
Re-feedback:

Freedom with Accountability
for Causing Congestion in a Connectionless

Internetwork

Robert Briscoe

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

15 May 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCL Discovery

https://core.ac.uk/display/1685121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

To Lyn

3

I, Robert John Briscoe confirm that the work presented in this thesis is my own. Where information

has been derived from other sources, I confirm that this has been indicated in the thesis.

15 May 2009

Abstract

This dissertation concerns adding resource accountability to a simplex internetwork such as the Internet,

with only necessary but sufficient constraint on freedom. That is, both freedom for applications to evolve

new innovative behaviours while still responding responsibly to congestion; and freedom for network

providers to structure their pricing in any way, including flat pricing.

The big idea on which the research is built is a novel feedback arrangement termed ‘re-feedback’.

A general form is defined, as well as a specific proposal (re-ECN) to alter the Internet protocol so that

self-contained datagrams carry a metric of expected downstream congestion.

Congestion is chosen because of its central economic role as the marginal cost of network usage.

The aim is to ensure Internet resource allocation can be controlled either by local policies or by market

selection (or indeed local lack of any control).

The current Internet architecture is designed to only reveal path congestion to end-points, not net-

works. The collective actions of self-interested consumers and providers should drive Internet resource

allocations towards maximisation of total social welfare. But without visibility of a cost-metric, net-

work operators are violating the architecture to improve their customer’s experience. The resulting fight

against the architecture is destroying the Internet’s simplicity and ability to evolve.

Although accountability with freedom is the goal, the focus is the congestion metric, and whether

an incentive system is possible that assures its integrity as it is passed between parties around the system,

despite proposed attacks motivated by self-interest and malice.

This dissertation defines the protocol and canonical examples of accountability mechanisms. De-

signs are all derived from carefully motivated principles. The resulting system is evaluated by analysis

and simulation against the constraints and principles originally set. The mechanisms are proven to be

agnostic to specific transport behaviours, but they could not be made flow-ID-oblivious.

Acknowledgements

I am forever indebted to my wife, Lyn, for putting up with me obsessing over this research. And to my

youngest son Joe who missed some of the attention his brothers got.

Jon Crowcroft provided excellent supervision and spot-on guidance throughout. Despite switching

from UCL to Cambridge he remained dedicated to helping me through, even though he didn’t have to,

and even though I’ve taken longer than any of his many PhD students. Thank you, Jon. Also thanks to

Stephen Hailes for his wise advice once he took over as my first supervisor, and to Saleem Bhatti and

Mark Handley, my second supervisors. And thank you to my examiners, David Clark and Frank Kelly,

for their thorough review comments.

I acknowledge the funding and support of BT through Alan Steventon’s Steve Wright’s and Jonathan

Legh-Smith’s Strategic Research Programme, and the support of my managers over the duration of this

research, Steve Sim and Peter Hovell. I also acknowledge the personal support of BT’s CTO Matt Bross.

Specific acknowledgements have been made in each supporting publication, others by reference.

Where appropriate, specific contributions have also been identified in the text.

Sébastien Cazalet and Andrea Soppera contributed to the original invention of re-feedback, and the

following people have help develop it over the years: Andrea Soppera, Arnaud Jacquet, Toby Moncaster,

Carla Di Cairano-Gilfedder, Alessandro Salvatori, Alan Smith, Louise Burness and Martin Koyabe. The

simulations in this dissertation were produced by Carla Di Cairano Gilfedder, Alessandro Salvatori and

Toby Moncaster.

All the following have given helpful comments: David Songhurst, Ben Strulo, Phil Eardley, Peter

Hovell, Gabriele Corliano, Steve Rudkin, Marc Wennink, Nigel Walker, Fabrice Saffre, Cefn Hoile,

Steve Wright, Don Clarke, Keith Briggs, John Davey, Nigel Geffen, Pete Willis, John Adams (BT), Sally

Floyd, Scott Shenker (ICIR), Joe Babiarz, Kwok Ho-Chan (Nortel), Stephen Hailes, Mark Handley,

Adam Greenhalgh, Brad Karp (UCL), David Clark, Bill Lehr, Steve Bauer, Payman Faratin, Sharon

Gillett, Liz Maida (MIT) Frank Kelly (Uni Cam) and comments from participants in the CRN/CFP

Broadband and DoS-resistant Internet working groups.

These acknowledgements probably miss someone who has helped. I apologise. And finally, I alone

am responsible for all the mistakes, overstated claims and any comments about the work of others that

may offend.

Contents

I Freedom with Accountability

for Causing Congestion in a Connectionless Internetwork 13

1 Introduction 14

1.1 The Problem. .14

1.2 Motivation. .17

1.2.1 Other Motivations .19

1.3 Road map. .20

2 Related Work 21

2.1 Internet Congestion Control. .21

2.2 Economics of Network Congestion. 23

2.3 Internetwork Market Structure. 27

2.4 Critique of Existing Work. .29

2.5 Conclusions from Reviews. .35

3 Hypotheses 37

3.1 Clarifications .37

3.2 Significance and Rationale. .39

3.3 Approach .40

II Re-feedback 42

4 Receiver Aligned Re-inserted Feedback 45

4.1 Introduction. .45

4.2 Re-feedback. .46

4.A Re-feedback functions. .50

4.A.1 Congestion re-feedback. 51

5 Re-feedback Incentive Mechanisms 53

5.1 Incentives. .53

5.1.1 The case against classic feedback. 55

Contents 7

5.1.2 The Case Against Bottleneck Policers. 57

5.1.3 Honest congestion reporting. 57

5.1.4 Policing congestion response. 61

5.1.5 Inter-domain incentive mechanisms. 64

5.1.6 Distributed denial of service mitigation. 65

5.2 Dropper performance. .65

III Re-ECN: Unary Congestion Signal Integrity Mechanisms 70

6 Re-ECN Introduction 72

6.1 Re-ECN Wire Protocol. .75

6.1.1 Justification for Building on ECN. 75

6.1.2 Re-ECN Network Layer Protocol. 78

6.2 Notation, Definitions and Metrics. 81

7 Re-ECN Egress Dropper 86

7.1 Dropper Terminology. .86

7.2 Dropper Behaviour Constraints. 87

7.3 Dropper Design Principles. .87

7.3.1 Proportionate Sanctions

(Equivalence with Honesty). 90

7.3.2 Source Responsibility for Delay Allowance. 93

7.3.3 Dropper State Management. 94

7.4 Dropper Handling of Other Markings. 98

7.4.1 Cancelled Markings. .98

7.4.2 Cautious Markings. .99

7.4.3 Legacy ECN Markings. .100

7.4.4 Congestive Loss. .101

7.4.5 Downstream Congestion Analysis Revisited.102

7.5 Attacks Perverting the Dropper. .103

7.5.1 Flow ID Whitewashing. .103

7.5.2 Dragging Down an Aggregate. .105

7.5.3 Dragging Down a Spoofed Flow ID. .105

7.6 Dropper Algorithm Implementations. .106

7.6.1 Continually Vigilant Dropper Algorithm. .107

7.7 Predicted Dropper Performance. .115

7.7.1 Predicted False Hits. .115

7.7.2 Predicted False Misses. .124

7.8 Simulated Dropper Performance. .132

Contents 8

7.8.1 Simulation Environment. .133

7.8.2 Simulation Results. .135

8 Re-ECN Border Incentive Mechanisms 145

8.1 Border Architecture. .145

8.1.1 Baseline Border Mechanism. .145

8.1.2 Border Mechanism Constraints. .145

8.1.3 Border Design Principles. .148

8.2 Border Attacks and their Defences. .150

8.2.1 Attacks and Defences: Executive Summary.150

8.2.2 Attack #1a: Dragging Down a Border Aggregate.150

8.2.3 Attack #1b: Dummy Background Congestion.153

8.2.4 Defence #1: Sample-Based Downstream Congestion Inflation. 153

8.2.5 Attack #2a: Signal Poisoning with Cancelled Markings.159

8.2.6 Attack #2b: Extreme Upstream Congestion.160

8.2.7 Defence #2: Normalising Cancelled Markings.161

8.2.8 Defence #3: Using Congestion Marking to Detect Anomalies. 166

8.3 Border Incentive Mechanisms: A Review. .166

9 Re-ECN Forwarding Element Behaviour 168

9.1 Re-ECN Preferential Drop. .168

9.2 Congestion Marking Cautious Packets. .170

10 Re-ECN Middlebox Behaviour 171

10.1 Flow-State Congestion Signalling. .171

11 Re-ECN Bulk Congestion Policer 173

11.1 Bulk Congestion Policer Model. .173

11.2 Policer Diversity .174

11.3 Bulk Congestion Policer Design. .177

11.3.1 Covert Marking as Policer Signals. .178

12 The Re-ECN System 179

12.1 System Attacks on Congestion Signal Integrity. .179

12.1.1 Endpoints Against Networks. .179

12.1.2 Networks Against Endpoints. .188

12.1.3 Ends Against Ends. .194

12.1.4 Byzantine State Transitions. .200

12.2 Re-ECN Protocol Reconsolidated. .204

12.2.1 Re-Architecting Flow Start. .204

12.2.2 Forward Compatibility. .206

Contents 9

12.3 Re-ECN System Properties. .208

12.3.1 Transport Oblivious Congestion Signal Integrity.208

12.3.2 Algorithm Complexities. .214

12.3.3 Performance. .215

12.3.4 Outstanding Vulnerabilities. .215

IV In Closing 217

13 Conclusions 218

13.1 Closing Arguments. .218

13.2 Re-ECN Limitations and Further Work. .221

13.3 Material Contributions. .223

13.3.1 Direct contributions .223

13.3.2 Background contributions. .226

13.4 Concluding Remarks. .227

A Design Alternatives 232

A.1 Mid-Flow Dropper Algorithm .232

A.2 Precise Downstream Congestion Meter Algorithm. .234

B Rejected Design Alternatives 237

B.1 Rejected: Three Primary Marking States. .237

B.2 Rejected: Using Positive Not Cautious. .238

C RED under Extreme Load 241

Bibliography 243

List of Figures

4.1 Path Characterisation Notation;. 47

4.2 Network Flows Carrying Unloaded Delay in Packet Headers.. 48

5.1 Re-feedback Incentive Framework.. 54

5.2 Truth Telling Incentives. .58

5.3 Penalising Misbehaviour Under Uncertainty.. 59

5.4 Typical simulated distributions of DPM at the destination.. 59

5.5 Effect of Dropper Smoothing on Truncation Rate.. 67

5.6 Truncation Discrimination.. .68

6.1 Re-ECN Incentive Framework.. 73

6.2 Re-ECN Expected State Transitions.. 79

6.3 Re-ECN Markings at Intermediate Points Along a Network Path.. 81

7.1 Misbehaving Traffic a) Before and b) After Discard by the Egress Dropper.. 91

7.2 Egress Dropper for Unary Re-ECN Marking.. 93

7.3 Re-ECN Dropper Flow State Machine.. 97

7.4 Compliant Traffic Suffering Losses Before and After ECN Marking.. 101

7.5 Effect of Cautious Markings on the other Re-ECN Markings after the Egress Dropper.. . 102

7.6 Modelled Probability of ECN Marks per Window in TCP Congestion Avoidance.. . . . 119

7.7 Modelled Probability of ECN Marks per Window in 10-MulTCP Congestion Avoidance.119

7.8 Dropper Drop Probabilityπr due to Missing One Positive Mark.. 125

7.9 Gain from the ‘Pay Once Only’ Behaviour.. .130

7.10 Dropper drop probabilityπr due to stopping Positive Marking..131

7.11 Simulation Topology to Test the Re-ECN Dropper..134

7.12 Distribution of Marks per Window for TCP against Congestionp. 137

7.13 Re-ECN Dropper Sensitivity to false hits against EWMA weighta 139

7.14 Drop Fraction against Time as the re-ECN Dropper Handles a Slowly Ramping Down

Cheat. .142

7.15 Drop Fraction against Time as the re-ECN Dropper Handles a Slowly Ramping Up Cheat.143

8.1 Scenarios with different levels of understatement of downstream congestion.. 151

List of Figures 11

8.2 Visualisation of the Border Congestion Metering Problem..157

8.3 Signal Poisoning with Cancelled Markings.. .160

8.4 Signal Poisoning with Extreme Upstream Congestion..161

8.5 Deflating Cancelled Markings to Gain from Metering applied using Eqn (6.4). 162

8.6 Inflation of Downstream Congestion to allow for Cancelled Markings.. 165

11.1 Bulk Congestion Policer in Context.. .173

12.1 The Futility of the FEC Trade-Off Attack.. .180

12.2 Re-ECN Unexpected State Transitions.. .201

12.3 Re-ECN Unexpected State Initialisation.. .201

12.4 Re-ECN Expected Proxy State Transitions.. .201

12.5 Normalised Net Utility Gain;. .212

C.1 Drop at an Overloaded Queue.. .242

List of Tables

4.1 Re-feedback Functions.. .49

4.2 Comparison of Sender and Receiver-Aligned Feedback.. 50

6.1 Packet States in the Re-ECN Protocol.. 79

7.1 Which Design Principle Satisfies Which Constraint.. 88

7.2 Simulated Round Trip Times between each Source and Destination.. 134

7.3 Simulation Parameters Varied to Create the Two Traffic Scenarios.. 134

7.4 Congestion Mean & Variance for the 6 Simulated Scenarios..135

7.5 Distribution of Marks per Window for TCP against Congestionp. 137

8.1 Classes of Border Dummy Traffic Attack. .152

9.1 Proposed Drop Preferences for a re-ECN-aware Forwarding Element.. 169

12.1 Further DDoS Attack Strategies and Remedies.. .186

Part I

Freedom with Accountability

for Causing Congestion in a

Connectionless Internetwork

13

Chapter 1

Introduction

1.1 The Problem

This research concerns the introduction of a resource consumption metric for the datagram internetwork-

ing layer, intended to improve the current Internet architecture. The end-to-end design principle [SRC84]

advises that removing unnecessarily specific functions is as important as deciding which generic func-

tions to include—necessary but sufficient. Chosen correctly, the internetwork layer should allow com-

munications systems to be built around it that can evolve to meet unforeseen requirements without undue

complexity.

This thinking has resulted in the characteristic rudimentary network layer of the Internet that solely

delivers datagrams to their destination address. It allows every end-point the freedom to communicate in

any way it wants with any other end-point, using any amount of the resource pool in between. But giving

all end-points such freedom allows them to conflict with the freedom of others, wherever the capacity of

particular resources is insufficient for the total load focused on it.

The problem we address is to include sufficient mechanism in the network layer to transmit a trust-

worthy resource consumption metric, but no more than the minimum necessary to allow higher layer

mechanisms to resolve resource conflicts with a wide range of resource sharing approaches.

A large part of the contribution of this research has been to identify the precise sub-problems that

need solving towards this end. Therefore the following problem description becomes a sequence of

continually refined sub-problem statements. Perhaps more importantly, in the process it also identifies

(non-)problems that were only on the generally accepted research agenda due to unsound reasoning—

they were actually huge distractions.

The current Internet architecture allows every data source the freedom to choose whatever sending

rate it requires, irrespective of the congestion it may cause. Most application authors choose to use the

Internet through the TCP library, which behaves very sociably by reducing its sending rate in response to

congestion [Jac88]. However, applications can choose not to reduce their rate in response to congestion,

some because they cannot function below a minimum rate (e.g. interactive streaming media) and others

through deliberate malice (e.g. flooding attacks). If these applications compete with TCP sources their

careless, selfish or malicious behaviour is rewarded further by the TCP sources, which try even harder to

alleviate congestion as long as competing sources continue their aggression.

1.1. The Problem 15

However, even if every application used TCP, or was at least TCP-friendly [FHPW00] (i.e. us-

ing roughly the same average bit-rate as a TCP source under similar conditions), although congestion

collapse would be avoided, there would be no control over whether resource sharing conflicts were rec-

onciled. TCP certainly provides a safe dynamic (second order) response to congestion, but it is a fallacy

that the shares of resources (first order) that TCP allocates are in some way special. That cannot be true

because it depends on how much data different users ask TCP to transfer, and how many instances of

TCP they use to do it [Bri07b]. A transport protocol alone cannot and should not be expected to share

resources fairly, in any sense of the word [Bri08d].

Further, it would be a mistake to solve the problem of resource conflicts by forcing every individual

application to respond to congestion in a certain way. Curtailing the freedom that an application has to

choose whatever sending rate it needs would limit the space for future innovation, stunting the growth of

new (and existing) applications such as networked games, flurries of transactional messages or just faster

than normal file downloads. Ideally we need to allow freedom within some wider bounds that encourage

a generally sociable long-term and short-term sharing of resources, but with allowance for considerable

give and take [GK99b].

A more fruitful approach is to view the problem as a need for accountability. We want every

application to have the freedom to choose whatever rate is necessary with whatever dynamics. But,

where this can restrict the freedom of others, networks need to at least be able to hold users accountable

for the consequences of their actions. But, even if some networks don’t hold users accountable precisely

for the congestion they cause, but may-be for some poor approximation like volume, and even if some

networks don’t use accountability at all, then the whole system must still work for those who do care

about accountability.

Accountability for resource usage was on the original 1988 agenda of requirements for the Internet

protocols [Cla88], albeit last of seven in priority order. It was still an unmet requirement in the list

for a new Internet architecture (NewArch) in 2000 [BCSW00], though framed as a need for a capacity

allocation capability.

Only having solved the problem, do we now truly understand that the ability for networks to asso-

ciate traffic with the sending user’s account is neither a necessary nor sufficient form of accountability

for internetworking. Firstly, the problem is one of accountabilityfor causing congestion, as traffic itself

is not a problem to anyone unless it contributes to congestion.

This is because the minimal accountability necessary for datagram forwarding should concerncost

of usage. Certainly the Internet architecture should not help reveal other economic information such as

consumer value. Consumers try to keep their valuation private and providers try to capture it, so it would

be wrong to pre-judge the outcome of this tussle at such a low layer in the architecture. However, if the

architecture doesn’t reveal true usage costs, no mechanism can ensure that the cost to the consumer tends

downwards over time towards the cost of provision. Cost minimisation is a generally accepted goal of

all modern societies whatever mechanism is chosen, whether by encouraging competitive markets or by

regulating uncompetitive markets, or even by centralised national economic planning.

1.1. The Problem 16

The marginal cost of usage of a network resource depends entirely on the extra congestion due to

the presence of the traffic. So the architecture should reveal congestion.

From the early days of the Internet, end-points were responsible for detecting and controlling con-

gestion. Therefore, end-points place all the information they need for detecting congestion (sequence

numbers) in the end-to-end transport layer. But there is no way for all the end-points to co-ordinate

themselves sufficiently to hold each end-point accountable for the costs it causes to others, let alone for

them to enforce any desired preventative action. Only the operator of a forwarding device can be in the

natural position to do either.1 But networks cannot see this congestion information unless end-points

allow them to. It is hard for networks to measure this information reliably, because a gap in a sequence

might simply imply a few packets went over a different path. And anyway, if networks did use this

information against the interests of end-points, end-points could just encrypt it, or just not send it at all.

As well as which costs to consider, we have to consider who needs to associate the costs with whom.

The minimum sufficient accountability requires a forwarding device to be able to associate the expected

marginal costs of traffic with the entity directly causing the costs. Although the costs are originally

caused by the data sender, each forwarding device directly assists in causing the costs. We now realise

that it removes considerable complexity if the congestion is associated with each packet, rather than with

the original sender. Then, minimally, accountability can be localised to any trust boundary across which

packet traffic flows.

The advantage of making the packet, not just the sender, accountable is that we can then make

each party along the forwarding path accountable for forwarding the packet across each trust boundary,

localising accountability and enabling aggregation. As the packet crosses each trust boundary, the party

on the receiving side can associate the costs in the packet with the party on the sending side of the

boundary. Thus, a network forwarding packets on behalf of the sender can be held accountable for

allowing the sender to cause congestion.

Localisation of accountability avoids any need for globally meaningful identities. Specifically,

the validity of the sender’s address in the network layer packet header becomes irrelevant for resource

accountability. For wireline links this means accountability need only depend ultimately on the security

of local physical connectivity.2 For wireless links and for many virtualised wireline links, accountability

will usually also have to depend on identifiers or authentication in link headers, but these need only be

trusted local to the link.

The main omission prior to our research was that datagrams could only be held to account for

the congestion they caused after the fact—once actual congestion had happened—because datagram

transfer is inherently one-way or simplex. Instead, we ensure the sending or forwarding party can be

held accountable for itsexpectationof how much congestion it will cause on the rest of the path. Then

causes of excessive expected congestion can be curtailed. The problem then becomes one of ensuring

that expected congestion is declared honestly, which is the subject of this dissertation.

1The operator might also be a consumer, as in an ad hoc or peer-to-peer network.
2The term wireline scales to ’wires’ at a microscopic level, including data flows crossing process ownership boundaries within

virtualised machines (e.g. multi-sender hosts or virtual routers).

1.2. Motivation 17

We now understand that the problem is how to hold each self-contained datagram accountable for

the congestion it expects to cause. Which leads us to have to solve the problem of how to update a

packet as it traverses a network, so it always declares the congestion it is likely to cause, but only the

likely congestion over theremainderof its journey. Laskowski & Chuang have also identified exactly

this need to be able to monitor ‘rest-of-path’ congestion, delay etc. as the major cause of the Internet’s

economic problems [LC06]3.

By requiring the upstream entity to form an expectation of downstream congestion, it becomes

in their interest to monitor recent downstream congestion by soliciting timely feedback. However, it

would have been wrong to make feedback a necessary condition for using the Internet—a datagram

must be sufficiently self-contained to be delivered alone. So we must not require end-points to depend

on feedback about congestion from previous datagrams (although they can use it if they have it). Instead,

an upstream entity can simply be conservative in its expectation of congestion if it chooses not to gather

feedback (also essential for starting or re-starting a data flow before feedback is available).

Finally, congestion is of course caused by either excess traffic or insufficient capacity. We have

so far focused on accountability for sending traffic, not for insufficiently supply capacity—dropping

traffic. We believe it would be misguided to try to build a mechanism for networks to be accountable

to data senders for specific instances of congestion [AMI +07, LC06]. It is sufficient for networkNB

to be accountable to its upstream neighbourNA both for any congestion within its own network and

congestion in downstream networks it chooses to route through. This accountability takes a simple form.

If NB providesNA with more expensive, more congested paths than other networks,NA can choose

not to useNB ’s service.NA can just not route viaNB , on a path-by-path basis if necessary.4 So again,

the problem is to ensure packets carry downstream congestion information. Then not only canNB hold

NA accountable for forwarding traffic that causes congestion, butNA can holdNB accountable for not

having provisioned sufficiently. Again, the problem is that packet networks lack visibility of downstream

congestion information.

1.2 Motivation

The problem of improving the sufficiency of datagrams without sacrificing simplicity is an important

scientific and engineering endeavour in its own right. But considerable social and economic problems

are also at stake.

Firstly, if used as intended, the current Internet architecture allows resource allocations to become

extremely sub-optimal relative to the social welfare maximisation that a perfect market would produce.

Proving this is not part of the current research. But the intuition has been given above, and the author’s

complementary work (with co-authors) gives worked examples of how bad resource allocations can be

for typical uses of the current Internet [Bri08d]. We also try to quantify the problem a little below. We

3In a paper published in SIGCOMM’06, articulating the problem we had provided a solution to in the same conference the year

before [BJCG+05].
4There is an important exception where the terminating network has a monopoly on routes to the destination, which is also part

of the problem we address.

1.2. Motivation 18

can certainly say that current resource allocations are not just slightly out, but hopelessly unlike they

would be if a market were allocating resources.

Unconstrained resource sharing can be beneficial in small doses, but if allowed to predominate

it can stagnate market growth. If applications that want higher bit rate can help themselves without

being held to account during congestion, they can effectively free-ride at the expense of other people’s

service impairment. Communications infrastructure, particularly the access edges of a network, requires

huge levels of investment many years in advance. If free-riding predominates, the risk of investment in

new infrastructure becomes too high, because there is no expectation that those most benefiting from

the investment can be made to pay the returns on that investment (and usually no-one else will unless

Government backing is provided). A downward spiral of declining quality and declining investment

results [Gro05].

But there is considerable evidence that investment in networks is not declining. Rather than allow

their network to descend into this is spiral, unsurprisingly, ISPs have found other ways to prevent the

worst effects of free-riding. With no formal architectural support against free-riding, they have resorted

to a hotch-potch of locally invented attempts at improvement.

This is what is happening on the Internet. It is now very common for ISPs to deploy deep packet

inspection (DPI) boxes to effectively fight TCP’s resource allocations. ISPs identify the application

within the payload of each packet flow and throttle those that theyinfer have low value. This violates

the Internet architecture. But they are trying to improve their competitive position by pleasing more of

their customers more of the time, without spending excessively on capacity. They have to violate the

architecture for their businesses to remain viable.

Their ‘need’ to violate the architecture causes unintended consequences. Those application devel-

opers most likely to be hit by throttling are obfuscating their application traffic. Many ISPs are already

starting to suspect any encrypted and unidentifiable payload. Anecdotally, there is already some evidence

that some applications under threat are starting to imitate the characteristics of other ‘business-critical’

encrypted traffic. This could lead the ISPs to throttle all unidentifiable traffic or to consider making

customers seek permission to send it (possibly for a fee).

Many people don’t like companies taking control of their choices, and even those who don’t care

get angry when ISPs infer their values wrongly. Some ISPs have a vested interest in disadvantaging

certain applications or competitor services. So even if an ISP’s intentions are honourable (throttling

heavy users in the interests of the majority), discriminating against certain packets can be confusable

with anti-competitive practice. In the US over the last three years, this has led to politicians getting in-

volved in the details of Internet resource allocation, at which point the possibilities for further unintended

consequences expand, and the chance of rational scientific debate worsens.

But what justification is there for saying Internet resource allocation has become extremely sub-

optimal? If one considers that a weight could be associated with every data flow (as in weighted pro-

portional fairness [Kel97b]), then the predominance of TCP can loosely be considered as a special case

with all the weights set to one. If instead everyone was free to choose their weight, constrained only by

1.2. Motivation 19

accountability for the congestion they caused, Kelly shows everyone would maximise aggregate social

welfare by setting the weights based on their willingness to pay for the bit-rate of each application.

Market studies5 have shown that value per bit covers a spectrum of about ten orders of magnitude,

from messaging (SMS, IM) at the extreme high end to software & video downloads at the bottom, with

interactive voice, Web, email, interactive video and music downloads between. Assuming the value of

transferring a bit is related to the value of the bit itself, this shows that optimal weights would probably

range over many orders of magnitude, so setting all the weights to one is likely to be extremely sub-

optimal. Even worse, bulk transfers (a large proportion of traffic on the Internet) would probably be given

a very low weight, if users were accountable. But they are currently often given a weight considerably

greater than one (by the programmer opening multiple instances of TCP).

Unfortunately, bulk transfers least need a high weight. Even without considering economics,

weighting small jobs is the classic way to optimise completion times in scheduling problems with a

mix of job sizes [Kle76]. But if the utility of completion times is also considered, when small jobs tend

to carry higher utility per unit size, weighted solutions are even more powerful.

If there were accountability for congestion, higher weight would generally be assigned to brief

intermittent flows (i.e. flows of fewer bytes interspersed by periods of inactivity) because the extra cost

would be easier to sustain over lower activity factors than in larger flows with higher activity factor. And

if small data flows go faster they finish sooner, leaving as much capacity on average for the bigger flows

over time (modulo inefficiencies due to the greater dynamic range).

1.2.1 Other Motivations

Simpler Quality of Service.Quality of Service (QoS) mechanisms, whether per-session (e.g.

Intserv [BCS94]) or bulk (e.g. Diffserv [BBC+98]), have foundered once inter-domain deployment

has been attempted (for years they just foundered, full-stop). There seem to be two main problems. One

is at the API, the other is the need for considerable operational baggage between networks; to scalably

authorise and authenticate, to provision, to monitor contracts and so forth.

The API to QoS seems to be problematic because applications can only ask for something the

network knows how to offer, which often isn’t really what they want (which in turn would be too com-

plicated to express or even know clearly at design time). The industry has trained its customers to say

they want bit-rate, burst size and so forth. But applications (and humans) aren’t like that. Once appli-

cation demands are aggregated, it starts to become easier to express what is wanted, especially in terms

of expectations rather than quantitative assurances [Cla95]. But this still leaves an API gap between the

application and the aggregated part of the network.

It should be fruitful to look at these QoS problems in a different light. As long as an application

is given early warning of impending congestion somewhere on its path, e.g. with explicit congestion

notification (ECN [Flo94]), it can take QoS for itself by just not responding as much to approaching

congestion as it would otherwise.

Seen like this, the QoS problem becomes one of accountability for causing congestion anywhere

5Unfortunately not citable.

1.3. Road map 20

on the path. The problem is then not what the application can do—it can always do almost anything.

The problem is what the network provider will allow the application to do and how to stop it exceeding

these bounds. This becomes a lot easier if each network on the path can see the same information

about congestion as the customer’s machines. The network directly attached to the consumer can then

set limits to the behaviour of the customer as a whole site or household and it can enforce them (or

charge for exceeding them). And networks further downstream can do the same recursively against their

upstream neighbour networks.

Thus, instead of arranging packets to carry QoS requests to distant networks, the problem can be

seen as getting packets to carry congestion information from distant networks to the local one. Impor-

tantly, this removes any need to place significance on identifiers in packets.

This approach alone would not be expected to give QoS with strong assurances6, but it might allow

a wide range of expectations to be met without applications having to translate what they think they want

into a language that doesn’t have the right vocabulary.

The interface between end-point and network or between two networks would be so simple, one

could hardly call it a QoS API any more. Only incipient congestion (ECN) information would need

to pass across it. But the congestion information would have the additional semantic of cost—for the

application to trade off against the benefit it will get from continuing to send bits.

Mitigating Bandwidth Flooding. Mitigating distributed denial of service (DDoS) attacks is another

motivation for this research. The security community generally hasn’t considered bandwidth flooding as

a congestion accountability problem.

But, instead of the victim trying to find where attack packets are coming from, the problem can be

seen as ensuring packets reveal expected congestion as they leave the sender. Then the packets headed

for a flooding attack should be very obvious to the networks on the way. A high rate stream of packets

heading for close to 100% congestion should stand out from everything else, as it would be very unlikely

to be a genuine application. And source and networks alike could be held accountable for the congestion

cost of the attack, creating strong incentives to remove it [Bri06].

1.3 Road map
The dissertation is in four parts. This first part has explained why freedom with accountability for

causing congestion is important for the Internet. It now continues in more depth by surveying the seminal

literature in this field followed by the main criticisms of the state of the art that motivated the present

research to fill the gaps. With the background to the field explained, we then end this first part by stating

the two hypotheses that focus the rest of the dissertation.

It will be more meaningful to give an outline of the approach used in the rest of the dissertation at

the end of PartI, in §3.3after the hypotheses have been introduced.

6It can in an edge-to-edge rather than end-to-end architecture [Ear09b], but the API gap opens up again in this case.

Chapter 2

Related Work

In retrospect, reading and thinking deeply about just the following ten or so papers would have been

sufficient background for this research. Of course, other sources (extensively referenced throughout this

dissertation and in supporting publications) provided necessary background understanding and ideas, as

well as many false trails.

2.1 Internet Congestion Control

TCP: In 1988, Jacobson published “Congestion Avoidance and Control” [Jac88] to document the col-

lection of algorithms he had implemented to provide congestion control for the transmission control

protocol (TCP). Bravely, this was a wholly distributed protocol in which all aspects of resource control—

efficiency, stability and fairness—were governed by the collective action of the computers comprising the

Internet. Without it, or something like it, it is unlikely the Internet would have ever become widely used.

TCP congestion control was produced in response to repeated congestive collapses of the whole Internet

in 1986 and 1987. Router-based alternatives were being actively pursued, but Jacobson’s distributed

solution was such an astonishing improvement on the previous TCP that it was immediately deployed on

all 30,000 or so Internet hosts, and has remained the Internet’s predominant resource control mechanism

to this day.

A colleague1 recently collected results from 16 traffic characterisation studies conducted at different

parts of the Internet (campus, residential and WLAN) between Jan 2003 and May 2006 in an unpublished

survey. The proportion of TCP bytes measured in each study clusters around two percentages, 80% and

92%, with a clear mode of 94% Internet bytes controlled by TCP. Two outlier studies found 72% and

98% respectively. There is no significant trend up or down over the years.

Most academic focus has been on the additive increase multiplicative decrease algorithm that TCP’s

congestion avoidance phase borrowed from Jainet al [JRC87]. But probably Jacobson’s most important

contribution was the balance between the parameters of the initial ‘slow-start’ phase and the following

congestion avoidance phase, which he justified with self-confessed ‘hand-waving’ in the paper. Internet

traffic has a heavy-tailed flow-size distribution, so large numbers of flows either never reach congestion

avoidance, or at least send the majority of their bytes in slow start phase. Slow start phase is a tricky

1Swadesh Samanta.

2.1. Internet Congestion Control 22

period for a flow as it quickly tries to find a fair operating point alongside other traffic. But the majority

of bytes (not flows) in all the other traffic are in congestion avoidance phase. So the long flows must

react fast enough to losses to allow in brief flows, then they must quickly converge on the new operating

point together, then, as the brief flow finishes, the long flow must be able to quickly use up the freed

capacity.

ECN: In 1994, Floyd published “TCP and Explicit Congestion Notification” (ECN) [Flo94]. It pro-

posed a new field in the Internet protocol (IP) header, which finally reached the first ‘Proposed Stan-

dard’ stage of the Internet Engineering Task Force’s (IETF’s) standards track nearly seven years later, in

2001 [RFB01].

Prior to ECN, a queue experiencing congestion would discard some packets, then Internet con-

gestion controls like TCP would detect the lost packets as gaps in the sequence numbers of the packet

stream. The idea of ECN was to use an explicit marking on packets to indicate the onset of congestion,

to try to keep the network at an operating point just below where losses started to be experienced. There

is always a possibility that a gap in a packet sequence is merely a symptom of re-ordering, so a transport

protocol waits for stronger evidence of a loss (further packet arrivals without filling the gap, or ultimately

a timeout) before deciding congestion has really been experienced and slowing its rate. This delay due to

uncertainty (which ECN solves) has a disproportionately detrimental effect on the performance of short

transfers.

The reason ECN is important to the present research is an unintended but necessary side-effect of its

introduction. It makes congestion visible to network devices downstream of the congested link, whereas

any discards of packets by upstream devices are difficult if not impossible to monitor within the network.

This is because there is no need for a sequence number space at the IP layer. So if the transport or higher

layers choose not to reveal their sequence numbers (e.g. by encrypting them), the network cannot detect

a gap in them. And even if they are not encrypted, a network element doesn’t know whether gaps are

due to re-routes or congestion. Readability of the ECN field at the IP layer is a fortunate side-effect of

the need for writability of the field at the network layer.

In outline, ECN works as follows. As an ECN-enabled queue in the network starts to grow, it sets

the new ECN field to a codepoint termed congestion experienced (CE), with increasing probability the

longer the queue. Whenever a CE mark arrives at the receiver it notifies the sender, which can quickly

and unambiguously know that congestion has been experienced. The sender is then meant to reduce its

rate as if it had detected a drop (e.g. in its congestion avoidance phase TCP would halve its window).

Despite the mention of TCP in the title both of the research paper and the proposed standard,

ECN was a change to the network layer’s notification of congestion, which then requires any higher

layer transport protocol, not just TCP, to be updated in order to understand it. TCP was merely the

first transport protocol to be adapted to the new IP. This required some careful attention to backward

compatibility to avoid using ECN to signal congestion to legacy transports that only understood loss as

a sign of congestion.

Specifically, prior to ECN, the two bits of the ECN field had (nearly) always been left containing00

2.2. Economics of Network Congestion 23

(now termed Not-ECT, a non-ECN-capable transport). So, for packets with the ECN field cleared to zero,

even if a queue is ECN-enabled it must use drop rather than ECN to notify congestion. Also a sender-

receiver pair must not use ECN unless they have established that they are both capable of understanding

it, typically in the capability negotiation during the initial handshaking to start a flow. Then the sender

must set the ECN field in every data packet to a non-zero value2 to indicate to the network that the

transport understands ECN (termed ECN-capable transport or ECT).

2.2 Economics of Network Congestion
Two-part congestion pricing:MacKie-Mason & Varian’s “Pricing Congestible Network Re-

sources” [MMV95] summarises their research in this field. It examines the tension between recovering

the cost of capacity through a flat charge or through a variable usage dependent charge. It considers a

range of providers available to a user, all buying capacityK [b/s] at costc(K) [¤/s].3 It hypothesises a

two-part tariff offered to customersi with a fixed subscription priceq [¤/s] and a variable usage pricep

[¤/b] for usagexi [b/s], such that the rate of charge [¤/s] isq + pxi. It considers what choice ofp & q

would maximise social welfare under a centrally planned economy or under competitive or monopolistic

markets. The monopoly case will be set aside in this summary.

Providers vary their prices to maximise profits. Users switch between providers until the price-

quality balance suits them. Quality degrades when usage starts to exceed capacity. As a result, both the

non-monopoly cases arrive at the same analytical result

usage revenue
capacity cost

=
pxi

c(K)
=

1
e
,

wheree is the elasticity of scale of the capacity. Elasticity of scale is solely a property of the shape of

the function giving the cost of capacity at the current capacity operating point,

e =
average cost
marginal cost

=
c(K)
K

1
c′(K)

.

For the present research, the actual result isn’t so important as the order of magnitude it implies.

Typical elasticities of scale for transmission equipment are of the order of 2 and they approach linear (i.e.

1) as capacity approaches technology limits (unfortunately figures are all from privately published studies

of equipment costs, e.g. Lechner [Lec99] and those of Reid). So the usage element of revenue should

be about 50% of total revenue—and probably increasing, given no significant cost-saving disruptions

in mass transmission technology are on the horizon. This implies that, for the foreseeable future, there

will be a significant element of usage pricing in competitive Internet markets, because it holds strong

competitive advantage against flat pricing. Note that usage pricing schemes that roughly approximate

congestion pricing could be sufficient, such as volume caps at tiered but otherwise flat prices, or with

volume limiting at peak periods.4

2It should use01 or 10 , but it can also use11 even though it shouldn’t.
3The paper concerned usage of general congestible resources. Applying it to specific scenarios like networking was not always

natural. So, for our application of the theory to networking, units have been included in brackets to add dimensional precision. ¤

is the symbol for non-specific currency.
4To give a current data point, BT’s ‘up to 8Mb’ DSL broadband pricing at Feb 2008 consists of a fixed charge of £4/month and

2.2. Economics of Network Congestion 24

This formulation also clearly shows that, in a competitive market, congestion pricing will not add

to an average customer’s charge, rather it will substitute some part of the fixed element with a variable

element.

MacKie-Mason & Varian’s work also contributed the idea of shadow prices for congestion—

borrowed from the classic economics literature and applied to computing and networking problems.

The congestion that others experience is a negative side-effect of an individual’s usage of a network (a

negative externality). Shadow pricing makes an individual internalise this congestion externality. So

shadow pricing is a powerful technique for dividing up the Internet’s resource allocation problem across

all users.

Utility functions: In the same year, Shenker published “Fundamental Design Issues for the Future In-

ternet” [She95], which posited that people’s utilityU for bit-ratex always satiates at high bit-rates,

(∂2U
∂x2 ≤ 0;x→∞) and that utility curves fall into two main classes: elastic and inelastic, being concave

(∂2U
∂x2 ≤ 0) and convex-concave (sigmoid) respectively. As load increases through a capacity bottleneck,

this implies there is no limit to how small a share each user of an elastic application will find useful. But

for inelastic applications, there will come a point where higher value for all will result if some users have

zero capacity as their share drops below the knee of the sigmoid.

If Shenker’s hypothesis is correct, it implies that variable-rate congestion control suits elastic ap-

plications, but admission control is preferable for inelastic applications. Shenker also pointed out that

typical bit-rate reservation systems of the time were designed as if people’s utility was a step function

of bit rate, which could be considered as an approximation of a sigmoid. Whereas rate-adaptive codecs

would give a better approximation to a more gradually inclined utility curve.

These classes of utility curve had no experimental basis. But, since, we have validated that video

utility curves are indeed sigmoid with a wide shallow sloped ‘step’. We used carefully designed exper-

iments with users paying real money, but unfortunately the results are only accessible to partners in the

M3I project, given they reveal price sensitivity information [HE02]. It is possible that all utility is strictly

sigmoid because, to our knowledge, the existence of elastic utility right down to zero bit rate remains

unproven. Nonetheless, as long as a network rarely gets so congested that bit rates fall below the knee

of typical users’ utility curves, it is not cost-effective to introduce the admission control mechanisms

for all traffic that some still argue for [MR99, MPCC00]—it is easier to treat the traffic as effectively

elastic, which certainly leads to sub-optimal total utility during rare overload episodes, but the total loss

of utility over time is probably smaller than the extra it would cost to deploy and operate an admission

control mechanism.5

a variable charge of either £5, £10 or £15/month. Reverse engineering this, the lower two tariffs equate to about £1/GB of volume

irrespective of congestion, while the upper, so-called ‘unlimited’ tariff limits heavy volume users during peak period congestion.

Given the fixed element has to cover non-capacity costs as well, these figures imply BT is trying to cover about 80% of its capacity

costs from usage revenues. If BT’s pricing is rational and if Mackie-Mason & Varian’s analysis is broadly correct, this imputes an

elasticity of scale figure of perhaps 1.2 for BT’s network. Or equivalently BT’s network cost,c(K) ∝ K0.8.
5As long as congestion controls handle extreme congestion safely (e.g. TCP’s exponential back-off).

2.2. Economics of Network Congestion 25

Kelly: In 1998, Kelly and others published “Rate control for communication networks: shadow prices,

proportional fairness and stability” [KMT98], which made advances on many fronts and brought all the

previously mentioned research together6:

• It applied MacKie-Mason & Varian’s shadow pricing to a network, rather than just a single re-

source. It proved that, where elastic applications compete for bandwidth, the total welfare of

everyone using the network can be maximised if the network charges each pair of end-points a

shadow pricep dependent on the sum of congestion they cause on the path between them.

• It added models of each queue’s pricing algorithm and each end-point’s rate control algorithm,

albeit abstracted and fluid.

• It proved that, given shadow pricing, if application users were modelled with a private willing-

ness to pay per unit timewi, and private elastic utility modelled byUi = wi lnxi, purely out of

self-interest they would have the incentive to weight the rate of their private congestion control

algorithm in proportion to their willingness to pay. Specifically, useri would have an incentive to

control her ratexi to converge onwi

p . Kelly proposed users could do this with an equation-based

additive increase multiplicative decrease algorithm of the form

∆xi = κ(wi − pxi)∆t,

where κ is a gain constant. Later Siris designed and implemented a window-based vari-

ant [SCM02].

• It emphasised how the proposed way to distribute the solution preserved the Internet’s ability to

allow new applications with new congestion control requirements to evolve. Gibbens & Kelly also

restated this body of research in a more accessible paper that focused more on the evolvability

aspect, “Resource Pricing and the Evolution of Congestion Control” [GK99b].

• It proved that such self-interested behaviour would preserve local and global network stability,

as long as the gain parameter of everyone’s rate control algorithms met certain constraints. Sta-

bility was proved assuming instantaneous feedback, but a number of papers later proved stability

with propagation delays, each assuming various algorithms and constraints. They are reviewed

in [Kel03]. In broad terms they showed the gain constant must be below a certain constraint,

which must itself be inversely proportional to round trip time.

• It gave a simple mechanism to implement the proposed scheme, based on explicit congestion

notification (ECN) that was in the process of standardisation into IP at the time (now proposed

standard status [RFB01]). All an ISP had to do was count the number of bytes in packets arriving

marked as having experienced congestion at the receiver and apply a fixed price per marked byte.

6Kelly and Voice extended the work to cover end-point congestion-based routing in 2005 [KV05], but the original work made

the advances that are most relevant to our points.

2.2. Economics of Network Congestion 26

Kelly’s assumptions seem reasonable, although one continues to cause debate—not over its cor-

rectness, but over how soon it will come into play. Kelly uses the scaling arguments outlined in [Kel00,

§2] to show that, whichever way that Internet scale increases in the future—whether more flows, longer

flows or higher bit-rate flows—as long as scale does indeed continue to increase, congestion delays will

become insignificant relative to propagation delays.

Kelly et al’s work raised a number of important questions about TCP’s congestion control algo-

rithms [Jac88], which dominate congestion control and resource sharing throughout the Internet.

• Firstly it introduced the possibility that the rate towards which a congestion control algorithm

converges need not be limited by round trip time (RTT), as long as the algorithm’s first order

dynamics are limited within a constraint that is inversely proportional to RTT. For instance, with

stationary congestion̄p, the above rate control algorithm converges onx̄ = wi

p̄ , which can be

independent of the gain,κ and therefore independent of RTT7. More recently, FAST TCP [JWL04]

has adopted a similar strategy.

• But, much more significantly, thelikely values that self-interested users would set Kelly’s weights

to, given congestion pricing, would lead to extremely different capacity shares to those produced

by TCP (see §1.2).

However, in the wider Internet community, the message that TCP probably leads to an extremely

sub-optimal outcome got lost among the objections to Kelly’s proposed means for evolving to the optimal

outcome: dynamic congestion pricing.

Simple pricing: Odlyzko’s paper “A modest proposal for preventing Internet congestion” is more well-

known for its main subject, the Internet pricing proposal called Paris Metro Pricing8 But it also contains

a wealth of evidence from numerous other consumer sectors that consumers are highly averse to un-

predictable pricing [Odl97, §5].9 The section is entitled ‘The irresistible force runs into the immovable

object,’ because it seems to be an unescapable fact that the irresistible economic logic of usage-sensitive

pricing runs counter to the greater desire of consumers for pricing that is predictable and mentally un-

demanding. Consumers will pay a premium to not have to continuously work out how to pay less. As

a result, as Odlyzko puts it, “. . . free enterprise companies prefer the socialist method of rationing by

queue to that of rationing by price.”

Congestion pricing preserves the complete freedom of application logic (under the control of the

user) to change its mind at any instant—to increase or decrease spending without seeking the permission

of the network. But, consumers mustalsobe able to opt not to have complete freedom. Because along

with total freedom comes risk—the risk that events outside the consumer’s control (the discovery of

some desirable information coinciding with high congestion) will tempt them into spending more than

they would have wished, in hindsight.

7Otherwise an application’s attempts to maximise utility can become confused if it doesn’t compensate for RTT.
8Incidentally, PMP fails in a competitive market [GMS00].
9Earlier Barns [Bar89] had provided evidence for a desire for predictable network pricing from the defence sector.

2.3. Internetwork Market Structure 27

The aim of the M3I project10 was to produce an architecture that would enable Internet resource

sharing to self-manage through a variety of pricing plans that would be able to evolve to take account of

the tensions between these immovable consumer pricing preferences, their quality preferences and the ir-

resistible logic of congestion pricing. My own summary of the projects results and their architectural im-

plications, “Market Managed Multi-service Internet (M3I): Architecture PtI; Principles” [Bri02a] agreed

with Odlyzko’s two consumer preferences for pricing (predictable and undemanding) and added a third,

transparency, in which the consumer wants to know that they are getting a known quantity of a well-

understood good for a known price.

This M3I report includes a summary of how the different pricing scenarios enabled by the M3I

architecture resolved all the conflicts between demand control, quality control and pricing preferences

to varying extents. By the end of the M3I project, the tensions had been resolved for inelastic traffic at

the expense of a little extra complexity at the network edge—a risk broker function between the user’s

access network and the core11. But the tensions remained not fully resolved for elastic traffic.

One could argue (as I did [BDT+00]) that a consumer can buy into congestion pricing but then

synthesise her own flat rate pricing by mediating the risk of overspending with her own software agent

that keeps congestion charges within a moving window. But, psychologically, this is still not the same

as someone else sorting it all out for you. Getting Internet service at minimal cost just isn’t important

enough to most people who just want to pay a flat-fee and it works. Consequently, ISPs don’t want to

offer a pricing plan with a footnote saying “As you probably won’t like this pricing plan, we also provide

free software to make it acceptable.”

Further reading: Costas Courcoubetis and Richard Weber, “Pricing Communication Networks” Wiley

(2003) [CW03]

2.3 Internetwork Market Structure

Edge-pricing: In 1996, Shenker, Clark, Estrin and Herzog published “Pricing in Computer Networks:

Reshaping the research agenda” [SCEH96]. It puts forward three main arguments, two of which are

outlined here.12

Firstly it argues that there is a need to cover more than just marginal costs, so “It is important to

allow prices to be based on some approximation of congestion costs, but it is important to not force them

to be equal to these congestion costs.” This was essentially a precursor to the principle that was better

10www.m3i-project.org
11The solution is currently being standardised in the IETF congestion and pre-congestion notification (PCN) working

group [Ear09b].
12The second of the three arguments seems misguided in hindsight. It says that Internet service tries to be generic to all

applications, so it is inherently impossible for the network to capture user utility for not having individual packets delayed or

dropped, as required for congestion pricing schemes like MacKie-Mason & Varian’s ‘Smart Market’ [MMV93] under discussion

at the time. However, the point of the ’Smart Market’ proposal is that utility can remain private but then the market mechanism

effectively allowsusers(not the network) to sort all the demand into two sets, with utility either above or below the shadow price,

in order to limit demand to supply. The argument was perhaps saying that users wouldn’t be able to divide their utility down on a

packet by packet basis anyway. But, this rather threw out the baby with the bath-water by eliminating the possibility that even a

very rough approximation would be better than nothing.

http://www.m3i-project.org/

2.3. Internetwork Market Structure 28

articulated later in ‘Tussle in Cyberspace’: that researchers shouldn’t try to dictate outcomes.

Lastly it argued that the form of pricing wrt. usage was only one aspect of pricing that needed

research. Instead it argued that more attention should be given to how contractual relationships should

be structured across an internetwork.

The main contribution was a description of a structure called edge-pricing. With edge-pricing,

networks levy bulk fees on their neighbours (end-customers and other networks) that all taken together

cover a network’s costs and profits, but charges don’t have to be levied on a flow-by-flow basis. The

motivation of edge-pricing is to allow the forms of tariffs to be different on a pairwise basis between

neighbours, encouraging evolution of tariffs structures, rather than having to embed a pricing scheme in

the architecture.

Information asymmetry: In 2001 Constantiou and Courcoubetis published “Information Asymmetry

Models in the Internet Connectivity Market” [CC01]. Although it is not a conclusive paper, in that it

presents no solutions, it clarifies more precisely than other similar papers which information networks

cannot see about the quality of other networks and why this is so corrosive to a successful communica-

tions value chain. More recently, Laskowski & Cheung [LC06] also highlighted the same information

as the critical missing piece of the Internet, but they did not relate the problem to the economic literature

on market failures due to information asymmetry.

When it comes to theoretical understanding of quality issues, basic economic theory is only just

in front of the ‘science’ of computer communications. The detrimental effects of asymmetry of quality

information were only first articulated in Akerlof’s 1970 paper “The Market for ‘Lemons’: Quality,

Uncertainty and Market Mechanisms” [Ake70], which led to him (with others) winning the 2001 Nobel

Prize in Economics. Using the example of used car sales, it showed that the salesman’s privately held

knowledge of which cars were duds (’lemons’) drove down the price for used cars across the whole

market, because the willingness to pay of consumers would reduce once they took the average risk of

buying a dud into account, even if the car in question turned out to be fine. The suppressed market price

led in turn to a reduction in the incentive to supply.

One can think of a data sender, or a forwarding network, as contracting with a downstream13 net-

work to deliver packets. But with one-way datagram technology, the upstream network knows little about

the downstream neighbours it contracts with, whereas they know their own traffic loading and distribu-

tion, available capacity, resource allocation policies, customer types and interconnection agreements.

Similarly, the next network is in a similarly weak position relative to the one after.

Constantiou and Courcoubetis apply the Principal-Agent formulation to model the resulting situ-

ation. The Principal-Agent formulation has been developed in economics to model the position of the

principal (upstream) and agent (downstream) parties to this contract. By attaching parameterised rewards

to any measurable effort of the agent and any measurable outcome for the principal, it is possible to op-

timise the parameters to design a contract that minimises the negative effects of information asymmetry.

13Different fields use the term ‘downstream’ ambiguously. Communications engineering uses it to mean ‘in the direction of

data transmission’. In the field of industrial organisation, downstream can also have the sense of ‘towards the retail end of a value

chain’, but that is not the intent here.

2.4. Critique of Existing Work 29

Alternatively, it is possible to predict the value of improved measurability of effort or results. As already

stated, the paper is inconclusive, but it at least identifies the problem well.

Design for Tussle:Clark and others published “Tussle in Cyberspace: Defining Tomorrow’s Internet”

in 2002, followed by a clearer journal article in 2005 [CWSB05]. It argues that the architecture of the

Internet should allow the major tensions in society and in economics to be resolved at run-time, not

design time. It turns this principle into the slogan ‘Design for Tussle’.

The M3I architecture mentioned earlier also espoused this principle (it was published in parallel),

but Clarket algive a far better and more general articulation. The M3I discussion was more specific (but

consequently somewhat more concrete), being based on specific examples where the Internet architecture

should be changed.

The paper offers further specific design principles, one being particularly relevant here: ‘Modu-

larise along tussle boundaries’. In the context of the above two papers on edge-pricing and information

asymmetry, one could interpret this as advice to ensure the intended advantage of edge-pricing (indepen-

dent evolvability of each pair-wise contract) is indeed possible. And to ensure that quality information

is visible to both networks at every border.

Towards the end, the paper revisits some of the old design principles of the Internet in the light of

the new tussle-related principles. It tries to grapple with the tensions in the end-to-end principle [SRC84]

(see §1.1). Although the discussion seems inconclusive, it concludes that “. . . end-to-end arguments are

still valid and powerful, but need a more complex articulation in today’s world.” We will return to this

below as we highlight the main outstanding deficiencies in all the works we have just introduced.

2.4 Critique of Existing Work

TCP: The most pernicious deficiency in existing work has been the false goal of approximately equal

flow rates through a bottleneck. The idea that rate equality is a good approximation to ‘fair’ set in long

before Jacobson adopted it for TCP (traceable at least back as far as ATM research in 1980 [Jaf80]), to

the extent that he didn’t even question it as a reasonable goal. The problem statement of §1.1has already

rehearsed the core arguments that instantaneous flow rate is the wrong metric to be concerned with for

fairness, because a) fairness should be between users not flows and b) instantaneous flow rate doesn’t

take account of the proportion of time that a user (or flow for that matter) is inactive.

My recent paper “Flow Rate Fairness: Dismantling a Religion” [Bri07b] published in ACM CCR, is

an attempt to explain why Kelly’s work shows that flow rate equality through a bottleneck is a nonsensical

fairness goal. It is aimed at an audience that requires implications to be spelled out bluntly and one that

has an aversion to maths. It carefully builds a case to show that the idea of flow rate fairness is completely

unsubstantiated dogma. In contrast Kelly’s welfare maximisation is given as an example of a properly

defined form of fairness built on the philosophical notion of commutative justice14.

14In 350 B.C.E. Aristotle distinguished two types of justice, distributive and rectifactory (commutative) [Ari25, Book V Chapters

2, 4 & 5]. Distributive justice concerns whether a particular distribution of goods is just but has proved impossible to define

convincingly (Rawls [Raw01] comes closest, but still requires all one’s preconceptions to be set aside in order to judge a just

distribution). Commutative justice concerns whether an action (e.g. a transfer of goods) is just, most often determined by whether

2.4. Critique of Existing Work 30

However, the paper’s main message is that different forms of fairness should be possible to enforce

locally15, but this will only ever be possible if the Internet architecture as a whole supports the ability

to make self-interested individuals or entities (including whole networks) accountable for the costs they

cause (or allow to be caused) to others. It therefore advocates the metric of congestion-volume as a

prerequisite for different forms of fairness to co-exist. Congestion-volume is defined as a count of all the

bytes of dropped or congestion marked data sent by all an individual’s flowsi over a period of time,T :∫
T

∑
∀i

p(t)x(t)idt,

wherex(t)i is the bit-rate of flowi andp(t) is the congestion it experiences.

“. . . Dismantling a Religion” was motivated by the extreme unfairness (defined per user and over

time) that has resulted on the present Internet in the name of flow-rate equality. But it was particularly

motivated by the continued use of friendliness to TCP as a goal for new congestion controls (such as

TFRC [FHPW00], XCP [KHR02] and other new high speed congestion controls), which constrains the

future solution space completely unnecessarily. Even though it was claimed that an XCP switch could

implement different forms of fairness, “. . . Dismantling a Religion” explained that fairness is a property

of the congestion a user causes in a whole network over time, which is not something each switch can

ever hope to control by setting the relative rates of just the flows that happen to be passing through it at

any particular instant.16

More recently, I have published an Internet draft (with others) for the IETF, “Problem Statement:

Transport Protocols Don’t Have To Do Fairness” [Bri08d] that justifies the assertion that there is extreme

unfairness on the Internet, using numerical examples drawn from Internet measurements. It uses the

evidence to argue that the IETF’s protocol designs don’t, can’t and shouldn’t have any control over

fairness. But instead the IETF should concentrate on a protocol framework to allow fairness to be

controlled at run-time (the message of ‘Design for Tussle’).

transfers are entered into voluntarily. It is alternatively termed rectifactory justice because a transfer of value (e.g. goods) in one

direction that alters the balance of justice can be rectified by a transfer of value (e.g. money) in the other direction. Welfare

maximisation is a result of a continuous sequence of transfers of value that are each commutatively just. If the original distribution

of goods was not just (by whatever definition), a series of commutatively just transfers always improves everyone’s lot in absolute

terms, but it won’t necessarily improve distributive justice (e.g. if defined relatively), even though progressive taxation is designed

to attempt this. The only way to otherwise improve distributive justice is to somehow define a just distribution then forcibly take

from the rich and give to the poor. However, further commutatively just transfers would again diverge from distributive justice,

requiring continuous intervention.
15Both physically local and locally across a virtual grouping of users.
16XCP bears a superficial resemblance to re-feedback in that routers along the path decrement the change in flow rate requested

in-band by the source, which is then fed back from receiver to source. However, XCP’s structure is more analogous to a dynamic

form of RSVP [ZDE+93]. The subtle but important difference from re-feedback is that XCP’s metric quantifies the service rate

(the primal variable), not the impairment introduced along the path (the dual). Even if the set of all the service rates is combined

(e.g. at the customer’s attachment point) nothing can be determined about whether that customer’s use of the whole network is

fair, because there is insufficient information about how much each flow impactsother users. In addition, in a non-co-operative

setting, the service rate claimed in each XCP packet has to be policed at each border against the service actually provided, which

requires per flow processing. This was the issue that killed the scalability of the Integrated Services architecture [BBB+97].

“. . . Dismantling a Religion” gives fuller discussion of these issues.

2.4. Critique of Existing Work 31

The draft accepts that some individuals aren’t concerned if the Internet protocols aren’t fair, so it

aims to show that extreme unfairness leads to other highly detrimental concrete consequences. It uses

further numerical examples to show how the inability to prevent free-riding in an architecture (extremely

high allocations of congested resource for a minority of users who pay no more than others) leads to

significantly higher investment risk. Because the majority will abandon a provider that continues to

expect them to share the cost of its investments while receiving only a tiny share of the benefits. Using

evidence that investment is still actually continuing, it explains this is because operators are throttling

heavy users.

However, operators know that heavyusersactually represent a mix of light and heavyusage. So

rather than lose the heavy users’ by limiting all their usage indiscriminately, operators are inspecting

packet payloads and limiting only applications that theyinfer are causes of heavy congestion. Operators

could limit overall traffic for heavyusersand give them control over limiting their least valuableusage,

but most users have neither the software nor the inclination to do this, so ISPs keep control themselves.

Users understandably get upset whenever their ISP’s inferences are wrong. Also, however

honourable the provider’s intentions, their discriminatory throttling is easily confusable with anti-

competitive discrimination against competitors’ services, leading to the recent net neutrality debate.

The goal of flow-rate equality led to a large body of work on policing equal flow rates: Floyd

and Fall’s penalty box idea [FF99], Stabilized RED (SRED [OLW99]), CHOKe [PPP00], RED

with Preference Dropping (RED-PD [MFW01]), Least Recently Used RED (LRU-RED [Red01]),

XCHOKe [CCG+02], and Approx. Fair Dropping (AFD [PBPS03])). Because the goal of flow-rate

equality is deficient, it has led these works to be triply deficient. Primarily because they are trying to

police a flawed goal (per flow not per user, and instantaneous not over time). Secondly because it is easy

for flows to circumvent any such policing using multiple flows on multiple paths. And thirdly because

flows can simply whitewash their identifiers as soon as they are discovered, because there is no cost to

creating new flow IDs.

ECN-based Congestion Pricing:Despite integrating together huge advances on many fronts, ultimately

Kelly’s work hit practicality problems for two entangled reasons: i) consumer aversion to dynamic con-

gestion pricing and ii) dependence on the asymmetric structure of congestion information in the Internet.

The entanglement was explained in “The case against classic feedback” in our main publication so far

on re-feedback “Policing Congestion Response in an Internetwork using Re-feedback” [BJCG+05] (re-

produced and updated slightly in §5.1.1and outlined below.

Odlyzko’s tension between the irresistible economic logic of usage-sensitive pricing and the im-

movable consumer desire for simpler pricing cannot be side-stepped. It must be possible for a network

to ration demand by queue rather than by pricing—to slow down traffic causing congestion rather than

delegate this responsibility to consumers under threat of higher charges. Of course any one user’s ration

will still be able to be sold at the correct congestion price. However, this will be simple, flat congestion

pricing, not dynamic.

Only an ingress network, and preferably the first ingress device, can enforce congestion limiting.

2.4. Critique of Existing Work 32

But an ingress network cannot see the congestion being caused by the traffic entering the network,

unless the congestion happens to be local. The classic feedback structure used by ECN, on which Kelly

naturally built, cuts the upstream networks out of the loop. As explained above, ECN reveals information

about congestion that was previously hidden, but not to networks upstream of the congestion. Certainly a

feedback stream usually returns to the sender, but it is beyond the view of all the intervening networks—

in higher layer end-to-end messages that may be encrypted, asymmetrically routed or simply omitted

completely.

This is a highly unusual form of information asymmetry, where the buyer holds more information

than the seller about the quality of the service. We believe it is this asymmetry that leads to all the

Internet’s problems of resource control economics. As we discussed in our summary of [Bri08d], this

asymmetry can lead to heavily suppressed investment. This is the same outcome as for Akerlof’s case

where the seller holds better information about quality than the buyer. But the chain of logic is the

converse to Akerlof’s. Nonetheless it has the same underlying structure, in which the market price has

to include a premium that averages the risk of uncertainty over each contract.

This unusual information asymmetry is solely because the Internet is simplex at the internetwork

layer (one-way information flow).17 Duplex networks don’t seem to exhibit the same economic problems

as the Internet because any network can see the quality of the paths into which it is sending traffic by

monitoring the feedback returning along each connection and managing traffic accordingly (e.g. ATM

traffic management [ITU04]).

Because only the current Internet’s classic feedback arrangement was available to Kelly and co-

workers, congestion pricing could not be turned into rationing by queue. It might be feasible to throttle

traffic at the last egress of the internetwork, based on information emerging from upstream congestion,

but only by rationing the congestionreceivedby a host. However, this would be a rather odd deal for a

consumer to accept as a receiver cannot stop sent traffic from entering the network, filling it with traffic

and consuming the receiver’s congestion ration.

Given the Internet’s feedback structure, the only option available to Kelly was to charge the receiver

for congestion received. Then, in order to transfer the correct incentives to the sender, the receiver had to

ask the sender to reimburse its congestion costs. This would unfortunately open all receivers to ‘denial

of funds’ attacks, as well as incurring extra transaction costs.

There is a further subtle issue with Kelly’s form of congestion pricing. Kelly holds each pair of end-

points accountable foractual congestion. Whereas MacKie-Mason & Varian’s smart market proposal

holds the sender accountable for herbid if and only if it is greater than the actual congestion price. In

both schemes, the charge ends up the same. But the subtle distinction only becomes apparent by thinking

at the scale of individual packets. In both schemes the sender only discovers the price after the packet

is sent. But in the smart market the sender limits her exposure to the risk of a high price, and if the

actual price is higher the packet is discarded—again, rationing by queue rather than by price, but at the

17The term connectionless is deliberately avoided because it has a slightly different meaning. For instance multi-protocol label

switching (MPLS) is simplex (reverse connections are not associated with forward connections) but not connectionless (connection

state is held on network elements).

2.4. Critique of Existing Work 33

microscopic scale.

A different potential problem also lurks within Kelly’s approach (it actually stems from the place-

ment of utility with respect to instantaneous bit-rate in Shenker [She95]). As Clark had pointed out in

1995 [Cla95] and Shenkeret al had repeated [SCEH96], the utility of transfers of fixed volume objects

will often depend on completion time not instantaneous bit-rate. In 1999, Key & Massoulié pointed out

that the two are inversely related because completing earlier stops the congestion costs earlier [KM99].

Therefore, once congestion is above a threshold there seems to be an incentive to drive up bit-rate to the

maximum possible. In these cases, Key & Massoulié seem to convincingly argue that there will be no

incentive to continuously optimise instantaneous bit-rate against instantaneous congestion. If they are

correct, Kelly’s results would lose much of their significance, as file transfers with utility from comple-

tion time probably comprise a large proportion of elastic Internet traffic. However, Gibbens & Kelly’s

experiments [GK99b, §3] propose a strategy for optimising instantaneous bit-rate by adapting willing-

ness to pay that does pay off for users transferring fixed volume files.

Despite the importance of file completion time as a metric of value being ‘reinvented’ re-

cently [DM06], the implications have still not been fully worked out. However Key and others have

proved that, in the presence of delays, self-interested rate control will still lead to stability as long as file

transfer traffic is mixed sufficiently with other types [KMBK04].

An interesting question is whether it is myopic to solely consider each object transfer in isolation, or

whether transferring each object faster necessarily leads to opportunities to transfer more objects. This

would imply that fixed volume objects are part of a larger stream with an overall volume that expands

with bit-rate, at least when viewed at sufficiently coarse granularity.

Edge-pricing: I developed Shenkeret al’s edge-pricing further in “The Direction of Value Flow in Open

Multi-Service Connectionless Networks” [Bri00], a technical report that collects together two previously

published papers applied to unicast and multicast [Bri99b, Bri99a]. It questions the proposed close tie

between edge-pricing and apportionment of costs between sender and receiver.

The whole reason apportionment of costs between sender and receiver is needed is because different

pairs of each have different apportionments of value. If the apportionments of usage cost between sender

and receiver are fixed by the network, there will often be cases where the sum of the value they both

derive is greater than the sum of their costs, but the value that one alone derives is less than its fixed

share of the cost. If the losing party cannot shift some of its charge to the other, the communication won’t

happen. In the language of industrial organisation, communications is a two-sided market, because at

least two buyers are involved in each sale [FW06] (see also §12.1.2).

The Shenker edge-pricing paper argues discursively that edge-prices should embed the chosen ap-

portionment of costs between senders and receivers, whereas “The Direction of Value Flow. . . ” argues

that different flows will want different apportionments between sender and receiver to match the ap-

portionment of value each derives from the communication. “The Direction of Value Flow. . . ” uses a

model of internetwork pricing to show that embedding the apportionment of costs between senders and

receivers solely in the edge-pricing at the network layer necessarily leads to flow-by-flow charging and

2.4. Critique of Existing Work 34

an Internet-wide pricing scheme—exactly what Shenkeret alwere trying to avoid.

“The Direction of Value Flow. . . ” outlined an end-to-end clearing function to re-apportion charges

between the end-points, where the difference in value apportionment from the default made the transac-

tion cost worth it. The Shenker paper had rejected such a clearing function in a footnote.

“The Direction of Value Flow. . . ” further allowed each edge price to be split down into a fixed and

a variable charge, and allowed the usage charge to flow in a direction independent of the direction that

fixed charges took. This model was termed split-edge pricing.

My later work, co-authored with Rudkin, “Commercial Models for IP Quality of Service Intercon-

nect” [BR05] revisited this whole field in the light of developments like re-feedback. It also added some

specific structure to Shenkeret al’s first point (that charging should merely be based on marginal cost,

not equal to it). It reasoned why we can predict that commoditisation to marginal cost will proceed faster

in transit (non-access) networks, while access networks will retain a greater ability to extract profits.

The reasoning was that, although end-users and software developers might be expected to drive all net-

working to marginal cost, many end-users do not choose to spend their time minimising their charges

(Odlyzko’s point again). However, access networks have the motivation and means to aggregate their

knowledge of their user’s demands but to hide this knowledge from transits. From the viewpoint of tran-

sit networks, access networks resemble end-users—recursively. But unlike end-users, access networks

have the power of aggregation and the means to use it.

Information asymmetry: Constantiou and Courcoubetis, like other papers on accountability [AMI +07,

LC06], put the problem in terms ofnetworkaccountability. But, of course, congestion is the result of too

much traffic meeting too little capacity, so it is a question of both networkandsender accountability.18

However, any one source of the traffic is not wholly to blame, because they didn’t necessarily know

all the others would send at the same time. And the network is not wholly to blame either because traffic

can adapt much more quickly to insufficient capacity than capacity can adapt to traffic.

So accountability in both directions needs to be solved. Kelly’s work shows how to divide the blame

among the traffic—by sharing out instantaneous congestion in proportion to instantaneous bit rate. This

can then be integrated over time and each user’s contribution can be summed over all queues in the

network as in the formula for congestion volume earlier:∫
T

∑
∀i

p(t)x(t)idt.

And, the same information should be used by a networkNA to hold its downstream neighbourNB

accountable for congestion withinNB or in networks beyond, thatNB has chosen to route through

towards the destination (its subcontractors). In the short term, this congestion is caused by the decisions

of networks likeNA to route their traffic throughNB . But if the congestion persists longer term it

impliesNB is not sufficiently provisioning capacity, or it is making poor onward routing decisions into

other networks that are insufficiently provisioned.

Tussle:‘Tusslė..’ [CWSB05] identifies some of the symptoms of the economic tension within the end-

to-end design principle [SRC84] that is central to the Internet’s design. But it largely side-steps any
18And, as pointed out in §1.1, the problem is simplified further if it is viewed as atraffic accountability problem.

2.5. Conclusions from Reviews 35

challenge to the fundamental economic tension between the principles of ‘Design for Tussle’ and of

‘End-to-end Design’. We believe this tension cannot be fudged to one side with the words “. . . end-to-

end design is still valid but needs a more complex articulation.”

The end-to-end principle essentially mandates that the lion’s share of the profits from the com-

munications value chain should go to the computing sector. Whereas the message of ‘Tussle’ is that the

Internet architecture should not prejudge the outcome of the continuing competition between the comput-

ing and communications sectors. And if the architecture does pre-judge this tussle, the communications

sector will choose to serve its own interests rather than comply with the architecture, thus leading to a

mess of badly interconnected patches without an architecture—the present reality of the Internet.

If the communications sector were driven to near-zero commodity profits too early, investment cap-

ital would move to other less liquid sectors. A sector that is still growing rapidly is, by definition, not

a commodity sector. Notwithstanding Odlyzko’s points about consumer preferences, shadow pricing of

congestion is the end-game that commoditisation will drive towards. But, as well as allowing congestion

control to evolve under congestion pricing [GK99b], we have to allow pricing to evolve too. Even if pric-

ing will eventually collapse towards congestion pricing (including congestion limiting), along the way

we must allow the market to experiment with other more profitable schemes and services. Consumers,

not system designers, are meant to commoditise a market—when they are ready. System designers

should merely ensure the architecture wouldallow a shift to commoditisation.

Even if the economics predicts that an outcome (commoditisation) seems inevitable, the architecture

shouldn’t prejudge how quickly the whole value chain will reach this outcome and it should be able to

encompass the structures that might develop on the possibly long road to that outcome.

For instance, many telcos (particularly in the cellular sector) are still wanting to build service-

oriented networks, to sell services bundled with basic networking. It might well be that the open Internet

model will just steam over them as they hanker after the golden past when they could bundle everything

together and lock-in their customers. But it’s just as likely their mass customer base might buy into

services built on service-oriented networks, then the cellular operators will have resisted the open Internet

model. Considerable value would be released [BR05, BOT06] if fixed and cellular networks could

converge more closely. Therefore, the lesson from “Tussle” should be that the Internet architecture must

encompass service-oriented networks as well as open networks. It’s not clear the authors of “Tussle”

meant to go that far. But that certainly must be a goal of the present research.

