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Abstract

The work presented in this thesis focusses on the sequence and structural analysis

of antibodies and has fallen into three main areas.

First I developed a method to assess how typical an antibody sequence is of the

expressed human antibody repertoire. My hypothesis was that the more “human-

like” an antibody sequence is (in other words how typical it is of the expressed

human repertoire), the less likely it is to elicit an immune response when used

in vivo in humans. In practice, I found that, while the most and least-human

sequences generated the lowest and highest anti-antibody reponses in the small

available dataset, there was little correlation in between these extremes.

Second, I examined the distribution of the packing angles between VH and VL

domains of antibodies and whether residues in the interface influence the packing

angle angle. This is an important factor which has essentially been ignored in

modelling antibody structures since the packing angle can have a significant effect

on the topography of the combining site. Finding out which interface residues

have the greatest influence is also important in protocols for ‘humanizing’ mouse
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antibodies to make them more suitable for use in therapy in humans.

Third, I developed a method to apply standard Kabat or Chothia numbering

schemes to an antibody sequence automatically. In brief, the method uses profiles

to identify the ends of the framework regions and then fills in the numbers for each

section. Benchmarking the performance of this algorithm against annotations in

the Kabat database highlighted several errors in the manual annotations in the

Kabat database. Based on structural analysis of insertions and deletions in the

framework regions of antibodies, I have extended the Chothia numbering scheme

to identify the structurally correct positions of insertions and deletions in the

framework regions.
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Chapter 1

Introduction to immunology

The human body contains a number of microenvironments that provide an ideal

niche for the growth and proliferation of several pathogenic and non-pathogenic

microorganisms. In order to prevent the entry and survival of pathogens, each

of us is equipped with a complex immune system capable of efficiently combating

invading microorganisms. The human immune system can be broadly divided into

two- the innate immune system and the acquired or adaptive immune system. As

the name suggests, innate immunity is the inherent immune system that the or-

ganism is born with. The adaptive immune system, on the other hand, is acquired

during the lifetime of the organism. The innate adaptive system is well developed

even in invertebrates, like the nematode Caenorhabditis elegans while the adap-

tive immune system is a unique feature of higher vertebrates starting from jawed

fishes. Referred to as the immunological ‘Big Bang, the evolution of the adaptive

immune system conferred many additional advantages to the organisms possessing
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them.

1.1 Innate immune system

The innate or the non-adaptive immune system offers the first line of defense and

provides a quick and immediate response to invading pathogens. This branch

of immunity comprises of several players, which provide a physical barrier to

pathogen entry, physiological barrier to their survival, and their elimination by

phagocytosis or extracellular killing of these pathogens to eliminate them from

circulation.

The skin is often the first barrier encountered by invading pathogens. In addition

to being impermeable, the lactic acid and fatty acids in sweat and sebaceous

secretions from the skin are maintain a low pH, which is inhibits the survival of

most pathogens. Mucous secreting cells and cilia that propel mucous-entrapped

pathogens out of the body guard the other openings of the body like the respiratory

and urogenital tracts. In addition, many of the secretions of the body, including

the tears and saliva contain bactericidal factors like lysozyme, a hydrolytic enzyme

that is capable of destroying the bacterial cell wall.

If the microorganism manages to overcome these barriers and enter a tissue,

it encounters resident tissue macrophages. These cells are derived from circu-

lating monocytes that exit from circulation and settle down in various tissues.

Macrophages are long-lived phagocytic cells that are usually the first cells of the
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innate immune system to recognize invading pathogens. They do this using var-

ious cell-surface receptors including CD14, a receptor that recognizes bacterial

lipopolysaccharide (LPS). Clustering of the receptors upon ligand binding in-

duces phagocytosis of the pathogen into vesicles known as phagosomes inside the

macrophage. These phagosomes then fuse with vesicles called lysosomes, which

are highly acidic compartments harbouring enzymes that can destroy the inter-

nalized pathogen. However, the internalization of pathogens by macrophages re-

sults not only in their destruction by active phagocytosis, but also triggers the

macrophage to secrete various toxic chemicals like hydrogen peroxide, nitric ox-

ide and superoxide anion into the surrounding tissue. In addition, macrophages

also secrete cytokines, which are low molecular weight proteins that regulate the

function of immune cells. These cytokines attract another subset of phagocytes–

the neutrophils. These are short-lived polymorphonuclear neutrophilic leukocytes

that are found in circulation. Local cytokine release induces neutrophils to mi-

grate to the site of injury in large numbers. Just like macrophages, neutrophils

are also phagocytic cells that actively engulf the pathogens and participate in the

elimination of invading microorganisms.

Cytokines also trigger a local inflammatory response, which serves to not only

recruit more cells of the immune system, but also to restrict the area of infection.

An inflammatory response is characterized by redness, pain, heat and swelling in

the area of infection. The inflammatory mediators induce changes in the local

environment i.e. they cause vasodilation of nearby blood vessels and increase the

expression of adhesion molecules on the surface of endothelial cells. These steps

facilitate the recruitment of circulating neutrophils for increased phagocytosis,

monocytes that will mature into more tissue macrophages, as well as mast cells
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and eosinophils.

In addition to these cell-mediated innate immune responses, tissue damage also

activates several enzymatic systems in the plasma. One of the most important

of these is the complement system. Although it was first discovered as a factor

that augments the activity of humoral branch of acquired immunity, hence the

name complement proteins, it is now clear that it is first activated as part of the

innate immunity. The complement system comprises of a series of enzymatically

catalyzed reactions whose end products bring about various effector functions.

These include the opsonization of antigen to facilitate recognition by macrophages

thereby increasing their phagocytosis, promoting the inflammatory response, and

the formation of a membrane attack complex that lyses pathogens by forming

pores on their surface. The complement system can be activated on microbial

surfaces and also by antibodies, hence they participate in both the innate and

adaptive immune system.

1.2 The Adaptive Immune system

The most important cells of the adaptive immune system are the lymphocytes.

These cells continuously circulate through the blood and the lymph, thus monitor-

ing the status of the body. The two main types of lymphocytes that are involved

in the adaptive immune system are the B-lymphocytes and the T-lymphocytes.

These cell types differ not only in the surface receptors that they possess, but also

their method of recognition of foreign antigen, and their effector mechanisms. The
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key players of the adaptive immune system are:

• B-Lymphocytes

• T-Lymphocytes

• MHC molecules

1.2.1 B-Lymphocytes

B-lymphocytes mature in the bone marrow in the adult mammals, and are char-

acterized by the presence of approximately 1.5X105 receptor molecules on their

cell surface that are actually membrane bound antibody molecules. All such re-

ceptor molecules on a single B lymphocyte are specific for one particular antigen.

The generation of the enormous diversity of these receptors is brought about by a

process termed VDJ recombination-a process whereby the germline encoded gene

segments for B lymphocyte receptors are recombined in different ways to give rise

to unique combinations of final gene sequence coding for receptor proteins that are

capable of recognizing two antigens differing only in one residue. Upon recognition

of an antigen by the receptor, these B-lymphocytes eventually differentiate into

effector cells called plasma cells, which secrete soluble antibody molecules, and

memory B-cells. B-lymphocytes constitute the humoral immune response branch

of the adaptive immune system, as they can directly recognize soluble antigens

in body fluids (once known as humors). Their only contribution to the adaptive

immune system are the antibody molecules.
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1.2.2 T-Lymphocytes

T-lymphocytes mature in the thymus and like the B-cells, also possess cell sur-

face receptors for antigen recognition. However, unlike the B cell receptors which

are capable of recognizing soluble antigens, T cell receptors can only recognize

antigens displayed by special MHC molecules on the surface of antigen-presenting

cells, or on self-cells infected with intracellular pathogens like viruses. Hence,

T-cells constitute the cell-mediated immune response branch of the adaptive im-

mune system. When a T cell encounters an altered self-cell, it is stimulated to

proliferate and differentiate into effector cells and memory T-cells. There are two

sub-populations of T-cells – the T helper (TH) cells and the T cytotoxic (TC) cells.

They differ in the type of additional cell surface glycoprotein molecules (CD4 or

CD8) they possess. Generally, cells possessing CD4 function as TH cells while

those possessing CD8 function as TC cells. Recognition of an MHC bound anti-

genic molecule by TH cells results in their differentiation into effector cells that

secrete various cytokines. These cytokines serve as activating signals for B-cells,

TC cells, macrophages and various other cells of the immune system. Activated

TC cells display cytotoxic activity, and they destroy altered self-cells.

1.2.3 MHC molecules

The major histocompatibility complex (MHC) is a cluster of genes on chromo-

some 6 in humans. It is also known as the HLA complex in humans. The loci

constituting the MHC complex are highly polymorphic. Several alleles exist at
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each locus, hence providing for a wide range of antigen-binding MHC molecules.

The MHC cluster can be subdivided into three regions encoding for three classes

of MHC molecules.

1. Class I MHC genes encode glycoprotein molecules that are expressed on

the surface of nearly all nucleated cells. They are important for displaying

peptide antigens on the surface of infected or altered self-cells for recognition

by TC cells.

2. Class II MHC genes encode glycoprotein molecules that are mainly ex-

pressed on the surface of antigen- presenting cells i.e. dendritic cells, macrophages

and B-cells. They are important for displaying peptide antigens for recogni-

tion by TH cells.

3. Class III MHC genes encode a variety of secreted proteins involved in pro-

viding immunity, including some complement proteins, soluble serum pro-

teins etc.

1.3 Activation of the adaptive immune system

The activation of the two branches of adaptive immune system occur in different

manner. B-cells can either be activated on their own by some non-protein antigens

(e.g. capsular polysaccharides on the surface of certain bacteria), or by interac-

tion with TH cells that recognize the processed antigen-MHC Class II complex

on the surface of B-cells. Interactions between specific co-stimulatory molecules
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Figure 1.1: Activation of the adaptive immune system

on the TH cells and B-cells, and directed release of cytokines by the TH cells

stimulate B cell proliferation and differentiation into antibody secreting plasma

cells and memory cells. The activation of the adaptive immune system is shown

in Figure 1.3.

The activation of T cell responses requires the interaction of naive T-cells by spe-

cialized cells called the Antigen Presenting Cells (APCs). These cells internalize

foreign bodies efficiently, either by phagocytosis or endocytosis, and process it

intracellularly for display with class II MHC complex on the cell surface. Three

types of cells function as professional APCs, namely the dendritic cells, B-cells

and macrophages. Dendritic cells are perhaps the most important professional

APCs of the immune system. They are phagocytic cells arising from bone marrow

precursor cells, from where they migrate and settle down in various tissues. After

internalizing a pathogen in the infected tissue, dendritic cells are stimulated to
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migrate to a peripheral lymph node or lymphoid organ, where naive T-cells are

constantly being circulated. Here, the dendritic cells display the processed anti-

genic fragments in a complex with MHC Class II molecules on their cell surface.

T-lymphocytes possessing the antigen-specific receptor recognizing the displayed

antigenic fragment become activated, and they proliferate and give rise to effector

and memory cells.

The most important component of the B cell responses are the B-cell receptors and

antibodies. B-cell receptors are membrane-bound antibody molecules. Antibodies

belong to the immunoglobulin family of proteins, as they possess a characteristic

compact structure known as the immunoglobulin fold.

1.3.1 Structure of an antibody

The basic structure of an antibody is shown in Figure 1.3.1. Antibodies are Y-

shaped immunoglobulin molecules comprised of two light chains and two heavy

chains. Each chain in turn is composed of a variable region at the N-terminus

of the protein and a constant region at the C-terminal end of the protein. The

original four chain model was proposed by Porter (1959). The constant regions

of light chains have either of the two amino acid sequences named kappa (κ) and

lambda (λ). The constant regions of the heavy chains have one of five basic amino

acid sequences i.e. γ, α, µ, δ, or ε. These sequences determine the isotype of the

antibody molecules, and based on the isotype of the heavy chain constant region,

immunoglobulins adopt one of 5 classes in humans – IgG, IgA, IgM, IgD and IgE.
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The Y-shape of an antibody was first proposed by Valentine and Michael during

their studies of an antibody-hapten complex through electron microscopy (Valen-

tine and Green, 1967). The variable region of an antibody (Fv) consists of two

identical light and heavy chain components on either arm of the molecule (marked

VL and VL respectively in Figure 1.3.1). The variable regions of an antibody con-

tain the interaction site of the antibody with the antigen. The virtually infinite

sequence diversity of the variable region allows an antibody to bind with a wide

range of antigens.

Among the Immunoglobulin isotypes, IgG is the most abundant, making up about

75% of all immunoglobulins found in the human serum (Junqueira and Carneiro,

2005). Further, IgGs consist of four subtypes: IgG1, IgG2, IgG3, and IgG4

(GREY and KUNKEL, 1964; Gergely, 1967), in decreasing order of occurrence.

These subtypes differ mainly in their amino acid sequences as well as in the number

of disulphide bonds between the heavy chains.

1.3.2 Generation of antibody diversity

The ability of the B cell receptors to recognize a wide range of antigens arises

from the generation of a diverse set of B-cell receptors specific for almost every

possible antigen that the organism might come across during it’s lifetime. Instead

of loading the genome with genes encoding for each specific B cell receptor, the

adaptive immune system evolved to generate diversity from a handful of gene

segments by the simple process of recombination.
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Figure 1.2: Structure of an Immunoglobulin (IgG1) consisting of 12 domains
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The gene families encoding for B cell receptors are present on three chromosomes in

humans. The multigene families encoding for the κ and λlight chains are present on

chromosomes 2 and 22 respectively, while those encoding for the heavy chains are

present on chromosome 14. The germline sequences of these multigenic families

consist of a number of coding sequences called gene segments. It is these gene

segments that are rearranged during B cell maturation to give rise to various

combinations of sequences. The κand λlight chain gene families consist of multiple

V and J gene segments and a single C gene segment. The heavy chain locus consists

of multiple V, D and J gene segments, as well as multiple C gene segments. The

rearranged V(D)J gene segments codes for the variable region of antibodies, while

the C region codes for the constant region.

1.3.3 VDJ Recombination

Recombination of the V, D and J gene segments is carried out with the help of lym-

phoidcell specific recombinase enzymes RAG-1 (Recombination Activating Genes)

and RAG-2. These enzymes recognize unique sequences flanking the V,D and J

segments called the Recombination Signal Sequence (RSS). The RSSs are made

up of a conserved heptameric sequence (5’CACAGTG 3’) on one end, a conserved

nonameric sequence (5’ACAAAAACC 3’) on the other end, and a spacer region in

between containing 12 or 23 base pairs. An RSS containing a 12 base spacer can

only join to another gene segment possessing 23 base pair spacer, a rule known as

the 12/23 rule. EachV gene segment has an RSS on it’s 3 end, each J gene segment

on it’s 5 end and each D gene segment has an RSS on both sides. The nature

of the spacer in the RSS of the V, D and J gene segments ensures that a V gene
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Figure 1.3: VDJ recombination to produce light chains

segment joins only to a J and not to another V gene segment, and likewise, for the

J gene segments. The presence of different copies of each gene segment generates

a combinatorial diversity that is a major contributing factor towards generating B

cell receptor diversity. Apart from this, several other mechanisms also add to the

existing diversity. In addition, the diversity of antibodies is enhanced by combi-

natorial association between the light and heavy chain. The VDJ recombination

for light and heavy chains is shown in Figures 1.3 and 1.4 respectively.

Junctional flexibility

During the process of VDJ recombination, the joining of the gene segments is

often imprecise, leading to differences in the final coding sequence for each re-

combination event. This junctional diversity has been shown to occur within the
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Figure 1.4: VDJ recombination to produce heavy chains

third hypervariable region (CDR3) of the heavy and light chain. Since CDR3 is a

region important for antigen recognition, this process further increases the range

of epitopes that can be recognized by antibodies.

P-Nucleotide and N-nucleotide addition

During the process of recombination, the 3-OH end of the strand cleaved by RAG

enzymes forms a hairpin connecting it to the opposite DNA strand. This hairpin

is cut, sometimes resulting in a short single stranded region referred to as the

P-nucleotides. This is because addition of complementary nucleotides to fill up

the gap results in the generation of palindromic sequences. N-nucleotide addition

refers to the addition of nucleotides by the enzyme terminal deoxynucleotidyl
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transferase (TdT). Upto 20 nucleotides can be added. N-nucleotides are found

in V-D and D-J gene junctions of assembled heavy chains as the enzyme TdT is

expressed exclusively at the time of heavy chain rearrangeent and not during light

chain rearrangement. These nucleotides are not encoded by the V, D or J gene

segments and thus lead to additional diversity of the antibody sequence.

Somatic hypermutation

There exists another mechanism that acts post gene rearrangements of the heavy

and light chains to generate more antibody diversity. Nucleotides in the V region

of the antibody chain are replaced by alternate nucleotides in a nearly random

manner. These mutations occur at a much greater frequency as compared to

normal mutations, hence it is called hypermutation. It aids in generating B cell

receptor sequences that may bind more strongly to antigens. Such a B- cell is then

selected for rapid proliferation in a process termed affinity maturation.

1.3.4 B-cell maturation, activation and proliferation

B-cell maturation

B-cells maturation begins in the embryo in the fetal liver, fetal bone marrow and

the yolk sac, and continues during adulthood in the bone marrow. The maturation

process involves two distinct phases - antigen-independent phase and antigen-

dependent phase.
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Antigen-independent phase This phase occurs in the bone marrow in the ab-

sence of exposure to any antigen, and leads to the generation of naive B-cells

that then enter into circulation. Lymphoid stem cells give rise to the first B-

cell lineage cells- the progenitor B-cells (pro-B cell). In the niche provided by

the bone marrow stromal cells, these pro-B-cells differentiate into precursor

B-cells (pre-B-cells). This occurs by the close association between pro-B-cells

and stromal cells which is mediated by cell-cell adhesion molecules expressed

on the pro-B cell and the corresponding receptor present on the bone marrow

stromal cells. Initial contact is mediated by molecules like VLA-4 expressed

on the pro-B-cells that recognize and bind to it’s ligand VCAM-1 on the

stromal cell. This is followed by the activation of c-Kit receptors on the pro-

B-cells by stromal cell surface molecules. By virtue of it’s tyrosine kinase

activity, c-Kit kick-starts a series of events that lead to the proliferation and

differentiation of pro-B-cells into pre-B-cells. Cytokines like IL-7 secreted

by the stromal cells further contributes to the maturation process and also

leads to the detachment of pre-B-cells from stromal cells.

The maturation of pro-B-cells involves Ig-Gene rearrangements. These occur

in a fixed order. First the heavy chain gene rearrangement takes place. The

DH - J H joint is formed, followed by the VH - DH J H rearrangement

to give rise to a productive gene arrangement. At this stage, the B-cell is

termed pre-B cell. The subsequent productive rearrangement of the light

chain gene gives rise to an immature B cell that expresses IgM on it’s cell

surface. The transition of immature B-cells to mature B-cells proceeds with

the expression of IgD isotype of the B cell receptor in addition to the IgM

isotype.
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Before mature B-cells enter into circulation, they are tested for specificity

to self-antigens. Since the entry into circulation of B-cells reactive to self-

antigens can be fatal, this process of negative selection plays an important

role. About 5x107 B-cells are produced per day by the bone marrow, and

only about 10% of these enter into circulation. Recognition of a self-antigen

by an immature B-cell leads to the crosslinking of membrane IgM molecules

and subsequent death. However, in many cases, following self-antigen recog-

nition, the immature B-cell quickly edits it’s light chain in an attempt to

generate B-cell receptors that are no more specific towards the self-antigen.

The antigen-independent phase of maturation is shown in Figure 1.3.4.

Antigen-dependent phase Mature B-cells that enter circulation survive only

for a few weeks unless activated by an antigen against which their receptor

displays specificity. Antigens can trigger different routes of B cell activation

depending on their nature. Some antigens can directly activate B-cells by

binding to the B cell receptor, while others stimulate B cell activation via a

special class of T-cells called helper T-cells (TH cells). Therefore, antigens

stimulating B-cells can be classified as thymus-independent (TI) and thymus-

dependent (TD) respectively. The antigen-dependent phase of maturation

is shown in Figure 1.3.4.

Thymus-independent antigens can be of two types:

• Type-I TI antigens e.g. gram-negative bacterial cell wall component

lipopolysaccharides, which is capable to non-specifically activating B-

cells when present in high concentrations. These are truly thymus-

independent antigens as they stimulate B-cell response even in nude

mice, which lack a thymus and hence cannot produce T-cells. B-cell
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Figure 1.5: Antigen-independent phase of B-cell maturation

response to these antigens is not accompanied by isotype switching,

affinity maturation or generation of memory cells.

• Type-II TI antigens e.g. bacterial cell wall polysaccharides. These are

usually highly repetitive molecules that lead to cross-linking of mIgM

molecules on the B-cell surface and subsequent activation of the B-cell.

The complete activation of B-cells by these type of antigens also require

cytokines secreted by TH cells. Affinity maturation or generation of

memory cells does not accompany b-cell response to these antigens.

However, there is some limited isotype switching involved.

Thymus-dependent antigens require the direct involvement of helper T cells

for activation of the humoral response. These are soluble protein antigens

that cannot give rise to effective activation of B cells on their own. The

steps of activation by TD antigens are more complicated, but they result in

isotype switching, affinity maturation and generation of memory cells.
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Figure 1.6: Antigen-dependent phase of B-cell maturation
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1.3.5 B-cell activation

When activated by an antigen, naive B-cells are stimulated to exit from the G0

or resting phase of the cell cycle and begin replication and differentiation. This

activation involves two steps that require two types of signals:

• Competence signals, which stimulate naive B-cells to exit from G0 and enter

the G1 phase of the cell-cycle. Two signals (signal 1 and 2) contribute to

the competence signals.

• Progression signals, which drive the cell from G1 to the S phase of the cell

cycle, and ultimately to the replication and differentiation of B cells.

These two signals mediate their effects by activating signal transduction pathways

downstream of the B-cell receptors. The mIgM and mIgD have short cytoplasmic

tails that are insufficient for efficient signal transduction. To overcome this short-

coming, mIgs associate with a disulfide-linked heterodimer Ig-α/Ig-βto form the

complete B-cell receptor (BCR). The cytoplasmic tails of Ig-α/Ig-β contain a se-

quence motif of 18 residues called the Immunoreceptor Tyrosine-based Activation

Motif (ITAM) which can associate with several downstream intracellular signal

transducers like the Src and Syk tyrosine kinases when activated by crosslinking

of mIgs. This leads to the phosphorylation of tyrosine residues in the Ig-α/Ig-β

cytoplasmic tails and the activation of multiple downstream signaling pathways.

The end result of these events is the transcriptional activation of several specific

genes that are further needed for B-cell response to antigens.
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B-cell activation by thymus-dependent antigens

TD-antigens are not competent enough to induce activation of B-cells on their

own. They are instead internalized by B-cells that recognize them and are dis-

played on the cell surface in conjugation with MHC-II molecules. The antigenic

peptide-MHC-II complex is recognized by TH-cells and this interaction leads to

the formation of T-B conjugates. This conjugate formation is accompanied by

polarized intracellular rearrangement of the golgi and the microtubule-organizing

center towards the site of T cell-B cell interaction. This is believed to aid in the

directed release of cytokines for B-cell activation. MIgM cross-linking and interac-

tion of specific ligand-receptor molecules on the T cell and B-cell surface provides

the competence signal needed to drive the B-cell from G0 to G1 phase. This signal

enables B-cells to express cytokine receptors on their cell surface. Cytokines (IL-

2, IL-4 and IL-5) released from the TH-cells in a directed manner bind to these

receptors and provide the progression signal, leading to the proliferation of these

activated B-cells. Subsequently, these B-cells undergo differentiation.

B-cell differentiation

B-cell activation and differentiation takes place in peripheral lymphoid organs

like the lymph nodes. These are specialized organs that trap antigens circu-

lating through the lymphatic system. These are also organs through which T-

lymphocytes and B-lymphocytes constantly re-circulate. Antigens that enter the

body are processed by professional antigen-presenting cells and brought to the

T-cell zone of local peripheral lymph nodes. Circulating naive T-lymphocytes are
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exposed to the antigen and those displaying specific recognition for the antigen

are trapped and activated to become TH cells. Circulating B-cells enter lymph

nodes and most B-cell quickly pass through the T-cell zone to enter the B-cell

zone (the primary follicle). However, those B-cells possessing B-cell receptors that

specifically bind the antigen are trapped within the T-cell zone. The interaction

between activated TH cells and B-cells leads to the formation of a primary focus

of clonal expansion of both lymphocytes for several days. . This constitutes the

first phase of the primary humoral immune response. Many of the cells in the

primary focus die by apoptosis at the end of the first phase. Those that survive

can have either of two fates. Some B-cells differentiate into plasma cells capable

of antibody secretion and migrate to the medulla of lymph nodes. Antibodies

secreted from these plasma cells provide immediate protection to the individual.

