advice 

and guidance on analyses, statistics and biology generally. 

 

Thanks to David Jones, chair of my thesis committee and Andrew Martin, 

member of my thesis committee for guidance on my work. 

 



 6

Many thanks and kind regards to Alison Cranage for helping me through 

from start to finish, when it was fun and easy and when it got really hard. 

 

Unending thanks to my parents Martyn and Teresa Reid for giving me an 

amazing start and funding me well into my twenties.  

 

To anyone I may have forgotten, I apologise. 

 

A final thanks again to the BBSRC for funding this work and continuing to 

fund basic life sciences research in the UK. 



 7

List of Abbreviations 
 
BDBH Bi-Directional Best Hit 

BLAST Basic Local Alignment Search Tool 

BLOSUM BLOcks of Amino Acid SUbstitution Matrix 

CATH Class Architecture Topology Homology 

CODA Co-Occurrence of Domains Analysis 

COGS Cluster of Orthologous Groups 

COMPASS COmparison of Multiple Protein sequence Alignments 

with assessment of Statistical Significance 

CSA Catalytic Site Atlas 

DAG Directed Acyclic Graph 

DDI Domain-Domain Interaction 

DFT Domain Fusion Template 

DNA DeoxyriboNucleic Acid 

EC Enzyme Commission 

EM Expectation Maximisation 

EPQ Errors Per Query 

EVD Extreme Value Distribution 

FDR False Discovery Rate 

FP False Positive 

FSSP Fold classification based on Structure-Structure 
alignment of Proteins 

GO Gene Ontology 

GOSS GO Semantic Similarity 

GTD Genomic Threading Database 

HMM Hidden Markov Model 

IPI International Protein Index 



 8

LAMA Local Alignment of Multiple-Alignments 

MDA Multi-Domain Architecture 

N-W Needleman-Wunsch 

OPHID Online Predicted Human Interactions Database 

PAM Percent Accepted Mutation 

PDB Protein DataBank 

PFP Protein Function Prediction 

PIN Protein Interaction Network 

PPI Protein-Protein Interaction 

PPV Positive Predictive Value 

PQS Protein Quaternary Structure 

PRC PRofile Comparer 

PSI-BLAST Position-Specific Iterated BLAST 

PSSM Position Specific Scoring Matrix 

PTM Post-Translational Modification 

RMSD Root Mean Square Deviation 

SAM Sequence Alignment and Modelling system 

SAS Structural Alignment Score 

SCOP Structural Classification Of Proteins 

SMART Simple Modular Architecture Research Tool 

SSAP Sequential Structure Alignment Program 

STRING Search Tool for the Retrieval of INteracting 
Genes/proteins 

SVM Support Vector Machine 

S-W Smith-Waterman 

SYSTERS SYSTEmatic Re-Searching 

TAP-MS Tandem Affinity Purification linked to Mass Spectrometry 

TIGR The Institute for Genome Research 

TP True Positive 



 9

Y2H Yeast Two-Hybrid 



 10

Table of Contents 

Abstract...................................................................................................................3 

Acknowledgements ...............................................................................................5 

List of Abbreviations .............................................................................................7 

Table of Contents .................................................................................................10 

List of Figures.......................................................................................................17 

List of Tables.........................................................................................................24 

List of Equations ..................................................................................................27 

Chapter 1 Introduction...................................................................................30 

1.1. Molecular Biology as an Information Science ....................................30 
1.2. Proteins..................................................................................................34 

1.2.1. Protein Sequence Resources.........................................................39 
1.2.2. Protein Structure Resources .........................................................39 

1.3. Detecting Evolutionary Relationships between Proteins..................41 
1.3.1. Homology, Orthology and Paralogy...........................................41 
1.3.2. Homologue Detection...................................................................41 
1.3.3. Single Sequence Methods.............................................................44 
1.3.4. Profile Methods.............................................................................48 
1.3.5. Profile Hidden Markov Models...................................................49 
1.3.6. Profile-Profile Methods ................................................................55 
1.3.7. Structure-Based Homology Detection ........................................59 
1.3.8. Algorithms for Clustering Proteins.............................................63 

1.4. Protein Domain Classification Resources...........................................65 
1.4.1. Sequence-Based Classifications ...................................................65 
1.4.2. Structure-Based Classifications....................................................66 
1.4.3. Identifying Domains in Protein Sequences.................................72 
1.4.4. Whole-Chain Protein Classifications...........................................73 

1.5. Evolution of Protein Domain Families ...............................................75 
1.6. Protein Function Classifications..........................................................77 

1.6.1. Gene Ontology ..............................................................................77 
1.6.2. FunCat............................................................................................80 
1.6.3. Enzyme Commission....................................................................80 
1.6.4. Measuring Functional Similarity.................................................83 

1.7. Prediction of Protein Function.............................................................85 



 11

1.7.1. Definition of Protein Function .....................................................85 
1.7.2. Homology-Based Methods for Predicting Protein Function.....86 
1.7.3. Function Prediction Using Protein-Protein Interactions ...........87 
1.7.4. Inferring Functional Associations through Gene Expression 
Analysis 87 
1.7.5. Inferring Functional Associations Using Genome Context 
Methods 87 
1.7.6. Resources of Genome Context Data ............................................88 

1.8. Protein-Protein Interaction Networks and Complexes .....................90 
1.8.1. Experimental Approaches to Determine Protein-Protein 
Interactions ...................................................................................................91 
1.8.2. Resources of Protein Interaction Data.........................................91 
1.8.3. Resources of Protein Complex Data............................................92 

1.9. Overview of Thesis...............................................................................93 
1.9.1. Chapter 2 .......................................................................................93 
1.9.2. Chapter 3 .......................................................................................93 
1.9.3. Chapter 4 .......................................................................................94 

Chapter 2 Benchmarking Sequence-Based Methods of Remote 
Homologue Detection..........................................................................................95 

2.1. Introduction ..........................................................................................95 
2.1.1. Sequence-Based Methods of Remote Homologue Detection....95 
2.1.2. Benchmarking Sequence-Based Methods of Remote 
Homologue Detection..................................................................................96 
2.1.3. Aims...............................................................................................99 

2.2. Methods...............................................................................................101 
2.2.1. Datasets for Benchmarking Homologue Recognition Methods
 101 
2.2.2. Profile and Model Building........................................................101 
2.2.3. Benchmarking Procedure...........................................................102 
2.2.4. Exceptions to the Rule ................................................................103 
2.2.5. Coverage versus Error Plots ......................................................104 
2.2.6. Combining Different Methods to Increase Specificity.............104 

2.3. Results .................................................................................................106 
2.3.1. A Heuristic Rule to Improve Benchmarking of Sequence-Based 
Methods of Remote Homologue Detection..............................................106 
2.3.2. Detecting Remote Homologues.................................................116 
2.3.3. Determining Reliable E-Value Thresholds for Remote 
Homologue Detection................................................................................123 
2.3.4. Combining Methods Improves Performance by Excluding False 
Positives 126 

2.4. Discussion ...........................................................................................130 
2.4.1. Heuristic Exceptions Rule ..........................................................130 
2.4.2. The Importance of Benchmarking for Application ..................131 
2.4.3. Relative Performance of Methods .............................................131 
2.4.4. Combining Methods Improves Performance ...........................132 



 12

2.4.5. Future Work ................................................................................132 

Chapter 3 Developing CODA to Predict Functional Associations between 
Proteins 133 

3.1. Introduction ........................................................................................133 
3.1.1. Gene and Domain Fusion Detection Methodologies...............133 
3.1.2. Aims.............................................................................................141 

3.2. Methods...............................................................................................142 
3.2.1. Gene3D Multi-Domain Architecture Datasets .........................142 
3.2.2. Prolinks, STRING and Truong Datasets ...................................142 
3.2.3. A Benchmark for Functional Similarity Using Gene Ontology 
Terms 145 
3.2.4. The CODA Score.........................................................................150 
3.2.5. CATH Subfamilies for CODA ...................................................151 
3.2.6. Details of Other Fusion Approaches Used in This Work ........152 

3.3. Results .................................................................................................154 
3.3.1. Performance of CODA ...............................................................154 
3.3.2. Comparison of CODA with Prolinks-Fusion, STRING-Fusion 
and Truong-Fusion in Yeast ......................................................................161 
3.3.3. Applying CODA to Identify Novel Associations Between 
Proteins 173 
3.3.4. Additional Functional Coverage Produced by CODA............174 

3.4. Discussion ...........................................................................................176 

Chapter 4 Comparative Evolutionary Analysis of Protein Complexes in E. 
coli & Yeast 179 

4.1. Introduction ........................................................................................179 
4.1.1. Protein Complexes......................................................................179 
4.1.2. Protein Complex Datasets..........................................................181 
4.1.3. Methodologies for Predicting Complexes ................................186 
4.1.4. Aims.............................................................................................186 

4.2. Methods...............................................................................................188 
4.2.1. Summary .....................................................................................188 
4.2.2. Experimental Protein-Protein Interaction Datasets .................188 
4.2.3. Generating MCL-GO Complex Datasets from PPI Datasets...190 
4.2.4. Annotation of MCL-GO Complexes..........................................193 
4.2.5. Pre-defined Protein Complex Datasets .....................................193 
4.2.6. Determining the Distribution of Homologues in Complexes.194 
4.2.7. Functional Coherence of Superfamilies ....................................196 
4.2.8. Identification of Complexes Containing Homologous Pairs ..197 
4.2.9. Identification of Correlated Domains .......................................198 
4.2.10. Phylogenetic Profiling ................................................................198 

4.3. Results .................................................................................................200 
4.3.1. Prediction and Functional Characterisation of Protein 
Complexes in E. coli and Yeast..................................................................200 



 13

4.3.2. Distribution of Protein Domain Superfamilies amongst Protein 
Complexes...................................................................................................210 
4.3.3. Functional Analysis of Non-Randomly Distributed 
Superfamilies ..............................................................................................213 
4.3.4. Co-Occurrence of Homologues in Protein Complexes............217 
4.3.5. Identification of Correlated Domain Superfamily Pairs..........221 
4.3.6. Do Co-Complex Homologues and Correlated Domain Pairs 
Correspond to Complex Cores? ................................................................222 

4.4. Discussion ...........................................................................................226 

Chapter 5 Discussion and Conclusions ......................................................228 

5.1. Overview.............................................................................................228 
5.2. Chapter 2 .............................................................................................228 
5.3. Chapter 3 .............................................................................................231 
5.4. Chapter 4 .............................................................................................233 
5.5. Future Work........................................................................................235 

Bibliography.......................................................................................................237 

Appendix A ........................................................................................................269 

Appendix B.........................................................................................................270 

Appendix C ........................................................................................................277 

Appendix D ........................................................................................................279 



 14

List of Figures 
Figure 1.1 The central dogma of molecular biology. ........................................32 

Figure 1.2 Growth of biological data..................................................................36 

Figure 1.3 Properties of the amino acids (Taylor, 1986)....................................37 

Figure 1.4 The four levels of protein structure. .................................................38 

Figure 1.5 The Needleman-Wunsch dynamic programming algorithm.........46 

Figure 1.6 Plan 7 HMM architecture as implemented in HMMer (Eddy, 1998).

....................................................................................................................51 

Figure 1.7 PRC's pair-Hidden Markov Model...................................................58 

Figure 1.8 Flowchart of the SSAP algorithm......................................................62 

Figure 1.9 Relationship between the conservation of sequence and structure.

....................................................................................................................67 

Figure 1.10 The CATH hierarchy organises protein domain structures into 

groups based on their structural similarity............................................69 

Figure 1.11 Power-law distribution of CATH protein domain families in 

Gene3D version 6......................................................................................76 

Figure 2.1 Accuracy in reproducing manually curated exceptions using 

heuristic rule with varying SAS score. .................................................109 

Figure 2.2 Performance of PRC assessed with no exceptions, using the 

manually curated exceptions or using the heuristic rule (at different 

SAS thresholds, with no overlap threshold). .......................................110 

Figure 2.3 Examples of exceptions identified using the SAS8 rule................114 

Figure 2.4 Performance of all methods using the allpos and SAS8 rules on the 

nr35 (a) and nr10 (b) datasets. ...............................................................117 

Figure 2.5 Performance of all methods using the tophit and SAS8 rules on 

nr35 (a) and nr10 (b) datasets. ...............................................................120 



 15

Figure 2.6 Combining methods to improve specificity...................................128 

Figure 3.1 Problems encountered in detecting gene/domain fusions. .........139 

Figure 3.2 Distribution of biological process GOSS scores between yeast 

proteins in the Gene3D dataset. ............................................................149 

Figure 3.3 Comparative performance of Pfam, Pfam-CATH, CATH and 

CATH-Pfam MDA datasets on the yeast genome. ..............................157 

Figure 3.4 Performance of CODA on yeast Gene3D dataset using CATH 

domains, with and without sequence subfamilies. .............................158 

Figure 3.5 CODA with and without promiscuity filter (prom50)..................160 

Figure 3.6 Performance of CODA relative to the other methods...................163 

Figure 3.7 Relationship between number of links and proteins. ...................168 

Figure 3.8 Overlap in proteins and linked pairs of proteins identified by 

fusions. ....................................................................................................170 

Figure 3.9 Performance of CODA relative to other methods on the human 

genome. (a) CODA vs. STRING-fusion. (b) CODA vs. Prolinks-fusion.

..................................................................................................................172 

Figure 4.1 Summary of procedures and analyses presented in this chapter.189 

Figure 4.2 Difference in accuracy when clustering protein-protein 

interactions rendered in spoke and matrix models. ............................202 

Figure 4.3 Combining IntAct and MINT datasets and weighting interactions 

with GOSS scores resulted in greater accuracy over either resource 

alone and without weighting. ...............................................................203 

Figure 4.4 Accuracy of MCL-GO complexes (using MINT+IntAct and edge 

weighting) in capturing MIPS yeast complexes and EcoCyc E. coli 

complexes................................................................................................205 

Figure 4.5 Size distribution of E. coli and yeast MCL-GO complexes. ..........206 



 16

Figure 4.6 Percentage of proteins in complexes annotated with the most 

common term in each complex. ............................................................208 

Figure 4.7 Principal functions of complexes in each species. .........................209 

Figure 4.8 Number of CATH superfamily members versus number of 

complexes containing members of that superfamily for E. coli and 

yeast MCL-GO complexes. ....................................................................211 

Figure 4.9 Percentage of complexes in each species in which at least one pair 

of homologues was observed. ...............................................................219 

Figure 4.10 Percentage of TAP-MS complexes containing pairs of proteins 

with homologous domains. ...................................................................220 

 



 17

List of Tables 
Table 1.1 Gene Ontology evidence codes...........................................................79 

Table 1.2 Level 1 of the Funcat hierarchy...........................................................82 

Table 2.1 Classes of curated exceptions for PRC on nr35 dataset at E-value 

cut-off of 0.01. .........................................................................................107 

Table 2.2 Classes SAS8 exceptions as percentage of curated exceptions. .....112 

Table 2.3 Percent coverage for each method at 0.01, 0.05 and 0.1 EPQ, using 

the allpos rule. ........................................................................................118 

Table 2.4 Percent coverage for each method at 0.01, 0.05 and 0.1 EPQ, using 

the tophit rule. ........................................................................................122 

Table 2.5 E-value cut-offs for empirically determined error rates on the nr35 

dataset using allpos rule. ........................................................................125 

Table 2.6 E-value cut-offs for empirically determined error rates using tophit 

rule on the nr35 dataset..........................................................................125 

Table 3.1 Overview of gene/domain fusion implementations for predicting 

functional associations. ..........................................................................135 

Table 3.2 Coverage of STRING, Prolinks and Truong datasets with Pfam 

domains. ..................................................................................................144 

Table 3.3 Percentages of proteins from yeast and human genomes which had 

at least one relevant GO term in each dataset......................................147 

Table 3.4 Size of datasets and genome coverage with different Multi-Domain 

Architecture (MDA) types. ....................................................................155 

Table 4.1 IntAct interaction datasets for genomes with more than 500 known 

interactions..............................................................................................183 

Table 4.2 Genome-based interaction data from MINT. ..................................185 



 18

Table 4.3 Superfamilies in E. coli and yeast MCL-GO complexes which were 

non-randomly distributed. ....................................................................214 

Table 4.4 Relative age (emergence of orthologues) of all proteins, co-complex 

homologues and proteins which contain correlated domains for E. coli 

and yeast MCL-GO complexes..............................................................223 

Table 4.5 P-values indicating whether or not particular types of proteins are 

older than other proteins. Asterisks identify statistically significant 

results. .....................................................................................................225 

 



 19

List of Equations 
Equation 1.1 E-value formula .............................................................................44 

Equation 1.2 Root Mean Square Deviation formula .........................................60 

Equation 1.3 SAS score for structural comparison. ...........................................63 

Equation 1.4 Semantic similarity formula..........................................................83 

Equation 2.1 Combined E-value .......................................................................104 

Equation 3.1 CODA score for a particular pair of domain superfamilies j in  

genome g. ................................................................................................150 

Equation 3.2 CODA score for a pair of query proteins i in genome g. ..........151 

Equation 3.3 Prolinks score. ..............................................................................153 

Equation 4.1 Sensitivity. ....................................................................................191 

Equation 4.2 Complex-wise sensitivity. ...........................................................191 

Equation 4.3 Sensitivity for complex i and cluster j. .......................................191 

Equation 4.4 Positive Predictive Value. ...........................................................191 

Equation 4.5 Cluster-wise PPV. ........................................................................192 

Equation 4.6 PPV for complex i and cluster j. .................................................192 

Equation 4.7 Accuracy. ......................................................................................192 

Equation 4.8 FDR correction .............................................................................195 

 



 20

 
 
 

Chapter 1     Introduction 
 
 

1.1. Molecular Biology as an 
Information Science 

The principle common factor of all living beings is a nucleic acid genome. 

Excepting some viruses, this is always DeoxyriboNucleic Acid (DNA). The 

genome contains the hereditary information which is passed between 

generations and describes how organisms are to be built and maintained.  In 

theory an organism can be entirely described based on its genome and 

environmental background. Genes are units of the genome and most of these 

encode proteins, the principal effectors of the genetic program. It was 

determined in the last century that genes follow a three letter code, where 

three nucleic acids are interpreted as a single amino acid, the smallest 

subunit of proteins (CRICK et al., 2009). While there are four different 

subunits (the nucleic acids guanine, cytosine, thymine, adenine) used in 

DNA, there are 20 subunits used in proteins. Of the 64 possible 3-letter codes 

in DNA, several alternative triplets usually correspond to the same amino 

acid and some also provide meta-data, defining the beginning and end of 

genes. Other, longer codes also exist in regions of DNA which do not encode 

proteins, but are related to the activity of genes. There are signals for which 

parts of the gene are used to build proteins (alternative splicing), how many 

copies are produced (expression levels) and whether the gene is accessible 

(DNA packaging). 

The DNA code is not directly transliterated into the protein code. DNA 

is first transcribed into RNA (Figure 1.1). There are many types of RNA with 

different functions, but it is messenger RNA (mRNA) that is transcribed from 

genes and subsequently translated into protein. The RNA code is essentially 



 21

the same as the DNA code, except that the nucleic acid uracil is substituted 

for thymine. 

The sequence of amino acids in a protein is thought to specify both its 

structure and function, at least in the context of the cell. Thus the sequence of 

nucleic acids in genes also specifies the structure and function of proteins. 

This concept is at the heart of biology as an information science. 
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Figure 1.1 The central dogma of molecular biology. 
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Advancements in DNA sequencing beginning with the Sanger method 

(Sanger et al., 1977) have, in recent years, allowed the entire genomes of 

many organisms have been sequenced. The first cellular organism sequenced 

was Haemophilus influenzae in 1995 (Fleischmann et al., 1995) with various 

viruses having been sequenced prior to this. There are now over 700 

completed genomes (664 bacteria, 53 archaea, and 62 eukaryotes according to 

http://www.ebi.ac.uk/integr8). It is relatively trivial to determine where the 

protein-coding genes are in bacterial genomes and although less so, certainly 

possible in eukaryotic genomes. The genome thus contains sufficient 

information to determine much of the proteome (all the proteins encoded by 

the genome).  

Defining variations in the proteins which come from single genes due 

to alternative splicing has proved harder (Tress et al., 2007). Genes and 

proteins can also be identified using mRNA, the mass sequencing of which 

allows us to determine those regions of the genome which are transcribed. 

The determination of mRNA expression levels also provides a clue as to how 

much of a gene product is required by the cell. Furthermore, genes that have 

similar expression patterns tend to have similar roles in the cell (Page et al., 

2007). There is much data on the three-dimensional structure of proteins, 

which contains detailed information of their function. Increasingly there is a 

focus on determining which proteins interact and several high-throughput 

approaches allow us to observe this on a large scale (Walhout and Vidal, 

2001). This has become important due to an increasing awareness that the 

number and variety of genes in an organism is not sufficient to explain its 

biological complexity (Szathmary et al., 2001).  

This wealth of data has brought us to a far greater understanding of the 

complexity that leads to functioning organisms. Figure 1.3 Shows the 

increase in nucleotide sequence, protein sequence and protein structure data 

over the last 20 years. It is clear that computational biology will only increase 

in importance as more and more data becomes available. A greater 

integration between computational and experimental biology is also 
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necessary in order that appropriate data is generated, hypotheses can be 

formed from in silico analyses and then tested experimentally. 

1.2. Proteins 
This thesis is principally concerned with proteins. Although the information 

contained in a protein sequence is also in the gene sequence, protein 

sequences are more useful for many studies. Proteins, with 20 elements to the 

code rather than the four present in DNA, are more useful for recognising 

distant similarities between genes which are related in their evolutionary 

history and function. As gene sequences diverge the similarities more 

quickly become no different than expected by chance, whereas protein 

sequences retain meaning due to redundancy in the genetic code and 

functional equivalence due to overlapping properties between amino acids 

(Figure 1.4). Thus functional information is more accessible in the protein 

sequence.  

Protein structure can be described at several levels (Figure 1.6). The 

primary structure or sequence is simply the order of amino acids from the 

amino (N) terminus to the carboxyl (C) terminus. As primary structure 

consists of a limited range of amino acids, so secondary structure consists of 

a limited range of forms. Protein chains primarily fold into either alpha 

helices or beta strands, connected by random coil (or loop) regions. 

Additional structures include beta-turns, 310 helices and π-helices. Alpha 

helices may wind around each other to form coiled-coils and beta strands 

may line up to form beta sheets (in parallel or anti-parallel orientations).  

The tertiary structure of a protein is the three-dimensional (3D) 

arrangement of secondary structures and is often termed the fold. The 

quaternary structure of a protein takes into account multiple chains. Chains 

may interact in order to form stable complexes or for example, one protein 

may chemically modify another. 
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Figure 1.3 Growth of biological data. 

Nucleotide sequence numbers were taken from European 

Molecular Biology Laboratory nucleotide database, 

protein sequence numbers from UniProt and protein 

structure numbers from Protein DataBank.
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Figure 1.4 Properties of the amino acids (Taylor, 1986). 
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Figure 1.6 The four levels of protein structure. 

This image was taken from the National Human Genome 

Research Institute’s Talking Glossary of Genetics. 
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The tertiary structure of a protein can be divided into domains. 

Domains are distinct evolutionary units of tertiary structure and often 

assume distinct, independently folding units (Orengo and Thornton, 2005). 

They can perform distinct elements of a protein’s function such as ligand 

binding or a particular catalytic step. There are exceptions however, such as 

where an active site occurs between two domains. Up to 80% of proteins in 

eukaryotes and 60% in prokaryotes are predicted to consist of multiple 

domains (Apic et al., 2001b). 

It is thought that the amino acid sequence of a protein determines the 

tertiary structure and that the tertiary structure in turn determines the 

protein’s function. However due to the complexity of this relationship no 

principle has yet been discovered to accurately predict tertiary structure or 

function from the amino acid sequence alone.  

1.2.1. Protein Sequence Resources 

Protein sequence data is available from several resources. UniProtKB is an 

extensive resource which resulted from the integration of three pre-existing 

resources, Swiss-Prot, TrEMBL and the Protein Information Resource (PIR) 

(The UniProt Consortium, 2008). UniProtKB consists of two principal parts. 

The part derived from Swiss-Prot contains manually-curated records with 

highly accurate protein sequences. The part derived from TrEMBL contains 

theoretical translations of gene sequences from the EMBL nucleotide 

sequence database (Kulikova et al., 2007). RefSeq (Pruitt et al., 2005) also 

provides a non-redundant set of protein sequences from diverse organisms, 

however fewer of its records are curated than for UniProtKB. 

 

1.2.2. Protein Structure Resources 

The principal source of data on protein structures in the Protein DataBank 

(PDB; Berman et al., 2007). Like UniProtKB this resource is a consortium of 

several other databases seeking to standardise quality and distribution of 
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data. Structures derived from X-ray crystallography and NMR experiments 

are routinely deposited in the PDB. 
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1.3. Detecting Evolutionary 
Relationships between Proteins 

1.3.1. Homology, Orthology and Paralogy 

There are many examples of genes which are clearly related by duplication 

from a common ancestor. However, for most pairs of genes, there is no 

evidence that they are related. It is not clear how many times genes have 

evolved independently and we expect to have lost any observable similarity 

between the most distantly related genes. Gene duplication is a common 

process shaping genomes and has been especially frequent in the larger 

eukaryotic genomes (Ohno, 1970). Genes resulting from the duplication of a 

common ancestral gene are termed homologues. Orthologues are 

homologues in different species, which derive from a single gene in the 

common ancestor of those species. Orthologues often share the same 

function in different species, although this is not always the case. Paralogues 

are homologues which derive from a gene duplication within a genome, 

rather than through speciation (Fitch, 1970). Analogous proteins have similar 

sequences or structures but they are not derived from a common ancestor, 

their similarity arising by convergent evolution. It is unclear how common 

analogous proteins are (Krishna and Grishin, 2004). 

Homologous proteins are more likely to share similar structural and 

functional properties than non-homologues. Therefore, recognising 

homology between genes or proteins allows us to infer common structural 

and functional properties. The result of this is that given a well characterised 

protein, the properties of its homologues can be predicted in many cases. 

1.3.2. Homologue Detection 

The inference that two protein domains share a common evolutionary 

ancestor is one line of evidence for shared function. Such evidence allows the 

function of well characterised proteins to be inherited to proteins of 

unknown function. The ability to detect similarity between proteins and infer 
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homology is central to bioinformatics. In general, homology is inferred by 

detecting degrees of similarity between proteins either in their sequence or 

structure. Similarity scores of proteins known to be related and those known 

to be unrelated are determined and a score cut-off is chosen to maximise the 

separation between the two groups. Homology or the lack of it can then be 

inferred where relationships are not known. 

The key factors influencing the development of homology detection 

methods have been their ability to distinguish homologues from non-

homologues, their sensitivity to accurately detect more distant homologues 

and the need to increase the speed of algorithms to cope with an increasing 

volume of data.  

In general, sequence-based homologue detection methods involve the 

alignment of a sequence to each of a library of sequences from within which 

one wishes to identify the likely homologues. The alignment of gene and 

protein sequences is based on the idea that duplicated genes diverge by 

substitution, deletion and insertion of nucleic or amino acids. Each aligned 

residue represents an evolutionarily conserved position, between which 

there may be gaps representing indels (either insertions or deletions). The 

sequence identity between two sequences may be calculated by determining 

the percentage of identical, aligned residues. A more sophisticated scoring 

function is also used to determine the similarity of aligned sequences. The 

score is increased where there are conserved residues or where substitutions 

are for amino acids with similar properties and penalised where there are 

substitutions for dissimilar amino acids or gaps in the alignment. A score cut-

off can be determined by benchmarking the method so that on one side of the 

cut-off one can say that two sequences are probably homologous and on the 

other side probably not homologous, with a known error. The major 

approaches to aligning sequences and scoring the similarity between them 

are discussed below in sections 1.3.3 to 1.3.6. Section 1.3.7 describes how 

protein structures can be used to determine homologous relationships. 

Firstly some background concepts are introduced. 
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1.3.2.1. Substitution Matrices 

Some mutations between amino acids are more favourable than others. That 

is, properties of structure and function are more conserved when an amino 

acid is substituted for a similar amino acid rather than one with very 

different properties. This premise is very useful when scoring sequence 

alignments. Two amino acids with similar properties in equivalent positions 

of two aligned proteins ought to receive a better score than two such amino 

acids with very different properties. For example, lysine and arginine are 

both polar and positively charged (see Figure 2). A mutation between these is 

therefore less likely to affect stability or function of a protein than a mutation 

between two less similar amino acids. Substitution matrices consist of a score 

(positive or negative) between each pair of amino acids. 

Point Accepted Mutation (PAM) substitution matrices are based on 

empirically observed substitutions. Margaret Dayhoff and co-workers 

(M.O.Dayhoff et al., 1978) generated alignments of close evolutionary 

relatives (>85% sequence identity) and calculated the frequency of 

substitutions between equivalent residues. The probabilities of each 

substitution were normalised to an evolutionary rate of 1 mutation every 100 

residues (PAM1). The matrix can easily be transformed to represent other 

evolutionary rates to account for expected mutation rate and time of 

divergence. 

BLOcks Substitution Matrices (BLOSUM) were generated from regions 

of locally aligned sequences in the BLOCKS database (Henikoff and Henikoff, 

1992). Proteins, clustered at different sequence identities, were used to 

calculate substitution rates representing different evolutionary distances. The 

BLOSUM50 matrix uses clusters at 50% sequence identity for instance. These 

matrices have been shown to perform better in detecting homologous 

proteins than PAM matrices (Henikoff and Henikoff, 1993). 

1.3.2.2. E-values 

E-values are used by many sequence comparison methods when searching a 

query sequence against a database to find homologues. They give an 
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estimate of the number of errors to be expected for a particular score. An E-

value of one for a match between a model and a sequence means that one 

random match should be expected among sequences with that score or better 

in a database of a certain size. The E-value is dependent on database size 

because in a large database one would expect more high scoring random 

matches than in a small one. E-values are calculated using the observation 

that the scores of random matches produced by sequence comparison 

methods approximate an Extreme Value Distribution (EVD; Durbin et al., 

1998). For ungapped alignments it is understood precisely how scores follow 

this distribution, but for gapped alignments it is necessary to fit empirical 

data to an EVD (Altschul et al., 1997). The E-value formula is shown in 

Equation 1.1. 

 
SKmneE λ−=  

Equation 1.1 E-value formula 

 

In Equation 1.1, m is the length of the query sequence, n is the combined 

length of the sequences in the database and S is the score of the match. K and 

l are parameters of the EVD to which random matches have been fitted for a 

particular sequence comparison method. 

 

1.3.3. Single Sequence Methods 

The first methods for homology detection were based on the comparison of 

pairs of sequences with dynamic programming and are still in frequent use 

today. Needleman and Wunsch (1970) produced the first of these methods 

which compares two amino acid sequences from end to end. Necessarily 

aligning two sequences from end to end is termed global alignment. In 1982 

Gotoh (1982) introduced a more efficient version, which is more commonly 

used, although it is still referred to as the Needleman & Wunsch (NW) 
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algorithm. A substitution matrix is used to assign scores for each pair of 

residues between the sequences. 

Smith and Waterman (1981) extended the NW method by allowing 

local alignment between sequences. Rather than force sequences to align 

globally this produces the highest scoring alignment amongst subsequences 

of two proteins. 

Dynamic programming algorithms are widely used in bioinformatics as 

they can be used to efficiently find an optimal solution to alignment 

problems. Here dynamic programming is described in detail in terms of the 

alignment of two protein sequences using the NW algorithm and pictorially 

in Figure 1.8.  

For two protein sequences A and B, a matrix is constructed such that 

each element relates to a pair of residues i,j where i ∈  A and j ∈B. The matrix 

is populated with values from a substitution matrix, representing the 

likelihood of mutation between residues i,j. Another matrix of equal 

dimensions is created and beginning in the bottom right-hand corner the 

elements are populated using the function S(i, j). This function uses the score 

from the first matrix for that element added to the maximum of either the 

element (i+1, j+1), (i, j+1) or (i+1, j). The first of these terms represents an 

alignment of residues i and j, whereas the last two terms represent a gap in 

the alignment and a gap penalty G is used to reduce the score. Once this 

matrix has been populated, the highest scoring, optimal path is determined 

in the traceback step. 
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Figure 1.8 The Needleman-Wunsch dynamic 

programming algorithm.  

Each residue pair in sequences A and B is scored for 

similarity and these scores are used to populate a matrix. 

For simplicity in this example, a score of +5 is given to 

identical residues, rather than  using a substitution matrix. 

The accumulation step populates another matrix using the 
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function S(i,j). The final traceback step identifies the 

highest scoring path. 
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Dynamic programming methods will find the optimal global (NW) or 

local alignment (Smith & Waterman; SW) for two sequences given the 

substitution matrix, but are relatively slow. With increases in sequence 

database size it has become impractical to use these methods when searching 

for homologues. This has lead to the development of heuristic methods 

which reduce the search space by quickly excluding sequences which are 

unlikely to produce a good score. They are not, however, guaranteed to find 

the optimal alignment. The most popular methods in this category are 

BLAST (Altschul et al., 1990) and FASTA (Pearson and Lipman, 1988).  

BLAST initially makes a list of amino acid subsequences (words) of a 

certain length (three by default) that are present in the query sequence and 

that produce a score higher than a threshold. It then searches a database of 

sequences for these words and, finding one, tries to extend an ungapped 

match in both directions to attain a maximal scoring extension. This reduces 

the search space considerably over NW and SW, allowing one to search a 

query sequence against a database of millions of sequences in a few seconds. 

Subsequently the authors produced a version of BLAST allowing gapped 

alignments (Altschul et al., 1997). 

1.3.4. Profile Methods 

Profile methods compare a single protein sequence against an alignment of 

known homologues and determine the similarity between them. There tend 

to be positions in an alignment of homologues where amino acids are highly 

conserved (i.e. present in the vast majority of sequences). Putative 

homologues are likely to have the same amino acid conserved at these 

positions and the score ought to reflect this by penalising alternative residues. 

Other positions in the alignment may be more variable and thus the score for 

a putative homologue should not be greatly affected by variation at these 

positions. It has been found that methods using multiple sequences detect 

three times as many remote homologues as pairwise methods (Park et al., 

1998). 
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The most popular profile method is PSI-BLAST (Altschul et al., 1997). 

