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Abstract

The sensitivity of ATLAS to processes characterised by high-energy hadronic jets has been

investigated, with analysis of both theoretical and experimental sources of uncertainty. This anal-

ysis has been applied in particular to a study of a quark compositeness model.
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Chapter 1

Introduction

A number of possible new physics scenarios at the LHC have signatures including high-p⊥ jets,

that is, high-momentum groups of strongly-interacting particles (hadrons) given off at a large

angle relative to the axis of the colliding beams. One of these scenarios is the interaction between

constituent particles making up composite quarks (which are assumed to be elementary in the

Standard Model). Two main sub-analyses are presented: firstly, a study of the sensitivity of

ATLAS to quark compositeness, with consideration given to both theoretical and experimental

sources of error; and a study of jet cross-sections calculated at next-to-leading order, with the

emphasis here on two kinds of theoretical uncertainty.
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Chapter 2

Theoretical overview and

motivation

2.1 The Standard Model of particle physics

In the early 1970s the Standard Model of particle physics began to emerge as a coherent picture

of the relationship between the known elementary ‘matter’ particles and the quanta of the various

fields by which they interact. The so-called matter particles are more properly known as fermions

(although only three of the them make up ‘matter’ as we normally understand the term), while

those that mediate forces between the fermions are called bosons.

The Standard Model describes 12 fermions, that is, 12 particles with a spin (a sort of intrinsic

angular momentum) of 1
2
, in units of Planck’s Constant 1. Six of these are quarks, which take part

in all three kinds of interaction described by the Standard Model; the strong, weak and electro-

magnetic forces. There are three so-called ‘up-type’ quarks, namely the u (‘up’) quark itself and its

heavier relatives, the c (‘charm’) and t (‘top’) quarks: all have an electric charge of + 2
3

in electronic

charge units. The others are the ‘down-type’ quarks; these are the d (‘down’), s (‘strange’) and b

1Strictly speaking, the fundamental quantum unit of angular momentum is the reduced Planck’s Constant, h̄,

signifying Planck’s Constant h divided by 2π.
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(‘bottom’) quarks; they have a charge of − 1
3
.

Quarks are never observed as free particles as they are subject to confinement, meaning

they are only ever found inside composite particles called hadrons. These come in two varieties:

mesons, consisting of a quark bound to an antiquark (qq), and baryons/antibaryons, consisting

of three quarks/antiquarks (qqq/qqq). All quarks possess a property known as colour, which is a

form of charge analogous to electric charge (see Section 2.1.2). Hadrons are overall colour-neutral

or ‘white’2, so nuclear forces between them are a residual phenomenon analogous to the van der

Waals force between two overall neutral atoms. The two lightest baryons are the familiar proton

and neutron of normal nuclear matter.

There are three charged leptons, which feel the electromagnetic and weak forces but not the

strong force; these are the electron, e−, and its heavier cousins, the µ− and τ−. Finally there are

three neutrinos, νl, each associated with a particular charged lepton (l = e, µ or τ), which feel

only the weak force and are consequently extremely hard to detect: at the LHC experiments, their

presence will be inferred from ‘missing’ energy and momentum, since they will exit the detectors

without interacting.

The other ingredients of the Standard Model are called gauge bosons, which mediate exchanges

of momentum between the fermions. They all have one unit of spin. The electromagnetic force

is mediated by a single particle, the photon, denoted γ; this is the quantum of electromagnetic

radiation, such as visible light. It has neither mass nor electric charge, imparting an infinite range

to the electromagnetic force. There are three so-called massive vector bosons, the neutral Z0 and

the charged W+ and W−; these three bosons together mediate the weak force, which is responsible

for certain kinds of radioactive decay and is vital to the thermonuclear processes that power stars.

The theories of the electromagnetic and weak forces were unified in the early 1960s into a theory of

electroweak interactions. Finally there are eight massless gluons - identical except for their colour

2Note that mesons exist in a superposition of colour-anticolour states ( 1
√

3
(rr + bb + gg)). While a simple

combination like rr would be colour-neutral, it is not invariant under transformations in the relevant symmetry

group and is therefore not a colour singlet; this illustrates the shortcomings of the ‘colour mixing’ analogy to charge

in SU(3).
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Figure 2.1: The Standard Model of particle physics.

charge - which mediate the strong force that binds quarks together inside hadrons. The fermions

and gauge bosons of the Standard Model are tabulated in figure 2.1.

In addition to the fermions named above, the Standard Model includes antiparticle partners to

all of them, which have identical masses and lifetimes but opposite quantum charges. The gauge

bosons too have antipartners, but these are not listed separately; the photon and Z0 are their own

antiparticles, the W+ and W− are antiparticles of each other and the antiparticle of any given

gluon will be another gluon in the octet.

The final missing piece of the Standard Model is the Higgs boson, a scalar (i.e. spin-0) particle

envisaged as the quantum of the field proposed to give rise to spontaneous breaking of the elec-

troweak symmetry via the so-called Higgs Mechanism. This was originally proposed to explain the
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masses of the Z0 and W± (in contrast to the masslessness of the photon) and is also thought to

give rise to all the other ‘bare’ masses in the Standard Model 3. The search for the Higgs boson -

or bosons - is one of the main motivations for the LHC.

Note that one form of interaction is not described by the Standard Model at all: gravity. The

search for a theory that unifies gravity with the quantum field theories of the Standard Model is

the single greatest challenge facing theoretical physicists, and any theory that does achieve this

will be a good candidate for the long-sought ‘theory of everything’.

2.1.1 Gauge Symmetries

Central to the Standard Model is the concept of gauge symmetry.4 A symmetry in this sense is

a transformation on a field that leaves the Lagrangian of the field invariant. Symmetries can be

global, meaning they are applied identically to the field at all points in space, or local, meaning the

transformation is varied throughout space; gauge invariance is an example of local symmetry. When

this is applied to a matter field the derivative term in the original Lagrangian must be modified

to include a gauge field; this field may then be formally identified as the interaction between

the particles of the original field. In the Standard Model, the field of the original Lagrangian is

fermionic in nature, while the interaction field is bosonic. There is a dimensionless number called

the coupling constant (though, as we shall see, they are not strictly constant) that quantifies the

strength of the coupling between the fermions and bosons; in the electromagnetic interaction, it is

called α (sometimes αEM ) and is related to the electronic charge by:

α =
e2

4πε0h̄c
, (2.1)

in which e is the electronic charge, c the speed of light in vacuo and ε0 the permittivity of free

space5; the expression is simply e2/4π in natural units6. The equivalent constant for the strong

3There are other sources of particle mass; for instance, almost all the mass of protons and neutrons comes from

the energy of the gluonic field binding the (practically massless) quarks together.
4This discussion is based largely on [1].
5A fundamental property of the vacuum, measured empirically to be about 8.85 × 10−12Fm−1

6In this convention fundamental constants such as c and h̄ are set equal to 1, so that mass and momentum both

have the dimension of energy and units of eV (or MeV etc.) and angular momentum is dimensionless.
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force is denoted αs, and its behaviour with varying distance scales is of vital importance in the

phenomenology of the strong interaction; see section 2.1.3.

The form taken by the gauge symmetry will depend on the number of components to the

fermionic field. For example, in electromagnetism there is just a single type of charge, so the field

describing the electron (as the ‘prototypical’ charged particle in Dirac’s original formulation) has a

single component; thus the gauge symmetry in quantum electrodynamics (QED) is a multiplication

by a single (complex) scale factor of magnitude 1, which forms the group U(1). This is called the

gauge group of the theory. In quantum chromodynamics (QCD), the theory that describes the

strong interaction, the fermionic field has three components, so its gauge group is SU(3); this is the

group of dimension-3 special unitary matrices, ‘special’ indicating that they have a determinant of

+1.

As may be expected from the simple form of its gauge group, QED is the simplest gauge theory,

although its development served as a prototype for more complex theories such as QCD. In natural

units, the Lagrangian of the electron field, based on the Dirac equation, is

L = ψ(iγµ∂µ −m)ψ (2.2)

where m is the electron mass, ψ is its wave-function (the electron field) and ψ is the wave-function’s

conjugate. Repeated indices in a single term are implicitly summed over.

The symmetry for this system is ψ 7→ eiθψ (the U(1) symmetry), where θ is just a phase change

of the wave-function; if θ = θ(xµ), the symmetry is local, so that ∂µθ is nonzero. This implies

that ∂µψ in the Lagrangian must be replaced with something a little more complex; the required

operator is called the covariant derivative, Dµ, and its form is

Dµ = ∂µ − ieAµ (2.3)

where e is the electronic charge and Aµ is the gauge field, sometimes written Aµ(x) to explicitly

show its locality. In the case of QED, it is identified with the electromagnetic four-vector potential.

This leads to the so-called interaction Lagrangian:

Lint = eψγµψAµ = JµAµ (2.4)
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where Jµ is the four-vector electric current density, related to the electromagnetic field strength

tensor by 4πJν = ∂µF
µν . This tensor is in turn derived from the gauge field: Fµν = ∂µAν −∂νAµ.

This object can then be inserted into the original expression to obtain the full Lagrangian for QED:

LQED = ψ(iγµDµ −m)ψ − 1

4
FµνF

µν . (2.5)

A somewhat similar prescription may be used to gauge the three quark fields associated with the

three colour charges in QCD.

2.1.2 The theory of strong interactions

The interaction of quarks and gluons is described in the Standard Model by the theory of quantum

chromodynamics (QCD), named in an analogous way to quantum electrodynamics. Although there

are some similarities between QCD and QED, such as massless gauge bosons, there are two very

important differences; whereas in QED there is only one type of charge, QCD has three; and as a

result, the gauge bosons of QCD carry charge as well, whereas in QED the photon is electrically

neutral. The reason for this is explained below.

In the language of gauge theory, QCD is based on the non-Abelian symmetry group7 SU(3), so

the particles that form the group’s fundamental representation - the quarks - have three kinds of

charge. These were named red, green and blue in analogy to the primary colours of light-mixing

theory; however, it should be noted that this has nothing to do with colour in the literal sense.

The antiparticle of a quark with a certain colour simply has the ‘opposite’ colour; for example, the

antiparticle of a red u quark is an anti-red u.

Gauge theories described by an SU(n) symmetry group have n2 − 1 degrees of freedom, so the

adjoint representation of SU(3) is an octet; namely, the eight gluons. They have colour charges

of a different sort from the quarks; for example, a quark with colour r could give off an rg gluon,

becoming a g-coloured quark in the process; or a g-coloured quark could annihilate with an r

antiquark to produce a gr gluon. The triple gluon vertex, by which two gluons fuse to form a

single gluon or a gluon splits into two, has no analogue in QED since the latter theory has only one

7Meaning transformations under the symmetry group do not commute, as they do in the case of U(1).
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degree of freedom, which is ‘used up’ by the one type of charge (i.e. positive or negative on a single

axis of charge) so there is no way for a photon to have a different kind of charge: no orthogonal

axis for the photon’s charge to lie on.

The Lagrangian describing QCD is as follows:

LQCD = q(iγµ∂µ −m)q − g(qγµTaq)G
a
µ − 1

4
Ga

µνG
µν
a (2.6)

in which q is the quark field, g is interaction strength, γµ are the Dirac matrices, Ga
µ are the eight

gauge fields (gluons) and Ta are the Gell-Mann matrices, related to the structure of SU(3). In this

Lagrangian, the covariant derivative takes the form Dµ = ∂µ + igTaG
a
µ.

The term Ga
µν is the gluonic field tensor, analogous to the electromagnetic field tensor Fµν in

QED, but with an extra term that represents the self-interaction of the field. It is given by:

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gfabcG

b
µG

c
ν (2.7)

where the Gb
µG

c
ν is the self-interaction term and fabc are the structure constants, derived from the

commutation relations (Lie algebra) of the generators of SU(3):

[ga, gb] ≡ gagb − gbga = ifabcg
c. (2.8)

The Gell-Mann matrices T a are a particular conventional choice for ga.8

2.1.3 The running coupling constant

The strong coupling ‘constant’ is not actually constant, but varies with the distance between

strongly-interacting particles. This is usually expressed as a dependence on some energy scale

(often, in practice, an energy scale squared) rather than on a distance; the two quantities may be

thought of as inversely proportional, as high energies correspond to short distances.

Since gluons also carry strong colour charges, they can interact with each other in a way that

has no analogue in QED. One result of this is that the strong attraction between any two quarks

gets weaker as the quarks are brought together (a phenomenon known as asymptotic freedom)

8The generators ga are not to be confused with the interaction strength g, which is related to the strong coupling

constant αs by αs = g2/4π.
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and, conversely, very strong as they are pulled apart. Eventually enough latent potential energy is

stored in the ‘stretched’ colour field lines (self-interacting gluons) that new quark-antiquark pairs

are produced, immediately forming new hadrons with the two original quarks.