Some of the remaining B-cells and T-cells migrate to the primary follicles where

they proliferate and form a germinal center. Events that transpire in germinal

centers serve to provide effective later response in case of re-infection. B-cells

undergo a number of differentiation events in germinal centers including somatic

hypermutation, affinity maturation and isotype switching. This serves to select

for B-cells displaying increased affinity for the antigen and enables these selected

B cells to perform various effector functions depending on the isotype. These

B-cells can now differentiate further into plasma cells and memory cells. Plasma

cells are terminally differentiated non-dividing cells that secrete antibodies at a

high rate. They migrate to the bone marrow where the bone marrow cells provide

survival signals to plasma cells. These plasma cells serve as a long-lasting source of

high-affinity antibodies. Memory cells are long-lived cells that provide long-term

immunological memory.
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1.3.6 B-cell effector-response

The first encounter with an antigen leads to a primary humoral response (de-

scribed above) that culminates in the production of plasma cells and memory

cells. The primary humoral response is characterized by a lag phase, which is the

time required for clonal selection, proliferation and differentiation of naive B-cells.

Memory B-cells that arise from the primary humoral response are key to initiating

the secondary humoral response in case of re-infection by the same antigen. The

secondary response is characterized by a much shorter lag period and an immune

response of greater magnitude as compared to the primary response.

Antibodies synthesized in response to an infection effectively eliminate antigens

by a variety of means including:

1. Acting as opsonins, thus enabling easy recognition by antigen-presenting

cells.

2. Activating the complement system to bring about lysis of infecting cells.

3. Binding to target cells and facilitation recognition by cytotoxic T-cells, thus

leading to antibody-dependent cell-mediated cytotoxicity (ADCC).

4. Binding and neutralizing bacterial toxins

The large number of antibody molecules secreted by plasma ensures that the

invading pathogen is effectively eliminated.
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1.4 T-cell responses and cell-mediated immune

system

1.4.1 T-cell receptor

T-cell receptors are heterodimers composed of either αβ chains or γδ chains. Like

B-cell receptors, the diversity of T-cell receptors is generated by gene rearrange-

ments. The T-cell receptor is also associated with a signal-transducing complex

CD3 which functions in a similar way to the Ig-α/Ig-β complex in the B-cell re-

ceptor. The cytoplasmic tail of CD3 possesses the immunoreceptor tyrosine-based

activation motif (ITAM) by which it can interact with downstream kinases and

activate downstream signal transduction kinases in response to T-cell receptor ac-

tivation. The T-cell receptor recognizes an antigen only in a complex with MHC

molecules. While the variable region of the T-cell receptor binds to the peptide

fragment in the peptide-MHC complex, the extracellular domains of coreceptors

CD4 and CD8 mediate interaction of the T-cell with the MHC molecule in the

peptide-MHC complex.

1.4.2 T-cell maturation

T-lymphocytes originate in the bone marrow, but subsequently migrate to the

thymus for development in the eighth or ninth week of gestation in humans. Sim-

ilar to B-cell development, T-cells also undergo a series of gene rearrangements
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that give rise to cells expressing different cell surface molecules. T-cell maturation

starts with the expression of a pre-T cell receptor lacking surface CD4 and CD8

(referred to as the double-negative state) consisting of the CD3 protein, the

β-chain of the TCR and a pre-Tα. First the TCR β-chain gene rearrangement

takes place following which the expression of CD4 and CD8 is induced. These

thymocytes are now called double-positive or CD4+8+ T-cells possessing identical

β-chain sequence. It is only when these double-positive T-cells stop proliferat-

ing that the TCR α-chain gene rearrangements take place. T-cells that fail to

make a productive gene rearrangement do not mature and they die by apoptosis.

Those T-cells that survive are subjected to the next phase of selection termed

thymic-selection. This step is important in ensuring that only those T-cells that

recognize self-MHC molecules in conjunction with foreign antigens are released

into circulation. Thymic-selection occurs in two phases:

1. Positive selection of T-cells capable of recognizing self-MHC molecules thus

resulting in MHC restriction. This is brought about by an interaction with

thymic epithelial cells. During this selection, α-chain gene rearrangements

continues to take place and those T-cells that fail to express αβ-TCR with

self-MHC recognition die by apoptosis in 3-4 days.

2. Negative selection of T-cells possessing high-affinity receptors for self-antigens

displayed by self-MHC molecules, or to self-MHC molecules alone, resulting

in self-tolerance. Positively selected T-cells interact with dendritic cells and

macrophages bearing class I and class II MHC molecules and self-reactive

T-cells are eliminated by apoptosis.
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At the end of thymic-selection, only those T-cells capable of recognizing altered-

self cells are able to survive and mature. By the time these mature T-cells are

released into the periphery, they are either single-positive CD4+ thymocytes or

single-positive CD8+ thymocytes. These T-cells that have not yet been activated

by an antigen are termed naive T-cells.

1.4.3 T-cell activation

Naive T-cells that exit from the thymus continuously circulate between the blood

and lymphatic system. This includes a passage through the various lymph nodes,

where the chance of encountering an antigen or an antigen-presenting cell display-

ing an antigenic peptide is very high. Upon infection by an antigen, professional

antigen presenting cells ingest, process and display antigenic fragments on their

cell surface. These antigen-presenting cells then migrate to the nearby lymph node

where they are sampled by circulating naive T-cells. The most potent activator

of naive T-cells are dendritic cells. T-cells that are not specific for a particular

MHC-peptide complex quickly re-enter circulation, while those displaying speci-

ficity to the complex are efficiently retained in the lymph node. Interaction of the

TCR with the peptide-MHC complex initiates a series of events in the naive T-cell

leading to it’s exit from the resting G0 phase and entry into the cell cycle. This is

accompanied by the expression of several genes whose products enable the naive

T- cell to proliferate, differentiate, and stimulate effector functions.

The interaction between TCR and CD4/CD8 on the T-cell and the peptide-MHC

complex on the antigen presenting cell alone is not sufficient to induce activa-
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tion of nave T-cells. Accompanying this interaction is an antigen-nonspecific co-

stimulatory signal provided by the interaction between CD28 molecule on the

T-cell and B7 molecule on the antigen-presenting cell. Co-stimulation of the T-

cell leads to the increased production of the cytokine interleukin-2 (IL-2) and its

receptor (IL-2R) by the activated T-cell, stimulating it’s own proliferation and

differentiation.

1.4.4 T-cell differentiation

The initial proliferative phase of T-cell activation lasts for about 4-5 days ,af-

ter which activated T-cells differentiate into armed effector T-cells and memory

T-cells. Differentiated T-cells do not need stringent conditions for stimulation

and therefore, any subsequent encounter with the peptide-MHC complex leads

to a rapid response. For example, armed effector T-cells no longer need a co-

stimulatory signal for their activation. Armed T-cells are capable of synthesizing

all the effector molecules needed to bring about an effective cell-mediated immune

response. CD4+ T cells differentiate into armed effector TH (T helper) cells while

CD8+ T cells differentiate into armed effector TC (T cytotoxic) cells.

CD4+ T cells are capable of differentiating into either of two subsets, which differ

in the cytokines they produce and also their effector functions:

• TH1 subset which activates the cell-mediated functions of the immune sys-

tem including activation of cytotoxic T-lymphocytes. This subset of CD4+

T-cells secretes cytokines like IL-2, IFN-γand TNF-β.
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• TH2 which functions as a helper cell for B-cell activation and secretes IL-4,

IL-5, IL-6 and IL-10.

Activated CD8+ T cells enter into circulation and recognize and actively kill in-

fected cells by two major pathways:

1. The release of cytotoxic proteins like perforins and granzymes. Perforins are

pore-forming proteins and they lead to cell death by virtue of disrupting

the membrane integrity of target cells.Granzymes are lytic enzymes that are

believed to trigger a cascade leading to DNA fragmentation of target cell

and it’s apoptosis.

2. The activation of apoptosis in target cells by engaging Fas ligand on cytotoxic

T-cells with Fas receptor on target cell surface.

1.5 Importance of the immune system

Each and every player of the immune system is essential for effectively preventing

infections and diseases. This is highlighted by the manifestations of immunodefi-

ciency diseases. These diseases can arise from a defect in any or several components

of the immune system e.g. defects in the phagocytic system, complement system,

cell-mediated immune system or humoral system. Immunodeficiencies affecting

the humoral immune system can arise from defects in B-cell maturation, defects

in mature B cells, ineffective TH cell activation or inappropriate T cell suppres-

sion. Examples of such diseases include X-linked hyper-IgM syndrome, common
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variable immunodeficiency etc. Cell-mediated immunodeficiencies can arise from

defects in T cell maturation for example DiGeorge syndrome. One of the most

severe immunodeficiencies arises due to defects in the humoral and cell-mediated

branch of the immune system.For example, defective T and B-cell maturation

gives rise to Severe Combined Immunodeficiency Disease (SCID) while failure to

express MHC molecules gives rise to the Bare-Lymphocyte Syndrome. Such severe

disorders usually result in an early death unless an effective treatment to replace

the defective immune cells is given.
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Chapter 2

Introduction to computational

methods in bioinformatics

2.1 An introduction to genetic algorithms

The principles of biological evolution have inspired many developments in the

field of computer science. Genetic algorithms (GAs) are search algorithms that

mimic principles of natural selection and natural genetics to find the best possible

solution in a search space that is large and complex.

Genetic algorithms, together with Evolution strategies (Rechenberg, 1965; Rechen-

berg, 1973) and Evolutionary programming (Fogel et al., 1966) comprise a field

termed as Evolutionary computation. GAs were originally developed by John Hol-

land and colleagues (1975) with the following aims:
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• To synopsize the processes involved in evolution and natural selection.

• To design computational methods that would be based on the principle of

natural selection.

The core theme behind GAs has been searching for optimal solutions in large

and complex search spaces with reduced cost and extended functionality for ar-

tificial systems. The capabilities of GAs in finding optimal solutions have been

established in numerous papers (e.g. Axelrod (1984), Axelrod and Dion (1988))

and the themes of adaptation and evolution appeal naturally as potential ways of

finding solutions to complex problems where the search space is enormous. GAs

incorporate these philosophies through crossover and mutation. In addition, the

fundamentally parallel nature of GAs makes it possible to examine large popula-

tions of candidate solutions to problems simultaneously.

2.1.1 Elements of a genetic algorithm

The technical terms used in describing genetic algorithms bear close semblance to

scientific terms in biology. Understanding the biological terms is therefore a useful

step in understanding the basic components of a genetic algorithm. The following

biological terms constitute the basic terms of a GA:

Chromosome The term Chromosome in biology used to denote strings of DNA.

A chromosome in a GA is used to refer to a potential solution to the problem

56



being addressed and is usually encoded as a bit string (i.e. a set of boolean

values) (See Section 2.1.3).

Gene In biology, the term Gene refers to a block of genomic sequence which per-

forms a specific function. In GAs, a gene is either a single bit or short blocks

of adjacent bits in a chromosome that correspond to a specific characteristic

of a chromosome.

Allele The biological meaning of the term Allele is a member of one of several

forms of a gene. Each allele of a gene encodes for a specific trait or function.

In a GA, an allele represents all the possible combinations of values at every

position (generally a 0 or 1).

2.1.2 GA Operators

Further, two commonly used terms in GAs are parent and child populations of

chromosomes. The parent population of chromosomes is initially created by ran-

domly assembling strings with combinations of alleles (0 and 1 in GAs). The

quality of every chromosome is evaluated to select parents and a new population

of child chromosomes is created by Crossover and Mutation. These steps are

described below and are commonly referred to as GA operators:

1. Selection: This term is used to describe the process of choosing parent chro-

mosomes for reproduction. Parent chromosomes are evaluated for their qual-

ity and assigned scores and selection for reproduction is biased towards par-

ents that have good scores. There are several methods of selecting parent
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chromosomes which are described in the following sections.

2. Crossover: Once two parent chromosomes have been selected for reproduc-

tion, a random locus is chosen and the parent substrings are spliced together

to form a new chromosome.

3. Mutation: Once parent substrings have been spliced together to form a new

chromosome, some alleles in the new chromosome are changed randomly and

this operation is known as Mutation.

2.1.3 Encoding a problem

The process of representing a problem to the computer is termed as encoding

the problem. Optimal encoding of problems for genetic algorithms is central to

their success. Most genetic algorithms are encoded as fixed length chromosomes.

However, the encoding scheme is largely problem-specific and a number of encod-

ing schemes have been devised for GAs. Some of the most prominent encoding

schemes are:

1. Binary encoding: This is the most common encoding method for a GA and

traces its history back to the time when genetic algorithms were first de-

scribed by John Holland and colleagues (Holland, 1975). Binary strings are

used to encode potential solutions to the problem at hand with each posi-

tion containing one of two possible alleles: 0 or 1. Holland and colleagues

established that the binary scheme has an inherently parallel nature com-

pared with shorter strings that have more than two possible alleles at every
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position. However, for some problems such as evolving weights in a neural

network, the binary encoding scheme is not the best option.

2. Many-character and real-valued encoding: There are some problems for

which a simple binary encoding will not be adequate. For example, when one

of the inputs to a genetic algorithm is the torsion angle of a specific residue

in a protein, it would be more convenient to have a real-valued encoding

scheme where each position in the string is represented by numbers between

0 and 9. However, there are no established standards on the best encoding

scheme and while a real-valued encoding is useful in one problem, a simple

binary encoding scheme might suffice for another. The encoding scheme will

depend on the problem being addressed in the genetic algorithm.

3. Tree encoding: In this scheme, every chromosome is represented as a tree of

objects. This scheme is most suited for evolving rules or programs. It has

an open-ended limit on the search space. However, there are no standard

benchmarks for the efficacy of this encoding method, as development efforts

for this scheme of encoding are currently at a very nascent stage (O’ Relilly

and Oppacher, 1995; Tackett, 1994).

2.1.4 Selection methods

The process of selection in a GA implies the selection of parent chromosomes to

create a new chromosome. All selection methods are biased towards the selection

of parents that have very high scores. There are many different selection methods

and their applicability depends on the nature of the problem. The following are
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examples of the most commonly used selection methods:

Roulette wheel selection

This is fitness-proportionate selection method where the likelihood of a particular

parent being selected is given by the fitness of the parent divided by the average

fitness of the entire population of chromosomes. The steps involved in this algo-

rithm are detailed below. These steps are typically used to select 2 parents which

are then crossed over to create a new chromosome.

• Sort the fitnesses of the parent chromosomes in ascending order.

• For the population of parent chromosomes, calculate the total fitness T.

• Select a random value r between 0 and T.

• The chromosome whose fitness puts the sum (when summed in ascending

order of fitnesses) above the randomly chosen value r is chosen for crossover.

One problem with Roulette wheel selection is premature convergence of the pop-

ulation of chromosomes. Initially, the population is quite diverse. Some parents

that score significantly better than others are selected frequently and, when crossed

over, result in the same set of child chromosomes being created. This can cause

the population to converge in a local minimum and become saturated.
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Sigma selection

Several techniques have been developed to overcome the problem of premature

convergence of the chromosome population. One such strategy is Sigma selection

(Forrest, 1985). In this selection method, the use of the raw scores of the chromo-

somes is avoided. Instead, an expected value is calculated for each chromosome,

the value of which depends on the score of the chromosome, the mean score for

the population and the standard deviation in the score of the population. The

expected value is calculated as:

e(i, t) =















1 + f(i)−f̄ (t)
2σ(t)

if σ(t) 6= 0

1 if σ(t) = 0

(2.1)

where e(i, t) is the expected value for chromosome i at time t, f(i) is the fitness

(or score) of chromosome i, f̄(t) is the average fitness of the population at time t

and σ(t) is the standard deviation of the population fitness at time t (Mitchell,

1996).

Melanie Mitchell reasons that, at the beginning of the GA when the fitness scores

are fairly divergent, the expectation value for chromosomes with high scores will

not be much higher than the average score of the population (f̄(t)). However,

after several time steps of the GA when the population starts to converge, the

standard deviation in fitness levels (σ(t)) is small, and the chromosomes with high

scores will stand out.
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Boltzmann selection

Boltzmann selection is only slightly different from Sigma selection in that a ‘tem-

perature’ component is involved while calculating the expectation value for every

chromosome. A high temperature factor ensures that all genes have roughly equal

chances of being selected for crossover. At the beginning of the GA run, the pop-

ulation of chromosomes is likely to be more diverse and therefore the variance in

their scores is also high. In order to boost variability in the population at the

earlier stages of the GA, a high temperature factor is applied in calculating the

expectation factor. However, as convergence occurs, the variance in scores reduces

and the temperature factor is also reduced.

The expectation value for every chromosome is calculated as follows:

e(i, t) =
e

f(i)
T

µ(e
f(i)
T )

(2.2)

where f(i) is the score of chromosome i, T is the temperature, µ(e
f(i)
T ) denotes the

average score of the entire population at time t.

Rank selection

This scheme was originally developed by Baker (1985) in which every chromosome

is assigned a rank depending on its score. Assuming a population of N chromo-
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somes which are all distinct, the highest-scoring chromosome is assigned a rank

of N and the lowest-scoring chromosome is assigned a rank of 1. In this way, the

need for absolute scores is eliminated.

The procedure of selecting two parents for crossover is similar to Roulette-wheel

selection with the difference being that scores are replaced by ranks. Every chro-

mosome in the population is assigned a rank between 1 and N – the chromosome

with the lowest score is given a rank of 1 and the chromosome with the highest

score is given a rank of N. The following steps are performed twice to select two

parents for crossover.

• Sort the parent chromosomes in ascending rank order.

• For the population of parent chromosomes, calculate the total rank T.

• Select a random value r between 0 and T.

• The chromosome whose rank puts the sum (when summed in ascending order

of ranks) above the randomly chosen value r is chosen for crossover.

Tournament selection

Several of the selection methods described above employ time-consuming computa-

tions to calculate the probability of selection of every chromosome in a population.

For example, in Rank-based selection, chromosomes are required to be sorted in

increasing order of their scores so that selection can be biased towards chromo-

somes that have high scores and therefore low ranks. Similarly in Sigma selection,
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one round of calculations is used to calculate the mean score of the population

and another to calculate the probability of selection for each chromosome in the

population.

Tournament selection avoids these problems by employing simple selection proce-

dures. The selection of chromosomes for crossover are performed as follows:

• Select N chromosomes at random from the population.

• Choose a random number r between 0 and 1.

• If r is less than k (a user-defined parameter of the algorithm), then the

most fit of the N chromosomes is chosen. Otherwise, one of the remaining

chromosomes is chosen at random.

2.1.5 Replacement strategies

Once child chromosomes have been created after crossover of parent chromosomes,

the process by which the parent and child chromosomes are combined to yield a

new population is termed as replacement. The two most common replacement

strategies are:
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Generational replacement

This is the oldest replacement strategy and came into existence when genetic

algorithms were originally developed. This method mimics the biological model

in which a whole population of parents are replaced by children. In this method,

the population of parent chromosomes is completely replaced by a population of

child chromosomes.

Steady State Replacement

The Steady State Replacement strategy is a slight variation of generational re-

placement. In this method, only a few individuals from the parent population are

replaced by individuals from the child population. The replaced individuals are

usually the least-fit parents. This method is used in systems where incremental

learning is important and members of a population collectively represent the so-

lution to a problem (See Sywerda (1989), Sywerda (1991), Whitley et al. (1989),

De Jong and Sharma (1993)).

Elitist replacement

This method is a slight variation of the Steady State Replacement method in

which the best genes from the common pool of child and parent chromosomes

are retained. The principle behind this replacement strategy is to retain the best

chromosomes from every generation so that they are not lost in future generations
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during crossover and mutation to create new populations. This method has been

shown to be very effective in significantly improving the performance of a GA

(De Jong, 1975).

2.2 Introduction to artificial neural networks

2.2.1 Machine learning approaches

Machine learning approaches were developed with the aim of identifying patterns

in data where they cannot be easily described by a set of mathematical rules.

However, the field of machine learning is vast considering that learning can be

applied to several types of problems such as image recognition, classification prob-

lems, natural language processing and robotics, to name but a few. In my PhD, I

have used artificial neural networks along with genetic algorithms to predict the

packing angle at the interface of the light chain and heavy chain variable region

from the nature of residues in the interface (See Chapter 5).

The most prominent machine learning techniques are:

Support vector machines (SVMs) Support Vector Machines are based on Vap-

nik’s statistical learning theory (Vapnik, 2000). SVMs are principally binary

classifiers i.e. they classify a result as belonging to one of two possible out-

come sets. SVMs are therefore not suitable for the prediction of the packing

angle.
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Decision trees (DTs) Decision trees are usually used to create a set of rules

from which a classification can be made. They accept a set of properties as

input and output a series of yes/no decisions (Russell and Norvig, 1995) and

are therefore not suitable for the prediction of packing angle. DTs are most

often used in data mining applications and in classification problems.

Bayesian networks (BNets) Bayesian networks are based on the Bayes the-

orem (Bayes, 1763) and are amongst the most powerful machine learning

techniques. However, a requirement for the use of BNets is that the data

to be predicted must resemble a normal distribution. As will become clear

from Section 5.1 in Chapter 5, the packing angle distribution is indeed nor-

mal. The use of BNets for the prediction of packing angle was therefore a

possibility.

Artificial neural networks (ANNs) Artificial neural networks assume no prior

distribution of data and can be applied to learn any type of data. I decided to

use ANNs to predict the packing angle as there was more technical expertise

in the group for ANNs compared with BNets.

2.2.2 Artificial neural networks

An Artificial neural network (referred to as just Neural network) is a system

inspired by the working of the neural system. The biological nervous system can be

imagined as consisting of neurons (nerve cells) which are connected to one another

through connections or synapses. Similarly, artificial neural networks are made of

neurodes which are the basic functional units. The schematic representation for a
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Figure 2.1: Schematic representation of a neurode in an artificial neural network.
Figure shows the inputs to the neurode X1, X2, X3...Xn, weights of synapses W1,
W2, W3...Wn, summation function σ, bias b, activation function φ and output Y.
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neurode in an artificial neural network (ANN ) is shown in Figure 2.1. The main

components of an artificial neural network are:

1. Synapses: Synapses form the interconnects between neurodes. Each synapse

that connects a certain input to the neurode is characterised by a weight.

For example, in Figure 2.1, the weight for the synapse that links the second

input to the synapse (X2 ) is represented as W2. For every neurode, the

input signal Xi is multiplied with the corresponding synaptic weight Wi.

These quantities are summed up for all the inputs and together with the bias

function b will determine the output of the neurode. It must be emphasised

that the synaptic weight may be a positive or negative value.

2. Adder: An adder adds the product of all the input signals and the corre-

sponding synaptic weights. In Figure 2.1, this is represented as Σ.

3. Bias function: This function is capable of increasing or reducing the input

to the activation function. The bias function is shown as b in Figure 2.1.

4. Activation function: This function limits the output amplitude of a neurode

and is shown as φ(.) if Figure 2.1.

Consider for example the neurode k th in an artificial neural network. The input

to the neural network as summed by the adder (uk) is given by:

uk =
m
∑

j=1

wkjxj (2.3)
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Further, the output of the neurode is given by yk:

yk = φ(vk) (2.4)

where vk is referred to as the induced local field or the activation potential. vk

generally contains a bias function such that:

vk = uk + bk (2.5)

The bias function in Equation 2.5 has the effect of applying an affine transfor-

mation to the additive input to the neurode uk. It must be noted that the bias

function is a parameter that is external to the neurode and may be either a posi-

tive or a negative value. Depending on the value of the bias function bk, the plot

of vk vs. uk may not pass through the origin (Figure 2.2).

In the actual implementation of an artificial neural network, the bias function bk

of a neurode k is fed as an input signal x0 which is given by:

x0 = +1 (2.6)

and the weight of the synaptic connection for this input is:
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Figure 2.2: Plot of induced local field (Vk) vs. the adder function (Uk)
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w0 = bk (2.7)

The induced potential vk and output yk of a neurode k may be reformulated as:

vk =
m
∑

j=0

wkjxj (2.8)

yk = φ(vk) (2.9)

A neural network typically consists of a three-layered architecture as shown in

Figure 2.3: the Input layer, Hidden layer, and the Output layer. Each layer

consists of a set of neurodes with interconnects between the neurodes in every

level. The interconnects that link the neurodes are the synaptic connections and

are characterised by weights described above. Neural networks learn by adjusting

the weights of the synaptic links between the neurodes in each layer.

2.2.3 The process of learning: Learning algorithms

There are primarily two types of signals in fully-connected neural networks (such

as that shown in Figure 2.3) (Parker, 1987):

• Functional signal: A functional signal is one that enters the artificial neural
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Input layer

Nodes representing residues 
at interface positions

Nodes in the
hidden layer -
10, 20, or 30

Hidden layer

Output node representing
Interface angle

Output layer

Figure 2.3: Three-layered architecture of a neural network. Each neurode of the
input layer is connected to each neurode in the hidden layer which in turn is
connected to each neurode in the output layer.

network through the input layer, propagates through the hidden layer and

emerges as the output at the output layer. The output from every neurode is

characterised by the inputs applied to the neurode and the synaptic weights

that lead to the neurode. These signals are called functional because they

form the output signal, in addition to determining the output from every

neurode in the neural network.

• Error signal: An error signal is the opposite of a functional signal. It is used

to refine errors made during the learning process. Error signals originate in

the output layer and back-propagate to the input layer. They are so called

because calculation of the error signal at every neurode involves computation

of an error function in some form.

