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1. Introduction

How does one player bargain with another over the price of a good if the value of the good

follows a stochastic process? In the model below the players have an indivisible good which

they bargain over by making alternating offers. The value of this good evolves through

time, it is determined by a Markov chain and the players observe the value of the good

at the start of each period’s bargaining. The fact that the future value of the good is

random gives a possible benefit to waiting, because the value may grow in the future, but

makes an agent’s decisions more complex.

This problem arises if, for example, the owner of oil reserves is bargaining over their

price with an oil company and the future price of oil follows a stochastic process. Here

there is a cost to delay, because of the players’ rates of time preference, but at the

same time the oil company will not choose to extract the reserves immediately but will

generally wait until the oil price has reached a threshold level. I will show that, if the

oil company is more patient than the seller, then the reserves will be sold immediately

and the oil company chooses when to extract the reserves. In this case there is a unique

equilibrium. Moreover, the bargain between the oil company and the seller is determined

by each player’s ability to delay agreement long enough to upset the oil company’s optimal

extraction strategy. The bargain reached is a natural generalisation of the deterministic

solution of Rubinstein (1982) and the equilibrium is efficient. If the seller is more patient

than the buyer then there can be delays in reaching agreement, because the seller cannot

force the impatient oil company to follow a good extraction policy. As a consequence,

at the equilibrium of the bargaining game the seller will delay the agreement, to force

the company to follow an extraction policy that suits the seller. The oil company then

extracts the oil immediately after a bargain is agreed with the seller. The equilibrium in

this case bears no simple relationship to the Rubinstein (1982) solution and in this case

the equilibrium is not generally efficient.

There are two classes of conclusions we can draw from this model: those relating to

bargaining games, and those relating to the optimal waiting literature. First, there is a

class of complete information bargaining games where delays in reaching agreement do

occur, these delays are sometimes efficient but can impose costs on players. This delay
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does not arise because of any signalling (as in Admati and Perry (1987)), nor does it

occur because of any complex strategic effects (as in Perry and Reny (1993) or in Muthoo

(1990)), but is simply because of the benefit that both players perceive in waiting. Second

there is a class of models where it is optimal to wait before exploiting a resource, but where

the observed delay is not in general equivalent to the amount of delay observed in a one

person model.

The paper proceeds in the following way. In Section 2 there is a description of

the stochastic process generating the uncertainty in our model and an outline of the

bargaining game. Section 3 characterises the general solution to the bargaining problem

and establishes the existence of an equilibrium.

2. The Model

The first element of the model is a stochastic process, Π, which determines the evolution

of a random sum of money and I will call this variable the “cake”. The process is a

homogeneous Markov chain with countable states N := {1, 2, ...}. The function f(i) gives
the size of the cake in state i ∈ N , the state at time t is denoted it. States are ordered
so the largest cake occurs when i = 1 and the cake size monotonically converges to zero

as i increases, that is, 1 = f(1) > f(i) > f(i + 1) ≥ 0 for i ∈ N and limi→∞ f(i) = 0.

The transition probabilities for Π are denoted {πij}i∈N,j∈N , where
P
j∈N πij = 1 for all

i ∈ N and πij ≥ 0 for all ij. For each i ∈ N , the probability distribution {πij}j∈N
gives the probability of a transition from state i today to the state j ∈ N in the next

period. For example, if the cake is size f(i) in period t, then the expected size next

period is
P
j∈N πijf(j). The matrix which has {πij}j∈N as its ith row is denoted P .

To simplify notation, I denote the ith row of P as the vector Pi. Therefore, Piφ :=P
j πijφ(j) (respectively PiPφ :=

P
j

P
k πijπjkφ(j)) gives the expected value in one period

(respectively two periods) of the random variable φ : N → < when the current state is i.

A one person optimal stopping problem arises if one individual can eat all of the cake

themselves, but must decide the right moment to eat it. Formally, one can state the

problem as: what is the best time to stop the process {δtf(it)}∞t=1 (where δ ≤ 1 is the
player’s discount factor)? A strategy τ(.) which determines when to stop the process as a
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function only of past and current states is called a stopping time. The expected payoff from

adopting the optimal stopping time in state i is the value function: vδ(i) := supτ Eiδ
τf(iτ),

(here the supremum is taken over all stopping times, with the convention that f(i∞) = 0

and Ei denotes expectations taken from an initial state i). The optimal strategy (if it

exists) is denoted τ ∗. The value function for this problem is uniquely characterised as the

smallest solution to the equation

vδ(i) = max{ f(i) , δPivδ }, ∀i ∈ N.(1)

