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Abstract

In vitro endothelial cells respond to fluid flow by elongating in the direction of flow.
How the mechanical signal is transformed into an organised and directed response is
poorly understood.

The most studied and crucial aspects to this response are; actin filament alignment,
mechano-transduction, signal transduction, Rho GTPase localised activation and lamel-
lipodium formation. The goal of this project is to understand how these separate facets
interact and lead to a coordinated response.

The flow is modelled over a 3D virtual cell, which naturally gives the force the flow ex-
erts on the cell surface via a boundary integral representation. This force is coupled to
a Kelvin-body model of mechano-transduction which links, via a focal adhesion asso-
ciated protein, Src, to a partial differential equation model (PDE) of the Rho GTPases
Rac and Rho. The PDEs are integrated over a 2D projection of the 3D cell giving a
time course for protein concentration at any point in the cell. It is demonstrated that a
mechano-transducer that can respond to the normal component of the force is likely to
be a necessary (though perhaps not sufficient) component of the signalling network.

In some processes cross talk between the GTPases is thought to be important in forming
spatially segregated zones of activation, for example in the front and back of migratory
cells. This research shows that local signalling in endothelial cells could be initiated
by the force normal to the surface of the cell and maintained by limited diffusion.
Modelling indicates the EC signalling response to fluid flow may be attenuated by a
change in morphology.

Rac and Rho activation and deactivation are validated against experimentally reported
time courses that have been taken for whole cell averages. However it will be demon-
strated that these time courses do not characterise the process and therefore there is a
need for more quantitative local measure of protein activation.
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1 Introduction

The focus of this project is the study of how endothelial cells (ECs) respond to fluid
flow. Following the onset of flow ECs undergo a wide variety of intra-cellular sig-
nalling including: ion channel activation, MAPK (mitogen activated protein kinase)
signalling, NF-κB (nuclear factor kappa B) activation, Rho GTPase activation, integrin
activation, PECAM-1 (platelet endothelial cell adhesion molecule) activation and acti-
vation of phosphoinositide 3-kinases (Wojciak-Stothard & Ridley, 2003; Tzima et al.,
2001, 2002; Davies, 1995). In vitro the signalling response initiates a structural re-
organisation of the following: cytoskeleton, organelle localisation and focal adhesions,
which results in mechanical stiffening, flattening of the cell and alignment of the cell
in the flow direction (Davies et al., 1997; Ballerman et al., 1998; McCue et al., 2006;
Wojciak-Stothard & Ridley, 2003; Tzima et al., 2002). Focal adhesions, which attach
the cell to the extra-cellular matrix, become aligned with the flow. However the total
area of the cell adhered to the extra-cellular matrix remains approximately constant
(Davies et al., 1994), however it is also reported that adherence to the extra-cellular
matrix is increased in response to fluid flow (Ballerman et al., 1998).

The EC response to laminar fluid flow is referred to as a shear-stress activated process
(Goldfinger et al., 2008; Tzima et al., 2001, 2002, 2005; Wojciak-Stothard & Ridley,
2003; Hoger et al., 2002). In this thesis it will be argued that the normal force may
complement the shear-stress activated signalling pathways. However the role of shear-
stress signalling in the EC response to laminar fluid flow should not be underestimated.

In order to sense the direction of fluid flow ECs polarise and establish distinct up and
downstream signalling regions, which determines the direction in which to extend. The
alignment of ECs is believed to be crucial in the correct formation and function of the
endothelium. Typically ECs are tens of µm wide and long and about five µm in depth
at the highest point (figure 1.1).

The endothelium is a monolayer of ECs that line the entire vasculature system. In the
endothelium ECs are joined to each other via cell-cell junctions that construe mechan-
ical properties on the endothelium, and - more importantly - are selectively permeable
to materials (for example ions) and cells (for example monocytes) crucial to biological
function. It has also been shown that toxic substances (such as nicotine) can open these
junctions to allow larger molecules to pass through the wall (Hawkins et al., 2004).

Nicotine is an example of a factor that can increase permeability through the endothe-
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Figure 1.1: A computer representation of an EC. Typical ECs are 40 µm in length and
width and about 5 µm in height.

lium. For example, trans-endothelial flux of low-density lipoproteins (LDLs) which
is followed by their retention and modification (lipolysis, proteolysis and aggregation,
Sima et al. (2009)). The passive diffusive flux of LDLs across the endothelium is be-
lieved to be the initial stage in the pathogenesis of the disease atherosclerosis (Berliner
et al., 1995). The build up of modified LDLs leads to an inflammatory response from
the ECs including recruitment of leukocytes, which can ultimately lead to aggrega-
tion of foam cells (macrophages rich with a modified form of low density lipoprotein)
beneath the endothelium (Lusis, 2000).

Continued deposition beneath the endothelium, combined with the inflammatory re-
sponse, leads to formation of plaques associated with atherosclerosis. The plaque con-
sists of a fibrous cap to the lesion below, containing leukocytes, lipid, and debris (Ross,
1999). The cap itself is made up of extra-cellular matrix secreted by smooth muscle
cells which are recruited to the lesion by cytokines and growth factors. Degradation
of the cap by proteolysis can lead to thrombosis (rupture of the lesion into the blood
stream) Lusis (2000).

Such lesions can partially or totally occlude the blood flow. Rupture of the lesion into
an artery can resulting in serious clinical complications (figure 1.2).
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Figure 1.2: Formation of atherosclerotic plaques in response to signals from ECs,
macrophages accumulate in the vessel wall and take up a modified form of the
cholesterol-transporting low density lipo-proteins (LDLs), leading to the formation of
‘foam cells’. Once these foam cells die they deposit their lipid-rich contents within the
vessel wall. Heart disease and stroke can occur if a lesion ruptures into the artery.

Shear stress on the endothelium due to fluid flow has been shown to be athero-protective
(Davies et al., 1997). Regions of uni-directional laminar flow appear less prone to
atherosclerosis. It is believed that altered gene expression in regions of reduced shear-
stress up regulate adhesion to the endothelium by monocytes and T cells (Ross, 1999),
leading to aggravation of the inflammatory response outlined above. As a consequence
the location of atherosclerotic plaques are correlated with regions of complex blood
flow (for example regions of flow reversal due to arterial branching, Davies (2008)).
In these regions the ECs take on a rounded morphology, in contrast with an ellipsoidal
shape in regions of smooth flow (Weinbaum et al., 1985). Furthermore permeability
through the endothelium is increased in turbulent flow regions (Ross, 1999). Hence
alignment and elongation of ECs in response to fluid flow may have important physio-
logical consequences for reducing permeability through the endothelium.

1.1 Endothelial Cell Polarisation and Alignment

The process of EC polarisation and alignment can be thought of as being composed
of six modules (figure 1.3). The flow over the cell exerts a force, which the cell in-
terprets by transforming the mechanical force into a biochemical one. This mechano-
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Figure 1.3: Overview of the process of EC polarisation in response to fluid flow. The
fluid exerts a force on the cell. This mechanical signal is transduced into a biochemical
one, which initiates a signalling network. This network reorganises the cytoskeleton,
leading to cell shape change. In principle the force on the cell could alter the cytoskele-
ton and cell shape directly. A change in cell shape necessarily alters the fluid flow.

transduction initiates a signalling network that mediates the cellular response, most
noticeably a change of cell shape via cytoskeleton reorganisation. In principle the
cytoskeleton could be affected by the force on the cell directly, without signal trans-
duction.

In this project each of these components is modelled. The force on the cell due to
fluid flow is linked to a model of mechano-transduction, the output of which is coupled
to a model of Rho GTPase activation and interaction. The Rho GTPases are some
of the most studied components of the signalling network and mediate cytoskeleton
organisation. Modelling of cytoskeleton reorganisation is explored (chapter 2 and 3),
however these models are not coupled to the others. The primary reason for this is
the practical and theoretical challenge of linking models of different time and length
scales.

1.1.1 Spatial Heterogeneity

The components in figure 1.3 that interact and lead to EC elongation share characteris-
tics with corresponding processes that govern the migration of cells. The most marked
similarity is cytoskeleton reorganisation and its corresponding mediation by Rho GT-
Pases. Cells migrating on surfaces move by establishing polarity and forming distinct
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signalling regions in the front and back of the cell. The front signalling pathway orches-
trates cell protrusion, so the cell grows into the migration direction. The rear pathway
mediates cell contraction. The case of EC elongation is similar: an area of local sig-
nalling is established in the downstream region of the cell. It is an open question how
this local signalling is activated and maintained, this work aims to address this point. It
will transpire that comparison of similarities and differences in EC elongation and cell
migration signalling leads to some interesting conclusions.

To generate local downstream signalling there must necessarily be a spatial heterogene-
ity in some of the prior components in figure 1.3. In particular there must be hetero-
geneity in conversion of a mechanical signal into a biochemical one. If a mechano-
transducer is to be activated heterogeneously the component must be located non-
uniformly or become activated non-uniformly. Here it will be argued that the second
case is likely and is a result of spatial asymmetry of force on the cell in the up and
downstream regions.

1.2 Project Goals

This project is an attempt to elucidate each of the components in figure 1.3 and how
they interact and lead to the response of the cell. There are reasonable, and often
multiple, hypotheses for each of these modules. Coupling models of these components
(where feasible) in a biologically meaningful manner provides a method of testing
hypotheses about the process as a whole and the individual components. The main
questions that this project aims to address are:

• Which cell component interprets physical force?

• How does this component initiate signalling?

• How is polarity established and maintained?

• How is cytoskeleton reorganisation mediated?

• How is the signalling network shut off?

With varying confidence and, where possible, supported by experimental evidence,
modelling will provide evidence indicating possible answers to these questions.
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1.3 Thesis Structure

The following chapters deal with each component of the process (figure 1.3) starting
at the bottom right corner and proceeding sequentially clockwise. Cytoskeleton reor-
ganisation is the obvious starting point because it is this component of the cell that
confers structure, hence if the cell is to elongate the cytoskeleton must be reorganised.
The results of each chapter (to differing extents) motivate the research of the following
chapter.

The other reason for reporting the chapters in this order is it allows the relevant biology
to be introduced at the beginning of each chapter that it pertains too, it is anticipated that
this makes the chapters more readable and the modelling that follows more relevant.
However this does mean that the introduction to the biological concepts and terms
is spread across the report, for this reason an index has been constructed for ease of
reference.

An electronic version of this report is available on the attached CD along with source
code.

The next chapter is an introduction to previous modelling in this area, which has gen-
erally focused on cytoskeleton reorganisation. This leads to the author’s own extension
to one such model.
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2 Prior Cytoskeleton Modelling

This chapter introduces the cytoskeleton and reviews previous modelling of the actin
cytoskeleton. Firstly an introduction into the biology of the eukaryote cytoskeleton is
given. This is followed by an introduction to models of the cytoskeleton in the context
of the EC response to fluid flow.

A previous model by the author is discussed. This is followed by an introduction to
models of actin alignment, including integro-differential model of spontaneous fila-
ment alignment.

The novel contribution of the author in this chapter is this extension to an existing
integro-differential model of filament alignment, section 2.4. It is shown analytically
that this modification, in the context of the model, can not mediate alignment of fila-
ments.

All the models discussed (in this chapter) deal with modelling the mechanical structure
of the cell, whether that be through treating the cell as a continuum or modelling the
dynamics of components of the cytoskeleton.

2.1 Cytoskeleton Biology

The cytoskeleton plays an important role in the process of endothelial elongation be-
cause it is the component of the cell that defines its structure and form. A good, though
of course not perfect, analogy is that of a tent; it is the poles of a tent that define its
shape rather that the outer canvas. The cellular ‘canvas’ is the plasma membrane, es-
sentially a two dimensional fluid which is held in place by the cell cytoskeleton and
nucleus (the ‘poles’).

The cytoskeleton is complex and dynamic, composed of three main components; mi-
crotubules, intermediate filaments and actin filaments. It is regulated by many different
signals, including Rho GTPases (which will be explored in more detail in chapter 6),
which play a crucial role in EC polarisation.
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Figure 2.1: Microtubules form by addition of α and β tubulin dimers. Protofilaments
(straight chains left to right) attach laterally to form a hollow cylinder.

2.1.1 Microtubules

Microtubules are polymers formed by globular protein sub-units, α− and β-tubulin,
and play a crucial role in many cellular processes, notably cell division, cell motility
and organelle localisation (Alberts et al., 2008).

Microtubules form initially by γ-tubulin - nucleated polymerisation of αβ-tubulin hetero-
dimers, although the exact mechanism is unclear. The polymer grows through addition
of αβ-tubulin dimers, and hence is orientated, with a so called plus end structurally dis-
tinct from the opposite, minus, end. Nascent tubulin filaments make lateral connections
to form a mature microtubule, which has the structure of a hollow cylinder (figure 2.1).
The nascent filaments form in such a manner that lateral helices of αβ-tubulin dimers
can be traced around the microtubule, hence polymerisation and de-polymerisation of
the microtubule filament occurs by an ‘un-peeling’ and ‘splaying’ of the cylinder struc-
ture (Wade & Hyman, 1997).

Generally nucleation occurs at a microtubule organising centre (MTOC) due to target-
ing of γ-tubulin to these centres. The best described example of a MTOC is the cen-
trosome, from which most cytoplasmic microtubules grow in eukaryotic cells (Üders
& Stearns, 2007). In vitro microtubules polymerise and depolymerise from either end,
however in vivo the minus end is generally anchored (and capped) at the MTOC, (Wade
& Hyman, 1997).
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2.1.2 Intermediate Filaments

Of the three main cytoskeletal elements, intermediate filaments are the broadest in
terms of composition and function. However, differing classes of intermediate fila-
ments share a common secondary structure; the central component of which is an α-
helical rod domain, parts of which are highly conserved between filament types (Chang
& Goldman, 2004).

Intermediate filaments have been suggested to act as a mechanical stress absorbers and
even as mechano-transducers (Herrmann et al., 2007). They also play an important role
in linking together the other components of the cytoskeleton, both structurally and via
crosstalk mechanisms. Interestingly, both intermediate filaments and microtubules are
thought to be a downstream target for the Rho GTPases Rho, Rac and Cdc42 as well
as tyrosine kinases (Chang & Goldman, 2004).

2.1.3 Actin Filaments

Actin is ubiquitously expressed in eukaryotic cells and plays a role in a wide variety of
cellular functions including, motility, division and secretion. Actin filaments can also
form cell protrusions (filopedia and lamellipodia, section 3.1) as well as being crucial
(along with the myosin II complex) in cellular contraction.

Actin filament structure and formation are introduced in more detail in chapter 3.
Briefly, actin filaments are formed from polymerisation of G-actin (globular actin) sub-
units. Like microtubules they also form a plus (or barbed) or minus (pointed) end.

Individual actin filaments can be structurally organised at a higher level by actin bind-
ing proteins, thus conferring distinct properties to the actin filaments . Actin binding
proteins have many biochemical activities, including: capping and severing; branching
bundling or crosslinking of actin filaments; anchoring filaments to the membrane or
linking filaments to other cytoskeleton elements. Section 3.1 describes a model of a
particular actin network.

Bundling of actin filaments is the mechanism for formation of stress fibres (the com-
ponent of the cytoskeleton that governs contraction.) Binding of α-actinin organises
actin filaments (typically tens of individual filaments) into parallel bundles. Myosin
II is a motor protein that hydrolyses ATP to generate force and walk along actin fila-
ments. Stimulation of myosin activity leads to contraction of stress fibres by binding
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Figure 2.2: Actin filaments in endothelial cells before (control) and after exposure to
shear stress for 4 hours (4 h), (Wojciak-Stothard & Ridley, 2003)

to separate filaments and forcing them to slide over each other (Clark et al., 2007).
Crosslinking proteins such as filamin, spectrin or transgelin bind on to two separate
filaments, but with distinct binding regions so that the filaments are orientated at non-
parallel (often perpendicular) angles, (Winder & Ayscough, 2005). The membrane
anchors, vinculin and talin, are important because they bind to integrins (transmem-
brane heterodimers which bind to the extracellular matrix, ECM) and hence link the
cell’s actin cytoskeleton to the external surroundings.

In this project the modelling is focused exclusively on actin’s role in EC alignment.
This is chosen for two reasons. Firstly in response to fluid flow the actin stress fibres
are observed to align in the direction of EC polarisation (figure 2.2), and secondly
they confer more structure to the cell than the other elements. That this is the case
was confirmed by Wang (1998), in an illuminating series of experiments. By applying
magnetic twisting cytometry1 Wang (1998) showed that if the actin filament network
was disrupted (with Cytochalasin D) then permanent deformation was decreased by 50-
70% and stiffness was reduced by 50%. Disruption of the intermediated filaments or
microtubules (by Acrylamide and Nocodazole respectively) had little effect on stiffness
and permanent deformation.

1Ferromagnetic beads are added to the cell surface and magnetised in one direction by a strong magnetic
field, then a weaker field is applied perpendicular to the original one resulting in a twisting force on the cell
from which the angular strain can be deduced.
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Figure 2.3: Tension-Integrity Sculpture by Kenneth Snelson Snelson (2008)

2.1.4 The Mechanics of the Cytoskeleton

Tension-integrity (tensegrity) is a term first coined by Buckminster Fuller (Fuller, 1961),
and is an idea visualised by the sculptor Kenneth Snelson (figure 2.3). It is the idea that
structures can be in a stable equilibrium through a balance of tension in some elements
and compression in others. One example of a structure that can be built using this prin-
ciple is shown in figure 2.3. The choice of this particular sculpture is deliberate: it does
resemble a simple model of the cell cytoskeleton (although, unlike cells, this structure
is not robust to removal of components)

Another example of a tensegrity structure is a tent, which recall was the analogy of
cell structure in section 2.1. However the analogy falls down because the structural
element of a tent under tension is the canvas, which represents the cell membrane
in the analogy: although the membrane is under tension, it is not this tension that
balances out the compression in the cellular structure. In the tension-integrity model of
the cell the tensile elements are the actin filaments and the compressible elements are
the microtubules (Ingber, 2006). Hence in principle to wholly understand cell structure
the components of the cell cytoskeleton need to be modelled as separate entities. In
particular this is necessary if the tensegrity model is pursued; struts and cables need to
be identified.

The tensegrity model has been studied in more depth (Stamenovic et al., 1996; Ingber,
2006; Wang et al., 1993). For example, Stamenovic et al. (1996) applied a tenseg-
rity model to a discrete system of struts (microtubules) and cables (actin filaments).
They demonstrated that stiffness of the ‘cell’ increased with pre-stress (acto-myosin

22



generated tension). If a cell is to be considered a tensegrity structure then it has a
huge number of constitutive elements, more than are computationally or analytically
accessible. Furthermore these elements are dynamically evolving.

Here a different modelling approach is sought so that it is possible to treat the cell
structure as a dynamic entity. For simplicity, focus is maintained on either modelling
the cytoskeleton as a viscous-elastic medium or only considering actin modelling (in
light of the twisting cytometry experiments by Wang (1998)).

Accordingly in the following section two models treating the cell as a visco-elastic
medium are discussed. However, it will be noted that ECs are apparently too stiff to be
deformed directly by fluid flow (Civelekoglu-Scholey et al., 2005). Hence, mediated
re-organisation of the cytoskeleton is a necessary component of the EC response to fluid
flow. One such re-organisation is alignment of actin filaments in the flow direction. A
discussion of modelling this process (using integro-differential equations) forms the
remainder of this chapter.

There are however other notable approaches to modelling cellular structure and dy-
namics. Some of these will be discussed in chapter 3 in the context of lamellipodia
formation.

Dembo & Harlow (1985) modelled the cytoplasm as a reactive interpenetrating flow
field (meaning a mix of fluids that have very different velocity fields), with two phases
corresponding to the cytoskeleton and an aqueous mixture. Dembo (1986) applied this
model to modelling the mechanics of motility and Herant et al. (2003) apply this for-
malism to neutrophil mechanics. Sandersius & Newman (2008) model cell rheology
using a ‘sub-cellular element model’ which captures single cell visco-elastic properties
in response to strain over time-scales of several seconds. Keren et al. (2008) gen-
erate keratocyte morphology by modelling the biophysical and biochemical interplay
between actin dynamics and membrane tension. Marèe et al. (2006) also model kerato-
cyte morphology (and cell motility) by using a cellular Potts model (the methodology
of cellular Potts, CPM, modelling will be introduced briefly in chapter 8).
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2.2 The Cytoskeleton as a Continuum

2.2.1 Fluid Mechanics Approach

This Ph.D. project grew out of the thesis component of the CoMPLEX2 MRes course
(Allen, 2005). Without wishing to repeat that work here, it is worthwhile recalling it
briefly as it provided a first approach to the modelling of the EC response to fluid flow.

In Allen (2005) the problem was reduced to two dimensions. However it will be ar-
gued later that meaningful models of the process must necessarily incorporate three
dimensions in some manner.

The cell was modelled as a two-dimensional visco-elastic medium, with the initial
shape of an ellipse. The blood flow in a large artery can be roughly approximated
(treating the flow as quasi-steady Hazel & Pedley (2000)) as a Poiseuille flow, that is
to say that the velocity profile of the flow assumes a parabolic shape (figure 2.4, for a
justification of this see section 4.1). The shear stress on the cell results from the drag
the cell surface exerts on the fluid. The 2D-ellipse was taken to be a slice of the cell

Figure 2.4: Poiseuille Flow. Here the velocity of the flow is proportional to the square
of the distance from nearest vessel wall.

1 µm above the vessel wall (figure 2.5), because if the ellipse was taken as the basal
surface of the cell then the flow around it would be zero (flow on the vessel wall is
taken to be zero). The flow was modelled using the Stokes equation

∇.y = 0 (2.1)

2Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, UCL
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Figure 2.5: Cartoon illustrating how the 2D cell relates to the 3D cell.

where
yi j =−Pδi j +µ

(
∂ui

∂x j
+

∂u j

∂xi

)
(2.2)

is the stress tensor of the fluid. P is the pressure and ui is one component of the 2-D
flow. In this problem it is desirable to reformulate this using the boundary integral
representation (Pozrikidis, 1992). Section 4.3 deals with the boundary integral repre-
sentation (BIR) in more detail. Here the BIR representation for a 2D flow is

u j(x0) = u∞(x0)− 1
4π

Z
c
∆ fiGi j(x,x0)dl(x) (2.3)

where: u∞(x0) is the unperturbed flow, the integral is around the boundary of the cell,
∆ fi is the discontinuity in the surface force at the interface between the fluid and the
cell and Gi j(x,x0) is the free-space Green’s function. Solution of this equation is not
entirely straight forward (numerically or otherwise); the details are presented in Allen
(2005).

2.2.2 Results and Criticism

The results of this model were qualitatively similar to experimental results for ECs
responding to fluid flow (figure 2.6). The model cell did elongate and align with the
flow (figure 2.6), and in a comparable time period (about 20 minutes, compared to
about an hour for an EC in vitro, although a change in morphology would probably be
noted before this time).

The project presented here is an attempt to model EC alignment in more detail, both
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Figure 2.6: Continuum model of the cell. The flow is left to right and the initial cell
shape is the blue ellipse. The final shape, after S=1000 time steps (corresponding to
about 20 minutes) is the red tear drop shape aligned with the flow.

quantitatively and qualitatively. Such a model should improve biological understanding
of the process and vice versa. To this end it is important to identify the limitations of
the continuum model, equation 2.3.

The model has four major failings:

• To derive the BIR it is necessary to assume the viscosity of the cell is equal to that
of the fluid flowing around the cell. In reality the cell is stiffer than accounted
for in the model.

• The actin cytoskeleton is thought to be too stiff to be deformed by physiological
flows (Civelekoglu-Scholey et al., 2005).

• The local internal structure of the cell is ignored: the cytoskeleton is implicitly
assumed to be homogeneous and isotropic.

• The cell does have a biochemical response to shear stress, it is not a passive
object in this process, (Tzima et al., 2001, 2002).

The assumptions that give rise to these failings, although questionable, are often made
in modelling aspects of the EC response to fluid flow and indeed in other contexts. The
viscosity assumption has previously (and perhaps more validly) been made in the con-
text of red blood cells (Zhou & Pozrikidis, 1995), and necessarily assumes the cell to
be a homogeneous material. This assumption is also made by Sherratt & Lewis (1993)
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(discussed in the next section) and ignoring cell regulation of structure is commonly
made in tensegrity models (section 2.1.4).

It is clear from these points that it may prove necessary to model at three or more time
and length scales in this project, in particular the scales of the biochemical interactions,
the cytoskeletal re-organisation and the cell itself. Furthermore it may be the case
that there are synergistic effects of being in contact with other cells. This ‘contact’ is
more significant than just the cells touching. In between ECs selectively permeable
junctions (tight junctions) are formed from transmembrane proteins such as claudin
and occludin that only allow passage of small molecules and ions. Adherens junctions
and desmosomes also contribute to the mechanical integrity of the cell-cell junctions
because they are anchored to actin filaments and intermediate filaments respectively
and attach cell to cell via cadherin proteins. In chapter 5 a hypothesis of mechano-
transduction (of the fluid flow signal) at cell-cell adhesions is discussed.

2.2.3 Stress-Induced Alignment

The unifying feature of the models discussed in this chapter (with the exception of the
author’s extension to one of these models, section 2.4) is that they are mechanical in
nature; the cytoskeleton is simplified to a passive (i.e. not chemically active) structural
component of the cell.

A good introduction to this manner of describing the cytoskeleton is given by Sherratt
& Lewis (1993). Their model describes a possible mechanism for how alignment of
actin filaments could be induced by stress on the ‘cytogel’ (the continuum of actin,
intermediate filaments, microtubules and cytoplasm in the cell). They assume that
alignment occurs as a response to the ratio of the principal components of stress. This
may well be the case, however how the cell interprets the direction of stress and me-
diates the alignment is unclear. A mechanism for flow sensing will be argued for in
chapters 4 and 5, it will transpire that responding to shear stress is not the simplest, nor
(in the author’s view) the best, hypothesis for flow sensing.

Nevertheless the starting point for their investigation is the 2-D stress tensor:(
yxx yxy

yyx yyy

)
(2.4)

where yxx and yyy are tensions in the x and y directions respectively, the remaining
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two components are shear forces. The principal components of this stress tensor are
the orthogonal eigenvectors of this (symmetric) matrix, so for example if these eigen-
vectors are taken as the co-ordinate system3 then the stress tensor is diagonalised and
represents only tensions and not shear forces. So the ratio, ρ, of the eigenvalues of
the principal components (y1 and y2) characterises the stress field. If ρ = 0 or ∞ then
the stress field is 1-D, i.e. unidirectional, or if ρ = 1 then the stress is the same in all
directions (ρ = 1 implies that the eigenvalues are equal, which in turn implies a 2-D
eigenspace spanned by any two vectors: i.e. any direction is an eigenvector). Note that
ρ is a function of position in the cell.

Sherratt & Lewis (1993) then proceed by denoting the density of actin filaments by
F(φ;ρ). Hence F(φ;ρ)δφ is the average proportion of filaments in the range (φ,φ+δφ),
with symmetries: F(φ;ρ) = F(−φ;ρ) = F(φ + π;ρ). The authors demand that this
function satisfies the following conditions

• F(φ;ρ)→ δ(π/2−φ) as ρ→ 0 and F(φ;ρ)→ δ(φ) as ρ→ ∞

• R π/2
0 F(φ;ρ)dφ = 1

• F(φ;1) is a constant

• F(φ;ρ) = F(π/2−φ;1/ρ)

where δ(φ) is the dirac delta function defined by δ(0) = 1 and 0 otherwise.

These restrictions lead to a functional expression for the filament density at a given an-
gle, they also restrict the emergent properties of this formulation - these criteria demand
that stress causes filament alignment. In particular the first point ensures that for a uni-
directional shear field all the filaments align in that direction. Nonetheless, a functional
expression is given that is claimed to satisfy (at least to a good approximation) these
conditions. Each actin filament is assumed to exert a stress (through acto-myosin con-
traction) and Sherratt & Lewis (1993) take the stress exerted by the network of actin
filaments as a whole to be given by the density of actin filaments along the principal
axes of the stress tensor:

G1(r) = G0(r)
Z

π/2

0
F(φ;ρ)cos(φ)dφ

G2(r) = G0(r)
Z

π/2

0
F(φ;ρ)sin(φ)dφ (2.5)

3Due to tensor properties it does not matter what system you choose.
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where G0(r) is the total filament concentration at position r.