The process of learning in an artificial neural network involves adjusting the synap-

tic weights for inputs to every neurode. One of the most common learning tech-

niques is called Back-propagate as it involves the adjustments starting in the last

layer of the neural network. The following equation summarises the total weight

change in the artificial neural network:
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∆wji(n) = ηδj(n)yi(n) (2.10)

The notations used in the equation are as follows:

1. n indicates the time step and usually implies a specific training cycle.

2. i and j indicate neurodes in the network such that neurode j is in a layer to

the right of neurode i.

3. ∆wji(n) is the change in weight (or correction) applied to the weight wji(n)

(weight of the synaptic connection that links neurodes i and j ).

4. η is the learning-rate constant of the back-propagate algorithm.

5. δj(n) is the error introduced by neurode j at time step n.

6. yi(n) is the output of neurode i at time step n.

Updates to the weights are carried out using steepest descent minimisation through

the following formula (Rumelhart et al., 1986):

wji(n + 1) = wji(n) − η∆E(w(n)) (2.11)

where wji(n + 1) is the weight at time step n+1, wji(n) is the weight at time step

n, η is the learning constant, and ∆E(w(n)) is the sum of square errors in the
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weights at time step n. For quick convergence, the rate constant η is usually set

to a value between 0 and 1. However, it is known that this method is very slow.

A modification to the Back-propagate algorithm, Resilient propagate, was pro-

posed by Reidmiller and Braun (Riedmiller and Braun, 1993) in 1993. Unlike

Back-propagate, Resilient propagate (Rprop) implements dynamic learning-rate

constants during neural network training. Rprop has been shown to be far supe-

rior to other learning algorithms in terms of both speed and quality of learning

(Schiffmann et al., 1993).

A problem that has often been cited for the Back-propagate algorithm is that

it gets stuck in local minima. Small changes to the synaptic weight could cause

an overall increase in the cost function (here, the negative overall error rate).

However, there may also exist another set of synaptic weights where the overall

error rate is lower, causing the algorithm to be caught in local minima. This

problem has been overcome in Resilient propagate wherein the size of the weight

change is determined by a weight-specific update value, given by:

∆w
(n)
ij =



































−∆ij(n), ifδE(n)/δwij > 0

+∆ij(n), ifδE(n)/δwij < 0

0; otherwise

(2.12)

where δE(n)/δwij denotes the partial derivative of the sum-of-square error with

respect to the weight of the synaptic link connecting neurodes i and j. Updates

to the weights are carried out using the formula:
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∆w
(n)
ij =



































η+∆ij(n); if δE(n−1)
δwij

. δE(n−1)
δwij

> 0

η−∆ij(n); if δE(n−1)
δwij

. δE(n−1)
δwij

< 0

∆ij(n − 1); otherwise

(2.13)

Therefore every time the sign of the partial derivative of the weight (wij) changes

(implying that the last update was too big and the algorithm crossed a local

minimum value), the update-value ∆ij(n) is decreased by the value η−. On the

other hand, if the sign of the derivative is retained, then the update value is

increased to accelerate convergence.

RProp requires the following parameters to be set:

1. Increase factor η+ (Default) = 1.2.

2. Decrease factor η− (Default) = 0.5.

3. Initial update value ∆0 (Default) = 0.1.

4. Maximum weight step used to prevent the weight from becoming too large

∆max (Default) = 50 (Riedmiller and Braun, 1993).

2.3 Introduction to protein sequence analysis

After the completion of several genome sequencing projects, sequences of nearly 6.5

million proteins are available (http://www.ncbi.nlm.nih.gov/RefSeq/). The
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most thorough way of annotating protein function is using biochemical analysis.

However, this is impossible on a genomic scale considering the costs involved in

annotating the function of nearly 6.5 million proteins.

Proteins that show significant amino acid sequence similarity tend to be homol-

ogous and have similar or related function. Sequence analysis tools have been

developed with the goal of helping to identify homologous proteins. Some of the

applications of sequence analysis tools include:

• Comparing protein sequences to identify homologous proteins.

• Tracing the evolution of a protein.

• Identifying conserved regions in the sequence of a protein.

An important focus in Bioinformatics has been the development of protein se-

quence comparison methods. These may be broadly classified into one of three

types:

• Pairwise sequence alignment methods to compare two protein sequences.

• Fast heuristic alignment methods that compare a protein sequence with a

database of protein sequences.

• Profile-based search methods to compare a protein sequence with a database

of protein sequences.

• Multiple sequence alignment methods to identify regions of conservation in

the sequences of homologous proteins.
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2.3.1 Pairwise sequence alignment

Considering that there are only 20 amino acids, it is possible that two randomly

chosen proteins would have a certain number of similar sets of residues entirely by

chance. These statistics must be employed to identify significant relationships. A

requirement in establishing regions of similarity between two proteins is to allow

insertions or deletions in the sequences, commonly referred to as indels. However,

the task of identifying indels to align two protein sequences optimally is difficult.

This is particularly the case when the two proteins are remotely related and have

very low sequence similarity.

Needleman and Wunsch (1970) developed an algorithm using dynamic program-

ming to align two protein sequences automatically. The procedure uses an n × m

matrix to score the identities, or similarities, of residues being compared, where n

and m are the number of amino acids in the two protein sequences. The main steps

involved in the Needleman and Wunsch algorithm are described below (Orengo et

al., 2003):

1. Scoring the matrix – The 2-dimensional matrix is initially populated with a

set of scores to represent the identities or similarities of residues associated

with each position in the matrix. In the simplest case, this can be either

1 or 0 where 1 would indicate identical residues (and therefore include all

residues on the diagonal) and 0 otherwise. Another way of populating the

scores is by using a substitution matrix such as the BLOSUM (Henikoff and

Henikoff, 1992) or Dayhoff matrix (Dayhoff et al., 1978). These indicate
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the probability of one residue substituting for another residue in a protein

over time.

2. Accumulating the matrix – Once the score for each cell in the 2D matrix has

been computed, the scores are accumulated from the bottom right corner of

the matrix. The best score for a cell represented by the coordinates (i,j) is

selected using the equation:

Si,j = Si,j + max



































Si+1,j+1

Si+m,j+1 − g

Si+1,j+m − g

(2.14)

where Si+1,j+1 indicates the score of a diagonal move from cell i + 1,j + 1,

Si+m,j+1 is the score of a move from the j + 1th row, and Si+1,j+m is the score

of a move from the i + 1th column.

An off-diagonal move from either the j + 1th row or i + 1th column, implies

the introduction of a gap in one of the sequences. Adding a gap to the

alignment is penalised by imposing a gap penalty score of the form:

g = o + ne (2.15)

where o is the gap opening penalty, e is the gap extension penalty, and n is

the length of the gap.

3. Tracing the highest scoring path – Once the score for every cell in the matrix

has been calculated, a trace-back is performed to find the optimal alignment

between the two sequences. This is done by starting with the highest-scoring

cell near the top left corner and tracing the path through which the score
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was accumulated towards the bottom right corner of the matrix. An off-

diagonal move implies the introduction of a gap in the alignment of one

of the sequences. This is in turn equivalent to an insertion in the other

sequence.

While the original dynamic programming method can be slow while aligning long

sequences, the process may be speeded up by using a window for the matrix. This

implies that the score accumulation and traceback is performed only within the

window and the length of insertions or deletions is restricted by the size of the

window.

Smith and Waterman (1981) developed an alternative algorithm which identifies

a local region of similarity (local alignment) between two protein sequences. The

score for each cell in the matrix when aligning sequence a and b is calculated by:

Si,j = max



















































Si+1,j+1 + S(i, j)

max(Si+k,j) − g

max(Si,j+1) − g

0

(2.16)

where S, i, j, k, m, and g have the same meaning as in the Needleman-Wunsch

algorithm. When the score of a cell becomes negative, then a score of zero is

assigned. The traceback step starts at the cell in the matrix with the highest

score and is terminated when the cumulative score falls to zero. While the highest

score in the Needleman-Wunsch algorithm is always on the outside the matrix, in
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the Smith-Waterman algorithm, it can appear anywhere in the matrix.

2.3.2 Searches against a database of proteins

While dynamic programming results in the most reliable alignment, the algorithms

are computationally expensive and are not practical when trying to align a protein

sequence with sequences in a large database with the aim of identifying homologues

or finding regions of local alignment. Alternative methods have been developed

using heuristics with the aim of improving the speed of searches against large

databases and identifying homologues. These methods help in the identification

of putative homologues by assigning statistical scores. The two main heuristic-

driven approaches to search against databases of proteins are FASTA (Pearson

and Lipman, 1988) and BLAST (Altschul et al., 1990).

FASTA and BLAST

The FASTA program developed by Pearson and Lipman (1988) is used to compare

a protein sequence with a database of protein sequences. It uses the concept of

words (or tuples) to identify regions of similarity between two proteins.

The working of the FASTA program is shown in Figure 2.4. FASTA uses the

concept of words where a word represents a set of contiguous residues in a sequence.

Normally, a word length of 2 residues is used for proteins. The sequence A to be

compared against a database of sequences is first split into words. In addition,
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Figure 2.4: Steps involved in the FASTA search program: (a) Find all identical
words in the query sequence (A) and sequence in the database (B) (b) All the
identical words are scored using a substitution matrix (c) Identical words with
a score above a threshold value are joined together using gaps and (d) The two
sequences are aligned using the Smith-Waterman algorithm to obtain optimal
alignment. Diagram taken from http://www.cbi.pku.edu.cn/images/fasta_

algorithm.gif.
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to facilitate the comparison of the query sequence with every sequence in the

database, the following steps are performed:

1. Every sequence B in the database is split into its constituent words.

2. The words in A and B are compared and all identical words between the two

sequences are identified and joined into contiguous stretches

3. The best stretches are scored using a substitution matrix (such as PAM)

and words with a score below a threshold value are rejected.

4. All identical words with scores above the threshold value are joined together

using gaps.

5. Smith-Waterman dynamic programming is used to perform a local alignment

between the sequences using a narrow window around the diagonal identified

in the previous steps. This provides an optimised score.

The use of dynamic programming allows the calculation of the overall similarity

measure between the two protein sequences. The significance of the similarity

measure is estimated by assessing how frequently the similarity score is observed

when comparing the query sequence against a database of unrelated sequences.

BLAST

BLAST (or gapped BLAST) (Altschul et al., 1990) performs similar steps to iden-

tify homologues of a query sequence in a database. For a word of length 3, all

possible words that score above a threshold value are found and these words are
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then identified in a database. The regions spanning the words are extended with-

out introducing gaps while the score remains above a threshold value. If suffi-

ciently good hits are found, then a Smith-Waterman alignment is performed. The

main practical difference between BLAST and FASTA is that BLAST requires the

database to be indexed prior to searching. This is done to increase the speed of

searches.

Statistical methods to assess significance of a match

Sequence identity alone cannot establish whether a hit is a true homologue of a

query protein. For example, it has been established that in the twilight zone of

25% sequence identity or lower, it is impossible to tell from sequence identity alone

whether a hit is a remote homologue, or not a relative at all. This has led to the

development of statistical measures to assess the significance of a match during a

database search.

An assumption in the early versions of FASTA was that the distribution of pair-

wise identities between unrelated sequences was normal. Hence, initial versions of

FASTA used Z-scores to report the likelihood of a match between two sequences.

A Z-score gives the number of standard deviations of a certain value from the

mean of a normal distribution. A high Z-score value (e.g. 15) implied a high

probability of the hit being a homologue of the query protein. However, subse-

quent work showed that the distribution of pairwise identities between unrelated

sequences is an extreme value distribution (Mott, 1992; Altschul and Gish, 1996)

(See Figure 2.5 taken from Hobohm and Sander (1994)). The tail of the extreme
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Figure 2.5: Extreme value distribution of 200000 sequences with less than 25%
sequence identity randomly chosen from the PDB. Image taken from http://www.

biomedcentral.com/1471-2105/8/388/figure/F9 (Dundas et al., 2007).

value distribution tapers more slowly compared with a normal distribution and is

directly proportional to the log of the frequency with which a pairwise sequence

identity score is observed. The frequency information can be used to estimate the

probability of a hit being a true homologue of the query protein. This is reported

by the P-value. For example, a P-value of 0.0001 implies that 1 in 10000 sequences

giving this score or above would be an incorrect hit and not a true homologue of

the query sequence. This statistic is extended to give an E-value (the expected

number of hits with a given score or above in a given database) which is cal-

culated by integrating the linear transformation of the tail of the extreme value

distribution curve. In general, low E-values (typically less than 0.01) indicate an

evolutionary relationship between a hit and the query protein (Pearson, 1998).
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2.3.3 Profile-based search methods

A profile is a mathematical representation of a set of related sequences. For every

position in the alignment of a set of proteins, a profile contains the probability of

each amino acid occurring at that position.

A profile is constructed from a multiple sequence alignment of three or more related

proteins. Profiles help in identifying the evolutionary conservation of residues with

specific properties at different positions in the sequence. If a specific amino acid

is highly conserved at a certain position, then the amino acid receives a high score

for that position. At positions that are not well conserved, all amino acids receive

low scores. In addition to profiles, there are other mathematical representations

to score the conservation of residues. These include motifs (regular expressions

that represent patterns of a sequence. e.g. Prosite (Hulo et al., 2008)), and

Hidden Markov models (Schneider et al., 1986; Gribskov et al., 1987; Staden,

1988; Tatusov et al., 1994; Yi and Lander, 1994; Bucher et al., 1996; Altschul et

al., 1997; Durbin, 1998).

An important profile-based database search procedure is the Position-Specific It-

erative Basic Local Alignment and Search Tool (PSI-BLAST). This program was

created by Altschul and colleagues (Altschul et al., 1997) as an extension to the

BLAST program. The steps involved in PSI-BLAST are as follows:

• A protein sequence (P) of interest is compared with a database of sequences

by performing a BLAST search between P and every sequence in the database.
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• All hits with an E-value below a certain threshold are multiply aligned and

a profile is constructed from the multiple alignment.

• In the next iteration, the profile is used to search the database and identify

new homologues.

• After each iteration when a new homologue is identified, a new profile is

constructed and further iterations are performed using the modified profiles.

• The iterations are terminated when no new homologues are identified or a

specified limit is reached.

In Chapter 3, pairwise sequence alignments have been performed using the pro-

gram ssearch33 to estimate the degree of humanness of antibodies. Chapter 4 de-

scribes a profile-based method to identify the start and end of framework regions

of antibodies and apply numbering to antibody sequences. Finally, Chapter 5 de-

scribes a method using artificial neural networks using to predict the packing angle

at the interface of the light chain-heavy chain variable region from a description

of the interface residues. However, since the available training data are limited

compared with the number of potential interface residues, a genetic algorithm is

used to pick the a subset of interface residues in which the penalty function is the

performance of the neural network, in order to select an optimal set of interface

residues.
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Chapter 3

Assessing humanness of antibody

sequences

Rodent (particularly mouse) monoclonal antibodies are widely used in engineering

antibodies for the treatment of human disease because they may be produced with

high binding affinity to a wide range of antigens. The use of mouse monoclonal

antibodies in the human system gives enormous scope for the treatment and di-

agnosis of several diseases (Glennie and Johnson, 2000). For example, Dyer et al.

(1989) have reported the effectiveness of treating patients with Chronic Lympho-

cytic Leukaemia (CLL) with a rat antibody, CAMPATH-1G. The administration

of the antibody led to a significant clearance of tumour cells in patients. How-

ever, the promulgation of therapy using monoclonal antibodies from other species

(typically mouse or rat) for human disease has been slow owing to some impor-

tant problems. First, in most cases, the original effector function of the rodent
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antibody is not retained after introduction into the human system (Clark et al.,

1983) and second, rodent antibodies are immunogenic in the human system.

This Human Anti-Mouse Antibody (HAMA) response (Schroff et al., 1985; Shawler

et al., 1985) or Anti-Antibody response (Glennie and Johnson, 2000) prevents

repetitive administration of the antibody for treatment and may lead to anaphy-

lactic shock. There are two main ways in which one can approach this problem -

one could use fully human antibodies produced in phage libraries (Winter et al.,

1994; Low et al., 1996) or transgenic mice (Brüggemann et al., 1991; Mendez et

al., 1997; Vaughan et al., 1998), or one could engineer rodent antibodies so that

they appear more human.

Several strategies now exist which permit antibodies to be engineered in a way such

that they retain the specificity of the rodent antibodies while seeming less alien

to the human immune system. They may broadly be classified as chimerization

(Neuberger et al., 1984; Boulianne et al., 1984) and humanization (Jones et al.,

1986; Riechmann et al., 1988).

Chimerization involves grafting the Fv region of a rodent antibody onto the con-

stant region of a human antibody. However, chimeric antibodies still contain a

substantial rodent component and may still lead to a HAMA response. In hu-

manization, the rodent content is minimised by grafting only the CDRs from the

rodent antibody onto a human framework. Generally a small number of other

framework residues need to be changed to the equivalent rodent residue in order

to restore binding. Roguska et al. (1994) proposed an alternative technique of

‘resurfacing’ where they replace solvent accessible residues in chimeric antibodies
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with human residues.

Clark (2000) has also questioned the value of more elaborate humanization proto-

cols over chimerics. Data on approval rates for monoclonal antibodies (Reichert,

2001) show that 74% of chimerics have completed Phase III trials with 24% of these

gaining FDA approval. In contrast, only 34% of humanized antibodies have com-

pleted Phase III trials with 25% gaining FDA approval. Thus, overall, chimerics

have been at least as successful at getting into the clinic as humanized antibodies

and a metric for assessing humanness may be of help in selecting rodent variable

domains that could be used effectively as chimerics without the additional effort of

humanization (also a patent minefield). It may also be valuable in selecting human

frameworks for use in humanization. One can ask whether some rodent variable

domains are more human-like than others, and indeed, whether they may be more

typically human than some unusual human antibodies. In one case, a murine anti-

body has been approved for therapy (Orthoclone (OKT3), Ortho Biotech (Glennie

and Johnson, 2000)).

The general question, therefore, is how typical an antibody sequence is of the

expressed human repertoire. To answer this question, I have derived a ‘human-

ness’ statistic. In the first part, the mean and standard deviation of human and

mouse sequences are compared. Further, a Z-score statistic, to assess how typically

human an antibody sequence is of the expressed human repertoire, is described.

Human and mouse variable regions have been compared with the use of this statis-

tic and the analysis has been extended to the CDRs of light and heavy chains.

Part of the work described in this chapter has been published in Abhinandan and

Martin (2007).
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Type of Number of sequences
database Mouse Human
Lambda class 62 1003
Kappa class 1292 645
Heavy chain 1562 1847

Table 3.1: Number of sequences in each dataset extracted from Kabat database.

3.1 Preparation of the dataset

Sequences of antibody variable regions were extracted from the last public release

of the Kabat database (July 2000) using KabatMan (Martin, 1996). Sequences

were separated on the basis of chain (light and heavy chain), class (lambda and

kappa class for light chains) and species (mouse and human). Table 3.1 gives the

number of sequences used in the analysis. The program ssearch33 from the FASTA

package (Pearson and Lipman, 1988) was used to extract pairwise identities be-

tween the antibody sequences. Graphs were plotted using GNUPLOT (http://

www.gnuplot.org/) and GRACE (http://plasma-gate.weizmann.ac.il/Grace/).

3.2 Comparing pairwise identities of human and

mouse sequences

The mean pairwise identity x̄i for sequence i in a database of m sequences is

calculated as:

x̄i =

m
∑

j=1,j 6=i

xij

m − 1
(3.1)
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where xij is the pairwise identity between sequence i and j. The standard deviation

σi for sequence i in a database of m sequences is calculated as:

σi =

√

√

√

√

√

m
∑

j=1,j 6=i
(xij − x̄i)2

m − 1
(3.2)

xij is the pairwise sequence identity between sequence i and j, x̄i is the mean

pairwise identity for sequence i, and m is the number of human sequences in the

dataset.

In the first step, I wanted to compare the diversity of mouse and human antibody

sequences. In order to do this, I plotted the mean and standard deviation of ev-

ery mouse and human sequence when aligned with every other mouse and human

sequence in the dataset respectively. By comparing the mean and standard devi-

ation of mouse and human sequences, I wanted to see if the points would cluster

together depending on species and further, whether there were any common char-

acteristics between mouse and human antibodies. The algorithm for this is shown

in Figure 3.1.

Every mouse sequence from a specific dataset was taken and queried against the

database of mouse sequences using ssearch33. A very high e-value cutoff of 100000

was used to ensure that pairwise identities between every pair of sequences were

returned by ssearch33 and considered in the calculations. From the set of pairwise

identities, a mean pairwise identity was calculated as shown in equation 3.1. From

the individual pairwise identities and mean sequence identity, a standard deviation
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Start

Calculate pairwise
identity between

every pair of
mouse sequences

Calculate pairwise
identity between

every pair of
human sequences

Calculate mean
pairwise identity and

SD for every
human sequence

Plot the distribution of SD
against mean pairwise

identity for human
and mouse sequences

Calculate mean
pairwise identity and

standard deviation (SD) for
every mouse sequence

End

Figure 3.1: Algorithm to compute the mean and standard deviation for every
sequence in the dataset (Table 3.1).
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was calculated as shown in equation 3.2. All the above steps were repeated for

the human sequences and the distribution of standard deviation against the mean

percentage identity for the mouse and human sequences were plotted separately.

These distributions were plotted for each dataset (heavy chain and lambda and

kappa class for the light chain).

Figure 3.2 gives the plot of standard deviation vs. mean pairwise identity for the

mouse and human antibody sequences. It is clear from the graphs that the data

points for the human and mouse antibodies form distinct clusters. In the case

of lambda class light chains, there is a clear separation between the mouse and

the human plots. While the human antibodies tend to have a mean percentage

identity between 40 and 70% and a wide range of standard deviations, the plot for

the mouse sequences shows that the mouse lambda light chains have high mean

percentage identity while showing lesser sequence diversity. The graph for kappa

class light chains shows that although the data points for the mouse and human

sequences are distinct, a few points overlap. It may also be observed from the plot

that the mouse sequences are more diverse than the human sequences which is in

slight contrast with the lambda class where the human antibodies are more diverse

than their murine counterparts. The graph for the heavy chains shows a virtually

complete overlap of both murine and human antibodies. This also establishes that

both human and murine heavy chains are equally diverse.
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(a)

(b)

(c)

Figure 3.2: Plot of the standard deviation vs. the mean percentage identity of
mouse and human sequences in (a) Light chain lambda class (b) Light chain kappa
class and (c) Heavy chain.
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3.3 A statistic to assess ‘humanness’ of antibody

sequences

In the next section, I analysed sequences of antibodies belonging to various chains/classes

in human and mouse to create a Z-score metric based on percentage sequence iden-

tity between antibody sequences. This shows distinct differences between human

and mouse sequences. Based on mean sequence identity and standard deviation,

I have calculated Z-scores for datasets of antibody sequences extracted from the

Kabat database. I have applied the analysis to a set of humanized and chimeric an-

tibodies including a number of sequences where data are available on anti-antibody

responses, and to human germline sequences. The aim was to see whether this

approach may aid in the selection of more suitable mouse variable domains for

antibody engineering to render them more human.

3.3.1 Analysis of pairwise sequence identities

Initially, every human variable domain sequence was taken and compared with the

variable domain of every other human antibody in the respective dataset (light

or heavy chain, lambda or kappa class in the case of light chain sequences). The

program ssearch33 was used to generate pairwise alignments and the pairwise se-

quence identities were recorded. The same procedure was repeated for the mouse

sequences i.e. every mouse sequence was compared with every human sequence in

the respective dataset and the pairwise identities were recorded. The frequency

distribution of the pairwise identities of the human and mouse sequences were
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Figure 3.3: Histogram of human/human and mouse/human pairwise sequence
identities in (a) light and (b) heavy chains.

97



 0

 0.5

 1

 1.5

 2

 2.5

 20  30  40  50  60  70  80  90  100

P
er

ce
nt

ag
e 

fr
eq

ue
nc

y

Pairwise sequence identity

Pairwise sequence identities: Light chain lambda class

Mouse
Human

(a) Lambda

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20  30  40  50  60  70  80  90  100

P
er

ce
nt

ag
e 

fr
eq

ue
nc

y

Pairwise sequence identity

Pairwise sequence identities: Light chain kappa class

Mouse
Human

(b) Kappa

Figure 3.4: Histogram of human/human and mouse/human pairwise sequence
identities in a) lambda and b) kappa class light chains.
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then plotted together. It must be noted that there are significant differences be-

tween the number of murine and human antibodies in the dataset for lambda and

kappa class light chains. It was therefore decided to use the normalised percent-

age frequency. The normalised frequency is calculated by dividing the frequency

by the total number of pairwise identities for the respective comparison. Fig-

ure 3.3 shows the frequency distribution of pairwise identities for human/human

and mouse/human between the mouse and human light/heavy chain sequences.

The graphs show that both mouse and human distributions are near-normal and

they share peaks around 50% sequence identity when compared with human se-

quences.

Similarly, a graph was plotted to examine the lambda and kappa light chain classes

separately (Figure 3.4). These plots separate the light chain classes with a more

clear distinction between the mouse and human distributions. The histograms

are near normal distributions with the human kappa light chains (Figure 3.4b)

appearing to show two overlapping sub-classes. The human lambda class sequences

as seen in Figure 3.4a have several peaks. However, the lowest human peak, which

occurs at about 50% sequence identity, is still considerably higher than the murine

peak, which occurs at about 41% sequence identity.