That is, if the function h(i) also satisfies h(i) = max{f(i), δPih} then vδ(i) ≤ h(i) for all
i ∈ N .1 The Hamilton-Jacobi-Bellman equation (1) says that if the optimal strategy is
being played in state i, then the maximum expected payoff is obtained either by eating

today’s cake, or by waiting until next period and then playing the optimal strategy. The

optimal strategy appears to be easy to compute (if vδ(i) = f(i) stop and if vδ(i) > f(i)

continue), however, such a strategy may not always achieve the payoff vδ(i).
2 Below, I

prove a result that ensures the existence of an optimal strategy for the Markov chain Π,

which is described above. The result follows from the special structure of the function

f(.): (a) f(.) is bounded above, (b) the only accumulation point of f(.) is at zero.3

Lemma 1 If Π is an irreducible aperiodic Markov chain and δ ≤ 1, then the
stopping time τ ∗, defined by the first time it enters the set G := {i|f(i) =
vδ(i)}, satisfies vδ(i) = Eiδτ

∗
f(iτ∗) on the Markov chain Π.

Proof: See the Appendix.

I now describe a bargaining game where the players bargain over the random cake

described above. The game is played by a seller, “she”, and a buyer, “he”, of a randomly

1In general there are many solutions to (1), for example when δ = 1 the function h(i) = 1 for all i ∈ N
is a solution, so it is essential to choose the smallest solution to (1).

2In general there only exists a strategy yielding a payoff within ² > 0 of vδ(i): stop if vδ(i)− ² < f(i)
and if not continue.

3The proposition makes some assumptions on the form of the Markov process Π. A Markov process
is irreducible if it is possible to move from any one state to any other in a finite number of steps, that
is all states communicate with all other states. An irreducible Markov chain cannot have absorbing
states. Relaxing the assumption of irreducibility will complicate the results, but all the results below will
apply mutatis mutandis to any irreducible component of the Markov chain. A sufficient condition for the
Markov chain to be aperiodic is for πii > 0 for all i ∈ N .
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valued asset, once the buyer has obtained the rights to the asset he can consume it

whenever he wishes. Both players have a reservation level of zero. Play proceeds as

follows: In the first period both players observe the size of the cake, f(i1), and then the

seller suggests a deal. She proposes a sum of money x1 for which she is willing to transfer

her rights over the process to the buyer. The buyer then accepts or rejects her proposal.

If he accepts, then the bargaining terminates. If he rejects, then the game moves into the

second period where the random variable f(i2) is observed and it is the buyer’s turn to

propose a deal. If this division is accepted then the bargaining ends, if not play continues

to a third period. Play continues with alternating offers until an agreement is reached.

The new feature is that, at the start of period t the players observe a random variable

which is the value of the good in that period, however, if they do not agree today, they

do not know the size of the cake they will bargain over in the next period.

Let 0 < γ ≤ 1 be the seller’s discount factor and let 0 < δ ≤ 1 be the buyer’s

discount factor.4 If there is an agreement at time t in state i where the buyer pays xt,

then the seller and buyer’s payoffs are respectively (γtxt, δ
t(vδ(i) − xt)). If the players

bargain forever and never reach an agreement then they both get a payoff of zero. The

buyer’s payoff is, of course, determined by his ability to consume the cake in an optimal

state once agreement is reached. I have assumed that the players are risk neutral so

that the surplus they divide is linear. A pure strategy for each player in the game is a

function mapping the history of the state, offers and rejections to an action today. Let

I := [0, 1] be the set of possible offers a player can make and let R := {Y,N} be the set
of responses to these offers, then a complete description of the events in a given period is

an element of H := N × I×R. A history to period t is an element of the set Ht−1. Thus,

a strategy for the seller is a sequence of functions σ := {σt}∞t=1 such that: (a) for t odd
σt : H

t−1 × N → I, (b) for t even σt : H
t−1 × N × I → R. Similarly, a strategy for the

buyer is a sequence of functions ρ := {ρt}∞t=1 such that: (a) for t even ρt : H
t−1×N → I,

(b) for t odd ρt : H
t−1×N × I → R. The equilibrium concept used throughout is that of

subgame perfect equilibrium.

4It is not necessary for the discount factors to be strictly less than unity, because the stochastic process
Π can make the cake shrink even when δ = γ = 1.
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3. Equilibrium in the Bargaining Game

This section presents the main results of the paper. First some general results are given.