PSI-BLAST takes a single sequence and performs an iterated BLAST against a 

database. In the first iteration close homologues of the sequence are found 

and used to build a profile. The profile represents the likelihood of observing 

each amino acid at each conserved position. This profile is then searched 

against the database to pull in more distant relatives from which a new 

profile is built and yet more distant homologues can be detected. 

1.3.5. Profile Hidden Markov Models 

Profile Hidden Markov Models (profile-HMMs or simply HMMs) (Hughey 

and Krogh, 1996; Krogh et al., 1994; Eddy, 1996) can be considered a more 

formal approach to the profile methodology with the key incorporation of 

position-specific gap penalties. Similar models have been used for trans-

membrane helix prediction (e.g. TMHMM; Krogh et al., 2001) and gene 

prediction (e.g. GeneWise; Birney and Durbin, 2000). The two commonly 

used implementations for homologue detection are SAM (Karplus et al., 1998) 

and HMMer (Eddy, 1998). HMMs are generally used to model protein 

domains as their power to detect remote relationship is reduced when 

considering multi-domain proteins. HMMs are used extensively in Chapter 2 

and the predictions they provide of protein domains are used throughout 

Chapters 3 and 4; they are therefore discussed here in some detail. 

1.3.5.1. HMM Architecture 

The schema of an example HMM is shown in Figure 1.10. Each arrow and 

labelled box in the diagram has one or more parameters which are calculated 

based on the multiple alignment of the sequence family to be modelled and 

background probabilities based on proteins in general. Each conserved 

column in a domain alignment is represented by a match state (M in Figure 

1.10). Match states are one of two types of emission state and emit amino acid 

residue symbols according to a probability distribution. From a match state, 

the model can pass into either the next match state, a delete state (D) or an 

insert (I) state. The probability of passing from one state to another state is 
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termed the transition probability. Figure 1.10 shows the plan 7 HMM 

architecture as implemented in HMMer. SAM implements a slightly more 

complicated version known as plan 9, which includes transitions directly 

between insert and delete states. Insert states are the second form of emitting 

state and also the only type of state with a transition back to itself. Insert 

states model inserted sequence between match states. Delete states are silent 

and do not emit any residues. These allow the model to skip a match state 

and reflect the situation where a member of the protein domain family has 

undergone the deletion of a residue. 
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Figure 1.10 Plan 7 HMM architecture as implemented in 

HMMer (Eddy, 1998).  

Profile HMMs of this form are used to model protein 

domain families. Match states (squares) represent 

conserved positions in a domain and emit amino acid 

symbols based on a probability distribution derived from 

the domain family sequence alignment. Insert states 

(diamonds I1, I2 & I3) model insertions between match 

states. Delete states (circles D1, D2, D3 & D4) model the 

deletion of a conserved position (i.e. allow a match state to 

be skipped). See text for further details. 
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The S state is trivial, with the transition probability into the model being 

one. This is a feature of the implementation rather than the protein family 

being modelled. The B state allows for transition into the first M or D state, 

the probability is one for the M transition in the case of global alignment. The 

E state has transition probabilities specifying the likelihood of repeated 

matches to the whole model versus exiting the model. The J state allows 

inserted residues between multiple matches of the model to a sequence 

(representing duplicated domains) by modelling inserted residues between 

matches and a path back to the start of the model. N and C states allow 

insertion of residues at either end of the model to achieve local scoring. 

1.3.5.2. Model Parameterisation 

The emission and transition probabilities of an HMM are parameterised in 

such a way as to make it the model which is most likely to have produced the 

training sequences. The trained model is then used to assess the likelihood 

that a sequence of interest has been emitted by the model. 

It is generally the case that homologous protein domains have a core of 

conserved tertiary structure with more variable regions occurring in the 

loops between secondary structures (Reeves et al., 2006). In a multiple 

sequence alignment this is visualised as regions of conservation with 

intervening indels. Match states are generally created for each position in the 

alignment where the majority of the sequences have a residue. Unaligned 

regions (where the majority of sequences have gaps) contribute to the 

probability of transition into an insert state from the previous match state. 

The more sequences that have inserted residues, the more likely this 

transition will be. For match states where some sequences have a deletion, 

more or less of these deletions will raise or lower the probability of a 

transition to the delete state which causes the model to skip that match state. 

The fewer deletions and insertions there are, the higher the probability that 

the model will pass from one match state to the next. The transition 

probabilities from any particular state must add up to one. It is necessary 
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that every possible transition has a non-zero probability in order that unseen 

variation in true homologues is not excluded. 

Emission probabilities give the likelihood of emission for each amino 

acid from each emitting state. For match states, these are based on the 

observed counts of each amino acid in each match state of the alignment, 

with each match state having a different set of probabilities. Zero 

probabilities for amino acids must be avoided and there are several methods 

for this. The most successful method is to use Dirichlet mixtures (Sjolander et 

al., 1996). These take account of the properties of observed amino acids and 

upweight emission probabilities for similar types of amino acids. If the 

predominant amino acid observed for a match state is small, hydrophobic 

and therefore probably buried in the protein, a large hydrophilic residue is 

unlikely to be substituted as this would disrupt the fold of the protein. 

Dirichlet mixtures may also be used to model emission probabilities for 

insert states. 

It is unwise to give equal weight to every sequence in the alignment 

used to parameterise the model, as this tends to lead to more common 

sequences dominating the probabilities in the model (Karchin and Hughey, 

1998). Sequences which are more similar to each other are down-weighted, 

allowing more divergent sequences to express their features. The result is a 

more general model which is better at detecting divergent homologues. 

1.3.5.3. Creating Domain Family Alignments for Model 
Parameterisation 

In order to implement profile methods it is necessary to construct an 

alignment of homologous sequences. One approach is to derive an initial set 

of seed sequences from any suitable source e.g. literature or database 

searches. A seed alignment is then created using iterative pairwise alignment 

and may be manually curated to reflect knowledge of structurally and 

functionally conserved residues. HMMs are built from the seed alignment 

and used to find further homologues for a full alignment. 
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Alternatively a more automated approach may be used, such as that 

implemented in the SAM-t2k program (Karplus et al., 1998). This procedure 

requires as input only one representative seed sequence, although existing 

alignments or multiple homologues may also be used. Given a single seed 

sequence and a non-redundant database of protein sequences, BLAST is used 

with a permissive E-value cut-off of 100 to reduce the database to sequences 

which are similar to the seed sequence although by no means necessarily 

homologous. An iterative HMM procedure is then used to align 

progressively more distant homologues using progressively higher E-value 

cut-offs.  

1.3.5.4. Scoring Sequences against HMMs 

As for other homologue detection algorithms, a score is required which 

represents how well a sequence and an HMM match. This can be achieved 

using either the Viterbi or forward dynamic programming algorithms, which 

are related to the Needleman-Wunsch and Smith-Waterman algorithms. 

Viterbi is faster, but slightly less accurate than forward. Viterbi calculates the 

most probable path of a sequence through the model, whereas the forward 

algorithm calculates the sum of the probabilities of all possible paths through 

the model. These algorithms give the probability that the model would 

produce the query sequence (Durbin et al., 1998). 

Null models are used in HMM scoring in order to account for the fact 

that some sequences have an amino acid composition which is close to the 

background frequency. In such cases a sequence may score highly by finding 

a path through a model of non-homologues due to the background 

frequencies assigned to the emitting states. Therefore each sequence scored 

against a model is also scored against a null model, which represents a 

random match in some way. Similar scores for both the real and null models 

suggest a random match to the real model. A significantly higher score for 

the real model versus the null model represents a good match. Null models 

can be randomly generated based on background amino acid frequencies 

(Karplus et al., 1998). However a reverse null model uses the same set of 
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states and probabilities as the real model, but in the reverse orientation. This 

preserves the sequence composition and has been shown to give increased 

performance over using background probabilities (Karplus et al., 2005).  

To obtain E-values from HMM matches it may be necessary to calibrate 

them. Calibration involves estimating the parameters of the Extreme Value 

Distribution (EVD) representing the distribution of errors for a particular 

model. To estimate these parameters the model is scored against a set of 

random sequences and the distribution of the resulting scores is fitted to an 

EVD (Durbin et al., 1998). The parameters of this fitted distribution are used 

to calculate the E-values for the scores produced by the model. 

HMMs allow several modes of scoring depending on whether they 

should match the whole of a query sequence or just part of it (global/global 

and global/local scoring respectively). They may also allow for scoring part 

of a model against part of a query sequence (local/local scoring). 

Global/local scoring is the most useful for identifying domains, although 

local/local allows matches to domain fragments which may result from 

incorrect gene predictions. 

1.3.6. Profile-Profile Methods 

Profile-profile methods compare two profiles rather than a sequence and a 

profile. The advantage of profile-profile technologies is that they allow the 

detection of yet more remote homology than sequence-profile methods 

(Soding, 2005). Both sides of the comparison include variations that are 

known in those sequence families and this information allows high scoring 

matches to be produced between more distantly related families. 

1.3.6.1. Profile Comparison 

Profile comparison methods are an extension of the sequence-profile concept 

where, instead of aligning a sequence to a profile, two sequence profiles are 

aligned. Example implementations include LAMA (Pietrokovski, 1996), 

COMPASS (Sadreyev and Grishin, 2003) and prof_sim (Yona and Levitt, 

2002).  
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COMPASS allows the gapped alignment of sequence profiles and 

introduced the estimation of E-values to profile-profile comparison. 

Numerical profiles are generated from a sequence alignment, counting the 

frequency of each amino acid (or gap) at each position. Sequences are 

weighted to prevent common sequences from dominating the profile and 

columns with many gaps are excluded. The log-odds scoring used for PSI-

BLAST was generalised by Sadreyev and Grishin to the log-sum-of-odds, 

which allows scoring between two profiles. E-values for COMPASS are 

calculated empirically as described for BLAST. 

1.3.6.2. HMM Comparison 

HMM comparison (HMM-HMM) follows on from sequence-HMM 

comparison and profile comparison, aligning and scoring two profile-HMMs. 

This has been implemented in the PRC (Madera, 2006) and HHSearch 

(Soding, 2005) programs. These two approaches are closely related in their 

treatments of HMM alignment and scoring. Detailed discussion of PRC 

follows.  

The general approach taken to compare two HMMs is to calculate the 

joint emission probability. In simple terms: do they give similar scores to the 

same proteins? PRC approaches this by aligning two profile-HMMs in the 

form of a pair-HMM (Figure 1.12), allowing a score to be derived using the 

Viterbi algorithm. Each state of the pair-HMM corresponds to pairs of 

domain family HMM states (matches M, inserts I and deletes D) and a 

transition in the pair HMM models simultaneous transitions in both domain 

family HMMs.  

Figure 1.12 shows the PRC pair-HMM which is used to model the 

alignment of two profile-HMMs i, j. Note that there are states BLBL and ELEL 

where both models begin and end, respectively. The MiMj state models the 

situation where the domain family HMMs have aligned match states, DiMj 

and MiDj where a delete state is aligned to a match state, IiMj and MiIj where 

an insert state is aligned to a match state. Transition probabilities between 

pair-HMM states are the product of the corresponding transition states in 



 46

each of the individual domain family HMMs. Similarly, emission 

probabilities for emitting states (MiMj, IiMj, and MiIj) are calculated using the 

product of the corresponding emission vectors in the domain family HMMs. 
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Figure 1.12 PRC's pair-Hidden Markov Model.  

The pair-HMM models the alignment of two profile-

HMMs and allows the alignment to be scored using the 

Viterbi algorithm. The MiMj state represents aligned 

match states from the two HMMs. DiMj and MiDj 

represent a deletion state aligned to a match state. The IiMj 

and MiIj states represent insert states aligned to match 

states. The differently coloured arrows indicate which 

profile-HMM should advance a match state during a 

particular pair-HMM transition. This figure was 

reproduced from Madera (2006). See text for further 

details. 
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As with HMMer’s plan 7 architecture, PRC makes assumptions about 

allowed transitions for simplicity and speed. The pair-HMM architecture 

shown in Figure 1.12 is by no means the only one possible. Note that each 

transition must be to either the same state or via the MiMj state which could 

be avoided by a more complex architecture. InIn and OutOut are essentially 

part of the MiMj state, but allow for local scoring by providing routes in and 

out of the model.  

A score for the alignment is produced as for alignment of a sequence to 

a HMM, by applying the Viterbi algorithm and a null model. The PRC null 

model takes into account both the effect of length-dependence and low 

complexity sequences that have residue frequencies close to the background. 

1.3.7. Structure-Based Homology Detection 

Even when there is no detectable sequence similarity between proteins, 

similarities in their 3D structure can often be observed (Chothia and Lesk, 

1986). This means that when their structures are available, it is generally 

easier to detect similarities between homologous proteins by comparing their 

structures. In fact it has been shown that for even very remote homologues 

with <20% sequence identity, at least 50% of the structure remains conserved 

(Reeves et al., 2006).  

In order to determine the similarity between two structures they are 

aligned in three dimensions. This is achieved in two steps. Firstly the 

similarity between residues and/or secondary structural features of both 

proteins is determined and secondly an alignment is sought to maximise the 

score of aligned positions. Once structures are superposed their similarity is 

usually quantified using the Root Mean Square Deviation (RMSD). This is 

the square root of the average squared distance between equivalent atoms, as 

in Equation 1.2 below.  
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Equation 1.2 Root Mean Square Deviation formula 

 

In Equation 1.2, d is the distance between N pairs of equivalent atoms i. 

Popular structural alignment programs include SSM (Krissinel and 

Henrick, 2004) and GRATH (Harrison et al., 2002), which use secondary 

structure and SSAP (Taylor and Orengo, 1989), DALI (Holm and Sander, 

1993), CE (Shindyalov and Bourne, 1998), STRUCTAL (Subbiah et al., 1993) 

and LSQMAN (Kleywegt, 1996), which are based on residue comparisons. 

The relative effectiveness of structural comparison methods for homology 

detection has been examined by Kolodny et al. (Kolodny et al., 2005) and 

Redfern et al. (Redfern et al., 2007). In this thesis SSAP is used as it has been 

shown by these authors to be among the best methods. In Chapter 2 SSAP is 

used to measure structural similarity for improving benchmarks of sequence-

based homologue detection methods. 

1.3.7.1. Sequential Structure Alignment Program 

Sequential Structure Alignment Program (SSAP) uses double dynamic 

programming to find the optimal alignment for two protein structures. The 

algorithm is shown graphically in Figure 1.14. Initially, residue views are 

defined for each Cβ atom in each of the two protein structures. The Cβ atom 

is the first carbon atom in an amino acid side chain. A residue view is the set 

of vectors from one Cβ atom to all other Cβ atoms in the protein structure. 

For any pair of residues between the two proteins, their residue views can 

then be compared to determine their similarity. A residue-level score matrix 

is constructed for each pair of residues with similar accessibility and 

torsional angles between the proteins. These matrices are then populated 

with scores based on the similarity of each pair of vectors in the residue view. 

Dynamic programming is used to determine the highest scoring path 

through each residue pair matrix. The top 20 pairs of residues which score 
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above a threshold are added to the summary score matrix and another round 

of dynamic programming is used to find the optimal path through this 

matrix. The SSAP score is calculated using the similarity of the aligned 

residue views normalised by the size of the largest protein. 
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Figure 1.14 Flowchart of the SSAP algorithm.  

Vector environments are compared between pairs of 

potentially equivalent residues in each protein. A residue 

level score matrix is constructed for each pair and optimal 

paths are calculated by dynamic programming. High 

scoring paths are then added to the summary score matrix. 

Dynamic programming is applied to the summary matrix 

to generate the alignment of the two structures. 
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Certain scoring schemes have been shown to give improved separation 

between homologues and non-homologues over the use of native structural 

comparison scores (Kolodny et al., 2005). The SAS score (Subbiah et al., 1993) 

for instance, is based on the RMSD produced by an alignment method, 

normalised by the number of residues aligned. The SAS score is used in this 

thesis, rather than the native SSAP score. Equation 1.3 shows how the score is 

calculated; NA is the number of aligned residues. 

 

AN
RMSDSAS ×= 100  

Equation 1.3 SAS score for structural comparison. 

1.3.7.2. Threading  

Threading is used to determine whether a particular protein sequence is 

compatible with a known structure. It does not primarily exploit 

evolutionary information to recognise structural domains in sequences, 

instead it determines how well a sequence fits a particular fold (Jones et al., 

1992). The quality of the fit is determined from a distribution of observed 

inter-residue distances. Because very different sequences can form similar 

structures, this approach allows very distant, homologous relationships to be 

recognised. Full structural threading requires large amounts of computing 

power and it has been shown that using a more heuristic approach as 

implemented in GenTHREADER (McGuffin and Jones, 2003) and 3D-PSSM 

(Kelley et al., 2000) produces similar results (Cherkasov and Jones, 2004). 

1.3.8. Algorithms for Clustering Proteins 

Clustering algorithms are useful for identifying distinct groups of 

homologous proteins based on their similarity. Given a similarity matrix (of 

sequence identities or E-values, for instance) for a set of proteins or domains, 

these algorithms determine clusters where members tends to be more similar 

to each other than to members of other clusters. Some clustering algorithms 
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require a parameter determining a similarity value that co-cluster members 

should satisfy although others require a defined number of clusters.  

Clustering of protein domain sequences is used in Chapter 2 to generate 

benchmarking datasets and Chapter 4 to identify proteins complexes. 

1.3.8.1. Single and Multi-Linkage Hierarchical 
Clustering 

In hierarchical clustering, elements are initially in single member clusters. 

Clusters are then merged based on the distance (similarity) between the 

clusters. If the distance is less than a pre-determined cut-off, then the clusters 

are merged. In the single-linkage approach the distance between two clusters 

is calculated as the distance between the closest elements in those clusters. 

This can lead to a phenomenon known as chaining, whereby elements which 

are less similar than the cut-off end up in the same cluster.  

Multi-linkage clustering will only allow the merging of clusters where 

all elements in the clusters are at least as similar as the cut-off specifies. The 

drawback of this method is that it can be too conservative as many members 

between the clusters may be similar enough to be in the same cluster. 

1.3.8.2. Markov Cluster Algorithm 

The Markov CLuster algorithm (MCL; Enright et al., 2002) uses a weighted 

graph (or similarity matrix) to determine clusters based on simulated flow in 

the graph (Van Dongen, 2000). The size of clusters is controlled by a term 

called the inflation parameter, rather than a similarity cut-off. This algorithm 

has been used for clustering proteins into families (Enright et al., 2003) and 

also for defining modules of interacting proteins in protein-protein 

interaction networks (Brohee and van Helden, 2006). 
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1.4. Protein Domain Classification 
Resources 

Several resources have been developed to classify proteins into evolutionary 

families in order to understand the relationship between sequence, structure 

and function. Different evolutionary families evolve in different ways and 

perform different functions. Classifying protein domains into families 

therefore aids the study of protein evolution and function. The different 

types of resource and their approaches are discussed below. 

1.4.1. Sequence-Based Classifications 

Sequence-based domain classifications require detectable sequence similarity 

to identify evolutionary relationships. They are able to define less remote 

relatives than structural classifications (see 1.4.2) but have the advantage that 

there is much more sequence data than structural data. This comparative 

wealth allows sequence-based classifications to provide more domain 

annotations per gene than those based on structure (Marsden and Orengo, 

2008). 

1.4.1.1. Automated Sequence-Based Protein Domain 
Classifications 

Automated sequence-based classifications attempt to derive a complete set of 

domain families based on evolutionary conservation. Examples include 

ADDA (Heger et al., 2005), CLUP (Liu and Rost, 2004), Everest (Portugaly et 

al., 2007) and ProDom (Bru et al., 2005). ProDom uses PSI-BLAST (described 

in 1.3.3) recursively to generate a set of domain families. Given a database of 

protein sequences, the shortest is queried against a sequence database using 

PSI-BLAST to create a domain family. Sequence regions present in this family 

are removed from the database and the next shortest sequence is used for 

another round of PSI-BLAST. This process is iterated until the database is 

empty. ProDom has begun to use manual annotation to adjust domain 

boundaries, so it is no longer a purely exhaustive approach. 
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1.4.1.2. Curated Sequence-Based Protein Domain 
Classifications 

Curated sequence-based classifications are based on the curation of 

automatically defined families. A variety of expert knowledge and peripheral 

resources can be used to improve domain predictions. Structural data for 

instance may be used as a guide where possible.  Examples of this type of 

classification are Pfam (Finn et al., 2008), SMART (Letunic et al., 2006), 

PRINTS (Attwood et al., 2003) and BLOCKS (Henikoff and Henikoff, 1992).  

Pfam is a database of curated multiple alignments of protein domain 

families with associated HMMs allowing users to determine the Pfam 

domain content of proteins. It was originally based on families defined by 

ProDom. The families often encompass a smaller region of sequence space 

than CATH or SCOP superfamilies due to reduced power in detecting 

distant relationships; however they are generally more specific in terms of 

function. Manual curation has produced an accurate and well trusted set of 

families, but is time consuming. Pfam-B is an exhaustive, automated 

supplement to the manually curated Pfam-A. It provides extra coverage and 

a starting point for manual curation. 

1.4.2. Structure-Based Classifications 

It has been shown that between homologous domains, tertiary structure is 

generally more conserved than sequence (Figure 1.16). Therefore, where 

sequence identity between domains is low, a common tertiary structure may 

allow an evolutionary relationship to be determined. Structural 

classifications of protein domains thus tend to produce larger families 

containing more remote homologues than sequence-based classifications. 

They are limited however by the diversity of known protein structures which 

is significantly less than that of known sequences (~5.4x104 structures in the 

PDB, ~6x106 sequences in RefSeq as of November 2008). The most popular 

structure-based classifications are CATH (Greene et al., 2007), SCOP 

(Andreeva et al., 2008) and FSSP (Holm and Sander, 1994). CATH is used 

extensively throughout this thesis. 
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Figure 1.16 Relationship between the conservation of 

sequence and structure. 

The sequence identity and structural similarity of all pairs 

of domains in CATH are shown coloured by whether the 

pair share the same function (blue) or not (pink). As 

sequence identity between a pair falls, structural similarity 

(measured by SSAP score) falls much more slowly, until 

~20% sequence identity, where it begins to rapidly fall off. 

Note that above a sequence identity of 60%, two sequences 

are highly likely to share the same function, but below this 

level the relationship is more complex. This figure was 

taken from Reeves et al. (2006). 
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1.4.2.1. CATH 

CATH (Greene et al., 2007) is a hierarchical classification of protein domains 

produced by Orengo and colleagues at UCL. There are four principal levels 

to the hierarchy, denoted by the eponymous letters C, A, T and H.  

 

1. The Class (C) level broadly categorizes domains according to their 

general secondary structure: mostly α, mostly β, α/β  and few 

secondary structures.  

2. The Architecture (A) level contains domains which have a similar 

spatial arrangement of secondary structures.  

3. The Topology or fold (T) level groups protein domains together 

whose secondary structures are connected in the same way.  

4. The Homologous Superfamily (H) level brings together domains 

which have sufficient structural, sequence and functional similarity to 

suggest they share a common ancestor.  

 

Note that the first two levels of the hierarchy are phenetic, having 

nothing to say about the evolutionary relationship between domains in the 

same group (May, 1999). The T level groups domains which may be 

homologous or analogous. The H level groups homologous domains based 

on structural similarity, sequence similarity and evidence of common 

function. Examples of levels C, A and T are shown in Figure 1.18. 

Below the H level are 4 sequence family levels (S, O, L and I) clustered 

with successively higher sequence identity cut-offs (35%, 60%, 95%, 100% 

respectively) and an 80% overlap cut-off. The leaves of the hierarchy (D) are 

individual domains. Each node of the classification has a representative 

domain and the S level representatives (S-reps) are useful for sequenced 

based work as will be shown in Chapter 2. 

 



 58

 

Figure 1.18 The CATH hierarchy organises protein 

domain structures into groups based on their structural 

similarity.  
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Numbers are based on CATH v3.1.0. This figure was 

created by E. Sideris. 
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A particular node in the hierarchy is referenced using a number for 

each level above and including that node. For example there is a superfamily 

of serine proteases domains denoted 3.40.50.200. Here the class is 3 (α/β), the 

architecture is 40 (3-layer αβα sandwich), the topology is 50 (Rossman fold) 

and the superfamily is 200 (serine protease). 

Where possible, multi-domain chains are decomposed into individual 

domains using the CATHEDRAL (Redfern et al., 2007) algorithm to identify 

homologues of pre-existing CATH entries. When no identifiable homologues 

exist in the CATH database manual inspection is used to identify 

independent structural units. 

1.4.2.2. SCOP 

Structural Classification Of Proteins (SCOP) is a classification of protein 

domain structures similar to CATH (Andreeva et al., 2004). SCOP has three 

major levels in its classification each equivalent to a level of the CATH 

hierarchy. The class level has nodes for mostly α proteins and mostly β 

proteins, but splits the α/β class of CATH into those with intercalated α and 

β structure (α/β) and those where α and β structure is largely separated 

(α+β). At the fold level, proteins have largely the same secondary structures 

and the same topology, but may not be evolutionarily related. The 

superfamily level groups domains which have structural and functional 

similarity suggestive of a common evolutionary origin. The family level 

groups domains that are clearly related and generally have a sequence 

identity of >30%. There is no equivalent to the CATH architecture level. 

An important distinction between CATH and SCOP is that SCOP will 

not separate structural domains unless their homologues have been observed 

separately in different protein chains. Thus SCOP domains more closely 

represent independent evolutionary units whereas CATH domains more 

closely resemble independently folding structural units. 
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1.4.3. Identifying Domains in Protein Sequences 

Given a domain family classification, sequences with unknown domain 

architecture can be annotated, generally using HMMs. This allows the 

elucidation of the frequency of particular domain superfamilies and, by 

extension, functions within different species (Lee et al., 2005). It also enables 

estimation of how many protein structures still need to be determined 

experimentally and which uncharacterised sequences might represent 

suitable targets for structural genomics projects (Marsden et al., 2006; 

Marsden et al., 2007).  These classifications may be based on sequence or 

structural data and many of the approaches are combined in the InterPro 

resource (Mulder et al., 2007). 

1.4.3.1. Pfam 

The Pfam resource both identifies sequence-based domain families, as 

discussed and provides a library of HMMs to annotate sequences. Pfam 

provides curated E-value cut-offs for each HMM which allow for very 

accurate predictions. Additionally there are two types of model for each 

family; models which best detect complete domains and those which are 

optimised to detect fragmented domains. 

1.4.3.2. Gene3D 

Gene3D (Yeats et al., 2008) is a resource produced by the CATH group which 

maps CATH superfamilies onto all known protein sequences. HMMs, 

generated using SAM-T2K (Karplus et al., 1998) and based on S-level 

representatives in CATH, are used to predict domains. Multi-domain 

architectures (MDAs) are resolved using the DomainFinder protocol (Buchan 

et al., 2002). Gene3D also incorporates domain assignments from Pfam as 

well as functional data from the GO ontologies (Ashburner et al., 2000) and 

FunCat (Ruepp et al., 2004), pathway data from KEGG (Kanehisa et al., 2006) 

and protein-protein interaction data from IntAct (Kerrien et al., 2007), MINT 

(Chatr-aryamontri et al., 2007) and BIND (Bader et al., 2003). 
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1.4.3.3. Superfamily 

Superfamily (Wilson et al., 2007) is similar to Gene3D, but based on SCOP 

rather than CATH. It uses multiple HMMs to represent each superfamily of 

proteins and allows annotation of genomes with SCOP domains. 

1.4.3.4. Genomics Threading Database 

The Genomic Threading Database (GTD; McGuffin et al., 2004) uses 

GenTHREADER (McGuffin and Jones, 2003) to obtain fold-level annotation 

for complete genomes. GenTHREADER involves a threading-based 

approach to structure prediction in combination with PSI-BLAST and 

secondary structure prediction. GTD allows keyword searches using PDB 

and SCOP codes, gene identifiers and descriptions as well as BLAST searches. 

Useful summary statistics on fold coverage of the genomes are provided. 

1.4.3.5. 3D-Genomics 

This resource from the Sternberg group at Imperial College (Fleming et al., 

2004) provides SCOP and Pfam domain annotation, secondary structure 

predictions and sequence features such as low complexity regions, coiled-

coils and transmembrane helices for completed genomes. It also allows 

determination of homologous features between genomes on the fly using 

BLAST. Another useful feature is the ability to perform genome comparisons 

based on statistics of domain features. 

1.4.3.6. InterPro 

InterPro (Mulder et al., 2007) brings together data from many different 

domain annotation resources, allowing users to compare their predictions. It 

includes both Gene3D (CATH) and SUPERFAMILY (SCOP) structural 

domain predictions as well as Pfam, Prosite, SMART, Panther, PRINTS, 

ProDom, TIGR sequence domains/motifs. It produces a consensus of these 

where possible as InterPro domains.  

1.4.4. Whole-Chain Protein Classifications 

This thesis concerns the use of domains to identify evolutionary relationships 

between proteins; however, relationships between proteins are often 
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classified independently of their domain architectures. There are many 

resources which classify whole proteins, rather than domains, into families. 

These include SYSTERS (Meinel et al., 2005), ClustR (Petryszak et al., 2005), 

Protomap (Yona et al., 2000), COGS (Tatusov et al., 2003) ProtoNet (Kaplan et 

al., 2005) and TRIBES (Enright et al., 2003). 
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1.5. Evolution of Protein Domain 
Families 

In studying protein domain families many details of their evolution have 

been revealed. The size distribution of protein domain families follows a 

power law (Apic et al., 2001b). That is, the distribution of CATH domains in 

either the PDB or in genomes reveals that a small number of superfamilies 

occur many times whereas most superfamilies occur very few times (Orengo 

and Thornton, 2005). This is shown graphically in Figure 1.20. It has also 

been shown that highly expanded families are very diverse in their functions 

(Todd et al., 2001). These findings suggest that certain arrangements of 

protein structure are particularly useful in biology, whereas others have 

relatively niche roles.  

Protein domains tend to exist in multi-domain chains. It has been 

shown that while a few superfamilies are found in proteins with many 

different partner superfamilies, most superfamilies are found with very few 

other superfamilies (Basu et al., 2008; Vogel et al., 2004), another example of 

the power law. Superfamilies which occur with many different superfamily 

members are termed promiscuous. The most promiscuous superfamilies also 

tend to be the largest and include the cofactor binding P-loop nucleotide 

triphosphate hydrolase domains which binds ATP and GTP and the 

NADP(P)-binding Rossmann domains (Vogel et al., 2005). These co-factors 

are involved in energy transfer (ATP, GTP) information processing (ATP, 

GTP), transcription (ATP, GTP), DNA synthesis/replication (ATP, NADP) 

and lipid biosynthesis (NADP) amongst others. 
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Figure 1.20 Power-law distribution of CATH protein 

domain families in Gene3D version 6.  

Superfamily size is the number of members in the 

superfamily. 



 66

1.6. Protein Function Classifications 
Early descriptions of protein function in databases were in the form of 

unstructured keyword fields. Accurate descriptions of protein function are 

complex and it has been found necessary to formalise them in order that 

different researchers can easily use the same terms to describe the same 

features. The most commonly used classifications are presented here. The 

Gene Ontology (GO; Harris et al., 2004) is used extensively in Chapters 3 and 

4 to determine the functional similarity of proteins. FunCat (Ruepp et al., 

2004) is used in Chapter 4 to classify protein complexes. 

1.6.1. Gene Ontology 

Ontologies describe entities and the relationships between them. They have 

come to be used in various aspects of biology. By rigorously defining entities 

and the relationships between them, the way in which biology is described is 

rationalised and more easily understood by computers. The Gene Ontology 

(GO) describes terms relating to protein function in three separate ontologies. 

The three ontologies define different aspects of protein function. This 

division in itself helps us to understand how we think about protein function. 

The biological process ontology concerns terms relating to a biological 

objective in which the gene product is involved. General biological process 

terms include cell growth and maintenance, whereas pyrimidine metabolism is a 

more specific term, associated with fewer gene products. The molecular 

function ontology describes what a gene product does without specifying 

where or when the event occurs. Lyase and ligand are examples of broad 

terms, while adenylate cyclase and Toll receptor ligand are more specific terms. 

The third ontology is entitled cellular component and concerns the location 

in the cell where the gene product is active. Examples of this aspect of 

function include nucleoplasm and replication fork. 

The GO ontologies are formally described as Directed Acyclic Graphs 

(DAGs); they are hierarchical structures where a node may have both 

multiple children and multiple parents. The nodes in these graphs are 
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functional terms and the edges are parent-child relationships. The root node 

of each ontology bears the name of the ontology itself, i.e. biological process. 

This is the most general term in each ontology. Terms become more specific 

towards the leaf nodes, although there is no set depth to each DAG and no 

absolute measure of how specific the terms are at any depth. 

In order to use GO it is necessary to apply ontology terms to proteins. 

Initially three genome annotation consortia (Flybase (Tweedie et al., 2008), 

Mouse Genome Informatics (Bult et al., 2008) & Saccharomyces Genome 

Database (Hirschman et al., 2006)) each annotated the genomes of their 

organism of interest as part of the combined GO consortium (Ashburner et 

al., 2000). Subsequently many more organism-specific databases have 

become involved, extending annotation to more genomes as well as the 

UniProt protein sequence database (Gene Ontology Consortium, 2006). 

Annotation is available from individual members of the GO consortium such 

as Saccharomyces Genome Database. One particular member is, however, 

perhaps the most useful. The Gene Ontology Annotation database (GOA) is a 

member of the GO consortium which aims to annotate UniProt and the 

International Protein Index (IPI) with GO terms (Camon et al., 2004). A GO 

annotation is an instance of a node in one of the ontologies, associated with a 

gene or gene product and an evidence code. Evidence codes ( 

Table 1.1) describe the approach used to annotate a gene product. 
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Table 1.1 Gene Ontology evidence codes. 