2.5 Conclusions from Reviews

The literature reviewed above builds a picture of the multifaceted problem the present research aims to

tackle. It can be pictured as an ancestry diagram in two cascades.

1. The ideas and deficiencies in TCP, ECN, two-part congestion pricing and bit-rate utility were all

brought together into one solution by Kelly, along with Kelly’s own considerable advances in

network traffic modelling.

2. Then the present research brings together the ideas in Kelly with those in simple pricing, edge-

2.5. Conclusions from Reviews 36

pricing, information asymmetry and tussle to identify and fix a deficiency in the feedback archi-

tecture of simplex networks.

Others either discard the power of Kelly’s model because it doesn’t give simple pricing, or those who

identify the information asymmetry problem try to retrofit internal feedback loops within the Internet.

Whereas the task we set ourselves is to keep simplex networks fully simplex end-to-end, but convolve

necessary and sufficient feedback information into the forward path.

Chapter 3

Hypotheses

Hypothesis 1 (Congestion Signal Integrity).The incentives of self-interested or malicious economic

entities can be aligned to assure the integrity of indications of downstream congestion in the packets of a

connectionless simplex internetwork. This can be achieved by only constraining aggregate downstream

congestion-volume sent by each economic entity over time, without any dynamic congestion pricing to

end-consumers, without any further constraints on transport behaviour and without any further con-

straints on the agents’ freedom to distribute load across the internetwork, or across time.

Hypothesis 2 (Welfare Maximising Allocation). With a competitive market and under Assumptions

3.1 & 3.2, incentives of all parties can be aligned so that the system produces the welfare maximising

allocation of resources, under all the conditions of Hypothesis1.

Assumption 3.1. Each consumer’s demand is small relative to aggregate load on each link.

Assumption 3.2. Consumer utility is for bit-rate and the internetwork operates within the concave

region of everyone’s utility curves or flow admission control prevents anyone operating outside their

concave utility range.

3.1 Clarifications

Can be aligned: An example scalable enforcement mechanism can be defined with acceptably low

probability of false hits or false misses.

Scalable: Sub-linear complexity wrt. traffic and network topology characteristics (no. of flows, no. of

networks, etc.)

Acceptably low false hits: Losses of the same order as existing losses;

Acceptably low false misses:Where attacks might be successful due to statistical variations, over time

the cost of launching failed attacks must be greater than the gains from successful attacks;

Downstream congestion-volume:As defined in §6.2∫ ∑
∀i

v(t)x(t)idt;

3.1. Clarifications 38

Constraining aggregate congestion-volume over time:A congestion-volume allowance fed at a con-

stant fill-rate into a bulk token bucket per data-sender by their access network operator, which

prevents further congestion being caused below a certain level and also constrains the maximum

consumption of allowance;

Sent by each economic entity:The sending end of possibly multiple applications on possibly multiple

computers under the control of a single economic entity. It is assumed that economic entities

behind the data-receivers may choose to share part of the data-senders’ costs, and some data-

senders may make sending data conditional on the receiver’s contractual commitment to share

costs.

Assumption 3.3. Transaction costs between sender and receiver can be ignored.

This assumption is invalid, but analysis of how much this higher layer issue affects the welfare

maximisation and the mechanisms for sharing costs are left for further research;

Economic entity: A stakeholder with its own motivations, resources and capabilities including end-

consumers and network providers (alternatively, economic agent or party);

Welfare maximising: Maximisation of the sum of the utilities of all economic entities.

The system: The combination of economic entities, the internetwork, rate control functions on host

computers, congestion notification protocols, and the incentive mechanisms at the network’s trust

boundaries defined in this dissertation;

Connectionless simplex internetwork: A collection of network domains operated by autonomous eco-

nomic entities, using only one-way self-contained end-to-end datagrams with no return channels

for congestion feedback at the network layer (e.g. not in routing or congestion back-pressure mes-

sages).

Self-interested economic entity:Individuals or organisations operating with rational self-interest;

Malicious: Unbounded malice if the entity is an end-consumer or bounded malice if the entity is a

network;

Bounded malice: Only willing to exploit amplifying traffic-related vulnerabilities, where the cost to the

victim is strictly greater than the cost of the attack;

Unbounded malice: Willing to exploit any traffic-related vulnerabilities to cause harm to others.

Traffic-related vulnerabilities: Vulnerabilities in the re-ECN system, or in related Internet traffic con-

trol functions. Information security issues within the payload or pre-existing network security

issues (e.g. routing vulnerabilities) are ruled out of scope;

Dynamic congestion pricing: Pricing proportional to congestion caused per bit;

End-consumers: The economic agents behind data-senders and data-receivers;

3.2. Significance and Rationale 39

Further constraints: Constraints other than the aggregate constraint;

Transport behaviour: Increases and decreases in data-rate;

Distribute load across the internetwork: Send to any destination at any data rate;

Distribute load across time: Send less data now and more later or vice versa.

3.2 Significance and Rationale

The congestion signal integrity hypothesis is ambitious. Paraphrasing Popper [Pop63], safe conjectures

are not interesting. For me, it is not as important to be correct as it is to be practical, as long as I’m

practically correct so there is a possibility of making an impact.

Proving robustness against gaming is an ambitious and ultimately impossible goal, because one

cannot know the set of all attacks that might be invented against it. However, one can create an abstract

model of the solution, its incentive environment and its information flows, towards proving it has high

likelihood of being robust against the attacks we know. This is believed to be a sufficient approach in

computer science when proposing systems solutions to large, distributed problems.1

The welfare maximising hypothesis has been separated out from the integrity hypothesis. It fol-

lows fairly trivially if the first hypothesis holds, by straightforward connection to the arguments in

Kelly [KMT98, KV05]. It was felt important to include a case close to the way resources are gen-

erally allocated in the world so as to link to the Internet resource allocation motivation for the work.

However, it would have been wrong to tie the integrity hypothesis only to this single (albeit important)

case. Congestion signal integrity is an architectural building block that would be useful for other ways

of allocating resources than a market (reflecting the arguments of ‘Design for Tussle’).

The practicality conditions are the more challenging and interesting aspects of the integrity hypoth-

esis. These conditions have been carefully chosen because they encapsulate a wider set of practicality

constraints.

Dynamic congestion charging not required: We wanted to find a solution that did not present retail

network providers with the dilemma of either having to offer an unpopular tariff or not being able

to rely on their customers’ natural incentives in order to share network resources fairly. We also

wanted to avoid the idealistic assumption that players only act rationally, which many proofs of

incentive compatibility require. So we replaced congestion pricing with engineering mechanisms

that would allow networks to police their customers’ responses to congestion whether they were

rational or not. Enabling engineered policers, rather than relying on rationality, also protects a

player against accidental misconfiguration of its own part of the system.

We know from the start that it is fruitless to align the incentives of some zealot with unbounded

1I have also (perhaps deliberately) engineered incentives for others to try to break my solution (by strongly criticising whole

fields of other people’s work, persistently claiming near-perfection in my own and challenging others to break it!). This has already

led to a number of proposed attacks on re-feedback, which have helped my generalisation of possible attacks, and in some cases

design changes have been necessary.

3.3. Approach 40

malice. However, we believe we may be able to prove our hypothesis if we require only the malice

of networks to be bounded (§8.1.2), while we will allow everyone else’s malice to have no bounds.

This is an ambitious (and therefore interesting) attack model.

No further constraints on transport behaviour: This point aims to ensure accountability is not intro-

duced at the expense of freedom—so that new applications with novel responses to congestion

can emerge. Choosing to enforce accountability through network engineering rather than pric-

ing would seem to imply that the congestion behaviours used by today’s set of applications will

become embedded within every network. But, by constraining our solution to avoid service stan-

dardisation between applications and network operators and between operators, we intend to show

that new applications would be able to emerge without asking permission. Even if networks do put

in certain behaviour constraints, these can be relaxed by bilateral agreement between a customer

and the ingress network, without further standardisation effort across other networks downstream,

which would effectively block any evolution.

Whether a system allows players the freedom to evolve is notoriously subjective and therefore

both easy to prove loosely and difficult to prove conclusively. Whether service standardisation is

necessary is perhaps only one aspect of evolvability, but it is at least a provable fact.

Scalability: This constraint aims to ensure that accountability is not introduced at the expense of poor

network layer scaling with number of flows, users etc. in the sense used in complexity theory.

3.3 Approach

The vast majority of the rest of the dissertation is aimed at proving Hypothesis1 (congestion signal

integrity). The welfare maximising hypothesis only requires brief treatment at the end.

The following chapters are not only structured around the goal of proving the hypothesis, but at the

same time having to introduce the elements of the system in an order that will be readable and interesting,

and bring out all the insights learned on the way.

The dissertation proceeds in three passes: i) high level ii) abstraction; iii) concrete, because the

parts of the system are interdependent, so it would otherwise have been hard to go into detail on any one

part without knowing where it fitted into the whole. Experiments appear next to the aspect of the system

that they test, not collected separately nearer the end. Otherwise, they would have become so distanced

from the assertion they were trying to prove that the connections would have become tenuous.

Part II (next) does the first two passes. It introduces the re-feedback protocol and its incentive

mechanisms in a setting that sets aside the practicalities of deployment on the Internet. In particular, it

assumes the protocol can write real numbers of arbitrary precision into packet headers. It then introduces

some of the possible uses of re-feedback, taking a broad brush approach, but subjecting some aspects to

experiment.

Part III contains the bulk of the recent work. Not only is it grounded in the practicalities of the

Internet, but it takes a more principled approach to the design of the components introduced previously.

3.3. Approach 41

This allows implementations to be tested against the constraints and principles they were intended to

realise.

Finally, partIV ties up the proofs of the hypotheses using the material in the intervening parts. It

concludes by enumerating limitations and future research directions, before listing material contributions

(papers etc.) and giving concluding remarks.

Appendices are added that describe alternative approaches either deprecated or rejected, to record

why they fell short, so others need not tread the same erroneous paths.

Part II

Re-feedback

42

Re-feedback: Summary

These chapters introduce a novel feedback arrangement, termed re-feedback. It ensures metrics in packet

headers such as time to live and congestion notification will arrive at each relay carrying a truthful

prediction of the remainder of their path. We propose mechanisms at network trust boundaries that

ensure the dominant selfish strategy of both network domains and end-points will be to set these headers

honestly and to respond in an agreed way to path congestion and delay, despite conflicting interests.

Although these mechanisms influence incentives, they don’t involve tampering with end-user pricing.

In these chapters mechanisms are described that use the truthful path information to police a re-

sponse to congestion. We also briefly present a range of other potential uses for truthful path information

showing re-feedback is a more generally useful architectural building block than just for rate policing.

For instance, we believe it can help to counter flooding attacks, simplify inter-domain traffic engineering

and enable inherently scalable QoS.

The re-feedback wire protocol in these chapters uses an abstraction of protocol headers, without

regard to how much space is required to store path characterisation values. This is sufficient to explain

the architectural intent. A concrete way to fit the protocol into the IP header is deferred until PartIII .

The text of this part is largely based on text of Bob Briscoe, Arnaud Jacquet, Carla Di Cairano-

Gilfedder, Alessandro Salvatori, Andrea Soppera& Martin Koyabe, , “Policing Congestion Response

in an Internetwork using Re-feedback,” In Proc. ACM SIGCOMM’05 (Aug 2005) [BJCG+05]. The

present author’s contribution was the architecture, high level design, experiment design, write-up and

editing, but not the implementation and evaluation, nor the write-up of the TCP-policer and the perfor-

mance evaluation. Three aspects of the original paper have been overtaken by new thinking:

• The bulk dropper design is flawed against attackers adopting the flow ID whitewashing strategy

(§7.5.1). Although it has since been replaced by the more principled dropper design of §7, it is still

described here unchanged (with a warning note). This dropper design and the performance exper-

iments on it were a large part of the research and experimental endeavour behind this dissertation.

Removing them would have damaged the overall dissertation too much.

• One detail of the border mechanisms (that tried to remove the effect of dishonest metrics from

metering) was ineffective, and has been removed. §8.2.4now addresses the issue it tried to solve.

• The re-ECN wire protocol originally described contained a flaw. It has been removed from the

text, but its description is still recorded in AppendixB.1, where the flaw is explained.

44

Finally, it will be noticed that these chapters focus primarily on policing the congestion response

of TCP—a rather ill-fitting centrepiece given my subsequent tirade against flow-rate fairness [Bri07b].

This example has been preserved to show how re-feedback can be put to purposes the designer didn’t

intend [CWSB05].2

2In 2005, my co-authors and I reluctantly decided to make TCP policing the focus despite knowing it was useless. We relegated

bulk policing to a paragraph at the end. We reasoned that the paper, which was already a bit too architectural for SIGCOMM, would

otherwise have been too radical to be likely to be accepted. Frustration over having to play along with the flow-rate equality game

and having to hide the wider insights in our work, led to the writing of ‘Flow Rate Fairness; Dismantling a Religion’ [Bri07b] the

following year.

Chapter 4

Receiver Aligned Re-inserted Feedback

4.1 Introduction

In 2000, capacity allocation and accountability problems helped to motivate an overhaul of the Internet

architecture [BCSW00], but they remain unresolved. We believe their solution lies in a realignment of

the feedback architecture.

Changing the Internet’s feedback architecture seems to imply considerable upheaval. But, perhaps

surprisingly, we believe a limited form of the new arrangement could be deployed incrementally at the

transport layer, around unmodified routers using the existing fields in IP (v4 or v6) (see PartIII). But

protocol engineering isn’t the focus at this stage—an idealised numeric scheme is all that is necessary to

explain the concepts.

Conceptually, the solution could hardly be simpler. We propose collecting path information in

packet header fields as data traverses a path, just as can already be done with time to live (TTL) or

congestion notification (ECN [RFB01]). But previously, as each node added characterisation of its local

hop, the header values accumulatedupstreampath knowledge. By a simple realignment, we arrange

each field to characterise the remainingdownstreampath. We aim to reach a target for the metric at the

destination, rather than aligning the datum at the source. For example, TTL currently always starts at

the datum 255. Instead we propose it should arrive at the destination set to an agreed datum (say 16).

To achieve this, each receiver needs to occasionally feed back the TTL values arriving in packets, so the

sender can adjust the next attempt in order to continue to hit 16. §4.2expands on this basic explanation

with more precision.

We term this pattern ‘re-feedback’, short for either receiver-aligned or re-inserted feedback, al-

though it is actually similar to the ordinary feedback found in other disciplines (electronics, hydraulics,

etc.). Once re-feedback is in place, each packet arrives at each network element carrying a view of its

own downstream path, albeit a round trip ago. So full path congestion becomes visible at the first ingress,

where a rate policer is most useful.

But we still don’t seem to have solved the problem. It seems naı̈ve to police traffic by trusting

fields that depend on the honesty of both the sender and receiver—those with most to gain from lying.

However, in §5.1we explain why re-aligning feedback allows us to arrange for honesty to be everyone’s

dominant strategy—not only end-users, but also networks. Building on the resulting trustworthiness of

4.2. Re-feedback 46

path metrics, we describe how to build a rate equation policer, using TCP as a concrete example. We

generalise to any rate equation, in particular Kelly’s [KMT98], showing that we can synthesise the same

effect as quality of service mechanisms, but only using an ingress policer. And we briefly propose a

bulk congestion policer similar to that described in detail in §11. We also describe a passive policer for

inter-domain boundaries.

In §5.2we give the results of simulations conducted to test whether the incentive mechanism really

is responsive enough to ensure truthful congestion reporting. Finally we end this collection of chapters

with a review of what has been achieved to that point.

The closest idea we can find to this work is Clark’s proposed decrementing field representing pay-

ment as a packet traversed a path [Cla96], with receiver-initiated messages able to meet it in the middle

to make up any shortfall. It may be a subtle distinction, but we would rather network layer fields repre-

sented verifiable properties of the path. Then rather than engineers defining a field as a ‘price’, operators

could choose (or not) to apply pricing to whatever fields they wished, in order to determine cost (or even

value). Of course, once a price is applied to a field, the operator may have an incentive to distort its

meaning to vary the price. But the distinction between a metric and a pure price applied to a metric is

still important, as it allows operators not to use the metric for pricing.

It is worth noting that connection-oriented technology such as ATM network elements send con-

gestion back-pressure messages [ITU04] along each connection, duplicating any end to end feedback

because they cannot rely on it being present. In contrast, re-feedback ensures information in forwarded

packets can be used for congestion management without requiring a connection-oriented architecture and

re-using the overhead of fields that are already set aside for end to end congestion control and routing

loop detection.

4.2 Re-feedback

Characterising paths through networks requires more than one metric. We have chosen to explain how

re-feedback works using two: congestion and delay (that is, unloaded delay not congestion delay). Re-

feedback of just these two metrics helps solve a surprisingly large set of networking problems. But

additional metrics might be useful in practice, e.g. hop count, unloaded loss rate etc. Delay re-feedback

is a useful starting point because it is trivially simple to explain. Then we use congestion to highlight the

similarities and differences that are encountered between metrics.

A pre-requisite for re-feedback is theexplicit declaration of path metrics and their maintenance

along the path. Setting aside protocol details for now, it will suffice to consider a multi-bit field for delay

and another for congestion carried in future network layer packet headers1. Also equivalent fields will

be necessary in the end-to-end back-channel from receiver to sender—sent frequently enough to control

the most volatile metric (congestion). For instance, in future TCP ACKs (or RTCP receiver reports, etc.)

When starting a flow, the sender has no feedback so it will not know what to put in these fields.

However we make the sender responsible for the risk during this period of uncertainty, rather than other

1We believe it is possible to apply re-feedback in a separate control plane, or even where control information is analogue, but

for clarity we stick to one IP-based scenario.

4.2. Re-feedback 47

hn(t)

h0(t)
h0(t)

S m0

h0(t+T)

hi(t)
hi+1(t)

N mi R

hn(t)

N mn-1

h1,i

h2,i…

N
m1,i

m2,i…

delay
congestion
…

h1,i+1

h2,i+1…

Figure 4.1: Path Characterisation Notation;

For metricsm and headersh.

users of the network. It must declare its conservative expectation of the path characteristics.

We propose an additional ‘certain’ flag in network layer headers, which the sender should clear at

the start of a flow, when no feedback is yet available. Metric(s) carried in uncertain packets should not

contribute to any bulk averaging at network equipment (e.g. see §5.1.3), but the flag is not intended to

affect forwarding of the packet itself.

Fig 4.1 introduces our notation. Each path across the network consists of a sequence of resources,

ir; 0 ≤ ir < nr indexed in the context of each pathr from the senderS with resourceir = 0 to

resourceir = (nr − 1) just before the receiverR. Whenever a single path context makes it obvious, we

will drop the suffixr.

The unloaded delay header,h1, is carried in packets from resource to resource. Each relayN

characterises its local resource’s contribution to the delay—perhaps by echo tests with the downstream

neighbour. It contributes to the whole path delay by combining its local contributionm1,i with the in-

coming header value,h1,i, and forwarding the updated result,h1,i+1 (Fig 4.1). The choice of combining

function depends on the metric in question. As unloaded delay is additive, subtraction is an appropriate

combining function (like TTL processing),h1,i+1 = h1,i −m1,i.

Other packet header fields will require combining functions appropriate to the metrics they rep-

resent. The inset in Fig4.1 shows packets carrying header fields for both delay and congestion being

combined with the local metrics for each, as parallel, independent operations. Where the context is

obvious, we drop the suffix that distinguishes between delay and congestion.

If we introduce feedback of unloaded delay, the receiver will report the header values it receives

back to the sender. With classic feedback, the sender always initialises the unloaded delay header to a

well-known value, sayh0 = 255, as shown in Fig4.2a). The header will arrive at nodej with a value

accumulated over all the upstream resourceshj = h0 −
∑j−1

i=0 mi. We call the composition of all the

local metricsmi experienced by a packet thepath metric

So, with classic feedback for delay, the path metric upstream of nodej is
∑j−1

i=0 mi = h0 − hj .

Nodej can work this out by examininghj in packets as they arrive, becauseh0 is well-known. So the

receiver (withj = n) can characterise the whole path delayh0 − hn. If it feeds backhn to the sender

using our notional end-to-end protocol (bent arrows in Fig4.2a)), the sender can know the path delay

4.2. Re-feedback 48

15

a)

b)

– 242

N5

S1 R1

R2

N1 N2

29 24 23 16

S2

N3
N4

1

0
5

0

2

3

7

2
0

24

15
22

26

+ 255 + 16

N5

S1 R1

R2

N1 N2

255 250 249

254

242

245252

S2 N3
N4

255

1

0
5

0

2

3

7

10

25

16
23

2726

242

245

– 245

+ 255 + 16

Figure 4.2: Network Flows Carrying Unloaded Delay in Packet Headers.

a) With classic feedback, sources initialise headers to 255. b) With re-feedback over the same network,

sources set headers so as to reach 16 at the destination.

too. So far, we have said nothing new, merely introducing notation using a familiar example.

With re-feedback the trick is simply for the sender to choose an initial header value such that,

if the path metric were to remain unchanged, the header would reach a well-known valuehz at the

destination—rather thanstarting from a fixed value. In our numerical example in Fig4.2b) we assume

the industry has standardisedhz = 16.

Although that is really all there is to it, we will now trace through how re-feedback works step by

step to be precise about the differences:

1. For now, we will assume that the source bootstraps the very first packet of a flow with the fixed

value we used with classic feedback,h0(t) = 255. (When we need to distinguish between packets,

we suffix each header value with the timet at which it was originally sent.)

2. The source has to remember the initial value it chose, as depicted by the curved boxes containing

255 at each source in Fig4.2b) and containingh0(t) in Fig 4.1.

3. The packet traverses the pathr, combining each local delay in turn into its header, using the

combining function (subtraction) already described above.

4. The receiver feeds back the resulting delay header valuehn(t) to the sender, which arrives a round

trip Tr after the first packet was sent, depicted by the bent arrows.

5. The sender initialises the delay field in the next packet (dotted) toh0(t+Tr) = h0(t)−hn(t) +hz as

well as storing this new value in place of the last one. Each initial delay header value only depends

on the previous round’s initial value and the value fed back—both known locally at the source.

4.2. Re-feedback 49

unloaded delay congestion Eqn

combining function at resourcei,

hi+1 = g(hi,mi) hi −mi 1− (1− hi)(1−mi) (4.1)

header initialisation function at source,

h0(t+T) = f(h0(t), hn(t)) h0(t) − hn(t) + hz 1− (1−hz)(1−h0(t))

1−hn(t)
(4.4)

downstream path metric at resourcej,

ρj(hj(t+T)) hj(t+T) − hz s
(
1− 1−hz

1−hj(t+T)

)
(4.5)

Table 4.1: Re-feedback Functions.
Summarising results from §4.2& Appendix4.A, where notation is formally defined. The functionsg(·)

& f(·) are required to implement re-feedback andρ(·) to exploit it.

Now we can see that this simple shift of datum has achieved our original aim: as each packet arrives

at a resourcej anywhere in the network, it carries within its headerhj a prediction of its own downstream

path delay,hj − hz, requiring no path state on the relay becausehz is well-known. Any packet in Fig

4.2b) illustrates this point, in that subtractinghz = 16 from any header value predicts the sum of the

remaining downstream resources on that path.

The second column of Table4.1summarises the functions to implement delay re-feedback that we

have just derived. The third column gives the equivalent functions for congestion, derived in Appendix

4.A.

As with delay, the combining function for each relay to accumulate local congestion into headers

(first row) must be chosen to reflect the way congestion accumulates. In Appendix4.A.1 we define

congestion as a probability, using axiomatic definitions2. So, as shown, we must use the function for

combinatorial probability to combine congestion headers.

For either delay or congestion, the combining function at relays can be the same as for classic feed-

back, as the purpose is still to accumulate a path metric from local metrics. By avoiding arbitrary changes

to the classic combining functions, re-feedback can be introduced incrementally, solely by arrangement

between corresponding endpoints.

Each initialisation function (second row) ensures the header reacheshz at the destination, given the

way it accumulates along the path. Each function in the third row was derived from the previous two in

order to predict the downstream path metric (DPM) from any node.

Note that neither prediction of DPM requires path state, only the state arriving in the packet itself.

Further note that, for congestion, the DPMρj also depends on the effective packet sizes. For bit-

congestible resources like linkss = actual packet size. For packet-congestible resources like forwarding

look-upss = 1.

Fig 4.2 also illustrates how a change on a path affects the predictions in packets traversing it. The

increase in delay at resourceN3 between Figs4.2a) & b) (highlighted as a star-burst) causes packets in

flight upstream to underestimate their remaining downstream delay. Packets in flight downstream still

correctly predict their downstream delay, but when feedback from them releases further packets, these

2In contrast to the proposed ECN standard [RFB01] where congestion is defined as the output of the RED algorithm—leaving

no objective basis for improving RED.

4.A. Re-feedback functions 50

path
knowledge

align-
ment sender relay rcvr

up- sender n/a
[
0, T

2

] [
0, T

2

]
stream receiver n/a x x

down- sender
[

T
2 , T

]
x n/a

stream receiver
[

T
2 , T

] [
T, 3T

2

]
n/a

Table 4.2: Comparison of Sender and Receiver-Aligned Feedback.
By availability of path knowledge (x = not available; n/a = not applicable) and by range of timeliness

(using symmetric delay).

underestimate their path delay.

With no further changes in local delays, packets in the following round (dotted) correctly predict

the path again. Of course, changes in the unloaded delay at a node (e.g. due to a lower layer re-route) are

rare, at least in fixed networks. However, for more volatile metrics like congestion, change is the norm.

For delay, the prediction error will be
∑n−1

i=0 (mi(t+T) −mi(t)). For congestion, it is given by Eqn (4.6)

in Appendix4.A.1. In both cases, the error depends on the difference between the whole path metrics.

To put these errors in context, re-feedback causes a source to suffer the same path prediction error

as classic feedback—for equivalent path changes within the last round trip. So a re-feedback source

transport can extract the same information, with the same timeliness and apply the same rate control

algorithms with the same dynamics. For relays, it can take up to an extra half round trip before path

changes reach them. But, for relays, any downstream path prediction at all is an improvement over classic

feedback, which offers none. And at the ingress, where policers are most appropriate, responsiveness

will be similar to that of the source. Table4.2 summarises the path knowledge that nodes gain or lose

from re-feedback. It also quantifies the range of how long it can take for path changes to work through

into correct path predictions in each case.

Previously, to achieve such knowledge at every relay would have required messages to be reverse

routed hop by hop from all destinations (cf. routing messages or congestion back-pressure). Although

re-feedback takes a little longer to propagate (because it travels via the source), it updates at the same

rate as the ACK rate—as often as TCP congestion control and many orders of magnitude more often

than a typical routing message rate. Also, re-feedback piggy-backs on existing data, requiring no extra

packet processing.

4.A Re-feedback functions

Below, following the notation of §4.2, we derive the functions required to implement re-feedback for

congestion:

• the combining function on each relay,hi+1 = g(hi,mi),

• the function to initialise header valuesh0(t+T) = f(h0(t), hn(t))

• the downstream path metric from resourcej, ‖n−1
j m(t+T).

4.A. Re-feedback functions 51

We coin the notation‖jam for the path metric, which is the composition of all the local metricsmi

experienced by a packet along the sequence of resources{a, . . . i, . . . j} using the combining function

appropriate to the metric in question.

4.A.1 Congestion re-feedback

Definition 4.1. The congestion,mi, caused by a packet at single resourcei is the probability that the

eventXi will occur if the packet in question is added to the load, given any pre-existing differential treat-

ment of packets. WhereXi is the event that another selected packet will not be served to its requirements

by resourcei during its current busy period.

So, at resourcei, the contribution to congestion ismi = P (Xi) ∈ [0, 1], which is a function of

local load.

Definition 4.2. The path congestion,‖jam, caused by a packet traversing a sequence of resources, is the

probability that the eventX will occur if the packet in question is added to the loads at each resource

along its path, given any pre-existing differential treatment of packets. WhereX is the event that another

selected packet will not be served to its requirements by any of the sequence of resources{a, . . . i, . . . j}

during their current busy periods.

From definition4.1, the function that combines the local contribution with the incoming congestion

notification field must emulate combinatorial probability resulting in an outgoing header value

hi+1 = 1− (1− hi)(1−mi). (4.1)

∴ if the header isha before resourcea, after nodej − 1 it will be

hj = 1− (1− ha)
∏j−1

i=a(1−mi). (4.2)

From definition4.2the path metric from resourcea to j − 1,

‖j−1
a m = P (X) = 1−

∏j−1
i=a(1− P (Xi))

= 1−
∏j−1

i=a(1−mi)

= 1− 1− hj

1− ha
(4.3)

A source with perfect foresight would initialise a packet header toh∗0(t+T) in order to reach its

target value at the destination, where

hn(t+T) = 1−
(
1− h∗0(t+T)

)(
1− ‖n−1

0 mi(t+T)

)
= hz

∴ h∗0(t+T) = 1− 1− hz

1− ‖n−1
0 mi(t+T)

A practical source will use the previous path metric as an estimator for the next and set

h0(t+T) = 1− 1− hz

1− ‖n−1
0 mi(t)

= 1−
(1− hz)(1− h0(t))

1− hn(t)
(4.4)

4.A. Re-feedback functions 52

During sudden increases in congestion,hn → 1, but if protocol fields are bounded the source will remain

responsive, but understate congestion to the network, which is the safe way round.

With hindsight, the downstream path metric from resourcej

‖∗n−1
j m(t+T) = 1−

∏n−1
i=0 (1−mi(t+T))∏j−1
i=0 (1−mi(t+T))

.

An efficient estimator for this metric is

‖n−1
j m(t+T) = 1−

∏n−1
i=0 (1−mi(t))∏j−1

i=0 (1−mi(t+T))

From (4.3) = 1− 1− hz

1− h0(t+T)

/
1− hj(t+T)

1− h0(t+T)

From (4.4) = 1− 1− hz

1− hj(t+T)
. (4.5)

The prediction error‖n−1
j m(t+T) − ‖∗

n−1
j m(t+T) is∏n−1

i=0 (1−mi(t+T))−
∏n−1

i=0 (1−mi(t))∏j−1
i=0 (1−mi(t+T))

. (4.6)

Chapter 5

Re-feedback Incentive Mechanisms

5.1 Incentives
We aim to create an incentive environment to ensure anyone’s selfish behaviour (including lying and

cheating) leads to truthful declaration of downstream path characteristics.1 Throughout this section

we will focus primarily on characterisation of path congestion. This will stress re-feedback incentive

mechanisms to the full in the face of conflict over scarce resources. Given most forms of fairness,

including TCP’s, also depend on round trip time, we will then outline how a path delay metric would be

amenable to similar treatment.

Fig 5.1sketches the incentive framework that we will describe piece by piece throughout this sec-

tion. An internetwork with multiple trust boundaries is depicted. The downstream path congestion seen

in a typical packet is plotted as it traverses an example path from senderS1 to receiverR1. They are

shown using re-feedback, but we intend to show why everyone wouldchooseto use it, correctly and

honestly.

Two main types of self-interest can be identified:

• Users want to transmit data across the network as fast as possible, paying as little as possible for

the privilege. In this respect, there is no distinction between senders and receivers, but we must be

wary of potential malice by one on the other;

• Network operators want to maximise revenues from the resources they invest in. They compete

amongst themselves for the custom of users.

Source congestion control:We want to ensure that the sender will be pressured to reduce its rate as

downstream congestion increases. Whatever the agreed congestion response (whether TCP-compatible,

flow admission control or some hybrid general reduction across all the sender’s flows), to some extent it

will always be against the sender’s interest to comply.

Edge ingress policing/shaping:But it is in all the network operators’ interests to encourage a

congestion response, so that their investments are employed to satisfy the most valuable demand.NA is

in the best position to ensureS1’s compliance and it now has a choice of mechanisms across a spectrum of

customer autonomy. At one extreme,NA could giveS1 complete autonomy, but encourage responsible

1These mechanisms can lie dormant wherever co-operation is the social norm.

5.1. Incentives 54

downstream
path
congest
-ion

i

NA
NA

NB
NB

NE
NE

NC
NC

ND
ND

R4

S1

policer
dropper

bulk congestion pricingbulk congestion charging

routingrouting

congestion
control

0

Figure 5.1: Re-feedback Incentive Framework.

behaviour by charging for the downstream congestion in packets. Or it can shape traffic directly itself,

removing allS1’s autonomy. Between the two extremes, it can police a congestion response agreed

upfront withS1 (§5.1.4).

Edge egress dropper:If the source has less right to a high rate the higher it declares downstream

congestion, it has a clear incentive to understate downstream congestion. But, if packets are understated

when they enter the internetwork, they will be negative when they leave. So, we introduce a dropper

at the last network egress, which drops packets in flows that persistently declare negative downstream

congestion (see §5.1.3).

Inter-domain traffic policing: But next we must ask, if congestion arises downstream (say inND),

what is the ingress network’s (NA) incentive to police its customers’ response? IfNA turns a blind eye,

its own customers benefit while other networks suffer. This is why all inter-domain QoS architectures

(e.g. Intserv, Diffserv) police traffic each time it crosses a trust boundary. Re-feedback gives trustworthy

information at each trust boundary so the congestion response can be policed in bulk.

Emulating policing with inter-domain congestion charging: Between high-speed (e.g. optical)

networks we would rather avoid having to buffer packets while deciding whether to police them in series

to forwarding. Instead, we can emulate policing using a passive, parallel monitoring function. Once

re-feedback has arranged headers to carry downstream congestion honestly,NB can contract to payND

in proportion to a single bulk count of the congestion metricsρ crossing their mutual trust boundary

(§5.1.5). ThenNB has an incentive either to police the congestion response of its own ingress traffic

from NA or to chargeNA in turn on the basis of congestion counted at their mutual boundary. In this

recursive way, each flow’s response can be precisely incentivised, despite the mechanism not recognising

flows. If NA turns a blind eye to its own upstream customers’ congestion response, it will still have to

pay its downstream neighbours. And ifNA lies on behalf of its customers by understating downstream

congestion, packets will suffer at the dropper as if the source itself had lied.

No congestion charging to users:Bulk congestion charging at trust boundaries is passive and

extremely simple, and loses none of its per-packet precision from one boundary to the next. But at any

5.1. Incentives 55

trust boundary, there is no imperative to use congestion charging. Traditional traffic policing can be used,

if the complexity and cost is preferred. In particular, at the boundary with end customers (e.g. between

S1 andNA), traffic policing will most likely be more appropriate. Policer complexity is less of a concern

at the edge of the network. And end-customers are known to be highly averse to the unpredictability of

congestion charging [Odl97].

Competitive discipline of inter-domain traffic engineering: With inter-domain congestion charg-

ing, a domain seems to have a perverse incentive to fake congestion;NB ’s profit depends on the differ-

ence between congestion at its ingress (its revenue) and at its egress (its cost). So overstating internal

congestion seems to increase profit. However, smart border routing [GQX+04] by NA will bias its mul-

tipath routing towards the least cost routes, soNB risks losing all its revenue to competitive routes if it

overstates congestion. In other words,NB ’s ability to raise excess profits is limited by the price of its

second most competitive route (but see §12.1.2on Termination Monopolies).

Closing the loop:All the above elements conspire to trap everyone between two opposing pressures

(upper half of Fig5.1), ensuring the downstream congestion metric arrives at the destination neither

above nor below zero. So we have arrived back where we started in our argument. The ingress edge

network can rely on downstream congestion declared in the packet headers presented by the sender. So

it can police the sender’s congestion response accordingly.

5.1.1 The case against classic feedback

So why can’t classic congestion feedback (as used already by standard ECN) be arranged to provide

similar incentives? Superficially it can. Given ECN already existed, this was the deployment path

Kelly proposed for his seminal work that used self-interest to optimise social welfare across a system

of networks and users [KMT98]. The mechanism was nearly identical to volume charging; except only

the volume of packets marked with congestion experienced (CE) was counted. However, relying on

classic feedback meant the incentives traced an indirect path—the long way round the feedback loop.

For example, if classic feedback were used in Fig5.1,NB would incentiviseNA viaND,R1 & S1 rather

than directly.

Inability to agree what happened: In order to police its upstream neighbour’s congestion re-

sponse, the neighbours should be able to agree on the congestion to be responded to. Whatever the

feedback regime, as packets change hands at each trust boundary, any path metrics they carry are ver-

ifiable by both neighbours. But, with a classic, sender-aligned path metric, they can only agree on the

upstreampath congestion—its offset from its well-known datum at the sender.

Inaccessible back-channel:The network needs a whole path congestion metric to control the

source. Classically, whole path congestion emerges at the destination, to be fed back from receiver to

sender in a back-channel. But, in any data network, back-channels need not be visible to relays, as they

are essentially communications between the end-points. They may be encrypted, asymmetrically routed

or simply omitted, so no network element can reliably intercept them. The congestion charging literature

solves this problem by treating the sender and receiver as entities with aligned incentives. Although

measuring classic ECN marking rates (relative to their datum at the sender) forces a ‘receiver pays’

5.1. Incentives 56

model (at each trust boundary the downstream neighbour pays), it is argued that at least this incentivises

the receiver to refer the charges to the sender.

‘Receiver pays’ unacceptable:However, in connectionless datagram networks, receivers and re-

ceiving networks cannot prevent reception from malicious senders, so ‘receiver pays’ opens them to

‘denial of funds’ attacks.

End-user congestion charging unacceptable:Even if ’denial of funds’ were not a problem, we

know that end-users are highly averse to the unpredictability of congestion charging and anyway, we

want to avoid restricting network operators to just one retail tariff. But with classic feedback, we cannot

avoid having to wrap the ‘receiver pays’ money flow around the feedback loop, necessarily forcing end-

users to be subjected to congestion charging.

Receiver Policing Impractical: It might be thought that the egress networkND could police the

receiver, rather than apply a congestion charge. For instance, limiting downloads based on classic ECN

marks arriving from other networks (and from within its own before the egress). Then, as the policer

slowed the data flow, through the normal process of feedback the source would slow down. The first

problem with this approach is that it relies circularly on the sender responding to loss in order to police

the sender’s response to congestion. Certainly the policer could stop the receiver benefitting from fast

unresponsive downloads, but it could not stop the sender if it didn’t respond to loss.

Perhaps this would at least be better than nothing were it not for there being a second problem with

egress network policing. All the inter-network incentives to do policing are backwards. If there were

congestion in the sender’s access networkNA, the only practical way to give all the egress networks

like ND an incentive to police the flows causing congestion inNA it would be forNA to chargeNB

for receiving congestion fromNA, thenNB would have the incentive to chargeND, this in turn giving

ND the incentive to police the flow. Although this sounds possible when you say it fast, no networkNB

would ever pay another networkNA to receivetraffic that claimed to have experienced congestion in the

originating network.NA controls how much and which traffic it sends toNB , soNB would never want

to advertise any routes toNA. This would just giveNA carte blanche to print money by sendingNB

congested traffic.

To summarise so far, with classic feedback, policing congestion responserequirescongestion charg-

ing of end-users and a ‘receiver pays’ model. Whereas, with re-feedback, incentives can be fashioned

either by technical policing mechanisms (more appropriate for end users)or by congestion charging

(more appropriate inter-domain) using the safer ‘sender pays’ model.

Impractical traffic engineering: Finally, classic feedback makes congestion-based traffic engi-

neering inefficient too. NetworkND can see which of its two alternative upstream networksNB and

NC are less congested. But it isNA that makes the routing decision. This is why current traffic engi-

neering requires a continuous message stream from congestion monitors to the routing controller. And

even then the monitors can only be trusted forintra-domain traffic engineering. The trustworthiness

of re-feedback enablesinter-domain traffic engineering without messaging overhead (but that is out of

scope of this dissertation).

5.1. Incentives 57

We now take a second pass over the incentive framework, filling in the detail more formally.

5.1.2 The Case Against Bottleneck Policers

We borrowed ideas from policers in the literature [OLW99, FF99, PBPS03] for our rate equation policer.

However, without the benefit of re-feedback they don’t police the correct rate for the condition of their

path. They detect unusually highabsoluterates, but only while the policer itself is congested, because

they work by detecting prevalent flows in the discards from the local RED queue. These policers must sit

at every potential bottleneck, whereas our policer need only be located at each ingress to the internetwork.

As Floyd & Fall explain [FF99], the limitation of their approach is that a high sending rate might be

perfectly legitimate, if the rest of the path is uncongested or the round trip time is short.

XCP [KHR02] bears a superficial resemblance to re-feedback in that routers along the path decre-

ment the change in flow rate requested in-band by the source, which is then fed back from receiver to

source. However, the structure of fairness aimed for by XCP is more analogous to that aimed for by a

bottleneck policer. Indeed both XCP and bottleneck policers are structurally similar to a dynamic form

of RSVP [ZDE+93]. The subtle but important structural difference between XCP and re-feedback is that

XCP’s metric quantifies the service rate (the primal variable), not the impairment introduced along the

path (the dual). Even if the set of all the service rates is combined (e.g. at the customer’s attachment point)

nothing can be determined about whether that customer’s use of thewhole networkis fair, because there

is insufficient information about how much each flow impactsotherusers at each queue. In addition, in a

non-co-operative setting, the flow rate that each XCP packet claims it is part of has to be policed at each

trust boundary to check it matches the flow rate actually being used, which requires per flow processing.

This was the issue that killed the scalability of the Integrated Services architecture [BBB+97]. “Flow

rate fairness, Dismantling a Religion” [Bri07b] gives a more extensive discussion of the deficiencies in

the structure of fairness aimed for by protocols like XCP and RCP [DKZSM05].

5.1.3 Honest congestion reporting

An honest sender will declare a certain downstream path metric (DPM)ρ0 in packets to aim for zero at

the destination after allowing for path congestion. We define cheating as the difference∆ρ0c relative

to this ideal, taking overstatement as positive. To rely on the DPM packets carry, we must discourage

dishonesty, whether positive or negative. If the sender declares a certain DPM, a certain rate response

can be policed either specifically for each flow, or an overall response envelope for all flows from a

particular customer (§5.1.4). For any safe congestion response, the higher the sender’s declared DPM,

to some degree the slower its data rate, and the lower the value it derives. So, to the right of Fig5.2we

can show the sender’s utility strictly decreasing with overstatement.

So senders have an incentive to understate DPM, which allows them a higher bit rate. But then the

DPM will turn negative before reaching the destination. If networks discard2 negative packets, the utility

to the sender of the higher bit rate will rapidly collapse, as visualised on the left of the figure. Therefore

honesty at∆ρ0c = 0 will be the dominant sender strategy that maximises its net utility. A receiver that

2Various penalties short of discard, e.g. payload truncation, can be imposed in order to preserve the feedback loop, given a

packet may be wrongly penalised.

5.1. Incentives 58

net value to
end-points,∆U

overstatement
of downstream
path metric at

source, ∆ρ0c

practical
ideal

0

Figure 5.2: Truth Telling Incentives.

genuinely wants data to be sent as quickly as possible has incentives aligned with the sender, so honest

feedback also returns the maximum net gain.

In fact, the position is complicated by continuous variability of path congestion; even honest traffic

will arrive at its destination spread around zero. Below we describe a dropper that makes allowances

for this variability but still detects understatement of DPM. The best dropper we can currently envisage

suffers some false hits and false misses, blunting the incentive to be absolutely honest (Fig5.2).

Adaptive dropper

If congestion didn’t vary, a malicious source understating congestion by∆ρ0c (numerically negative)

would cause a proportionate understatement at the destination of∆ρnc.3 But congestion does vary, so

if the probability distribution of the DPM at the destination isPn(ρn) for an honest sender, it will be

shifted toPn(ρn −∆ρnc) for the malicious sender.

We propose a dropper2 at the last hop before the receiver. The dropper builds a model of the

prevailing pattern of cheating for all packets leaving the same interface and assumes that each new

packet is characteristic of this recent history; the more recent cheating, the stricter the dropper becomes.

But its strictness is further modulated by how negativeρn is of each packet under scrutiny.

Conceptually, the bell curve in Figure5.3 shows the probability distribution of arriving packets,

exponentially weighted to favour recent arrivals. We assume this will be the probability distribution

of the DPM of the next packet. Superimposed on a different vertical scale is a conjectured penalty

probability function,p(·) intended to allow through as much negative DPM as positive, but no more.

This can be achieved by ensuring that the distribution remaining after applying the penalty function is

symmetric about zero (the unshaded cusp curve). So forρn < 0:

(
1− p(·)

)
Pn(ρn −∆ρnc) = Pn(ρn + ∆ρnc). (5.1)

3From Eqn (4.2) ∆ρnc =
(
1− ‖n−1

0 m
)
∆ρ0c

5.1. Incentives 59

DPM
probability
distribution, Pn

0

penalty
probability, p

1

downstream path
metric (DPM)

at receiver,ρn

∆∆∆∆ρnc
p(·)

Pn(ρn-∆∆∆∆ρnc)

p(·)Pn(ρn-∆∆∆∆ρnc)

Pn(ρn+∆∆∆∆ρnc)(1 – p(·))Pn(ρn-∆∆∆∆ρnc) =

Figure 5.3: Penalising Misbehaviour Under Uncertainty.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

honest traffic
truncated

unaffected

penalty prob.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

dishonest traffic

Figure 5.4: Typical simulated distributions of DPM at the destination.

From honest (top) and dishonest (bottom) sources, also showing proportion of penalised traffic (note

log scale).

Initially we choose to keep state and processing to a minimum by modelling prevailing conditions

with just the exponentially weighted moving averageµ and EWM varianceν. So we model the prevailing

distributionPn(ρn−∆ρnc) as if it were the normal distributionN(µ, ν) reconstructed from recent traffic,

whatever the actual distribution (e.g. Fig5.4).

At each packet, the EWMA & EWMV are updated:

µ← γρn + (1− γ)µ (5.2)

ν ← γ(ρn − µ)2 + (1− γ)ν. (5.3)

For attack trafficµ → ∆ρnc, converging faster by increasingγ to weight recent values(0 < γ ≤

1). In maintaining the EWMA, positive packets with the ‘certain’ flag cleared (see §4.2) are ignored,

incentivising correct use of the flag.

Then, using the formula for a normal distribution,

Pn(ρn −∆ρnc) =
1√
2πν

e−
(ρn−µ)2

2ν . (5.4)

5.1. Incentives 60

we can derive the required penalty probability function to apply to each specific packet with DPMρn,

by re-arranging (5.1) and substituting from (5.4):

p(ρn, µ, ν) = 0; µ ≥ 0 or ρn ≥ 0

= 1− Pn(ρn + µ)
Pn(ρn − µ)

; µ < 0, ρn < 0

= 1− e
−2ρnµ

ν (5.5)

As required, the penalty becomes stricter the worse the EWMA becomes, but flattens to zero discards

when honest users keep the EWMA to zero.

Where a cheating flow is hidden in a large honest aggregate, it causes a slightly negative EWMA,

leading to some dropping. After Floyd and Fall [FF99] we cache the flow identifiers of penalised packets.

Once any aggregate of destination (and/or source) identifiers appears more often than would be likely

by chance, a second instance of the dropper is spawned and traffic matching the identifier(s) is filtered

into it.4 Each instance of a focused dropper maintains its own EWMA5 and may spawn further droppers.

These focused droppers should be far more sensitive than the first, also shielding honest traffic from the

risk of false hits.

Of course, if cheating negative traffic imitates identifiers used in honest traffic, both will be filtered

into the same focused dropper, causing collateral damage to the honest traffic. But by definition the

cheating traffic will tend to be more negative, which the above penalty function is designed to discrimi-

nate against.

Having isolated suspect identifiers, an egress edge dropper can send hints upstream. Any node can

test hints because they point to traffic measurably below an objective threshold. And a node need only

act on the hints if it has sufficient resources. So the hints need not be authenticated (unlike DoS filter

push-back requests), avoiding vulnerability to floods of bogus authentication requests. Also, the hints

can safely jump multiple domains without the need for a global key management infrastructure. So

push-back of hints does not depend on the co-operation of high speed core networks, where operators

are more wary of any additional processing.

Even if explicit congestion marking were universally deployed, buffers could still occasionally

overflow. So irrespective of any hints, if a router must discard packets, clearly it should bias against any

with negative DPM (§§9 & 12.1.1develop this point).

4As the introduction to the current PartII of this dissertation explains, since writing this chapter we have realised that designs

like this (and all bottleneck policers that inherited the same idea from Floyd & Fall) are flawed. One cannot rely on the deterrent

effect of policing in bulk against flows that can switch to a whitewashed flow ID whenever they find their misbehaviour has been

detected. There can be no deterrent against a cheap pseudonym that can be discarded and replaced instantly at no cost [FR98]. The

new dropper design presented later in §7 fixes this vulnerability to whitewashed identifiers.
5From Eqn (5.5) an attacker can reduce dropping probability by increasing variance, e.g. by alternating honest & zero packets.

So a focused dropper should use the EWMV of the top level dropper. We are investigating variants with varying degrees of

statefulness and responsiveness.

5.1. Incentives 61

Honest delay reporting

Congestion control and traffic engineering depend on path delay as well as congestion, so we could need

header fields for both. It is possible that policing the amount of congestion caused (first order) will be

sufficient so that policing the dynamics (second order) will not be necessary. But it might be necessary to

police dynamics, in which case a robust way to measure downstream path delay will also be necessary.

The framework we built above (§5.1.3& Fig 5.2) to incentivise honest congestion reporting relied on

two properties of congestion: it physically cannot be negative; and rising path congestion should lead

to a drop in sending rate (whatever form of fairness is chosen). Delay has exactly the same properties:

negative delay is physically impossible; and rising feedback delay should lead to a lower sending rate.

So, we can use a similar incentive mechanisms to that we used for congestion to ensure the sender

neither overstates nor understates delay. An adaptive dropper, like the one above for the congestion field

(§5.1.3), could detect and remove any negative imbalance of delay headers at the internetwork egress.

And at the ingress we can use a policer like the TCP rate equation policer (§5.1.4below) that punishes

sources sending faster than the ‘TCP-friendly’ rate, which depends inversely on both congestion and

feedback delay. Or preferably we can use the bulk congestion policer which keeps an aggregate of flows

within an overall response to congestion but allows each flow to give or take from others (also see §5.1.4).

5.1.4 Policing congestion response

TCP rate equation policer

In the fastest phase of the TCP algorithm (congestion avoidance), TCP converges to the ratex̄TCP ≈

ks/(T
√
p), wherek ≈

√
(3/2) ands, T & p are respectively the packet size, round trip time and path

marking (or loss) rate [PFTK98]. Re-feedback ensures that a policer at the network ingress can derive

these parameters from the metrics each packet truthfully declares. It can then calculate a compliant rate

against which to compare the source’s actual rate.

Previous policers had to be placed at every site of possible congestion. With re-feedback, it is

sufficient to place one policer at each ingress to the internetwork. Here, downstream congestionρ2,1

can be assumed equal to path congestion,p. The policer can approximate the round trip delay asT ≈

T0 + 2ρ1,1, where the upstream round tripT0 can be found by a previous echo test against each source

and the downstream delayρ1,1 arrives in each packet6.

If the current TTL and ECN fields in IP were used to implement re-feedback, as sketched in the

SIGCOMM paper on re-feedback [BJCG+05], an ingress policer would have enough information to

mirror the TCP algorithm. Unary congestion marking can take a long time to convey an accurate con-

gestion level.7 Therefore, given the architectural nature of this part of the dissertation, we prefer to focus

6For simplicity, we choose to ignore congestion delay, because simple scaling arguments [Kel00, §2] show that as capacity

continues to grow, congestion delays will become insignificant relative to fixed propagation delays.
7The TCP equilibrium flow ratēx is proportional to

√
1/p in congestion avoidance [MSMO97], wherep is the marking or

loss fraction. Therefore the number of packets between unary congestion marks scalesO(x̄2). As a numerical example, to sustain

10Gbps a flow would only sawtooth every 90mins between marks. Note that currently typical values ofx̄ double every1.6 years

or so. In contrast, in Kelly’s rate control algorithm̄x ∝ 1/p, so inter-mark spacing scalesO(x̄). If packet size stays constant, the

number of packets per round trip (the window) also scalesO(x̄). Therefore, if most rate control algorithms evolved from TCP to a

5.1. Incentives 62

on multi-bit congestion and delay fields in future packet headers. §7.7quantifies how quickly a dropper

could detect misbehaving flows using a unary encoding of congestion that is all that is possible with

today’s IP header. The benefit of using more bits in headers to signal congestion is planned for future

work, building on [GKM01, TC04, AHCC06, XSSK05].

Below we outline one possible policing algorithm. It requires per flow state, but this isn’t necessarily

a scalability problem at the edge of an internetwork, however it does lay the policer open to resource

depletion attacks. We have also designed an unpublished variant with sub-linear scaling of flow state, but

our goal here is to give a clear implementation example that is concrete but avoids gratuitous distractions.

The policer requires a token bucket per flow. It empties the bucket by the size of each arriving packet

and fills it at a rate equivalent to that of a TCP compliant flow experiencing the same path conditions. It

calculates this by derivingp andT from the re-feedback fields as above. In other words, when a packet

arrives, the policer subtracts the packet sizes from the bucket and addsks∆t/(T
√
p), where∆t is the

time since the flow’s previous packet.

If the bucket empties, sanctions are applied to the flow. For instance, all future packets might be

discarded, or the policer could choose to take over rate control for the flow. The depth of the bucket

controls the flexibility allowed for a flow to stray from its expected throughput; it is set toαx̄TCP τ ,

whereα is the threshold greediness for a flow to be considered non-compliant over a timeτ , andx̄TCP

is an EWMA ofks/(T
√
p). A flow with a throughput higher thanαx̄TCP will be detected in a time

smaller thanτ .

α is chosen so that a compliant flow is most unlikely to trigger starvation of the bucket. For instance,

when p=1%, the average congestion should be 12.3 packets per round-trip. The probability of getting a

window larger than 42 is smaller than 0.01%. Settingα to 42/12.3 = 3.4 andτ = T would guarantee

that less than one compliant flow in ten thousand would be subjected to sanction. Increasingα andτ

would reduce false hits further.

Bulk congestion policer

If one user creates multiple flows, or runs flows for longer than another user (e.g. p2p file-sharing),

per-flow approaches like TCP cannot arbitrate fairness betweenusers. We can generalise to an adaptive

policer based on MulTCP [CO98] that gives each flow an equivalent rate tow TCP flows. With the

benefit of re-feedback, it can maintain a per user count of congestion sent. But, rather than levying an

unpredictable charge for this congestion [KMT98], the policer can compare the count to whatever the

user chooses to pay. So a flat monthly rate would effectively buy a congestion quota. The closer the

internal congestion count approached this quota, the morew would be squeezed.

This style of policing is similar to that described in [JBM08] and further developed in §11 later.

Edge QoS

Our interest in solving the policing problem was not solely to police a single response to congestion,

such as TCP-friendliness, although that alone is a major contribution. Once timely, truthful downstream

rate response proportional to1/p, as Kelly’s algorithm does, the time between marks would scaleO(1) (i.e. stay constant) as flow

rates increase.

5.1. Incentives 63

path information is visible to ingress network operators in data packets, they can offer a spectrum of

responses to incipient congestion. This is equivalent to offering different levels of QoS, perhaps ranging

from a scavenger class, through best effort and premium levels of differentiated service to admission

controlled bandwidth reservations (the right to zero congestion response)—all without any differential

treatment on network elements beyond the first ingress (with the caveat below).

Kelly and co-workers [KMT98] pioneered this approach, proving it optimises social welfare across

a network. Further its policing architecture solves the scalability problems inherent in other QoS ap-

proaches, though this is seldom appreciated.

With traditional QoS some identification convention must distinguish which traffic the edge has

decided should be given which preferential treatment as it passes to interior domains. Using flow iden-

tification (like Intserv) preserves precision, but scales badly. Using class identification (like Diffserv)

loses precision at scale.

With edge QoS, instead of the edge identifying the traffic’s QoS for interior routers, interior routers

identify the traffic’s congestion for the edge. Because traffic already carries end-point identifiers, regular

packet forwarding carries congestion marking to its destination end-point which in turn feeds it back to

its source—the root cause. Therefore packet markings traverse deaggregation and reaggregation with

absolute precision, and with no need for a separate QoS identification convention. The only unequal

treatment of different traffic identities is in the policer at the first ingress to the internetwork, where

customer or flow identities have local significance.

Siris [Sir02] has proven this approach through simulation. But deployment was confined to a radio

network controller scenario where congestion feedback in the back-channel to the sender could be inter-

cepted and was trusted to be correct—assumptions that can be relaxed with re-feedback, giving general

applicability.

Having sung the praises of closed-loop control, a caveat is necessary. Unusual conditions (link

failure or sudden traffic shifts) can cause traffic in flight to overflow queues. So, within a round trip,

strong QoS assurances are only possible if each resource is capable of rudimentary local (open-loop)

traffic class prioritisation until the closed-loop restores order.

Flow start incentives

At the start of each flow, a sender neither knows the state of the path to the destination nor the relative

change the additional flow will cause. TCP’s slow-start phase incrementally finds out both while also

giving other flows time to make room for the new flow.

The re-feedback incentive framework deliberately presents a dilemma to a sender without recent

path knowledge (e.g. at the first packet, or after an idle period). Sending understated DPM increases the

risk of discard at the egress dropper. But sending overstated DPM increases the risk of sanction at the

ingress policer as the flow rises to full rate. The strategies around this dilemma deserve a paper in their

own right, so here we merely provide an outline.

We should think of TCP’s exponential slow-start as dependent on an implicit evolving estimate

of path congestion by the sender, starting pessimistically by assuming high path congestion. Inverting

5.1. Incentives 64

TCP’s steady state rate equation givesρ ∝ 1
x̄2 to a first approximation. So rate doubling quarters the

implicit path congestion estimate every round trip. To safely pass the policer and the dropper, the sender

should be consistent, also using this implicit estimate of path congestion to set the DPM in each sent

packet. If it reduces its path congestion estimate too quickly (increasing its rate accordingly), it will

undershoot the true path congestion and risk being caught by the egress dropper.

So the re-feedback incentive framework encourages caution at the start of a flow in proportion to

path uncertainty—reminiscent of TCP’s slow start [KM99]. However this claim greatly depends on how

quickly our mechanisms can detect and remove non-compliant behaviour.

It is well-known that repeated unary congestion feedback like ECN takes a long time to signal low

congestion levels. So ECN is not a good basis on which to build responsive policing mechanisms. In

the years it would take to deploy the TCP modifications needed for our re-feedback extension of ECN

(§6.1.2), TCP will be hitting its own scalability limits.7 So although we believe re-ECN could start to

solve policing problems fairly quickly, we must emphasise that a multi-bit congestion field will need

to be considered anyway. It would provide responsive policing even if short flows dominate the future

traffic mix. And at the same time, it would help fix TCP/IP for high capacity scenarios.8

This still leaves the problem of whether the new flow will push a currently uncongested path into

congestion.

5.1.5 Inter-domain incentive mechanisms

The overview of our incentive framework explained why bulk inter-domain congestion charging emu-

lates policing with per-flow precision. We now describe this mechanism.

At an inter-domain interface, only a single bulk counter (and two temporary ones) per direction is

needed. The main counter merely accumulates the DPMρ in every passing packet over an accounting

periodTa (e.g. a month). At the end of the month,NA should payNB the chargeCa = λ
∑Ta ρ+,

whereλ is the fixed price of congestion agreed between them. To implement this with the re-feedback

variant of ECN described in §6.1.2, the meter would simply need to increment or decrement by the size

of packets marked with the Positive or Negative code-points respectively.

To protect receiving domains from ‘denial of funds’ attacks, any usage element of a charge should

be ‘sender pays’.9 Soλ ≥ 0 and persistently negativeρ should be ignored, given negative congestion

is physically impossible (see §8.2.4). Once neighbours agree that ‘no-one pays’ for persistent negative

congestion, they are incentivised to introduce the dropper (§5.1.3) to remove persistent negative traffic,

which no longer carries any ability to pay for further downstream congestion. ‘Receiver pays’ can

optionally be arranged between edge operators without risk of ‘denial of funds’ through an end-to-end

clearinghouse [BR05].

We should clarify that we neither require nor expect universal inter-domain congestion charging.

However, because it exposes true costs, it is likely to emerge as the competitive equilibrium [BR05].

8An extra multi-bit field in IP is already proposed for the allowed congestion window in XCP [KHR02] and for the allowed

sending rate in Quick-Start [FAJS07].
9A capacity charge made to the larger network, whatever the direction of traffic, might well complement congestion charging

(or any form of usage charging).

5.2. Dropper performance 65

Current tariffs such as 95th %ile peak demand or volume charging may continue. But to compete,

manual price adjustments will be needed to track the congestion price. So congestion charging is likely

to predominate, given it uses a simple, passive mechanism without regard to flows, but automatically

adjusts the price to give the correct upstream incentives to the precise flows that deserve them.

The main alternative to usage charging is the service level agreement, where a network contracts to

keep metrics within statistical limits. Currently, proving whether delay or loss (impairment) budgets have

been exceeded and by whom requires a comprehensive system of trusted echo reflectors. Re-feedback

greatly simplifies these problems of SLA accountability, because it ensures downstream metrics are

visible purely locally at each inter-domain border.

5.1.6 Distributed denial of service mitigation

A flooding attack is inherently about congestion of a resource. Because re-feedback ensures the causes

of network congestion experience the cost of their own actions, it acts as a first line of defence against

DDoS. As load focuses on a victim, nearby upstream queues grow, requiring packets to be pre-loaded

with a higher congestion metric. If the source does increase the initial metric, its own network’s ingress

policer will throttle the flow. If the source doesn’t increase the initial metric, it will become negative at

the congested resource, which can bias its drop against negative traffic.

Inter-domain congestion charging ensures that any network that harbours compromised ‘zombie’

hosts will have to pay for the congestion that their attacks cause in downstream networks. Therefore, it

is incentivised to deploy our adaptive policer (§5.1.4). The adaptive policer limits hosts that persistently

causes congestion to only send very slowly into congested paths. As well as protecting other networks,

the extremely poor performance at any sign of congestion will incentivise the zombie’s owner to clean it

up.

Note, however, that delay in detecting attacks does leave re-feedback briefly vulnerable (§§5.1.4&

5.2).

5.2 Dropper performance

The re-feedback incentive framework relies critically on how quickly the dropper (§5.1.3) can detect and

isolate flows that are maliciously understating congestion, and how much collateral damage is suffered

by honest packets. The error in an honest source’s prediction of congestion for re-feedback (Eqn4.6)

depends on how well path congestion in one round trip correlates with congestion the next. If the

correlation is weak, to avoid falsely dropping honest traffic the dropper has to heavily smooth out all

the variation, making it sluggish to respond to a movement in the average due to an attack. We ran two

experiments to find whether a good trade-off between false hits and false misses is possible:

1. The first experiment found the fastest smoothing coefficient that still introduced an acceptably low

rate of false hits for honest flows.

2. Then the second experiment checked whether this smoothing was still fast enough to catch dis-

honest flows quickly.

5.2. Dropper performance 66

We chose to use ns2 (v2.26) [ns2] to run a series of simulations with highly demanding sets of flows

arriving at the dropper, some having traversed up to five potential bottlenecks. Below are the highlights

of the experiments.

We implemented the multi-bit variant of congestion re-feedback carrying real numbers in TCP

Reno using the initialisation and combining functions in Table4.1. For the local congestion metric

at each routermi, we extracted the real value of the marking probability,pb, used within the RED

algorithm [FJ93, §4] before its transformation into a unary encoded sequence of marks. However, to be

more demanding we still allowed TCP rate control to respond in its usual sawtooth way to unary ECN

feedback and drops. We bounded headersh within [−1, 1].

We implemented the dropper within the RED module, simulating packet truncation as its sanction—

in order to preserve the feedback loop. We omitted flow-focused dropping as our initial aim was to assess

feasibility. From Eqn4.5we approximated downstream congestion asρn ≈ −hn, usinghz = 0.

Simulation model: We used a parking lot topology of 5 core nodesn1 ton5, connected by 10Mbps

links. Queues at all core routers were RED-ECN in the direction of traffic (n1 to n5), and drop tail in

the reverse direction with sufficiently large links to prevent ACK drops. The dropper ran onn5. Traffic

entered the network from all nodesn1–n4 and left it after a number of hops ranging across (1,2,3, & 5).

Transmission delays between core nodes were 3ms, while edge delays defined a range of RTTs between

90–500ms, averaging̃250ms. TCP flows through the dropper were grouped in three classes according to

their typical RTT: low (L), medium (M), and high (U) of the order of 100, 250 & 500ms.

The traffic model consisted of 400 sources of which 110 were TCP-ECN and the rest UDP, with

TCP traffic consistently> 90% of total bits. This reflected current [cla98] not necessarily future Internet

traffic (when reduced TCP volume is expected). Packet sizes were all 1500B. We did not explicitly model

HTTP but defined 100 TCP sources as FTP, uniformly varying sessions from small (20pkt) to large

(1500pkt), with sources’ average idle times exponentially distributed. The remaining 10 FTP sessions

transferred infinite-sized files and traversed all core nodes. The UDP sources were packet trains with

both ON and OFF times Pareto distributed with parameter 1.9. The resulting frequent short-lived and

sporadic long-lived sessions reflected long-tailed Internet traffic. Traffic profiles were subject to random

variations with RED queue utilisation varying from high 80s to low 100s percentages throughout. Traffic

sources were initially generated at random uniformly between 0 and 20s; statistics collection began 30s

into the 300s simulation. The (gentle) RED parameters were set to the currently recommended values

relative to buffer size.

Simulation results: We used solely honest sources to find the dropper’s baseline sensitivity under

various conditions. Fig5.5 is typical, leading us to use smoothing coefficients just below the knee of

the curve for our later experiments with dishonest flows. That isγ = 0.0005, 0.001 or 0.002. Even in

the last case truncation rates were only 1–7:10,000. We expected the subset of flows with below average

RTT (L) to be better at predicting congestion, given it would have less time to change. In fact, they

consistently suffered about 50% worse truncation rates than flows with average RTTs. Indeed, flows

with average RTT were generally better at predicting the next round trip’s congestion than both U and L

5.2. Dropper performance 67

Honest traffic RED queues:
wq=0.02, B=188B

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

0.0001 0.001 0.01
Dropper smoothing coefficient, γ (log scale)

T
ru

nc
at

io
n

ra
te

(f
al

se
 n

eg
at

iv
es

)

Low

Mid RTT

Upp

Figure 5.5: Effect of Dropper Smoothing on Truncation Rate.

For honest flows from lower, mid & upper RTT ranges (note: no focused dropper).

flows either side of them. Closed loop traffic behaviour at sub-RTT timescales is a developing field, but

we are not aware of any explanation for these results.

We introduced dishonest traffic as a step under-declaring congestion by 0.1 to see how fast a large

change could be detected, then ramping up to see when a small level of dishonesty became undetectable.

Fig 5.6a) shows how if even 10% of flows are dishonest, high truncation peaks occur that would mark

out the flow for focused treatment by a focused dropper. Note how, as levels of understatement decline,

the dishonesty is lost in random fluctuations. Fig5.6b) shows another example where 50% of flows are

dishonest, thus causing strong near-immediate discrimination.

5.2. Dropper performance 68

a)

Upper RTT, γ=0.002 RED queues:
wq=0.02, B=188B

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

31 81 131 181 231 281

time/s

tr
un

ca
tio

n
ra

te

90% honest
truncation rate
10% dishonest
truncation rate
10% dishonest
sources ∆ρ

b)

Lower RTT, γ=0.002 RED queues:
wq=0.02, B=188B

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

31 81 131 181 231 281

time/s

tr
un

ca
ti

on
 r

at
e

50% honest
truncation rate

50% dishonest
truncation rate

50% dishonest
sources ∆ρ

Figure 5.6: Truncation Discrimination.

With a) 10% and b) 50% of sources dishonest∆ρ0c = −0.1 + 0.1 ramp (note: no focused dropper).

Re-feedback: Taking Stock

We have presented the benefits of a re-alignment of the datum of path characterisation metrics like TTL

and congestion notification. Moving the datum to the destination ensures that each packet arrives at every

relay carrying a view of the remaining path to be traversed by the packet, albeit a round trip delayed.

Despite overhauling the underlying feedback architecture, we will see in the following chapters that

a limited form of re-feedback can be deployed incrementally around unmodified forwarding elements

using the existing IP header.

Once downstream information is visible, inline equipment can exercise control mechanisms that

were previously impractical, such as rate policing or inter-domain traffic engineering. We describe how

to police TCP’s and other closed-loop rate control algorithms. Not only is it now possible to detect

and remove traffic that exhibits a hostile response to congestion. It is also possible to explicitly permit

applications that require such a response, perhaps given suitable payment in exchange for the enhanced

quality of service.

We have introduced an incentive framework which ensures that the dominant strategy of selfish

parties around the feedback loop will be to declare re-feedback honestly. It relies critically on whether

malicious flows can be detected at the egress, while minimising false hits. We have simulated an adaptive

dropper to show this may indeed be feasible.

Re-feedback allows senders a view of route costs, and networks a view of downstream congestion.

By democratising access to path information, it enables a tussle over whether network control lies with

end-points or the network [CWSB05].

Part III

Re-ECN: Unary Congestion Signal

Integrity Mechanisms

70

Re-ECN Signal Integrity: Summary

Re-feedback of congestion signalling is a potentially powerful addition to packet networks that could

be used to encourage consideration for others and curb anti-social behaviour. But it will only be truly

useful if its algorithms can be designed and proved to be robust against self-interested or even malicious

strategies. Previous incentive analysis of re-feedback paid no regard to current packet format constraints.

This work focuses on the far more challenging case where re-feedback is applied within the constraint

that no change to the standard ECN forwarding implementation of IPv4 or v6 network equipment will

be necessary, implying only unary congestion signalling can be used. Further, only one extra header bit

is potentially available in each packet header (an extension header is proposed for IPv6 to provide this

extra bit).

The chapters in this part describe a proposed design of the re-ECN protocol and mechanisms to

induce everyone to comply with it in their own interests. It aims to find the limits to the claimed benefits

of re-ECN and to more rigorously prove that, within these limits, its incentives and protections work

correctly.

A stated aim of re-feedback is to allow ISPs to adopt a wide range of possible actions and sanctions

using the information about congestion on the path ahead that re-ECN can provide. The focus of this part

is on algorithms to assure the integrity of this information. Algorithms that mightusethe information to

limit or police congestion responsiveness are out of scope. However, it is very much in scope to ascertain

whether the act itself of using downstream congestion signals will affect their integrity. Therefore one

concrete policer design is defined to allow analysis of the system as a whole.

There follows a guide to the contents of each chapter in this part, which contains the large majority

of the research in this dissertation.

Chapter 6

Re-ECN Introduction

In the interval after publication of the original re-feedback paper, the team working on re-feedback within

BT thought up a number of attacks against the mechanisms that were fiendishly hard to defend against.

Others in the research community came up with similar attacks and some nasty new ones too.

Baueret al [BFB06] challenged the claims of incentive alignment made for re-feedback, arguing

that a sender wouldn’t be dissuaded by dropped packets if it had no desire to communicate with the

receiver in the first place, for example in a denial of service attack. They proposed an attack that was

hard to defend against and also proposed other attacks on congestion pricing in general. Further attacks

have been proposed by Salvatori [Sal05], by others on various mailing lists and in denial of service

research fora (e.g. unpublished attacks from Handley and Greenhalgh that we will describe later).

This part of the dissertation describes the results of a re-think of the re-ECN protocol and incentive

mechanisms. Much of the original flavour remains, and the new mechanisms are, arguably, simpler.

The main difference has been in approach. Design principles have been carefully refined in order to

meet a set of basic constraints. These principles resulted from an iterative process, particularly involving

generalising the known attacks to understand the root of the vulnerability they were targeting. This

approach allows us to test performance against the constraints and against the principles, as espoused

by the design for provability movement [PLD04]. These principles are mostly specific to the dropper,

although one or two have wider architectural significance, making them worth articulating in future

publications. Of course, we also still aim to meet all the ambitious constraints of our original hypotheses

as well.

The biggest change was at the dropper. Reluctantly, the ideal of a dropper that usually monitored

an aggregate, detecting the most misbehaving flows, had to go; for the reasons concerning flow ID

whitewashing, as already outlined.1 Instead we had to accept that the dropper would need to process all

behaving flows, rather than aim to process only all misbehaving flows.

Also much more thought was put into handling dummy traffic, including publication of a workshop

paper [Bri06] on the subject.

No attempt is made to narrate the process that led to both the design principles and to each specific

design. The design of each element actually represents the outcome of an iterative process across all the

1see §7.3for the precise architectural discussion on this.