The first result in this section is a characterisation of the equilibrium payoffs of the

bargaining game which owes a great deal to the method pioneered in Shaked and Sutton

(1984), then an existence result is established in Proposition 1. The last general result

shows that the players will always agree a bargain in a state i, if they both believe that

the expected future value of the good is less than its current value in state i. Then the

two cases, (a) where the buyer is more patient than the seller, and (b) where the seller

is more patient than the buyer, are treated separately. Proposition 3 proves that if the

buyer is more patient than the seller then the game has a unique equilibrium payoff in

each state i. At this equilibrium an agreement is reached in the first period. An example

then shows that there can be delay in reaching an agreement if the seller is more patient

than the buyer. The final proposition shows that if the seller is more patient, then the

buyer will choose to consume the good immediately agreement is reached, that is, the

timing of agreement in the bargaining determines the buyer’s consumption strategy.

First some additional notation is needed. Define a(i) (respectively A(i)) to be the

infimum (respectively supremum) of the set of all subgame perfect equilibrium expected

payoffs for the seller if she is the proposer and the subgame begins in state i. Similarly,

define b(i) and B(i) to be the bounds on the buyer’s equilibrium payoffs when he is the

proposer in a subgame beginning in state i. The structure of the game is stationary, so

these bounds also apply after any history leading to state i.

Lemma 2 If Π is an irreducible aperiodic Markov chain, then

a(i) = max{vδ(i)− δPiB, γ
2PiPa},(2)

A(i) = max{vδ(i)− δPib, γ
2PiPA},(3)

b(i) = max{vδ(i)− γPiA, δ
2PiPb},(4)

B(i) = max{vδ(i)− γPia, δ
2PiPB}.(5)

Where a(i) is the smallest solution to (2), A(i) is the smallest solution to

(3), b(i) is the smallest solution to (4), and B(i) is the smallest solution to

(5). That is: if h(i) = max{vδ(i) − δPiB, γ
2PiPh} then h(i) ≥ a(i) for all
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i ∈ N , if h(i) = max{vδ(i) − δPib, γ
2PiPh} then h(i) ≥ A(i) for all i ∈ N ,

if h(i) = max{vδ(i) − γPiA, δ
2PiPh} then h(i) ≥ b(i) for all i ∈ N , and if

h(i) = max{vδ(i)− γPia, δ
2PiPB} then h(i) ≥ B(i) for all i ∈ N .

Proof: See the Appendix.

The lemma above characterises the worst equilibrium payoff and the best equilibrium

payoffs of the players. The next proposition proves the existence an equilibrium. Existence

is proved by constructing a Markovian, or stationary, equilibrium where the players use

strategies which depend only on the current state and not on previous events.

Proposition 1 If Π is an irreducible aperiodic Markov chain, then there

exists a subgame perfect equilibrium of the bargaining game.

Proof: See the Appendix.

I now give a general result on the states in which the players are certain to come to

an agreement. The condition used in the proposition below, vδ(i) = vγ(i) = f(i), says

that in state i both of the players agree that it is not worth waiting for the cake to grow

in the future and it is better to eat it now. If in state i even the most patient of the two

players agrees that it is not worth waiting for the cake to grow, then the proposition shows

that the players reach an agreement in this state. This result is therefore the stochastic

equivalent of the result that says agreement is immediate when the cake shrinks.

Proposition 2 If vδ(i) = vγ(i) = f(i) for some state i, then the players

reach an agreement in state i.

Proof: See the Appendix.

This completes the general results. I will now study the case where the buyer is

more patient than the seller. I will show that in this case in each state i the players

have unique equilibrium payoffs that are efficient. I will also show that these payoffs can
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be obtained at a Markov perfect equilibrium where the players agree immediately and

the buyer then follows his optimal stopping policy. I will argue that this equilibrium

is the natural extension of the Rubinstein solution to a stochastic environment, where

the players’ bargaining strengths are completely determined by their ability to delay

agreement. Moreover, the form of the solution is identical to Rubinstein (1982), provided

that one interprets the terms γPi and δPi as the seller and buyer’s random discount

factors. These results contrast with what is true when the buyer is less patient than

the seller (γ > δ), in this case the equilibria of the game generally exhibit delays before

the players come to an agreement. Also, I show that the equilibrium when the buyer is

less patient does not implement the buyer’s optimal stopping policy, and that it is not a

simple generalisation of the Rubinstein solution.