3.3.2 Analysis of mean sequence identities

This initial analysis provides a histogram of sequence identities for each antibody

analysed. In the second stage, I replaced this with a mean sequence identity such

that each antibody was represented by a single value. All antibody sequences
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belonging to a given dataset were aligned with human sequences of the corre-

sponding chain/class as above. The pairwise identity between every non-identical

pair of sequences was then obtained. By calculating the mean sequence identity

of a sequence scored against the set of human sequences, I obtain a value which

represents how typical a sequence is of the human repertoire. I call this the ‘raw

humanness’.

For each mouse antibody sequence, i, the mean is calculated as:

µi =
N
∑

j=1

Pij/N (3.3)

while the mean sequence identity for every human antibody is calculated as:

µi =
N
∑

j=1,j 6=i

Pij/(N − 1) (3.4)

where N is the number of sequences in the respective human dataset and Pij is

the pairwise sequence identity between the i’th and the j’th sequence in the query

and target dataset respectively. The second equation uses N − 1 since both query

and target database are the same and the human probe sequence is not compared

against itself.

A ‘mean raw humanness’ (µ̄) can be calculated for each dataset:
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Organism Light chain Heavy chain Light chain Light chain
lambda class kappa class

Mouse 50.61 49.85 42.79 58.84
Human 55.21 55.01 59.93 67.57

Table 3.2: Mean raw humanness (µ̄) for each dataset.

µ̄ =
M
∑

i=1

µi/M (3.5)

where M is the number of sequences in the probe dataset (mouse or human).

Table 3.2 lists the calculated means for each dataset of sequences for human and

mouse with respect to human. As expected, there are marked differences between

the human and murine antibody datasets: the human sequences show higher av-

erage sequence identity than the murine sequences.

3.3.3 Z-Score analysis

Having obtained individual raw humanness scores (µi) and mean scores for each

human dataset (human µ̄, Table 3.2), Z-scores were calculated as a form of nor-

malisation. A Z-score indicates how many standard deviations above or below

the mean a certain value is. Z-scores for both the mouse and human sequences

were calculated with respect to the appropriate human distribution to assess the

degree of divergence of each sequence from the human average. For the human

sequences, these Z-scores are approximately normally distributed with a mean of

zero. The Z-score was defined as the final measure of how typical a sequence is of

the human repertoire. For simplicity, this was termed the ‘humanness’ (although
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every human sequence is clearly 100% human). Thus a Z-score of zero represents

a sequence which shows average similarity to the repertoire of human sequences.

Positive Z-scores represent sequences which, on average, show higher sequence

identity with other human sequences and negative Z-scores represent sequences

with less typically human character.

The standard deviation, σ is calculated as:

σ =

√

√

√

√

M
∑

i=1

(µi − µ̄)2/M (3.6)

where µi is the ‘raw humanness’ of an individual sequence and µ̄ is the mean raw

humanness of the human dataset.

Finally, the Z-score of each sequence was calculated as:

Zi = (µi − µ̄)/σ (3.7)

Z-scores were calculated for every dataset of the mouse and human sequences and

the frequency distribution of the two were overlaid, as shown in Figures 3.5 and

3.6. The two plots show distinct differences between the mouse and the human

distributions. Figure 3.6a appears slightly skewed as the number of mouse lambda

class sequences is less than 10% of the number of human lambda class sequences

(see Table 3.1). Although the mouse lambda class sequences are typically non-
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Figure 3.5: Z-score distribution for (a) Light chain (b) Heavy chain sequences.
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Figure 3.6: Z-score distribution for (a) Light chain Lambda class and (b) Light
chain Kappa class.
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human, it can be seen that in general, there are significant overlaps between the

mouse and the human plots. This indicates that many mouse sequences are more

typically human than some human sequences.

3.3.4 Assessment of humanized antibodies

The methodology was applied to a small selection of humanized antibodies. Two

papers reporting humanization of murine antibodies were identified from literature

(Yazaki et al., 2004; Roguska et al., 1994). The humanness of the original murine

antibody and the humanized antibody were calculated and compared.

Yazaki et al. (2004) have reported the humanization of T84.66, a murine antibody

that binds with high affinity to the carcinoembyonic antigen (CEA) (Wagener et

al., 1983). They made two humanized antibodies M5A and M5B differing only in

the sequence of the heavy chain. Roguska et al. (1994) have employed a technique

called resurfacing where human surface residues are grafted onto a murine variable

domain. Two ‘resurfaced’ antibodies N901 and B4 have been made using this

procedure.

Table 3.3 gives the humanness scores for the original murine and the humanized

antibodies. From the table, it can be observed that the humanness values for

the humanized antibodies are clearly higher than those of the original murine

donor antibodies. It must also be highlighted that in the case of N901 produced

by resurfacing, only two residues in the murine antibodies were replaced with

their human counterparts in the light chain. Despite this, there is a small, yet
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Humanness Z-score (σ)
Murine Humanized Human

T84.66 Light -1.847 -1.152
Heavy -1.161 0.836(M5A)

0.464(M5B)
N901∗ Light -1.929 -1.775

Heavy 0.110 0.728
B4∗ Light -2.055 -1.762

Heavy -1.686 -1.420
HPC4† Light -2.246 0.187 1.390

Heavy -2.413 0.135 1.875

Table 3.3: Results of applying the Z-score analysis to humanized antibodies. All
light chain scores are in comparison with human light chain kappa class sequences.
∗Antibodies humanized by the resurfacing method of Roguska et al. (1994). †The
human light chain sequence was the consensus for light chain κ subgroup I and
the heavy chain was the consensus for human heavy chain subgroup III.

appreciable increase in the humanness score establishing the method’s sensitivity

even to small changes in sequence. This also shows that the human residues chosen

by Roguska are generally typical of human antibodies and not just a small subset

of human sequences. It must however be noted that the humanness scores of

the humanized T82.66 are higher than those of the resurfaced antibodies as the

resurfaced antibodies are based on chimeric rodent variable domains rather than

human variable domains.

3.3.5 Analysis of humanness of human immunoglobulin

germline genes

The method is also capable of identifying that humanized antibodies are ‘less

human’ than the original human acceptor sequence. O’Connor et al. (1998) have

reported the use of consensus sequences as human acceptors, selecting a consensus
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Family VBase Gene name Humanness Family VBase Gene name Humanness
Vλ1 13-7(A) 1a 0.40 Vλ3 11-7 3e -0.17
Vλ1 14-7(A) 1e 1.17 Vλ3 11-7 3m 0.50
Vλ1 13-7(A) 1c 0.90 Vλ3 11-7 2-19 0.32
Vλ1 13-7(A) 1g 0.89 Vλ4 12-11 4c -3.27
Vλ1 13-7(A) 1b 0.92 Vλ4 12-11 4a -2.28
Vλ2 14-7(A) 2c 1.09 Vλ4 12-11 4b -2.62
Vλ2 14-7(A) 2e 1.27 Vλ5 14-11 5e -1.70
Vλ2 14-7(A) 2a2 1.02 Vλ5 14-11 5c -1.91
Vλ2 14-7(A) 2d 1.24 Vλ5 14-11 5b -2.38
Vλ2 14-7(A) 2b2 0.92 Vλ6 13-7(B) 6a -0.34
Vλ3 11-7 3r 0.67 Vλ7 14-7(B) 7a -2.39
Vλ3 11-7 3j 0.46 Vλ7 14-7(B) 7b -2.26
Vλ3 11-7 3p 0.44 Vλ8 14-7(B) 8a -1.27
Vλ3 11-7 3a 0.04 Vλ9 12-12 9a -3.28
Vλ3 11-7 3l 0.19 Vλ10 13-7(C) 10a -1.19
Vλ3 11-7 3h 0.42

Table 3.4: Humanness scores for the lambda class germline genes.

human subgroup VκI light chain and VH-III family heavy chain. Similarly, Hwang

et al. (2005) selected germline-expressed sequences most similar to the mouse

sequence, the rationale being that germline sequences would be expected to be

non-immunogenic.

It is clear that some germline sequences tend to be used more frequently than oth-

ers so, it was decided to examine the ‘humanness’ of human germline sequences.

The amino-acid sequences of human V-region germline genes were extracted from

VBase (http://vbase.mrc-cpe.cam.ac.uk/) and were queried against the database

of expressed human antibodies to obtain their humanness scores. Table 3.7 gives

the number of germline genes for λ and κ light chains, and heavy chain germline

families. Figure 3.7 gives the plot of humanness score distributions of the germline

genes shown as vertical lines. The humanness scores of individual germline genes

are given in Tables 3.4–3.6.
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Figure 3.7: Results of the Z-score analysis for human germline sequences. The
germline sequences are indicated by vertical lines overlaid on the distribution of
humanness scores for expressed human sequences.
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Family VBase Gene name Humanness Family VBase Gene name Humanness
VκI 2-1-(1) O12 1.20 VκII 3-1-(1) O1 -1.79
VκI 2-1-(1) O2 1.20 VκII 4-1-(1) A17 -1.97
VκI 2-1-(1) O18 0.56 VκII 4-1-(1) A1 -2.09
VκI 2-1-(1) O8 0.56 VκII 4-1-(1) A18 -1.71
VκI 2-1-(U) A20 0.78 VκII 4-1-(1) A2 -1.77
VκI 2-1-(1) A30 0.34 VκII 4-1-(1) A19 -1.40
VκI 2-1-(1) L14 -0.19 VκII 4-1-(1) A3 -1.40
VκI 2-1-(1) L1 0.89 VκII 4-1-(1) A23 -2.37
VκI 2-1-(1) L15 0.75 VκIII 6-1-(1) A27 1.05
VκI 2-1-(1) L4 1.02 VκIII 6-1-(1) A11 0.87
VκI 2-1-(1) L18 1.02 VκIII 2-1-(1) L2 0.94
VκI 2-1-(1) L5 0.84 VκIII 2-1-(1) L16 0.94
VκI 2-1-(1) L19 0.84 VκIII 2-1-(1) L6 1.04
VκI 2-1-(1) L8 0.86 VκIII 2-1-(U) L20 0.98
VκI 2-1-(1) L23 0.36 VκIII 6-1-(1) L25 1.00
VκI 2-1-(1) L9 0.69 VκIV 3-1-(1) B3 0.07
VκI U-1-(1) L24 0.54 VκV 2-1-(1) B2 -3.67
VκI 2-1-(1) L11 0.68 VκVI 2-1-(1) A26 -1.28
VκI 2-1-(U) L12 1.04 VκVI 2-1-(1) A10 -1.28
VκII 3-1-(1) O11 -1.79 VκVI 2-1-(1) A14 -1.12

Table 3.5: Humanness scores for the lambda class germline genes

In general, it can be seen that the germline genes correspond to peaks in the distri-

butions. Some germline genes are more typical of the expressed human repertoire

than some others. Each germline falls within a cluster of humanness scores re-

flecting the relative frequency with which they are used in the expressed human

repertoire; some families are also seen to overlap. The VH-III, VκIII (and some

of VκI) and Vλ2 (and some Vλ1) are families that have very high Z-scores and

thus are likely to be the germline families from which the high-scoring expressed

human sequences are derived.

Choosing germline sequences as the basis for humanization from one of the high-

scoring sequences is likely to be more effective than choosing germline sequences

from one of the low scoring sequences. This is because a large number of expressed
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Family VBase Gene name Humanness Family VBase Gene name Humanness
VH-I 1-3 1-02 0.04 VH-III 1-3 3-43 1.44
VH-I 1-3 1-03 0.12 VH-III 1-3 3-48 1.81
VH-I 1-3 1-08 -0.34 VH-III 1-U 3-49 0.89
VH-I 1-2 1-18 0.00 VH-III 1-1 3-53 1.87
VH-I 1-U 1-24 -0.50 VH-III 1-3 3-64 1.76
VH-I 1-3 1-45 -0.84 VH-III 1-1 3-66 2.18
VH-I 1-3 1-46 0.38 VH-III 1-4 3-72 1.19
VH-I 1-3 1-58 -0.64 VH-III 1-4 3-73 1.10
VH-I 1-2 1-69 0.15 VH-III 1-3 3-74 1.94
VH-I 1-2 1-e 0.32 VH-III 1-6 3-d 1.24
VH-I 1-2 1-f -0.36 VH-IV 2-1/1-1 4-04 0.44
VH-II 3-1/2-1 2-05 -2.12 VH-IV 2-1 4-28 0.14
VH-II 3-1 2-26 -1.83 VH-IV 3-1 4-30.1 0.35
VH-II 3-1 2-70 -1.79 VH-IV 3-1 4-30.2 0.11
VH-III 1-3 3-07 1.88 VH-IV 3-1 4-30.4 0.38
VH-III 1-3 3-09 1.36 VH-IV 3-1 4-31 0.35
VH-III 1-3 3-11 1.99 VH-IV 1-1 4-34 -0.01
VH-III 1-1 3-13 1.26 VH-IV 3-1 4-39 0.12
VH-III 1-U 3-15 1.48 VH-IV 1-1 4-59 0.52
VH-III 1-3 3-20 1.37 VH-IV 3-1 4-61 0.38
VH-III 1-3 3-21 1.89 VH-IV 2-1 4-b 0.50
VH-III 1-3 3-23 2.17 VH-V 1-2 5-51 0.18
VH-III 1-3 3-30 2.07 VH-V 1-2 5-a 0.32
VH-III 1-3 3-30.3 2.20 VH-VI 3-5 6-01 -1.00
VH-III 1-3 3-30.5 2.07 VH-VII 1-2 7-4.1 -0.12
VH-III 1-3 3-33 2.15

Table 3.6: Humanness scores for the heavy chain germline genes.
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VBase Gene Family Number
Light chain – λ class
VL1 5
VL2 5
VL3 9
VL4 3
VL5 3
VL6 1
VL7 2
VL8 1
VL9 1
VL10 1
Light chain – κ class
VK1 19
VK2 9
VK3 7
VK4 1
VK5 1
VK6 3
Heavy chain
VH1 11
VH2 3
VH3 22
VH4 11
VH5 2
VH6 1
VH7 1

Table 3.7: Number of V-region genes in Lambda and Kappa class light chain and
heavy chain germline families.
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Antibody AAR Light chain Heavy chain Notes
Humanized
Zenapax 34% -0.129 -0.136 Immuno-suppressant action
HuBrE-3 14% -1.811 0.252 Patients may be immuno-suppressed
Synagis 1% -0.497 -1.708 Neonatal
Herceptin 0.1% 0.462 0.965 Patients may be immuno-suppressed
Hu-A33 17% -0.401 0.850 Patients may be immuno-suppressed
Xolair 0.1% 0.309 0.657
Campath-1H 1.9% -0.009 -0.564 Patients may be immuno-suppressed
Chimeric
Infliximab 61% -2.237 -0.684 Immuno-suppresant action
Rituximab 0% -1.813 -1.350 Patients may be immuno-suppressed
ch14.18 0% -1.829 -1.605 Patients may be immuno-suppressed
U36 40% 0.135 1.308 Patients may be immuno-suppressed
Fully human
Humira 12% 0.874 0.886 Immuno-suppressant action

Table 3.8: Anti-antibody response (AAR, expressed as a percentage of patients
who showed a response — data taken from Hwang and Foote (2005) and from full
prescribing information of antibodies approved for therapy) and humanness scores
for seven humanized and four chimeric antibodies. All light chains were of the κ
class.

sequences similar to the high-scoring germlines is observed in the human repertoire

and these may be less likely to be immunogenic. Highly used frameworks will have

been ‘seen’ by the immune system in the context of different CDR regions (after

somatic hypermutation). This will make it likely that peptides derived from these

antibodies have previously been seen and tolerated by the immune system. It is

not known why some germline sequences are used more frequently than others,

but one possibility is that variations on the less commonly observed germlines

leads to higher immunogenicity and B-cells producing these antibodies are rapidly

eliminated from the body.
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Antibody Reference for
name sequence
Infliximab USP 6284471
Rituximab 2B8
ch14.18 USP 6969517
Re-labelled Chimeric U36 USP 6972324
Zenapax (Queen et al., 1989)
Hu-BrE-3 (Couto et al., 1994)
Synagis (Johnson et al., 1997)
Herceptin (Carter et al., 1992)
Humira USP 6509015
Campath-1H (James et al., 1999)
Hu-A33 USP 5773001

Table 3.9: Table listing clinical antibodies and the references containing their
sequence. Abbreviation USP stands for US Patent.

3.3.6 Correlating immunogenicity with humanness

I further investigated the potential of the humanness score as a predictor of anti-

antibody response (AAR). Recently, Hwang and Foote (2005) reviewed reported

AAR data against murine, chimeric and humanized antibodies and classified the

responses as negligible (< 2%), tolerable (2–15%) and marked (> 15%). As ex-

pected, they found that the change from mouse to chimeric antibodies leads to

the greatest reduction in immunogenicity, while humanization leads to a further

decrease. Their paper provides a summary table which reports the percentage

of patients suffering an anti-antibody response. I attempted to obtain sequence

data for the antibodies described. Despite searches of the original literature and

patent data (both from the original patents and the patent sequence data avail-

able through the SRS server at the EBI, http://srs.ebi.ac.uk/, and the IMGT

list of monoclonal antibodies with clinical indications, http://imgt.cines.fr/

textes/IMGTrepertoire/GenesClinical/monoclonalantibodies/), it proved dif-
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ficult to obtain sequence data for more than a handful of the antibodies. A list of

clinical antibodies and the source of their sequences is shown in Table 3.9.

These sequences were tested using the humanness assessment and humanness

scores are listed in Table 3.8. The results are very difficult to interpret as there

are a number of other factors that may contribute to the AAR. In particular, as

shown in the table, patients may be immuno-compromised as the result of other

treatments (many of the antibodies are used in cancer therapy) and the antibody

itself may have an immuno-suppressant action. Nonetheless, in the case of the

humanized antibodies it can be seen that the sequence with the best humanness

scores (Herceptin) results in virtually no AAR while the worst individual human-

ness score (Infliximab) results in the worst AAR. To investigate the relationship

between humanness and AAR further, I decided to plot the variation of AAR

against the following variables:

• Light chain humanness score.

• Heavy chain humanness score.

• Mean humanness score of the light and heavy chain.

• Maximum humanness score between the light and heavy chain.

• Minimum humanness score between the light and heavy chain.

The graphs for these variations are shown in Figures 3.8 and 3.9. Averaging

the humanness scores for light and heavy chains for each humanized antibody

and calculating the Pearson’s correlation coefficient with AAR values showed no
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Pearson’s correlation
coefficient (r)

Type Humanized Chimeric
Light -0.290 0.144
Heavy 0.105 0.576
Mean -0.090 0.408
Min -0.029 0.144
Max -0.169 0.577

Table 3.10: Correlation coefficient between the AAR and humanness scores of the
antibodies approved for therapy. A negative correlation coefficient implies that
the AAR decreases as the humanness score increases.

significant correlation (R=-0.09). In contrast, amongst the chimeric antibodies,

the most typically human antibody, U36 (an anti-CD44 v6-domain antibody) leads

to the second highest AAR and surprisingly, there is a positive correlation (r =

0.50). Table 3.10 summarises the correlation coefficients between AAR and the

different categories of Z-scores described earlier. Clearly there is a very limited

amount of data and the interpretation of the data is complex. From preliminary

investigations, there does not appear to be a direct relationship between AAR and

Humanness scores of the therapeutic antibodies (Table 3.8.

Surprisingly Humira, the first ‘fully human’ antibody (generated by phage display)

to be approved for use in therapy is not any less immunogenic than the humanized

antibodies. Immunogenicity data indicate that 12% (Hwang and Foote, 2005) of

people who were repeatedly injected with the drug without an adjuvant developed

neutralising antibodies. This was lower (1%) when Humira was administered with

Methotrexate. Humanness scores for Humira were 0.874 (Light chain Kappa class)

and 0.886 (Heavy chain). While these scores are quite high, there are similar (and

in some cases higher) scores amongst the humanized and chimeric antibodies.
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Figure 3.8: Figure showing the variation of AAR percentages for the chimeric
and humanized antibodies against (a) light chain and (b) heavy chain humanness
scores.
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Figure 3.9: Variation of AAR percentages for chimeric and humanized antibodies
against (a) Mean (b) Minimum and (c) Maximum humanness scores.
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In conclusion, while (with the limited data available) there does not appear to be a

correlation between humanness and AAR, as stated above, it is worth noting that

the least human individual chain also led to the worst AAR while the antibody

with the highest humanness led to the lowest AAR.

3.4 Assessing humanness of antibody CDRs

While it is largely assumed that human antibodies are not immunogenic, it has

been shown that this is not necessarily the case (Macias et al., 1999). As Clark

(2000) points out, every antibody has a unique idiotype encoded by the hypervari-

able regions and even fully human antibodies may elicit an immune response. This

‘HAHA’ (Human Anti-Human Antibody) response is a concept familiar to immu-

nologists as the ‘network hypothesis’ in which every antibody provokes another

anti-idiotypic antibody to regulate the immune response (Jerne, 1974).

Based on this assumption, I decided to investigate the humanness of the CDRs

alone in a similar way (the work described above included both the framework

regions and the CDRs). Sequences of antibody CDRs were extracted from the

July 2000 release of the Kabat database using KabatMan and the sequences were

split into 3 sets based on chain/class (heavy, lambda, and kappa) and species

(murine and human). Humanness of the CDRs was evaluated in two ways: first,

the individual CDRs of murine and human antibodies were compared. In the

second stage, the three CDRs for each dataset were concatenated and compared

together using ssearch33 as above to calculate pairwise identities.
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(a) CDR-L1

(b) CDR-L2

(c) CDR-L3

Figure 3.10: Z-score distribution for CDRs in the lambda class light chain (a)
CDR-L1 (b) CDR-L2 (c) CDR-L3.
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(a) CDR-L1

(b) CDR-L2

(c) CDR-L3

Figure 3.11: Z-score distribution for CDRs in the kappa class light chain (a) CDR-
L1 (b) CDR-L2 (c) CDR-L3.
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(a) CDR-L1

(b) CDR-H2

(c) CDR-H3

Figure 3.12: Z-score distribution for CDRs in the heavy chains. (a) CDR-H1 (b)
CDR-H2 (c) CDR-H3.
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The plots comparing the Z-Scores of the individual murine CDRs with the human

CDRs are shown in Figures 3.10, 3.11 and 3.12 for the light chain lambda and

kappa classes and the heavy chain respectively. It may be seen that the human

and mouse plots overlap almost completely in all the CDRs suggesting that they

are very similar in both species. While calculating humanness, percentage identity

must be calculated over long stretches of sequence as short sequence alignments

may be incorrect and skew the measure of percentage identity. As CDRs vary

considerably in length (see Table 4.9 on page 154) and it was therefore decided

that humanness of the CDRs would be reassessed by concatenating their sequences

instead of treating them independently.

The plots for the concatenated CDRs for each dataset are shown in Figure 3.13.

From the plots, it is clear that there is almost a complete overlap between the

mouse and human plots. From the individual CDR plots and the concatenated

plots, it can be seen that the mouse and human CDRs are not very different and

that the main differences appear to be encoded in the framework regions.

3.5 Discussions and conclusions

The use of Z-scores allows a normalised ‘humanness’ score to be assigned to an

antibody sequence. While, by definition, it is the case that every human sequence

is 100% human, this analysis shows very clearly that some human sequences are

more typical of the human repertoire (as sampled in the Kabat database) than

other sequences. The fact that differences in ‘humanness’ can be detected between
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(a) Lambda class light chain

(b) Kappa class light chain

(c) Heavy chain

Figure 3.13: Z-score distribution for the concatenated CDRs (a) Lambda class
light chain (b) Kappa class light chain (c) Heavy chains.
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humanized antibodies and the human acceptor sequences used in the humanization

indicates that the CDRs play an important role in the overall humanness score.

Nonetheless, looking at the CDRs out of context of the framework shows little

difference in humanness of mouse and human CDRs.

Of course there are many other factors that may contribute to immunogenicity. For

example, the nature of the target, whether it is endocytosed or not, the aggregation

state and formulation of the antibody, the patient’s genetic background, disease

state, etc. However, the notion of typically human antibodies has been exploited

elsewhere. As described above, an approach to humanization had been described

by Hwang et al. (2005) which involves selecting germline-expressed sequences most

similar to a human germline sequence. Using the repertoire of expressed sequences

rather than the germline provides a more realistic sample of circulating antibodies.

Thus while there may be no means to abolish an anti-idiotypic anti-antibody re-

sponse completely (given that mouse and human CDRs are very similar), measures

can be taken to minimise the likelihood of the framework leading to a response.

It is reasonable to assume that an antibody which is more typical of the human

repertoire will be less likely to be immunogenic than a sequence which is less typ-

ical. Analysis indicates that a significant number of mouse antibodies are more

human-like than many human antibodies.

In a recent Phase I drug trial, six healthy volunteers were injected with a human-

ized anti-CD28 antibody, TGN1412 (Hopkin, 2006). This led to a massive and

life-threatening immune response in all six subjects. Initially it was not known

whether this was the result of severe anaphylactic shock induced by TGN1412 it-
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self, or whether the mode of action of the antibody in binding to CD28 induced a

‘cytokine storm’. The TGN1412 sequence was obtained from US Patent Applica-

tion 20060008457 and showed humanness scores of 0.48 (light) and -0.85 (heavy).