73

downstream
path
congest
-ion

i

NA
NA

NB
NB

NE
NE

NC
NC

ND
ND

R4

S1

policer
dropper

bulk congestion pricingbulk congestion charging

routingrouting

congestion
control

0

Figure 6.1: Re-ECN Incentive Framework.

elements, including occasional revisions of the re-ECN protocol that links them all together. As each

new attack was identified, it revealed a gap in the understanding of the problem at hand. This led to

deeper understanding of the nature of the problem, which enabled new, deeper requirements and design

principles to be articulated. Then a concrete engineered design was derived from the newly framed

principles.

Most of the attacks invented by the external research community were aimed at the re-feedback pro-

tocol in general, whatever the size of the protocol fields. In contrast, this part of the dissertation analyses

incentives and strategies for the far more challenging case where the protocol must fit within the limited

header space available in IPv4 or IPv6, without having to alter the ECN behaviour of forwarding ele-

ments. The resultant severely constrained precision brings with it new challenges and new opportunities

to attack the specifics of the protocol, which we incorporate into the analysis.

The original re-feedback paper [BJCG+05] had briefly proposed a protocol called re-ECN (version-

00), which could be deployed using three existing bits in the IPv4 header. However it was found to be

vulnerable to attacks by unscrupulous network operators (AppendixB.1 explains how). Instead this part

of the dissertation starts from the allegedly hardened (and simpler) re-ECN protocol that is specified in

version 05–07 of the subsequent Internet Draft on re-ECN [BJMS09a]. Rather than reproduce it here,

we have provided an abstraction of the network layer aspect in §6.1.

This part or the dissertation is organised as follows. It focuses on each of the mechanisms of the

re-feedback incentive framework in turn (visualised in Fig5.1 from §5.1, which is repeated here for

convenience as Fig6.1).

Re-ECN wire protocol: §6.1 describes the re-ECN wire protocol that links all the algorithmic mech-

anisms described in subsequent chapters into a complete system intended to create truth telling

incentives. The full protocol details are specified in IETF Internet Draft format [BJMS09a], but

here it suffices to give an abstraction of the network layer part of the protocol;

Egress dropper: §7 discusses a dropper intended to counter understatement of re-ECN signals. It would

74

most probably be located at the egress attachment points of the internetwork, but similar functions

might be deployed at any interior location, particularly egress border routers. This chapter is

the most thorough—the core of the dissertation—with pseudocode of all algorithms, analytical

predictions of performance and initial experiments to verify the predictions;

Border incentive mechanisms:§8 discusses hardening of the baseline mechanism proposed in outline

in §5.1.5earlier to detect and correct understatement of re-ECN signalling before using it to sup-

port congestion-based interconnection contracts. This chapter considers strategies networks might

adopt against each other, and mechanisms to ensure their incentives are aligned to help each other

against attacks from the ends, even if they are commercial competitors. These functions would

monitor traffic arriving at a border router of an autonomous system;

Forwarding element behaviour: §9 is a short chapter that introduces optional enhancements to active

queue management (AQM) algorithms. They exploit re-ECN protocol markings in packet headers

therefore they are only for elements that process the IP header. Two enhancements are proposed:

i) preferential drop to improve robustness against flooding attacks and ii) marking rather than drop

of flow-start packets to improve performance of short flows;

Middlebox Behaviour: §10 is another very short chapter that describes the interactions middleboxes

should have with the re-ECN protocol if they hold flow state. Having reluctantly accepted that re-

ECN requires flow state on its own policing elements, we wanted to provide facilities for middle-

boxes to handle flow state robustly and consistently as a first-class part of the Internet architecture;

Bulk Congestion Policer: §11 is yet another relatively short chapter that defines the most liberal bulk

congestion policer that we believe meets all our design principles and constraints. It is intended

for deployment at the ingress attachment point of an Internet access provider;

The Re-ECN System:The final chapter in this part, §12, takes an extensive view of the whole re-

ECN system. First it analyses the effectiveness of the incentive mechanisms against a range of

strategies and attacks designed to play off different parts of the system against each other: ends

against networks, networks against ends, and ends against ends. It also includes an exhaustive

check of Byzantine protocol transitions as a technique to find possible new attacks.

The main purpose of this chapter is to pull together the related parts of the system that may have

been introduced in dribs and drabs throughout previous chapters. It summarises the complexity

(simplicity) of the mechanisms proposed in each chapter and their outstanding vulnerabilities.

Throughout the focus is on congestion signal integrity. Mechanisms thatrely on the integrity of

these signals are out of scope. Nonetheless, we should not assume the dependency is always one-way. It

may be in the interests of the end-points to understate the congestion signal and live with the resulting

continuous discards of the egress dropper.

In §12.3.1we prove that the dependency is indeed one-way. In other words, the egress dropper en-

sures that the dominant strategy of a sender wanting to communicate with a receiver will be to declare the

6.1. Re-ECN Wire Protocol 75

same shadow price to the network (using re-ECN) as the network declares to the receiver (using ECN),

even if the network then uses the re-ECN shadow price to force the sender to respond to congestion.

Implementation of each element (aside from the protocol) does not need standardisation, but there

are some constraints on their behaviour that do need standardisation. To help with drafting standards doc-

uments later, the relevant standards requirements are highlighted using capitals, using the terminology

defined in IETF RFC2119 [Bra97].

In summary, this part proposes algorithms for each of the elements used to ensure incentives are

aligned for everyone to truthfully contribute to the integrity of unary congestion marking within the

re-ECN incentive framework. The purpose is both to show that the overall proposal is feasible, and

to provide a relatively complete specification of an example implementation so that its effectiveness in

meeting the goals stated in Hypothesis1 (Congestion Signal Integrity) can be analysed.

6.1 Re-ECN Wire Protocol

6.1.1 Justification for Building on ECN

The re-ECN wire protocol overloads the explicit congestion notification (ECN) wire protocol [RFB01],

which signals congestion in-band—within the headers of data packets. The decision to base re-ECN on

ECN, was not merely to exploit backwards compatibility with an existing practice (there is precious little

deployment of ECN anyway). It was because ECN reveals congestion explicitly and unambiguously in

the IP header and ECN has all the mathematical and structural properties to meet our requirements, each

of which are further elaborated below:

• Disambiguation of Congestion Signalling;

• Congestion Visibility to Network Nodes;

• In-Band Congestion Signalling;

• Unary Encoding.

Disambiguation of Congestion Signalling

Packet drop is a natural consequence of congestion and therefore provides an implicit signal that con-

gestion is happening. However, a packet could be dropped for numerous reasons including:

• bandwidth congestion;

• packet-processing congestion;

• flow-state memory congestion;

• a transmission error (e.g. radio interference);

• a packet size error;

• a routing or addressing error;

6.1. Re-ECN Wire Protocol 76

• a resource consumption limit (against the sender, receiver or an intermediate network);

• some other network policy violation (perhaps even based on packet content);

• a badly designed or badly implemented middlebox;

• packet content not understood by the receiver;

• a non-existent, powered down or failed receiver.

Because congestion has considerable economic significance, the first reason for building on ECN

is to have a congestion signal distinct from packet loss. A network will never be able to remove the

possibility of some losses being due to congestion, but a reasonable aim would be for losses to constitute

a small proportion of congestion signalling.

Congestion Visibility to Network Nodes

In the Internet architecture, drop is designed to be detected by the end-points, which notice gaps in the

sequence space of their end-to-end transport protocol. Sequence numbers are not necessary for stateless

packet forwarding. Therefore, by obfuscating the transport payload, end-points can hide a packet drop

from all network nodes except the one that actually dropped it.

It might seem that a network would be happy to keep its congestion information private from sur-

rounding networks, while only revealing it to the end-points causing the congestion, so they could reduce

their rate in response. That would be true if a congested network could trust all the end-points causing

the congestion to limit the traffic they sent, even if they were attached to other remote networks. Instead,

we assume that a network will have to give its neighbouring networks and end-points incentives to limit

congestion causing traffic, and neighbouring networks will then have to do likewise in turn.

Therefore, another reason we build on ECN is because we need an indication of resource congestion

that is measurable by network nodes without having to inspect a packet any more deeply than the IP

header.

In-Band Congestion Signalling

An ECN-enabled forwarding element marks ECN-capable packets with a probability that has a convex

dependence on incipient congestion of its resources. Marking is oblivious to which flows the packets are

in, but proportionately more packets will be marked in those data flows that send more packets through

a resource when it is more congested.

Packets carry their markings to their destination. The destination end-point is then responsible for

sending congestion feedback to the source. The feedback may or may not be sent. The source may or

may not reduce its bit-rate in response to the feedback.

It may seem convoluted for a forwarding element to signal congestion in-band to the receiver, but

the alternative of signalling directly back to the sender is fraught with problems. In the early Internet,

Internet control message protocol (ICMP [Pos81]) datagrams of type source quench (SQ) were originally

6.1. Re-ECN Wire Protocol 77

proposed for signalling congestion notification from a router directly to the sources of the load.2 But this

was superseded by the in-band packet drop model and later by the in-band packet marking model of

ECN, which is considered more robust for the following reasons:

• There is no reason to assume the addressing within the encapsulated payload of a IP packet causing

congestion will be understandable to a middlebox. The middlebox may be in a tunnel that hides

the original end-point identifier of the source of the packet. Packet are naturally constructed so

that a successful response will be possible from the intended destination, but not necessarily from

any arbitrary forwarding element;

• A response from the middle of the network to the source would need its own reliable transport,

whereas in-band signals can piggy-back on the reliable delivery mechanisms of the packets they

mark;

• A response from the middle of the network to the source might be rejected if it did not have the

same security association with the source as the original packet (otherwise how would this message

distinguish itself from denial of service traffic?), whereas in-band signals can piggy-back on the

security binding of the packets they mark (whether minimal transport sequence space checks, or

full cryptographic verification);

Against these points, one might argue that in-band signalling is wasteful because it requires bits to be

set-aside in every packet header (re-ECN proposes an overhead of three bits in every packet). However,

as long as the per-packet overhead is not too great, it is more efficient for a stressed machine to mark

packets that it is already forwarding than create whole new packets to echo, which requires a transport

payload to be identified and parsed.

Unary Encoding

Re-ECN signals downstream congestion using the difference between two unary signal encodings. The

use of a unary encoding is to maintain similarity with the implicit congestion signal from resources that

2The earliest reference I can find for Source Quench is the IETF RFC famous for introducing the Angle algorithm, but also

including discussion on use of Source Quench for congestion avoidanceor recovery (about 2/3 the way through Nagle’s Jan 1984

RFC896 [Nag84]). This led to the use of ICMP Source Quench as the mandatory IETF approach to congestion avoidance &

control for a short while (see §2.2.3 of Postel’s router requirements RFC1009 in Jun 1987 [BP87]). Even at that time, RFC 1009

allowed active queue management for congestion avoidance rather than recovery. However, it was already admitted in that RFC

that SQ wasn’t the ideal solution and research was continuing. The arguments against use of Source Quench that led to the change

of gateway requirements are summarised in RFC1254 (§3.1, Aug 1991 [MR91]), which gives an excellent set of further references.

The arguments seem to have been more a result of an unfortunate sequence of events. Essentially, there were so many different

algorithms for sending source quench that it wasn’t clear what a source should assume was happening when it got one - congestion

onset or a router had actually run out of buffer. Packet drop, on the other hand, was a clearer indication that resources had run out.

By Nov 1994 source quench was a definite ’SHOULD NOT’ in the draft router requirements RFC (Almquist’s RFC1716 [AK94]).

The alternative approach to congestion avoidance was deliberately vague due to ongoing research, but always involved drop of

packets in some form - outlined in Section 5.3.6, referring to papers of this time such as [MHR+90, Fin89, Nag85, Jac88]. SQ

was described as a weak mechanism, perhaps because of the above arguments, but also perhaps because it was generally only

signalled statistically to avoid congestion avalanche. Use of explicit congestion notification first appeared in [JRC87] in the DEC

DNA protocol.

6.1. Re-ECN Wire Protocol 78

have to discard packets when they are congested. If a resource experiencing congestion drops packets

with probability p it implicitly signals the expectation of congestion as a sequence of unary encoded

numbers consisting ofn− 1 zeroes followed by a one (a drop), whereE(p) = 1/n.

Using drop to signal ‘1’ introduces inherent delay while the decoder decides whether a missing

packet is due to reordering or drop. Explicit congestion notification (ECN [Flo94]), and the DECbit

scheme [JRC87] on which ECN was based, avoided this delay by creating an explicit way for congested

resources to signal a ‘1’ but without otherwise altering the encoding.

The pragmatic aim was to ensure transports could respond to a mixture of drops and explicit signals

without the strength of response having to be different for each—essentially they realised that universal

agreement on the relative strength of each signal would be unlikely unless the conversion factor was 1.

Other constraints that resulted in this unary encoding were:

Space Efficient: The space used in packet headers should be the minimum necessary.

Stateless:Transports only see a small subset of the packets that traverse a congested resource but the

resource must not have to hold flow state to know which of the packets will be seen by which

transport (anyway it cannot know which packets might subsequently be lost or re-ordered). So

the encoding must be decodable from a randomly selected small subset of packets encoded by a

resource.

Combinable: Packets traversing multiple congested resources will convey an encoded signal that is a

known combination of the signals from each resource using the same combining function as drop;

specifically, combinatorial, i.e.p = 1− (1− p1) . . . (1− pn).

Therefore, the decision to base the re-ECN encoding on the unary signal encoding of ECN, was not

merely to exploit backwards compatibility with an existing practice, it was because the rationale for that

existing practice would remain valid as far as we could foresee. We cannot expect all network resources

to become ECN-enabled, and even ECN-enabled resources will sometimes overrun available capacity

and have to drop packets. Therefore, it will always be important to use a congestion signal like ECN that

has a universally understood relationship with simple drop.3

The decision to use combinatorial probability to combine congestion signals from each resource

ended up having a major impact on the complexity of the re-ECN system. However, if we had chosen

instead to use simple addition it is likely there would have been similar or worse complexity having to

cater for the possibility that protocol fields might overflow at high levels of congestion.

6.1.2 Re-ECN Network Layer Protocol

The re-ECN protocol is described in an Internet Draft proposed to the IETF [BJMS09a]. For the purposes

of discussing incentives here, it will usually be sufficient to use an abstraction of the protocol at the

3We are working on a congestion notification encoding [Bri07a] that gives itself multiple bits per packet by using an IPv6

extension header (further extending our initial IPv6 re-ECN proposal [BJMS09a]). But it still expects most resources to signal

congestion using the unary encoding of ECN. However, it outlines a way for networks to evolve towards using these multiple bits

that can still work if many resources don’t.

6.1. Re-ECN Wire Protocol 79

network layer without worrying about exactly which bits are set in protocol headers and without worrying

about how the transport layer at the source arranges packets to be set correctly at the network layer nor

how congestion is fed back from the destination to the source. These issues are specified in the above

Internet Draft, but they rarely concern us here.

Re-ECN packets may be set to one of five states (enumerated in Table6.1), each implying the bytes

of the packet are ‘worth’ one of the three possible values,H = −1, 0,+1, representing the expected

volume of congestion that each byte of that packet will cause downstream (or equivalently how much

congestion it will experience) when averaged over a flow. Volume of congestion is defined below in §6.2.

For completeness, Table6.1also includes the code-points used for the re-ECN states in protocol headers

and it lists the legacy and unused codepoints at the bottom.

State Notation Worth Variable ECN-RE

Cautious (+?) +1 g 00-1

Positive (+1) +1 z 01-0

Neutral (0) 0 y 01-1

Cancelled (±0) 0 c 11-0

Negative (-1) -1 u 11-1

Not ECN Capable Not-ECT - 00-0

Legacy ECN ECT(0) - 10-0

Currently Unused CU 0 10-1

Table 6.1: Packet States in the Re-ECN Protocol.
The bottom lines tabulate legacy and unused states of the proposed extended ECN (EECN) field.

The ‘Variable’ column gives the name we use to represent the proportion of bits with this marking state
in a set of packets.

The ECN-RE column gives the associated settingsEE-R of the ECN field (EE) and RE flag (R).

congestion
marking

congestion
marking

neutral
(0)

negative
(-1)

positive
(+1)

cancelled
(±0)

cautious
(+?)

uncongested
forwarding

or
congestion
marking

re-echo
marking

uncongested
forwarding

or
congestion
marking

uncongested
forwarding

uncongested
forwarding

double
marking

created
packet

uncongested
forwarding

flow start

regular
sending

Figure 6.2: Re-ECN Expected State Transitions.

See §12.1.4for other possible but unexpected or unusual transitions.

The re-ECN protocol arranges the five possible states of a packet so that unchanged standard ECN

forwarding elements will decrement a packet’s worth more often the more congested they are. That is,

6.1. Re-ECN Wire Protocol 80

a pre-existing forwarding element that complies with the ECN proposed standard [RFB01] will signal

congestion by turning Neutral packets Negative (0 to -1) or cancelling the worth of Positive packets from

+1 back to 0 (Fig6.2). We term this second type of neutral as ‘Cancelled’ to distinguish it from a packet

that started Neutral, and denote it by±0.

Senders may do whatever is most advantageous to them if they can get away with it, but the egress

dropper (§7) is intended to encourage them to arrange that at least as much positive downstream conges-

tion marking as negative arrives at the destination. So, normally, senders are expected to send Neutral

packets (worth 0). But if a sender expects that some packets will be congestion marked to Negative (-1),

it will try to balance these by sending as many bytes4 with incremented worth (+1). All the bytes within

the same packet have the same worth, so a large Negative packet would be balanced by sufficient small

Positive packets, rounding up to the next whole packet to be safe.

Because of feedback delays, if the sender merely sends a packet of positive worth in response to the

negative worth of each congestion feedback event, the cumulative balance will always be either negative

or zero, so the moving average will always be slightly negative. Given the system is arranged so that it is

in the sender’s interest to maintain a balance of at least zero, the sender will want to build up some credit

at the start of a flow to cover the risk of the largest packets it sends being marked Negative. Then, to

maintain balance, it can re-echo the feedback from each congestion event (-1) by sending a Positive (+1)

packet of the same size. The actual amount of positive credit to send at the start of a flow or hold during

the flow is deliberately left as a dilemma for the sender [BJCG+05, §3.3.3]. Senders more sensitive

to the risk of being sanctioned for allowing a negative balance will send more initial credit and be less

concerned about recovering any credit near the end of the flow. In §7.7 we derive a default that would

be reasonable to standardise into a flow control protocol like TCP.

Because the worth of the packets at the start of the flow may be redundant, or at least overstated, we

introduce a fifth state that is also worth +1, but which a sender can use when it is being cautious at the

start of a flow, rather than responding to actual congestion. We call this cautious positive, or ‘Cautious’

for short, and denote it by ‘+?’. It will be seen as we proceed that being able to distinguish positive worth

from cautious positive worth is very useful in a number of respects.

Currently we define the value of a cautious positive byte as +1, but we recognise that it may be

preferred in future to allow the relative worth of these Cautious packets to be decoupled from regular

Positive packets, perhaps being determined by a separate market.

The overall effect is that senders have to pre-load enough positive downstream congestion (cf.

credit) into packets to survive being decremented as they experience congestion (cf. debit), without

running out of pre-loaded downstream congestion (cf. avoiding debt). The mechanisms described in this

dissertation give everyone the incentives to ensure they follow such a strategy.

The protocol has been deliberately arranged so that the downstream congestion-volume caused (or

experienced) by a set of packets can be metered in bulk, at least approximately, by a network element or

an end-point, simply by counting the volume of packets marked +1 and subtracting the volume marked

4Not including headers that encapsulate the lowest internetwork (IP) layer.

6.2. Notation, Definitions and Metrics 81

-1.

6.2 Notation, Definitions and Metrics

Before we define upstream and downstream congestion, we need to define some general congestion-

related concepts:

Definition (Congestion). Both instantaneous congestionmi(t) of resource indexi and path congestion

p(t) are defined in §4.A.1(Definitions4.1& 4.2); Units: Dimensionless5;

Definition 6.1 (Congestion-bit-rate). Congestion-bit-rate is the interaction between bit-rate and con-

gestion; The rate at which congestion marked bits are generated or experienced; the instantaneous

product of congestion and the bit-rate of flowf , either generated by resourcei asmi(t)xf (t) or expe-

rienced over a path asp(t)xf (t) or over an aggregate setF of flows
∑

∀f∈F p(t)xf (t); Typical units:

[b/s];

Definition 6.2 (Congestion-volume).Congestion-volume is congestion-bit-rate integrated over a time

periodT , either for one flowf or the setF of flows
∫

T

∑
∀f∈F p(t)xf (t)dt. The accumulated volume

of congestion marked bits; Typical units: [b];

Definition 6.3 (Congestion-intensity). Congestion-intensity is average congestion-bit-rate over

a period T ; the average rate at which congestion marked bits are generated or experienced,∫
T

∑
∀f∈F p(t)xf (t)dt/T ; Typical units: [b/s];

In the following we will start from the marking probabilitiesmi of each resourcei along the path.

Then we will derive an expression for the expectation of downstream congestion at an intermediate point

along the network path after theith resource, solely in terms of proportions of re-ECN markings visible

locally at that resource (assuming honest marking compliant with the re-ECN protocol).

y0

z0

yiui

zici

ynun

zncn

network marking probabilities, m
at resources upstream & downstream of link i

source
marking

mu md
packet
header
index: 0 i n

mi-1 mim0 mn-1... ...

header
marking

proportions

Figure 6.3: Re-ECN Markings at Intermediate Points Along a Network Path.

Upstream and downstream of this point there are congested resources that mark the ECN field with

probabilitymu andmd respectively. These are the probabilities that an unmarked packet would become

5To check units it can help to think of a marked bit as a distinct unit from a bit. Then instantaneous congestion has the units of

[(marked b)/b] or just [mark].

6.2. Notation, Definitions and Metrics 82

marked if it traversed the combination of all resources upstream or separately the combination of all

resources downstream. This models the system as if there were just one resource upstream and one

downstream. In other words, the combinatorial probability of ECN marking from resource0 to i− 1 is

mu = 1− (1−m0) . . . (1−mi−1)

and the combinatorial probability of ECN marking from resourcei to n− 1 is

md = 1− (1−mi) . . . (1−mn−1).

The top half of Fig6.3 illustrates this congestion marking. The bottom half illustrates the resulting

proportions of markings in packet headers. The area of each square represents all the packets passing the

corresponding point in the path, and the different sub-areas within each square represent the proportion

of each packet marking. The source determines the vertical proportions of markings, dividing the square

into upper and lower parts. Then as packets traverse the path, each congested network element marks

packets without regard to pre-existing markings. Therefore it superimposes the horizontal proportions

of markings that divide the square into left-hand and right-hand parts. The left-hand part starts at zero

size and grows as more congestion marking is experienced.

We index proportions of packet markings with the resource they are about to arrive at next. The

index zero is used for the origin header before it experiences congestionm0 at the zeroth resource (which

may be within the network stack of the origin machine).

We assume for now that the source only initiates Neutral or Positive markings and we ignore Cau-

tious markings at this stage to avoid them cluttering up the explanations, equations and diagrams.6 It

can be seen from Fig6.3 that the re-ECN protocol has been arranged so that network marking (vertical

divisions) can be orthogonal to the original source markings (horizontal divisions). Network resources

apply congestion marking to packets regardless of the marking they already carry, so markings accumu-

late by combinatorial probability. Using this fact, Eqn (6.1) tabulates the fractions of each marking at

each point in the network in terms of the Positive marking originally introduced by the sourcez0 and the

upstream and downstream network marking probabilitiesmu & md.

Eqn (6.1) defines the fractions of each re-ECN marking introduced into the network by the source

in the left-hand column. It then defines the resulting fractions at an intermediate pointi and at the end of

the path, having experienced congestionmu and thenmd.

Positive: z0 zi = (1−mu)z0 zn = (1−mu)(1−md)z0
Cancelled: c0 = 0 ci = muz0 cn =

(
1− (1−mu)(1−md)

)
z0

Neutral: y0 = 1− z0 yi = (1−mu)(1− z0) yn = (1−mu)(1−md)(1− z0)
Negative: u0 = 0 ui = mu(1− z0) un =

(
1− (1−mu)(1−md)

)(
1− z0

)
.
(6.1)

Fractions of each re-ECN marking at the start (i = 0) and end (i = n) of a path and at an intermediate
point i.

6They are properly taken into account in §7.4.5

6.2. Notation, Definitions and Metrics 83

If the transport complies with the re-ECN protocol, the source will introduce as much Positive

marking as the sum of Negative and Cancelled markings arriving at the destination in the previous round

trip. Then, assuming congestion is stationary and therefore rises as much as it falls, on average:

z0 = un + cn. (6.2)

We now use this formula to make some preparatory substitutions from Eqn (6.1) towards our goal

of expressing downstream congestionmd solely in terms of marking proportions at linki.

z0 = 1− (1−mu)(1−md).

zi =
(
1−mu

)(
1− (1−mu)(1−md)

)
.

ui = (1−mu)(1−md)mu.

zi − ui = (1−mu)md.

We introduce the notationvi for recent congestion downstream of theith resource, where

vi = md

=
zi − ui

1−mu

≈ zi − ui; mu � 1 (6.3)

One can think ofvi as if it represents a proportion ofvirtual header markings, i.e. the difference between

the proportions of Positive and Negative markings.

The above approximation removes the slight inflation factor1/(1 −mu). When the condition for

approximation does not hold, we want to put the precise expression for downstream congestion solely

in terms of locally visible markings. Using Eqn (6.1) this can be done either in terms of recent local

Positive and Cancelled markings or in terms of recent local Neutral and Negative markings:

vi =
(zi − ui)z0

zi

= (zi − ui)
(

1 +
ci
zi

)
; (6.4)

vi =
(zi − ui)(1− z0)

yi

= (zi − ui)
(

1 +
ui

yi

)
. (6.5)

There are two independent formulae for the same thing because there is deliberate redundancy in the

re-ECN encoding. This fact will be used later (§8.2.7) to double-check against cheating.

The role of the re-ECN protocol (§6.1.2) is to provide packet states that can meter recent down-

stream congestionv and downstream congestion-volumeV .7 We will now define what exactly would be

measured to meter these characteristics, taking account of varying packet sizes.

7Strictly a network provider could usev to signal a downstream shadow price, but we loosely use the term downstream

‘congestion’ unless it is important to make the distinction (see also §12.1.2).

6.2. Notation, Definitions and Metrics 84

We must emphasise that the initial definitions given here use the above pragmatic approximation

for a downstream congestion metric, which only hold for low levels of upstream congestion (Eqn (6.3)).

We will return to this point in §8.2.5where the precise correction factors just derived are used to close

off a vulnerability, which can otherwise be exploited whatever the level of congestion.

The ‘downstream congestion-volume’ of a sequence of packets crossing a point in a network is the

volume of congestion these packet cause (or equivalently experience) downstream. It can be measured

in terms of re-ECN markings as

VJ ≈
∑
j∈J

sjHj , (6.6)

wheresj andHj are the size8 and ‘worth’ of each packet indexed conceptually (but not actually) byj

andJ is the sequence of indicesj.9 NoteJ can be any aggregate passing a point, irrespective of flow

identifiers.

This compares with the offered volume over packet sequenceJ ,

SJ =
∑
j∈J

sj , (6.7)

The worthH of a packet is an attempt to mark the instantaneous downstream congestion caused by

(or equivalently, experienced by) each byte in the packet. Note the use of bytes rather than packets—all

bytes in a marked packet are defined as marked bytes. If we had enough bits per packet, we could put a

real number for downstream congestion in each packet. Then instantaneous downstream congestionvj,J

at packet indexj in the sequenceJ = 0 · · · j would be the increase of downstream congestion-volume

with respect to total offered volume,

vj,J ≈
dVJ

dSJ

∣∣∣∣
j

, (6.8)

But because we have limited space per packet, it is only meaningful to measure recent downstream

congestion over a finite volume of offered load using moving averages. Then recent downstream con-

gestion up to packet indexj in the sequenceJ is

vj,J ≈
∆VJ

∆SJ

∣∣∣∣
j

≈
Aj

k=0(skHk, a)

Aj
k=0(sk, a)

, (6.9)

where the functionAj
k=0(Xk, a) gives the moving average of some characteristicXk of each packet over

the sequence of packet indices0 · · · j anda is the discounting factor of the moving average. The two

moving average functions must be the same and both averaging functions must use the same discount

factor so that the characteristics of each packet are weighted identically in the numerator and denomina-

tor.

The nub of these definitions can better be seen by suppressing all the sequence and index notation

and the discount factors. Then downstream congestion-volume,

V ≈
∑

sH, (6.6′)

8Packet size includes network layer but not lower layer headers.
9Note that these subscripts denote the indices of packets not, as earlier, the index of the point on the path where packets are

being measured.

6.2. Notation, Definitions and Metrics 85

and recent downstream congestion,

v ≈ A(sH)
A(s)

. (6.9′)

Note the following:

• A(sH)/A(s) 6= A(H) becauseH ands vary independently;

• Re-ECN encodesH into just one of the three possible encoded states (-1, 0 and 1) per packet. So

the discounting factoramust be sufficiently small to give consecutive positive and negative marks

a reasonably similar weight, even if interspersed by many zeros;

• The measure of congestion-volumeV is deliberately independent of packet order. Howeverrecent

downstream congestionv will be unavoidably sensitive to packet reordering, given packet order

determines recency.

Chapter 7

Re-ECN Egress Dropper

7.1 Dropper Terminology

We use the term ‘drop’ and ‘dropper’ for brevity, but other sanctions may be applied depending on policy,

such as payload truncation. In scenarios where trust is expected, the sanction may simply be to raise a

management alarm reporting the excess of traffic above that which an honest source would have sent.

We use the term ‘egress dropper’ loosely, because the dropper will often be located at the egress of

a domain and there must be a dropper at the egress of the scope of an internetwork protected by re-ECN.

However, it would be valid (but not usually necessary) to locate a dropper at any network node to detect

and sanction negative flows.

The term ‘flow identifier’ means the identifiers common to a sequence of packets at whatever gran-

ularity the source reveals, including within the network layer payload. §7.3 discusses our reluctant

decision to detect flows in the network and our efforts to ensure only the barest minimum of per-flow

constraints.

Re-ECN only needs to classify packets into ‘flows’ to check that downstream congestion in packets

passing a point is consistently non-negative, given a consistently negative flow implies the transport must

be misbehaving. Ideally this requires flows to be examined at the finest granularity possible. Otherwise,

if only aggregates of flows are examined, a number of slightly positive microflows might mask a minority

of highly negative microflows. However, in certain circumstances dependent on policy1 it would be

reasonable to detect whether an aggregate was negative before examining flows within the aggregate to

find which ones to sanction. If the finest granularity visible at the edge of a network is an aggregate (e.g.

an IPsec encrypted tunnel), the only option open to the network is to treat the aggregate as one flow,

whether for passive detection or active sanction.

The specific identifiers used for a flow depend on which ‘next header’ field is present in the IP

header. For instance, if the next header is TCP, DCCP or UDP, a flow can be defined by the five-tuple of

source and destination IP addresses, the protocol ID in the IP header and the source and destination port

numbers in the transport header. If the next header is IPsec AH or ESP, the flow is defined by the four-

tuple of destination IP address and next header field in the IP header and the security parameter index

(SPI) in the AH or ESP header. For extra entropy the IPv6 Flow Label SHOULD be used in combination

1Where no flows were expected to be positive, e.g. at the egress of the internetwork.

7.2. Dropper Behaviour Constraints 87

with the usual 5-tuple flow ID parameters where available (see §7.5.3). Alternatively, other flow-IDs

may be used, or other ways to identify flows that are as yet to be defined.

If the next header field is unrecognised, only the 3-tuple of IP addresses and protocol ID can be

used. But in general, a common 3-tuple doesn’t imply that all packets belong to the same contractual

entity, given tunnels, NATs and multi-user hosting machines are common on the Internet. Also, whereas

all packets with a common flow ID will generally follow the same route, all packets with a common

3-tuple need not. If different proportions of one flow pass through different droppers at the same time,

dropper behaviour will be very unpredictable. Switching to a new dropper mid-flow is discussed in §A.1.

If any identifiers are unrecognisable, the packet is given a default flow ID we call ‘Bulk’ in common

with all packets not belonging to a well-behaved flow (see §12.2.2on Forward Compatibility).

7.2 Dropper Behaviour Constraints
The egress dropper for unary marking needs to satisfy the following design constraints:

Minimal False Hits: It SHOULD introduce minimal false hits for honest flows;

Minimal False Misses: It SHOULD quickly detect and sanction dishonest flows, preferably at the first

dishonest packet;

Transport Oblivious: It MUST NOT be designed around one particular rate response, such as TCP’s,

or one particular resource sharing regime such as TCP-friendliness [FHPW03], given an important

goal is to give ingress networks the freedom to allow different rate responses and different resource

sharing regimes [GK99b, Bri07b]—unilaterally without coordinating with downstream networks;

Sufficient Sanction: It MUST introduce sufficient loss in goodput so that sources cannot play off losses

at the egress dropper against higher allowed throughput at the ingress policer [Sal05] (§12.1.1);

Manage Memory Exhaustion: It SHOULD be able to counter state exhaustion attacks. For instance,

if the dropper uses flow-state, it should not be possible for sources to exhaust its memory capacity

by gratuitously sending numerous packets, each with a different flow ID.

Identifier Accountability: It MUST NOT be vulnerable to ‘identity whitewashing’, where a transport

can label a flow with a new ID more cheaply than paying the cost of continuing to use its current

ID [FR98];

7.3 Dropper Design Principles
The following design principles have been developed for the dropper design, to satisfy the above con-

straints (Table7.1shows which principle satisfies which constraint). They are introduced briefly below,

then some are discussed at greater length in the subsequent sections:

1. Source responsibility for delay allowance—aims to make false hits the responsibility of the source;

2. Sanctions proportionate to the crime (equivalence with honesty)—defines hits and misses, without

being transport specific, at least within the bounds of the dropper-policer trade-off (§12.1.1);

7.3. Dropper Design Principles 88

Required Constraint Design Principle

Minimal False Hits Source Responsibility for Delay Allowance

Minimal False Misses

Transport Oblivious Sanction Proportionate to Crime

Sufficient Sanction (Equivalence with Honesty)

Manage Memory Exhaustion Aggregate Flow State unless Positively Flagged

Identifier Accountability Rely on Flow ID Uniqueness not Reachability

Table 7.1: Which Design Principle Satisfies Which Constraint.

3. Aggregate flow state unless positively flagged—ensures the dropper need only allocate memory

for flows that have given at least as much as they have taken;

4. Rely on flow ID uniqueness, not reachability—limits scope of accountability for resource usage to

an identifier, not to the entity behind the identifier.

Sanctions Proportionate to the Crime (Equivalence with Honesty).An honest source complying with

the re-ECN protocol will aim to ensure that the volume of Positive marked bytes is no less than the

volume of Negative marked bytes at the egress, at least on average. The egress dropper SHOULD drop

sufficient traffic so that delivered traffic conforms to that which an honest source would have sent. A

dropper algorithm to achieve equivalence is derived in §7.3.1.

Neutral packets do not contribute to the balance at the egress, but they are not immune from being

dropped in order to comply with the equivalence principle.

An alternative might have been to detect when the balance of a flow at the egress drops below a

threshold then drop all its traffic. However, because the crime in this case has a measurable level, we

can neutralise it rather than punish it. It is also safer to adopt the principle that the sanction should be

proportionate to the crime, otherwise attackers may be able to deflect amplified sanctions onto others.

Merely neutralising misbehaviour creates no deterrent effect; therefore proportionate sanctions

would be ineffective if only applied on a randomly sampled basis. The optimal attack strategy then

would be to misbehave as much as possible, only behaving when forced to. Anyway, as soon as a mis-

behaving flow detects it has been picked for punitive sanctions, it can just take on a new whitewashed

identity [FR98].2 The improbability of universal worldwide source address validation [BB05] drove us

to give up on source addresses having any meaning other than as a label for a sequence of packets, which

in turn led to the need for proportionate sanctions and continual vigilance rather than occasional deterrent

punishments.

Therefore any punishment should be appliedin addition to neutralising misbehaviour. Neutralis-

ing misbehaviour acts as a baseline suitable for the generic internetworking layer, without precluding

punishment layered on top under local policy control.

Source Responsibility for Delay Allowance.The re-ECN protocol is designed on the principle that a

source carries its proportion of the risk that its packets will encounter unforeseen congestion in the round

2All per-flow bottleneck policer proposals suffer from this flaw.

7.3. Dropper Design Principles 89

trip time after they are sent. It is the source’s responsibility, not the dropper’s, to allow for feedback delay.

The alternative of the network robustly determining each transport’s RTT seemed infeasibly complex.

An honest source will avoid the average of recent congestion going negative under reasonable net-

work conditions by providing sufficient positive credit at the start of the flow to allow for unforeseen

events during the feedback delay. Then, as feedback informs it that congestion costs are being incurred,

it will match the feedback with an equal amount of re-feedback bytes to maintain the same level of credit.

Thus, during a flow, the markings of bytes should balance to no less than zero.

The dropper then has the minimal job of checking that the recent balance of a flow remains non-

negative. This design choice reluctantly requires per-flow processing and state within the network. Once

one accepts that it is untenable to expect hosts to co-operate in determining their own share of resources,

one has to face the question of whether the network can arbitrate resource sharing with only per-packet,

not per-flow processing.

In 1998 it seemed Kelly had finally devised a flow-oblivious network mechanism using ECN-based

congestion pricing [KMT98]. But sanctioning the receiver created insurmountable problems in prac-

tice [BJCG+05, §3.1]. We tried many avenues to alleviate the ‘receiver-pays’ problem while keeping a

flow-oblivious network, but re-ECN has been the closest we have been able to come to our goal.

Unlike other schemes to police congestion responsiveness3, the network need not make any judge-

ments about rate control behaviour, only about congestion signal integrity. The network can still leave

end-points free to choose how aggressive their rate control behaviour will be, and to weigh up how much

credit they are willing to spend to protect a flow from an unusual burst of congestion.

So, in summary, re-ECN can be transport-oblivious but unfortunately not flow-oblivious. Unless

some completely flow-oblivious but practical network mechanism can be invented, it seems that the

minimum generic network function [SRC84] will have to include per-flow testing of congestion signal

integrity, at least on egress nodes in environments lacking trust. But the network doesn’t need to allow

for round trip delays in these signals, which can remain the responsibility of the end-points.

Aggregate Flow State unless Positively Flagged.The egress dropper cannot determine whether each

packet is correctly congestion marked on its own, because of the need to allow for variation of expected

downstream congestion around zero due to round-trip delays.4 To determine whether to sanction each

packet the dropper must therefore hold state on each flow. Given the dropper is only absolutely required

at the egress edge of the network, we believe this is at least feasible, though not desirable.

Holding flow state could make the dropper vulnerable to state exhaustion attacks from malicious

sources, because they can give a new flow ID to each packet. However, we arrange that a previously

unseen flow ID alone doesn’t make the dropper allocate new flow state; the source must also send a

3They fall into two classes: i) bottleneck policers that detect flows taking much greater than an equal rate; after Floyd and

Fall [FF99]: Stabilized RED (SRED [OLW99]), CHOKe [PPP00], RED with Preference Dropping (RED-PD [MFW01]), Least

Recently Used RED (LRU-RED [Red01]), XCHOKe [CCG+02], and Approx. Fair Dropping (AFD [PBPS03]) and ii) schemes

that aim to isolate flows (or aggregates) from misbehaviour by enforcing equal or weighted sharing of bottlenecks based on fair

queuing (FQ [Nag85]) or weighted fair queuing (WFQ [DKS89]).
4Initially we believed this was a limitation of unary marking, because unary markings are only meaningful when accumulated

over multiple packets. However multibit markings would suffer the same limitation due to round trip delay.

7.3. Dropper Design Principles 90

Cautious (or Positive) packet for the dropper to consider a flow to be new. Because a packet must flag

that it wants to be considered as a new flow, it can be held accountable for the flags it raises as it crosses

every network trust boundary from the sender onwards (by the ingress policer or border mechanisms in

the wider incentive framework of Fig6.1).

Therefore, the dropper’s vulnerability to state exhaustion attacks is limited because sources must

consume their own ‘credit’ for the privilege of having the egress dropper allocate memory to allow

through a new unique flow unimpeded. In addition, the regular re-feedback rules ensure each source

must keep each flow’s state alive, by regularly include positive worth in further packets at a rate matching

the congestion markings from its network path.

Rely on Flow ID Uniqueness, not Reachability.The egress dropper uses flow identifiers solely as

labels—to isolate flow IDs from each other—not to push anything back towards the source. So a flow

can be made to behave correctly as long as its identifier is currently unique—it does not need to be

labelled ‘correctly’ (i.e. with the reachable source of the packet). This is a useful property that is robust

against a source that has no desire to receive a reply and therefore need not correctly identify itself in

order to send datagrams to something else. Consequently, the re-ECN protocol is insensitive to whether

identifiers are set honestly or correctly, except in so far as they carry a packet to the particular egress

dropper in question.

Together, the two principles ‘ignore reachability of the origin address’ and ‘source responsibility

for delay allowance’ ensure that packets can, in themselves, be held accountable for their resource us-

age.5 As packets cross an internetwork, the packets themselves carry accountability information from

the sender to the first network, then from the first to the second and so on. Each party can be made

accountable to the next using the packets passing between them as intermediaries, because the packets

themselves contain sufficient information about rest-of-path congestion.

The egress dropper defines a flow solely by the uniqueness of its flow identifiers while it is active,

and it will not recognise a new unique flow without some investment of resources by the source (see

‘Aggregate Flow State unless Positively Flagged’ above). Therefore we are only concerned by spoofed

source identifiers if they manage to break the uniqueness property of someone else’s flow, by mimicking

all its identifiers (see §7.5.3).

Note that this principle implies that the dropper will never carry over a balance (whether positive or

negative) from one flow to another, even if the flow appears to belong to the same end-points—because

it attaches no meaning to end-point identifiers other than their uniqueness.

7.3.1 Proportionate Sanctions

(Equivalence with Honesty)

At this initial stage, we are only concerned with the integrity (honesty) of Positive markings. We assume

that Negative markings are introduced as packets traverse the internetwork, with no bias towards marking

any particular types of packet more than others (§12.1.2analyses this assumption). Then an honest

5Multibit downstream congestion information is not necessary for this property, due to ‘source responsibility for delay al-

lowance’.

7.3. Dropper Design Principles 91

un

yNuN

zncn

ynun

zncn

a) b)

≡

=

=

≡

dropped

Figure 7.1: Misbehaving Traffic a) Before and b) After Discard by the Egress Dropper.

Its output aims to be equivalent to traffic from an honest source.

source is defined as one that never tries to send less Positive bytes than the Negative bytes introduced by

the network, and an honest flow is defined as the result.

So as not to disrupt the main flow of the explanation, we assume the source doesn’t initiate any

Cancelled packets (±0), which only result from the network randomly marking packets that happen

already to be Positive (+1). Until later, we also count Cautious packets (+?) in with Positive (+1). We

defer deeper questioning of these assumptions to §7.4.

While the recent balance between positive and negative traffic for a flow is in credit, the dropper

does nothing. But if the recent balance is in debt, by the principle of equivalence with honesty, the

dropper aims to reduce the flow’s traffic as a whole so that the recent volume of Negative marked traffic

after drop will be no greater than the recent volume of Positive traffic before drop.

Fig 7.1 shows the concept of equivalence with honesty graphically in two dimensions, using the

same visualisation conventions as in Fig6.3. It illustrates volumes of traffic markings dividing up a) the

larger square before and b) the smaller square after drop. The notation for the fractions of each marking

is the same as that defined in Eqn (6.1). After the dropper, Positive and Negative markings balance,

while before there is less Positive than Negative. The area of the enclosing rectangle on the right that

includes the traffic discarded by the dropper (grey hatched) is the same as that of the left hand square, as

are the areas of each marking within them.

By equivalence with honesty, the same proportion of Neutral markings should be dropped as Neg-

ative. This is because congestion marking should be applied randomly by upstream networks. So if we

would expect to see less Negative marks from an honest source, we would also expect less traffic that

would become Negative if marked, i.e. less Neutral traffic. Then, if this reduced traffic had been that sent

by an honest source, as many bytes would have been marked Negative as the dropper actually received

marked Positive, which leads to a dropper output that is equivalent to that from honest behaviour.

In Eqn (6.6) we defined downstream congestion-volumeV so that it could be measured as the

volume of Positive marked bytes less the volume of Negative marked bytes during the lifetime of a flow.

An honest flow will try to ensureV ≥ 0 throughout its lifetime. Similarly to Eqn (6.9′), we define the

fraction of Positive marked bytes arriving at node indexi in the recent past using the functionA(·) for a

moving average:

zi =
A(sH+

i)
A(s)

(7.1)

7.3. Dropper Design Principles 92

and the fraction of Negative bytes similarly6 as

ui = −A(sH−
i)

A(s)
. (7.2)

What ‘recent’ means is determined by the discounting factora of the moving average, which we

will tune to minimise false misses and false hits (§7.8). We have suppressed this factor from the notation

along with all the extraneous detail of packet indexes and sequences, as was done between Eqn (6.9) and

Eqn (6.9′).

From Eqn (6.3), if the moving averages of packets marked with each worth are each measured

separately as they pass a point, they will sum to a moving average of recent downstream congestion,

vi ≈ zi − ui. (6.3)

The approximation becomes an equality when testing whethervi = 0.

If the recent balance of markings at the egress dropper is in debt (vn < 0), the dropper makes sure

delivered traffic is equivalent to that from an honest source by reducing the recently delivered fraction

of Negative bytes touN = zn, where indicesn andN denote the points before and after the dropper.7

But it only drops traffic if a flow’s lifetime downstream congestion-volumeVn < 0 as well. This allows

an honest flow to post a credit to protect itself from bursts of congestion that would otherwise make its

recent balance look negative. So the drop probability of Negative bytesπu should be such that

uN = un(1− πu)

= zn

=⇒ πu = 1− zn

un
; Vn < 0, vn < 0. (7.3)

The drop probability of Neutral bytesπy should be the same as that of Negative bytesπu by our

earlier arguments. We don’t drop any Positive packets, because they act as the baseline that would have

been sent by an honest source. We also don’t drop Cancelled packets, but only because we have another

way to normalise the proportion of Cancelled packets that enter the dropper, which will be introduced

later (§7.4.1). In summary the dropper should discard each packet marking with probability:

πy = πu; Vn < 0, vn < 0

= 1− zn

un
, (7.4)

πz = 0,

πc = 0.
(7.5)

§7.6gives simple algorithms that implement these drop probabilities.

Fig 7.2visualises the dropper reducing the various packet markings sent by an attacker understating

downstream congestion. It shows re-ECN markings along a network path ending in an egress dropper.

6Except we negate the definition so thatui can be numerically positive.
7This does not remove congestion notification signals, because packet drop is always at least an equivalent notification to

marking.

7.3. Dropper Design Principles 93

0 …i… n

z0

code-point
fraction

un

-1

zn

xn

cheating sender or receiver
understates +1

zn

uN

=

=

ingress path resource index egress

xN

egress
dropper

if un > zn

0

+1 or +? ±0
yn

yN

Figure 7.2: Egress Dropper for Unary Re-ECN Marking.

The transport is understating Positive markings so the dropper is removing sufficient Negative and Neu-

tral markings so that it delivers traffic that is equivalent to that an honest source would have sent. If

instead the dropper discarded packets randomly to reduce the flow as a whole, the proportion of Positive

to Negative markings would incorrectly remain the same.

The converse of proportionate sanctions as a goal is stealth as a non-goal. That is, the dropper needs

to actively sanction offending traffic, therefore it cannot hide its own existence. It doesn’t matter if the

dropper is predictable if it predictably prevents any misbehaviour. Consequently, if the dropper allows

false misses (see §7.7.2), attackers will be able to probe its limits to find and exploit its trigger level.

7.3.2 Source Responsibility for Delay Allowance

The re-ECN protocol is designed on the principle that a source carries the risk of its packets encountering

unforeseen congestion in the round trip time after they are sent. This allows a source the freedom to

increase its window of packets in flight more aggressively than others, but it must take responsibility for

the risk of exercising this freedom.

The aim is to move away from the traditional TCP constraints that all sources must increase their

window equally per round trip time, but they may increase exponentially at the start. Not only does

the traditional rule constrain new behaviours (e.g. attempts to improve flow start performance), but

it is also being routinely flouted by applications that open multiple flows simultaneously. We need to

recognise diverse application needs, rather than pretending that everyone is complying with impractically

restrictive rules [CWSB05].

Because many traffic sources will all simultaneously be taking the risk of increasing their window

of packets in flight, each source should carry its proportion of the risk, which depends on currently

observed path congestion, its current bit-rate, and its increase in bit-rate per round trip time.

“Carries the risk” means the source pays for the risk in advance of the round trip. This distinguishes

the re-ECN protocol from the form of congestion pricing suggested by Gibbens & Kelly [GK99b] in

which congestion is only paid for after the event—if it happens. Under re-ECN, if an unexpected burst

of congestion happens, and if the source hasn’t paid to cover this risk in advance, it risks packets being

7.3. Dropper Design Principles 94

dropped. This is more generic than congestion pricing, because the source can either choose to pay credit

to avoid the risk of drop, or choose to suffer some unexpected drops by spending less on credit. Once a

burst of congestion has happened, the source only has to pay to balance its cost if it wishes to top up the

credit that turned out to be necessary in order to to continue the flow with the same cover.

This re-ECN design choice translates into the dropper design principle that the source, not the

dropper, should allow for feedback delay.8 But, because a re-ECN source only pays its conservative

expectation of congestion within the next window, this may not be sufficient to cover all possible un-

foreseen events within the round trip. If an unusually high burst of congestion occurs, the dropper will

not deliver packets if they are not covered by sufficient credit. In other words, the source cannot expect

the dropper to give credit whenever the source’s own credit turns out to be insufficient. Thus a flow risks

losing packets in proportion to its underestimate of the worst-case cost within a round trip.

A flow that knows it is about to complete, particularly as it approaches the final window, may recoup

some of the credit it invested by not re-inserting all feedback.9 But, even if a flow continues to re-insert

feedback until the last, a debit may be left at the end of a flow if heavy congestion is experienced in the

last window. Nonetheless, over many flows, it is highly unlikely that all the possible debits at the end

will exceed the credits added at the start.

These considerations have an informal microeconomic interpretation. On the supply side, all the

credits that turn out to be paid unnecessarily can be considered as funding sufficient extra capacity to help

absorb the prevailing proportion of bytes in round trips in which flows start (or rapidly increase) versus

those in steady state. While on the demand side, making sources responsible for the risk of congestion

during round trip delays ensures that sources won’t increase their window aggressively unless they are

willing to pay their proportion of the resulting extra risk of congestion.

Conditions for stability have been derived that place limits on flow aggressiveness [KMT98, KV05].

Making sources responsible for the risk of congestion will not directly prevent them overstepping this

limit. But this stability limit does seem to present a natural step in the shadow price, which should

more strongly discourage sources from causing instability. If a source is aggressive enough to cause

instability, the resulting oscillations will disproportionately increase the expected price. Although all

competing sources will suffer, not just the one causing instability, this price step should strengthen the

barrier against behaviour so aggressive it causes instability.10

7.3.3 Dropper State Management

Middlebox Flow-State: Pros and Cons

The design of the re-ECN egress dropper reluctantly introduces the minimum per-flow function into

the network that we could achieve (see §7.3). Although re-ECN avoids embedding any subjectivity or

value-judgement in the network about the required congestion responsiveness of flows, it does require

the network to implement one per-flow test of behaviour: whether the balance of positive and negative

8However, the dropper is responsible for allowing for any delay introduced by its own algorithm (e.g. a moving average).
9The strategy to adopt at the end of a flow can be derived from the analysis in §7.7, but it does not affect the analysis presented

here (so its details are left for further work).
10Except if a source is sending dummy traffic to be malicious.

7.3. Dropper Design Principles 95

bytes is in credit.

No matter how minimal this per-flow function, it necessarily requires per-flow state in the network.

The ‘shared fate’ design principle of the Internet [Cla88] advises that the end-points alone are best placed

to hold flow state, so that the state will usually only be lost if either end-point fails, in which case the

flow will have failed anyway.11

Once we admit the need for flow state on a middlebox, we have to handle failure or startup of the

middlebox during a flow, or the reroute of a flow in progress through the middlebox. Later we present

two dropper algorithms:

1. the ‘Continually Vigilant’ algorithm primarily designed to start at the beginning of a flow (§7.6.1);

2. the ‘Mid-Flow’ algorithm (§A.1) designed specifically to pick up a flow in the middle and imme-

diately start testing its behaviour.

We recommend the ‘Continually vigilant’ algorithm because it is more precise (better trade-off

between false hits and misses) in normal operation and it will recognise packets from the middle of a

flow as if they were a new flow, but only after a round trip with some degree of loss. It only recognises

mid-flow packets as a new flow after it has received a Positive packet, which a flow should send at least

occasionally in response to drops anyway.

The dropper could use the alternative mid-flow algorithm for flows in progress when it boots up.

But it would be harder for the dropper to recognise a rerouted flow and know to use this algorithm instead

of the one for a whole flow lifetime. Ideally, the dropper would have to know to expect the arrival of

mid-flow packets by some out of band means—perhaps through participating in the routing system. We

therefore recommend the ‘Continually Vigilant’ algorithm, because the alternative seems too complex.

Further, once we allow a need for network flow state, we have to admit that the network layer needs

access to flow IDs. In general terms, as a minimum in order to communicate, two computing processes

don’t have to reveal their IDs to the network nodes between them. The Internet architecture recognises

that flow IDs are not essential to the functioning of the network layer. It makes flow IDs a property of

the transport layer, which can choose not to reveal them to the network layer12. Indeed, the facility in

IPv6 that allows the transport layer to volunteer a flow label to the network has not so far been taken up.

Therefore, as we explained in §§7.1& 7.3the dropper only needs a flow ID to be unique; it doesn’t

need to identify reachable flow end-points. The best it can do is to use the most fine-grained aggregate

identifier available. This means that a misbehaving flow or flows could besmirch the balance of other

well-behaved flows sharing the aggregate (see §7.5.2for details of this attack and countermeasures).

11One technique to avoid network flow state is to expect the end-points to regularly refresh soft flow state in the packets they

send. A middlebox can even use an authenticated cookie-style mechanism [KM97] when it doesn’t trust the end-points to store its

state faithfully, by signing the latest state and expecting the end-points to return the signed state in future packets. But in the case

of the re-ECN dropper, the network’s flow state changes from packet to packet so none of these tricks will work.
12E.g. by aggregating many flow IDs together in some form of tunnel between two intermediate addresses between the processes

and encrypting all mention of any IDs to be used for demultiplexing beyond those tunnel end-points

7.3. Dropper Design Principles 96

Dropper State Machine

Precisely, the only properties the egress dropper requires of a flow are:

• An arriving packet is considered to belong to (or match) a flow if all its identifiers match the

identifiers of an active flow;13

• A new active flow starts when a packet carrying the Cautious (+?) or Positive (+1) marking arrives

that doesn’t match an existing active flow;14

• A flow MAY be considered to have ceased to exist if no matching packets arrive within a ‘flow

state minimum timeout’ ([BJMS09a] fairly arbitrarily defines this timeout to be 1s—enough for

about four round trips halfway round the world and back).

The above definitions allow an egress dropper (and any other elements) to manage flow state deter-

ministically, clearing it after an idle period of 1s if necessary. If a transport re-uses its own (or someone

else’s) identifiers after inactivity greater than the timeout, it will require initialisation by a new packet

marked positively and the egress dropper will not necessarily consider it as the same flow.

We expect ingress networks will hold sources accountable for packets marked Cautious or Positive

by considering delivery of each byte in them as a cost. This will tend to limit the rate at which sources

send packets that open new flows (see §12.1.3). Sending subsequent packets using the same flow ID

should cost the source nothing other than further Positive packets required to balance any cost of con-

gestion encountered. But this does place an ultimate limit on the amount of dropper state that a source

can keep alive (see §12.1.3for the worst-case scenario).

The design of a dropper is fairly hemmed in by all the constraints it faces. Nonetheless only the

constraints would need standardising, not design details or implementation. We propose two example

designs. We will focus here on the first design called ‘Continually Vigilant’ (§7.6), because it maintains

state for each flow that has proved itself well-behaved, whereas the second, termed ‘Mid-Flow’(§A.1)

maintains less flow-state at the expense of precision.

The more stateful (‘Continually Vigilant’) dropper considers packets to belong to misbehaving flows

if they use a flow ID that has not flagged itself as new. It treats all misbehaving flows as one ‘Bulk’ flow

to avoid holding state for each of them and treats them all equally badly. It will only protect a new

flow from the risk of the high drop rate suffered by the bulk of misbehaving flows if it starts with a

Cautious (or Positive) packet and if its lifetime balance remains in credit. We categorise such flows as

‘Compliant’.

There is a small chance (quantified in §7.7.1) that a Compliant flow will experience a burst of

congestion marks within one window and that the dropper will wrongly consign packets to Bulk status

before the source can send sufficient credit to make up the shortfall. Therefore, the egress dropper should

continue to hold the state of a flow that has gone into debt for at least the flow state minimum timeout

13Additionally, if it is larger than any packet so far matching the flow, at least as many bytes of credit must have been posted to

the flow as its size, otherwise it is not considered to match the flow. This negates flow ID whitewashing attacks (§7.5.1).
14To be clear, if a Cautious packet matches an active flow it doesn’t start a new flow.

7.3. Dropper Design Principles 97

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

fi
lt

er
sp

ec

lifetime credit, V

Compliant flows - no dropflows to sanction
Bulk on Remand

Cautious
or Positive?

YN

V≥ 0

idle
timeout

remand
timeout

Cautious
or
Positive
(credit)

Negative
(debit)

0

V < 0

recent credit, v

0

Figure 7.3: Re-ECN Dropper Flow State Machine.

(currently defined as 1s). We term this being on ‘Remand’. If a flow is still on Remand after this timer

expires, its flow state may be removed, leaving it to be treated with the Bulk of misbehaving flows.

If sufficient Positive bytes arrive while still on Remand to make the lifetime balanceV ≥ 0, the flow

returns to the Compliant status.

Even for Compliant flows, the dropper’s flow state may time out if the flow has remained idle for

no less than a similar duration of 1s. The path congestion that a transport algorithm learns from the

network becomes stale during idle periods much longer than this anyway. Therefore a flow that is idle

for at least this long MUST restart as if it were a new flow by conservatively setting Cautious in at least

the first packet after the idle period. If the egress dropper has removed its state for this flow, this action

will re-establish it. Whether the dropper’s state has been removed or not, this action will be treated as a

credit.15

Fig 7.3summarises the above discussion by showing diagrammatically the state machine of a drop-

per design that keeps state for the lifetime of all Compliant flows. As each packet arrives, its flow ID is

compared with the filter-specs already created for flows in progress. If it matches none, a new filter-spec

need only be created if it is a Cautious (or Positive) packet. Otherwise it can be processed with the Bulk

of unclassified packets. Having classified which flow it belongs to, the dropper then uses the packet’s

extended ECN field to update both the lifetime balance and the recent balance of that flow. The new

value of the lifetime balance determines the larger categorisation of the flow as either Compliant, on

Remand or Bulk. If the flow is then categorised as on Remand or Bulk, the packet can be sanctioned

according to the recent balance held for that flow, using an algorithm such as that in §7.6.

15To be clear, this does not mean that a flow must send a heartbeat every second. Even if it is idle for much longer, it only

needs to send one Cautious packet when it re-starts. Also note that the above restart is only with respect to the network layer; it

is completely separate to any transport layer behaviour following an idle period. This may have been defined elsewhere for each

transport layer protocol.

7.4. Dropper Handling of Other Markings 98

Dropper Flow-State Congestion

The re-ECN system design takes the following precautions to minimise the memory the dropper requires

for flow state:

• Re-ECN flow state is only absolutely required at egress nodes at the very edge of the network

where it will limit scalability less;

• The design variants we propose limit vulnerability to state exhaustion attacks by only holding state

for flows that have proved they are well-behaved;

• We provide a complementary dropper design (§7.6.1) that requires per-flow state only for a sample

of flows, but still has a high likelihood of catching misbehaving flows;

Nonetheless, unusually large numbers of active flows, whether malicious or innocent, might ex-

haust the dropper’s memory capacity, however well-provisioned it is. In the re-ECN protocol, the state

transition from Cautious to Negative has been reserved for any middlebox (not just the re-ECN dropper)

to signal exhaustion of its flow state resources (see §10.1).

Below we consider how this signal would be used by the dropper. Although we recommend this

protocol transition for signalling flow-state memory congestion, we have not taken it further than the

initial design in §10.1and we do not include it in the example algorithms.

The memory congestion function should sit logically after a dropper function on the same machine.

So the dropper decision would not count any Negative marking due to its own memory congestion against

a packet. If a Cautious packet arriving at the dropper did not match an existing flow it would conceptually

create a credit for itself, then request long term memory to store its flow state. Approaching memory

exhaustion would increase the probability of this request being rejected leading to the Cautious packet

being marked Negative before forwarding.

However, if a Cautious packet arriving at the dropper did match an existing flow, it would add to

the credit stored for the flow. As no request for extra long term memory would be required, it would be

forwarded with its Cautious marking intact, even if memory was approaching exhaustion.

Even if the dropper had absolutely no more memory, it could still forward Cautious packets. In this

case all Cautious packets for new flows would depart marked Negative, while those matching established

flows would be forwarded with their Cautious marking intact.

7.4 Dropper Handling of Other Markings

This section handles a number of more detailed protocol issues.

7.4.1 Cancelled Markings

It will have been noted that the re-ECN dropper never drops Positive or Cancelled packets. It might seem

reasonable to spare Positive packets, because they have unambiguously paid their way, but it seems that

a source could cheat by initialising the majority of its packets to Cancelled in order to spare them all

from sanction at the dropper.

7.4. Dropper Handling of Other Markings 99

The logic for the dropper not considering Cancelled packets for sanction relies on them having once

been Positive and having suffered the same random congestion marking as Neutral packets. But a source

that deliberately initialises packets as Cancelled breaks the basis of both these assumptions. Further, all

its Cancelled packets will be immune from further congestion marking, so any congestion experienced

will never need balancing with Positive markings.

§8.2.7 presents a simple solution to this apparently serious flaw, involving normalising the pro-

portion of Cancelled packets to that expected from the proportions of other markings. This will deter

a source from attempting this otherwise serious attack. Rather than explain the solution here, we de-

fer all discussion until §8.2.7because normalising Cancelled markings solves other problems between

interconnected networks which will be described first in §8 on Border Incentives.

As well as justifying why the dropper never discards Cancelled packets, we also need to justify why

the drop probability of Negative and Neutral markings in Eqn (7.4) takes no account of Cancelled bytes

when it does take account of Positive. The reasoning is as follows. For equivalent behaviour to honesty,

the source will send Positive bytes in response to feedback of Negative bytesuN . If it gets feedback

reporting that these Positive bytes themselves have been marked (producing a fraction of Cancelled

bytescn) it will send further Positive bytes to top up the balance (z0 = uN + cn). Therefore, at the

egress, for stationary congestion Positive bytes should match Negative alone (zn = z0 − cn = uN).

Diagrammatically, in terms of Figure7.1b), this is equivalent to saying the Negative rectangle should be

reduced to the same area as the Positive rectangle but the Cancelled square makes no difference.

7.4.2 Cautious Markings

There is a possibility that the first packet of a flow was originally marked Cautious by the source, but

subsequently it has been over-written as Negative by a congested forwarding element (§9.2) or by a

middlebox running short of memory (§10.1).16

It is then not possible for the dropper to know whether the flow started well-behaved or not. Such a

packet will not cause creation of flow state in the dropper and will therefore have to suffer the prevailing

drop rate for the bulk of misbehaving flows.

In §9.2 we recommend that congested links should re-mark Cautious packets to Negative rather

than drop them. Why go to all this bother if the resulting Negative packet will be dropped anyway by the

dropper further down the path? There are two reasons:

Not all Cautious packets are initial packets of flows.Probably the majority of Cautious packets will

be later packets that top up flow credit. If they arrive at the dropper having been re-marked Nega-

tive, they will match pre-existing flow-state and reduce the balance as any Negative packet would.

The receiver will feed the Negative marking back (not necessarily knowing it was originally Cau-

tious). This follows the best practice of notifying congestion explicitly rather than by drop that we

espoused in §6.1.1: to avoid the performance hit of timeouts, to disambiguate congestion from all

the other possible reasons for drop and to make congestion visible to the network (§6.1.1);

16Or, a non-TCP source may start a flow with multiple packets and the first to be sent may not arrive first.

7.4. Dropper Handling of Other Markings 100

The dropper doesn’t drop all initial Negative packets. Whether a dropper will drop packets in the

bulk of misbehaving flows depends on whether misbehaving flows predominate. The dropper

suggested in §7.6.1folds all the left over credits at the end of behaving flows into the Bulk bal-

ance. When this results in a positive Bulk balance, initial Negative packets will get through. When

it doesn’t, they won’t.

If a Cautious packet is the first of a flow; and if it is marked Negative; and if it does still get through

the dropper, the eventual receiver will feed that fact back to the source.

As we explain in §10.1, the receiver’s response to a Negative initial packet must be overloaded with

the two meanings (exactly how depends on the transport):

• ‘Flow state not stored’ (transport layer congestion);

• and ‘Echo Congestion Experienced’ (network layer congestion).

Having received this feedback, the source must proceed more carefully with the subsequent flow of

packets (e.g. backing off its initial window)and it must repeat its attempt to have flow state stored for its

flow, whether on the server or on middleboxes along the way (§10.1gives an example in the context of

TCP SYN cookies).

If a source receives feedback implying a Cautious packet experienced congestion (whether by Neg-

ative marking or drop), the source SHOULD send the next packet as Cautious as well. In addition, the

source SHOULD increase its count that determines how many bytes it must mark as Positive on future

packets. Following this procedure ensures that eventually as many positive bytes are sent as negative

bytes received as well as building up the intended credit at the dropper.17

The source must also check whether the receiver’s response shows it supports re-ECN [BJMS09a],

and if not, it must behave as if its original packet was dropped. But, because the congested link explicitly

marked rather than dropped the original packet, the source doesn’t have to wait in limbo, not knowing

why a response hasn’t been returned.

7.4.3 Legacy ECN Markings

Three codepoints of the extended ECN field fall outside the definition of the re-ECN protocol:

Not-ECT , ECT(0) andCU(see Table6.1on p79).

Packets carrying the ‘currently unused’ orCUcodepoint, SHOULD be treated exactly the same as

Neutral packets, as recommended for forward compatibility in §12.2.2.

Packets that are not ECN-enabled (Not-ECT codepoint) or set to the legacy ECN codepoint

(ECT(0)) should pass through the re-ECN dropper unscathed, even if they match a flow ID in the

dropper. A network managing resource sharing using re-ECN is advised to rate-limit packets with these

two codepoints at the ingress (and at some or all links if it chooses), therefore it is safe for the egress

dropper to ignore them.

17If the Cautious packet experiencing congestion is the first of the flow, it is likely the dropper will not record the negativity of

this packet against any flow ID. But the source cannot be sure of this, so it should act conservatively.

7.4. Dropper Handling of Other Markings 101

zncn

*
nu *

ny

=

=

≡

≡

dropped
before

ECN

dropped
after
ECN

–

–

a) b)

Figure 7.4: Compliant Traffic Suffering Losses Before and After ECN Marking.

Shown a) Without and b) With Repair of losses.

In addition to the above codepoints, legacy ECN flow will include some packets marked with the CE

(congestion experienced) codepoint. The re-ECN protocol overloads the original congestion experienced

(CE) codepoint as a Cancelled marking. Therefore Cancelled packetsthat also do not match a flow ID

in the droppershould be allowed through the dropper unscathed, rather than being treated to the drop

probability of the Bulk of misbehaving flows. This is safe, because re-ECN ingress and border policing

already corrects for excess Cancelled packets.

It is possible that a legacy ECN flow might use the ECT(1) codepoint if the ECN nonce [SWE03] is

ever implemented and deployed, but re-ECN overloads this codepoint to mean a Positive marking. The

ECN nonce RFC has experimental status within the IETF standardisation process, but it has not been

implemented to anyone’s knowledge (except on the machine of its author). If it were implemented and

deployed, it would make it look as if about 50% of the packets of a flow were Positive. This would not

be a problem at the re-ECN dropper. But such flows would have to be recognised and separated out at

an ingress policer and at borders, otherwise they would rapidly reduce the congestion allowance of the

party sending or forwarding them.

7.4.4 Congestive Loss

So far we have only considered congestion that leads to explicit congestion notification, not congestion

that leads to loss (implicit notification). Unless the network’s congestion notification is explicit, re-ECN

policers and droppers cannot in turn check whether the source is correctly reinserting these congestion

notifications into the network. Therefore a network won’t invest in re-ECN droppers and policers without

also making sure ECN is turned on in its forwarding equipment.

However, some congestive loss will always be present. Older equipment may not support ECN,

or may take time to be upgraded, and ECN equipment will occasionally overflow its buffers, just by

happenstance.

Positive markings are introduced by the source to balance congestion marking introduced further

down the path. Loss will have a different effect depending on whether it occurs before or after Negative

ECN markings are introduced (Fig7.4a):

• If loss occurs after Negative markings are introduced, on average all Positive and Negative mark-

ings will be reduced proportionately;18

18Assuming the network operator is not actively biasing its loss—see §12.1.2.

7.4. Dropper Handling of Other Markings 102

• If loss occurs before Negative markings are introduced, there will be proportionately less loss of

Negative markings than Positive.

A transport can detect losses, but it cannot easily find out where on the path they are being intro-

duced. If the transport detects loss of a packet that it originally marked Positive, its safest strategy19

is to introduce a replacement Positive marking, as in Fig7.4b). It will be seen that this leads to slight

overstatement of Positive markings if any loss occurs before ECN markings are introduced, which is

safe.

A loss may not be due to congestion, for instance it may be a deliberate sanction imposed by a re-

ECN policer or dropper. However, we have made sure that the dropper doesn’t drop Positive or Cautious

packets, and the policer only drops Positive or Cautious packets as a last resort.20

7.4.5 Downstream Congestion Analysis Revisited

un

yNuN

zncn

=

=

dropped

ψψψψ gn

(1-ψψψψ)gn

≡

≡

Figure 7.5: Effect of Cautious Markings on the other Re-ECN Markings after the Egress Dropper.

So far, although we have considered the effect of congestive losses informally (§7.4.4), we have

not included loss in our formal analysis. Also, in §6.2, where we defined metrics for recent downstream

congestion in terms of re-ECN markings, we ignored Cautious markings. But we promised to revisit our

analysis to include them. The additional analysis is below, but it ends up deciding to continue to ignore

these aspects as they make no difference. This section may therefore be skipped on a first pass through

the document.

The bytes in Cautious packets have nominally the same worth as bytes in Positive packets. But

unlike Positive packets, which become Cancelled if they experience congestion, Cautious packets can be

marked Negative.21

Congestion marking Cautious packets to Negative is NOT a REQUIRED behaviour of forwarding

elements—care has been taken to ensure no changes are required on forwarding elements between ECN

and re-ECN. Therefore marking of Cautious packets introduces an additional complication because it

19The specification of re-ECN for TCP [BJMS09a] adopts the more generous strategy of introducing Positive bytes to balance

any bytes experiencing congestion, whether signalled by ECN marking or loss. However, Positive markings to balance losses

would be purely voluntary, as the re-ECN mechanisms cannot detect non-compliance.
20§11.3.1introduces a way for a policer to covertly signals that it is dropping Positive or Cautious packets, otherwise a trans-

port that accidentally exhausts its congestion allowance in the ingress policer can become trapped in an avalanche of increasing

sanctions.
21We have already briefly mentioned this aspect of the re-ECN protocol in which forwarding elements and middleboxes can

optionally be upgraded to mark Cautious packets to Negative when congested. The details of each are introduced in §9.2 (on

forwarding element bandwidth congestion) and §10.1(on middlebox memory congestion).

7.5. Attacks Perverting the Dropper 103

is separately optional from ECN marking. Before re-ECN, a box either did ECN marking or it didn’t.

But we will now have to take into account that some network equipment will congestion mark all five of

the re-ECN codepoints while older equipment (that has been made ECN-aware but not re-ECN-aware)

will congestion mark only four and drop those marked Cautious when it is congested. We will denote

the proportion of traffic experiencing congestion marking of all five re-ECN codepoints asψ and the

proportion of Cautious marking arriving at theith resource is denoted bygi.

Neutral: y0 = 1− z0 yi = (1−mu)(1− z0 − ψg0) yn = (1−mu)(1−md)(1− z0 − ψg0)
Cautious: g0 gi = (1−mu)g0 gn = (1−mu)(1−md)g0.