The proposition below provides a complete characterisation of the equilibria for a

large class of bargaining games. It shows that, if the seller is less patient than the buyer,

then she will transfer the good immediately to the buyer. This allows him to receive the

full value from the optimal stopping policy. This will also maximise both of the players’

potential surplus, because if the seller is relatively myopic any delay in the transfer of

control will impose costs on both parties (the seller bears a cost because she is forced to

wait for the receipt of the cash and the buyer bears a cost because he fails to follow the

optimal exploitative strategy). The equilibrium is, therefore, efficient.5

Proposition 3 If δ ≥ γ and either: (a) γ < 1, or (b) γ = δ = 1 and Π is

is an irreducible process with all states transient, then all states i ∈ N have

unique equilibrium payoffs to the two players. This unique equilibrium payoff

can be achieved at a Markov perfect equilibrium where there is no delay in

reaching agreement. If the unique equilibrium payoffs to the seller are denoted

α(i) and the buyer’s unique equilibrium payoffs are denoted β(i), then these

functions are determined by the equations

α(i)− γδPiPα = vδ(i)− δPivδ,(6)

β(i)− γδPiPβ = vδ(i)− γPivδ.(7)

5In part (b) of Proposition 3 I allow γ = δ = 1 (so both players are infinitely patient), but the process
Π is transient, which implies that f(it)→ 0 almost surely. This case, therefore, arises when the value of
the cake shrinks because of the nature of the random process rather than the players’ impatience.
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Proof: See the Appendix.

The solutions (6) and (7) for the unique equilibrium payoffs in the game, derived in

the proof above, have a simple interpretation. If the terms (δ2 =)δPi and (δ1 =)γPi are

interpreted as random levels of discounting and vδ(i) is interpreted as the notional size

of the cake in state i, then (6) and (7) are analogous to the solution of the deterministic

bargaining problem. Since, with an abuse of notation, we can write the seller’s payoff in

state i as vδ(i)(1−δ2)/(1−δ1δ2) and the buyer’s payoff in state i as vδ(i)(1−δ1)/(1−δ1δ2).
Therefore, if the buyer is more patient than the seller, the outcome of the bargaining game

is qualitatively equivalent to that in the deterministic case – there is a unique solution

with generalised bargaining strengths. The only difference is the replacing of the size of

the cake with the optimal stopping policy of the buyer vδ.

Corollary 1 If δ ≥ γ and either (a) γ < 1, or (b) γ = δ = 1 and Π is

an irreducible process with all states transient, then the bargaining game has

unique equilibrium payoffs and the equilibrium is efficient.

Proof : See the Appendix.

I cannot explicitly solve for the equilibria for when γ > δ, however, it is certain that

the equilibria differ from the solution given above. This can be easily verified, since the

functions α(i), β(i) calculated in (6) and (7) in general will not satisfy α(i) ≥ δ2PiPα

and β(i) ≥ γ2PiPβ when γ > δ. (Of course, if γ is sufficiently close to δ and Π is chosen

suitably, then an identical equilibrium can be found.) A second difference is that there

will be delays in reaching agreements when γ > δ. This is shown in the following example.

Example : Delay in agreements when γ > δ

In this example: (a) the seller is more patient than the buyer (γ > δ), (b) in period

t = 1 the cake is size 1/2 (f(i1) = 1/2), (c) in all future periods the cake is unity with

probability one, (f(it) = 1 for t = 2, 3, ...). Now consider the proposal made by the seller

in period 1. If she sells the cake today, then the buyer must choose between having a

cake size 1/2 today or waiting and getting δ in a period’s time. (If the buyer is impatient

(δ < 1/2) he will choose to eat the cake today and not wait.) From period 2 onwards
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the cake is size one, so the standard Rubinstein solution applies and, as the buyer is the

proposer in period 2, the players’ payoffs at the perfect equilibrium beginning in period

2 are (γ(1 − δ)/(1 − δγ), (1 − γ)/(1 − δγ)) for the seller and the buyer respectively. If

the buyer rejects the seller’s proposal in the first period, then his expected payoff from

the next period is δ(1 − γ)/(1 − δγ), so the highest payoff the seller can get from an

agreement in the first period of bargaining is δ − δ(1 − γ)/(1 − δγ) when δ ≥ 1/2 and
1/2− δ(1− γ)/(1− δγ) if δ < 1/2. However, if the seller waits until period 2 she can get

a payoff of γ2(1− δ)/(1− δγ) by accepting the buyer’s proposal in the second period. It

is easy to see that if δ < γ, then the seller prefers to wait until period 2 to trade. (Notice

that, although the cake has a deterministic path in this example, the result will also apply

to stochastic model.)