The scaling of the coupling constant with an energy scale µ is given by:

αs(µ
2) ≈ 1

β0ln(µ2/Λ2
QCD)

(2.9)

where β0 is a constant computed by Wilczek, Gross and Politzer [2] and ΛQCD is the QCD scale,

measured experimentally to be approximately 217 MeV. One consequence of this is that many

kinds of calculation involving the strong interaction may be made using the approximation that

the three lightest quarks (u, d and s) are effectively massless, as their masses are below ΛQCD,

while the masses of the c, b and t quarks must be taken into account.

The behaviour of αs(µ
2) with energy is a result of vacuum polarisation, and is responsible for

both asymptotic freedom and confinement. In QED, this has the effect of increasing the strength

of the electromagnetic coupling constant αEM at short distances, as virtual e−e+ pairs latent

in the vacuum, which normally serve to shield the ‘bare’ electric charges of pointlike particles,

have less effect on the interaction between the charges of any two real particles; there is less

shielding at shorter distances. In QCD, there is a similar shielding effect due to virtual quark-

antiquark pairs but a stronger ‘anti-shielding’ effect due to virtual gluons; this effect decreases as

any two real quarks are brought together, leading to the strong coupling constant αs asymptotically

approaching zero as the distance approaches zero: see figure 2.2. Conversely, the potential increases

as the quarks are pulled apart. For this reason perturbative calculations in QCD (‘pQCD’ for short)

are possible in high energy regimes but not at low energies, or equivalently large distances; the

opposite is the case in QED.

2.2 Compositeness models

Since the discovery of atoms in the late 19th century, matter has repeatedly been revealed to consist

of smaller and more elementary particles that those previously thought to be fundamental - first
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Figure 2.2: Asymptotic freedom and confinement in the strong interaction. αs(MZ) is the value of

the strong coupling constant at energies equal to the mass of the Z0 boson, 91.1876 GeV [15]; Q

is the energy scale of the interaction.
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with Rutherford’s discovery of the nucleus around 1910, followed by the discovery of the proton

and neutron between the World Wars, and most recently unequivocal evidence for the existence of

quarks, which began to emerge in the late 1960s. It is therefore reasonable and entirely natural to

ask whether quarks themselves are truly fundamental, or whether they too possess substructure.9

The concept of particles existing on a smaller scale than electrons first appeared in 1948, in a

reprint of E.E. Smith’s science fiction novel of 1930, Skylark Three, which mentions “sub-electrons

of the first and second type”, the latter of which apparently had properties that in some sense

anticipated the graviton [12]. However, the earliest scientific investigation of hypothetical particles

existing on a scale smaller than those of the Standard Model dates from 1974, when Abdus Salam

and Jogesh Pati [13] proposed the existence of particles they named ‘preons’, which were postulated

to make up the fermions of the Standard Model (most of which were known at the time). It was

hoped that a relatively small number of types of preon could explain the large number of suppos-

edly elementary particles, in much the same way that the proton and neutron make up the 3,000 or

so known nuclides (elements and isotopes), and that just a few elements may be combined to make

countless organic compounds. It was also hoped that fermion substructure could explain a number

of other phenomena inexplicable in the Standard Model, such as the huge range of particle masses

- some 11 orders of magnitude between the top quark and the current best value for the lightest

neutrino 10 - and the apparent ‘redundancy’ of three generations of fermions, identical except for

mass and width (inverse lifetime). Additionally, attempts were made to used the preon model as a

starting point for a Higgs-less theory of electroweak symmetry breaking, a Grand Unified Theory

to unify the electroweak and strong interactions and even a theory of quantum gravity.

One interesting feature of compositeness models is that they generally have experimental fea-

tures which are largely or wholly independent of the models themselves, depending instead only on

9It should be noted that while some theorists believe superstrings to exist on a much smaller length scale than

that normally associated with quarks and other Standard Model particles, superstrings (in these models) do not

‘make up’ quarks in the same way that quarks make up hadrons; each particle is believed to be a single string,

it’s just that the strings exist on a scale far smaller than that currently or forseeably probeable with conventional

accelerator experiments.
10Top quark mass: 171.2±2.1 GeV [14]; νe mass: < 2 eV [15]
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the scale at which the Standard Model particles start to exhibit substructure. The word ‘model’ is

used rather than ‘theory’, since these hypotheses are not generally advanced enough to include a

Lagrangian from which dynamical equations could be derived. For completeness, a brief overview

of the main models of compositeness are given below:

Harari’s ‘Rishon’ Model [16] postulates a level of sub-Standard Model11 elementary parti-

cle called rishons, which come in just two varieties; T (for ‘Third’) and V (for ‘Vanishes’) and their

antiparticles, denoted t12 and v. T s have a charge of + 1
3

and V s are uncharged, while both kinds

of rishons have a spin of 1
2
, so the first-generation SM fermions may be constructed from triplets

of rishons as follows:

• TTT - e+

• V V V - νe

• TV V /TV T/V TT - u-type quarks (three permutations provide three QCD colour

charges)

• TTV /V TV /V V T - d-type quarks

Antiparticles of the above fermions may be obtained simply by substituting t for T and v for

V in the above combinations. The second and third generations of fermions are assumed to be

excited states of the first generation, just as the ρ mesons may be considered excited states of the

π mesons. The vector bosons consist of six rishons; for example, the W+ (W−) is made up of

TTTV V V (tttvvv); this allows the violation of lepton and baryon number (L and B) by processes

such as u+u→ d+e+ via an intermediate state with a charge of + 4
3
; however, the quantity B−L

is conserved. 13 Rishons are assumed to be bound to each other by a ‘hyperstrong’ force acting on

their ‘hypercolour’ charge; the existence of gauge bosons responsible for this force is not discussed.

Also, particle masses are not explained or predicted.

11Henceforth ‘SM’.
12Not to be confused with the t, or ‘top’ quark.
13A phenomenologically identical process is predicted in some GUTs and has been the subject of extensive searches

- all negative so far - for proton decay.
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Bilson-Thompson’s Topological Model [17] considers preons not as pointlike elementary par-

ticles but as topological features of a quantised spacetime; this approach show some promise in

linking the phenomenology of particle physics to the theory of loop quantum gravity, which starts

from the premise that spacetime itself may be quantised as a gauge field theory, just as particle

fields are quantised and gauged in ‘standard’ field theories. So far, Bilson-Thompson has been

able to model the first generation of fermions with correct parity properties by treating them as

composites of preons which are in some sense ‘braids’ of spacetime. However, this model too lacks a

Lagrangian to describe interactions, and it has not yet been possible to prove that the SM particles

modelled are indeed fermions.

Bilson-Thompson’s model does, however, provide a neat way to sidestep a problem that has

plagued earlier preon models, namely the very large masses they tend to predict for composite

particles, including those known to be very light, such as electrons and neutrinos. This comes

about as a result of the Heisenberg Uncertainty Principle (HUP), which implies that particles

confined inside a small volume (meaning they have a small uncertainty in their position) must

necessarily have a large uncertainty in momentum. As a consequence of this, the expectation value

of the particles’ absolute momentum is large, meaning they have a large kinetic energy and, by

mass-energy equivalence, the volume in which they are confined must have a large mass density.

Consider, as an example of a simple generic preon model, a bound state of three massless preons

held together by some ‘hypergauge’ field to form an electron; using the currently accepted lower

bound on the compositeness scale (denoted Λcomp) of the electron of around 10 TeV [15], this gives

a maximum electron ‘radius’ of

re ≤ h̄c

10TeV
≈ 2 × 10−20m (2.10)

which may be thought of as the largest allowed uncertainty in position (∆x) for the preons. From

the HUP, the preons therefore have an uncertainty in momentum given by

∆p =
h̄

2∆x
=

h̄

2re
=

h̄

2(h̄c/Λcomp)
≈ 5TeV/c. (2.11)
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If this value is multiplied by 9 for the three space dimensions and the three preons, the estimated

mass for the composite electron seems to be some eight orders of magnitude greater than the known

mass of the electron, 511keV/c2 [15]. While previous preon theories have attempted to cancel this

anomalously high mass with large negative binding energies, Bilson-Thompson’s preons are not

bound by a gauge interaction but exist on the Planck scale, far below the scales of effective field

theories [17], and are in fact bound by quantum topology, according to which topological invariants

correspond to conserved quantum numbers. However, if this is the case, it seems difficult to imagine

any way of directly probing this structure in the standard collider paradigm due to the disparity

between the energies of colliders and the Planck energy.

2.2.1 Compositeness interactions

Feynman diagrams for two possible kinds of event involving new physics at the quark or sub-quark

level are shown in figure 2.3. In the upper diagram, quark substructure is revealed in an s-channel

exchange involving preons (left), and a new interaction is revealed by t-channel exchange of a novel

force carrier (right). Here the invariant mass of the hard interaction, M, is of the same order as

Λcomp. In the lower diagram, the internal propagator essentially disappears as M is much larger

than Λcomp and both types of interaction appear as a ‘contact interaction’ (quartic coupling).

The concept of the contact interaction is not limited to searches for fermion substructure but is

also used in searches for other new physics processes, such as additional heavy gauge bosons or

extra-dimensional graviton exchange, where experimental signatures are sought despite the en-

ergy exchange of the interaction being well below the mass scale of the new particle, resonance

or dimension under consideration. It should be noted that the failure so far of any experiment

to find evidence in favour of quark substructure does not rule out such theories, as it may be

that energies so far achieved by colliders are much lower than the characteristic binding energy

of the preons within the apparently elementary known particles; after all, if a beam of electrons

is incident on a proton target with energy lower than the binding energy of a proton, the latter

will appear elementary as the quark/gluon substructure is inaccessible and a simple elastic scatter
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Figure 2.3: Preon-level interactions observed as an apparent contact interation.

occurs. Thus experimental searches for compositeness may be thought of as setting upper bounds

on the distance scale of the substructure; to date, the current experimental lower bound on the

energy scale of quark compositeness of the sort considered in this analysis is 2.7 TeV [15].

2.3 Experimental signatures of compositeness

If hadrons collide with a partonic kinetic energy in the centre-of-mass frame (henceforth ‘CoM’)

approaching the binding energy of the preons, sub-quark interactions will occur, whereby ‘naked’

preons come into contact with each other either by co-annihilation or exchange of a preon-level

force mediator, allowing quark substructure to become apparent. An important experimental

signature of this will be an excess of high-p⊥ jets (over the rate predicted for pointlike quarks)

in the central pseudorapidity region14, with less of an excess at higher absolute rapidity. The

reason for this may be explained by analogy to the experiment by which Rutherford discovered

the nucleus. The ‘plum pudding’ model of the atom prevalent at the time, in which electrons

14See section 4.4 for a definition of this term
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and positive charges were uniformly distributed throughout the atom, suggested that a stream

of charged particles passing through a thin layer of material should have been deflected through

small angles as they negotiated the ‘lumpy’ potential landscape in the atoms. What was instead

discovered was that the vast majority of α particles incident on thin (∼200 atoms thick) gold foil

passed through without apparent interaction, but that a few were deflected through very large

angles, some even being backscattered in the direction of the source. Rutherford described this

result as astonishing “...as if you fired a 15-inch shell at a piece of tissue paper and it came back

to hit you”. [18] The only possible explanation was that a few of the massive, high-momentum α

particles were being deflected by an even more massive, positively charged and very small particle

within the atom; this was soon established as the nucleus.

By analogy, a ‘target’ proton may be considered to contain a cloud of partons, so that ‘test’

quarks in an approaching proton are most likely to be involved in a glancing collision, that is, a

low-µ2 t-channel gluon exchange, with only a few taking part in head-on collisions with high µ2 (the

square of the momentum exchanged in the process). If the quarks are not considered pointlike but

have substructure, head-on collisions between preons are more likely, simply because each quark is

composed of several of them. These high-µ2 interactions produce jets with large energy at low |η|,

and therefore high p⊥.
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Chapter 3

The Large Hadron Collider

The Large Hadron Collider (figure 3.1) currently undergoing commissioning at the European Or-

ganisation for Nuclear Research (CERN) on the Swiss/French border will be the world’s most

powerful particle accelerator/collider when it starts operating at design performance in 2009. Two

beams of protons will circulate in opposite directions, each with a kinetic energy of 7 TeV in the

laboratory rest frame, giving a CoM energy of 14 TeV. This is an order-of-magnitude increase

from the 1.96 TeV CoM energy achieved by the current most powerful collider, FNAL’s Tevatron

p − p machine in the United States. Just as significantly, the LHC at design performance will

have an instantaneous luminosity of 1034cm−2s−1, an increase of two orders of magnitude over

the Tevatron1. The machine is being constructed in the 27 km-circumference tunnel dug for its

predecessor as CERN’s main accelerator, the Large Electron-Positron collider (LEP), which was

decommissioned in 2000 after a long and scientifically fruitful working life.