(7.6)
Fractions of each re-ECN Marking where including Cautious alters Eqn (6.1)

Eqn (7.6) tabulates the proportions of Neutral and Cautious markings at the start and end of a path

and at an intermediate pointi. When we take Cautious markings into account, the proportions of the

other markings remain unchanged from Eqn (6.1).

Cautious bytes are intended to allow the source to create credit at the egress dropper, given we

have chosen to make the source responsible for any allowance for round trip delays. If the source uses

Cautious markings strictly in addition to Positive markings, then none of the analysis in §6.2 changes.

The source still introduces a Positive byte in response to feedback of every Negative or Cancelled byte

(z0 = un+cn) as in Eqn (6.2). This leads to the same approximate formula (vi ≈ zi−ui) for downstream

congestion in terms of the other markings as in Eqn (6.3) and the same precise formulae as Eqns (6.4)

& (6.5). This is because Cautious credit requires a one-off contribution, while these formulae represent

downstream congestion under stationary conditions.

The only difference will arise if the source understates Positive marks because it thinks the Cautious

marks it had to send to open a flow will be sufficient to prevent its flow going into debt, without having

to send a Positive byte for every Negative byte. However, our steady state equations can ignore these

initialisation effects. Nonetheless, we will take the markings of single packets into account when we

consider attacks (§7.5below).

7.5 Attacks Perverting the Dropper

This section only includes attempts to attack the re-ECN egress dropper or to pervert its intended effect.

Combined attacks playing off the dropper against other components of the re-ECN system are described

in §12.1, “System Attacks on Congestion Signal Integrity.”

7.5.1 Flow ID Whitewashing

§7.3 explained that the egress dropper defines a flow solely by the uniqueness of its flow identifiers

while it is active, and it will not recognise a new unique flow without some investment of resources by

the source.

This raises the question of how much initial investment is sufficient to ensure that flow ID white-

washing attacks do not pay off. We outline the attack here, and then analyse it later, in §7.7.2.

7.5. Attacks Perverting the Dropper 104

An attacker can whitewash a flow ID simply by abandoning the flow ID at the first feedback of a

Negative mark and continue transferring data with a new ‘whitewashed’ flow ID.22 Therefore the initial

investment must be at least as great as the worth of one Negative packet.

However, an attacker could routinely start a whitewashed flow by investing credit in one tiny Cau-

tious packet, followed by much larger subsequent Neutral packets. Then, whenever one of these packets

was congestion marked, it would always have cost the network a lot more than the original credit in-

vested, giving a considerable pay-off to the attacker over time.

This attack would be thwarted if the dropper records the largest packet so far seen in the flow and a

larger packet was only deemed to match the flow ID if the credit against the flow (in bytes) was at least

as large as the new largest packet.

This raises the question whether requiring just one maximum sized packet’s investment is a suffi-

cient incentive for a source to maintain the same flow ID beyond each Negative packet. We now compare

the gain from the whitewashing strategy with that from behaving as re-ECN expects.

Whitewashing Strategy:We imagine a transport creates a whitewashed flow ID every time it receives

feedback of a Negative packet, but it starts each whitewashed flow with a full-sized Cautious packet. It

sustains its flow rate as if there had been no change of flow ID by carrying over all the congestion control

state between flow IDs. Then the source will pay as much in Cautious credits as it would have to match

each Negative packet with a Positive. At the dropper, each time a Negative packet arrives, the flow’s

balance will drop to exactly zero (which will not create any problem) while the last window of packets

in flight plays out. Straight after the last packet in flight, a packet with the new flow ID would arrive at

the dropper carrying with it a new Cautious credit. Thus far, the benign whitewashing behaviour would

not be sanctioned any more than a normal flow, and it would cost no more to maintain (except the extra

flow state for the transport and for the dropper).

However, the dropper makes this whitewashing behaviour lose out whenever there happens to be

more than one congestion event per window (see §7.7.1). If two or more congestion events occurred

in one window, the whitewasher’s dropper balance would fall below zero and the remainder of its final

window would suffer loss. The whitewasher would however avoid paying for all but one of the Negative

packets when it started the new whitewashed flow.

Compliant Strategy: If, on the other hand, the source had not been continually switching flow IDs, the

dropper could be much less harsh on the occasional temporary fall into debt. The Continually Vigilant

dropper pseudocode in §7.6.1allows the source to post a one-off per flow credit that protects it against

occasional multiple congestion events23.

But the Continually Vigilant dropper is designed so that a dive straight into debt early on in a flow

leads to a much higher drop probability than if there had been a long record of good behaviour before

the drop into debt, assuming the same initial credit in both cases. For instance, a balance of -1 caused by

a Positive then two Negatives will lead to∼50% drop, while the same balance of -1 but preceded by 9

alternating Positive then Negatives would only lead to∼10% drop. This effect is illustrated in Fig7.10

22A colleague, Toby Moncaster proposed this attack.
23And it could even recover most of the credit near the end of the flow

7.5. Attacks Perverting the Dropper 105

on p131later.

7.5.2 Dragging Down an Aggregate

A misbehaving flow or flows could besmirch the balance of other well-behaved flows sharing an ag-

gregate, assuming each of the flows’s separate identifiers had been hidden in some form of obfuscating

tunnel.24

This becomes problematic if impairment sanctions (e.g. drop) are used in the middle of a network,

e.g. at trust boundaries (borders), where aggregates might consist of flows belonging to entities with few

interests in common. However, we recommend financial sanctions in the middle of a network with drop

sanctions applied closer to the edges where fine-grained flows are more likely to be visible (§8.1). In

the case of a tunnel, this would mean that the tunnel decapsulator would be able to operate a dropper

to isolate and sanction the offending flow(s). If it detected misbehaving flows it could also ask the

encapsulator not to allow them to hide within the aggregate.

7.5.3 Dragging Down a Spoofed Flow ID

This attack uses the dropper to amplify a DoS attack on someone else. An attacker can understate

congestion (e.g. not send any positive packets at all), while spoofing another flow ID. Because the attack

packets match the destination IP address, they will pass through the same egress dropper with reasonably

high probability whatever location they actually come from. If the dropper cannot distinguish attack

from compliant traffic it will sanction both indistinguishable flows based on the proportion of Negative

to Positive bytes across both taken together.

The attacker may blindly spoof other flows by a brute force search of the most highly utilised parts

of the flow ID space, or it may target an attack on a flow ID known by some other nefarious means (e.g.

a secondary man-in-the-middle attack).

However, it is harder for a blind attacker to launch the attack, as single attack packets have limited

effect. A train of packets all with the same flow ID and all matching an active flow will cause a lot of

harm, but the attack loses any effect soon after the last packet of a train. If the attacker cannot sense when

the attack is having any effect (which it cannot because its spoofed source address gets no responses),

it must send long trains of negative packets to the same flow ID in the hope some of them will hurt

something active at the same time. If the attacker is located as a man-in-the-middle, itcansense if it is

having an effect, but then it can just drop the traffic anyway.

Nonetheless, if an attacker knows approximately when victim flows might be active and has at least

some clue of the destination identifiers, a targeted attack would be relatively trivial. The attack is much

easier than hijacking a transport connection, because it only requires spoofing of the flow ID, it does

not also need to spoof transport (or application) layer sequence numbers within a valid receive window.

Network ingress filtering is not a universal defence, because an attacker merely has to attach to the

Internet or take over a zombie where filtering is not deployed.

For instance, if there ares bits of entropy remaining in the flow ID, the probability of the event X

that an attack train ofn packets hits a continuously active flow would beP (X) = 1− (1− 2−s)N/n if

24A colleague, Jake Hill proposed this attack.

7.6. Dropper Algorithm Implementations 106

a total of N packets were sent. If the protocol ID, both IP addresses and the destination port number are

known (or a part of the ID space is highly utilised and the attacker doesn’t care which ID it hits), this

would leaves ≈ 15b of entropy in the source port if it is randomised [LG09]. Therefore only∼30, 000

trains of packets with different flow IDs each containingn packets would have a 60% chance of dragging

down one flow.

Beyond port randomisation, defences against this attack are limited, at least for IPv4. We do not

recommend the dropper trying to communicate with the apparent source of a flow to signal that a network

policing element is the cause of its high drop rate (which might otherwise help the application understand

how to solve the problem). The dropper is designed on the principle of “ID uniqueness not reachability”,

precisely because a middlebox cannot always be expected to extract the source end-point identifier from

a packet. Two possible alternative defences come to mind:

Destination Port Hop: During this attack, the destination would experience a very high drop fraction, a

very high fraction of out of window packets (for TCP—or the equivalent for other transports) and

potentially large numbers of packet verification errors if authentication were being used. Under

these circumstances, if the destination application reset the connection and started again with

different port numbers at least it would immediately find a working connection and avoid the

attack continuing.

IPv6 Flow Label Nonce: For IPv6, we recommend (§7.1) that the dropper SHOULD use flow labels

seen on the initial packet as part of the flow ID. A spoofing attack not using the same flow label

would simply not match the flow ID. This would afford 20 extra bits of entropy. This approach is

similar to Blake’s proposal to overload the IPv6 flow label as a transport layer nonce [Bla08] (but

we use it for what is effectively a ‘flow-ID sub-layer’ rather than the ‘transport layer’ as such).

7.6 Dropper Algorithm Implementations

We will present two possible egress dropper algorithms to give sources the incentive to comply with the

re-ECN protocol:

Continually vigilant: An algorithm that requires flow state for every flow that has proved itself well-

behaved from the start;

Mid-flow: An algorithm that can start mid-flow, therefore one can choose how much flow state it re-

quires by applying it to flows picked randomly to test for compliance. But as a consequence this

algorithm may allow more false hits and more false misses. That is, it could wrongly sanction

some behaving flows and it could insufficiently sanction some misbehaving flows.

The latter, mid-flow algorithm can pick up a flow part-way through, therefore it doesn’t know how

much credit the flow has allowed itself (or needs) to stay in credit over a round trip. Therefore it cannot

discourage a flow from ‘whitewashing’ its identity if it goes negative, whereas the former algorithm can.

The latter mid-flow algorithm also has to give the source a reasonable allowance for round trip delay,

7.6. Dropper Algorithm Implementations 107

contrary to our design principle of ‘Source responsibility for delay allowance’ §7.3discusses both these

points in depth.

Therefore the mid-flow algorithm should not be used as an alternative to the continually vigilant one,

only as a complement. For instance, the latter might be used for random flow sampling at interconnect

borders, while the former could continually guard the egress of the internetwork, later on the path. Or

the mid-flow algorithm might be used as an expedient when an egress dropper first boots up—to test the

balance of flows already in progress. As the mid-flow algorithm introduces no new concepts over the

former ‘Continually Vigilant’ algorithm, it is relegated to AppendixA.1.

7.6.1 Continually Vigilant Dropper Algorithm

This algorithm requires state per well-behaved flow but is expected to cause few false hits and few false

misses. Its description will be built up in three stages, from low to high level:

• the algorithm for applying sanctions;

• the algorithm for maintaining the moving averages of the marking fractions;

• the management of flow state.

Algorithm for Applying Sanctions

This algorithm can be applied both to packets matching recognised flows, and to those in the bulk of

misbehaving flows treated as if they all share a wild flow ID.

By Eqn (7.4) the drop probabilityπy = πu = 1 − z/u, wherez is the recent balance of Positive

markings andu the recent balance of Negative markings. But drop is only applied if both the recent

balance and the lifetime balance are in debt:(v ≈ z − u < 0) and (V < 0). The probDrop()

algorithm below subjects each packet to the appropriate drop probability, taking the relevantz andu for

the flow as inputs.

The algorithm that maintains the moving averages ofz andu stores them within a flow-state struc-

ture,fState from one packet to the next of each flow.25 For convenience we pass the whole structure

fState into and out of the function that applies sanctions, even though it only uses three of its variables

and only updates one. In full, thefState structure holds the following flow state variables:

fID : flow ID

z : recent +ve bytes per -ve mark

u: recent -ve bytes per -ve mark

r : remainder carried to next drop

V: downstream congestion over flow life

lastGoodTime : timeV was last +ve

25The pseudocode variablesz andu are actually scaled transformations of thez & u given in the earlier formulae (see later).

7.6. Dropper Algorithm Implementations 108

smax: max packet size over flow life

All the pseudocode that follows takes liberties for brevity by assumingfState as the context of any of

these variables, unless otherwise stated.

/* Drop packet with probability (1-z/u)
*/
probDrop(packet, fState) {

if (u > z) {
if (r == -1) {

r = rand[0,u)
/* Note: (0 <= r < u)

when initialised */
}
r += z
if (r > u) {

r -= u
} else {

drop(packet)
}

}
return(fState)

}

In order to minimise per mark processor cycles, this deterministic algorithm avoids the apparent

need for a division or multiplication in the drop probability formula. It uses only adds, compares and

subtracts. The floating point variabler is the algorithm’s remainder that the dropper stores to carry it

over until the next packet of the same flow arrives. It also avoids running any pseudo-random functions

except once during each flow, to initialiser . When flow state is first created,r is initialised to -1 as a flag

to trigger its randomised initialisation the first time the function is called within a flow (see ‘Flow-State

Variable Initialisation’ below).

We haven’t thought of a way, but it might be possible for an attacker to exploit the predictability of

this deterministic algorithm relative to the congestion markings it detects, in which case a randomised

alternative would have to be used. The other potential danger of deterministic drop is synchronisation,

but that is unlikely to be a problem for a sanction that should be only seldom applied, and which is driven

from markings that are themselves spaced by a random process.

Algorithm for Maintaining the Moving Averages of the Marking Fractions

In order to ensure the current drop rate only reflects recent behaviour, it is necessary to discount events

that happened further in the past using a moving average. We use an exponentially weighted moving

average (EWMA) because it discounts past events evenly and it is very easy to implement.

By the design principle ‘Source responsibility for delay allowance’ (§7.3), the sender not the drop-

per is responsible for ensuring there is enough credit to survive the delay after each debit, including

bursts of multiple debits within one round trip time. Therefore probabilistic drop sanctions should start

to be applied as soon as the moving average goes negative (but only if the lifetime balance is also in

debt). If the dropper did allow for round trip delay, it would have to track the evolution of round trip time

(RTT) of each flow, and introduce a delay buffer in the Negative event stream, both of which are hard to

7.6. Dropper Algorithm Implementations 109

implement, let alone efficiently (see §A.1 for a constant conservative approximation of this strategy).

From Equations (6.9), (7.1) & (7.2) it can be seen thatz & u are both measured with respect

to the same metric; the moving average of packet size. But the metric with respect to which they are

measured becomes irrelevant for both the purposes they are put to; whenz & u are divided their identical

denominators cancel out; and when their difference is compared to zero their identical denominators

don’t matter.

In all our algorithms we exploit the fact thatz & u can be measured with respect to anything, as

long as the same anything is used for both. In fact we will measure positive and negative bytes with

respect to negative marks (justified below). Perhaps confusingly, we use the variablesz & u in all the

pseudocode, even though they are measured with respect to a denominator that is different to that of the

z & u in our earlier formulae for proportionate sanctions.

The discussion in §6.2 noted that the discounting factor of the moving average to measure recent

downstream congestion “must be sufficiently small to give consecutive positive and negative marks a

reasonably similar weight”. Given congestion and hence inter-mark spacing can vary greatly, it seems

impossible to choose a discounting factor that will cater for all levels of congestion. But the trick is to use

the marks themselves to clock the moving average. Thus instead of measuring downstream congestion-

volume with respect to volume, with respect to the packet count, or with respect to time26, it can be

measured with respect to congestion marks themselves.

This works because the absolute level of recent downstream congestion isn’t needed. It is only

necessary to compare Positive with Negative, either to establish whether the balance is in debt or to

know their relative proportions to determine drop probability (Eqn (6.9)). As long as each stage of the

moving average discounts Positive and Negative marks the same relative to each other, they don’t have

to be discounted consistently from stage to stage. Instead, all that is necessary is to ensure that whenever

one EWMA is updated the other is as well. Then, the EWMAs can be self-clocked by the arrival of

Positive or Negative packet marks.

We decided to clock the moving average solely with respect to Negative marks. It was safer to clock

the moving average on marks that are meant to be generated by the network, not the source. If we had

also clocked on Positive marks, the source could have gamed the dropper by sending numerous small

positively marked packets in place of bigger Positive packets. Whereas the source cannot determine

the sizes of Negatively marked packets unless it sends them itself which would cost it more in Positive

packets to balance them.

The principle of ‘Source responsibility for delay allowance’ (§7.3) implies that the source sends

26This is fortunate, because otherwise an event-based EWMA would be required, which is complex to implement. Often an

event-based EWMA can be avoided if the arrivals of the events are Poisson [Wol82], but in the case of honest re-feedback of

congestion marking, the arrivals are not Poisson. This is because the honest sender’s re-ECN algorithm tends to make the arrival

process of Positive marks a time-shifted version of the arrival process for Negative marks. Another reason one might think arrivals

are not Poisson is that the RED algorithm used for Negative marking includes a stage to regularise the inter-mark spacing [FJ93,

§4]. However, we show in §7.7 that the RED algorithm only spaces marks regularly across the aggregate of flows served by a

link. But within each flow, this apparent marking regularity unravels to become i.i.d. (unless the flow is large relative to the total

capacity of the congested link).

7.6. Dropper Algorithm Implementations 110

each Positive mark to counteract thenextNegative mark, not the previous one, even though the source

mechanistically sends a Positive mark in response to the previous Negative one. Therefore, the algorithm

should collect up any Positive marks seen since the previous Negative mark and discount both Positive

and Negative marks at the same time, when the next Negative mark appears. Even if a Negative mark

never appears again (perhaps because congestion suddenly stops), any Positive markings arriving still

immediately improve the flow’s balance—it is only the discounting stage of both EWMAs that clocks

on Negative marks.

We have to strike a balance between quickly punishing a misbehaving source and falsely punishing

an innocent source that just happens to have suffered an unforeseen burst of losses. We do this by

deciding whether to drop a packetbeforewe use the packet’s worth to update the moving averages.

Then, whenever a negative packet arrives, the drop probability it experiences for itself doesn’t take into

account its own negativity. But its negativity is used to calculate the drop probability of subsequent

packets in the flow.

In this way, the negative packet that first puts an honest source into debt will not be dropped,

so it will reach the receiver and honest feedback will allow the honest source to correct the balance.

Similarly, in the unlikely event of any further negative packets taking an honest source by surprise, each

will be dropped with less probability than the following packets will suffer, increasing the chance that

the integrity of the feedback loop holds good for an honest source.

But this leniency only lasts for one packet. So, if a misbehaving source has no intention of making

up the balance sufficiently, the relative growth rates of the two recent balances will immediately increase

the drop rate starting with the next packet. This doesn’t quite “sanction dishonest flows, preferably at the

first dishonest packet” as our “Minimal False Misses” constraint requires, but it only gives one packet’s

grace. This is safe, because Negative markings are under the control of the network, not the end-points,

and we have ensured end-points cannot gain by sending Negative packets (§8.2.5).

We should also make sure we don’t unnecessarily drop Cancelled packets, which also carry con-

gestion notifications to the receiver. But a Cancelled packet makes no difference to the relative values of

z andu so it doesn’t need any extra leniency.

By delaying recalculation of the drop probability until after deciding whether to drop a packet,

it seems that a positive or cautiously positive packet cannot use its own worth to save itself from being

dropped. However, as in Eqn (7.4), the algorithm ensures that packets with Positive or Cautious markings

are immune from drop anyway.

The resulting EWMA algorithm fits around the above drop probability algorithm as shown below.

Note thata is the discounting factor of the EWMA. The functionreadEECN(packet) reads the

extended ECN field of thepacket . The valid states of the EECN field are:

POSV: Positive

CAUT: Cautious

NEGV: Negative

7.6. Dropper Algorithm Implementations 111

CANC: Cancelled (or Legacy CE if no re-ECN flow state)

NEUT: Neutral

CU: Treated as Neutral

Not-ECT: Legacy

ECT(0): Legacy

/* Maintain flow congestion balances
in the fState flow state structure.
The parameter s is the packet size.
*/
newBal(s, fState) {

eecn = readEECN(packet)
if (eecn == POSV || CAUT) {

V += s
z += a*s

} elseif (eecn == CANC) {
z -= a*z
u -= a*u

} else {
/* NEGV, NEUT or CU */
if (V < 0) {

fState = probDrop(packet,fState)
}
if (eecn == NEGV) {

V -= s
z -= a*z
u += a*s
u -= a*u

}
}
return(fState)

}

The implementation of the EWMA needs a little explanation as it is unorthodox and the pseudocode

is rather terse. An EWMA can be implemented27 by the recursive formula

x̄i+1 ← as+ (1− a)x̄i; 0 < a < 1.

We are only concerned about the relative values of two EWMAs, so we can multiplyx̄ by a constant to

transform it tox̄′ = (1− a)x̄. Then

x̄′i+1 = (1− a)x̄i+1

= (1− a)(as+ (1− a)x̄i).

Therefore, an alternative EWMA implementation is

x̄′i+1 ← (1− a)(as+ x̄′i).

27This algorithm understates a true EWMA byε = 1 + a
ln (1−a)

. But a constant understatement is irrelevant for our purposes,

because we merely want to compare two EWMAs, either to find the ratio between them or to find whether one is greater than the

other.

7.6. Dropper Algorithm Implementations 112

This EWMA is fastest to implement in the two half steps used in thenewBal() pseudocode, and shown

below,

x += a*s

x -= a*x

We use this transformed algorithm because, between two Negative marks, it allows us to collect any

number of increments to the EWMA of Positive bytes. Then we can discount the result just once during

the same step as we increment then discount the EWMA of Negative bytes, as justified earlier.

The processing cycles required for each multiplication can be minimised ifa is chosen so that

a = 2−b whereb is an integer. Then we can use a right bit-shifta*x = x>>b .

Management of Flow State

The algorithm below maintains all the flow state. As each packet arrives it checks whether it already

holds matching flow state. If so, it uses thenewBal() algorithm above to update the balances of

lifetime and recent downstream congestion-volume in the flow state. If the resulting lifetime balance

is good (non-negative), the dropper stamps the flow’s state with the current time. If the flow’s lifetime

balance subsequently goes bad (negative), this time-stamp can then be used to determine the duration

since the flow was last not in debt, so it can be timed out if memory becomes in short supply (see later).

In order to protect against flows giving themselves a new ID whenever their balance goes negative

(‘identifier whitewashing’: see §7.5.1), the egress dropper requires all new flows to lodge a positive

deposit of at least as many bytes as the largest packet seen in the flow. Therefore the dropper has to

record the largest packet seen in a flow. If the dropper detects a larger packet than the maximum so

far and the flow’s balance currently doesn’t cover its size, the packet is not deemed to match the flow

ID and treated as Bulk. The flow’s state is not discarded, as future packets can each be judged on their

merits—the offending packet may simply have arrived before a packet that carried the necessary credit

but was delayed in the network.

Of course, a packet may not match any existing flow state. In such a case, the dropper only allocates

flow state if a Cautious (or Positive) packet initialises the flow. Otherwise the packet experiences the

prevailing (perhaps high) drop rate of the bulk of misbehaving flows.

/* maintainFlowState()
Maintain flow state in fState structure
*/
foreach packet {

s = readLength(packet)
eecn = read EECN(packet)
flowID = readFlowID(packet)
fState = matchFlowID(flowID)
if (fState != NULL) {

/* Existing re-ECN flow */
if (s > smax) {

/* Bigger max packet size*/
if (V >= s) {

/* Compliant */
smax = s

7.6. Dropper Algorithm Implementations 113

} else {
/* Non-compliant packet

treat as BULK */
fState = BULK

}
}
fState = newBal(s,fState)
if (V >= 0) {

/* Compliant status flow */
lastGoodTime = timeNow()

} /* else Remand status
so lastGoodTime unchanged*/

} elseif (eecn == CAUT || POSV) {
/* New Compliant flow */
allocate(fState)
fID = flowID
smax = s
V = 0
u = 0
z = 0
r = -1
fState = newBal(s,fState)
lastGoodTime = timeNow()

} elseif (eecn == Not-ECT || ECT(0)
|| CANC) {

/* LEGACY: forward unimpeded */
} else {

/* New or old misbehaving flow
set status to BULK */

fState = BULK
/* update balances of BULK

and probabilistically drop */
fState = newBal(s,fState)

}
}

Initialisation of Flow State Variables

Initialisation of the variablesu, z to zero is deliberate not arbitrary. Over a long-lived well-behaved flow,

u andz will tend to (1-a) , so we could have initialised them at this value. But we initialised them

at zero to counter the strategy where a flow sends an initial credit (which keeps it out of the very high

bulk drop rate), but never sends another positive packet. The countermeasure of initialisingu andz to

zero should cause the drop probability to jump to the correct level as quickly as possible (as motivated

in §7.5.1and analysed in §7.7.2).

On the other hand, if a flow is well-behaved for a while, bothu andz will grow together in the

correct proportions relative to each other. Then any slight understatement of Positive markings will lead

to a slow rise to the appropriate drop probability if the understatement persists, but if the understatement

is quickly corrected, very little drop will have ensued.

r is initialised to -1 as a flag to indicate that it needs initialisation (during normal operation of the

probDrop() functionr ≥ 0). TheprobDrop() function is designed to avoid an expensive random

number generation every time it is called. Instead the algorithm is deterministic, but randomised on first

7.6. Dropper Algorithm Implementations 114

use within a flow. However,r should be initialised in the range0 ≤ r < u. But becauseu grows from

zero as the flow progresses,r cannot be randomly initialised until it is first used. Hence the need to flag

thatr needs randomised initialisation before first use.

Flow State Time Out

The re-ECN dropper deliberately makes no attempt to detect the last packet of a flow explicitly (e.g.

by looking in to the transport layer headers for transport-specific indications like a FIN in TCP). This

prevents the dropper getting confused due to lost final packets, or due to misbehaving transports either

deliberately suppressing final packets or spoofing the final packets of other flows. Instead it deallocates

all flow state by timeout.

The re-ECN protocol specification [BJMS09a] sets the rule that a flow must send a credit packet

(Cautious) as if it was starting afresh whenever it has been idle for more than a specified time (currently

defined as 1 sec). This allows any middlebox such as the dropper to time out flow state that has been

stale for more than this timeout. A middlebox is free to hold flow state for longer, but a transport should

not rely on this behaviour.

We have not written pseudocode to describe garbage collection (flow state time out), but the general

idea is as follows. The flow state structure includes a variablelastGoodTime which is updated to

hold the current time whenever the lifetime balance of a flowV is still positive after having updated the

moving averages of the flow’s balances.

Two buffers (linked lists) of pointers to flow state structures are maintained. One for flows cat-

egorised Compliant (V ≥ 0) and another for flows categorised on RemandV < 0. Every time

lastGoodTime is updated, a pointer to the flow state it belongs to is brought to the front of the relevant

linked list. Every so often (or when memory usage crosses a threshold), a garbage collection process

deallocates flow state, working along the linked lists from the back. Flow state can be deallocated if

lastGoodTime shows the flow has been idle or on Remand for longer than the timeout. Complaint

but idle flow state SHOULD be kept in preference to flows on Remand.

Before each flow’s state is deallocated, its variables should be merged in to the Bulk flow state.

This aspect of the algorithm has not been written in detail, but a reasonable strategy would be to treat the

lifetime balance of the flow as the worth of a single newly arriving packet in the Bulk. This deliberately

ignores the recent balance variables, because their size relative to other flows will be meaningless given

the EWMA is clocked on negative marks. Further work is needed to establish whether this is a reasonable

strategy. It could make misbehaviour pay off because it doesn’t discount the past (for positive or negative

balances).

The re-ECN protocol has been designed so any middlebox can manage approaching flow state

exhaustion by marking or eventually dropping Cautious packets that would consume more memory (see

§7.3.3on Dropper Memory Congestion).

7.7. Predicted Dropper Performance 115

7.7 Predicted Dropper Performance

7.7.1 Predicted False Hits

Even if congestion is stationary, congestion marking is a random process, so unusually high numbers

of marks will appear during some round trip delays. The design of the re-ECN egress dropper adopts

the principle that the sender is responsible for allowing sufficient credit for any marking that may arise

during the delay while feedback returns to the sender (§7.3.2). But, whatever level of credit an honest

source posts, it will never be immune to suffering some false hits from the dropper.

Conversely, the principle of ‘source responsibility for delay allowance’ gives the system designer

a blank cheque to meet the requirement of ‘minimal false negatives’; any false negatives can always be

blamed on the source posting too little credit. As we said in §7.3.2, passing off this dilemma onto the

source is a deliberate design choice that has a microeconomic interpretation—sources choose how much

risk they are willing to carry to get their traffic through the unknown conditions of the next round-trip.

Below we model the probability that a flow will receive more thenm marks in one round trip time

(RTT) in various circumstances. This analysis can then be used:

• For a transport to predict the credit level it will require to keep the incidence of false hits below a

threshold;

• To predict the probability of false hits for a certain credit level, so the system designer can evaluate

whether it is ‘reasonable’ to transfer the risk of traffic uncertainty to the end-points.

The ultimate test of what is ‘reasonable’ is whether end-points are willing to take on this risk by adopting

the re-ECN system. If they are not, then some alternative system design, perhaps with knowledge of

round-trips in the network, will have to be considered. This is essentially a question of whether the

end-to-end design principle is ‘reasonable’. All that can be achieved here is to quantify the effect of this

design decision.

Marks per Window. As marking probability rises, a congestion responsive transport will reduce its

window of packets in flight. Therefore, the marks per round trip should not rise without bound. We will

now derive expressions for the marks per RTT, then apply this expression to different transports; to TCP

in congestion avoidance and to a generalised weightedα-fair transport.

Assumption 7.1. The marking fraction,p varies on timescales longer than an RTT, being stationary

during round trip timeR.

This assumption is examined more closely on p118at the end of this sub-section.

We denote the discrete random variable representing the number of marks per round trip byM . We

want to find the probabilityP (M>m) that this credit will be exhausted in one RTT if the sender invests

creditm.

Independent & Identically Distributed? Before we can continue modelling the probability of a certain

number of marks per RTT, we need to establish whether the probability of marking a packet will be

correlated with previous markings. In order to do this, we need to justify that the following assumption

is reasonable:

7.7. Predicted Dropper Performance 116

Assumption 7.2. ECN marking of each packet in a flow on the production Internet will be independent

and identically distributed (iid) wrt. the marking of other packets in the flow, as long as the flow rate is

small relative to the capacities of links it traverses.

Justification:For re-ECN we areonly concerned with ECN marking, which, unlike loss, can only

be generated by an active queue management algorithm, such as random early detection (RED [FJ93]).

The primary aim of AQM is to prevent global synchronisation, which causes sequences of losses to hit

specific flows.

Unfortunately, we have found few studies that measure whether deployment of AQM has been

successful in this aim. There are certainly no measurement studies of temporal correlation of mark-

ing in production networks, because few Internet packets or queues are ECN-capable. We can find

only two Internet measurement studies of temporal loss correlation where the year of data collection

was after REDcould have been deployed—after the IRTF published its strong recommendation to use

RED [BCC+98] in 1998. Zhanget al [ZD01] (1999–2001 data) found nothing to contradict earlier stud-

ies [Pax99, YMKT99] showing losses were not iid but arrived in strongly correlated bursts. But Broshet

al [BLSS05, §IV] (2002 data) claimed that the distribution of about 150,000 measured loss burst lengths

was consistent with iid packet loss, contradicting earlier findings of loss correlation.28 Broshet al ven-

tured the explanation that more widespread RED deployment may have been the cause, or perhaps there

were now more flows at tail drop queues.

Short of gathering empirical evidence ourselves (which is beyond the scope of the present research),

our assumption will have to rely on theintent of known AQM algorithms. We do test how well AQM

algorithms match our theoretical model of their intent, but only using simulations of AQM algorithms

(§7.8), not production ones.

The intent of the recommended algorithm for RED was not only to remove the correlated losses that

tail drop introduced, but to reduce bunching of marks still further—even less bunching than that expected

from iid marking. Using the recommended ‘Method 2’ algorithm described in the original paper on RED

appearsnot to mark each packet independently, because the aim was to make the distribution of inter-

mark spacing uniform, rather than geometric.

RED Method 2 works as follows: We denote the discrete random variable (r.v.) representing the

packets between marks in the whole aggregate asZa. The marking probability increases as a function of

how many unmarked packets,z there have been since the last markingP (Za=z) = pb/(2− (z+ 1)pb),

wherepb is the target expectation of marking probability used to drive the algorithm.

Are RED Markings Uniformly Distributed? Nonetheless, this algorithm is applied to the whole ag-

gregate at a link, oblivious to flows. By the following reasoning, we argue that, although RED ‘Method

2’ is ingenious, it will not achieve its intended aim of uniformly distributing markingswithin the same

flow. Instead, within a flow, the marking of each packet will be independent of previous markings, as

long as the flow rate is small relative to the link capacity.

Consider flowj consuming proportionrj of the link capacity, where0 < rj � 1, that is the flow is

28Unfortunately, this finding was incidental to the primary focus of the paper so the data analysis was not published.

7.7. Predicted Dropper Performance 117

small relative to the link.

Assumption 7.3. The probability that a packet will arrive from flowj depends only on the relative rate

of the flowrj , and is independent of the flow IDs of previous packet arrivals.

After flow j has been marked, we count the marks applied to any flow in the aggregate up to and

including the next mark to hit flowj again. LetYj be the discrete r.v. representing this count. By

Assumption7.3, the probability that the next mark to hit flowj is y marks in the aggregate after the

previous one isP (Yj=y) = rj(1 − rj)y−1, because flowj will not be hit y − 1 times with probability

1−rj , then once with probabilityrj . In other words,Yj follows the geometric distributionYj ∼ Geo(rj)

and therefore the expectation of the number of marks until another hits flowj isE(Yj) = 1/rj � 1.

The discrete r.v. representing the integer number of packets in the aggregate between marks that hit

flow j is ZaYj . And we denote the discrete r.v. representing the number of packets in flowj between

marks in flowj asZj = rjZaYj .

Thus, even thoughZa follows a uniform distribution,Zj the inter-mark spacing within flowj, is the

result of addingYj outcomes ofZa together, whereYj results from an iid process. Therefore, because

E(Yj)� 1, Zj will follow a geometric distribution as if it were the result of a single iid process.

In summary, the ‘Method 2’ variant of the RED algorithm was contrived to make the inter-mark

spacing follow a uniform rather than geometric distribution, but it only achieves this in theaggregate.

The independent arrivals of packets from different flows makes the inter-mark spacing within any small

flow revert to following a geometric distribution, unravelling RED’s attempt to space the marks more

uniformly. Thus RED ‘Method 2’ seems to be redundant, implying this extension to RED could be

removed without detrimental effect wherever it has been implemented.

This concludes our rather convoluted justification for Assumption7.2.

Distribution of Marks per Window. We can now continue to derive an expression for the probability

P (M>m) that creditm will be exhausted in one RTT.

P (M>m) = 1− P (M≤m)

= 1−
m∑

i=0

P (M=i). (7.7)

Using notationW for the sending window (the number of packets sent in a RTT), the probability of

exactlyi marks inW packets is a binomial situation:

P (M=i) =
(
W

i

)
pi(1− p)W−i

Substituting in (7.7)

P (M>m) = 1−
m∑

i=0

(
W

i

)
pi(1− p)W−i. (7.8)

We can now apply this formula to two transports: TCP in congestion avoidance and a generalised

weightedα-fair transport. We also consider TCP slow start.

7.7. Predicted Dropper Performance 118

Idealised TCP in Congestion Avoidance

For any congestion control algorithm, the window,W will itself be a function of the marking fraction,p.

For general congestion controls we will see later that the window is also a function of packet size, RTT

and other parameters, but if we use a simplified model of TCP in its congestion avoidance phase (taking

the most significant terms from [PFTK98]), the window is only a function ofp:

WTCP−CA =

√
3(1− p)

2p
(7.9)

Substituting TCP’s window formula into Eqn (7.8) results in a formula forP (M>m) solely in terms

of end-to-end marking fractionp. This formula for the probability that a stable TCP will experience more

thanm marks per round trip is plotted in Fig7.6for the first few values ofm = 0, 1, 2, 3, 4.

Fig 7.6a) displays the probabilities of TCP experiencing more than each number of marks,m in

one congestion window. As the probabilities rapidly diminish with increasingm they are plotted on a

log scale, but Fig7.6b) shows them on a linear scale to help visualise their shape even though all the

probabilities of seeing more than two marks can hardly be distinguished from the zero axis. In all cases

a log scale is used for the marking fractionp. Also note that the simplified model of TCP’s window

is increasingly inaccurate for very high congestion levels (above around 10%). Note that only discrete

points are plotted because the probability of experiencing an integer number of marks is undefined for

non-integer window sizes. Fig7.6a) also labels the coordinates of the maximum probability for each

m, although we reemphasise that the accuracy of our TCP model forp > 0.1 becomes increasingly

questionable.

For high marking fraction,p > 0.1 TCP’s window falls to only a few packets. Clearly the probabil-

ity that there are more than 2 marks in a window with only 2 packets is strictly zero, which is why each

plot in Fig 7.6b) hits a peak then the next point drops to zero.29 For instance, the plot of the probability

that there are more than 2 marks per window peaks at 0.29% where the window is 3 packets and the

marking fraction is 14%. The window reduces to exactly two packets by 27% marking fraction, where

the probability of more than two marks will be precisely zero.

Tentative Conclusion.We can tentatively conclude that it is ‘reasonable’ to expect the source to be

responsible for delay allowance, at least for TCP transports. If our TCP model bears even a slight

resemblance to reality, a credit of just two packets would only be insufficient in just under 0.3% of

round trips at a congestion level of 14%, when it would be likely that congestion itself would be causing

significant levels of drop, not just ECN marking. At a more typical congestion level of 1%, this credit of

two packets would only be insufficient for 0.02% of round trips (1 in 5,000). For sources highly averse

to drop, a credit of 3 packets would suffice in all but 0.0054% of round trips (nearly 1 in 20,000), even

with worst case congestion. And at a more typical 1% congestion, 3 credit packets would suffice in all

but 0.00052% of round trips (nearly 1 in 200,000).

Justification for Assumption 7.1. It must be remembered that this interim conclusion is based on a

model that is static over a round trip. The RED algorithm aims to smooth its marking fraction over RTT

29The points with zero probability obviously disappear off the bottom of the log-scale plots.

7.7. Predicted Dropper Performance 119

a)

81%, 63%

27%, 7.4%

14%, 0.29%

8.6%, 0.0054%

5.7%, 0.000058%

0.000001%

0.000010%

0.000100%

0.001000%

0.010000%

0.100000%

1.000000%

10.000000%

100.000000%

0.00001 0.0001 0.001 0.01 0.1 1

p (log scale)

P(M>0)

P(M>1)

P(M>2)

P(M>3)

P(M>4)

b)

81%, 63%

27%, 7.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

0.00001 0.0001 0.001 0.01 0.1 1

p (log scale)

P(M>0)

P(M>1)

P(M>2)

P(M>3)

P(M>4)

Figure 7.6: Modelled Probability of ECN Marks per Window in TCP Congestion Avoidance.

Plotted against marking fractionp (model breaks down at higherp).

0.000001%

0.000010%

0.000100%

0.001000%

0.010000%

0.100000%

1.000000%

10.000000%

100.000000%

0.00001 0.0001 0.001 0.01 0.1 1

p (log scale)

P(M>0)

P(M>1)

P(M>2)

P(M>3)

P(M>4)

P(M>5)

P(M>6)

P(M>7)

P(M>8)

P(M>9)

P(M>10)

P(M>11)

P(M>12)

Figure 7.7: Modelled Probability of ECN Marks per Window in 10-MulTCP Congestion Avoidance.

Plotted against marking fractionp (model breaks down at higherp).

7.7. Predicted Dropper Performance 120

timescales. Then transports don’t have to respond to spikes in queue length due to coincidental bursts

of packet arrivals that could disappear without any need for a congestion response. This supports our

stationarity assumption.

However, flows with a wide range of round trip times may be present in the same queue. An

alternative architecture could expect each transport to filter spikes in its own congestion signal (another

end-to-end argument). Then shorter RTT flows would be able to more quickly compensate for congestion

changes at their timescale.30 However, a unary signal of one bit per packet already makes decoding fast

changes to congestion sluggish—we wouldn’t want to further damp the control loop with too much

low-pass filtering.31 Therefore low-pass filtering in the queue where there is more aggregation makes

sense.

Without knowing the RTT of each flow to which each packet belongs, any AQM must choose

a smoothing timescale that prevents long RTT flows reacting unnecessarily to queue spikes while not

preventing short RTT flows responding to peaks and filling troughs at their timescale.32 Floyd’s ad-

vice [Flo08], informed by the considerable literature on setting RED parameters, is to aim for a smooth-

ing time of 1s, or 30 times the propagation delay of the local link, whichever is greater. If production

networks mirror this advice, even remotely, then our assumption of stationary marking rate over a round

trip is eminently reasonable for typical terrestrial round trip times.

Nonetheless, in §7.8we provide an initial validation of our model in simulations designed to create

highly varying congestion levels.

Average Marks per Window. Note that for TCP in congestion avoidance phase (at least for our simpli-

fied model of it in Eqn (7.9)) the expectation of marks per RTT stays below 1 for all loss fractions:

ETCP−CA(M) = pW (7.10)

=
√

3p(1− p)/2,

which peaks at
√

3/8 = 0.61 whenp = 0.5.

TCP Slow-Start

The slow-start phase of TCP increases the window exponentially at the start of a flow aiming to quickly

find the operating point of the path. On receiving feedback from a congestion marked packet, the TCP

source considers it found its operating window a round trip ago and halves its window back to the point,

thus ending slow start and starting congestion avoidance phase.

By the following argument, two packets should be sufficient credit to avoid TCP slow-start driving

the balance of a flow into debt at the dropper, at least if we assume sufficient aggregation so that single

30Padmanabhan [PQW03] (Dec 2000 data) is often cited as evidence that loss rates remain relatively constant for several minutes.

However, the definition of constant used in this paper is rather weak, only requiring the loss rate to remain within one of a set of

loss-rate bands.
31This is another motivation for previously mentioned proposals to add more precision per packet to signal congestion.
32For an EWMA to smooth over timeR∗ requires it to smooth overCR∗ packets, where C is the link packet rate. If the discount

factor per packet of the EWMA isa, it will weight the packet it processedCR∗ packets ago by1/e if CR∗ = −1/ ln (1− a).

Therefore setting the EWMA discount factora = 1 − e−1/CR∗ will discount congestion eventsR∗ in the past by1/e of their

original value.

7.7. Predicted Dropper Performance 121

losses will be prevalent. We also assume the source has sufficient data to reach the end of the slow-start

phase.

Imagine thenth packet the source sends will be the first to be congestion marked. Before feedback

about this event returns to the source, it will have released as many packets into flight (unacknowledged)

as have been acknowledged. So, when the feedback from the congestion event on itsnth segment

returns, the source will have sentn further packets that will still be in flight. At that stage, the source’s

best estimate of the network’s packet marking fraction will be1/n. So, as the source will have sent about

2n packets, it should have already posted two packets of credit (marked two Cautious) in order to have

marked a fraction of1/n. In fact, the first and third packets should be marked Cautious, because the first

is sufficient credit to cover the second.

Generalisation to a sudden increase.In [BJMS09a, Appx D] Jacquet generalised this argument for any

sudden increase in packet rate (e.g. variable bit-rate video), based on the same conservative assumption;

to provide enough Cautious marking to cover the possibility that the next acknowledgement received

will be congestion marked. It introduced the following notation for the numbers of markings sent or

received so far (codepoint names that help explain the letters are given in parentheses):

S: segments sent

F: Cautious (FNE) segments sent

R: Positive (Re-Echo) segments sent

A: acknowledgments received

C: acknowledgments echoing congestion received

The result is the following algorithm for determining how to mark each packet from the start of a sudden

increase:

when about to send packet (S+1)
if (R<C)

writeEECN(packet, Positive)
elseif (F+R) < (S+1)*(C+1)/(A+1)

writeEECN(packet, Cautious)
else

writeEECN(packet, Neutral)

Applied to TCP slow-start, this indeed results in marking the first and third data packets as Cautious,

as we originally argued.

One of the motivations behind re-ECN is to turn this discussion on its head and derive flow start

behaviour parameterised by how much congestion the transport is willing to risk causing or equiva-

lently how much credit it is willing to post. Thus we can have weighted flow-start as well as weighted

congestion response. This will be taken up in future research (§13.2), building on [KM99].

7.7. Predicted Dropper Performance 122

Weightedα-Fair Transport

An important class of elastic congestion avoidance algorithms that includes TCP can be parameterised

by the weight (or aggressiveness),w and curvature,α of their congestion response function [MW00].

The setting is distributed so that each resource marks traffic with a shadow price (marking fraction)p

and each transport optimises the difference between its instantaneous rate of utility for bit-ratex,

U(x) =
wαx1−α

1− α
, (7.11)

and the cost ratepx of congestion at that bit-rate.

The transport’s optimisation will converge to the solution ofd(U − px)/dx = 0. Therefore, bit rate

x will converge to

xα =
w

p1/α

or Wα =
Rw

sp1/α
, (7.12)

whereWα is the window of packets per RTT corresponding to bit-ratexα, given packet sizes and RTT

R.

This formula parameterises all the main distributed elastic network resource allocations:

• With w = 1,

α→ 0 models maximum throughput;

α→ 1 models proportional fairness [Kel97a];

α→∞ models max-min fairness [Jaf81];

• While free choice ofw provides a similar but weighted resource allocation in each case [Kel97a,

SCM01];

• w =
√

3/2(s/R), α = 2 corresponds to TCP’s resource allocation [MSMO97];

• Andw = n
√

3/2(s/R), α = 2 corresponds to MulTCP acting asn TCP flows [CO98].

Reasonable Responsibility?To establish whether it would still be ‘reasonable’ to make the source re-

sponsible for delay allowance in all these cases, we need to establish that the required credit does not

scale super-linearly with weightw. A transport chooses a credit,m to cover both the mean marks

per window,E(M) and a number of standard deviationsk
√

Var(M). We will say k
√

Var(M) =

λE(M);λ > 0 so that we can say more simplym = (1 + λ)E(M).

A higher weight,w will lead to a proportionately higher congestion window, increasing the sample

size within the window byw. With a larger sample of trials at the same marking probabilityp, the mean

and variance of the marks per window will grow to approximatelywE(M) andwVar(M) respectively

(Central Limit Theorem).33 Therefore, to achieve the same probability of false negatives, the weighted

flow will have to post a credit

m′ = (w + λ
√
w)E(M).

33The approximation improves with larger window sizes.

7.7. Predicted Dropper Performance 123

Thus weight-normalised credit grows as

m′

mw
=

1 + λ/
√
w

1 + λ
, (7.13)

or alternatively we can say the required credit scalesO(w +
√
w) = O(w).

The variance ((1 − p)/p2) of a geometric distribution is significantly greater than the expectation

(1/p) for low marking probabilities, therefore the
√
w term will dominate the scaling of credit untilw

gets extremely large.

Example.Intuition for this effect can be gained from an example. We take one value ofα (TCP with

α = 2). Then we determine how much more credit a MulTCP [CO98] flow needs if its weight is10×

greater than a single TCP flow. Fig7.7 shows the probabilities of more thanm marks per window for

a MulTCP transport with weight10× that of TCP. We take the single TCP in Fig7.6 with a credit of

two packets as our baseline. We normalise the extra credit MulTCP needs relative to its extra weight.

At p = 0.01% the 10-MulTCP only needs 20% of the weight-normalised credit of TCP, rising to 33%

at p = 1% and 45% atp = 10%. This increase in weight-normalised credit with marking fraction is

explained by having to cover the increasing expectation of marks per round trip. But, in all cases,10×

the weight requires considerably less than10× the credit, because the variance considerably dominates

the expectation over the range of this example.

It is important to ensure transports will be able to use weights smaller than 1 as well as greater,

otherwise weight inflation increases congestion marking (and the risk of drop) for no extra useful work.

Transports that reduce their weight to less than 1 will not be able to proportionately reduce the credit

they have to post. In other words, the up-front cost of such a flow will not reduce as much as its running

cost will. However, it seems more likely that a low weight will be used for large transfers,34 so the extra

up-front cost should be small relative to the whole flow cost.

Average Marks per Window. For weightedα-fair congestion controls the expectation of marks per RTT

Eα(M) = pW

=
Rwp(1−

1
α)

s
. (7.14)

Reducingα from 2 (TCP) towards 1 (weighted proportional fairness [KMT98] or WPF) reduces the

dependence of marks per RTT onp until the expectation for WPF

EWPF(M) = Rw/s,

becomes independent of the marking fractionp. Thus, a WPF transport (or any transport withα ≈ 1)

does not need to adjust the credit it posts dependent on prevailing congestion conditions.

Predicted False Hits: Summary

Earlier, once we had analysed TCP, we came to the interim conclusion that the credit required for any

TCP flow is not unduly onerous—two or at most three positively marked packets to protect against

34The converse of prioritising shortest jobs.

7.7. Predicted Dropper Performance 124

occasional multiple marks within one round trip. We have now provided a model that quantifies the

credit required for a generalised weightedα-fair transport. And we have proved that a congestion control

with weightw aggregates the risk of suffering unusual bursts of marking within a round trip—a risk that

w sub-flows would otherwise each have to carry individually.

We can therefore tentatively conclude that the credit a transport requires to minimise false negatives

is not unduly significant for a wide range of possible transport behaviours and therefore the dropper

design principle of source responsibility for delay allowance is unlikely to be a barrier to deployment.

Using simulation, §7.8 will verify whether these results remain broadly correct in highly dynamic sce-

narios.

7.7.2 Predicted False Misses

In this section, payoffs from gaming a re-ECN dropper are calculated, assuming the ‘Continually Vigi-

lant’ algorithm in §7.6.1. Active attacks to pervert the intent of the dropper have already been assessed

in §7.5. This section concerns behaviours that transports could discover (whether through malice or in-

nocent experimentation) that might pay off even though they do not behave as the dropper intends, i.e.

they do not preserve the integrity of the re-ECN congestion signal.

In all the following cases,z & u are the variables that the ‘Continually Vigilant’ algorithm maintains

for respectively recent Positive bytes per Negative mark and recent Negative bytes per Negative mark.35

Negative marks are indexed byi with the convention thati = 1 for the first Negative mark after the first

missing Positive mark.a is the discount factor of the EWMA (0 < a < 1). To simplify the analysis, we

initially consider a packet flow continuing indefinitely, with constant packet sizess, stationary packet

rate and path congestion marking fraction remaining stationary atp throughout. Then we treat dynamics

discursively rather than analytically, discussing the effect of varying each parameter in turn.

Miss One Payment

We first check whether the transport gains from missing just one Positive packet.

Assume the transport had originally posted only one Cautious packet as up-front credit. Further

assume the transport has been balancing every Negative mark with a Positive for sufficiently long that

the dropper’s recent balance of both Positive and Negative marks (after processing each Negative mark)

has stabilised to(1 − a)s.36 To save space, we use transformed variablesu′r = ur/(s(1 − a)) and

z′r = zr/(s(1− a)), given every term of both variables in the following analysis has the factors(1− a)

in common.

After one missing Positive mark puts the balance into debt, the variables evolve as follows:

u′1 = (1− a) + a

u′2 = ((1− a) + a)(1− a) + a

u′r = 1.

35Both equally scaled relative to thez & u defined in §7.3.1, as justified when the algorithm was explained.
36Our algorithm produces an unconventional EWMA that is deflated by1− a (§7.6.1explains).

7.7. Predicted Dropper Performance 125

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

1 51 101 151 201 251 301 351 401 451
r

πr

Figure 7.8: Dropper Drop Probabilityπr due to Missing One Positive Mark.

A mark is missed at each of congestion mark indices,r = 25 & r = 250 (note: the drop plot bursts

from zero to the top of each curve once per index); EWMA discount factora = 1/32.

The event atr = 455 is due to a Positive mark delayed until after the next congestion mark.

The evolution of the positive balance will lack a+a term at the core of the sequence, which we re-

introduce and subtract again outside the sequence (the two balancing terms in each case are shown

underlined:)

z′1 = (1− a) + a − a

z′2 = ((1− a) + a)(1− a) + a − a(1− a)

z′3 = (((1− a) + a)(1− a) + a)(1− a) + a

− a(1− a)2

z′r = 1− a(1− a)r−1.

Therefore, from Eqn (7.4), the drop probability after therth Negative mark

πr = 1− zr

ur

= a(1− a)r−1 (7.15)

After missing one payment, the source will send subsequent Positive marks as normal. Each time

one arrives at the dropper, the dropper’s recent balance will return to credit. But each time a further

Negative mark appears, the flow’s balance will fall into debt again until the next credit arrives. Therefore,

after one missing payment, the dropper will inject a sequence of bursts of light loss between every

Negative mark and the following Positive. Each burst will be reduced in amplitude indefinitely by the

above formula.

The event afterr = 250 in the middle of Fig7.8visualises the effect of missing one payment after

the flow has had enough time to establish itself (in this case the EWMA discount factora = 1/32).

7.7. Predicted Dropper Performance 126

Incidentally, the event afterr = 25 in the same figure shows how missing a payment while the flow

is establishing its record as a ‘consistent payer’ causes the dropper to hit the flow harder initially. The

analysis of this case is not given here, but it is similar to that used in §7.7.2, when the source stops

payment completely afterq marks. The spike afterr = 455 is yet another case (‘Delay One Payment’)

discussed in the next section.

The gain the transport will make (in terms of traffic volume, not microeconomics) from the ‘Miss

One’ behaviour is

G(−) = 1− Traffic dropped
Traffic that should be dropped

.

The traffic dropped can be calculated by summing all the drop probabilities after each Negative mark.

To determine how much traffic should be dropped, recall that we have made the source responsible

for allowing for round trip delays (§7.3.2). Therefore, by our principle of ‘Equivalence with Honesty’,

if a payment arrives late, over time the dropper should eventually drop as much traffic as the volume

forwarded between the first mark to go into debt and the next Positive mark that brings the balance into

credit again. The total loss should add up to the same as if there were 100% loss in one of these intervals.

Consider the delay between a Negative packet and each subsequent Positive remains constant (i.e.

the RTT remains constant). Then, by the above argument and using Eqn (7.15), the gain from the ‘Miss

One’ behaviour,

G(−) = 1−
r∑

i=1

πi

/
1

= 1− a
r∑

i=1

(1− a)i−1.

This geometric progression simplifies to

G(−) = 1− a(1− ar)/a

= 0; r →∞.

It is not surprising that there is no gain, as the whole point of a moving average is to ensure this happens,

at least in a stationary case. However, we have now checked that the ‘Continually Vigilant’ algorithm

does indeed achieve this.

As an example, consider a continuous flow with bit-ratex = 10Mb/s consisting of packets of

sizes = 1500B experiencing congestion marking fraction ofp = 0.01%. On average there will be

1/p = 10, 000 packets ors/p = 15MB from one congestion mark to the next (a round), with the average

duration of a round beingτ = s/(xp) = 12s. Imagine the source misses a Positive mark completely,

then sends each subsequent Positive mark to arriveR =30ms after the Negative mark that triggers it

(due to round trip delay). Then, if every subsequent payment arrives 30ms after the Negative mark it

balances, the dropper shouldaim to removeR/τ × 15MB = Rx = 37.5kB of traffic (orRx/s = 25

packets) eventually altogether.

Further consider that the dropper EMWA discount factor isa = 1/32. In the first round, the

dropper will aim to discarda × 37.5kB = 1.172kB, or less than one packet (i.e. it will drop one packet

7.7. Predicted Dropper Performance 127

with probability1172/1500). However, if the source repays the missing payment in the next round, all

the dropper will have discarded is this fractional packet in the first round (the spike atr = 455) in Fig

7.8). But if the source never makes up the missing payment, the dropper will go on to remove the full

37.5kB (or 25 packets) if the flow continues for sufficient subsequent rounds (the ski-slope in the middle

of Fig 7.8).

Even if it mistakenly misses a payment, a source can ensure it only ever suffers the ‘spike’ punish-

ment, never the full ‘ski-slope’. It can just always conservatively respond to a packet drop with a Positive

packet.

Dynamics after One Missed Payment.The transport can vary the speed at which the EWMA clocks

on negative marks without changing its bit-rate by sending more smaller packets or less larger packets.

However, the dropper counts its balances in bytes, not packets. So if the source clocks the EWMA faster

by sending smaller packets, its balances will merely evolve in smaller steps (andvice versa).

If, after missing one payment, the sender increases the delay between each Negative and Positive

mark, it will suffer proportionately more drop, as it should. If it reduces payment delay it will suffer less

drop, as it should.

The EWMA spreads out punishment for missing a mark over time. So if the marking fraction

reduces after missing a payment, the punishment will merely take longer, rather than being less severe

overall (assuming each round trip delay between mark and payment is the same). The converse is also

true; that a higher marking fraction will drop the same volume of traffic but faster.

If the sender increases its bit-rate after missing a payment, all other things being equal, its traffic

will collect congestion marks more rapidly. It will then lose the same proportion of traffic but more

rapidly. However, it will be the same proportion of a higher volume of traffic, losing more overall. This

is correct, because delaying payment at a different bit-rate is a different crime. Conversely, missing a

payment then slowing the bit-rate will reduce the total amount of traffic removed. Again, this is correct

because a source that delays each payment for less bits should be punished less, even though each delay

is for the same time.

The careful (and consequently rather convoluted) logic behind this assertion is as follows. A Posi-

tive mark is meant to pay for the right to send traffic from one Negative mark to the next. Negative marks

are generated based on the instantaneous product of bit-rate and resource congestion. Directly paying

for Negative marks (as Gibbens & Kelly originally proposed) naturally pays for the instantaneous traffic

between them. But paying for Positive marks is intended to solve all the issues with receiver-pays con-

gestion pricing. The dropper checks that Positive marks balance Negative and that they arrive no later

than the Negative mark they balance. If they do arrive later, the dropper’s sanction should be to remove

all the instantaneous traffic between the two events. But removing all this traffic immediately would hit

accidental transgressions extremely harshly.

Therefore, instead, the dropper spreads the punishment over time. It removes a proportion of the

total required punishment while the lifetime balance is negative, but it ceases punishment whenever the

balance is non-negative. If the source misses one payment after the mark indexedi = 1, but pays for

7.7. Predicted Dropper Performance 128

every subsequent mark after a round trip delay, it is fair to count the payment after the second mark

as if it were the missed payment after the first mark, rather than considering the first payment to have

been missed forever. In other words, one missed payment is equivalent to all subsequent payments being

delayed (and the last missed). Then it is appropriate that the dropper’s sanction for each recent payment

delay should relate to the volume of traffic sent during that recent delay, not that sent during the first

payment delay.

This logic justifies the dropper algorithm remembering the proportion of traffic to remove, rather

than remembering the absolute volume of traffic to remove.

Delay One Payment

If the source delays a Positive marking until after the following Negative congestion mark, from the

dropper’s point of view it is as if one more congestion mark has occurred within a round trip than the

source posted as an initial Cautious credit. The dropper’s recent balance will temporarily fall into a debt

of one packet. If the source is following the re-ECN protocol it will respond to feedback about each

congestion mark with a Positive packet. As soon as the first Positive marking arrives at the dropper, the

balance will be returned to zero. Then further Positive marks will restore the initial credit.

We assume both the dropper’s recent balances start equal to each other (z0 = u0). After one missing

payment the dropper’s recent balances update to

z1 = (1− a)z0

u1 = u0.

From Eqn (7.4), the drop probability from the next congestion mark until the first Positive marking

repairs the balance is

πr = (1− z1
u1

)

= a

For example, a spike of drop probability1/32 due to a delayed payment is shown at indexr = 445 in

Fig 7.8, which is unsurprising because the dropper’s EWMA discounta = 1/32.

The source’s gain from the ‘Delay One’ behaviour is zero, by the same argument as that for the

‘Miss One’ behaviour.

Pay Once Only

A flow could legitimately initialise itself with sufficient Cautious credit on its first full-sized segment,

giving itself the right to flow state in the dropper, but then never send any further positive markings. At

each congestion marked (Negative) packet, the transport would just continue sending Neutral packets,

so the dropper would increase the proportion of drop.37 But we need to check how much traffic the

‘Continually Vigilant’ dropper algorithm in §7.6.1allows through in excess of that paid for.

No flow-state timeout is modelled, as one use for the results will be to determine the dropper’s best

flow-state timeout policy. So far we have assumed it can be lazy, removing stale flow state only when

37The ‘Pay Once’ behaviour obviously assumes that the transport does not respond to any subsequent drops with Positive marks.

7.7. Predicted Dropper Performance 129

memory is scarce. But the dropper may need to actively detect flows with a continually reducing balance

and either set their drop probability to 100% or remove their flow-state.

The dropper will evolve its recent balance variables as

zr = as(1− a)r

ur = as[(1− a) + (1− a)2 + . . . (1− a)r].

From Eqn (7.4), the forwarding probability after therth congestion mark

φr = (1− πr)

=
zr

ur

=
1∑r−1

i=0 (1− a)−i
.

Simplifying this geometric progression gives

φr =
a

(1− a)
(
(1− a)−r − 1

) (7.16)

→ 0. r →∞

One positively marked packet pays for the average volume of traffic arriving at the dropper from

one congestion mark to the next. The gain,G(+) to the transport from the ‘Pay Once’ behaviour is best

stated in terms of traffic forwarded (unlike before in terms of traffic dropped):

G(+) =
Total volume forwarded into future

Volume single packet payment covers
− 1.

Note that the gain is not dependent on packet size. An attacker could send larger packets after the initial

Cautious packet, to get more bits through per EWMA clock cycle (from one negative mark to the next),

but these would be rejected by the dropper as larger than the maximum size credit packet seen in the flow

and handled instead with the Bulk of misbehaving flows.

Therefore, the gain depends on the sum of all the proportions of traffic the dropper forwards between

each congestion mark (the area underφr for all r from Eqn (7.16)):

G(+) =
a

(1− a)

∞∑
r=1

(
1

(1− a)−r − 1

)
− 1. (7.17)

It doesn’t seem possible to simplify this expression for the gain,38 but it converges fairly rapidly

againstr, so numerical techniques will be accurate enough. It is plotted for a range of values of EWMA

discount factor (plotted aslg (a)) in Fig 7.9. G(+) = − ln (a)− ε seems to be a reasonable estimator for

the expression, with0 < ε < 1 over the range plotted.

Even though drop quickly rises, particularly for larger values ofa, a transport adopting the ‘Pay

Once’ behaviour obviously always gets more traffic through than it has paid for, for alla. Discussion

of how to negate this positive gain is deferred until the end of the next section that models the ‘Stop

Payment’ behaviour, which is a generalisation of ‘Pay Once’.

38It is the most basic form of a Lambert series, which no-one has (yet) been able to simplify further.

7.7. Predicted Dropper Performance 130

0

1

2

3

4

5

6

7

-10 -8 -6 -4 -2 0

lg(a)

: G(+)

: –ln(a)

: –ln(a) – 1

Figure 7.9: Gain from the ‘Pay Once Only’ Behaviour.

Plotted againstlg (a), wherea is the EWMA discount factor (the plot ofG(+) is not quite straight,

whereas for comparison− ln (a) is).

Stop Payment

We now establish whether and how much the source would gain from completely stopping sending any

Positive marks mid-flow. In the previous section (§7.7.2) this strategy was adopted straight after the first

Positive mark. This time, we assume the source paysq Positive marks (including one initial Cautious

credit) to balanceq Negative marks before stopping Positive marking completely. Consistent with the

previous analyses, we use the convention for indexing Negative congestion marks thati = 1 at the first

mark after payment stops. Therefore the first congestion mark of the flow is ati = 1 − q. The flow

continues forr marks after payment stops (i = r).

The dropper initialises both recent balance variablesz−q = u−q = 0 and they both evolve over the

same geometric series while the source behaves normally, until ati = 0:

u0 = z0 = sa
0∑

i=1−q

(1− a)i+q

= s(1− a)(1− aq).

Once the source stops sending Positive marks, the dropper’s recent balance variables diverge until

at i = r:

zr = s(1− a)(1− aq)(1− a)r

ur = s
r∑

i=1−q

(1− a)i+q

= s(1− aq+r).

7.7. Predicted Dropper Performance 131

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 51 101 151 201 251 301 351 401 451
q+r

πr

q=1 Pay Once

q=25 Stop Pay

q=250 Stop Pay

Figure 7.10: Dropper drop probabilityπr due to stopping Positive Marking.

Marking stops in 3 scenarios, after congestion mark indicesr = 1, 25, 250; EWMA discount factor

a = 1/32.

Therefore, the forwarding probability after therth Negative mark,

φr =
zr

ur

=
(1− aq)(1− a)r

(1− aq+r)
(7.18)

Fig 7.10visualises the dropper’s drop probability as the index of arriving congestion marks,q+ r rises.

Three cases for when the source stops payment are shown,q = 1 ‘Pay Once’,q = 25 & q = 250. It

can be seen that the sooner payment stops, the faster drop probability rises, which the algorithm was

deliberately designed to do.

Similarly to the ‘Pay Once’ behaviour, the gain to the transport for the ‘Stop Payment’ behaviour is

G(0) =
Flow lifetime volume forwarded

Volume paid for
− 1

=
∑∞

r=1 φr

q

=
(1− aq)

q

∞∑
r=1

(1− a)r

(1− aq+r)
. (7.19)

This expression generalises the gain from the ‘Pay Once’ scenario. As in that case, the expression is too

complex to simplify asr →∞. But again it is amenable to numerical analysis as it converges fairly fast.

The headline conclusion is that gain immediately goes positive as soon as payment stops. Therefore the

gain from this behaviour will need to be negated long beforer →∞.

At the end of §7.6.1we adopted the attitude that the dropper held a record of which flow-state was

most stale, so it could time out this state lazily, as and when it needed more memory for new compliant

flows. Our analysis of ‘Pay Once’ and its generalisation to the ‘Stop Payment’ behaviour shows that drop

clocks up too slowly if the dropper just leaves its regular algorithm running for a flow that has simply

7.8. Simulated Dropper Performance 132

stopped paying.

Such a flow will be obvious to the dropper. The ‘Continually Vigilant’ algorithm categorises a

flow as ‘On Remand’ as soon as its lifetime balance goes negative, and records the time its balance was

last positive. If a flow has been on Remand for more than the flow-state minimum timeout it seems

necessary to increase its drop probability much more aggressively than the algorithm currently does

(assuming sufficient memory to continue to hold its flow state). We could simply increase drop of on

Remand flows to 100% after the timeout, or drop could perhaps rise with time on remand.39 This would

actively drive such flows out of the system, rather than timing out their flow state and treating them with

the Bulk of other misbehaving flows. Then flow-state could still be lazily recovered as needed.

The best strategy for the dropper to adopt is left for further research. We do not want to unnec-

essarily hit flows too hard too quickly if there is a chance an innocent flow might accidentally get into

this state. And we already know further research is needed to review how we transition a flow’s state

when it is consigned to the Bulk (see §13.2). We also don’t want to timeout the state of a flow that is

obviously misbehaving if we don’t need the memory—it might be better off in the Bulk, being treated

with an uncontrolled mixture of Negative inputs from misbehaving traffic and Positive remainders from

timed out compliant flows.

Predicted False Misses: Summary

We have now analysed a few tractable cases where the dropper might wrongly miss sanctioning trans-

ports that are not preserving the integrity of downstream congestion signals. As expected, the drop-

per correctly prevents any gain from a delayed payment. Where one payment is missed, the dropper’s

sanction is correct, although it took some effort to argue this for cases where the flow’s bit-rate is non-

stationary. Where payments stop completely (a missing payment taken to the extreme), the dropper’s

baseline sanction algorithm is insufficient. The dropper has all the information it needs to actively in-

tervene in such a case, so it could actively introduce a more aggressive drop policy after the flow-state

minimum timeout. But we have left investigation of precisely what is the best dropper policy in these

cases for further research.

7.8 Simulated Dropper Performance

Simulations were conducted40 to test the predictions of dropper performance. The simulation plan is

listed below:

1. Characterise mean and variance of congestion experienced by test flows;

2. Verify theoretical model of distribution of marks per window, as used to predict false hits (§7.7.1);

3. Sensitivity analysis of false hits against EWMA weight;

4. Sensitivity Analysis of false misses against EWMA weight.

39The need for further research to identify a meaningful objective to judge what should be done is recorded in §13.2.
40The simulations were planned and designed by the present author. However, a colleague, Toby Moncaster, implemented and

executed them.

7.8. Simulated Dropper Performance 133

In all cases, only initial runs have been completed; repeat runs are in progress so the results should only

be taken as indicative at this stage.

7.8.1 Simulation Environment

The simulations were designed to create a hostile congestion environment for the dropper, with relatively

high congestion that also varied considerably on fast timescales. Two scenarios were used, both with high

congestion and high congestion variance, but one lower than the other:

HCHV High congestion, high congestion variance

LCLV Lower congestion, lower variance

In each case, three different test flow scenarios were used with different RTTs.

Simulated Implementation.The simulation was conducted in the ns-2 packet simulator [ns2] v2.30.

Draft-07 of the re-ECN protocol in IP and TCP [BJMS09a] and the continually vigilant dropper algo-

rithm v00R41 (§7.6.1) were implemented in the simulator.

Unless stated otherwise, the dropper was configured to merely log that it would have dropped a

packet, rather than actually dropping it. This allowed us to maintain a stable testing environment without

the extra confusion of the transport’s rate reduction response to each discard from the dropper as if it

were congestion. Actual drop was turned on only in the experiment to find the knee of drop sensitivity

against EWMA weight.

Even when the dropper was configured to actually drop packets, the transport was configured not to

send a Positive packet in response to a drop. This simulated what a cheating source would most likely

do. Without configuring it this way, the transport was ‘too good’ to ever allow any drops after the first

one or two.

When we tested the transport with it configured to respond to a drop with a Positive packet, it

became apparent that this would be a very robust way for a long-running honest transport to ‘learn’ how

much credit to give to the dropper—if it had previously underestimated. One or two additional Positive

packets in response to drops sufficiently topped up the credit to prevent any further packets from being

discarded by the dropper—for as long as we could subsequently run the simulation. This is what we

mean by ‘too good’.

Simulated Topology.In order to achieve high congestion variance, a parking lot topology was arranged

so that traffic bottlenecks shifted rapidly from one link to another during the simulation. Network topol-

ogy consisted of 5 core routers R1–R5 connected by 4 bottleneck links. Senders generating background

traffic were connected to each of the first four routers (R1–R4) and receivers were connected to each of

the last four routers (R2–R5), all with 10Mbps links.

Link latencies were designed to give a range of RTTs, but shorter RTT paths were omitted to

increase the chance of congestion overruns as new flows arrived. Fig7.11shows the topology with link

41This dissertation avoids details of design iterations in response to early simulation results—in fact there was only one; to

randomise initialisation of the remainder in theprobDrop() function.

7.8. Simulated Dropper Performance 134

10ms
CMb/s

75ms
10Mb/s

10ms
CMb/s

10ms
CMb/s

10ms
CMb/s

50ms
10Mb/s

R1C1

dst1

src1

Dr1

12
5m

s
10

M
b/

s
75

m
s

10
M

b/
s

R2

dst2

src2

15
0m

s
10

M
b/

s
10

0m
s

10
M

b/
s

R3

dst3

src3

25
0m

s
10

M
b/

s
50

m
s

10
M

b/
s

R4

dst4

src4

17
5m

s
10

M
b/

s
15

0m
s

10
M

b/
s

R5

dst5

src5

20
0m

s
10

M
b/

s
12

5m
s

10
M

b/
s

25ms
10Mb/s

D1

Figure 7.11: Simulation Topology to Test the Re-ECN Dropper.

latencies. Table7.2shows the different RTTs of the ten resulting paths through the network, from each

set of sources to each set of destinations.

dst2 dst3 dst4 dst5

src1 470ms 390ms 610ms 580ms

src2 420ms 640ms 610ms

src3 820ms 790ms

src4 620ms

Table 7.2: Simulated Round Trip Times between each Source and Destination.

Link capacities are also shown in Fig7.11. Average congestion for the two main scenarios was

controlled by altering the capacities of the bottleneck links, as specified in Table7.3. The source test

node, C1 was connected to R1 and the destination test node, D1 was connected to R5 via a re-ECN

dropper, Dr1.

Background on-off

Model Bottleneck TCP parameters

capacity, Mean Packet train

C idle length

LCLV 10Mb/s 5s 20–1500 pkt

HCHV 8Mb/s 2s 20–150 pkt

Table 7.3: Simulation Parameters Varied to Create the Two Traffic Scenarios.