The light chain has a similar humanness score to the best humanized antibody

shown in Table 3.8 (Herceptin), while the heavy chain is much higher than the

score for Synagis. Both of these antibodies are very well tolerated. Thus, before

more information on the mode of action of TGN1412 became available, we were

able to conclude that it was unlikely that the immune response seen in the six

volunteers was a reaction to the humanized antibody itself.

Our analysis of correlations between humanness scores and anti-antibody responses

(Table 3.8) was very limited because finding sequence data for antibodies where

AAR data are available was a near-impossible task. While the small sample is

probably statistically insignificant, it appears that humanness score does show

some correlation with reduced AAR amongst the humanized antibodies, but not

amongst the chimerics. Clearly there is a lot more involved in immunogenicity

than the simple similarity to the human repertoire and it seems likely that there

are specific features within some mouse sequences that render them visible to the

human immune system. I therefore analysed all the sequences in Table 3.8 with

the T-cell epitope prediction server, SYFPEITHI (Rammensee et al., 1999), to

discover whether antibodies leading to a marked anti-antibody response showed a

higher concentration of likely T-cell epitopes. In fact, no differences were found

between the immunogenic and non-immunogenic antibodies.

The process of humanization has usually involved the selection of a human an-

tibody that has a high sequence identity with the murine donor antibody from
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which the CDR sequences are taken (Queen et al., 1989). This is done to maximise

the chances of obtaining good binding. However, in some cases, such humanized

antibodies still show significant AAR. As described above, an alternative strategy

has been to use germline sequences (Hwang et al., 2005), or consensus sequences

derived from germline sequences (1998; 1992) as the human acceptors. The efficacy

of using consensus human sequences in obtaining good binding has been compared

with selecting the most similar human sequence (Kolbinger et al., 1993; Sato et

al., 1994) and these studies show that, while both methods give similar results, the

use of the human acceptor sequence with the best sequence identity gives some-

what better binding. There has been no direct comparison of the efficacy of the

methods in avoiding AAR. The strategy of using (consensus) germline sequences

as acceptors is designed to maximise the human nature of the acceptor sequence

in the hope that this will be less likely to elicit an anti-antibody response, even

if more mouse donor residues need to be introduced into the framework to obtain

good binding. Our analysis of germline sequences indicates that certain germline

families and specific genes within these families giver higher humanness scores and

are therefore more representative of observed expressed antibodies.

As described above, selecting a human acceptor framework on the basis of se-

quence similarity with the mouse donor may give better binding than selecting

a (consensus) germline sequence. Of course, there is a trade-off between good

binding and AAR. Poorer binding may mean that more antibody has to be ad-

ministered thus increasing the amount of AAR. Germline, or expressed, human

antibodies with high positive Z-scores may be good candidates for use as acceptor

sequences in humanization to minimise the chance of AAR. It may be possible to

select human acceptor sequences which balance sequence identity with the mouse
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donor (to optimise binding) and the humanness score (to reduce AAR).

One possible problem with the method is that humanness has been evaluated based

on average similarity to the human repertoire as sampled by the Kabat database.

It could therefore be biased simply by the selection of sequences which appear in

the database, or by the frequency of occurrence of particular antigens. However,

the fact that the consensus human sequences used by O’Connor et al. (1998),

and certain germ-line sequences, obtain very high humanness scores suggests that

bias in the selection of antibodies in Kabat is not a problem.

Recent work by an undergraduate project student (Michael Eckett) using IMGT

sequence data suggests that bias in the smaller Kabat dataset is not a problem.

In conclusion, the method I propose allows antibodies from any species to be

screened for their similarity to the expressed human repertoire (their ‘humanness’).

This gives us a tool which may be used to investigate the importance of humanness

in triggering an anti-antibody response. The method suggests a modified strategy

for selecting human frameworks for humanization and may contribute towards

predicting chimeric antibodies with low antigenicity.
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Chapter 4

An automatic method for

applying numbering to

antibodies: Analysis and

applications

In the analysis of protein sequence and structure, having a standardised number-

ing scheme allows comparison of features without explicit alignment. A numbering

scheme defines standard positions in the sequence and possibly in relation to struc-

ture. Numbering of antibodies was first established by Kabat and Wu (1983) who

analysed antibodies for variability of residues at various positions in the sequence

(Wu and Kabat, 1970). They established that certain regions in the antibody

sequence are more variable than others and termed these hypervariable regions as
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(a) (b)

Figure 4.1: Two CDR-L1 loops fitted using rigid body superposition. The short
loop (in red) is 11 residues long while the long loop (in blue) is 16 residues. (a)
The numbers give the sequential numbering of residues in the loops (24-34 for the
short loop, 24-39 for the long loop) (b) The two CDR-L1 loops numbered so that
structurally equivalent residues have the same number.

‘Complementarity Determining Regions’ (or CDRs) which they predicted would

interact with the antigen.

This initial analysis has been expanded by other groups leading to the develop-

ment of several numbering schemes. Figure 4.1 explains the concept of numbering

in antibodies. The figure shows CDR-L1 from the light chains of two different

antibodies structurally fitted to one another. The shorter loop (coloured in red) is

11 residues long while the longer loop (in blue) is 16 residues long. If the residues

are numbered sequentially, then the numbering is as indicated in the Figure 4.1a.
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However, from Figure 4.1b, it can be seen that the residues highlighted by the grey

circles are structurally equivalent and it would be appropriate to assign the same

number to such residues. Therefore in a structurally correct numbering scheme,

the protrusion in the longer loop is regarded as an insertion at position L30 and

residues in this protrusion are numbered L30A, L30B, L30C, L30D, and L30E.

(The prefix L is used to indicate the light chain.)

As stated above, a standardized numbering scheme for antibodies was first in-

troduced by Wu and Kabat (1970). This numbering scheme was derived on the

basis of sequence alignments when no structural information for antibodies was

available. Chothia and Lesk (1987) examined the structures of antibody variable

domains and showed that the sites of insertions and deletions (indels) in CDRs

L1 and H1 suggested by Kabat on the basis of sequence were not structurally cor-

rect leading to the introduction of the Chothia numbering scheme. Unfortunately

in 1989 (Chothia et al., 1989), the numbering scheme was erroneously changed

but in 1997 (Al-Lazikani et al., 1997), the structurally correct numbering scheme

originally proposed in 1987 was reintroduced. Since then, two further schemes

have been introduced. The IMGT numbering scheme (Lefranc et al., 2003) tries

to unify numbering for antibody light and heavy chains with T-cell receptor α

and β chains. However, since IMGT is predominantly a DNA database, the num-

bering stops at the end of the region encoded by the V-gene segment. The AHo

numbering scheme (Honegger and Plückthun, 2001) extends the IMGT number-

ing scheme into CDR-3 and framework 4 in the antibody variable region. Both

IMGT and AHo schemes accommodate indels by allowing sufficiently long gaps so

that all known sequences may be numbered without insertion letters (e.g.: 30A).

Nonetheless, it is possible in future that unusual antibodies with extremely long

130



insertions will be identified which cannot be numbered using these schemes. While

a common scheme for light and heavy chains and T-cell receptors has a certain

elegance, the practical applications are less obvious. It remains true that im-

munologists tend to continue to use the Kabat scheme while those interested in

structural analysis use the Chothia scheme.

Thus far however, there has been no resource whereby numbering of an antibody

sequence can be performed automatically and accurately. In this chapter, two

methods to number antibody sequences automatically are described. Section 4.1

describes a method that uses pairwise sequence alignments to number an antibody

sequence. This was a refinement of a method previously developed by Dr. A. C.

R. Martin. The target antibody sequence is aligned with a sequence representing

the consensus pattern of an antibody sequence and based on the alignment, the

target antibody sequence is numbered. Section 4.2 describes a more rigorous and

accurate method that uses profiles to fix anchor points in the antibody sequence

and then numbers the framework regions and the loops independently. A web-

server for this program has also been made available via the webpage at http:

//www.bioinf.org.uk/abs/abnum/.

I assessed the performance of the numbering method (Section 4.3) by comparison

with numbering annotations in the last publicly available release of the Kabat

database (July 2000) (Johnson and Wu, 2001). From this analysis, several sig-

nificant errors have been identified in the manual Kabat annotations and this

automated numbering method can be used to rectify these errors. A further inter-

esting outcome of this analysis has been the correction of insertion and deletion

positions in the framework regions of the antibody. While Chothia et al. (1989)
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corrected the positions of indels in the CDRs of the Kabat numbering scheme

based on structural information, the framework regions were not included in their

analysis. In Section 4.4 of this chapter, I suggest corrections to the Chothia num-

bering scheme for the positions of indels in the framework regions. Some of the

work presented in this chapter has been published in Abhinandan and Martin

(2008).

4.1 An alignment-based method to number an-

tibody sequences

4.1.1 An existing tool for numbering

Martin (1996) has described a method automatically to apply numbering to an

antibody sequence by performing a global alignment of the sequence with a con-

sensus pattern. However, this method fails to number a sequence accurately under

the following conditions:

• When a leader sequence precedes the N-terminal end.

• When there are truncations to the sequence.

• When there are unusual insertions or deletions which tend to distort the

alignment thereby introducing mistakes into the numbering.
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Type of Number of
dataset sequences
Lambda class 1525
Kappa class 2453
Heavy chain 4724

Table 4.1: The number of sequences in each dataset extracted from the Kabat
database.

As an improvement to this method, it was decided that refinements to this program

could be developed to correct the errors introduced for the above reasons.

4.1.2 Preparation of the test dataset

Using KabatMan (Martin, 1996) a test dataset was prepared by extracting se-

quences of the variable region of antibodies from the most recent public release of

the Kabat database (July 2000) (Johnson and Wu, 2001). These sequences were

filtered by KabatMan for 100% sequence identity and were grouped on the basis

of chain (light and heavy chain) and class (Lambda and Kappa in the case of light

chain sequences). Table 4.1 gives the number of sequences that populated each

dataset.

4.1.3 Principle of the algorithm

The program was written in the C programming language and a simplified version

of the algorithm is as shown in Figure 4.2.

The first step in the procedure was deriving a consensus pattern to represent a
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,

Figure 4.2: Numbering algorithm based on pairwise sequence alignment.
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Light chain:

LFR1 (Framework 1): ~AVLTQPPXS!%!S!GXXVTI%C

L1 (Loop 1): XXSXXXXXXXXXXXX!X

LFR2 (Framework 2): WYQQKXGXXPK!LIY

L2 (Loop 2): XX%XXXS

LFR3 (Framework 3): GVPXRFSGS!SGTXX%LXISX!XXEDX!XY#C

L3 (Loop 3): XXXXXXXXXXXXXXX

LFR4 (Framework 4): FGXGTKLEIXKRA

Heavy chain:

HFR1 (Framework 1): XVQLXXSGXXL!XPGXS!$!SCX!SG#%F%

H1 (Loop 1): XXXXXXX

HFR2 (Framework 2): WV$QXPG$XLEW!!

H2 (Loop 2): XIXXXXXXGXXXYXXXXK!

HFR3 (Framework 3): $XX!%XDXSXX%!YXXXXSLXXED%AXYYCXX

H3 (Loop 3): XXXXXXXXXXXXXXXXXXXXXXXXXX

HFR4 (Framework 4): WGQGTXVTVSS

The following symbols represent groups of amino acids of a specific nature:

~: Acidic

!: Hydrophobic

#: Aromatic

$: Basic

%: Hydroxyl containing

Figure 4.3: Light and Heavy chain consensus sequences derived from
the multiple alignment of 48 structures from the PDB (described in
http://www.bioinf.org.uk/abs/seqmethod.html).

light and heavy chain. Martin (1996) describes deriving a consensus pattern from

the multiple alignment of light and heavy chain sequences from 49 structures. (see

http://www.bioinf.org.uk/abs/seqmethod.html). Figure 4.3 gives the original

consensus sequences derived for the light and heavy chain.

The nw program developed by Dr. A. C. R. Martin that implements the Needle-

man and Wunsch method for global pairwise alignment (Needleman and Wunsch,
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Type of Gap insertion Gap extension Type of
chain penalty penalty matrix
Light 10 1 BLOSUM62
Heavy 15 1 Normalized MDM78

Table 4.2: Optimal parameters for alignment of light and heavy chain sequence
alignment.

1970) was used to perform alignment between the antibody and the consensus

sequence. Since the numbering scheme depends on the alignment, it is imperative

to ensure correct alignment so that residues are numbered correctly. In order to

ensure correct alignment, the following alignment parameters were varied:

1. Substitution matrix - PET, BLOSUM62, Normalized MDM-78.

2. Gap insertion penalty - 10, 15, and 5.

3. Gap extension penalty - 0, 1, 2, 3, and 5.

After manual examination of several pairwise alignments, the parameters shown

in Table 4.2 were chosen as they gave the most correct alignments of the antibody

sequences with the consensus sequences.

4.1.4 Deriving consensus sequences

An antibody variable region sequence consists of 7 regions, as shown in Figure 4.4.

For unusually long antibody sequences, the pairwise alignment with the consensus

sequence could be incorrect. To resolve this problem, it was decided to derive
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Figure 4.4: Schematic representation of the seven regions of the antibody variable
region. The prefix L or H indicate light or heavy chain respectively. LFR1, HFR1,
LFR2, HFR2, LFR3, HFR3, LFR4, HFR4 - Light or Heavy chain framework
regions. L1, H1, L2, H2, L3, H3 - Complementarity Determining Regions (CDRs)
or loops.

Chain/Class FR1 Loop1 FR2 Loop2 FR3 Loop3 FR4
Lambda 0 0 62 119 132 0 0
Kappa 4 0 3 13 19 1 0
Heavy 1 0 18 3 3 0 3

Table 4.3: Numbers of sequences that gave insertions in the consensus alignment.
FR = framework region

alternate consensus sequences for the unusual cases. Having fixed the optimal

alignment parameters, all alignments between the antibody sequence and the orig-

inal consensus sequence (Figure 4.3) were examined. Sequences that gave gaps in

the consensus sequence alignment were isolated and clustered based on regions

where they have more residues than the consensus sequence. These sequences

were multiply aligned using MUSCLE (Edgar, 2004) and an alternate consen-

sus sequence was derived on the basis of sequence conservation. The alternate

consensus sequences are shown in Figure 4.5.

Table 4.3 shows the number of sequences that were clustered based on the region

of insertion in the original consensus sequence.
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LFR1: ~AVLTQPPXS!%!S!GXXVTI%C

L1: XXSXXXXXXXXXXXX!X

LFR2: WYQQKSPGSAPVTVIY

L2: X%DSDXXXXGS

LFR3: GVPXRFSGS$D!SGTXX%LXISX!XXEDX!XY#C

L3: XXXXXXXXXXXXXXX

LFR4: FGXGTKLEIXKRA

(a) Consensus sequence for insertions in LFR2 segment.

LFR1: ~AVLTQPPXS!%!S!GXXVTI%C

L1: XXSXXXXXXXXXXXX!X

LFR2: WYQQKXGXXPK!LLRY

L2: X%DSDXXXXGS

LFR3: GVPXRFSGS$D!SGTXX%LXISX!XXEDX!XY#C

L3: XXXXXXXXXXXXXXX

LFR4: FGXGTKLEIXKRA

(b) Consensus sequence for insertions in L2-LFR3.

HFR1: XVQLXXSGXXL!XPGXS!$!SCX!SG#%F%

H1: XXXXXXXXXXXXX

HFR2: WV$QXPG$XLEW!!

H2: XIXXXXXXGXXXYXXXXK!

HFR3: $XX!%XDXSXX%!YXXXXXSLXXXED%AXYYCXX

H3: XXXXXXXXXXXXXXXXXXXXXXXXXXXX

HFR4: WGQGTXVTVSS

(c) Consensus sequence for insertions in the heavy chain.

Figure 4.5: Alternate consensus sequences to be used when there are insertions in
(a) LFR2 segment of Light chain (b) L2 or LFR3 in Light chain (c) Heavy chain.
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4.1.5 Identifying chain type using Z-scores

Since the numbering program is applicable only to antibody sequences, the need

to develop a method to differentiate antibodies from non-antibodies and further,

to differentiate light and heavy chains, was realised. Deret et al. (Deret et al.,

1995) have described a method to assign subgroups to human antibody sequences

(Johnson and Wu, 2001) based on sequence conservation in framework 1. It was

initially decided to use their procedure (SUBIM) to classify sequences. However,

the program suffers from two significant limitations:

• An inability to differentiate antibody sequences from non-antibody sequences.

• Assigning incorrect chain types in several cases.

It was then decided to develop a completely new procedure using Z-scores (de-

scribed in Section 3.3). The procedure for doing this is shown in Figure 4.6 and

is detailed below:

1. For every sequence in the input file, do the following steps:

2. Check the length of the input sequence. If it is less than 80 residues long,

report that a chain type cannot be assigned to the sequence and proceed to

the next sequence.

3. Run ssearch33 (from the FASTA package (Pearson and Lipman, 1988))

for the query sequence against the database of human light chain kappa
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class sequences. An E-value cut-off of 100000 is used so that pairwise iden-

tities between the query sequence with every sequence in the database are

obtained.

4. If the length of the alignment with the top hit is less than 94 residues,

then goto step 7. Some antigens tend to have high sequence similarity with

antibody sequences over short stretches of alignment. This filter ensures that

only sequences with similarity over the entire variable chain of an antibody

are considered for further processing.

5. Calculate the mean sequence identity for the query from the set of pairwise

identities. From this, calculate the Z-score for the query using:

Zquery = (µquery − µ̄human)/σhuman (4.1)

where

Zquery - Z-score of the query sequence.

µquery - Mean percentage identity of the query sequence against the library

of human sequences.

µ̄human - Mean percentage identity of database of human sequences calculated

by averaging the mean percentage identities of all human sequences when

compared with all other human sequences..

σhuman - Standard deviation of database of human sequences from the aver-

age from the mean percentage identities.

6. If the Z-score is less than the threshold Z-score for the database (-3.9 for

Kappa, -4.5 for Lambda, and -3.1 for Heavy) assign the database type to
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Chain/Class Z-score
type threshold
Lambda class -4.4970
Kappa class -3.8730
Heavy chain -3.0630

Table 4.4: Table showing the Z-score thresholds for identifying chaintype. The
thresholds were set after examining the Z-scores of murine and human antibodies
in the Kabat database.

the sequence. Goto step 2 to process the next sequence.

7. Goto step 2 and run ssearch33 against a different database (human lambda

or heavy chain sequences).

8. If none of the Z-scores of the query is above the threshold Z-scores (see

below), assign ANTIGEN type to the sequence. Go to step 2 and process

the next sequence.

The threshold for length was decided after manual examination of antibody se-

quences in the Kabat database. Sequences that are shorter than 80 residues do not

contain features typical of antibodies and it was decided to set this as the length

threshold. Any antibody sequence that is less than 80 residues in length is not

assigned a chain type. Similarly, the threshold for Z-scores was set after evaluating

the Z-scores for mouse and human antibody sequences extracted from the Kabat

database. The thresholds are shown in Table 4.4 and were decided upon based

on the lowest Z-scores observed for the human and mouse antibodies for every

dataset (Lambda/Kappa class light chains and heavy chains). It must be noted

that the thresholds were set after considering the lowest score for a murine anti-

body sequence and the humanness scores of antibodies belonging to other species

were not considered. However, experience suggests these thresholds are suitable
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Figure 4.6: Identifying type of chain/class of an antibody sequence by calculating
the Z-score with respect to the distribution of human antibody sequences.
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for antibody sequences from other species.

4.1.6 How the numbering algorithm works

The overall algorithm is as shown in Figure 4.7. The first step involves the iden-

tification of the chain type (heavy chain or lambda/kappa class for light chain)

using either SUBIM (Deret et al., 1995) or the Z-scores procedure that has been

described in Section 4.1.5. The sequence is aligned with the appropriate consensus

light or heavy sequence. The alignment is checked for possible errors by examining

the consensus sequence alignment for any gaps in which case it is aligned with an

alternate consensus sequence.

An important problem that needed addressing was the case of light chain sequences

with truncations towards the C-terminal end of the variable region. It was noticed

that incorrect alignments were found particularly in the L3-LFR4 region and these

had to be dealt with separately. The following section gives details of the methods

developed to handle these cases.

4.1.7 Adjustments to alignments in the L3-LFR4 regions

As stated above, it was noted that the alignment was frequently incorrect and

adjustments were required. The following steps were followed while adjusting the

alignment in the L3-LFR4 region. Examples provided show the way the alignment

changes are effected.
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Print alignment and
numbering

STOP

Y N

Y

NN

N

Y

Y

Y

N

Y

N

Accept PIR file
with antibody sequences

For every sequence
do the following

Determine chain types of
input sequences using

SUBIM/Z-Scores

Is sequence
a light chain?

Are there gaps in
consensus alignment?

Globally align query sequence
with alternate heavy chain

consensus sequence

Are there gaps in
consensus alignment

Display warning: Input
sequence has unusual insertions

Globally align query sequence
with heavy chain consensus sequence

Are there gaps in
consensus alignment?

Is gap in LFR2, L2,
or LFR3 region?

Globally align query sequence
with alternate light chain

consensus sequence

Are there gaps in
consensus alignment

Display warning: Input
sequence has unusual insertions

Globally align query sequence
with light chain consensus sequence

Figure 4.7: Overall algorithm for the alignment-based numbering method.
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1. Extract the antibody sequence in LFR4 from the alignment with the con-

sensus.

2. If there is no gap in the first position of LFR4, exit from the routine.

3. If LFR4 is not empty, check whether the start of LFR4 has a gap. If it does

and the last residue in L3 is either of ‘T’, ‘S’, ‘P’, ‘F’, ‘L’, or ‘W’, move

the last residue from L3 into the first position of LFR4 in the alignment.

Having performed this, exit from the routine. The position at which the

alignment is adjusted is indicated by the ‘*’ symbol.

Example:
*

DHYC SSYTSINTWVS---- -GGGT--------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

#### ############### #############

End of L3 LFR4

LFR3

After adjustment, this becomes:

DHYC SSYTSINTWV----- SGGGT--------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

4. If LFR4 is empty, check the length of L3. If it is less than 4, then exit from

the routine.

5. Pick the last 4 residues from L3 and match the following patterns of amino

acids in them.

a) FG b) GSP c) FSP d) FDG e) FVD f) FR g) FW h) FXGG
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If one of these pattens is observed in the last 4 residues of L3, then move

these residues into LFR4 and exit from the routine.

Example:
*

DYYC SSYTSISLTVLFG-- -------------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

#### ############### #############

End of L3 LFR4

LFR3

After adjustments, this becomes:

DYYC SSYTSISLTVL---- FG-----------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

6. Check the number of Glycines in the last 4 residues of L3. If it is less than

2, exit from the routine.

7. If there are at least 2 Glycines amongst the last 4 residues of L3, examine

the residue preceding the first Glycine. If it is one of ‘T’, ‘S’, ‘P’, ‘F’, ‘L’,

or ‘W’, then move the segment from the residue preceding the first glycine

to LFR4. Exit from the routine.

Example:
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*

DYYC QTWGTGGG------- -------------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

#### ############### #############

End of L3 LFR4

LFR3

After adjustments, this becomes:

DYYC QTWG----------- TGGG---------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

#### ############### #############

End of L3 LFR4

LFR3

8. If the first residue among the last 4 residues in L3 is a Phenylalanine and the

third residue is Glycine, then move the last 4 residues from L3 into LFR4.

Having performed this, exit from the routine.

Example:
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(a) Erroneous alignment in HFR3 end–H3–HFR4

(b) Correct alignment

Figure 4.8: Example of an error in the alignment for an equine heavy chain se-
quence in the HFR3–H3–HFR4 region. The erroneous alignment (output from the
numbering program) is shown in (a) and the correct alignment is shown in (b).
The beginning of H3 and HFR4 are marked by the ‘*’ symbol below the alignment.

*

DYHC GADHGSGSDFVGG-- -------------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA

#### ############### #############

End of L3 LFR4

LFR3

After adjustments, this becomes:

DYHC GADHGSGSD------ FVGG--------

XY#C XXXXXXXXXXXXXXX FGXGTKLEIXKRA
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4.1.8 Discussion

From preliminary analysis, it could be said that although the method was rea-

sonably accurate, there was no guarantee that the numbering output from the

program would be perfect owing to inherent limitations with using an alignment-

based approach. It also required a large set of relatively arbitrary rules to deal

with special cases. Unusual sequence features may lead to a wrong alignment

and therefore wrong numbering. An example of this is shown for an equine IgE

heavy chain sequence (Navarro et al., 1995) in the HFR3–H3-HFR4 region in Fig-

ure 4.8. The consensus sequence for CDR-H3 contains several X s to represent

the longest sequence that has been observed for this loop. However, this causes

a wrong alignment because the start of HFR4 is unusual. HFR4 usually starts

with a Tryptophan (W) whereas the start of HFR4 in this sequence is a Glycine

residue (G). It was therefore decided to implement a profile-based approach to ap-

ply numbering to antibody sequences in the hope that this would be less arbitrary

and more accurate.