The protons, travelling in 2,808 bunches of approximately 1011, will be injected into the LHC

from the SPS (Super Proton Synchrotron) at an energy of 450 GeV. They will be accelerated to

7 TeV by radio-frequency cavities and steered by superconducting magnets, then made to col-

lide head-on at four points around the LHC ring. Each of these interaction points lies at the

centre of an array of high-precision detector components, collectively known as an experiment.

1A ‘Super-LHC’ upgrade planned for 2015 will increase this by a further order of magnitude.
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Figure 3.1: The Large Hadron Collider.

Two of these are specialised experiments; ALICE, which is dedicated to studying the results of

heavy ion collisions after the LHC’s proposed conversion to a Pb-Pb collider, and LHCb, whose

main purpose is to make precision measurements of the phenomenon of charge-parity violation in

B mesons. The other two experiments are more ‘general purpose’ in scope; these are CMS and

ATLAS. Amongst their intended physics goals are the discovery of the Higgs boson, required in

the Standard Model to impart mass to other particles; heavy partners of the known SM particles

predicted by supersymmetry, which may account for the so-called ‘dark matter’ thought to make

up most of the matter in the Universe; and the investigation of a host of ‘exotic’ scenarios, such

as ‘large’ extra dimensions, leptoquarks, quark compositeness, extra fermion families and so on.

A fifth, much smaller experiment - TOTEM - shares an interaction point with CMS and will be

used to measure, amongst other things, the total cross section of the pp collisions, which will be

an important quantity in the analysis of data from the other experiments.
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3.1 Hadron collider physics

The physics of hadron colliders is inherently more complex than that of electron-positron colliders

such as LEP, in that the particles undergoing collision are not themselves elementary, but are

composed of several types of (apparently) elementary constituents, collectively known as partons.

These are the quarks and gluons that make up (in the LHC’s case) the protons in each beam. In

a collision, the two protons have the following momentum 4-vectors:

P
µ
1 = (E, 0, 0, pz); P

µ
2 = (E, 0, 0,−pz), (3.1)

in which the z-axis is defined as the direction of one of the beams and the µ superscript runs from

0 to 3 for the four space-time components. Note than, since E2 = p2 + m2, in which p is the

momentum 3-vector, E ≈ |p| is a very good approximation, as the CoM energy of each proton is

far larger than its invariant mass-energy (‘rest mass’). In practice, it is often convenient to use the

so-called Mandelstam variable s, which is the squared total energy:

s = P
µ
1P2µ, (3.2)

which of course has the value of (14TeV)2 at the LHC.

However, the momentum quantities involved in the actual collision (the ‘hard subprocess’) are

not ±pz, but the quantities x1pz and x2(−pz), in which x1 and x2 are the fractions of the incoming

protons’ momenta carried by the partons involved in the hard scatter. If each proton has kinetic

energy E = |pz| (using the above approximation), the total squared energy involved in the hard

subprocess is ŝ = x1x2s. The probability of a parton having a particular value of x is described

by the probability density function f(x), called a parton density function (PDF).

3.2 Parton densities

Parton densities are an important source of theoretical uncertainty in hadron collider experiments,

and as such major efforts are continually being made to improve our knowledge of them. One

of the main difficulties is that the functional form of a PDF cannot be be calculated analytically
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using our current knowledge of QCD; instead, an empirically-motivated function is selected as an

informed guess, and then fitted to data points extracted experimentally. The following formula

gives the hadronic cross-section in terms of partonic cross-section and parton density functions:

σ(µ2) =

nf
∑

i,j=1

∫ 1

x1=0

∫ 1

x2=0

σ̂1,2→X (p1, p2, αs(µ
2), µ2/µ2

F )f i
1(x1, µ

2)f j
2 (x2, µ

2)dx1dx2, (3.3)

in which σ is the hadronic cross-section, σ̂1,2→X is the partonic cross-section (for partons in hadrons

1 and 2 going to some final state X), f i
1,2(x1,2, µ

2) is the PDF for partons 1 and 2, µ2
F is the fac-

torisation scale (see 7.2.4) and nf is the number of flavours being considered (typically four or

five). The PDF sets used in this analysis are the ZEUS-JETS 2005 [3] and CTEQ6.1M [4] sets.

More details on the techniques used to extract and fit PDFs can be found in Appendix A.

Although the proton has been known to science for close to a century, its properties have been

far from exhaustively investigated. It became clear in the early 1960s that protons were not el-

ementary particles, but were made up of as-then unknown constituents, which Richard Feynman

named ‘partons’. After Murray Gell-Mann’s quark hypothesis (which was independently put for-

ward by George Zweig) became increasingly accepted in the physics community through the late

1960s and early ’70s, partons came to be identified with quarks and the gluons that hold them

together. Experimental verification of quarks and gluons - at SLAC in 1968 and DESY in 1979,

respectively - confirmed this identity.

The observation that first suggested hadrons are not elementary particles was dubbed ‘scal-

ing’. This is the phenomenon of the structure function F2 (a coefficient in the amplitude for e−p

scattering) depending, to a very good approximation, only on x and not on the energy scale of

the interaction, µ. (see Appendix A). This could be explained by postulating pointlike elementary

particles inside a proton of finite physical extent; the non-dependence on the energy scale indicated

that, no matter how deeply the proton was probed, the constituents continued to appear pointlike,

with no structure of their own. Further evidence came from the fact that, in collisions between

protons and electrons, only a fraction of the proton’s momentum was observed to be involved in

the collision. This fraction, in the CoM frame, is called ‘Björken x’, after James Björken, who first

described the phenomenon.

30



A parton density function, at a given value of µ2, is the probability that a parton of flavour i

will have a particular value of x; that is to say, fi(x), defined as

Pi(xa < x < xb;µ
2) =

∫ xb

xa

fi(x, µ
2)dx (3.4)

which is the probability that, at a given value of µ2 (the square of the energy scale of the interac-

tion), a parton of flavour i will have a value of x between limits xa and xb; or, differentially,

fi(x) =
dPi

dx
. (3.5)

A graphical representation of a PDF will typically have different lines representing u and d

valence quarks, sea quarks and gluons, plotted on the same axes. In practice, the y-axis variable

is usually plotted as xfi(x), so that it represents the probability-weighted fractional momentum

carried by each type of parton, so

pi(µ
2) = p

∫ 1

0

xfi(x, µ
2)dx (3.6)

is the momentum contribution from a given parton, in a hadron with a total momentum p involved

in some process at an energy scale µ. As PDFs represent probability distributions, they are

naturally normalised, in that the integrated momentum contributions from all parton types sum

to unity:

∑

i

∫ 1

0

xfi(x, µ
2)dx = 1. (3.7)

This is the momentum sum rule, and is of great utility in compiling PDFs since it allows the

probability density of a parton type that is hard to measure in a certain {x, µ2} regime to be

constrained using the more precisely known probability densities of the other parton types. Further

information on the PDF sets used in this analysis may be found in section 7.1. Note that in later

discussion the symbol Q2 is used instead of µ2, in accordance with the publishers’ convention,
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Chapter 4

The ATLAS detector

The ATLAS detector - named for A Large Toroidal LHC ApparatuS - is the largest detector ever

constructed for a collider experiment, measuring 42 m in length and 11 m in radius, and weighing

some 7,000 tonnes. Its detector components are arranged in three main layers: from the beam pipe

outwards, the Inner Detector (subdivided into the Pixel Detector, the Semiconductor Tracker and

the Transition Radiation Tracker), the Calorimetry (subdivided into electromagnetic and hadronic

calorimeters) and finally the Muon Spectrometer. A simplified cutaway diagram is shown in figure

4.1.

Since this analysis is concerned mainly with high-p⊥ hadronic jets, particular emphasis will be

placed on ATLAS’s hadronic calorimetry.

4.1 The Inner Detector

The purpose of the inner detector components [5] is to measure the tracks of charged particles to

a high degree of accuracy. The curvature of the tracks, caused by the solenoidal magnetic field of

2 T, allows the momentum and charge of the particles to be reconstructed. These components are

designed to absorb as little energy as possible from the particles so this quantity can be accurately

measured by the calorimeters. The inner detector is 7 m long and a metre in radius, giving coverage

of the pseudorapidity region |η| < 2.5.
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Figure 4.1: ATLAS.

4.1.1 The Pixel Detector

The Pixel Detector consists of three concentric layers of silicon wafers, which have a spatial reso-

lution of 12 µm in r − φ and 60 µm in z. Each individual sensor measures 16.4 mm by 60.8 mm,

and has 46,080 pixels, each pixel measuring 50µm by 400 µm. There are 1,744 sensor modules

in the entire Pixel Detector, giving close to 80 million readout channels. The innermost of these

layers is just 4cm from the beam pipe, allowing excellent three-dimensional track reconstruction;

this is important for the determination of impact parameters in tracks that have come from a

secondary vertex, such as the decay products of B mesons that have travelled several millimetres

from the primary vertex (at the interaction point) before decaying. It is designed to withstand

the extremely harsh radiation environment that will exist this close to the interaction point, but

even so, the innermost layer is expected to need replacing every few years once the LHC enters its

high-luminosity running phase.
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4.1.2 The Semiconductor Tracker

This component, know as the SCT, is also based on modules of silicon wafers. In the toroidal

‘barrel’ region, it is composed of four concentric layers at radii of 30 cm, 37.7 cm, 44.7, cm and 52

cm; in addition there are nine sets of endcap wheels. The silicon wafers measure 6.4 cm by 6.4 cm;

they are connected in pairs to form rectangular strips, and these strips are attached back-to-back

at a small crossing angle to form modules. The small crossing angle is to allow resolution of tracks

in the z-axis, i.e. parallel to the beams.

The SCT modules have a spatial resolution of 16 µm in r−φ and 580 µm in z. Each wafer has

768 readout channels and the component as a whole contains a total of 61 m2 of silicon wafers.

4.1.3 The Transition Radiation Tracker

The Transition Radiation Tracker (TRT) consists of 370,000 4 mm-thick aluminium tubes, each

filled with a Xe/CO2/CF4 gas mixture and having a thin gold-plated W-Re wire in the centre.

Charged particles traversing these tubes give off transition radiation as they travel through materi-

als of different dielectric properties; this radiation creates electron-ion pairs that can allow currents

to flow, and these can be picked up from the wires. The straws each have a spatial resolution of

170 µm, providing an overall spatial resolution of 50 µm for the TRT as a whole.

The barrel section contains 52,544 axial straws of about 150 cm in length, at radii between 56

cm and 107 cm. The end-caps contain 245,760 radial straws at radii between 64 cm and 103 cm.

4.2 Calorimetry

Calorimeters, in contrast to the tracking components, are designed to interact with particles as

much as possible, with the intention of efficiently turning their energy into a measurable form,

typically charge separation or light. Calorimeters are usually specialised to measure energy de-

posited either by electromagnetic or nuclear (i.e. strong) interactions. See figure 4.2 for the layout

of ATLAS’s various calorimeter systems.
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Figure 4.2: The ATLAS calorimetry, showing principal components: electromagnetic accor-

dion calorimeters (A), hadronic endcap LAr calorimeters (B), forward LAr calorimeters (C) and

hadronic tile calorimeters (D).
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4.2.1 Electromagnetic calorimeter

ATLAS’s electromagnetic calorimeter covers a pseudorapidity range of |η| < 2.5 and is made of al-

ternating layers of lead and liquid argon arranged in an accordion pattern. When ‘electromagnetic’

particles (mainly photons and electrons/positrons) pass through the lead, they initiate showering,

that is, the production of a large number of secondary particles. This mainly happens by ee pair

production (γ → e−e+) or bremsstrahlung (e± → e±γ). The number of particles in the shower

rapidly increases and their mean energy decreases until the remaining particles have too little

energy to produce new ones, and all the energy has been dumped into the calorimeter. Electro-

magnetic showers penetrate to a depth parameterised by the radiation length, X0 (the mean free

path of electromagnetically interacting particles), and have a narrow transverse profile.

4.2.2 Hadronic calorimeter

The hadronic calorimeter relies on hadronic showering, which is an analogous process to electro-

magnetic showering; hadrons collide inelastically with nuclei in the target material to produce

showers of secondary hadrons, mainly pions and kaons. The absorption of hadrons by material

is parameterised by the interaction length, λ, analogous to X0 in the EM calorimeter. This is

the parameter that describes the average rate of absorption of hadrons with depth of material

traversed:

Pabs(x) = e−λ/x, (4.1)

Pabs(x) being the probability that a particle has been absorbed after travelling a distance x through

the material.