This example shows that the players do not agree immediately when the buyer is

less patient than the seller. The proposition below extends the example by showing that,

if γ > δ, the bargaining only reaches agreement in states i where f(i) = vδ(i), or where

f(i) < vδ(i) and the seller receives a price of zero. The condition f(i) = vδ(i) implies that

the buyer will choose to consume the cake immediately after the bargaining is finished,

so there is no delay between trade and consumption. One can interpret this outcome

as the seller delaying agreement to force the buyer to follow a consumption strategy

which suits her objectives. However, the seller will not force the buyer to mimic her

consumption policy completely, because although agreement is reached in states where

the buyer expects the cake to shrink, it is not necessary for the (more patient) seller to

expect the cake to shrink at an agreement (vγ(i) = f(i)). The reason this does not happen

is because the buyer is willing to compensate the seller for an early agreement in states

where she would rather delay, vδ(i) = f(i) < vγ(i).

Proposition 4 If γ > δ, then an agreement in bargaining in state i implies

that either: vδ(i) = f(i), or vδ(i) > f(i) and the seller’s expected payoff in

state i is zero.

Proof: See the Appendix.

This proposition does not say that vδ(i) = f(i) is a sufficient condition for agreement,
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so there may be states where the impatient buyer wants to consume the cake but where

the seller does not agree. That is, from the buyer’s point of view the bargaining does not

follow an optimal extraction policy (see the above example for an instance of this). The

example below will show that the equilibria need not result in agreement at the seller’s

optimal stopping time, because the buyer is willing to compensate the seller for early

consumption. Thus, when γ > δ, the bargaining game need not result in the cake being

consumed in a state that is optimal for either of the players as individuals.

Example : The seller coming to an early agreement when γ > δ

Suppose that γ > δ and that the cake is size γ in period t = 1, but that in periods

t = 2, 3, ... the cake is size unity. Unlike the previous example, suppose that the buyer

makes the first offer, so the unique subgame perfect equilibrium in t = 2 gives payoffs

((1−δ)/(1−δγ), δ(1−γ)/(1−δγ)) to the seller and the buyer respectively. Now consider

the buyer’s proposal in the first period. If the seller agrees to his proposal, then he obtains

the cake in period 1 and he will not wait until period 2, because the current size of the

cake exceeds its future discounted value to him, γ > δ. The smallest offer that the seller

is willing to accept in period 1 is γ(1− δ)/(1− δγ). The buyer is willing to make such an

offer if his payoff from agreement in period t = 1 exceeds that from waiting until period

t = 2, that is, if γ − γ(1− δ)/(1− δγ) > δ2(1− γ)/(1− δγ). This is true. Thus, although

the seller’s optimal time to eat the cake is in period 2, she is willing to trade before this

time because the buyer is impatient and willing to reward the seller for earlier agreement.

(The calculations above also go through if the cake in period one is γ− ², for ² sufficiently
small, and in this case the seller would strictly prefer to delay eating the cake until period

two.)

4. Conclusion

I have characterised the equilibria of the Markov bargaining games. I have completely

solved for the unique equilibria when δ ≥ γ. I have also described some features of the

equilibria in the remaining cases.

References

10



Admati, A.R., and M. Perry, 1987, Strategic delay in bargaining, Review of Economic

Studies, 54, 345-364.

Dynkin, E.B., 1960, The theory of Markov processes, (Pergamon Press, Oxford).

Kemeny, J.G., J.L.Snell and A.W.Knapp, 1976, Denumerable Markov chains,

(Springer Verlag, Berlin).

Muthoo, A., 1990, Bargaining without commitment, Games and Economic Behavior,

2, 291-297.

Neveu, J., 1975, Discrete parameter martingales, (North Holland, Amsterdam).

Perry, M., and P.J. Reny, 1993, A non-cooperative model of bargaining with strate-

gically timed offers, Journal of Economic Theory, 59, 78-95.

Rubinstein, A., 1982, Perfect equilibrium in a bargaining model, Econometrica, 50,

97-109.

Shaked, A., and J. Sutton, 1984, Involuntary unemployment as a perfect equilibrium

in a bargaining model, Econometrica, 52 , 1351-64.

Appendix

Proof of Lemma 1

I will begin by considering the case where δ = 1 and the irreducible chain Π is recurrent.

Assume that G = {1}, so that τ ∗ only stops in the maximal state. Since: (a) δ = 1, (b)
for recurrent chains there is a probability one of hitting the state i = 1, (c) vδ ≤ 1, we
can deduce that vδ(i) = 1 = Eiδ

τ∗f(iτ∗).