One expression that satisfies the bulleted points is

G1(r) =
(π/2)yP

1G0(r)
yP

1 +(π/2−1)yP
2

G2(r) =
(π/2)yP

2G0(r)
yP

2 +(π/2−1)yP
1

where P is some parameter (P> 0) which represents the sensitivity of the response to the
anisotropy of the stress field. It is clear that these expressions result in alignment of the
filaments in the direction of the largest component of stress. However this alignment
could be due to ‘auto-alignment’ from stress in the actin filaments themselves or due
to an externally applied stress. Furthermore, critical values of P determine whether a
perturbation of an aligned network of filaments realigns with the external stress field
(i.e. whether internal stresses due to myosin induced contraction or external stresses
dominate).

In the context of this project this model does not address the nature of the biological
response - it is hard to see how this model could be applied to test some of the questions
raised in section 1.2. This model describes stress fibre alignment but does not illumi-
nate how it occurs. In principal the alignment could arise due to filament turning to
a given direction or by directed polymerisation leading to anisotropy in the alignment
direction. Clearly this prescriptive formulation is not a good tool for addressing these
points. A more promising modelling approached is introduced in the next section.

2.3 Integro-Differential Modelling

There are a whole group of models that take a different approach to describing the dy-
namics of the angular distribution of filaments f (θ, t), (Geigent et al., 1998; Civelekoglu
et al., 1998; Suciu et al., 1997; Civelekoglu & Edelstein-Keshet, 1994; Mogilner &
Edelstein-Keshet, 1996). In all these models integro-differential equations describe
how the filaments rearrange dynamically. The crucial idea is that filaments interact and
turn due the influence of an actin bundling protein, for example myosin II. However,
in these models it is not necessary to specify a binding protein but the characteristics
(for example, the angle at which the binding protein binds filaments) of the protein are
required.
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This is modelled by describing the change in f (θ, t), due to angular turning, as a bal-
ance between filaments that turn to θ and filaments that turn away from θ. To quantify
these a weighted integral is formed over the angular space, for example:

Z
π

−π

K(θ−θ
′) f (θ′, t)dθ

′ = (K⊗ f) (2.6)

where K(θ− θ′) is a weighting function, or kernel, that determines how filaments at
angles θ and θ′ interact (for example maybe if θ−θ′ is large then the filaments do not
interact). (K⊗ f ) is shorthand for this expression.

For suitable choices of the kernel all these models have the property of instantaneous
alignment from an isotropic state (with a small amount of noise), i.e. the equilibrium
point of f (θ, t) = const. is an unstable state. Generally these models are spatial only in
the angular direction, effectively describing interaction of filament densities at a point
dependent on a parameter θ which is the alignment direction of the filament.

The models cited above apply expressions like this in different ways:

• Modelling alignment of filaments with cyclic stretch: by applying this model at
two points of separation x, with the interaction of two filaments dependent on
their separation x (varying cyclically) and the angle between them (Civelekoglu
et al., 1998).

• Modelling actin filaments as being either in a bound or free state: this requires
a pair of coupled integro-differential equations such as B.(K⊗ f ) representing
the rate at which free filaments at an arbitrary angle bind to bound filaments at θ

(Civelekoglu & Edelstein-Keshet, 1994)

• Modelling the filaments as rotating due to being anchored by a transmembrane
protein on the apical side that is moving due to the fluid flow (Suciu et al., 1997)

The last of these examples is interesting because it agrees with a paper proposing a
model of actin filament alignment being due to force on the glycocalyx (a thin layer of
proteins attached to the cell surface) which attaches to an ‘actin cortical web’ just below
the cell membrane. This idea is explored in more detail in section 5.1.2 . It is proposed
that this induces a net torque acting on the dense peripheral actin band (DPAB), and
that once this exceeds a threshold the adherens junctions between cells rupture, which
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induces the signalling network and actin filament formation and alignment (Thi et al.,
2004).

The model that I have studied in more depth is proposed by Geigent et al. (1998). In
this model only one population of filaments is considered. Where this model differs
from the previous examples is that it provides a more physically realistic mechanism
for turning of filaments. In this case two filaments interacting at angles θ and θ′ both
turn (with high probability) to an angle θn. The probability of a filament at θ turning to
this direction as a result of interacting with a filament at θ′ is defined by:

ω(θ−θn,θ−θ
′). (2.7)

The second argument of this function determines the probability of two filaments in-
teracting, and the first argument the probability, if the interaction occurs, of turning to
angle θn. The rate of interaction between filaments at angles θ and θ′ is determined by
η(θ−θ′). Since ω is a probability function, and every interaction must result in turning
to some angle: Z

π

−π

ω(θ−θn,θ−θ
′)dθn = 1. (2.8)

η is normalised by demanding Z
π

−π

η(θ−θi)dθi = 1. (2.9)

This is equivalent to scaling the time units. To quantify the rate of turning of filaments
at angle θ0 to an angle θn it is necessary to consider the interactions at all the angles
that could result in a filament turning to θn

W [ f ](θ0,θn) =
Z

π

−π

η(θ0−θi)ω(θ0−θn,θ0−θi) f (θi, t)dθi. (2.10)

Geigent et al. describe the F-actin network as evolving purely due to turning induced
by other filaments. So f (θ, t + ∆t)− f (θ, t) ≈ Elements that turn to θ - Elements that
turn away, which leads to

∂ f (θ, t)
∂t

=− f (θ, t)
Z

π

−π

W [ f ](θ,θn)dθn +
Z

π

−π

W[f](θ0,θ)f(θ0, t)dθidθ0. (2.11)

Rewriting this yields

∂ f (θ, t)
∂t

=− f (θ, t)
Z

π

−π

η(θ−θi) f (θi, t)dθi
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+
Z

π

−π

Z
π

−π

ω(θ0−θ,θ0−θi)η(θ0−θi) f (θ0, t) f (θi, t)dθidθ0. (2.12)

It is straightforward to show that the total mass of filaments is conserved. It only
remains to define η and ω. An example of standard choices for these functions and the
corresponding result can be seen in section 2.4.1, where a description of an extension to
this model is given. As will be shown, filaments in this model do align instantaneously,
primarily because small anisotropies in the angular distribution attract other filaments
(as long as the filaments are within the range of interaction, which defines the type of
distribution that evolves).

2.4 Extending the Integro-Differential Model

The ‘alignment’ models discussed in the previous section are essentially mechanical in
nature, in that they do not really incorporate much -if any- of the biochemistry that or-
chestrates the cellular reorganisation. Although it may be the case that filament align-
ment occurs independently of the biochemical network (as in the Sherratt & Lewis
(1993) model, equation 2.5) it is likely that the alignment process itself is regulated
(Wojciak-Stothard & Ridley, 2003). One possibility is that the cell does this by up-
regulating polymerisation, and this provides a small local anisotropy - yet sufficient to
initiate spontaneous alignment globally.

2.4.1 Extended Model

The initial novel contribution of this thesis begins with an extension to an existing
integro-differential model. To find how filament alignment could be biochemically
induced equation 2.12 (Geigent et al., 1998) is extended to include polymerisation
(and depolymerisation) of the filaments from a limited supply of actin monomers.

∂ f (θ, t)
∂t

= −γ f (θ, t)+α f (θ, t)A(t)

+
Z

π

−π

W [ f ](θ0,θ) f (θ0, t)dθ0

− f (θ, t)
Z

π

−π

W [ f ](θ0,θn) f (θ0, t)dθn

dA
dt

= (γ−αA(t))F(t)
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+ r0 (A+F(t))
(

1− A+F(t)
K

)
(2.13)

where
F(t) =

Z
π

−π

f (θ, t)dθ (2.14)

is the total amount of actin bound in filaments at any given time. The integral terms
are as in equation 2.12 (Geigent et al., 1998) and represent the angular interaction
of filaments. Note that both η and ω should be chosen as symmetric so that turning
anti-clockwise is not preferred over clockwise or vice versa. The first integral repre-
sents the density of actin filaments that turn to θ (hence it is positive) and the second
the filament density that turns away from θ. A is the concentration of unbound actin
monomers, γ is the rate of depolymerisation of F-actin, α the rate of polymerisation.
Hence α f (θ, t)A(t) is the rate of the increase in filament density at the angle θ (poly-
merisation is dependent on the concentration of A and f ).

The last term of the equation for A is a logistic term which ensures that if A+F(t)�K

then dA/dt < 0 and so the monomer concentration (and in turn the filament concentra-
tion) reduces. This is a simple way to model cellular regulation of the total actin level,
K represents a cell’s internal measure of actin levels - if total actin concentration is low
it gets up-regulated to K and if it is high it gets down regulated to K.

Note however that with this term the total amount of actin is not conserved because
there is a logistically growing population of actin limited by the ‘carrying capacity’ K.
Biologically this corresponds to a background rate of actin synthesis regulated in some
manner to give a typical level of total actin (in either F-actin or G-actin forms) in the
cell. The parameter K represents this level.

This system is not entirely straightforward to solve numerically, mainly because it is
necessary to discretise the θ variable. The approach taken here is to form a discrete
system of n+1 equations each describing the evolution of a variable θi, representing a
discretised interval of the θ variable

f (θ, t)−→
{

fi(t)| fi(t) = f
(

2πi
n

, t
)

; i = 0,1, . . .n
}

(2.15)

Applying this discretisation (and the expression for A) results in n+1 coupled ordinary
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differential equations:

dfi(t)
dt

= −(γ−αA) fi(t)− 4π2

n2

(
fi(t)

n−1

∑
j=0

n−1

∑
j=0

ω

(
2πk

n
,

2π(i− j)
n

)
η

(
2π(i− j)

n

)
f j(t)

−
n−1

∑
j=0

n−1

∑
j=0

ω

(
2π( j− i)

n
,

2π( j− k)
n

)
η

(
2π( j− k)

n

)
f j(t) fk(t)

)
dA(t)

dt
= (γ−αA)F(t)+ r0(A+F(t))

(
1− 1

K
(A+F(t))

)
(2.16)

where now F(t) = ∑i fi(t). The temporal co-ordinate is discretised using a Runge-
Kutta order 4 (RK4) scheme (a standard numerical method), define

dfi

dt
= gi( f0, . . . , fi, . . . , fn, t) (2.17)

where the A variable as been rewritten as fn for compactness. Then the RK4 scheme is

f j+1
i = f j

i +
δt
6
(
k0

i +2k1
i +2k2

i + k3
i
)
+O(δt3) (2.18)

where

k0
i = gi

(
f j
0 , . . . , f j

i , . . . , f j
n , t j

)
k1

i = gi

(
f j
0 +

1
2

k0
0, . . . , f j

i +
1
2

k0
i , . . . , f j

n +
1
2

k0
n, t

j
)

k2
i = gi

(
f j
0 +

1
2

k1
0, . . . , f j

i +
1
2

k1
i , . . . , f j

n +
1
2

k1
n, t

j
)

k2
i = gi

(
f j
0 + k2

0, . . . , f j
i + k2

i , . . . , f j
n + k2

n, t
j
)

An example of the results from this model, with arbitrary parameters, is shown in figure
2.7. This system was analysed by local stability analysis, which gives analytical results
for arbitrary parameters.

2.4.2 Stability Analysis

Consider a small perturbation away from the isotropic equilibrium point,
( f ,A) =

(
K− γ

α

2π
, γ

α

)
:

f̃ (θ, t) = f + f̂ (θ, t), Ã(t) = A+ Â(t) (2.19)
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Figure 2.7: Spontaneous alignment of actin filaments, governed by equation (2.13)
up to time T= 3000 time steps. Here the peak filament density is at π/2, indicating
alignment at this angle. Arbitrary units were used in this simulation δt = 0.1, n = 70,
K = 10, r0 = 0.2, γ = 0.1 and α = 0.1.

so that Â2 and f̂ 2 (and higher orders) are negligible and f̃ (θ, t) and Ã(t) satisfy the
differential equations. The goal here is to linearise the system around the equilibrium.
For a non-spatial linear system, perturbations of the form ξ(t) are considered but here
due to the periodicity (in θ), the steady state solution for f (θ, t) is subjected to a spatial
perturbation of the form eilθ, (where l is an integer), hence perturbations are sought of
the form

f̂ (θ, t) = eilθ
ξ

l
1(t), Â(t) = ξ

l
2(t) (2.20)

where ξl
1 and ξl

2 are small enough so that on substituting these expressions into equa-
tions 2.13 only terms linear in the f̂ (θ, t) and Â(t) perturbations need to be considered.
Firstly consider the equation for f̃ (θ, t), substituting the expansion around the equilib-
rium point gives:

∂ f̃ (θ, t)
∂t

= −γ f − γ f̂ (θ, t)+α f Â(t)+α f A(t)+α f̂ (θ, t)A(t)+α f̂ (θ, t)Â(t)

+
Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi)( f + f̂ (θi, t))( f + f̂ (θ0, t))dθidθ0

− ( f + f̂ (θ, t))
Z

π

−π

η(θ−θi)( f + f̂ (θi, t))dθi

where f and A are the steady state solution. Cancelling out the equilibrium terms (at
an isotropic steady state −γ f + α f A = 0, equation 2.13) and expanding the integrals
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(neglecting order two terms) gives:

∂ f̂ (θ, t)
∂t

= −γ f̂ (θ, t)+α f Â(t)+α f̂ (θ, t)A(t)

+ f 2
Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi)dθidθ0

+ f
Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi) f̂ (θ0, t)dθidθ0

+ f
Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi) f̂ (θi, t)dθidθ0

− f
Z

π

−π

η(θ−θi) f̂ (θi, t)dθi

− f 2
Z

π

−π

η(θ−θi)dθi

− f f̂ (θi, t)
Z

π

−π

η(θ−θi)dθi (2.21)

Note that the first and last two integral terms in this expression are equal to 1, using
expressions 2.8 and 2.9.4

The remaining integrals can be simplified:

f
Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi) f̂ (θ0, t)dθidθ0

= f
Z

π

−π

Z
π

−π

η(y)ω(θ+ y−θi,y) f̂ (θi− y, t)dθidy

= f
Z

π

−π

Z
π

−π

η(y)ω(θ−θ
′
i,y) f̂ (θ′i, t)dθ

′
idy (2.22)

Here the substitutions θi−θ0 = y and θ′i = θi− y are made. Also it is exploited that η

and ω are even functions (the latter in both arguments) and that the integrals are over
complete periods. Similarly,

f
Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi) f̂ (θi, t)dθidθ0

= f
Z

π

−π

Z
π

−π

η(y)ω(θ−θi + y,y) f̂ (θi, t)dθidy (2.23)

4Equation 2.9 applies directly to the latter two integrals. To apply both 2.8 and 2.9 to the first double
integral term note that because the integrals are over complete periods:Z

π

−π

Z
π

−π

η(θ0−θi)ω(θ0−θ,θ0−θi)dθidθ0 =
Z

π

−π

Z
π

−π

η(y)ω(θ0−θ,y)dydθ0

now applying expressions 2.8 and 2.9 (and using that ω is symmetric in θ0) gives that the integrals are
equal to one.
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Substitution of expressions 2.20 into equation 2.21 (with the integrals simplified as
described above) and denoting differentiation with respect to time with a dot, leaves
the linearisation as:

ξ̇
l
1 = α f ξ

l
2 + f (Î− η̂−1)ξl

1 (2.24)

where:

Î =
Z

π

−π

Z
π

−π

η(y)((ω(θ,y)+ω(θ+ y,y))e−ilθdθdy

η̂ =
Z

π

−π

η(θ)e−ilθdθ (2.25)

The expression governing A, equation 2.13, linearises more simply as:

ξ̇
l
2 = (−2πγ f + r0)ξl

2 (2.26)

So the linearisation of the system around the equilibrium points leads to the system: ξ̇l
1

ξ̇l
2

=

 f (Î− η̂−1) γ f

0 −2π f − r0


 ξl

1

ξl
2

 (2.27)

Denote the 2× 2 matrix above as J. Stability of the system is determined from the
eigenvalues of J. The Routh-Hurwitz criteria gives that if Det J > 0 and Tr J < 0 then
the state is stable (figure 2.8) (Britton, 2003).

Stability of this system has to be checked for all modes, l. Hence each mode has a
corresponding eigenvalue and for stability all these eigenvalues have to have negative
real part.

If alignment of filaments is to occur spontaneously this isotropic equilibrium needs to
be in an unstable state. It may be imagined that the system is initially in a stable state
and then the system becomes unstable in response to some stimulus leading to filament
alignment. To investigate this it is worth examining the properties of J in order to ex-
amine how such a switch could occur. To do this analytically it is necessary to choose
the functions η and ω, the choice is restricted to simple functions so the integrals Î and
η̂ can be solved analytically. However the analysis in Geigent et al. (1998) indicates
that this can be done without loss of generality so long as the choices are of a certain
form. In this case this is taken to be of a form that describes attractive interaction
between filaments leading to parallel alignment. Clearly a choice that leads to per-
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Figure 2.8: Standard linear stability analysis (Britton, 2003). For a linear (or linearised)
system the stability of the equilibrium points is defined by the signs of Det J and Tr J.
If Det J < 0 the system is unstable, if Det J > 0 then stability depends on Tr J < 0. The
type of stability (or indeed instability) depends on whether 4Det J > (Tr J)2

pendicular alignment makes a significant difference, however as long as the qualitative
form of the function remains the same conclusions should hold for different expres-
sions, (Geigent et al., 1998). For example the uniform function taken here (figure 2.9)
leads to the same conclusions as a Gaussian distribution.

Here S(θ) (figure 2.9) is used to define η and ω, parameterised by ρ and σ (as in figure
2.9) respectively: η = S(θ) with ρ = π/4 and ω(θ,θ′) = S(θ−θ′/2) with σ = 0.25.

With these choices, Î and η̂ are easily integrated and the determinant and trace of the
matrix can be determined as:

Det J =
K− γ/α

2π

(
4sin(lσ)sin(lρ/2)

l2σρ
− sin(lρ)

lρ
−1
)

(−Kα+ γ− r0)

Tr J =
K− γ/α

2π

(
4sin(lσ)sin(lρ/2)

l2σρ
− sin(lρ)

lρ
−1
)
−Kα+ γ− r0 (2.28)

The trigonometric term in the main parenthesis can be bound regardless of the choice
of the parameters, for (treating l as a variable) it is of the form:

T (x) =
2sin(ax)sin(bx)

ax.bx
− sin(cx)

cx
−1. (2.29)
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Figure 2.9: Uniform block function S(θ) parameterised by σ, used to define ω(θ,θ′) =
S(θ−θ′/2) with σ = 0.25, so that filaments aligned at an angle θ have uniform prob-
ability of turning into the range (θ′/2)± 0.25. S(θ), now parameterised by ρ, is also
used as the choice for η(θ) with ρ = π/4, so the rate of interaction between filaments
is constant as long as they are aligned within π/4.

Clearly −1 ≤ sin(ax)/ax ≤ 1, but actually the lower bound can be tightened. The
stationary points satisfy ax = tan(ax), which solves (numerically) to give ax≈ 4.49 as
the first non trivial positive solution. This was found by solving y + π = tan(y) using
the expansion for tan(y):

tan(y) = y+
y3

3
+

2y5

15
+

17y7

315
+ . . . (2.30)

this was necessary because this expansion is only valid for |y| ≤ π/2, however note
that y + π = tan(y) = tan(y + π). So a solution for ax = tan(ax) is found by taking
ax = y + π. This solution corresponds to the first minimum for x > 0, and (with its
reflection in x = 0) this is a global minimum as the value of sin(ax)/ax at stationary
points tend to zero as x→ ∞ or x→ −∞. Hence −0.22 ≤ sin(ax)/ax ≤ 1 and the
bounds on equation 2.29 becomes

−3.44≤ 2sin(ax)sin(bx)
ax.bx

− sin(cx)
cx

−1≤ 1.22. (2.31)

The only way any system can bifurcate from a stable state into an unstable state (lead-
ing to spontaneous alignment) is by altering the sign of either Tr J or Det J (figure
2.8). However since the −Kα + γ− r0 term must be less than zero5, the stability of
the equilibrium state (an isotropic distribution of filaments) is dependent on σ and ρ.
Therefore, in the context of this model, regulation of polymerisation alone (represented

5r0 ≥ 0, as this represents the background rate of actin synthesis, and K > γ/α because otherwise the
equilibrium point is un-physical. Note this also means the leading term in equation 2.28 is positive.
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Figure 2.10: Det J plotted using the values for σ and ρ defined in figure 2.9 and treating
l as a continuous variable. Parameters are as in figure 2.7. Since for some values of l,
Det J < 0 the system is unstable, hence the filaments align spontaneously (figure 2.7).
Recall that l defines the perturbation modes of the analysis.

here by α and γ) can not lead to alignment of the filaments. However, alignment could
be initiated by altering σ or ρ -or indeed ω and η. Biologically this could correspond to
up-regulation of binding proteins, for example activation of myosin II, which changes
the probability that two adjacent filaments interact and the rate in which they do so.

These analytical results were validated by comparison of equations 2.28 with numerical
simulations (figure 2.11). Taking σ as an example, the Routh-Hurwitz criteria is broken
for σ≤ 0.389 (3 s.f) which, up to the numerical accuracy, matches the numerical results
(figure 2.11). Note that θ is discretised as θi+1− θi = 2π/n (equation 4.50) and that
the numerical simulations in figure 2.11 are implemented with n = 200, so θi+1 −
θi ≈ 0.03. This limits the accuracy of the numerical analysis to ±0.015, (this is the
rationale for varying σ in intervals of 0.03, figure 2.11). Hence from figure 2.11 it can
be deduced that the bifurcation occurs in the interval (0.37:0.4). Greater accuracy could
be achieved by increasing n, however computational cost begins to become prohibitive
(there are n equations each with ≈ 2n2 terms, equations 2.16). In accordance with
the analytical results above, varying α or γ did not alter the stability properties of the
system.
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Figure 2.11: Spontaneous alignment of f (θ, t), quantified as Σ|d f (θ)/dθ| (concentra-
tion/radian), where f (θ) is the steady state distribution. So for isotropic states this
measure is zero. This measure is plotted against σ (radians), which recall defines the
range of angles that filaments can turn to following interaction (figure 2.9). The nu-
merical simulations indicate that the isotropic state is stable for σ ≥ 0.4. For these
simulations n=200, other parameters as figure 2.7.

2.4.3 Discussion of Integro-differential Model

Some important insights are provided by this model. Firstly from simple realistic con-
siderations a model of how filaments spontaneously align can be constructed. Although
this is a coarse-grained model and the physical binding of actin bundling proteins is not
considered, it is still nevertheless of interest because it describes the net effect of actin
bundling.

In this model the alignment direction was dependent on the initial random noise, and
hence random itself. From this it is tempting to conclude that relatively small signals
can be amplified into the global filament alignment by bifurcation into an unstable
state. It is important to point out there is no a priori reason, other than an aesthetic one,
why alignment should be due to such a bifurcation.

The model suggests that increased polymerisation of actin filaments can not lead to
filament alignment, however the effect of introducing a spatial component and allowing
heterogeneous actin polymerisation across the cell remains unexplored. The stability
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analysis suggests that alignment must occur due to bundling of existing filaments rather
than de novo polymerisation. In this model, equation 2.13, polymerisation is isotropic
(depolymerisation is only isotropic for an isotropic distribution of filaments), however
in vivo it may be the case that anisotropy could be introduced into the distribution of
filament orientation by directed polymerisation. Yeast homologues, Bni1 and Bnr1, of
formins (proteins that can act as nucleators of actin polymerisation) have been shown
to direct actin polymerisation and polarise cell growth (Evangelista et al., 2002); actin
binds to formins (locally activated by Rho GTPases) which promotes polymerisation
at the barbed end of the actin filament, leading to growth of the filament away from the
zone of local activation. The barbed end of the actin filament is fixed to the formin.
The mechanism of monomer addition at this point may involve a ‘leaky capping’ of the
filament, section 5.1.3. In ECs there is a region of signalling in the downstream region,
activation of formins in this region could initiate filament alignment either directly or
by introducing a small bias in the distribution of filament orientation, which (according
to this modelling) could cause spontaneous alignment of filaments.

There is a different, or complementary, possibility for the cause of filament alignment.
In the downstream signalling region of ECs responding to fluid flow a flat protrusive
structure called a lamellipodia is formed (Mott & Helmke, 2007). In keratocytes and
fibroblasts lamellipodia consist of a branched network of actin, with the barbed ends of
branches orientated approximately to the edge of the cell (Svitkana & Borisy, 1999).
This network gets pulled out of this region by acto-myosin contraction (there is a ret-
rograde flow of actin away from the cell periphery Ponti et al. (2004)). Hence near
this region proteins that bundle filaments into parallel fibres, for example myosin II,
do not act on an isotropic distribution of filaments but a pre-orientated distribution.
This may introduce enough bias (possibly with additional bias from formins induced
polymerisation) in the filament distribution to cause alignment in the flow direction.

Formation of lamellipodia by ECs (in non-confluent layers) responding to fluid flow
also plays a role in changing the morphology of ECs, which is crucial in aligning the
cell with the flow (Mott & Helmke, 2007). De novo actin polymerisation, nucleated by
the protein complex Arp2/3, is thought to exert a force on the cell membrane causing
the membrane to extend in this region, and formation of the lamellipodia (Mogilner &
Oster, 1996; Goley & Welch, 2006). The details of this mechanism and a model that
supports this hypothesis are the subject of the next chapter.
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3 Brownian Dynamic Modelling of Arp2/3 complex nu-
cleated Actin Polymerisation

To change shape endothelial cells regulate polymerisation of actin. The topic of this
chapter is how this polymerisation leads to generation of force and extension of the cell
membrane. This polymerisation is known to occur in the downstream edge of ECs in
response to fluid flow.

To study force generation by polymerisation of actin in the downstream regions of ECs
a Brownian dynamic (BD) model is implemented. A BD approach is a stochastic model
(that implicitly encapsulates random motion) that determines the equation of motion of
a collection of discrete objects. In this model the objects are actin dimers, an actin
binding complex (Arp2/3) and connected objects representing the plasma membrane.
If a certain pair of proteins are within a specific distance they are prescribed a finite,
if small, chance of binding. Hence BD modelling is an attractive approach to mod-
elling actin polymerisation. A simple model of the membrane is implemented to test if
polymerisation can exert a force on the membrane. Firstly there is an introduction to
the biology that governs actin polymerisation and nucleation by the Arp2/3 complex in

vivo.

This work was carried out in the Kamm Laboratory at the Massachusetts Institute of
Technology in collaboration with Tae Yoon Kim. Tae Yoon Kim and I modified an
existing BD model of actin polymerisation to investigate Arp2/3 nucleated polymeri-
sation and the hypothesised subsequent membrane protrusion. We contributed equally
to this modification.

3.1 Lamellipodia

Eukaryotic cell migration and morphological change both rely, initially, on a similar
mechanism of structural re-organisation: regulated de novo polymerisation of actin
filaments. This polymerisation forces the membrane to extend, and hence the cell
changes shape in the region of polymerisation leading eventually to the altered shape
of the whole cell.

Extension of the plasma membrane can take several forms, the most common being
filopodia or lamellipodia. In contrast to thin and flat lamellipodia, filopodia are ‘finger-
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shaped’ protrusions. Cdc42 and/or Rif mediates this process by activating diaphanous
related formins (Peng et al., 2003), which gives rise to aligned parallel bundles of actin
filaments. Polymerisation of these bundles drive the filopodium extension (Ridley,
2006).