Code Long description 

IMP Inferred from mutant phenotype 

IGI Inferred from genetic interaction 

IPI Inferred from physical interaction 

ISS Inferred from sequence or structural similarity 

IDA Inferred from direct assay 

IEP Inferred from expression pattern 

IEA Inferred from electronic annotation 

TAS Traceable author statement 

NAS Non-traceable author statement 

ND No biological data available 

RCA Inferred from reviewed computational analysis 

IC Inferred by curator 
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1.6.2. FunCat 

FunCat (Ruepp et al., 2004) was initially created as a hierarchical controlled 

vocabulary for use in annotating the Saccharomyces cerevisiae genome. It has 

since been extended to include terms suitable for prokaryotes and 

multicellular eukaryotes. The hierarchical structure of FunCat is more similar 

to EC (see 1.6.3) than to GO, however the focus of FunCat is on classifying 

proteins in terms of their biological process rather than their enzymatic or 

molecular function. Currently relatively few genomes have been manually 

annotated with FunCat terms, these include: S. cerevisiae, A. thaliana, H. 

sapiens, N. crassa, H. pylori, L. innocua, L. monocytogenes, B. subtilis, T. 

acidophylum. Table 1.2 shows the terms from the top level of the Funcat 

hierarchy which is used to annotate protein complexes in Chapter 4. 

 

1.6.3. Enzyme Commission 

The Enzyme Commission (EC) classification is concerned with enzymatic 

function and provides a hierarchy of terms describing it (Webb, 1992). The 

first of four levels describes the reaction class: 1, oxidoreductase; 2, 

transferase; 3, hydrolase; 4, lyase; 5, isomerase; 6, ligase. The nature of the 

second and third levels depends somewhat on the first; however in general 

these describe the actor and acceptor molecular groups involved in the 

enzymatic reaction. The fourth level indicates the substrate specificity. 
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Metabolism  

01 Metabolism 

02 Energy 

04 Storage protein 

Information pathways  

10 Cell cycle and DNA processing 

11 Transcription 

12 Protein synthesis 

14 Protein fate (folding, modification and 
destination) 

16 Protein with binding function or cofactor 
requirement (structural or catalytic) 

18 Protein activity regulation 

Transport  

20 Cellular transport, transport facilitation and 
transport routes 

Perception and response to 
stimuli 

 

30 Cellular communication/signal transduction 
mechanism 

32 Cell rescue, defence and virulence 

34 Interaction with the cellular environment 

36 Interaction with the environment (systemic) 

38 Transposable elements, viral and plasmid 
proteins 
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Developmental processes  

40 Cell fate 

41 Development (systemic) 

42 Biogenesis of cellular components 

43 Cell type differentiation 

45 Tissue differentiation 

47 Organ differentiation 

Localization  

70 Subcellular localization 

73 Cell type localization 

75 Tissue localization 

77 Organ localization 

 

Table 1.2 Level 1 of the Funcat hierarchy.  

The numbered codes are shown in the left-hand column 

with category headings. The right-hand column gives 

descriptions for the different categories. 
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1.6.4. Measuring Functional Similarity 

Functional similarity can be quantified in various ways. Early examples 

directly compared terms in the relatively unstructured keyword description 

of entries from the Swiss-Prot protein sequence database (Devos and 

Valencia, 2000). The Jaccard coefficient has been used to compare multiple 

terms by assessing the overlap between two sets (Marcotte and Marcotte, 

2002). It is calculated as the intersection of those sets divided by their union. 

It does not however take advantage of the fact that some non-identical terms 

are more similar than others.  

Semantic similarity (Resnik, 1999) allows for a more subtle comparison 

and has been extensively applied to the GO hierarchy. Semantic similarity as 

implemented by Lord et al. (Lord et al., 2003), for instance, uses the 

information content of the shared parent of two terms. The frequency of each 

term from a particular GO division (e.g. Biological Process) is determined 

from a corpus of terms (those assigned to a particular genome for instance). 

Each child term implicitly invokes its parent and therefore parents inherit the 

number of occurrences of their child terms. The root node thus has a 

frequency of one as it is implied by every term in the hierarchy. The 

probability of a particular term t is then its total number of occurrences 

divided by the number of times any term occurs. The probability for a pair of 

terms t1,t2 is that of their closest shared parent. The semantic similarity is 

then calculated using Equation 1.4. 

 

),(ln),( 2121 ttpttsim ms−=  

Equation 1.4 Semantic similarity formula 

 

The semantic similarity between two terms is the negative log of the 

probability of the minimum subsumer (pms) for those terms. The minimum 
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subsumer is the shared parent with the minimum probability. Note that GO 

terms may share multiple parents through different paths.  

Frequently, two proteins are annotated with multiple terms from the 

same GO ontology. In these cases it may be necessary to resolve a similarity 

value. In this thesis the maximum similarity between any two terms, 

between the proteins is taken. 

It should be noted that functional annotation is generally applied at the 

protein chain level. It is therefore difficult to discuss the function of protein 

domains without assuming that terms at the chain level apply to all the 

domains within that chain. This is not problematic when considering 

biological process functions; however it can become a problem when 

molecular function is the focus as domains in the same chain may have very 

different molecular functions. 

The measure of semantic similarity described here is used in Chapters 3 

and 4 to determine the functional similarity between proteins based on their 

GO terms. 
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1.7. Prediction of Protein Function 
Experimental determination of protein function involves biochemical and 

genetic techniques which are accurate but slow. There are insufficient 

resources to directly characterise every protein in every organism. With the 

advent of large-scale genome sequencing and bioinformatic techniques it has 

become possible to predict the function of many proteins computationally 

(Holt et al., 2002). This can be achieved by inferring information through 

evolutionary relationships or through prediction methods which exploit 

characteristics of the sequence or genomic context. In Chapter 3 a method is 

developed for predicting pairs of proteins involved in common biological 

processes. 

1.7.1. Definition of Protein Function 

What does it mean to identify the function of a protein? Following the Gene 

Ontology consortium, protein function can be divided into molecular 

function, biological process and cellular location. On the one hand it may be 

most interesting to know that a protein is a protein kinase (its molecular 

function). However, there are many protein kinases involved in a large 

variety of cellular processes and so to know that it is involved in a particular 

developmental signalling pathway (its biological process) for instance, may 

be more useful in a particular study. Some processes also occur in multiple 

locations, for instance transcription occurs in mitochondria as well as in the 

nucleus of eukaryotic organisms. Each type of function can also be described 

in more or less general terms, e.g. a protein kinase vs. a tyrosine kinase. 

Homologues may diverge in molecular function while remaining 

involved in the same biological process or vice versa. In some metabolic 

pathways, duplicates of terminal proteins have been recruited to perform an 

extra step, metabolising a substrate which has become scarce (e.g. ligases in 

peptidoglycan biosynthesis; Diaz-Mejia et al., 2007). This process is however 

thought to be rare (Rison et al., 2002). In this case the biological process has 

remained the same, while the molecular function has changed. In other cases 
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homologues may perform the same enzymatic step in different tissues or 

pathways. Here the biological process has changed and the molecular 

function has remained the same. Functional properties can be predicted 

based on sequence or structural similarity (Martin et al., 2004; Lee et al., 2007; 

Porter et al., 2004) as well as a variety of other approaches discussed below. 

1.7.2. Homology-Based Methods for Predicting 
Protein Function 

Given a protein of unknown function, the most common approach is to find 

a close homologue using sequence comparison (e.g. BLAST) and to use it to 

transfer functional annotation. If no homologue can be found with BLAST 

profile methods such as PSI-BLAST (Altschul et al., 1997) and HMMer (Eddy, 

1996) can be used to find more remote homologues. The more remote the 

homologue however, the less likely that the two proteins perform a similar 

function (Todd et al., 2001). This relationship has been extensively studied 

for enzymes (Rost, 2002; Todd et al., 2002; Tian and Skolnick, 2003). For 

example, Tian & Skolnik (2003) showed that 60% sequence identity is 

required between enzymes to have a 90% chance of correctly transferring 

function between them. 

More advanced approaches such as GOtcha (Martin et al., 2004), 

ConFunc (Wass and Sternberg, 2008) and PFP (Hawkins et al., 2008) integrate 

multiple BLAST hits to assign GO terms to proteins of unknown function. 

Motif-based methods identify small functional motifs which can be 

based in sequence or structure. Prosite (Hulo et al., 2006) is a library of 

sequence motifs associated with protein function. TEMPURA (Najmanovich 

et al., 2005) uses experimentally-verified catalytic sites described in the 

Catalytic Site Atlas (Porter et al., 2004) to discover potential sites of catalysis 

in protein structures of unknown function. 
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1.7.3. Function Prediction Using Protein-Protein 
Interactions 

The function of proteins can be inferred using datasets of known Protein-

Protein Interactions (PPIs). A simple approach transfers annotation to a 

protein using the most commonly occurring function of its neighbours in a 

Protein-protein Interaction Network (PIN; Schwikowski et al., 2000). It is also 

possible to inherit PPIs between homologues, revealing clues about the 

biological processes in which protein of unknown function are involved. 

Although Mika & Rost (2006) found that this can only be done at very high 

sequence identities, it is has been attempted with some success (Yu et al., 

2004).  

1.7.4. Inferring Functional Associations through 
Gene Expression Analysis  

Gene products involved in the same complex or pathway commonly have 

similar expression patterns (Grigoriev, 2001). Complexes form in the cells of 

particular tissues at particular stages of development, or at particular points 

in the cell-cycle, for instance, with a certain stoichiometry. For complexes to 

function efficiently their components should be expressed at the same time. 

Microarray datasets over a given time course or across different tissues have 

allowed the determination of proteins with a correlated expression profile 

which are involved in common processes or protein complexes (Jansen et al., 

2002). 

1.7.5. Inferring Functional Associations Using 
Genome Context Methods  

Genome context methods exploit the availability of complete genome 

sequences and aspects of their evolution to predict groups of proteins which 

are involved in related biological processes. Gene neighbourhood methods 

(Dandekar et al., 1998) exploit the fact that interacting or functionally related 

genes are often close to each other on chromosomes. In bacteria, interacting 

genes are often located in operons, where genes reside next to each other and 
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are co-transcribed. Even in eukaryotes, interacting, co-regulated genes often 

cluster in the genome (Teichmann and Babu, 2002).  

Phylogenetic profile methods (Pellegrini et al., 1999; Ranea et al., 2007) 

are based on the supposition that pairs of proteins which are both present or 

both absent in the same subset of organisms are functionally related. It is 

assumed that both are required for some particular function and that one or 

other alone confers no selective advantage.  

The gene fusion method, variations of which have been termed Rosetta 

Stone (Enright et al., 1999) or domain fusion, lead on from gene neighbour 

methods. It represents a more robust way of finding protein-protein 

interactions and functional linkages (Enright and Ouzounis, 2001). Chapter 3 

concerns the development of a novel approach to domain fusion and this 

approach, as well as the background behind it, is discussed in detail in that 

chapter. 

1.7.6. Resources of Genome Context Data 

1.7.6.1. STRING 

Search Tool for the Retrieval of Interacting Genes/proteins (STRING; von 

Mering et al., 2007) is a resource from the Bork group which provides an 

integration of experimentally derived and predicted protein-protein 

interactions and functional associations. Genome context methods such as 

conserved neighbourhood, gene fusion and phylogenetic profiling are 

combined with co-expression analyses and experimentally-determined PPIs 

using an integrated scoring scheme.  

Importantly, much of the functional inference used in STRING is based 

on orthology. Orthologues are more likely to play the same role in different 

organisms than non-orthologues, resulting in more accurate annotation. 

1.7.6.2. Prolinks  

Prolinks (Bowers et al., 2004) is a resource developed by the Eisenberg group 

based firmly on the idea of functional linkages rather than PPIs and is 

therefore in contrast to STRING. Phylogenetic profiling, gene clusters, gene 
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neighbourhood and gene fusion methods are represented as well as text 

mining. Prolinks uses combinatorial probabilities to determine whether the 

proteins are linked by chance, enabling a ranking of their results. 

1.7.6.3. FusionDB 

FusionDB (Suhre and Claverie, 2004) is based solely on the gene fusion 

method. Annotations are inherited to orthologues, increasing coverage. 

Several statistical measures of the fusions are provided, largely based on the 

alignments between query, target and fusion proteins.  

1.7.6.4. Predictome 

Predictome (Mellor et al., 2002) is a resource from the DeLisi group which 

combines phylogenetic profiling, chromosomal proximity, domain fusion 

and experimentally derived protein-protein interaction data. Much like 

FusionDB and STRING, orthologous relationships are used to inherit 

annotations.  
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1.8. Protein-Protein Interaction 
Networks and Complexes 

 
Protein-protein Interaction Networks (PINs) have become an important focus 

of molecular biology. With increasing numbers of complete genomes it has 

become clear that the number and variety of genes is not sufficient to explain 

organismal complexity (Stumpf et al., 2008). It is thought that understanding 

the interactions involved in PINs as well as transcriptional and metabolic 

networks will bring us closer to understanding the complexity we see in 

biology. Correspondingly there have been many recent efforts to produce 

datasets describing which proteins interact. 

Protein-Protein Interaction (PPI) data is often considered as a graph or 

network. Graphs consist of nodes or vertices, connected by links or edges. In 

the case of PINs, the proteins are most often modelled as the nodes, with 

edges representing interactions between proteins. This mathematical 

formalism is useful both as a visual representation but also because graphs 

have been studied for many years, beginning with Euler (1741), and there are 

a range of mathematical tools for analysing them. The edges in PINs often 

have associated weights representing various attributes such as confidence in 

an interaction (Pereira-Leal et al., 2004; von Mering et al., 2003). 

The clustering coefficient of a graph is a measure of how well connected 

it is. PPI graphs have a high clustering coefficient compared to random 

graphs which suggests there is a signal which might relate to protein 

complexes or other functional groupings (Hartwell et al., 1999). There is, 

however, some debate as to whether this is really the case. It has been argued 

that the observed clustering in PPI networks does not relate to complexes or 

other functional groupings but is merely an artefact (Wang and Zhang, 2007). 

It is further argued that various other properties of these (admittedly 

incomplete) networks are in fact qualitatively different from those of the true 

network due to sampling bias (de Silva et al., 2006). On the other hand, it has 
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been shown that PINs can be decomposed to accurately identify known 

complexes (Brohee and van Helden, 2006). 

In Chapter 4 PINs are used to identify protein complexes in the 

prokaryote E. coli and the single-celled eukaryote Saccharomyces cerevisiae. 

CATH domain superfamily annotations are used to study their evolution. 

1.8.1. Experimental Approaches to Determine 
Protein-Protein Interactions 

Perhaps the highest quality dataset of protein-protein interactions is that 

found in the Protein Quaternary Structure database (PQS; Henrick and 

Thornton, 1998). The PQS is based on crystallographic data from the PDB. 

The relationships between different PDB chains are computationally adjusted 

to better represent true quaternary structure. It provides great detail on the 

residues involved in interactions; however, it has very low coverage of 

genomes and is probably very biased towards stable interactions. 

Much of the PPI data that has become available has been produced 

using Tandem Affinity Purification Mass Spectrometry (TAP-MS; Puig et al., 

2001) and Yeast-2-Hybrid (Y2H; Fields and Song, 1989) experiments but it 

can also derive from low-throughput techniques, literature mining, genome-

context associations and others. TAP-MS is the current state of the art high 

throughput approach for determining protein complexes. This procedure 

uses individual proteins as bait to fish for interacting proteins, as well as 

further proteins which bind to the direct interactors. The components of 

these complexes are then identified by mass spectrometry. The Y2H method 

determines whether individual bait and prey proteins interact by hybridising 

them to reporter proteins in a yeast system. 

1.8.2. Resources of Protein Interaction Data 

Experimental PPI datasets are available from several sources. IntAct contains 

data from 8576 distinct experiments and publications for >105 interactions, 

mostly from yeast, human, fly and E. coli largely based on Y2H and two-

hybrid array methods (Kerrien et al., 2007). MINT also contains >105 
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interactions mostly from Y2H and TAP experiments (Chatr-aryamontri et al., 

2007). DIP contains 5.7x104 interactions from 6.4x104 experiments, principally 

in fly and yeast (Salwinski et al., 2004). 

Several databases contain domain-domain interactions based on CATH, 

SCOP or Pfam domains in structural databases (Jefferson et al., 2007; Stein et 

al., 2005; Finn et al., 2005). However these account for only a small 

proportion of known PPIs (Schuster-Bockler and Bateman, 2007). 

Several resources compile data on predicted interactions. Online 

Predicted Human Interaction Database (OPHID; Brown and Jurisica, 2005) 

provides predicted interactions for humans, and STRING (von Mering et al., 

2007) provides integrated sources of this data for many species. Human 

Protein-protein Interaction Prediction (PIPs; McDowall et al., 2008) contains a 

large number of predicted interactions for human which are integrated to 

identify the most likely interactions. 

1.8.3. Resources of Protein Complex Data 

Several resources provide data on complexes as opposed to protein-protein 

interactions although there is not necessarily a clear distinction in some cases. 

Data from TAP experiments for instance can be considered as PPI data or 

complex data. 

The Munich Information centre for Protein Sequences (MIPS; Mewes et 

al., 2008) provides a manually curated set of complexes for Saccharomyces 

cerevisiae and EcoCyc (Karp et al., 2007) provides a similar dataset for 

Escherichia coli. 3D complex (Levy et al., 2006) provides a database of 

complexes for various species derived from the PQS database. 
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1.9. Overview of Thesis 
In this thesis protein domain families are used to explore the function and 

evolution of proteins. Structural domains from CATH are exploited to 

identify the best approaches to determine homologous relationships between 

proteins (Chapter 2). The annotation derived from the use of these methods 

is subsequently employed to develop a method to identify functional 

relationships between proteins, based on the domain fusion hypothesis , 

using Pfam domain families (Chapter 3). Lastly, CATH domain family 

annotations are employed to identify differences in the evolution of protein 

complexes between a prokaryote and a eukaryote (Chapter 4). 

1.9.1. Chapter 2 

In recent years several novel methods for detecting evolutionary 

relationships between protein domain families have been developed (Madera, 

2006; Soding, 2005; Sadreyev and Grishin, 2003). Whereas previous 

approaches have compared single sequence to families, these profile-profile 

methods compare two families. The result is that more distant evolutionary 

relationships can be detected. In fact it was shown that such methods detect 

evolutionarily relevant similarities between families which are classified as 

non-homologous in structural databases (Soding, 2005). Benchmarking 

approaches for methods of homologue detection utilise such evolutionary 

relationships and therefore a novel modification to these benchmarks is 

introduced in Chapter 2. Furthermore, the relative performance of cutting 

edge methods is established. 

After establishing the relative performance of each method, a consensus 

approach is introduced to integrate the different methods and improve 

accuracy in predicting homologous relationships. 

1.9.2. Chapter 3 

Genome context methods allow the prediction of functional associations 

between non-homologous proteins. They have been shown to be useful in 
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identifying proteins involved in common pathways and complexes as well as 

direct interactions (Huynen et al., 2000). One of these methods exploits the 

fact that two interacting proteins, encoded by separate genes, sometimes 

have orthologues in another species which are fused into a single gene. The 

detection of such gene fusion events thus allows the identification of a 

functional link between the separately encoded genes (Marcotte et al., 1999; 

Enright et al., 1999). Such methods have been shown to be accurate in 

prokaryotes and simple eukaryotes, however higher eukaryotes have much 

larger gene families which can lead to many incorrect predictions (Marcotte 

and Marcotte, 2002). 

In Chapter 3 a new method named Co-Occurrence of Domains Analysis 

(CODA) is introduced with the aim of accurately identifying functional 

associations between proteins, using gene fusion, in the human genome. 

1.9.3. Chapter 4  

Currently, little is known about the evolution of protein complexes. This is 

largely due to a paucity of data describing such complexes. Much of the 

work so far has concerned only S. cerevisiae where there is far more data 

available than for other species. In Chapter 4, protein complex datasets are 

created for S. cerevisiae and E. coli to determine whether differences exist in 

the evolution of their protein complexes. 
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Chapter 2     Benchmarking 
Sequence-Based Methods of 
Remote Homologue 
Detection 
 
 

2.1. Introduction 

2.1.1. Sequence-Based Methods of Remote 
Homologue Detection 

The identification of remote homologues is a central problem in 

bioinformatics. New tools to accomplish this task appear frequently and it is 

essential that are they rigorously benchmarked against a range of other 

software, under varying conditions. Benchmarking is crucial both to 

determine the best tool for a particular job and to determine a discriminating 

E-value threshold. 

Brenner et al. (1998) showed that sequence-sequence (often termed 

pairwise) methods such as BLAST can detect most relationships between 

proteins with >30% sequence identity. Park et al. (1998) showed that profile-

sequence methods of remote homology detection could find three times as 

many homologues as sequence-sequence methods at sequence identities 

below 30%. These profile-sequence methods, including HMMer (Eddy, 1996), 

SAM (Karplus et al., 1998) and PSI-BLAST (Altschul et al., 1997) have become 

widely used for detecting remote homologues. More recently, profile-profile 

methods have been introduced which use a profile to search a database of 

profiles. These exploit evolutionary information in both the query and the 

target and thus more remote relationships can be detected. Such methods 
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include COMPASS (Sadreyev and Grishin, 2003), prof_sim (Yona and Levitt, 

2002), LAMA (Pietrokovski, 1996), PRC (Madera, 2008) and HHSearch 

(Soding, 2005). Of these methods, COMPASS, HHSearch and PRC are 

examined in this chapter. COMPASS aligns profiles against profiles, whereas 

HHSearch and PRC align HMMs. All three use a log-sum-of-odds score; a 

generalisation of the log-odds score used by sequence-profile methods. 

Optimum alignments are determined by COMPASS using the Smith-

Waterman algorithm, whereas HHSearch uses the Viterbi algorithm and PRC 

can use either the Viterbi or forward algorithms. All three methods use 

distribution fitting to calculate E-values, for this HHSearch requires a 

calibration step. 

There has not previously been a comprehensive benchmark across 

commonly used sequence-sequence, sequence-profile and profile-profile 

methods. One study (Ohlson et al., 2004) considered Smith-Waterman, PSI-

BLAST and several profile-profile approaches but did not assess those freely 

available for use by researchers. It is important to determine the relative 

performance of the newest methods in specific remote homology detection 

tasks in order to make an informed choice of which methods should be used 

for different tasks. 

2.1.2. Benchmarking Sequence-Based Methods 
of Remote Homologue Detection 

The fundamental requirement of a benchmark for remote homology 

detection is a gold standard dataset of known evolutionary relationships 

between protein domains. Previously, 3D structure comparison has been 

shown to detect more distant evolutionary relationships than sequence 

comparison (Chothia and Lesk, 1986). Thus to date, classifications of domain 

structure have been exploited in benchmarking sequence-based remote 

homology detection methods. SCOP (Murzin et al., 1995), FSSP (Holm and 

Sander, 1994) and CATH (Greene et al., 2007) have all been used in this 

context by, for example, Park et al. (1998), Sadreyev & Grishin (2003) and 

Sillitoe et al. (2005) respectively. Bateman & Finn (2007) used Pfam clans 
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(Finn et al., 2006), which are based on a mixture of sequence and structural 

evidence. 

Surprisingly, poor performance has been reported for profile-profile 

methods using benchmarks based solely on the SCOP structural classification 

(Soding, 2005). On close inspection, it was shown that this was due to 

potentially homologous domains which had been classified as unrelated. 

This occurred largely due to a previous lack of evidence for homology 

between these domains. Two domains are homologous if they have 

descended from a single ancestral domain. Over time homologues tend to 

diverge in both sequence and structure. In general, it is easier to find 

similarity in their structures than in their sequences, particularly when they 

have diverged greatly. However, structural similarity alone is not sufficient 

to guarantee homology as there may be physical constraints on folding and 

limited topologies available. Therefore, it is necessary to build up several 

lines of evidence to describe domains as homologous. CATH or SCOP 

initially group structurally similar domains into fold groups. Within fold 

groups, homologous relationships are subsequently recognized using one or 

more elements of independent evidence. For example, statistically significant 

sequence similarity or experimental verification of functional similarity (e.g. 

from the literature, bound ligands or identification of common catalytic 

residues). 

Recent analyses of CATH have shown that homologues can diverge 

considerably in their structures (Reeves et al., 2006) and in some families a 5-

fold or more variation in size is observed between extremely distant relatives. 

It is now apparent that the most highly sensitive profile-profile methods are 

detecting significant sequence patterns suggestive of homology between 

domains which are highly structurally divergent (Soding, 2005). In these 

cases, any structural similarity would fall below the stringent automatic 

thresholds currently used for classifying homologues in CATH and might be 

missed on manual inspection. These thresholds on structural similarity were 

determined empirically based on earlier analyses of homologous families, 
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but the more distant relationships recently revealed by profile-profile 

methods (Sadreyev et al., 2007) are prompting a re-examination of these 

thresholds. Consequently, the status of these putative homologues is 

uncertain and they should therefore not be considered as definitively non-

homologous when benchmarking methods for remote homology detection.  

β-propellers, for example, are thought to have evolved by duplication 

of β-sheet blades and inheritance of blades between structures (Jawad and 

Paoli, 2002). Their evolution is therefore somewhat unusual as structural 

variation can occur in the core of the domain making superposition of 

relatives difficult. Gough et al. (2001) identified such examples in SCOP by 

examining false positives produced by SAM and provide a modified SCOP-

based benchmark (http://sup-

fam.mrclmb.cam.ac.uk/SUPERFAMILY/ruleset_1.65\.html). Soding showed 

that such examples could be accounted for automatically by using a 

combination of sequence and structural evidence which is more powerful 

than taking either measure in isolation (Soding, 2005). He used a measure for 

local structural similarity to avoid similar problems in SCOP when 

benchmarking HHSearch. False positive hits were excluded by using a score 

cut-off from the MaxSub structural comparison algorithm (Siew et al., 2000). 

The score cut-off was chosen such that it represented significant structural 

similarity, but was not optimised for the task. 

In addition to the choice of structural classification used for 

benchmarking, test sets of varying difficulty affect the separation of remote 

homologue detection methods. At high sequence identities sequence-

sequence and profile-sequence methods detect a more similar number of true 

relationships than at lower sequence identities. Park et al. (1998) and Sillitoe 

et al. (2005) used <40 and <35% non-redundant (nr) test sets respectively for 

benchmarking profile-sequence methods. Soding (2005) used a <20% nr set of 

query sequences to benchmark the same type of method. Casbon and Saqi 

(2006) used a SCOP dataset where homologous pairs had <10% sequence 

identity in benchmarking HHSearch. Furthermore, benchmarking methods 
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differ in their definition of false positives. Yona and Levitt (2002) consider 

matches between members of the same SCOP/CATH superfamily to be true 

and anything else false. Park et al. (1998), Sillitoe et al. (2005) and Soding 

(2005) consider matches between members of the same fold but differing 

superfamily to be ambiguous and therefore discounted. Sadreyev and 

Grishin (2003) used a definition based on FSSP Z-scores. Muller et al. (1999) 

consider fold matches to be false in benchmarking PSI-BLAST for genome 

annotation. Aside from Muller et al. these benchmarks all focus on a general 

remote homology detection task, i.e. distinguishing homologues from non-

homologues. However, remote homologue detection is frequently used to 

annotate genomes. To date, there has been no work comparing the abilities of 

different methods to annotate genomes with structural domains (Muller et al. 

give no comparator for PSI-BLAST). 

2.1.3. Aims 

To date, there has been no coherent benchmark encompassing the wide 

range of methods now available for sequence-based remote homology 

detection. Although Bateman and Finn (2007) benchmarked a range of 

profile-profile methods using Pfam clans, there is no comparison with 

profile-sequence methods and Pfam clans provide a relatively sparse test set 

compared to CATH or SCOP. The various benchmarks described in the 

literature differ significantly and are not easily comparable. Here, the relative 

performance of seven methods from among the sequence-sequence, profile-

sequence and profile-profile classes is explored in greater depth than 

previous work. This chapter aims to measure the effect of datasets and 

benchmarking strategies when assessing the performance of homologue 

recognition methods. Two types of benchmark are performed, reflecting 

different applications of remote homology detection. The allpos benchmark 

models the general task of separating homologues from non-homologues 

whilst the tophit benchmark captures the task of annotating proteomes with 

structural domains.  
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In order to account for the erroneous high error rate of profile-profile 

methods, a heuristic filter is introduced to exclude false positives with low E-

values and high structural similarity. This approach is compared to a set of 

exceptions defined by expert analysis.  

Park et al. (1998) have shown that different homologue detection 

methods identify similar sets of homologues and dissimilar sets of false 

positives. This makes intuitive sense in two ways. Firstly, the methods have 

been trained to detect the same types of homologues, while false hits are the 

result of imperfections of the particular approach or implementation. 

Secondly, there are more false positives to choose from. It has been shown 

that in some cases taking the union of the results from two sequence-

sequence methods can give improved coverage (Webber and Barton, 2003). 
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2.2. Methods 

2.2.1. Datasets for Benchmarking Homologue 
Recognition Methods 

The broadest dataset (nr35) consists of representative sequences from CATH 

v3.0.0. Initially, all CATH sequences were clustered into families at 35% 

sequence identity with an 80% residue overlap cut-off, by directed multi-

linkage clustering. Cluster representatives were chosen by picking the 

member with the highest resolved structure and with a length closest to the 

average. This set contains many pairwise relationships which are trivial 

examples of remote homologues in the sense that they can be detected by 

sequence-sequence methods (i.e. BLAST). To better examine the ability of the 

most sensitive methods, a dataset clustered at 10% sequence identity (nr10), 

was created from the nr35 set. For this dataset a 60% overlap cut-off was 

used to take account of the greater length diversity between homologues at 

low sequence identity. Cluster representatives for the nr10 dataset were 

selected by greatest length. Both datasets were filtered to exclude sequences 

with no superfamily partner. 

2.2.2. Profile and Model Building 

Each sequence in the nr35 dataset was used as a seed for the SAM3.4 target2k 

program (Karplus et al., 1998) to build a Hidden Markov Model (HMM) 

representing the superfamily of that seed. This procedure initially performs a 

BLAST on the GenBank non-redundant database of all known protein 

sequences (at max E-value 400) to produce a reduced-size database within 

which to detect homologues. An iterative HMM procedure then builds an 

alignment, using more and more relaxed E-values, to an E-value of 0.005. 

These alignments were used for benchmarking PSI-BLAST. The alignments 

were filtered to remove positions aligned to gaps in the seed sequences 

before being used to build COMPASS profiles using mk_compass_db (part of 

the COMPASS software), as recommended by Ruslan Sadreyev (personal 
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communication). The SAM3.4 program w0.5 was used to build HMMs from 

the original alignments and these were used for benchmarking SAM. The 

SAM models were converted to HMMer format using Martin Madera's 

convert.pl script (http://www.mrc-

lmb.cam.ac.uk/genomes/julian/convert/convert.html) and calibrated with 1000 

random sequences using the hmmcalibrate program, which is part of the 

HMMer package. These HMMer models were used in benchmarking both 

HMMer and HHSearch. PRC was benchmarked using the SAM models 

converted to PRC format using the convert_to_prc program (provided with 

PRC).  

2.2.3. Benchmarking Procedure 

Both datasets (nr35 and nr10) were scanned all against all using each method. 

In the case of BLAST, sequences were scanned against sequences, for 

SAM/HMMer this was HMMs against sequences, for COMPASS profiles 

against profiles, for PRC/HHSearch HMMs against HMMs. For PSI-BLAST, 

profiles were scanned against sequences, allowing up to 20 iterations. 

HHSearch was used without structural information.  

Local or local-local scoring was used throughout. Although domains 

are being compared in the benchmark, performance in annotating genomes 

and detection of very remote relationships within families was being assayed, 

for which local scoring was most appropriate. As suggested by Madera & 

Gough (2002) other parameters were defaults, such that the relatively 

inexperienced user can achieve the same performance. Equally, the methods 

presented here are those most easily available for download from the World 

Wide Web. 

The rules of the benchmark were based on the CATH domain structure 

classification. CATH classifies protein domain structures, principally into 

Topological groups (T level) and Homologous Superfamilies (H level). 

Superfamilies consist of domains that are thought to be homologous using 

several lines of evidence, i.e. common structure, similar sequences and/or 
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functional similarity. If a method of remote homology detection matches two 

members of the same superfamily it was considered to have recognised a 

true relationship. Matches between members of different superfamilies that 

were within the same topology were treated as ambiguous and were 

excluded. Matches between superfamilies that were not within the same 

topology were counted as false hits. The benchmark involved an all against 

all search within each dataset and it was therefore necessary to exclude 

trivial matches between a query and itself, or the profile/model for which it 

was the seed. 

Two different rules for counting true hits were implemented. The allpos 

rule included every true, non-trivial relationship. This rule reflects how well 

a method can separate homologues from non-homologues. The tophit rule 

included only the best-scoring, non-trivial hit for each query. This rule 

simulated the case of genome annotation in which only the best scoring hit is 

generally considered. 

2.2.4. Exceptions to the Rule 

A set of expert-curated exceptions to the CATH superfamily classification 

was determined by examining the structural superpositions, sequence 

alignments, functional annotation and literature relating to all false positives 

(matches between members of different topologies) incurred by PRC on the 

nr35 dataset up to an E-value of 0.1. Valid exceptions were those determined 

by this manual validation to be either true homologues, or fold matches, 

despite current CATH classification. Reasons for such apparent 

misclassifications are discussed in the results section. Incorporating these 

curated exceptions directly into the benchmark could however unfairly bias 

the results in favour of PRC. Therefore the effectiveness of a heuristic 

approach which could accurately reproduce these exceptions and also be 

applied de novo to any homologue detection method was explored.  

The structural alignment program SSAP (see 1.3.7.1), scored with the 

SAS score (Equation 1.3), was benchmarked against CATH in the same way 
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as described for the sequence-based methods, using the nr35 dataset and the 

allpos rule. The SAS (Subbiah et al., 1993) score was varied to determine a cut-

off which produced good agreement with the curated exceptions.  

2.2.5. Coverage versus Error Plots 

For each method, hits from the all against all scan were sorted by E-value 

and for successive 10-fold E-value cut-offs, the coverage and error rate were 

plotted. This is somewhat like the traditional ROC curve, which plots the 

proportions of true and false positives. Here however, error rate (or Errors 

Per Query, EPQ) is the number of false positives divided by the total number 

of false positives and true positives for a certain E-value. This gives a more 

intuitive reading of the results than plotting the proportion of total errors in 

the dataset, or the raw number of false positives. For instance, at 0.05 EPQ 

the results comprise 5% false positives and 95% true positives. Coverage, on 

the y axis, shows the proportion of true positives found for a particular E-

value. Using the allpos rule this was calculated using the total number of 

pairwise homologues in the dataset. For the tophit rule the number of queries 

was used, as in this case, a maximum of one true positive could be found per 

query. 