Now consider two cases case where Π is transient and δ = 1, or where δ < 1. Since

vδ(i) is bounded, the process vδ(iτ∗∧n) is a uniformly integrable martingale. From the

definition of a martingale we have

vδ(i) = Eiδ
τ∗∧nvδ(iτ∗∧n) = Eiδ

τ∗vδ(iτ∗)1(τ∗≤n) +Eiδ
nvδ(in)1(τ∗>n).(8)

Provided I can show that the term Eiδ
nvδ(in)1(τ∗>n) converges to zero as n → ∞ I

have established the result, because Eiδ
τ∗vδ(iτ∗)1(τ∗≤n) converges to Eiδ

τ∗f(iτ∗) as n →
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∞. If δ < 1 this is immediate, because vδ ≤ 1. The remaining case has δ = 1 and Π

transient. To show that Eiδ
nvδ(in)1(τ∗>n) converges to zero in this case I will show that

v1(in) → 0 almost surely as n → ∞. First note that f(it) → 0 almost surely if Π is

transient. (By Theorem 4.28 p.102 Kemeny et al (1976), for any ² > 0 and any i ∈ N
there exists a T such that Pr[ ∃t > T s.t. it < i | i0 ] < ², hence for any ² > 0 and ν > 0

there exists a T such that Pr[ ∃t > T s.t. f(it) > ν | i0 ] < ².) Define the random variable
zt = supm≥t |f(im)|, then {zt}∞t=0 is a non-increasing sequence converging almost surely to
zero. But now notice that

0 ≤ v1(it) ≤ sups≥t|f(is)| = zt,

and since the right hand side converges almost surely to zero, so too must the left. It

follows that Eiδ
nvδ(in)1(τ∗>n) converges to zero, by the dominated convergence theorem.

Q.E.D.

Proof of Lemma 2

Assume that there is an equilibrium such that: (1) After any history where the buyer is

the proposer in state i, he proposes the payoffs (vδ(i) − b(i), b(i)) for the seller and the
buyer respectively. (2) When the buyer is responder in state i he only accepts offers that

give him a payoff of at least δPib. Now consider the seller’s optimal response. If she is

the proposer after some history, the buyer will accept any offer that gives him no less

than his continuation payoff, that is, he will accept the offer δPib. If the seller makes this

offer she will receive vδ(i)− δPib. The seller’s problem is to decide when to make an offer

that the buyer is willing to accept, that is, she faces an optimal stopping problem with a

reward function vδ(i)− δPib in state i. The seller is the proposer in alternate periods, so

she must wait two periods before she can stop the process, so (by (1)) her value function

to this optimal stopping problem is described by z the smallest solution to

z(i) = max{vδ(i)− δPib, γ
2PiPz}.(9)

By Lemma 1, if the seller offers vδ(j) − z(j) to the buyer, when she is the proposer in
state j, and accepts offers which give her a payoff of at least γPjz in state j, then she

will achieve the payoff z(i) in state i. The largest possible equilibrium payoff to the seller

in state i is vδ(i) − δPib, since the buyer would never accept an offer of less than δPib.
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Thus, z(.) = A(.), where A(i) is the seller’s largest possible equilibrium payoff in state i,

provided the initial assumption on b(.) is correct.

If the seller uses the strategy (defined by z(i)) above, then what is the buyer’s optimal

response? The seller accepts proposals from the buyer if they offer her γPiA in state i,

so the buyer also faces an optimal stopping problem with vδ(i)− γPiA as the reward in

state i. His value function for this problem is u the smallest solution to

u(i) = max{vδ(i)− γPiA, δ
2PiPu}.(10)

By Lemma 1, a strategy achieving the payoff u(i) exists. This strategy proposes that the

buyer receives u(i) when he is proposer in state i and accepts offers no worse than δPiu

in state i. But, u(i) must be his worst possible equilibrium payoff in state i, because

the seller can never expect to get more than γPiA from future play, hence u(i) = b(i).

The strategies above give the buyer a payoff of b(i) as proposer in state i and the seller

a payoff A(i) as proposer in state i and these strategies do form an equilibrium. The

initial assertion is therefore correct. An identical argument will show that there is an

equilibrium that supports the payoffs B(i) and a(i). Q.E.D.