3.1.1 Regulation of Lamellipodia

The focus of this chapter is modelling the formation of the actin structures that give
rise to lamellipodia. In both migration and EC polarisation, formation of lamellipodia
is crucial in altering cell morphology. Lamellipodia are very thin but broad (typically
about 250 nm in depth, Abraham et al. (1999)) portions of the cell that push forward
into a region ahead of the rest of the cell (figure 3.1). In lamellipodia actin filaments are
organised into a distinctive branched network (Svitkana & Borisy, 1999). Continuous
polymerisation of actin into a ‘tree-like’ structure is believed to be crucial in generating
the force required to drive a lamellipodium forward.

Figure 3.1: A cartoon of lamellipodium extension. In the hidden dimension the exten-
sion is typically as wide or wider than the cell.

Actin filaments are polymerised from the 43 kd G-actin protein. The structure of the fil-
ament is a helix (figure 3.2), with adjacent pairs of G-actin wrapping around each other
(Holmes et al., 1990). The barbed (or plus) end of the filament has distinct binding
properties to the pointed (or minus) end, which results from asymmetry in the G-actin
sub-units. Kinetic rate constants are larger at the barbed end for both polymerisation
and depolymerisation (Cooper & Schafer, 2000).

Actin is an ATPase - it binds and hydrolyses6 ATP, and in both the monomeric or fil-
amentous forms can be either ADP or ATP bound. At the barbed end of the filament

6ATP + H2O→ADP + inorganic phosphate (Pi)
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Figure 3.2: Actin filaments are helices composed of G-actin monomers, here repre-
sented by spheres.

polymerisation of ATP-actin is faster, whereas de-polymerisation from the filament is
slower if the actin unit is ATP-bound, (Schafer & Cooper, 1995). However, in fila-
ments ATP-actin has a half life of 2 s (Zheng et al., 2007). Because polymerisation is
more likely at the barbed end this leads to a ‘time-signature’ for the filament: newer
ATP-bound units at the barbed end and older ADP-bound units at the pointed end. This
signature allows preferential binding of agents to near the barbed or pointed ends de-
pending on whether the species has a higher affinity for binding to ATP or ADP-bound
actin (Sablin et al., 2002).

Polymerisation and depolymerisation can be inhibited by capping of the barbed or
pointed ends (i.e. the G-actin binding site is blocked by binding of a different protein).
Known capping proteins for the barbed end include CapZ and Gelsolin (Cooper &
Schafer, 2000). For the pointed end Arp2/3 is an important cap; in lamellipodia this is
particularly relevant (Mullins et al., 1998). Capping proteins for the barbed end, such
as Gelsolin, bind and inhibit polymerisation, ensuring that the competition for G-actin
monomers between mature and nascent branches is in favour of the latter. This gives
rise to a structure of short and regular branches. However capping of the pointed end
by Arp2/3 inhibits depolymerisation, ensuring there is a bias towards polymerisation
and growth of the actin network. Depolymerisation is up-regulated by Actin Depoly-
merisation Factor (ADF)/Cofilin which acts to sever existing filaments providing both
free barbed and pointed ends of filaments (Cooper & Schafer, 2000).
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Actin polymerisation initially requires nucleation with two or three actin monomers
coming together to form a dimer or trimer. It is widely known that this is the rate-
limiting step in actin polymerisation (Mullins et al., 1998; Welch et al., 1998). If the
plasma membrane is to be driven forward by actin polymerisation then it is this step
which has to be locally upregulated in lamellipodia.

Regulation of actin polymerisation is crucial to correct cellular function. Key mediators
of this process are the GTPases Cdc42, RhoA and Rac1. In the case of lamellipodium
extension it is Rac1 (and possibly Cdc42) that is implicated as being one of the main
mediators of this process. Rac1 activates WAVE proteins, which act as a link in the
signalling network between Rac1 and the Arp2/3 complex (Ridley, 2006). Rho GTPase
biology and how they get activated in the process of EC alignment is discussed in
chapter 6.

Arp2/3 has been shown to be required for lamellipodium extensions (Svitkana & Borisy,
1999; Craig & Chen, 2003; Pollard et al., 2000; Zuo et al., 2006), and is a seven-unit
complex named after two of its components: actin related protein 2 and actin related
protein 3 (Arp2 and Arp3). Both of these share homology to actin (Robertson et al.,
2001). Once Arp2/3 is activated by WASP/WAVE, and bound to an actin filament7, it
can nucleate the growth of a side branch. It is highly effective in achieving this because
in this configuration Arp2 and Arp3 form a binding site homologous to the barbed end
of an actin filament (Rouiller et al., 2008).

Figure 3.3: Arp2/3 nucleated actin branching and regulation. The arrow represents the
pointed end of the filament.

Activation of Arp2/3 occurs locally near the cell membrane (Svitkana & Borisy, 1999).
The spatial localisation of active Arp2/3 near the membrane is due to activated Rac

7Binding is widely thought to occur to the side of a filament, however it could be the case that it binds to
the tip of the filament (Amann & Pollard, 2001).
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being localised to the cell membrane due to prenylation followed by methylation of
the C-terminus (Seabra, 1998). Whether Rac gets targeted to the leading edge of the
lamellipodium, or whether it only gets activated in this region is unclear. One possible
mechanism for this is explored in chapter 6.

Arp2/3 nucleates new polymerisation of actin by creating more barbed ends available
for monomers to bind to. The new branches of F-actin occur at a highly distinctive
angle, reported as 70 ± 7◦, (Mullins et al., 1998) (figure 3.3). If a tread-milling case
of polymerisation is to be achieved (for sustained lamellipodium extension) then the
network has to be regulated so there is sufficient Arp2/3 and actin monomers to nu-
cleate and polymerise respectively. Crucial to this regulation is capping of the pointed
and barbed ends and severing of the filaments (figure 3.3). In lamellipodia Arp2/3
is at a high enough concentration to cap almost all of the pointed filaments (Mullins
et al., 1998). During lamellipodium extension these competing factors must act syner-
gistically so that polymerisation, branching and force generation on the membrane all
occur.

3.1.2 Force Induced by Actin Polymerisation

In order for a cell to move or change shape a force is required to extend the membrane
in a given direction. It is well documented that actin polymerisation can provide a
protrusive force in vitro (Footer et al., 2007). Most of the well known in vivo examples
occur in bacteria motility such as Listeria Monocytogenes (Welch et al., 1997). In this
example it is a bacterial surface protein, ActA, that interacts with Arp2/3 resulting in
actin polymerisation.

A model for how actin polymerisation generates a force that can lead to sustained mem-
brane extension has been proposed (Peskin et al., 1993; Mogilner & Oster, 1996). In
this so-called ‘Brownian Ratchet’ model the actin filament tip pushes on the membrane.
Sustained membrane protrusion is hypothesised to occur due to Brownian fluctuations
in the membrane and filament allowing sufficient time and space for polymerisation at
the tip. Hence the membrane is ‘ratcheted forward’ (figure 3.4).
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Figure 3.4: Brownian ratchet force generation due to actin polymerisation at the mem-
brane. Polymerisation occurs at the barbed ends of actin filaments orientated towards
the membrane. Force on the membrane is supposed to be generated from sustained
polymerisation. The space for new polymerisation between the barbed end and the
membrane is generated by Brownian motion of the membrane and the filaments.

3.2 Modelling of lamellipodium extension

The modelling in this section was carried out at the Massachusetts Institute of Tech-

nology funded by a Bogue Fellowship from UCL. It was carried out in collaboration

with Taeyoon Kim in the Kamm Laboratory.

Despite the Brownian ratchet model being widely accepted it is clearly problematic
to test in vivo. The goal of this modelling work was to develop an explicit model
of Brownian ratchet motion due to Arp2/3-nucleated polymerisation. The theoretical
statistical mechanics of the Brownian ratchet model was established by Peskin et al.

(1993).

To model the actin filament network in lamellipodia an existing Brownian Dynamic
(BD) model originally by Kim (2007), was modified to include Arp2/3 and a simple
model of a membrane.

Computational modelling of membrane protrusions and cell motility arising from actin
polymerisation is a rich vein of research and is underpinned by the statistical mechanics
(initially applied in the context of a thermally fluctuating load, which in the lamellipo-
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dia is the membrane) derived by Peskin et al. (1993). This was furthered by Mogilner
& Oster (1996) who showed that a thermally fluctuating growing polymer can itself
generate force.

Previous modelling in this area has included describing an equation of motion for the
filament orientation distribution (Carlsson, 2003), which is similar in concept to the
model presented in section 2.4. Using this model Carlsson (2003) investigate a grow-
ing and branching network. Interestingly, the dynamics of the simulated network are
notably distinct for networks generated either by branching at the very tip of filaments
or by branching from the side of filaments. However, it is now widely believed that
Arp2/3 binds to the side of filaments (Rouiller et al., 2008; Goley & Welch, 2006).

Dawes et al. (2006) presented a 1D model of actin filament branching in a motile cell.
In this model the authors derived partial differential equations for the density of actin
filaments, the density of barbed ends and the concentration of Arp2/3. Interestingly
Dawes et al. (2006) show that these equations have travelling wave solutions, from the
speed of this wave they predict how the cell velocity depends on the rates of capping,
nucleation, and polymerisation. Schaub et al. (2006) also estimate the parameters of
the actin network, their approach is to generate simulated images from a stochastic
2D model of branching at the leading edge, in this model the leading edge moves
independently of the growing filaments. Unfortunately the parameters found by these
studies can not be used in the following model (section 3.2.1), which is discrete and
stochastic (as oppose to the model by Dawes et al. (2006) which is continuous and
deterministic). Furthermore, the time scaling of the following model (section 3.2.1) is
unrealistic for reasons which will be discussed. Marèe et al. (2006) derive a force on
the cell membrane at the leading edge of a migrating cell. This force is dependent on
the number of barbed ends at the leading edge, however is specifically for application
in the context of a cellular Potts model.

The model here is closest in similarity to the 3D brownian dynamic models presented
by Carlsson (2001). In this paper several models are presented and Carlsson (2001)
demonstrates that branched structures orientated to the membrane are obtained in the
cases where branching occurs preferentially in this direction or if there is uncapping of
barbed ends in this region. A similar assumption will be made in the following model.

The model presented in the following section is a 3D stochastic model of actin poly-
merisation and is the work of this author and Tae Yoon Kim, MIT. Polymerisation is
modelled explicitly by addition and loss of sub-units and polymers have elastic and
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bending stiffnesses. The Arp2/3 complex and its subsequent nucleation of de novo

polymerisation is considered explicitly. Furthermore ATP-ADP hydrolysis, capping
and severing are implicitly implemented. Hence this model represents a novel contri-
bution in this area.

3.2.1 Brownian Dynamics

Brownian dynamics (BD) is a modelling approach where individual agents are mod-
elled as spheres. Here due to the helix-like structure of actin filaments (figure 3.2), a
sphere represents a pair of actin monomers. Hence actin filaments are represented as
a chain of bound spheres, and the bond between spheres is modelled by a spring-like
force. Forces imparted by solvent molecules are modelled by a stochastic force. To
evolve the positions of the spheres F = ma is applied. However, in this case the force
on the sphere, F , is a summation of drag forces, stochastic forces and forces due to
other spheres (either from bonds or Van der Waals forces). Applying F = ma with
these forces gives what is referred to as a Langevin equation, which in this case is:

m
d2r
dt2 = ∑

i6= j
fi j−ζ

dr
dt

+η(t) (3.1)

where m is the mass of the sphere, r(x,y,z) its position, ζ is the drag coefficient for
a sphere, η(t) is a stochastic force representing the Brownian motion of the spheres
and fi j is the force on the ith monomer due to the jth (in the computation of the model
only nearby pairs are considered). For any given sphere there are several possible
constituents of this force term: a repulsive potential, bending stiffness, spring force
and torsional stiffness. The latter three result from sharing a bond with other spheres.

The stochastic force is chosen from a distribution such that < η(t) >= 0 and

< ηi(t)η j(t) >=
2kBT ζδi j

∆t
I

where subscripts are labels for each sphere, I is the unit second order tensor, kB is
the Boltzmann constant, ζ is the drag on the sphere (taken to be Stokesian), T the
temperature and δt the time step (Underhill & Doyle, 2004).

The acceleration term in equation 3.1 is considered to be negligible; consider that the
spheres are very small particles moving in a continuous viscous fluid, hence any accel-
erated sphere will reach its terminal velocity quickly. Therefore the acceleration term
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only has a neglible contribution to the equation of motion for a sphere. Applying this
and non-dimensionalising by kBT , ζ and the diameter of an actin filament A8 equation
3.1, can be recast as

dr′

dt
= ∑

i6= j
f′i j +η

′(t) (3.2)

The potential between two spheres is modelled as a truncated Lennard-Jones (L-J)
potential (Lennard-Jones, 1931) so that only repulsive forces are considered, ensuring
that two spheres do not occupy the same physical space. The L-J potential has the form

V (r) =

{
4ε

[(
σ

r12

)
−
(

σ

r6

)]
r ≤ 21/6σ

0 r > 21/6σ

(3.3)

where r is the distance between the spheres, ε represents the depth of the potential well
and σ is the point where the potential is zero and is taken as the average diameter of
the interacting spheres9.

Once an actin monomer comes within a certain radius (1.2 units) of a barbed end (or
Arp2/3) binding occurs. Similar binding occurs for Arp2/3 and the side of a filament.
In this model, the binding sites for Arp2/3 on the filament have an orientation that has
the same periodicity as the actin helix (approximately 70 nm). A torsional stiffness is
applied to the relative orientation of simulated binding sites on subsequent spheres in
the polymer.

The distance between adjacent bound spheres, the curvature of the filament and the
relative orientation of binding sites are maintained by the spring-like potentials:

U1(W1) =
1
2

k1W 2
1 , U2(W2) =

1
2

k2W 2
2 , U3(W3) =

1
2

k3W 2
3 (3.4)

where W1 is the distance from the equilibrium separation of bound spheres (A), W2 is
the angular distance away from the equilibrium dihedral angle between binding sites
on adjacent spheres (π/5 - the actin filament is periodic in about every 10 sub-units
- figure 3.2) and W3 is the angle that three consecutive actin spheres make relative to
the orientation of the other two (so in this case the equilibrium angle is zero). k1, k2

8To non-dimensionalise write 3.1 (in the absence of acceleration) as F = ζṙ, where F is the total force on
a particular sphere. Write F = αF′, r = βr′ and t = λt ′, where the primed variables are non-dimensional and
α, β and λ are constants defining the non-dimensionalisation, then the non-dimensionalisation is performed
by taking α = kBT/A, β = A and λ = βζ/α.

9In this context all the interacting species have a diameter normalised to 1 unit from a real diameter of 7
nm, approximately the diameter of an actin filament.
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Figure 3.5: Schematic of binding in the BD model. Arp2/3 in red, actin in blue. Arp2/3
binds orthogonally to the side of existing filaments (i. - ii.). New branches are nucle-
ated, orientated at approx 70◦ to the parent filament (ii. - iii.). The angles are main-
tained by applying a bending stiffness to the binding angle. Filaments are assumed to
be pre-capped by Arp2/3 at the pointed end.

and k3 are constants - refer to table 3.1 for the parameters that are not varied in these
simulations, other parameters are reported where appropriate.

Bending stiffnesses are also applied (with the same spring constant, k2) so that the
chain Arp2/3-actin-actin is at 70◦ to the filament and so that Arp2/3 binds orthogonally
onto the filament (figure 3.5).

Parameter Value Units
Actin Monomer Diameter - A 7 ×10−9 m

Boltzmann Energy - kBT 4.142 ×10−21 J
Friction Coefficient of Actin Monomer - ζ 5.673 ×10−11 Kg s−1

Time Step ∆t 20.13 ×10−12 (3×10−5) s
Spring Constant of filaments - k1 0.1691 (2,000) N/m
Bending stiffness of filaments - k2 1.243 ×10−17(3,000) N m
Torsional stiffness of filaments - k3 4.142 ×10−17 (1,000) N m

Cutting length - l 2.1 (0.3) nm

Table 3.1: Parameter values used in the Brownian dynamic model, dimensionless val-
ues in parentheses.

A limitation of this model of actin polymerisation is that polymers form several orders
of magnitude faster than in vivo, although this is computationally advantageous. The
reader is referred to Kim (2007) for further details of the actin polymerisation model;
here the focus is on the alterations to this model to include Arp2/3-nucleated polymeri-
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sation near the cell membrane; the weaknesses of the actin model will be discussed in
this context.

Capping of the filaments is modelled by assuming that all the pointed ends are capped
by Arp2/3, and barbed end capping is modelled by the probability of the binding of a
sphere to a filament F being proportional to the length of the filament

P(Bind to F) = e−(n−1) (3.5)

where n is the number of spheres in the filament. The justification for this is that the
length of the filament is correlated to its age and the probability of being capped in-
creases with the age of the filament (assuming a constant probability of being capped in
any time interval). This assumption avoids the complication and additional computa-
tional cost of introducing a different species to cap the filaments. It is further assumed
that Arp2/3 can only nucleate polymerisation once bound to the filament. In the ini-
tial simulations there is no severing of filaments and no depolymerisation. Hence the
network is permanent once formed.

Figure 3.6: Arp2/3-nucleated branching and regulation in the simulated actin network.
Light spheres represent actin dimers and dark spheres Arp2/3

With these assumptions a branched network of regularly branching actin is generated
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(figure 3.6). However in the in vivo case the orientation of the actin filaments is towards
the membrane. It is suggested that it is the physical confinement of the filaments in the
thin lamellipodium that provide this directionality (Shao et al., 2006), however it may
be due to Arp2/3 being activated only at the membrane.

In order to test the theoretical Brownian ratchet model computationally a simple model
of the membrane is introduced into this model. Since a renewable population of
monomers is required for sustained polymerisation, severing of the filaments is also
considered in this new scenario. The additional computational cost of introducing a
separate species to bind to and then sever the filaments is circumvented by assuming
that filaments of a certain age will be severed. The system introduced to sever the
filaments is outlined in figure 3.7. In this process the rear of the network is severed.
The biological justification for this is that severing proteins such as ADF/Cofilin bind
preferentially to ADP-bound actin (Kovar, 2006) which will be more prevalent in the
rear of the network (which in principle is more mature).

This severing and cutting method is reminiscent of the in vivo case; due to acto-myosin
contraction (refer to chapter 6 for how the Rho GTPase Rho mediates this contraction)
there is a retrograde flow of actin of about 400 nms−1, (Ponti et al., 2004). However
in these simulations, this corresponds to a negligible 2 pm per 5× 107 time steps and
hence is ignored. Retrograde flow, may play a role in vivo as the typical time-scale of
lamellipodium extension is much longer than these simulations.

The lipid bilayer is initially coarsely modelled by 6 x 6 spheres, which define a sur-
face mesh of triangles. These points are constrained to move only in the z-direction,
although in reality the membrane is 2D fluid structure.

This surface exerts an L-J force on nearby filaments and monomers. An equal and
opposite force is exerted by filaments on the surface. The force from monomers on the
surface is assumed negligible.

The restoring force (which resists the force from filaments) is modelled as a stiffness
acting on the dihedral angle, θm, between two - triangular -planar surfaces, each com-
prised of 3 spheres. The equilibrium state of the membrane is assumed to be a flat
surface, so that at equilibrium θm = π. Hence the potential modelling this force is
taken as:

Um(θm) =
1
2

k2(θm−π)2 (3.6)
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Figure 3.7: Method of severing the actin network. A: The initial configuration. B:
The membrane advances due to polymerisation behind it. C: Once the membrane has
moved a pre-defined distance, l, the bottom of the network is cut to a length l. The
spheres are replaced from the sides of the computational region near the membrane. D:
The distance l is subtracted from the position of every sphere, the system is put back to
the original configuration.
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The surface is free to move,10 hence the force that the actin spheres exert on the mem-
brane due to random buffeting pushes the membrane forward. In reality, if the system
is in equilibrium, the pressure on the membrane is balanced by the tension in the mem-
brane. To avoid this effect the force on the membrane from the free spheres (and indeed
solvent molecules) is assumed to be exactly balanced by a restoring force normal to the
membrane due to tension. However, it should be noted that an alternative suggestion to
the Brownian ratchet model is that hydrostatic pressure is increased due to acto-myosin
contraction and this results in membrane protrusion (Dembo & Harlow, 1985).

The computational region is a cuboid, the top face being the ‘membrane’. The bound-
ary condition on the faces perpendicular to this face are periodic, on the parallel face
there is a solid boundary modelled by a repulsive force (justified biologically as a
‘fixed’ mass of polymerised actin).

3.3 Results of the BD model of membrane extension

Here the goal is to test the Brownian ratchet model: can polymerisation lead to motion
of the membrane? To quantify the motion of the membrane the average distance of
the membrane points is recorded for every time step, then the average velocity of the
membrane is simply the gradient of the graph of average distance vs time steps (figure
3.8).

Md

Figure 3.8: 2D schematic of average membrane position. The BD model tracks the
average distance (Md) of the membrane (circles) from a reference position (solid grey
line).

The initial conditions for the simulation are shown in figure 3.9, where the actin spheres

10Periodic boundary conditions on the side and the relatively small computational region mean that is
awkward to model tension in the membrane by fixing it at the sides.
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are arranged in a cubic lattice with Arp2/3 placed in the centre of some of the cubes de-
fined by eight spheres. The polymerisation is seeded by ten bound pairs of monomers.
The rate of nucleation (i.e. formation of pairs of spheres) in all these simulations is
taken to be zero; this ensures that polymerisation is only induced by Arp2/3 binding to
the side of existing filaments.

In each simulation the polymerisation is started from this condition. In principle the
simulation could be run from a pre-polymerised network, but - as will be shown - large
variation in the results (due to the stochastic nature of the model) mean that running
from a pre-polymerised network would introduce a bias to the results.

Figure 3.9: Initial conditions in the BD model of membrane extension. Membrane
in red, Arp2/3 in blue and actin in Cyan. Note the bound actin on the bottom row -
this nucleates the polymerisation. Spheres not to scale. 10 × 10 spheres define the
membrane

Initially a qualitatively similar network was sought to show that the binding of and
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branching with Arp2/3 was ‘topologically’ similar to what is observed experimentally.
A typical example of the kind of network generated is shown in figure 3.6. Note that the
spheres are not to scale (for clarity so the structure can be seen). The ‘tree’ like struc-
ture is evident, but clearly the global orientation of the structure is relatively random
compared to the orientated branching found in lamellipodia.

To test the model preliminary simulations were carried out. It was found that, in some
circumstances, the algorithm for severing the actin network (figure 3.7) could lead to
a ‘stalling’ of the system: the membrane does not move the requisite distance because
filaments were severed too quickly, and hence no persistent motion of the membrane
occurs (figure 3.10). To counteract this the bottom of the computational region is sev-
ered if the system has not moved within a certain amount of time steps (initially 106

steps). In this scenario the depth to which the severing has occurred is not subtracted
from the particle positions. This is so as to avoid compacting the region; if the re-
gion is severed (without the membrane having advanced) and this distance subtracted
from the positions of all the particles then the concentration of particles is superficially
increased.

With this mechanism the overall concentration of actin was kept roughly constant over
the simulation time (the concentration is slightly reduced as the volume increases, until
the cut occurs, figure 3.7). The concentration was varied by changing the initial separa-
tion of monomers in the lattice (it is this that gives rise to choices for concentration of
actin, e.g. 0.51 mM in figure 3.10). The range of concentrations chosen are of a similar
magnitude as taken in Carlsson (2001), of the order of about 1 mM. This is also com-
parable to the concentration reported in (Abraham et al., 1999), which is given as 40
mg/mL (1 Molar of 43 kDa G-actin corresponds to 43×103 mg/mL). So 40 mg/mL is
approximately 1 mM. Here concentrations less than this are taken, the model was found
to be slightly unstable with closer packing. The concentration of free actin monomers
is typically 10−50µM (Mogilner & Oster, 1996). 5 × 107 steps corresponds to about
5 µs.

In all the following results (figures 3.11 - 3.13) there are 36 points defining the surface,
1014 actin monomers (13 by 13 by 6 initially11) and 400 Arp2/3 complexes. Concen-
tration is calculated inclusive of both. Each separate colour represents an independent
execution of the model. All the graphs show the average distance (in actin monomer
units, 1 unit = 7 nm) of the membrane points from the bottom face (figure 3.8) versus

11Since the number of monomers remains the same a higher concentration results in a smaller computa-
tional region, but as an example: 0.51 mM corresponds to a region of 182 nm × 182 nm × 98 nm.
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’Offset_1’ using 1:2

Figure 3.10: Average position of the membrane (figure 3.8) in actin monomer units.
Initial simulation at 0.51mM total (polymerised and un-polymerised) concentration.
Note the stalling of the system, both in the early stages and after the peak distance has
been reached. However, an extension of the membrane of 1.2 monomer units (≈10
nm) is achieved.

the number of time steps into the simulation.

It is clear from figures 3.11, 3.12 and 3.13 that sustained motion of the membrane is
not being generated. The only promising result is the ‘green’ run (figure 3.12) where
there is a steady linear trend.

Figure 3.11 is interesting because the membrane in the ‘green’ simulation has collapsed
down rather than being ratcheted forward. This is essentially a ‘random’ walk; recall
there is no network of actin initially so nothing to support the membrane. The ‘blue’
simulation (figure 3.11) illustrates a different sort of collapse - the trend is downward
after a time in which the network would be significantly polymerised - once this has
happened the regular severing starts. It appears that by regularly cutting the bottom of
the computational region, the network has no support and the membrane (if the random
fluctuation should be in that direction) forces the network down. There is not enough
force on the membrane because the filaments do not have anything to push against
in the newly severed region. Something similar to this may actually be happening
physically: lamellipodia do fluctuate in and out even in steadily migrating cells, though
on a different time scale to these simulations (Raucher & Sheetz, 2000). Figure 3.13
emphasises the variability of these results.
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Figure 3.11: BD simulation of lamellipodia. Severing every 106 steps. Combined
concentration of Actin and Arp2/3, 0.70 mM.
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Figure 3.12: BD simulation of lamellipodia. Severing every 106 steps.Combined con-
centration of Actin and Arp2/3, 0.51 mM.
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Figure 3.13: BD simulation of lamellipodia. Severing every 106 steps. Combined
concentration of Actin and Arp2/3, 0.38 mM

To reduce the variability and minimise the random motion of the membrane more mem-
brane points are introduced. Each of these points executes a random walk, however
they are not independent due to the restoring force from the neighbouring points. Hence
more points will reduce the variation in the average position of the membrane. Note
that although this increases the mass of the membrane the dynamics of the simulation,
equation 3.1, is independent of mass if acceleration is neglible. In figures 3.14 - 3.16
there are 100 points in the surface. Secondly, on account of the observed collapse of
the membrane (figure 3.11), the maximum time between severing events was increased
by a factor of 10.

In the previous simulations a concentration of 0.51mM for actin and Arp2/3 was the
most promising simulation. Four further simulations were run at this concentration,
and two at a slightly higher concentration, 0.59 mM. Three simulations were run at
a significantly lower concentration, 0.12 mM, to determine if the membrane moved
slower or not at all at this level (figures 3.14, 3.15 and 3.16).

In figure 3.14 a steady linear trend is evident in the ‘red’ case. In the ‘green’ case the
membrane appears to have ‘randomly walked’ ahead of the polymerising network, but
once it collapses, presumably to the point of polymerised actin, a similar linear trend
is recovered - obviously this could still be an essentially random motion, though the

61



 13.6

 13.7

 13.8

 13.9

 14

 14.1

 14.2

 14.3

 14.4

 14.5

 14.6

 14.7

 0  5e+06  1e+07  1.5e+07  2e+07  2.5e+07  3e+07  3.5e+07  4e+07  4.5e+07  5e+07

M
e

m
b

ra
n

e
 A

v
e

ra
g

e
 (

M
o

n
o

m
e

r 
U

n
it
s
)

Time Steps

Figure 3.14: BD simulation of lamellipodia. Severing every 107 steps. Combined
concentration of Actin and Arp2/3, 0.59 mM
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Figure 3.15: BD simulation of lamellipodia. Severing every 107 steps. Combined
concentration of Actin and Arp2/3, 0.51 mM
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Figure 3.16: BD simulation of lamellipodia. Severing every 107 steps. Combined
concentration of Actin and Arp2/3, 0.12 mM.

fact that the velocity is similar to the red case is suggestive that the same mechanism
of membrane extension is in operation in both cases.