2.2.6. Combining Different Methods to Increase 
Specificity 

A simple approach was employed to combine the results of multiple 

methods. All against all hits up to an E-value of 10 for two or more methods 

were compared. Hits were discarded unless all methods agreed on that hit. 

For those remaining hits, the Combined E-Value (CEV) for each was 

calculated as in Equation 2.1. 

 

n
nE

CEV

∑

=

..1log

10  

Equation 2.1 Combined E-value 

 



 94

In Equation 2.1 E1..n are the E-values from each method for a specific 

pairwise hit and n is the number of methods. 

All possible permutations of methods (excluding BLAST) were 

subjected to this analysis, using different datasets and the allpos rule. Only 

permutations of profile-sequence methods were used with the tophit rule as 

profile-profile methods are on the whole too computer-intensive for 

annotating whole genomes and profiles are not nececssarily available for 

genomic sequences. 
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2.3. Results 

2.3.1. A Heuristic Rule to Improve 
Benchmarking of Sequence-Based 
Methods of Remote Homologue Detection 

Profile-profile, sequence-based methods for remote homologue detection 

have previously been found to detect relationships between domains which 

are classified in different superfamilies in SCOP but are potentially 

homologous on close inspection (Soding, 2005). In these cases, homology 

may be confirmed by identifying structural similarity or evidence of 

functional similarity in combination with the significant sequence similarity 

already detected. Therefore it was necessary to create a general, heuristic rule 

which would allow these ambiguous relationships to be identified and 

excluded from a benchmark of sequence-based methods of remote homology 

detection. The validity of a heuristic method based on structural comparison 

scores was explored, similar to Soding’s approach of using a MaxSub cut-off 

(Soding, 2005) but benchmarked against manually defined examples. 

For all domain pair matches (identified by PRC on the nr35 dataset up 

to an E-value of 0.1) involving different CATH topologies, manually curated 

exceptions to the CATH classification were determined by examining 

structural superpositions, sequence alignments, functional annotations, 

catalytic residues and the literature. Those pairs with several lines of 

evidence to suggest a common ancestor were considered exceptions. The 

majority of these fell into six classes which are shown in Table 2.2. Several 

other examples were revealed as errors in CATH and were reclassified. The 

aim was to make a fairer benchmark by excluding these putative homologues. 

For the heuristic rule, the SSAP structural comparison algorithm was used 

(Orengo and Taylor, 1996) with the SAS score (See Chapter 1; Subbiah et al., 

1993) to score structural alignments. The SAS score has proven to be a better 

discriminator at the fold level than native structural comparison scores 

(Kolodny et al., 2005). 
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Exception class Frequency of pairs 

FAD/NAD-binding domain 
(3.50.50) vs. Rossman fold 
(3.40.50) 

  75.1% (1674) 

Neuraminidase (2.120.10) 
vs. Methylamine 
Dehydrogenase (2.130.10) 

  12.5% (279) 

Methanol Dehydrogenase 
(2.140.10) vs. Methylamine 
Dehydrogenase (2.130.10) 

    4.3% (96) 

PCNA (3.70.10) vs. Leucine-
rich repeat (3.80.10) 

    1.3% (30) 

Neuraminidase  
(2.120.10 )vs. Methanol 
Dehydrogenase  (2.140.10) 

    0.8% (17) 

Tachylectin-2 (2.115.10) 
vs. Neuraminidase  
(2.120.10) 

    0.2% (4) 

Total 100.0% (2100) 

 

Table 2.1 Classes of curated exceptions for PRC on nr35 

dataset at E-value cut-off of 0.01. 

Percentages are the proportions of curated exceptions 

falling in that class. The CATH codes of each class are 

shown in brackets. The percentages are based on the 

curated exceptions. 

 



 97

Figure 2.1 shows how accurately the manually curated exceptions were 

captured by using a heuristic based on SSAP structural alignment and SAS 

scores. A SAS score of 8 gave a coverage of 0.86 of the curated exceptions 

with 0.12 EPQ. Lower thresholds resulted in much poorer coverage of the 

manually curated exceptions while higher thresholds caused a rapid increase 

in errors with relatively little gain in coverage. The errors are explored in 

detail below.  

Figure 2.3 shows that the performance of PRC when excluding false 

positives with a SAS score of 8, 9 or 10 was very similar to that achieved 

using the manually curated exceptions rule. SAS8 is, however, the most 

appropriate rule since it was less error prone than SAS9 with no significant 

loss of coverage. Although SAS9 achieved closer performance to the curated 

exceptions in a benchmark, fitting less closely to PRC should reduce the bias 

incurred by benchmarking the exceptions solely on this method. 
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Figure 2.1 Accuracy in reproducing manually curated 

exceptions using heuristic rule with varying SAS score. 



 99

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

EPQ

C
ov

er
ag

e

None
Curated
SAS5
SAS8
SAS9
SAS10
SAS11

 
Figure 2.3 Performance of PRC assessed with no 

exceptions, using the manually curated exceptions or 

using the heuristic rule (at different SAS thresholds, with 

no overlap threshold).  

This benchmark was performed using the nr35 dataset 

and the allpos rule. 
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Table 2.2 shows in detail how the SAS8 exceptions heuristic closely 

reproduced the curated exceptions. By far the most common matches 

between putative homologues, for both curated and SAS8 exceptions, were 

between the FAD/NAD(P) binding domain fold (3.50.50) and the Rossman 

fold (3.40.50), an example of which is shown in Figure 2.5a. These folds are 

from the CATH ββα and αβα sandwich architectures respectively. Previous 

analyses have suggested that these may be very remote homologues 

(Harrison et al., 2002) and there is evidently common structure. The SAS8 

heuristic captures all of the β-propeller exceptions (2.115, 2.120, 2.130 and 

2.140 architectures, e.g. Figure 2.5b) and all αβ box/horseshoe exceptions 

(3.70 and 3.80 architectures). The αβ box/horseshoe exceptions were due to 

misclassification in CATH and this has since been rectified. 87.6% of the 

heuristic exceptions were accounted for by the curated exceptions. Several 

smaller classes of exception were noted during manual curation, however 

these were either re-classified in CATH or appeared at E-values >= 0.01. 

Several exceptions identified by the SAS8 rule were not recognised by 

manual curation. The three most frequent classes, comprising around half of 

these errors are discussed here in detail. The Aminoglycoside 3'-

phosphotransferase (3.90.1200) vs. Phosphotransferase (1.10.510) class is the 

first of these. Both topologies comprise a single superfamily, each implicated 

in protein kinase activity. Only two members of the 3.90.1200.10 superfamily 

were in the nr35 dataset and one of these (1nd4A01) is in the process of being 

reclassified in CATH. The other (2bkkC02) did show some local structural 

similarity to members of the 1.10.510.10 superfamily following superposition 

(see Figure 2.5c). For the best match (with 1wbsA02), the SAS score was 6.37 

and the PRC E-value is 1.7e-5. The topologies are clearly different however 

and these are therefore not valid exceptions. 
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Exception class SAS8 exceptions as 
percentage of curated 
exceptions 

FAD/NAD-binding domain 
(3.50.50) vs. Rossman fold 
(3.40.50) 

  81.9% (1371) 

Neuraminidase (2.120.10) 
vs. Methylamine 
Dehydrogenase (2.130.10) 

100.0% (279) 

Methanol Dehydrogenase 
(2.140.10) vs. 
Methylamine 
Dehydrogenase (2.130.10) 

100.0% (96) 

PCNA (3.70.10) vs. 
Leucine-rich repeat 
(3.80.10) 

100.0% (30) 

Neuraminidase  
(2.120.10 )vs. Methanol 
Dehydrogenase  
(2.140.10) 

100.0% (17) 

Tachylectin-2 (2.115.10) 
vs. Neuraminidase  
(2.120.10) 

100.0% (4) 

Total   86.0% (1797) 

 

Table 2.2 Classes SAS8 exceptions as percentage of curated 

exceptions.  

The CATH codes of each class are shown in brackets. The 

percentages are based on the curated exceptions, e.g. 

81.9% of curated exceptions for the FAD/NAD-binding 

domain vs. Rossman fold class were identified using the 

SAS8 rule. Several small classes of SAS8 exceptions are not 

shown here, but are discussed in the text. 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 2.5 Examples of exceptions identified using the 

SAS8 rule. 

(a), (b) and (d) represent putative pairs of homologues 

whereas (c) and (e) show no structural evidence for 

homology. Regions shown in red are equivalent positions 

identified by SSAP. (a) Examples of the ββα and αβα 

sandwich architectures: 1sezA01 (3.50.50.60.37) and 

1gteA03 (3.40.50.720.7), PRC E-value = 2.5e-31, SAS = 2.49. 

(b) 6-bladed and 7-bladed propellers: 1rwiA00 

(2.120.10.30.6) and 1l0qA01 (2.130.10.10.19), PRC E-value = 

1.1e-39, SAS = 1.98. (c) Aminoglycoside 3`-phosphatase 

and phosphotransferase: 1wbsA02 (1.10.510.10.9) and 

2bkkC02 (3.90.1200.10.1), PRC E-value = 1.7e-5, SAS = 6.37. 

(d) Class I and Class II MHC: 1kcgC00 (3.30.500.10.8) and 

1ktdB01 (3.10.320.10.5), PRC E-value = 2.6e-08, SAS = 3.17. 
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(e) TIM barrel and Aspartate aminotransferase: 1p3wA02 

(3.40.640.10.24) and 1hx0A01 (3.20.20.80.16), PRC E-value 

= 0.00051, SAS = 7.96. 
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The Class I MHC (3.30.500) and Class II MHC (3.10.320) folds each 

contain only one superfamily. Most of the domains within each fold hit the 

other fold below an E-value of 0.01. The full crystal structures (e.g. 1ktd vs. 

1kcg) show these folds are highly similar, with very good superposition. 

However half the domain for the Class II MHC examples is provided by a 

different chain (see Figure 2.5d). There is homology between the CATH 

domains, but the functional domain has been split between two chains in one 

case. This is therefore a very reasonable exception which escaped manual 

classification. 

Matches between the TIM Barrel (3.20.20) and Aspartate 

Aminotransferase (3.40.640) folds only occur at E-values >0.0005. The best 

match by PRC (1hx0A01 vs. 1p3wA02, E-value 0.00051) only just makes the 

SAS score cut-off of 8 with 7.965 and has an RMSD of 15.93. On superposition, 

members of these superfamilies have no apparent structural similarity other 

than αβ motifs (see Figure 2.5e). Both superfamilies are large and these 

matches are probably genuine false positives.  

2.3.2. Detecting Remote Homologues 

2.3.2.1.  Distinguishing Homologues From Non-
Homologues (allpos Rule) 

Seven methods (BLAST, PSI-BLAST, HMMer, SAM, HHSearch, COMPASS 

and PRC) were benchmarked with each dataset (nr35 and nr10) using the 

allpos scoring rule which captures the ability of the methods to distinguish all 

homologues from all non-homologues. The SAS8 exceptions rule was used 

here and throughout the rest of the chapter to exclude matches between 

different CATH folds with low E-values and SAS scores of less than 8. Figure 

2.7 shows the coverage vs. error plots for these benchmarks on nr35 (a) and 

nr10 (b) datasets, while Table 2.3 gives selected coverage values for varying 

error rates. 
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Figure 2.7 Performance of all methods using the allpos and 

SAS8 rules on the nr35 (a) and nr10 (b) datasets.  

Note that runs were performed to an E-value of 10 and in 

some cases an E-value of 10 is reached at an EPQ of <0.1. 



 107

Coverage Data-
set 

EPQ 

BLAST COM-
PASS 

HH-
Search 

HMMer PRC PSI-
BLAST 

SAM 

0.01 7.2 21.8 18.0 16.9 22.9 20.4 17.8 

0.05 8.6 30.4 29.3 17.6 38.8 25.9 24.4 

nr35 

0.10 9.2 34.8 30.2 17.9 >43.
2 

27.1 26.4 

0.01 0.5   8.2   7.5   3.0 11.8   0.5   2.1 

0.05 1.2 17.0 14.7   5.1 22.1   6.4   8.8 

nr10 

0.10 1.5 19.1 16.8   5.2 25.2   6.6 10.0 

 

Table 2.3 Percent coverage for each method at 0.01, 0.05 

and 0.1 EPQ, using the allpos rule.  

For each EPQ value, the maximum coverage obtained is 

plotted. ‘>’ means that the maximum E-value of 10 had 

been passed and this was the last value. 
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It has been noted previously in similar benchmarks that profile-

sequence methods achieve up to three times more coverage than BLAST for a 

fixed error rate when considering homologous pairs with sequence identities 

<30% (Park et al., 1998). This was confirmed here with PSI-BLAST (25.9%) 

and SAM (24.4%) achieving three times greater coverage than BLAST (8.6%) 

on the nr35 dataset. All profile-profile methods are better than all profile-

sequence methods on all datasets at an error rate of 0.05 EPQ. For low error 

rates (e.g. 0.01 EPQ) PSI-BLAST and SAM achieve similar performance to 

profile-profile methods on the nr35 dataset. On all datasets PRC is the best 

method, performing almost 2.5 times better than the best profile-sequence 

method at 0.05 EPQ on the difficult nr10 dataset (22.1% coverage vs. 8.8% for 

SAM). This almost equals the increase in performance seen for profile-

sequence methods over BLAST, although only on very remote homologues 

(<10% sequence identity).  

2.3.2.2. Annotating Genomes (tophit Rule) 

All seven methods (BLAST, PSI-BLAST, HMMer, SAM, HHSearch, 

COMPASS and PRC) were benchmarked with each dataset (nr35 and nr10) 

using the tophit rule, which only scores the first true positive for each query, 

modelling the annotation of genomes. Figure 2.9 shows the coverage vs. 

error plots for these benchmarks, while  

Table 2.4 gives selected coverage values for varying error rates. 

On the nr35 dataset (Figure 2.9a), profile-profile methods slightly 

outperformed profile-sequence methods. The best profile-profile method was 

PRC which achieved 4.8% greater coverage than SAM (the best profile-

sequence) at 0.01 EPQ (COMPASS had almost equal coverage to PRC). 

Interestingly PSI-BLAST performed as well as HMMer (81.4% and 81.2% 

respectively at 0.05 EPQ). BLAST’s performance of 70% coverage at 0.05 EPQ 

shows that this was a relatively easy dataset. In fact, with the tophit rule, it 

was relatively easy for all methods to get high coverage because only the 

nearest neighbour needed to be identified. 
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Figure 2.9 Performance of all methods using the tophit and 

SAS8 rules on nr35 (a) and nr10 (b) datasets.  
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Note that runs were performed to an E-value of 10 and in 

some cases an E-value of 10 is reached at an EPQ of <0.1. 
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Coverage Data-
set 

EPQ

BLAST COM-
PASS 

HH-
Search 

HMMer PRC PSI-
BLAST 

SAM 

0.01 65.1   88.1 84.7 80.7   89.1 80.5   84.3 

0.05 70.0 >91.0 88.9 81.2   91.0 81.4   86.7 

nr35 

0.10 71.5 >91.0 89.7 81.5 >91.0 81.9 >86.7 

0.01   4.7   53.0 23.4 21.7   52.8   3.8   16.1 

0.05 10.3   63.7 51.3 31.7   60.1 36.1   42.5 

Nr10 

0.10 12.7   66.7 55.5 31.9   62.1 36.4   45.0 

 

Table 2.4 Percent coverage for each method at 0.01, 0.05 

and 0.1 EPQ, using the tophit rule.  

Where an EPQ relates to multiple E-values, the coverage 

at the highest E-value is shown. ‘>’ means that the results 

have reached an E-value of 10 and have run out. 
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The superior sensitivity of profile-profile methods was much clearer on 

the more difficult dataset (nr10, Figure 2.9b). COMPASS achieved ~30% 

greater coverage than HMMer for very remote homologues (nr10) at 0.01 

EPQ and ~20% greater coverage than SAM at 0.05 EPQ. COMPASS 

outperformed PRC on these more difficult datasets in contrast to the 

benchmark using the allpos rule, where PRC was always the superior method. 

Overall, COMPASS was the best performing method and all profile-

profile methods outperformed all profile-sequence methods. However, for 

the nr35 dataset SAM performed almost as well as the profile-profile 

methods at 0.02 EPQ. In practice it is too computationally expensive to use 

profile-profile methods to annotate genomes. It would be necessary to build 

profiles for each genomic sequence. However, for a subset which does not 

score well with profile-sequence methodologies it may be worthwhile using 

COMPASS or PRC. COMPASS produced a >20% increase in coverage for the 

most remote homologues, at 0.05 EPQ over the closest profile-sequence 

method (SAM). For the bulk of genome annotation however, SAM is the best 

choice of method. 

Interestingly, PSI-BLAST performed better than HMMer using both the 

tophit rule and the allpos rule. This has, to my knowledge, not been reported 

before in the literature. PSI-BLAST even performed better than SAM at 0.05 

EPQ on the nr35 dataset with the allpos rule. The reason may have been the 

way in which PSI-BLAST was used. Generally PSI-BLAST is used to build a 

profile with the query sequence. In this case however, the profile was built 

using target2k. This means that PSI-BLAST had the advantage of HMM 

technology in building what may have been a more powerful profile than 

can be built by PSI-BLAST itself.  

2.3.3. Determining Reliable E-Value Thresholds 
for Remote Homologue Detection 

When applying homologue detection methods it is common to set an E-value 

(or score) cut-off, above (or below) which hits will be ignored. The 

determination of this cut-off is frequently the reason for benchmarking a 
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method. The role of an E-value is to provide an estimate of how many 

erroneous hits are likely to be found for a given score cut-off and database 

size. How does it relate to EPQ and how does it differ between allpos and 

tophit benchmarks? 

Table 2.5 shows that, for the nr35 dataset, at 0.01 EPQ E-values varied 

significantly between methods. BLAST had the highest whereas PSI-BLAST 

E-values were the lowest. In fact, different methods differed by several order 

of magnitude at this error rate. Apart from BLAST, all methods appear to 

have underestimated the true error rate. This result suggests caution with in 

a literal reading of E-values at low error rates. Both COMPASS and HMMer 

grossly under-predict true error rates over most EPQ values.  

E-value cut-offs for genome annotation (established using the tophit rule) 

were higher for the same error rate than for separating homologues and non-

homologues. Table 2.6 shows that BLAST, SAM and HMMer produce very 

similar E-values, using tophit, to those produced using allpos. Whereas for the 

other methods, the E-values are shifted positively for the same error rates. 

This is likely to be because less false positives appear when only the best hit 

is recorded. It is important to consider the application for which remote 

homology detection is being used before choosing an E-value cut-off. When 

annotating genomes using an E-value cut-off based on an allpos style 

benchmark, coverage will be unnecessarily low. 
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 0.01 EPQ 0.05 EPQ 0.1 EPQ 

BLAST 0.018 0.21   0.48 

PSI-BLAST 4.0e-10 0.16   0.47 

HMMer 2.3e-07 4.3e-06   1.5e-05 

SAM 0.000239 0.164   0.553 

COMPASS 2.38e-07 0.000431   0.00658 

HHSearch 8.2e-05 4.5 36.0 

PRC 3.4e-05 0.27   1.4 

Table 2.5 E-value cut-offs for empirically determined error 

rates on the nr35 dataset using allpos rule. 

 
 
 0.01 EPQ 0.05 EPQ 0.1 EPQ 

BLAST 0.017   0.19     0.51 

PSI-BLAST 0.005   0.18     0.61 

HMMer 4.3e-07   3.2e-06     1.4e-05 

SAM 0.0161   0.391 - 

COMPASS 0.0207   3.16 - 

HHSearch 1.0 48.0 360.0 

PRC 0.16   3.2 - 

Table 2.6 E-value cut-offs for empirically determined error 

rates using tophit rule on the nr35 dataset.  
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2.3.4. Combining Methods Improves 
Performance by Excluding False Positives 

Seeking to improve performance by filtering out false positives, the effect of 

combining different methods of remote homologue detection was explored. 

Figure 2.11, (a) and (b), show the best performing combined methods using 

the allpos rule, on nr35 and nr10 datasets respectively. The best performing 

combination was COMPASS and PRC, which gave an increase of 2-3% over 

the best single method on both datasets over a large range of error rates.  

Figure 2.11, (c) and (d), shows benchmarks on the nr35 and nr10 

datasets respectively using the tophit rule. All the profile-sequence methods 

are shown individually and in combination. Profile-profile methods are 

excluded as they are not practical for large-scale genome annotation. The 

results show that a significant increase in coverage of 10% was achieved at an 

error rate of 0.01 EPQ using PSI-BLAST combined with SAM on very remote 

homologues (nr10). A combination of HMMer and SAM performed best at 

0.01 EPQ, but produced a much more modest increase on the nr35 dataset. At 

higher error rates (>0.02EPQ) SAM was again the best performer on both 

datasets. This was because the combination of methods allowed for an 

increase in specificity, but was not expected to increase sensitivity.  

For both tophit and allpos, the best combined methods were the two best 

performing single methods. Additionally, they may complement each other 

because they were based on different technologies (PSSMs and HMMs). In 

the tophit case this was PSI-BLAST and SAM, in the allpos case this was 

COMPASS and PRC. 
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(d) 

Figure 2.11 Combining methods to improve specificity.  

The best performing single and combined methods (at 0.01, 

0.05 and 0.1 EPQ) for (a) nr35 allpos and (b) for nr10 allpos 

are shown. (c) Shows all single and combined methods for 

nr35 tophit and (d) for nr10 tophit. Note that runs were 

performed to an E-value of 10 and in some cases an E-

value of 10 is reached at an EPQ of <0.1. 
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2.4.  Discussion 

2.4.1. Heuristic Exceptions Rule 

The need to make exceptions to structural classifications in benchmarking 

remote homology detection methods reflects a shift in our abilities to detect 

homology from sequence. Until recently, structural similarity has been a 

reliable gold standard. It now appears that some relatives diverge 

structurally, whilst a sequence signal can be detected by the most sensitive 

profile-profile methods. An effective solution to this problem, the SAS8 rule, 

has been presented. Using a SAS score cut-off for a SSAP structural 

alignment, a reliable benchmark can be produced for these very sensitive 

profile-profile methods. In the future, structural classifications such as CATH 

and SCOP will clearly benefit from using these methods to detect more 

remote homologues. 

Shortly after work based on this chapter was published (Reid et al., 

2007), Qi and co-workers published an alternative solution to this problem 

(Qi et al., 2007). They used a Support Vector Machine (SVM) trained on both 

sequence and structural similarity scores between SCOP domains from 

different classes and those from the same superfamily to classify previously 

ambiguous relationships between domains. Rather than remove ambiguous 

relationships from the dataset as was the aim in this work, their aim was to 

include as many ambiguous relationships as possible by explicitly classifying 

them as homologous or non-homologous. In the benchmarks most 

comparable to those presented here, they conversely found that HHSearch 

had improved performance over COMPASS. In fact it seems that the 

relatively low performance for HHSearch presented in this chapter may have 

been caused by an error in the HHSearch code which was subsequently fixed 

(Johannes Soding, personal communication). 
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2.4.2. The Importance of Benchmarking for 
Application 

In benchmarking methods of remote homologue detection it is important to 

bear in mind the task for which they will be used. Different rules for 

counting true and false positives reflect whether one is interested in 

annotating genomes (only the closest homologue is required) or whether a 

score cut-off is needed to determine whether individual domain pairs are 

homologous (separation of all homologues from non-homologues). Methods 

perform more or less well at different tasks and this knowledge is invaluable 

for ensuring that results are reliable. E-value cut-offs for some methods are 

very different for different applications. 

2.4.3. Relative Performance of Methods 

Having established the SAS8 exception rule and suitable benchmarks to 

model both genome annotation and the simple scoring of homologues, PRC 

was shown to be the best method for distinguishing homologues and non-

homologues. In fact, for distant homologues (<10% sequence identity) PRC is 

2.5 times better than the best profile-sequence method at separating 

homologues from non-homologues. Profile-profile methods are greatly 

increasing our ability to recognise remote homologues.  

PSI-BLAST performed surprisingly well in the benchmarks presented. 

This may be due to the way in which it was used. Profiles were built using 

the SAM T2K program and then used in up to 20 iterations of PSI-BLAST. 

The use of SAM T2K brings an element of HMM technology to PSI-BLAST.  

COMPASS was shown to be the best method overall for annotating 

genomes at low sequence identities (<10%). However, at sequence identities 

of <35% PRC is equally effective and there is only ~5% increase in coverage 

over the best profile sequence method (SAM). It is not possible to use profile-

profile methods for annotating whole genomes as for the genomic sequence, 

a profile is lacking. 
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2.4.4. Combining Methods Improves 
Performance 

When determining relatives for a protein of interest, an investigator may 

compare the results of multiple methods to increase the likelihood of a 

correct assignment. In this chapter, an automated approach was described 

using the combined results of multiple methods to improve assignment. 

When annotating genomes, combining profile-sequence methods gave a 

large increase in performance of 10% at a 1% error rate. This increase was 

achieved by combining SAM and PSI-BLAST. 

2.4.5. Future Work 

The approach presented here to combine methods of remote homologue 

detection and improve performance was a simple one. There is scope for 

integrating scores from such methods in a more advanced framework. 

Weighting different methods would perhaps be the first improvement. 
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Chapter 3     Developing 
CODA to Predict Functional 
Associations between 
Proteins 
 
 

3.1. Introduction 

3.1.1. Gene and Domain Fusion Detection 
Methodologies 

In the post-genomic era it has become clear that the parts list of genomes is 

insufficient to explain organismal complexity. Research is shifting towards 

understanding organisms as systems of interacting parts. Many new 

approaches are being developed to identify the relationships between these 

parts in terms of interactions and functional associations. Domain, or gene 

fusion is one of several genome context methods which can be used to 

predict functional associations between pairs of proteins (Marcotte et al., 1999; 

Enright et al., 1999). Genome context methods allow inheritance of functional 

information between non-homologous proteins. They are thus an orthogonal 

approach to homology-based methods of function prediction. In addition, 

they can predict networks of proteins involved in common complexes and 

pathways (von Mering et al., 2007).  

Gene fusion is an evolutionary process whereby initially separate genes 

become fused into a single open reading frame which is expressed as a multi-

domain protein chain. Perhaps the most compelling argument for the 

evolutionary role of fusions is that in eukaryotic evolution, as cells increased 

in size, fusions were selected for to maintain the relative concentrations of 
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interacting proteins without increasing the absolute amount of protein 

produced (Enright et al., 1999). It has also been proposed along similar lines 

that fusions have been favoured due to a decrease in diffusion rates in 

eukaryotic cells caused by obstacles such as the cytoskeleton (Yanai et al., 

2001). Fusions have frequently been found in prokaryotes however (Enright 

and Ouzounis, 2001), suggesting that these arguments cannot account for all 

fusions. 

Bioinformatic approaches which identify fusion events in order to 

predict functional associations use either whole protein sequence comparison 

or domain family assignments. These are known as gene fusion and domain 

fusion respectively. Table 3.1 shows various approaches to gene/domain 

fusion which have appeared in the literature.  
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Authors Fusion 
detection 
method 

All homologues/Orthologues-
only 

Scoring 

Marcotte 
et al. 
(1999) 

Gene fusion 
(BLAST) and 
domain fusion 
(ProDom) 
pooled.  

All homologues – 5% most 
promiscuous domains removed 

None 

Enright et 
al. (1999) 

Gene fusion 
(BLAST and S-
W) 

All homologues S-W based Z-
scores 

Snel et al. 
(2000) 

Gene fusion (S-
W) 

Orthologue-only (bidirectional 
best hit) 

None 

Enright & 
Ouzounis 
(2001) 

Gene fusion 
(BLAST, 
component 
overlap <10%) 

All homologues  (although 
component and composite 
proteins clustered) 

None 

Yanai et al. 
(2001) 

Gene fusion 
(BLAST) 

Orthologue-only (one link 
between each COG) 

None 

Marcotte & 
Marcotte, 
(2002) 

Gene fusion 
(BLAST) 

All homologues Probability of 
observing fusion 
and uncertainty 
due to large 
families 

Truong & 
Ikura 
(2003) 

Domain fusion 
(Pfam domains)

All homologues (promiscuous 
domains removed) 

None 

Bowers et 
al. (2004) 

Gene fusion 
(BLAST) 

All homologues Probability of 
observing fusion 

CODA (this 
chapter) 

Domain fusion 
(Pfam domains)

All homologues Frequency of 
homologues in 
query and 
individual target 
genomes 

 

Table 3.1 Overview of gene/domain fusion 

implementations for predicting functional associations.  

‘All homologues vs. orthologues-only’ specifies whether 

the approach identifies functional similarity for all the 
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homologues of the fusion protein or only those thought to 

be orthologous to it. 
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The most common approach is gene fusion using BLAST (Altschul et al., 

1997), frequently in combination with the Smith-Waterman (1981) algorithm, 

to detect triplets of proteins. In this scheme two proteins from a single 

genome (query proteins) which are both predicted to be homologous to a 

third protein in a different genome (fusion protein), but are not homologous 

to each other are identified as functionally associated (i.e. take part in a 

common biological process). Proteins which are truly related by a fusion 

event may contain homologous domains, however it is generally not useful 

to link query proteins through homologous domains as they are less likely to 

be involved in the same biological process than if linked through non-

homologous domains (Enright and Ouzounis, 2001). This is commonly a 

problem with promiscuous domain families. Furthermore it is advantageous 

to exclude such homologous examples when benchmarking the performance 

of the method as such associations can be identified more easily by 

homology based approaches.  

Promiscuous domain families are found in many different proteins, 

fused to many different partner domain families (Apic et al., 2001a). The 

protein kinase family Pkinase (Pfam code: PF00069) from the Pfam protein 

family database (Finn et al., 2008) is one of the most promiscuous in Nature. 

It comprises largely eukaryotic protein kinases involved in diverse biological 

processes. It is found fused to >250 different Pfam families in a variety of 

organisms. The result of this is noise in the domain fusion analysis through 

functionally misinformative fusions. Any protein containing members of the 

Pkinase family can be linked to every other protein which contains one of the 

>250 domains to which Pkinase is found fused. 

Domain fusion uses domain-based descriptions of sequences (e.g. Pfam) 

rather than direct sequence comparison. In this case a fusion event is 

identified where two proteins in one genome contain distinct domains that 

are found fused together in another genome. Again, promiscuous domains 

can cause erroneous associations between functionally unrelated proteins. 

For domain fusion approaches, proteins containing highly promiscuous 
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domains can be explicitly excluded from the results in order to improve 

accuracy in detecting functional relationships (Marcotte et al., 1999).  

Another problem affecting both the gene and domain fusion 

approaches is that of large gene/domain families. In domain fusion for 

instance, if a relative of domain family A is found fused to a relative from 

domain family B, all proteins containing domains from A are potentially 

associated to all those containing domains from B within any particular 

genome. If families A and B are large, then there are many possible 

functionally associated pairs. In large families, it is unlikely that all members 

will be involved in the same biological process (Marcotte and Marcotte, 2002). 

Figure 3.1 illustrates the problems encountered in detecting functional 

relationships with gene/domain fusion. 

There are two ways of coping with this ‘paralogue problem’ which have 

appeared in the literature. The first is to accept only those pairs of query 

proteins which are thought to be orthologous to the fusion protein (Snel et al., 

2000). This has been achieved by using bi-directional best hit orthologues 

(Snel et al., 2000; Kummerfeld and Teichmann, 2005). The results show high 

accuracy, although relatively few functional relationships are determined – a 

maximum of one per fusion protein in any particular genome (Huynen et al., 

2000). The second approach is to apply a scoring scheme which takes account 

of the size of families and the uncertainty about which pairs are orthologous; 

we expect some paralogues to take part in the same biological processes 

(Marcotte and Marcotte, 2002). Therefore, this approach allows more 

predictions to be made, although presumably at a lower accuracy than the 

orthologue-only approach. No assessment has been published of the relative 

performance of these two approaches, or any different implementations of 

gene/domain fusion.  
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Figure 3.1 Problems encountered in detecting 

gene/domain fusions.  

Boxes with the same pattern represent homologous 

domains, arrows represent possible functional linkages. (a) 

shows the simple case where the query genome contains 

only one pair of proteins which can be linked using a 

particular fusion protein. (b) shows an example of the 

problem of large domain families, where increasing 

numbers of homologues result in greater uncertainty as to 

which might be orthologous to the fusion protein. There is 

therefore decreasing certainty as to whether any particular 

pair of homologues shares a similar function. (c) shows an 

example of where a promiscuous domain, one fused to 

many other domains, causes uncertainty about relevant 

functional linkages. Promiscuous domain families tend to 

be involved in a variety of different processes and are 
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therefore unreliable for use in identifying functional 

relationships through gene/domain fusions. 
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3.1.2. Aims 

The aim of this chapter was to develop a domain fusion approach which was 

able to accurately detect functional relationships in higher eukaryotic 

genomes. Co-Occurrence of Domains Analysis (CODA), the method 

introduced in this chapter, uses the domain fusion approach and implements 

a novel score to cope with the problem of large families. 

CODA is compared against two existing implementations of gene 

fusion and one of domain fusion. This allows an analysis of the relative 

performance of different approaches. 
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3.2. Methods 

3.2.1. Gene3D Multi-Domain Architecture 
Datasets 

Co-Occurrence of Domains Analysis (CODA) requires Multi-Domain 

Architectures (MDAs) of proteins for complete genomes. An MDA is a 

symbolic representation of the predicted domains for a protein. The order 

and frequency of domains in a protein is not considered by CODA and so 

discontinuous domains can simply be collapsed. Gene3D (Yeats et al., 2008) 

is an ideal source of this data as it contains protein sequences for all complete 

genomes with predictions for CATH (Greene et al., 2007) and Pfam (Finn et 

al., 2008) domains as well as functional annotations including GO (Harris et 

al., 2004).  

Several alternative MDA datasets were generated, each for all 527 

complete genomes (50 eukaryotes, 438 eubacteria and 39 archaea) contained 

in Gene3D v5. Individual datasets were created using only CATH domains, 

only Pfam domains or a combination of the two in order to test which was 

more effective in representing proteins in domain fusion analysis. 