4.2 A profile-based numbering method

This numbering algorithm uses profiles derived from the Kabat database to fix

anchor points in an antibody sequence. By fixing anchor points in the sequence,

it became possible to isolate the sequence of every region (framework region or

loop) and number each of them independently.
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Chain type Sequence type Number of sequences
Light Complete 794
Light Truncated 3044
Heavy Complete 2641
Heavy Truncated 1272

Table 4.5: Number of complete/truncated light and heavy chain sequences ex-
tracted from the Kabat database.

4.2.1 Preparation of the dataset

Using KabatMan (Martin, 1996), sequences of antibodies were extracted from

the Kabat database (Johnson and Wu, 2001). For ease of benchmarking the

efficiency of the algorithm, the initial set of sequences were classified as being

truncated/complete light or heavy chain sequences. Any sequence with Kabat

annotations for the first and last residues of the variable region (L1, L109 in the

light chain and H1, H113 in the heavy chain) was regarded as being complete

and all other sequences were treated as truncated sequences. Table 4.5 gives the

number of complete and truncated light and heavy chain sequences extracted from

the Kabat database using KabatMan.

For structural analysis, a list of antibody structures was prepared by parsing the

XML file from SACS (Allcorn and Martin, 2002) and the structure files were

obtained from the PDB (Berman et al., 2000).

4.2.2 Creation of profile sets

The strategy adopted was to define a set of anchor points in the sequence and

to fill in the numbering based around these locations. The anchor points were

150



Anchor points for profile
Profile name Light Heavy
FR1 Start L1 - L6 H1 - H6
FR1 End L18 - L23 H20 - H25
FR2 Start L35 - L40 H36 - H41
FR2 End L44 - L49 H44 - H49
FR3 Start L57 - L62 H66 - H71
FR3 End L83 - L88 H89 - H94
FR4 Start L98 - L103 H103 - H108
FR4 End L104 - L109 H108 - H113

Table 4.6: Kabat positions used in the profile definitions.

Chain type Sequence type Sequences that could
not be numbered (%)

Light Complete 1/794 (0.12%)
Light Truncated 44/3044 (1.44%)
Heavy Complete 2630/2641 (99.58%)
Heavy Truncated 1260/1272 (99.05%)

Table 4.7: Number of complete/truncated light and heavy chain sequences ex-
tracted from the Kabat database that could not be numbered using just 3 profile
sets (lambda, kappa, heavy).

chosen so that they would represent the start and end of every framework region.

For this I extracted the propensities of each of the 20 amino acids in the first and

last six positions of every framework region using KabatMan (Martin, 1996) and

a Perl script to analyse results. Each set of six residues was termed a profile and

a set of profiles representing the start and end of the four framework regions was

termed a profile set. Table 4.6 gives the list of Kabat positions that were used to

construct the profiles for the light and the heavy chain.

Initially, three profile sets were created, classified on the basis of chain– heavy

chain and lambda and kappa for the light chains. However, a significant number

of the sequences could not be numbered as anchor points for the start and end of

the framework regions could not be fixed in the correct order (See Table 4.7).
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Classification Number of
profiles

Human subgroups: Lambda class 6
Human subgroups: Kappa class 4
Human subgroups: Heavy chain 6
Species: Lambda class 6
Species: Kappa class 6
Species: Heavy chain 4

Table 4.8: Classification scheme and number of profile sets.

Additional profile sets were then created to make each more specific. Table 4.8

lists 32 profiles that were created on the basis of the following criteria:

a) Human subgroup classes as identified by Kabat. From the 1994 version of

the Kabat database, sequences were divided into families based on amino acid

identity where members of a family differ by 12 amino acids or fewer (Deret et al.,

1995). This led to the creation of 16 human sub-group-specific profiles as shown

in Table 4.8.

b) Species of origin for the Lambda, Kappa and Heavy chain sequences. This

resulted in a further 16 non-human species-specific profiles as shown in Table 4.8.

As will be shown later, the development of more specific profiles significantly

improved the number of sequences that could be annotated using the numbering

program (see Table 4.11).
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4.2.3 The numbering algorithm

To number a sequence, a sliding-window protocol is applied in which each window

consists of a set of six consecutive residues. The window is scored against a profile

before it is moved by a single residue to span the next set of 6-residues. The score

for a profile match is calculated as:

M = max(Sp,j); (j = 0..N − 6) (4.2)

Sp,j =
5
∑

i=0

log(Si+j) (4.3)

where M represents the score and Sp,j represents the score profile in the j’th

window of the sequence.

Once anchor points for the starts and ends of the framework regions have been

fixed, the sequence for every region (framework 1, loop 2, etc) is extracted and

numbered independently. However, it was noticed in several sequences that the

order of the anchor points was incorrect. For example, the anchor point of the

end of framework region 1 could appear after the anchor point for the start of

framework region 2. While detecting out-of-order misassignments is trivial, de-

tecting all misassignments of anchor points proved tedious requiring the design of

elaborate protocols to ensure error-free assignment.
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Range of lengths
Region name Light Heavy

Min Max Min Max
Framework 1 22 23 24 29
CDR-1 7 17 6 18
Framework 2 14 16 13 14
CDR-2 5 12 10 23
Framework 3 31 40 29 34
CDR-3 5 18 2 30
Framework 4 10 15 10 12

Table 4.9: Minimum and maximum observed lengths of the 7 regions in the light
and heavy chain.

A direct inference of anchor-point misassignment could be made when the order

of the profiles was incorrect. In a few cases where the profile assignments were in

the correct order, the separation between the profile assignments was clearly too

large or too small. Such cases were detected by examining the separation between

the profile assignments to see if they fell within pre-set limits shown in Table 4.9.

These limits were set after the distribution of region lengths in the Kabat database

was manually examined. It must be realised that it may be necessary to extend

these limits in future to accommodate unusually long sequences. However, this

would require cautious modification to ensure that sequences are not numbered

incorrectly.

A ranking scheme was introduced to cope with profile misassignments. When a

profile misassignment is detected on the basis of profile order and separation, the

best seven profile set assignments are examined in turn to see if the correct match

can be found. If not, it is reported that the sequence cannot be numbered. Once

profile assignments are completed, the sequence of every region is extracted.

Once the anchor points for the starts and ends of the framework regions have
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been fixed in the antibody sequence, the sequence of every individual region is

extracted. This is shown in Figure 4.9. The boundaries for every region are set

after the best profile assignments have been made and are known to be in the

correct order. In some cases, the input sequence contains a leader sequence at

the N-terminal end, or the constant region sequence at the C-terminal end. This

process excludes extraneous residues from the N-terminal or C-terminal end of the

antibody as they are not included in the alignment.

To ensure error-free assignment for the region boundaries (start and end of loop

and framework regions), a final check is performed by concatenating the sequences

in the individual regions and examining whether the concatenated sequence is a

substring of the original sequence. This check is particularly useful when the profile

representing the end of FR1 or the start of FR4 have been incorrectly assigned.

An example is shown in Figure 4.10.

Numbering is applied in every region based on one of the following rules:

1. Normal numbering where deletions are made before the position of inser-

tion – For example, the Kabat definition for region CDR-L2 is L50 to L56

giving it a standard length of 7 residues. A maximum length of 12 residues

(antibody Z84995 (Ignatovich et al., 1997)) and a minimum length of 6

residues (antibody Rer5 (Rast et al., 1994)) have been observed for this

region. The position of insertion according to the Kabat standard is L54

(L54A, L54B, L54C etc). Deletions are placed before the position of inser-

tion (L54). For example, in the case of a 5-residue CDR-L2, residues L53

and L54 are deleted. This is demonstrated in Figure 4.11.
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Figure 4.9: Isolating the sequence of every region from the best profile assignments.
Each profile represents the start or the end of a framework region.
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Figure 4.10: Example showing the detection of errors through alignment with a
consensus sequence pattern. In this example, the profile assignment of heavy chain
framework region 4 start is incorrect as framework 4 is truncated after the first
residue (W). The alignment with the framework 4 consensus is shown in the final
box.
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L50 L51 L52 L53 L54 L55 L56
G T T - - R T

(a) CDR-L2: GTTRT

L50 L51 L52 L53 L54 L55 L56
G T T R - G T

(b) CDR-L2: GTTRGT

L50 L51 L52 L53 L54 L54A L55 L56
E D S T T R G T

(c) CDR-L2: EDSTTRGT

Figure 4.11: Normal numbering in CDR-L2. The standard indel position is L54.
Deletions are made before the position of insertion. The Kabat numbering is
shown for varying lengths of CDR-L2. (a) 5 residues (GTTRT) (b) 6 residues
(GTTRGT) (c) 8 residues (EDSTTRGT).

2. Reverse numbering where deletions are made after the position of insertion -

For example in CDR-L1, whose Kabat definition is L24 to L34, the standard

length is 11 residues. A maximum length of 17 residues and minimum length

of 7 residues have been observed in this region. Insertions are placed at

position L27 according to the Kabat standard. Deletions are placed after

the position of insertion (L27). For a 7-residue CDR-L1, residues L28, L29,

L30, and L31 are deleted. This is shown in Table 4.12.

3. Straight numbering where residues are numbered sequentially - In the heavy

chain framework region 4, residues are numbered sequentially as there are

no defined indels in this region. This is shown in Figure 4.13.

In some regions, the Kabat numbering does not impose a fixed site for indels. For

instance, in the heavy chain framework region 2 (HFR2) the deletion appears to be

placed at the most likely position based on sequence. In these cases, an alignment
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L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
S A S V - - - Y Y M Y

(a) CDR-L1: SASVYYMY (8 residues)

L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
S A S - - S V Y Y M Y

(b) CDR-L1: SASSVYYMY (9 residues)

L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
S A S S - S V Y Y M Y

(c) CDR-L1: SASSSVYYMY (10 residues)

Figure 4.12: Reverse numbering in CDR-L1. The standard Kabat indel position
is L27. Table shows the Kabat numbering where deletions are made after the
position of insertion (L27).

H103 H104 H105 H106 H107 H108 H109 H110 H111 H112 H113
W G Q G T M V T V S -

(a) HFR4 - WGQGTMVTVS (10 residues)

L98 L99 L100 L101 L102 L103
F G P G T K

L104 L105 L106 L106A L107 L108
V T A L S Q

L109 L110 L111
P - -

(b) LFR4 - FGPGTKVTALSQP (13 residues)

Figure 4.13: Straight numbering in HFR4. The sequence in the region is WGQGT-
MVTVS and numbering is applied sequentially to residues.
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Region Is alignment performed Is alignment used Numbering
name for this region? in numbering? method
LFR1 Yes No 1

L1 No No 2
LFR2 No No 1

L2 No No 1
LFR3 No No 1

L3 No No 1
LFR4 Yes No 3
HFR1 Yes Yes 1

H1 No No 2
HFR2 Yes Yes 3

H2 No No 2
HFR3 No No 1

H3 No No 1
HFR4 Yes No 3

Table 4.10: Regions in the light and heavy chain and methods that are used to
number them.

is performed between the sequence in the region and a consensus pattern for that

region and numbering is applied based on the alignment. Table 4.10 summarises

the numbering methods used for the different regions in the Kabat numbering

scheme.

Figure 4.14 gives a flowchart of the numbering algorithm.

4.2.4 Benchmarking the numbering algorithm

In order to assess the performance of the profile-based numbering program, Ab-

Num, sequences of antibodies and their Kabat numbering were extracted from the

July 2000 release of the Kabat database. This was done using KabatMan and four

test datasets were prepared on the basis of chain type (light or heavy chain) and

nature of sequence (complete or truncated), as described in Section 4.2.1.
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Start
program

Read all sequences into
memory

Read all profiles
sets into memory

Read numbering files
into memory

Read region information
into memory

Any more
sequences to
be numbered?

Y

Y

N

Start with a
rank of 1

For every profile segment in a
profile set, find the appropriately

ranked segment assignment in sequence

Calculate profile set score by
summing individual segment scores

Any profile segment
misassignments?

Is Rank of last
assignment > 7

Y

Report that sequence
cannot be numbered

Y

N

N

Translate the profile
segment assignments to 

region boundaries

Extract sequences
of individual regions

Is concatenated
sequence a
substring of

original
sequence?N

Read next sequence

End 
Program

Number sequence
in every region
independently

Y

Align sequence in region
with a consensus pattern
for the region and adjust

region sequence if required

Concatenate sequences
of individual regions

Increase
Rank

Figure 4.14: Flowchart of the numbering program. Profile segment: First or the
last 6 residues in every framework region Region: Either means one of the seven
framework regions (LFR1, HFR3, etc) or a loop (CDR-L1, CDR-H2, CDR-L3,
etc).
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Figure 4.15 gives the algorithm for benchmarking the numbering program. All

sequences annotated in the Kabat database were numbered using AbNum. The

numbering of AbNum was compared with the Kabat numbering. The Kabat

database standard for numbering is very inconsistent in the range of L106–L111

in light chains and H100–H101 (including all residue insertions at H100: H100A,

H100B, H100C, etc.) in the heavy chain. For ease of comparison, residues in

these zones were excluded from examination. Sequences where the AbNum num-

bering matched the Kabat database numbering were regarded as being correctly

numbered. For the other cases where mismatches occurred, a random sample of

sequences was selected and manually examined to determine whether the error

was in the AbNum numbering, or in the Kabat database. These statistics were

then extrapolated to estimate the overall error percentages for the Kabat database

and AbNum as shown in Formulae 4.4 and 4.5:

Ek =
ek × Nm

Ns

×
100

NT

(4.4)

and

Ea =

(

Ua +
(ea × Nm)

Ns

)

×
100

NT

(4.5)

where Ek is the estimated percentage of errors in Kabat, Ea is the estimated

percentage of errors in AbNum, ek and ea are the number of errors identified in

Kabat and AbNum respectively in a sample of Ns sequences, Ua is the number

of sequences that AbNum was unable to number, Nm is the total number of mis-

matches between AbNum and Kabat and NT is the total number of sequences.
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Chain type Status Total number Numbered Match Kabat
of sequences

Light Complete 794 793 682
Light Truncated 3044 3014 2688
Heavy Complete 2641 2622 2416
Heavy Truncated 1272 1245 793

Table 4.11: Number of sequences numbered by AbNum that match the Kabat
database annotations.

Table 4.11 gives the numbers of sequences that could be numbered by AbNum

and agreed with manual numbering in the Kabat database.

Table 4.12 shows the results of the benchmarking study. All discrepancies in the

AbNum numbering and Kabat database annotations were attributed to errors in

the manual Kabat numbering. Every sequence that could be numbered by AbNum

appears to have been numbered accurately.

4.3 Analysis of errors in the Kabat database

Since the manual examination of discrepancies between AbNum numbering and

the Kabat database numbering seemed to suggest that all were errors in the Kabat

database, I set out to examine the source of these errors. All sequences for which

the AbNum numbering differed from the Kabat numbering were isolated and a

region-wise distribution of these differences is shown in Table 4.13.

The following sections detail the nature of errors in each of these regions. All

definitions of regions described here are Kabat standard definitions.
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N

Complete
Light chain
Sequences

Truncated
 Light chain
Sequences

Complete
Heavy chain
Sequences

Truncated
Heavy chain
Sequences

Split into 4 datasets

Kabat
database

Does Kabat database
numbering match

AbNum numbering?

Consider AbNum
numbering and

Kabat numbering
annotation as correct

Y

Calculate overall percentage of
Kabat database annotation

error and AbNum error

Can sequence
be numbered
using AbNum

N

Y

Group all
sequencess

with mismatches

Select a random sample of
50 sequences

Manually examines
each sequence to

ascertain source of error

Categorize error as
Kabat annotation error

or AbNum error

Extrapolate to total
number of errors

Figure 4.15: Algorithm for benchmarking the numbering program.
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Chain type Total number Not numbered Do not match Sample Error (%)
of sequences Kabat size Kabat AbNum

Light chain complete 794 1 111 50 50/50 (14%) 0/50 (0.12%)
Light chain truncated 3044 30 326 40 40/40 (10.7%) 0/40 (1%)
Heavy chain complete 2641 19 206 50 50/50 (7.85%) 0/50 (0.72%)
Heavy chain truncated 1272 27 452 39 39/39 (10.7%) 0/39 (2.12%)

Table 4.12: Benchmarking the performance of AbNum: comparison with the Kabat database annotations. The percentages
reported in the last two columns are estimated error percentages based on the sample set examined manually.
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Chain type Total number of Number of errors
mismatches FR1 Loop1 FR2 Loop2 FR3 Loop3 FR4

Light chain complete 111 0 13 5 54 72 43 8
Light chain truncated 326 5 71 7 112 73 187 49
Heavy chain complete 206 70 4 13 71 47 92 10
Heavy chain truncated 452 294 11 2 34 34 149 73

Table 4.13: Region-wise distribution of errors in the Kabat database.
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Label L1 L2 L3 L4 L5 L6
AbNum Q S A L T Q
Kabat Q S A L T Q
Label L7 L8 L9 L10 L11 L12
AbNum P A S - V S
Kabat P A S V S G
Label L13 L14 L15 L16 L17 L18
AbNum G S P G Q S
Kabat - S P G Q S
Label L19 L20 L21 L22 L23
AbNum I T I S C
Kabat I T I S C

Figure 4.16: Kabat annotation error in LFR1. The 1-residue deletion is placed at
L13 by Kabat although the Kabat standard imposes that it must instead be at
L10.

Analysis of errors in the light chain

The Kabat standard assigns residues L1–L23 to LFR1. The usual length of LFR1

is 23 residues with a possible 1-residue deletion which according to the Kabat

standard is at position L10. However, as the LFR1 numbering for the protein B3

(Kalsi et al., 1996) in Figure 4.16 demonstrates the position of deletion in Kabat

is not consistent. Such errors have been corrected by AbNum as the position of

deletions has been enforced.

Similarly, incorrect numbering has been observed in CDR-L1. The Kabat standard

assigns residues L24-L34 to CDR-L1 with L27 as the indel position. A number of

incorrect assignments have been observed in this region such as the one shown in

Figure 4.17 for the protein SSbPB (Ivanovski et al., 1998). In the example, the one-

residue insertion must be placed at L27A (the second Serine in RASQSVSSSYLA)

whereas the Kabat database places the insertion at L27F with no L27A....L27E.
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Label L24 L25 L26 L27 L27A L27B
AbNum R A S Q S -
Kabat R A S Q - -
Label L27C L27D L27E L27F L28 L29
AbNum - - - - V S
Kabat - - - S V S
Label L30 L31 L32 L33 L34
AbNum S S Y L A
Kabat S S Y L A

Figure 4.17: Kabat annotation error in L1. The one-residue serine
(RASQSVSSSYLA) has been assigned L27F by the Kabat database although it
should have been assigned L27A.

A different type of error has been observed to occur for the regions L1, LFR2, L2

and LFR3 as shown in Figure 4.18. The example shown is for the light chain of

the antibody SHLC5.1 (Hohman et al., 1992). The end of L1 has been incorrectly

annotated and the error can be seen to extend all the way up to LFR4. The

example in Figure 4.19 shows a similar case where the boundaries of L3 and LFR4

have been incorrectly assigned in the Kabat database.

Analysis of errors in the heavy chain

In the heavy chain too, similar errors with respect to incorrect assignment of

region boundaries have been observed. This is particularly clear in the case of

the H2–HFR3 region. The Kabat numbering for HFR3 is from H66 to H94 and

most sequences have a 3-residue insertion at H82 (H82A, H82B, H82C). However,

my analysis of mismatches between the Kabat and AbNum numbering led me

to discover a large number of discrepancies between the two annotations (nearly

30%). An example of this is shown in Table 4.20 which gives the Kabat database

numbering and the AbNum numbering for CDR-H2 and HFR3. This sequence
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Original sequence

DPVLTQPGSISSSPGKTVTITCTMSGGTISSYWASWYWQ
KPDSAPVFVWSESDRMASGIPNRFAGSVDSSSNKMHLTI
TNVQSEDATDYYCAAAASRSPYRSIFGSGTKLNLGSPR

AbNum assignment

LFR1: DPVLTQPGSISSSPGKTVTITC
L1: TMSGGTISSYWAS
LFR2: WYWQKPDSAPVFVWS
L2: ESDRMAS
LFR3: GIPNRFAGSVDSSSNKMHLTITNVQSEDATDYYC
L3: AAAASRSPYRSI
LFR4: FGSGTKLNLGSPR

Kabat database assignment

LFR1: DPVLTQPGSISSSPGKTVTITC
L1: TMSGGTISSYWASWY
LFR2: WQKPDSAPVFVWSES
L2: DRMASGI
LFR3: PNRFAGSVDSSSNKMHLTITNVQSEDATDYYC
L3: AAAASRSPYRSI
LFR4: FGSGTKLNLGSPR

Figure 4.18: Errors in the Kabat annotation in regions L1–LFR3. AbNum assigns
the boundaries of each of the regions correctly (marked in blue) whereas the Kabat
annotation (which is wrong) is marked in red.
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Original sequence

SYELTQPPSVSVPPGQTARITCSGDALPKKFAYWYQQ
KSGQAPVLVIYEDNKRPSEIPERFSGSSSGTMATLTI
SGAQVEDEGDYYCYSADINAKRVFGGGTKLTVLGQP

AbNum assignment

LFR1: SYELTQPPSVSVPPGQTARITC
L1: SGDALPKKFAY
LFR2: WYQQKSGQAPVLVIY
L2: EDNKRPS
LFR3: EIPERFSGSSSGTMATLTISGAQVEDEGDYYC
L3: YSADINAKRV
LFR4: FGGGTKLTVLGQP

Kabat database assignment

LFR1: SYELTQPPSVSVPPGQTARITC
L1: SGDALPKKFAY
LFR2: WYQQKSGQAPVLVIY
L2: EDNKRPS
LFR3: EIPERFSGSSSGTMATLTISGAQVEDEGDYYC
L3: YSADINAKRVFG
LFR4: GGTKLTVLGQPKA

Figure 4.19: Errors in the Kabat annotation in L3–LFR4. AbNum assigns the
boundaries of each of the regions correctly (marked in blue) and the Kabat anno-
tation (which is wrong) is marked in red.
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Label H50 H51 H52 H52A H52B H53 H54 H55
AbNum R F H S G R N P
Kabat R F H - - S G R
Label H56 H57 H58 H59 H60 H61 H62 H63
AbNum P Q Y A S E A V
Kabat N P P Q Y A S E
Label H64 H65 H66 H67 H68 H69 H70 H71
AbNum K G R V T A S T
Kabat A V K G R V T A
Label H72 H73 H74 H75 H76 H77 H78 H79
AbNum D S S S C Y M Q
Kabat S T D S S S C Y
Label H80 H81 H82 H82A H82B H82C H83 H84
AbNum M N S L - - K T
Kabat M Q M N S L K T
Label H85 H86 H87 H88 H89 H90 H91 H92
AbNum E D T G I Y Y C
Kabat E D T G I Y Y C
Label H93 H94
AbNum E D
Kabat E D

Figure 4.20: Kabat database error in the H2-HFR3 region of Axo1.

does not have the usual 3-residue insertion at H82 and this has been correctly

identified by AbNum. However, since the Kabat database annotations have largely

been manual and the 3-residue insert at H82 is very common, the sequence has

been incorrectly annotated as having residues at H82A-C whereas the insert should

have been at position H52 in CDR-H2.
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4.4 Structural analysis: An alternate structure-

based numbering scheme to accommodate

indels in the framework regions

As described above, the two most widely used numbering schemes for antibodies

are the Kabat and the Chothia schemes. The Kabat numbering scheme (Kabat et

al., 1983) was based on sequence alignments and placed insertions where they oc-

curred in sequence. Chothia and co-workers (Chothia and Lesk, 1987; Al-Lazikani

et al., 1997) examined structures of antibodies and proposed a numbering scheme

correcting the positions of insertions at the structural level rather than at the

sequence level. However, only CDRs were included in this analysis and framework

regions were not examined.

A list of antibody structures was extracted from SACS (Allcorn and Martin, 2002).

Light chain and heavy chain sequences from 561 structures were extracted from

the SEQRES records of the PDB files. These were numbered using AbNum and

the numbering was patched into the PDB files using patchpdb (Dr. A. Martin,

unpublished). The sequence of every framework region was extracted and analysed

for deviations from the standard lengths described in Kabat (Wu and Kabat,

1970). Structures whose framework region lengths differed from the standard

were fitted using ProFit (Martin, ACR, http://www.bioinf.org.uk/software/

profit/). Where structures of variable regions were not available, four or five

structures were chosen and fitted together to see if certain positions in the region

are more flexible than others and therefore likely to accommodate indels.
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Region Kabat definition Length range Kabat indel Structural Structural
Name (Standard length) Min - Max position ins. pos. del. pos.
LFR1 L1 - L23 (23) 22 - 23 L10 - L10
LFR2 L35 - L49 (15) 14 - 16 - L40 L41
LFR3 L57 - L88 (32) 31 - 40 L66 L68 L68
LFR4 L98 - L110 (12) 12 - 13 L106 L107 -
HFR1 H1 - H30 (30) 29 - 34 H6 H8 H8
HFR2 H36 - H49 (14) 13 - 14 - - H42
HFR3 H66 - H94 (29) 30 - 34 H82 H72 -

Table 4.14: Table comparing the Kabat indels with the structurally corrected
indels.