Proof of Proposition 1

At a Markov perfect equilibrium the players will play strategies which only depend on

the current state. Let α(i) (respectively β(i)) give the seller’s (respectively buyer’s)

expected equilibrium payoff if she (respectively he) were the proposer at a Markov perfect

equilibrium in state i. Lemma 2 shows that α(i) and β(i) satisfy

α(i) = max{vδ(i)− δPiβ, γ
2PiPα},(11)

β(i) = max{vδ(i)− γPiα, δ
2PiPβ}.(12)

I will prove that there exist two functions α(i), β(i) satisfying (11) and (12). First, define

two sequences of functions {αn(i)}∞n=1 and {βn(i)}∞n=1 recursively. Let β1(i) = 0 and let
α1(i) be the smallest function satisfying h(i) = max{vδ(i), γPih}. Now define (αn+1, βn+1)
to be the smallest functions satisfying

αn+1(i) = max{vδ(i)− δPiβ
n, γ2PiPα

n+1},

βn+1(i) = max{vδ(i)− γPiα
n, δ2PiPβ

n+1, 0}.

13



First notice that α1 ≥ α2 and that β1 ≤ β2. Also, given that βn ≥ βn−1 ≥ ... ≥ β1

and αn ≤ αn−1 ≤ ... ≤ α1 the construction ensures that αn+1 ≤ αn and βn+1 ≥ βn.

By induction, therefore, {αn(i)} is a decreasing sequence of functions bounded below by
zero and {βn(i)} is an increasing sequence of functions bounded above by unity. These
sequences converge, by monotone convergence, so there exists limits α and β satisfying

(11) and (12).

I must also describe the strategies at a Markov perfect equilibrium to show that the

functions α(i), β(i), constructed above, are the equilibrium payoffs. By (11), α is the

solution to a stopping problem with vδ(i)− δPiβ as the reward in state i, where the seller

can only stop the process in even periods. By Lemma 2, a stopping time exists that gives

the expected payoff α(i) in state i. This stopping time is the optimal strategy for the

seller. A similar strategy can be constructed for the buyer. Q.E.D.

Proof of Proposition 2

Suppose the game has reached a state where vδ(i) = vγ(i) = f(i) and the seller proposes a

bargain. Let x(i) be her expected payoff in state i and let y(j) be the function describing

the buyer’s payoff if he rejects her offer and play moves to state j. Suppose that the

proposition is false, that is, agreement is not reached in state i and that the players

strictly prefer to delay agreement, δPiy + x(i) > vδ(i).

The sum x(i) + δPiy gives the total of the players’ expected payoffs from future

play. Let the stopping time τ describe the times when players reach agreement after

state i. In the states it where the players do agree a bargain their total payoff is vδ(it).

Suppose that both players discounted payoffs at the rate δ, then their total expected

payoffs (x(i)+ δPiy) could be calculated as Ei[δ
τvδ(iτ )], but instead we can find an upper

bound on total expected payoffs, x(i) + δPiy ≤ Ei[κτvδ(iτ )], where κ = max{δ, γ}. By
combining the previous inequalities, and using the fact that vδ(i) = vγ(i) = vκ(i) = f(i),

we get

vδ(i) < x(i) + δPiy ≤ Ei[κτvδ(iτ)] ≤ vκ(i) = vδ(i),

where Ei[.] denotes an expectation conditional on the initial state of the stochastic process

being i. This is a contradiction, so the players are willing to reach an agreement in state

i. Q.E.D.
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Proof of Proposition 3

By Lemma 2 the bounds on the sets of equilibrium payoffs satisfy

a(i) + δPiB ≥ vδ(i), A(i) + δPib ≥ vδ(i),

b(i) + γPiA ≥ vδ(i), B(i) + γPia ≥ vδ(i).

Moreover, there is an equilibrium where the seller receives the payoffs A(i) (respectively

a(i)) when the buyer receives payoffs b(i) (respectively B(i)). The left hand side of these

inequalities gives the sum of the players’ expected payoffs in the states in which they

agree. At the equilibrium (a(i),B(i)) in state i the total expected payoff to the players

is B(i) + γPia, in states when the buyer makes an offer. This can be estimated by: (1)

Calculating the stopping time τ ∗ determined by the states in which the players expect to

reach agreement. (2) Adding the players’ payoffs at the states they reach agreement, to

get vδ(iτ∗). (3) Discounting this back at the rate δ. This gives an estimate Ei[δ
τ∗vδ(iτ∗)].

However, the estimate of total payoffs, Ei[δ
τ∗vδ(iτ∗)], overestimates the seller’s payoffs

because δ ≥ γ, thus

Ei[δ
τ∗vδ(iτ∗)] ≥ a(i) + δPiB ≥ vδ(i), Ei[δ

τ∗vδ(iτ∗)] ≥ A(i) + δPib ≥ vδ(i),

Ei[δ
τ∗vδ(iτ∗)] ≥ b(i) + γPiA ≥ vδ(i), Ei[δ

τ∗vδ(iτ∗)] ≥ B(i) + γPia ≥ vδ(i).