Annotation for both domain types was retrieved from Gene3D. The datasets 

which included both CATH and Pfam domains were generated in two ways. 

The CATH-Pfam dataset had CATH domains assigned first, while Pfam-

CATH had Pfam domains assigned first. Each example of the second type of 

domains was added if the overlap between it and the already assigned 

domains was no greater than 30% in both directions. The initial set of CATH 

domains did not overlap with each other, nor did the Pfam domains. This 

resulted in 4 different datasets – CATH, Pfam, CATH-Pfam and Pfam-CATH. 

3.2.2. Prolinks, STRING and Truong Datasets 

In order to compare CODA against the other methods, it was necessary to 

recreate the datasets used to generate their results. The reason for this is that 

their methods are not available for use on arbitrary datasets and it was 
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therefore necessary to run CODA on the datasets used by those methods in 

order to give a fair comparison. For instance, it has recently been shown that 

the performance of gene fusion methods is particularly sensitive to the 

number of genomes available in which to search for fusions (Kamburov et al., 

2007). For STRING and Prolinks, descriptions of the sequences used were 

available from the respective webservers. STRING provided a file for 

download containing all sequences used in their analyses 

(http://string.embl.de/newstring_download/protein.sequences.v7.1.fa.gz). 

Prolinks provided a file for download containing all GI numbers, but not the 

sequences themselves 

(http://mysql5.mbi.ucla.edu/public/reference_files/geneIDS_to_GInum.txt

). It was necessary to obtain these sequences independently from the NCBI 

FTP site (ftp://ftp.ncbi.nih.gov/genbank/), although a small number were 

no longer available and it was necessary to acquire them directly from the 

Prolinks website HTML. The Truong dataset was Swiss-Prot release 39 

combined with TrEMBL release 17. The Swiss -Prot release was retrieved 

from the EBI FTP server 

(ftp://ftp.ebi.ac.uk/pub/databases/swissprot/sw_old_releases), while 

TrEMBL release 17 was kindly provided by the PANDA group at the 

European Bioinformatics Institute. 

All STRING and Prolinks sequences were scanned with Pfam HMMs 

using the same pfam_scan.pl protocol used for Gene3D (Yeats et al., 2008). 

Details of these datasets, including Pfam coverage is shown in Table 3.2. 
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Resource Genomes Total dataset 
coverage by Pfam 
domains 

Yeast Pfam 
coverage  

Human Pfam 
coverage 

STRING v7 373 71% 
(1074952/1513782)

64% 
(4245/6680) 

74% 
(16371/22218)

Prolinks 
v2.0 

168 73% 
(429173/590444)

73% 
(4195/5761) 

74% 
(17266/23213)

Truong 
dataset 

210 50%

(128332/257962)

44% 

(2935/6690) 

n/a

 

Table 3.2 Coverage of STRING, Prolinks and Truong 

datasets with Pfam domains.  

Coverage was calculated as the percentage of proteins 

with at least one domain. Raw numbers are shown in 

brackets. 
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Truong-fusion and CODA both use Pfam domains. Using the most 

recent Pfam annotation would therefore provide CODA with more 

information than was available to Truong-fusion. Therefore Pfam domain 

annotation for the Truong dataset was retrieved from the aforementioned 

Swiss-Prot and TrEMBL records. The STRING and Prolinks datasets 

comprise protein sequences from completed genomes. The Truong dataset 

however gave no information of which genomes in the dataset were 

complete and it is difficult to determine which genomes were completed at 

this time. Therefore those proteins from species which currently remain 

unsequenced were removed. The result is that some incomplete genomes 

will remain and this may reduce the performance of CODA which was 

designed to use complete genome information to accurately score its results. 

3.2.3. A Benchmark for Functional Similarity 
Using Gene Ontology Terms 

The aim of the CODA method is to identify pairs of proteins which are 

involved in similar biological processes. In order to benchmark CODA it was 

therefore necessary to determine the functional similarity between an 

arbitrary pair of proteins. The Gene Ontology (GO) is well suited to this and 

has commonly been used for this purpose (e.g. Ranea et al., 2007). GO clearly 

separates biological process from molecular function annotation and there is 

a growing literature based on different approaches to measuring the 

similarity between GO terms. One of the most popular of these approaches is 

GO Semantic Similarity (GOSS) (Resnik, 1999). This method uses statistics 

from the corpus of terms assigned to a particular genome and the 

information content of the shared parent for two terms to determine their 

similarity (described in detail in 1.6.4). An in-house implementation of the 

Resnik method, as described by Lord et al. (2003) was used. 

The corpus of terms used in calculating functional similarities between 

proteins was varied according to whether the benchmark was performed in 

yeast or human and whether the dataset was Gene3D, STRING, Prolinks or 

Truong. The coverage of each of these datasets by relevant GO terms is 
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shown in Table 3.3. For each pair of putative functionally associated proteins, 

all biological process GO terms relating to these proteins were extracted from 

Gene3D. Those terms with evidence type ‘Inferred from Electronic 

Annotation (IEA)’, ‘No biological Data available (ND)’ and ‘Inferred from 

Genomic Context (IGC)’ were removed. Excluding IGC annotations is 

particularly important to avoid the circularity of benchmarking a method 

using results derived from similar methods. GOSS was used to calculate the 

similarity between each term, between each pair of proteins. The GOSS score 

between two proteins A and B was taken as the maximum GOSS score 

between any pair of terms, one from A, one from B.  
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Dataset Yeast  Human 

Gene3D v5 75% (4203/5586) 18% 
(6192/34888) 

STRING v7 67% (4447/6680) 22% 
(4861/22218) 

Prolinks v2.0 76% (4385/5761) 23% 
(4980/23213) 

Truong dataset 58% (3885/6690) n/a 

 

Table 3.3 Percentages of proteins from yeast and human 

genomes which had at least one relevant GO term in each 

dataset. 
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In this benchmark false positives could not be directly determined as 

many proteins were unannotated or annotated with relatively non-specific 

GO terms. Therefore, instead of precision, enrichment was calculated based 

on the number of positive hits expected by chance. It was necessary to 

determine a GOSS score cut-off which was unlikely to be exceeded by a score 

between randomly associated proteins. Protein pairs identified by a method, 

which exceed this score, were considered true positive hits. Figure 3.3 shows 

the distribution of GOSS scores in the yeast genome. The figure shows that 

only ~3% (260754) of GOSS scores were ≥ 4. Considering all protein pairs in 

yeast (i.e. including those with no appropriate GO terms), the likelihood of a 

score ≥ 4 is 0.0167. Therefore if a gene fusion method picked 50 protein pairs, 

we would expect to see 0.835 (50 x 0.0167) significant pairs by random chance. 

Therefore if 10 of the pairs, predicted by the method, had a GOSS score ≥ 4, 

the prediction method has performed 11.97 (10 / 0.835, observed true 

positives divided by expected positives) times better than expected by chance, 

this value is the enrichment. The distribution of GOSS scores for the human 

genome was very similar to the yeast genome, although 93.7% of pairs did 

not have a GOSS score. For the human genome ~3% (1010288) of GOSS 

scores were ≥ 4. For both human and yeast datasets, GOSS scores of 4 and 

above were sufficiently rare that they were unlikely to be picked by chance 

(p < 0.05). This was true for the STRING and Prolinks datasets as well as the 

Gene3D dataset. The proportion of expected positives was varied 

appropriately for each dataset, taking into account the frequency of GOSS 

values ≥ 4 expected by chance. The frequency of expected significant GOSS 

scores for each dataset is presented in Appendix A. 

The Benchmark plots (e.g. Figure 3.5) were generated by calculating the 

enrichment (observed true positives / expected positives) and the number of 

hits (observed true positives) for successive cut-offs of the different method’s 

native scores. 
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Figure 3.3 Distribution of biological process GOSS scores 

between yeast proteins in the Gene3D dataset.  

Proteins without appropriate GO terms were excluded. 

GOSS score bins are lower bounded by the previous value 

and upper bounded by less than the stated value, thus the 

2.5 bin contains values ≥ 2 and < 2.5. The red bars 

represent the frequency and the blue line represents the 

cumulative proportion of GOSS scores which have less 

than the stated value. 
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3.2.4. The CODA Score 

Co-Occurrence of Domains Analysis (CODA) uses a Multi-Domain 

Architecture (MDA) representation of proteins in complete genomes (target 

genomes) to discover pairs of proteins involved in common biological 

processes within a complete genome of interest (the query genome). It is a 

novel approach in the domain fusion idiom using a new scoring method.  

For a pair of proteins i = (p,q) in a query genome g. P is the set of 

domains in protein p. a ∈  P denotes that protein p contains a domain of 

superfamily a. J is the set of domain pairs j = (a,b) where a ∈  P, b ∈  Q. In 

other words J consists of all the distinct pairs of domains between proteins p 

and q. It is also required that P∩Q = {}, as the two proteins must not share 

any domains of the same superfamily. Each superfamily was only counted 

once per protein. 

To determine a fusion event we require that a target genome t (one 

other than the query genome) contains a protein s where a ∈  S and b ∈  S, i.e. 

domains which are separated in the query genome are found fused in the 

target genome. The set T comprises those genomes other than g which 

contain such proteins s. For a domain pair j in genome g, the fusion score Cj is 

taken as a maximum over all genomes in T (Equation 3.1).  
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Equation 3.1 CODA score for a particular pair of domain 

superfamilies j in  genome g. 

 

In Equation 3.1 |T| is the number of elements of set T (i.e. the number 

of target genomes),   
Ag

n  and 
Bg

n  are the frequencies of domain superfamily 

A and domain superfamily B respectively in genome g, 
At
n  and tBn  are the 

frequencies of domain superfamilies A and B respectively in genome t.  
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For a protein pair i, in query genome g, the maximum Cj is taken over 

all possible domain pairs j (Equation 3.2). 

 

( )jJ
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1max ==  

Equation 3.2 CODA score for a pair of query proteins i in 

genome g. 

 

In Equation 3.2 |J| is the number of elements in set J (i.e. distinct 

domain pairs). Thus Ci is the CODA score for proteins p,q (pair i); the best 

(highest) score over all domain pairs between the proteins and over potential 

fusion proteins in all genomes T. The important novel aspect of this score is 

that it takes the maximum score amongst all the genomes whereas other 

methods do not consider target genomes individually. The score was chosen 

to reflect the uncertainty that fused domains and their unfused relatives are 

orthologues. The highest (best) possible score (one) is returned when there is 

only one example of each domain family in the query genome and one fused 

protein in a target genome, with no other domain homologues. In this case it 

is highly likely that the query protein domains are orthologous to the target 

protein.  

3.2.5. CATH Subfamilies for CODA 

CATH domains showed poor performance relative to Pfam domains in 

detecting functional relationships between proteins using CODA. This could 

have been due to low coverage of CATH domains relative to Pfam or because 

CATH has larger families causing low scores for many hits. CATH 

superfamilies were clustered at varying sequence identity cut-offs (30, 35, 40, 

50, 60, 70, 80, 90, 95 and 100%) using an in-house implementation of directed 

multi-linkage clustering. Sequence identities were determined using BLAST 

with default parameters. The domain counts used in the CODA score were 

then adjusted using these clusters. Let us say that there are two proteins in 

yeast, each with one domain. The first protein contains domain a and the 



 140

second domain b. A protein is found in E. coli which is a fusion of these two 

domains – a´b´. Let us say that a and a´ are in the same 50% cluster but not 

the same 60% cluster, i.e. they share ~50% sequence identity. The counts for 

Ag
n  in the CODA score (Equation 3.1) then only include the number of 

members of the 50% cluster containing a that belong to yeast. 
At
n  becomes 

the number of members of that 50% cluster which belong to E.coli. Likewise, 

if b and b´ are in the same 70% cluster but not the same 80% clusters, then the 

counts are taken from that 70% cluster.  

 

3.2.6. Details of Other Fusion Approaches Used 
in This Work 

3.2.6.1. STRING-Fusion 

The STRING-fusion method (von Mering et al., 2007) applies the Smith-

Waterman algorithm (Smith and Waterman, 1981) to align sequences from 

complete genomes and orthologues are determined between genomes using 

bi-directional best hits. A fusion is identified where a gene in one genome 

has two orthologues in another genome which do not overlap with each 

other when aligned to the fused protein. The fusions are scored by counting 

the number of fusion events and normalising by the number of species which 

contain fusion proteins (Snel et al., 2000) 

 

3.2.6.2. Prolinks-Fusion 

All protein coding sequences from a genome of interest are aligned to a non-

redundant database using BLAST. Fusions are identified where two non-

homologous proteins align over at least 70% of their sequences to different 

regions of a third protein (Bowers et al., 2004). To cope with large domain 

families, a score based on the hypergeometric function is applied (Equation 

3.3). 
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Equation 3.3 Prolinks score. 

 

Equation 3.3 applies to two proteins A and B, where k′  is the number of 

fusion proteins in a sequence database, n is the number homologues of 

protein A, m is the number of homologues of protein B and N the total 

number of sequences in the database. This function calculates the likelihood 

that a pair of query proteins is orthologous to a fusion protein, given the 

number of fusion proteins and query protein homologues. 

 

3.2.6.3. Truong-Fusion 

Truong & Ikura (2003) applied the domain fusion approach using Pfam 

domains. They identified Domain Fusion Templates (DFTs), pairs of non-

homologous Pfam domains which occur in the same protein chain in a 

genome other than the genome of interest. They then found protein pairs in 

the query genome which were linked by a DFT. In order to avoid false 

positives, results which were identified using the same domain pairs at least 

10 times are excluded. For example, in their analysis of human, the RasGAP 

and SH3 domains were used to link 72 different pairs of proteins and these 

72 pairs were excluded. No scoring was applied to the results. 
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3.3. Results 

3.3.1. Performance of CODA 

3.3.1.1. Alternative Multi-Domain Architecture 
Representations 

The first step in implementing CODA was to generate multi-domain 

architecture (MDA) datasets to represent the genomes. Four different 

domain-based datasets were produced using domain assignments from the 

Gene3D v5 database (Yeats et al., 2008). These contained either CATH 

domains (CATH-MDA), Pfam domains (Pfam-MDA) or a combination of the 

two (CATH-Pfam-MDA with CATH taking precedence and Pfam-CATH-

MDA with Pfam taking precedence).  

Table 3.4 shows that Pfam had better coverage of the genomes than 

CATH, but also that CATH and Pfam were complementary, giving greater 

coverage when used together than with either resource alone. The 

effectiveness of these different genome representations in creating functional 

linkages between proteins using CODA is explored below. 

Whereas many gene fusion methods use BLAST scores between whole 

proteins to determine fusions, CODA uses domain pairs. Therefore multi-

domain assignments based on different domain classifications are likely to 

result in differences in the performance of CODA. In previous work 

sequence-based domain families such as those of ProDom (Bru et al., 2005) 

and Pfam (Finn et al., 2008) have been used to detect domain fusions for 

prediction of functional associations (Enright et al., 1999; Truong and Ikura, 

2003). Structural domain superfamilies have been used to explore the 

evolution of fusions (Kummerfeld and Teichmann, 2005) but not to detect 

functional relationships. The relative effectiveness of the two types of 

domain family in predicting functional relationships has not previously been 

explored. 
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Dataset Total 
proteins 

Yeast coverage (of 
5586 distinct protein 
sequences) 

Human coverage (of 
34888) 

CATH 821801 38% (2130) 40% (13831)

Pfam 1423060 73% (4050) 65% (22736)

CATH-Pfam 1495200 76% (4226) 68%(23679)

Pfam-CATH 1495200 76% (4226) 68% (23679)

 

Table 3.4 Size of datasets and genome coverage with 

different Multi-Domain Architecture (MDA) types.  

Coverage is calculated as the percentage of proteins which 

have at least one domain. The CATH-Pfam and Pfam-

CATH datasets therefore appear identical, although their 

domain assignments are not. 
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Figure 3.5 shows enrichment against number of hits obtained by CODA 

using different MDA datasets. Enrichment is a measure of accuracy: the 

number of true positives divided by the number of positives expected by 

chance given the number of hits (see 3.2.3). An enrichment of 10 was chosen 

as an example cutoff to reflect a moderate accuracy, although a range of 

enrichments are examined. 

At an enrichment of 10 CODA performed best using the Pfam-CATH 

dataset and found 1791 hits; using Pfam it found 1663 hits, CATH-Pfam 792 

and CATH 296. At higher enrichment (e.g. 15), the Pfam dataset was optimal, 

with CODA finding ~500 hits.  

Datasets based principally on CATH domains (CATH-Pfam and CATH) 

performed less well than those based on Pfam domains. This may be because 

CATH superfamilies tend to be broader than Pfam families, including more 

functional subfamilies. This could result in generally reduced scores for hits 

involving these larger families. In order to determine whether this was the 

case, sequence-based subfamilies were created for each CATH superfamily 

as described in 3.2.5. Using these subfamilies resulted in higher scores where 

homologous domains between the query and target genomes were more 

similar than to other members of that superfamily. However, Figure 3.7 

shows that this did not improve the performance of CODA when using 

CATH domains. It seems therefore that the reduced performance of CATH 

relative to Pfam was related more to lower coverage of genomes than to the 

size and functional specificity of the families. Pfam MDA datasets were 

chosen over Pfam-CATH due to a similar performance at moderate 

enrichment and superior performance at higher enrichment. CODA should 

be used with a score cut-off of 0.56 to achieve an enrichment of 10 on this 

dataset and 0.65 for an enrichment of 15. 



 145

 

Figure 3.5 Comparative performance of Pfam, Pfam-

CATH, CATH and CATH-Pfam MDA datasets on the 

yeast genome.  

Enrichment is the ratio of true positives achieved by 

CODA to the number expected by chance. Curves in this 

and subsequent figures were plotted at intervals of 0.05 of 

the CODA score. 
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Figure 3.7 Performance of CODA on yeast Gene3D dataset 

using CATH domains, with and without sequence 

subfamilies. 
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3.3.1.2. CODA is Insensitive to Promiscuous Domains 

Gene/domain fusion methods are liable to detect many false positives due to 

promiscuous domains and large homologous gene/domain families 

(Marcotte and Marcotte, 2002). Large domain families with many 

homologues are not very common in organisms with small genomes, but in 

larger eukaryotic genomes there are many such families. This problem is 

tackled by CODA in two ways. Firstly, the CODA score takes account of the 

size of domain families and gives lower scores where there are many 

homologues of the domains involved in the fusion. Secondly, unlike other 

score-based fusion methods, in CODA, the final score for a pair of proteins in 

the query genome is the best score out of all possible fusion proteins detected 

in all the genomes screened. Other methods calculate a single score summing 

over all genomes (Marcotte and Marcotte, 2002; Bowers et al., 2004). The 

CODA score therefore penalises larger families which is advantageous due to 

the problem of paralogues discussed earlier. Additionally, as large families 

tend also to be promiscuous, the scoring method should also penalise 

promiscuity.  

Figure 3.9 shows that when results involving promiscuous domains 

were removed there was little change in performance except at the highest 

and lowest enrichments.  Here a promiscuous domain family is described as 

one which co-occurs with more than 50 other domain families. The CODA 

method therefore copes well with promiscuous domains, finding a greater 

number of hits for an enrichment of 10 when promiscuous domains were 

present (1663) compared to when they were removed (1494).  
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Figure 3.9 CODA with and without promiscuity filter 

(prom50).  

The promiscuity filter removes all results involving a 

domain that is known to occur in protein chains with 50 or 

more different domain families, across all genomes.  



 149

3.3.2. Comparison of CODA with Prolinks-Fusion, 
STRING-Fusion and Truong-Fusion in 
Yeast 

It is important to determine how well CODA performs relative to other 

comparable (i.e. gene/domain fusion) methods. It has been unclear from the 

literature what the relative effectiveness of different methods is. Several 

resources provide data from such methods. These include STRING (von 

Mering et al., 2007), Prolinks (Bowers et al., 2004) and the Domain Fusion 

Database (Truong and Ikura, 2003). Results from Predictome (Mellor et al., 

2002) and FusionDB (Suhre and Claverie, 2004)  were not available for 

download. 

None of the three methods could be run on an arbitrary set of 

genomes/sequences, only results based on specific datasets were available. 

Therefore, in order to produce a fair benchmark it was necessary to use only 

those sequences which had been used to produce the results provided by the 

respective webservers. New MDA datasets were generated from the 

sequences provided by these resources (see 3.2.2) so that no extra 

information was available to CODA either in the query genome or the 

reference genomes. This also meant that it was not possible to directly 

compare all three methods. CODA was compared to STRING-Fusion on the 

STRING sequence set to Prolinks-Fusion on the Prolinks sequence set and to 

Truong-fusion on the Truong sequence set. 

3.3.2.1. Relative Performance of CODA and Other 
Methods 

Figure 3.11a shows that CODA outperformed STRING-Fusion at almost all 

levels of enrichment. STRING-Fusion considers only pairs of proteins 

thought to be orthologous to fusion proteins and so had a relatively small 

maximum number of hits, 548. This was at an enrichment of 16.3. For a 

similar enrichment, CODA found 1549 hits. CODA found 2246 hits for an 

enrichment of 10. 
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(a) 

 

 

 
(b) 
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(c) 

 

 

 
(d) 

Figure 3.11 Performance of CODA relative to the other 

methods.  
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(a) performance of CODA (blue) and STRING-fusion (red) 

methods on the STRING dataset, using yeast as query. (b) 

relative performance of CODA (blue) and Prolinks-fusion 

(green) using Prolinks dataset with yeast as query. (c) 

relative performance of CODA (blue) and Prolinks-Fusion 

(green) using Prolinks dataset with yeast as query with all 

results involving homologous pairs removed (BLAST E-

value <1e-6). (d) relative performance of CODA (blue) and 

Truong-fusion (orange) using Truong dataset with yeast 

as query. 
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Figure 3.11b shows that Prolinks-fusion far outperformed CODA. For 

an enrichment of 10 CODA found 1312 protein pairs while Prolinks-fusion 

found 17361 pairs (all its results) for a higher enrichment of 17. Figure 3.11c 

shows that the improved performance of Prolinks over CODA was due to a 

large number of links between homologues. In fact when homologous pairs 

were removed from the results of both methods (pairs with BLAST E-value 

<= 1e-6), CODA found 1306 protein pairs for an enrichment of 10, while 

Prolinks-fusion found only 1021. Note that CODA explicitly excludes pairs 

with homologous domains. 

Figure 3.11d shows the results for CODA against Truong-fusion. There 

was no score provided for results from Truong-fusion and so there is only 

one point on the plot referring to the complete set of 189 pairs of proteins 

identified by the method. Compared to CODA, Truong-fusion is more 

accurate for the number of hits it produces, with an enrichment of 21 for 189 

hits. CODA found 52 hits for an enrichment of 19 and was able to find 1023 

hits for an enrichment of 10. 

3.3.2.2. Domain Fusion Methods Find Functional 
Associations for More Proteins than Gene 
Fusion Methods 

Do fusion methods tend to find many links between few proteins, or few 

links between many proteins? In order to examine the number of links vs. 

proteins produced by the methods the first 500 top scoring hits from CODA 

were taken for comparison with the top 500 from STRING-fusion as STRING-

fusion only produced ~500 hits (Figure 3.13a). For comparison between 

CODA and Prolinks-fusion the first 1000 hits were taken (Figure 3.13b). 

Truong-fusion produced only 189 hits and so these were compared to the 

top-scoring 189 hits from CODA (Figure 3.13c). The results show that in all 

cases CODA had a roughly 1:1 relationship between new links and proteins. 

For each novel link, on average, one of the proteins had not been seen before. 

Both Prolinks-fusion and STRING-fusion introduced fewer novel proteins for 

each link. Truong-fusion however behaved similarly to CODA, suggesting 
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that this behaviour may be a feature of domain fusion methods. It seems 

therefore that for a given query protein, gene fusion methods provide more 

links to other proteins and thus increase the probability that there will be 

functional information available to annotate the query protein. This could be 

particularly important for query proteins from genomes with a low coverage 

of functional annotation. Where annotation is more frequent, domain fusion 

methods may provide a greater increase in coverage by identifying 

associations for more proteins. Ultimately this suggests that gene and 

domain fusion methods are complementary and should be used together. 
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(a) 

 

 
(b) 
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(c) 

 

Figure 3.13 Relationship between number of links and 

proteins. 

 (a) CODA (blue) and STRING-fusion (red), (b) CODA 

(blue) and Prolinks-fusion (green), (c) CODA (blue) and 

Truong-fusion (orange). 
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3.3.2.3. Overlap Between the Results of Different 
Methods 

There was only a small overlap between CODA and the gene fusion methods 

(STRING-fusion and Prolinks-fusion) in the identity of proteins for which 

functional links were identified (Figure 3.15a). There was a larger overlap 

between CODA and Truong-fusion as might be expected from their more 

similar methodologies. In terms of the specific pairwise associations found 

the overlap was much smaller however (Figure 3.15b). Out of 500 links 

CODA and STRING-fusion shared only 54, and of the proteins found shared 

only 97. CODA and Prolinks-fusion shared only 4 of the 1000 links and 26 of 

the proteins. Despite their similar methodologies, CODA and Truong-fusion 

do not find any of the same links amongst the first 189 hits. These results 

further indicate that there is potential for integrating different methods of 

gene and domain fusion to increase prediction power in determining 

proteins involved in common biological processes. 

 

3.3.2.4. Assessment of Performance in the Human 
Genome 

In previous work the analysis of gene fusion for function prediction has been 

largely limited to prokaryotes and yeast. The reason for this is that in higher 

eukaryotes, many gene/domain families have expanded resulting in 

increased noise in the fusion signal. So far in this work results have been 

presented in S. cerevisiae, a eukaryote with a small genome. How might 

CODA and the other methods fare given a much larger genome with large 

homologous domain families? Using a very different genome such as human 

also provides an independent validation of CODA’s performance. 
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Figure 3.15 Overlap in proteins and linked pairs of 

proteins identified by fusions. 

Data is shown for the top scoring 500 hits for CODA and 

STRING-fusion, the first 1000 hits for CODA and Prolinks-

fusion and the first 189 hits for CODA and Truong-fusion. 

CODA is represented by blue ellipses, STRING-fusion by 

red and Prolinks-fusion by green and Truong-fusion by 

orange. 
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Figure 3.17a shows that STRING-fusion and CODA performed well 

despite the increased problems of promiscuity and large gene/domain 

families in the human genome. CODA outperformed STRING-fusion, 

finding 3932 hits at an enrichment of 10. STRING-fusion found a maximum 

of 561 hits for an enrichment of ~20; at this enrichment CODA found 1118 

hits. STRING-fusion was able to achieve the highest enrichment of the two 

methods, finding 20 hits for an enrichment of 70. As might be expected, 

CODA discovered a greater number of protein pairs in human than in yeast 

(for the same enrichment), there being more functional links to discover in 

this organism. 

Prolinks-fusion did not maintain its performance on the human genome 

(Figure 3.17b). CODA found 1611 protein pairs for an enrichment of 10, while 

Prolinks-fusion found none. The greatest enrichment that Prolinks-fusion 

achieved in human was 6.7, although it did find >25000 pairs at this level. At 

higher levels of enrichment CODA was able to find ~100 hits for an 

enrichment of >30. Note that CODA found fewer hits in the Prolinks dataset 

than the STRING dataset as the Prolinks dataset was somewhat smaller (see 

Table 3.2). 

Results from the Truong-fusion method had been collected using Swiss-

Prot release 39 and TrEMBL release 17. These datasets were released in 2001 

at which point the human genome was not complete. CODA requires 

complete genomes for accurate scoring and therefore it was not possible to 

compare CODA against Truong-fusion for human. Truong-fusion was 

benchmarked alone however and found 235 associations between human 

proteins for an enrichment of 28. 
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(a) 

 

 
(b) 

Figure 3.17 Performance of CODA relative to other 

methods on the human genome. (a) CODA vs. STRING-

fusion. (b) CODA vs. Prolinks-fusion. 
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3.3.3. Applying CODA to Identify Novel 
Associations Between Proteins 

Annotations from the OMIM (Online Mendelian Inheritance in Man) 

database (McKusick, 1998) were extracted from Gene3D for those proteins 

identified by CODA in human. Only those links identified by CODA with a 

score of 0.56 or greater were included. This score cut-off was found to 

represent an enrichment of 10 for both yeast and human datasets. 

Uncharacterised proteins which were linked directly to proteins involved in 

human disease were identified.  

3.3.3.1. A Protein Predicted to be Involved in Depression 

Several proteins involved in mental disorders were found to be associated 

with Q6NZ37 (UniProt Id) using CODA. Tryptophan 5-hydroxylase 2 (TPH2; 

UniProt: Q8IWU9) is known to be involved in major depressive disorder 

(MIM: 608516) and is directly involved in the biosynthesis of serotonin from 

L-tryptophan. Another associate of Q6NZ37, Tryptophan 5-hydroxylase 1 

(TPH; MIM:191060) has been shown to be involved in suicidal behaviour, 

thought to be related to depression (Bellivier et al., 2004). Several other 

associates of Q6NZ37 are known or thought to be involved in serotonin 

biosynthesis. Additional associates Sialic Acid Synthase (NANS; Q9NR45) 

and Quinolinate Phosphoribosyltransferase (QPRT; Q96G22) are known to be 

involved in brain function. Sialic acid is linked with development of neural 

tissues during embryogenesis (Hoffman and Edelman, 1983) and quinolate 

levels in human brain are thought to be involved in the pathogenesis of 

neurological disorders (MIM: 606248). Quinolate metabolism also feeds into 

serotonin metabolism. Searches within STRING, Prolinks and Truong data 

gave no associations for this protein.  

3.3.3.2. A Protein Associated with DNA Replication and 
Disease 

Another example of a functionally coherent network of interactions 

identified by CODA centred on DNA ligase 1. Mutations in this gene have 
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been linked with rare cases of multi-symptomatic disease (Barnes et al., 1992). 

A protein of unknown function, Q96LW4, was linked to DNA ligase 1, 

suggesting that it may also be involved in multi-symptomatic disease.  

CODA also identified a previously known relationship between DNA 

ligase 1 and DNA primase. The primary role of DNA ligase 1 is in joining 

Okazaki fragments during lagging strand DNA replication. DNA 

polymerase is only able to synthesise strands in a 5` to 3` fashion, however 

the lagging strand must be synthesised 3` to 5`. This is accomplished by 

discontinuous 5` to 3` extension. A primase enzyme synthesises an RNA 

primer which is then extended 5` to 3` by DNA polymerase creating Okazaki 

fragments. These are subsequently joined at the phosphate backbone by 

DNA ligase I. CODA found a link between DNA ligase I (LIG1) and DNA 

primase small subunit (PRIM1); their concerted role in DNA replication is 

clear from the above explanation. Two DNA ligase III (LIG3) enzymes are 

also linked to PRIM1 by CODA; LIG3 is involved in DNA base excision 

repair, a process related to DNA replication.  

Although the association between DNA ligase and DNA primase is 

already well established, this example shows the ability of CODA to identify 

the role of proteins in biological processes. Not least, we have also found a 

potential role in DNA replication for a currently uncharacterised human 

protein. Searches within STRING, Prolinks and Truong data gave no 

associations for this protein.  

3.3.4. Additional Functional Coverage Produced 
by CODA 

The amount of additional functional coverage of the human genome that 

could be generated by CODA was determined. CODA found 1453 high 

confidence (CODA score >=0.56) associations between 900 human proteins 

using the Gene3D dataset. Of these 900 proteins, 664 could already be 

annotated with a GO biological process term using annotation from Gene3D 

v5, allowing all evidence types. Of the remaining 236 unannotated proteins, 

107 could be annotated by transferring high quality GO annotation 
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(experimental evidence and author statements) using the associations 

established by CODA. Although this is a small number of proteins in terms 

of the whole human genome, these proteins have not been annotated with 

GO terms before. The annotations for these proteins are presented in 

Appendix B. 
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3.4. Discussion 
Several aspects of using domain fusion to identify functionally associated 

protein pairs have been explored. A new method, CODA, was developed 

and compared against existing implementations of gene/domain fusion 

using a benchmark based on the Gene Ontology (Harris et al., 2004). 

CODA is a domain fusion rather than gene fusion method and several 

different protein domain representations were trialled in the development of 

the method. It was shown that Pfam domains give improved performance 

over CATH domains in identifying functional similarities, largely due to 

superior coverage of the genomes. Indeed, combining the two domain 

resources can increase domain coverage of the genomes and this may be 

used to improve performance in detecting functional relationships at some 

error rates. 

Our approach considers all homologues of fusion proteins rather than 

focussing on orthologues alone. When large domain families are involved, 

many homologous pairs will not be involved in similar biological processes. 

Previous methods have either considered only orthologues (Snel et al., 2000), 

accepted high false positive rates (Enright and Ouzounis, 2001) or 

implemented a scoring system based on the frequencies of domain families 

in the whole target sequence database (Marcotte and Marcotte, 2002). Rather 

than using counts of domain frequency across all genomes as in previous 

methods, the CODA score uses domain counts within individual genomes. 

The CODA score was shown to cope well with the problem of promiscuous 

domains as well as large homologous domain families. 

CODA was shown to outperform the gene fusion method from the 

STRING resource on the yeast genome at a range of error rates, finding up to 

four times as many functional associations. The gene fusion method 

implemented in the Prolinks resource (Prolinks-fusion) found ten times more 

hits than CODA at moderate error rates on the yeast genome, however many 

of the functional associations were between pairs of homologous proteins. 
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When these were removed, CODA and Prolinks-fusion perform similarly on 

yeast at moderate error rates. One advantage of genome context methods 

over traditional pair-wise sequence comparisons lies in the fact that they do 

not require homology between the functionally linked proteins. The domain 

fusion method of Truong & Ikura (2003) outperformed CODA at low error 

rates, however at moderate error rates CODA was able to find many more 

functional associations. 

Gene/domain fusion methods in general have been thought to perform 

better in prokaryotes than eukaryotes as prokaryotes tend to have smaller 

families of homologous genes/domains (Marcotte and Marcotte, 2002). These 

methods have therefore rarely been benchmarked in more complex genomes. 

Here it was shown that CODA and STRING-fusion are both robust to the 

complexities of the human genome, achieving high accuracy and coverage, 

with CODA finding around seven times more results than STRING for a 

reasonable error rate. At very low error rates STRING outperformed CODA. 