The hadronic calorimeter [6] consists of three main sub-component types: in the barrel and ex-

tended barrel regions (|η| < 1.7), iron is used as a target and plastic strips are used as a scintillator

(a material that emits flashes of light when charged particles pass through it); in the 1.5 < |η| < 3.2

region, overlapping somewhat with the extended barrel, is a Cu/LAr (liquid argon) sampling

calorimeter; in 3.2 < |η| < 4.9 Cu/W/LAr is used as a combined hadronic/electromagnetic

calorimeter. At η = 0, the hadronic calorimeter has a thickness of eleven interaction lengths,
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making ‘punchthrough’ (hadrons passing through the calorimeter and making it as far as the

muon chambers, where they can cause false signals) highly unlikely.

The design performance energy resolution is

σE

E
= [

58% ± 3%√
E

+ (2.5% ± 0.3%)] ⊕ (1.7 ± 0.2)

E
. [6] (4.2)

in which energies are measured in GeV.

The absolute energy resolution, σE , varies principally with
√
E as the number of secondary

particles produced in the shower is proportional to the energy of the incoming hadron, or hadronic

jet; it then follows that the relative statistical uncertainty (σE/E) on the measured energy deposit is

inversely proportional to the square root of the number of shower particles, and therefore inversely

proportional to the square root of the energy deposit. There is also a term representing electronic

noise, which in absolute terms is not a function of energy and is therefore inversely proportional

to energy when evaluated as a relative uncertainty.

4.3 Muon spectrometers

Although not used in this analysis, an brief description of the muon spectrometers [7] will be given

for the sake of completeness.

Muons are classed as Minimum Ionising Particles, or MIPs, as their relatively large mass

(compared to electrons) allows them to pass through large distances of dense matter with very

little interaction with atomic electrons; in addition, being leptons, they have no strong interaction.

This, together with the fact muons are ‘stable’ (they have a lifetime far longer than the time

typically taken for them to traverse the detector) dictates that muon detectors are typically the

outermost component of a high-energy physics experiment, and ATLAS is no exception; its muon

systems are 20m in diameter and 26m long. Having the muon spectrometer located here is also

useful for determining the sign of muons (i.e. whether they’re µ+ or µ−) by looking at the curvature

of their paths due to the toroidal field, since the sign of high-energy muons is often difficult to tell

from their tracks in the inner detector as these can be almost straight, making misidentification
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likely.

In the barrel, muon chambers are mounted in cylindrical layers at 4 m, 7.5 m and 10 m from

the beampipe; in the endcaps, they are located in discs at 7 m, 10 m and 14 m from the interaction

point. Monitored drift tubes cover most of the η range, while cathode strip chambers are located

closer to the interaction point.

4.4 Detector coordinates

The ATLAS detector coordinates are based on cylindrical polar coordinates, with the z axis defined

as the direction of the beams and the pseudorapidity by

η = − loge(tan(θ/2)), (4.3)

where θ is the polar angle. Pseudorapidity is used as an approximation to true rapidity:

y =
1

2
loge

(

(E + pz)

(E − pz)

)

, (4.4)

(in which E is the particle’s energy and pz its longitudinal momentum), differences in which are

invariant under longitudinal Lorentz boosts1. This is a prerequisite for quantities to be meaningful

in the analysis of data from particle collisions, although rapidity calculations require knowledge of

both momentum and energy, which cannot be distinguished if the mass of the particle is unknown.

However, the approximation y ≈ η is good for relativistic particles, that is, particles with a kinetic

energy much greater than their invariant mass-energy.

The radial coordinate r is the perpendicular distance from the z axis, and φ is the azimuthal

angle within this plane. In addition to η and φ, another quantity used to describe particle tra-

jectories is transverse momentum, the component of momentum in the r − φ (or x − y) plane:

p⊥ ≡
√

p2
x + p2

y. Related to this is transverse energy, E⊥ ≡
√

p2
⊥

+m2. When Cartesian coordi-

nates are used, the positive x-axis points towards the centre of the LHC ring, the positive y-axis

points straight up and the positive z-axis points down the beam-pipe, roughly in the direction of

nearby Geneva.

1Transformations to a reference frame moving at some constant speed in the z-axis
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4.5 Trigger and online software

ATLAS has a three-level trigger [8, 9] to sift the vast quantity of raw data for the far smaller

number of interesting events that will occur. The Level 1 trigger (LVL1) reduces data from the

initial interaction rate of ∼40 MHz to ∼100 kHz; the Level 2 trigger (LVL2) reduces this further

to around ∼1 kHz, and the data is then passed through the final level, the Event Filter (EF), to

be recorded at a rate of ∼200 Hz (that is, 200 events per second).

The Level 1 trigger makes event selections based on reduced-granularity data from the calorime-

ters (0.1 × 0.1 in η − φ space) and data from the muon trigger chambers. This trigger searches

for objects with high p⊥; muons from the muon chambers, electrons, photons and jets from the

calorimeters and large Emiss
⊥

inferred from these quantities. The decision whether or not to pass

on data to the next level is made within 2 µs.

At Level 2, full detector granularity is used, but only in the Region of Interest (RoI) identified

by LVL1. Tracks are reconstructed using information from the inner detector and muon systems.

This level of decision-making takes 1-10 ms per event.

Finally, the Event Filter has access to full event data and takes around a second to make some-

thing approaching a complete event reconstruction. Events passing a menu of trigger options (cuts

on the E⊥ of jets, b-jets, photons and leptons, and on inferred Emiss
⊥

) are then stored on disk for

full offline analysis. A schematic representation of the trigger is given in figure 4.3.
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Figure 4.3: Schematic diagram of the ATLAS trigger chain.
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Chapter 5

The ATLAS offline software

The offline software currently used for the generation of ‘truth’ data (pseudodata modelling a

particle interaction), simulation of the ATLAS detector and analysis of results is written within

an overarching control framework called Athena. This is based on a software architecture called

Gaudi, which was originally developed by the LHCb collaboration.

The purpose of a software framework is to provide the ‘skeleton’ of an application into which

users plug their own code; it provides all the common libraries and algorithms that most users are

likely to need, to save them having to write their own code from scratch. In addition, it encourages

a common approach to writing analysis software that makes it easier to understand and use code

written by someone else.

There are two paths a user may take from truth data (the output of a class of programs such

as PYTHIA, collectively known as Monte Carlo generators), to a form that can be used as the input

to the analysis. Firstly, one can use the full chain of generation/reconstruction, which has four

stages:

generation: a ‘Monte Carlo’ program (event generator) is used to create truth data,

i.e. 4-vectors of final-state particles resulting from a collision; this is fed through a soft-

ware

simulation of ATLAS (an extremely resource-intensive process), using the GEANT4
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program [10] to simulate the passage of particles through matter; the simulated data

then undergoes

digitisation, to produce data in the same format as that which will be read out from

the onboard electronics when the machine is running; finally, the digits are used as

input to a

reconstruction program, which infers physics objects (hadronic jets, τ jets, photons,

electrons, muons, Emiss
⊥

) from detector objects (inner detector tracks, calorimeter de-

posits and muon hits).

5.1 Atlfast

The other path is to use the ATLAS Fast Simulation, or Atlfast for short [11]. This is a program

that effectively combines the four steps of generation, simulation, digitisation and reconstruction

into one, so it has great advantages over the full chain in terms of runtime (four or five orders

of magnitude faster), intermediate file storage space and user convenience. This is achieved by

a process called ‘smearing’, whereby four-vectors generated by the Monte Carlo have random

Gaussian errors convoluted with them to simulate the performance of the simulation, digitisation

and reconstruction steps done separately by the full chain. The disadvantage is that the user is

not able to tune the many free parameters that may be adjusted in the various stages of the full

chain reconstruction; therefore, it is customary for users interested in tuning and modifying the

software to use the full chain, and users who are willing to trust the officially validated Atlfast

releases to use that instead. It is intended to compliment, rather than replace, the full simulation

chain, which is still used to produce officially validated Computer Systems Commissioning (CSC)

samples.

Atlfast simulates three calorimeters; a central region (|η| < 3.2) and two forward regions (3.2 <

|η| < 5). The cells have a granularity of 0.1×0.1 (in η−φ space) in the central region, and 0.2×0.2

in the forward regions. The final output is in the form of an Analysis Object Data (AOD) file that

‘distills’ useful physics information into a format of convenient size and user accessibility.
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Physics quantities that may be chosen by the user in the Atlfast job options include the processes

allowed to take place (from a library of hundreds provided by PYTHIA) and various parameters

relating to the treatment of the incoming protons (such as initial state radiation, treatment of αs,

choice of PDF). User-defined variables relating to the reconstruction process include choice of jet

reconstruction algorithm, various (fairly rudimentary) acceptance cuts on kinematic variables and

a choice of what kinds of information to include in the output AOD.

5.2 Analysis in Athena

Once data from the reconstruction program is available in an analysable format - most typically

AOD - one can then run an Athena analysis algorithm on it. In the versions of Athena currently

used, the output is a format called Athena-Aware NTuple, or AANT, which replaces the older

format CBNT (ComBined physics NTuple). AANT allows the user to navigate back from objects

in the analysis output to the objects they correspond to in the input AOD; furthermore, it includes

data in the form of both ntuples, which may be used for further analysis either in Athena or using

stand-alone code, and histograms, which may be analysed directly in ROOT, as the user requires.

5.3 Jet-finding algorithms

All physics processes that will occur at the LHC will include jets in the final state. A jet is one

or more hadrons in a tightly confined beam which is treated as a single physics object from the

point of view of the analysis. Just how close together the trajectories of any two hadrons have

to be in order to be considered to belong to the same jet depends on certain parameters set by

the user; specifically, the type of ‘clustering’ or ‘jet-finding’ algorithm used to define jets from

hadronic calorimeter deposits, and the value of the parameter used to define the maximum size of

a jet before it must be split up into several jets.

In this analysis the cone algorithm is used, whereby two hadrons are considered to belong to
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the same jet if

∆R ≡
√

∆η2 + ∆φ2 ≤ R, (5.1)

where ∆η and ∆φ are the distances between the two hadrons in η−φ space (see section 4.4) and R

is the cone size parameter, which in this analysis is assigned the value 0.9 (typical sizes may range

from 0.1 to 1.0 or more). The algorithm used in this analysis is a seeded cone algorithm, in which

high-E⊥ particles in the event are used as ‘seeds’ around which putative cones are built; lower-E⊥

particles and jets are then merged with the seed if they fall within the cone. (In alternative seedless

schemes, either all calorimeter cells are used to define cones or points on a pre-defined η − φ grid

are used as seeds.) An iterative procedure is followed until all jet candidates have either been made

into jets in their own right or absorbed into neighbouring jets. Jets are assumed to be massless,

since even high-mass particles have an invariant mass negligible (to within detector resolution)

next to their kinetic energy.

44



Chapter 6

Experimental uncertainties

This analysis was performed using Atlfast and the Athena analysis framework in release 11.0.5, with

the detailed dijet analysis being performed separately with stand-alone code. In generating the

data, only left-left spin quark doublets have been considered, with the interference term between

the contact interaction and the SM Lagrangian assumed to be positive (out of a choice of +1

and -1), implying destructive interference [19]. The PYTHIA routines used to generate events with

quark compositeness are based on [32] and [33]. The generic contact interactions generated for this

analysis have a Lagrangian of the following form:1

Lcomp =
g2
0

Λ2
comp

{ηLL(qLγ
µqL)(fLγµfL)} (6.1)

where

qL =
[u

d

]

L
, (6.2)

with u and d signifying up-type and down-type quarks respectively, and f and f being any fermion-

antifermion pair (assumed to be quarks in this analysis, since we are concerned with hadronic jets).

This Lagrangian may represent a number of distinct physical processes:

1It should be noted that this is based on the Lagrangian for effective contact interactions theories, and is not

derived from deep symmetry arguments as are LQED and LQCD.
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• an s-channel annihilation process;

• a qq → qq t-channel momentum exchange;

• by reversing the direction of one quark line in the t-channel scatter, one achieves a

qq → qq or qq → qq scatter and by exchanging the two outgoing quarks one achieves a

• u-channel exchange.

Quantum interference takes place, as usual, between any two (or more) diagrams with the same

initial and final state particles; in this study, interference between Standard Model and sub-quark

processes may occur with diagrams that have qq, qq or qq in the initial and final states, since gluons

are assumed to be elementary.

Multiple files of 1,000 events were generated and reconstructed in six non-overlapping p⊥ re-

gions, with the pmin
⊥

and pmax
⊥

for each region defined by the minimum and maximum p⊥ of the

two outgoing partons at the generator level (of the order of 100,000 events per p⊥ region). This is

to ensure sufficient statistics at higher p⊥, as the cross-section falls by roughly an order of magni-

tude with each doubling of p⊥. These regions are known as ‘J-regions’, following the prescription

used in the preparation of AODs for the CSC study, in which the cross-section distributions may

then added together with each region weighted by its total cross-section to produce a continuous

spectrum. Region J0 corresponds to events in which the partons exiting the hard scatter have a

p⊥ between 8 GeV and 17 GeV; in J1 from 17 GeV to 35 GeV, and from then on a doubling with

each successive J-region. An example of such a p⊥ spectrum is given in figure 6.1.