Table 4.14 compares the results of this analysis with the Kabat standards for the

positions of insertions and deletions in the framework regions. For LFR1 (Kabat

definition L1 to L23) which has a standard length of 23 residues, a structure with

22 residues (PDB Code 2vit (Fleury et al., 1998)) was found. 2vit also has an

LFR4 (Kabat definition L98 to L110) length of 13 residues compared with the

standard length of 12 residues. I fitted the LFR1 and LFR4 regions of 2vit to

that of 12e8 (Trakhanov et al., 1999) which has standard lengths in these regions.

For the remaining regions however, no structures with unusual framework region

lengths exist.

The fitted structures of light and heavy chain framework regions are shown in Fig-

ures 4.21 and 4.22 respectively indicating the Kabat indel sites and my proposed

structurally correct sites.

The case of HFR3 is particularly interesting. The Kabat definition for HFR3 is

from H66 to H94, a standard length of 29 residues. In most heavy chains however,

there is a 3-residue insertion in HFR3 which Kabat designates as being at H82

(H82A, H82B, H82C); see Figure 4.23a. There are a small number of sequences
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that do not contain this insertion, but because this situation is rare, the majority

of these are erroneously annotated in Kabat as containing the 3-residue insertion

in HFR3 whereas the residues should be inserted in CDR-H2 at position H52

(Figure 4.23b). In total, 74 sequences in Kabat were identified where the end of

the CDR-H2 and the start of heavy chain framework region 3 have been annotated

incorrectly.

Further analysis of HFR3 indicates that position H82 is unlikely to accommodate

insertions. A pairwise sequence alignment between antibodies axo1 (Patel and

Hsu, 1997) and mab113 (Mantovani et al., 1993) as shown in Figure 4.24 suggests

that H72 is the likely position of the 3-residue insertion. Figure 4.25 shows the

spacefilled representation of the Fv region of an antibody. Residues that would be

numbered H72 and H82 are indicated and it can be seen that H82A-C are relatively

buried while H72A-C are on the surface making it more likely that these residues

would be deleted. This is further corroborated by the work of Annemarie Honegger

(Honegger and Plückthun, 2001) who analysed the sequences and structures of

light chain and heavy chain variable regions of antibodies and suggested that the

heavy chain has a 2-residue insertion with respect to the light chain at position

H72.

4.5 Conclusions

In this chapter, a new method that uses profiles to apply numbering schemes to

antibody sequences has been described. This approach successfully numbers the
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‘problem’ sequence described in Section 4.1.8. The analysis of manual annotations

in the Kabat database shows that there is a high percentage of errors. Based on

structural analysis of insertions and deletions in the framework regions of anti-

bodies, I have extended the Chothia numbering scheme to correct the positions of

insertions and deletions in the framework regions.
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(a) LFR1 (b) LFR2

(c) LFR3 (d) LFR4

Figure 4.21: Rigid body superposition of light chain framework regions. Colour
codes are: red - kabat indel position, green - structurally correct position of inser-
tion, pink - structurally correct position of deletion.
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(a) HFR1 (b) HFR2 (c) HFR3

Figure 4.22: Rigid body superposition of heavy chain framework regions. Colour
codes are: red - kabat indel position, green - structurally correct position of inser-
tion, pink - structurally correct position of deletion.

(a) Standard

(b) Correct

Figure 4.23: Numbering in H2-HFR3 (a) The standard numbering for H2-HFR3
in the Kabat database annotations (b) The correct numbering when the 3-residue
insertion at H82 are not present.
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axo1   QIVLTQSGSEVKKPGESMQLKCTVTGFNVNSYWMHWVRQAPG
mab113 QVQLVQSGAEVKRPGAPVKVSCKASGYTFTDYYMHWVQQAPG

                     ...CDR−H2−> <−HFR3...
axo1   KGLEWVLRFHSGRNPPQYASEAVKG RVTASTDS−−SSC
mab113 QGLEWMGRINPNTGGTN−SAQKFQG RVTMTRDTSISTA
                              65 6789012abc345

                  ..HFR3−>
axo1   YMQMNSLKTEDTGIYYCAR
mab113 YMELSNLRSDDTAMYSCAR
       6789012345678901234

(a) Alignment if position of insertion is H72

axo1   QIVLTQSGSEVKKPGESMQLKCTVTGFNVNSYWMHWVRQAPG
mab113 QVQLVQSGAEVKRPGAPVKVSCKASGYTFTDYYMHWVQQAPG

                     ...CDR−H2−> <−HFR3...
axo1   KGLEWVLRFHSGRNPPQYASEAVKG RVTASTDSSSCYM
mab113 QGLEWMGRINPNTGGTN−SAQKFQG RVTMTRDTSISTA
                              65 6789012345678

                  ..HFR3−>
axo1   QMNSL−−KTEDTGIYYCAR
mab113 YMELSNLRSDDTAMYSCAR
       9012abc345678901234

(b) Alignment if position of insertion is H82

Figure 4.24: Sequence alignment between antibodies Axo1 and mab113.
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Figure 4.25: Spacefill representation of the variable domain of an antibody.
The colour codes are: light chain - blue gray, heavy chain - pink, HFR3 - yel-
low and highlighted by the white borders. The residues coloured in blue and
green are H72A-C (if insert position is H72) and H82A-C (if insert position
is H82) respectively. This diagram was prepared using QTree (Martin, ACR,
http://www.bioinf.org.uk/software/qtree/).
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Chapter 5

Predicting the VH/VL interface

angle from interface residues

The variability of antibodies is encoded in the Fv region which consists of two

protein domains. Interactions between the light and the heavy chain contribute

significantly to the stability of the variable fragment (Fv). The VH/VL interface

between the light chain and heavy chain has been shown to affect the binding

kinetics of a peptide (Chatellier et al., 1996). The framework region at the VH/VL

interface consists of two β-sheets (Poljak et al., 1973), the structures of which

are conserved across Fab and light chain dimers (Chothia et al., 1985; Novotný

and Haber, 1985). However, the contribution of residues in the framework re-

gions to interactions with the antigen remains poorly understood. It has been

demonstrated that modification of residues distant from the antigen binding site

of the antibody has a small yet significant effect on the binding affinity with the
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antigen (Chatellier et al., 1996; Roguska et al., 1996). For example, Adair and co-

workers have demonstrated that modification of residue H23 significantly affects

binding of the antibody with the antigen (Adair et al., 1999). While this may be

an impediment for predicting the affinity of engineered antibodies, it must also

be emphasised that interactions at the VH/VL interface are crucial to maintaining

stability of the Fab. Understanding the influence of residues in the VH/VL interface

on the packing angle between the two domains would help design antibodies with

a definable binding site topography.

In this chapter, I present an analysis of the distribution of the VH/VL packing angle

and a method to predict the interface angle from the nature of interface residues

is described. A set of conserved residues in the framework regions of VL and VH

were chosen and the interface angle was defined as the torsion angle between these

points. The main applications of trying to predict packing angle from interface

residues are in modelling studies of antibodies and in humanization protocols.

The packing angle between the variable chains of antibodies has previously not

been considered when modelling variable chains of antibodies (Martin et al.,

1991; Martin et al., 1989; Whitelegg and Rees, 2000). Knowing the packing angle

prior to modelling the variable region light and heavy chain may help in choosing

more appropriate template structures upon which models may be based. This

work also helps in identifying key residues that influence the packing angle and

therefore, are instrumental in determining the topography of the paratope. The

process of humanization involves grafting of murine CDRs onto human framework

regions (Jones et al., 1986). Further modification of residues flanking the CDRs is

usually required to restore the binding affinity of the mouse antibody (Riechmann

et al., 1988). This could be extended by modifying residues at the VH/VL interface
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in the humanized antibody to their murine counterparts so that the topography

of the paratope would be preserved.

5.1 Preparation of the dataset

A list of Fv and Fab structures was extracted from the SACS (Allcorn and Mar-

tin, 2002) XML file. This yielded a set of 561 antibody structures including 6

anti-idiotype antibodies (PDB Codes: 1cic, 1dvf, 1iai, 1pg7, 1qfw, and 2dtg).

Anti-idiotype antibodies are antibodies derived against epitopes present in other

antibodies. As every anti-idotypic antibody structure consists of two antibodies,

all anti-idiotype antibody structures were split into two and the final dataset con-

sisted of 567 antibody structures. This set comprised 314 structures for which

the sequences of the light chain and heavy chain were distinct. Conformational

changes in the antibody CDRs upon binding with the antigen have been estab-

lished in several studies (Colman et al., 1987; Bhat et al., 1990; Herron et al.,

1991; Rini et al., 1992; Wilson and Stanfield, 1994; Mylvaganam et al., 1998).

The idea behind allowing redundancy in the dataset is that it allows for vari-

ability in a given structure. Structural fitting of antibodies was performed using

ProFit (http://www.bioinf.org.uk/software/profit/) which implements the

McLachlan algorithm (McLachlan, 1982). The AbNum program described in the

previous chapter was used to apply Chothia numbering to the structures of anti-

bodies.

Programs for analysis were written in C and PERL. All graphs were created us-
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ing GNUPLOT and GRACE (http://plasma-gate.weizmann.ac.il/Grace/).

The program ssearch33 from the FASTA package (Pearson and Lipman, 1988)

was used in the calculation of Z-scores for chain assignment. The Stuggart Neu-

ral Network Simulator (SNNS) (http://www-ra.informatik.uni-tuebingen.

de/SNNS/) was used to make associations between packing angle and interface

residues. The GRASS library (Team, 2006) was used for calculation of Eigen

vectors and values. The Sun gridengine was used to distribute jobs across a grid

consisting of the C3 and the Queen. The C3 is a farm consisting of 96 IBM series

335 nodes and the Queen is a farm consisting of 30 nodes with each node having

2 dual-core AMD Opteron processors.

The ‘interface residues’ are defined as Chothia-numbered interface positions for

which there is a change in accessibility as a result of VH/VL interaction. As a

first step, sequences of the light and heavy chain were extracted from PDB files

of the antibodies. The Chothia numbering scheme (Chothia and Lesk, 1987; Al-

Lazikani et al., 1997) was applied to all the sequences using AbNum. In the case

of Fabs, only the variable region was considered for further analysis. The Chothia

numbered variable region sequences were patched back into the PDB files to yield

567 numbered Fv region structures.

Once the structure files were prepared with the Chothia numbering applied to

them, the accessibility of all residues in the light and heavy chains was calculated.

Simon Hubbard’s naccess program that implements the algorithm described by Lee

and Richards (1971) was used for the calculation of accessibility. The accessibility

of all residues in the VH/VL complex and in the individual chains was calculated.

Those residues which sustained any change in the accessible surface area were
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regarded as being interface residues.

5.2 Calculation of the packing angle

The packing angle was defined as the torsion angle at the VH/VL interface. The

steps involved in the calculation of the packing angle are as described below:

1. Identify a set of residues SL and SH that are structurally conserved in the

light and heavy chain respectively.

2. Extract the Cα coordinates for the residues in SL and SH.

3. Find the centroid for each set (CL and CH).

4. For each set, compute the best-fit line passing through the centroid.

5. Identify one point on each line PL and PH on the same side relative to the

respective centroid.

6. Calculate the packing angle as the torsion angle between the points PL, CL,

CH, and PH.

Five antibody light and heavy chains were fitted together on all residues in the

variable region using ProFit to identify conserved residues at the VH/VL interface.

The backbone representations of the fitted structures are shown in Figures 5.2

and 5.3 respectively. The regions coloured in blue correspond to residues that are

highly conserved across antibody structures. These are L35-L38, L85-L88 in
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Start

Perform rigid-body
superposition for a set
light and heavy chain

variable domains

Identify a set of structurally
conserved positions in each

chain - SL (light chain)
and SH (heavy chain)

Extract CA coordinates of
the residues in SL and SH

Find the centroid
for each set

For each set, compute
a best-fit line passing
through the centroid

Identify one point on each
line on the same side relative

to the respective centroid

Calculate packing angle as
the torsion angle between

these points

Stop

Figure 5.1: Algorithm to calculate the packing angle at the VH/VL interface.
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Figure 5.2: Rigid body superposition of the Cα atoms in five structures of the
light chain variable region. The structures used were: 12e8, 15c8, 1a0q, 1a3l,
1a3r.
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Figure 5.3: Rigid body superposition of the Cα atoms in five structures of the
heavy chain variable region. The structures used were: : 1oax, 1yec, 1yef,
2ddq, 8fab.

187



Figure 5.4: The beta strands at the VH/VL interface, best-fit lines, and packing
angle.
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the light chain and H36-H39, H89-H92 in the heavy chain. These positions

form part of a beta-sheet which is at the core of the interface and outside the

hyper-variable loops. Figure 5.4 shows the beta sheets, the best-fit lines drawn

through them, and the packing angle.

The next step was to calculate a best-fit line for the points in SL and SH. Only

the coordinates of the Cα atoms were used to compute the best-fit line. The

method employed was Principle Component Analysis (PCA) and the calculations

were performed according to the algorithm shown in Figure 5.5.

After calculation of the packing angle across the 567 structures in the dataset, their

frequency distribution was plotted and this is shown in Figure 5.6. The packing

angle varies quite considerably across different structures. The smallest and largest

packing angles observed were 300 and 600 in the structures 1FL3 (Simeonov et al.,

2000) and 1BGX (Murali et al., 1998) respectively. The extreme packing angles

are shown in Figure 5.7.

5.3 Identifying interface residues

Interface residues for the 567 structures were defined as described in Section 5.1.

Owing to the variability in the VH/VL packing angle, the interface residues in

any given structure will be a subset of the total set. A total of 124 positions

(63 light chain and 61 heavy chain positions) were identified as contributing to

the interface in at least one of 567 structures. Figure 5.8 shows the plot of the
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1. For points in a set (SL or SH ) calculate centroid C (CL or CH).

2. Compute the covariance matrix. The pseudocode for this is given below:

For i=0 to 3(number of dimensions)

Do

For j=0 to 3(number of dimensions)

Do

Total = 0

For start=0 to 4 (number of points in set SL or SH)

Do

Total+=( x[start][i] - C[i] ) *

( x[start][j] - C[j] )

Done /* End of loop For start=0 to 4 */

Covariance(i,j) = Total/(number of points in SL or SH)

Done /* End of For j=0 to 3 */

Done /* End of For i=0 to 3 */

3. Perform an eigen decomposition for the covariance matrix. Calculate eigen
values and eigen vectors.

4. The eigen vector represented by the largest eigen value is the best-fit line
when it passes through the centroid.

Figure 5.5: Algorithm used in the calculation of the best-fit line for the light and
heavy chain variable regions.
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Figure 5.6: Frequency distribution of the packing angle.
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(a) 1FL3

(b) 1BGX

Figure 5.7: Extreme packing angles in (a) 1FL3 - 300 (b) 1BGX - 600.
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Figure 5.8: Frequency distribution of interface residues in (a) The Light chain and
(b) Heavy chain.
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frequency distribution of interface residues in the light chain and heavy chain.

5.4 Predicting packing angle from interface residues

It was decided to use a neural network to predict the packing angle from the

interface residues. Amino acids representing the interface residues in different

structures were used as input for the neural network and the output was the

packing angle. The process of training a network involves supplying a set of input

patterns and the output (the result to be predicted) values to help the neural

network ‘learn’ from the data. Once the network has passed the learning phase, it

is supplied with inputs for which it is expected to make predictions of the output

values. The predictions of the neural network are compared with the actual values

and the performance of the neural network is assessed. Here, a five-fold cross

validation was performed. In this procedure, the neural network is trained on 4
5

of the total data available and the quality of its training is evaluated by assessing

its predictions on the remaining 1
5

of the data. This is repeated on each slice of

the data and the overall performance is averaged over the five folds.

The input is fed to the neural network in the form of numbers that represent

the amino acids at the interface. A common method of doing this is using a

20-dimensional binary vector representing the 20 amino acids or values from a

similarity matrix. The binary vector contains nineteen 0s and one 1 to indicate

a specific amino acid or values from a similarity matrix. The input layer size is

calculated as:
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Si = Naa × Se (5.1)

where Si, Naa, and Se represent the Input layer size, Number of amino acids and

size of the encoding vector respectively. As described above, there are a total of

124 potential interface positions. By applying equation 5.1 and using 20 numbers

to represent one of the 20 amino acids, the size of the input layer would be 2480.

The total number of variables in the network is defined as:

Nv = (Si × Sh) + (Sh × So) (5.2)

where Nv is the number of variables in the network, Si is the number of nodes

in the input layer, Sh is the number of nodes in the hidden layer, and So is the

number of nodes in the output layer. If we use 10 hidden nodes and a single output

node to represent the packing angle, then the number of variables in the network

would be 24810. As a rule of thumb, it is recommended to use 3Nv patterns to

train a neural network. Hence, it would have ideally required data from about

75000 structures to train and validate the network successfully. Considering that

only about 570 structures were available, I decided to restrict the number of input

variables by applying the following rules:

• By using only 4 numbers to represent every amino acid instead of 20.

• By limiting the number of interface positions (used in training and validating
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the neural network) to 20 instead of 124.

The four numbers used to represent every amino acid were chosen on the basis of

the following physical properties:

1. Size of the amino acid, in terms of the number of atoms in the side-chain.

2. Size of the amino acid expressed as the shortest path from the Cα atom to

the atom farthest away from it, i.e. the length of the sidechain.

3. Hydrophobicity

4. Charge

Table 5.1 lists the numbers used to represent the 20 different amino acids. The hy-

drophobicity scales used were taken from the consensus values reported by Eisen-

berg et al. (1982). I decided to use a 4-dimensional encoding vector with 20

interface residues chosen as being most likely to influence the packing angle. By

doing this, the input layer size was reduced to 80 nodes.

Initially, a manual selection of 20 interface residues most likely to influence the

packing angle made using the following sets of criteria:

Method I Highest change in Accessible Surface Area (ASA) in any one structure.

Method II Highest average change in ASA

Method III Most frequently occurring positions with highest change in ASA
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Amino acid Size Size Hydrophobicity Charge
NS SP

Alanine (A) 1 1 0.250 0
Valine (V) 3 2 0.540 0
Leucine (L) 4 3 0.530 0
Isoleucine (I) 4 3 0.730 0
Proline (P) 3 4 -0.07 0
Methionine (M) 4 4 0.26 0
Phenylalanine (F) 7 5 0.610 0
Tryptophan (W) 10 6 0.370 0
Glycine (G) 0 0 0.160 0
Serine (S) 2 2 -0.26 0
Threonine (T) 3 2 -0.18 0
Cysteine (C) 2 2 0.04 0
Asparagine (N) 4 3 -0.64 0
Glutamine 5 4 -0.69 0
Tyrosine (Y) 8 6 0.02 0
Aspartate (D) 4 3 -0.72 -1
Glutamate (E) 5 4 -0.62 -1
Lysine (K) 5 5 -1.1 1
Arginine (R) 7 6 -1.8 1
Histidine (H) 6 4 -0.4 0.5

Table 5.1: Amino acid properties for size, hydrophobicity and charge. NS: number
of side chain atoms in the amino acid; SP: shortest path to the atom farthest away
from the Cα atom of the residue. 0.5 was chosen as the charge for Histidine to
represent the fact that it can exist in both charged and uncharged states.
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Nodes representing residues 
at interface positions

Nodes in the
hidden layer -
10, 20, or 30
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Output node representing
Interface angle

Output layer

Figure 5.9: Architecture of a fully connected network. Not shown in the figure are
the connections between every pair of nodes in the input layer and hidden layer
and between nodes in the hidden and output layer.

Method IV Most frequently occurring positions with highest average change in

ASA

The top 10 positions in each chain (light and heavy) were taken and a 5-fold cross

validation was performed. Table 5.2 lists the interface positions that were manu-

ally selected. A fully connected artificial neural network was constructed with the

architecture shown in Figure 5.9. Using the Stuggart Neural Network Simulator

(SNNS) the neural network parameters: learning function, update function, ini-

tialisation function, shuffling and number of cycles were varied and the following

values were found to be most optimal for the problem:

1. Number of cycles of training - 150
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Method Interface positions

Method I

L34, L36, L44, L46, L50
L87, L89, L91, L96, L98

H35, H47, H91, H100B, H100C
H100D, H100I, H100G, H100M, H103

Method II

L34, L36, L43, L44, L46
L86, L87, L89, L91, L98

H35, H47, H91, H100B, H100C
H100D, H100G, H100I, H100M, H103

Method III

L32, L34, L36, L44, L46
L50, L87, L91, L96, L98

H45, H47, H50, H91, H99
H100, H100A, H100B, H101, H103

Method IV

L34, L36, L38, L43, L44
L46, L87, L91, L96, L98

H39, H45, H47, H91, H99
H100, H100A, H100B, H101, H103

Table 5.2: Manually chosen interface positions based on methods (I) Highest
change in ASA, (II) Highest average change in ASA, (III) Most frequently oc-
curring positions with highest change in ASA, and (IV) Most frequently occurring
positions with highest average change in ASA.

2. Training until sum-of-squares error (SSE) becomes <= 1.5

3. Init function - Randomise weights

4. Learning function - RProp

5. Update function - Topological order

6. Pruning function - Magnitude pruning.

7. Shuffling - TRUE

8. Number of hidden nodes - 10.

A neural network consists of a set of ‘perceptrons’ which generate values between

0 and 1 using a sigmoid function applied to a weighted sum of the inputs:
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Method Average Pearson’s coefficient
over 5 folds

I 0.32
II 0.38
III 0.40
IV 0.30

Table 5.3: Results of a 5-fold evaluation over interface positions chosen manually
using the four methods described in the text. The correlation coefficient reported
has been averaged over the 5 folds.

O = f(
N
∑

i=1

Wixi) (5.3)

where O is the output of the perceptron, f() is the sigmoid transfer function, xi

is an input, Wi is an weight and N is the number of inputs. I therefore decided

to represent all output values (packing angles) by a value between 0 and 1. The

scaling of packing angles was done according to:

θf =
θ − θmin

θmax − θmin
(5.4)

where θf is the interface angle fraction, θ is the interface angle, θmax is the maxi-

mum observed interface angle, and θmin is the minimum observed interface angle.

From manual examination, it appeared that shuffling the training data (item 7

in the list of optimal SNNS parameters shown above) while training the neural

network had a positive effect. However, this could not be used when training and

validating the neural network through scripts as it appears that this feature is

only supported by the graphical interface to SNNS.
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To evaluate the performance of the neural network, the Pearson’s correlation co-

efficient (r) was initially used to compare the output of the neural network and

the actual scaled packing angle (between 0 and 1):

rxy =

n
∑

i=1
(xi − x̄)(yi − ȳ)

(n − 1)sxsy

(5.5)

where rxy is the Pearson’s correlation coefficient between two variables x and y,

n is the number of data points, xi and yi are the individual values of variables x

and y, and sx and sy are the standard deviations of the two distributions x and y.

Table 5.3 shows the result of training and validating the neural network based on

the manual selection of interface positions. None of the methods to select interface

residues manually worked particularly well as the Pearson’s correlation coefficient

for all methods was low. However, from manual examination of correlation coef-

ficients over single folds, correlation coefficients as high as 0.6 had been observed.

I therefore decided to have the computer sample sets of interface positions to find

the combination that would be most predictive of the packing angle.

5.5 Using a genetic algorithm to sample the interface-

residue space

The use of a genetic algorithm (GA) for feature selection (i.e. to sample sets

of interface residues and pick the most optimal set) appeared to be a potential
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Figure 5.10: An individual to represent 10 interface positions. From the string
shown, those alleles with a 1 imply the inclusion of the residue at the respective
interface position for training and validation of the neural network.

solution to the problem of low scores of manually selected interface positions.

The overall method of the genetic algorithm developed to sample the space of

interface residues is described below:

1. Create a random population of individuals where each individual represents

a set of interface positions, each allele being a 1 or 0 to indicate whether a

given interface position is included in training the neural net.

2. Evaluate the quality of each individual by training and validating the neural

network over 5 folds (5-fold cross-validation)

3. Create a new population of individuals by crossover of high-scoring individ-

uals.

4. Repeat the above steps for as many generations as required.
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Figure 5.11: Crossover of two high-scoring individuals A and B

The first step involves the creation of a random population of individuals. Every

individual is a string whose length is the number of interface positions. It consists

of a set of 0s and 1s (alleles) and represents a selection of interface positions to be

used to train and validate a neural network. This is demonstrated in Figure 5.10.

The quality of every individual is assessed by training the neural network and

averaging the Pearson’s correlation coefficient over 5 folds. Initially, a random

population of individuals is created and the quality of every individual is assessed.

A new population of individuals is then generated by selective crossover of high

scoring individuals which is shown in Figure 5.11. Newly created offspring individ-

uals are subject to random mutations at a rate referred to as the mutation rate (µ).

In this work, unless otherwise specified, a default mutation rate of 0.0001 has been

used for Rank-based selection (See Section 5.6). Once the random mutations have

been effected, the offspring individuals become children. These children become
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the parents for the next generation. They are scored by training and validating

the neural network and further generations of the genetic algorithm progress in

the same way. These steps are repeated until the required number of generations

have been completed or the population has converged.