All the queues used the RED AQM algorithm configured with the default parameters for ns-2.

Specifically, this implies RED is attempting to uniformly distribute its marks, which we predict won’t

make any difference (§7.2), and it is scaling down the marking probability of smaller packets42.

Three different RTT scenarios are used for the test traffic path, as we wanted to explore the be-

haviour of flows with RTTs comparable to the lowest, middle, and highest RTTs of competing flows

(none of which were small for the reasons already given):

Short RTT 150ms

Medium RTT 380ms

42Which we deprecate in [Bri08a].

7.8. Simulated Dropper Performance 135

Long RTT 800ms

A shorter test traffic RTT of 80ms was used in one extra set of simulations. Different test flow RTTs

were achieved by varying the access link latencies (Fig7.11shows the Medium RTT scenario).

Simulated Traffic Models.All simulated TCP traffic was ECN-capable and used a packet size of 576B.

Background traffic consisted of:

• 100 on-off TCP flows (10 per route) with exponentially distributed idle times and uniformly dis-

tributed packet trains, characterised by the parameters in Table7.3. This created the distinction

between the congestion variances of the two traffic scenarios.

• 10 continuous TCP flows (1 per route) carrying traffic that modelled FTP behaviour with infinite

file size so there was always data ready to be sent.

• 290 UDP flows (29 per route) carrying traffic that modelled aggregated VoIP behaviour [HGB06]:

exponentially distributed on-off sources with packet size of 70B; mean burst times of 7.24s and

mean idle times of 5.69s. Data rate during bursts was 10.2kb/s.

The test traffic consisted of a continuous FTP source over TCP, which ensured there was always data

available to send. In all experiments, results affected by the synchronised transient of the simulation

start-up were discarded.

7.8.2 Simulation Results

Characterise Mean Congestion and Variance

Without the dropper operating, the simulator was run with the traffic models specified above to record

congestion experienced by the test flow. Mean congestion was measured as the total ECN marked bytes

divided by total sent bytes. Variance was measured by collecting results into 1sec bins, and taking the

variance of all the binned measurements. A bin size of 1sec was considered sufficiently small, because

the characteristic time of RED’s EWMA to smooth its marking probability (the time for the EWMA

to decay events in the past to1/e of their original size) was configured to the default of 1sec on all

links. The overall results are tabulated below (Table7.4). Note that the table records measurements of

Scenario RTT/ms E(p)
√

Var(p)

HCHV 150 1.302% 1.676%

HCHV 380 1.223% 2.433%

HCHV 800 0.210% 2.136%

LCLV 150 0.325% 0.927%

LCLV 380 0.270% 0.841%

LCLV 800 0.219% 1.173%

Table 7.4: Congestion Mean & Variance for the 6 Simulated Scenarios.

congestion experienced by one flow (the test flow), therefore variance depends on how many packets the

flow sends during the binning time. Less packets per second will naturally lead to more variance, because

7.8. Simulated Dropper Performance 136

the discrete steps in congestion levels are greater for smaller numbers of packets. We deliberately took

this approach, because we wanted to understand how our test flow saw congestion varying.

As well as recording the above results on ‘dummy runs’ without the dropper operating, mean con-

gestion was recorded during all experimental runs and generally matched these results.

Absolutely all congestion experienced by the test flow in all experiments was signalled explicitly

with ECN marks—the test flows experienced no drops due to link congestion. This in itself was quite

unexpected, given the relatively high level of congestion simulated. It was particularly unexpected in the

HCHV scenarios with numerous short flows, where many exponential TCP slow-starts were injecting

traffic bursts into the queues.

Verify Analytical False Hits Model

This simulation was run to test our theoretical analysis of the distribution of marks per window, which we

used to predict likely false hit fractions in §7.7.1. We had used the analytical model as the basis for the

dropper design, so we wanted to see whether it reflected reality, when large numbers of TCP and UDP

flows are interacting in a highly dynamic rather than stationary environment. In particular the HCHV

scenario simulated a high rate of flow-arrivals and departures, which added to the mix a high proportion

of flows in TCP’s exponential slow start, even though our theoretical model had only modelled TCP’s

congestion avoidance phase.

At first the six traffic scenarios specified above were simulated for 3000s each. Then very long runs

of 15000s were repeated 8 times with different seeds for two scenarios (LCLV with 150ms & 80ms) to

establish confidence intervals (see below). The dropper was configured to not drop any packets from the

test flow in order to ensure its TCP algorithm only responded to congestion events. Instead the dropper

was modified to measure ECN marks per window for different congestion levels. The results of an initial

single run for each test are plotted in Fig7.12. They are shown as larger symbols overlaid on the original

theoretical predictions, shown as similar but smaller symbols.

The probabilities of one mark per window were close to the theoretical predictions. But probabilities

of higher numbers of marks per window (Ps(M > 1)) were all considerably higher than the theory

predicted. This was perhaps not surprising as the analytical model we used assumed stationarity, not

including flow starts (or any congestion variability) which would lead to brief bursts of queue growth.

This would tend to collect more of the overall number of marks into bursts within windows, with less

spread evenly throughout the period.

Congestion varied considerably throughout the runs (see the previous experiment), so the average

over the whole of each run was used (marked bytes to total bytes in the test flow). Analytical results

are only possible for integer values of congestion window, which map to a set of discrete values of

congestionp. Therefore linear interpolation between the discrete analytical results was used to produce

theoretical predictions at exactly comparable values of congestion.

Further simulations are planned with completely stationary traffic to prove whether the analysis is

accurately reproduced by a simulation under the same stationary conditions as assumed in the model.

In the initial 3000s runs, the probabilities of higher numbers of marks per window (Ps(M > 2)) are

7.8. Simulated Dropper Performance 137

0.000001%

0.000010%

0.000100%

0.001000%

0.010000%

0.100000%

1.000000%

10.000000%

100.000000%

0.00001 0.0001 0.001 0.01 0.1 1

p (log scale)

Pa(M>0)

Pa(M>1)

Pa(M>2)

Pa(M>3)

Pa(M>4)

Ps(M>0)

Ps(M>1)

Ps(M>2)

Ps(M>3)

Ps(M>4)

Figure 7.12: Distribution of Marks per Window for TCP against Congestionp.

(Log-log scales); Initial simulated results (the larger symbols labelledPs(M > m)) superimposed over

original analytical predictions for congestion avoidance phase (smaller symbols labelledPa(M > m)).

95% confidence intervals are shown for the results atp = 0.74 & p = 0.87.

p Scen- RTT Ps(M>m)/% for m = Pa(M>m)/% for m =
/% ario /ms 0 1 2 3 4 0 1 2 3 4

0.21 HCHV 800 5.65 0.19 0.028 0 0 5.51 0.15 0.0026 3.3E-5 3.1E-7

0.22 LCLV 800 5.72 0.19 0.027 0 0 5.55 0.15 0.0026 3.3E-5 3.2E-7

0.27 LCLV 380 6.35 0.13 0.039 0 0 6.16 0.19 0.0036 5.0E-5 5.3E-7

0.32 LCLV 150 6.85 0.17 0.040 0.02 0.01 6.74 0.22 0.0047 7.0E-5 8.0E-7

0.74 LCLV 150 11.17 1.19 0.095 0.009 1E-4 9.76 0.46 0.014 2.8E-4 4.1E-6

95% Confidence± 0.05 0.03 0.008 0.002 2E-4

0.87 LCLV 80 10.02 1.63 0.203 0.023 0.00210.70 0.55 0.018 3.8E-4 6.1E-6

95% Confidence± 0.03 0.01 0.007 0.002 7E-4

1.21 HCHV 380 12.91 0.33 0.051 0 0 12.61 0.76 0.027 6.8E-4 1.1E-5

1.30 HCHV 150 13.18 0.28 0.040 0.005 0 13.02 0.81 0.030 7.6E-4 1.3E-5

Table 7.5: Distribution of Marks per Window for TCP against Congestionp.
Initial simulated results (labelledPs(M > m)) beside original analytical predictions for congestion

avoidance phase (labelledPa(M > m)).

7.8. Simulated Dropper Performance 138

based on extremely sparse samples. Despite simulating 1.25 million packets in the test flows (alongside

about half a billion in 400 other simulated flows) only nineteen runs of 3 marks, two of 4 marks and

two of 5 marks were measured over all six simulations. Therefore the points plotted for runs longer than

two marks should be interpreted as part of a potentially wide spread of results. In particular, it should

be noted that eight points signifying zero probability of 4 & 5 mark runs could not be plotted on the log

scale. The plotted data is also recorded in Table7.5, which does show the zero results.

The much longer and repeated runs produced a significant number of RTTs with 5 marks per RTT

(31) in thep = 0.87% case (LCLV with 80ms RTT) but only one in thep = 0.74% case (LCLV with

150ms RTT). Only three windows contained 6 marks, all in the 80ms case. Over 33 million packets were

simulated in the test flows alone, with well over 10 billion packets in the background flows.

95% Confidence intervals are plotted for all those results involving repeat runs using different

seeds.43 Although the points without confidence intervals cannot necessarily be trusted, if those with

confidence intervals sit within their respective intervals, they seem to imply that the results as a whole

do not sit on a smooth line. This would be expected if stationary simulations did sit where predicted

and the upward shift was due primarily to congestion variability—at least if the congestion variability

correlates with the upward shifts. This suggests a further set of simulations, which are in progress and

will be reported in future work.

Our original goal of limiting the false hit rate to the same order as background drop turns out to

be rather challenging, given we can detect no background drop at all with ECN enabled ubiquitously,

even with fairly hostile dynamic conditions. At least over the working range of these results, they imply

that two packets of credit per flow would lead the dropper to introduce on the order of 0.1% additional

losses in a network running at about 1% explicit congestion marking. Most current production networks

(residential access in the developed world) would typically aim to provision for an order of magnitude

less than 1% congestion. But these results imply it is borderline whether 2 credits will be sufficient and

we may need to consider 3 as a rule of thumb. However, we must bear in mind these simulations were

deliberately designed to create a very dynamic hostile congestion environment.

We can also tentatively conclude that implementations of re-ECN in TCP could reasonably post a

constant hard-coded credit, rather than having to do a more complex adaptation to run-time conditions.

False Hits: EWMA Sensitivity

Various values of dropper EWMA weight were used with an ‘honest’ transport to try to minimise the

fraction of false hits—drops punishing relatively innocent behaviour. The term ‘honest’ is strictly rel-

ative, given we make the transport responsible for allowing sufficient credit to cover its own feedback

delay (§7.3.2). By ‘honest’ we mean the transport was configured to post 2.07 full-sized packets of credit

(that is, two full-sized packets plus a 40B TCP SYN). A later experiment tested whether higher credit

was necessary in some circumstances.

Fig 7.13shows the results for all six scenarios in the test matrix after a calibration run had been

conducted to find the general area of the knee of the curves. Figs7.13a)&b) show the full range of

43The lower bound of the interval for the lowest point could not be plotted on the log scale as it was negative.

7.8. Simulated Dropper Performance 139

a) b)

re-ECN dropper algo CV00R;
credit = 2+SYN; no Posv on drop;

Low congestion; Low variance

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%

0.001 0.01 0.1 1

EWMA weight a

dr
op

pe
r

fr
ac

tio
n LCLV150ms

LCLV380ms

LCLV800ms

re-ECN dropp algo CV00R;
credit = 2+SYN; no Posv on drop;

High congestion; High variance

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%

0.001 0.01 0.1 1

EWMA weight a

dr
op

pe
r

fr
ac

tio
n HCHV150ms

HCHV380ms

HCHV800ms

c) d)

re-ECN dropper algo CV00R;
credit = 2+SYN; No Posv on drop;

Low congestion; Low variance

0.00%

0.05%

0.10%

0.15%

0.20%

0.001 0.01 0.1
EWMA weight a

dr
op

pe
r

fr
ac

tio
n

LCLV150ms
LCLV380ms
LCLV800ms

re-ECN dropp algo CV00R;
credit = 2+SYN; no Posv on drop;

High congestion; High variance

0.00%

0.05%

0.10%

0.15%

0.20%

0.001 0.01 0.1
EWMA weight

dr
op

pe
r

fr
ac

tio
n

HCHV150ms
HCHV380ms
HCHV800ms

Figure 7.13: Re-ECN Dropper Sensitivity to false hits against EWMA weighta

EWMA weights tested. The wiggles for higher RTTs at higher values of EWMA weight were not due to

insufficient samples, but seem to be due to some form of synchronisation. Although sufficient runs to do

confidence tests are yet to be performed, these wiggles were repeatable in general form, and remained

even for simulation runs an order of magnitude longer. In this experiment the dropper was configured

to actually drop packets, therefore TCP was reducing its rate considerably in response to the drops.

Given the extremely high EWMA weights used at the top end, it is perhaps not surprising that odd

synchronisation effects appeared in the presence of intermittent very high bursts of drop. There may also

have been interactions between the long RTTs used and the approximately similar smoothing time of the

RED algorithm.

Figs7.13c)&d) zoom in on the more usable results where false hits are much lower ata ≤ 0.1. The

drop fraction was expected to continue decreasing as the EWMA was decreased further (but the rate of

decrease to flatten out). The results seem to flatten off completely at low EWMA weights, but repeat

runs would need to be performed to test the significance of the data.

This simulation gave us sufficient confidence in the stability of the results, to be able to use

only three values of EWMA from just below the knee of the curve in all our future experiments:

a = 1/16, 1/32, 1/64 (choosing fractional powers of two reduces the complexity of EWMA imple-

mentation, as already explained).

7.8. Simulated Dropper Performance 140

False Misses Sensitivity

This experiment is designed to find the smallest level of cheating that the re-ECN dropper cannot detect.

Rather than cheating in whole packets, it involves the source cheating a byte at a time. The source

correctly sends a credit of one SYN and one full-sized segment, and it responds to feedback of every

congestion mark with a Positive packet, but it stints on the size of each Positive packet.

Rather than simulating numerous scenarios with slightly different levels of cheating until the drop-

per notices, we fold all levels of cheating into each run of the experiment. Very gradually, the source

increases the amount by which it cheats (decreasing the size of Positive packets). We call this ramp-down

cheating. Then we measure how long it takes for the dropper to notice—when it starts to drop packets.

We also reverse the experiment to see how asymmetrically the dropper behaves because of the

EWMA delay. That is, from a certain level of cheating, the source gradually decreases how much it

cheats (increasing the size of Positive packets back to their proper full size). Then, once the source is no

longer cheating, we measure how long it takes for the dropper to stop falsely hitting it with drop.

These behaviours are not particularly meant to represent a clever cheating strategy; just a way to

test the sensitivity of the dropper to very small amounts of cheating.

Simulated Scenarios.The experimental set-up continues as before, but only using the HCHV scenario,

not LCLV. This halves the number of scenarios to simulate, given we are more interested in the dynamic

cases. A3×3 matrix of simulation scenarios is used, with the 3 values of RTT as before, but also with

the 3 values of EWMA weight found from the previous calibration experiment,a = 1/16, 1/32, 1/64.

Full-sized packets are still 576B.

The test flow starts 20s after the simulation. Its precise cheating behaviours are as follows:

• ‘Ramp-down’ starts by correctly declaring one full-sized Positive packet per congestion mark.

Every 20s for 2000s it decrements its Positive packet size by 1B, therefore ending up sending

every Positive packet 100B smaller than full-sized (under-declaring by 17.4%)

• ‘Ramp-up’ starts by making each Positive packet 60B smaller than full-sized in response to each

congestion mark (regularly under-declaring by 10.4%). Every 30s for 3000s it increments its

Positive packet size by 1B, ending up sending Positive packets 40B larger than full-sized (a regular

over-declaration of 6.9%)

In both cases, the source posts an initial credit of one full-sized packet and a TCP SYN (40B).

Although the effect of this disappears into the noise relatively quickly, we realised (unfortunately after

having run the initial experiments) that we should have allowed time for the initial credit to decay out of

the system before the source started to ramp down. This experimental strategy had successfully been used

to test a much earlier incarnation dropper, as reported in the original paper on re-feedback [BJCG+05].

It will be used in future runs.

In the ramp-up case, the test of whether a flow’s lifetime balance is Positive was commented out of

the simulated dropper implementation. This left the test flow only protected from the possibility of drop

by its recent behaviour, not its lifetime balance.

7.8. Simulated Dropper Performance 141

Also, in the ramp-up case, we realised after having run the experiments that we had also wrongly

changed two things at once—when the test-flow starts, it introduces a step-change in cheating at the

same time as TCP starts its exponential slow-start. Future runs will allow TCP as well as the simulation

to settle before introducing the initial step change in cheating. Then, as well as examining the ramp

behaviour, we can also measure how quickly and how correctly the dropper responds to a step change in

cheating of a certain size (equivalent to the ‘Stop Payment’ behaviour of §7.7.2, but with a smaller step

than a complete stop).

Results.The results from the initial run could not be used for their primary intended purpose (dropper

sensitivity to tiny levels of cheating), as they were marred by the above teething problems. And further

runs could not be conducted given the deadline for this dissertation. Nonetheless, the results from these

initial runs are displayed in Figs7.14& 7.15as they reveal some interesting and unexpected effects.

Each column of figures shows all nine scenarios, grouped three per graph. On the left of each page,

each group (a–c) has a common EWMA weight to compare the different RTT scenarios. On the right,

each group (d–f) has a common RTT to compare the different EWMA weights. Each plot is labelled

RXXX-aYY, where XXX is the RTTR in ms, and YY is the reciprocal of the EWMA weight1/a.

Ramp-down: The spike of drop at the start of some runs is probably a result of TCP’s slow start with

only one packet’s initial credit to protect it. This will be shifted out of the way of the start of the ramp in

future runs, so it can be analysed separately.

The plots clearly show that it takes much longer for the dropper to catch a long RTT flow. We

predict this result is produced by two effects in tension against each other. TCP’s packet rate is inversely

proportional to RTT, so for the same level of congestion, it is picking up far fewer congestion marks over

any specific duration. Therefore it will take longer for the initial credit to decay from the system. At the

same time, even though it is cheating, each Positive packet partially makes up the balance at the dropper.

But the longer RTT means it takes longer before it even partially makes amends. Therefore, the dropper

should drop more from a longer RTT flow. But it seems the former effect dominates the latter in these

experiments.

A slower EWMA at the dropper seems to harm the cheating flow more strongly. The long-RTT-

slow-EWMA case (R800-a64) contradicts this trend and the slow-EWMA case with medium RTT

(R380-a64) cannot make up its mind. Otherwise the trend seems to be present. This is because the

ramp effectively turns into a case of continually worsening late payment (§7.7.2explains that a missed

payment is equivalent to continual late payments). A slower EWMA takes less note of a late payment. It

effectively says “I’ll only believe you do intend to pay in full when I see more evidence that you have”.

Note that the drop fraction is significantly less than the cheating fraction in all cases. This is because

the cheating fraction is nominally stated as the worst amount of cheat between each Negative mark, not

the average. Each time a Positive packet arrives at the dropper, the lifetime balance of the flow is less

than this worst-case number, which we have used to nominally describe the cheating level. In future runs

we will plot the actual cheating level, corrected for RTT and mean inter-mark spacing.

7.8. Simulated Dropper Performance 142

a) d)

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 500 1000 1500 2000
t/s

cheat %

R150-a16

R380-a16

R800-a16

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 500 1000 1500 2000
t/s

cheat %

R150-a16

R150-a32

R150-a64

b) e)

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 500 1000 1500 2000
t/s

cheat %

R150-a32

R380-a32

R800-a32

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 500 1000 1500 2000
t/s

cheat %

R380-a16

R380-a32

R380-a64

c) f)

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 500 1000 1500 2000
t/s

cheat %

R150-a64

R380-a64

R800-a64

-20%

-15%

-10%

-5%

0%

5%

10%

15%

0 500 1000 1500 2000
t/s

cheat %

R800-a16

R800-a32

R800-a64

Figure 7.14: Drop Fraction against Time as the re-ECN Dropper Handles a Slowly Ramping Down

Cheat.

a)–c) compare RTTsR holding EWMA weighta constant. d)–f) compare EWMA weights holding

RTT constant.

7.8. Simulated Dropper Performance 143

a) d)

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

0 500 1000 1500 2000 2500 3000
t/s

cheat %

R150-a16

R380-a16

R800-a16

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

0 500 1000 1500 2000 2500 3000
t/s

cheat %

R150-a16

R150-a32

R150-a64

b) e)

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

0 500 1000 1500 2000 2500 3000
t/s

cheat %

R150-a32

R380-a32

R800-a32

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

0 500 1000 1500 2000 2500 3000
t/s

cheat %

R380-a16

R380-a32

R380-a64

c) f)

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

0 500 1000 1500 2000 2500 3000
t/s

cheat %

R150-a64

R380-a64

R800-a64

-15%
-10%
-5%
0%
5%

10%
15%
20%
25%
30%

0 500 1000 1500 2000 2500 3000
t/s

cheat %

R800-a16

R800-a32

R800-a64

Figure 7.15: Drop Fraction against Time as the re-ECN Dropper Handles a Slowly Ramping Up Cheat.

a)–c) compare RTTsR holding EWMA weighta constant. d)–f) compare EWMA weights holding

RTT constant.

7.8. Simulated Dropper Performance 144

Ramp-up: The transient at 20s when the test flow starts (not when the simulation starts) can be explained

by TCP’s slow-start. We assume the receiver feeds back one or two congestion marks when slow-start

finds the bottleneck operating rate. Then the TCP source will halve its rate, but at the same time it is

arranged to partially under-declare how much congestion it saw. In the next few round trips, this drives

the dropper balance strongly Negative, causing a huge spike of reported drops.44 This is due to dropper

being deliberately designed to be more sensitive to misbehaviour at the start of a flow (see the comparison

between ‘Pay Once’ and ‘Stop Payment’ in §7.7.2).

As the source continues to partially pay its way, two effects work against each other. The dropper

becomes gradually more forgiving as it gets further from the flow start. But at the same time, the flow

continues to underpay, so drop becomes harsher. The two eventually balance out (which naturally takes

longer for the long RTT flow). Then the drop fraction correctly tracks the reducing level of cheating

(rising under-declaration) to zero.

On the way an interesting synchronisation effect seems to occur. All the short RTT flows show

three shark’s fin bumps at about the same times (in independent simulations), all the medium RTT flows

each exhibit one bump at the same times and the long RTT flows are all smooth. These are reminiscent

of ‘aftershocks’ from the transient, but a proper explanation eludes us at this stage.

We now move on to what we intended to learn from this experiment. The slower EWMA clearly

seems to hurt the test flow more—for the same reason as given above for the ramp-down case. The

fastest EWMA seems to hurt flows very little at all. This is because it takes account of a good proportion

(1/16=6.25%) of each late payment for most of the duration of each inter-mark period (all of it except

the first RTT). Once cheating drops below 6.25%, the dropper only sanctions the cheating flows heavily

for 1RTT after each Negative packet, then not at all until the next Negative packet.

Other than delaying recovery from the transients at the start, we cannot notice a discernible effect

due to RTT in these cases. More runs will be needed to tighten the experimental variance so we can

interpret more predictable plots.

Once cheating falls to zero (at 1720s), periods of 20s or more with no drop at all immediately start

to appear in nearly all the scenarios, except the fastest EWMA which takes 2–3 minutes (it is the fastest

to punish a cheat and it takes longest to forgive). Periods of no drop lengthen from then on, but it takes

about 15mins before all drop-free periods are longer than 2mins. By this point it is difficult to discern

whether drop is due to the after-effects of the ramp, or the typical level of accidental false hits. The

source is still some way from building up sufficient credit to protect against all false misses (see the

earlier experiment designed to validate our theoretical predictions of false hits7.8.2).

44Recall that we have configured the dropper to suppress actual dropping in these experiments.

Chapter 8

Re-ECN Border Incentive Mechanisms

8.1 Border Architecture

8.1.1 Baseline Border Mechanism

The ‘big idea’ of re-feedback is to include information in packets that will be updated as it traverses a

network so that, at any point it will reveal the characteristics of the rest of the path. Then this information,

particularly congestion information, can be used by the parties either side of a trust boundary to control

each other’s incentives.

Re-feedback’s congestion signal integrity depends on the fact that congestion is a physical metric

that can never be negative. Therefore a persistently negative flow can never be valid.

The ‘big idea’ of re-ECN is a practical way to instantiate rest-of-path congestion information in the

IP header without having to change forwarding elements and fitting within the very limited space left in

the IPv4 header. Further, re-ECN is designed to allow metering mechanisms to accumulate an aggregate

of downstream congestion-volume over time with minimal complexity.

The baseline mechanism proposed to achieve this is simply to separately count the volume of pack-

ets with Positive and Negative markings in a whole aggregate crossing a trust boundary. Then down-

stream congestion-volume is simply the Positive count minus the Negative.

In this section we will introduce attacks that threaten the simplicity of this baseline border mech-

anism (§8.2). They were all proposed by others and they all, in some way, use or hide flows that are

persistently negative.

We then propose defences against these attacks, which harden the simple baseline mechanism. But

they also add complexity. Nonetheless, the solutions keep to design principles that we believe maintain

the essence of the original simplicity.

8.1.2 Border Mechanism Constraints

The re-ECN border mechanism should meet the following constraints:

Processing Scalability: It SHOULD keep additional per-packet operations to a minimum (we cannot

expect sub-linear scaling in the strict complexity theory sense, because counting marked packets

is linear with packet volume).

8.1. Border Architecture 146

Storage Scalability: Ideally it SHOULD require no traffic-dependent state (e.g. per flow-state). But if

it uses flow-state, it must be optional, growing sub-linearly with number of flows. That is:

• it MUST NOT make flows fail if they move routes;

• how much flow-state to store MUST be controlled by policy, NOT by the number of flows

potentially created by malicious sources of traffic.

Incentive Alignment for Congestion Signal Integrity: It MUST ensure that the parties either side of

a border have no incentive to pervert the integrity of congestion signals and that each party in turn

has the incentive to pass on this incentive to its neighbours.

Attacker Model: Mechanisms MUST be strong enough to ensure congestion signal integrity whether

potential attackers are rational or malicious. While the malice of users can be unbounded, the

malice of networks can be assumed to be bounded (defined below).

Below some extra detail is given on a couple of these constraints:

Scalability: A useful technology target is to require no operations that would prevent all-optical packet

switching at a border with no electronics, given the likely minimal processing and storage capabilities of

photonic devices in the next decade or so.

Re-ECN recognises and exploits a distinction between the typical threats posed by networks and

those posed by users (defined next). This allows active policing to be located only at the interface

between end-users and their network providers, shifting the active policing burden away from the more

performance-critical interfaces between high-speed networks.

Attacker Types: The re-ECN framework is primarily an incentive alignment system but it can also be

used toenforcepolicies. Incentive alignment is a highly desirable property of any large distributed

system, but its power must not be overstated. If an attacker is immune to incentives, coercion is also

necessary.

The original statement of the motivations of users and networks in our paper on re-

feedback [BJCG+05] considered a range of motivations, but only explicitly enumerated two types:

Rational users: those who want to communicate with each other as fast as possible at minimal charge;

Rational network providers: those who compete amongst themselves for the custom of users by in-

vesting in network resources.

The paper hinted that it believed re-feedback could deal with DDoS attacks, but it avoided making

formal claims on this front. As we wish to attempt to deal with entities sending traffic with no intent to

communicate, we need to define language for a wider attack model. Beyond rational entities, we define

two further types (each with user and provider sub-types):

Bounded malicious: a party that is willing to cause costs to others as long as strictly less cost to itself

is involved;

8.1. Border Architecture 147

Unbounded malicious: a party who is willing to cause cost to others even if the cost to itself is the

same or greater.

Assumed Attack Model:In the following section attacks are proposed where one network can gain from

attacking another with dummy traffic. We therefore propose the following ambitious assumption that is

much harsher on the system designer than simple rationality.

Assumption 8.1. If networks are malicious their malice is bounded, but the malice of users may be

unbounded.

We believe this assumption is a reasonable model of the real Internet. Some would consider it a

somewhat paranoid assumption, as large networking organisation will usually ‘play by the rules’ and

compete with each other for legitimate business, rather than use subterfuge against each other. However,

our ambitious aim is to offer an internetworking solution that relies minimally on inter-network trust.

The Internet should be able to includead hocnetworks of nodes operated even by single individuals, not

just large corporate providers with ethical business policies.

The original re-feedback incentive framework [BJCG+05] made similar assumptions, but didn’t

articulate the attacker types precisely. It assumed that network providers are rational most of the time but,

although most users behave rationally most of the time, we cannot rely on all users to behave rationally

all the time. By omitting to define the malice of networks, it missed potential attacks by networks on

each other.

Re-feedback and re-ECN are designed to provide information on top of which network operators

can build engineering mechanisms like policers. Then they can physically block their locally attached

unbounded malicious users from causing unreasonable harm to others. However, the original re-feedback

paper omitted to check whether networks might be tempted to compromise the integrity of congestion

signals in order to make gains from other networks, which in turn might compromise their ability to

police end-users. The present chapter corrects that omission.

Nonetheless, it is important to recognise that the malice of networks is not likely to be unbounded.

This leaves open the possibility that coercion mechanisms can be confined to the end-customer trust

boundaries of the Internet. While at the higher speed borders between networks incentive mechanisms

should be sufficient where it is more critical to minimise complexity.

Before we move on, a clarifying statement is necessary. The division between incentive alignment

and coercion mechanisms that we propose is not set in stone. One should not confuse the mechanisms

we describe with those that network operatorscould build on top of the information re-feedback pro-

vides. Network providers are not limited to applying re-feedback information with the mix of incentive

and enforcement mechanisms that we propose. They can encourage sociable behaviour or use coercion

wherever, however and in whatever mix they wish. Our proposed mechanisms are merely canonical

examples that demonstrate how the re-ECN framework can be deployed with minimal additional com-

plexity and minimal constraint on user freedoms while still ensuring congestion signal integrity.

Minimal constraint on user freedoms may not always be desirable. For instance, it will usually

be desirable to allow a large range of innovative application behaviours, but not such extreme forms

8.1. Border Architecture 148

of innovative behaviour as DDoS attacks, which most operators will want to shut down. Rather than

embedding the choice of where to draw this line in the system design, we leave the choice to each network

operator. But some possible example border enforcement mechanisms that use re-ECN information to

detect anomalies are briefly explored in §8.2.8(fully specified in [Bri08b, §5.7]). The preferential drop

mechanisms in §9 (fully specified in [BJMS09a, §5.3]) are further examples, which we propose to use

against flooding attacks in §12.1.1.

Effectively these mechanisms recognise that even entities that are ostensibly rational sometimes

might behave irrationally and wish to be protected from themselves when they do. For instance, they

may have misconfigured something or been infected by malware. These protections allow thresholds to

be placed within the system that prevent a flow, a user or a network from running up costs at an anoma-

lously high rate. A network provider can offer these mechanisms as a service to protect its customers or

neighbouring networks from their own failings.

8.1.3 Border Design Principles

The following design principles articulate the lessons learned during the process of developing defences

against the more perverse attacks against the re-ECN border mechanisms. Some deliberately run counter

to currently accepted research directions. As with all good design principles, they are intended to en-

courage a designer to give a really good reason before contravening them; they are not intended as

unbreakable rules:

Bufferless Border Control: (aka. ‘Prefer Measurement to Intervention’:) Measurement can be con-

ducted passively, in parallel to transmission, while active intervention (e.g. scheduling) requires

packets to be held back until each is deemed acceptable to release. Measurements can be used to

influence incentives on longer timescales, creating the incentive to deal with per-packet problems

closer to the edge of the internetwork.

Neutralise Don’t Over-Penalise Systems shouldn’t automatically unleash punitive sanctions on an-

other network thought to be perverting the integrity of congestion information. Otherwise a third

party attacker could fool networkNA into penalisingNB by spoofing an attack fromNB onNA.

If negative flows are merely neutralised instead, the problem is at least sufficiently dealt with and

no such amplifying attacks are possible.

No Reliance on Push-BackPush-back is an attempt to ensure that unwanted traffic is squelched at

source. However, the data plane of a packet network only reliably moves packets forwards. If

a control system wants to send messages backwards along a path, it shouldn’t take the source

address of packets in the data plane as reliable evidence for where ‘backwards’ is. The route may

well be asymmetric, and the source address may be spoofed.

Below we discuss each principle in a little more detail.

Bufferless Border Control. Packet networking is meant to be agnostic to underlying link technologies.

Although technologies such as photonics are being developed to make packet forwarding decisions at

8.1. Border Architecture 149

line speed, congestion avoidance & control becomes problematic in photonics if a buffer has to exist just

in order to generate the congestion information needed to control a transmission line. If, instead, on the

forwarding element itself congestion avoidance only requires passive metering, high speed interfaces can

play their part in congestion control with only a tiny buffer [AKM04, GM06] or perhaps no buffer at all

and just a virtual queue [CW96, KS01, Ear09a] to reduce or to eliminate the need for payload storage.

This principle implies a general structural assumption that usage of re-ECN congestion information

will tend to conform to the following pattern: i) at the borders between networks congestion information

will mostly be used to underpin contractual penalties based on metering ii) while between networks and

their end-customers it could also drive active sanctions, such as drop.

The bufferless border control principle implies it is sufficient to passively measure traffic at borders,

not actively remove it. If there is traffic that is polluting the integrity of congestion signals (by under-

stating congestion), this further implies that it is only necessary for border mechanisms todiscountthe

polluting information in the traffic, not toremovethe traffic itself. To remove traffic requires buffering it

while testing it, but metrics can be counted (or ignored) in parallel to forwarding. It is more important to

ensure the integrity of the information that reveals the incentives to remove traffic and passes the incen-

tives from network to network. Then the correct networks will have the incentive to remove the traffic

itself, but each can proceed in this task more lazily.

Neutralise Don’t Over-Penalise.During the development of re-ECN we proposed a (misguided) for-

mula for use in the meter between two networks that turned any negative balance over the duration of

a flow into positive. The supposed rationale was that this would not just remove the incentive to allow

a flow to go negative, but it would turn any gain into an equivalent loss, thus strongly driving negative

flows from the system. In effect, this earlier proposal added twice as much congestion-volume as was

measured in negative flows.

However, we quickly realised that we should only neutralise the gain from negative flows, not

reverse it. Otherwise we opened up a whole new set of attacks where traffic could be sent into a network

so that it went negative within the network, causing the network to pay extra to its downstream neighbour.

This parallels the ‘Proportionate Sanctions’ design principle proposed for the re-ECN dropper (§7.3).

No Reliance on Push-Back.In the original re-feedback paper [BJCG+05] we argued against exces-

sive push-back on similar grounds to the ‘Neutralise Don’t Over-Penalise’ principle above. If network

equipment is meant to heed a message asking it to drop traffic, it must be pretty certain the message is

authentic. But verification itself takes resources.

Instead we argued that re-ECN information itself provides sufficient means to test whether a flow

is non-negative using only local information. Therefore we proposed the egress dropper could send

hints upstream, with no danger of introducing further attacks, because they would not need authentica-

tion [BJCG+05, §3.2.1]. Rather thaninstructingan upstream network to sanction a flow, theyhinted

that it should merely check the flow for itself. However, we did not propose a mechanism that knew in

which direction to send the hints, unless the source address was not being spoofed. Also hints cannot be

initiated if the attacker arranges the TTL to expire just before the final egress.

8.2. Border Attacks and their Defences 150

We continue to hold this view as a guiding principle. The re-ECN mechanisms aim to be able to

work solely on local information, or at minimum only pass information forwards, without any need for

reliance on backwards reachability of the source address of packets. If hints can be sent backwards, all

well and good, but we don’t rely on them. This parallels the ‘Source ID Uniqueness not Reachability’

design principle proposed for the re-ECN dropper (§7.3).

8.2 Border Attacks and their Defences

8.2.1 Attacks and Defences: Executive Summary

The attacks in the next section (§8.2) fall into two distinct categories:

Dummy Traffic Attacks: These attacks create negative flows using dummy traffic with no intention of

communicating any data.

Signal Poisoning with Cancelled Markings: These attacks exploit the fact that congestion marking

probabilities combine probabilistically, not additively. The subtraction approximation of the base-

line border mechanism relies on the additive approximation, which is only valid at low congestion

levels. These attacks distort and exploit the error in the approximation, even at low congestion

levels.

The two defences in the intervening sections address each category of attack:

• Dummy traffic attacks are handled by ‘Sample-Based Downstream Congestion Inflation’ (§8.2.4).

The general idea is to correct the bulk packet measurement of downstream congestion taken at a

border, by removing the likely contribution from negative flows. As well as bulk packet metering,

a sample of flows crossing the border is taken to estimate the likely contribution to downstream

congestion from negative flows. Then rather than removing the traffic in the negative flows, we

explain why it is more important, and sufficient, to merely prevent the contribution from negative

flows polluting the bulk measurement—not counting the information but not necessarily removing

the traffic that carries it.

• Attacks that poison border marking proportions are handled by ‘Normalising Cancelled Markings’

(§8.2.7). Put simply, this is a way to measure downstream congestion without relying on the

approximation that congestion marking combines additively. But the challenge is to preserve the

simplicity of the original approximate mechanism.

8.2.2 Attack #1a: Dragging Down a Border Aggregate

In early 2006, a colleague, Salvatori, invented a class of attacks between re-ECN networks involving

dummy traffic—that is, traffic sent without any desire to communicate with anyone. NetworkNA can

generate negative traffic itself, which it can send across a border to reduce the congestion charge it pays

to its neighbourNB . The attacking network can optionally limit the initial TTL so that it expires once

8.2. Border Attacks and their Defences 151

downstream path congestion,
v

i

NA
NA

NB
NB

ND
ND

R1

S1

0

0

a

e

b
c
d

ib
-

ic
-

id
-

ie
-

Figure 8.1: Scenarios with different levels of understatement of downstream congestion.

The flow becomes negative a) never; b) in the egress networkND; c) in transit networkNB ; d) in the

ingress networkNA; e) at the sender.

the traffic has crossed the border.1 Then, if the only detection of negative flows were at egress edge

droppers, nothing would even detect the attack.

Example Scenario.As examples of Salvatori’s attack we will use the scenarios in Fig8.1. The bottom

half of the diagram shows the topology of network interconnection.NA is paying congestion charges

to its downstream neighbourNB based on the downstream congestion level signalled in packets and

likewiseNB is payingND. The top half of the diagram visualises downstream congestion-volume

against resource index along the path shown. In scenarios (a)–(e) the congestion signalling introduced

by the various networks is the same2. But in each case the source initialises Positive markings at different

levels so that downstream congestion first becomes negative at the different resource indicesi−b to i−e

within the different networks along the way. In Salvatori’s attack the source is under the control of

networkNA.

Gain & Cost: If upstream networkNA contracts to payNB related to3 the amount of downstream

congestion it forwards across the border toNB , thenNA gains immediately from including negative

flows in traffic crossing the border, as in scenarios (d) & (e).

No network gains by accepting flows from upstream that will go negative in its own network. But

any network does have an incentive to pass negative flows undetected to onward networks. For instance,

networkNB will lose in scenario (c) ifND removes any contribution to border settlements from negative

flows. But ifNB can somehow conceal negative flows under the cover of other flows, networkNB will

be willing to accept the flows in scenarios (c)–(e) just as readily as those in (a) & (b).

There is no immediate cost to a network likeNA from mounting dummy traffic attacks, other than

the risk of sanctions if its attack is detected.

Means & Opportunity : This class of attacks can be classified into two forms:

1The normal behaviour of Internet routers is to decrement the TTL and discard packets when the TTL reaches zero.
2Each trace is slightly staggered from the next, merely to avoid confusing overlaps.
3We use the phrase ‘related to’ deliberately, because any contract based on some sanction against downstream congestion will

create an incentive to cheat.

8.2. Border Attacks and their Defences 152

1. The introduced traffic uses flow IDs unrelated to any existing traffic;

2. The introduced traffic imitates flow IDs already present in the traffic mix, but it introduces just

enough Negative marking to completely or partially negate the Positive markings already in the

flow.

Flow ID imitation is easier for networks than for users because networks can trivially monitor the flow

IDs of existing traffic.

Such attacks can be further classified depending on whether the attacking network arranges the TTL

to expire before the destination, thus leading to the two orthogonal classifications of attack in Table8.1.

No expiry Expiry

No ID imitation 1-i 1-ii

Flow ID imitation 2-i 2-ii

Table 8.1: Classes of Border Dummy Traffic Attack

Risk of Detection: If the attacking networkNA deliberately expires the TTL early in neighbouring

networkNB (class ii), persistent TTL expiries can be detected by routers as anomalous, particularly if

the majority of their re-ECN markings are negative.4 This could trigger management action to trace

the attack back at least to the previous upstream neighbouring network. IfNA usesNB as a transit

and arranges the TTL to expire in some networkND beyond, the attack becomes harder to trace back

especially if the source addresses used create a false trail. But the flow would already have to be negative

before enteringNB (scenario d or e in Fig8.1) otherwiseNA would not gain.

If TTL expiry is not used, the attacker has to choose the destination address it uses with care. In

the form of attack using new flow IDs but no TTL expiry (class 1-i), if the attacking network sends

packets to invalid destination addresses, numerous ‘no route’ errors from negative packets will also raise

alarms. If it sends to existing but unwary hosts, they will probably silently absorb the packets in the

general noise of everyday DoS attacks on the Internet. The attacking network would also have to choose

a source address for its attack packets. If it chose invalid source addresses but valid destinations, the

chosen destinations might again silently absorb the traffic.

In the form of attack imitating existing IDs (class 2-i), the attacking network would run a higher

risk of detection given flow ID imitation is a clear contravention of accepted practices and neighbouring

networks could arrange for test traffic to cross a suspected networks to detect if imitation traffic was

being added.

In summary, it seems class 1-i attacks have least risk of detection, where the TTL doesn’t expire and

existing flow IDs are not imitated. As long as all attack traffic is sent to valid and powered up destination

addresses it stands lowest risk of being detected as long as alarms raised within the chosen destinations

are not reported to their network operator.

4Which distinguishes them from legitimate traceroute TTL expiries.

8.2. Border Attacks and their Defences 153

However, we will stop there, before this taxonomy of detection methods becomes too tedious, as

our defence against this attack below aims to remove any gain to the attacking network from launching

the attack in the first place.

As long as the likely gain can be minimised, even a tiny risk of detection is likely to deter a network

operator from cheating a neighbouring network. If any subterfuge were ever discovered, significant loss

of reputation would result, leading nearly all networks to refuse to interconnect with the attacker for some

considerable time. Even if a network operator could invent a ‘perfect crime’ with no risk of detection, it

would still risk whistle-blowing by disgruntled staff.

8.2.3 Attack #1b: Dummy Background Congestion

Before moving on, we note that Bauer and Faratin have proposed two dummy traffic attacks that have

similarities to Salvatori’s ‘Dragging Down a Border Aggregate’ attack.

• The first [Bau05] is a strategic attempt to use other people’s money to confuse another network

into investing in capacity. It is discussed under the heading ‘Strategic Confusion of Investment

Signals’ in §12.1.1rather than here, as it is an attack against the whole re-ECN system (indeed,

against congestion charging), not just the border mechanisms.

• In the second attack [BFB06] a source sends large amounts of traffic without inserting any Pos-

itive packets, just to increase congestion costs for everyone else. Again, because it is an attack

against the whole system, it is discussed in §12.1.1under the heading ‘Dummy Neutral Back-

ground Load’.

We mention these attacks here because they could be launched by networks (rather than users)

against other networks. They are also mentioned here because the ‘Sample-Based Downstream Conges-

tion Inflation’ defence should remove a network’s motivation for these attacks in the same way as for

Salvatori’s (if the defence works as claimed). Although the attacks need not cost anything directly, a

network is usually also concerned about the cost to its reputation if detected.

8.2.4 Defence #1: Sample-Based Downstream Congestion Inflation

We now present a solution that aims to remove the incentive for networks to include negative flows in

the bulk of traffic crossing into a neighbouring network, leaving no motive fornetworksto perpetrate the

above dummy traffic attacks. It doesn’t directly remove the incentive forusersto mount these attacks,

but it should push back the motivation for hunting out and controlling such users to the network where a

flow first becomes negative.

The proposed solution is to use per-flow state for a small but truly random sample of the traffic

crossing a border. Then the bulk congestion-volume metered passing from an upstream network to a

downstream neighbour can be inflated by the proportion of excess Negative bytes found in persistently

negative flows in the sample.

We have not established whether sampling would work precisely enough in practice nor what size

samples would be needed to give sufficient precision. However, the technique is offered more as an ar-

8.2. Border Attacks and their Defences 154

chitectural direction than a fully worked through mechanism. We openly admit that these ideas currently

sit on weak foundations and more work is needed before we can claim there is potential in this direction.

First we will give the rationale for this solution, which runs counter to currently accepted research

directions. Then we will describe the steps in the process of sample-based downstream congestion

inflation, each covered in subsequent sub-sections:

1. the formula for inflating the congestion-volume

2. a random sampling mechanism

3. a process for neighbouring networks to agree on the inflated charge

Downstream Congestion Inflation: Rationale

Example Scenario.As an example we will use scenario (c) in Fig8.1, where an attack source in network

NA arranges for a flow to go negative in the middle of networkNB . Note that this is not the same

scenario as Salvatori’s attack ((d) or (e)), but we use it to explain the more general benefits of downstream

congestion volume inflation.

The scenario (c) flow is still positive when it crosses into networkB. So, irrespective of any down-

stream congestion inflation,NA would always payNB the same amount for this flow, which would only

cover the cost of congestion just part-way throughNB ’s network—insufficient to coverNB ’s congestion

costs, let alone those of networks further downstream.

The Problem with Negative Flows.If the scenario (c) flow went undetected and was merely counted

by a bulk meter without any downstream congestion inflation,NB would pay a negative charge toND

for the contribution of this flow. This implies money contributing to this flow would actually pass from

ND toNB , against the data flow. We must emphasise that there would not actually be an itemised bill

showing this single negative flow—there would just be one item on the bill for the bulk of all packets.

We are merely saying that the contribution from this flow’s metered packets would subtract from the

bulk bill.

This reverse money flow would coverNB ’s congestion costs, but the ‘wrong’ network would be

paying for them.ND would not be able to raise the revenue to pay this charge without levying a charge

against the receiver. But we always want to avoid money flows having to start at receivers, otherwise

they become vulnerable to denial of funds attacks. ThereforeND bears the cost of a problem that started

in NB .

Outcome of Downstream Congestion Inflation.We now further assume that all the networks are ap-

plying sample-based downstream congestion inflation to the bulk congestion metering between them

and, for now, we assume that it works correctly.

With downstream congestion inflation,NB paysND nothing for flow (c). ButNB still doesn’t

receive enough income fromNA to cover the cost of the congestion caused by the flow. AlsoND

receives nothing to cover the cost of congestion caused in its network. ThereforeND andNB have an

incentive to sort out the upstream problem. The network within which the flow goes negative (NB) might

8.2. Border Attacks and their Defences 155

only detect this negativity at its egress (if at all). Networks downstream of the point where the flow goes

negative (ND) might detect flow (c)’s negativity at their ingress and their egress (if at all).

NA, on the other hand, has no problem and can see no problem; its congestion is fully paid for,

because it gets less from the sourceS1 but also pays less toNB . If the source were the one lying about

downstream congestion,NA would allow it to send at a faster rate. But as far asNA is concerned, it

would allowS1 to go that fast for the congestion just within its own network.NA has no local evidence

that the flow is negative, so if downstream networks have allowed the flow to go negative,NA can rightly

say that is their problem.

Therefore there is no problem until downstream ofNA. ND has insufficient income, but its up-

stream neighbour,NB already has an incentive to solve the problem. SoNB is left with a problem that

no-one upstream has, so no-one exceptNB and beyond is incentivised to solve it.

Summary so far.The network where a flow first goes negative is in the position where it has a problem,

it knows it has a problem, and it can probably find which incoming interface is causing the problem. The

network where negativity first arises is left with a problem that no-one upstream cares about, so no-one

except itself and networks further downstream is incentivised to solve it. This doesn’t sound good, but it

gets better, and the alternatives are much worse.

Removing Inter-Network Attack Motives. What downstream congestion inflation does achieve is to

remove the incentive for networks to attackeach otherwith dummy traffic. In scenarios (d) or (e),NA

no longer reduces its bill by sending negative dummy traffic intoNB , for instance. If we assume the

malice of a network is bounded, it will not risk being detected attacking another network for no gain.

Therefore, if we assume the malice of networks is bounded while the malice of users is unbounded

(Assumption8.1), at least all networks are now either on the ‘same side’ or ‘neutral’—none are on the

‘dark side’.

An example of a ‘neutral network’ isNA in scenario (c), which doesn’t care aboutNB ’s orND ’s

problems. But with downstream congestion inflation at leastNA no longer has an incentive to use

dummy traffic to take money fromNB using an attack scenario like (d) or (e). Examples of networks on

the ‘same side’ areNB & ND in scenario (c), who both want to solve the same problem.

Downstream congestion volume inflation (if sufficiently precise) ensures all entities whose malice

is bounded have the incentive to co-operate against those entities with unbounded malice. This argument

generalises to any scenario that lacks congestion signal integrity, such as any of (b)–(e) in Fig8.1.

Cement Network Co-operation First.Faced with a flow such as the one in scenario (c), we do not

directly propose thatNB orND should askNA to squelch it at source. Our ‘No Reliance on Push-Back’

principle doesn’t require that (§8.1.3). Rather we propose that it is paramount to encourage networks to

co-operate against a common enemy first, by removing incentives to attack each other.

Local Solutions Second.Once aligned (by downstream congestion inflation or perhaps a better future

invention), a network can discard negative flows as it detects them. But removal of unwanted traffic can

8.2. Border Attacks and their Defences 156

proceed lazily (i.e. not at round-trip time-scales).5 The downstream congestion inflation process samples

flows locally looking for negative ones anyway. So as it finds them it can also trigger a rule to route them

to the null interface. And other ways may be found/invented to locally seek out and destroy persistently

negative flows.

Trace-Back Hints Third. We can also consider sending hints backwards along a path, as briefly outlined

above in §8.1.3. As we have already pointed out, ‘backwards’ is an ill-defined concept in a packet

network. We do not propose to include trace-back solutions in this dissertation—that research field is

large in itself and distinct from the work here [Bel00, SPS+02]. The one contribution we can add is that

re-ECN allows the negativity (and therefore undesirability) of a flow to be tested locally. So whether

trace-back solutions are hop by hop or edge-to-edge [HH07], their authentication requirements can be

weak or non-existent, as the messages can merely be hints to check locally whether flows are negative.

Attack the Root Cause Lazily.Even ifNA never squelches the flow at source, everyone’s traffic prob-

lem would be sufficiently solved ifNB discards the flow at its interface withNA. NB could then send a

message toNA across their local border interface saying “I’m discarding flow (c), so if you want to save

paying me for it, you can discard it for me.” ThenNB needs one less flow filter andNA can save a little

money.NA may eventually find the source and deal with the root cause. But all this can proceed at the

time-scale of a management system, rather than of packet control.

Against Punitive Sanctions.We have already argued (§8.1.3) thatNB ’s problem SHOULD NOT be

solved by altering the border incentives any more than by neutralising negative congestion-volume. Oth-

erwise we would introduce new possibilities for attack.

Downstream Congestion Inflation Formula

Consider a set of flowsJ . Each flow, indexj, if metered on a per-flow basis would consist of some

positively marked volumeV +
j and some negatively markedV −

j (the latter variable being considered

numerically negative). The sum of these two volumes is the downstream congestion volume caused by

each flow,Vj = V +
j + V −

j . A set of such flows can be visualised laid out along the horizontal axis in

Fig 8.2, ranked for visual convenience in order of downstream congestion-volume.

It may help to visualise this sumVj using each shaded area shown in each flow. The inset on the left

of the figure explains the graphical shorthand used for one of the flows. The left of the inset shows the

actual values ofV +
j &V −

j and the right of the inset shows shading from zero to the midpoint, which is a

useful half-scaled representation of their sumVj . The volume of Neutral packet markings is irrelevant,

so not shown.

We want the sum of downstream congestion caused by all flows, except ones that are negative6:

Vf =
∑
∀j∈J

(V +
j + V −

j)+. (8.1)

5We shall see (§12.1.3) that a re-ECN ingress policer can considerably slow down unwanted traffic that changes flow ID

continually. Therefore, to launch a more serious attack implies having to keep the same flow-ID for more packets, giving more

time to remove them.
6The notation(X)+ meansX if X ≥ 0 or zero otherwise. Perhaps confusingly, the notationsV + & V − use the same

operator, but on a packet-by-packet basis before summing packets together.

8.2. Border Attacks and their Defences 157

flow
index,

j

congestion
volume, Vj

V+
j

V-
j

Vj
2

Vj = V+
j + V-

j

=

=

negative
marking

positive
marking

representation
of this flow

Figure 8.2: Visualisation of the Border Congestion Metering Problem.

This can be visualised as twice the black shaded area shown above the axis.

If we just meter the bulk congestion-volumes of Positive and Negative packets in all flows crossing

an interface over an accounting period, we will get the (incorrect) bulk metered volume of congestion,

Vb =
∑
∀j∈J

V +
j + V −

j . (8.2)

This would be represented graphically by the black area above the axis minus the (red) striped area below

it, all doubled. The problem is how to exclude the striped areas below the axis, but without accounting

separately for every flow.

Assume for a moment that we can take a truly random sample of traffic comprising the subset of

flows I ⊂ J . If the sample is small enough so that accounting separately for each flow is feasible, then

we can measure downstream congestion both for the whole of the sample and solely for those flows in

the sample that are positive. We denote the ratio between the two measures found in the sample:

εI =

∑
∀j∈I(V

+
j + V −

j)+∑
∀j∈I(V

+
j + V −

j)
− 1 (8.3)

Then we can inflate the bulk downstream congestion-volume measured without regard to flows to get an

estimate of downstream congestion excluding persistently negative flows.

E(Vf) = (1 + εI)Vb

However, even if all sources were honest, a very small proportion of downstream congestion-

volume could be contained in flows that are negative overall. For instance, numerous honest flows would

only contain a single datagram, and even if every single datagram flow were started with a Cautious

packet, some would be congestion marked to Negative. Therefore, we actually want a deflated fraction

of the above estimate to take account of the inflation factor (1+εH) that would be found if we performed

the same two measurements (sample and bulk) on a setH of purely honest flows.

E(V) =
1 + εI

1 + εH
Vb, (8.4)

whereεH is defined for the setH of purely honest flows, just asεI was defined for the setI in Eqn (8.3)

above.

8.2. Border Attacks and their Defences 158

Congestion-Volume Sampling

Taking a truly random sample for inflating the bulk congestion measure requires some careful thinking.

Each honest flow will tend to start with a positive balance, which it will maintain by balancing Negative

with slightly delayed Positive throughout its duration, but sometimes there may not be a final balancing

Positive packet. Therefore, flows cannot be picked by randomly selecting packets then looking for further

packets with the same flow ID. This would tend to bias towards the end of flows, often missing off the

credit at the start, while always including the debit at the end.

If we want to avoid per-flow state for all flows, we cannot randomly select from packets that start

flows. This is because we cannot rely on the first packet of every flow being honestly set to Cautious,

because we are trying to also detect malicious flows. And it is only possible to know that a packet starts

a new flow if a list of all the currently active flows is maintained, which contravenes our original goal.

One possible sampling mechanism is to randomly pick a subset of the possible flow IDs, and detect

all packets that match the subset over a period, before moving on to another subset. Then, it would be

necessary to take the average of all the inflation factors from each subset weighted by the volume of

traffic each subset matched. Obviously, the flow IDs used by Internet hosts are not random, because IP

addresses, protocol IDs and port numbers are unevenly allocated and unevenly used, particularly because

the port number space includes a number of well-known ports. Also, it is quite likely that misbehaviour

is concentrated into certain parts of the flow ID space. Therefore, over an accounting period, the aim

would be for the samples to have collectively covered most of the possible address space.

Even if all the flows are positive when accounted for as a whole, whenever a sampling technique

only measures part of some flows, it will erroneously find some flows that appear to be negative overall.

Therefore, the period over which a sample should be taken must be many times longer than the duration

of flows that most traffic is in. Note the careful wording, “. . . the duration of flows that most traffic is in”

is not the same as “. . . the duration of most flows”.

Agreement between Neighbours

Whenever two neighbouring networks determine the size of the settlement that one must pay the other

by measuring traffic crossing between them, they must trust each other or a third party. Even if they both

meter the traffic, either party can simply lie about what their meter said in order to dispute the other’s

reading. However, even if they both don’t deliberately lie, one can only build trust in the other if the

other party’s reading consistently agrees with the one read privately.

If the charge between neighbours depends on a bulk measure metered continuously but inflated by

a sampled measure, it is important that the party in control of the traffic cannot infer when sampling

is occurring. Otherwise it can condition traffic to be well-behaved during sampling and behave badly

otherwise.

It may be possible for both parties to hire a trusted third party to conduct the measurements inde-

pendently of each of their interests. The third party might actually operate the meter physically secured

against both interested parties, or it might produce a tamper-resistant meter for them to use that neither

party believes can be influenced by the other.

8.2. Border Attacks and their Defences 159

If sampling is used but without a third party, given neither interested party will want to inform the

other when or what they are sampling, it will not be possible to ensure that both parties measure the

same data. The two parties can only build trust in each other if their two readings are close, or if they

are neither persistently higher nor lower than the other. The two parties readings will only be close to

each other if the sampling technique is strongly representative of the traffic in total. Experiments will be

necessary to establish whether this is the case.

In summary, the problem of neighbouring networks agreeing on a meter reading is not fundamen-

tally different if sampling is used, but sampling does make it more difficult to build trust in each other’s

measurements if the resulting readings are unlikely to match closely.

8.2.5 Attack #2a: Signal Poisoning with Cancelled Markings

Even though it is not a normal part of the re-ECN protocol, there is nothing to stop packets being

initialised with Negative or Cancelled markings (see §12.1.4for an exhaustive check of all the possible

but invalid state transitions of the re-ECN wire protocol).

In the previous section we discussed the possibility of a network sending packets that it created Neg-

ative in the first place. The protections against persistently negative flows that we describe elsewhere7

should deal just as well with malicious Negative marking when packets are first initialised as when they

are forwarded. So if any sender were to initialise packets with Negative marking, it would have to ini-

tialise as many extra packets to Positive marking to ensure the flow was not detected as persistently

negative.

Cancelled as Poison.However, there are no such protections against an attack first proposed by Hand-

ley8 involving initialisation of packets with Cancelled marking.

Cost & Gain: Any packets that a source initialises as Cancelled have no worth (±0) so they can be sent

without any cost to the sender, but they are immune to further congestion marking (they are effectively

already marked), and they need no Positive packets to balance them. This seems to open up a flaw

where a malicious source can initialise many, or even all, packets with Cancelled marking and achieve

resistance to Negative marking. Then it can send at whatever rate it wants, and it will never have to send

any subsequent Positive packets.

This attack is shown in Fig8.3ii) relative to how the marking proportions should be in Fig8.3i).9

If fake cancelled markings are introduced early in the network path, they will reduce the proportion of

Negative marking (because they are immune to further marking). Thus they will also reducing the need

for the source to mark so many bytes Positive. Hence in Fig8.3ii) the fake Cancelled markings have

been shown replacing some Negative, some Neutral and Some Positive markings.

Risk of Detection:We introduced the Cancelled state, to remove a vulnerability of the previous re-

ECN protocol coding, which had just three states, Positive, Neutral and Negative (see AppendixB.1).

7Congestion volume inflation at borders (§8.2.4) and the re-ECN dropper incorporated into the ingress policer (§11.3described

later).
8At the 5th CRN/CFP architecture working group on a Denial-of-Service Resistant Internet, Cambridge, UK, 21 Nov 2005
9Cautious markings are ignored as already discussed in §7.4.5.

8.2. Border Attacks and their Defences 160

y
(0)

u
(-1)

y
(0)

u
(-1)

z
(+1)

c
(±0)

y
(0)

u
(-1)

z
(+1)

c
(±0)

faked
cancelled

c
(±0)

z
(+1)

i) ii) iii)

Figure 8.3: Signal Poisoning with Cancelled Markings.

i) Correct case; ii) Faked Cancelled markings reduce Negative and Positive markings; iii) Detection

(see text).

The Cancelled state was also added to introduce some useful redundancy to enable detection of biased

marking by networks. Happily this also allows Handley’s proposed attack to be easily detected.

We refer to Fig8.3iii), which has the same areas shaded as Fig8.3ii) but just rearranged. If a

network sees a proportion of bytes congestion marked above the horizontal line as Negative (presumed

originally sent Neutral), it should see the same proportion congestion marked below the line as Cancelled

(presumed originally sent Positive). Therefore the divide between Cancelled and Positive should be at

the dashed line. If the proportions have moved to the right, as shown by the arrow, it knows some up-

stream network or user is artificially introducing more Cancelled packets. This balance between marking

proportions should always exist at any point on a path, no matter how much congestion marking is still

to come.

8.2.6 Attack #2b: Extreme Upstream Congestion

Even though Handley’s attack can easily be detected, a different form of the attack is still possible

to mount with congestion marking proportions that balance properly—passing the above test to detect

Handley’s attack. For instance, consider a path over two networks. The upstream network can say

congestion in its network is very high, say 90.9% (conveniently chosen because it is10/11), much

higher than in the downstream network, which for the sake of example we will say is 1%. Then the

correct fractions of each marking (ignoring Cautious) to 3 significant figures will be (Fig8.4):

• 8.27% Positive

• 82.7% Cancelled

• 0.818% Neutral

• 8.18% Negative

It can be seen that claiming high upstream congestion levels allows a network to legitimately send very

high proportions of Cancelled bytes. Note that the proportions of Neutral to Negative and Positive to

Cancelled are both the same (about 1:10), so the upstream network is immune from the downstream

network forcing these proportions to be the same—they already are.

8.2. Border Attacks and their Defences 161

y & g
(0) (+?)

u (-1)

z
(+1)

c
(±0)

y

Figure 8.4: Signal Poisoning with Extreme Upstream Congestion.

The upstream network seems to do very well from this attack. All the Cancelled packets it sends

cannot be further congestion marked. And if the downstream network charges it by subtracting Negative

bytes from Positive, downstream congestion only appears to be 0.09%, when in fact it is 1%; eleven times

greater. Therefore it seems to be very much in a network’s interest to appear to be highly congested to the

downstream network; by marking a lot of packets Negative and even more Cancelled. This is a particular

problem if the sender operates its own network (e.g. a home or campus network). It can claim that it is

experiencing very high levels of congestion as an excuse to send a very large proportion of Cancelled

(and Negative) packets.

8.2.7 Defence #2: Normalising Cancelled Markings

It will be recalled that Handley’s attack to poison the congestion signal by introducing faked Cancelled

markings (§8.2.5) is fairly easy to detect given the deliberate redundancy in the re-ECN wire protocol

encoding. However, the similar attack with extremely high congestion marking by an upstream network,

although detectable, seems to be perfectly legitimate—the proportions of redundant markings can be are

perfectly balanced. But the upstream network has to pay significantly less to its downstream neighbour

if it is charged by Positive minus Negative bytes transferred.

Fortunately, there is a fairly simple way to thwart both these attacks. The key to the solution isnot

to use the approximate formulazi−ui for recent downstream congestion. In §6.2we derived the precise

formula10:

vi =
(

1 +
ci
zi

)
(zi − ui)+. (6.4)

This accurate formula inflates the approximation we have used up until now byc/z (removing sub-

scripts). In the example above, for instance, the approximate formula for downstream congestion yields

0.09%, whereas this precise formula results in an inflation factor of 11, yielding the correct answer:

(1 + 82.7/8.27)0.09% = 1.00%. This removes the incentive to send Cancelled packets.

Unfortunately, this still isn’t a solution. If a downstream network charges an upstream network

using this formula, we will now prove that it becomes in the upstream network’s interest toreducethe

volume of Cancelled packets it sendsbelowthe correct proportion.

Consider a network is also the source of traffic, so it is free to alter the proportions of markings,

but it is being charged for downstream congestion in traffic it forwards by Eqn (6.4). Further consider

10Now that we are considering attacks, we include the additional constraint(zi − ui)
+ = max(zi − ui, 0).

8.2. Border Attacks and their Defences 162

y
(0)

u
(-1)

z
(+1)

c
(±0)∆∆∆∆z

∆∆∆∆z

Figure 8.5: Deflating Cancelled Markings to Gain from Metering applied using Eqn (6.4).

it adopts this strategy (illustrated in Fig8.5): it alters Positive by∆z, but it keepsz − u andz + c

unchanged by also altering Negative by∆u = ∆z and altering Cancelled by∆c = −∆z. Given

downstream congestion is

v =
(z − u)(z + c)

z

then, by definition, the numerator is constant, therefore the change in downstream congestion that the

network is charged for will be

dv

dz
= − (z − u)(z + c)

z2

= −v
z
. (8.5)

This derivative being negative proves that, if the source network is charged by Eqn (6.4), its strategy

of increasing Positive and Negative markings while decreasing Cancelled markings accordingly will

significantly reduce the charge it pays.11

Nonetheless, there is an approach to thwart all these strategies, ensuring integrity of the congestion

signal. §6.2 shows that we can also express the inflation factor of the subtraction approximation for

downstream congestion in terms ofu & y:

vi =
(

1 +
ui

yi

)
(zi − ui)+. (6.5)

If this formula were used to determine the upstream network’s charges, the upstream network would

want to shift markings back; inflating Cancelled and deflating Negative markings (moving the divisions

in theoppositedirection to those shown in Fig8.5).

Because of the redundancy in the marking fractions, both these formulae (6.4) & (6.5) are equiva-

lent. Therefore, the trick is for a downstream network to use thembothand takes the higher result of the

two to measure the charge its upstream neighbour should pay.

vi =
(

1 + max

(
ci
zi
,
ui

yi

))
(zi − ui)+. (8.6)

Then the best strategy of the upstream network will be to keep the ratios of Cancelled and Negative

bytes balanced. For typical low congestion conditions, these formulae produce only very small inflation

11This is not necessarily the network’s optimal strategy, but it is always a highly gainful strategy that is simple to describe.

8.2. Border Attacks and their Defences 163

factors.12

The reason attack #2b (extreme upstream congestion) worked when charges were calculated without

these formulae was because an upstream network could fake very high congestion in its own network,

which led to a high level of Cancelled bytes. With the approximation, these weren’t taken into account.

With the precise formula, they are, thwarting the attack.

However, if just one of the formulae is used, a cheating network can still unbalance the proportions

of the two pairs of markings to reduce its charge. But a cheating network cannot mount this attack when

both formulae are used, because a gain on one formula leads to a loss on the other.

Precise Downstream Congestion Meter Algorithm

Below we give a pseudo-code algorithm that can output the result of Eqn (6.4) continuously as a moving

average of downstream congestion from a live aggregate packet stream. It also simultaneously outputs

the integral of downstream congestion-volume. It only uses single cycle machine instructions (adds,

subtracts, comparisons & bit-shifts) in order to minimise processing cost. Developing a similar algorithm

for Eqn (6.5) has been left for future work. It looks similar but transforming the algorithm will not be

completely straightforward.

AppendixA.2 gives the pseudocode for an earlier algorithm we used to implement the full formula

(8.6). The same appendix also gives the results of tests on the implementation in C of that earlier algo-

rithm. Subsequently the simpler more elegant algorithm below was invented. It is therefore presented in

preference, even though only one of the pair of formulae to compare has been coded and tested.

The new algorithm below exploits a simple trick. Rather than inflating(z − u) by (1 + c/z) it

deflates(z + c) by (1 − u/z), because(z − u)(1 + c/z) = (1 − u/z)(z + c).13 The same functions,

variable names and names for constants are used as in the dropper algorithms in §7.6.

/* Downstream congestion meter */
meterDownCong() {

/* Initialise variables */
V = 0 /* downstr congestion-volume*/
v = 0 /* recent downstr congestion*/
z = 0 /* recent Positive markings */
u = 0 /* recent Negative markings */
r = 0 /* remainder */
a = EWMA_WEIGHT
foreach packet {

s = readLength(packet)
eecn = readEECN(packet)
switch(eecn) {
case NEGV:

u += (s-u)*a
z -= z*a

case POSV:

12Recent whole path congestion (as opposed to downstream congestion) is always given byz + c anywhere on the path. Path

congestion, not downstream congestion, would be the measure needed to drive a per-flow rate policer (specified in [BJMS09b,

Appx B2.]). But per-flow rate policing is merely an attempt to force compliance with an arbitrary standard; there is no implication

that the use of path congestion can be related to incentives. Nonetheless, in such cases, the inclusion of the fraction of Cancelled

bytes provides a different disincentive against re-marking packets to Cancelled when they should be Neutral.
13Inflating by(1 + c/z) is possible, but inelegant and long-winded—that was the first attempt!

8.2. Border Attacks and their Defences 164

z += (s-z)*a
u -= u*a

case CAUT:
/* Will probably want to

count separately */
case (ECT(0) || Not-ECT):

/* Depends on policy
e.g. may rate limit */

case default:
/* NEUT & CU: do nothing*/

}
if (eecn == (POSV

|| CANC)) {
r += u
if (r < z) {

/* 1-u/z CANC or POSV
pkts reach here */

V += s
if (u < z) {

v += (s-v)*a
} else {

/* don’t count -ve
downstr cong */

v -= v*a
}

} else {
r -= z

}
}

}
}

The algorithm works broadly as follows. The assignments within the (switch(eecn)) logic

maintain two moving averages for recent Positive and Negative markings,z & u respectively, depending

on whether the packet’s extended ECN marking is Positive or Negative. As with the dropper, their values

are meaningless other than relative to each other. Both EWMAs clock on the same events (a Positive or

Negative mark) to ensure this is so.

The most elegant part, that calculates(1 − u/z)(z + c) without division or multiplication, is in

the last three nested ifs. Whenever a Positive or Cancelled packet arrives it is a candidate for counting

towards downstream congestion (the(z + c) term). The remainder variabler increments byu each

time such a candidate appears and also decrements byz whenever it has climbed to be greater thanz .

Therefore,r will climb for (1−u/z) of the candidates and sawtooth down every(u/z) of the candidates.

It adds all the candidate packets except those picked by the downward sawtooth to its running total of

downstream congestion-volume, so it selects(1−u/z) of the Positive or Cancelled packets to add. Note

that wheneveru > z the algorithm takes downstream congestion as zero.

Fig 8.6 shows the evolution of the algorithm’s main internal variables including the remainderr

sawtoothing betweenu andz . The algorithm’s output, recent downstream congestionv, is also shown.

It might be possible for an attacker to synchronise with this algorithm to get its smaller packets

picked and its larger ones not. But if the synchronisation drifted by just one packet nothing would be

8.2. Border Attacks and their Defences 165

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 550 600 650 700 750 800 850 900 950 1000

n

r
z
u
v

Figure 8.6: Inflation of Downstream Congestion to allow for Cancelled Markings.

Evolution of the Algorithm’s Internal Variables. The horizontal axis is an index of arriving non-neutral

re-ECN markings. The remainder variabler can be seen sawtoothing betweenu andz (see text). The

downstream congestion intensity measured separately over this run was 31.6%, which the algorithm

metered with a +0.11% error (EWMA weight,a = 1/64).

gained. If this did prove a problem, some randomisation could be added to desynchronise the determin-

istic sawtooth a little.

As already mentioned for previous dropper EWMA algorithms, multiplications by the EWMA

weight can be implemented as bit-shifts if the EWMA weighta is chosen as an negative integer ex-

ponent of 2.

Meter Implementation and Testing

An earlier more complicated algorithm was implemented and tested satisfactorily. The simpler algorithm

above has not been fully tested due to lack of time. It has been implemented and briefly tested over a

stream of uniformly random markings (not in a network simulator, just a stream of numbers). Early

results while the EWMAs settled were discarded. Totals of each marking were collected separately and

the result from the meter compared with the result of substituting the totals directly into the Eqn (6.4).

Extremely high downstream congestion was simulated to ensure there was a difference to measure.

Stationary values of 40% for path congestion and 10% for upstream congestion were used (each inde-

pendently randomised), leading to expected values forz, u & c of 36%, 6% and 4% respectively and

33.33% for the outputv. However, it would not have been appropriate to test the accuracy of the meter

by continuous comparison against these numbers, as the randomisation should lead the instantaneous

values to vary. Therefore, these values were merely used to drive a randomised marking process.

To verify the accuracy of the meter, the total downstream congestion-volume it accumulated was

recorded along with the total numbers of each marking it actually generated over each run. Because the

marking process was deliberately arranged to be stationary, substituting the total of each type of mark

8.3. Border Incentive Mechanisms: A Review 166

directly into the Eqn (6.4) gave a baseline downstream congestion-volume against which the meter’s

gradually accumulated total could be compared.