Figure 3.15 again illustrates large variation between the results, but a correlation be-
tween the simulations is apparent (at least the average gradients of each run are of a
similar order of magnitude). The variation of the results precludes comparing the ve-
locities of the membrane in figures 3.14 and 3.15. However it may be the case that
the higher concentration simulation (figure 3.14), exhibits a slower velocity due to a
‘space filling’ effect - at high concentrations unbound spheres struggle to locate to the
membrane.

The overall motion seems slower on average in the three runs at a concentration of
0.12mM (figure 3.16).

The final batch of simulations carried out was with a large number of points (in the
following results 1296 points were used) in the surface. This should, in principle,
reduce the variation in the average membrane position. It should also, if the Brownian
ratchet model is correct, reduce the velocity of the membrane because the chance of a
sphere finding room between the membrane and a barbed end of a filament is reduced
dramatically and hence membrane velocity is reduced.
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Figure 3.17: BD simulation of lamellipodia. Severing every 107 steps and with 1296
surface points .Combined concentration of Actin and Arp2/3, 0.59 mM

Due to increased computational costs these runs are shorter and the concentrations
spaced out (figures 3.17, 3.18, and 3.19).

Figure 3.17 shows exactly what was predicted. A steady trend is obtained in all three
cases, yet the evident slow velocity of the membrane seems to be good evidence for the
Brownian ratchet model.

The concentrations of actin and Arp2/3 used in figures 3.18 and 3.19 appear too low
to achieve any sustained extension of the membrane, however over longer time periods
polymerisation may still provide a sustained force on the membrane. This is further
evidence in favour of the Brownian ratchet model - low actin concentrations reduce the
probability of a sphere inter-locating between a barbed end and the surface.

3.4 BD Model of Membrane Extension - Discussion

From these results there are three primary conclusions that can be drawn. Firstly the
Brownian ratchet model is strongly supported: the results presented in section 3.3 sug-
gest that, despite the high level of variation, the Brownian ratchet model is certainly
a valid hypothesis. Secondly the membrane velocity is strongly influenced by actin
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Figure 3.18: BD simulation of lamellipodia. Severing every 107 steps and 1296 surface
points. Combined concentration of Actin and Arp2/3, 0.29 mM

concentration, primarily due to an increase in polymerisation rate. Lastly severing is
important to provide a free pool of actin monomers to maintain polymerisation. The
irregular nature of the results may have biological relevance; the simulations show
that membrane velocity is highly dependent on free monomer concentration and thus
mechanisms to maintain this concentration in vivo could provide a method to regulate
lamellipodium extension. However the results of this model have to be tempered; only
a small region of the total parameter space has been investigated.

At this stage the ratchet model is yet to be verified experimentally, and to do this is
clearly technically challenging. This model represents a step towards verifying the
theoretical principles of the ratchet model computationally.

In cells the actin filaments are aligned with their barbed ends presented towards the
membrane. This model does not reflect this. There are two possibilities for altering
the model to reproduce this. Firstly the sides could be constrained by removing the
periodic boundary condition and replacing it by a repulsive force representing a solid
wall. The scale of the model is well suited to this as its width in the x and y directions
(recall the membrane is, approximately, in the x-y plane) is comparable (approximately
200 nm) to the thickness of lamellipodia. Altering the boundary condition on either
the z-y or z-x face could provide the spatial confinement thought to give rise to the
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Figure 3.19: BD simulation of lamellipodia. Severing every 107 steps and 1296 surface
points. Combined concentration of Actin and Arp2/3, 0.019 mM.

orientation. The second possibility is to change the way that Arp2/3 is reintroduced
after severing so that it is directly placed back under the membrane rather than from
the side, or demand that the spheres representing Arp2/3 only become activated at the
virtual membrane.

One method to validate the model is a comparison of velocity of the simulated mem-
brane with the in vivo or in vitro cases. However, it is evidently too fast. The maximum
protrusion of the membrane is reported as being of the order of 20-30 nm s−1 (Taka-
hashi et al., 2003), however this is very different to cell migration speed. For example
Keratocytes, which move relatively fast...maximum cell migration velocity (approxi-
mately 20 µ min−1).

In these results the membrane typically travels on the order of tens of nm in 5× 107

steps, corresponding to 5µm s−1. That the velocity is so much faster in these simu-
lations is advantageous for computational reasons, and allows shorter simulations to
capture the essence of the process. In fact in the original actin polymerisation model
the polymerisation rate of the actin filaments is artificially faster for the same reason
(Kim, 2007). The spheres represent actin dimers, rather than monomers - this of course
greatly increases the rate of polymerisation.
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To construct a model of similar complexity that could reproduce this membrane veloc-
ity would be hugely computationally intensive: simulations of the length of a second
would be necessary, approximately 200,000 times longer than those presented here (an
intractable length of time without alteration to the model). This length of simulation
would be necessary to observe a significant displacement of the membrane at this ve-
locity. However the advantages of performing longer simulations are unclear, although
it is possible that richer dynamic behaviour would be observed over longer time scales.
Lamellipodia are often observed to extend out and then retract back into the cell re-
peatedly, which could be due growth and collapse regulated by the cell, but it also may
result from the network becoming starved of monomers and hence severing dominates
(leading to a collapse of the lamellipodium). This leads to a monomer rich environ-
ment and resurgence of lamellipodium extension. It could be speculated that some of
the simulations here show this sort of behaviour, however the biological relevance of
these observations could only be confirmed by longer simulations.

This work was carried out during a limited time period at MIT. Given more time the
next stage would be to investigate, computationally, the parameter space. The simula-
tions reported here are only representative of a small region of this space, hence further
computations are necessary to support (or contradict) the conclusions made here. Cor-
respondingly these conclusions are tempered by their limited computational support.

To fully investigate of the parameter space it would be hugely advantageous to be
able to reduce the computational cost of simulation. Either the code could be further
optimized, or the system size reduced. The latter case would require some careful study
to allow robust conclusions to hold in corresponding larger systems. Nevertheless, of
particular interest to investigate would be:

• Ratio of Arp2/3 to actin

• Severing rates

• Membrane properties

• Branch length

It would be interesting to couple this work to models of different time and length scales,
this technical and computational challenges involved in doing so is discussed in chapter
8.
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Modelling components of EC polarisation and elongation (figure 1.3) over longer time
scales is the subject of the remainder of this project. Specifically; mechano-transduction
of force due to fluid flow and Rho GTPase activation, which mediates lamellipodium
formation. The subject of the next chapter is modelling the fluid flow over a 3D cell,
the solution of which naturally gives the force on the cell surface.
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4 Modelling the Flow over a Single 3D Cell

The goal of this chapter is modelling the force that fluid flow exerts on the cell surface.
This is achieved by assuming the cell is rigid and solving the Stokes equation over a
3D model of a single cell. Justification for choosing Stokes flow as a model for the
flow and derivation of the representation used to solve the Stokes flow, which follows
the logic given by Pozrikidis (1992).

Flow over an endothelial cell is modelled as Stokes flow over a bump attached to a
wall. This problem has been extensively analysed previously. The following con-
tributions are particularly relevant to this thesis: Hazel & Pedley (2000) studied this
problem in the context of ECs and showed that EC alignment minimised the total force
on their nuclei, Price (1985) analytically approximated the solution for the total force
on a hemispherical bump, Higdon (1985) studied this problem in arbitrary 2D geome-
tries, Pozrikidis (1997) analysed shear flow over axially symmetric protuberances and
Wang & Dimitrakopoulos (2006a,b) studied flow past a bump attached to a cylinder
(representing an artery).

The methodology for solving the Stokes equation is given followed by the results of
the model and the biological implications. The novel aspect of the approach presented
in this chapter is the solution of the problem using a discretisation which facilitates
coupling of a mechano-transduction model (chapter 5) and reaction-diffusion equations
(chapter 6), although here the later case is coupled to the model of the flow via the
mechano-transduction model.

4.1 Stokes Flow

Blood is a heterogeneous fluid due to the red and white blood cells and platelets that are
suspended in plasma (a fluid composed of water, proteins and electrolytes). However,
it is thought that there is a thin layer near the edge of the flow that is cell free, hence the
fluid (near the endothelium at least) can be modelled as homogenous (Hazel & Pedley,
2000). Furthermore it also approaches a Newtonian fluid at this edge (a Newtonian
fluid has a constant viscosity, regardless of the shear forces that act within it), and in
large arteries, at least, blood is well approximated by an incompressible fluid (Pedley,
1980).

Here it is assumed blood is a simple, homogeneous, incompressible Newtonian fluid.
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This is a simplifying assumption that has the benefit that the best characterised fluids,
in terms of mathematical analysis, are incompressible and Newtonian. For such a fluid,
conservation of momentum applied to a small fluid element gives the Navier-Stokes
equations

ρ

(
∂u
∂t

+u.∇u
)

=−∇P+µ∇
2u+ρb (4.1)

where the constants ρ and µ are the density and viscosity of the fluid respectively,
P(x, t) is the pressure, u(x, t) is the velocity of the fluid and b is an external force
applied to the body, gravity for example. The continuity equation, which arises from
demanding mass conservation is

∇.u = 0 (4.2)

Equation 4.1 is justifiable near the endothelium layer, and this is the point of interest.
The equations are non-dimensionalised, in order to estimate a parameter, the Reynolds
number, that characterises the flow. The non-dimensionalisation proceeds using the
following expressions

u′ =
u
U

(4.3)

x′ =
x
L

(4.4)

t ′ =
t
T

(4.5)

P′ =
PL
µU

(4.6)

where U , L and T are the characteristic velocity, length and time of the flow, here T

is taken to be L/U . These constants define the scale and nature of the problem, and
hence must be chosen according to this particular case. Making this transformation
(and re-labelling by dropping the primes) gives the Navier-Stokes equations in a non-
dimensional form

Re
(

∂u
∂t

+u.∇u
)

=−∇P+∇
2u+

Re.b
Fr |b| (4.7)

where Re is the Reynolds number of the flow and is defined as:

Re =
UL
ν

(4.8)

where ν = µ/ρ is the kinematic viscosity. Fr is Froude number of the flow and defined
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Figure 4.1: Poiseuille flow through an artery. The length of the arrows represent the
magnitude of the velocity

as

Fr =
U2

|b|L (4.9)

The Reynolds number represents the ratio of convective forces to the viscous forces
whereas the Froude number represents the magnitude of convective forces relative to
the body forces. In this situation the model is to be constructed in the absence of any
external body forces, so b = 0. Notice that in the case where Re << 1 the equations
simplify, to leave only a steady flow (as Re→ 0 the dynamic part of the model has a
vanishing contribution). To find the Reynolds number in this specific case (at least to
an order of magnitude) it is necessary to consider the nature of the flow in an artery.

4.2 Flow in an Artery

To estimate the Reynolds number U and L are required. L can be taken as the typical
size of an EC. To estimate U the flow is modelled in a large artery using a very simple
approach. Establishing the cylindrical coordinate system in figure 4.2 (with the z- axis
in the direction of flow) leads to the deduction that the velocity of the flow must be a
solution of the (dimensional) Navier-Stokes equation of the form:

u(r) = V (r)ẑ (4.10)

where V is an arbitrary function of r satisfying u = 0 on r = a, i.e. on the arterial walls.
Note that u satisfies the continuity equation. Substituting this into the Navier-Stokes
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u(r) = V (r)ẑ

r a

Figure 4.2: The flow through an artery represented as a cylinder. The large arrow
represents the axially symmetric flow u(r) through a cylinder of radius a. The boundary
condition is that u = 0 on r = a.

equations (4.1), yields:

−∂p
∂r

+ µ
1
r

∂

∂r

(
r

∂V
∂r

)
= 0 (4.11)

∂p
∂y

=
∂p
∂z

= 0. (4.12)

The second of these equations implies that p = p(x), so equation (4.11) gives:

∂p(x)
∂x

= µ
1
r

∂

∂r

(
r

∂V
∂r

)
(4.13)

This has to hold for all r and z, and so implies that both sides are constant, which here
is denoted by −A. Hence solving for the pressure and V (r):

p = p0−Ar (4.14)

V (z) = − A
4µ

z2 +Cln(r)+B. (4.15)

Imposing the boundary condition that the solution is finite for all r and that V must
vanish on the arterial wall gives C = 0 and B = Aa2/4µ, so that:

V (r) =
A
4µ

(a2− r2). (4.16)
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This expression defines what is usually known as Poiseuille flow, and is the solution
to the flow in the cylinder, it has been widely used to model the flow in large arteries
(Reese & Thompson, 1998; Bengtsson & Eden, 2003).

To estimate the characteristic flow U (in order to calculate the Reynolds number), it is
necessary to determine the constant A. The most readily available experimental data in
in vivo studies is the volumetric flow rate, Q, which is defined as the volume of fluid
that passes through a particular area. The volume of fluid that travels through a small
annulus perpendicular to the flow of width δr is 2πurδr. Integrating this expression
between r = 0 and r = a gives the volumetric flow rate through the cylinder:

Q =
πA
8µ

a4 (4.17)

If the radius, a, is reduced by 5% then the volumetric flow rate is reduced by nearly
20%, because of the order four dependence on the radius, a. Hence this has physio-
logical relevance in this case; an atherosclerotic plaque can have a large impact on the
flow rate even if it only protrudes a little way into the artery, although in actuality this
effect is reduced by distension of the artery (Arbel et al., 2007).

The common carotid artery12 (CCA) is taken as a physiological case in order to esti-
mate U - although only an order of magnitude estimation is sought. The mean volumet-
ric flow rate through the CCA has been estimated to be on average 6 ml s−1 (Marshall
et al., 2004) and the inner radius of the artery is estimated to be approximately 3 mm
(Polak et al., 1996). In large arteries blood is estimated to have a dynamic viscosity of
3.5 cP, (Kamm, 2002).13 If the density of blood is comparable to that of water then the
kinematic viscosity is of the order of magnitude of 1 cm2s−1, or 108µm2s−1.

These values in equation (4.17) give A as 1900 dynes cm−1, or 0.019 N cm−1. Ap-
plying equation (4.16) with these parameters at a height characteristic of (to an order
of magnitude) the height of an EC (≈ 5 µm), gives the magnitude of the velocity at
a− r =1 µm as 280 µms−1 . This velocity defines the characteristic velocity, U , of the
flow. The characteristic length, L, is defined by the size of the cell, here tens of µm. So
L.U is of the order of 3000 µm2s−1. So the dimensionless Reynolds number is of the
order of 10−5.

Given that the Reynolds number is small the Navier-Stokes equations reduce to the

12The carotid arteries are responsible for the supply of blood to the brain and to the face. The onset of
atherosclerosis in these arteries can limit supply of blood to the brain resulting in a stroke.

13a centi-poise, cP, has units dyne s cm−2. One dyne is equal to 10−5 Newtons.
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Stokes equation:
−∇P = ∇

2u (4.18)

This can be rewritten as:
∇.σ = 0 (4.19)

where
σi j =−Pδi j +µ

(
∂ui

∂x j
+

∂u j

∂xi

)
(4.20)

is the stress tensor. Then f = σ.n is the surface force where n is the normal to the
surface. The surface force f has units of force per area, the total force, F, on a closed
surface S is

F =
Z

S
f.dS (4.21)

4.3 The Boundary Integral Representation

In this chapter flow over a single cell attached to a planar surface is modelled. The
previous section has justified the use of applying the Stokes, equation 4.19, to describe
the flow over the cell. Of particular interest is the force on the cell surface because it is
this that the cell somehow interprets and responds to.

The solution of equation 4.19 is restrained by the shape of the boundary of the problem
(which is the cell and the planar surfaces), and specifically the value of the fluid on this
boundary. A convenient way of incorporating the boundary value into the problem is by
transforming equation 4.19 into an integral around over boundary. This transformation
leads to the boundary integral representation (BIR).

Here equation 4.19 is applied in three dimensions. There are several motivations for
this. In chapters 5 and 6 this model is coupled to models of diffusing proteins within the
cell. Published observations of polarisation in ECs in response to fluid report distribu-
tions of proteins in 2D (for example the Rho GTPase Rac is activated in the downstream
region). Hence it is advantageous to model these two dimensions. Additionally there
is the third dimension (z-axis) which, although ECs are very thin, is important because
it is in this dimension that the fluid flows over the cell. In the previous modelling of
ECs as a viscous blob (section 2.2.1) it had to be assumed that the fluid flowed around
the cell because the model was two dimensional. By modelling in 3D it is possible to
calculate all three components of the force on the cell, and hence determine which of
these the cell is likely to be responding to.
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In physical terms the BIR expresses the total velocity as resulting from a distribution
of point forces. These forces are weighted in such a manner as to ‘push’ the fluid in
just the right way so that the Stokes equation (as well as its corresponding boundary
conditions) are satisfied. To understand the method employed to solve the (BIR) it is
instructive to see how it is derived. For a complete and excellent introduction to rep-
resenting Stokes flow in this manner see Pozrikidis (1992); the derivation here follows
similar logic.

The starting point is the Stokes equation for a point force

−∇P+∇
2u+gδ(x−x0) = 0 (4.22)

where g is a constant, x0 is some point in the space, δ is the three dimensional delta
function.

A delta function has the property that δ(x− x0) = 0 if x 6= x0. If x = x0 there is a
singularity. Usefully, if φ(x) is any function (a test function) thenZ

φ(x0)δ(x−x0)dx0 = φ(x). (4.23)

The standard approach for solving equations of this form (equation 4.22) is by intro-
ducing a Green’s function. A Green’s function is any function, G, that is the solution
to an equation of the form

LG(x−x0) = δ(x−x0) (4.24)

where L is a linear operator acting on x. Multiplying by a function φ(x0) and integrating
on both sides gives Z

LG(x−x0)φ(x0)dx0 =
Z

δ(x−x0)φ(x0)dx0 (4.25)

Applying equation 4.23 gives that the right hand side is equal to φ(x). Since L is linear
and does not act on the integration variable, the expression can be rewritten as

L f (x) = φ(x) (4.26)

where
f (x) =

Z
G(x−x0)φ(x0)dx0 (4.27)

This expression is now an integral representation of the solution to L f (x) = φ(x), pro-
vided that G is a solution for equation 4.24. A similar, although necessarily more
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complicated approach, is followed to find the BIR of Stokes flow. To do so the solution
of equation 4.22 is written as

ui =
1

8πµ
Gi j(x,x0)g j (4.28)

Also the pressure and stress tensor can be represented similarly:

P(x) =
1

8π
p j(x,x0)g j (4.29)

σik(x) =
1

8π
Ti jk(x,x0)g j (4.30)

If u and u′ are both solutions to (4.18) with associated stress tensors σ and σ′ then the
reciprocal identity is easily demonstrated

∇.(u′.σ−u.σ′) = 0 (4.31)

Associating the flow u′ with a point force of strength g at x0, gives an analogous expres-
sion to (4.28), substitution (and rewriting in index notation) of this into (4.31) yields

∂

∂xk
[Gi j(x,x0)σik(x)−µui(x)Ti jk(x,x0)] = 0 (4.32)

Next this expression is integrated over a test volume V . Due to the singular nature of
Gi j at x = x0 it is important initially that x0 is outside V . Applying the divergence
theorem14 over the volume V givesZ

S
[Gi j(x,x0)σik(x)−µui(x)Ti jk(x,x0)]nk(x)dS(x) = 0 (4.34)

However if the flow inside V is to be found the integration has to be calculated with
x0 in V . Proceed by selecting x0 as the centre of a small sphere Vε, where Vε is in the
interior of the volume V (bounded by S). The integration is carried out over the volume
V but excluding Vε, hence the singularity at x = x0 is avoided. The integral over the
whole volume V is calculated as the integral over V −Vε in the limit ε→ 0, it will be
demonstrated that this integral converges, despite the singularity.

14 Z
V

∇.F dV =
Z

S
F.n dS (4.33)

where F is any function, S is the surface that encloses the volume V and n is the normal to this surface.
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Integrating (4.32) over V −Vε gives:Z
V
[Gi j(x,x0)σik(x)−µui(x)Ti jk(x,x0)]nk(x)dS(x) =

−
Z

Vε

[Gi j(x,x0)σik(x)−µui(x)Ti jk(x,x0)]nk(x)dS(x) (4.35)

As x→ x0

Gi j(x−x0)→ δi j

ε
+

x̂ix̂ j

ε3 (4.36)

where x̂ = x− x0 and ε = |x− x0| (Pozrikidis, 1992). This is the free space Green’s
function. Its associated stress tensor is given by

Ti jk =−6
x̂ix̂ j x̂k

ε5 (4.37)

On the boundary Sε, n̂ = x̂/ε and the surface element dS = ε2dΩ where dΩ is the solid
angle. Substituting all these expression into the right hand side of (4.35) givesZ

S
[Gi j(x,x0)σik(x)−µui(x)Ti jk(x,x0)]nk(x)dS(x) =

−
Z

Sε

[(
δi j +

x̂ix̂ j

ε2

)
σik(x)+6µui(x)

x̂ix̂ j x̂k

ε4

]
x̂kdΩ (4.38)

In the limit ε→ 0 the stress term vanishes because(
δi j +

x̂ix̂ j

ε2

)
x̂k (4.39)

is O(ε), but the velocity term tends to a constant value. So the integral on the right hand
side becomes

−6ui(x0)µ
ε4

Z
Sε

x̂ix̂ jdS(x) (4.40)

The integral is then: Z
Sε

x̂ix̂ jdS(x) = ε

Z
Sε

x̂in jdS(x)

= ε

Z
Vε

∂x̂i

∂x̂i
dV = δi j

4
3

πε
4 (4.41)
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Substituting this, and f = σ.n, into (4.38) gives the BIR15

u j(x0) = − 1
8πµ

Z
S

fi(x)Gi j(x,x0)dS(x)

+
1

8π

Z
S

ui(x)Ti jk(x,x0)nk(x)dS(x) (4.42)

This equation is valid for x0 contained within V . Outside of V equation 4.34 holds.
The limiting case of x0 being on the surface S is

u j(x0) = − 1
4πµ

Z
S

fi(x)Gi j(x,x0)dS(x)

+
1

4π

Z
S

ui(x)Ti jk(x,x0)nk(x)dS(x) (4.43)

where the second integral is improper, so the principle value is taken (Pozrikidis, 1992).

Here the flow over a single cell is modelled. This cell is assumed attached to a planar
surface S (which physically might represent the extra-cellular matrix, ECM). As noted
above, Stokes flow over a planar wall with proturberances has been extensively studied,
and the representation that will be derived (equation 4.48) is widely applied (Higdon,
1985; Pozrikidis, 1992; Zhou & Pozrikidis, 1995; Wang & Dimitrakopoulos, 2006a,b;
Hazel & Pedley, 2000). However it is still useful to illustrate the derivation of the
representation (equation 4.48). It is hoped this shall elucidate the solution method,
section 4.4.

The perturbation in the flow due to a cell, uP, is defined as u− u∞ . In this context
equation 4.42 can be simplified by use of a Green’s function that vanishes on the planar
surface S. If the surface of the cell is denoted P then

u j(x0) = − 1
8πµ

Z
S,P

fi(x)Gi j(x,x0)dS(x)

+
1

8π

Z
S,P

ui(x)Ti jk(x,x0)nk(x)dS(x) (4.44)

where x0 is in the interior of a volume V taken to be bounded by S and P and a surface
closing V that can, for closure, be expanded to infinity, the integrals at infinity are then
assumed not to contribute to the solution near P. The boundary condition is that u = 0
on both S and P, which implies uP = −u∞ on P and on S uP = u∞ = 0 substituting

15In these expressions n is orientated into the flow.
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these boundary conditions to equation 4.42 applied to the flow uP gives

uP
j (x0) = − 1

8πµ

Z
S,P

f P
i (x)Gi j(x,x0)dS(x)

− 1
8π

Z
P

u∞
i (x)Ti jk(x,x0)nk(x)dS(x) (4.45)

Next apply equation 4.34 for the unperturbed flow u∞. However recall equation 4.34 is
only valid for x0 situated outside a closed surface, so here it is applied over a volume
enclosed by the surface P combined with the area C of the planar surface S covered by
the cell, i.e. taking x0 as within the cell interior (recall this expression is being applied
for u∞) . x0 has to be outside this region to apply equation 4.34, hence it is consistent
to take x0 ∈V . Noting again that u∞ = 0 on S gives

µ
Z

P
u∞

i (x)Ti jk(x,x0)nk(x)dS(x)

=
Z

C,P
f ∞
i (x)Gi j(x,x0)dS(x).

Using this expression to eliminate the second integral in expression 4.45, and adding
u∞ gives

u j(x0) = u∞
j (x0)− 1

8πµ

Z
S

f P
i (x)Gi j(x,x0)dS(x)

− 1
8πµ

Z
P

fi(x)Gi j(x,x0)dS(x)

+
1

8πµ

Z
C

f ∞
i (x)Gi j(x,x0)dS(x) (4.46)

Now if a Green’s function is chosen such that Gi j(x,x0) = 0 if x is on the planar wall S

then all but the middle integral vanishes. Here the planar surface is taken as z = 0 then,
such a choice for Gi j, Blake (1971), is

Gi j(x,x0) = ξi j(x̂)−ξi j(X̂)+2z2
0GD

i j(X̂)−2z0GSD
i j (X̂) (4.47)

where x0 = (x0,y0,z0), x̂ = x−x0, X̂ = x−x0
′ and x0

′ = (x0,y0,−z0)

ξi j(x̂) =
δi j

|x̂| +
x̂ix̂ j

|x̂|3

GD
i j(x) = ±

(
δi j

|x|3 −3
xix j

|x|
)
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GSD
i j (x) = x2GD

i j(x)± δ j2xi−δi2

|x̂|3

where x2 is the z-component of x = (x0,x1,x2).

Use of this Green’s function in this context leaves the simplified representation of the
flow as

u j(x0) = u∞
j −

1
8πµ

Z
P

fi(x)Gi j(x,x0)dS(x). (4.48)

In contrast to equation 4.42 this expression is valid for x0 on P as well as the whole
region (Pozrikidis, 1992; Hazel & Pedley, 2000).

The interpretation of this representation is that f(x) is the force on the cell at x, so
that −f is the force that the surface at x exerts on the fluid, hence a sum (the integral)
over the surface gives the total force the surface exerts on the fluid. It is this force that
pushes the fluid over the surface. Equation 4.42 completely determines the flow. The
numerical solution of this equation is non-trivial and is the subject of the next section.

4.4 Solution Strategy

To calculate the flow at u(x0) it is necessary to find the force on the cell surface f,
which is of particular interest in the context of the EC response to fluid flow. To find f
in arbitrary geometries it is necessary to discretise the boundary integral representation,
equation 4.48, although for simple geometries analytical solutions can be found (Hazel
& Pedley, 2000). To proceed the surface P is discretised into surface elements. f could
be expressed on a surface element by linear or quadratic interpolation, however here -
for expediency- a simpler option is chosen; namely that f is taken to be constant over
each surface element. To find f equation 4.48 is discretised for x0 on P, because u = 0
holds a priori on P. This leads to the discretised version of equation 4.48:

8µπu∞
j (x0) =

n

∑
l=0

Z
l

f l
i (x)Gi j(x,x0)dSl(x) (4.49)

where the surface is discretised into n surface elements. The integral, force and surface
differential over the lth surface element are

R
l , fl and dSl(x) respectively. Since fl takes

a constant value over each element the discretisation becomes

8µπu∞
j (x0) =

n−1

∑
l=0

f l
i (x)

Z
l
Gi j(x,x0)dSl(x) (4.50)

80



Hence this equation (which is actually three equations for j = 0,1,2 corresponding to
the x, y and z directions) is made of 3n unknown constants16: the f l

i (x). In order to
solve for the f l

i , equation 4.50 is applied with x0 taken at n different locations, called
collocation points. This forms a 3n×3n linear system

8µπu = G f (4.51)

where

u =
[
u∞

0 (x0
0), . . . ,u

∞
0 (xn−1

0 ),u∞
1 (x0

0), . . . ,u
∞
1 (xn−1

0 ),u∞
2 (x0

0), . . . ,u
∞
2 (xn−1

0 )
]T

(4.52)

u∞
j (xk

0) being the jth component of the velocity at xk
0 , the kth collocation point. Simi-

larly
f =

[
f 0
0 , . . . , f n−1

0 , f 0
1 , . . . , f n−1

1 , f 0
2 , . . . , f n−1

2

]T
(4.53)

where f m
j is the jth component of the force at the mth surface element. The last com-

ponent, G, is given as

G =



A0,0
0,0 A1,0

0,0 A2,0
0,0 . . . An−3,0

2,0 An−2,0
2,0 An−1,0

2,0

A0,1
0,0 A1,1

0,0 A2,1
0,0 . . . An−3,1

2,0 An−2,1
2,0 An−1,1

2,0

A0,2
0,0 A1,2

1,0 A2,2
2,0 . . . An−3,2

2,0 An−2,2
2,0 An−1,2

2,0

...
...