Another important quantity in jet analyses is the invariant mass of the final dijet system; this is

the combined invariant mass of the two hardest (highest p⊥) jets in the final state. It is calculated

as follows:

mjj =
√

(Pµ
1 + P

µ
2 )(P1µ + P2µ) =

√

(E1 +E2)2 − (p1x + p2x)2 − (p1y + p2y)2 − (p1z + p2z)2

(6.3)

in which P
µ
i is the four-momentum vector of the ith jet (i = 1 or 2), with energy Ei and momentum

components pix etc. A dijet mass distribution is given in figure 6.2.

Following from the discussion in section 2, it seems that a good way to search for signatures
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Figure 6.1: The differential transverse momentum spectrum for Standard Model QCD dijet events

after 30fb−1 integrated luminosity.
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of compositeness may be to look at the distribution of hadronic jets in η; hadronic jets, because

these are the main products of partons involved in hard collisions (whether interacting by Standard

Model QCD processes or new physics in a contact interaction), and the distribution in η because

this is the kinematic quantity sensitive to contact interactions due to compositeness, as explained

qualitatively in 2.3.

Specifically, the kind of jet events used in this analysis are dijets, which is to say, the pair of jets

having the highest and second-highest p⊥ in the η range under consideration. The dijet invariant

mass is then calculated according to the formula above. Dijets are used because the hard process

is a 2 → 2 process, so the two hardest jets will come from the two outgoing partons involved in

this process; by using only the ‘leading’ (i.e. highest-p⊥) jet, useful information is thrown away,

while using more than two jets would include semi-hard QCD radiation that is not of interest to

this analysis and so ‘muddy the waters’.

Figure 6.3 (upper plot) shows this distribution for two η regions: |η| < 0.5 and 0.5 < |η| <

1.0, for three compositeness models and standard-model QCD. Figure 6.3 (lower plot) shows the

dependence on mjj of the ratio:

R = N(|η| < 0.5)/N(0.5 < |η| < 1.0), (6.4)

in which N is the number of dijet events with the two leading jets in the same η acceptance region.

The basic cuts carried out at the start of the analysis are p⊥ > 100GeV and |η| < 1.0 for all jets.

A ratio is used as a discriminant between the different physics scenarios as certain experimental

sources of systematic uncertainty, such as imperfect calorimeter calibration, will to some extent

cancel out when one dijet rate is divided by another.

The three compositeness models mentioned above differ in the value of the characteristic energy

scale of the preons, Λcomp, which may be thought of as their ‘binding energy’. Parton interactions

at CoM energies greater than Λcomp may probe quark substructure directly, just as interactions

between hadrons at energies greater than ΛQCD will probe hadron substructure. However, quark

compositeness can still have measurable effects even if the interaction energy is below Λcomp, due
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to virtual propagator effects2. This may be seen in figure 6.3, where the dijet ratio R for Λcomp =

10 TeV begins to be distinguishable from that for SM QCD at a dijet mass of around 4 TeV, less

than half the compositeness energy scale.

Naturally, the higher value of Λcomp, the more tightly bound the preons and the more difficult

their experimental detection; the 5 TeV model has the greatest deviation from the expected SM

result, while the 15 TeV model is indistinguishable from it up to dijet masses in excess of 5 TeV.

The SM QCD scenario is equivalent to a compositeness model with an infinitely high energy scale.

The finite resolution of ATLAS’s hadronic calorimeters and tracking will lead to uncertainty in the

mass of jets (which is derived from both energy and momentum measurements), and this will in

turn lead to uncertainties in the number of jets passing kinematic cuts used in this analysis.

Two kinds of calorimeter uncertainty have been considered:

2This is due to interference between the SM gauge coupling and the contact interaction, which (to leading order

in ŝ/Λ2
comp) contributes an amplitude of ŝ/αsΛ2

comp: see [20].
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Figure 6.5: The effect of a 1% jet energy scale miscalibration, compared to the deviation from SM

QCD for the three compositeness models.

6.1 Absolute energy uncertainty

Absolute uncertainty is assumed to be independent of jet energy for the sake of simplicity; in

reality, there will be a dependence (see 4.2). It should be stressed that the uncertainty under

consideration here is the jet energy scale, i.e. a consistent miscalibration of the detector response,

so that energy readings are consistently above or below the true energy of the hadrons impacting

on it. This is not to be confused with the detector resolution described in section 4.2.2. Four

values of ∆E/E have been chosen: 1%, 3%, 5% and 10%. Figure 6.4 shows the effect of these

uncertainties on the dijet event rate for the inner pseudorapidity region; figures 6.5 to 6.8 show the

effect of these four uncertainty values on both the SM QCD dijet ratio and the ratio for the three

compositeness models; it can be seen that larger uncertainties effectively push up the minimum

dijet mass for which the four scenarios may be distinguished, especially the Λcomp = 15TeV and

SM QCD scenarios.
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Figure 6.6: The effect of a 3% jet energy scale miscalibration, compared to the deviation from SM

QCD for the three compositeness models.
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Figure 6.7: The effect of a 5% jet energy scale miscalibration, compared to the deviation from SM

QCD for the three compositeness models.
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Figure 6.8: The effect of a 10% jet energy scale miscalibration, compared to the deviation from

SM QCD for the three compositeness models.

6.2 Relative energy uncertainty between |η| regions

It is possible that in addition to an overall, absolute uncertainty in energy and momentum, there

will be a relative difference in detector response in the two |η| regions considered in this analysis.

Figures 6.9 and 6.10 show the effect of a 0.5% and 1.0% difference, respectively, between the inner

(|η| < 0.5) and outer (0.5 < |η| < 1.0) detector regions used in this analysis. This is taken into

account because it will obviously have a direct impact on the ratio of dijets accepted in the two

η regions, unlike the absolute jet energy scale uncertainty where a degree of cancellation may be

hoped for.

6.3 Energy resolution

A quantity of interest in an analysis of high-energy jets is the resolution of the reconstructed jet

energy:

RE =
Etruth −Ereco

Etruth
, (6.5)
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Figure 6.9: The effect of a 0.5% relative uncertainty in jet energy and jet momentumbetween

|η| < 0.5 and 0.5 < |η| < 1.0, compared to the deviation from SM QCD for the three compositeness

models.
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Figure 6.10: The effect of a 1.0% relative uncertainty in jet energy and jet momentumbetween

|η| < 0.5 and 0.5 < |η| < 1.0, compared to the deviation from SM QCD for the three compositeness

models.
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in which Etruth is the true energy, accessed from the output of the Monte Carlo, and Ereco is the

energy reconstructed by Atlfast. This impacts on the resolution of the dijet mass, which is defined

similarly:

RMjj =
M jj

truth −M jj
reco

M jj
truth

. (6.6)

These resolutions are plotted, as a function of dijet mass, in figure 6.11. The abscissa of each

datum is the middle of the ‘J-region’ used. For the dijet mass spectrum plots, the data have been

rebinned so that each dijet mass bin is equal to twice the dijet mass resolution in that p⊥ region

multiplied by the mass of the lower bin edge:

M jj
n+1 −M jj

n = 2M jj
n σ(M jj

n ). (6.7)
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Chapter 7

Theoretical uncertainties

In addition to the experimental uncertainties discussed above, there also exist theoretical uncer-

tainties, whereby uncertainties are propagated to the final computed quantities from uncertainties

in the underlying theory. Two sources of theoretical error are considered here; uncertainties in

the parton density functions used by the Monte Carlo, and uncertainties in two arbitrary energy

parameters, called the renormalisation scale and the factorisation scale.

Theoretical uncertainties on LHC jet cross-section measurements have been calculated using

two complimentary techniques. Firstly, a program performing QCD calculations to next-to-leading

order (NLO) precision was used to generate parton-level histograms of kinematic quantities of in-

terest; this technique was used to investigate the effects of uncertainty in two theoretical energy

scales and also in a set of PDFs which were constructed using jet data to constrain the proton’s

gluon content (which is the largest source of PDF uncertainty in proton-proton collisions). Then

parton-level information from the ‘Monte Carlo’ program PYTHIA was used to generate tables of

weights using a different PDF set.

The first technique has the advantage that NLO calculations are more precise than those made

only to leading order (LO), as they are in PYTHIA; however, the program used for these calculations

only generates information at parton level, with no hadronization and no detector description. The

second technique, although less theoretically precise, is more powerful since hadronization and soft
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radiation are simulated and the output data may be passed through the ATLAS event simula-

tion and reconstruction chain, allowing the resolution of the detector to be taken into account in

addition to the theoretical uncertainty.

7.1 Parton Density Functions

This part of the analysis is concerned with predictions for jet cross-sections at the LHC with

analysis on the uncertainties due to the PDF set used as a theoretical input to the calculation and

also uncertainties in the renormalisation and factorisation scales. The program used to generate

this data is stand-alone so no detector description is attempted.

7.1.1 The ZEUS-JETS PDF set

The ZEUS experiment at HERA is an ideal machine for probing the internal structure of the

proton over a wide range in x (the fraction of the proton’s momentum carried by a given parton

in the laboratory rest frame) and Q2 (the negative squared four-momentum, or virtuality, of the

exchanged boson). A number of PDF sets have been published by the ZEUS collaboration, the

most recent of these being the ZEUS-JETS 2005 set [3]. In previous ZEUS PDF sets, data from

ZEUS were combined with those from other experiments; however, ZEUS-JETS is based solely on

ZEUS data, in particular:

• neutral and charged current e+p and e−p DIS (deep inelastic scattering) inclusive

cross-sections;

• neutral current e+p inclusive jet cross-sections;

• direct photoproduction dijet cross-sections.

These data are then used as input to a next-to-leading order QCD DGLAP analysis to produce

the ZEUS-JETS PDF set [3]. These PDFs are calculated in the general mass (Thorne-Roberts)

variable flavour number, or TRVFN, scheme [29].
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The two types of jet cross-section are especially useful in constraining the PDF of the gluon,

particularly in the mid- to high-x region (x ≈ 0.01 - 0.5). This region of the gluon PDF is the

dominant source of uncertainty in jet cross-sections in high-Q2 pp collisions, so constraining glu-

ons in this region has a large impact on the overall cross-section uncertainty. ZEUS-JETS makes

a large improvement in this area on previous PDFs because the inclusion of jet data makes the

analysis very sensitive to the behaviour of αs(Q
2) over a large range in Q2, on which the gluon

density strongly depends. (The same impact is not made on the quark distributions, as there are

other complicating factors here, such as non-zero quark masses and fermionic statistics.)

The distribution of the outgoing jets is determined in part by the x-values of the incoming

partons. In particular, the total energy of the jets will be equal to ŝ = x1x2s (see section 3.1) as

the partons may all be considered massless in collisions in this energy regime. (Even the b quark

may be considered massless, to a rough approximation, for partons with x greater than around

10−3 as its invariant mass of ∼4 GeV is less than the ∼7 GeV such a parton would carry in kinetic

energy.)

Consider first a simple dijet configuration in the final state. The two jets will always be back-

to-back in a centre-of-mass frame; in terms of detector coordinates, they will be back-to-back in

the r − φ plane in the laboratory rest frame, but only back-to-back in the r − η plane if boosted

in η to some suitable frame of reference. If x1 � x2, both jets may have high |η| with η of the

same sign; events of this type are naturally sensitive to high x and low x partons, and may be used

to probe the proton PDF once the LHC begins taking data. The situation is essentially similar

in events with three jets, with the jets balanced in momentum once boosted in η to the system’s

centre of mass.

Many of the principle physics programmes to be pursued at the LHC will involve the search

for high-mass resonances; these will occur in a collision of two high-x partons interacting by an

s-channel annihilation or a high-Q2 boson exchange. This may then result in high-energy jets

given off in a range of η values, with the possibility of jets with high p⊥, i.e. large |~p| and small

|η|. Jets with large |~p| and large |η| will have relatively low p⊥ and may represent partons involved
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in a glancing collision, with little momentum exchanged between them. If both incoming partons

have low x the outgoing jets will invariably have low p⊥ and will not be of use for searching for

high-mass new physics; however, such events will be of use to those studying low-x physics, which

forms an important subfield of QCD phenomenology in itself.