Over 30 runs of 500 packet markings, the sum of all readings was +0.11% greater than the correct

result. The standard deviation of the errors from each of the 30 runs was 2.03%. A much larger number

of tests will be necessary to establish whether there is any bias in the algorithm, but these initial results

seem promising.

8.2.8 Defence #3: Using Congestion Marking to Detect Anomalies

We have assumed (Assumption8.1) that networks are often rational, but if they are malicious their malice

is bounded. We have already said that some may consider this a little paranoid, but it may sometimes be

too näıve. Even if a network intends to behave rationally, it can sometimes (usually accidentally) behave

irrationally, often due to human error.

Re-ECN is fundamentally a system to align incentives, with each party expecting others to behave as

they would expect a rational individual or organisation to behave. But the congestion signalling re-ECN

provides is not just limited to providing incentives, at least as long as the congestion signals themselves

are not tainted by some human error so that they always appear reasonable, even during anomalies.

As well as congestion charging mechanisms at borders, there could be additional protections that

use the information re-ECN signals provide to detect seriously anomalous behaviour. For instance, a very

high bit-rate of a flow or aggregate with very high congestion marking, might be considered sufficiently

abnormal to trigger management action to block it.

In the specification of re-ECN for use with pre-congestion notification (PCN) [Bri08b, §5.7] we

describe random selection of Negative packets and subsequent monitoring of further packets in the flow

these packets belong to, in order to watch for highly negative flows. Unlike the above downstream

congestion inflation mechanism, the random selection required in this case is deliberately biased towards

highly negative flows by picking randomly from the subset of packets that are Negative.

The referenced section should be read for further details. This section has merely been included for

completeness, highlighting that both downstream congestion inflation and anomalous flow detection are

recommended at borders—one is not a substitute for the other.

In a similar vein, re-ECN information could better discriminate between otherwise similar looking

anomalies. Examples already mentioned include unusual proportions of Internet Control Message Proto-

col (ICMP [Pos81]) ‘time expired’ or ‘no route’ errors from packets which also have a Negative re-ECN

field.

8.3 Border Incentive Mechanisms: A Review

Neither of the two approaches introduced in this section to harden re-ECN’s baseline border mechanism

have been fully built or tested.

Defence #1:As admitted up-front, ‘Sample-Based Downstream Congestion Inflation’ is offered as an

architectural direction. Although the architectural arguments might be plausible, the likely pre-

cision of the sampling approach seems questionable and is certainly unproven. If the approach

8.3. Border Incentive Mechanisms: A Review 167

works, it would remove the motivation for dummy traffic attacks #1a) & #1b). Without any gain

from the attacks, but with considerable risk of detection and consequent loss of reputation, we

assume networks would be unlikely to mount such attacks.

Defence #2:Normalising Cancelled Markings sits on a little stronger ground. Prototypes of the algo-

rithm have been built and it seems to work as claimed. But much more testing is required. Also

the full algorithm has only been implemented rather inelegantly. Half the algorithm has been re-

implemented based on a new idea producing simple elegant code, but the whole algorithm will

need to be implemented and fully tested before any claims can be made with more certainty.

Again, if the algorithm proves to give unbiased results under further testing, it will remove any

gain from attacks #2a) & #2b) that attempt to poison congestion markings with excess Cancelled

packets.

These sentiments can be formalised into a brief review of whether the two proposed extensions to

re-ECN border mechanisms stay within our original constraints:

Processing Scalability:

• To normalise Cancelled marks, per-packet operations (using an admittedly incomplete al-

gorithm) can be described as minimal. Excluding reading packet fields, the longest path

through the unoptimised code (for Positive packets) is 14 operations, each a single cycle.

For the majority of packets (Neutral), only one per-packet operation is required (to decide to

do nothing). Negative packets require 6 single-cycle operations.

• For downstream congestion inflation, per-packet operations are only necessary for picking

flow IDs to sample. Although the code has not been implemented, subsequent per-packet

operations for picked flows should take just one extra operation on top of reading packet

fields.

Storage Scalability:

• To normalise Cancelled marks no per-flow state is required.

• For downstream congestion inflation, an unknown proportion of sampled flow-state would be

necessary. But state would very likely scale sub-linearly with number of flows and malicious

traffic cannot cause state to exhaust.

Congestion Signal Integrity & Incentive Alignment: Within the attack model of Assumption8.1 the

arguments for the two schemes to harden re-ECN’s border mechanisms have proved that the in-

tegrity of congestion signals is assured (if the mechanisms work as claimed).

Chapter 9

Re-ECN Forwarding Element Behaviour

We have assumed throughout that the contribution of forwarding elements to the re-ECN system is very

simple: they merely implement a standard first in first out (FIFO) active queue management (AQM)

algorithm such as RED [FJ93] to mark packets that are ECN-capable. As we have already made clear

(§7.4.4), the re-ECN incentive framework is designed to share the resource of those parts of an internet-

work with ECN deployed. It is reasonable for re-ECN to be designed on the basis that ECN is already

deployed, given that we can expect any network provider that does decide to deploy re-ECN policers,

droppers and border meters around its network to also turn on ECN.

Re-ECN requires no changes to forwarding elements that are already ECN-capable. However, two

optional (but recommended) changes are proposed below:

• The section on ‘Congestion marking of Cautious packets’ proposes that forwarding elements op-

tionally congestion mark one of the two extended ECN codepoints (Cautious) that would not be

marked if the current ECN specification [RFB01] were followed;

• The section on ‘Preferential Drop’ is not about how an AQM algorithmwritescongestion signals

into packets, but about how it mightread re-ECN markings—using them to determine its own

drop treatment of arriving packets when under stress.

Only informal analysis of these aspects of the re-ECN protocol has been conducted (e.g. in §12.1.1on

flooding attacks).

9.1 Re-ECN Preferential Drop
As pointed out in §7.4.4, one cannot assume an ECN queue will never overflow and consequently dis-

card packets. One can only assume drop will be rare as a normal operating behaviour. Also an ECN

forwarding element might even have to discard packets for an extended episode, for instance during a

concerted denial of service attack, or due to some misconfiguration.

Once traffic carries re-ECN markings, the opportunity arises for forwarding elements to use them to

determine which traffic it drops first. A link under severe congestion (e.g. a DoS attack) will congestion

mark most of the packets that it manages to forward, and drop the rest. A well-behaved receiver will feed

these back to the source. And a well-behaved source should reduce its rate and set the Positive marking

on nearly all the packets it sends in future rounds.

9.1. Re-ECN Preferential Drop 169

Therefore, if a queue is overloaded, it SHOULD drop packets with markings not used by re-ECN

first (Not-ECT and ECT(0)). Then, if still stressed, it should drop Negative, Neutral and Cancelled1

packets before finally dropping Cautious and Positive packets if absolutely necessary. These drop pref-

erences are summarised in Table9.1.

EECN codepoint Drop Preference

Cautious 3

Positive 3

Neutral 2

Cancelled 2

Negative 2

CU 2

ECT(0) 1

Not-ECT 1

Table 9.1: Proposed Drop Preferences for a re-ECN-aware Forwarding Element.
1 means drop first.

A misbehaving source or receiver might not be trying to communicate data, but merely sending

traffic to create congestion (a denial of service attack). It may not be concerned whether all its traffic

can get through the re-ECN dropper. Therefore, it may understate the fraction of Positive markings

on its path to avoid being throttled severely by an ingress policer. Therefore, if a forwarding element

preferentially drops non-positive packets during severe congestion, it will tend to bias its service away

from such ill-behaved sources.

Note that Table9.1 proposes that Cautious packets should be treated to the lowest drop, along

with Positive packets. This reflects their equal worth, byte-for-byte. It would be wrong to give either

more preference than the other, perhaps under the mistaken impression that Cautious packets start new

flows and the system should not allow in new flows when under stress. If such a policy were adopted,

an attacker with sufficient fire-power might use Positive packets to block new flows from the system.

Likewisevice versa.

Similarly, there is no reason not to treat all other re-ECN packets with equal drop preference. Neg-

ative, Neutral, Cancelled and CU2 packets should all be treated equally. There are no grounds, for

instance, for dropping Negative packets more, just because they have already experienced congestion

upstream.

And finally, there are no grounds for dropping Not-ECT packets before ECT(0). Networks have

no known practical way to limit the load of either any more than the other, if they are not responding to

congestion.

Note that this discard behaviour is not applicable whenever a forwarding element can mark the

1If it were not for legacy concerns Cancelled packets could be dropped last with the same preference as Positive and Cautious.

But the Cancelled codepoint overloads the congestion experienced (CE) codepoint used for legacy ECN. An operator SHOULD

configure a forwarding element to treat Cancelled packets to the same drop preference as Cautious and Positive if it is certain all

arriving legacy CE traffic will have been tightly rate-limited.
2See §12.2.2on Forward Compatibility.

9.2. Congestion Marking Cautious Packets 170

arriving workload of ECN-capable packets without any need for drop. Preferential drop of packets

that would normally be ECN marked would only be relevant once the AQM algorithm was beyond its

congestion avoidance operating range, where it had to drop something.3

Implementing and deploying preferential drop based on re-ECN markings is optional, as such for-

warding elements can interwork with other routers that do not implement preferential dropping. How-

ever, forwarding elements that do not implement re-ECN-based preferential drop will simply not protect

themselves (and other elements downstream) so well from DoS attacks. In addition, network operators

would be strongly advised only to deploy preferential drop based on re-ECN markings where they were

sure that all routes towards the queue in question were covered by a re-ECN policing function.

These preferential drop semantics are fully specified in the re-ECN Internet Draft [BJMS09a, §5.3].

9.2 Congestion Marking Cautious Packets
Although re-ECN works with unchanged forwarding elements, the Cautious marking uses a codepoint

in the IP header that won’t be congestion marked by existing forwarding elements, but it would be better

if it was marked than dropped. Therefore, forwarding elements could be upgraded to recognise the

Cautious marking as ECN-capable, and mark it as they mark other ECN-capable codepoints.4

The re-ECN wire protocol is arranged so that, if a forwarding element congestion marks the ECN

field of a Cautious packet to11 it will become Negative. Re-ECN transports are designed to understand

what to do with such packets. Non-re-ECN transports would never send a packet with the Cautious

codepoint (unless they operated some proprietary or Byzantine protocol).

§7.4.2 discusses how other system elements are expected to handle Cautious packets that have

been congestion marked to Negative. It also discusses a second overloaded meaning given to Cautious

packets marked Negative (see also §10.1next); if they carry a flow-state setup message in their payload

a Negative marking can also mean ‘Flow-state not stored’.5

3A few days before this dissertation was due, an apparently serious flaw was noticed in the RED algorithm—at least in the

algorithm that research papers discuss. The flaw concerns RED’s drop behaviour rather than its marking behaviour. The outcome

is that RED strongly favours unresponsive traffic if it forms a large proportion of arriving load. Therefore, this RED problem does

not directly affect the re-ECN protocol as a whole. But it does strongly impact on how to modify an AQM to do preferential drop

based on re-ECN markings. A quick check of open source code revealed that at least one implementer had noticed the problem and

tried to work round it. Rather than try to include analysis of a hurried correction to RED in this dissertation, this section has been

modified to abstract it away from reliance on RED as it stands. A summary of the discovered problem with RED is also included

in AppendixC.
4Caution is advised on this statement. We have not decided on a good marking strategy, and if forwarding elements are being

changed, changes to their AQM could also be considered. The recent realisation that the RED protocol’s drop behaviour under

extreme load is extremely wrong (AppendixC) warns that RED’s ECN marking behaviour under extreme load might be improved

too. Indeed, re-ECN would work much better under a DoS attack if RED did not mark 100% of Cautious packets. Otherwise

all new flows would be starved by the dropper. If the Preferential Drop proposal of §9.1 were implemented at the same time as

Cautious marking (which would make sense), then it is feasible that Positive and Cautious markings could be marked less than

100% while other packets were being dropped—given normal congestion avoidance would clearly be considered to have broken

down.
5Indeed, this wouldn’t even violate the first meaning of this protocol transition, as a forwarding element that never stores

flow-state can always truthfully say ‘Flow-state not stored’.

Chapter 10

Re-ECN Middlebox Behaviour

10.1 Flow-State Congestion Signalling

In §7.3we introduced the need for the re-ECN dropper to be flow-aware (though not otherwise aware of

the transport). Once a design includes flow state on a middlebox, it also has to be able to manage even

innocent situations where provisioned memory becomes insufficient—a further consequence of violating

the shared fate principle.

Memory exhaustion is, of course, congestion of a physical resource, so we want to be able to treat it

in a similar way to congestion of network capacity. Rather than just discarding flow-start requests when

memory is exhausted, an explicit signal would give a timely unambiguous indication of memory con-

gestion. The first packet of a flow is particularly vulnerable to drop for the other reasons than congestion

listed in §6.1.1, so it is doubly important to distinguish congestion signalling explicitly.

Therefore, we propose to use the re-ECN protocol to signal congestion of flow-state. Rather than

confine this facility to the re-ECN dropper, there is no reason not to allow any middlebox (e.g. a network

address translator) to use this facility.

If we put flow-state congestion signals in the IP header as a transport-independent mechanism,

we will need to distinguish flow-state congestion from congestion of bit-capacity so that sources can

respond accordingly by damping flow arrivals (rather than bit arrivals). In the re-ECN protocol, we use

the transition from Cautious to Negative as a signal of flow-state memory congestion. This overloads

the use of this transition for normal bandwidth congestion. The two can be distinguished by a transport,

because the flow-state-related meaning only applies if the payload of the packet contains a request to

store flow-state (e.g. a TCP SYN or the equivalent for other transports, whether explicit or implicit).

This proposal deliberately uses the same structure of in-band congestion signalling as ECN. That

is, it provides a way for a middlebox to ask the intended receiver of a packet to issue a response to the

sender saying ‘flow state not stored’.1 Even though this seems more convoluted than sending a special

flow rejection signal directly back to the sender, it is much more robust for all the reasons given in §6.1.1.

Well-designed transports SHOULD provide an explicit application-independent way to reject a re-

quest to initialise flow state. A combination of TCP flags for such a flow rejection response has been

1The remote possibility of a flow initialisation request spanning more than one packet might have to be considered for some

transports.

10.1. Flow-State Congestion Signalling 172

reserved in the specification of the TCP transport over re-ECN [BJMS09a].2 A server could return such

a rejection response for a number of reasons:

• exhaustion of its own flow-handling resources;

• exhaustion of the flow-handling resources of a middlebox on the path;

• unwillingness to allocate flow-state without more evidence that the client is genuine.

Re-ECN’s in-band congestion signalling deliberately doesn’t preclude a middlebox echoing a ‘flow-

state not stored’ response on behalf of the intended receiver. Indeed, a middlebox might be deployed to

spare a server the routine task of echoing challenges. For instance, the rejection response could be sent

with a nonce, crypto-puzzle, TCP SYN cookie3 or something similar [Edd07].

Note the response means ‘flow state not stored,’ which is subtly different from ‘flow-start request

rejected.’ This is particularly helpful in the case of SYN cookies. SYN cookies were cleverly devised

to work with unaltered clients. Unfortunately, this means that clients cannot tell whether the server has

sent them a SYN cookie. So receiving a SYN cookie can lead the client to think the server has taken

everything it asked for into account, when in fact it just blindly returned a SYN cookie. A response to a

re-ECN client saying ‘flow state not stored’ would tell the client ‘I’ve stored no more flow state than you

see in this response.’ Then, if the client had requested some new or esoteric TCP option, it would know

the server had ignored that aspect of the request and be able to ask again.

Finally, note that re-ECN’s in-band congestion signalling deliberately doesn’t preclude multiple

middleboxes on the path (e.g. one at the sender edge and another at the receiver edge), all possibly trying

to tell the receiver how it should respond. Any one of a sequence of middleboxes can ask for a ‘flow

state not stored’ response by switching the re-ECN field to Negative. This is why we do not advise that a

server or middlebox discards non-Cautious packets just because they do not match an existing flow ID,

although a machine under stress is entitled to discard them preferentially (see §12.1.3on initial packet

attacks).

Signalling flow-state congestion is a tentative part of the re-ECN protocol. Most of its many ram-

ifications have been considered, but there are a few outstanding questions. For instance: i) should the

signal mean ‘Flow state stored but approaching exhaustion’ or ‘Flow state not stored’? ii) Should mem-

ory congestion be signalled to packets holding open existing state, or only to packets asking to allocate

new state? At present, the design described above takes the latter answer in each case.

2The specification also allows for the possibility that the server is a legacy one that doesn’t understand a congestion marking.

If the response from the server shows it didn’t understand the request to use ECN or re-ECN, a re-ECN client MUST follow the

congestion control behaviour it would have if the first packet had been lost.
3SYN cookies are “particular choices of initial TCP sequence numbers by TCP servers”. The server calculates the initial

sequence number from information it will be able to reconstruct later from a valid acknowledgement. It then does not need to hold

any connection state until it receives an acknowledgement with a sequence number one greater than the server would have created

itself for what would have been the previous packet in the connection.

Chapter 11

Re-ECN Bulk Congestion Policer

11.1 Bulk Congestion Policer Model

Our high-level aim is to show that users of an internetwork can be made to pay the cost of the congestion

their traffic causes to others, but without having to suffer the unpredictability of a variable usage charge.

We want network operators to be able to use rationing not just pricing [Bar89, Odl97, §5] to ensure their

customer’s incentives to manage load can be aligned with the interests of all.

We set the constraint that the customer pays a flat monthly fee to its ISP. This is purely a commercial

acceptability constraint. This funds a constant contracted rate,wC of congestion tokens filling a token

bucket1. Of course, ISPs may give customers the choice between different values ofwC . Unlike with

a classic token bucket, only bytes marked for downstream congestion consume tokens. So tokens are

not consumed based on the amount of bytes sent, but on the volume of congestion the source expects

the traffic to cause. Therefore, if the customer sends flows indexedj at bit ratex1, x2, . . . xj , . . . each

with an expectation of rest-of-path congestion of respectivelyv1, v2, . . . vj , . . ., tokens will be consumed

1A token bucket is a model that represents a stored numberf of tokens (modelled as the bucket fill level), a means for subtracting

tokens and an algorithm to add tokens at a continuous rate. Usually this is implemented by storing the time,tr−1 when a token

was last removed. Then when the next request to remove tokens arrives at timetr (i.e. the next marked packet sizes in our case)

fr = fr−1 + wC(tr − tr−1)− s .

bulk
congestion

policer

Internet
congestion
v2v1

vj

wC

Σ Σ Σ Σ vjxj
flow

bit-rate
x1
x2
xj

B

Figure 11.1: Bulk Congestion Policer in Context.

11.2. Policer Diversity 174

at rate
∑
vjxj (Fig 11.1). In contrast a classic token bucket would empty at rate

∑
xj . Consuming

tokens against downstream congestion ensures a customer continually suffers the congestion cost of its

behaviour on others, while only having to pay a fixed fee for a fixed token fill-rate.

So long as the customer’s usage stays below the congestion allowance, the policer merely moni-

tors the congestion bit rate passively. but whenever sustained excessive congestion bit-rate empties the

bucket, the policer may penalise the whole aggregate of customer traffic entering the internetwork.

The depthB of the bucket absorbs bursts of congestion, allowing for fluctuations in network condi-

tions and in the needs of customers and their applications. The depth may be finite or effectively infinite.

If bucket depth is finite and if tokens are consumed too slowly, the stream of filling tokens may overflow

and be wasted. Operators would most likely not just limit the token fill-rate but also peak token con-

sumption using a ‘dual token bucket’. That is, to consume tokens a packet must satisfy two token bucket

constraints at once, one with fill-ratewC and depthB, the other with fill-rateŵC � wC but depth of

just one MTU (the maximum transmission unit of the link). With the second token bucket, there would

be less need to limit the first bucket’s depth. To be concrete for this dissertation we assumeB →∞ and

that the operator limits peak token consumption toŵC .

Unlike a traditional traffic conditioner based on bit-rate, congestion bit-rate has largely the same

value and meaning however much it is shifted in time or space, therefore the bucket can potentially

absorb bursts over periods of hours or weeks. The depthB of the bucket is more a commercial policy

issue, effectively limiting how much unused congestion-volume quota the ISP allows the customer to

‘roll-over’. However, the depth of all the other customers’ buckets on the Internet does determine the

predictability of any single customer’s service experience.

The peak token consumption ratêwC primarily limits anomalous behaviour, whether malicious

(malware), accidental (buggy applications) or deliberate (highly inconsiderate use - e.g. scripted execu-

tion of vast numbers of flow instances).

The particular design of congestion policer we propose here is not intended to be generic to all ISPs.

It is a design of policer that satisfies the flat monthly fee constraint of a particular commercial approach,

while still aligning incentives to respond to congestion. It was the primary aim of this research to be able

to offer flat-fee Internet accessand align incentives, and it is an important contribution if re-ECN has

enabled such a simple policer design to achieve this aim.

But we have another reason for proposing this particular design in this dissertation. We need to

establish whether re-ECN can assure the integrity of congestion signalseven when they are used(see

§12.3.1). We have proposed this particular policer design as one that we believe gives the maximum

freedom to a customer and to developers of new application and transport behaviours, but within the

constraints of a flat fee and incentive alignment.

11.2 Policer Diversity
Re-ECN could be used by ISPs to give customersmorefreedom. Re-ECN could be used for sender-pays

congestion charging, much as Kelly suggested ECN could be used for receiver-pays congestion charg-

ing [Kel97b]. And customers who prefer flat fees could discipline themselves to ensure their congestion

11.2. Policer Diversity 175

charges regularly result in the same usage fee each month.

But we propose this congestion policer because we want to define a concrete artefact that ISPs

could use to offerand enforcea moving congestion limit. This approach allows network operators

to impose limits when incentives are not enough; for instance in times of crisis, or against customers

whose machines have become infected with malware. It is likely to be more commercially viable than

dynamic congestion charging, which seems to offertoo muchfreedom to be palatable to both providers

and customers alike.

It should be emphasised that this policer is anapplicationof the congestion signal integrity that

re-ECN aims to provide. An architectural aim of re-ECN is to encourage diversity of policer designs to

meet different commercial objectives; to encourage ‘Tussle in Cyberspace’ [CWSB05]. For instance, we

have proposed other design examples ourselves:

• In a workshop paper co-authored with Jacquet and Moncaster [JBS05], we proposed a similar bulk

token bucket congestion policer to the one described here, but one which discards all flows equally

when the bucket empties. That proposal aims to give a customer the incentive to self-police each

flow (whether elastic or inelastic) without the policer having to. The discards when the token

bucket is empty effectively add a cross-flow element to the apparent congestion that each flow

experiences. Customers who fail to self-police bring this cost on themselves, but it also allows a

customer to choose to allow inelastic flows to complete even if their cost to the customer’s other

activities increases after they have started;

• The Internet Draft Motivating re-ECN [BJMS09b, Appx B2.], also co-authored with others, pro-

poses a per-flow policer that aims to force each flow to respond to congestion as TCP or a TCP-

friendly [FHPW00] transport should;

• Network operators might deploy ‘service-oriented’ [WK08] congestion policers that specialise a

virtual network to a certain service or services;

• Network operators might enforce a ‘walled-garden’ around their networks to limit customers to

only a certain set of applications identified by their rate response to congestion signals in combi-

nation with other information perhaps gathered using deep packet inspection (DPI) technology to

inspect the payloads of packets.

We hope and expect congestion policers will become an important policy enforcement point (PEP)

at the ingress to the internetwork, not just for flow admission control [YPG00], but to control traffic

admission at any granularity from packet [Cla95] to service. Re-ECN should allow some networks to

adopt liberal policies on what traffic they allow (as the policer proposed here would do), while simulta-

neously other networks can enforce conservative policies, without all having to lose the benefits of full

interconnection. Networks with conservative policies will still be able to protect their services and their

investments using the border mechanisms of §8. And any network will be able to decide to change its

whole culture from liberal to conservative, merely by altering its policing policy.

11.2. Policer Diversity 176

Effectively, re-ECN turns the end-to-end principle with respect to transport control into an optional

policy rather than a design principle embedded deep in the architecture. And this policy is applied

once per customer, at the outer edge of the internetwork. Thus it is amenable to change through the

simple change of an individual bipartisan contract, without depending on changes to any contracts with

operators in the rest of the internetwork.

Different token bucket fill-rates (wC) effectively provide a differentiated spectrum of network ser-

vices without explicitly using differentiated scheduling (Diffserv [BBC+98]) (for a technology advan-

tage of this approach see ‘Bufferless Border Control’ in §8.1.3). But downstream congestion information

complements and improves Diffserv too. New forms of traffic conditioning agreement (TCA) for any or

all classes of service could be based on downstream congestion.

Currently, if a Diffserv TCA polices traffic without regard to destination, each network link has to

be provisioned statistically based on the expected variation of the whole traffic matrix. The advantage of

enforcing a TCA against downstream congestion information would be to manage network load even if

the traffic matrix was unusual. This would also allow cheaper, less generous provisioning by leveraging

most customers’ abilities to respond elastically to temporary congestion most of the time.

Downstream congestion has another potential advantage over straight bit-rate for policing. TCAs

based on bit-rate are only useful at high levels of aggregation—for larger sites comprising many sources

of load. Bit-rate TCAs are hard if not impossible to apply for small sites characterised by long periods of

complete inactivity and occasional intense flurries—network provisioning would either be prohibitively

expensive, or the assurances that could be offered would be worthlessly poor. However, TCAs based on

downstream congestion integrate properly over long periods of time. Thus congestion-based TCAs are

potentially useful for consumer as well as business customers.

We have deliberately used the term ‘customer’ rather than ‘end-user’ throughout this discussion

to denote a ‘locally attached contractual entity’. The customer relationship need not be commercial

although it often will be; for instance it may be a relationship between an academic institution and its

internal network operations department. The term customer includes customers with large numbers of

users as well as sole-user customers. A customer could even operate a commercial network themselves,

in which case this policer would effectively be a border mechanism that is actively intervening in the

packet stream (§8.2.8), in contrast to the passive border mechanisms recommended in the rest of §8.

Finally, we propose this bulk congestion policer design because it would be extremely cheap to

implement. Therefore it could be suitable for distribution to low-cost access equipment at every attach-

ment point of an access network, e.g. on the input ports of a digital subscriber line access multiplexers

(DSLAM), hybrid-fibre-coax node (HFC-node) or cellular base-station (Node B in UMTS). It is usu-

ally more cost-efficient to centralise the implementation of policy controls because the flexibility they

need tends to lead to complexity. But it is preferable for a policing function to be cheap enough to

distribute right to the network edge, in order to physically block unruly incoming traffic from causing

severe congestion.

11.3. Bulk Congestion Policer Design 177

11.3 Bulk Congestion Policer Design

The bulk congestion policer proposed here (from here on just called ‘the policer’) puts no individual

constraints on the transport behaviours of different flows, other than limiting total long running expected

downstream congestion for all flows as a whole.

Like the egress dropper (§7), and unlike the bulk congestion policer we proposed in [JBS05], if the

aggregate bucket has emptied, each flow is sanctioned distinctly. Thus flows expecting no congestion

on their path can continue unaffected by the policer’s lack of tokens, while flows causing considerable

congestion will be hit the hardest. The policer effectively consists of two modules, a bulk token bucket

meter for all flows called on by per-flow instances of droppers that re-use the principles, design and

implementation of the dropper we have already described for the egress.

The meter module uses the algorithm in §8.2.7 based on Eqn (6.4) to normalise any poisoned

cancelled markings in arriving packets. This produces a ‘virtual packet marking’ of the moving average

of recent downstream congestion,v, which determines how many tokens each packet consumes. If the

network(s) between the source and the policer are uncongested, this will be equivalent to counting just

packets marked Positive. But if there has already been some congestion (e.g. in the customer’s own

network, or into the line from the customer to their provider), the policer removes it from its count by

calculating downstream congestionv.

How Much Drop? We now consider how much drop is appropriate if there are insufficient tokens in the

bucket to ‘pay’ for the markings of expected downstream congestion. Rather than just drop everything

as suggested in [JBS05, BJMS09b, Appx B1.], conceptually we follow the principle of ‘Proportionate

Sanctions’ (§7.3).

The dropper module can assume that every incoming Positive mark was triggered by an earlier

Negative mark that it would have been able to count if it were at the egress. So it maintains a per-flow

moving average of Negative marks counting real Negative marks as well as Positive and Cancelled marks

(but not Cautious) as if theyalsorepresent Negative markings.

If the meter module (the bucket) is empty, we propose that the dropper module should change an

arriving Positive marking to Neutral. We call this ‘covert’ marking’ because we do not want it to be seen

as a congestion mark by the transport (see below).

The rationale for this behaviour is as follows. An arriving Positive marking can be likened to the

customer saying to the network, “Charge this to my account.” When the bucket is not empty the network

operator can forward the Positive mark saying in turn to the next network’s border meter, “Charge this

to my account.” But if the original customer’s account is empty, the first network says “Your account is

empty; I refuse to commit to paying the next network if you haven’t paid me enough.2” At this stage no

packets have been dropped—the dropper is still measuring what to do.

Even if the bucket is empty when one Positive marking arrives, it may be refilling sufficiently

quickly for some Positive markings to be allowed through unchanged. The policing module therefore

maintains a moving average of Positive markings, not counting any it has changed to Neutral.

2Different policies may allow certain customers some credit, or course.

11.3. Bulk Congestion Policer Design 178

The policer having removed some Positive markings, the flow will be understating its expectation

of downstream congestion,v. The policer then determines drop as a proportionate sanction in exactly

the same way as the egress dropper of §7 does.3 From Eqn (7.3) the drop probability for Negative

and Neutral4 marked packets isπu = πy = 1 − z/u; (if z < u & V < 0), while packets with other

markings (Positive, Cautious and Cancelled) are not dropped at all. Packets marked with legacy markings

(Not-ECT andECT(0)) are likely to be rate-limited separately as we have already said.

11.3.1 Covert Marking as Policer Signals

This is a tentative extension to the re-ECN wire protocol that is not yet documented in the formal re-ECN

protocol specification, and may be changed.

It may have been noted that we have chosen to remove Positive markings by re-marking them to

Neutral, which is not a valid re-ECN protocol transition (§6.1.2). All the valid transitions in the re-ECN

wire protocol only require the network to alter the ECN field, not theREflag. The wire protocol has been

designed so that end systems can double-check that the RE flag is unchanged, to give some assurance that

the network has not cheated by making a protocol transition that it should not normally make (§12.1.4).

The policer deliberately uses this ‘illegal’ transition as a way for it to signal to the transport that

the drops being experienced are most likely due to policing, not congestion. This keeps to our design

principle of using in-band not backwards signalling (§6.1.1). Assuming some covertly marked packets

are not dropped by the policer,5 the end-to-end transport can detect a change to theREflag on packets it

originally sent as Positive. It can then respond to drops differently, suspecting they are due to policing.

The precise response to policer-induced drops is up to each transport. Each will probably still

respond to these policer drops by reducing its rate, but it would be advised not to respond to each drop

with a Positive marking in the next round. This would otherwise drive it deeper into debt with the token

bucket.

The approach of each transport to being policed is out of scope of this dissertation. Also out of

scope are the details of whether the token bucket toggles to covert marking in one step, or as a gentle

ramp as the bucket empties. This dissertation only needs to say enough about the policer to give:

• an existence proof of flat-charging with aligned incentives;

• a concrete instance of the most liberal policer we believe is possible, so that we can model it in

§12.3.1.

3And, of course, if real Negative markings arrive with insufficient Positive markings to cover even them, then an even higher

level of drop will automatically ensue.
4Neutral also implies Currently Unused (CU see §12.2.2).
5Because the policer re-uses the algorithms of the regular dropper from §7.6 it gives one packet’s grace to covert markings,

tending to drop subsequent packets instead.

Chapter 12

The Re-ECN System

12.1 System Attacks on Congestion Signal Integrity

The rudimentary goal of re-ECN is to ensure that the integrity of congestion signalling information in

re-ECN packets can be trusted to be accurate. This section aims to quantify or at least estimate the limits

under which this property of re-ECN will still hold under various attacks.

12.1.1 Endpoints Against Networks

FEC Trade-Off Attack

Salvatori [Sal05] describes this attack against the re-ECN system, which involves the source playing off

the egress dropper against the ingress policer. A similar attack was also mentioned independently the

following year in [BFB06]. The source inserts erasure codes [BLMR98] (forward error correction or

FEC)1 into the data stream which inflates the bit-rate, but allows the original data to be reconstructed if

a proportion is lost. The source then understates downstream path congestion knowing the dropper will

discard some data, but this also consumes less tokens at the ingress policer so it can go faster for the

same ‘charge’. We call this the ‘FEC trade-off’ attack.

The FEC trade-off attack was aimed at an earlier variant of egress dropper design, which was

consequently updated to that in §7. We will now prove that the updated design prevents the FEC trade-off

attack from giving a source-destination pair any gain from understating expected downstream congestion

at the network ingress relative to congestion marking emerging at the egress. We will first define the

scenario and its notation.

FEC added by the source inflates the data rate toΦ times its original bit-rate, whereΦ ≥ 1. We

assume the FEC source does not re-transmit any repairs of losses, as this would cost even more on top of

the FEC overhead. We compare cases where FEC is added and where it isn’t. Variables are subscripted

with f in the case where FEC is added, and not when it isn’t.

As previously defined, the recent fractions of Positive and Negative re-ECN marked bytes arez

andui at node indexi along the network path (as the dropper does not drop Positive packetsz remains

unchanged along the path). Indexi = 0 represents the source before FEC is added,i = 1 represents

arrival at the ingress policer, which is also equivalent to the point of departure from the source after

1Note, not error-correcting codes, which are different.

12.1. System Attacks on Congestion Signal Integrity 180

un

yNuN

zncn

≡

=

=

≡

dropped

yf0= y1

z0

FEC

xf0= x0

xf1

xN

Figure 12.1: The Futility of the FEC Trade-Off Attack.

any FEC is added.i = n on arrival at the egress dropper andi = N on departure for delivery to the

destination. To simplify matters, but without loss of generality, we will assume thatu1 = 0 at the ingress

policer, that is, there is no congestion marking within the source’s own network.

Theorem 12.1. An end-to-end flow with useful bit-ratex0 and free choice in declaring expected down-

stream congestionz cannot gain by sending bit-ratex1 which includes added redundant FEC data, as

long as the network makes the user accountable for costzx1 at the ingress and discards non-Positive

packets with probabilityπd = 1− z/un (z < un) at the egress.

Proof. Whether in the FEC case or not, we assume no drop of the ECN-capable packets between ingress

and egress, that isx1 = xn. We also note that all packet marking fractions and bit-rates cannot physically

be less than zero.

In the base case with no FEC, the source ensuresz = un so that there is no drop at the dropper.

ThereforexN = xn = x1 = x0.

In the FEC case, as shown in Fig12.1, we split the data flow into two parts: i) a bit-rate equivalent

to the base data the source wishes to sendxf0 = x0 and ii) the added FECxf1−x0. To ensure bit-ratex0

gets through the dropper with no loss, a Positive bit-rate ofzx0 needs to be sent wherez = un, given the

marking fraction introduced along the path isun. Thus the base data can be considered self-contained

with just enough Positive bit-rate to sustain its delivery.

Considering the additional FEC data as a separate flow, if none of it is marked Positive, it will all

be dropped. It would be pointless to mark any of the additional FEC data as Positive just in order to

deliver additional data that isn’t needed, as this would cost more than if FEC had not been used at all.

This proves that a drop probability ofπd = 1 − z/un (z < un) is sufficient to ensure no gain can be

made from the FEC trade-off attack.

Put another way, any additional Neutral bytes attract proportionately more Negative markings. So,

unless the source marks more packets Positive, the dropper will discard all the additional Neutral packets

sent.

Salvatori’s FEC trade-off attack originally played off the ingress policer against the egress dropper

(hence its inclusion in this section on attacks against the whole system). However, the above argument

proves that the new egress dropper design alone is sufficient to negate any gain from the attack.

For those who would prefer a less terse proof, the following may help.2

2Arnaud Jacquet suggested this second form of proof in place of my earlier erroneous proof.

12.1. System Attacks on Congestion Signal Integrity 181

Proof. Consider that the source sends a bit-rate ofzx0 Positive packets, which will be forwarded by the

dropper with no loss. If the source uses FEC data to inflate the remaining bit-rate byΦ, then the bit-rate

of Neutral packets leaving the source will beΦ(1− z)x0.

Once proportionu of these Positive and Negative packets have been marked, the bit-rates of Positive

and Negative packets will respectively be(1 − u)zx0 anduΦ(1 − z)x0. Therefore the drop fraction of

non-Positive packets will be

πd = 1− (1− u)zx0

uΦ(1− z)x0
(12.1)

Adding the unscathed bit-rate of originally Positive packetszx0 to the bit-rate of originally non-Positive

packets forwarded by the dropper, the overall delivered bit-rate through the dropper will be

xN = zx0 + (1− πd)Φ(1− z)x0

=
z

u
x0. (12.2)

This is clearly independent of the FEC inflation factorΦ, proving again that addition of FEC without

any Positive markings can have no effect on delivered throughput.

The source always has to conservatively estimate the amount of FEC to add because it doesn’t know

in advance the rate of congestion marking, which the dropper algorithm uses to determine the drop rate.

Therefore the FEC trade-off attack will actually always result in worse goodput than not using FEC at

all, aside from any additional overhead or inefficiency in the FEC scheme.

It is interesting to note that Raghaven & Snoeren’s ‘Decongestion Control’ [RS06] also falls foul

of the same unpredictability problem with FEC. Decongestion control involves everyone always sending

at maximum line rate and everyone varies the redundancy of their erasure codes, in place of the rate

response of traditional congestion controls. Decongestion and congestion control would be equivalent

were it not for the extra redundant data needed to cater for the unpredictability of loss. This has an-

other interesting analogy with the per-flow credit that the re-ECN dropper requires due to the ‘Source

Responsibility for Delay Allowance’ principle. In place of decongestion control’s redundant overhead

packets, re-ECN unnecessarily consumes downstream congestion quota. Both redundancies can only be

identified in hindsight.

Strategic Confusion of Investment Signals

Bauer and Faratin [Bau05]3 claim to identify a strategising attack against congestion charging in general,

that they term the ‘Capacity Expansion Game’. They argued that congestion-based incentive mechanisms

are only myopic incentive-compatible, not long-term incentive-compatible. Although this attack is not

specifically against re-ECN4 we deal with it here, as re-ECN depends in turn on accountability for

congestion in order to align incentives. We only argue discursively about this attack, as it is exceedingly

hard to pose a realistic scenario in which it might work and that is also tractable.

3There is no formal reference to cite for the ‘Capacity Expansion Game’ aspect of the authors’ work other than this slide

presentation.
4Their specific attack against re-ECN is dealt with elsewhere.

12.1. System Attacks on Congestion Signal Integrity 182

In the capacity expansion game, a strategising player predicts that it will have higher demand in the

future. It sends a small amount of dummy traffic when it has no demand, which it properly pays for. It

aims to cause other players who do have demand at those times to pay more in congestion charges than

they would have otherwise. It banks on this collective behaviour eventually sending an investment signal

to the operator to invest in more capacity, using the funds mostly provided by customers other than the

strategising player. After the investment in more capacity, the strategising player can satisfy its own

higher demand as predicted, but at a lower congestion charge. A simulation shows the strategy works

for heavy users against light users, even if many players adopt it.

This game is effectively a strategising attack not just on congestion charging but on microeconomics

itself. It is equivalent to gaming a vendor of apples (or any perishable good). Strategising players who

know they will want more apples in the future can reduce the future price of apples by buying a few more

than they need now, thus increasing supply and reducing the price for the future.

It is certainly true that this game can succeed sometimes. For instance the authors pointed to certain

players like Content Distribution Networks that might be in a strategic position to sufficiently predict

future demand of themselves and others.5 But this strategy can also fail. It is possible that there could

be situations where a player finds itself in a position it can take advantage of. But the strategy is only a

fundamental problem if it can be systematically exploited.

The probability of success depends on:

• the relative elasticities of demand (the primal rate response to congestion marking) and of price

(the dual marking response to congestion);

• whether congestion charges are likely to be higher or lower in the future.

On the demand side, if one user tries to increase the price by increasing demand, other users will

reduce their demand, thus reducing the price (this was not included in Bauer & Faratin’s model). There-

fore, strategising players might have to spend a lot to get the market as a whole to spend enough extra to

trigger significantly earlier investment.

On the supply side, in a growing market, congestion charges are likely to be lower in the future any-

way if there is an economy of scale (the marginal cost of capacity reduces as more capacity is installed).

The game assumed that capacity expansion would occur in steps leading to a temporary uncharacteristic

drop in price. However, it would be as likely that network operators would mark based on gradually

increasing logical limits, rather than actual physical capacity constraints. One can think of this as a

counter-strategy against the game by network operators.

Andersonet al [AKS06] suggests another potential operator counter-strategy. The paper recognises

that pure congestion charging alone can be exploited by strategising players at the expense of myopic

ones. It proposes that network operators could offer fixed price bandwidth contracts, but allow buyers

freedom to use more or less bandwidth in the resource pool. The operator applies balancing charges

(positive or negative) at the end of each contracting round so that its total revenue remains fixed, but

5We should add that players using significant market power to distort market signals are generally expected to be handled by

market regulators, not the market mechanism.

12.1. System Attacks on Congestion Signal Integrity 183

customer charges end up proportionate to the amount of congestion they caused. The paper proves that

each customer’s incentives are still aligned with the interests of others, but they also have no incentive

not to be honest in their estimation of future bandwidth demand.

Returning to Bauer & Faratin’s contribution, in general it is unlikely that any player will have suffi-

ciently perfect information to be able to predict a network’s capacity expansion plans, which depend on

competition, equipment cost movements, internal company politics and performance, growth in demand,

variations in the cost of borrowing and so forth.

Similarly, strategising players would have to predict the future behaviour of other players, to predict

overall future demand. The strategy was shown to succeed for the set of heavy users against the set of

light users, each acting independently. But it conveniently didn’t allow users to switch providers, while

it expected the provider to invest in capacity as if it were under the competitive threat of its customers

switching to an alternative supplier. If some light users became fed up with the generally high level of

congestion being caused by the strategising players, they might leave for another network, removing the

need for the provider to invest in capacity. Then the strategising players would lose all they had invested

in the game without getting the provider to expand capacity before their demand increased as they knew

it would, causing them further congestion costs.

We have not, and cannot, prove whether the capacity expansion game could be systematically suc-

cessful. If it were successful in some scenarios, it would imply that the integrity of re-ECN pricing

signals can be confused by a strategising player. But we hope that we have cast sufficient doubt to

place it in the background, as a possible opportunistic attack rather than a systematic flaw requiring a

systematic solution.

Bandwidth Flooding Attacks

The re-ECN protocol introduces the possibility of some protection against bandwidth flooding attacks.

No hard claims can be made about re-ECN’s ability to mitigate DDoS, but it does have the potential to

considerably raise the bar against attacks and to transfer liability for the cost of attacks back towards the

source, providing information and incentives to deal with them at source.

Considerable attention has been paid to DDoS issues since the brief explanation of re-feedback’s

DDoS mitigation capabilities in the original re-feedback paper [BJCG+05, §3.5], including publication

of a workshop paper on the issue [Bri06], the work in §8.2on networks attacking each other with dummy

traffic and the work below.

Bauer and Faratin [BFB06] published a dummy traffic attack on re-feedback that they mentioned

could be used to deny service. However, their primary target was to show that strategic users could

increasing congestion marking for others. This class of attacks is dealt with in §8.2

Re-ECN’s defence against bandwidth flooding relies on the flooded forwarding element(s) imple-

menting the optional preferential drop scheme recommended in §9.1. Then, whenever a queue is highly

congested to the point it is dropping packets, it will preferentially enqueue arriving Cautious and Positive

packets. This protects the forwarding service at the very first step of the queuing process. Therefore, any

packets not marked positively by an attacker would contribute nothing to the force of an attack.

12.1. System Attacks on Congestion Signal Integrity 184

This is because a highly congested queue will be marking most packets that it does serve as ei-

ther Negative or Cancelled. So a well-behaved re-ECN source would have to respond to the resulting

continuous congestion feedback by sending all packets as Positive (after the initial Cautious packets).6

We will now derive formulae for the force of such an attack, then roughly quantify the mitigating

effect of the re-ECN system.

Initially, we will assume the case of a malicious source sitting behind the most liberal re-ECN

congestion policer we believe will be deployed (§11). The policer limits the source’s congestion-bit-

rate to a contracted peak of̂wC and to a contracted fill ratewC � ŵC once any built-up congestion

allowance has been used up.

As we have shown that only positively marked packets can carry any attack force, the contracted

congestion-bit-rate limits essentially act as limits on thetotal bit-ratexA that an attack source can con-

tribute to a bandwidth flooding attack, that is

xA ≤ ŵC

and once any stored allowance is used up

xA ≤ wC .

A typical contracted congestion-bit-ratewC will allow for path congestion conditions averaged over

a monthp̄; a reasonable activity factor over the monthυ; and a reasonable expected proportionη of peak

access bit-rateX when active, such that

wC = p̄υηX. (12.3)

Typically, a site’s contracted peak congestion-bit-rate would prevent it causing unreasonably high con-

gestion levelŝp, even at its full access bit-rate.

ŵC = p̂X. (12.4)

And, if a site were allowed to store upB unused congestion allowance (in units of bucket fill-time), it

could sustain this peak congestion-bit-rate for a maximum time (from full bucket to empty) of

T̂C =
wC

ŵC
B

=
p̄

p̂
υηB. (12.5)

For a typical residential customer, the following ‘ball-park’ values for these parameters seem rea-

sonable:

p̄ average congestion: from 0% to 3% at worst, with perhaps 0.2% a reasonable average [CC08];

υ activity factor: perhaps 20%;

6Assuming there is a re-ECN dropper function after the congested link’s marking process, sending any Neutral packets would

risk running into debt at the dropper, without easily being able to balance it with a Positive packet, because all Positive packets get

cancelled by the congestion.

12.1. System Attacks on Congestion Signal Integrity 185

X peak access bit-rate: 100Mb/s;

η expected proportion of access rate attained when active: perhaps 70%;

p̂ maximum allowed congestion: 10%;

B stored unused congestion allowance: 6hrs fill-time.

Thus giving estimates of

xA ≤ ŵC ≈ 10Mb/s

for duration T̂C ≈ 1minute

and thereafter xA ≤ wC ≈ 30kb/s.

Even 100Mb/s customers expecting 100% of their access rate all the time (η = υ = 100%) would only

need to contract for a congestion policer fill ratewC ≈ 200kb/s. So if the scenario were otherwise the

same, their token bucket would be able to sustain a peak congestion-bit-rate 10Mb/s attack for at most

about 7 minutes before limiting the attack to 200kb/s.

Thus, a single attacker with a 100Mb/s access link would only be able to sustain a flooding attack

in the tens or low hundreds of kb/s. Therefore, to saturate a 10Gb/s link, it would take a botnet of about

100,000 residential sites. Although botnets of this size are not uncommon, the take-away point is that, if

congestion policing were prevalent, botnets would need to be about three orders of magnitude larger to

achieve the same effect.

Of course, candidate hosts for a botnet can be selected from those not behind residential congestion

policers. Various attack strategies that might be adopted are tabulated in Table12.1against a suitable

remedy in each case.

Active Detection and Intervention.So far we have considered how the re-ECN incentive framework

strongly damps flooding attacks merely as a fortunate side-effect of getting end-points to manage their

regular every-day congestion. Nonetheless, networks can further exploit the congestion information

re-ECN reveals to them. Flooding attacks appear as a stream of traffic towards a common destination

address or prefix with marking approaching 100% downstream congestion (i.e. nearly all positively

marked packets). Essentially, re-ECN information greatly amplifies the visibility of flooding attacks at

source for attack detection systems to pick up, and it provides an incentive for the network at the source

to do so.

This was the theme of the workshop paper by the present author “Using Self-Interest to Prevent

Malice; Fixing the Denial of Service Flaw of the Internet” [Bri06]. Active detection of DoS attacks is

outside the scope of this dissertation, but the general idea will be briefly summarised here.

The goal of re-ECN is to allow evolution of a wide range of innovative transport behaviours in

response to congestion, while providing incentives that cajole all approaches towards a responsible,

responsive middle ground—neither insensitive nor unnecessarily over-sensitive.

One could describe a flooding attack as an innovative response to congestion. (Using other people’s

congestion allowances is even more innovative :) But on the spectrum of responses to congestion, one

12.1. System Attacks on Congestion Signal Integrity 186

Strategy Remedy

Attack sources could be selected in networks
not policing congestion, and still programmed
to send Cautious or Positive re-ECN packets.

Networks using re-ECN to limit congestion
would deploy bulk congestion policers at their
borders with any network not deploying re-ECN
congestion policers.

Attack sources could send legacy packets with-
out re-ECN markings.

On congested forwarding elements employing
preferential drop based on re-ECN markings,
legacy packets would have no attack force
against re-ECN packets, as already discussed.
Also, one would expect bulk congestion policers
around a network to also limit the straight bit-rate
of packets without re-ECN markings.

Attack sources on larger sites (e.g. enterprise
networks or campuses) might sit behind a bulk
congestion policer for the whole site that would
less stringently limit the congestion-bit-rate
they could cause.

But, of course, this would limit the force that
could be amassed from a number of attack
sources in one site. Indeed, one would expect
a contracted peak congestion-bit-rate to be much
lower for a congestion policer serving a large ag-
gregate, because the variance in congestion-bit-
rate over time should be greater for single users
than aggregates.7

Table 12.1: Further DDoS Attack Strategies and Remedies.

would expect a wide expanse of clear water between even an inelastic transport and a DDoS flooding at-

tack. The difference is only apparent if congestion is compared with bit-rate. An inelastic transport might

temporarily exhibit no response to congestion when congestion is low (perhaps having used congestion-

based flow admission control). But if both congestion and bit-rate are extremely high, a transport that is

still unresponsive will be highly suspect.

If a host attached to networkNA is part of a ‘zombie’ army (controlled by a botnet master) causing a

high volume of congestion in networkNB , the re-ECN border mechanisms (§8) will ensure the network

NA harbouring the source recompenses networkNB .

But this cost, in itself, is not a sufficient incentive to make networkNA want to act against the

offending traffic, because the re-ECN incentive framework ensures that a source cannot cost a network

more than it has paid. Even if the victim of the attack is in the same network (NA) as the source,

one could argue that networkNA is fully recompensed for the reduced network quality that its other

customers experience, by the allowance it draws from its ‘zombie-customer’.

However, networkNA does have a strong incentive to help its zombie-customer; either silently, by

discarding the attack traffic before it uses up the customer’s allowance; or more actively, by helping the

customer remove the offending malware. The zombie-customer gets no utility from the attack traffic and

effectively loses some access rate. So a network that continues to cash-in from such traffic will merely

appear more expensive and lower quality than a competitor.

7Congestion is non-linear, so it would be unlikely to be normally distributed over time. If it were, its variance would scale

O(1/
√

n) with n users by the Central Limit Theorem.

12.1. System Attacks on Congestion Signal Integrity 187

Effectively, the network has two customers in one: a white-market and a black-market customer.

But the network cannot gain from the parasitic black-market without risking losing a white-market cus-

tomer. Although black-market revenues could be quite large, they would never be worth the risk of losing

much greater white-market revenues, because a parasite cannot survive without a healthy host.

Single Packet Flow Attacks

Negative Single Packet Flows.An attacker (or an accident) might create many single packet flows,

each consisting of a Negative packet. These would not decrement the token bucket at the ingress bulk

congestion policer. Indeed it might seem as if they would conceptually consume negative tokens and

therefore act to fill the bucket. They would eventually reach the egress dropper and be treated with the

Bulk of misbehaving packets. This would rapidly cause the dropper’s Bulk flow state to accumulate a

highly negative balance and discard them all. But on the way, it seems they could wreak considerable

havoc traversing intervening networks. They could drag down the metering of downstream congestion at

any borders they crossed, at least until they were picked up in a sample of the Downstream Congestion

Inflation mechanism.

Happily, the proposed ingress policer of §11 should stop Negative packet attacks at source. It

includes a module to determine how much to discard which is identical to the per-flow egress dropper

of §7. This dropper would treat all these Negative single packet flows in the Bulk of misbehaving flows,

just as an egress dropper would; rapidly leading it to discard them all. Alternative ingress policer designs

SHOULD make sure they also included dropper behaviour that would block such attacks.

Cancelled Single Packet Flows.It might seem that numerous flows of single Cancelled packets could

be used as a dummy traffic attack (or as the result of an error). The egress dropper (§7) deliberately

allows them through untouched, on the grounds that they might be congestion marks within legacy ECN

traffic. However, the ingress policer of §11 comes to the rescue again in this case. Its algorithm for

metering downstream congestion to consume tokens from the bucket counts Cancelled packets as part of

its normalisation of downstream congestion (§8.2.7). Thus, such attacks would be blocked as the token

bucket rapidly emptied.

Dummy Neutral Background Load

Bauer & Faratin [BFB06] pointed out that sources could be motivated to send dummy traffic at little

or no cost to themselves just to increase congestion marking levels within some interior network, not

intending to cause any drop. Such sources might be motivated by a desire to confuse the network into

investing in capacity at other people’s expense (§12.1.1), or simply to cause expense to others (whether

targeted or random others).

A source could simply send Neutral packets whenever it had nothing else to communicate. Neutral

packets might not get very far if they all used separate flows IDs, because the dropping module within

the ingress policer would include them in the Bulk of misbehaving flows, perhaps dropping most of

them. But, for the cost of a single Cautious packet, valid flow-state could be opened in the ingress

dropper allowing through large numbers of Neutral packets. There would be no need to send any Positive

markings in such flows, as long as the flow was sufficiently Positive to get through the dropper within the

12.1. System Attacks on Congestion Signal Integrity 188

ingress policer. The source would not need to balance any Negative congestion marking added later on

the path. Its nefarious purpose would have been met if it caused congestion somewhere in the middle of

the network. The source wouldn’t care if the flow became Negative to be discarded by an egress dropper

before leaving the Internet.

Bauer & Faratin correctly point out that, for a flow causing some congestion, no network element

before the first dropper after the congestion can rely on the expected downstream congestion the flow

declares. Therefore, to strictly assure congestion signal integrity, every network element would have to

run a per-flow dropper. Taken to this extreme, the re-ECN wire protocol would allow a negative flow to

be immediately identified locally at whatever point it became persistently negative.

However, the ‘Sample-Based Congestion Volume Inflation’ process (§8.2.4) is proposed as a prag-

matic alternative to ubiquitous deployment of droppers. It aims to eventually remove under-declaring

flows, at least from the point where they become negative, but only lazily. Push-back further isn’t re-

quired, but is optional using hints. The most important aim, though, is to remove the polluting effect of

negative flows from border measurements. This removes any financial motivation for networks to attack

each other.

This process accepts that not all congestion signals will always be sound. It prioritises aligning

all the networks’ incentives to remove negative traffic above actually removing it. A detailed rationale

is given in §8.2.4, which admits that it is more an architectural direction than a detailed mechanism

proposal at this stage. Briefly, the following steps are proposed:

1. Remove inter-network attack motives, align the incentives of all networks to remove negative

flows;

2. Use localised sampling solutions to detect negative flows;

3. Optionally pass on trace-back hints;

4. Attack the root cause lazily.

12.1.2 Networks Against Endpoints

‘Faked’ Congestion Marking

A network operator being able to fake ‘congestion’ marking is a feature of the re-ECN framework,

not an attack. When we first defined ‘congestion signal integrity’, we warned that it should strictly be

termed ‘shadow-price signal integrity’. If packet marking is used for market pricing, it is only equivalent

to congestion marking in a perfectly competitive market [MMV95]. Then the market price will tend

towards the congestion price.

In a network, some links may suffer less competition than others, and competitiveness may change

over time. Certain key links may provide the only route to a particular part of the world. Or there may

be a temporary surge in interest in communicating between two parts of the world, but no quick way

of providing extra capacity. There may be commercial or political barriers to entry that make it hard to

compete against certain links.

12.1. System Attacks on Congestion Signal Integrity 189

In such cases of imperfect markets for specific connectivity, an incumbent network operator might

well ECN mark packets more often than they would need to if they were only signalling congestion. One

could say this ‘faked’ the existence of congestion in order to raise the price. But, if a market is generally

competitive, one cannot really argue that the originator of a price signal shouldn’t be allowed to set the

price as they see fit. A high price for scarce but popular connectivity encourages competitors to invest in

alternative routes, which is all part of the competitive process that drives the price downwards towards

the marginal cost of capacity, below which no competitor wants to go—at least not for sustained periods.

One motivation for the contract & balancing mechanism mentioned earlier [AKS06] is to prevent

networks profiteering from congestion marking once they have signed up their customers. The opera-

tor’s total revenue is fixed at the initial contract stage, because the balancing charges must all sum to

zero. However, no mechanism is proposed (and none seems viable) for customers to check whether the

operator has indeed set all the balancing charges so they sum to zero as promised.

It would be possible for strategising networks to attempt the ‘Predation Game’ [BFB06] where they

route traffic onto paths heavily used by competitors to increase their price disproportionately. However,

this game assumes a convenient network topology for the attacker, so that the ‘predatee’ network cannot

itself react to the high price and move its traffic to other paths— indeed it may both reduce its own price

and counter-attack against the predating network, reflecting the original strategy.

In general, if congestion signalling is widely used to align user and network incentives, one would

expect traffic to continually shift [KV05], continually aiming to converge towards equal congestion at

all links [WHBB08]. As soon as any one network attempted the predation game, end-points and other

networks would shift traffic around to continue to try to converge towards equalised congestion.

Thus, routing is the foundation of competition in networks. And routing based on packet marking

information would tend to create a highly competitive market. Indeed, by revealing the price from

any point in the network interior to a destination, re-ECN could oil the wheels of competition further.

However, routing needs to see the cost of all paths, while re-ECN doesn’t reveal a price unless a path

carries traffic. Nonetheless it would potentially be possible for the local routing process to ‘fill in’

the cost of jumps from paths where flowing data would reveal the downstream congestion cost to all the

other points without data flowing to that prefix (described in more detail in an early technical report on re-

feedback [BCSJ04]). By adding up measured congestion at each link along the jumps, the routing system

could gradually find lower cost paths than those currently offered by the routing system. However, no

detailed research on this topic has been attempted, and further discussion on using re-ECN to offer new

lower cost routes is outside the scope of the present dissertation.

Although competition is generally intensified through congestion-informed routing, there is one

case of particular concern; the termination monopoly, discussed below.

Termination Monopoly

The term ‘termination monopoly’ originated in telephony markets. Most individuals only have one

telephony provider at a time. Once an individual has chosen their access provider, the only route to that

individual from elsewhere is via that provider. Therefore, if part of the charge for others to make a call

12.1. System Attacks on Congestion Signal Integrity 190

to that individual is set by the terminating access provider, it has what is termed a termination monopoly.

This charge by the monopolist may not be separately visible to the party paying for the call; it may

only be visible as an internal charge on the interconnection market. But overall, retail prices will increase

to cover the monopolist’s internal charge.

The re-ECN framework is vulnerable to exploitation by termination monopolies. Re-ECN deliber-

ately uses a ‘sender-pays’ model, to avoid ‘denial of funds’ attacks against receivers. This is similar to

the ‘originator-pays’ model common in telephony, but at the packet rather than the call level. Once a

receiver has chosen its Internet access provider, senders have to route packets through that ISP to reach

the receiver; the ISP has a termination monopoly. If the monopolist ISP increases packet marking, the

sender has no choice but to consume more tokens if it wants to communicate with that receiver.

We argue that the termination monopoly problem should not be solved by re-ECNper se, but by

adding an end-to-end receiver-pays model over re-ECN—at a higher layer. Below, we outline multiple

reasons why a mix of sender-pays and receiver-pays is necessary and desirable, including to solve the

termination monopoly problem. But we argue that it could be dangerous to add a ‘receiver-pays’ model

at the packet network layer.

Termination monopolies are a consequence of two factors, each of which will be dealt with sepa-

rately below:

• The tendency for network access to be a natural monopoly;

• The economic externality of the receiver’s choice on the sender in a two-sided market.

Natural Monopoly of Network Access.Simple geography works against competition for physical net-

work access to a dispersed set of customers. Consumers can get little benefit from a second competing

access provider. Competition may bring down monopoly prices, but the base-cost per customer increases

when two (or more) physical networks cover an area—each network has to cover the same geographical

area, but for a sparser set of customers [Com02]. This argument applies even for competing technologies,

e.g. cellular wireless and copper access.

Because access network monopoly has a natural cause, remedies usually need to be regulatory. In

some jurisdictions, the regulator simply sets retail price caps. A successful regulatory strategy used in

the UK residential market is for the incumbent network operator to be forced to lease its lines to compet-

ing retailers at a regulated price (termed local loop unbundling). Typically, conditions are also placed on

the time and effort required for a customer to change providers (termed ‘switching costs’). Thus, local

loop unbundling creates largely unregulated retail competition by creating regulated wholesale competi-

tion [DR04].

Internet access is a logical layer on top of physical network access. If physical access is monop-

olistic, the monopolist can use its advantage to dominate in the Internet access market as well. But if

physical access is properly regulated, Internet access is not a natural monopoly in its own right. As long

as there are not other lock-in factors (like non-portability of network addresses) it is relatively straight-

forward for multiple Internet access providers to compete to provide service through one single physical

attachment point (or a small number of access points).

12.1. System Attacks on Congestion Signal Integrity 191

Although not common (yet), it is possible for a customer to multi-home Internet access over a

single-homed physical access. At the Internet layer this completely removes any cost and effort barrier

to switching providers. Multiple providers would be accessible simultaneously, so switching providers

can be achieved on a per-packet basis. This could be achieved by a transport protocol in the end-point

that could use multiple interfaces simultaneously [WHBB08]. Rather than each provider selling a fixed

portion of the access capacity and losing the benefits of multiplexing, all providers could offer the whole

of the available bandwidth. Then the customer could use any of the providers to access the Internet

(in either direction), only noticing any difference in how packets are routed and in available capacity

beyond the access link. Effectively, the multi-provider Internet resource pool could start at the home

access router [JBM08].

Two-Sided Market. Even if the receiver is multi-homed, this alone doesn’t solve the termination

monopoly problem. The problem is a consequence of communications markets being naturally two-

sided [FW06]. In a two-sided market a platform sells a product to two types of customer. Customers of

one type (e.g. senders) only get any value from the product if they can use it to access the other type (e.g.

receivers).

The re-ECN requirement to support ‘sender-pays’ as a default does not stem from a commercial

requirement, it stems from a technology constraint. Re-ECN is designed to ensure that the party directly

causing a cost can be held accountable.8 In a packet network, the sender directly causes the costs—the

receiver may ask the sender to cause the costs, but ultimately the sender can choose whether to or not.

It is necessary to make ‘sender-pays’ the default model for usage at the packet internetworking

layer. Otherwise, any charge to the receiver opens it to having to pay for unsolicited packets, while the

senders bears none of the cost [Bri99b].

Nonetheless, commercially it is desirable and necessary to support a mix of sender-pays and receiver

pays. Most transmissions are not unsolicited, and therefore both parties accrue some value from them. It

can often happen that the sum of the utilities of both sender and receiver is greater than the marginal cost

of a transmission, but neither alone are greater than this cost. Therefore if the sender, say, has to bear

all the cost, it will choose not to communicate on many occasions when it would have otherwise—if the

cost had been shared [Bri99b].

This problem can largely be solved by covering usage costs with a subscription, rather than per-

transaction charges [Arm06]. There is a subtle distinction between an unlimited-use subscription and

an allowance or quota. An unlimited use subscription solves the two-sided market problem but opens

up a new free-riding problem. A quota (as used by our congestion policer in §11) prevents free-riding

but doesn’t solve the two-sided market problem, because one party bears the cost of each transaction.9

Therefore, we still need a receiver-pays model.

We will now explain why support for ‘receiver pays’ can solve the termination monopoly problem

8The abominable term ‘cost-causation’ is used in the telephony interconnection literature, where the call originator is the

analogue of the packet sender.
9However, psychologically, a bulk quota can tend to merge the gains and losses from individual transactions in different

directions, smudging each per-transaction decision in favour of more communication.

12.1. System Attacks on Congestion Signal Integrity 192

too. When a receiver chooses its access provider or providers, its choice represents an economic ex-

ternality for senders who will have to pay to communicate with the receiver. Senders not receivers can

experience higher costs as a side-effect of the receiver’s choice. The receiver has no direct incentive to

choose a provider that minimises costs to senders.

Certainly, if the terminating ISP introduces higher packet marking, the sender’s congestion control

will tend to respond by reducing its rate. This seems to give receivers an incentive to choose an ISP

with lower downstream marking—a quality rather than price incentive. But the receiver can compensate

for this quality degradation by downloading in parallel from multiple senders (known as a swarming

download). If many receivers do this, marking will increase in the terminating network further still.

But until the marking represents real congestion (i.e. drop) receivers can always improve quality while

senders have to pay for it.

Therefore the only sure way to give a receiver the incentive to choose an access ISP that doesn’t

inflate its marking is to make it possible for a sender to ask the receiver to pay for (or at least contribute

to) the cost of a download. To avoid vulnerability to denial of funds attacks, it should be possible to

arrange ‘receiver-pays’ for a whole flow, but it would rarely be appropriate for a single packet flow,

except where trust prevails. That is why we argue it is only appropriate to arrange ‘receiver-pays’ at a

higher layer than the packet network, and for ‘sender-pays’ to otherwise be the default.

Arranging for the receiver to be accountable for the congestion markings on packets within a par-

ticular session is an interesting question, and there are a number of ways it might be done, but they are

out of scope of this dissertation. Here we only need to know that it is not appropriate to solve the termi-

nation monopoly problem in the network layer re-ECN protocol, and that it should be possible to solve

this important problem at higher layers.

Biased Congestion Marking

So far we have assumed that network AQM algorithms do not discriminate between packets when mark-

ing the presence of congestion. But we should consider whether adding price semantics to different

markings gives a network any incentive to mark some re-ECN packet types more than others. We are

solely concerned here about whether a network would want to discriminate how it spreads a total amount

of bytes of marks that it has already decided to apply. Given a network can chose the overall amount

of marked bytes at each link, there is no reason why it would want to mark more or less than this over-

all. Therefore below we consider whether there is any motivation to ECN mark packets arriving with

particular re-ECN codepoints more or less than others.

Marking a Positive or Neutral packet decrements the worth of either by one (to Cancelled or Nega-

tive respectively). So byte-for-byte there cannot be any reason to mark one more than another. Anyway,

there is an incentive not to mark them with different probabilities, because the downstream congestion

metering formula of Eqn (8.6) takes the maximum of the two marking fractions if they differ.

Congestion marking either Negative or Cancelled packets has no effect, because they are already

marked. One might therefore imagine that a network would prefer to mark other packets. Alternatively,

one might imagine that a network would just inflate its general level of marking to allow for hitting some

12.1. System Attacks on Congestion Signal Integrity 193

packets that were already marked. In fact neither view is correct.

A packet that is already marked on arrival at a link in networkNB , may either have been marked

by an upstream network or by an upstream resource withinNB . If the packet stream in question entered

NB fromNA at the upstream border withNA, previously marked upstream congestion costs should have

been taken into account using the precise downstream congestion formula (8.6) from §8.2.7.10 Similarly,

at the next downstream border, say into networkNC , this precise formula will also be used.

These precise formulae inflate downstream congestion allowing for the combinatorial probability

that previously marked packets cannot be marked again. Therefore, if a link wants to add a certain

amount of bytes of marking, its simplest strategy is to add that amount of marking to packets of all four

markings discussed so far with the same probability as each other. This will result in less bytes of added

marking. But the border formulae will inflate their meter readings so that the outcome results in the

required amount of marked bytes being considered to have been added.

There is no incentive to treat Negative and Cancelled packets with anything other than the same

probability, because neither marking has any affect anyway.

Marking a Cautious packet decrements its worth by two, rather than one (because a Cautious mark-

ing is worth +1 and when marked it becomes a Negative packet worth -1). If a network just marks all

packets with equal probability, the greater the proportion of Cautious packets in the traffic mix, the more

the network will overstate its marking relative to the amount it intended. On these grounds, a network

might wish to bias packet marking away from Cautious packets.

The proportion of bytes marked Cautious on the Internet is likely to be low, because the large

majority of bytes has always resided in large flows [Wis07], which should only have a few Cautious

packets at the start. Therefore a network may not consider it important to worry unduly about reduced

marking of Cautious packets, which would probably be complex to implement.

Marking Cautious packets has a higher chance of delaying a new flow from starting than marking

other packet types. In times of low congestion a network would not want to disproportionately mark

packets that might bring in new traffic. In times of high congestion, the network might consider marking

Cautious packets a useful strategy that afforded some degree of flow admission control.

Discriminatory marking of Cautious packets is deferred for further research. As far as can be

briefly ascertained, it does not seem to cause any particular harm to mark Cautious packets with the

same probability as other packets.

Of course, there are pre-existing incentives to bias congestion marking against packets in more

valuable flows—simple price discrimination. Although this is an interesting subject, the introduction of

re-ECN doesn’t change the incentives, therefore such bias is out of scope of this dissertation. Nonethe-

less, the availability of transparent congestion markings should allow customers to more easily test which

particular operators are biasing congestion marking against certain types of traffic.

10This also applies if the upstream border is with an end-customer—we recommended congestion policers should also use the

precise formula.

12.1. System Attacks on Congestion Signal Integrity 194

12.1.3 Ends Against Ends

SYN and Initial Packet Attacks

Public servers can be high profile targets, particularly when the information they hold is in high demand

(e.g. during flash crowds). At such times it takes minimal extra effort for an attack to push a server into

overload and causes maximum loss in value to the victim service and its clients.

Public servers (or stateful middleboxes protecting them) that intentionally listen for connection

attempts from any address (an ‘unbound’ LISTEN) cannot discriminate between initial packets of le-

gitimate flows and initial packets that they will later discover were unwanted. Both necessarily contain

unfamiliar source addresses so they cannot know whether the source address in the request might be

spoofed or whether the source intends to continue the connection attempt. At least they cannot know

without responding to the request and checking for a valid response. Initial packet attacks can have either

or both of two intended effects:

• they can exhaust connection setup memory on a server (or on a stateful middlebox);

• and they can exhaust link bandwidth (either of a server’s interface or further into the network).

§12.1.1outlined how re-ECN considerably raises the bar against bandwidth exhaustion attacks. The

present section discusses how re-ECN is also intended to help mitigate memory exhaustion attacks.

With intimate knowledge of the transport semantics, it is sometimes possible to prevent flow initia-

tion packets consuming memory on the server by turning round the connection state into a well-crafted

response, e.g. using SYN cookies in TCP or similar approaches in more modern transport protocols like

SCTP or the HIP base exchange [Edd07]. It would be useful to be able to offload this initial connec-

tion validation to middleboxes, but we want to avoid this resulting in middleboxes that never allow new

transport protocols to evolve.

Deciding whether a communication is unwanted is inherently a multi-layer process. For instance,

an e-commerce site might consider sessions as unwanted if they seem not to be heading towards a

sale [CP98]. Nonetheless, each layer should detect and reject any activity that does not meet the basic

requirements of communication at that layer. And it should contain any generic hooks that will help the

next layer up expedite such a decision.

The introduction of the Cautious marking into re-ECN has been overloaded with more than just

network layer semantics in order to help higher layers—but taking care not to do anything that is not

generic for all higher layers.

To a server, any packetwithoutthe Cautious marking means, “If your storage resources are stressed,

and if you have no matching flow state, this packet can be discarded, whether or not it claims at the higher

layer that it is the start of a flow.” Then a stressed server can concentrate on those initial packets that

show they were willing to ‘pay their way’ to get across the internetwork. This does not imply ISPshave

to charge or account for Cautious packets. But servers that want this protection can attach to ISPs that

limit Cautious packets at their outer borders.

Also the Cautious marking has been defined so that a server can offload initial packet processing to

12.1. System Attacks on Congestion Signal Integrity 195

a middlebox. They can either turn round initial packets on behalf of servers, or they can forward on valid

initial packets to the server. The architecture supports chains of middleboxes, so that there is no problem

if independent deployments place more than one middlebox on a path. Middleboxes can protect their

own memory in the same way that re-ECN is designed to protect a server’s memory resource.

The various elements that re-ECN provides to help higher layers with initial packet have been

introduced in a rather piecemeal way throughout this dissertation. Therefore, §12.2.1entitled ‘Flow

Start Architecture Revisited’ brings all the elements together. We defer further discussion to that section.