...
...

...
...

A0,n−1
0,2 A1,n−1

0,2 A2,n−1
0,2 . . . An−3,n−1

2,2 An−2,n−1
2,2 An−1,n−1

2,2



(4.54)

where
Ak,m

i, j =
Z

k
Gi j(x,xm

0 )dSk(x) (4.55)

The indices are related by i = k mod n and j = m mod n. Hence the problem of finding
the force on the cell surface, f , has been reduced to populating the matrix G - which is
known, and solving the linear system, equation 4.54. Once the vector f is known the
flow can be calculated at any point using equation 4.48.

16i runs from one to three, and l from 0 to n.

81



4.5 Numerical Implementation of the Boundary Integral Repre-
sentation

One of the difficulties in applying the BIR is approximating the integrals on the surface.
The method of collocation points presents a difficulty because of the singular nature of
the Green’s functions. This section describes the numerical implementation applied to
solve the BIR.

4.5.1 Discretising the surface

To implement the discrete version of the BIR, equation 4.50, it is necessary to split the
cell surface into discrete elements. However, it will be reported (chapters 5 and 6) how
this model is linked to reaction diffusion equations representing a - small - component
of the signalling network that mediates EC polarisation and elongation. The equations
in chapters 5 and 6 are implemented on a 2D projection (onto z = 0) of the cell surface.
Hence to numerically solve these reaction diffusion equations the projection of the cell
(onto z = 0) is discretised into regular hexagons. In chapter 5 this flow model is linked
to these equations. Hence it is advantageous to have a mapping between the surface
elements of the flow model and the discrete hexagons of the reaction diffusion model.
To do so the following meshing algorithm (figure 4.3) is applied:

1. Discretise the planar surface with hexagons of side length L

2. Split each hexagon into four triangles, which will form the surface elements

3. Assign a height, H, to each hexagon according to H = g(xc,yc), where (xc,yc) is
at the centre of the hexagon.

4. Assign a height to each vertex as an average of the three surrounding hexagons’
height.

5. The height of vertices at the periphery of the cell is then set to zero.

The last step ensures that the virtual cell touches the plane. Also note that, for the
correct choices of g, this method also ensures that none of the surface elements lie
entirely on z = 0, for if they do the integrals Ak,m

i, j vanish when either k or m indexes to
this element. This introduces degeneracy into the linear system which means G is not
invertible, and hence no solution would be found. It should be noted that this is not a
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Figure 4.3: The plane is discretised into regular hexagons (for later solution of reaction
diffusion equations) then each hexagon split into four triangles (these form the surface
elements). The hexagons are then assigned a height, by mapping them to a predeter-
mined surface. The height of the vertices, small circles, is taken as an average of the
three surrounding hexagons.

numerically optimal meshing of the surface, however it has the advantage of allowing
a simple mapping to the projection and expediency.

The function g(x,y) is taken to be an ellipsoidal surface, defined by

g(x,y) =
N(R2− (ax2 +by2))

R2

where R is a radius of a typical roughly circular endothelial cell and N is the maximum
height of the cell. Initially a and b are taken to be 1, this generates the surface as the cap
of a sphere (figure 4.4). Note that the number of surface elements is not predetermined
at the start of the algorithm. The size of the linear problem is essentially determined by
the area of a hexagon, which is itself proportional to L2 - then the number of surface
elements, n, is determined by how many hexagons fit into the cell projection. In figure
4.4 L = 0.8µm, which (for that choice of R) leads to n = 2977, hence G is of size 3n×
3n = 79762791. So clearly computational cost is already an issue in both populating
this matrix, and, more critically, in solving the linear problem.

4.5.2 Integrating over a Surface Element

For the calculation of equation 4.55 the next stage of the numerical method is to inte-
grate over a surface element. Since, after the mapping to g(x,y), all of the triangles are
different sizes and shapes it is convenient to apply a change of variables to expression
4.55 so that the surface integral is over the standard triangles (figure 4.5). The change
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Figure 4.4: The virtual cell surface is discretised into triangles, according to the mesh-
ing algorithm. Maximum cell height, N = 6 µm. Cell radius, R = 20 µm. Hexagon side
length L = 0.8 µm

of variables leads to
Ak,m

i, j =
Z Z

JmGk
i j(η,ξ)dηdξ (4.56)

where Jm is the Jacobian of the transformation, which is dependent on which surface
element has been transformed - indexed by m. The shift of the k index is to signify that
the value of Gk

i j(η,ξ) depends on the collocation point (indexed by k), however η and
ξ are independent of the collocation point, x0.

The variables η and ξ generate the original cartesian coordinates by

x(η,ξ) = x1 +η(x2− x1)+ξ(x3− x1) (4.57)

The Jacobian, Jm of this transformation is given by

Jm =
∣∣∣∣ dx
dη
× dx

dξ

∣∣∣∣
= |(x2− x1)× (x3− x1)| (4.58)

Note that if the area of the surface element is A then A = Jm/2.

To integrate over the triangle a numerical quadrature is used. Over a surface a quadra-
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Figure 4.5: A surface element triangle (left) is mapped to the standard (0,0), (1,0),
(0,1) triangle (right) parametrised by η and ξ

ture is a set of points(qi
η,qi

ξ
) and weights wi that simplify the integral as

Z
m

h(η,ξ)dηdξ =
N

∑
i

h(qi
η,qi

ξ
)wi (4.59)

The weights are chosen so that the quadrature gives exact results for polynomials of
a given order, generally more points mean the quadrature is precise for higher order
polynomials and hence a better approximation to the integral. Here the quadrature
taken is from Rathod et al. (2004), table 4.2.

qη qξ w
0.112701665 0.100000000 0.068464377
0.112701665 0.443649167 0.109543004
0.112701665 0.787298334 0.068464377
0.500000000 0.056350832 0.061728395
0.500000000 0.250000000 0.098765432
0.500000000 0.443649167 0.061728395
0.887298334 0.012701665 0.008696116
0.887298334 0.056350832 0.013913785
0.887298334 0.100000000 0.008696116

Table 4.2: The quadrature used to integrate over non-singular triangles in the flow
model.

The quadrature simplifies a surface integral into a sum of weighted function values.
However, there is a complication. The singularity of Gi j(x,x0) occurs at x = x0, so
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Figure 4.6: Plot of 1/r + x/r3,with r2 = (x− 1)2 + y2 (this is one component of free-
space Green’s function for x0 = (1,0,0)). Note the singular behaviour when x→ x0,
similar behaviour occurs with this Green’s function choice, equation 4.47. Note that
for some choices of quadratures (white circles) the singular behaviour is not captured.

when the collocation point, x0 is on the same surface element as the integration in
question there is a numerical problem, although the integral does converge as noted in
the derivation of the BIR (section 4.3).

The difficulty comes in approximating this singularity. The quadrature is essentially
a sampling of the function values over the surface element, which could either fail to
capture the singularity or, if quadrature points fall on the singularity then no approxi-
mation to the integral can be given (figure 4.6). So an improvement to the quadrature
method is needed. The obvious, and naı̈ve, step to take to improve the integral over the
singular triangle (meaning the triangle that contains the singular point) is to split it into
smaller triangles, here six of them, then to map the smaller triangles onto the standard
one and apply the quadrature over each of the smaller triangles. The integration over
the surface element is then just the sum of the integrals over the smaller triangles (fig-
ure 4.7) and hence the integration accuracy is improved because the original triangle is
being sampled by six times as many quadrature points.

This approach however still does not lead to the correct solution of equation 4.42 be-
cause the singularity is still not approximated correctly. The system of splitting the
triangles could be continued, for example so the original triangle is split into 36 new
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Figure 4.7: In the case of a singularity lying on the surface element (small dot) the
triangle is split into six smaller ones, each of these mapped to a standard triangle. Note
this mapping is done in such a manner to move the singularity to the right-angle point
of the standard triangle.

triangles. Continuing this process would necessarily (slowly) converge to the true in-
tegral (the quadrature points never lie exactly on the singularity). However there is a
more elegant suggestion by Pozrikidis (1992). Since the collocation points xk

0 are taken
to be the centre of the surface elements (in the notation of figure 4.5: (x1 +x2 +x3)/3
- this is a natural choice because as many collocation points as surface elements are
required) the splitting of the triangle into six can always be arranged so the singularity
is at the right angle point of the standard triangle, (figure 4.7). Because the singularity
is at this point the following procedure regularises the integral.

If the integral Z Z
H(η,ξ)dηdξ (4.60)

is singular, then the change into polar variables

r = (η2 +ξ
2)1/2, θ = arccos(η/r) (4.61)

has Jacobian r, so the integral becomesZ Z
rH(r,θ)drdθ (4.62)
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Figure 4.8: Plot of 1 + x/r2,with r2 = (x− 1)2 + y2 - the regularised version of figure
4.6, note that the volume of the singularity is smaller in comparison to figure 4.6.

but since the singularity is at r = 0 the Jacobian has the effect of regularising the in-
tegral. This does not remove the singularity (figure 4.8) because the Green’s function
(equation 4.47) has poles of order greater than one, but it does reduce the order of the
poles of the Green’s function.

To calculate the regularised integral in the r and θ variables two line integrals are cal-
culated. For these, quadratures on a line are needed (table 4.3). The values from table
4.3 are scaled by π

4 (1 + q) for integration in θ (so the range is scaled to [0,π/2]) and
integration in r variable scaled by (1 + q)/(2(sin(θ) + cos(θ))) (so the range is now
[0,1/(sin(θ)+ cos(θ))]). The integral is calculated asZ Z

rH(r,θ)drdθ = ∑
qr

∑
qθ

wqwrrH(qr,qθ) (4.63)

where qθ and qr are the scaled quadratures as above, with corresponding weights wq

and wθ.

This approach successfully approximates the singularity to sufficient accuracy: the
verification of this method (as a whole) is provided in section 4.6.
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q w
-0.989400934991650 0.027152459411754
-0.944575023073233 0.062253523938648
-0.865631202387832 0.095158511682493
-0.755404408355003 0.124628971255534
-0.617876244402644 0.149595988816577
-0.458016777657227 0.169156519395003
-0.281603550779259 0.182603415044924
-0.095012509837637 0.189450610455069
0.095012509837637 0.189450610455069
0.281603550779259 0.182603415044924
0.458016777657227 0.169156519395003
0.617876244402644 0.149595988816577
0.755404408355003 0.124628971255534
0.865631202387832 0.095158511682493
0.944575023073233 0.062253523938648
0.989400934991650 0.027152459411754

Table 4.3: The quadrature for integrating on the line [-1,1], (Lowan et al., 1942).

4.5.3 Solving the linear problem

Since the linear problem is so large an expedient solution method was sought. Iterative
methods of inverting a matrix are much faster than direct methods, although fast meth-
ods designed for symmetric, or sparse systems will not apply here because the matrix
is dense and not, in general, symmetric.

The method applied here is an iterative Krylov subspace method, the algorithm will be
outlined briefly. For the details, the reader is referred to Saad (1981). The basic idea
is to find a solution to a projection of the problem onto a Krylov subspace, which is
defined as

Km = span[r0,Ar0, . . .Am−2r0,Am−1r0] (4.64)

where the residue r0 = b−Ax0, x0 is the initial guess to the linear problem Ax = b.
Denote Vm = [v1, . . . ,vm] as the basis for Km where the vi are vectors - meaning that Vm

is an n×m matrix.

Now if xm is an approximate solution to the linear system such that xm ∈Km and (Axm−
b).v j = 0 for j = 0, . . . ,m then writing xm = Vmym implies that ym satisfies the linear
system

V T
m AVmym−V T

m b = 0, (4.65)
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the advantage of this system is that it is of a reduced (m×m) size. If the exact solution
is related to the initial guess x0 by x = x0 + z, then b−Az = r0 must hold. There are
many different methods to generate the subspace Vm. Here the method of Arnoldi is
taken, which creates an orthonormal basis of Vm by a Gram-Schmidt process, see (Saad,
1981):

• take v1 = r0/|r0|

• then repeat until k=m:

vk+1,k = (Avk−
k

∑
i=1

hi jvi)/hk+1,k (4.66)

where h jk = (Avk,v j) and hk+1,k = |vk+1,k|

Note that V T
m AVm = Hm is a Hessenberg matrix17, with entries hi j. The final solution is

given by x = x0 + z where
z = |r0|VmH−1

m (V T
m v1) (4.67)

The advantage of this method is the computational gain coming from the Hessenberg
matrix having a large number of zeros, making the matrix computationally cheap to
invert - here by simple Gauss-Jordan elimination.

Further computational gain can be achieved using the method iteratively, essentially
because m can be taken to be smaller and the equivalent accuracy gained by repeatedly
running the algorithm. The iteration is simply that the solution x forms the new initial
guess for the subsequent iteration, although if m is very much less than the size of the
linear system then the iteration diverges. Figure 4.9 illustrates convergence in this case.

Using this method applied to the linear problem solves for the force on the cell at any
point on the surface, f(x0). This method is validated by ensuring it generates a sensible
stream line pattern, checking that the shear stress on the cell is in the reported range
and that as µ→ 0 the solution also tends to zero.

17Meaning its only entries are the ones above the main diagonal, the ones in the main diagonal and the
ones in the diagonal directly below the main diagonal
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Figure 4.9: Examples of the iterative arnoldi process in terms of the error defined as
|Az−b|, for a linear problem of size 300×300 . The solution is found by taking m = 10
(× points), m = 6 (+ points) and m = 4 (∗ points), with the 0th iteration being the first
solution found from an initial guess of z having every entry as 1.

4.5.4 Flow Parameters

Near the endothelial cell wall the Poiseuille flow, equation 4.16, is well approximated
by simple shear flow. To show this consider rewriting equation 4.16 in terms of the
distance from the planar surface, z:

V (z) =
A
4µ

(2a− z)z. (4.68)

Differentiating 4.68 with respect to z gives

dV
dz

=
A
2µ

(a− z).

For the CCA, a =3000µm and at the EC z is of the order of 5µm so in this region
equation 4.5.4 is well approximated by a constant value of Aa/2µ, hence the far-flow
field, u∞, is taken as

u∞(x,y,z) = (kz,0,0) (4.69)
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where k = Aa/2µ is the shear rate. The viscosity, µ, is taken as 1 cP. Evaluating k (with
A = 1900 dynes cm−1 and a = 0.3cm) gives the shear rate as k =285s−1

4.6 Results - Flow over a single Cell

Equation 4.48 is solved for a single cell attached to the surface and in the process the
force on the cell surface is found. The validity of the numerical method is verified
by three methods. First by plotting both the maximum shear stress and the total shear
stress against the value of µk, the viscosity µ times the shear rate k where the magnitude
of shear stress, S, at x is found by:

S = ( fi fi− f jn j)1/2 (4.70)

n j is a vector normal to the surface orientated away from the cell, f j is the surface force
(or stress vector, recall f = σ.n).

If µk is constant then the solution will stay the same, even if µ and k vary. The linear
system could be solved independently of µ and k and the final solution scaled by µk.
Here the solution is solved including µ and k, hence there should be a linear relationship
between µk and both the maximum shear stress and the total shear, the linear trend
should of course pass through (0,0). This indeed is the case, as is evidenced in figures
4.10 and 4.11. In both these figures there are actually three trends for cells of different
morphologies, which will be referred to in chapter 6. It will emerge that the similarity
of these three trends has biological relevance.

The second, more visual, test of the solution method is checking that it correctly gener-
ates the streamline pattern expected. Streamlines are defined as a path x parametrised
by s such that

dx
ds

= u(x) (4.71)

if x = (x0,x1,x2) and u = (u0,u1,u2) then

dx0

u0
=

dx1

u1
=

dx2

u2
= ds (4.72)

from which it is inferred that at any point the streamlines are parallel to the flow veloc-
ity.

As this is a steady flow the streamlines coincide with both the pathlines and streaklines.
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Figure 4.11: The maximum value of shear stress on the cell as a function of µk for
three different cell shape; circular (red), and ellipsoids orientated parallel (green) and
perpendicular (blue ) to the flow (see section 6.3). The red and green trends are identi-
cal. µ has units of g µm−1s−1, and k s−1. So µk is in units of g µm−1s−2.
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Figure 4.12: Streamlines taken at different starting points. The surface of the cell is
shown by marking the collocation points as dots.

Physically these correspond to the path a particle or a portion of the fluid takes respec-
tively.18 Equation 4.71 is integrated for different initial conditions with the results in
figure 4.12. The streamlines are perturbed by the cell surface. Since the surface is
symmetrical the fluid flow - evidenced by the streamlines - is also symmetrical. This is
because Stokes flow is reversible: if u is a solution then so is−u for the same boundary
conditions. Since Stokes flow is steady, the flow at time t is the same as at all other
times.

The third validation, is application of the method to a different geometry, a hemisphere.
There is an analytical approximation to the solution for the total force on the hemi-
sphere, Fa = 4.30π (Price, 1985). The numerical solution linearly converges to the
analytical solution as the side length, L, of the hexagons (which discretise the plane)
approaches zero, figure 4.13. In solving for the fluid flow over an EC the ratio L/R

(where R = 20 µm is the radius of the area of the plane covered by the cell) is taken
to be 0.04. In figure 4.13 this corresponds to an error of about 1.7%, however it is
anticipated that the EC case is more accurate than the hemispherical case because of
the discretisation method. The method applied here is to project a discretisation of the
x-y plane onto a surface to generate a meshing of that surface. This method is suitable

18Usually visualised by dropping dye into the fluid.
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for the EC case because they are relatively flat, however for a hemisphere the method
coarsely meshes the regions near where the hemisphere joins the plane.

Figure 4.13 illustrates some anomalous data, where error increases, briefly, for a re-
duction in L. These anomalies occur where L/R is large (≈ 0.18 and ≈ 0.24). For L/R

in this range the algorithm is desensitised to the value of L (decreasing L/R does not
necessarily increase the number of surface elements because the meshing algorithm
requires that only hexagons entirely contained within the prescribed area are mapped
to the surface). With the error plotted against the number of surface elements (inset
plot of figure 4.13) these anomalies appear attenuated. However the anomalies are still
present. Since each meshing is not optimal it may be the case that errors cancel out
for certain choices of L, it is evident that a given meshing’s accuracy at approximat-
ing the solution depends on other factors other than simply L or the number of surface
elements.

One possibility as a factor that may generate these anomalies is the orientation of el-
ements; each meshing will generate a slightly different proportion of elements with
a given normal vector and a given proportion may provide a better approximation to
the solution than a meshing that has (slightly) more surface elements but in a different
orientation. The difference in the orientation of elements will be greater between two
meshings that have large L/R, this may generate the anomalies. The proportion of ele-
ments in any given orientation converges (because the surface meshing approaches the
true geometry) to some value as L→ 0, hence the anomalies should also be smoothed
out as L→ 0. It remains to be seen if this is the case, figure 4.13 illustrates that this
effect, or something similar, may be occuring. Nevertheless, the numerical solution
does converge to the analytical solution.

The process of EC polarisation and elongation is usually referred to as a shear stress ac-
tivated process. So it is of immediate interest and relevance to describe the shear stress
over the entirety of the cell (figure 4.14). Recall that the shear rate k is calculated from
the Poiseuille flow which itself was parametrised using physiological observations.
Hence figure 4.14 should give shear stresses in the range estimated physiologically,
and as typically used in in vitro experiments (Fleming et al., 2005; Jalali et al., 1998;
Wojciak-Stothard & Ridley, 2003; Goldfinger et al., 2008; Tzima et al., 2001, 2002).
Typically these experiments are carried out with shear stresses of about 5− 15 dynes
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Figure 4.13: Convergence of the numerical method. Main plot: L is the length of the
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Figure 4.14: The shear stress on the endothelial cell for a shear rate k= 280 s−1. The
maximum shear stress is 10 dynes cm−2, typical of the value used in in vitro exper-
iments. Note the symmetry between the downstream and upstream parts of the cell.
The flow is left to right.

cm−2. Generally these are calculated as the wall shear stress

τw = µ
∂u
∂z

∣∣∣∣
z=0

(4.73)

where u is the flow speed along the boundary at z = 0. The exact expression for τw

depends on the geometry of the flow boundaries. For the Poiseuille flow in the cylinder
(expression 4.16) the wall shear stress solves to be

τw = µ
4Q
a3π

(4.74)

with Q and a defined as the flow rate and vessel (or cylinder) radius respectively. With
the parameters taken as before (Q = 6 ml s−1 and a = 3 mm) the wall shear stress
τw =6.2 dynes cm−2, which is comparable to the more detailed map of shear stress
over an EC in figure 4.14. τw =6.2 dynes cm−2 is also comparable to the typical values
used in in vitro experiments.

Figure 4.14 is of biological relevance, in particular in light of the comments made
about spatial heterogeneity in signalling (section 1.1.1): it is clear that the shear stress
can not be the progenitor of the heterogeneity. This does not rule it out as having an
important role in signalling, but it would appear (due to up/downstream symmetry) that
this signalling can not be localised to the downstream edge. Other possibilities could
occur, for example cytoskeleton components could be linked to the cell surface creating
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Figure 4.15: Unit force, f̂ (projected onto the z-x plane), on the surface of the cell (as
in figures 4.4 and 4.14) due to laminar fluid flow (left to right). Note that the upstream
edge of the cell is in compression and the downstream edge is under tension.

the heterogeneity from being in a pre-orientated state. The discussion on mechano-
transduction will be extended in chapter 5.

If shear stress is not a candidate for introducing the spatial heterogeneity in signalling,
then it must be the component of force normal to the surface. That this could be the
case can be observed in figure 4.15, where the cell is viewed from the side. Here the
downstream edge of the cell is under tension and the upstream edge in compression.
Hence a mechano-transducer that can respond to being stretched (or the reverse) could
interpret this force on the cell.

Figure 4.16 is a different projection of the unit force than figure 4.15, in this case the
force on cell surface is projected to the x-y plane. In the case of figure 4.16 if cy-
toskeleton elements (or ion channels) are pre-orientated (for example from the nucleus
out) then in principle the flow direction could be interpreted, however here the tension
and compression argument is favoured.

This model has illustrated that the likely source of localised signalling is response, in
some manner, to the normal force on the cell surface. This is in contrast to the usual
paradigm of EC polarisation and elongation being a shear stress activated process, It
is not argued that a signalling response to shear stress is not necessary but rather that
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Figure 4.16: Unit force, f̂ , on the surface of the cell (as in figures 4.4 and 4.14) due to
laminar fluid flow (left to right).

Figure 4.17: Unit force, f̂ , on the surface of the cell (as in figures 4.4 and 4.14) due to
laminar fluid flow (into the page).
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Figure 4.16: Left: Projection on to the x-y plane of unit force, f̂ , on the surface of
the cell (as in figures 4.4 and 4.14) due to laminar fluid flow (left to right) . Right:
magnification of the projection of f̂ . Note this projection of f̂ is parallel to the direction
of fluid flow (left to right).

the normal force initiates the polar response. Although that the normal force may play
a role has been suggested previously (Wang & Dimitrakopoulos, 2006a,b), it is not
widely considered. Is the normal force acting (directly or in-directly) onto a mechano-
transducer a plausible hypothesis? This hypothesis is explored in the next chapter by
modelling normal force induced mechanical transduction.
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5 Modelling Endothelial Cell Mechano-transduction

In this section the flow model is coupled via a simple mechano-transducer model to
a biochemical output. The widely proposed mechanisms that a cell could employ for
conversion of a mechanical signal into a biochemical one are introduced. One such
mechanism is hypothesised to account for the spatial heterogeneity in signalling. This
mechano-transducer is modelled using a Kelvin-Body model and parameters derived
to fit experimental data by Bausch et al. (1998).

These parameters were previously applied in a model of EC mechano-transduction
by Mazzag et al. (2003) in modelling EC mechano-transduction. Their approach was
to couple together spring-like models in series and in parallel representing structural
cytoskeletal elements. Here a different approach is taken. It will be argued that the
mechano-transducer is likely to be attached to the basal surface of the cell and that the
force from the fluid is transmitted directly to this point.

The first novel contribution of this chapter is the direct linking of an explicit solution
for the flow over an EC (chapter 4) to a (previously proposed) model of mechano-
transduction. The second novel contribution is coupling this mechano-transduction
model to a biochemical output with parameters fitted to match experimental data.

5.1 Candidate Mechano-transducers

There are two main mechanisms for mechano-transduction of force on a cell and it is
likely they are both involved in initiating the signalling network that governs morpho-
logical change in ECs. The first is influx of ions through stretch-activated ion channels
and the second is alteration of protein binding characteristics due to increased tension
or compression. In the second case there are several different possible candidates.

In vivo ECs are covered with a thin (0.5 µm) layer of membrane bound molecules
known as the glycocalyx. The structure of the glycocalyx and its linkage to the cy-
toskeleton may play a significant role in the EC response to fluid flow with conse-
quences for either of the main mechanisms of mechano-transduction.
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5.1.1 Ion Channels

Ion channels are multimeric protein assemblies that form selective pores through the
cell membrane. Typically these pores are selective enough so as to only allow specific
ions through. Importantly, ion channels can be gated so that they are only open in
certain conditions. For example binding to specific ligands, due to an electrochemical
potential across the cell membrane or stretch activation. The latter case is of particular
relevance to this project. There are many examples of ion channels responding to fluid
flow over a cell, leading to (depending on the type of ion channel) influx of K+, Cl−,
or Ca2+ (Hoger et al., 2002; Yamamoto et al., 2000; Gautam et al., 2006).

There are three possible mechanisms for shear stress-induced ion channel activation,
(Barakat et al., 2006):

• The fluid exerts enough force on the ion channel to alter the structure of its
constituent protein(s) in such a manner to open the channel.

• The flow alters membrane fluidity (the relative speed of diffusion on the mem-
brane) which lowers membrane tension allowing the channel to open.

• Tethering of the channel to the cytoskeleton allows gating in response to cy-
toskeletal reorganisation.

Of these Barakat et al. (2006) argue that the flow can not impart enough force for the
first mechanism to occur.

There is evidence that shear stress can indeed alter membrane fluidity (Butler et al.,
2001), although how this precisely relates to membrane tension is unclear. However, it
is apparent that ion channels can become activated in response to changes in membrane
tension (Martinac, 2004).

Tethering of ion channels to the cytoskeleton is a more likely candidate for channel
activation. Hoger et al. (2002) report that disruption of the cytoskeleton inhibits current
through channels. Furthermore, as discussed below, the glycocalyx (a layer of proteins
on the membrane) screens the membrane, but not the cytoskeleton, from shear stress.

Ion channels are an elegant possibility as a mechano-transducers, regardless of the
gating method, not least because the coupling of signals from different ion channels
could be used to interpret different flow signals. For example K+ and Cl− channels are
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fast and slow activating respectively, so a pulsatile flow (depending on its frequency)
activates K+ channels but not Cl− channels, yet a steady flow activates both of these,
(Barakat et al., 2006). Hence in principle a cell can sense different types of flow.