Figure 7.1 shows proton PDFs, in a range of Q2 values, generated by the author using QCD-

NUM with the ZEUS-JETS 2005 parameters as input. The u and d valence quarks and gluons

only are shown. Note that the gluon distribution is scaled down by a factor of 20. The valence

quarks exhibit Björken scaling, whereby they remain relatively constant as Q2 increases, while the

gluon starts to dominate the proton’s structure at successively higher values of x. The u quark

PDF is twice as big as that of the d quark for the obvious reason that the proton contains two u

quarks and one d quark, and both PDFs may be seen to peak at an x close to 1
3
, although the

gradient is actually zero at an x value somewhat below 1
3

due to effects of the gluonic field on the

dynamics of the valence quarks.

The 16 parameters of the fit (see Appendix B) are reduced, by certain assumptions and con-

straints (such as the number and momentum sum rules), to 11 free parameters, from which 11

orthogonal combinations are made. These combinations form the set of eigenvectors of the Hessian

uncertainty matrix, which encodes the parameters and their uncertainties. The ZEUS-JETS PDF

set therefore comprises 23 member PDFs: 11 pairs representing excursions up and down each of

the 11 eigenvectors, plus a central value PDF representing a best fit of the other 22, obtained by

a χ2 minimisation. These PDFs can each be used as input to a Monte Carlo program to produce

23 sets of cross-sections; a value for the upper and lower limits on the total uncertainty (on the

cross-section in each histogram bin, n) can then be calculated:

σ−

tot(n) = σ0(n) −
(

11
∑

i=1

(

σ0(n) − σ−

i (n)
)2
)1/2

(7.1)

σ+
tot(n) = σ0(n) +

(

11
∑

i=1

(

σ0(n) − σ+
i (n)

)2
)1/2

(7.2)

where σ−

tot(n) and σ+
tot(n) are lower and upper total uncertainties on cross-section central values

σ0(n), and σ−

i (n) and σ+
i (n) are the minimal and maximal cross-sections due to eigenvector i.
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Figure 7.1: The ZEUS-JETS PDFs for u and d valence quarks and gluons over a range of Q2.
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7.1.2 Frixione’s and Ridolfi’s jet production package

The program used to generate the jet cross-sections was developed by Stefano Frixione and Giovani

Ridolfi. It calculates QCD matrix elements at leading order (LO) and next to leading order (NLO)

and then convolutes these with the user’s chosen PDF to generate an event with a given weight. An

inbuilt histogramming package then sums these weights to produce a histogram of cross-sections.

From a theoretical point of view, this represents an increase in the accuracy of the physical

calculations compared to a leading order Monte Carlo program such as PYTHIA. While a lack of

detector simulation makes it impossible to use such a program to estimate experimental uncer-

tainties, it can be run very quickly and is useful for investigating effects of theoretical parameters,

such as PDFs and calculational energy scales. These may then be used in more thorough analyses

that include simulations of detector effects on the data.

The prototypical events calculated by the program up to order α3
s are:

qi + qj → qi + qj ; i 6= j,

qi + qi → qi + qi,

qi + qi → g + g,

g + g → g + g

for 2→2 processes, and

qi + qj → qi + qj + g; i 6= j,

qi + qi → qi + qi + g,

qi + qi → g + g + g,

g + g → g + g + g

for 2→3 processes.

Here i and j label quark flavours. All other matrix elements for parton-parton scattering processes

in O(α3
s) can be obtained from the above by time reversal and crossing [22]; e.g. the diagram for

qi + g → qi + g
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is just the diagram for

qi + qi → g + g

with space and time axes exchanged.

7.1.3 The Les Houches Accord PDF interface

This is a collection of FORTRAN routines and data files that provides an interface between PDFs and

the user’s Monte Carlo or other program of choice. Once interfaced to the user’s code, the desired

PDF can be selected using an input parameter; then when the user compiles and runs the code for

the first time, LHAPDF [23] uses the program QCDNUM [24, 25] to solve the DGLAP equations

[26, 27, 28] using the relevant PDF set’s parameters as input. The results from this calculation are

stored in high-density grids in x and Q2 (the standard Björken variables: see below) to generate

parton densities that can be used by the Monte Carlo. The grid is saved so subsequent runs of the

program don’t have to recalculate it, as generating the grid is highly processor-intensive.

7.1.4 Contributions to the uncertainty due to PDF eigenvectors

The availability of the ZEUS-JETS PDF set in the form of separate eigenvector excursions allows

the user to calculate a pair of cross-sections for each eigenvector - giving upper and lower uncer-

tainty limits - and therefore look at the contribution from each one to the overall uncertainty.

Although there is not a one-to-one correlation between eigenvectors and PDF parameters, the

components of the former are given in terms of the latter in a table in the relevant LHAPDF data

file, which can be viewed as plain text.

This analysis is based on differential cross-sections; dσ/dp⊥ and dσ/dη. Since this analysis

concerns highly relativistic jets, p⊥ (the transverse momentum of the hardest jet) may be consid-

ered fully equivalent to E⊥. Partons are then clustered using an implementation of the popular

cone algorithm, with the cone size parameter R set to 1.0. This algorithm serves the purpose of

defining the relevant phase-space used in calculating a (physical) hadronic-level cross-section from

the (unphysical) partonic-level cross-section and PDF; here, the implementation of the algorithm
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is used to decide whether two partons close together in η− φ space should be merged into one jet.

Figure 7.2 shows the dσ/dp⊥ spectrum with uncertainties due to total PDF uncertainty com-

pared to uncertainty due to eigenvectors 3, 8 and 11 only, which are the main eigenvectors encoding

the gluon. Figures 7.4 to 7.7 are plots showing a central value differential cross-section, based on

the central value PDF (number 0 in the ZEUS-JETS numbering scheme), and relative uncertain-

ties for each eigenvector. These are simply the difference between the upper and lower differential

cross-sections and the central value one, normalised with respect to the central value:

E+
r =

(

dσ+

dX
− dσ0

dX

)

/
dσ0

dX
(7.3)

E−

r =

(

dσ−

dX
− dσ0

dX

)

/
dσ0

dX
(7.4)

where E±
r is the (positive or negative) relative uncertainty and X stands for either p⊥ or η.

The cross-section dσ/dη, which is integrated over p⊥, is dominated by jets with lower p⊥ which

have a higher cross-section. Therefore the statistical precision is higher than for the dσ/dp⊥ cross-

sections, especially at high p⊥, which are shown in figures 7.6 and 7.7. Note that in both sets of

plots the upper and lower uncertainty limits are not symmetrical about the central value for every

eigenvector; for example, eigenvector 10, which encodes mainly the mid-x dv quark, gives rise to

an upper differential cross-section bound which is lower than the central value for both dσ/dη and

dσ/dp⊥ spectra. However, this is a known feature of these error sets [30].

The results indicate that some eigenvectors contribute far more to the overall uncertainty than

others. In particular, eigenvectors 8 and 11 make the dominant contribution to uncertainty on the

dσ/dη cross-section, as they parameterise primarily the behaviour of the gluon in the high- and

mid-x regions respectively, and g+ g → X and g+ q → X diagrams dominate the cross-section for

QCD processes in the LHC energy regime. This can clearly be seen in figures 7.2 and 7.3.

Some qualitative comments may be made regarding the distribution of uncertainty in p⊥ and

η by eigenvector. Firstly, it is apparent that eigenvectors 1 and 4, which encode primarily the

low-x sea and overall sea normalisation respectively, make only very small contributions to the

overall uncertainty. This is to be expected, as the sea distribution is strongly constrained by the

momentum-sum rule, and has very small fractional uncertainty at low x [30]. In addition, heavy
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Figure 7.2: Differential cross-section of the hardest jet against p⊥ of the hardest jet (top) and frac-

tional uncertainty (bottom), showing contributions from gluonic and total partonic uncertainties.
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states; q and Q are used to indicate quarks of different flavour.
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Figure 7.4: The dσ/dp⊥ spectrum of the hardest jet, in the range -2 < η < 2, and uncertainty

contributions relative to central value cross-section from the eigenvectors 1 to 5.
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Figure 7.5: Uncertainty contributions relative to central value cross-section from the eigenvectors

6 to 11.

67



η
-5 -4 -3 -2 -1 0 1 2 3 4 5

, p
b

η
/d

σd

210

310

410

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

, p
b

η
/d

σd

210

310

410

: central valueηLHC x-sections vs 

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 1

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 2

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 3

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 4

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η
-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 5

Figure 7.6: The dσ/dη spectrum of the hardest jet, in the range 1000GeV < p⊥ < 3000GeV, and

uncertainty contributions relative to central value cross-section from the eigenvectors 1 to 5.

68



η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 6

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 7

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 8

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 9

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05

0

0.05
Uncertainty contribution: eigenvector 10

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

η-5 -4 -3 -2 -1 0 1 2 3 4 5

re
la

tiv
e 

er
ro

r

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

Uncertainty contribution: eigenvector 11

Figure 7.7: Uncertainty contributions relative to central value cross-section from the eigenvectors

6 to 11.
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quarks in the sea (charm and bottom) are strongly suppressed by their large masses (top quarks

are not considered in this analysis; their primary mode of production at the LHC will be through

gluon-gluon fusion, rather than excitation of virtual top quarks in the proton [31]). Eigenvectors 2,

5 and 6, which encode the low-x and high-x u and high-x d quark respectively, all give rise to very

small uncertainties at low |η| which rapidly increase when |η| > 2 (the low-x d is not represented

by one main eigenvector in the ZEUS-JETS parameterisation; the pd
2 parameter is set equal to pu

2 ).

This may be because the valence quarks are more important in either glancing collisions whereby

a gluon is exchanged in the t-channel, such that the outgoing partons retain much of their initial

momentum, or events in which the partons exchange almost all their momenta and are deflected

at a small angle to their incoming trajectories; either sort of collision leads to two back-to-back

jets at high |η| with high |~p| but low p⊥.

In events involving one parton with high x and one with low x, the outgoing system is highly

boosted in η. In such events it is likely that one parton has a much larger fractional uncertainty

than the other, in which case the larger uncertainty will dominate in contributing to the uncer-

tainty on the cross-section.

Eigenvector 10, which encodes mainly the mid-x d and a little of the high-x d, is anomalous in

that it gives rise to a cross-section with a mean value significantly below the central value - whereas

all the other eigenvectors give rise to pairs of differential cross-sections that are at least approxi-

mately symmetric about the central value. This may have something to do with the ZEUS-JETS

PDF’s poorer flavour separation compared to earlier ZEUS PDF sets that included fixed-target

data, which included neutrons and therefore a higher density of dv quarks.

The greatest contribution to uncertainty in the dσ/dη spectrum is eigenvector 8, which encodes

the high-x gluon. This is because the gluon dominates the proton PDF over the entire range of x

except very high x (close to 1), as can be seen in the plots of the ZEUS-JETS PDF reproduced

above. Eigenvector 11, which determines the mid-x (strictly, mid- to high-x) gives the largest

contribution to uncertainty in dσ/dp⊥, due to the dominance of high-x partons in producing high

p⊥ events and the overall dominance of the gluon in the partonic cross-section for QCD events.
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Frixione’s and Ridolfi’s package allows the user to set his own value for the renormalisation and

factorisation scales. These are theoretical quantities involved in the calculation of Feynman dia-

gram amplitudes used to calculate cross-sections. These scales are defined, and their relevance to

jet cross-sections discussed, in sections 7.2.2 and 7.2.3.

The renormalisation scale is the energy scale at which renormalisation procedures are carried

out: these are calculations performed to cancel the divergences (i.e. infinities) in cross-sections and

masses due to contributions from virtual loops in Feynman diagrams. Both of these energy scales

are, to a certain extent, arbitrary and can be varied according to the precise prescription used by

the person (or computer) doing the calculations. In Frixione’s program, the default value for both

of these quantities is half the sum of the p⊥ of the outgoing partons (which may be calculated on

the assumption that the event has occurred, then used in the calculation of the event’s weight).

Figure 7.8 compares the total cross-section uncertainty due to PDF uncertainty to the uncer-

tainty introduced by allowing both the factorisation and renormalisation scales to vary from 0.5 to

2.0 times their default values. It may be seen that the uncertainty due to scale factor uncertainty

is greater than that due to PDF uncertainty at p⊥ values of less than ∼2 TeV.