Prolinks-fusion did not perform as well in human as in yeast, probably due 

to the increased problems of large homologous domain families and 

promiscuous domains. CODA could not be compared to the Truong & Ikura 

method on the human genome; however it was shown that their method was 

able to maintain accuracy on this dataset.  

There are two niches that these methods seem to occupy. The methods 

which can achieve the highest accuracy but which provide a relatively small 

number of hits (STRING-fusion and Truong-fusion) are useful for identifying 

high quality sets of associations. However for any particular protein it is 

unlikely that they will find an association. Methods such as Prolinks-fusion 

and CODA can provide less certain associations for a greater number of hits 

and therefore would be more appropriate where the other methods cannot 

provide associations. 

Interestingly there was little overlap between the methods in terms of 

the functional links they predicted and even the proteins included in the 

links. This suggests that the particular implementation greatly affects the 
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links obtained (e.g. using domains vs. whole proteins). Furthermore as 

different genome context methods have been combined to produce larger 

sets of confident predictions, using different implementations of the 

gene/domain fusion method could allow a greater number of predictions 

overall. 

Finally it was shown that CODA was able to identify possible 

functional associations for uncharacterised proteins in humans. The 

associations found by CODA suggest that the uncharacterised protein 

Q6NZ37 (UniProt identifier) is involved in serotonin synthesis and 

potentially with neurological conditions such as depression. The 

uncharacterised protein Q96LW4 (UniProt identifier) was found to be 

associated with DNA ligases and indirectly with a DNA primase and it is 

therefore likely to have a role in DNA replication. These propositions of 

course remain to be shown directly by experiment. The other methods 

featured were not able to give clues about the function of these proteins.  

Many previously unannotated human proteins were assigned high 

confidence GO terms using CODA suggesting that this approach will also be 

able to annotate previously undescribed proteins in many other genomes. 

The methodology presented here allows accurate prediction of larger 

functional networks than previously determined by gene or domain fusion in 

higher eukaryotes. One future aim is to combine CODA with other 

functional association prediction methods. A new pipeline currently in 

development (Gene3D-BioMiner) will integrate predicted associations 

generated from methods including phylogenetic profiles (Phylo-Tuner; 

Ranea et al., 2007), gene expression, and inheritance of experimental protein-

protein interactions. A project is currently underway to provide access to all 

these resources, including CODA, via webservices. 
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Chapter 4     Comparative 
Evolutionary Analysis of 
Protein Complexes in E. coli 
& Yeast 
 
 

4.1. Introduction 

4.1.1. Protein Complexes 

Most proteins in cells carry out their function as subunits of protein 

complexes (Alberts, 1998). These aggregations range in size from two to >70 

individual peptide chains and can be complexed with other types of 

molecules such as RNA and DNA. Small complexes often comprise multiple 

copies of the same protein but large complexes such as the ribosome tend to 

contain many different proteins. Complexes can be stable as in the case of the 

proteasome or transient as in the case of a kinase interacting with its 

substrate. The role of these high order structures is to coordinate complex 

processes which require the colocation of separate functional elements. 

Dezso et al. (2003) have shown that yeast protein complexes contain an 

essential, invariant core with irreplaceable biochemical function. The 

phenotype resulting from deletion of core proteins reflects the role of the 

complex as a whole. Furthermore recent work has suggested that complexes 

consist of cores, modules and attachments (Gavin et al., 2006; Pang et al., 

2008). Gavin et al. (2006) repeatedly purified hundreds of yeast complexes 

using Tandem Affinity Purification (TAP) and clustered the components 

based on their frequency of occurrence. Complex members were then 

classified into three groups: cores, attachments and modules. Core proteins 
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were those which almost always appeared in a particular complex, 

attachments those which were less frequently observed. Modules were 

defined as groups of attachment proteins which always occurred together, 

often in different complexes. In functional terms, this suggests that 

attachment proteins are modifiers which are expressed at certain times to 

change aspects of complex function. A classic example of this is the variety of 

sigma factors available to bacterial RNA polymerase which alter its 

specificity for different promoter sequences (Ishihama, 2000). 

It is currently unclear to what extent protein complexes are conserved 

between species. Given a particular complex in one species, many species 

have largely homologous complexes which are deficient in some of the 

subunits (Snel and Huynen, 2004). Additionally there is a very low overlap in 

Protein-Protein Interactions (PPIs) detected between species (Suthram et al., 

2005) suggesting that PPIs may change rapidly during evolution (Mika and 

Rost, 2006), however this may also be due to a lack of experimental evidence. 

Recent work using combined PPI datasets suggests that pairs of complex 

members are well conserved between yeast and human (van Dam and Snel, 

2008). Van Dam and Snel argue that PPIs between species rarely change 

within protein complexes but that complexes evolve through gain and loss of 

subunits. There is evidence that the Last Universal Common Ancestor 

(LUCA) contained protein complexes related to those of extant organisms 

(Ranea et al., 2006). 

The evolutionary conservation of some complexes has been examined 

in detail. Comparisons of the eukaryotic SWI/SNF and RSC chromatin 

remodelling complexes have shown that they consist of an evolutionarily 

conserved core of subunits (Monahan et al., 2008). Across eukaryotes there 

are variations in accessory subunits involved in these complexes. Some 

subunits, present in multiple species, may be necessary for organismal 

viability in one case but not another.  

Two contrasting modes of complex evolution are shown by the 

eukaryotic and prokaryotic NADH:Ubiquinone oxidoreductase, also termed 
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complex I. While the early prokaryotic complex is thought to have formed 

from the combination of small pre-existing complexes (Friedrick, 2001), it 

appears that the eukaryotic complex tripled in size by step-wise recruitment 

of new subunits (Gabaldon et al., 2005). 

Many small complexes observed in structural data are homodimers and 

this arrangement confers several advantages. Firstly, homodimers can evolve 

stable interactions more parsimoniously than heterodimers (Levy et al., 2006). 

Secondly, producing larger complexes from a single component rather than 

multiple components allows for greater genetic efficiency, requiring only a 

single gene and regulatory mechanism.  

It has been proposed that some homomeric complexes have diverged 

by duplication of the gene encoding the self-interacting protein (Pereira-Leal 

et al., 2007). The duplication of such a gene allows for divergence of one 

partner resulting in functional diversification and asymmetrical gain and/or 

loss of interactions in the complex. The F1 ATP synthase and the RecA 

recombinase homohexamer are examples of complexes which appear to have 

evolved in this manner, probably from the same homomeric ancestor (Yu 

and Egelman, 1997). There is evidence for between one tenth and a third of 

complexes in yeast having evolved in this way depending on the dataset 

considered (Pereira-Leal et al., 2007).  

Duplication of complexes has been shown to be important in yeast 

(Pereira-Leal and Teichmann, 2005). It is thought that duplication results in 

complexes with similar general function but novel specificities. It appears 

that complexes rarely duplicate in their entirety, but more commonly in a 

partial, stepwise fashion. 

4.1.2. Protein Complex Datasets 

Protein complex datasets fall into four types. Those arguably most 

accurate are the relatively small curated datasets provided for yeast by the 

MIPS (Mewes et al., 2008) resource and for E. coli by EcoCyc (Karp et al., 

2007). Complexes derived from structural data (e.g. Protein Quaternary 



 170

Structure database; Henrick and Thornton, 1998) are also thought to be very 

accurate, although relatively low in coverage and also biased towards stable 

interactions. Tandem Affinity Purification linked to Mass Spectrometry 

(TAP-MS) is a high-throughput experimental approach for identifying 

protein complexes. Large-scale datasets have been produced for yeast (Gavin 

et al., 2006; Krogan et al., 2006) and E. coli (Butland et al., 2005; Arifuzzaman 

et al., 2006) using this technique. Such datasets cover a greater proportion of 

interactomes than curated or structural data.  

The fourth source of complex data comprises a range of approaches for 

computationally inferring complexes from pairwise protein-protein 

interaction data. Resources such as IntAct (Kerrien et al., 2007), MINT (Chatr-

aryamontri et al., 2007) and BIND (Bader et al., 2003) provide datasets of 

protein-protein interactions in a range of species, derived from various low 

and high-throughput experiments including TAP-MS. Details of experiments 

found in IntAct and MINT are shown in Table 4.1 and Table 4.2 respectively. 

It has been shown that yeast protein complexes can be accurately inferred 

from pairwise PPI data using clustering techniques (Brohee and van Helden, 

2006). Genetic interaction data (Bandyopadhyay et al., 2008) and predicted 

interactions such as those found in the STRING database (von Mering et al., 

2007) have also been used (von Mering et al., 2003) for this purpose.  
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Species PPIs Proteins Genome 
coverage 

Principal experiment 
types 

Arabidopsis 
thaliana 

3256 928 3% Two-hybrid 59% 

Protein array 22% 

Caenorhabdit
is elegans 

4902 2966 13% Two-hybrid pooling 92% 

Drosophila 
melanogaster 

26086 8271 52% Two-hybrid 91% 

Escherichia 
coli 

3280 2926 74% Pull-down 98% 

Homo 
sapiens 

23114 7398 21% Anti-bait co-ip 34% 

Two-hybrid pooling 27% 

Two-hybrid 13% 

Mus 
musculus 

3200 2353 7% Two-hybrid 48% 

Pull-down 9% 

Plasmodium 
falciparum 

2744 1274 24% Two-hybrid pooling 
100% 

Rattus 
norvegicus 

762 987 8% Two-hybrid 18% 

Pull-down 14% 

Saccharomyc
es cerevisiae 

16035 5429 97% Two-hybrid fragment 
pooling 29% 

TAP 22% 

Two-hybrid array 20% 

Two-hybrid 15% 

Schizosaccha
romyces 
pombe 

578 314 6% Pull-down 22% 

Two-hybrid 21% 

Anti-tag co-ip 21% 

 

Table 4.1 IntAct interaction datasets for genomes with 

more than 500 known interactions.  
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Genome coverage is the percentage of the genome which 

is captured in the interaction experiments. Only those 

experimental methods that make up more than 10% of the 

total number of experiments for an organisms are listed. 
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Species PPIs Proteins Genome 
coverage

Experiment types 

Caenorhabditis 
elegans 

2798 1934 9% Two-hybrid pooling 
91% 

Drosophila 
melanogaster 

19366 6734 42% Two-hybrid pooling 
97% 

Escherichia 
coli 

2370 713 18% Anti-tag co-ip 64% 

Homo sapiens 11476 3914 11% Two-hybrid 27% 

Pull-down 12% 

Co-ip 11% 

Mus musculus 2573 1110 3% Two-hybrid 14% 

Anti-bait co-ip 12% 

Pull-down 11% 

Plasmodium 
falciparum 

604 574 11% Two-hybrid fragment 
pooling 100% 

Rattus 
norvegicus 

1459 503 4% Anti-bait co-ip 13% 

Pull-down 12% 

Saccharomyces 
cerevisiae 

28057 3831 69% TAP 46% 

Two-hybrid pooling 
34% 

 

Table 4.2 Genome-based interaction data from MINT.  

See Table 4.1 legend for details. 
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4.1.3. Methodologies for Predicting Complexes 

The in silico study of protein complexes has largely focussed on yeast where 

there is a greater quantity of data than for other organisms. Many of these 

studies have used structural and/or TAP-MS complexes (e.g. Pereira-Leal et 

al., 2007; Tamames et al., 2007). Several authors (Brohee and van Helden, 

2006; Pereira-Leal et al., 2004; Bader and Hogue, 2003) have also explored 

complexes derived from Protein-Protein Interaction Networks (PINs) using 

clustering methods. This results in larger datasets of complexes, with greater 

coverage of genomes than are available from other sources. This is achievable 

because PINs have highly connected regions which have been shown to 

correlate with complexes (Bader and Hogue, 2003).  

Several different clustering methods have been applied to the task of 

identifying complexes in PINs. The Markov CLustering algorithm (MCL - 

Enright et al., 2002) uses flow simulation in graphs to detect clusters and was 

used by Pereira-Leal et al. (2004) who showed that the clusters were 

functionally coherent in terms of regulatory and metabolic annotation, 

cellular localisation data and known complexes. MCODE (Bader and Hogue, 

2003) uses local neighbourhood density to define clusters. Both Netcarto 

(Guimera and Nunes Amaral, 2005) and Restricted Neighbourhood Search 

Clustering (RNSC) (King et al., 2004) use a cost function and Monte Carlo 

methods to obtain a division of the graph. Netcarto was used by Tamames et 

al. (2007) to explore the relationship between reduction in genome size and 

network modularity. An analysis of several of these methods by Brohee & 

van Helden (2006) showed that MCL was the best overall method for 

determining known yeast complexes from PPI datasets. 

4.1.4. Aims 

The evolution of protein complexes is still poorly understood and 

differences between species have been difficult to study on a global scale. In 

this Chapter, protein complex datasets are created for a prokaryote 

(Escherichia coli) and a eukaryote (Saccharomyces cerevisiae) in order to probe 
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the differences in complex evolution between species. Combined PPI datasets 

are derived for each organism based on experimentally determined 

interactions and a clustering algorithm is used to identify protein complexes. 

These complexes are shown to be accurate representations of known 

complexes. 

The clustered datasets are used examine the distribution of homologues 

amongst protein complexes to show how duplicates have been reused. 

Differences between E. coli and yeast are identified, suggesting that their 

complexes have evolved in different ways. 
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4.2. Methods 

4.2.1. Summary 

Figure 4.1 describes the motivation behind each part of this chapter and 

details where each type of dataset was used. 

4.2.2. Experimental Protein-Protein Interaction 
Datasets 

Protein-Protein Interaction (PPI) datasets for E. coli and yeast, from the MINT 

(Chatr-aryamontri et al., 2007) and IntAct (Kerrien et al., 2007) resources 

were extracted from Gene3D v5 (Yeats et al., 2008). Much of the data from 

these resources is from high-throughput experiments such as Two-Hybrid 

and Tandem Affinity Purification (TAP) but is also derived from small-scale 

pull-down and co-immunoprecipitation experiments. Although most of these 

interactions are pairwise, those derived from TAP-MS data are between one 

bait protein and multiple prey proteins. Pairwise PPIs can be extracted from 

this data using one of two models. The spoke model defines interactions 

between the bait protein and each of the prey. The matrix model however 

defines pairwise interactions between the bait and prey proteins and 

between each pair of prey proteins. TAP-MS data from MINT was already in 

the matrix form and bait-prey relationships could not be established. IntAct 

data could be converted into either. Ultimately, the spoke model was used to 

convert IntAct TAP-MS data into pairwise PPIs as it was shown to perform 

best in replicating known complexes (see 4.3.1.1).  

For the majority of this chapter combined datasets, taking all 

interactions from both MINT and IntAct were used. For E. coli (NCBI taxon 

id: 562) there were 13941 interactions between 2865 proteins (~72% genome 

coverage) and for S. cerevisiae (NCBI taxon id: 4932) 38825 interactions 

covering 5735 proteins (~100% genome coverage). 
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Figure 4.1 Summary of procedures and analyses presented 

in this chapter. 

This figure summarises and highlights the motivations 

behind each part of this chapter and identifies the datasets 

used. MCL-GO is the automated approach for generating 

protein complex datasets used in this chapter and Exp-

TAP is protein complex data derived purely from Tandem 

Affinity Purification Mass Spectrometry experiments. 
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4.2.3. Generating MCL-GO Complex Datasets 
from PPI Datasets 

The E. coli and yeast combined PPI datasets described above were clustered 

into complex datasets using the MCL algorithm (Enright et al., 2002). It has 

been shown that enriching Protein Interaction Networks (PINs) with 

functional annotation improves detection of functional modules (Lubovac et 

al., 2006). Complex datasets were generated with and without weighting of 

the PINs. Each edge must have a positive weight in order to be considered; 

therefore unweighted edges were set to one. Weighted edges were set to one 

plus the Gene Ontology Semantic Similarity (GOSS) score. To generate these 

GOSS scores, proteins were annotated with GO biological process terms from 

Gene3D. The GO terms used were those described in 4.2.4. The terms were 

compared using the Resnik (1999) method described by Lord et al. (2003) to 

determine their functional similarity (discussed in detail in Chapter 1). Each 

edge in the network was weighted using the highest GOSS score between 

any pair of terms assigned to the relevant nodes. Complex datasets generated 

in this way are referred to as MCL-GO datasets. 

The inflation parameter, which controls the granularity of the clusters 

produced, was optimised by comparing predicted complexes (clusters) with 

curated, gold standard complexes from MIPS in the case of yeast and Ecocyc in 

the case of E. coli (described further in 4.2.5.1). The comparison was 

performed in the same way as described by Brohee & van Helden (2006), 

using the same measures of sensitivity, Positive Predictive Value (PPV) and 

accuracy. When calculating sensitivity and PPV, only those clusters which 

had at least one member of a known complex were considered. 

Sensitivity (Equation 4.1) is the weighted average over all complexes of 

the proportion of each gold standard complex i captured by the predicted 

cluster j, best reflecting that complex. 
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Equation 4.1 Sensitivity. 

 

In Equation 4.1, Ni is the number of proteins in complex i and 
ico

Sn  is the 

complex-wise sensitivity defined in Equation 4.2. 
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Equation 4.2 Complex-wise sensitivity. 

 

The complex-wise sensitivity is the maximum sensitivity jiSn , for a particular 

complex i, taking the greatest value over all predicted clusters j.  

 

i

ji
ji N
T

Sn ,
, =  

Equation 4.3 Sensitivity for complex i and cluster j. 

 

In Equation 4.3, jiT , is the number of members of complex i in cluster j.  

Positive Predictive Value (PPV) is a measure of how pure the predicted 

clusters are, i.e. the maximum percentage of proteins from a known complex 

in each cluster. 
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Equation 4.4 Positive Predictive Value. 

 

In Equation 4.4, Tj is the number of members of cluster j with membership of 

a known complex and 
jcl

PPV is the cluster-wise PPV described in Equation 

1.1. 
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Equation 4.5 Cluster-wise PPV. 

 

The cluster-wise PPV takes the maximum value of jiPPV , for a particular 

cluster over all complexes. jiPPV ,  is described in Equation 4.6. 
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Equation 4.6 PPV for complex i and cluster j. 

 

In Equation 4.6, Ti,j is the number of members of cluster j in complex i.  

The trade-off between sensitivity and PPV was captured by taking the 

geometric mean of the sensitivity and PPV, referred to as the accuracy (Acc; 

Equation 4.7). 

 

PPVSnAcc ⋅=  

Equation 4.7 Accuracy. 

 

The accuracy achieved in recreating known complexes using the MCL-GO 

procedure was compared to that for randomly generated complexes to show 

that the procedure was useful, as was done by Brohee & van Helden (2006). 

This was achieved by clustering PPI datasets with MCL, then shuffling 

proteins between complexes while preserving complex size and 

benchmarking the resulting complexes. For each value of the MCL inflation 

parameter, randomisations were performed 105 times.  

4.2.4. Annotation of MCL-GO Complexes 

CATH (Greene et al., 2007) protein domain superfamily annotation was 

extracted from Gene3D v5 (Yeats et al., 2008) to allow homologous 
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relationships between proteins to be identified. 2190 CATH domains were 

identified from 656 superfamilies in the 2210 proteins from the E. coli MCL-

GO complexes, covering 1579 proteins (71%). The yeast MCL-GO complexes 

were annotated with 2666 CATH domains from 630 superfamilies over 2070 

proteins (44% of protein in this dataset). Throughout this work, multiple 

members of the same superfamily are ignored within protein chains. 

Functional data in the form of Gene Ontology (Gene Ontology 

Consortium, 2006) annotation was also extracted from Gene3D v5. For E. coli, 

coverage with GO terms derived from experimental annotation was very low 

and so Electronically Inferred Annotation (IEA) was included, only negative 

results (ND – No biological Data available) were excluded. This resulted in 

3989 biological process terms over 1803 proteins (82% coverage). For yeast 

MCL-GO datasets, IEA terms were ignored. This resulted in 10622 terms over 

3926 proteins for yeast (83% coverage). 

FunCat (Ruepp et al., 2004) functional terms were extracted from 

Gene3D v5. Only the most general (level 1) terms were considered. These 

were used to annotate MCL-GO complexes as FunCat provides a suitable set 

of high level terms. There were 12257 terms covering 1573 E. coli proteins 

(71% coverage) and 12385 terms covering 3432 proteins in yeast (72% 

coverage). 

4.2.5. Pre-defined Protein Complex Datasets 

4.2.5.1. Curated Datasets Used to Validate Predicted 
Complexes 

Several pre-defined complex datasets were also used. As described, high-

quality, curated datasets of known complexes were required in order to 

determine how accurately PPI datasets could be clustered into complexes. 

Such datasets were available from EcoCyc (Karp et al., 2007) for E. coli and 

from MIPS (Mewes et al., 2008) for yeast. The EcoCyc complexes comprised 

232 unique, multi-subunit complexes containing a total of 586 distinct protein 
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sequences. The MIPS complexes comprised 192 non-redundant, multi-

subunit complexes containing a total of 1036 distinct protein sequences.  

4.2.5.2. Experimental Datasets Used to Assess Trends 

Predicted MCL-GO complexes, derived by clustering PPIs from a variety of 

experimental approaches (see 4.2.3), were used throughout this work as they 

had higher coverage of the genomes of each organism than curated datasets 

or individual experimental approaches such as TAP. However, the MCL 

clustering method only allows each protein to exist in a single complex. In 

reality some proteins exist in multiple complexes and this discrepancy could 

bias inferences made based on the data. Therefore complexes based only on 

TAP data were also examined as these do allow individual proteins to 

appear in multiple complexes. TAP experiments identify relationships 

between one ‘bait’ protein and multiple ‘prey’, directly inferring complexes 

without the need for clustering. These are referred to collectively as Exp-TAP 

datasets. E. coli Exp-TAP complex datasets were derived from Butland et al. 

(2005) and Arifuzzaman et al. (2006) and downloaded from 

http://sunserver.cdfd.org.in:8080/protease/PPI/. Yeast Exp-TAP complexes 

derived from Gavin et al. (2006) and Krogan et al. (2006) were downloaded 

from BioGRID (Stark et al., 2006). These Exp-TAP datasets are referred to as 

Butland, Arifuzzaman, Gavin and Krogan, respectively. 

Experimental datasets were annotated with GO terms and CATH 

domains using the same protocols as for the MCL-GO complexes. 

4.2.6. Determining the Distribution of 
Homologues in Complexes 

In order to examine the distribution of homologues in complexes, the 

distribution of each CATH domain superfamily was compared to that in 

randomised complexes. Only domain superfamilies with at least five 

members in different proteins were considered for this analysis to give the 

test sufficient statistical power. Of 656 superfamilies in E. coli, 101 had at least 

five members (62% of domains); of 630 in yeast 113 had at least five members 
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(68% of domains). For each superfamily, the number of distinct pairs of 

proteins containing that superfamily which were found in the same complex 

was determined. This was compared to the number of distinct pairs which 

were found together in 104 randomised complex datasets. Complexes were 

randomised by shuffling members between complexes, retaining the 

complex size distribution. For each superfamily, p-values were calculated by 

determining the proportion of these 104 randomised trials where the 

observed number of pairs was exceeded.  

The False Discovery Rate (FDR) correction for multiple hypothesis 

testing, as introduced by Benjamini & Hochberg (1995), was applied. When 

testing a single hypothesis there is a one in 20 chance of a false positive if the 

p-value is 0.05. However, over 20 hypotheses one would expect one false 

positive if the p-values are 0.05 for each hypothesis. The FDR is thought to be 

a less conservative approach than the alternative Bonferroni correction. P-

values for the superfamilies (q1..qm) were ordered such that q1≤ q2≤..≤ qm. 

Superfamilies were considered non-randomly distributed where the p-value 

q of that superfamily satisfied the inequality in Equation 4.8. 

 

m
kq α≤  

Equation 4.8 FDR correction 

 

In Equation 4.8 k is the rank of the ordered p-value, α is the accepted 

false discovery rate (0.01 in this case) and m is the number of superfamilies. 

4.2.7. Functional Coherence of Superfamilies 

Whether two proteins occur in the same complex is one measure of 

functional similarity. Another measure of functional similarity, functional 

coherence, was used at three different levels to examine whether members of 

a superfamily tended to have a conserved role in the cell. A group of proteins 

is considered functionally coherent if the semantic similarity between their 
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GO terms is more similar than expected by chance. Functional coherence was 

firstly considered at the level of the superfamily, i.e. do proteins containing 

members of a particular superfamily perform more similar functions than 

random groups of proteins? Secondly, the functional similarity between 

those proteins which interact with members of a particular superfamily 

(interaction neighbourhood) was considered. In other words, do the 

interactors of one superfamily member perform similar functions to those of 

another superfamily member? Thirdly, the functional coherence of MCL-GO 

complexes containing members of a particular superfamily was considered. 

At the superfamily level, functional coherence was calculated as the 

mean GOSS score between pairs of proteins containing that superfamily. 

GOSS scores between individual pairs were calculated using biological 

process GO terms as specified in 4.2.4. 

At the neighbourhood level, mean GOSS scores were calculated 

between each of the direct interactors for one member of a superfamily and 

the interactors of another member of that superfamily. In other words, if 

protein A interacts with proteins B, C and D and protein A homologue A´ 

interacts with E, F and G, then each of B, C and D were compared to each of 

E, F and G. The mean GOSS score over these comparisons was then taken as 

the functional similarity of the neighbourhoods of the two homologues. For a 

superfamily, the functional similarity of the neighbourhoods was the mean 

over each pair of neighbourhood comparison.  

At the complex level, the functional similarity between complexes 

containing a particular superfamily was determined in the same way as for 

neighbourhoods. Where members of a superfamily occurred in complexes A 

and B, each member of complex A was compared to each member of 

complex B and an average GOSS score taken. An average was then taken 

over each pair of complexes. 

In each of the above analyses, the functional similarity of each 

superfamily was compared to random groups of proteins of the same size as 

the superfamily. Randomisations were performed 104 times to derive p-
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values. The FDR correction was used as described in section 4.2.6 with α = 

0.01 (a standard value for this parameter). Superfamilies were considered if 

they had at least two members which were annotated with biological process 

GO terms. This criterion was met by 217 E. coli superfamilies and 302 yeast 

superfamilies.  

4.2.8. Identification of Complexes Containing 
Homologous Pairs 

In examining the proportion of complexes which contained multiple 

homologues, both domain and protein homologues were considered. Two 

proteins which shared a common CATH superfamily member were 

considered domain homologues. Two proteins which shared their entire 

CATH Multi-Domain Architecture (MDA) were considered protein 

homologues. MDA is defined as the series of domain annotations from N to 

C terminus, excluding multiple segments, gaps and tandem repeats. To 

determine whether complexes tended to contain pairs of homologues the 

number of complexes which contained at least one pair of homologous 

proteins (using either domain or protein homologues) was counted. To 

determine whether the number of observed complexes was significant, the 

observed count was compared against the distribution of counts derived 

from 104 randomised complex datasets. P-values were calculated empirically. 

Complex datasets were randomised by shuffling complex membership while 

retaining the complex size distribution.  

4.2.9. Identification of Correlated Domains  

Correlated domains are pairs of domain superfamilies which occur together 

in a greater number of complexes than expected by chance. Instances of co-

occurrence were only considered if the domains occur in separate proteins 

and these proteins do not share any common domains. Correlated pairs of 

Pfam domains have been identified previously by Betel et al. (2004). For each 

correlated domain pair occurring in at least two complexes, the frequency of 

occurrence was compared against frequencies found in 104 randomised 
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complex datasets and an empirical p-value calculated by determining in 

what proportion of these datasets the frequency of co-occurrence of the pairs 

exceeded that observed in the MCL-GO complex dataset. Those pairs with a 

p-value >0.01 were excluded. 

To determine whether proteins containing these correlated domain 

pairs tended to interact directly, the frequency with which they were 

observed to interact in MINT and IntAct data was compared to the 

frequencies of interaction of the same number of randomly chosen co-

complex protein pairs. Sets of random co-complex pairs were created 104 

times to derive a p-value. To determine whether correlated pairs represented 

functional units within complexes, the average GOSS score between the 

proteins in each pair was compared with the average GOSS score between 

the same number of random co-complex protein pairs. Again this was 

performed 104 times to derive a p-value. 

4.2.10. Phylogenetic Profiling 

To determine whether correlated domain pairs might represent protein 

complex cores, it was assumed that proteins in the core of complexes are 

older than other proteins. The analysis employed by Pereira-Leal et al. (2007) 

was used to determine the age of protein orthologues. In this approach the 

age of a protein was determined by the most ancient taxonomic group 

containing orthologues of the protein. Bidirectional best hit (BDBH) BLAST 

orthologues were determined for each E. coli and yeast protein amongst 32 

species (listed in Appendix C). A pair of BDBH orthologues is defined as two 

proteins i, j from genomes A and B respectively such that when i is searched 

against genome B, j is the best match and when j is searched against genome 

A, i is the best match. This is an approximate approach but is sufficiently 

accurate for the analysis presented here (Pereira-Leal et al., 2007). 

Orthologues were defined as bi-directional best hits between two species 

with an E-value of ≤0.01. The point of origin of a particular protein was 
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defined by the age group in which an orthologue was found. Age groups 

were defined using the species tree of Baldauf (2003).  

The age groups defined for E. coli in this analysis were ‘E. coli specific’, 

‘Proteobacteria’, ‘Proteobacteria/Firmicutes’, ‘Bacteria’, ‘Eukaryota+Bacteria’, 

‘Bacteria+Archaea’ and ‘Universal’. For yeast: ‘Saccharomyces cerevisiae 

specific’, ‘Fungi’, ‘Metazoa/Fungi’, ‘Eukaryota’, ‘Eukaryota+Archaea’, 

‘Eukaryota+Bacteria’ and ‘Universal’. 

The chi-square test was used to determine whether significant 

differences existed in the age distribution of different classes of proteins. For 

instance proteins containing correlated domains were compared with all 

other proteins from the complex dataset in which they were identified. 
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4.3. Results 

4.3.1. Prediction and Functional 
Characterisation of Protein Complexes in 
E. coli and Yeast 

4.3.1.1. Accurate Prediction of Protein Complexes by 
Clustering Protein Interaction Networks 

In order to study the evolution of protein complexes accurate datasets with 

high genome coverage were required. An approach similar to that employed 

by Brohee & van Helden (2006), Pereira-Leal et al. (2004) and Lubovac et al. 

(2006) was used. Protein-Protein Interactions (PPIs) were combined into 

Protein Interaction Networks (PINs) and clustered using the MCL algorithm 

(see 1.3.8.2). The MCL algorithm has been shown to be the best amongst 

several approaches available for clustering PINs into complexes (Brohee and 

van Helden, 2006). The MCL clustering algorithm requires a parameter to 

control the granularity of clusters known as the inflation parameter, I. This 

parameter was optimised on the yeast PIN by determining accuracy against 

the MIPS dataset of known yeast complexes as was done by Brohee & van 

Helden (2006), using the same measure of accuracy (see 4.2.3). 

Two resources of PPI data were considered, IntAct (Kerrien et al., 2007) 

and MINT (Chatr-aryamontri et al., 2007). Some data from IntAct, derived 

from TAP-MS experiments did not directly specify pairwise PPIs. TAP-MS 

data identifies a complex between one bait protein and several prey and it 

was necessary to apply one of two models to generate pairwise interactions. 

The spoke model specifies an interaction between the bait and each of the 

prey, whereas the matrix model additionally specifies interactions between 

each pair of prey proteins. Figure 4.3 shows that, where a choice of models 

could be applied, the spoke model gave higher accuracy in identifying 

known yeast complexes from MIPS (Mewes et al., 2008). TAP-MS data from 

MINT had already been rendered using the matrix model. The spoke model 

was subsequently applied to all TAP-MS data from IntAct. 
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Edges in the PINs were then weighted using the semantic similarity of 

the biological process GO terms of the corresponding nodes (see 4.2.3). 

Figure 4.5 shows that combining MINT and IntAct and weighting edges with 

semantic similarity improved the performance over either method alone, 

with or without weighting. This optimised approach is referred to as MCL-

GO and datasets derived from it as MCL-GO datasets. 
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Figure 4.3 Difference in accuracy when clustering protein-

protein interactions rendered in spoke and matrix models.  

For yeast IntAct data, rendering TAP-MS data using the 

spoke model rather than the matrix model gave improved 

performance. All yeast IntAct data was included here, not 

just TAP-MS. 
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Figure 4.5 Combining IntAct and MINT datasets and 

weighting interactions with GOSS scores resulted in 

greater accuracy over either resource alone and without 

weighting. 

 

 



 192

Figure 4.7 shows that the maximal accuracy for reproducing yeast MIPS 

complexes was achieved with I=2.2, similar to the value of 1.8 found to be 

optimal by Brohee & van Helden (2006) on a different dataset. The accuracy 

achieved here (0.68) is comparable to that achieved in recent studies (Krogan 

et al., 2006; Zheng et al., 2008).  

Figure 4.7 also shows the accuracy of E. coli MCL-GO complexes in 

reproducing the known E. coli complexes from EcoCyc. The optimal value of 

I was also 2.2. Although there is a slight increase in performance at higher 

inflation parameter values the separation from random is much greater at 

I=2.2. The accuracy for E. coli complexes is noticeably lower than for yeast, 

although still very much above random. This poorer performance may have 

been caused by lower coverage of the E. coli genome with PPIs compared to 

yeast. 

The MCL-GO clusters for each species were filtered to remove clusters 

containing only one protein. This resulted in 574 predicted E. coli complexes 

containing a total of 2210 distinct protein sequences and 855 predicted yeast 

complexes containing a total of 4740 distinct protein sequences. These 

complex datasets thus cover roughly 56%, and 85% of E. coli and yeast 

genomes respectively based on genome sizes of 3952 and 5586 genes 

(genome sizes were taken from Integr8 (Kersey et al., 2005)). Figure 4.9 

shows the size distribution of complexes. On average yeast complexes were 

larger than E. coli complexes. 
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Figure 4.7 Accuracy of MCL-GO complexes (using 

MINT+IntAct and edge weighting) in capturing MIPS 

yeast complexes and EcoCyc E. coli complexes.  

‘Random’ lines show mean accuracy achieved over 104 

sets of randomised clusters. Error bars show one standard 

deviation either side of the mean. 
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Figure 4.9 Size distribution of E. coli and yeast MCL-GO 

complexes.  