Suffice to say, the new architecture gives higher layers as much generic help as possible with packets that

might start new flows. However, the IP header remains generic—as stated above, the Cautious marking

doesn’t even mean ‘flow start’.

We have also defined a congestion signalling channel to support this relationship between middle-

boxes and servers. It allows a middlebox to warn a server if it has not stored flow-state for an initial

packet due to memory congestion (§10.1). And forwarding elements can also congestion mark initial

packets if their bandwidth is congested (§9.2). Then the server can feedback the congestion status of an

initial packet request, so that valid clients quickly know what has happened and what hasn’t happened.

State Keep-Alive Attack

This attack can be launched by an end-point against any machine that holds flow-state, whether a server

or a middlebox such as the re-ECN dropper itself. It will be described as an attack against the re-ECN

dropper to be concrete.

A malicious source can try to exhaust the memory of the dropper by creating many single small

packet flows, with Cautious markings. The dropper could be forced to create as much flow state as could

be triggered by single packet flows sent within one idle flow state minimum timeout. One source with

uplink capacityC could hold open memoryS = MCTi/smin, whereM is the memory held per flow

entry,Ti is the minimum idle flow-state timeout andsmin is the minimum packet size that can legally

initiate flow-state.

This would be costly to the source, given it is likely to be limited by its network provider in how

much Cautious traffic it can send in a certain period (for example, using the congestion policer of §11, in

which caseC would be taken as the maximum rate of Cautious packets). But a source may still achieve

its malicious objectives to launch the attack for a short while without regard to its own long term welfare.

Particularly, if the attack is launched from a zombie host under the control of some other malicious party.

The maximum memory that a set of misbehaving source can cause the dropper to allocate is ulti-

mately limited by how much they can hold open, not how much they can open in the first place. This is

a much more efficient attack, because each memory entry only has to be paid for once. Having opened

some flow-state with a Cautious packet, at least one packet per flow-state entry per timeout period is

needed to hold the memory open (the sender need not ‘pay’ anything more for these so-called ‘keep-

alive attack packets’). Even if Cautious packets are rate limited, more and more memory can be opened

as tokens become available for further Cautious packets, as long as sufficient capacity is left for all the

keep-alive attack packets. However, if there is also path congestion between an attacker and the dropper,

12.1. System Attacks on Congestion Signal Integrity 196

it will have to consume Positive quota to hold open dropper memory as well as Cautious packets to open

new flows.

Ultimately, the maximum memory that can be held open will still be that predicted by the above

formula forS; at least one packet per flow per timeout period. ButC should not then be taken as the

maximum rate of Cautious packets. Instead it will be the maximum line rate for Neutral keep-alive attack

packets (for a whole set of attacking sources). Beyond this point, a set of misbehaving sources would

be unable to make the dropper consume more memory; in order to cause the dropper to allocate more

memory they would simultaneously have to release the same amount.

Receiver Suppression of Feedback

For a source-destination pair that are trying to communicate, re-ECN creates an incentive for the receiver,

not just the source, to assure the integrity of the downstream congestion signal declared to the network

by the source. If the receiver suppresses congestion feedback in the hope the source will go faster,

the dropper will still detect that the source is under-declaring actual path congestion and proportionately

discard traffic. In other words, download rate depends as much on honest feedback as honest re-feedback.

However, the dropper’s sanction only hurts if the receiverwantsthe downloaded data. If, instead,

the receiver merely wants to make the sender consume its own congestion quota, or its own bandwidth

resources, it can do so by suppressing congestion feedback. This class of attacks potentially harms the

integrity of the re-ECN congestion signal, although that is likely to be a side-effect, not its intent.

The attacking receiver doesn’t gain itself from this attack, which merely moves money into the

pocket of a network operator at the expense of a remote sender. But even though the receiver doesn’t

gain, it’s attack could be motivated by a grudge against the server.11 Further, the receiver and the gaining

network might be acting in collusion or, indeed, they may actually be one and the same entity.

Before we point to solutions to this class of problems, we will argue next that the end-to-end trans-

port or application layer is the appropriate place for solutions, not the network layer.

An End-to-End Problem. Ultimate control over sending lies with the sender. If a receiver fools a server

into dedicating a large fraction of its own resources (whether bandwidth or congestion quota) to that

receiver, the server only has itself to blame. A server doesn’t have to apportion its resources according

to the congestion experienced across the network path of each connection. That is probably a sensible

strategy if the server is not the bottleneck. But otherwise, the server should consider its own congestion

as well. And there is no reason why the server cannot determine its own sharing policies.

A server might use a congestion control that always consumes a constant token rate for each con-

nection (i.e. proportionally fair flow rate). Then if a receiver under-declares path congestion, the source

will go faster for that connection, but still consume tokens at the same rate per connection. But one

destination may open many connections from the same server, but make the server think they are all

different. Or one destination might open many more connections over time than others, but use different

addresses for each one. The network itself might be creating fake requests in order to swell its revenues

by triggering multiple payments for deliveries of content from the server to itself.12

11Recall by Assumption8.1our attack model allows end-points unbounded malice.
12Precise accounting for marginal costs highlights this problem, but it exists otherwise. For instance, if a server’s network

12.1. System Attacks on Congestion Signal Integrity 197

If a server were concerned about such ‘Sybil’ (split identity) attacks, it has it within its power to

counter them, perhaps using end-to-end authentication to tie each connection to a real-world identity, or

some pragmatic alternative13. This is an end-to-end authentication matter that we shouldn’t try to solve

in a network layer protocol.

It has become common for many public servers to offer content to all-comers. If there are attendant

delivery costs, the server chooses to take the risk of paying for all the delivery costs even if some transfers

to some receivers don’t warrant any payment, or if some receivers overuse the service. If a server is

concerned about abuses of its generosity, it shouldn’t offer to pay for delivery to all-comers without first

establishing the real identity of its customers. This is an end-to-end matter that is likely to be separate

from the network layer accountability that re-ECN offers.

Why Not an End-to-Middle Problem? As we have seen, a receiver that is only interested in causing

costs to a server can under-declare path congestion. The tokens the server consumes will only cover the

cost of congestion up to a point part way along the path. Networks up to this point do not suffer any

harm as they are fully recompensed for the externality of their congested transmission. Networks beyond

this point can detect there is a problem with negative flows and remove the offending traffic to protect

themselves against losses, albeit not instantly (see §8.2.4 on Sample-Based Downstream Congestion

Volume Inflation).

Therefore, it seems that the hapless server is left exposed. Networks can cover their backs, either

ensuring their costs are covered, or removing traffic if they are not. But networksseemto have no

incentive to advise the server that it is paying them to transmit data partway across the Internet only for

it to be discarded in the middle.

In fact, networksdohave an incentive to help servers pay them less; by helping to remove unwanted

traffic. My paper on “Using Self-Interest to Prevent Malice” [Bri06] explains that a network that helps a

sender stop spending on useless data transfers gains a competitive advantage over another network that

quietly pockets the proceeds, as summarised in §12.1.1—gains from the black market aren’t worth losing

a much greater volume of white market business. Therefore networks have an incentive to use the ‘lazy’

process of tracing back negative flows to their root cause, as described in §8.2.4. If this process leads a

network to accuse an innocent sender of being the root cause of attacks to certain destinations, it should

be within that sender’s power to test and black-list the offending destinations.

As we show below, it is indeed within the sender’s power to test the integrity of congestion feedback

from any destination on an end-to-end basis without any help from the network.

Proposed Solutions.The ECN nonce [SWE03] is an experimental network layer solution to this prob-

lem. The ECN field provides the redundancy of two states to mean ‘not congestion marked but able

to understand marking’. The source can weave a nonce into a stream of packets by setting either of

these states in a pattern it stores. Then it can detect if the receiver or any network element has tried to

charges depend only on its access capacity, the network can generate fake server demand to increase the capacity the server needs

to buy.
13For example, from the author’s personal experience, Google servers under stress from a perceived DDoS attack issue

CAPTCHAs—Completely Automated Public Turing test to tell Computers and Humans Apart.

12.1. System Attacks on Congestion Signal Integrity 198

‘unmark’ a congestion mark, or deny a drop. A congestion mark sets the ECN field to a third codepoint.

For every acknowledgement claiming no congestion was experienced, a TCP14 receiver is asked to feed

back a one-bit sum of all the nonces seen since the last congestion event. So if anyone15 tries to unmark

a packet, or deny a drop, they have to guess which of the two ECT states the sender originally set. The

sender can then detect whenever they guess wrongly with a 50:50 chance per acknowledgement.

Due to pressure on IPv4 header space, re-ECN had to re-use the same codepoint as the ECN nonce

for one of its encoding states (Positive). Therefore both cannot be used simultaneously in the same

internetwork (for IPv4 at least). The reasoning for proposing to sacrifice the ECN nonce was that re-

ECN covered a much greater attack space and, as far as anyone can ascertain, the nonce has never been

implemented anyway.

However, although the attack space re-ECN covers is much larger, it is not a complete superset of

that covered by the ECN nonce. The one part of the attack space covered by the ECN nonce but not by

re-ECN is that described above—where the receiver doesn’t care about getting any data, it just wants to

cause expense to the sender (see ‘Why Not an End-to-Middle Problem?’). Although re-ECN networks

should eventually be able to trace the attack back to the sender, if the sender knows it is innocent it needs

a way to check whether the receiver is indeed the root cause of the attack, or whether it has been falsely

accused by its network provider. If such an end-to-end test were possible, the sender could obviously

use it to identify a non-compliant receiver at any time, not just in response to an accusation from the

network.

Moncasteret al [MBJ07]16 proposes such an end-to-end test. It is specific to TCP and has the

advantage that it does not require a receiver implementation to be modified in order to be found guilty.

A modified source picks a receiver to test, then occasionally randomly adds a small delay to a segment,

so it appears slightly out of order at the receiver. If a receiver reports receipt of the segment in order it

comes under suspicion, but is not proven guilty. The second phase of the test delays a packet by more

than an RTT, which can prove the receiver is lying—if it acknowledges receipt of an unsent packet.

Moncasteret al also provides a survey of this class of attacks and other end-to-end defence tech-

niques, including Savageet al’s end-to-end transport layer nonce proposal [SCWA99].

To summarise, receivers can launch some very nasty attacks on senders that threaten the integrity

of congestion signals. However, solutions to receiver suppression of end-to-end feedback should be

end-to-end, not in the network layer. Good end-to-end solutions are available that complement re-ECN

congestion signal integrity protections at the network layer. Therefore, further detailed coverage of this

issue can be ruled out of scope for the present dissertation, as it is sufficiently covered by the above

references.

Single Packet Reflection Attacks

This class of attacks is targeted at servers that are designed to automatically respond to datagram queries

with reasonably large datagram responses (e.g. DNS servers). A client can send high volumes of small

14The 1-bit nonce only works for transports like TCP that provide in-order delivery.
15Whether receiver or network
16Co-authored by the present author.

12.1. System Attacks on Congestion Signal Integrity 199

datagram queries and cause the server greater cost by responding to each query with a larger response

datagram. To get these datagram responses through the re-ECN system it has to mark them as Cautious.

The client could spoof different source IP addresses each time.17

This attack actually exposes two separate problems.

• Services that are expected to turn round quick, small responses to queries are vulnerable to spoofed

queries. This is a problem that predated re-ECN and has many proposed solutions. This first aspect

of the problem is therefore out of scope of this dissertation.

• Re-ECN requires flows to start with a Cautious marking, the relative cost of which increases

excessively for shorter flows.

So far, we have conveniently been able to dismiss this cost, tending to amortise it over a mix of

longer and shorter flows. However, if large numbers of single packet flows all have to use the Cautious

marking, it could make running a directory server far more expensive than would be warranted by the

actual costs of congestion even if the uncertainty of predicting congestion for single packets is added.

We have already mentioned (§6.1.2) that the worth of a Cautious marked byte need not equate to a

Positive Byte, but instead find its own market price. This is the proper solution to this problem, but our

dropper design would have to be considerably modified as it assumes these two markings are equivalent.

The problem this issue really highlights is lack of space in a packet header to allow anything other than

a unary price for each byte in a packet.

Other work-rounds are possible, but they all move the problem around rather than solving it prop-

erly.

• One could argue that re-ECN merely exposes the cost of opening many single packet flows without

knowing the state of resources on their path. A directory server often has long-lived relationships

with a set of clients. If re-ECN gave it the incentive, it may well switch to maintaining TCP

connections with these, rather than using UDP datagrams.

• A directory server serving a mix of datagram and connection clients might rate limit use of Cau-

tious markings so it would prioritise long-lived relationships when under stress.

• The directory server could mark some responses as Neutral when under stress and risk them being

dropped by a re-ECN dropper;

• A directory server might expect clients to ’pay’ from their quota to assure a response, using an

end-to-end quota transfer mechanism (see §12.1.2on solving Termination Monopolies);

• §12.1.4includes speculation that a proxy might aggregate short flows into fewer larger flows, using

its aggregated knowledge of congestion on fewer shorter paths. In turn queries to and responses

17A colleague, Adam Greenhalgh first pointed out this issue at the 5th CRN/CFP architecture working group on a Denial-of-

Service Resistant Internet, Cambridge, UK, 21 Nov 2005. Mark Handley also pointed out an amplification of this attack that he

had previously identified (separately from re-ECN): a client can greatly amplifying the necessary size of responses by requesting

DNSSEC authentication of a response without authenticating its own identity.

12.1. System Attacks on Congestion Signal Integrity 200

from directory servers could be directed via such proxies, which might reduce the need for sin-

gle packet flows by aggregating together queries and responses to and from numerous directory

servers. However, for each connection with a directory server that is split by a proxy, two concate-

nated connections will generally result. Only the split connections from the proxy to the directory

can be aggregated, while the individual connections between each client and the proxy would all

still be on separate paths. Thus the cost of opening multiple connections would simply shift from

the directory server to the proxy.

Further research is therefore needed on whether re-ECN’s high relative cost to services offering single

packet responses can be mitigated. directory services.

12.1.4 Byzantine State Transitions

End-to-End Integrity Checks

The encoding of the re-ECN wire protocol [BJMS09a] has been devised so that all legal transitions

within the protocol do not change theREflag (the extra header bit used to extend the two-bit ECN field)

once it has been set by the source. This allows an end-to-end transport to detect if any illegal transitions

have occurred in transit, by comparing theREflag sent and received.

In IPv4, theREflag is considered mutable (even though a use for it has not previously been defined).

Therefore it is masked out before applying IPsec authentication, so it is not covered by end-to-end

integrity checks. In IPv6, we also arrange for the extension header used for theREflag to be considered

mutable by IPsec. We took this approach to allow proxies to change the flag on behalf of the sender.

Therefore, if the source or the transport wishes to check the integrity of theREflag setting, it will

need to arrange it’s own higher layer integrity check. This would be relatively easy to do, but we have

not made any specific proposals on this. Such a proposal would either require the sender to trust the

receiver’s feedback or to arrange to include this bit in end-to-end integrity checks (§12.1.3).

It would seem that simple feedback without any cryptographic checks would typically be sufficient.

In the re-ECN protocol, there are no cases where the sender relies on feedback from the receiver of a

change to the RE flag (because it is not expected to change). Therefore if the source asks a receiver it

doesn’t trust to feed back the setting of the RE flag it received, receivers seem to have little independent

incentive to lie—other than to falsely accuse the network of changing the flag, or to collude with the

network to hide a change in the flag.

The tentative ‘Covert Marking’ proposal in §11.3.1to extend the re-ECN protocol is an exception

to the above. The policer changes theREflag on Positive packets to warn the transport that the drops

it is experiencing are probably due to policing, not congestion. A robust feedback mechanism for this

extension in the presence of an untrusted receiver is yet to be designed (see §§12.1.4& 13.2).

Re-ECN Unexpected State Transitions

Figure12.2shows unexpected transitions between re-ECN protocol states. It was compiled by taking all

the possible transitions between the five re-ECN codepoints and subtracting those defined for the re-ECN

wire protocol (see Fig6.2), leaving the remainder shown in the diagram.

12.1. System Attacks on Congestion Signal Integrity 201

wiping

wiping

double
markable

neutral
(0)

negative
(-1)

positive
(+1)

cancelled
(±0)

cautious
(+1?)

sup-
pressed

start

cautious
marking

false
start

double
wiping

false start
wiping

congestion
marking

wiping

covert
marking

irreversible
wiping

second
marking

double
wiping

markable

unmarkable

double
marking

e2e integrity checks can
detect if markings
cross this divide

Figure 12.2: Re-ECN Unexpected State Transitions.

neutral
(0)

negative
(-1)

positive
(+1)

cancelled
(±0)

cautious
(+1?)

create cancelled

created
packet

create negative

Figure 12.3: Re-ECN Unexpected State Initialisation.

neutral
(0)

negative
(-1)

positive
(+1)

cancelled
(±0)

cautious
(+1?)

aggregator
re-echo

regular
aggregation

proxy
start

proxy
re-echo

Figure 12.4: Re-ECN Expected Proxy State Transitions.

12.1. System Attacks on Congestion Signal Integrity 202

The horizontal (dotted) divide through the middle of the diagram separates two sets of codepoints

that are distinguished by different settings of the binaryREflag. The wire protocol has been devised so

that all legal transitions within the protocol do not cross this divide. Then an end-to-end transport can

detect whether any unexpected transitions have occurred in transit (see ‘E2E Integrity Checks’ in §12.1.4

above).

It will be noted that the large majority of unexpected transitions are those that cross this divide

(shown dashed). There is no harm in the end-points making these transitions; the source would only be

fooling itself and the receiver is not relied on to report anything that would be affected by any of these

transitions (as just pointed out under ‘E2E Integrity Checks’).

The only exception to this statement is the tentatively proposed use of ‘Covert Marking’ as a sig-

nalling channel from a policer to the transport. This is also discussed under ‘E2E Integrity Checks’ in

§12.1.4above.

There are two remaining types of unexpected transition that are less easy for the transport or the

source alone to detect, as they do not cross the horizontal divide:

‘Wiping’, ‘Double Wiping’ or ‘False Start’: Wiping or Double wiping reverses congestion marking.

§12.1.3on ‘Receiver Suppression of Feedback’ discusses this issue and points to end-to-end solu-

tions, arguing this should not be treated as a network-layer problem. Networks could theoretically

reverse congestion markings, but they have no incentive. A marking inserted by a forwarding el-

ement earlier in the path can either have been added by the local network (NB) or an upstream

network (sayNA). The local networkNB has no incentive to remove its own markings, and it

has no incentive to remove markings already added by an upstream network such as (NA. If NB

removes Negative markings the feedback loop reduces Positive markings, making the whole effect

equivalent toNB giving money to its upstream networkNA. Regarding ‘False Start’, a network

has no incentive to revert a Neutral packet to Cautious either (again, equivalent to paying money

upstream).

The anomaly detection mechanisms introduced in §8.2.8are designed to protect against accidental

wiping of markings due to misconfiguration or other human error.

‘Cautious Marking’: This is the one transition a network could do that doesn’t change theREflag, but

isn’t covered by re-ECN’s wider incentive framework.18 It involves changing a Cautious marking

to Neutral, without actually congestion marking the packet (i.e. the protocol doesn’t define a Neu-

tral packet as a congestion mark, even though the end-points could work out between them that it

used to be a Cautious packet). We cannot see any motive for a network to make this transition, but

if a well-motivated attack is identified, we will have to find a way to protect against it. If a receiver

made this transition it would have no effect (because no-one relies on the receiver telling them it

has received a Cautious mark).

18But see the potential use of this transition as ‘Regular Aggregation’ in the discussion of ‘Proxy State Transitions’ below.

12.1. System Attacks on Congestion Signal Integrity 203

Re-ECN Unexpected State Initialisation

Figure12.3shows initial packet markings that a re-ECN source would not be expected to set if it com-

plied with the protocol. It was compiled by taking all the five possible initialisations of re-ECN code-

points and subtracting those defined as valid for the re-ECN wire protocol (see Fig6.2), leaving the

remainder shown in the diagram.

This section is merely included to show that an exhaustive check has been made of all possible

state transitions. Both the resulting unexpected state transitions have already been covered in §12.1.1on

attacks using Negative and Cancelled packets.

Re-ECN Unexpected State Removal

Unexpected removal of the state of a wire protocol is merely a convoluted way of saying ’packet drop’.

Re-ECN has been designed to be robust to drop, by carrying all numeric values as unary encodings (jus-

tified in §6.1.1). Treatment of drop as implicit congestion signals is discussed in §7.4.4on ‘Congestive

Loss’.

Re-ECN Proxy State Transitions

Figure12.4shows a subset of the unexpected state transitions of Fig12.2that would probably be nec-

essary for a proxy to act on behalf of a re-ECN source. The transitions shown are speculative, given

definition of a re-ECN proxy is for future study. This figure is merely included for completeness.

The transition denoted ‘Regular Aggregation’ is worthy of note. The re-ECN wire protocol was

speculatively designed so that a proxy could silently intercept re-ECN flows and aggregate them into

fewer larger flows, given its position closer to the middle of the Internet. The thinking was to provide

the incentives to keep the Internet’s congestion accountability mechanisms safe and efficient even if the

traffic mix became dominated by short flows, including single packet flows (a possible prerequisite for

the vision of ubiquitous computing [Wei91]). Otherwise such a traffic mix would leave the Internet

without the benefit of path feedback for most of its traffic. There would be a strong incentive to operate

such proxies if the proxy could absorb the excess value of all the Cautious packets initiating the small

flows, because it would need less Cautious packets for the aggregate it could create from all the tiny

flows. However this is all for further study because the receiver side of this proxy would require a

different commercial arrangement with the network from that we have described so far for a regular

receiver (zero income even from positive flows).

Tunnelling Re-ECN Codepoints

Tunnelling in the context of the re-ECN protocol is defined in the protocol specification [BJMS09a]. The

proposed extended ECN (EECN) field in the re-ECN wire protocol is deliberately divisible into the ECN

field for forwarding elements to alter, and theREflag that they do not touch.

Because congestion is exhaustion of a physical resource, if the transport or higher layers are to

deal with congestion, congestion notification must propagate upwards; from the physical layer to the

transport layer. The transport layer can directly detect loss of a packet (or frame) by a lower layer.

But if a lower layer marks rather than drops a forward-travelling data packet (frame) in order to notify

12.2. Re-ECN Protocol Reconsolidated 204

incipient congestion, this marking has to be explicitly copied up the layers at every header decapsulation.

So, at each decapsulation of an outer (lower layer) header a congestion marking has to be arranged

to propagate into the forwarded (upper layer) header. It must continue upwards until it reaches the

destination transport. Then typically the destination feeds this congestion notification back to the source

transport.

As IP packets traverse the internetwork, they can be tunnelled within outer IP headers, or the head-

ers of any other protocol including, of course, logical link protocols. If any of these outer protocol

headers support explicit congestion marking, it is necessary to arrange similar propagation of congestion

notification up the layers. For instance, ECN and its propagation up the layers has recently been speci-

fied for MPLS [DBT08]19, and forward explicit congestion notification is being considered for Ethernet

protocols.

It is not necessary to propagate theRE flag down the layers and back up again, as it should not

change end-to-end. However, it must be visible whenever a packet crosses a trust boundary, so that

downstream congestion can be correctly metered if required. It is assumed that IP headers will generally

be visible at trust boundaries, given IP is intended as the internetworking protocol. Therefore, re-ECN

border mechanisms should all work correctly as long as theREflag is copied on encapsulation by another

IP header. Header copying is specified in the re-ECN protocol spec. [BJMS09a], but it is typically the

default behaviour for IP tunnel encapsulators anyway.

However, during standardisation of the ECN protocol in IP, an exception to header copying was

specified for tunnel encapsulators. The reason was a perceived security requirement that turned out

later not to be a concern. IPsec tunnelling has since been re-specified to mandate header copying. The

IETF Transport Area is currently working on a draft to make header copying the default for all IP in IP

tunnelling [Bri09]. Without this change, tunnels might reveal incorrect ECN values to re-ECN border

mechanisms. This draft (written by the present author) explains all the issues with ECN tunnelling.

An analysis of possible opportunities for tunnelling to be used to cheat the re-ECN protocol is

provided in [Bri08b, §6]. The broad conclusion is that there are no new threats as long as tunnel endpoints

disappearing or emerging in the middle of networks are treated as potential border gateways, which is

already standard security practice.

12.2 Re-ECN Protocol Reconsolidated

12.2.1 Re-Architecting Flow Start

This section brings together various parts of the new flow-start architecture that have been hinted at in

a piecemeal way throughout this dissertation. It complements the initial definition of the re-ECN wire

protocol in §6.1.2.

The initial packet of a flow is, by definition, a flow-related concept that doesn’t seem to belong

in the internetwork layer of the current Internet architecture. However, we have to revisit the current

architecture because it gives the providers of network resources no role in mediating the conflicting

19Co-authored by the present author.

12.2. Re-ECN Protocol Reconsolidated 205

resource demands of hosts. The minimum resource sharing function we have been able to muster requires

per-flow checking of congestion signal integrity at the network layer (see §7.3). Therefore, although we

intend to prove that the resource sharing function can be transport oblivious (§12.3.1), we believe it

cannot be flow-oblivious. This is a similar position to the recent proposal that end-point identifiers

should be considered as a sub-layer between the network layer and the transport layer (an end-point ID

sub-layer [FI08]20).

Having added per flow checks to the network layer, we also had to add the minimum necessary

support at the network layer to protect this per-flow function against cheating. To this end, we provided

the Cautious marking that a source MUST use on the first packet of a flow if it intends to use other

re-ECN codepoints. It MAY also mark some subsequent packets as Cautious. For re-ECN, the Cautious

marking has the semantic “Each byte of this packet can be considered as a credit, which may be counted

towards an account identified by the packet’s flow ID.”

But we also deliberately designed the Cautious marking so that it could be used as a transport-

independent facility to flag that the packet may contain a request to set-up flow state. A network-layer

state set-up bit has been argued for independently by Handley & Greenhalgh [HG04], who in turn ac-

knowledged Clark as the originator of the idea.

Architecturally, we place the Cautious marking in the IP header because it provides a transport-

independent way for servers and middleboxes to handle the resource congestion aspect of flow state, as

part of the resource congestion signalling function of the IP header21.

In contrast to the Handley proposal, the flow-start meaning of the Cautious marking is idempotent;

a source can send more than one Cautious packet with the same flow ID to signify the start of a flow, and

the first to be received implies a flow start, while any others have no extra effect22. This allows sources

to insure against loss of Cautious packets and it allows the Cautious marking to be overloaded with two

meanings: i) idempotent flow start and ii) re-ECN credit (which is additive not idempotent).

Also, rather than using a whole bit, the Cautious marking uses just one codepoint of the 3-bit

extended ECN field (3/8 of a bit), given none of the other codepoints would be relevant on the first

packet of a flow.

Because we broadly agree with the motivations for a flow-start flag given in the Handley proposal,

they are listed below.23 Annotation in square brackets highlights where we differ slightly:

• a transport independent way for servers or stateful middleboxes to identify packets needing special

validation;

• a [stressed] server or middlebox receiving a connection set-up request with this flag not set would

[could] simply discard the packet;

20However, agreeing to this sub-layer doesn’t imply agreeing to the flow-regulation sub-layer idea in the same proposal!
21We avoid the term ‘network layer header’, given we believe there are generic aspects of the transport layer that are also best

carried in the IP header [Day07], such as resource congestion.
22If a node times out its flow state, then receives another Cautious packet with the same flow ID, the new Cautious packet will,

of course, have an extra effect; the node will consider a new flow has started.
23One of their motivations is omitted completely, being specific to another proposal in their paper—separation of client and

server address space.

12.2. Re-ECN Protocol Reconsolidated 206

• packets without this flag set can [may] be discarded by [stressed] servers or stateful middleboxes

if no matching flow state is found;

• Sites [networks] might rate-limit state-setup packets sent by some clients at their outgoing [incom-

ing] edge;

• a way for stateful middleboxes (e.g. firewalls) to permit evolution of network protocols without

always needing to know the protocol semantics, and to do some degree of transport-independent

validation of encrypted traffic.

We prefer not to automatically discard non-Cautious packets with no matching flow state or non-

Cautious flow start requests. Instead a middlebox or server MAY discard them before Cautious requests,

particularly if its resources are under stress. This allows middleboxes to pick up mid-flow following

a reroute. It also entertains the possibility that middleboxes could explicitly mark and forward rather

than discard flow-start requests (flow admission control—see §7.3.3). We believe this would be a more

principled way to explicitly signal rejection of a flow-start packet. The alternatives are either i) to drop

the packet which is confusable with all the other reasons for dropping a packet or ii) to bounce the request

with a rejection packet from the middle of the network, which may not have access to or understand the

end-to-end transport (the same justifications as given already in §6.1.1). Instead, we send unambiguous

explicit feedback via the receiver, which will understand the origin address of the transport.

The Cautious marking does not replace the SYN flag for TCP flows, but it complements it. The

SYN flag has a stronger meaning of flowre-start; “Every time you receive a SYN, discard all your

previous flow state and start a new TCP flow using the enclosed initial sequence number.” In contrast,

any packetwithout the Cautious marking means, “If your storage resources are stressed, if you have no

matching flow state, this packet can be discarded, whether or not it claims at the higher layer that it is

the start of a flow.”

12.2.2 Forward Compatibility

It is important to ensure that a protocol contains some space for adding things that become important in

the future.

re-ECN Wire Protocol. In IPv6, the re-ECN wire protocol [BJMS09a] uses one bit of a proposed IPv6

extension header, with 127b reserved for other uses (we have some in mind already). However, in the

IPv4 header we have more of a space problem. Extending the ECN field uses up the very last unused bit

in the IPv4 header.

Re-ECN uses five of the eight possible states of this proposed three bit extended ECN field. The

original ECN wire protocol uses three states, but we have ensured re-ECN usage overloads two. A

further state indicates a non-ECN-capable packet. Thus one 3-bit codepoint is left ‘currently unused’ or

‘CU’: 10-1 , where the notationXX-Y means an ECN field ofXXand an RE flag ofY.

One codepoint isn’t much, but it’s not a bad trade for the last bit, given all the re-ECN achieves.

But, if the Internet community decides to go ahead with re-ECN, there is another forward compatibility

issue with this CU codepoint: what should equipment do if a packet arrives with a CU codepoint?

12.2. Re-ECN Protocol Reconsolidated 207

• It would be wrong to advise that such packets should be dropped. That would create a huge

bootstrap problem for any future use of the codepoint.

• It would be wrong to say nothing. That would leave unnecessary uncertainty for any future use

of the codepoint. It would also subtly imply that any such packets might present a security risk,

which would probably lead to security equipment dropping them anyway.

• A better approach is to specify that, in the interim until it is defined, CU should be treated the same

as another codepoint. But which one? Candidates are:

Not-ECT (00-0) We can reject Not-ECT on the assumption that any future use would more

likely build on the latest protocol features than the oldest, so it would be unlikely to want

congested legacy forwarding equipment to drop rather than mark CU

Legacy ECN (10-0) If re-ECN is deployed, it is likely that network operators will rate limit

non-re-ECN packets (otherwise they would represent a loophole to avoid re-ECN policing).

Therefore, CU packets would probably get rate-limited if they were given the same semantics

as legacy ECN packets.

Neutral re-ECN (01-1) Therefore, in the absence of any better suggestion, we recommend that

equipment SHOULD treat CU packets as if they were re-ECN packets marked Neutral. Net-

work equipment MAY log the presence of CU packets. But it SHOULD NOT treat them as

any more of a security risk than a Neutral packet.

Future Role of Legacy ECN.If re-ECN is adopted, there will be no future role for the ECT(0) codepoint

currently used by ECN, but not by re-ECN. Today only a tiny proportion of packets carry this codepoint,

due presumably to the vanishingly small chance of one of a small proportion of ECN clients talking with

one of the small (but larger) proportion of ECN servers. If this situation remains, it may be decided that

those sources that upgraded to ECN early can be encouraged to upgrade to re-ECN too. Then the ECT(0)

codepoint could be made available for some other use in the future, along with the CU codepoint (10-0

& 10-1 respectively).

Flow IDs. The re-ECN dropper effectively recognises flow IDs as a sub-layer of the internetwork layer.

However, the Internet architecture should allow novel end-to-end protocols to make-up their own flow

ID syntax and semantics. We have had to recommend (§7.1) that the dropper treats any unrecognisable

flow IDs with the bulk of misbehaving flows. This is at least better than recommending such packets

should be dropped, but it is not much better. This effectively raises a barrier against any future end-to-end

transport protocol using a new protocol identifer at the IP layer.

Even if re-ECN dropper can be updated to understand a new protocol identifier (e.g. a new protocol

ID for DCCP has recently been standardised), the flow-ID uniqueness requirement of the dropper also

places a requirement that packets of the same inter-process flow should all contain the same ID. For

instance, if some novel security protocol wished to obfuscate the fact that a series of packets all belong

to the same flow, it would not be able to use a pseudorandom sequence as a flow ID, without sharing the

key to the sequence with the re-ECN dropper.

12.3. Re-ECN System Properties 208

We can think of no way round these issues, but we felt they should at least be stated.

12.3 Re-ECN System Properties

12.3.1 Transport Oblivious Congestion Signal Integrity

When constraints on the re-ECN dropper were listed (§7.2), the two paraphrased here appeared to be

irreconcilably in tension:

Sufficient Sanction: The dropper MUST introduce sufficient loss in goodput so that sources cannot

play off losses at the egress dropper against higher allowed throughput at the ingress policer;

Transport Oblivious: It MUST NOT be designed around one particular rate response. An important

goal is to give ingress networks the freedom to allow different rate responses and different resource

sharing regimes.

There is another way of stating the same problem. It seems one can only know whether an individual

finds it worthwhile to play off drop sanctions against the policer, if one knows how strongly the individual

values increasing bandwidth. From Mo & Walrand’s work [MW00]24, we know that the curvature of an

individual’s marginal utility for bandwidth gives the individual a direct incentive to use a transport with

a particular rate response to congestion. Therefore it seems the question of whether dropper sanctions

are sufficient maynot be oblivious to the transport.

To claim re-ECN can be transport oblivious, we need to establish whether the re-ECN system

creates a one-way barrier against individuals perverting the integrity of congestion signals, however

much the individual values bit-rate, and however strongly their valuation grows with increasing bit-rate.

To prove the re-ECN incentive framework can be transport oblivious, we use the following model and

assumptions.

We use the bulk congestion policer of §11 as a canonical example of a transport oblivious policer.

When we described it, we justified its inclusion in this dissertation by saying “We will need to establish

whether re-ECN can assure the integrity of congestion signalseven when they are used.” The partic-

ular policer design we proposed allows customers freedom to choose whatever short-term response to

congestion they wish, except they know that they are held accountable for the congestion they cause,

because their long-term congestion bit-rate is limited.

As previously defined, the recent fractions of Positive and Negative re-ECN marked bytes arez

andui at node indexi along the network path (as the dropper does not drop Positive packets,z remains

unchanged along the path). Indexi = 1 on arrival at the ingress policer,i = n on arrival at the egress

dropper andi = N on departure for delivery to the destination. To simplify matters, but without loss

of generality, we will assume thatu1 = 0 at the ingress policer, that is, there is no congestion marking

within the source’s own network.

24The weight and utility curvature in Mo & Walrand’s model parameterise a similar space to Bansal & Balakrishnan’s increase

and decrease parameters published the following year in their set of Binomial Congestion Control Algorithms [BB01]. We use Mo

& Walrand’s model because it affords a direct link with a wider economic model that we can use to compare net utility gains.

12.3. Re-ECN System Properties 209

It is reasonably assumed that the user’s utility for bit-ratex satiates, therefore the user’s utility

function for delivered bit-rateU(xN) is assumed concave over the operating region of the network (see

later for further justification). The notationΥ(x) is used for the user’s net utility (utility of delivered

bit-ratexN minus the cost of the quota used by bit-ratex1 at the ingress policer). In our distributed

setting, the source optimises the net utility of its delivered bit-rateΥ(xN) = U(xN)− zx1 as its primal

part of the wider system optimisation [KMT98].

Theorem 12.2. A customer with concave utility for the delivered bit-ratexN of an end-to-end flow and

free choice to declare expected downstream congestionz has no incentive to misrepresentz relative to

path congestionun if the network makes the user accountable for costzx1 at the ingress and discards

non-Positive packets from arriving bit-ratexn(= x1) with probabilityπd = 1 − z/un (z < un) at the

egress.

Proof. In the setting of Kelly’s optimisation, there is no dropper and the customer pays for the bytes

actually congestion marked after having traversed the network. A customer with utilityU(xn) uses a

rate controller that chooses optimal bit-ratex∗n to maximise net utilityΥ(xn) = U(xn) − unxn, which

occurs where

U ′(x∗n) = un. (12.6)

In the setting of the re-ECN framework, the customer’s transport can choose to mark any fractionz of

sent bit-ratex1 and only use up quotazx1. We will consider two cases:z ≤ un andz > un.25

Understateddownstream congestionz ≤ un. In this case the dropper will reduce the bit-rate delivered

to

xN =
z

un
x1. (12.7)

The pricep of delivered bit-rate that a re-ECN sender effectively experiences is the quota used divided

by the delivered bit-rate:

p =
zx1

xN

= un. (12.8)

Therefore, when a re-ECN customer uses up quotazx1, it is equivalent to being chargedunxN . In

turn, when this customer optimises net utilityΥ(xN) = U(xN) − zx1 it is equivalent to optimising

Υ(xN) = U(xN) − unxN , which is identical to Kelly’s optimisation. Therefore the customer’s rate

controller will choose an identical optimal bit-ratex∗N such that

U ′(x∗N) = un. (12.9)

It seems as if net utility is unaffected and the chosen optimal delivered bit-rate is unaffected whether

z < un or z = un. However, ifz < un, to compensate for expected discards at the dropper the sender

25z = un is strictly a third case, but it acts as a limit to either case, so for brevity we treat it within the first case.

12.3. Re-ECN System Properties 210

has to send faster (which it can afford to do because it understates path congestion). While ifz = u

the dropper discards nothing. The two are clearly not equivalent in practice, because the sender cannot

know in advance which data the dropper will drop. Therefore there will always be more delay introduced

while lost data is repaired, or more overhead will be necessary to send forward error correction (FEC)

conservatively (see a similar argument in §12.1.1).

Overstateddownstream congestionz > un. If the customer chooses to use more quota than is necessary

to ensure traffic traverses the dropper without loss, nothing is gained and more quota is lost.

Therefore, through testing both cases we have proved that the customer’s best strategy is always to

choosez = un, rather than choosing az that misrepresentsun. This means the re-ECN framework can

be oblivious to the transport while still assuring downstream congestion signal integrity—on condition

that the customer’s utility function is concave.

Examples over a range of concave utility functions.We now give some examples to show that it

is advantageous to maintain downstream congestion signal integrity for a whole range of transports—

transports that would be chosen by users with a whole range of concave utility functions.

Functions of utility against delivered bit-ratexN represent human judgements so they can only be

determined empirically and they will not follow any simple mathematical form. However, after Mo

& Walrand [MW00], we can parameterise a set of utility functions that might approximate different

people’s utility, while confining ourselves to a set of functions that are continuously differentiable for

positive bit-ratex:

U(xN) =

wαx

(1−α)
N

(1−α) , α ≥ 0, α 6= 1;

w ln (xN), α = 1.
(7.11)

This is calledα-utility.26 The parameterα represents the concavity of the utility function and, as utility

is assumed concave, (α ≥ 0). The exception atα = 1 fills the discontinuity inU that would otherwise

result.w represents the weight of the utility. Bothα andw are intended to be held constant over a flow

of data, but they may be allowed to adapt slowly.27

We will consider the three cases where downstream congestion claimed by the source is correct,

overstated and understated. The special case whereα = 1 will be dealt with separately later.

Correct downstream congestion (z = un)

In this baseline case, net utility (α ≥ 0, α 6= 1) is

Υ(=)(xN) =
wα

(1− α)
x

(1−α)
N − zx1

=
wα

(1− α)
x

(1−α)
N − unxN .

Differentiating, finding the bit-ratexN that maximises net utility, and substituting back into this equation

26See also Eqn (7.11) in §7.7.1
27The denominator(1− α) and the exponentα of w merely simplify the form of the ultimate results.

12.3. Re-ECN System Properties 211

gives optimum net utility in this baseline case:

Υ∗
(=) = wu(1−1/α)

n

α

(1− α)
. (12.10)

Overstateddownstream congestion (z > un)

This case is nearly identical to the base case, exceptun cannot be substituted forz in the net utility

formula:

Υ(>)(xN) =
wα

(1− α)
x

(1−α)
N − zxN ,

Υ∗
(>) = wz(1−1/α) α

(1− α)
. (12.11)

Understateddownstream congestion (z < un)

This case is also nearly identical to the base case, exceptxN cannot be substituted forx1 in the net

utility formula, because the dropper reduces it byuN/z:

Υ(<)(xN) =
wα

(1− α)
x

(1−α)
N − zx1

=
wα

(1− α)
x

(1−α)
N − zxN

uN

z
.

Υ∗
(<) = wu(1−1/α)

n

α

(1− α)
. (12.12)

The three cases forα = 1 can be calculated similarly. Then the gains in optimum net utility28 from

over or understatement of expected downstream congestionz are:

∆Υ∗ = Υ∗ −Υ∗
(=)

=

w α

(1−α) (z
(1−1/α) − u(1−1/α)

n), z > un, α 6= 1;

w ln
(

un

z

)
, z > un, α = 1;

0, z ≤ un.

(12.13)

Over their given valid ranges, none of these expressions are greater than zero. These examples support

our proof of Theorem12.2; that the re-ECN mechanisms at ingress and egress remove any incentive to

misrepresent downstream congestion for anyone as long as their utility for bit-rate is concave.

If we use a normalised measure of net utility gain∆Y ∗ = ∆Υ∗u
(1/α)−1
n /w, we can derive its slope

as

d

d(z/un)
∆Y ∗ = −

(
z

un

)−1/α

. (12.14)

Therefore, for allα, this normalised net utility gain has slope -1 whenz → un from above. Fig12.529

plots normalised net utility gain against overstatement of downstream path congestion, for various values

of concavity of utilityα. Whenz is understated (the heavy horizontal plot along the horizontal axis to the

28Note that these values of net utility are meaningless except for comparisons between two values from the same utility curve.

In economic theory, utility is generally considered ordinal, not cardinal.α-utility curves withα ≥ 1 do not even pass through the

origin, and their numeric values are negative (in theα = 1 case, both positive and negative). The value and sign ofΥ2 − Υ1 is

meaningful if they come from the same utility curve, but(Υ2 −Υ1)/Υ1 is meaningless.
29Cf. Fig 5.2on p58.

12.3. Re-ECN System Properties 212

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.8 1 1.2

z/un

∆∆∆∆Y∗∗∗∗

∀α
0.1

0.5

1

2

16α

Figure 12.5: Normalised Net Utility Gain;

∆Y ∗ is plotted against overstatement of downstream path congestionz/un for various concavities of

utility α. Forz/un < 1, plots are shown both with the dropper (heavy flat line) and without (dashed

plots).

left), it can be seen that there is no net utility gain relative to the case wherez = un. Plots of normalised

net utility gain without the re-ECN dropper are shown dashed above it, to show how the dropper removes

any gain from understatingz.

We must emphasise at this point that our proof of Theorem12.2is not intended to imply anything

about whether the engineering of the re-ECN mechanisms is robust against gaming. For instance it does

not imply that the mechanisms can remove incentives to misrepresent downstream congestion immedi-

ately, or against someone with no utility at all for transferring any bit-rate. It does however prove that

the re-ECN mechanisms do not depend on how concave the utility function is, as long as it is concave,

i.e. the re-ECN mechanisms proposed in this dissertation are indeed transport-oblivious. Put another

way, this proves that in any circumstance where the proposed re-ECN mechanisms protect the integrity

of congestion signals, they do so with a one-way incentive barrier—a barrier that no rate response to

congestion can overcome.

Note that the phrase ‘no incentive to misrepresent downstream congestion’ is not as strong as ‘an

incentive to correctly represent it’, which we have not strictly proved, although we have given a discur-

sive argument why this is so. Our dropper design principle of ‘Proportionate Sanctions’ only removes

any gain from understating downstream congestion, witnessed by the flat plot to the left of Fig12.5—

theoretically, a customer would be equally willing to sit anywhere along that flat line. But even the tiniest

additional latency due to unnecessary dropper discards or the tiniest additional punishment beyond neu-

tralising the gain from understatement will push a customer’s incentives towards stating downstream

congestion correctly.

The uncertainty of knowing which packets might be dropped would be sufficient to tip this

12.3. Re-ECN System Properties 213

balance—one-off Cautious credits per-flow represent a customer’s willingness to pay to avoid this un-

certainty. And an active sanction at the dropper against flows that had been negative for more than the

minimum idle flow-state timeout would provide a very strong incentive not to stray into understatement.

§7.3 on the principle of ‘Proportionate Sanctions’ gave two main reasons why neutralising any gain is

preferable to punitive sanctions: i) infeasibility of punitive sanctions against cheap pseudonyms (i.e. flow

IDs) and ii) the risk of the mechanisms being perverted to amplify third party attacks.

Note that the proof of Theorem12.2would actual hold for all convex not just concave utility func-

tions. However, the economic optimisation on which the re-ECN framework is based is only proven for

concave utility [KMT98]. Below we discuss how to handle applications for which utility can be expected

to be convex over part of their range.

Inelastic Applications. It is convincingly argued that certain types of so-called inelastic applica-

tion [She95] exhibit concave utility over their operating range of bit-rates, but below a certain bit-rate

utility becomes convex.30

Flow admission control can be used to ensure inelastic flows are only admitted to the system when

it is in their concave operating region. Congestion marking can determine the initial admission deci-

sion [GK99a], but then the flow is not expected to reduce its rate if congestion in the system subsequently

moves out of its operating region. At least three strategies are possible for engineering such a system:

• Inelastic flows can be isolated in a separate traffic class, and admission controlled into the capacity

assigned to the class by network-controlled gateways. This is the approach adopted31 and being

standardised by the IETF in its pre-congestion notification (PCN) working group [Ear09b, Ear09a]

• Inelastic and elastic flows can be mixed. If congestion rises so that inelastic flows would reduce

below their operating range, admitted flows can remain while elastic flows adapt to the temporary

shortage, but new inelastic flows will not enter the system. Our paper [JBM08] on a bulk con-

gestion policer similar to that proposed in §11 analyses how it makes users sacrifice the bit-rate

of their own elastic applications to preserve their ongoing inelastic flows, by creating cross-flow

congestion as if it were real congestion.

• Alternatively, inelastic and elastic flows can share the same capacity but packets have separately

identifiable classes. The marking of the two classes of packet is linked [GK02] so that both classes

optimally share the available capacity on longer timescales, but the inelastic traffic is allowed to

keep its admitted bit rate once it has entered the system and it is served with very low latency. The

PCN architecture discussed above can be used to implement this approach [SEB+06].

The re-ECN incentive framework has been proposed as a way to allow pre-congestion-based ad-

mission control systems based on network gateways to scale to an internetwork operated by network

providers that do not trust each other [Bri08b]. It uses exactly the same pattern of incentives as the

30Experiments on people paying to view videos in Lab conditions have shown that people do indeed have such convex-concave

utility functions for video streaming, but unfortunately the experiment results remain confidential [HE02].
31In work by the present author as a co-author with others.

12.3. Re-ECN System Properties 214

re-ECN framework proposed in the present dissertation, but the system is contained within gateways

around the edges of the internetwork, which are equivalent (in incentive terms) to endpoints in our more

general re-ECN framework.

Section Summary.To summarise this section, we have proved that the re-ECN system creates an incen-

tive for bandwidth consumers to truthfully declare their expectation of downstream congestion, whatever

their utility function if it is concave. And further, we have briefly introduced engineering mechanisms

that allow the same congestion marking and incentive mechanisms to be used for inelastic applications—

those applications characterised by utility functions that are not concave at low bit-rates.

12.3.2 Algorithm Complexities

This section brings together statistics on the complexities of each of the proposed re-ECN mechanisms.

Figures for numbers of processor operations have been established merely by tracing through the unop-

timised pseudocode.

1. Egress Dropper Complexity.

Cycles per packet: Typ: 5, Max: 16 (non-compliant flow, Negative packet) plus 2 header field

reads and a flow ID match;

Extra cycles per new flow: 6;

Storage per compliant flow: ∼16B plus flowID;

Total storage for the set of non-compliant flows:Two extra compliant flows’ worth of storage.

See §7.6.1for details.

2. Extra Border Complexity.

Cycles per packet: Typ: 1, Max: 14 (Positive packet) plus a header field read, and 1 extra cycle

if packet picked for sampling. Note: all border processing can be in parallel to forwarding.

Storage per border interface: 2 counters (32B?), plus the flow ID ranges to be sampled and two

counters per sampled flow.

§8.3summarises additional border complexity a little less tersely.

3. Optional Extra Forwarding Element Complexity.

Cycles per packet: Probably Typ 1, Max 2 for preferential drop; Marking Cautious should be

possible by altering an existing test with zero extra cycles.

Storage per interface: Zero.

4. Ingress Policer Complexity.

The baseline ingress congestion policer would be similar in complexity to the dropper plus the

same downstream congestion normalisation as the basic border mechanism above (without flow

sampling) plus an additional bulk token bucket. Altogether (without even having written the pseu-

docode) this is likely to add up to the following:

12.3. Re-ECN System Properties 215

Cycles per packet: Typ: 10, Max: 26 (Negative packet) plus a header field read;

Storage per flow: ∼16B plus flowID;

Storage per policed interface: 16B (token bucket) plus two extra flow’s worth of storage.

12.3.3 Performance

Initial performance results from simulations of the dropper are given in §7.8. So far, too few runs have

been attempted to make any definitive statements, but we have tentatively concluded that a hard-coded

up-front credit of two or possibly three packets should prevent the dropper introducing all but a residual

additional drop fraction for TCP flows in reasonable network environments. Dropper performance has

been predicted analytically in §7.7. The other parts of the system are yet to be implemented.

12.3.4 Outstanding Vulnerabilities

Attack Model. This dissertation has attempted to subject the re-ECN system to an ambitious attack

model in which potential attackers are either rational or malicious, on condition that the malice of net-

work operators is bounded (defined in §8.1.2).

Caveats and Concerns.The least solid defence we have proposed is ‘Sample-Based Congestion Volume

Inflation’ (§8.2.4). It is designed to remove the motivation for networks to attack each other using dummy

traffic. At this stage, this idea is no more than an architectural direction, backed by some rationale and

theory. Defending against the ‘Dummy Neutral Background Load’ attack depends on this direction being

fruitful (§12.1.1). This attack aims to raise congestion costs for other users.

The attack ‘Dragging Down a Spoofed Flow ID’ (§7.5.3) is as easy (or hard) to mount as it already

is to mount flow ID hijacking attacks. Addition of a re-ECN dropper to a network would add a new way

to use this attack against the flows of others.

The need to start a flow with a Cautious packet to get it through the re-ECN dropper could increase

the cost of reflection attacks against any servers routinely giving responses either as single packets or

very short flows (e.g. DNS servers, see §12.1.3).

The flow time-out mechanisms of the dropper (§7.6.1) and a tentative proposal to use ‘Covert Mark-

ing’ as a signalling channel from policers to end-points (§11.3.1) have yet to be fully explored. These

may reveal further vulnerabilities. The possibilities for attacks using legacy codepoints in the extended

ECN field and using tunnels have not been exhaustively explored, although these issues have been thor-

oughly considered for most parts of the design.

Aside from these outstanding caveats, we believe we have shown that the proposed re-ECN mech-

anisms are otherwise robust against all the other attacks on the integrity of congestion signals identified

in this dissertation.

Of course new attacks may be identified in the future. However, over the years, re-ECN has attracted

considerable attention from researchers trying to break down its defences with new invented attacks.

These have been generalised into the range of attacks enumerated in this dissertation. This is certainly

not claimed as any form of ‘proof of security’. However, even proofs of security are only as good as the

deviousness of their attack model.

12.3. Re-ECN System Properties 216

Better Defence against Attacks on the Existing Internet.We cannot claim re-ECN fully prevents

distributed bandwidth flooding attacks (DDoS). However it should considerably raise the bar against

them—the brief analysis in §12.1.1estimates that a botnet army would have to be two or three orders

of magnitude larger to sustain an attack of the force it can muster today without re-ECN in place. The

Re-ECN system also shifts liability for the congestion cost of a flooding attack to the ingress network.

It also throws likely attack traffic into sharp relief throughout the network path. This both provides a

strong incentive for other active preventative measures, and provides the evidence needed for them to be

deployed close to the root cause where they will be most useful.

The re-ECN system also provides additional protection against initial packet attacks (e.g. TCP SYN

flooding—see §12.1.3) and ‘State Keep-Alive’ attacks (§12.1.3).

Part IV

In Closing

217

Chapter 13

Conclusions

13.1 Closing Arguments

Hypothesis1: Congestion Signal Integrity

Proof. We will take Hypothesis1 (p37) phrase by phrase.

“The incentives of self-interested malicious economic entities can be aligned to assure the in-

tegrity of indications of downstream congestion in the packets of a connectionless simplex internet-

work. . .”

We can only prove this part of the hypothesis with strong conditions.

Lazy Removal of Dummy Traffic. In §12.3.4we have outlined our concerns and caveats regarding

outstanding vulnerabilities. If any of those issues are not resolved, including discovery of new success-

ful attacks, the hypothesis falls. In particular, those concerns include the question-mark hanging over

‘Sample-Based Congestion Volume Inflation’ to align the incentives for networks not to attack each other

at borders. Indeed the whole system must be considered riddled with concerns, given some parts still

only exist on paper.

We should therefore add the form of condition suggested by Bauer & Faratin that: “No network

element before the first dropper after congestion can rely on the expected congestion declared for a

flow.” Wherever there are dummy traffic attacks in progress that have not been detected and removed,

the integrity of congestion signals in their packets will not be assured.

Although this sounds like it kills the hypothesis, we can continue if the argument is acceptable

that we can still assure signal integritywherever it is used, with no need to assure it otherwise. All

the information is available to detect and remove dummy traffic attacks at any node in the network.

One could take the direction we have outlined to ensure that reasonable (lazy) effort would get rid of

negative flows relatively quickly. Or, with greater effort, one could do much better. The above condition

still strictly states the limit to congestion signal integrity, but only because the architecture deliberately

allows an operator to avoid expending effort unless the problem warrants it. The architecture at least

provides the information to test whether there is a problem and whether the effort expended has solved

it.

13.1. Closing Arguments 219

Dynamics.If we take the liberty of assuming that all the above concerns prove unfounded, we have

shown that the re-ECN dropper can remove the gain from misrepresenting downstream congestion. But

the implemented algorithm only completely removes gain over a long period, not immediately (§7.7.2) .

As soon as someone starts to gain from cheating, the system only starts to remove the gain increasingly

strongly. This is sufficiently fast for some attacks (e.g. ‘Flow ID Whitewashing’) but not others (e.g.

‘Stop Payment’). We had to allow a trade-off to avoid false hits being too harsh, by using moving

averages (at least we found we could set the characteristic period of the EWMA to move fairly fast

a = 1/16 or perhaps 1/32). This trade-off was ultimately necessary because re-ECN markings use the

same unary encoding as ECN, which is a very slow signalling channel.

However, these short-run gains are only possible because we recommended, but did not implement,

a more active timeout mechanisms. With a timeout mechanism, any flow persistently negative, even

slightly, for more than the timeout (perhaps 1 sec) could very simply be subjected to arbitrarily high

drop rates and, ultimately, complete blocking.

Thus any small gains are potentially limited to the timeout period. Attackers cannot exploit multiple

timeout periods (or even one) without ‘spending’ a Cautious packet for the right to each timeout (only

one timeout is available per flow). To gain, an attacker would have to be able to gain from the ‘Flow

ID Whitewashing’ attack. But, with the addition of active flow state timeout, we have shown that isn’t

possible.

Slight additional punishment. In §12.3.1we proved that the combination of the policer and the drop-

per gives self-interested entities ‘no incentive to misrepresent downstream congestion’, at least not in

the long-run (and we have just handled short-run issues). We went on discursively to show that any

additional punishment beyond neutralising the gain would turn this into ‘an incentive to correctly rep-

resent downstream congestion’, as long as the punishment increases with understatement of congestion.

Timeout punishments alone would fit this description.

Scalable enforcement mechanism.§12.3.2summarises the complexities of the proposed algorithms

for the various components of the re-ECN system. The ingress and egress components exhibit sub-

linear scaling with number of flows, but only just. Flow state is required for every active behaving flow,

also held for a short timeout once they become inactive. Assuming there are some misbehaving flows,

this represents sub-linear scaling with flows (just). From a practical angle, exhaustive flow-state is not

required except at the outer edges of the internetwork. At every other trust boundary, only sampled flow

state is required.

Additional per-packet processing can be truthfully described as minimal in all cases.1 The most

processor intensive component is the policer at 10 cycles per packet typical with a maximum of 26 cycles.

Border elements require one extra cycle per typical packet (max 14). Importantly, border operations can

all be in parallel to data forwarding. An optional addition to forwarding elements would require two

cycles per packet maximum. For the parts that are yet to be designed in detail we assume our complexity

estimates are reasonably accurate.

1Strictly any additional per-packet cycles make the system scale super-linearly with packet load.

13.1. Closing Arguments 220

“ . . . This can be achieved by only constraining aggregate downstream congestion-volume sent by

each economic entity over time, without any dynamic congestion pricing to end-consumers, without

any further constraints on transport behaviour and without any further constraints on the agents’

freedom to distribute load across the internetwork, or across time.”

Bulk Congestion Policing.The fact that re-ECN allows the design of bulk congestion policer in §11

satisfies all these conditions. The policer only constrains aggregate downstream congestion-volume over

time. Theorem12.2in §12.3.1proves the policer combines with the rest of the system to be transport

oblivious. And the policer sets no constraint on where traffic goes, and no constraint on when it is sent

as long as aggregate downstream congestion-volume over time fits into its fill-rate and peak-rate.

Flat Pricing. Within the proof of Theorem12.2 (Transport Oblivious), we saw that, in the long run,

proportionate sanctions at the dropper made Positive marked bytes at the ingressz equivalent to Negative

at the egressun, even if Positive markings were under-declared. Therefore the bulk policer can be

considered to give equivalent incentives to congestion pricing, but at the same time it can be fed by a

constant stream of tokens that represent a flat charge, not a dynamic one.

Thus, Hypothesis1 is not proven unconditionally and conclusively. But with all the above strong

conditions concerns and caveats, it can still be valid.

Note that the strong conditions required on this proof could be considered as evidence that the

hypothesis is too ambitiously worded. However, it is preferred to preserve the hypothesis as an enduring

statement of the goal (quod errat) and continue to try to improve the re-ECN system to soften the caveats,

or otherwise find a concrete refutation of the hypothesis in the future.

Hypothesis2: Welfare Maximising Allocation

Proof. Again we will work through Hypothesis2 (p37) phrase by phrase:

“With a competitive market and under Assumptions3.1& 3.2(p37), incentives of all parties can

be aligned so that the system produces the welfare maximising allocation of resources, under all the

conditions of Hypothesis1.”

If Hypothesis1 holds, Positive marked bytes at the ingressz are equivalent to Negative at the egress

un. The assumptions referred to in this hypothesis are equivalent to Kelly’s assumptions in [KMT98].

We need the additional assumptions:

Assumption 13.1. All network operators on the Internet choose to use the re-ECN bulk congestion

policer, or an equivalent.

Assumption 13.2. The consumer perceives paying for tokens that pay for congestion as equivalent to

paying directly for congestion.

Then the incentives in the re-ECN system are equivalent to those in Kelly’s SYSTEM. Then a Wel-

fare Maximising proof for the re-ECN system follows by equivalence with Kelly’s welfare maximising

proof for users with concave utility [KMT98].

Therefore, under these assumptions, the shares of network resources that users will choose to use

in the re-ECN system will be the welfare maximising allocation.

13.2. Re-ECN Limitations and Further Work 221

Note that Kelly’s proof of welfare maximisation requires the condition of concave utility, which is a

sub-set of the range of utility functions our proof of Theorem12.2holds for. Therefore, unlike the proof

of our first hypothesis, welfare maximisation only applies for elastic traffic.

It is unlikely that Assumption13.1 will hold, as many operators will prefer to charge by value

rather than cost, by discriminating prices for different types of session. This situation will prevail wher-

ever competition is weak enough. The re-ECN framework is designed to merely provide congestion

information to reveal marginal costs as a floor for pricing—it is not the designer’s role to insist that

pricing should track congestion costs, but pricing mustbe able toas competition intensifies. Of course,

network operators should heed the corollary of Hypothesis2; that any other pricing scheme will lead to

resource allocations that donot maximise welfare. Or put another way, a network operator can do no

better to satisfy its customers than to use congestion policing.

In §12.3.1we also outlined how flow admission controls can prevent inelastic flows being admitted

when the shadow price of the system is outside their region of concave utility. We are not claiming that

these mechanisms would take the system to the welfare optimum for users with both concave and convex

utilities. But if the shadow price did not change drastically for the duration of each flow, it would be

fairly close.

Also note that the condition of a competitive market is necessary to ensure that congestion signals

tend towards shadow prices for capacity; a representation of the marginal cost of the capacity needed to

alleviate the congestion.

13.2 Re-ECN Limitations and Further Work

Architectural Issues.The need for a end-point flow ID sub-layer in the Internet architecture needs to be

justified by and incorporated with wider concerns than just resource sharing.

The re-ECN architecture does not allow self-congestion beyond the egress of the provided internet-

work to be discounted (except by tunnelling).

The question of how an egress dropper can allow for packets that arrive mid-flow due to reroutes

(§7.3.3) has been addressed but full assessment remains outstanding. This could be somewhat of a

problem for multi-homed receivers or mobile receivers during hand-overs.

Although the high level implications of re-ECN on routing & traffic engineering have been articu-

lated, they need to be more deeply considered (see [BCSJ04, §4]).

An architecture for proxying re-ECN senders and/or receivers needs to be defined (see §12.1.4).

Management diagnosis of misbehaving / malconfigured policers / droppers will need to be consid-

ered.

Accountability for causing congestion has only been addressed for the unicast mode of communica-

tions. For multicast and anycast, superficially at least, the accumulated congestion information provided

by simple ECN is sufficient, because control is at the receiver.2 However, receiver control is only per

2But current multicast forwarding duplicates congestion markings, massively ‘double-accounting’ for each congestion event.

This could be solved with the form of multicast forwarding proposed in an expired Internet Draft and associated Technical Re-

port [BC01a, §5] that I co-authored with Jon Crowcroft. However this would require different and more complicated forwarding

13.2. Re-ECN Limitations and Further Work 222

session while sender control is per packet. So one really needs sender accountability for packet rate, with

receiver accountability only at the session level. If one wanted to hold the sender accountable with re-

feedback, the expected congestion a multicast packet will cause should be the sum of all the congestion

events in every branch. One could achieve this using the unary congestion encoding scheme in [BC01a,

§5], which already picks an acker for each separate instance of a congested link. But a mechanism to en-

sure the integrity of such congestion signals and to meter downstream congestion at intermediate points

such as borders are very much open issues.

Re-ECN Protocol: Network Layer. There are outstanding questions to answer if flow-state congestion

signalling is to be considered for full inclusion in the re-ECN protocol (§10.1).

The tentative proposal to include a signalling channel from policers to the transport via covert

marking needs to be further considered (§11.3.1).

Re-ECN Transport Protocol Extensions.The effect of the current re-ECN dropper design on transports

with infrequent feedback needs to be considered in depth; even delayed ACKs in TCP present some

problems. (Guidelines on re-feedback design for a range of transports other than TCP are included

in [BJMS09a], but no detailed design, performance analysis or testing has been done.)

More comprehensive end-to-end integrity checks need to be defined in the presence of untrusted

receivers (§12.1.4).

Protocols for end-to-end transfer of congestion quota need to be designed.

Economic & Security Analysis.Precisely what the dropper should do with outstanding credit or debit

when a flow times out (§7.6.1) requires further consideration. It seems to be a matter of policy, but it

also has a more general economic interpretation.

Fuller analysis of the effect of re-ECN on internetwork competition and termination monopolies is

required (§12.1.2), taking account of any ability to transfer congestion quota end-to-end.

Incremental & partial deployment scenarios have been proposed in an Internet Draft [BJMS09b] and

a workshop paper has been prepared to lay the groundwork to analyse deployment incentives [Bri06].

But a fuller incremental deployment plan and analysis is needed.

Opportunities to exploit legacy fields in the protocol and legacy behaviours have often been included

in the economic & security analysis of re-ECN, but not always. Congestion signal integrity needs to be

assured in a partially deployed setting. And the extra opportunities for illegal protocol transitions with

legacy codepoints need to be considered.

Evaluation. Some of the initial dropper simulations need to be repeat tested to derive confidence inter-

vals. Further interpretation of the results (§7.8.2) is needed, with possible further iterative design and

even re-consideration of architectural choices.

The sample-based congestion volume inflation ideas (§8.2.4) need to be developed further, and put

to the test.

The full precise downstream congestion meter formula (§8.2.7) needs to be implemented and fully

stress tested.

implementations.

13.3. Material Contributions 223

Example ingress policer designs need to be tested against the rest of the system.

Congestion Control Evolution.Numerous open research issues remain in congestion control research,

particularly now the goal can be more usefully stated as congestion accountability (not TCP-friendliness)

as well as prevention of congestion collapse. An attempt to document open research issues is currently

in progress [WPSB09] as a work item of the Internet Congestion Control Research Group (ICCRG) of

the Internet Research Task Force (IRTF).

Contractual Transparency.The requirement for contract transparency remains the most unsatisfactory

aspect of the present research. It is solved in all but a psychological respect. It is certainly now possible

to apply a simple tiered flat pricing scheme to a good that is under the full control of the consumer but

the good, expected traffic congestion, is not a natural one for consumers to understand.

The consumer’s software is in full control of its declarations of congestion likely to be experienced

by each packet. So certainly this good is immune to whatever unpredictable congestion occurs. But most

experts, let alone consumers, in the industry aren’t yet even aware that congestion has a very specific

definition. Congestion is perceived as a vague state of a system, possibly even binary—either congested

or not. The idea that congestion can be precisely counted is unfamiliar to people.

This weakness could possibly be solved through education, just as consumers were educated about

the previously unfamiliar concept of data volume and bytes before volume capping was introduced

around 2001. However, this is a rather ambitious hope.

Nonetheless, UK road tax licenses are now priced based on the volume of an economic externality

of the vehicle’s performance that no human can even sense (mgCO2/lt of fuel), so perhaps, as long as

the good being priced is generally recognised as valid, it doesn’t matter if it’s not tangible.

13.3 Material Contributions

Material contributions are divided between those directly relevant to this dissertation and those that have

provided background context.

13.3.1 Direct contributions

Accountability for congestion with freedom: A protocol has been invented3 that enables4 an ingress

access network to constrain the overall congestion an attached data sender can cause anywhere in

a connectionless internetwork, without any further constraints on the user’s freedom to distribute

load across this internetwork nor across time. This contribution is summarised in the recent work-

shop publication “Policing Freedom to Use the Internet Resource Pool” [JBM08] (co-authored5).

Accountability for congestion robust to gaming: Robustness to gaming can never be proven conclu-

sively, but we have at least outlined the re-ECN system’s robustness in the face of currently fore-

seen attacks, and stated the limits of its vulnerability.

3With co-inventors.
4Subject to further successful performance experiments.
5I contributed the overall ideas the structure and most of the text, except the central section analysing the effect on flow

congestion controls and cross-flow interactions.

13.3. Material Contributions 224

Simple pricing: The tension between the irresistible economic logic of usage-sensitive pricing and the

immovable consumer desire for simple and predictable pricing [Odl97] has been resolved. Mini-

mal constraint can be applied to consumers to align their incentives within a tiered flat rate pricing

plan, without dynamic congestion pricing. Nonetheless, ‘sender-pays’ dynamic congestion pric-

ing with simple bulk accounting is now possible as well—at any trust boundary—so it is free to

develop in wholesale and interconnect markets if desired.

Necessary but sufficient mechanism:The alteration to feedback transparency at the network layer

claims to be no more than the minimum necessary to offer generic support to a wide range of

higher layer resource sharing approaches—it solely reveals expected rest-of-path congestion. The

mechanisms suggested to ensure truth-telling and provide sender and network accountability are

not embedded in the network layer—they are merely optionalapplicationsof the protocol mech-

anism.

Identified fundamental problem: The problem has been narrowed down to a lack of information about

quality that is necessary for efficient contracting: expected downstream congestion.

Localisation of resource accountability: By adding congestion accountability to self-contained data-

grams, identification of the entities local to each trust boundary is sufficient to create strong chains

of precise accountability, without requiring a global identity infrastructure. Either party at a trust

boundary can hold the other accountable for causing congestion—whetherA forwarded too much

traffic, orB provided too little capacity.

Identified the flow rate equality problem as a nonsensical distraction:“Flow Rate Fairness: Dis-

mantling a Religion” [Bri07b] (ACM CCR journal) and [Bri07c] (individual IETF Internet draft)

explained far more clearly and simply than before (indeed bluntly) why flow rate equality is a

non-goal and why fairness should be measured in terms of congestion volume in order to ensure

fairness on a global scale between different local definitions of fairness. “Problem Statement:

We Don’t Have To Do Fairness Ourselves” [Bri08d] (individual IETF I-D in progress with co-

authors6) explained the mechanisms by which flow rate equality is leading the Internet into a

highly suboptimal state, backing up the assertions in “. . . Dismantling a Religion” with more con-

crete evidence. This in turn has led to positive coverage in the technical media, including being

invited to write an article on the subject (and on re-feedback) for the Dec 2008 issue of IEEE

Spectrum Magazine [Bri08c], and invitations to present the work in several international fora.

Placed solution in commercial context: “Commercial Models for IP Quality of Service Intercon-

nect” [BR05] (BT Technology Journal with co-author7—presented in two international industry

fora).

Articulated solution, rationale and evaluation: “Policing Congestion Response in an Internetwork

6Co-authors contributed considerable editing, restructuring & reviewing
7Co-author contributed editing & reviewing

13.3. Material Contributions 225

using Re-feedback” [BJCG+05] (ACM SIGCOMM conference paper with co-authors8) described

the solution for any abstract connectionless internetwork, and for the Internet specifically.

Full protocol specification: “Re-ECN: Adding Accountability for Causing Congestion to TCP/IP” [BJMS09a]

(individual IETF I-D in progress with co-authors9—presented to IETF six times).

Applicability & rationale for re-ECN: “Re-ECN: The Motivation for Adding Accountability for Caus-

ing Congestion to TCP/IP” [BJMS09b] (individual IETF I-D in progress with co-authors).

Enabled both open and closed models to interwork:The bulk and per-flow policers described in the

“ re-ECN” I-D [BJMS09b, Appx B] enable open and closed models respectively, and the border

arrangements allow both models to fully interwork. Thus the tussle between service-oriented

networks and open Internet access can be fought out at run-time without losing the value of full

interconnectivity, because the service-oriented networks can protect their interests against excess

congestion caused by traffic from their open neighbours (andvice versa).

First design of scalable internetwork admission control: “Emulating Border Flow Policing using

Re-ECN on Bulk Data” [Bri08b] (individual IETF I-D in progress—presented twice) uses re-

feedback with infrequent congestion feedback at reservation refresh signalling time-scales to

create incentives for network operators to admission control traffic that would otherwise cause

‘pre-congestion’ in other operators’ downstream networks.

First know treatment of DDoS as a congestion policing problem:“Using Self-interest to Prevent

Malice; Fixing the Denial of Service Flaw of the Internet” [Bri06] (paper for Int’l Workshop on

the Economics of Securing the Information Infrastructure).

Outlined incremental deployment incentives: “Using Self-interest to Prevent Malice. . .” [Bri06] out-

line the incentives for initial deployment, incremental adoption and the convex increasing incen-

tives towards complete deployment. Also outlines the strong incentives to deploy other DDoS

solutions. The “re-ECN Motivation” I-D [BJMS09b] also outlines incremental deployment issues

and incentives.

Patent filings and gifts: I have filed six patent applications covering the present research with co-

inventors10 (under BT’s ownership). All are now published and have so far survived searches.

The primary patent of the re-feedback mechanism was recently granted in Europe, the others re-

main pending. Nonetheless, the present author persuaded BT to gift11 free of royalties any aspect

necessary to comply with our IETF standards contribution (the wording of BT’s IPR declaration

takes precedence if there is any conflict with this wording) [Orm05].