7.1.5 The CTEQ6.1M PDF set

A set of PDFs that incorporates uncertainties on the partons can be constructed using a Hessian

matrix [21]. First of all, a χ2 function is defined for each data set used in the fit, based on

correlated and uncorrelated errors in those data. These functions are summed to make a total χ2,

and a Jacobian of this function is then taken with respect to a matrix of PDF parameters (i.e. the

parameters determining the functional form of the distribution for each flavour concerned), {aiaj};

the number of parameters thus determines the dimension of the Hessian matrix. In the case of

the CTEQ6.1M set, there are 20 parameters. The point {a0} in parameter-space that minimises

χ2 gives a value χ2
0, and the corresponding PDF is the best fit or so-called ‘central value’, and is

numbered 0, as is conventional. Then 20 eigenvectors of the Hessian matrix are defined, and along

each of these the χ2 is allowed to vary in such a way that χ2 − χ2
0 < T 2, where T is called the
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Figure 7.8: Uncertainty on the dσ/dp⊥ distribution due to variation of the renormalisation and

factorisation scales, which are set equal to each other in Frixione’s code; an uncertainty range is

introduced by varying both scales to 2 and 0.5 times their default value. Uncertainty due to PDF

uncertainty is shown for comparison.
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tolerance, which is a somewhat arbitrary value that may be chosen so the PDF set appropriately

reflects the degree of uncertainty on the input data sets. Now 40 eigenvector basis sets, {a±i } - two

for each of the 20 eigenvectors - may be chosen to span the parameter-space in the neighbourhood

of the minimum. These, then, are the 40 member PDFs which, together with the central value,

make up the set.

In terms of this eigenvector basis set, any physical quantity X that has a predicted value

X0 = X(a0) and a range of uncertainty δX that has a linear approximation:

(δX)2 =
1

4

n
∑

i=1

[X(a+
i ) −X(a−i )]2; (7.5)

however, this depends on the assumption that χ2(a) is a quadratic function of the parameters {a},

and that X(a) is linear. In actual fact this approximation is not strictly valid, so asymmetric error

bounds are used instead:

(δX±)2 =

n
∑

i=1

[X(a±i ) −X(a0)]
2. (7.6)

So there are 41 members to the CTEQ6.1M PDF set: the central value, labelled 0, and the 20

pairs of eigenvector basis sets, labelled 1-40 where 1 and 2 represent the pair of PDFs associated

with eignenvector 1, 3 and 4 with eigenvector 2 and so on.

In technical terminology each pair of basis sets represents an ‘excursion’ up and down the

relevant eigenvector of the Hessian matrix; however, since there is a 20-dimensional phase space

of variables, ‘up’ and ‘down’ are ambiguous. With the ZEUS-JETS PDF set, the pairs of PDFs

corresponding to ‘up’ and ‘down’ excursions do generally tend, when enfolded with the cross-section

weightings computed by a Monte Carlo, to give cross-sections that are mostly higher and lower

than that based on the central value. With CTEQ6.1M this is not the case: in the case of dijet

invariant mass, it is often found that cross-sections due to a pair of basis sets cross over, or that in

some regions both cross-sections are either higher or lower than the central value prediction. This

suggests the following algorithm for computing an overall uncertainty from the uncertainties due

to all 40 member PDFs:

• if σa
i > σ0 AND σb

i > σ0,

then δσ+
i = max(σa

i , σ
b
i ) − σ0 and δσ−

i = 0;
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• if σa
i < σ0 AND σb

i < σ0,

then δσ+
i = 0 and δσ−

i = min(σa
i , σ

b
i ) − σ0;

• else (i.e. σa
i > σ0 and σb

i < σ0, or vice versa);

then δσ+
i = max(σa

i , σ
b
i ) − σ0 and δσ−

i = min(σa
i , σ

b
i ) − σ0,

where σa,b
i labels the cross-sections computed with each pair of PDFs associated with eigenvector

i, σ0 is the cross-section calculated with the central value PDF and δσ±

i is the upper/lower cross-

section uncertainty for that eigenvector. It should be stressed that this procedure is carried out

on a bin-by-bin basis.

Finally, the upper and lower total error bounds for each bin may be calculated as follows:

σ+ = σ0 +

( 20
∑

i=1

(δσ+
i )2
)1/2

; σ− = σ0 −
( 20
∑

i=1

(δσ−

i )2
)1/2

. (7.7)

7.1.6 Computing cross-section uncertainties due to PDF uncertainties

The process by which the uncertainties in the PDF may be used to calculate the resultant uncer-

tainties in the reconstructed jet cross-sections is not trivial. An initial attempt was made using

events generated with each of the 40 uncertainty PDFs in the CTEQ6.1M set, reconstructing and

analysing them using Atlfast and then plotting the jet quantities thereby derived with the quan-

tities calculated using the central value PDF as a benchmark. However this approach met with

limited success, as the statistical uncertainty outweighed the uncertainty due to the PDFs even

with a large data set (∼ 105 events per J-region per PDF). This is due to the necessity of adding

cross-section uncertainties in quadrature, such that both positive and negative statistical fluctu-

ations in cross-section tend to accumulate, whereas they would naturally cancel to at least some

degree if they were added linearly.

This necessitates a different approach to evaluating these uncertainties; namely, reweighting.

In this technique, only a single set of events is generated, using the central value PDF, and the

generator-level event information is read out and stored. (In Athena this is achieved by accessing

the object class McEventCollection using the GEN AOD Storegate key.) The kinematic quantities

of the primary vertex are located by selecting the 2 → 2 vertex with the highest CoM energy for
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the incoming partons; the flavours and four-momenta of the incoming partons are read out and

the parton density for each parton, fi(x,Q
2), may then be calculated using LHAPDF [23], for

x = pz/7 TeV and flavour i. The value of Q2 is calculated according to the default prescription

used in PYTHIA for QCD events:

Q2 =
1

2
(m2

3 +m2
4) +

t̂û−m2
3m

2
4

ŝ
, (7.8)

in which the masses of c and b quarks are taken into account while u, d and s quarks, as well as

gluons, are treated as massless. Then the weight for each event may be calculated as follows:

wj =

(

f i1
j (x1, Q

2)

f i1
0 (x1, Q2)

)

·
(

f i2
j (x2, Q

2)

f i2
0 (x2, Q2)

)

, (7.9)

in which j runs from 1 to 40, for the 40 PDFs of CTEQ6.1M, f0 denotes the central PDF and i1,2

and x1,2 are the flavour and fractional momentum of partons 1 and 2 respectively. Thus a table

of 40 weights is generated for each event, and the jet quantities may be used to create 40 sets

of histograms which may then be used to estimate the uncertainty. In this approach, statistical

fluctuations are not a problem when it comes to adding uncertainties in quadrature, since they are

the same for all 40 data sets and therefore cancel out rather than accumulating.

The result of these calculations is shown in figure 7.9, the dotted uncertainty bands either side

of the Standard Model QCD prediction showing the quadratically added uncertainty contributions

from the 20 pairs of PDFS.

7.2 Theoretical energy scales

7.2.1 Renormalisation scale

In the historical development of the first fully realised quantum field theory, namely quantum

electrodynamics, it soon became apparent that corrections1 to scattering amplitudes calculated

näıvely using the formalism of Feynman diagrams contained terms which involved divergent in-

tegrals; in other words, the predicted probability for the interaction process blows up to infinity.

1Specifically, virtual particles forming loops inside propagators.
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Figure 7.9: Dijet ratio for the three compositeness models, compared to the Standard Model QCD

prediction with uncertainty due to the CTEQ6.1M PDF family.

This problem was solved by realising that certain fundamental properties of particles as measured

in the laboratory (such as the electronic mass and charge, in the case of QED) do not correspond

to the ‘bare’ quantities of the particle considered alone, but incorporate quantum field effects due

to virtual particles in the vacuum; for electric charge, this involves the phenomenon of vacuum

polarization, which leads to a running coupling constant as discussed in section 2.3.

However, in order for meaningful calculations to be made, particle properties must be used in

the equations of quantum field theories with values that correspond to measurements made at a

certain characteristic energy scale, called the renormalisation scale. This scale is arbitrary, but in

practice, when using Monte Carlo generators, it is either chosen to be equal to a fixed quantity

appropriate to the energy scale of the collider, or some energy scale used in the calculations, such

as the CoM energy of the incoming partons or the mass of the heaviest quark flavour considered;

it is conventional to use a squared renormalisation energy scale, denoted µ2
R. In PYTHIA 6.4 the

default is a fixed value 104GeV2. The effect of an uncertainty in this energy scale can then be

investigated by comparing data generated with the scale set to some multiple or fraction of the

default value to that generated using the default.
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7.2.2 Factorisation scale

When hadrons are involved in a collision, partons given off by those involved in the hard scatter

may be treated in two ways: they may be considered as final state radiation, in which case they

give rise to jets that can be recorded by the detector just like the jets from the hard subprocess,

or they can be absorbed into the hadron’s PDF. The parton is treated in the former way if its E⊥

is greater than some energy scale, and in the latter if not. This energy scale, again usually treated

as a squared energy, is the factorisation scale, µ2
F . It appears in the formula used to calculate

hadron-level (i.e. observable) cross-sections from partonic-level cross-sections and PDFs:

σ(µ2) =

nf
∑

i,j=1

∫ 1

x1=0

∫ 1

x2=0

σ̂1,2→X (p1, p2, αs(µ
2), µ2/µ2

F )f i
1(x1, µ

2)f j
2 (x2, µ

2)dx1dx2, (7.10)

in which the quantities are as defined in section 3.2. This is a very general formula known as the

factorisation theorem.

The quadratically combined effects of factor-of-two uncertainty in both the renormalisation

and factorisation scales on the Standard Model QCD dijet ratio is shown in figure 7.10, along

with the three compositeness models for comparison. This figure is shown as a set of plotted

functions rather than histograms as it was adapted from calculations made using Frixione’s NLO

jet program, rather than Atlfast/Athena.

7.3 Total experimental and theoretical uncertainty

Figure 7.11 shows the dijet ratio predictions for four physics scenarios, namely Standard Model

QCD behaviour and the three models of quark compositeness. The uncertainty band on the SM

QCD ratio is calculated by adding in quadrature the two kinds of experimental uncertainty and

three kinds of theoretical uncertainty considered in this analysis. To recap:

∆σtot = ∆σabs.cal. ⊕ ∆σrel.cal. ⊕ ∆σCTEQ ⊕ ∆σrenorm ⊕ ∆σfact (7.11)

in which:
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Figure 7.10: The dijet ratio for Standard Model QCD and the three compositeness models, with the

QCD prediction showing uncertainty bands due to varying the renormalisation and factorisation

scales to 50% and 200% of their default values. See text for an explanation of the smooth functional

form of the lines.

• ∆σabs.cal. is the dijet ratio uncertainty due an uncertainty of 3% in the absolute

energy response of the hadronic calorimeter;

• ∆σrel.cal. is the dijet ratio uncertainty due to a difference of 1% in the relative energy

response of the calorimeter regions corresponding to pseudorapidities of η < 0.5 and

1.0 < η < 0.5;

• ∆σCTEQ is the uncertainty due to the CTEQ6.1M PDF set;

• ∆σrenorm is the uncertainty due to a factor-of-two uncertainty in the renormalisation

scale; and

• ∆σfact is the uncertainty due to a factor-of-two uncertainty in the factorisation scale.
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Chapter 8

Conclusion and summary

The sensitivity of ATLAS to quark compositeness may be quantified by a figure called the significance,

which may be thought of as the difference between a positive signal (evidence for compositeness)

and the ‘null’ signal (Standard Model QCD behaviour), relative to the overall resolution of the

analysis.

A χ2 value is calculated for each of the three compositeness models under consideration, ac-

cording to the following formula:

χ2(Lint) = [(RQCD −RΛ)/σΛcomp
(Lint)]

2 (8.1)

where RQCD and RΛcomp
are the values for the dijet mass pseudorapidity ratio (equation 6.4) for

Standard Model QCD and quark compositeness (for the three given values of Λcomp) respectively,

and σΛ is the combined systematic and statistical uncertainty on RΛ as a function of integrated

luminosity. The significance, SΛ(Lint), is then simply

SΛ(Lint) =
√

χ2(Lint), (8.2)

In order to maximise the significance of the discrimination, only data in the high-mjj part of the

spectrum (specifically, dijets with an invariant mass greater than around 1 TeV) have been used, as

it is this region where phenomenological divergences between the various models start to become

significant compared to systematic uncertainties.
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As may be seen from figure 8.1, statistical uncertainty dominates systematic uncertainties for

low integrated luminosities, to the point where the curves cannot be distinguished since they coin-

cide, but as accumulated total approaches 100fb−1, the systematic uncertainties start to become

significant. This is, of course, a general feature of any experiment that collects progressively larger

amounts of total data over time.

The horizontal black lines on the plots in figure 8.1 show significances of 2 and 5 standard devi-

ations. The 2-σ line marks a potential early indication of quark compositeness, while the 5-σ line

represents (as is conventional) potential for actual discovery. An integrated luminosity of 100pb−1

shows no potential even for an indication of quark compositeness for any value of Λcomp within

the range considered here; at 1fb−1, there is potential for an early indication of compositeness at

values of Λcomp at around 5TeV, the smallest value considered in this analysis, but no potential for

a more definite discovery. At 10fb−1, indication of possible compositeness begins to look feasible

for Λcomp below about 8 TeV, with discovery potential below 5.5 TeV, while for 100fb−1, discovery

appears feasible for all values below around 6 TeV.