Ion channels evidently play a signalling role in the response of ECs to fluid flow. How-
ever it is clear that they are not the simplest model to answer the questions raised in
section 1.2 - in particular regarding the formation of local regions of activated proteins.
Since these ion channels respond to forces parallel to the cell membrane and not nor-
mal to it (Martinac, 2004), and because of the upstream/downstream symmetry in the
shear stress pattern (figure 4.14) it is difficult to imagine how ion channels could gen-
erate such a pattern if they themselves are not activated locally (the symmetric shear
force suggests global activation of targets for a uniform channel distribution). Small
ions could diffuse quickly throughout the cell, and it will be demonstrated (chapter 6)
that, with this model, relatively slow diffusion is necessary to maintain this local zone
of activity and although ions could be sequestered locally, this would require polarity
to be established prior to ion-channel signalling.

The role of ion-channel activation can not be completely assigned to establishing global
signalling properties. It is not clear if a cell could extract directional information from
ion-channels activated by shear stress, but it is plausible that in response to fluid flow
the distribution of ion-channels becomes non-uniform (either by re-organisation by the
cell or as a direct result of the fluid flow) and this leads to a directional bias. In principle
any directional information (even if it is highly transient) could create distinct zones of
activation by a bi-stable mechanism, this has been established in models of migratory
cells (Jilkine et al., 2007), although generally models of this type require a specific
balance of fast and slow diffusion for inhibitors and activators respectively.

5.1.2 Glycocalyx-Cytoskeleton transduction

The thin (0.5µm) glycocalyx is a complex mix of glycoproteins, glycosaminoglycans
and proteoglycans as well as molecules bound from the flow itself (VanTeefelen et al.,
2007). Here the aspect of interest is the mechanical properties of the glycocalyx.

Models of the structure of the glycocalyx indicate that the flow within the glycocalyx
layer (due to flow over the cell) is practically zero and hence the shear stress at the
membrane is also zero (Weinbaum et al., 2007). This is further evidence against stretch
activated ion channels being gated by shear stress.
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The glycocalyx and not the cell membrane therefore experiences the fluid flow (note
that this does not alter the results of the fluid flow model, section 4.6 - the discretised
surface just needs to be reinterpreted as the glycocalyx layer rather than the cell mem-
brane). The glycocalyx transmits the force to the cytoskeleton via connections to the
actin cortical cytoskeleton, a polygonal structure of actin filaments beneath the cell
membrane (Weinbaum et al., 2003).

This leads to one proposed mechanism of mechanotransduction (Thi et al., 2004).
Their hypothesis is that the components of the glycocalyx acts as rigid rods and trans-
mit the force to the actin cortical cytoskeleton. In confluent layers of cells this leads
to a bending moment across the cell and, for shear stresses above a certain thresh-
old, breaking of cell-cell adhesions - leading to intra-cellular signalling. This model
does not explain localised activation (the torque on the cytoskeleton should break cell-
cell adhesions at both the upstream and downstream edges), nor indeed polarisation in
non-confluent endothelial cells. However, recent work (Chiu et al., 2008) has demon-
strated that PECAM-1, a protein present in endothelial cell-cell adhesions, can act as a
mechano-transducer, and in response to fluid flow does get activated (via tyrosine phos-
phorylation) in confluent layers of ECs (Tzima et al., 2005). Goldfinger et al. (2008)
attribute integrin activation in downstream regions to PECAM-1 activation.

5.1.3 Focal Adhesions as Signalling Centres

Given the results from the flow model (chapter 4) local activation and asymmetry in cell
signalling appears to be due to the upstream and downstream edges of the cell being un-
der compressive and tensile normal forces respectively. Hence the obvious mechanism
to generate local, downstream, activation is using the signal from a mechano-transducer
that can respond to this pattern.

The leading candidates for mechanotransduction via tension-induced conformational
change are integrin complexes: protein assemblies that are (often) bound to the extra-
cellular matrix (ECM) and are named after the trans-membrane heterodimers that bind
to the ECM (figure 5.1). Following the onset of fluid flow these complexes must be
under increased tensile force if the cell is to remain adhered to the ECM.

Integrins are composed of α and β units that each have extra-cellular, transmembrane
and cytoplasmic regions (figure 5.1). The integrin family of distinct α and β sub-units
allows sensing of the ECM via specific receptor binding, for example α5β1 is the main

103



Figure 5.1: Cells adhere to the ECM via integrin binding. Integrins, composed of α and
β sub-units, recruit other proteins including paxillin, talin, Src, FAK (focal adhesion
kinase) and p130 Cas. The complex attaches to actin filaments. Bundling of these
filaments leads to focal contacts which (in the right conditions, for example if they are
under tension) mature into focal adhesions.

receptor for fibronectin (Geiger et al., 2001).

Integrins cluster into focal complexes and then mature into focal adhesions (FA) which
are adhesive centres of signalling and structural proteins. Typically FAs include α-
actinin (for bundling of connected actin filaments, section 2.1.3.), talin, vinculin, Src,
p130 Cas and FAK (figure 5.1). Talin and paxillin bind to integrins and mediate binding
of vinculin and FAK to the complex (Sastry & Burridge, 2000).

It is believed that Rac induces focal contact formation in lamellipodia (Rottner et al.,
1999), however Rho (and acto-myosin tension) induces maturation into FA (Ridley
& Hall, 1992). The role in mediating endothelial alignment of FAs and integrins is
evidenced by both early remodelling and alignment of FAs in the direction of flow
(Davies et al., 1994).

Formation of FAs is force-dependent. However this force can be externally applied, so
Rho induced acto-myosin contraction is not necessary for maturation of FAs. Interest-
ingly, the force generated by an individual myosin II protein is ≈2 pN (Tyska et al.,
1999). The flow model predicts a surface force, |f|, of the order of 10 dynes cm−2, or
1 pN µm−2. Hence it is conceivable that the force due to the fluid itself could instigate
FA maturation directly, rather than an effector of the mechano-transducer inducing a
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Rho dependent pathway.

FAs attach stress fibres to the basal surface of the cell (Pellegrin & Mellor, 2007). It
was suggested in section 2.2.3 that formins may play an important role in nucleat-
ing directed polymerisation of actin and initiating stress fibre (and presumably, FA)
alignment. Formins cap the barbed ends of actin filaments, however they still allow
polymerisation at this point - for this reason they are referred to as a ‘leaky cap’ for
the filament. It has been shown that application of a pN force on the filament via the
‘leaky cap’ increases the polymerisation rate of actin (Kozlov & Bershadsky, 2004)
and that the formin mDia1 is sufficient (as oppose to pathways initiating acto-myosin
contraction) for FA formation in the presence of external force (Riveline et al., 2001).
Hence formins can up-regulate actin polymerisation and FA formation in response to
mechanical signals.

p130 Cas, an adaptor protein, is another known mechano-transducer associated with
FAs. It has recently been shown to become activated in response to mechanical stretch-
ing (Sawada et al., 2006), and has also been shown to be activated following fluid flow
in a manner dependent on Src (a tyrosine kinase) activation (Okud et al., 1999).

These examples illustrate two points, firstly that mechano-transduction via FAs is not
only feasible, but probable. Secondly, mechano-transduction in FAs could involve ac-
tivation of synergistic, or even competing, pathways.

The exact role for integrins remains unclear. Increased tension at cell-ECM contact
points leads to further recruitment of integrin and FA-associated proteins suggesting
some initial mechano-transduction, but further signalling could be due to new inte-
grin binding to the ECM (Katsumi et al., 2004) - giving a possible method of signal
amplification by positive feedback.

Tzima et al. (2005) suggest that PECAM-1 and VEGFR2 (vascular endothelial growth
factor receptor 2) act as the initial transducers of mechanical force at cell-cell adhe-
sions, inducing integrin activation and substrate binding via a PI(3)-K (Phosphatidylinositol-
3-OH kinase) mediated mechanism as well as Src activation. Recently integrins have
been shown to be activated in the downstream regions of ECs exposed to fluid flow via
this pathway (Goldfinger et al., 2008), although a FA induced pathway may contribute
to the activation of this pathway. Chiu et al. (2008) argue for two mechanisms of Src
activation, a hypothesis that is supported by observations that EC polarisation is not
dependent on PI(3) kinases, (Wojciak-Stothard & Ridley, 2003). However basal levels
of active PECAM-1 may be necessary for Src activation.
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5.2 Modelling Mechano-transduction

The focus therefore is on modelling mechanical transduction by integrin complexes
and its downstream effectors. Given that it is likely that several mechano-transduction
pathways arise from different FA associated proteins, each transducing the force in-
dependently, a way to simplify this complexity is sought. Rather than model each
mechano-transducer explicitly a model of one of its effectors is taken as a ‘read out’
from the system.

The tyrosine kinase Src is chosen to take on this role. In ECs Src has been shown to
be activated by fluid flow (Jalali et al., 1998; Fleming et al., 2005) and in vivo, Src
has been shown to be quickly activated in response to artificial forces applied to cell
surfaces (Wang et al., 2005). Also tyrosine kinases have been linked to ion channel
activation, Hoger et al. (2002) showed that inhibition of tyrosine kinases prevented ion
channel opening in ECs responding to flow.

Src is a good candidate to act as a barometer of mechano-transduction at FAs because
of its centrality in the signalling network with respect to components known to play
a important role in EC elongation in response to fluid flow. Evidently Src is closely
linked to mechano-transduction, and as will be discussed in chapter 6 may play a role
in linking (directly or indirectly) mechano-transduction and Rho GTPases.

A simple scheme is used to link the flow model to Src activity. The flow normal to
the cell surface is taken to act on the mechano-transducer (which, seeing as only the
Src activity is tracked, can be identified as the integrin complex as a whole, rather than
specific components). As discussed the normal force is the best candidate for the initial
cause of asymmetry in cell signalling. However shear forces could play an important
role in initiating other aspects of the signalling pathways, via ion channels or increased
tension at cell-cell adhesions.

In this work the PECAM-1 pathway is ignored. Thi et al. (2004) suggest signalling at
cell-adhesions due to torque across the cell arising from shear-stress, it is believed this
pathway may play a role in the case of confluent layers (Goldfinger et al., 2008). The
model initially consists of a lone cell that has no cell-cell attachments, so signalling
can not be initiated by increased tension at these points, although PECAM-1 could
respond to tension in single, non-attached, cells via cytoskeletal linkages. Here the
mechano-transducer that leads to local zones of signalling is hypothesised to be located
in integrin complexes.
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5.2.1 Modelling the mechanical effect of normal surface force

The force normal to the cell surface is taken to act on a viscous-spring (Kelvin body)
model of a mechano-transducer. Then the extension of the body is taken to (non-
linearly) up-regulate Src activity. The parameters are ascertained from a simplified
analytical estimation so that the maximum fold increase in active Src matches experi-
mentally found values and the time to reach this maximum is also matched to experi-
mental data.

The first modelling assumption made is that the mechano-transducer has a uniform dis-
tribution across the basal surface of the cell. As discussed, integrins cluster together to
form FAs, composed of discrete groups of integrins. However targets of this signalling
network do not (at experimental resolutions) show discrete points of activation, even if
they are spatially localised to the downstream edge, for example Rac activation (Tzima
et al., 2002). Hence, from a modelling perspective, it is anticipated this assumption
does not affect the outcome. That withstanding, it shall be shown that this discrete
localisation of integrins to FAs may play a role in attenuating the signalling network in
cells aligned in the direction of flow (chapter 6).

F

k1

k2

ν

Figure 5.2: Kelvin body model of integrin complex deformation. For integrin com-
plexes the parameters have been established, by modelling experimental data, as ν =
6.33×10−5 Pa m s, k1 = 1.25×10−3 Pa m and k2 = 1.61×10−3 Pa m, (Bausch et al.,
1998; Mazzag et al., 2003).

The mechano-transducer is modelled as a Kelvin body (figure 5.2) which is a visco-
elastic body comprised of two springs of spring constants k1 and k2 and a dashpot of
viscosity ν. These parameters have been estimated, (Bausch et al., 1998), for integrin
complexes by attaching a micro-bead to the surface and applying a force. Bausch
et al. (1998) assumed the resulting visco-elastic response consisted of the response of
integrins, membrane and cytoskeleton and found corresponding parameters by fitting
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Kelvin body models to each of these responses.

To prescribe the load on the mechano-transducer it is assumed that the force (calcu-
lated from the flow model) on a triangular surface element adds to the total force on a
hexagon at z = 0 (cf. figure 4.3), hence the total force on a hexagon is a sum of four
surface forces. Each of these hexagons has its own mechano-transducer, modelled as a
Kelvin body. Note that the extension does not change the geometry of the 3D cell, here
its only purpose is to use in an expression for Src up-regulation.

The equation governing the Kelvin body (Mazzag et al., 2003), given that the force is
constant, is

ν

(
1+

k1

k2

)
dze

dt
= k1ze−F (5.1)

where F is the force on the body and ze is its extension. The normal force to each
surface element is calculated by Em(fm.n̂m) where fm is the surface force on the mth

surface element, as in the discretised boundary integral representation (equation 4.53),
n̂m and Em are the normal to and area of the mth element respectively.19

To apply the parameters found experimentally (figure 5.2) the force on each hexagon
needs to be scaled. This is because these parameters were obtained by attaching a
microbead to the cell with an estimated area of approximately 6 µm2 in contact with the
cell, (Bausch et al., 1998), hence, if the density of integrins per µm2 is IN then the force
applied (experimentally) is shared between 6IN integrins. So the parameters actually
correspond to the response of 6IN integrins complexes in parallel, which assuming they
respond identically is equivalent to each integrin bearing an equal fraction of the force.

If the area of a hexagon is denoted H the number of integrins on the hexagons is INH

and if the force, FN , is scaled by

FK = FN
6IN

INH
= 6

FN

H
(5.2)

then Kelvin body parameters can be applied. Hence if H > 6 µm2 the extension is
reduced because FK is scaled down; the force is split between more integrin complexes
than in the original experiment, whereas if H < 6 then the force is scaled up because
the same force is split between less complexes - resulting in each complex experiencing
a greater force.

19More precisely, this is calculated for each hexagon by summing the normal component of the force on
the four surface elements that constitute a hexagon in the projection and multiplying the result by the total
area.
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In this analysis it is assumed that the density of integrin complexes in the experiments
of Bausch et al. (1998) are characteristic of a typical cell and that integrin complexes
only respond to tensile and not compressive forces, hence the Kelvin-body extension
was taken as ze ≥ 0.

With these assumptions the force on the virtual cell leads to the deformation pattern
shown in figure 5.3. Remarkably, given the multitude of assumptions regarding both
the fluid and the mechano-transducer, this gives a realistic value for the deformation
of a mechano-transducer. It is perfectly feasible that a 10 nm stretch could expose
cryptic binding sites, or significantly change the binding affinity of ligands. Note, this
corresponds to the stretch of a mechano-transducer complex - not a deformation across
the whole basal-apical thickness of the cell.

This deformation is a prediction of the extension of the complex as a whole due to
forces normal to the surface. Conclusions about any specific tension-induced activa-
tion mechanisms can not be drawn. For example the total extension could be due to
conformational change of several proteins, or due to an unfurling (with no conforma-
tional change in the constituent proteins) of the complex as a whole

Note that the shear component of the surface force and internal (acto-myosin for exam-
ple) forces are deliberately excluded from acting on the mechano-transducer. The latter
on the grounds of simplicity. The shear component was ignored because, as was ar-
gued, it is unlikely to establish cell polarity. It is important to point out that this model
is dependent on a mechano-transducer that responds to normal and not shear forces
(for example if F applied to the Kelvin body was simply the magnitude of the surface
force vector, rather than the magnitude of the normal component, then the deformation
would be symmetrical in the up and downstream regions). Since integrins bound to the
ECM are always in a similar orientation (roughly normal to the ECM) it is plausible to
suggest that one component of the complex responds to normal forces but is screened
from shear forces.

5.2.2 Transducing the Mechanical Signal

To convert the mechanical force into a biochemical signal the tyrosine kinase Src is
taken as a barometer of FA signalling. Since little is known about the parameters gov-
erning mechano-transducers the Src output is matched against experimental data. This
is more prescriptive than desirable, although less so than carrying out the equivalent
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Figure 5.3: The force normal to the cell surface is applied to equation 5.1 which rep-
resents the Kelvin body (figure 5.2). This gives a predicted steady-state pattern of
integrin complex deformation. Note that compressive forces were ignored and integrin
clustering was coarse grained into a uniform distribution.

in a non-spatial model because only the whole cell time course is matched (not least
because specific experimental data on localised activity and spatial gradients of Src
activation is not available), whereas the distribution of Src activation is not fixed.

Src is modelled simply as having an inactive and active state (*), with transition be-
tween the two governed by a back rate k− and forward rate k+(z′e) , where z′e is the
relative extension of integrin complexes such that z′e = ze/kz, with kz = 1 nm.

Srck−⇀↽
k+(z′e)Src* (5.3)

the forward rate depends on the integrin complex extension, z′e, and is taken to be

k+(z′e) = k+ +
km

1+ e10−z′e
(5.4)

figure 5.4 shows the form of the k+(z′e) function, with the parameter choices for k+ and
km. For the maximal extension, 10 nm, a significant increase in forward rate is assumed,
whereas for extensions less than 5 nm there is little effect. Large extensions achieve
the maximum forward rate. k+, figure 5.4 is only valid for flows in the physiological
range.

To establish estimates for these rates two observations are noted; typical peak active
Src following the onset of physiological flow (12 dynes/cm2) and the time in which
this peak is obtained. It has been observed that there is a 2-6 fold peak of Src activation
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Figure 5.4: Up-regulation of the forward Src activation rate k+(ze), equation 5.3, as a
function of mechano-transducer extension ze: k+(z′e) = 0.0006+0.0147/(1+e(10−z′e)),
where z′e = ze/kz and kz = 1 nm

approximately 5 minutes following the onset of shear flow (Jalali et al., 1998; Fleming
et al., 2005). Since three parameters need to be established (k+, k− and km), one other
relationship has to be assumed. This is taken that k+ = 0.01k−, which implies that
initially only approximately 1% of total Src is active. This is a biologically reasonable
assumption, made previously by Fuß et al. (2007) for modelling Src family kinase
deactivation.

In order to proceed, the total Src is normalised to one, so that reaction 5.3 is described
by one ordinary differential equation for the active Src, S∗

dS∗

dt
= k+(z′e)(1−S∗)− k−S∗

= k+(z′e)− (k+(z′e)+ k−)S∗ (5.5)

where, due to the normalisation, S∗+ S = 1. Diffusion is being ignored for this anal-
ysis, so the only spatial component comes from the positional dependence of z′e. The
solution to equation 5.5 is

S∗ =
−De−(k+(z′e)+k−)t + k+(z′e)

k+(z′e)+ k−
(5.6)
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Figure 5.5: Approximation to the model results. The cell is assumed to have a square
projection (left figure), and the fluid flow (left to right) induced extension of the
mechano-transducer (right figure) is assumed linear between 0 at x = 0 to 10 nm at
x = 20 µm. z′e is assumed constant in the y direction.

where D is some positive constant depending on the initial conditions. Hence, ac-
cording to this expression, active Src asymptotically approaches its maximal value
k+(z′e)/(k+(z′e) + k−), as the exponential term decays. Since this is observed to be
obtained in about 300 s the value of 300(k+(z′e)+ k−) is taken so the exponential term
is neglibile, placing a restriction upon the parameters, k+, km and k−.

To find the total Src activation analytically, in terms of k+, k− and km, an approximation
to the cell and the mechano-transducer extension (figure 5.3) is employed (figure 5.5).
The cell is approximated by a square region of length 40 µm and the extension of
the mechano-transducer is characterised as increasing linearly from 0 to 10 nm in the
downstream half of the cell.

Assuming that the active Src is at steady state, which is

Ŝ∗ =
k+ + km/(1+ e10−z′e)

k+ + k−+ km/(1+ e10−z′e)
. (5.7)

Denote the basal level of active Src by S∗b. Then the total level of active Src, T , is

T = 20.40.S∗b +
Z 20

0
40Ŝ∗dx (5.8)
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by changing variables and by substituting the linear approximation for z′e as z′e = mx

(where m = 1
2 µm−1, figure 5.5) the integral can be solved as

T = 40

[
k+x

k+ + k−
+

2kmk− log(e10(k−+ k+)+(km + k−+ k+)ex/2)
(km + k−+ k+)(k+ + k−)

]20

0

. (5.9)

The fold increase in Src is FS = T/(402S∗b), taking S∗b = k+/(k+ + k−) gives FS as

FS = 1+
1

20
kmk−

k+(km + k−+ k+)
log
(

e10(k−+ k+)+ e10(k−+ k+ + km)
e10(k−+ k+)+(k−+ k+ + km)

)
. (5.10)

By dividing top and bottom of the argument by e10 the logarithmic term is of the form
log[(a + a + b)/(a + d)] where d << 1, assuming O(km) = O(k−) the logarithm is
approximately 3, log(3)≈ 1 for natural logarithms, and recalling k+ = 0.01k− gives

FS ≈= 1+
100
20

km

(km + k−)
. (5.11)

Experimental data reports FS to be in the range 2-6 (Jalali et al., 1998; Fleming et al.,
2005), here this implies

0.7≈ km

(km + k−)
(5.12)

So 0.7k− = 0.3km. Since 300(k+(z′e)+ k−) must be large20 300(km + k−) must also be
large. In order to estimate the parameters 300(km + k−) = 6 was found to be a suitable
choice (this means the exponential term in equation 5.6 corresponds to 0.00247). These
considerations give the parameters as k− = 0.0006 s−1, km = 0.0147 and k+ = 0.006
s−1.

The flow model can now be coupled to the model of Src activity. Here reaction is im-
plemented on the discretised cell, with the forward reaction rate a function of mechano-
transduction extension as described. In this numerical solution diffusion is also con-
sidered, hence equations for both active and inactive Src are solved, although Src is
plasma membrane associated and hence has slow diffusion. Numerically solving dif-
fusion equations on this hexagonal lattice will be described in section 6.

Figure 5.6 shows the average increase in active Src over the cell following the onset
of flow at 500 s. As demanded it reproduces typical Src activation reported in in vivo

experiments. Although this outcome is prescribed, one aspect of Src activation that is

20In the sense that e−(300(k+(z′e)+k−) is small
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Figure 5.6: Fold Src increase as a whole cell average. The parameters of Src activation
due to Kelvin-body extension are fixed so this matches experimental data

not fully fixed is the spatial localisation of Src activation. The pattern generated using
this model is shown in figure 5.7. Such a pattern is not experimentally verified (to the
author’s knowledge), and hence would be a good test of this model. However, if Src
activation turned out not to be activated in a spatially localised fashion this would not
necessarily mean this model was incorrect - but that a different candidate ‘read-out’
from protein FA could play the role of Src.

It will be argued in chapter 6 that Src could play a key role in regulating Rho GTPases
during EC polarisation, specifically Rac and Rho. Given that Rac is known to be ac-
tivated only at the downstream edge (Tzima et al., 2002), it is clear that there should
be some spatial localisation of the components of the signalling network that link Rac
activation to mechano-transduction. Logically, however, only one intermediary com-
ponent is required to be spatially localised, that is to say that if there is a linear chain
A→ B→ Rac then both A and B would necessarily have to be localised whereas if a
number of signalling molecules act synergistically to promote Rac activation only one
need be spatially localised, for example A→ B→Rac←C implies that A and B might
be globally activated as long as C is locally activated.

In this model, and in the absence of better experimental data suggesting which sig-
nalling network components are activated at the downstream edge, it is assumed that
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Figure 5.7: Distribution of Src in a single cell as a result of activation via the Kelvin
body model.

a linear chain of interacting components lead to Rac spatial activation, and hence each
component is itself localised. Specifically, Src→ Rac GEF→ Rac.
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6 Modelling Rho GTPase Activity

In this section the Rho GTPases Rho and Rac are coupled to the force-activation model
by Src activation of a Rac GEF and Rho GAP, leading to Rac activation and Rho inhi-
bition.

The coupling of the fluid flow model (via a simple model of mechano-transduction,
chapter 5.1) to a model of Rho GTPase activation is a novel contribution and (to the
authors knowledge) represents the only spatial model of Rho GTPase activation in
response to fluid flow in ECs.

6.1 Rho GTPase Background

6.1.1 Rho GTPase Regulation

The Rho family of small G-proteins is a subfamily of the Ras superfamily of GT-
Pases and contains 20 members (Boureux et al., 2007). They are crucial in regulating
many responses involving cytoskeletal re-organisation including; cell migration, mito-
sis, lamellipodia formation and filopodia formation (Ridley, 2001; Narumiya & Yasuda,
2006; Ridley, 2006; Jaffe & Hall, 2005)

Rho GTPases switch between inactive GDP-bound, or an active GTP-bound state where
they can interact with target effectors (figure 6.1), and as such they are often referred to
as molecular switches. Switching between these states occurs on the membrane and is
regulated by (membrane bound) guanine nucleotide exchange factors (GEFs), and GT-
Pase activating proteins (GAPs), Bos et al. (2007). Some Rho GTPases are regulated
by guanine nucleotide dissociation inhibitors (GDIs) which prevent the GTPase inter-
acting with the plasma membrane (and hence subsequent activation) (DerMardirossian
& Bokoch, 2005).

It is in their active, GTP-bound state that the Rho GTPases can regulate cellular net-
works (figure 6.1). In this state they interact with specific targets which become acti-
vated via a conformational change upon GTPases binding (Jaffe & Hall, 2005).
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Figure 6.1: Rho GTPase regulation by GTPase activating proteins (GAPs), guanine
nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors
(GDIs). In the inactive state (GDP bound) the interaction of GTPases with the plasma
membrane is inhibited by interaction with a GDI, which in turn prevents activation by
binding of a GEF at the membrane. The GEF removes GDP from the GTPase followed
by removal of the GEF. Binding of GTP occurs quickly (because of the high ratio of
GTP to GDP in cells). Hydrolysis of Rho GTP is induced by binding of a GAP.

6.1.2 Rho GTPase Targets

The most studied Rho GTPases are Rho, Rac and CdC42. Rac and Rho have isoforms
(for example, RhoA, RhoB and RhoC) within the Rho GTPase family, which are re-
ferred to here collectively as Rac and Rho with no distinction made between them.
Rho, Rac and Cdc42 have been shown to be necessary for endothelial cell elongation,
however the process of establishing polarity is not Cdc42-dependent (Wojciak-Stothard
& Ridley, 2003). The GTPase targets that are important in this process are summarised
in figure 6.2. Rac and Cdc42 lead to membrane protrusions induced by actin: both can
contribute to formation of lamellipodia and Cdc42 can lead to filopedia. Conversely
Rho is generally associated with actomyosin contraction of the cell (although Rho can
also induce actin polymerisation via the Diaphanous-related formin mDia).

The small GTPase Rho is one of the most studied components of the signalling net-
work. When endothelial cells polarise it has been demonstrated that the process has two
stages, firstly cell rounding/contraction orchestrated by Rho and then Rho and Rac -
mediated cell elongation (Wojciak-Stothard & Ridley, 2003). Rho induces actomyosin
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Figure 6.2: Rho GTPase targets involved cell protrusions, migration, contractions and
EC elongation.

contraction by increasing the kinase activity of ROCKs (Rho Kinases) which stimulate
phosphorylation of myosin light chain (Riento & Ridley, 2003). ROCKs and myosin
light chain kinase (MLCK) phosphorylate one of the light chains of myosin II (figure
6.3). Once activated, myosin II moves along filaments, forcing them to slide over one
another. Accordingly, it has been shown that inhibition of ROCK results in the slow-
ing of the viscoelastic retraction of a single stress fibre (Kumar et al., 2006). Another
target (via LIM kinases, LIMKs) of activated ROCKs, as well as Rac, is de-activation
of cofilin, resulting in an increase in polymerised actin, (Ridley, 2006). Cofilin severs
filaments and is important in lamellipodia for formation of short branched filaments
(chapter 3).