Complex size is the number of proteins in the complex. 
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4.3.1.2. Functional Classification of Predicted Protein 
Complexes 

To determine whether the MCL-GO complex datasets made biological sense, 

their functions were analysed using FunCat terms (Ruepp et al., 2004). The 

FunCat classification of protein function is described in detail in Chapter 1. 

Figure 4.11 shows the percentage of proteins in each complex which could be 

annotated with the most common level one FunCat term in that complex. 

Complexes with less than two terms were excluded leaving 453 E. coli 

complexes (79%) and 725 yeast complexes (85%). For both E. coli and yeast 

around one third of complexes were completely covered by only one term. 

The majority of proteins (>50%) could be described by a single functional 

term in ~75% of E. coli and yeast complexes. These results suggest that the 

MCL-GO complexes were generally functionally coherent, with the majority 

of proteins in the majority of complexes performing the same general 

function. Furthermore it suggests that, in both species, complexes can be 

reasonably well annotated using the most frequent term applied to their 

constituent proteins. 

Each complex was then annotated using its most common FunCat term. 

Figure 4.13 shows the proportion of complexes in each species that were 

involved in different processes. E. coli had a larger proportion of complexes 

devoted to metabolism and energy than yeast whereas yeast had a greater 

proportion of complexes involved in the cell cycle, transcription and cellular 

transport. These results make sense as prokaryotes are known to focus much 

of their resources on metabolism, enabling utilisation of alternative energy 

sources for example. Their transcriptional machinery and cell cycle are also 

known to be less complicated than that of eukaryotes. Thus the MCL-GO 

complexes for E. coli and yeast appear to reflect the known biology of these 

species. This suggests that the complexes produced are functionally 

representative. 
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Figure 4.11 Percentage of proteins in complexes annotated 

with the most common term in each complex.  

Complexes were classified using level one FunCat terms.  
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Figure 4.13 Principal functions of complexes in each 

species.  

Complexes were classified using level one FunCat terms. 

Complexes with less than 2 annotated proteins were 

excluded. 
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4.3.2. Distribution of Protein Domain 
Superfamilies amongst Protein Complexes 

There has been much debate about the fate of duplicated genes. It has been 

proposed that newly duplicated gene products which become fixed in a 

population initially retain common interactions which subsequently diverge 

(Wagner, 2001). There have been conflicting reports however regarding the 

extent to which paralogues within species tend to have common interactions 

and how fast they might lose them during evolution (Wagner, 2001; Baudot 

et al., 2004). This part of the chapter examines how homologues are 

distributed in protein complexes and how this might relate to complex 

evolution. CATH domain superfamilies were used to define homologues as 

these allow distant evolutionary relationships to be established. 

Figure 4.15 shows, for MCL-GO complexes, the number of superfamily 

members versus the number of different complexes in which these 

superfamilies are found. There was a strong positive correlation between 

superfamily size and the number of complexes in which that superfamily is 

found. For E. coli r2 was 0.99 and for yeast 0.97. This suggests that after 

domains have duplicated they tend to change their interactions and move 

into new complexes. 

Are there superfamilies which do not follow this trend and tend to 

conserve their complex membership? For each superfamily the frequency 

with which two proteins containing a member of that superfamily were 

found together in a complex was determined. This was compared to the 

number of co-complex pairs that would be expected if the proteins were 

distributed randomly amongst complexes (see 4.2.6). For most superfamilies, 

members did not co-occur in complexes more than would be expected by 

chance. 98% of E. coli superfamilies and 95% of yeast superfamilies were 

randomly distributed. The exceptional, non-randomly distributed 

superfamilies are discussed in the next section.  
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Figure 4.15 Number of CATH superfamily members 

versus number of complexes containing members of that 

superfamily for E. coli and yeast MCL-GO complexes. 
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Are different members of a superfamily involved in similar biological 

processes despite their random distribution amongst complexes? In other 

words, are they involved in complexes with related function? It was found, 

using GO terms, that 28% of superfamilies in E. coli and 22% in yeast had 

members which were involved in more similar biological processes than 

expected by chance (p<0.01). While homologous domains tend to become 

involved in different complexes after duplication, some superfamilies appear 

to be more conservative about changing their functional role.  

When the functional similarity of the proteins with which each 

superfamily member was directly interacting was examined, there was less 

conservation. For example, if protein A interacts with proteins B, C and D 

and protein A homologue A´ interacts with E, F and G, then B, C and D were 

not functionally similar to E, F and G. Less than 1% of E. coli superfamilies 

had interactors with conserved function. 12% of yeast superfamilies had 

interactors with conserved function.  

For each superfamily, the functional similarity of the complexes in 

which its members were found was also examined. Again, <1% of E. coli 

superfamilies were found in complexes with similar functions, whereas in 

yeast 6% were found in similar complexes. 

These results suggest that those superfamilies which conserve their 

function to some extent tend to diversify into distinct aspects of similar 

processes in yeast. While 28% of superfamilies in yeast have conserved 

function, the functions of neighbours of around half of these superfamilies 

are not conserved and only 6% of superfamilies are in complexes with similar 

functions. In E. coli, while more than a quarter of superfamilies have a 

conserved function, almost no superfamilies have a conserved functional 

environment. The function of their interactors has changed. 
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4.3.3. Functional Analysis of Non-Randomly 
Distributed Superfamilies 

A small number of superfamilies were found to be non-randomly distributed 

amongst MCL-GO complexes in the previous analysis; Table 4.3 shows 

details of these superfamilies. What is the functional significance of multiple 

homologues in complexes? 

In E. coli there was only one non-randomly distributed superfamily 

identified, the NAD(P)-binding Rossmann-like Domain superfamily. This is a 

very large, universal (present in all three superkingdoms) domain 

superfamily which provides oxidoreductase activity in a wide variety of 

biological processes. Those complexes containing multiple members of this 

superfamily tended to be large, with diverse functional roles. It was therefore 

unclear as to the role of multiple members of this superfamily in individual 

complexes. 

In yeast there were six non-randomly distributed superfamilies 

amongst MCL-GO complexes. These fell into three categories. The first was 

RNA processing, the second was the proteasome and the third was the signal 

transduction. 

The RNA-binding superfamily was found in two complexes relating to 

the spliceosome. The spliceosome is a complex which removes introns from 

pre-mRNA and requires functions which include binding a variety of RNAs. 

Multiple members of the Quinoprotein Amine Dehydrogenase domain 

superfamily were found in complexes rich in annotation relating to the 

spliceosome in one case and rRNA processing in the other.  

The ribosomal protein superfamily was found in a complex rich in 

annotation for rRNA processing. Ribosomal RNA processing is known to 

occur in the nucleolar complex which is involved in the production of 

ribosomes.  
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P-value Superfamily Frequency Function Species 
distribution 

E. coli     

0.0041 NAD(P)-binding 
Rossmann-like Domain 
(3.40.50.720) 

73 Oxidoreducta
se activity in 
a wide 
variety of 
processes 

Universal 

Yeast    

0.0001 RNA binding 
(2.30.30.100) 

11 RNA binding/ 
splicing 

Universal 

0.0001 Glutamine 
Phosphoribosylpyropho
sphate, subunit 1, 
domain 1 (3.60.20.10) 

18 Ubiquitin-
mediated 
endopeptidas
e activity 

Universal 

0.0007 Quinoprotein amine 
dehydrogenase 
(2.130.10.10) 

68 Wide range of 
activities 
including 
protein 
synthesis 

Universal 

0.0016 Protein tyrosine 
phosphatase 
superfamily  
(3.90.190.10) 

12 Dephosphory
lation in 
signalling 
pathways 

Eukaryotic 

0.0019 Ribosomal Protein 
(3.30.1370.10) 

4 Binding 
activity in a 
variety of 
processes 

Universal 

0.0021 Ubiquitin-like 
superfamily 
(3.10.20.30) 

5 TCA cycle Universal 

 

Table 4.3 Superfamilies in E. coli and yeast MCL-GO 

complexes which were non-randomly distributed.  

CATH codes are shown in brackets. Frequency is the 

number of proteins containing a member of that 

superfamily in that complex dataset. Functional 

descriptions are based on the most common GO terms 

from proteins containing the superfamily in that particular 
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organism, not for the specific complexes identified in the 

text. Superfamilies are considered to belong to a kingdom 

when they are found in at least 70% of completed 

genomes from that kingdom. Universal refers to 

eukaryotes, eubacteria and archaea. 
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 There is a caveat to some of these results however. Associations related 

to rRNA processing may represent a bias in some of the experimental data 

used to generate the complexes. Some high-throughput complex 

identifications in yeast (Gavin et al., 2002; Ho et al., 2002) contain many 

complexes erroneously enriched in rRNA processing. This is thought to be 

the result of proteins connected by rRNA, rather than protein interactions 

(Betel et al., 2004). Results relating to rRNA processing should therefore be 

considered false positives. Independent evidence supports the relevance of 

the spliceosome however (Staley and Guthrie, 1998). 

The second category is the proteasome. A complex was identified 

containing several copies of the Glutamine Phosphoribosylpyrophosphate 

superfamily which is involved in Ubiquitin-mediated endopeptidase activity 

via the proteasome complex and different members of the superfamily are 

required for different types of protease activity (Rubin and Finley, 1995). 

The third category is signal transduction. Multiple copies of the protein 

tyrosine phosphatase superfamily were found in a complex involved in 

signal transduction via a MAP kinase pathway controlling pseudohyphal 

growth. 

Multiple copies of homologous regulatory proteins may represent 

signalling/regulatory complexes with alternative regulatory subunits e.g. the 

Myc-Max and Mad-Max basic helix-loop-helix transcription factor complexes 

noted by Pereira-Leal et al. (2007). In MCL-GO complexes, complex variants 

with alternative regulatory subunits such as these are expected to be found 

as single complexes. Each protein can only occur in a single complex and 

therefore variant complexes which are largely composed of the same set of 

subunits cannot be resolved. If the alternative subunits of such variant 

complexes are homologous, they will be identified in this analysis, despite 

the fact that they would not be present together in a complex in vivo. 

It appears that those members of superfamilies which clustered 

together tended to be involved in eukaryote-specific processes. They were 

almost exclusively universal superfamilies, suggesting that these eukaryotic 
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advancements have largely developed from duplication and divergence of 

pre-existing superfamilies. 

 

4.3.4. Co-Occurrence of Homologues in Protein 
Complexes 

It was shown in the previous analysis that homologous domains tend to be 

randomly distributed in protein complexes and that duplicates have 

therefore tended to diversify rather than remain involved in the same 

complex. An alternative analysis by Pereira-Leal et al. (2007) has shown that 

interacting, homologous pairs might be important for complex evolution in 

yeast. They found that 10-30% of complexes in this species contain 

homologous protein pairs. In the model of complex evolution they presented, 

the gene encoding a homodimer duplicates and diverges resulting in a 

paralogous, heterodimeric protein complex. Rather than examine the 

distribution of individual domain or protein families, they considered what 

proportion of complexes contained homologous pairs. Although the analysis 

described above suggested that superfamilies tend to be randomly 

distributed in complexes, this is a general trend and there might still be a 

significant number of cases of homologous pairs in complexes. In particular 

it was not possible to consider smaller superfamilies (less than 5 members) in 

the previous analysis due to statistical considerations. Therefore the extent of 

homologous pairs in complexes was re-examined from the perspective of 

complexes rather than superfamilies. This analysis builds on the previous 

work of Pereira-Leal et al. as the MCL-GO datasets are more extensive than 

those used previously and E. coli complexes can be examined as well as those 

of yeast.  

For each predicted yeast complex it was determined whether there was 

at least one pair of proteins sharing, in the first case, a homologous domain 

or, in the second case, their entire multi-domain architecture (Figure 4.17). If 

there is a tendency for homologous proteins to occur together in complexes 

more than expected by chance, then this gives an upper bound for the 
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number involved in the model of complex evolution described by Pereira-

Leal et al. (2007). Using individual domains allows more distant relationships 

to be identified which might otherwise be obscured by gain or loss of 

domains within homologous proteins.  

It was found that the proportion of complexes containing homologues 

was greater than expected by chance in each species (p<0.01). In E. coli 7.5% 

of complexes contained homologues at the domain level; this is 1.5 times 

more complexes than expected by chance. There were 516 pairs of 

homologues co-occurring in E. coli complexes and these were found to 

interact more often than expected by chance (p < 0.01). For yeast the value 

was much higher: 18.4% of complexes contained homologues, 3.4 times more 

than expected. 720 pairs of co-complex homologues were identified in yeast 

and these tended to interact more than expected for random pairs of co-

complex proteins (p < 0.01).  

The result for yeast was within the bounds of 10-30% suggested by 

Pereira-Leal et al. (2007). E. coli had a much smaller proportion of complexes 

which could have evolved from interacting paralogues. 43 complexes were 

identified in E. coli compared to 157 in yeast.  

The trends between species in terms of relative numbers of complexes 

involved and the difference between expected and observed counts were 

similar when considering homologues as proteins sharing at least one 

homologous domain (domain homologues) or as sharing entire multi-

domain architectures (protein homologues). Using domain homologues was 

shown to be more powerful, detecting more cases of co-complex homologous 

pairs. 
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Figure 4.17 Percentage of complexes in each species in 

which at least one pair of homologues was observed.  

Homologues were defined here as either proteins sharing 

a homologous domain (domains) or sharing a common 

domain architecture (proteins). All observed values were 

significantly larger than expected (p < 0.01). Asterisks 

highlight those observed values which were significantly 

greater than expected at p = 0.01. 
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Figure 4.19 Percentage of TAP-MS complexes containing 

pairs of proteins with homologous domains. 

Asterisks highlight those observed values which were 

significantly greater than expected at p = 0.01. 
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Exp-TAP complex datasets were also examined to determine whether 

they supported the above findings (Figure 4.19). Butland and Arifuzzaman 

Exp-TAP E. coli complexes showed no significant increase in the number of 

complexes containing homologous pairs relative to random complexes. 

However the Gavin and Krogan Exp-TAP yeast complexes showed 

significant proportions of complexes containing homologous pairs (57% for 

Gavin and 32% for Krogan). These results confirm the trends identified in 

MCL-GO complexes.  

4.3.5. Identification of Correlated Domain 
Superfamily Pairs 

In the previous analysis it was reaffirmed that homologous domain pairs are 

not present in the majority of yeast complexes. Furthermore, it was shown 

that homologous domain pairs are a less common feature of protein 

complexes in E. coli than in yeast. Another feature of protein complexes that 

has been identified in yeast is pairs of non-homologous domains which co-

occur in multiple complexes (Betel et al., 2004). Might these represent an 

alternative route of complex evolution to that of homologous pairs? 

Those pairs of superfamilies whose members co-occur in the same 

complex (in separate protein chains) and which are found in multiple 

complexes more often than expected by chance were determined. 189 pairs of 

correlated superfamilies were identified in E. coli MCL-GO complexes, 

involving 156 superfamilies. These pairs occurred in 68 separate complexes 

(~12%). This was a greater proportion of complexes than that containing 

paralogous pairs (~8%). In yeast MCL-GO complexes, 183 pairs were 

identified, involving 186 superfamilies and 83 complexes (~10%). Full details 

of the superfamily pairs identified are presented in Appendix D. Using 

IntAct and MINT PPI datasets it was determined whether these superfamily 

pairs tended to interact more often than expected by chance. In E. coli and 

yeast there was a significant tendency for interaction (p < 0.001). In both 

species the pairs were also significantly more functionally similar (using 

GOSS scores as described in 4.2.9) than expected by chance (p < 0.001). This 



 210

suggests that the correlated domain pairs have a tendency to interact and 

form functionally coherent parts of complexes in both species.  

4.3.6. Do Co-Complex Homologues and 
Correlated Domain Pairs Correspond to 
Complex Cores? 

Pereira-Leal et al. (2007) showed that homologous pairs represent cores of 

some yeast complexes. The analysis they used determined whether an 

arbitrary set of proteins tend to be older than other proteins. Specifically, the 

species distribution of the orthologues of proteins containing correlated 

domains was determined to ascertain whether they tended to emerge earlier 

in evolution than other proteins. Older proteins are more likely to represent 

evolutionary conserved complex cores, whereas more recently evolved 

proteins are likely to represent later modifications to complexes (van Dam 

and Snel, 2008; Pereira-Leal et al., 2007). The age of interacting, homologous 

domain pairs was examined to determine whether those that occur in E. coli 

represent complex cores, as they are thought to in yeast. Additionally, 

correlated domain pairs in both species were examined to determine whether 

they too represent cores. 

Although there was a tendency for orthologues of interacting 

homologous pairs from E. coli to be present in more distantly related 

organisms than other proteins (Table 4.4) this trend was not found to be 

significant (p = 0.09). The same was true of proteins containing correlated 

domains (p = 0.28). This is further evidence that E. coli complexes have not 

evolved from interacting homologues, at least not to the extent seen in yeast. 

Furthermore it appears that correlated domain pairs tend not to be cores of E. 

coli complexes. 
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 All proteins Co-complex 
homologous 
domain pairs 

Correlated 
domain pairs 

E. coli    

E. coli K12 specific 19.0%   9.0% 11.6% 

Proteobacteria 21.0% 10.4% 12.5% 

Proteobacteria 
Firmicutes 

  7.8%   9.0%   5.4% 

Bacteria   1.4%   3.0%   1.8% 

Eukaryota+Bacteria 25.1% 29.9% 37.5% 

Bacteria+Archaea   7.3% 10.4%   8.0% 

Universal 18.4% 28.4% 23.2% 

Yeast    

S. cerevisiae-
specific 

44.8% 13.1% 12.1% 

Fungi 11.1%   9.3% 12.1% 

Fungi + Metazoa   7.4% 10.4%   7.9% 

Eukaryotes 10.3% 23.5% 14.3% 

Eukaryotes + 
Archaea 

  4.2%   9.7% 10.0% 

Eukaryotes + 
Bacteria 

13.2% 18.3% 26.4% 

Universal   9.0% 15.7% 17.1% 

Table 4.4 Relative age (emergence of orthologues) of all 

proteins, co-complex homologues and proteins which 

contain correlated domains for E. coli and yeast MCL-GO 

complexes. 
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Co-complex, homologous proteins in yeast were significantly older than 

proteins in general (p < 0.01). This reaffirmed the result of Pereira-Leal et al. 

(2007). It was also observed that, in yeast, proteins containing correlated 

domains were significantly older than proteins in general (p < 0.01). Most 

correlated proteins were found in all types of eukaryotes, whereas most yeast 

proteins were no older than the split between metazoa and fungi. This 

suggests that both co-complex homologues and correlated pairs are 

important as evolutionary cores of yeast protein complexes. 

Table 4.5 shows that the E. coli Exp-TAP datasets supported the trends 

identified in the MCL-GO dataset. Neither co-complex homologues nor 

correlated domain pairs in the Arifuzzaman and Butland Exp-TAP E. coli 

datasets were significantly older than other proteins. The picture was less 

clear in the yeast Exp-TAP datasets. Although the Krogan dataset supported 

the finding that correlated domains are older than other proteins, the test for 

homologous pairs was not quite significant. In the Gavin Exp-TAP yeast 

dataset neither type was significant.  



 213

 

Exp-TAP Dataset Homologous Pairs (p-
value) 

Correlated Pairs (p-
value) 

E. coli (MCL-GO) 0.095 0.281 

E. coli (Arifuzzaman) 0.881 0.913 

E. coli (Butland) 0.818 0.670 

Yeast (MCL-GO) 9.55E-05* 6.95E-05* 

Yeast (Gavin) 0.388 0.282 

Yeast (Krogan) 0.053 0.006* 

Table 4.5 P-values indicating whether or not particular 

types of proteins are older than other proteins. Asterisks 

identify statistically significant results. 
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4.4. Discussion 
In this chapter an analysis of the differences in evolution between the protein 

complexes of E. coli and yeast was presented. In order to achieve this, protein 

complex datasets representing high coverage of proteins in these organisms 

were generated and shown to accurately reproduce known complexes. 

CATH domain superfamilies were used to identify how duplicates are 

reused in complexes. This allowed distant relationships to be identified 

relative to other sequence comparison approaches. 

It was found that homologous domains tended to be randomly 

distributed amongst complexes and therefore that duplicates tend to occupy 

distinct functional niches. Those exceptional domain superfamilies whose 

members were found together more than expected by chance tended to be 

involved in signalling/regulation or a limited number of eukaryote-specific 

complexes requiring colocation of similar functions. It has been shown that 

homologues are rarely found together in small molecule metabolic pathways 

of E. coli (Teichmann et al., 2001) and it was shown here that this appears to 

be the case for protein complexes as well. 

Pereira-Leal et al. (2007) proposed that a proportion of yeast complexes 

have evolved from cores of homologous subunits. These subunits are 

proposed to originate from homodimers, encoded by single genes which 

then duplicated, resulting in dimers of paralogues. The results presented 

here suggest that this model of complex evolution is limited in prokaryotes. 

It was found that in E. coli there were a much smaller number of complexes 

which could have evolved in this way than in yeast. It is known that there is 

less gene copy redundancy in prokaryotes and that their gene families are 

smaller (Ranea et al., 2007), resulting from streamlined genomes (Ranea, 

2006). Here it was shown that this may extend to fundamental differences in 

how complexes have evolved in E. coli. Furthermore, a functional analysis 

showed that those homologues which cluster in complexes tend to relate to 

eukaryotic functions. This process may therefore have been exploited 
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principally in developing the more complex processing and regulation 

required in the eukaryotic cell.  

Pairs of correlated domains were identified which occur together in 

multiple complexes, as was done previously by Betel et al. (2004). It was 

shown that the proteins containing these domains tended to interact and be 

more functionally similar than other pairs of co-complex proteins. In yeast 

these protein pairs tended to be older than other pairs of proteins and might 

therefore represent complex cores; there was little evidence for this in E. coli 

however. Complexes are known to have duplicated in yeast and these 

correlated pairs are likely to include parts of duplicated complexes. The 

results imply that the cores of E. coli complexes tend not to be duplicated. 

This may be because one route through which complex duplication might 

occur is whole genome duplication, which is thought to have occurred in 

yeast (Wolfe and Shields, 1997), but is not known in E. coli (Ochman et al., 

2005). It is possible that correlated domain pairs tend to be more recently 

evolved parts of complexes in E. coli. 

In future studies it would be interesting to examine further the role of 

correlated pairs in E. coli, as it is unclear what role they play in complex 

evolution. Furthermore an analysis of higher eukaryotes would be an 

appropriate extension, to determine whether the processes of complex 

evolution discussed are more common than in yeast. Drosophila melanogaster 

was considered for analysis; however there was insufficient data to produce 

reliable complexes.  
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Chapter 5     Discussion and 
Conclusions  
5.1. Overview 
The aim of this thesis was to explore the evolution and function of proteins 

using domain superfamilies. In Chapter 2 CATH structural domain 

superfamilies were used to benchmark methods for identifying homologous 

relationships between sequences. In Chapter 3 Pfam domain families were 

used to identify triplets of proteins related through gene fusion allowing the 

prediction of functional associations between proteins. In Chapter 4 CATH 

domain superfamilies were used to study differences in the evolution of 

protein complexes between prokaryotes and eukaryotes. This chapter 

introduces a wider perspective on the findings contained in the thesis. 

 

5.2. Chapter 2 
In Chapter 2 a thorough benchmark of current methods for remote 

homologue detection was developed. These methods can be used to identify 

domain family members in genomes and such data is used in Chapters 3 and 

4 to examine the function and evolution of proteins. It was necessary to 

perform this benchmark as, at the time, there were no benchmarks 

encompassing the full range of methods available. The benchmarking 

resulted in the adoption of new methods into the CATH-Gene3D pipeline, 

resulting in improved datasets for the subsequent chapters.  

The benchmarking assessed the ability of publicly available methods to 

detect homologues at different ranges, e.g. remote homologues in the 

twilight zone (<30% sequence identity) and very remote homologues in the 

midnight zone (<10% sequence identity). Furthermore the ability of these 
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methods to distinguish all homologues from all non-homologues was 

compared with their abilities in detecting their closest neighbour, which is a 

more relevant assessment of accuracy for genome annotation.  

It has been recognized for some time that methods for remote 

homologue detection involving Hidden Markov Models (HMMs) are able to 

detect evolutionarily plausible relationships between proteins which are not 

classified as homologous based on their structures in CATH or SCOP (Gough 

et al., 2001). This appears to run counter to the commonly held assumption 

that structure is more conserved than sequence. This is not necessarily the 

case however; it seems in fact to result from certain assumptions about how 

structures evolve.  

The β-propellers, for example, have long been classified into several 

different architectures in CATH based on their number of blades (units 

which fit together much like the blades of a propeller). It has been shown that 

the blades can duplicate within a protein and be inherited from other 

propeller proteins. This form of evolution alters the core of the structure, 

whereas most globular folds are assumed to maintain a conserved core and 

experience peripheral embellishments.  

The FAD/NAD(P) binding domain fold (3.50.50) and the Rossmann 

fold (3.40.50) are also found in different architectures but were found to have 

many putative homologues between them. They both have a central β-sheet 

flanked on one side by α-helices and the other by either β (3.50.50) or α 

(3.40.50) structures. These have previously been proposed as potentially 

related folds (Harrison et al., 2002).  

The most powerful methods of remote homologue detection which 

compare profiles of related sequences against each other (profile-profile) 

detect even more relationships between different folds and architectures than 

previous methods. Traditional benchmarking approaches for remote 

homologue detection rely on structural classifications to determine 

relationships between sequences and therefore novel benchmarking 

approaches are required to accurately measure performance of the most 
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powerful methods. To achieve this, structural comparison was combined 

with sequence comparison to exclude examples from the benchmark dataset 

which were scored highly by both sequence and structural methods. This 

was shown to accurately reproduce a manually curated set of putative 

homologues. The approach can be applied to any existing structure-based 

benchmark dataset such as those based on SCOP or FSSP. The approach 

presented was an extension of that developed by Soding for benchmarking 

his profile-profile method HHSearch (Soding, 2005). The improvements 

presented in Chapter 2 were the use of a leading structural comparison 

algorithm and optimisation of the approach’s accuracy using manually 

classified examples.  

After the publication of the work in Chapter 2 (Reid et al., 2007), a 

paper was published by Qi et al. (Qi et al., 2007) describing an alternative 

approach to this problem. They used a Support Vector Machine (SVM) 

trained on both sequence and structural similarity scores between SCOP 

domains from different classes and those from the same superfamily to 

classify previously ambiguous relationships between domains. Rather than 

remove ambiguous relationships from the dataset as was the aim in this 

work, their aim was include as many ambiguous relationships as possible by 

explicitly classifying them as homologous or non-homologous. The benefit of 

this approach relative to that presented in this thesis is that the 

benchmarking dataset is enlarged rather than reduced. Chapter 2 describes a 

manually validated approach which although resulting in smaller a dataset 

(the dataset is still very large) should produce fewer incorrectly classified 

examples. 

Employing this novel benchmarking strategy it was shown that 

different methods were optimal for different tasks, the method which was 

best for identifying families of homologues was not the best for annotating 

genomes. Furthermore it was shown that profile-profile methods were able 

to detect up to 10 times more very remote homologues (<10% sequence 

identity) than BLAST at low error rates. The profile-profile method PRC 
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performed best in distinguishing homologues from non-homologues 

whereas a different profile-profile method, COMPASS, performed best at 

annotating genomes (i.e. finding just the closest homologue).  

The ability to identify relationships between more distant homologues 

allows more ancient evolutionary events to be examined. For instance details 

of the biology of the Last Universal Common Ancestor (Ranea et al., 2006) 

have been inferred using CATH domain superfamilies to identify ancient 

homologous relationships between proteins. Although very distant domain 

relatives tend to have divergent functions, function is more conserved within 

families than between unrelated proteins. The organisation of structural 

protein domains into families and their enrichment with sequence relatives 

also aids the study of functional evolution (Todd et al., 2001). 

The realisation from this work that profile-profile methods, in 

particular PRC, are able to detect very remote homologues classified in 

different CATH folds has led to its incorporation into the CATH update 

pipeline. In this context it is used to identify incorrectly classified domains 

and to better resolve the superfamilies.  

In the final part of Chapter 2 it was shown that combining methods of 

remote homologue detection could improve coverage at very low error rates, 

particularly in annotating genomes. This approach could therefore be 

applied where highly accurate genome annotation is needed in projects such 

as that organised by the ENCODE Project Consortium (2004) to analyse 1% 

of the human genome in great detail. 

 

5.3. Chapter 3 
In Chapter 3 an improved method was introduced for predicting 

functional associations between proteins by identifying instances of domain 

fusion. Domain fusion occurs when two genes, whose products interact or 

are otherwise involved in a common process, fuse so that their products are 

expressed together in a single protein chain. This method was developed 
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with the aim of improving prediction of functional associations in the human 

genome. There had been no comparison of different methods in the literature 

and little examination of how well methods performed in the human genome 

(with the exception of (Truong and Ikura, 2003)). The human genome 

includes larger protein domain families than bacteria and lower eukaryotes 

which make it more difficult to accurately detect functionally related proteins 

using domain fusion.  

A novel scoring approach was introduced which takes into account the 

frequency of domain homologues in query and target genomes when 

identifying and scoring putative relationships between proteins. The 

resulting approach, named CODA, for Co-Occurrence of Domains Analysis, 

was shown to give improved performance over several comparable 

approaches.  

Perhaps the most similar method to CODA is that of Truong & Ikura 

(2003). Their method represented the only available instance of domain 

fusion. However, this did not include a scoring method and to cope with 

large, promiscuous domain families, they simply excluded all fusions 

involving such families. CODA was able to more subtly downweight the 

effect of such families. Although Truong’s method was able to find 189 

functionally related pairs with high accuracy, CODA was able to find many 

more functionally linked pairs (~1000) with moderate accuracy. Additionally 

CODA was shown to accurately find more hits than gene fusion methods in 

both yeast and human genomes. 

Each alternative method examined tended to find functional 

relationships between distinct sets of proteins compared to CODA. This 

suggests that different implementations of the fusion method find quite 

different sets of functional relationships, perhaps due to alternative sequence 

representations (genes vs. domains) and alternative methods of dealing with 

large domain families/promiscuous domains (exclusion vs. scoring). This 

implies that these alternative implementations could be combined to 

improve coverage. 
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CODA has been integrated with other methods of function prediction 

to produce a suite of tools called BioMiner (in preparation) which is being 

used in several collaborations to identify networks of functionally related 

proteins. One project in particular, part of ENFIN (Kahlem and Birney, 2007), 

has shown that BioMiner, in combination with other approaches, 

successfully improved the detection of proteins involved in the human 

mitotic spindle (in preparation). Such approaches allow experimental 

characterisation of proteins to be used more efficiently, reducing the amount 

of time and money applied to interpreting genomes and characterising 

biological processes. 

 

5.4. Chapter 4 
In chapter 4 the evolutionary mechanisms which generate protein complexes 

in E. coli and yeast were shown to differ. This analysis was facilitated by the 

generation of accurate, high coverage datasets of complexes for these species. 

The datasets were generated by clustering large, combined protein-protein 

interaction networks, an approach which had been shown previously to 

generate accurate complexes for yeast. In Chapter 4, the same methodology 

was applied to E. coli and although the accuracy and coverage of the 

predicted E. coli complexes was lower than for yeast, it was significantly 

better than for randomly generated complexes.  

Using these datasets it was shown that members of the vast majority of 

protein domain superfamilies are randomly spread amongst complexes. 

Those which were not were essentially limited to yeast and were found to be 

involved in eukaryote-specific complexes such as the spliceosome and 

proteasome, as well as one example involved in signal transduction. It is 

known that domain families tend to be smaller in prokaryotes than 

eukaryotes with lower gene copy redundancy (Ranea et al., 2007) and these 

results suggest further that protein complexes tend not to contain 

homologous pairs in E. coli. Conservation of complex membership between 
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homologues is not the rule in either species and thus duplicate genes are 

generally not reused in the same complexes. 

Pereira-Leal et al (2007) examined the occurrence of homologues in 

complexes from the perspective of complexes rather than superfamilies. They 

proposed that between 10 and 30% of protein complexes in yeast have 

evolved from an evolutionary core of interacting homologues. The Pereira-

Leal model was re-examined, with the inclusion of E. coli. The model was 

upheld and ~18% of yeast complexes were found to contain pairs of 

homologous proteins, well within the bounds previously identified. These 

pairs were subsequently shown to have properties expected of complex cores 

as had been done by the authors of the original work. In E. coli however, 

there were fewer complexes (~8%) containing homologous pairs and those 

which were identified were not found to be significantly associated with the 

properties expected of complex cores.  

An alternative model of complex evolution was examined, namely the 

role of correlated domains: pairs of non-homologous domains which co-

occur in multiple complexes. These were found in ~12% of E. coli complexes 

and ~8% of yeast complexes and shown to represent interacting pairs with 

highly similar functions. These were found to represent complex cores in 

yeast, but not in E. coli. Complexes are known to have duplicated in yeast 

and at least some of these correlated pairs are likely to relate to duplicated 

complexes. The results imply that the cores of E. coli complexes tend not to be 

duplicated. This may be because one route through which complex 

duplication can occur is whole genome duplication, which is thought to have 

occurred in yeast (Wolfe and Shields, 1997), but is not known in E. coli (Snel 

et al., 2002). It is possible that correlated pairs tend to be more recently 

evolved parts of complexes in this organism. 

The field of protein complex analysis is relatively young, since much of 

the appropriate data has only recently been collected. For species other than 

yeast there is still a noticeable paucity of data, however on the positive side 

there is much interest in protein complexes and protein-protein interactions 
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in general. This is stimulating further data gathering and calls for projects to 

systematically identify complexes (Bravo and Aloy, 2006). Further barriers 

include the current lack of understanding regarding the accuracy of current 

datasets (Jensen and Bork, 2008) and uncertainty over the extent to which 

interactions can be inherited to other proteins (Mika and Rost, 2006). These 

are active areas of research. 

Part of the reason for the current interest in protein-protein interactions 

is that in the post-genomic era it has become clear that the parts list of an 

organism, its genes and proteins, is not sufficient to explain its complexity 

(Hahn and Wray, 2002). Humans and nematodes, for example, have similar 

numbers of genes, but humans appear much more complex, having many 

more different cell types (Vogel and Chothia, 2006). Current thinking 

suggests that the origin of this complexity can be understood through the 

interactions between proteins and the ways in which they are regulated. This 

fundamental problem in molecular biology underscores the importance of 

examining differences in protein complexes between prokaryotes and 

eukaryotes. 