Figure 8.2 shows the dependence on integrated luminosity of the upper bound on Λcomp to

which ATLAS is sensitive in this analysis, for significances of 2σ and 5σ. Note that the limit on

Λcomp is only significantly affected by theoretical and experimental uncertainties at integrated lu-

minosities larger than around 10fb−11; below that level the limit on signal sensitivity is dependent

entirely on statistical uncertainty. As more data is accrued, however, limits on ATLAS’s sensitivity

to quark compositeness will become increasingly dominated by systematic uncertainties, and these

will need to be reduced in order to further improve the experiment’s sensitivity to this physics

channel. This may be achieved for experimental uncertainties by (for instance) calibrating the

calorimetry, and for theoretical uncertainties through using PDFs based on improved models of

hadron structure and novel computational techniques in QCD.

1This amount of integrated luminosity corresponds to approximately four months’ continuous data-taking at a

luminosity of 1032cm−2s−2.

81



compΛ1/0 0.05 0.1 0.15 0.2

2 χ
si

gn
ifi

ca
nc

e 
= 

0

0.1

0.2

0.3

0.4

0.5

0.6

-1100pb

compΛ1/0 0.05 0.1 0.15 0.2

2 χ
si

gn
ifi

ca
nc

e 
= 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

-11fb

compΛ1/0 0.05 0.1 0.15 0.2

2 χ
si

gn
ifi

ca
nc

e 
= 

0

1

2

3

4

5

6

-110fb

compΛ1/0 0.05 0.1 0.15 0.2

2 χ
si

gn
ifi

ca
nc

e 
= 

0
2
4
6
8

10
12
14
16
18
20 statistical uncertainty

stat. + exp. uncertainty

stat., exp. + th. uncertainty

-1100fb

Figure 8.1: The significance of the discovery signal as a function of 1/Λcomp, for four integrated

luminosities; values for statistical uncertainty only, statistical plus experimental and combined

statistical, experimental and theoretical uncertainties are shown separately. The curves are fitted

as a quadratic function of 1/Λcomp with the constant term set equal to zero, which ensures the

significance is identically zero when 1/Λcomp = 0, corresponding to Standard Model QCD with

elementary quarks.
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Chapter 10

Appendix A: structure functions

and parton densities

It may be useful at this point to give a rigorous definition of the variables used in the physics

of hadron interactions. The following discussion is based on [22]. First, consider the simplest

possible inelastic interaction between a hadron and another particle: the scattering of an electron

off a proton by the exchange of a photon, and the subsequent fragmentation of the proton. This

is called an inclusive process, since all possible final states are summed over, or included. Let

the incoming electron have a four-momentum k, and the outgoing electron k′. (Indices have been

suppressed for the sake of simplicity.) The virtual photon exchanged by the electron and proton

has four-momentum q. Since it is meaningless to ask which particle has emitted the photon and

which has absorbed it, it is conventional to use q2 instead. Because of the photon’s virtuality, this

quantity is negative, so it is more common to define a positive quantity Q2 ≡ −q2. Now let the

incoming proton have a four-momentum p, and the outgoing proton fragments have an aggregate

invariant mass W . At this stage, we are intentionally ignoring the proton’s internal structure, so

the process is simply ‘inelastic scattering’ rather than ‘deep inelastic scattering’. Now we define
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three new variables, one with dimensions of energy (in natural units) and two without dimension:

ν ≡ p · q
M

; x ≡ −q2
2p · q =

Q2

2Mν
; y ≡ p · q

p · k , (10.1)

in which M is the proton’s invariant mass. x is the same Björken x encountered earlier. The

squared invariant mass of the inclusive hadronic final state (i.e. all outgoing particles except the

electron) is now

W 2 = (p+ q)2 = M2 + 2Mν + q2 (10.2)

Now we start to consider the concept of pointlike objects inside the proton. At this stage, we

are only interested in quarks - we are using a photon as a probe, and gluons, being electrically

neutral, do not couple directly to photons. Historically, evidence for a model of the hadron as a

collection of pointlike objects came from the phenomenon of Björken scaling, namely the fact that,

at medium to high x (x > 0.05, say) the electrostatic structure function (see below) is very nearly

independent of Q2. This is a consequence of asymptotic freedom. Conversely, the strong potential

gets larger as the distance between two quarks increases, until (at a distance of just a few fm 1)

enough energy is latent in the gluonic field to allow the production of real quark-antiquark pairs.

This phenomenon is called confinement, and the production of qq pairs to form new hadrons is

called hadronization. This is why free gluons and quarks are never observed, and therefore why

QCD is the hardest fundamental interaction (with the arguable exception of gravity!) to study.

This reversal of potential dependence of distance (from the intuitive V ∝ 1/r behaviour of

the Coulomb potential) means that perturbative QCD is suitable for the phenomenological de-

scription of high-energy hadronic interactions, while this approach does not work for low-energy

(‘soft’) interactions. Appropriately, this is the reverse of the electromagnetic interaction, in which

perturbative methods only work for small potentials.

In pre-quark-model theory, the interaction of a hadron and an electron was calculated in terms

of the scalar product of two tensors. The proton tensor was written as the sum of several tensors,

each with a dimensionless coefficient (structure function) whose value was not specified as the

proton’s structure was a unknown at this time. When the quark model is adopted, the proton

11fm = 10−15m = 1 femtometre, or fermi.
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structure functions become:

W point
1 =

Q2

m2
q

δ

(

ν − Q2

2mq

)

; W point
2 = δ

(

ν − Q2

2mq

)

(10.3)

Here, “point” is used to indicate that we are now dealing with pointlike objects inside the proton,

while mq is the mass of those objects (quarks). It becomes apparent that, in the limit of large

Q2, these structure functions are not functions of Q2 and ν independently, but only of the ratio

Q2/2mqν (this is not the case for elastic ep scattering). After some work, it may be seen that

MW1(ν,Q
2) = lim

large Q2

F1(ω); νW2(ν,Q
2) = lim

large Q2

F2(ω) (10.4)

where

ω ≡ 2Mν

Q2
=

1

x
. (10.5)

F1 and F2 respectively are the structure functions for magnetic and electrostatic (Coulomb) inter-

action. The link between these quantities and quark PDFs comes about in the following way: let

qi(x) be the fi(x) for quarks and qi(x) be the fi(x) for antiquarks, let ei be the electric charge of

each quark flavour and e be the electronic charge:

F2 ∝ x
∑

i

(ei

e

)2

(qi(x) − qi(x))
2 (10.6)

Now we have two dimensionful structure functions which, in the limit of high photon virtuality,

are dependent on a single kinematic variable; the ratio of energy lost by the electron to photon

virtuality, since in the proton’s rest frame,

ν = E −E′, (10.7)

in which E and E′ are the initial and final electron energies, respectively.

It is possible to trace the historical development of the theory of hadron structure with diagrams

representing the supposed internal structure of the proton and the appropriate PDF one might

expect if this was actually the case. This progression is graphically illustrated in figure 10.1.

From the particle’s discovery in the early 20th century until the 1960s, the proton was thought

to be an elementary particle - in this case, the PDF is simply a delta function at x = 1 (top box).
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If the proton is instead considered to consist of three quarks of equal mass, but they are considered

to be held rigidly in place, the PDF looks like a delta function at x = 1
3

(second box). When the

quarks are considered to be held together by a finite classical potential of some kind, the PDF still

peaks at x = 1
3
, but now has finite height and width - it is smeared out somewhat by the elasticity

of the potential binding the quarks together (third box). Finally, when full QCD is ‘switched on’

and virtual quark-antiquark pairs are ‘allowed’ to condense out of the gluonic field, there is an

additional feature: the PDF now has an important contribution from the sea at low x (bottom

box). At high Q2, the sea contributions is dominant, and the PDF no longer peaks even locally at

x = 1
3
, but the curve still has its point of inflection here, due to the three valence quarks.

An official ZEUS PDF is shown in figure 10.2. Partons are labelled dv (valence, down), uv

(valence, up), S (sea, all flavours) and g (gluons). The latter two lines are scaled down by a factor

of 20, giving an impression of the dominance of these contributions at low x. The PDF sets H1-O

and MRST 2001 are plotted for comparison.
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Figure 10.1: The evolution of our picture of hadron structure: see text for explanation.
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Chapter 11

Appendix B: the eigenvectors of

ZEUS-JETS

The ZEUS-JETS family of PDFs is based on an 11-dimension Hessian uncertainty matrix, whose

eigenvectors represent orthogonal combinations of the PDF parameters. Each of the four parton

types considered is described by four parameters, giving a total of 16 possible parameters as shown:

xf(x) = p1x
p2(1 − x)p3 (1 + p5x), (11.1)

where xf(x) is the PDF-weighted normalised momentum of the parton of flavour f ; f = uv (u

valence quark), dv (d valence quark), S (the total qq sea) or g (the gluon). Thus p1 determines

the overall normalisation, p2 is sensitive to low x, p3 is sensitive to high x and p5 is a fine tuning

parameter, sensitive mainly to medium and high x. An additional parameter, p4, is used in a

variant of the ZEUS parameterisation, not considered here:

xf(x) = p1x
p2(1 − x)p3 (1 + p4

√
x+ p5x) [3]. (11.2)

It is worth mentioning that this form of the PDF parameterisation has been empirically found

to give a good fit and is not theoretically motivated; PDF sets by other authors use different

parameterisations. The approximate correspondence between eigenvectors and partons/x-regimes

is given below:
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eigenvector: corresponding part of PDF:

1 low-x S

2 low-x u

3 low-x g

4 total S

5 high-x u

6 high-x d

7 mid-x u; high-x S; high-x g

8 high-x g

9 mid-x u; mid-x d; high-x S

10 mid-x d

11 mid-x g
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Chapter 12

Appendix C: pseudorapidity

distribution

Apart from the ratio of dijet mass distributions in different η regions, another potential discrimi-

nant between Standard Model QCD behaviour and quark compositeness is the distribution of jets

in η. This sub-analysis has not been subjected to the same statistical treatment as the distribution

of dijet pseudorapidity as a function of invariant mass, and is therefore left as an appendix.

An excess (compared to the SM prediction) of jets in the central η region should be directly

measurable from the cross-section vs. η distribution; a large p⊥ cut will need to be made on the

data, since deviation from the Standard Model is observed (in the models considered here) in jets

with a p⊥ of several TeV. Such events have a very low cross-section, so systematic and theoretical

uncertainties will be critical to the measurement due to large statistical uncertainties.

The η distributions for the four physics models under consideration are shown in figures 12.1

and 12.2, with three p⊥ cuts. The uncertainty is due to a simulated ±1% or ±3% uncertainty in

measured p⊥. Figure 12.3 shows the combined effects of a ±3% uncertainty in calorimeter response

and statistical uncertainty on 30fb−1 of data, for jets with a minimum p⊥ of 3,200 GeV.

An analysis of theoretical uncertainties on dijet distributions in η is not performed in this analy-

sis, though it may be noted from the discussion of the proton PDF in relation to jet pseudorapidity
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spectra (chapter 7) that by far the largest contribution to uncertainty in dijet cross-sections in the

central region, which is where deviation from Standard Model behaviour is most apparent in con-

tact interactions, comes from the mid-to-high-x gluon. It is therefore clearly in this part of the

PDF that future parameterisations will have to make the most improvement in order to signifi-

cantly impact on the LHC’s potential for discovering new physics channels with signatures in this

kinematic region, viz. multi-TeV dijets with |η| < 1.0.
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Figure 12.1: Pseudorapidity jet distributions for the SM and three compositeness models after

three different p⊥ cuts, showing the effects of a ±1% calorimeter uncertainty.

95



η
-3 -2 -1 0 1 2 3

 o
f d

at
a

-1
Ev

en
ts

 a
fte

r 3
0 

fb

210

310

410

510

SM QCD
 = 15 TeVcompΛ
 = 10 TeVcompΛ
 = 5 TeVcompΛ

 > 800GeV
T

p

η
-2 -1 0 1 2

 o
f d

at
a

-1
Ev

en
ts

 a
fte

r 3
0 

fb

1

10

210

310

410

 > 1600GeV
T

p

η
-1.5 -1 -0.5 0 0.5 1 1.5

 o
f d

at
a

-1
Ev

en
ts

 a
fte

r 3
0 

fb

-210

-110

1

10

210

 > 3200GeV
T

p

Figure 12.2: Pseudorapidity jet distributions for the SM and three compositeness models after

three different p⊥ cuts, showing the effects of a ±3% calorimeter uncertainty.
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Figure 12.3: Jet pseudorapidity distributions for the four models, showing effects of a ±3%

calorimeter uncertainty combined with statistical uncertainty for 30fb−1 of data.
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