5.6 Methods of selection

In the process of creating offspring through crossover, a bias is made towards the

selection of parents that have high scores. There are many selection methods for

choosing the parents and in this project, I primarily used Roulette-wheel based

selection and Rank-based selection. These selection strategies have already been

addressed in Chapter 2.

Generation Best Pearson’s r

Rank Roulette-wheel

1 0.4964 0.4980

2 0.5039 0.5082

3 0.5039 0.5082

4 0.5007 0.5082

5 0.5039 0.5082

6 0.5167 0.5082

7 0.5159 0.5082

8 0.5122 0.5082

9 0.5581 0.5054

continued on next page
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continued from previous page

Generation Best Pearson’s r

Rank Roulette-wheel

10 0.5266 0.5082

11 0.5271 0.5082

12 0.5581 0.5054

13 0.5581 0.5054

14 0.5318 0.5082

15 0.5503 0.5082

16 0.5703 0.5082

17 0.5703 0.5054

18 0.5586 0.5082

19 0.5703 0.5082

20 0.5572 0.5082

21 0.5703 0.5054

22 0.5703 0.5082

23 0.5703 0.5082

24 0.5703 0.5082

25 0.5703 0.5082

26 0.5626 0.5082

27 0.5910 0.5082

28 0.5910 0.5082

29 0.5910 0.5054

30 0.5829 0.5082

continued on next page
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continued from previous page

Generation Best Pearson’s r

Rank Roulette-wheel

31 0.5870 0.5082

32 0.5910 0.5082

33 0.5910 0.5054

34 0.6006 0.5082

35 0.5910 0.5082

36 0.5946 0.5082

37 0.6149 0.5082

38 0.6006 0.5054

39 0.5910 0.5054

40 0.5910 0.5082

Table 5.4: Comparing Roulette-wheel and Rank-based

selection methods. The table shows the best Pearson’s r

calculated over 40 generations of a GA run.

The effectiveness of a selection procedure is largely assessed by the ability of the

procedure to keep the population diverse (i.e. avoid local minima) and yet achieve

convergence in a reasonable time span. To decide on the method best suited for

the current problem, I performed test runs of the GA on small populations of

individuals for short durations using both Rank-based and Roulette-wheel based

selection methods. Results from a sample run are summarised in Table 5.4. From

the table, it can be seen that the initial scores were nearly equal (0.496 in Rank and
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0.498 in Roulette-wheel based selection). However, there is a steady increase in

best score for Rank-based selection whereas the best score remains largely static

for Roulette-wheel based selection. It was therefore decided to use Rank-based

selection for future runs of the GA.

5.7 Problems: Redundancy in individual popu-

lation and intelligent selection

A problem with Rank-based selection that became apparent after a few tens of

generations of the GA was that the population of individuals was becoming de-

creasingly diverse. Figure 5.12a shows a graph of a GA run where Rank selection,

together with a mutation rate of 0.0001 were used. The score of the best individ-

ual at the end of 50 generations was 0.638. This could have meant either a) The

genetic algorithm was converging to a globally optimal solution, or b) The GA

was getting stuck in a local minimum problem.

It was assumed that the GA was getting stuck in a local minimum and, as will

become clear from the following sections, this was indeed the case. I developed an

alternative method to alter the mutation rate dynamically during crossover.

In Rank-based selection, the creation of new child individuals is done by bias-

ing selection towards high-scoring parents. A crossover point is chosen randomly

within the parents and the two parts of the parents are combined to yield offspring

(Figure 5.11). When the number of redundant individuals in the population in-

207



0 10 20 30 40 50

Generation

0

1000

2000

3000

4000

5000

N
um

be
r o

f r
ed

un
da

nt
 in

di
vi

du
al

s
Rank-based selection

(a)

0 10 20 30 40 50 60

Generation

0

200

400

600

800

1000

N
um

be
r o

f r
ed

un
da

nt
 in

di
vi

du
al

s

Rank-based selection

(b)

Figure 5.12: Redundancy of individuals in a GA run using Rank-based selection
with (a) 5000 individuals and µ=0.0001 (b) 1000 individuals and µ=0.001.
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creases, the chances of choosing two identical individuals randomly for crossover

also increases. Crossover of identical individuals would clearly yield a child iden-

tical to the parents. Since the mutation rate applied to the offspring individual

is very low (0.0001), the final offspring are likely to be unchanged. However, a

higher mutation rate (µ=0.001) did not help curb the exponential rise in the num-

ber of redundant individuals with the passage of every generation. Figure 5.12b

shows that the population of individuals quickly saturates and by the end of 60

generations, nearly the entire population of individuals is redundant.

As a solution to the problem of individual redundancy, I developed a combina-

torial approach. Parent individuals are selected using Rank-based selection, but

a modification to the strategy of using a standard mutation rate was made so

that the mutation rate was varied dynamically, depending on how similar the par-

ents selected for crossover are. The method, which I term Intelligent selection, is

described below:

1. For every child individual to be created, select 2 parents P1 and P2 based

on Rank Based Selection.

2. Choose a cross over point and splice P1 and P2 to create a child Oi.

3. Calculate the degree of similarity S(P1,P2) between the parents P1 and P2 as

given by:

S(P1,P2) =
C(P1,P2)

N(P1,P2)
(5.6)

where C(P1,P2) is the number of active alleles common between P1 and P2
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and N(P1,P2) is the sum of active alleles in P1 and P2. When the two

parents are completely identical, the similarity is 0.5 whereas when they

have no common alleles, the similarity is 0.

4. If (0.45 <= S(P1,P2) <= 0.5), then swap five 0s and 1s in Oi.

5. If (0.35 <= S(P1,P2) < 0.45), then use a mutation rate of 0.01 on Oi.

6. If (0.25 <= S(P1,P2) < 0.35), then use a mutation rate of 0.008.

7. if (0.15 <= S(P1,P2) < 0.25), then use a mutation rate of 0.005.

8. if (0 <= S(P1,P2) < 0.15), then use a mutation rate of 0.001.

I used a generational replacement strategy in which the entire population of par-

ents was replaced by children. In addition, I maintained a record of the best

parent from every generation. By using generational replacement, the interface

position space can be explored better and by keeping a record of the best individ-

ual in every generation, it was possible to report the score of the best-performing

individual in the entire GA run.

By varying the mutation rate, it became possible to keep the population diverse

and therefore sample many different combinations of the possible ‘interface po-

sition space’. Figure 5.7 shows a comparison of the performance of Rank-based

selection and Intelligent selection for similar runs of the GA using a population of

5000 individuals over 50 generations. It must also be highlighted that the best in-

dividual at the end of 50 generations in Rank selection had a Pearson’s r of 0.638

while the Pearson’s r for the best individual after 50 generations in Intelligent

selection was 0.63. In the limited test of 50 generations, the intelligent selection
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Figure 5.13: Comparing Rank and Intelligent selection strategies. Both plots
correspond to GA runs with 5000 individuals over 50 generations.
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Figure 5.14: Plot of the predicted interface angle fractions vs. the actual interface
angle fractions for the individual with the best Pearson’s correlation coefficient
(0.6442). Perfect predictions would lie on the blue dotted line.

method was able to find a best solution which was just as good as the best solution

from rank-based selection but still maintained a diverse population to avoid local

minima. I decided to perform all further GA runs using the intelligent selection

method.

5.8 Scoring the quality of each individual

Initially, the score of all individuals was evaluated as the Pearson’s correlation

coefficient between the predicted and actual interface angle fractions. However, the
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Pearson’s r is not very reflective of the actual performance of the neural network

in terms of the accuracy of predictions. This is demonstrated by the graph in

Figure 5.14 which plots the actual interface angle fraction (between 0 and 1) versus

the predicted interface angle fraction for the individual with the best Pearson’s r

(0.644). From the graph, it may be noticed that the errors (given by the distance

of the data points from the blue dotted line) in predictions for very low or high

interface angles is large. Despite the large error, the Pearson’s r between the

actual and predicted interface angle is high. I therefore also assessed the quality

of every individual by means of the error difference between the predicted and

actual values. For this, I used the Root mean square error which is calculated as:

RMSE =

√

√

√

√

√

n
∑

i=1
(xi − pi)2

n
(5.7)

where RMSE is the root mean square error, xi is the actual interface angle frac-

tion, and pi is the predicted interface angle fraction. The score was calculated as

1 − RMSE.

However, the RMSE was not reflective of the actual magnitude of error. Since the

packing angles are scaled to a value between 0 and 1, the RMSE is indicative of the

error at the scaled level and not in terms of the actual angular error in degrees.

Packing angles that are either very low or very high and don’t have sufficient

representation in the dataset tend to be predicted with high errors. However,

this is not adequately reflected in the RMSE as the overall RMSE over the entire

dataset tends to be quite low owing to good predictions for a majority of the
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packing angles that are sufficiently represented in the dataset. This led me to

search for an alternate statistic to score the quality of predictions so that the error

in extreme packing angles would be reflected.

The relative RMS error (Masters, 1993) calculates the RMS value of the error and

takes the ratio of this value with respect to the sum of the actual values. This is

computed as:

RELRMSE =

√

√

√

√

√

√

√

n
∑

i=0
(xi − pi)

2

n
∑

i=0
t2i

(5.8)

where RELRMSE is the relative root mean square error, xi is the actual interface

angle fraction, and pi is the predicted interface angle fraction. The Relative RMS

error is calculated over five folds for every individual and the score for an individual

is calculated as:

SCORE = 1 − RELRMSE (5.9)

From initial performance statistics, it appeared that the RELRMSE was much

more sensitive to errors in predictions of small and large packing angles than the

RMSE and I decided to assess the quality of all individuals using this statistic

instead of the RMSE or the Pearson’s correlation coefficient r.
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Parameter Value

Neural network
Cycles of training 150
SSE during training <= 1.5
Init function Randomise weights
Learning function RProp
Update function Topological order
Pruning function Magnitude pruning
Shuffling FALSE
NH 10
Genetic algorithm
Selection method Intelligent selection
Scoring method Relative RMS error

Table 5.5: Standard parameters for the Neural network and the Genetic algorithm.
NH: Number of hidden nodes, SSE: Sum of square error.

5.9 Results of GA runs

5.9.1 Prediction the VH/VL packing angle

To summarise, a GA had been designed to perform feature selection for training

the neural network to predict the VH/VL packing angles. The fitness function

for the GA was the performance of the neural network evaluated over a five-fold

cross-validation and averaging the scores calculated using the Relative RMS error

over the five folds.

Once I had standardized parameters for the neural network and the genetic algo-

rithm (summarised in Table 5.5), I initiated large scale runs of the genetic algo-

rithm involving thousands of individuals for several thousand generations. Owing

to the elaborate computations involved in this, it typically takes about 25 seconds
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to perform a 5-fold cross-validation of an individual. The runs were performed on

large farms over a period of several months. Problems were encountered at several

stages of the GA largely owing to issues related to the Network file system (NFS).

This slowed down the overall speed of execution of the GA.

Individuals were chosen to represent the following sets of interface positions:

• All interface positions.

• Interface positions that are part of the framework regions.

A genetic algorithm run involving all the 124 interface positions was initiated for a

population of 15000 individuals. The run was initiated on the C3 on 10th of June,

2007 and terminated on the 16th of October, 2007. Sun Gridengine was used to

distribute jobs across the farm. Every job involves training and validation of a

neural network on a set of interface positions which is represented by an individual

in the GA.

The performance at the end of every generation was monitored and is shown as

graphs in Figure 5.15. The performance in the GA is assessed by two parameters:

• The score of the best individual at the end of every generation.

• The average score of individuals in every generation.

When the average score of individuals in the population increases, it is also likely
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Figure 5.15: GA runs involving all interface positions. Figures shown are (a)
Average score in every generation (b) Best score in every generation.
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GA Interface positions
Run type
All interface positions L38

L40
L42
L44
L46
L87
L99
H43
H52A
H55
H64
H100I
H100K
H100M
H100O
H106

Table 5.6: Interface positions corresponding to the best individual from a GA run
involving all interface positions.

that offspring individuals produced by the crossover of high-scoring individuals

will also have a high score.

From Figure 5.15a, it can be seen that the GA run registers a sharp increase

in the average score initially over the first 50 generations and then flattens out

over the rest of the generations. A similar trend is observed for the best scores

(Figure 5.15b). The best score increases sharply for the first 50 generations from

about 0.8 to a little over 0.82. However, the best score over the entire genetic

algorithm run was achieved in generation 1086 (a score of 0.821 which translates

to a relative RMSE of 0.172). The interface positions represented by the best

individual are shown in Table 5.6.
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GA Interface positions
Run type
Non-CDR interface positions L38

L40
L41
L44
L46
L87
H33
H42
H45
H60
H62
H91
H105

Table 5.7: Interface positions corresponding to the best individual from a GA run
involving only non-CDR interface positions (CDRs defined according to Chothia
(Al-Lazikani et al., 1997)).

5.9.2 Choosing key framework interface residues

In the case of humanization of antibodies, murine CDRs are transplanted onto

a human framework region. This is usually done assuming that the transfer of

murine CDRs onto the human framework region would confer the same speci-

ficity of the murine antibody to the humanized antibody. However, residues in

the framework regions flanking the CDRs may have to be modified in order to

reinstate the binding specificity of the original murine antibody to the humanized

antibody (Riechmann et al., 1988). I therefore decided to explore the possibility

of predicting the packing angle by using only a combination of non-CDR interface

residues. Thus the main goal of this work was the identification of key residues in

the framework regions that would be deterministic of the packing angle and there-

fore aid in the engineering of antibodies to confer appropriate antigen specificity.
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Figure 5.16: GA runs involving non-CDR interface positions. Figures shown are
(a) Average score in every generation (b) Best score in every generation.
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A genetic algorithm run involving 64 non-CDR interface positions was initiated on

a population of 15000 individuals on the Queen cluster. All the 64 positions chosen

are part of the framework region according to the Chothia numbering scheme.

Runs were initiated on the 10th of June, 2007 and were terminated on the 4th of

October, 2007. A total of 2166 generations completed in this time period. Results

of the run are shown in Figure 5.16. The graphs for the average and best score in

every generation are very similar in nature to the graphs involving GA runs for

all interface positions. The average and best scores increase sharply for the first

150 generations and then stabilise for the remaining generations. The best score

of 0.833 (a relative RMS error of 0.167) was first seen after 146 generations. The

interface positions represented by the best individual are shown in Table 5.7.

5.9.3 Jacknifing and analysis of errors of the best individ-

uals

I performed a jacknifing examination on the best individual which involved train-

ing the neural network over data from all but one structure and evaluating the

quality of the training by predicting the interface angle for one structure. Results

of the jacknifing run are shown in Figure 5.17. The graph plots the packing angles

predicted by the neural network against the actual interface angles for the best

individuals involving all interface positions (Figure 5.17a) and non-CDR interface

positions (Figure 5.17b). From the figures, it can be seen that the majority of

the predictions are close to the ideal line (represented by the black dotted line).

It is well known that neural networks do not make good predictions on data that
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(a) All interface positions

(b) Non-CDR interface positions

Figure 5.17: Predicted vs. the Actual packing angle results for jacknifing of the
best individual from the GA runs for (a) All interface positions and (b) Non-CDR
interface positions. Perfect predictions would lie on the black dotted line. The
line in red shows the best-fit regression line for the data points.
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(a) All interface positions

(b) Non-CDR interface positions

Figure 5.18: Frequency distribution of the error calculated as the difference be-
tween the predicted and actual interface angle for the best individual from the GA
run involving (a) All interface positions and (b) Non-CDR interface positions.
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(a) All interface positions

(b) Non-CDR interface positions

Figure 5.19: Plot of errors in packing angle prediction against the actual packing
angle (a) involving all interface positions and (b) involving non-CDR interface
positions.
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are sparsely represented. This appears to be the case of predicting packing angles

that are less than 430 and greater than 500. For the remaining packing angles,

the predictions of the neural network are very close to the actual packing angle.

This is further corroborated by the frequency distribution plots for the errors in

predictions shown in Figure 5.18. The graph approximates a normal distribution

with a peak around an error value of 0.

Further, to understand the correspondence between the actual packing angle and

the tendency for an error in the prediction, the square of the error for each pre-

diction was plotted against the actual packing angle. These plots are shown in

Figures 5.19a and 5.19b for the best individuals identified from GA runs involv-

ing all interface positions and non-CDR interface positions respectively. The two

graphs are very similar and it may be seen that the majority of the data points lie

close to the X-axis. This reinforces the conclusion from the graphs in Figure 5.18

that the majority of predictions are made with very low error rates. Further, it

may also be inferred that the large errors are primarily seen for either low and

high packing angles which do not have adequate representation in the repertoire

of structures that constitutes the dataset.

5.10 Discussions and conclusion

In this chapter, I have defined and analysed the VH/VL packing angle. From

the runs of the genetic algorithms, I have identified a set of interface residues

(including the CDR residues) which can be used to predict the VH/VL packing
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angle. Further, important interface residues in the framework regions have been

identified which influence the packing angle and should therefore be considered

during humanization of antibodies. From the analysis and discussions presented

in the above sections, it seems clear that correlations exist between residues in the

VH/VL interface and packing angle.

The results of this work can be used to model the framework regions of antibodies

better by including the correct packing angle between the VH and VL domains.

This work also has applications in humanization of antibodies. The list of interface

residues in Tables 5.6 and 5.7 may be therefore critical in maintaining binding

site topography. By modifying non-CDR residues in the human framework and

replacing them with their counterparts in the murine antibody, there are better

prospects of the humanized version retaining the binding affinity of the murine

antibody. Another future application of this work will be to set up a web-interface

to predict the packing angle. A sequence may be submitted to a server which would

then predict an angle.

However, there are some remaining questions. The fact that the overall scores of

the genetic algorithm (and also the best scores) remain the same for most of the

run suggests that the GA may be caught in a local minimum despite the use of

intelligent selection to sample lots of different combinations of interface positions.

Another problem may be that the neural network is unable to learn adequately

from the input features presented to it. Such a situation may be addressed by

altering the nature of input information representing interface residues to the

neural network.
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The errors in the prediction of low and high interface angles are quite large even

for the best individuals identified after several rounds of the genetic algorithm.

In practice however, this is not an uncommon problem in the field of neural net-

works as the identification of a single highly precise rule that applies to all data is

usually very hard. An easier solution is to identify more general ‘rules of thumb’.

The procedure for doing this is called boosting (Haykin, 1994). In this method,

different subsets of data are used to train a learning algorithm and general rules

are identified for each subset. At the end of the procedure, all the general rules

are combined to yield one concrete rule. There are several implementations of

boosting algorithms, the most notable amongst them being AdaBoost (Freund

and Schapire, 1996a; Freund and Schapire, 1996b).

However, despite the shortcomings, the neural network is able to predict the ma-

jority of packing angles successfully. The limitations posed by the network in

predicting packing angles which are not adequately represented may be addressed

by over-representation of data for the extreme packing angles.
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Chapter 6

Conclusions

In this thesis, I developed tools and performed analysis of antibody sequence and

structure. First, I described a method to assess the ‘humanness’ of antibodies.

Next, I presented a method to number antibody sequences and a modified num-

bering scheme to accommodate structural insertions and deletions in the frame-

work regions of the antibody variable region. Third, I described an analysis of

the antibody packing angle at the interface of the light and heavy chain variable

domains and a method to predict this angle.

6.1 Assessing humanness of antibodies

In the work to assess ‘humanness’ of antibodies, I compared mouse and human

antibody sequences. Frequency distribution plots of human and mouse pairwise
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sequence identities with human sequences reveals significant overlaps as shown in

Figures 3.3 and 3.4. Further, Z-scores were calculated and chosen to represent

how typically ‘human’ an antibody sequence is. Comparison of the mouse and hu-

man Z-score distribution showed that a significant portion of the two plots overlap

(Figures 3.5 and 3.6) indicating that many mouse antibodies are more typically

human-like than some mouse antibodies. Analysis of the Z-score frequency dis-

tribution of human germline genes showed that certain germline genes tend to be

used more frequently than certain others (Figures 3.5 and 3.6). As a final step, I

analysed the correlation between the Z-scores of therapeutic antibodies and their

tendency to be immunogenic. Overall, this examination appeared to suggest no

clear correlation between Z-scores and the AAR (anti-antibody response) of ther-

apeutic antibodies. While high humanness scores in humanized antibodies appear

to give low AAR, the same trend does not hold for Chimeric antibodies. Anal-

ysis of the antibody sequences for prominent T-cell epitopes using SYFPEITHI

did not show significant differences between immunogenic and non-immunogenic

antibodies, but further work in this area would be useful.

A potential problem with the current method of calculating humanness is that it

is based on the Kabat database which may have introduced a bias towards anti-

bodies against specific targets. However, the fact that the frequency distribution

plots of pairwise identities between human antibodies roughly resemble a Gaussian

distribution and further, that human germline genes tend to have high humanness

scores suggests that the bias is not a major issue. As more clinical data becomes

available, the idea of correlating humanness scores of therapeutic antibodies and

AAR should be revisited. Future work should also extend the analysis to the

larger set of sequences available in IMGT and recent work by an undergraduate
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student in the lab to analyse humanness of antibodies extracted from the IMGT

database indicates that the nature of the graphs are not significantly different.

Part of work from this chapter was published in Abhinandan and Martin (2007).

6.2 Analysis of antibody numbering

From the analysis of antibody variable-region structures, I found that approxi-

mately 10% of sequences in the manually annotated Kabat database have errors

in the numbering. Given the fact that the publicly available Kabat data have not

been updated since July 2000, the availability of reliable numbering is the key

reason why people still use these data. The major alternative source of antibody

sequence data (IMGT) does not provide numbered sequence files.

I have been able to suggest corrections to the positions of insertions and deletions

in the framework region in comparison with the Kabat standard locations that

are used in both the Kabat and the Chothia numbering schemes. I have therefore

proposed a new numbering scheme (See Table 4.14) that extends the Chothia

analysis to correct the positions of indels in the framework regions.

The AbNum numbering program has been thoroughly tested and benchmarked

and can be used to apply numbering schemes to antibody sequences with a very

high level of accuracy. AbNum was able to number 99% of sequences and we

believe that in all cases, discrepancies from the manual numbering in the Kabat
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database resulted from errors in the Kabat database and not in AbNum. By

simply supplying different data files, Chothia and Kabat numbering schemes can

be applied, as can my modified Chothia scheme with structurally correct indels in

the framework regions. Thus the program can be used reliably to apply standard

numbering schemes to sequences in IMGT thereby enhancing the usefulness of this

resource.

Although most errors in the manual Kabat annotations have been corrected, there

are still a number of sequences that cannot be numbered by the program AbNum

(See 4.12). While the ranking of profiles at the start and end of the framework

regions improves the performance of the numbering program, a ranking scheme for

profile-sets would help improve the coverage of sequences that can be annotated

automatically.

An alternative approach, which would be likely to overcome many of the problems

encountered in positioning the profiles, would be to score and align the profiles

against the sequence using global dynamic programming. This would have zero

gap penalties applied when separation between the profiles is within the observed

ranges with affine penalties applied outside this range. This approach would ensure

that profiles are not positioned out of sequence and would probably simplify the

code considerably.

The work has been published in (Abhinandan and Martin, 2008).
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6.3 Analysis of packing angle at the VH/VL inter-

face

The VH/VL packing angle has been defined as the torsion angle at the interface of

the light and heavy chain variable region. Analysis of the packing angle has shown

that it can vary by up to 30o and approximates to a normal distribution. Neural

networks, together with feature selection using genetic algorithms has proved a

successful approach to predicting the packing angle. This confirms the hypothesis

that the interface residues are important in defining the packing angle. The best

neural networks are able to predict the packing angle with an RMSE of 2.4o and a

Pearson’s correlation coefficient between the predicted and actual interface angle

of 0.65. However, there are shortcomings in the prediction of low or high interface

angles as the errors in these predictions are quite large despite several cycles of the

genetic algorithm. The use of boosting may alleviate this problem. In addition,

over-representation of data for the extreme packing angles may also help improve

the quality of predictions.

During runs of the genetic algorithm, I noticed that the population of genes was

becoming increasingly redundant after every generation. In order to address this

problem, I developed the method of intelligent selection to maintain diversity.

In addition, I used generational replacement wherein an entire parent popula-

tion of chromosomes is replaced by a population of children. This was done with

the intention of increasing the sampling of the interface position space. How-

ever, the performance of the genetic algorithm did not improve as significantly

as might have been expected. The performance may have been better had elitist
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replacement been used where the best gene from every generation of the genetic

algorithm is retained (even if it is from the population of parents). It would be

interesting to execute large runs of the genetic algorithm with elitist selection

and analyse whether this represents a better solution of searching through the

interface-position space. However, despite the shortcomings, the neural network

is able to predict the majority of packing angles successfully.

In summary, the work in this thesis has developed a new method for analysing

humanness of antibodies which has potential applications in selecting and de-

signing antibodies for use in vivo. A new method for automatically numbering

antibodies has been developed and deficiencies in the Kabat database have been

highlighted. Analysis has led to the introduction of a refined chothia numbering

scheme. Finally, analysis and prediction of VH/VL packing angles has applications

in antibody modelling and the feature selection highlights interface residues that

may be important in humanization.
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