But (1) implies that vδ(i) ≥ Ei[δτ
∗
vδ(iτ∗)] for all i ∈ N , thus we have

vδ(i) = a(i) + δPiB = A(i) + δPib = b(i) + γPiA = B(i) + γPia.

It is possible to solve these equations for a(i), A(i), b(i), B(i) by substitution. If this is

done one gets two equations: the one in α(i) is satisfied by both A(i) and a(i), the other

in β(i) is satisfied by b(i) and B(i).

α(i)− γδPiPα = vδ(i)− δPivδ, ∀i,(13)

β(i)− γδPiPβ = vδ(i)− γPivδ, ∀i.(14)

If γ < 1, then these can be solved by repeated substitution to give a unique positive

solution, which implies α = a = A and β = b = B. If γ = δ = 1 and the Markov chain

Π is transient, then repeated substitution can also be used because Π2n → 0 as n → ∞
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(Kemeny et al (1976) p.107), the sum increases (as vδ − δPivδ ≥ 0) and is bounded above
by vδ, so (by monotone convergence) the repeated substitution converges.

α =
∞X
n=0

γnδnP 2n(vδ − δPivδ)

β =
∞X
n=0

γnδnP 2n(vδ − γPivδ).

Thus, there is a unique solution to the above equations (a(i) = A(i) and b(i) = B(i)),

and the game has unique subgame perfect equilibrium payoffs. This equilibrium is also

Markov perfect.

Agreement in the bargaining is immediate only if no player benefits from delay, that

is if α(i) ≥ γ2PiPα and β(i) ≥ δ2PiPβ.

α(i)− γ2PiPα ≥ α(i)− γδPiPα = vδ(i)− δPivδ ≥ 0,

β(i)− δ2PiPβ = (vδ(i)− γPiα)− δ2PiP (vδ − γPα)

= (vδ(i)− γPiα)− δ2PiPvδ + γδ2PiP
2α

= (vδ(i)− γPiα)− δ2PiPvδ + δPi[α− vδ + δPvδ],

= (vδ(i)− δPivδ) + (δ − γ)Piα ≥ 0.

Q.E.D.

Proof of Corollary 1

The equilibrium payoffs in this case satisfy: (1) α(i) + δPiβ = vδ(i) ≥ vγ(i), (2) β(i) +
γPiα = vδ(i) ≥ vγ(i). This says that the sum of the players’ payoffs in state i attains the
maximum payoff that either of them could achieve in the one-person stopping problem.

So, it is impossible to choose a stopping time and an allocation that makes both players

better off. Q.E.D.

Proof of Proposition 4

Without loss of generality, suppose that the game is in state i of an equilibrium and that

the seller is proposing an agreement. If the buyer rejects her proposal then the game

moves to state j. Let y(j) be his expected payoff in state j if the bargain in state i is

16



rejected. Also, let z(j) be the seller’s expected payoff if she rejects the buyer’s offer in

state j tomorrow. Then, in equilibrium y(j) + z(j) ≥ vδ(j) for all j, because otherwise
the buyer could propose a lower price in state j. Thus, if the seller’s offer in state i today

is rejected, her expected payoff is at least γPi(vδ − y) ≤ γPiz. The buyer’s expected

payoff, if he rejects the offer in state i, is δPiy. If the players agree in state i, then the

sum of their discounted expected future payoffs is no greater than their current payoff.

Rearranging this we get

vδ(i) ≥ γPi(vδ − y) + δPiy = δPivδ + (γ − δ)Pi(vδ − y) ≥ δPivδ.

There are two possibilities, if players agree in state i. Either, vδ(i) > δPivδ in state i,

which implies vδ(i) = f(i) by (1), so the buyer consumes the cake immediately. Or,

vδ(i) = δPivδ, from above, this implies Pi(vδ − y) = 0. That is, the seller offers the

buyer a payoff equal to what he gets in the one person stopping problem commencing in

state i and the seller receives nothing. If the seller receives nothing, this equilibrium is

equivalent (in payoff terms) to one where the buyer rejects her offer in state i and waits

until f(it) = vδ(it), then he receives all of the cake and consumes it immediately. Thus,

there is a payoff-equivalent equilibrium where players agree only when f(it) = vδ(it).

Q.E.D.
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