Rho induces an increase in both filaments and contraction, and it is tempting to spec-
ulate that both of these factors are invoked to guide the cell towards an isotropic state
ready for elongation in the flow direction. Furthermore increased tension in filaments
leads to maturation and maintenance of focal complexes into focal adhesions. Rac
however induces formation of focal complexes, (Rottner et al., 1999), which are usu-
ally located at the edge of the lamellipodium, (Geiger et al., 2001).

During elongation in ECs due to fluid flow Rac is activated at the downstream edge of
the cell, (Tzima et al., 2002). In this local region Rac initiates de novo polymerisation
nucleated by the Arp2/3 complex via WAVE (leading to a branched network of actin,
as described by the Brownian dynamic model in section 3.1). Although Cdc42 can also
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Figure 6.3: The regulatory myosin light chain (MLC) of Myosin II is phosphorylated
by both ROCK and myosin light chain kinase (MLCK). Once phosphorylated MLC can
induce actomyosin contraction. Myosin light chain phosphatase (MLCP) inhibits this
contraction by dephosphorylation of MLC. ROCK might inhibit action of MLCP by
phosphorylation of myosin phosphatase target subunit (MYPT). MYPT is a subunit of
MLCP, upon phosphorylation by ROCK it dissociates from MLCP - this might inhibit
MLCP activity (Kawano et al., 1999; Riento & Ridley, 2003).

activate Arp2/3 via WASP (Jaffe & Hall, 2005), it has been shown that WASP knock-
outs still form lamellipodia (Snapper et al., 2001), which suggests that although both
Rac and Cdc42 contribute to this process it is Rac that plays the more important role
in mediating cell elongation from the downstream edge (rather than the alternate pos-
sibility that the cell extends equally in both the downstream and upstream directions).

6.1.3 Rho GTPase Crosstalk

Migrating cells establish front and back pathways to orchestrate both elongation at the
leading edge as well as contraction at the rear. It is argued, from a modelling perspec-
tive, that crosstalk between the GTPases is necessary in maintaining these pathways,
although the exact mathematical mechanism to achieve this varies (Jilkine et al., 2007;
Narang, 2006; Otsuji et al., 2007).

The nature of the crosstalk appears to be context dependent. There is evidence for
ROCK activating FilGAP which leads to Rac inhibition. Hence Rho can inhibit Rac
by the ROCK pathway (Ohta et al., 2006) . Rac can inhibit Rho via a redox-dependent
pathway (Nimnual et al., 2003), although there is also evidence for Rho activation by
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Figure 6.4: The model proposed by Geiger & Bershadsky (2001) and described math-
ematically by Civelekoglu-Scholey et al. (2005). Arrows indicate up-regulation or
activation, diamond indicates down-regulation or deactivation.

Rac and Cdc42 (Nobes & Hall, 1995).

Transient coupled changes in activity of Rho and Rac has been previously modelled by
Civelekoglu-Scholey et al. (2005). This model reproduced similar dynamics of Rho
and Rac as reported by Tzima et al. (2001, 2002). Their heuristic approach describes
the interaction of Rho and Rac with integrins, focal complexes, focal adhesions and
stress fibres. Geiger & Bershadsky (2001) originally proposed the schema of interac-
tion of these elements (figure 6.4). Clearly with a heuristic model the finer details are
lost, and interactions are greatly simplified. The advantage is that it is far more readily
understood and computationally cheaper. Mathematically Civelekoglu-Scholey et al.

(2005) represent figure 6.4 as:

di
dt

= −k1g(s)i

dρ

dt
= k2(1− k3i−ρ)

dc
dt

= k4(1− sc)+ k5c

df
dt

= k4(sc− f )

ds
dt

= k6(ρ− s) (6.1)
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Figure 6.5: Numerical solution of coupled equations 6.1 (Civelekoglu-Scholey et al.,
2005). Transient changes in Rho, activated integrins, F-actin, focal adhesions and fo-
cal complexes are shown. Rho and Rac (here proportional to focal contact activity)
dynamics are qualitatively similar to those observed (Tzima et al., 2001, 2002).

where i, ρ, r, c, f and s are the ligated activated integrins, activated Rho, activated Rac,
focal complexes, focal adhesions and stress fibres respectively and where g(s) = 0 or 1
depending on a critical value of stress fibre concentration. Civelekoglu-Scholey et al.

(2005) assume that integrin activation is fast compared with the modelled processes and
that decay of this signalling is ‘triggered by a change in intracellular tension’, so the
signal decay is halted if the number of stress fibres (or tension) falls below a threshold
level. The remaining terms arise from normalising so that in the absence of integrin
signalling the components of the model have concentration 1. Rac concentration is
approximately proportional to the density of focal complexes. The results of this model
are shown in figure 6.5.

In this model integrin activation decays once F-actin falls below the threshold level.
Stress fibre concentration drops due to inhibition of Rho and focal complex concen-
tration increases due to less being converted into focal adhesions due to stress fibre
concentration falling.

Although this model captures the dynamics of the system faithfully (partly from some
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judicious parameter choices) it does not describe spatially localised activation. Fur-
thermore the schema of interaction (figure 6.4) is not the hypothesis the author would
prefer to make. The network suggested by Geiger & Bershadsky (2001) is highly spec-
ulative (figure 6.4). In the next sub-section a network describing dynamics of Rho and
Rac is put forward. The advantage of this approach is that it describes (mostly) direct
interactions for which there is specific evidence for their occurrence. This model serves
as a reductionist template for regulation of cell morphogenesis because Rho and Rac
are known to mediate contraction and extension respectively.

6.2 Modelling the Role of GTPases in Endothelial Cell Elongation

Given the importance of both Rho and Rac in mediating EC polarisation and elongation
it is instructive to model their direct response to Src activation. It is not obvious that
such a hypothesis would lead to local Rac activation, because if diffusion (of Src, Rac
GEF or Rho GTP) is fast enough then the resulting Rac GTP distribution may not be
restricted to the downstream edge.

Src has been shown to be able to activate a Rac GEF, Vav2 (Garrett et al., 2007), and
conversely integrin binding can activate a Rho GAP (p190RhoGAP) via a Src depen-
dent mechanism (Arthur et al., 2000). There is no suggestion that Src activates Rac
GEFs or Rho GAPs exclusively, or indeed that in vivo GEFs and GAPs are necessarily
specific to distinct GTPases. Here though it is assumed that Src activates a GEF exclu-
sive to Rac and inhibits a GAP exclusive to Rho. in this context activation of Rac and
Rho crosstalk is modelled as mutual inhibition via Rac inhibition of a Rho GEF and
Rho activation of a Rac GEF (figure 6.6).

The reactions governing this network are

Src k−
⇀↽k+(ze) Src* (6.2)

Src*+GEFR k2
⇀↽k1 Src*+GEF*R (6.3)

RacGDP+GEF*R k4
⇀↽k3 RacGDP-GEF*R

⇀k5 Rac+GEF*R (6.4)

RacGTP+GAP*R k7
⇀↽k6 RacGTP-GAP*R

⇀k8 RacGDP+GAP*R (6.5)

RhoGTP+GAPR k10
⇀↽k9 RhoGTP+GAP*R (6.6)

Src*+GAPρ k12
⇀↽k11 Src*+GAP*ρ (6.7)
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Figure 6.6: Proposed Rho, Rac and Src network. Mechanical force on the cell leads
too (indirectly) Src tyrosine phosphorylation. Phosphorylated Src can activate a Rho
GAP as well as a Rac GEF - leading to Rac activation and Rho inhibition. Rho and
Rac mutually inhibit each other: Rho-GTP activates a Rac GAP and Rac-GTP inhibits
Rho by inhibiting a Rho GEF. Direct interactions in black, indirect interactions in grey.

RhoGTP+GAP*ρ k14
⇀↽k13 RhoGTP-GAP*ρ

⇀k15 RhoGDP+GAP*ρ (6.8)

RhoGDP+GEF*ρ k17
⇀↽k16 RhoGDP-GEF*ρ

⇀k18 Rho+GEF*ρ (6.9)

RacGTP+GEF*ρ k20
⇀↽k19 RacGTP+GEFρ (6.10)

GAPρ k22
⇀↽k21 GAP*ρ (6.11)

GEFR k24
⇀↽k23 GEF*R (6.12)

GAPR k26
⇀↽k25 GAP*R (6.13)

GEFρ k28
⇀↽k27 GEF*ρ (6.14)

where the subscript R refers to Rac and ρ to Rho, for example GAPρ is a GAP for Rho.
These equations model Rho and Rac regulation by GEFs and GAPs, Src activation and
inactivation and Rho-Rac mutual inhibition. The influence of GDIs, which sequester
Rho GTPases away from the membrane, is not modelled although the effect of this
sequestration can be modelled by assuming a quasi-steady state between GDI bound
and unbound GTPase and a modified diffusion coefficient (Jilkine et al., 2007). This
approach is followed here: a diffusion coefficient of Dm refers to a species solely mem-
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brane bound, whereas Dmc represents weighted average diffusion on the membrane and
in the cytosol.

Reactions (6.2)-(6.14) are modelled mathematically as first order mass action differen-
tial equations with diffusion, for example for a complex A j interacting with complexes
Ai 0 ≤ i ≤ n the time evolution of the concentration of Ai at time t and position x,
Ai(x, t), is modelled as:

∂Ai

∂t
=

n

∑
i=0

α jA j +
n

∑
k=0

n

∑
i=0

β jkA jAk +Di∇
2Ai. (6.15)

If the interaction between A j and Ak does not occur then β jk = 0. Applying this ex-
pression for each component of the network (figure 6.6) leads to

∂(Src∗)
∂t

= k+(ze)(Src)−k−(Src∗)+Dm∇
2(Src∗)

∂(Src)
∂t

= k−(Src∗)−k+(ze)(Src)+Dm∇
2(Src)

∂(RacGDP)
∂t

= k8(RacGAP)+k4(RacGEF)−k3(RacGDP)(GEFR)

+ Dmc∇
2(RacGDP)

∂(RacGTP)
∂t

= k5(RacGEF)−k6(RacGTP).(GAPR)+k7RacGAP

+ Dm∇
2(RacGTP)

∂(RhoGDP)
∂t

= k15(RhoGAP)+k17(RhoGEF)−k16(RhoGDP)(GEFρ)

+ Dmc∇
2(RhoGDP)

∂(RhoGTP)
∂t

= k18(RhoGEF)−k15(RhoGTP).(GAPρ)+k14RhoGAP

+ Dm∇
2(RhoGTP)

∂(GEF∗ρ)
∂t

= k27GEFρ−k28GEF∗ρ +(k17 +k18)RhoGEF−k16GEF∗ρ.RhoGTP

+ Dm∇
2(GEF∗ρ)

∂(GEF∗R)
∂t

= k23GEFR−k24GEF∗R +(k4 +k5)RacGEF−k3RacGDP.GEF∗R

+ k20RacGTP.GEFR−k19RacGTP.GEF∗R−k2Src∗GEF∗R +Dm∇
2(GEF∗R)

∂(GAP∗ρ)
∂t

= k21GAPρ−k22GAP∗ρ +(k14 +k15)RhoGAP−k13RhoGTP.GAP∗ρ

+ k11Src.GAPρ−k12Src.GAP∗+Dmc∇
2(GAP∗ρ)

∂(GAP∗R)
∂t

= k25GAPR−k26GAP∗R +(k7 +k8)RacGAP+k9RhoGTP.GAP∗R
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− k10RhoGTP.GAP∗R−k6RacGTP.GAP+Dmc∇
2(GAP∗R)

∂(GEFρ)
∂t

= −k27GEFρ +k28GEF∗ρ +Dm∇
2(GEFρ)

∂(GEFR)
∂t

= −k23GEFR +k24GEF∗R−k20RacGTP.GEFR +k19RacGTP.GEF∗R

+ Dm∇
2(GEFR)

∂(GAPρ)
∂t

= −k21GAPρ +k22GAP∗ρ−k11Src.GAPρDmc∇
2(GAPρ)

∂(GAPR)
∂t

= −k25GAPR +k26GAP∗R−k9RhoGTP.GAP∗R +k10RhoGTP.GAP∗R

+ Dmc∇
2(GAPR)

∂(RacGEF)
∂t

= k3RacGDP.GEF∗R− (k4 +k5)RacGEF+Dm∇
2(RacGEF)

∂(RhoGEF)
∂t

= k16RhoGDP.GEF∗ρ− (k17 +k18)RhoGEF+Dm∇
2(RhoGEF)

∂(RhoGAP)
∂t

= k13RhoGTP.GAP∗ρ− (k14 +k15)RhoGAP+Dmc∇
2(RhoGAP)

∂(RacGAP)
∂t

= k6RacGTP.GAP∗R− (k7 +k8)RacGAP+Dmc∇
2(RacGAP)

It is assumed that free Rac or Rho (not bound to GDP or GTP) quickly binds to GTP
due to the high ratio of GTP to GDP in the cell (Detimary et al., 1995). The temporal
component of these equations was discretised by a simple Euler method, where the
solution for d f (t)/dt = g(t) is approximated by

f (t +h) = f (t)+h.g(t) (6.16)

where h is the time-step, and the initial condition f (0) needs to be prescribed.

The spatial part, which describes diffusion, was discretised using central differences
defined on the regular hexagonal discretisation of the plane (section 4.5.1).

For the spatial discretisation consider a function f , in cartesian co-ordinates diffusion
of f is modelled as

∇
2 f (x,y, t) =

∂2 f
∂x2 +

∂2 f
∂y2 . (6.17)

So to discretise the operator ∇2 it is necessary to discretise the second derivatives with
respect to x and y. In the x direction the central difference approximation is

∂2 fi

∂x2 ≈
fi+1−2 fi + fi−1

h2 (6.18)
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where fi is the value of the function f at the ith interval. Here equation 6.18 is applied
for the approximation in the x direction, where fi−1 and fi+1 are the values of the
function f at the hexagons immediately to the left and right of hexagon i respectively
(figure 6.7).

In the y-direction the approximation is altered to

∂2g j

∂x2 ≈
g j+1 +g j+2−4g j +g j−1 +g j−2

2h2 (6.19)

where g j+1, g j+2, g j−1 and g j−2 are the values of a second function g (introduced for
clarity) above and below the jth hexagon (figure 6.7). This alteration ensures diffusion

fifi−1 fi+1
gj

gj−1 gj−2

gj+1 gj+2

Figure 6.7: Diffusion on the hexagonal lattice is estimated by a modified central differ-
ence taken from the surrounding hexagons. See equations 6.18 and 6.19.

is approximated by taking the difference of all surrounding hexagons. For example
equation 6.19 characterises the flux into the jth hexagon from above, as an average of
flux from hexagons j + 1 and j + 2. A similar approach could have been taken in the
x-direction, however it was found this made no noticeable difference in this modelling,
and complicated implementation of the boundary conditions.

It was assumed that there was no flux in or out of the cell of any of the proteins. Hence,
the total amount (in all forms) of a protein in the cell is constant. No flux of f across a
boundary C implies that the derivative in the direction normal to the boundary is zero

∇ f .n|C = 0 (6.20)
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where n is the unit normal to the boundary. To implement this reflective boundary
conditions are used (figure 6.8).

fifi−1 fi+1
gj

gj−1 gj−2

gj+1 gj+2

Figure 6.8: Diffusion on the boundary (shaded hexagons are in the cell). No flux is
imposed by reflective boundary conditions, here for example by applying equations
6.18 and 6.19 with g j+1 := g j−1 and fi+1 := fi−1. This means there is no flux into the
adjacent j +1th and ith hexagons.

The parameters used in this model are in the table below. For the GAP and GEF
activation rates it was found that these were not the rate limiting steps in the network,
figure 6.6. It was found that if the GEF activation rate was sufficiently fast then Rac
activation occurred on a similar time scale to observed experimentally (Tzima et al.,
2002), hence it is necessary to have the Rac GEF activating quickly, on the order of a
minute. Similarly for the Rho GAP. Rates for the Rac GAP and Rho GEF where taken
to be comparable to the Rho GAP and Rac GEF, however they were altered slightly so
that there were similar basal levels of the active forms of Rho and Rac (otherwise the
basal level of Src gives a bias to the Rho GAP and the Rac GEF). Rates were finally
fixed by demanding a low ratio initially of active to inactive forms, and that following
the onset of flow the new level of active GAP or GEF was still significantly less than the
total, so for physiological flows the active form does not completely dominate. Initial
total concentrations of Rac and Rho (either active, inactive or bound in an intermediary
complex) was taken to be 10 µM of each, which is a typical cellular amount (Jilkine
et al., 2007; Goryachev & Pokhilko, 2006). Total concentration of Rac GAP and Rho
GAP, Rho GEF and Rac GEF was taken to be 1 µM, 1 µM, 2 µM and 2 µM respectively;
with corresponding initial active concentrations of 0.46 µ M, 0.75 µM, 0.41µM and 0.2
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Parameter Value Units Parameter Value Units
Dm 0.1 µm2s−1 k13 0.017 µM−1s−1

Dmc 10 µm2s−1 k14 0.05 µs−1

k+(ze) fig 5.4 s−1 k15 8.3 µs−1

k− 0.006 s−1 k16 0.0034 µM−1s−1

k1 0.83 µM−1s−1 k17 1.1×10−6 s−1

k2 0 µM−1s−1 k18 0.094 s−1

k3 0.0034 µM−1s−1 k19 0 µM−1s−1

k4 1.1×10−6 s−1 k20 0.0001 µM−1s−1

k5 0.094 s−1 k21 0.002 s−1

k6, 0.017 µM−1s−1 k22 0.009 s−1

k7 0.05 s−1 k23 0.00045 s−1

k8 8.3 s−1 k24 0.09 s−1

k9 0.001 µM−1s−1 k25 0.002 s−1

k10 0 µM−1s−1 k26 0.004 s−1

k11 0.8 µM−1s−1 k27 0.00045 s−1

k12 0 µM−1s−1 k28 0.015 s−1

4µM.

The parameters governing GTPase cycling between GTP and GDP bound states were
found to be the most significant in governing the response, fortunately experimen-
tal data (previously used in modelling GTPases, Goryachev & Pokhilko (2006)) were
available for these (Zhang et al., 1997, 2000).

It would be interesting to conduct some form of sensitivity analysis on this system.
To do so it would be necessary to identify target outputs from which the different
simulation runs could be characterised. One of the important questions that this model
aims to address is whether Rac activation (due to fluid flow) could be as a result of
mechano-transduction by integrin complexes, here the total level of active Rac (Rac-
GTP) is not as relevant as the resulting pattern in the cell. A general pattern is difficult
to quantify in a manner that would facilitate application of standard sensitivity analysis
techniques.

6.3 Rho GTPase Model - Results

With the model described above, a pattern of downstream activation for Rac is gen-
erated (figure 6.9), due to Src activation leading to activation of a Rac GEF and con-
version of Rac-GDP into Rac-GTP. The whole cell response for Rac (figure 6.10), is
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Figure 6.9: Cellular distribution of Rac-GTP according to the Rho GTPase model.
Local activation of Src leads to local Rac GEF activation and subsequent conversion of
Rac-GDP into Rac-GTP.
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Figure 6.10: Whole cell responses of Rac-GTP (i), a Rac GEF (ii) and a Rac GAP (iii).
Rac-GTP up-regulation is similar (in both magnitude and timing) to reported experi-
mentally (Tzima et al., 2002). This appears to be due to rates determining binding of
GEFR to Rac-GDP and consequent Rac-GTP formation rather than the rate of GEFR
activation by Src, which (in the model) happens much faster.
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Figure 6.11: The effect on Rac-GTP distribution of allowing the Rac-GDP-GEF inter-
mediary (reaction 6.4) to diffuse in the cytosol and on the membrane as opposed to just
on the membrane as in figure 6.3. A localised pattern of activation is not generated.

slightly less than reported (Tzima et al., 2002), however it does give a comparable time
scale of activation. Interestingly the rates of GEFR activation due to active Src reached
new steady states relatively quickly, and it is actually the rates of reactions 6.4 and 6.5
which are the rate limiting ones (note in figure 6.10 that the Rac GAP is very slightly
down-regulated. This is a balance between increased Rac-GTP-GAP complexes and
decreased GAP activation by Rho-GTP).

The pattern of Rac activation (figure 6.9) is generated by localised Src activation, how-
ever it is maintained due to mutual Rho and Rac inhibition (though with removal of
this cross talk a similar, though less distinct, pattern to figure 6.9 occurs - not shown)
and slow diffusion of the active membrane bound Rac-GTP. It is also crucial that the
RacGDP-GEF intermediary is membrane bound. Figure 6.12 shows the same equa-
tions solved whilst taking this intermediary as diffusing both on the membrane and in
the cytosol. With this higher diffusion rate, of this relatively short lived intermediary,
the Rac activation pattern is destroyed. Interestingly the whole cell measure of Rac
activation (figure 6.12) is broadly similar to figure 6.10, suggesting that, in this case at
least (and presumably in the case of cell migration), whole cell profiles of activation
characterise the system poorly. Hence there is a need for experiments that can quantify
local activation.

Previous experimental work has shown activation of Rac and inhibition of Rho return-
ing to basal levels after an extended period of time (Tzima et al., 2001, 2002; Wojciak-
Stothard & Ridley, 2003). In this model there is no feedback, so the new steady states
are maintained. However it is not necessarily the case that there must be direct bio-
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Figure 6.12: The effect of allowing the RacGDP-GEF intermediary (reaction 6.4) to
diffuse in the cytosol and on the membrane as opposed to just on the membrane as in
figure 6.9. The average [Rac-GTP] is similar to figure 6.10.

chemical feedback. To investigate the hypothesis that a change in cell morphology
could lead to a different mechanical signal the same equations (including the Stokes
equation for the fluid flow) were solved on two further morphologies; one parallel to
the flow and one perpendicular to the flow, so the equation for the cell surface, equation
4.56, was modified from a = b = 1 to a = 0.333, b = 3 (parallel) and a = 3, b = 0.333
(perpendicular). These three different morphologies have comparable volumes and
surface areas.

Rac activation for these different shapes can be seen in figures 6.13 and 6.14. Figure
6.15 suggests it maybe the case that the change in morphology itself is enough to damp
the system back to basal levels, i.e. as the cell polarises the signal from the flow is
reduced. This effect may be attenuated by clustering of integrins; if they are localised
in focal adhesions then the position of them could be important. For example in a cell
orientated as in figure 6.13 the mechano-transducer in FAs will only become activated
if the FA is near the downstream edge of the cell, which is unlikely. However in a
cell orientated as in figure 6.14 more FAs will be in regions where they will become
activated.

The results from the different morphologies are further evidence for the normal force on
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Figure 6.13: Activation of Rac is decreased in a cell aligned parallel to the flow (left
to right). Figure 6.15 compares average Rac activation over three cells of differing
orientation to the flow.

the cell surface playing an important role in this process, for although Rac activation
(in the model) is responsive to the flow orientation the shear stress (both total and
maximum) on the cell is not (figures 4.10 and 4.11). Although a flattening of the cell
may attenuate the EC response by a shear-stress mediated pathway Barbee et al. (1994).

Figure 6.16 shows Rho inhibition across the cell, which is similar to experimental
observations (Tzima et al., 2001). The concentration distribution of Rho-GTP is more
diffuse (not shown) than the Rac-GTP distribution, Src activates GAPρ locally, however
because diffusion of the GAP occurs relatively quickly the local deactivation is spread.

Some experiments report rapid transient activation of Rho (Wojciak-Stothard & Ri-
dley, 2003), which could be mediated through one of the different mechanisms of
mechanical transduction mentioned (section 5.1). This observation also highlights a
complication in the parameter choices: even with rapid Rho GEF activation (which is
not modelled here) corresponding GTPase activation would be slower than reported
by Wojciak-Stothard & Ridley (2003) for transient Rho activation. It may be that the
parameters for different GEFs and GAPs are highly variable (a mechanism the cell
could employ in regulating the time-scale of GTPase activation), or fast activation of a
GEF coupled with GAP inhibition might speed up the GTPase response (although this
would actually increase the level of GTPase activation).
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Figure 6.14: Activation of Rac is increased in a cell aligned perpendicular the flow
(left to right).Figure 6.15 compares average Rac activation over three cells of differing
orientation to the flow.
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Figure 6.15: Whole cell average of Rac activation in three different morphologies;
circular (i), perpendicular to flow (ii) and parallel to flow (iii).
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Figure 6.16: Whole cell average of Rho inactivation in three different morphologies;
circular (i), perpendicular to flow (ii) and parallel to flow (iii).

It is almost certainly the case that other mechanisms contribute to localised Rac-GTP
upregulation, but this modelling has clearly demonstrated that this pathway could give
rise to the observed downstream Rac activation. It is also likely that a change in mor-
phology could down-regulate the signalling network.

This model represents a plausible pathway whereby ECs interpret flow direction and
mediate the correct response. Time courses for whole cell averages match experimental
data, and the pattern of Rac activation is qualitatively similar to reported (Tzima et al.,
2002). As might be expected, both biologically and mathematically, the model is sen-
sitive to the ratios of active to inactive GAPs and GEFs. Unfortunately experimental
data is not available for in vivo time courses of Rho and Rac GEFs and GAPs in ECs
responding to fluid flow, however this does give a testable prediction that the Rac GEF
should be quickly activated (within 1-2 minutes, figure 6.10) so that conversion from
Rac-GDP to Rac-GTP is not rate limited and gives the observed characteristic time
scale of activation. If future experiments did not illustrate this then it would (assum-
ing the parameters governing the Rac-GDP and Rac GEF reaction are characteristic)
suggest that it is inhibition of the Rac GAP that leads to Rac activation.
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7 Conclusion

In this chapter the research reported in this thesis is reviewed, with particular emphasis
on the questions raised at the beginning of this report.

The mathematical modelling of actin stress fibre alignment (chapter 2), lamellipodia
formation (chapter 3), fluid flow (chapter 4), mechanical transduction (chapter 5) and
Rho GTPases (chapter 6) has formed the author’s own hypothesis regarding how ECs
polarise and elongate in the direction of fluid flow which is put forward as the conclu-
sion to this thesis.

7.1 Project Goals

In the introduction to this project several points were raised, section 1.2. The modelling
presented in the preceding sections has elucidated answers to these questions. Here
those questions are recalled and the conclusions related to them summarised.

Which cell component interprets physical force?

The modelling of chapter 4, 5 and 6 has focused on the aspects of signalling which give
rise to EC polarity, in this section the focus is the same.

The model of flow over a cell suggests that there must be a cell component that can
transduce a mechanical force that acts normal to the cell surface. This is because the
heterogeneous pattern in signalling suggests a response to a heterogeneous pattern of
force. The shear stress on the cell surface is symmetric with respect to the up and
downstream edges, indicating the cell must respond to the force normal to the surface
in order to determine flow direction. However, a shear-stress activated pathway is still
presumed to be crucial to EC alignment, as early EC signalling events in response to
fluid flow include calcium influx and potassium channel activation (Ballerman et al.,
1998; Davies, 1995; Yamamoto et al., 2000). Ion channel signalling may be activated
by a stretching of the channel (Hoger et al., 2002). However the precise mechanism of
shear stress activation of ion channels remains unclear (Barakat et al., 2006).

In the author’s opinion the best candidate to respond to the normal force is integrins
and their associated complexes. They are known to contain components which become
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activated in response to tension (for example p130 Cas has been shown to become ac-
tivated in response to mechanical stretching (Sawada et al., 2006)). and one of their
constituents, Src, has been shown to be able to activate guanine nucleotide exchange
factors (GEFs) and GTPase activating proteins (GAPs) which are crucial in Rho GT-
Pase regulation (Arthur et al., 2000; Garrett et al., 2007). The model of force deforma-
tion of integrin complexes suggests, for a physiological flow, that the extension of the
complex is of the order of tens of nm - a feasible length for altered binding character-
istics. Note that the ‘window of opportunity’ for this prediction is quite slim, an order
of magnitude smaller and the extension would be competing with random brownian
motion of the complex, and an order magnitude larger would mean an extension larger
than the complex itself.