 

5.5. Future Work 
There are many interesting possibilities for examining the evolution of 

protein interactions and complexes. It would be useful, for instance, to 

determine the role of changes in multi-domain architecture. Given a 

particular CATH superfamily, how do the partner domains of its members 

affect the interactions it is involved in? Some domain superfamilies are 

involved directly in inter-chain protein-protein interactions and therefore are 

likely to have an effect on the interactions of the proteins in which they are 

found. Other superfamilies are not directly involved in such interactions but 

will inherit the interactions of the domains to which they are covalently 

linked. It would be most interesting to investigate how this affects the 

distribution of the different superfamilies and what it might mean for the 
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prediction of protein-protein interactions based on domain architecture. 

Additionally it may be possible to discern examples of how domain 

combinations directly alter the interactions of particular superfamily 

members. Several resources of domain-domain interaction data have been 

established (Stein et al., 2005; Jefferson et al., 2007; Finn et al., 2005), however, 

there is currently a relatively small amount of experimental data (Schuster-

Bockler and Bateman, 2007). Furthermore it has proven difficult to accurately 

predict domain-domain interactions based on domain architecture (Nye et al., 

2005).  

There is little experimental protein-protein interaction data for the vast 

majority of species and it is not trivial to inherit protein-protein interactions 

between species. It has been possible however, to study the evolution of 

complexes across the eukaryotes. This was achieved for a single complex by 

identifying whether orthologues of a well characterised yeast complex were 

present in other eukaryotes (Gabaldon et al., 2005). If one assumes that 

orthologues perform the same function in different species, then it may be 

possible to map a core set of complexes across eukaryotes or prokaryotes, for 

example. Given a set of complexes in one species, e.g. yeast, orthologues 

could be identified in all other eukaryotes with complete genomes. Those 

complexes whose constituent proteins have orthologues in all these genomes 

could be considered as core eukaryotic complexes. This approach is likely to 

underestimate the true number of core complexes due to an incomplete list of 

complexes in yeast and missed orthologues. On the other hand, some 

proteins identified as orthologues may have changed their function and may 

no longer be involved in a particular complex. Despite these caveats, it is 

possible that important aspects of protein complex biology might be 

identified. 
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Appendix A 

Probabilities of significant GOSS scores in 

several yeast and human sequence datasets  

 

Dataset Yeast Human 

Gene3D v5 0.01671 0.00082 

STRING 0.01418 0.00148 

Prolinks 0.01783 0.00137 

Truong 0.03709 0.00623 
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Appendix B 

Gene Ontology biological process annotations 

produced by CODA for 107 human proteins. 

 

UniProt identifier GO terms 

Q8NI37 GO:0007165|TAS GO:0006816|IDA 
GO:0009187|NAS GO:0007165|NAS 
GO:0007601|TAS 

Q5JTI7 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q5JTI9 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q5VWA5 GO:0006672|TAS GO:0007165|TAS 

Q5QGT2;Q6NUK4;Q6PJY4;Q5J
QR5;Q6PEW8 

GO:0006357|TAS GO:0006357|TAS 

Q7L9B9 GO:0006281|NAS GO:0006260|NAS 
GO:0000279|IEP GO:0006281|NAS 
GO:0006260|NAS GO:0000279|IEP 

Q5M7Z8 GO:0007585|TAS GO:0008535|TAS 
GO:0007585|TAS GO:0008535|TAS 

Q5T0R4 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q7Z7A3;Q96GZ7 GO:0006520|TAS GO:0009113|TAS 
GO:0006564|NAS GO:0008615|NAS 
GO:0006461|TAS GO:0000096|TAS 
GO:0009113|TAS 

Q5T0R7 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
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Q9H8W0 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q6ZUX2 GO:0006401|TAS GO:0009615|TAS 
GO:0006401|TAS GO:0009615|TAS 

Q5T8V1 GO:0006412|NAS GO:0006412|NAS 

Q7Z327;Q8IY39;Q7Z6V5 GO:0007585|TAS GO:0008535|TAS 

Q5JTI5 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q8TCB7;Q96LU4 GO:0008152|IDA GO:0006633|IDA GO:0008152|IDA 
GO:0006633|IDA 

Q96HR9;Q96LM0 GO:0006357|TAS GO:0006357|TAS 

Q5VVM0 GO:0045333|NAS GO:0006118|NAS 

Q0VGD4 GO:0009113|TAS GO:0009113|TAS 

Q7Z5U5 GO:0009113|TAS GO:0009113|TAS 

Q5T0R9 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q86U90 GO:0006796|TAS GO:0006796|TAS 
GO:0006796|TAS 

Q86YL1 GO:0006401|TAS GO:0009615|TAS 
GO:0006928|TAS GO:0006928|TAS 
GO:0006401|TAS GO:0009615|TAS 
GO:0006928|TAS GO:0006928|TAS 

Q5JUX3 GO:0006944|TAS GO:0006944|TAS 

Q96EI3;Q96IX1;Q6FI88;Q9Y6B
4;Q6XYB0;Q9H0W9 

GO:0008544|TAS GO:0006582|NAS 

Q5T6J8 GO:0006118|IDA GO:0009051|IDA 

Q5JTI8 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q86XN3 GO:0006545|NAS GO:0009165|NAS 
GO:0006545|NAS GO:0009165|NAS 

O43341 GO:0006401|TAS GO:0009615|TAS 
GO:0006401|TAS GO:0009615|TAS 

Q9P1A0 GO:0006401|TAS GO:0009615|TAS 
GO:0006401|TAS GO:0009615|TAS 
GO:0006954|TAS GO:0006800|TAS 
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Q5T0S2 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q9H825 GO:0008152|IDA GO:0006633|IDA GO:0008152|IDA 
GO:0006633|IDA 

Q86WR0;Q9NV98;Q96SI2 GO:0009113|TAS GO:0009113|TAS 

Q6ZW71;Q9BVQ3;Q9NRG7 GO:0007159|NAS GO:0042351|TAS 
GO:0005975|TAS GO:0007159|NAS 
GO:0042351|TAS GO:0009225|TAS 
GO:0006703|TAS GO:0006702|TAS 
GO:0006629|TAS GO:0007159|NAS 
GO:0042351|TAS GO:0005975|TAS 
GO:0006629|TAS 

Q6ZRJ8 GO:0006556|IDA GO:0006556|IDA 

Q8NA58 GO:0007292|TAS GO:0009451|TAS 
GO:0007292|TAS GO:0009451|TAS 

Q8N7X5;Q5TAP7 GO:0007292|TAS GO:0009451|TAS 

Q6DKI4;Q96LA8;Q9NVR8 GO:0008152|IDA GO:0006633|IDA GO:0008152|IDA 
GO:0006633|IDA 

Q5TAW9;Q9BWV3 GO:0007585|TAS GO:0008535|TAS 

Q86SK8 GO:0006464|TAS GO:0006464|TAS 

Q9H6I5;Q9H6H4;Q86VL1;Q9H
BP4 

GO:0006357|TAS GO:0006357|TAS 

Q9HAU7;Q8IUT9;Q9HAT2;Q9N
T71 

GO:0007399|TAS GO:0006629|TAS 
GO:0006954|TAS 

Q8N467 GO:0007585|TAS GO:0007585|TAS 

Q9BZH2 GO:0007585|TAS GO:0008535|TAS 
GO:0007585|TAS GO:0008535|TAS 

Q6IT77 GO:0006298|TAS GO:0008630|TAS 
GO:0006298|TAS GO:0008630|TAS 

Q86SK7 GO:0006464|TAS 

Q0VG05 GO:0006366|TAS 

Q8TAR0;Q8NBX0;Q9Y363 GO:0006595|TAS GO:0006555|TAS 
GO:0015992|TAS GO:0006099|TAS 
GO:0006118|TAS GO:0006595|TAS 
GO:0006555|TAS GO:0015992|TAS 
GO:0006099|TAS GO:0006118|TAS 

Q8IUQ5 GO:0006508|TAS GO:0006508|TAS 
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Q8N140 GO:0006412|TAS 

Q6VNZ8 GO:0009399|TAS GO:0016226|TAS 
GO:0009399|TAS GO:0016226|TAS 

Q9NWU2;Q8N5M5 GO:0007049|TAS GO:0007067|TAS 
GO:0006364|TAS 

Q96FC6;Q9H993;Q9UFY5 GO:0006355|NAS 

A4D2M5 GO:0018279|IDA GO:0018279|IDA GO:0018279|IDA 
GO:0018279|IDA 

Q5T0R6 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q5T0R5 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q0VAC6 GO:0006464|NAS GO:0006464|NAS 

Q3B7J1 GO:0008152|IDA GO:0006633|IDA GO:0008152|IDA 
GO:0006633|IDA 

Q5T0R2 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

O94903;Q6FI94 GO:0006139|TAS GO:0006139|TAS 

Q5FWF4;Q9H0E8 GO:0006298|IMP GO:0043570|IMP GO:0006298|IDA 
GO:0006284|IDA GO:0007131|TAS 
GO:0006298|IMP GO:0043570|IMP GO:0006298|IDA 
GO:0006284|IDA 

Q8N7C5;Q8N4J0;Q7Z383 GO:0006412|NAS 

Q05BX1 GO:0006397|TAS GO:0008380|TAS 
GO:0006917|TAS GO:0006397|TAS 
GO:0008380|TAS GO:0006917|TAS 

Q5T0R1 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q86TP1 GO:0006419|TAS GO:0008033|TAS 
GO:0006412|NAS GO:0006412|NAS 
GO:0006419|TAS GO:0008033|TAS 

Q0P663 GO:0009113|TAS GO:0009113|TAS 



 250

Q5T017 GO:0009103|NAS GO:0009103|NAS 

Q5T0S3 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q5JUX6 GO:0006944|TAS GO:0006944|TAS 

Q9NV41;Q96HH6;Q53FY3 GO:0008654|NAS GO:0008654|NAS 
GO:0007601|TAS GO:0007165|TAS 
GO:0006629|TAS 

Q9BYW9 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q8WY66;Q9NXX6;Q5SQQ5;Q6
P673;Q9BS90 

GO:0006412|TAS 

Q96IQ6 GO:0007292|TAS GO:0009451|TAS 

Q9UBU6 GO:0015942|NAS GO:0015942|NAS 

Q8WZ99 GO:0007186|NAS GO:0007399|TAS 
GO:0009887|TAS 

Q96EY9 GO:0007585|TAS GO:0008535|TAS 

Q4LE72 GO:0006944|TAS GO:0006944|TAS 

A4FTY4 GO:0006401|TAS GO:0009615|TAS 

Q8TBR4 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q5T0R8 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q5VVM3 GO:0045333|NAS GO:0006118|NAS 

Q5T014 GO:0009103|NAS GO:0009103|NAS 

Q8N1G4;Q9ULN5 GO:0006418|TAS GO:0006935|TAS 
GO:0007165|NAS GO:0006954|TAS 
GO:0006418|TAS GO:0006935|TAS 
GO:0007165|NAS GO:0006954|TAS 

A2A397 GO:0030423|IEP 

Q9Y6N5;Q9UQM8 GO:0006401|TAS GO:0009615|TAS 

Q7Z5B1 GO:0009399|TAS GO:0016226|TAS 
GO:0009399|TAS GO:0016226|TAS 
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Q8NA83;Q8N3H2;Q8NHP6 GO:0006366|TAS 

Q4G104 GO:0006508|TAS 

Q5JPJ8 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q5T0R3 GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 
GO:0007049|NAS GO:0000070|TAS 
GO:0048015|NAS GO:0007051|NAS 

Q5VTK4 GO:0006595|TAS GO:0006555|TAS 
GO:0015992|TAS GO:0006099|TAS 
GO:0006118|TAS GO:0006595|TAS 
GO:0006555|TAS GO:0015992|TAS 
GO:0006099|TAS GO:0006118|TAS 

O75423;O75424;O75425 GO:0006366|TAS 

Q5H9C5;Q5H9C7;Q9UJG1 GO:0006366|TAS 

Q9H7H0 GO:0007585|TAS GO:0008535|TAS 

Q96IZ6;Q9H9G9;Q9P0B5;Q9N
UI8 

GO:0008152|IDA GO:0006633|IDA GO:0008152|IDA 
GO:0006633|IDA 

Q5JUX4 GO:0006944|TAS GO:0006944|TAS 

Q5T015 GO:0009103|NAS GO:0009103|NAS 

Q5TFJ4 GO:0001561|IDA GO:0001561|IDA 
GO:0008285|TAS GO:0006436|TAS 
GO:0008285|TAS GO:0006436|TAS 

Q5T9J8 GO:0006139|TAS GO:0006378|NAS 
GO:0006139|TAS 

Q9NW94;Q8N3B7;Q8IZV6;Q9B
RR8 

GO:0000389|TAS GO:0006376|TAS 
GO:0006397|TAS GO:0000389|TAS 
GO:0006376|TAS GO:0006397|TAS 

Q96EH3 GO:0006656|TAS GO:0006656|TAS 
GO:0008654|TAS 

A4FTW1;Q15493;Q53FC9;Q5J
RR5 

GO:0006801|TAS GO:0015680|TAS 

Q5TCW7 GO:0006370|IMP 

Q6P275 GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA 
GO:0006367|IDA GO:0030521|IDA GO:0045944|IDA

Q7L8W6;Q96HJ6 GO:0006449|TAS GO:0006449|TAS 
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Q5TGK5;Q6PDA1;Q8NEV7;Q8I
WS9;Q8IWT0;Q8NEV6 

GO:0006955|NAS 

A2A3L6 GO:0007165|TAS GO:0006468|TAS 
GO:0007165|TAS GO:0006468|TAS 

Q8NI37 GO:0007165|TAS GO:0006816|IDA 
GO:0009187|NAS GO:0007165|NAS 
GO:0007601|TAS 
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Appendix C 

Species used in identifying orthologous groups 

(Chapter 4) 

 

Species Classification NCBI taxon 
Id 

Oryza sativa Eukaryota; Viridiplantae; 
Streptophyta 

39947 

Arabidopsis thaliana Eukaryota; Viridiplantae; 
Streptophyta 

3702 

Dictyostelium 
discoideum 

Eukaryota; Mycetozoa; 
Dictyosteliida 

352472 

Caenorhabditis 
elegans 

Eukaryota; Metazoa; Nematoda 6239 

Mus musculus Eukaryota; Metazoa; Chordata 10090 

Homo sapiens Eukaryota; Metazoa; Chordata 9606 

Danio rerio Eukaryota; Metazoa; Chordata 7955 

Anopheles gambiae Eukaryota; Metazoa; Arthropoda 180454 

Drosophila 
melanogaster 

Eukaryota; Metazoa; Arthropoda 7227 

Ustilago maydis Eukaryota; Fungi; 
Basidiomycota; 
Ustilaginomycetes 

5270 

Saccharomyces 
cerevisiae 

Eukaryota; Fungi; Ascomycota; 
Saccharomycotina 

4932 

Schizosaccharomyces 
pombe 

Eukaryota; Fungi; Ascomycota; 
Schizosaccharomycetes 

4896 

Aspergillus 
fumigatus 

Eukaryota; Fungi; Ascomycota; 
Pezizomycotina 

5085 
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Plasmodium 
falciparum 3D7 

Eukaryota; Alveolata; 
Apicomplexa 

36329 

Vibrio cholerae Bacteria; Proteobacteria; 
Gammaproteobacteria 

666 

Pseudomonas putida 
KT2440 

Bacteria; Proteobacteria; 
Gammaproteobacteria 

160488 

Haemophilus 
influenzae 

Bacteria; Proteobacteria; 
Gammaproteobacteria 

727 

Yersinia pestis Bacteria; Proteobacteria; 
Gammaproteobacteria 

632 

Escherichia coli K12 Bacteria; Proteobacteria; 
Gammaproteobacteria 

562 

Buchnera aphidicola 
(Bp) 

Bacteria; Proteobacteria; 
Gammaproteobacteria 

135842 

Mycoplasma 
genitalium 

Bacteria; Firmicutes; Mollicutes 2097 

Clostridium 
acetobutylicum 

Bacteria; Firmicutes; Clostridia 1488 

Clostridium tetani Bacteria; Firmicutes; Clostridia 1513 

Bacillus subtilis Bacteria; Firmicutes; Bacillales 1423 

Thermus 
thermophilus HB27 

Bacteria; Deinococcus-Thermus; 
Deinococci 

262724 

Synechococcus 
elongatus 

Bacteria; Cyanobacteria; 
Chroococcales 

32046 

Mycobacterium 
tuberculosis 

Bacteria; Actinobacteria; 
Actinobacteridae 

1773 

Nanoarchaeum 
equitans 

Archaea; Nanoarchaeota; 
Nanoarchaeum 

160232 

Thermoplasma 
acidophilum 

Archaea; Euryarchaeota; 
Thermoplasmatasma 

2303 

Pyrococcus furiosus Archaea; Euryarchaeota; Ther 
mococci 

2261 

Methanocaldococcus 
jannaschii 

Archaea; Euryarchaeota; 
Methanococci 

2190 

Aeropyrum pernix Archaea; Crenarchaeota; 
Thermoprotei 

56636 
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Appendix D 

Correlated domain pairs identified in E. coli 

and yeast. 
The tables presented here show the superfamily pairs identified as correlated 

in E. coli and yeast and the number of complexes in which those 

superfamilies were found together. 

 

D1. E. coli 

Superfamily 
A 

Superfamily 
B 

Number of 
complexes  

1.10.10.10 3.30.450.40 6

2.40.40.20 3.30.70.20 4

3.10.20.30 3.40.190.10 4

3.40.228.10 3.30.70.20 4

3.40.50.150 3.40.50.1820 4

3.50.50.60 2.60.120.10 4

3.90.55.10 3.30.70.20 4

1.10.1040.10 3.40.605.10 3

1.10.443.10 3.40.720.10 3

1.20.1090.10 3.40.50.150 3

1.20.1090.10 3.40.50.2300 3

1.25.40.10 2.40.50.100 3

2.40.50.140 1.10.730.10 3

2.60.120.10 1.25.40.10 3
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3.10.50.40 3.40.50.2300 3

3.30.450.40 3.40.930.10 3

3.30.930.10 2.160.10.10 3

3.40.1280.10 3.40.50.2300 3

3.40.50.10490 3.40.720.10 3

3.40.50.1220 3.40.50.150 3

3.40.50.1970 3.40.50.150 3

3.40.50.1970 3.40.50.2300 3

3.40.50.2300 3.30.870.10 3

3.40.50.300 3.40.50.1580 3

3.40.50.620 1.20.1090.10 3

3.40.50.620 3.20.20.150 3

3.40.50.620 3.40.50.1970 3

3.40.50.720 3.30.1490.20 3

3.40.50.970 3.30.420.40 3

3.40.630.30 1.20.1090.10 3

3.40.630.30 3.40.50.1970 3

3.90.226.10 3.20.20.120 3

3.90.226.10 3.90.1150.10 3

3.90.226.10 3.90.550.10 3

1.10.10.60 3.90.1200.10 2

1.10.1060.10 3.10.50.40 2

1.10.1660.10 3.60.10.10 2

1.10.260.40 3.40.50.1580 2

1.10.260.40 3.90.1530.10 2

1.10.443.10 3.40.50.1580 2

1.10.443.10 3.60.21.10 2

1.20.1090.10 1.10.1680.10 2

1.20.1090.10 3.10.290.10 2
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1.20.1090.10 3.20.20.150 2

1.20.1090.10 3.30.870.10 2

1.20.1090.10 3.40.1090.10 2

1.20.1090.10 3.90.110.10 2

1.20.1090.10 3.90.1200.10 2

1.20.58.100 1.10.8.60 2

1.20.58.100 3.30.450.20 2

2.130.10.10 3.40.50.2300 2

2.160.10.10 3.90.1200.10 2

2.40.160.10 3.40.605.10 2

2.40.160.10 3.40.930.10 2

2.40.240.10 1.10.1040.10 2

2.40.240.10 1.20.1090.10 2

2.40.240.10 2.40.50.140 2

2.40.240.10 3.10.129.10 2

2.40.240.10 3.10.290.10 2

2.40.240.10 3.30.870.10 2

2.40.240.10 3.40.50.150 2

2.40.240.10 3.40.50.1970 2

2.40.240.10 3.40.50.2300 2

2.40.240.10 3.40.50.620 2

2.40.240.10 3.40.605.10 2

2.40.240.10 3.40.630.30 2

2.40.240.10 3.90.110.10 2

2.40.240.10 3.90.79.10 2

2.40.50.140 3.30.160.100 2

2.60.120.10 3.20.20.10 2

2.60.120.10 3.40.1090.10 2

2.60.120.10 3.90.1200.10 2
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2.60.120.260 1.10.150.130 2

2.60.120.260 1.10.443.10 2

2.60.40.1090 2.60.40.1070 2

2.60.40.320 1.10.150.130 2

2.60.40.320 1.10.443.10 2

2.70.98.10 1.10.150.130 2

2.70.98.10 1.10.443.10 2

2.70.98.10 3.10.290.10 2

3.10.129.10 1.10.940.10 2

3.10.129.10 1.20.1090.10 2

3.10.129.10 3.30.870.10 2

3.10.129.10 3.40.50.1970 2

3.10.129.10 3.90.110.10 2

3.10.20.30 3.20.20.120 2

3.10.20.30 3.90.1530.10 2

3.10.50.40 3.40.50.9600 2

3.20.20.140 3.30.160.100 2

3.20.20.140 3.40.50.1580 2

3.20.20.150 1.10.1680.10 2

3.20.20.80 1.10.150.130 2

3.20.70.20 2.40.50.100 2

3.30.110.40 3.40.640.10 2

3.30.110.40 3.90.1150.10 2

3.30.230.10 3.40.50.2000 2

3.30.300.30 2.60.40.420 2

3.30.390.30 3.30.160.100 2

3.30.450.40 3.90.230.10 2

3.30.470.20 3.40.50.10540 2

3.30.70.920 3.90.1150.10 2
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3.30.870.10 3.10.290.10 2

3.30.870.10 3.40.605.10 2

3.30.870.10 3.90.110.10 2

3.30.930.10 3.40.1090.10 2

3.30.930.10 3.90.1200.10 2

3.40.1090.10 1.10.10.60 2

3.40.1090.10 1.25.40.10 2

3.40.1090.10 2.160.10.10 2

3.40.1090.10 3.90.1200.10 2

3.40.1190.20 3.30.1490.20 2

3.40.1280.10 2.60.40.1070 2

3.40.1280.10 2.60.40.360 2

3.40.1280.10 3.30.870.10 2

3.40.190.10 3.40.1090.10 2

3.40.192.10 3.30.1490.20 2

3.40.30.10 3.40.1090.10 2

3.40.30.10 3.90.1200.10 2

3.40.50.1000 3.40.1090.10 2

3.40.50.1000 3.90.1200.10 2

3.40.50.10540 3.30.1490.20 2

3.40.50.10540 3.40.1190.20 2

3.40.50.1100 1.10.1680.10 2

3.40.50.1240 3.30.1490.20 2

3.40.50.1240 3.40.50.10540 2

3.40.50.150 3.40.1090.10 2

3.40.50.150 3.90.1200.10 2

3.40.50.1580 3.20.20.100 2

3.40.50.1580 3.30.70.20 2

3.40.50.1580 3.60.21.10 2
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3.40.50.1820 3.40.1090.10 2

3.40.50.1820 3.90.1200.10 2

3.40.50.1970 1.10.1680.10 2

3.40.50.1970 3.10.290.10 2

3.40.50.1970 3.20.20.150 2

3.40.50.1970 3.30.870.10 2

3.40.50.1970 3.40.1090.10 2

3.40.50.1970 3.90.110.10 2

3.40.50.1970 3.90.1200.10 2

3.40.50.20 3.40.192.10 2

3.40.50.2300 3.30.1330.10 2

3.40.50.2300 3.40.1090.10 2

3.40.50.2300 3.40.50.1360 2

3.40.50.2300 3.90.1200.10 2

3.40.50.2300 3.90.650.10 2

3.40.50.261 1.10.1680.10 2

3.40.50.620 2.30.38.10 2

3.40.50.620 3.40.1090.10 2

3.40.50.620 3.90.1200.10 2

3.40.50.980 2.60.40.420 2

3.40.630.30 3.20.20.150 2

3.40.630.30 3.30.870.10 2

3.40.630.30 3.40.1090.10 2

3.40.630.30 3.90.110.10 2

3.40.630.30 3.90.1200.10 2

3.40.640.10 3.40.1090.10 2

3.40.640.10 3.40.50.9600 2

3.40.640.10 3.90.1200.10 2

3.40.720.10 3.20.20.30 2
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3.40.930.10 1.20.1090.10 2

3.40.930.10 3.20.20.150 2

3.40.930.10 3.40.50.170 2

3.40.930.10 3.40.50.1970 2

3.40.980.10 3.60.120.10 2

3.50.50.60 2.60.300.12 2

3.50.50.60 3.30.160.100 2

3.50.50.60 3.40.1090.10 2

3.50.50.60 3.40.220.10 2

3.50.50.60 3.90.1200.10 2

3.90.110.10 3.10.290.10 2

3.90.110.10 3.40.605.10 2

3.90.1150.10 3.40.1090.10 2

3.90.1150.10 3.90.1200.10 2

3.90.1200.10 1.25.40.10 2

3.90.226.10 1.20.1090.10 2

3.90.226.10 3.30.390.10 2

3.90.226.10 3.40.1090.10 2

3.90.226.10 3.40.50.1970 2

3.90.226.10 3.90.1200.10 2

3.90.55.10 3.40.1160.10 2

3.90.550.10 1.25.40.20 2

3.90.550.10 3.40.1090.10 2

3.90.550.10 3.90.1200.10 2

3.90.700.10 1.10.8.60 2

3.90.700.10 3.30.450.20 2

3.90.79.10 3.30.870.10 2

3.90.79.10 3.90.110.10 2

4.10.520.10 1.20.1090.10 2
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4.10.520.10 3.40.50.1970 2
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D2. Yeast 

Superfamily 
A 

Superfamily 
B 

Number 
of 
complexes

1.10.10.60 4.10.240.10 6

1.10.10.60 1.10.10.10 5

1.25.10.10 3.30.450.60 5

3.10.110.10 3.30.40.10 5

3.10.20.90 1.10.10.60 5

1.10.10.10 3.40.630.10 4

1.25.10.10 2.60.40.1170 4

3.40.50.1240 3.40.30.10 4

1.10.10.60 1.20.920.10 3

2.60.120.200 1.10.238.10 3

3.10.129.10 3.20.20.80 3

3.10.129.10 3.30.420.40 3

3.10.129.10 3.40.30.10 3

3.20.20.70 3.30.428.10 3

3.20.20.80 2.60.260.20 3

3.20.20.80 3.40.630.10 3

3.30.420.40 1.10.245.10 3

3.30.450.60 2.60.40.1170 3

3.30.70.240 3.30.40.10 3

3.30.70.870 3.30.40.10 3

3.40.50.720 3.10.129.10 3

3.40.50.720 3.40.1190.20 3

3.50.50.60 3.90.180.10 3

1.10.10.10 2.170.120.12 2
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1.10.10.10 3.10.120.10 2

1.10.10.10 3.30.1490.120 2

1.10.10.10 3.40.720.10 2

1.10.10.60 1.20.1070.10 2

1.10.10.60 2.30.30.70 2

1.10.10.60 3.40.800.20 2

1.10.1000.11 3.60.40.10 2

1.10.1370.10 3.30.50.10 2

1.10.220.20 3.30.420.40 2

1.10.220.20 3.60.40.10 2

1.10.287.600 3.30.1370.50 2

1.10.287.600 3.40.30.10 2

1.10.555.10 3.40.1190.20 2

1.10.600.10 3.30.780.10 2

1.10.730.10 3.10.50.40 2

1.20.1050.10 1.10.600.10 2

1.20.1050.40 3.30.50.10 2

1.20.58.90 3.30.1520.10 2

1.20.910.10 3.40.50.720 2

1.25.10.10 2.30.130.10 2

1.25.10.10 3.40.50.10480 2

1.25.40.10 1.20.58.90 2

1.25.40.10 3.40.1180.10 2

1.25.40.20 3.40.50.2300 2

1.50.10.20 1.25.40.120 2

2.130.10.10 3.40.50.10480 2

2.170.120.12 1.10.10.60 2

2.30.130.10 2.130.10.10 2

2.30.130.10 3.30.70.330 2
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2.30.250.10 1.10.45.10 2

2.30.250.10 3.30.43.10 2

2.30.38.10 3.90.470.20 2

2.40.50.140 2.170.120.12 2

2.40.50.140 3.30.1360.10 2

2.40.50.150 1.10.10.10 2

2.40.50.150 1.10.10.60 2

2.40.50.150 2.170.120.12 2

2.40.50.150 2.40.50.140 2

2.40.50.150 3.30.1360.10 2

2.40.50.150 3.30.1490.120 2

2.60.260.20 3.80.10.10 2

2.60.40.1170 2.60.40.1230 2

2.60.40.1180 3.40.190.10 2

3.10.110.10 1.10.1040.10 2

3.10.110.10 1.10.245.10 2

3.10.120.10 1.10.245.10 2

3.10.120.10 2.10.230.10 2

3.10.120.10 2.60.260.20 2

3.10.120.10 3.10.110.10 2

3.10.120.10 3.30.420.40 2

3.10.120.10 3.40.630.10 2

3.10.129.10 1.10.245.10 2

3.10.129.10 2.10.230.10 2

3.10.129.10 2.60.260.20 2

3.10.129.10 3.10.110.10 2

3.10.129.10 3.10.120.10 2

3.10.129.10 3.30.360.10 2

3.10.129.10 3.40.630.10 2



 266

3.10.20.30 1.10.245.10 2

3.10.20.30 3.10.110.10 2

3.10.20.30 3.10.120.10 2

3.10.20.30 3.10.129.10 2

3.10.20.30 3.40.630.10 2

3.10.20.30 3.50.50.60 2

3.10.20.90 3.30.70.100 2

3.10.260.10 2.60.200.20 2

3.20.20.140 2.60.40.1180 2

3.20.20.140 3.30.1550.10 2

3.20.20.140 3.40.50.790 2

3.20.20.70 3.40.50.1170 2

3.20.20.80 1.10.245.10 2

3.20.20.80 1.10.840.10 2

3.20.20.80 1.20.58.90 2

3.20.20.80 2.10.230.10 2

3.20.20.80 3.10.120.10 2

3.20.20.80 3.30.1520.10 2

3.20.20.80 3.30.360.10 2

3.20.20.80 3.40.1180.10 2

3.20.20.80 3.40.20.10 2

3.20.20.80 3.40.720.10 2

3.30.1330.20 3.30.1370.50 2

3.30.1330.20 3.40.30.10 2

3.30.1360.10 2.170.120.12 2

3.30.1360.10 3.30.1490.120 2

3.30.1360.70 3.10.50.40 2

3.30.1490.120 1.10.10.60 2

3.30.1490.120 2.170.120.12 2
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3.30.1490.40 3.30.70.330 2

3.30.160.60 2.30.29.30 2

3.30.310.30 3.30.450.60 2

3.30.360.10 2.10.230.10 2

3.30.360.10 2.60.260.20 2

3.30.360.10 3.30.420.40 2

3.30.360.10 3.40.640.10 2

3.30.420.40 3.10.28.10 2

3.30.450.60 2.60.40.1230 2

3.30.460.10 3.40.50.1000 2

3.30.470.20 2.40.50.100 2

3.30.50.10 3.10.260.10 2

3.30.60.20 1.10.10.10 2

3.30.60.20 1.10.10.60 2

3.30.70.240 3.10.110.10 2

3.30.70.240 3.30.930.10 2

3.30.70.330 2.30.170.20 2

3.30.70.330 3.40.50.2300 2

3.30.70.870 3.10.110.10 2

3.30.70.870 3.30.930.10 2

3.30.930.10 1.10.600.10 2

3.30.930.10 2.60.120.260 2

3.30.930.10 3.30.780.10 2

3.40.1180.10 2.60.260.20 2

3.40.1180.10 4.10.240.10 2

3.40.1190.20 3.20.20.100 2

3.40.1190.20 3.40.190.10 2

3.40.190.10 3.20.20.100 2

3.40.250.10 1.10.150.50 2
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3.40.30.10 1.10.600.10 2

3.40.30.10 3.10.120.10 2

3.40.30.10 3.30.1370.50 2

3.40.30.10 3.40.1180.10 2

3.40.50.1000 3.40.720.10 2

3.40.50.1170 3.50.50.60 2

3.40.50.1380 3.40.50.1000 2

3.40.50.1440 3.30.1370.50 2

3.40.50.1440 3.40.30.10 2

3.40.50.150 3.40.50.10480 2

3.40.50.20 2.40.50.100 2

3.40.50.20 3.30.470.20 2

3.40.50.410 2.130.10.10 2

3.40.50.620 3.10.50.40 2

3.40.50.720 2.40.180.10 2

3.40.50.720 3.30.160.20 2

3.40.50.720 3.90.470.20 2

3.40.50.790 3.30.1550.10 2

3.40.50.800 1.10.600.10 2

3.40.50.800 3.30.780.10 2

3.40.50.980 3.90.470.20 2

3.40.630.10 1.10.245.10 2

3.40.630.10 1.10.45.10 2

3.40.630.10 3.30.43.10 2

3.40.630.10 3.40.720.10 2

3.50.50.60 3.30.1610.10 2

3.60.10.10 1.10.555.10 2

3.60.10.10 1.20.1070.10 2

3.60.110.10 3.50.50.60 2
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3.60.15.10 3.80.10.10 2

3.60.15.10 4.10.240.10 2

3.80.10.10 1.10.580.10 2

3.80.10.10 3.40.605.10 2

3.90.1100.10 1.10.10.10 2

3.90.1100.10 1.10.10.60 2

3.90.1100.10 2.170.120.12 2

3.90.1100.10 2.40.50.140 2

3.90.1100.10 3.30.1360.10 2

3.90.1100.10 3.30.1490.120 2

3.90.230.10 3.40.50.10190 2

3.90.550.10 1.10.245.10 2

3.90.550.10 3.10.120.10 2

3.90.79.10 3.10.110.10 2

 
 