8Co-authors contributed co-invention, text on TCP policing and conducted & documented performance experiments, which I

designed except for the co-author’s choices of topology & traffic models
9Co-authors finessed protocol design and contributed appendices on policing & edits throughout

10The nub of the re-feedback idea was the result of a truly collaborative discussion between the co-inventors, but I originally

laid out the problem space and developed the newly formed idea to reconcile it with the structure of classic feedback.
11The most challenging aspect of this whole endeavour!

13.3. Material Contributions 226

13.3.2 Background contributions

The Market-Managed Multi-service Internet (M3I) project: 12 A medium-sized (EUR3.7M) EC In-

formation Society Technologies Fifth Framework project that I initiated and led, to take up Kelly’s

work and build practical network controls and pricing schemes around it. “A Market Managed

Multi-service Internet (M3I)” [BDH+03] (Computer Communications journal paper with many

co-authors) summarises the project.

M3I Architecture: Principles & Components: “Market Managed Multi-service Internet: Architec-

ture Pt I; Principles” [Bri02a] and “. . . Pt II; Construction” [Bri02b] (technical reports).

Split-edge pricing and end-to-end clearing structure: “The Direction of Value Flow in Open Multi-

service Connectionless Networks” [Bri00, Bri99b, Bri99a] (technical report combining two pa-

pers, one for the Int’l Conf on Telecoms & E-commerce, the other an invited paper for the Int’l

Workshop on Networked Group Communications).

Extending ECN and its economic effects to protocols below the network layer:“Explicit Conges-

tion Marking in MPLS” [DBT08] (co-authored IETF Proposed Standard RFC), “Layered Encap-

sulation of Congestion Notification” [Bri09] (IETF I-D accepted as working group business—in

progress), “Service Differentiation in Third Generation Mobile Networks” [SBS02b] (co-authored

Quality of Future Internet Services (QoFIS) int’l workshop paper) and “Economic Models for

Resource Control in Wireless Networks” [SBS02a] (co-authored Personal, Indoor and Mobile

Radio Communications (PIMRC) int’l conference paper).

Applying policy control to congestion control: “Market Managed Multi-service Internet: Pricing

Mechanisms; Price Reaction Design” [BDT+00] (main author of technical report).

Fixing important but detailed aspects of congestion notification:“Byte and Packet Congestion Noti-

fication” [Bri08a] (IETF I-D accepted as working group business—in progress) and “An Open

ECN service in the IP layer” [BC01b] (expired co-authored individual IETF I-D used to finesse

the proposed ECN standard).

Synthesising admission control from congestion notification:“Pre-Congestion Notification Archi-

tecture” [Ear09b] (contributor to IETF working group I-D in last call for Informational RFC

status), “Marking behaviour of PCN-nodes” [Ear09a] (contributor to I-D on the IETF standards

track to standardise virtual queue congestion marking), “Guaranteed QoS Synthesis for Admis-

sion Control with Shared Capacity” [SEB+06] (co-authored technical report), “Guaranteed QoS

synthesis - an example of a scalable core IP quality of service solution” [HBC05] (co-authored

BT Technology Journal article), “An edge-to-edge Deployment Model for Pre-Congestion Notifi-

cation: Admission Control over a DiffServ Region” [BES+06] (co-authored individual IETF I-D

in progress).

12www.m3i-project.org

http://www.m3i-project.org/

13.4. Concluding Remarks 227

13.4 Concluding Remarks

This concluding section aims to bring out the concepts contributed during this period of doctoral re-

search.

Architectural and economic:A primary economic contribution has been to highlight from Kelly’s work

the importance of congestion-volume as a metric for trading bandwidth usage that is both location and

time independent; unlike bit-rate or volume, congestion-volume represents the same cost wherever and

whenever it is used in a competitively provided internetwork. It seems many missed these subtle but

pivotal insights in Kelly’s model, which have been instantiated in the bulk congestion policer of §11:

location independence allows the shares of flows traversing all different resources in the internetwork to

be controlled in one bulk mix in each policer; and time independence allows spending to be shifted back

and forth in time using a token bucket buffer.

Another contribution (both economic and architectural) has been to follow a trail of multidisci-

plinary research to expose and articulate a major structural problem with the Internet architecture—an

unusual form of information asymmetry where each of the providers in the value chain cannot deter-

mine the quality of their own product whereas the end-consumer can. Theoretically, this information

asymmetry could in turn cause market failure, where all of quality, price and investment decline. In the

case of the Internet, rather than a market failure, it seems to be causing network providers to violate the

architecture that is causing the problem. This in turn is causing further problems as the resulting mess

ossifies the ability of the Internet to evolve.

To solve this problem a novel feedback pattern called re-feedback has been proposed. It induces

buyers to reveal the quality of the product to providers, both at the edges of the network, and at the bor-

ders between networks. It enables self-contained datagrams to carry an expectation of the characteristics

of the rest of the path. This reveals information that could be used to solve the information asymmetry

problems of packet networks. A way called re-ECN has also been invented to deploy this idea without

having to change the forwarding elements of the Internet, through a protocol.

Re-feedback had the potential to align the incentives of all the stakeholders on the Internet to truth-

fully reveal the previously hidden price/quality information. The primary task of this dissertation has

been to establish whether this is so for the much more challenging case of re-ECN where re-feedback

ideas have to fit into the remaining one bit of space left in the IP header. The arguments in §13.1that

attempt to prove the hypotheses show that this has been tenuously proven, with strong caveats, concerns

and conditions. In truth, it remains inconclusive. It is likely to remain inconclusive unless tested on a

real internetwork against truly motivated attackers, although a lot more experimental work can be done.

However, on a more positive note, no clear flaws or vulnerabilities exist in the design, in the sense

that none of the proposed attacks have no defence, or at least no direction in which further work can

proceed to establish a possible defence. Given the severe constraints on header space and the highly

ambitious attack model, this is certainly a nontrivial achievement.

A particular contribution is a policer design that represents a desirable contractual proposition for

network operators. The proposed bulk congestion policer has the potential to allow a flat fee contract to

13.4. Concluding Remarks 228

be offered to any size Internet consumer, while at the same time aligning their incentives (and in turn

the incentives of their application developers) to take account of the congestion costs they are causing

others. In Odlyzko’s words, this resolves tension between the irresistible force of usage-sensitive pricing

and the immovable object of consumer desire for simple predictable pricing.

Also, the policer sets no particular constraints on transport behaviour, thus potentially enabling

easy evolution of new behaviours without having to ask permission of the network. A proof of this

transport-oblivious property has been provided.

However, although oblivious to transport behaviours, we reluctantly could not make the re-ECN

system oblivious to flow IDs. The only way to test for cheating is to look for flows that consistently

under-declare expected congestion relative to actual. This can be tested locally, so it does not need to

know where the flow is coming from or going to (therefore no need to rely on push-back), but it does need

to match packets to consistent flow IDs and hold flow state. Knowing that the shared fate Internet design

principle advised against this, we have designed a fully fledged flow ID sub-layer into the architecture,

based on partial soft-flow-state, with its own flow-state congestion signalling.

Along the way, a few other architectural insights have been articulated and incorporated into the

design:

• Datagram resource accountability: Rather than holding end-point identifiers to account for re-

source usage (infeasible globally), holding the datagrams themselves to account enables account-

ability to transfer from one party to the next across each contractual boundary between networks

in turn.

• Principled adherence to the use of explicit in-band signalling for all congestion-related functions,

to decouple the congestion system from any reliance on reverse reachability semantics of flow-IDs;

• Create a cost for using pseudonyms: Given flow IDs are zero cost pseudonyms, if flow IDs are to

be punished, a transport must be made to invest a small cost in using each new ID.

• Proportionate sanctions: A policing mechanism embedded at the lower layers should take great

care to only neutralise any gains as a minimum architectural contribution, not to over-punish mis-

behaviour. Otherwise the amplified punishment could be turned against others by spoofing their

identity.

• Bufferless border control: Traffic should not have to be held back in a buffer while it is tested

for compliance at high speed (e.g. photonic) interfaces. The system should be able to work with

virtual queues and minimal or zero actual buffering.

Myths Slain: Some long-standing fallacies have been dismantled.

• Flow-rate equality & TCP friendliness; for two main reasons:

– Fairness must be between economic entities not arbitrarily chosen pseudonyms;

– Fairness must incorporate a time dimension.

13.4. Concluding Remarks 229

• Per-flow policing, for four reasons:

– Particular transport behaviours should not be embedded in the network (see ‘transport obliv-

iousness’ above);

– Flows can split and follow stepping stones to game the system;

– Sampling cannot be used as a deterrent when a flow can switch pseudonyms as soon as it

detects it has been caught;

– And fourthly, given flow-rate equality is a meaningless goal, rate comparisons between flows

are just as meaningless anyway.

• Flow isolation harmful: In our most recent publication, ‘Policing Freedom’ [JBM08], we argue

that flow isolation (a goal of WFQ etc.) makes traffic that would be willing to shift in time unaware

that others want it to—it muffles congestion signals that would otherwise allow better re-allocation

of the resource pool. Providing signals of incipient congestion without actually introducing any

impairment is more useful.

• RED: Three aspects have been found suspect, the last two of which open up major DoS vulnera-

bilities:

– Uniformly distributing spacing of marks in the aggregate just wastes lots of valuable interface

cycles, because they becomes geometrically distributed again within each flow;

– Packets should be marked independent of their size;

– The goal of 100% drop above a threshold queue size leads to forwarding absolutely nothing

and gives unresponsive flows a huge advantage;

Modelling: The components of the re-ECN system have generally been designed for provability—to

meet principled objectives. The objectives are sufficiently non-arbitrary that the results ofinitial experi-

ment so far have validated the models fairly closely.

A model of the distribution of congestion events within a window has been created. An initial

experimental proof of its validity implies it could be very accurate.

Algorithms: Compact algorithms for metering and manipulating unary encodings have been developed.

One in particular to meter precise downstream congestion is rather pleasing. It outputs the unary encoded

product of a unary encoded sum and difference (which itself contains a quotient), using only adds,

compares and shifts on a small minority of packets (maximum 14 cycles on a Positively marked packet).

Generalisation & Prospects:This dissertation has focused on policing downstream congestion-volume

as a way to encourage congestion responsive transports without restricting their freedom. If we really

have solved this problem, we have also provided a basis for at least two other ‘applications’:

• Mitigating bandwidth flooding and initial packet attacks;

13.4. Concluding Remarks 230

• an extremely simple quality of service mechanism that naturally ‘just works’ as it is extended

to multiple domains, with surrounding mechanisms for security, monitoring, pricing, mobility,

multihoming etc. thrown in for free.

This dissertation has discussed the prospects for mitigating flooding a little, but it has not particu-

larly explored the applicability of the work to QoS. However, it is certainly not to be dismissed.

Simplicity? Reflecting back on this research endeavour, an appropriate question to raise is “Has the

initial simplicity of the idea been lost as defences have been added against each new attack?” The sheer

length of the dissertation in order to accommodate the discussion of each attack makes the outcome feel

complicated. But, on reflection most of the space is used to prove or show that the basic mechanisms are

robust enough against each attack—very little has beenaddedto counter each attack:

• The need to check individual flows for negativity, although always recognised as necessary in some

form, is the least satisfactory aspect of the whole scheme. Compared to Kelly’s simple charging

of ECN marked bytes to the receiver, this clearly adds unwelcome complexity. But, in return,

operators can fully align incentives without all having to conform to a single dynamic pricing

plan—that few, if any, customers would accept. And applications do not have to ask permission

of the network to behave in novel, unexpected ways. The core of the hypothesis is that it is worth

striking this Faustian bargain;

• The addition of flow state on middleboxes brought with it the need to manage potential memory

congestion. But it was recognised that the facility to manage end-point flow state congestion was a

missing piece of the Internet architecture anyway. So memory congestion control has been added

for both middles and ends, with hardly any more complexity than would have been necessary to

add it to end-points alone.

• Sampling flows at borders to introduce an inflation factor for negative flows is probably the most

complicated (and still unproven) addition;

• The introduction of Cancelled packets created extra potential attack possibilities that all had to be

checked through. But, overall, this act probably removed much more complexity than it added;

• The algorithm to meter precise downstream congestion rather than using the simple difference

between volumes of Positive and Negative packets certainly adds complexity, but the resulting

algorithm can hardly be called overly complicated;

A summary of the computational complexity of each part of the re-ECN framework is provided in

the concluding section (§12.3.2) of PartIII .

Perhaps accusations of complexity can be rebutted, but the word ‘brittle’ seems to justifiably apply

to the end result. The incentives seem to balance on a knife-edge, and the mechanisms seem toonly just

work. But this is unsurprising. The aim was to balance maximum freedom against minimum account-

ability, all with minimum complexity. The chosen method was to design at the knife’s edge—to probe

13.4. Concluding Remarks 231

the limits—not to recommend that production networks operate at these limits. In practice, implementers

should have cycles spare to beef up the incentive mechanisms or add their own special features.

Final Words. In the long term, all that can be hoped is that the main contribution will be seen as having

identified the problem. Even if there’s a better way to solve the problem than re-feedback, then it will

have been worth it. But, on reflection, it is quite incredible what can be achieved by judicious use of one

extra bit in packet headers—and how much can be written about it.

This dissertation set itself ambitious goals. More was bitten off than chewed, but enough was

chewed to make it very long and very late. So I shall stop.

Appendix A

Design Alternatives

A.1 Mid-Flow Dropper Algorithm
It is possible for the egress dropper to bound the amount of flow state it uses by monitoring the packet

stream for packets marked Negative and randomly picking one every so often. It can then create flow

state for the flow from which the packet was selected, with a higher chance of picking flows causing a

higher volume of congestion. It would then run the routine listed below that we callnewRecentBal() .

It is similar tonewBal() used in §7.6.1, but it doesn’t maintain or check the lifetime balance.

Instead of remembering the credit a flow might have given when it started,newRecentBal()

makes an arbitrarily conservative allowance for round trip delay to allow Positive marks to catch up with

the Negative ones they should balance. It doesn’t act on incoming Negative marks, but instead stores

them for a short fixed period—long enough to allow for all reasonable round trip times, e.g. 1 sec. After

the fixed period, the dropper inputs the delayed mark as if it were applied to the next incoming packet.

The pseudocode fornewRecentBal() is given below. The constantrttAllce determines how

long to buffer Negative marks (it may be possible to implement a fixed delay buffer more efficiently with

hardware support).

The flow state of each sampled flow no longer stores the lifetime balance of the flowV or the

maximum packet sizesmax, but instead it holds pending Negative marks in the buffer structure

negvBuffer . The functionsenQueue() anddeQueue() add data to and remove data from op-

posite ends of the buffer. The functionreadQueue() reads the oldest data from the buffer without

dequeuing it.

/* Maintain flow congestion balances
in the fState flow state structure.
The parameter s is the packet size.
*/
newRecentBal(s, fState) {

eecn = readEECN(packet)
/* Buffer NEGV & CANC marks

and wipe as if not marked */
if (eecn == NEGV || CANC) {

if (eecn == NEGV) {
eecn = NEUT

} else {
eecn = POSV

A.1. Mid-Flow Dropper Algorithm 233

}
/* Store time-stamp in delay

buffer */
enQueue(timeNow(), negvBuffer)

}
/* If a buffered mark older than

rttAllce, treat as if marked*/
if (readQueue(negvBuffer)

>= timeNow() - rttAllce) {
deQueue(negvBuffer)
switch(eecn) {

case POSV:
eecn = CANC

case CAUT || NEUT || CU:
eecn = NEGV

/* Otherwise no action */
}

}
if (eecn == POSV || CAUT) {

z += a*s
} elseif (eecn == CANC) {

z -= a*z
u -= a*u

} else {
/* NEGV, NEUT or CU */
fState = probDrop(packet,fState)
if (eecn == NEGV) {

z -= a*z
u += a*s
u -= a*u

}
}
return(fState)

}

The following pseudocode would be used to maintain recent state of sampled flows with the help of

newRecentBal() .

/* maintainSampleFlowState()
Maintain flow state in fState structure
*/
foreach packet {

s = readLength(packet)
eecn = read EECN(packet)
flowID = readFlowID(packet)
fState = matchFlowID(flowID)
if (fState != NULL) {

/* Existing flow */
fState = newRecentBal(s,fState)
if (z >= u) {

/* Compliant status flow */
lastGoodTime = timeNow()

} /* else Remand status
so lastGoodTime unchanged*/

} elseif (eecn == CAUT || POSV) {
/* New Compliant flow */
allocate(fState)
fID = flowID

A.2. Precise Downstream Congestion Meter Algorithm 234

u = 0
z = 0
r = -1
fState = newRecentBal(s,fState)
lastGoodTime = timeNow()

} elseif (eecn == Not-ECT || ECT(0)
|| CANC) {

/* LEGACY: forward unimpeded */
} else {

/* New or old misbehaving flow
set status to BULK */

fState = BULK
/* update balances of BULK

and probabilistically drop */
fState = newRecentBal(s,fState)

}
}

A.2 Precise Downstream Congestion Meter Algorithm

The algorithm presented below seems naı̈ve relative to that in §8.2.7that was developed later. However,

the algorithm below has been fully implemented and more thoroughly tested.

We developed this original algorithm to implement the accumulation of congestion-volume based

on Eqn (8.6) on p162 avoiding using any multiplication or division operations. Both parts of the max

function are implemented simultaneously, so that they both accumulate downstream congestion-volume

in real time each using one of the alternative parts of the formula. Then the maximum of the two results

can be used. This discourages the upstream network from cheating, because its dominant strategy will

be to try to keepz/c = u/y, which should be the case for random congestion marking.

Given the algorithms approximate the true inflation factors by sampling, taking the maximum of

two approximations could introduce a persistent positive bias that would disadvantage even an honest

network. We tested the algorithm measuring downstream congestion with stationary but random conges-

tion at 1% and 97% neutral packets and no malicious packet marking. We found that, over 40 samples

of 100M packets, the error of either algorithm had a mean and standard deviation of about 0.005% and

0.02% respectively. Therefore, for an honest user, taking the maximum of the two will not disadvantage

an honest user. However, the experimental conditions were fairly ideal with no variation in congestion.

A more rigorous experiment would have to be conducted to be certain that taking the maximum of two

alternate formulae would not disadvantage honest networks.

Below we give a pseudo-code algorithm for just Eqn (6.4). C source is also available. The algorithm

for the other formula is nearly identical. It works by accumulatingzi − ui as normal, but also adding

an additional sample ofzi − ui taken overc bytes out of everyz. Remainders after rounding are always

preserved by using them as initial values for the next round.

int V=0; /* uninflated downstr
congestion-volume*/

int Vc=0; /* inflation increment for
downstr congestion-volume*/

A.2. Precise Downstream Congestion Meter Algorithm 235

int zc=0, uc=0, rc=0; /* increments of
z, u & c */

#define SI MAX_MTU /* sample increment*/
int sic=SI; /* sample increment index*/

int zs=SI; /* last sampled zc*/
for every packet {

s = readLength(packet);
if readEECN(packet) == POSV {

zc += s;
V += s;

} elseif readEECN(packet) == NEGV {
uc += s;
V -= s;

} elseif readEECN(packet) == CANC {
rc += s;
if (rc > zs) {

zc = 0;
uc = 0;
rc -= zs;
sic += SI;
once = 1;

}
if (sic > 0) {

sic -= s;
} elseif (once == 1) {

zs = zc;
Vc += zc - uc;
once = 0;

}
}

}

Whenever a positive or negative packet arrives, its size is added or subtracted from the running total

of downstream congestion-volume,V. But another running total is maintained of the amount of inflation

Vc required on top of this downstream congestion-volume.

Two incremental variableszc & uc are also maintained to hold how much positive and how much

negative volume has arrived since they were last zeroed. We will start the explanation from when they

are both zeroed (they are always zeroed together). While they are gradually incrementing as positive and

negative packets arrive, the algorithm keeps track of how many bytes of Cancelled packets are arriving in

a third incremental variablerc . As soon as more than an arbitrarily set amountMAXMTUof Cancelled

bytes has arrived, the difference between the two incremental variables for positive and negative bytes

can be added to the amount of inflation required.

A snapshot of the incremental positive variablezc is also stored inzs , which will determine how

long the algorithm ignores positive and negative arrivals before it zeroes them again and the cycle repeats.

The two incremental variables go on accumulating positive and negative volume, but once the snap

shot has been taken, their values are no longer used. The incremental variable for Cancelled volume also

continues to increase and when it finally exceeds the snapshot value taken of positive congestionzs , the

incremental variables are zeroed and the sampling period starts again.

This mechanism ensures that the whole cycle repeats everyzs bytes of Cancelled packets, where

A.2. Precise Downstream Congestion Meter Algorithm 236

zs was the incremental volume of positive bytes at the snapshot. Then it doesn’t actually matter how

many bytes there are before the snapshot, it just has to be some known number of bytes that is bigger than

any single packet (the valueMAXMTU). At this snapshot,z/c more positive packets will have arrived

than Cancelled. Sozs = z/c * MAX MTU. Then, by waiting untilzs Cancelled bytes have arrived,

we will have waited forz/c times more Cancelled bytes than there were up to the snapshot. So the

difference between the two incremental variables for positive and negative bytes taken at the snapshot

will have beenc/z of the difference over the whole cycle. Accumulating these snapshot differences gives

the required amount of inflation of downstream congestion-volume,(z − u)c/z.

Note that Cancelled bytes are accumulated then tested against thresholds (MAXMTUor zs), but

they are never zeroed which would lead to a bias in one direction due to rounding errors. We have

been careful to always subtract the threshold from the count of Cancelled bytes, so that the remainder is

carried forward into the next round.

Appendix B

Rejected Design Alternatives

B.1 Rejected: Three Primary Marking States

We introduced the Cancelled codepoint to remove a vulnerability of the previous re-ECN wire protocol

encoding, which had just three states, Positive, Neutral and Negative.1

The currently standardised ECN field [RFB01] provides the redundancy of two states to mean ‘not

congestion marked but able to understand marking’ (termed ECN-capable transport or ECT and the two

states are called ECT(0) and ECT(1)). They were intended to allow a nonce [SWE03] to be woven into

a stream of packets by the source, so it could detect if the receiver or any network element had tried

to ‘unmark’ a congestion mark. A congestion mark set the ECN field to a third codepoint (congestion

experienced or CE). So if anyone tries to unmark a packet, they have to guess which of the two ECT

states the sender originally set. And the sender can detect when they guess wrongly.

The original re-ECN wire protocol [BJCG+05] used the codepoint of the ECN field that was re-

served for the ECN nonce [SWE03].2 ECT(1) was used for a Neutral marking and ECT(0) for Positive.

And CE meant Negative. The unused bit in the IPv4 header was used to indicate something akin to what

is now the ‘Cautious’ marking. As it is still, the charge for downstream congestion was measured by

subtracting Negative from Positive bytes, whether actually translated into money, or subtracted from a

user’s ‘congestion quota’.

This all seemed nice and simple, but problems piled on problems because both Neutral and Positive

packets changed to Negative when congestion marked. Firstly, no-one could tell whether a Negative

packet had previously been Positive, so a source had to introduce a relatively complicated inflation of

the amount of Positive it sent to allow for some being marked. Secondly, networks could bias their

Negative congestion marking against Positive packets in order to reduce the charge they had to pay for

downstream congestion. As they gained two points of worth for marking a Positive packet against one

for a Neutral packet, they had a strong incentive to do this. Although this led to a negative balance at the

egress dropper, it was not possible to attribute the blame to any one network. Then, the source couldn’t

be sure how much inflation it should add, and the problems descended in a vicious spiral.

It became clear that we had to introduce the Cancelled state, making the re-ECN wire protocol as

1Setting aside the complication of the changes we made to the Cautious state at the same time.
2Re-ECN provides a superset of the capabilities of the ECN nonce, so we claimed the nonce is no longer necessary.

B.2. Rejected: Using Positive Not Cautious 238

described in this dissertation. With the introduction of the Cancelled state, a Positive packet can now

be congestion marked to remove one unit of worth, which is gained by the network doing the marking.

But it does not lose two units of worth as in the previous scheme, and it is still possible to infer that a

Cancelled packet probably started as a Positive packet. These changes have three useful effects:

• there is no longer an incentive for a network to bias its marking against Positive packets

• end-points can detect if a network changes packet markings in contravention of the protocol (see

§12.1.4)

• there is no longer a need for the sender to do any complicated marking inflation

B.2 Rejected: Using Positive Not Cautious

The role of Cautious packets seems only marginally different from Positive packets. This raises the

question of whether the functions of the two could be overloaded into one codepoint—the codepoint

currently used by Positive—leaving the Cautious codepoint spare for future use. The primary reason for

keeping the Cautious codepoint is a rather irritating and possibly minor backward compatibility issue.

As we have pointed out, the primary reason for introducing re-ECN into the internetwork layer is to

provide principled control of sharing and congestion of the resource pool. When ECN was first defined,

of course, there was no control of excessive use of resources. The solution for controlling unwanted

traffic was thought to lie in anomalous flow detection, either those using excessive network resources,

or those being rejected by hosts that didn’t want them, perhaps using push-back messages, capabilities

or other ideas at the time. This left the thorny problem of the initial packets of flows—they had to be

assumed valid.

Those who standardised ECN knew that hosts sending unwanted traffic could claim that they would

respond to ECN markings to gain an advantage over other legacy traffic that didn’t. They also knew that

the sender of the initial packet of a flow couldn’t claim for certain that the receiver would understand

or respond to ECN markings, because it hadn’t yet established communication with it to find out its

capabilities. Therefore they mandated that the initial packet of a flow MUST NOT be marked ECN-

capable.3

The thinking was that servers and stateful firewalls could then immediately discard TCP SYN pack-

ets that claimed to be ECN capable, thus thwarting any advantage there was in using ECN-capability in

a SYN attack.

With re-ECN, we have added control of resource sharing at the packet level. So we don’t need

any special measures to prevent initial packets gaining advantage from congestion marking. And we

have devised another way to handle a re-ECN source being able to claim ECN-capability on the first

3The letter of the specification solely stipulates this for TCP transports, saying “A host MUST NOT set ECT on SYN

. . . packets”. But the spirit of the specification seemed to intend a similar sentiment to apply to all transports. However, the

DCCP transport, which became a proposed standard in 2006 (5 years after ECN) assumes support for ECN but says next to

nothing about it, let alone whether the initial packet should claim ECN support.

B.2. Rejected: Using Positive Not Cautious 239

packet—before it knows whether the receiver will understand a congestion mark from the network.4

However, if a re-ECN sender uses anything but Not-ECT (00) in the ECN field of the first packet of

its flow, it is bound to hit problems with firewalls and servers who have followed the ECN specification

and built in rules to discard TCP SYNs with ECN-capability.

We contrived the re-ECN protocol so that the Cautious codepoint made the packet look not ECN-

capable (Not-ECT) to equipment that only checked the ECN field. However, Cautious is distinguished

from Not-ECT by setting the RE flag. Therefore, as forwarding equipment is upgraded to understand

re-ECN it can mark the ECN field in Cautious packets rather than drop them.

If Positive packets had served both the Positive and the Cautious functions, the protocol would have

become trapped in a Catch-22. A source would not be able to send a Positive packet to start a flow

on some paths, if a firewall or the server itself discarded ECN-capable SYNs. But if the source sent a

non-Positive SYN, a re-ECN dropper would not necessarily set up flow state without any credit.

With the addition of the Cautious codepoint, a source can set-up flow-state with a packet that looks

as if it isn’t ECN-capable to legacy equipment and servers (even though it actually is) and it can have

positive worth.

There is a strong possibility that some firewalls or servers will discard Cautious packets as a pre-

caution too (because the RE flag has not traditionally been set). However, re-ECN won’t work at all

through such firewalls anyway, because it relies on using the RE flag. We can only hope and beg that

firewalls and servers are upgraded to allow re-ECN capable packets. But we cannot ask that the rule to

discard ECN-capable SYNs is removed from firewalls because, even if re-ECN is deployed, that firewall

rule will have to stay as the only protection against DoS attacks using legacy ECN packets.

It might seem that packets with the codepoint used for Cautious could serve both Positive and

Cautious functions instead. But then, every time a re-ECN flow needed to re-echo a positive marking,

it would have to send a Cautious packet, which appears not to be ECN-capable to legacy forwarding

equipment—a situation that would persist for many years, and probably decades. This would leave

positive packets with a much greater chance of drop than other packets, making the resulting alternative

re-ECN protocol highly flaky.

There are other reasons for introducing Cautious not just Positive markings:

• The most principled, but least concrete, argument is that a separate marking for Cautious from

Positive allows the economic values of the two markings to diverge in the future given their differ-

ent semantics. For instance, policers might rate-limit Cautious packets more strictly than Positive

packets to throttle the opening of new flows.

• Markings in response to actual congestion (Positive) can be separated from markings that don’t

indicate actual congestion (Cautious) when monitoring packet aggregates within the network, per-

haps for traffic engineering or SLA monitoring.

4If the receiver’s initial response shows it doesn’t speak re-ECN, the sender is advised to proceed cautiouslyas if the receiver

had fed back that the first packet was congestion marked.

B.2. Rejected: Using Positive Not Cautious 240

Finally, we should point out that we RECOMMEND that servers and middleboxes allow flow state

to be set up by a request in either a Positive packet or a Cautious packet, but it is only MANDATORY

to set up flow state when requested in a Cautious packet. Therefore hosts would be advised to use a

Cautious marking to be sure.

One advantage the Positive marking does have is during a DoS attack. A highly congested for-

warding element could be re-marking all Cautious packets to Negative and all Positive to Cancelled. A

re-ECN dropper further along the path that was stressed by the same DoS attack would probably drop

all the Negative packets, but it would forward the Cancelled packets unscathed. However, even a highly

congested forwarding element shouldn’t be congestion marking 100% of Cautious and Positive packets

(see §9).

Note that congestion marking a Positive packet to Cancelled MUST NOT be taken to mean ‘Flow

state not stored’. This would add too much ambiguity to the protocol.

It is compliant with the ECN specification [RFB01] for a host to send the codepointECT(1)

(termed Positive in the re-ECN protocol) in order to weave a nonce into the ECN fields of a stream of

packets [SWE03]. If these arrived at the re-ECN dropper, it would not necessarily have to set up flow

state, even if they hadn’t been preceded by a Cautious packet with the same flow ID. But if a flow were

re-routed into a re-ECN dropper from another path, it would be good if the first Positive packet in the

stream did set up flow state, even if the initial Cautious packet had previously passed through a different

dropper.

Appendix C

RED under Extreme Load

The drop probability of RED [FJ93] (and AQM’s derived from it such as WRED [Sys02] or RIO [CF98])

is defined to rise to 100% in its congestion control phase. Therefore unresponsive traffic would make the

link forward precisely nothing.

The core of the RED algorithm is meant to have three phases dependent on the size of the averaged

queue:

• Normal[0, minth)

• Congestion avoidance[minth, maxth)

• Congestion Control[maxth,∞)

The problem concerns the drop (not marking) behaviour of RED in its congestion control phase.1 When

the loadL on a link isabovethe link capacityC, the average drop fraction in order to shed sufficient load

only needs to bepn = 1− C/L. Fig C.1showspn for a range of overloaded utilisationu = L/C from

100–1000%. As soon asu ≥ 100%, the average queue maintained by RED will rapidly rise pastmaxth .

RED is intended to drop 100% in its congestion control phase, when the average queue,q̄ ≥ maxth (or

q̄ ≥ 2maxth for gentle RED). Thus, with sufficient unresponsive traffic to fill the link, we assume RED

will allow nothing through at all, as the conjectured plot ofpR in Fig C.1shows.

RED will be likely to strongly favour unresponsive traffic over responsive as it approaches conges-

tion control phase. If utilisation were hovering around 100%, causing drop to hover around 100% also,

any responsive traffic would slow itself to a trickle. Therefore if, say, the average drop probability were

95%, the remaining 5% of capacity would virtually all be taken by unresponsive traffic. Whereas, if the

queue were just naturally shedding load with no AQM, the drop probability could be relatively low (at

least low relative to 95%) with such a load. For instance, even at 110% utilisation, natural drop would

be 9%. Without RED if the arriving load were half responsive and half unresponsive half and half would

get through.

1By ‘RED’ we mean how researchers describe it. It is possible that some implementers of RED have noticed this problem and

inventedad hocwork-rounds. For instance, the ALTQ code for BSD Unix switches to tail drop whenaveq > maxth. An older

random drop behaviour can still be configured instead. The research community still routinely models RED with 100% drop in

congestion control, e.g. ns-2 [ns2] has no other behaviour.

242

0%

20%

40%

60%

80%

100%

0%

10
0%

20
0%

30
0%

40
0%

50
0%

60
0%

70
0%

80
0%

90
0%

10
00

%

u = L/C

p_n = 1 - C/L
p_R

Figure C.1: Drop at an Overloaded Queue.

Utilisationu = C/L > 100%. pn: drop needed to shed sufficient arriving load;pR: conjectured RED

drop in its congestion control phase.

Note that ‘unresponsive traffic’ doesn’t have to imply a DDoS attack. It could just be a flash crowd

of inelastic traffic on a link. We will need to redesign an AQM that is robust against unexpected traffic

loads, rather than forwarding nothing at all.

It could make sense for RED to increaseECN markingto 100% in the congestion control phase. But

it doesn’t seem to makes sense to increasedrop to 100%. In fact, the problem seems to be that the drop

behaviour mimics the marking behaviour when it shouldn’t. The ECN specification, RFC3168 [RFB01]

says that when RED moves into congestion control phase, marking should be turned off and it should

only do drop. This is clearly intended to prevent unresponsive traffic gaining by abusing the ECN ca-

pability. However, it would only be a sensible strategy if drop mode itself didn’t so strongly favour

unresponsive traffic.

Bibliography

[AHCC06] Lachlan L.H. Andrew, Stephen V. Hanly, Sammy Chan, and Tony Cui. Adaptive deter-

ministic packet marking.IEEE Comm. Letters, 10(11):790–792, November 2006.

[AK94] P. Almquist and F. Kastenholz. Towards requirements for IP routers. Request for com-

ments 1716, Internet Engineering Task Force, November 1994. (Obsoleted by RFC1812)

(Status: informational).

[Ake70] G.A. Akerlof. The market for ‘lemons’: Quality, uncertainty and market mechanisms.

Quarterly Journal of Economics, 84:488–500, August 1970.

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers.Proc. ACM

SIGCOMM’04, Computer Communication Review, 34(4), September 2004.

[AKS06] Edward Anderson, Frank Kelly, and Richard Steinberg. A contract and balancing mecha-

nism for sharing capacity in a communication network.Management Science, 52:39–53,

2006.

[AMI +07] Katerina Argyraki, Petros Maniatis, Olga Irzak, Subramanian Ashish, and Scott Shenker.

Loss and delay accountability for the internet. InProc. IEEE International Conference on

Network Protocols. IEEE, October 2007.

[Ari25] Aristotle. Ethica Nicomachea. Clarendon Press, Oxford, 1925. Translated by W.D.Ross.

[Arm06] Mark Armstrong. Competition in two-sided markets.RAND Journal of Economics,

37(3):668–691, Autumn 2006.

[Bar89] W. Barns. Defense data network usage accounting enhancement approaches. Technical

report, The MITRE Corporation, 1989.

[Bau05] Steve Bauer. Incentive misalignment under congestion-based pricing. URL:http://

cfp.mit.edu/CFP_WG_WS/BBWG_NOV_2005/Steven_Bauer_11-05.pdf ,

November 2005.

[BB01] Deepak Bansal and Hari Balakrishnan. Binomial congestion control algorithms. InProc.

IEEE Conference on Computer Communications (Infocom’01), pages 631–640. IEEE,

April 2001.

http://cfp.mit.edu/CFP_WG_WS/BBWG_NOV_2005/Steven_Bauer_11-05.pdf
http://cfp.mit.edu/CFP_WG_WS/BBWG_NOV_2005/Steven_Bauer_11-05.pdf

Bibliography 244

[BB05] Rob Beverly and Steve Bauer. The spoofer project: Inferring the extent of source address

filtering on the Internet. InProc. Steps to Reducing Unwanted Traffic on the Internet

Workshop (SRUTI 2005), pages 53–59. USENIX, July 2005.

[BBB+97] F. Baker, B. Braden, S. Bradner, A. Mankin, M. O’Dell, A. Romanow, A. Weinrib, and

L. Zhang. Resource ReSerVation protocol (RSVP) — version 1 applicability statement;

Some guidelines on deployment. Request for comments 2208, Internet Engineering Task

Force, January 1997.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for

differentiated services. Request for comments 2475, Internet Engineering Task Force,

December 1998.

[BC01a] Bob Briscoe and Jon Crowcroft. An open ECN service in the IP layer. Technical Report

TR-DVA9-2001-001, BT, February 2001.

[BC01b] Bob Briscoe and Jon Crowcroft. An open ECN service in the IP layer. Internet draft,

Internet Engineering Task Force, February 2001. (Expired).

[BCC+98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,

G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and

L. Zhang. Recommendations on queue management and congestion avoidance in the

Internet. Request for comments 2309, Internet Engineering Task Force, April 1998.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated services in the Internet architecture: an

overview. Request for comments 1633, Internet Engineering Task Force, June 1994.

[BCSJ04] Bob Briscoe, Śebastien Cazalet, Andrea Soppera, and Arnaud Jacquet. Shared control

of networks using re-feedback; an outline. Technical Report TR-CXR9-2004-001, BT,

September 2004.

[BCSW00] Robert Braden, David Clark, Scott Shenker, and John Wroclawski. Developing a next-

generation Internet architecture. White paper, DARPA, July 2000.

[BDH+03] Bob Briscoe, Vasilios Darlagiannis, Oliver Heckman, Huw Oliver, Vasilios Siris, David

Songhurst, and Burkhard Stiller. A market managed multi-service internet (M3I).Com-

puter Communications, 26(4):404–414, February 2003.

[BDT+00] Bob Briscoe, Konstantinos Damianakis, Jérôme Tassel, Panayotis Antoniadis, and George

Stamoulis. M3I pricing mechanism design; Price reaction. Deliverable 3 Pt II, M3I Eu

Vth Framework Project IST-1999-11429, July 2000.

[Bel00] Steve M. Bellovin. ICMP traceback messages. Internet Draft draft-bellovin-itrace-00.txt,

Internet Engineering Task Force, March 2000. (Work in progress).

Bibliography 245

[BES+06] Bob Briscoe, Philip Eardley, David Songhurst, Francois Le Faucheur, Anna Charny, Jozef

Babiarz, Kwok-Ho Chan, Stephen Dudley, Georgios Karagiannis, Attila Bader, and Lars

Westberg. An edge-to-edge deployment model for pre-congestion notification: Admission

control over a DiffServ region. Internet Draft draft-briscoe-tsvwg-cl-architecture-04.txt,

Internet Engineering Task Force, October 2006. (Work in progress).

[BFB06] Steve Bauer, Peyman Faratin, and Robert Beverly. Assessing the assumptions underlying

mechanism design for the Internet. InProc. Workshop on the Economics of Networked

Systems (NetEcon06), June 2006.

[BJCG+05] Bob Briscoe, Arnaud Jacquet, Carla Di Cairano-Gilfedder, Alessandro Salvatori, Andrea

Soppera, and Martin Koyabe. Policing congestion response in an internetwork using re-

feedback.Proc. ACM SIGCOMM’05, Computer Communication Review, 35(4):277–288,

August 2005.

[BJMS09a] Bob Briscoe, Arnaud Jacquet, Toby Moncaster, and Alan Smith. Re-ECN: Adding ac-

countability for causing congestion to TCP/IP. Internet Draft draft-briscoe-tsvwg-re-ecn-

tcp-07.txt, Internet Engineering Task Force, March 2009. (Work in progress).

[BJMS09b] Bob Briscoe, Arnaud Jacquet, Toby Moncaster, and Alan Smith. Re-ECN: The motivation

for adding congestion accountability to TCP/IP. Internet Draft draft-briscoe-tsvwg-re-ecn-

tcp-motivation-00.txt, Internet Engineering Task Force, March 2009. (Work in progress).

[Bla08] Steven Blake. Use of the IPv6 flow label as a transport-layer nonce to defend against

off-path spoofing attacks. Internet Draft draft-blake-ipv6-flow-label-nonce-01, Internet

Engineering Task Force, November 2008. (Work in Progress).

[BLMR98] John Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital foun-

tain approach to reliable distribution of bulk data.Proc. ACM SIGCOMM’98, Computer

Communication Review, 28(4), September 1998.

[BLSS05] Eli Brosh, Galit Lubetzky-Sharon, and Yuval Shavitt. Spatial-temporal analysis of pas-

sive TCP measurements. InProc. IEEE Conference on Computer Communications (Info-

com’05), pages 949–959. IEEE, March 2005.

[BOT06] Bob Briscoe, Andrew Odlyzko, and Benjamin Tilly. Metcalfe’s Law is Wrong.IEEE

Spectrum, Jul 2006:26–31, July 2006.

[BP87] R. T. Braden and J. Postel. Requirements for Internet gateways. Request for comments

1009, Internet Engineering Task Force, June 1987. (Obsoleted by RFC1812) (Status:

historic).

[BR05] Bob Briscoe and Steve Rudkin. Commercial models for IP quality of service interconnect.

BT Technology Journal, 23(2):171–195, April 2005.

Bibliography 246

[Bra97] Scott Bradner. Key words for use in RFCs to indicate requirement levels. BCP 14, Internet

Engineering Task Force, March 1997. (RFC 2119).

[Bri99a] Bob Briscoe. The direction of value flow in connectionless networks. InProc. 1st In-

ternational COST264 Workshop on Networked Group Communication (NGC’99), volume

1736. Springer LNCS, November 1999. (Invited paper).

[Bri99b] Bob Briscoe. The direction of value flow in multi-service connectionless networks. In

Proc. International Conference on Telecommunicatons and E-Commerce (ICTEC’99), Oc-

tober 1999.

[Bri00] Bob Briscoe. The direction of value flow in open multi-service connectionless networks.

Technical Report TR-NZG12-2000-001, BT, August 2000.

[Bri02a] Bob Briscoe. M3I Architecture PtI: Principles. Deliverable 2 PtI, M3I Eu Vth Framework

Project IST-1999-11429, February 2002.

[Bri02b] Bob Briscoe. M3I Architecture PtII: Construction. Deliverable 2 PtII, M3I Eu Vth Frame-

work Project IST-1999-11429, February 2002.

[Bri06] Bob Briscoe. Using self-interest to prevent malice; Fixing the denial of service flaw of the

Internet. InProc Workshop on the Economics of Securing the Information Infrastructure,

October 2006.

[Bri07a] Bob Briscoe. Fast congestion notification (FCN). Tech report TR-CXR9-2006-003, BT,

May 2007. (unpublished work in progress).

[Bri07b] Bob Briscoe. Flow rate fairness: Dismantling a religion.ACM SIGCOMM Computer

Communication Review, 37(2):63–74, April 2007.

[Bri07c] Bob Briscoe. Flow rate fairness: Dismantling a religion. Internet Draft draft-briscoe-

tsvarea-fair-02, Internet Engineering Task Force, July 2007. (Expired).

[Bri08a] Bob Briscoe. Byte and packet congestion notification. Internet Draft draft-ietf-tsvwg-byte-

pkt-congest-00.txt, Internet Engineering Task Force, August 2008. (Work in progress).

[Bri08b] Bob Briscoe. Emulating border flow policing using re-PCN on bulk data. Internet

Draft draft-briscoe-re-pcn-border-cheat-02.txt, Internet Engineering Task Force, Septem-

ber 2008. (Work in progress).

[Bri08c] Bob Briscoe. A fairer, faster internet protocol.IEEE Spectrum, Dec 2008:38–43, Decem-

ber 2008.

[Bri08d] Bob Briscoe. Problem statement: Transport protocols don’t have to do fairness. Internet

Draft draft-briscoe-tsvwg-relax-fairness-01, Internet Engineering Task Force, July 2008.

(Work in progress).

Bibliography 247

[Bri09] Bob Briscoe. Tunnelling of congestion notification. Internet Draft draft-ietf-tsvwg-ecn-

tunnel-02.txt, Internet Engineering Task Force, March 2009. (Work in progress).

[CC01] Ioanna D. Constantiou and Costas A. Courcoubetis. Information asymmetry models in the

Internet connectivity market. InProc. 4th Internet Economics Workshop, May 2001.

[CC08] Denis Collange and Jean-Laurent Costeux. Passive estimation of quality of experience.

Journal of Universal Computer Science, 14(5):625–641, March 2008.

[CCG+02] Parminder Chhabra, Shobhit Chuig, Anurag Goel, Ajita John, Abhishek Kumar, Huzur

Saran, and Rajeev Shorey. XCHOKe: Malicious source control for congestion avoid-

ance at Internet gateways. InProc. IEEE International Conference on Network Protocols

(ICNP’02). IEEE, November 2002.

[CF98] David D. Clark and Wenjia Fang. Explicit allocation of best-effort packet delivery service.

IEEE/ACM Transactions on Networking, 6(4):362–373, August 1998.

[Cla88] David D. Clark. The design philosophy of the DARPA internet protocols.Proc. ACM

SIGCOMM’88, Computer Communication Review, 18(4):106–114, August 1988.

[Cla95] David D. Clark. A model for cost allocation and pricing in the internet.Journal of Elec-

tronic Publishing, 1(1&2), January–February 1995.

[Cla96] David D. Clark. Combining sender and receiver payments in the Internet. In G. Rosston

and D. Waterman, editors,Interconnection and the Internet. Lawrence Erlbaum Asso-

ciates, Mahwah, NJ, October 1996.

[cla98] kc claffy. The nature of the beast: Recent traffic measurements from an Internet backbone.

In Proc. INET’98. ISOC, 1998.

[CO98] Jon Crowcroft and Philippe Oechslin. Differentiated end to end Internet services using a

weighted proportional fair sharing TCP.Computer Communication Review, 28(3):53–69,

July 1998.

[Com02] Computer Science and Telecommunications Board (CSTB).Broadband; Bringing Home

the Bits. National Academy Press, Washington D.C., 2002.

[CP98] L. Cherkasova and P. Phaal. Session-based admission control — a mechanism for im-

proving performance of commercial web sites. InProc. International Workshop on QoS

(IWQoS’99). IEEE/IFIP, June 1998.

[CW96] Costas Courcoubetis and Richard Weber. Buffer overflow asymptotics for a switch han-

dling many traffic sources.Journal Applied Probability, 33:886–903, 1996.

[CW03] Costas Courcoubetis and Richard Weber.Pricing Communication Networks. Wiley, 2003.

Bibliography 248

[CWSB05] David Clark, John Wroclawski, Karen Sollins, and Robert Braden. Tussle in cyberspace:

Defining tomorrow’s Internet.IEEE/ACM Transactions on Networking, 13(3):462–475,

June 2005.

[Day07] John Day.Patterns in Network Architecture: A Return to Fundamentals. Prentice-Hall,

2007.

[DBT08] Bruce Davie, Bob Briscoe, and June Tay. Explicit congestion marking in MPLS. Request

for comments rfc5129.txt, Internet Engineering Task Force, January 2008.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair-queueing algo-

rithm. Computer Communication Review (SIGCOMM’89), 19(4):1–12, September 1989.

[DKZSM05] Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen, and Nick McKeown. Proces-

sor sharing flows in the internet. InProc. International Workshop on QoS (IWQoS’05),

June 2005.

[DM06] Nandita Dukkipati and Nick McKeown. Why flow-completion time is the right metric

for congestion control.ACM SIGCOMM Computer Communication Review, 36(1):59–62,

January 2006.

[DR04] Ian Dobbs and Paul Richards. Innovation and the new regulatory framework for electronic

communications in the EU.European Competition Law Review, 25(11):716–730, 2004.

[Ear09a] Marking behaviour of PCN-nodes. Internet Draft draft-ietf-pcn-marking-behaviour-02.txt,

Internet Engineering Task Force, March 2009. (Work in progress).

[Ear09b] Pre-congestion notification architecture. Internet Draft draft-ietf-pcn-architecture-11.txt,

Internet Engineering Task Force, April 2009. (Work in progress).

[Edd07] Wes Eddy. TCP SYN flooding attacks and common mitigations. Request for comments

RFC4987, Internet Engineering Task Force, August 2007.

[FAJS07] Sally Floyd, Mark Allman, Amit Jain, and Pasi Sarolahti. Quick-Start for TCP and IP.

Request for comments rfc4782.txt, Internet Engineering Task Force, January 2007.

[FF99] Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion control in the

Internet.IEEE/ACM Transactions on Networking, 7(4):458–472, August 1999.

[FHPW00] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-based congestion

control for unicast applications.Proc. ACM SIGCOMM’00, Computer Communication

Review, 30(4):43–56, October 2000.

[FHPW03] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. TCP friendly rate control

(TFRC): Protocol specification. Request for comments rfc3448.txt, Internet Engineering

Task Force, January 2003.

Bibliography 249

[FI08] Bryan Ford and Janardhan Iyengar. Breaking up the transport logjam. InProc. IETF-73

Transport Area Open Meeting. Internet Engineering Task Force, November 2008. (Pre-

sentation slides).

[Fin89] G. Finn. A connectionless congestion control algorithm.ACM SIGCOMM Computer

Communication Review, 19(5), October 1989.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-

ance.IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[Flo94] Sally Floyd. TCP and explicit congestion notification.ACM SIGCOMM Computer Com-

munication Review, 24(5):10–23, October 1994. (This issue of CCR incorrectly has ’1995’

on the cover).

[Flo08] Sally Floyd. RED (random early detection) queue management; setting parameters.

Web pagehttp://www.icir.org/floyd/red.html#parameters , November

2008. (Last accessed Jan 2009).

[FR98] E. Friedman and P. Resnick. The social cost of cheap pseudonyms.Journal of Economics

and Management Strategy, 10(2):173–199, 1998.

[FW06] Peyman Faratin and Tom Wilkening. Interconnection discrimination: A two-sided markets

perspective. InProc. ACM Hot Topics in Networking (HotNets-V). ACM, November 2006.

[GK99a] Richard J. Gibbens and Frank P. Kelly. Distributed connection acceptance control for a

connectionless network. InProc. International Teletraffic Congress (ITC16), Edinburgh,

pages 941–952, 1999.

[GK99b] Richard J. Gibbens and Frank P. Kelly. Resource pricing and the evolution of congestion

control. Automatica, 35(12):1969–1985, December 1999.

[GK02] Richard J. Gibbens and Frank P. Kelly. On packet marking at priority queues.IEEE

Transactions on Automatic Control, 47(6):1016–1020, June 2002.

[GKM01] Ayalvadi Ganesh, Peter Key, and Laurent Massoulié. Feedback and bandwidth sharing

in networks. InProc. 39th Annual Allerton Conference on Communication, Control and

Computing, 2001.

[GM06] Yashar Ganjali and Nick McKeown. Update on buffer sizing in Internet routers.ACM

SIGCOMM Computer Communication Review, 36, October 2006.

[GMS00] Richard Gibbens, Robin Mason, and Richard Steinberg. Internet service classes under

competition. IEEE Journal on Selected Areas in Communications, 18(12):2490–2498,

2000.

http://www.icir.org/floyd/red.html#parameters

Bibliography 250

[GQX+04] David K. Goldenberg, Lili Qiu, Haiyong Xie, Yang Richard Yang, and Yin Zhang. Op-

timizing cost and performance for multihoming.Proc. ACM SIGCOMM’04, Computer

Communication Review, 34(4):79–92, October 2004.

[Gro05] Broadband Working Group. The broadband incentive problem. White paper, MIT Com-

munications Futures Programme and Cambridge University Communications Research

Network, September 2005.

[HBC05] Peter Hovell, Bob Briscoe, and Gabriele Corlianò. Guaranteed QoS synthesis (GQS): An

example of a scalable core IP quality of service solution.BT Technology Journal, 23(2),

April 2005.

[HE02] David Hands (Ed.). M3I user experiment results. Deliverable 15.2, M3I Eu Vth Frame-

work Project IST-1999-11429, February 2002. (M3I partner access only).

[HG04] Mark Handley and Adam Greenhalgh. Steps towards a DoS-resistant Internet architecture.

In FDNA ’04: Proceedings of the ACM SIGCOMM workshop on Future directions in

network architecture, pages 49–56, New York, NY, USA, 2004. ACM Press.

[HGB06] H. Hassan, J.M. Garcia, and C. Bockstal. Aggregate Traffic Models for VoIP Applications.

In Proc. International Conference on Digital Telecommunications (ICDT’06), page 70,

2006.

[HH07] Felipe Huici and Mark Handley. An edge-to-edge filtering architecture against DoS.Com-

puter Communication Review, 37(2):39–50, 2007.

[ITU04] Traffic control and congestion control in B-ISDN. Recommendation I.371 (03/04), ITU-T,

March 2004.

[Jac88] Van Jacobson. Congestion avoidance and control.Proc. ACM SIGCOMM’88 Symposium,

Computer Communication Review, 18(4):314–329, August 1988.

[Jaf80] J.M. Jaffe. A decentralized, “optimal”, multiple-user, flow control algorithm. InProc.

Fifth Int’l. Conf. On Computer Communications, pages 839–844, October 1980.

[Jaf81] J. M. Jaffe. Bottleneck flow control.IEEE Transactions on Communications, 29(7):954–

962, July 1981.

[JBM08] Arnaud Jacquet, Bob Briscoe, and Toby Moncaster. Policing Freedom to Use the Internet

Resource Pool. InProc Workshop on Re-Architecting the Internet (ReArch’08). ACM,

December 2008.

[JBS05] Arnaud Jacquet, Bob Briscoe, and Alessandro Salvatori. A path-aware rate policer: Design

and comparative evaluation. Technical Report TR-CXR9-2005-006, BT, October 2005.

Bibliography 251

[JRC87] R. Jain, K. Ramakrishnan, and D. Chiu. Congestion avoidance in computer networks

with a connectionless network layer. Technical report DEC-TR-506, Digital Equipment

Corporation, 1987.

[JWL04] Cheng Jin, David Wei, and Steven Low. FAST TCP: Motivation, architecture, algorithms,

performance. InProc. IEEE Conference on Computer Communications (Infocomm’04).

IEEE, March 2004.

[Kel97a] Frank P. Kelly. Charging and accounting for bursty connections. In Lee W. McKnight and

Joseph P. Bailey, editors,Internet Economics, pages 253–278. MIT Press, 1997.

[Kel97b] Frank P. Kelly. Charging and rate control for elastic traffic.European Transactions on

Telecommunications, 8:33–37, 1997. A version with a correction by Ramesh Johari and

Frank Kelly to distinguish flows with zero weight and using a better structure of proof is

available from URL:http://www.statslab.cam.ac.uk/˜frank/elastic.

html .

[Kel00] Frank P. Kelly. Models for a self-managed Internet.Philosophical Transactions of the

Royal Society, 358(1773):2335–2348, August 2000.

[Kel03] Frank Kelly. Fairness and stability of end-to-end congestion control.European Journal of

Control, 9:159–176, 2003.

[KHR02] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high bandwidth-

delay product networks.Proc. ACM SIGCOMM’02, Computer Communication Review,

32(4):89–102, October 2002.

[Kle76] Leonard Kleinrock.Queuing Systems, Vol II: Computer Applications. Wiley, New York,

1976.

[KM97] D. Kristol and L. Montulli. HTTP state management mechanism. Request for comments

2109, Internet Engineering Task Force, February 1997.

[KM99] Peter Key and Laurent Massoulié. User policies in a network implementing congestion

pricing. In Proc. Workshop on Internet Service Quality and Economics. MIT, December

1999.

[KMBK04] Peter Key, Laurent Massoulie, Alan Bain, and Frank Kelly. Fair Internet traffic integration:

Network flow models and analysis.Annales des T́elécommunications, 59:1338–1352,

2004.

[KMT98] Frank P. Kelly, Aman K. Maulloo, and David K. H. Tan. Rate control for communication

networks: shadow prices, proportional fairness and stability.Journal of the Operational

Research Society, 49(3):237–252, 1998.

http://www.statslab.cam.ac.uk/~frank/elastic.html
http://www.statslab.cam.ac.uk/~frank/elastic.html

Bibliography 252

[KS01] S. Kunniyur and R. Srikant. Analysis and design of an adaptive virtual queue (AVQ)

algorithm for active queue management.Proc. ACM SIGCOMM’01, Computer Commu-

nication Review, 31(4), October 2001.

[KV05] Frank Kelly and Thomas Voice. Stability of end-to-end algorithms for joint routing and

rate control.ACM SIGCOMM Computer Communication Review, 35(2):5–12, April 2005.

[LC06] Paul Laskowski and John Chuang. Network monitors and contracting systems: Com-

petition and innovation.Proc. ACM SIGCOMM’06, Computer Communication Review,

36(4):183–194, September 2006.

[Lec99] Robert Lechner. Competitive network evolution towards broadband IP. In Bruce Wiltshire,

editor,Proc. BT Alliance Engineering Symposium (AES’99), page Session 1A Paper 2. BT

Alliance, June 1999. (not publicly accessible).

[LG09] Michael Vittrup Larsen and Fernando Gont. Port randomization. Internet Draft draft-ietf-

tsvwg-port-randomization-03, Internet Engineering Task Force, March 2009. (Work in

Progress).

[MBJ07] Toby Moncaster, Bob Briscoe, and Arnaud Jacquet. A TCP test to allow senders to identify

receiver non-compliance. Internet Draft draft-moncaster-tsvwg-rcv-cheat-02.txt, Internet

Engineering Task Force, November 2007. (Work in progress).

[MFW01] Ratul Mahajan, Sally Floyd, and David Wetheral. Controlling high-bandwidth flows at

the congested router. InProc. IEEE International Conference on Network Protocols

(ICNP’01), 2001.

[MHR+90] A. Mankin, G. Hollingsworth, G. Reichlen, K. Thompson, R. Wilder, and R. Zahavi. Eval-

uation of Internet performance — FY89. Technical report MTR-89W00216, MITRE Cor-

poration, February 1990.

[MMV93] Jeffrey K. MacKie-Mason and Hal Varian. Some economics of the Internet. InProc. Tenth

Michigan Public Utility Conference at Western Michigan University, March 1993.

[MMV95] Jeffrey K. MacKie-Mason and Hal Varian. Pricing congestible network resources.IEEE

Journal on Selected Areas in Communications, “Advances in the Fundamentals of Net-

working”, 13(7):1141–1149, 1995.

[MPCC00] Richard Mortier, I. Pratt, C. Clark, and Simon Crosby. Implicit admission control.IEEE

Journal on Selected Areas in Communications, 18(12):2629–2639, December 2000.

[MR91] A. Mankin and K. Ramakrishnan. Gateway congestion control survey. Request for com-

ments 1254, Internet Engineering Task Force, July 1991. (Status: informational).

[MR99] Laurent Massoulíe and Jim W. Roberts. Arguments in favour of admission control for TCP

flows. InProc. Int’l Teletraffic Congress (ITC16), June 1999.

Bibliography 253

[MSMO97] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic

behavior of the TCP congestion avoidance algorithm.SIGCOMM Comput. Commun. Rev.,

27(3):67–82, 1997.

[MW00] Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based congestion control.

IEEE/ACM Transactions on Networking, 8(5):556–567, October 2000.

[Nag84] J. Nagle. Congestion control in IP/TCP internetworks. Request for comments 896, Internet

Engineering Task Force, January 1984. (Status: unknown).

[Nag85] J. Nagle. On packet switches with infinite storage. Request for comments 970, Internet

Engineering Task Force, December 1985. (Status: unknown).

[ns2] Network simulator. URL:http://www.isi.edu/nsnam/ns/ .

[Odl97] Andrew Odlyzko. A modest proposal for preventing Internet congestion. Technical report

TR 97.35.1, AT&T Research, Florham Park, New Jersey, September 1997.

[OLW99] Teunis J. Ott, T. V. Lakshman, and Larry H. Wong. SRED: Stabilized RED. InProc. IEEE

Conference on Computer Communications (Infocom’99), pages 1346–1355. IEEE, March

1999.

[Orm05] Ralph Orme. British Telecommunications plc’s statement about IPR claimed in

draft-briscoe-tsvwg-re-ecn-tcp-00.txt. URL:https://datatracker.ietf.org/

public/ipr_detail_show.cgi?&ipr_id=651 , November 2005.

[Pax99] Vern Paxson. End-to-end Internet packet dynamics.IEEE/ACM Transactions on Network-

ing, 7(3):227–292, June 1999.

[PBPS03] Rong Pan, Lee Breslau, Balaji Prabhaker, and Scott Shenker. Approximate fairness

through differential dropping. ACM SIGCOMM Computer Communication Review,

33(2):23–40, April 2003.

[PFTK98] Jitendra Padhye, V. Firoiu, Don Towsley, and Jim Kurose. Modeling TCP throughput: A

simple model and its empirical validation.Proc. ACM SIGCOMM’98, Computer Commu-

nication Review, 28(4), September 1998.

[PLD04] Antonis Papachristodoulou, Lun Li, and John C. Doyle. Methodological frameworks for

large-scale network analysis and design.ACM SIGCOMM Computer Communication Re-

view, 34(3):7–20, July 2004.

[Pop63] Karl Popper. Conjectures and Refutations. Routledge & Kegan Paul, Abingdon, Oxon,

England, 1963.

[Pos81] Jon Postel. Internet control message protocol. Request for comments 0792, Internet En-

gineering Task Force, September 1981.

http://www.isi.edu/nsnam/ns/
https://datatracker.ietf.org/public/ipr_detail_show.cgi?&ipr_id=651
https://datatracker.ietf.org/public/ipr_detail_show.cgi?&ipr_id=651

Bibliography 254

[PPP00] R. Pan, B. Prabhakar, and K. Psounis. CHOKe, A stateless active queue management

scheme for approximating fair bandwidth allocation. InProc. IEEE Conference on Com-

puter Communications (Infocom’00). IEEE, March 2000.

[PQW03] Venkata N. Padmanabhan, Lili Qiu, and Helen Wang. Server-based inference of Internet

performance. InProc. IEEE Conference on Computer Communications (Infocomm’03.

IEEE, April 2003.

[Raw01] John Rawls.Justice as Fairness: A Restatement. Harvard University Press, Cambridge,

MA, 2001.

[Red01] Smitha A. L. Narasimha Reddy. LRU-RED: An active queue management scheme to

contain high bandwidth flows at congested routers. InProc Globecomm’01, November

2001.

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David Black. The addition of explicit congestion

notification (ECN) to IP. Request for comments 3168, Internet Engineering Task Force,

September 2001.

[RS06] Barath Raghavan and Alex C. Snoeren. Decongestion control. InProc. ACM Hot Topics

in Networking (HotNets-V). ACM, November 2006.

[Sal05] Alessandro Salvatori. Closed loop traffic policing. Master’s thesis, Politecnico Torino and

Institut Euŕecom, September 2005.

[SBS02a] Vasilios A. Siris, Bob Briscoe, and Dave Songhurst. Economic models for resource control

in wireless networks. InProc. 13th International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC 2002). IEEE, September 2002.

[SBS02b] Vasilios A. Siris, Bob Briscoe, and Dave Songhurst. Service differentiation in third gen-

eration mobile networks. InInternational workshop on Quality of future Internet Services

(QofIS’02), volume 2511, pages 169–178. COST263, Springer LNCS, October 2002.

[SCEH96] Scott Shenker, David Clark, Deborah Estrin, and Shai Herzog. Pricing in computer net-

works: Reshaping the research agenda.ACM SIGCOMM Computer Communication Re-

view, 26(2), April 1996.

[SCM01] Vasilios A. Siris, Costas Courcoubetis, and George Margetis. Service differentiation in

ECN networks using weighted window-based congestion control. InProc. 2nd Interna-

tional workshop on Quality of future Internet Services (QofIS’01). COST263, September

2001.

[SCM02] Vasilios A. Siris, Costas Courcoubetis, and George Margetis. Service differentiation

and performance of weighted window-based congestion control and packet marking al-

gorithms in ECN networks.Computer Communications, 26(4):314–326, 2002.

Bibliography 255

[SCWA99] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP congestion

control with a misbehaving receiver.ACM SIGCOMM Computer Communication Review,

29(5):71–78, October 1999.

[SEB+06] David J. Songhurst, Phil L. Eardley, Bob Briscoe, Carla Di Cairano Gilfedder, and June

Tay. Guaranteed QoS Synthesis for admission control with shared capacity. Technical

Report TR-CXR9-2006-001, BT, February 2006.

[She95] Scott Shenker. Fundamental design issues for the future Internet.IEEE Journal on Selected

Areas in Communications, 13(7):1176–1188, 1995.

[Sir02] Vasilios A. Siris. Resource control for elastic traffic in CDMA networks. InProc. ACM

International Conference on Mobile Computing and Networks (MobiCom’02). ACM,

September 2002.

[SPS+02] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchak-

ountio, Beverly Schwartz, Stephen T. Kent, and W. Timothy Strayer. Single-packet IP

traceback.IEEE/ACM Transactions on Networking, 10(6):721–734, 2002.

[SRC84] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in system

design. ACM Transactions on Computer Systems, 2(4):277–288, November 1984. An

earlier version appeared in the Second International Conference on Distributed Computing

Systems (April, 1981) pages 509–512.

[SWE03] Neil Spring, David Wetherall, and David Ely. Robust explicit congestion notification

(ECN) signaling with nonces. Request for comments RFC3540, Internet Engineering Task

Force, June 2003. (Status: Experimental).

[Sys02] Cisco Systems. Distributed weighted random early detection. Release Note Cisco IOS

Release 11.1 CC and Feature Modules, Cisco Systems, 2002.

[TC04] R.W. Thommes and M.J. Coates. Deterministic packet marking for time-varying conges-

tion price estimation. InProc. IEEE Conference on Computer Communications (Info-

comm’04). IEEE, March 2004.

[Wei91] Mark Weiser. The computer for the 21st Century.Scientific American, 265(3):94–104,

September 1991.

[WHBB08] Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The Resource Pooling

Principle.SIGCOMM Comput. Commun. Rev., 38(5):47–52, October 2008.

[Wis07] Damon Wischik. Short messages. InProc. Workshop on Networks: Modelling and Con-

trol. Royal Society, September 2007.

Bibliography 256

[WK08] John Wittgreffe and Kashaf Khan. Orchestrating end-to-end network and resources ac-

cording to application level service level agreements.BT Technology Journal, 26(1):46–

57, September 2008.

[Wol82] Ronald W. Wolff. Poisson arrivals see time averages.Operations Research, 30(2):223–

231, March–April 1982.

[WPSB09] Michael Welzl, Dimitri Papadimitriou, Michael Scharf, and Bob Briscoe. Open Research

Issues in Internet Congestion Control. Internet Draft draft-irtf-iccrg-welzl-congestion-

control-open-research-03, Internet Research Task Force, April 2009. (Work in progress).

[XSSK05] Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, and Shivkumar Kalyanaraman.

One more bit is enough.Proc. ACM SIGCOMM’05, Computer Communication Review,

35(4):37–48, 2005.

[YMKT99] Maya Yajnik, Sue B. Moon, James F. Kurose, and Donald F. Towsley. Measurement

and modeling of the temporal dependence in packet loss. InProc. IEEE Conference on

Computer Communications (Infocom’99), pages 345–352. IEEE, 1999.

[YPG00] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for policy-based admission

control. Request for comments 2753, Internet Engineering Task Force, January 2000.

[ZD01] Yin Zhang and Nick Duffield. On the constancy of Internet path properties. InProc. 1st

SIGCOMM Workshop on Internet Measurement (IMW ’01), pages 197–211, New York,

NY, USA, 2001. ACM.

[ZDE+93] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala. RSVP:

A new resource ReSerVation protocol.IEEE Network, September 1993.

	I Freedom with Accountabilityfor Causing Congestion in a Connectionless Internetwork
	1 Introduction
	1.1 The Problem
	1.2 Motivation
	1.2.1 Other Motivations

	1.3 Road map

	2 Related Work
	2.1 Internet Congestion Control
	2.2 Economics of Network Congestion
	2.3 Internetwork Market Structure
	2.4 Critique of Existing Work
	2.5 Conclusions from Reviews

	3 Hypotheses
	3.1 Clarifications
	3.2 Significance and Rationale
	3.3 Approach

	II Re-feedback
	4 Receiver Aligned Re-inserted Feedback
	4.1 Introduction
	4.2 Re-feedback
	4.A Re-feedback functions
	4.A.1 Congestion re-feedback

	5 Re-feedback Incentive Mechanisms
	5.1 Incentives
	5.1.1 The case against classic feedback
	5.1.2 The Case Against Bottleneck Policers
	5.1.3 Honest congestion reporting
	5.1.4 Policing congestion response
	5.1.5 Inter-domain incentive mechanisms
	5.1.6 Distributed denial of service mitigation

	5.2 Dropper performance

	III Re-ECN: Unary Congestion Signal Integrity Mechanisms
	6 Re-ECN Introduction
	6.1 Re-ECN Wire Protocol
	6.1.1 Justification for Building on ECN
	6.1.2 Re-ECN Network Layer Protocol

	6.2 Notation, Definitions and Metrics

	7 Re-ECN Egress Dropper
	7.1 Dropper Terminology
	7.2 Dropper Behaviour Constraints
	7.3 Dropper Design Principles
	7.3.1 Proportionate Sanctions(Equivalence with Honesty)
	7.3.2 Source Responsibility for Delay Allowance
	7.3.3 Dropper State Management

	7.4 Dropper Handling of Other Markings
	7.4.1 Cancelled Markings
	7.4.2 Cautious Markings
	7.4.3 Legacy ECN Markings
	7.4.4 Congestive Loss
	7.4.5 Downstream Congestion Analysis Revisited

	7.5 Attacks Perverting the Dropper
	7.5.1 Flow ID Whitewashing
	7.5.2 Dragging Down an Aggregate
	7.5.3 Dragging Down a Spoofed Flow ID

	7.6 Dropper Algorithm Implementations
	7.6.1 Continually Vigilant Dropper Algorithm

	7.7 Predicted Dropper Performance
	7.7.1 Predicted False Hits
	7.7.2 Predicted False Misses

	7.8 Simulated Dropper Performance
	7.8.1 Simulation Environment
	7.8.2 Simulation Results

	8 Re-ECN Border Incentive Mechanisms
	8.1 Border Architecture
	8.1.1 Baseline Border Mechanism
	8.1.2 Border Mechanism Constraints
	8.1.3 Border Design Principles

	8.2 Border Attacks and their Defences
	8.2.1 Attacks and Defences: Executive Summary
	8.2.2 Attack #1a: Dragging Down a Border Aggregate
	8.2.3 Attack #1b: Dummy Background Congestion
	8.2.4 Defence #1: Sample-Based Downstream Congestion Inflation
	8.2.5 Attack #2a: Signal Poisoning with Cancelled Markings
	8.2.6 Attack #2b: Extreme Upstream Congestion
	8.2.7 Defence #2: Normalising Cancelled Markings
	8.2.8 Defence #3: Using Congestion Marking to Detect Anomalies

	8.3 Border Incentive Mechanisms: A Review

	9 Re-ECN Forwarding Element Behaviour
	9.1 Re-ECN Preferential Drop
	9.2 Congestion Marking Cautious Packets

	10 Re-ECN Middlebox Behaviour
	10.1 Flow-State Congestion Signalling

	11 Re-ECN Bulk Congestion Policer
	11.1 Bulk Congestion Policer Model
	11.2 Policer Diversity
	11.3 Bulk Congestion Policer Design
	11.3.1 Covert Marking as Policer Signals

	12 The Re-ECN System
	12.1 System Attacks on Congestion Signal Integrity
	12.1.1 Endpoints Against Networks
	12.1.2 Networks Against Endpoints
	12.1.3 Ends Against Ends
	12.1.4 Byzantine State Transitions

	12.2 Re-ECN Protocol Reconsolidated
	12.2.1 Re-Architecting Flow Start
	12.2.2 Forward Compatibility

	12.3 Re-ECN System Properties
	12.3.1 Transport Oblivious Congestion Signal Integrity
	12.3.2 Algorithm Complexities
	12.3.3 Performance
	12.3.4 Outstanding Vulnerabilities

	IV In Closing
	13 Conclusions
	13.1 Closing Arguments
	13.2 Re-ECN Limitations and Further Work
	13.3 Material Contributions
	13.3.1 Direct contributions
	13.3.2 Background contributions

	13.4 Concluding Remarks

	A Design Alternatives
	A.1 Mid-Flow Dropper Algorithm
	A.2 Precise Downstream Congestion Meter Algorithm

	B Rejected Design Alternatives
	B.1 Rejected: Three Primary Marking States
	B.2 Rejected: Using Positive Not Cautious

	C RED under Extreme Load
	Bibliography