For this hypothesis it was assumed that the mechano-transducer could respond to nor-
mal forces. This assumption needs further study, although it is plausible for a mechano-
transducer in the integrin complexes to respond to normal forces.

Furthermore it is not immediately clear that a normal force applied to the surface nec-
essarily results in a normal force at the basal surface. Force on the surface is borne
by the cytoskeleton which, ultimately, is attached to the ECM at FAs. The exact re-
lationship between forces on the surface as a whole and forces at FAs is not clear. In
this work adhesion to the ECM was assumed to be homogeneous rather than at discrete
points of attachment, hence it was natural to assume that the force on the surface and
cytoskeleton was transferred directly to the basal surface.

The effect of modelling the load on stress fibres and FAs due to fluid flow is unexplored,
and would require some careful implementation. It may be possible to calculate the
force on FAs by summing the contributing forces from smaller cytoskeletal units. For
example the fluid causes a force on the surface of the glycocalyx which is transferred
(according to the hypothesis by Thi et al. (2004)) to the cortical web of actin beneath
the cell surface, which is attached to stress fibres. In a cell responding to fluid flow the
force a stress fibre bears would be dependent on its position in the cell and the density
of stress fibres at that point (more stress fibres would reduce the load borne by each
individual fibre).

Another complication for the mechanical transduction model arises from considera-
tion of internal forces in the cell, the most significant of which is tension arising from
myosin induced stress fibre contraction. The fluid flow model predicts surface forces of
the order of 1 pN µm−2 and a single myosin can generate several pN of force, so the two
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may be comparable. If the density of stress fibres terminating at the actin cortical web
is, for example, 0.5 µm−2, then each stress fibre would bear ≈2 pN force (to balance
the 1 pN µm−2 surface force). Hence it may be the case that a mechano-transducer
confuses internal and external forces. However, it has been observed (Tzima et al.,
2001) that stress fibres are initially disassembled in response to fluid flow (presumably
in response to a global signal, possibly from stretch activated ion channels). This low-
ers stress fibre density, and hence any remaining stress fibres bear a larger proportion
of the surface force and a mechano-transducer can establish polarity appropriately.

Improving the modelling of mechano-transduction, and in particular how the force on
the surface relates to the force at discrete points of attachment is a direction of future
research. There are several other directions that this work could be taken in, these ideas
are briefly explored in the next and final chapter of this thesis.

How does this component initiate signalling?

Components of integrin complexes are known to respond to force. However the exact
nature of the mechano-transduction is unclear. Src, a tyrosine kinase associated with
integrins, has been shown to be quickly activated in response to force (Wang et al.,
2005). Src has also been shown to regulate both GAPs and GEFs, hence (in this con-
text) it could play a key role in linking Rho GTPase regulation with force. In this work
Src was taken as a biochemical measure of EC response to force and hypothesised to
link directly to Rac GEF and Rho GAP activation

This hypothesis was tested with a simple model of Rho GTPase cross-talk and cycling
(between GTP and GDP bound forms). Modelling showed that this hypothesis could
lead to GTPase activation comparable to the reported levels for whole cell averages
and qualitatively similar to regions of activation of Rac. In principle this hypothesis
could be valid in an alternate form with a different ‘read out’ from integrin complex
signalling and a different link between GEFs and GAPs and the mechano-transducer.

How is polarity established and maintained?

Modelling has supported a hypothesis of spatial heterogeneity arising from ECs re-
sponding to the normal force on a cell, leading to local activation of Src, Rac GEF
and Rac GTP (figures 5.7 and 6.9 show the model prediction of active Src and Rac
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GTP distribution in an EC responding to fluid flow). Modelling has also shown that
association to the cell membrane is crucial in maintaining this local signalling as this
limits diffusion. Relaxing the condition of the Rac-GEF intermediary being bound to
the membrane is enough to destroy the pattern of activation. It may be that this is
a standard mechanism employed by cells, in different contexts, to generate local sig-
nalling. Although other methods to do this (by establishing a bi-stability for example)
are possible.

How could this hypothesis, that Src activates a Rac GEF, be verified? One possibility
is tracking Rac GEF and Rac GAP activation experimentally (although the exact Rac
GEFs and GAPs involved in this context are not known and may be numerous). This
model predicts that GEF activity should be upregulated in the downstream region and
that (due to the faster diffusion of GAPs) it cannot be the case that Rac activation is
due to GAP inhibition because then activation would not be restricted to this region.
If experiments reported GAP inhibition in the absence of GEF activation then it would
suggest there must be a more complicated mechanism for maintaining polarity other
than local activation and limited diffusion.

The proposed mechanism of maintaining polarity is slightly different from that sug-
gested in migrating cells, where separate zones of activation are proposed to be main-
tained by: mutual inhibition of signalling agents or whole pathways (Narang, 2006); a
bi-stable system bifurcating into two stable states spatially separated (Jilkine et al.,
2007) and/or a local excitation global inhibition (LEGI) type mechanisms (Levine
et al., 2006). The latter of these is reminiscent of the case here and indeed the model
by Levine et al. (2006) included a membrane bound activator and cytosolic inhibitor.
The inhibitor can attach to the membrane where it can switch off the activator, similar
to the Rho GTPase model (chapter 6) where the GAP can attach to the membrane and
induce conversion from a GTP bound state to GDP bound state.

How is cytoskeleton reorganisation mediated?

There are two important components to cytoskeleton reorganisation in non-confluent
layers of ECs responding to fluid flow, lamellipodia formation in downstream sig-
nalling regions and stress fibre alignment.

The modelling in chapter 3 illustrated that de novo polymerisation nucleated by Arp2/3
could lead to extension of the membrane and supported the Brownian ratchet hypothe-
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sis of polymerisation inducing force. The model also suggested that the polymerisation
of actin into branched structures must be closely regulated if actin is to be continually
polymerised and a consistent force provided. One of the ways to do this is for the
network to be severed consistently to provide a pool of actin monomers available for
new polymerisation. In the BD model of membrane extension (chapter 3) regular sev-
ering of the network stopped the membrane extension from stalling. Capping of the
filaments was also necessary to generate a network of branched actin filaments quali-
tatively similar to the in vivo case. The exact significance of the branched network and
the distinctive angle that Arp2/3 nucleates new filaments at is not known. It may be
that generation of the tree like structure is important in providing a force over a broad
area of membrane, in contrast to filopodium formation.

It was argued in chapter 2 (section 2.2.3) that stress fibre alignment could not occur as a
result of isotropic polymerisation, but filaments could spontaneously align in response
to certain biological signals, for example up-regulation of a bundling protein. In the
absence of any external cues, alignment occurs in a direction dependent on random
noise (according to the model, section 2.2.3), but it was suggested that directed poly-
merisation nucleated by formins could provide a bias to promote alignment in the flow
direction.

How is the signalling network shut off?

In section 6.3 it was demonstrated that the model (mechano-transduction of the force
due to fluid flow and Rho GTPase activation) could respond to different cell morpholo-
gies - Rac GTP activation was less (on average) in a geometry aligned with the flow.
Maximum shear stress and total shear were the same for geometries of cells of the
same surface area, regardless of the orientation with respect to the flow (figures 4.10
and 4.11). Hence it may be the case that a change in cell morphology diminishes the
effect of signalling in the downstream region. However, after long term exposure to
shear-stress ECs flatten, which does reduce the total and maximum shear on their sur-
face (Barbee et al., 1994).

This property of the model may be attenuated by considering the effect of forces be-
ing borne by discrete adhesions sites: In the model mechano-transducers that become
activated up-regulate Src in response to the normal force on the surface directly above
them, in reality the force on a region is likely to be borne by the surrounding FAs (as
in the decentralised model of mechano-transduction Davies (2008)). Hence for a FA
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Figure 7.1: Maturation and locality of FAs, reproduced (and modified) from Alexan-
drova et al. (2008). Phase contrast image of rat fibroblasts superimposed with a flu-
orescence image of nascent and mature FAs tagged with YFP-paxillin (red). Nascent
FAs (arrow) form underneath the lamellipodia, mature FAs define a distinct region (the
lamellum) behind the lamellipodia (Alexandrova et al., 2008). Time (top left, top right,
bottom left and bottom right): 0, 30 s, 1 min, 1 min 30 s.

to become activated it would have to be in a region that is under sufficient tension on
average, rather than locally sufficient tension. It may be that mature FAs are less likely
to be located in a down-stream region in a cell aligning via lamellipodial extension,
figure 7.1.

In response to fluid flow endothelial cells extend and flatten to approximately 50%
of their original height (Barbee et al., 1994). This flattening will clearly reduce the
maximum and total shear stress on the cell. Hence it is interesting that in the model of
an aligned cell, which in the model has the same maximum height, the cell does have
attenuated signalling, figure 6.15. It may be the case that this attenuation is superfluous,
and that reducing the shear stress signal (by flattening) is sufficient for a cessation of
signalling. A time course of EC height following the onset of fluid flow may establish
whether the additional attenuation, due to planar morphology, is necessary.

It is suggested, (Ballerman et al., 1998), that ECs stiffen and adhere more strongly to
the substratum (presumably through increase in number or size of FAs). This would
effectively reduce the load on each FA, and attenuate force induced FA signalling. Al-
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though others have shown very clearly that the adhesion area of cells subjected to flow
and no flow remains within 10% of initial values in both cases (Davies et al., 1994) , so
morphology rather than altered adhesion appears to be a better candidate to attenuate
signalling. However Davies et al. (1994) also showed that formation and loss of FAs
was highly dynamic, and ultimately led to FAs aligning in the flow direction (presum-
ably correlated with stress fibre alignment), this alignment may lead to a stiffening of
the cell in the direction of fluid flow. This maybe a more attractive hypothesis for atten-
uation of EC signalling in response to fluid flow: if signalling is shut-off by a flattening
of the cell then a flattened EC will not re-align with flow in a different direction (it is
‘flat’ in all directions), but if signalling is attenuated by planar morphology or the stiff-
ness properties of the cell then a change in flow direction could still lead to signalling.
However, it should be noted that it is most likely that all these factors act co-operatively
in the EC signalling response.

7.2 Endothelial Cell Polarisation and Elongation: A Hypothetical
Overview

In this section the process of EC alignment in the direction of fluid flow is described
with emphasis on the aspects of the process that the modelling in this project has pro-
vided new or supported existing hypotheses. For clarity references and competing
hypotheses that have been discussed in this (and previous) chapters are not repeated
here.

Flow over an EC either in vivo (in large arteries at least the flow is quasi-steady Hazel &
Pedley (2000)) or in vitro is well characterised by Stokes flow, which represents steady,
viscous flow. This flow exerts a force, f, on the surface. In terms of the boundary
integral representation of the flow, equation 4.48, −f weights the Green’s function and
ensures that the boundary condition (no flow on the surface) is satisfied. Solution of
equation 4.48 requires determination of the value of f over the cell surface.

It is apparent (figure 4.15) that the normal force may play a role in establishing polarity
in ECs as it is negative (with respect to the z-axis) in the upstream region and positive
in the downstream region.

This observation favours a hypothesis of polar signalling resulting from FAs, which be-
come activated only in the downstream regions of the cell, and hence establish polarity.
It is likely that several components of FAs can respond to force, however the precise
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nature of the mechanism is not known. It is known that the FA associated tyrosine
kinase Src can respond rapidly to mechanical force and is activated in response to fluid
flow. Src has also been shown to activate GEFs and GAPs for Rac and Rho, and hence
may play a role in linking mechano-transduction with cytoskeleton regulators.

Inhibition of Rho initiates stress fibre disassembly (myosin II activity drops and lowers
the tension needed to maintain the fibres) which may amplify the signal to mechano-
transducers. An increase in tension in the downstream edge up-regulates formin in-
duced actin polymerisation, and provides the directional bias required for stress fibre
alignment.

Activation of Rac induces lamellipodium formation and mediates Arp2/3 activation as
well as severing of actin filaments. Arp2/3 binds onto the side of existing filaments and
forms a binding site homologous to the barbed end of actin. Polymerisation induces
a force on the membrane via a Brownian ratchet mechanism: as the membrane and
filament undergo brownian motion, space for monomer addition becomes available,
and the membrane gets ratcheted forward. This leads to a change in cell morphology
and, along with stress fibre alignment, alignment of the EC.

The signalling network may be attenuated by a change in height (Ballerman et al.,
1998) and/or the planar dimensions of the EC (figure 6.15). However it may also be
the case that the change in internal structure (for example FA and stress fibre alignment)
reduces mechano-transduction.

7.3 Experimental Evidence and Model Validation

The model of EC response to fluid flow (chapters 4, 5 and 6) has three key compo-
nents: response to the force normal to the surface, Src activation (as a marker for FA
signalling) and Rac activation at the leading edge.

The mechano-transduction model (chapter 5) assumed the force normal to the surface
acted on a mechano-transducer. This is an attractive hypothesis because it naturally
gives rise to upstream and downstream signalling regions without having to make as-
sumptions about pre-aligned cytoskeletal or membrane structures. This hypothesis is
assumed complementary (and not contradictory) to the usual paradigm of ECs respond-
ing to the force parallel to their surface. An experiment to distinguish the effect of each
component is difficult to conceive, because in reality, at the intra-cellular level, the ef-
fect of these two force components is likely to be confounded - it is hypothesised that
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the force at the cell surface is decentralised to different mechano-transducers, such as
FAs and PECAM-1 (Davies, 2008). For example, Mathur et al. (2000) illustrated that
application of an approximately normal force (to the apical surface) can lead to a global
re-organisation of cellular adhesion. Mathur et al. (2000) ascribe this response to the
re-distribution of the local nN force they applied through the cytoskeleton and conse-
quently across the cell. However, given that points of adhesion are well known to be
signalling hubs (Sastry & Burridge, 2000; Katsumi et al., 2004) this maybe a result of
transduction of local force into global signalling. In contrast to this it has been shown
that elastic deformation is strongly screened at distances more than several µm (Bausch
et al., 1998). This, once again, suggests that the complicated material properties of the
cell need to be carefully considered when considering the transduction of force across
the cell.

Traditionally the EC response to fluid flow is referred to as a shear stress activated
process (Goldfinger et al., 2008; Tzima et al., 2001, 2002, 2005; Wojciak-Stothard &
Ridley, 2003; Hoger et al., 2002). Semantically (on the scale of an individual cell),
this may prove to be only part of the story. The author is aware of no experiments
which can de-couple the effects of parallel and normal components of force on the cell.
Separately applying normal and parallel forces is clearly possible, however in this case
the difficulty lies in understanding how these forces distribute throughout the cell. This
‘de-centralization’ of the force, (Davies, 2008), is a hugely interesting avenue of further
research. As discussed above the assumption that the normal force on the surface gets
transferred directly to the basal surface (chapter 5) is a huge simplification, clearly
shear forces will be transduced to FAs as well. However as an area of future research, a
more realistic, carefully constructed and experimentally supported, model of mechano-
transduction could be supplanted into this modelling framework (chapters 4, 5 and 6)
very easily.

The role of shear-stress should not be underplayed. There is excellent evidence for
a direct response to shear-stress, for example Yamamoto et al. (2000) illustrate flux
of Ca2+ ions (with an ATP concentration of 250 nM/L) increases step-wise for step-
wise increases in shear-stress.21 In this case the hypothesis of ion channels opening
as a direct response to shear stress is the best and most attractive one. Furthermore as
noted above, the transduction of shear forces throughout the cell could still give rise to
signalling at FAs, cell-cell junctions (for example PECAM-1) as well directly acting
on ion channels (possibly via the glycocalyx Thi et al. (2004)). I hypothesise that the

21Although, due to the approximate linearity of low-Reynolds number flow an increase in the magnitude
of shear-stress corresponds to a proportional increase in the magnitude of the normal force.
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role of shear-stress is complemented by the action of the normal force.

The hypothetical role I put forward for the force normal to the surface is to generate the
polar response. In chapters 4, 6 and 5 a model of signal amplification and localisation
(by limited diffusion) was described. It remains to be seen if this is the case. However,
it may be that the effect of the normal force need only be very slight to establish po-
larity. In the case of chemotaxis (cell migration either up or down a chemical gradient)
the chemical gradient need only be very shallow, hence the difference in concentra-
tion across the length of the cell is very small. The mechanism of how this very slight
difference may lead to polarity (to migrate cells typically establish front and back sig-
nalling regions) has been extensively studied from a modelling perspective, reviewed
by (Devreotes & Janetopoulos, 2003). A similar mechanism may be employed by ECs.

Integrins, a key component of FAs, have been shown to become activated in down-
stream signalling regions of ECs (Goldfinger et al., 2008), this supports the hypothesis
of polarity arising from FA signalling. Although it should be noted Goldfinger et al.

(2008) hypothesise this activation as arising from PECAM-1 signalling via phospho-
inositide 3-kinases (PI3Ks), and not as a direct result of FA mechano-transduction.
The role of this pathway is unclear, PI3Ks have been shown not to be necessary for EC
polarisation and alignment (Wojciak-Stothard & Ridley, 2003), however (in the case
of chemotaxis) it has been shown cellular polarity can be generated by parallel path-
ways (Chen et al., 2007). In migrating cells PI3Ks respond to an external chemical
gradient to establish polarity (Devreotes & Janetopoulos, 2003), in the case of ECs re-
sponding to fluid flow the external stimulus is the force on the cell. Precisely how the
cell translates this stimulus into spatially localised activation remains an open question.
However further experimental characterisation of the spatial-temporal dynamics of the
EC response to fluid flow would elucidate which pathway establishes polarity. The
modelling of this project has provided a quantitative and testable hypothesis.

Coupling of mechano-transduction to a model of Rho-GTPase signalling (chapter 6)
leads to whole cell time courses (figures 6.10 and 6.16) that resembles experimental
data (Tzima et al., 2001, 2002). However, modelling has shown that whole cell aver-
ages of protein activity need to be applied judiciously. Figure 6.10 (plot i.) and figure
6.12 are comparable, yet the corresponding spatial distributions of Rac-GTP are not
(figures 6.9 and 6.3). However, this hypothesis does make a prediction of whole cell
averages from individual cells aligned perpendicular or parallel to the flow which, in
principle, could be tested (figure 6.15).
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More detailed data regarding gradients of Src and Rac-GTP in the downstream edge
of ECs responding to fluid flow could be used to test the hypothesis of mechano-
transduction and consequent Rac-GTP activation (biosensors for RhoA and Rac1 can
now yield precise data on the spatial and temporal activation of GTPase (Pertz & Hahn,
2004)), in particular the Src gradient is predicted to be increasing (in the direction of
flow) approximately linearly (figure 5.7).

However the conclusions of such an analysis would have to be carefully drawn. It
may be the case that EC polarity is established by the force normal to their surface but
that the simple approximation to force transduction through the cytoskeleton is a poor
assumption.

If the stimulus from the flow model (chapter 4) is halted then the network modelled
in chapter 6 returns to basal levels of activation. Hence it is interesting that the model
predicts a change in morphology does inhibit signalling, for otherwise an elongated
cell still responds to the flow. Some models of cell migration are self-sustaining, so
that on removal of the initial stimulus the cell remains polarised and motile (Jilkine
et al., 2007). Hence an experiment that compares alignment of ECs after being in
flow conditions for different periods (for example ECs left for 24h with the first 1h,
2h,...24h in flow conditions) would show whether a persistent stimulus is required for
EC polarisation, elongation and/or alignment. It might aid investigation into how the
network is inhibited; if the network remains active following the removal of the flow
signal then it suggests the network must be inhibited by a feedback mechanism rather
than the change in morphology.

It may be the case that further modelling will in itself validate the hypothesis proposed
above. The next chapter briefly explores possible future research directions
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8 Future Work

In this section future directions of research in this area is described. The research re-
ported in the previous chapters has focused on the response to fluid flow of a single cell
with a fixed surface. This section briefly explores: extending the flow model (coupled
with mechano-transduction and Rho GTPase models) to multiple cells and modelling
morphogenesis for both single and multiple cells.

Following this, other directions of future work are discussed (but not explored) in-
cluding: coupling the BD model to the Rho GTPase model, modelling the signalling
network in more detail and modelling the endothelium.

8.1 Multiple Cells
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Figure 8.1: Streamlines (red lines) of the flow (in the increasing x direction) over four
cells touching at their extremities. The streamlines flow over the cell (the impression
otherwise is due to the method to used to generate the figure). Notice that the stream-
lines over the downstream cells are identical to the pattern over the upstream cells.

In vivo the fluid flows over the endothelium. The flow model (chapter 4) describes the
force on the surface of a single cell attached to a planar surface. To investigate whether
the fluid flow over the endothelium produces a different pattern the BIR representation
(equation 4.48) was extended so that the surface P was the surface of four round cells
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touching at their extremities.

Solving equation 4.48 in this new geometry (by applying the same method described
in chapter 4) gives the force on each of the four cells as being identical to the force
on a lone cell (figures 4.15-4.16). Figure 8.1 shows the streamlines in this geometry
and illustrates that the incoming streamlines for downstream and upstream cells are
identical. Hence the modelling of a single cell is also valid for cells in confluent layers.
This was verified computationally (not shown) and gave identical results (for each cell)
to those reported in chapters 4, 5 and 6.

However the mechanics of an EC elongating are different for cells in confluent layers.
For example, in the model of membrane extension (chapter 3) the membrane was im-
plicitly assumed to be extending into empty space - as oppose to a region occupied by
a different cell. One way to consider the mechanics of whole cells and their associated
morphogenesis is the cellular Potts methodology.

8.2 Cellular Potts Modelling

Cellular Potts Models (CPMs) describe the time evolution of cell morphology. To do
this in 2D the plane is discretised into lattice sites (for example a hexagonal grid as
employed in chapters 5 and 6). Each grid site i (in this case a hexagon) is assigned a
state σ(i). Here σ(i) = 0 refers to i being a grid site that is not part of any cell (i.e.
ECM) and σ(i) = m, where m is an integer implies that the ith site is in the mth cell.
Then the morphology of the mth cell changes when grid sites change state to or from
σ = m.

To govern the changing of states a Hamiltonian is constructed. This is not a Hamil-
tonian in the formal sense - it does not characterise the total energy of the system.
However, in the case of a single cell, it is often considered to be the effective energy of
the cell.

The standard definition of the Hamiltonian is (Anderson et al., 2007):

H = ∑
(i, j)

Jσ(i),σ( j)(1−δ(σ(i),σ( j)))+λ(a−A)2. (8.1)

The sum is over all (i,j) neighbour grid sites. The first term is the contribution to the
effective energy of the cell boundary (where if σ(i) 6= σ( j) then Jσ(i),σ( j) is added to
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the Hamiltonian). The dependence on σ(i) and σ( j) means that in principle cell-cell
boundaries and cell-ECM boundaries can confer different energy to the Hamiltonian.
The second term, λ(a−A)2 quantifies the energy arising from the difference in the
cell’s area (a) and its target area, (A). So the Hamiltonian is large if the cell is large or
small relative to A.

The dynamics of the CPM (how the states of the grid sites evolve over time) are gov-
erned by the Metropolis algorithm, which is:

• Select a grid site, i, at random.

• At random choose a site that neighbours site i, denote this neighbour by j.

• Calculate ∆H = H f −Hi, where H f is calculated from equation 8.1 evaluated
with the state of site j copied to the state of site i, hence σ(i) = σ( j). and Hi is
the Hamiltonian calculated before this copying.

• The copying (of the state of site j to the state of site i) is accepted with probabil-
ity:

p(σ(i)→ σ( j)) =

{
1 if ∆H ≤−Hb

e−(∆H+Hb)/T if ∆H ≥−Hb
(8.2)

where T is the ‘temperature’ of the simulation and Hb represents the resistance of the
membrane to force (Marèe et al., 2006). If the copying of states decreases the value
of the Hamiltonian by more than Hb the copying is accepted, if not it is accepted with
a probability that decreases exponentially for increasing ∆H. If the grid has N sites
in total then N applications of this algorithm is defined as one Monte-Carlo time step
(MCS).

Figure 8.2 illustrates the cell morphology generated by applying this algorithm and
equation 8.1. Initially the cell shape was circular with area 1300 µm2. With A = 1100
µm2 the final area reached is 1098 µm2 - so the cell shrinks. The CPM can also be
applied to multiple cells (figure 8.3). In this case there are two values of the coupling
constant: Jce and Jcc. Where Jce is the coupling energy between cell and ECM, and Jcc

the coupling energy between two different cells. If Jcc < Jce then cell-cells binding is
energetically favourable.

The Cellular potts approach is very flexible because the Hamiltonian can be modified
to include other forces. For example Marèe et al. (2006) modify the Hamiltonian to
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Figure 8.2: Cell morphology generated by the Metropolis algorithm and equation 8.1
after 1000 MCS. Hb = 46 µm−1, A = 1100 µm2, T = 8 µm−1, λ = 1 and J = 0.7 µm−1.
J is the coupling energy between the cell and ECM.
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Figure 8.3: Cell morphology of six cells generated by the Metropolis algorithm and
equation 8.1 after 1000 MCS. Hb = 46 µm−1, A = 1100 µm2, T = 8 µm−1, λ = 1,
Jce = 0.02 µm−1 and Jcc = 0.02 µm−1. Jce and Jcc are the coupling energies between
cell-ECM and cell-cell respectively
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include the effect of Rho and barbed ends by shifting ∆H:

∆H ′ = ∆H−P+ξ(ρ−ρth) - cell extension

∆H ′ = ∆H +P−ξ(ρ−ρth) - cell retraction (8.3)

where P is the force exerted by barbed ends pushing towards the membrane and ρ is the
concentration of Rho, which causes contraction when it is above the threshold ρth and
is weighted by the parameter ξ. With these shifts in ∆H the copying trial for copying of
a cell state to an empty state (cell extension) it is more likely if P is high and copying
of an empty state onto a cell state (cell retraction) is more likely if ρ is large. With this
definition (and coupled models for P and ρ) Marèe et al. (2006) generate a model for
keratocyte migration.

In this case a CPM would have to be in 3D to dynamically evolve the three dimensional
geometry (required as an input to the flow model). Furthermore, to bestow meaningful
mechanical properties (to the virtual EC) a CPM would necessarily include modelling
of FAs and FA turnover (so that the cell is more resistant to migration than the kerato-
cyte migration model by Marèe et al. (2006)).

8.3 Other Research Directions

One of the goals of this Ph.D. is to integrate models of different aspects of the EC
response to fluid flow; in particular linking the mechanical force on the cell due to fluid
with the network it activates.

The Rho GTPase aspect of this network is modelled in chapter 6 using partial differ-
ential equations. In principle, at least, it would be interesting to link that model with
the stochastic model presented in chapter 3. However the linking of stochastic and
differential models is a generically difficult problem, especially when the models are
on totally different scales: the Rho GTPase model is on the scale of µm and minutes,
whereas the BD model of membrane extensions is on the nm and µs scales. Hence (if
there was a sensible connection between the two models) to run the models in parallel
it would be necessary for simulations with a fold increase in computations of the order
of hundreds of millions, which is clearly impractical!

Therefore to link these models a more pragmatic solution is necessary. Here the
Langevin equation (3.1), is solved by Monte-Carlo simulation. A different and com-
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putationally cheaper approach is to track the probability density function (pdf) of par-
ticles. This pdf then satisfies the Fokker-Planck equation, (Siegman, 1979).

This is a possible direction of future research. However, this would still present some
significant technical and theoretical challenges. One of which would be how to in-
terpret a model where the dynamics of interest occur on both the µs and minute time
scales.

In this project a small portion of the signalling network is modelled in detail (chapter 6).
Future work could model the network with wider scope. Of particular interest would
be inclusion of ion channel signalling, modelling of which may validate the hypothesis
of EC polarisation being due to a response to the force normal to the cell surface.

The approach here could also be extended to modelling the endothelium using a cellular
Potts model. A model of the endothelium would aid further investigation into the
pathogenesis of atherosclerosis.
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