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Abstract—This paper calculates and displays accurate radiation
modes for rectangular, multimode dielectric, channel waveguides,
for the first time, and introduces the new semianalytical calculation
method used to find them, the radiation-mode Fourier decomposi-
tion method (RFDM), which is an extension of the Fourier decom-
position method (FDM) for finding bound propagating modes. The
optimum choice of non-linear conformal transformation parame-
ters is discussed for achieving highest accuracy. Once the radia-
tion modes are known, the coupling coefficients can be found be-
tween the bound and radiation modes, as well as those between the
bound modes themselves, andhence, the propagation loss can be
found. The paper adapts Marcuse’s coupled power theory, for the
first time, to enable it to model propagation in rectangular, mul-
timode dielectric, channel waveguides suffering from one dimen-
sional sidewall roughness enabling the equilibrium distance to be
calculated, at which rate of loss to radiation modes becomes con-
stant, and to find that equilibrium propagation loss, and the depen-
dence on the statistical properties of the wall roughness. This leads
to the conclusion that at sufficient distance there exist two uncou-
pled modes, a symmetric and an asymmetric lowest order mode.

Index Terms—Coupled power theory, optical interconnects,
propagation loss, radiation modes, sidewall roughness.

I. INTRODUCTION

W AVEGUIDE sidewall roughness has been the subject
of a number of papers in optics and photonics [1]–[25],

since it is one of the main causes of propagation loss due to
scattering apart from material absorption, in single-mode and
multimode waveguides. Light propagation in the presence of
roughness is a particularly challenging problem, especially in
multimode waveguides, as energy continuously redistributes it-
self between the guided modes and radiates from the waveguide
core into the cladding due to coupling between bound and radi-
ation modes. Marcuse stated in his coupled mode and coupled
power theories [1]–[8] that as modes propagate in a waveguide
with randomly deformed sidewalls they converge to a specific
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distribution, which he called the equilibrium distribution. The
average power ratio between modes remains constant at equilib-
rium, although the instantaneous power ratios might vary, and
the power distribution between the modes depends on the sta-
tistical properties of the waveguide wall roughness, namely its
standard deviation and autocorrelation length. The propagation
loss and modal power distribution vary as modes propagate in
the transition region before reaching an equilibrium distribution
and in that region they depend on the excitation source and its
position and orientation. The required distance to reach equilib-
rium was called the equilibrium length. The idea of an equilib-
rium distribution is important since at equilibrium the average
propagation loss per unit waveguide length becomes a constant
independent of the initial field that excited the waveguide.

Until recently, coupled mode theory had not been applied
to rectangular cross section waveguides directly. The main
reason for this was that analytic solutions for the radiation
modes, which play a central role in the theory, did not exist.
Researchers tried to deal with this problem by either consid-
ering a 2-D effective refractive index approximation of the
waveguide [9], [10] or by approximating the radiation modes
with the free-space cladding modes [11]–[13]. However, both
of these methods are only approximate, and in some cases,
might be rather inaccurate. A precise method was presented in
[14], where the actual radiation modes of a high-index contrast
nanowire were presented. However, the waveguides examined
there were single mode, and so the focus was on the propagation
loss alone.

Other methods that have dealt with the subject in the past in-
cluded the volume current method [15]–[18], finite-difference
time domain (FDTD) [14], and ray tracing [19]. The volume cur-
rent method treats roughness as an equivalent current source and
loss is calculated by the outgoing radiation in the far field. In ray-
tracing techniques, modes are approximated by plane waves and
loss is calculated by the scattering matrices of the plane waves
on the randomly perturbed waveguide sidewalls. Although some
of these methods have demonstrated good agreement with ex-
periments they are either intended only for single-mode opera-
tion (volume current method), or they are too time consuming
for multimode waveguides (FDTD) or, finally, they can only
provide information about the propagation loss (ray tracing).

This study demonstrates, for the first time, the radiation
modes and the e act application of the coupled power theory
in rectangular cross-section, highly multimode waveguides.
Radiation modes are calculated by e tending the Fourier de-
composition method (FDM) for bound modes, which was first
presented in [20] and later modified in [21]. We refer to our
method as the radiation-mode FDM (RFDM) in the following
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Fig. 1. (a) Rectangular waveguide in a Cartesian coordinate system with width
� and thickness �. Cladding refractive index is � while core refractive index
is � �

� � . (b) Same waveguide in the transformed uv-domain.

to distinguish it from FDM. Upon calculation of the radiation
modes, the coupled power theory is applied to a m m
test multimode waveguide and the equilibrium loss, length and
power distribution as a function of the standard deviation, and
autocorrelation length of roughness are calculated.

This paper is arranged as following. Section II describes the
RFDM algorithm and its differences from FDM. Section III
validates the RFDM by applying it to a slab waveguide and
by comparing RFDM results with existing analytic solutions.
Section IV extends the coupled power theory to rectangular di-
electric waveguides. Section V presents the results for equi-
librium propagation loss, equilibrium length, and equilibrium
power distribution for a series of test waveguides typically used
in optical interconnects, and finally, Section VI presents the
conclusion.

II. RADIATION-MODE FOURIER DECOMPOSITION METHOD

A rectangular waveguide, such as the one shown in Fig. 1(a),
can support two types of modes differentiated by their polariza-
tion. Modes whose dominant electric field component is mainly
polarized along , are called or TE-type, while modes whose
electric field is polarized along , are called or TM-type [26].
In the weakly waveguiding limit where the cladding index is
similar to the core index, the two polarizations become almost
indistinguishable and, therefore, in the following, we focus on
the set of modes, although modes could be considered
as well if necessary. Bound modes have propagation constants

, limited in the region , while propagation
constants of the radiation modes , lie in the region

, for forward propagation, where denotes the
free-space wavenumber, and the free-space wavelength.

The dominant transverse electric field component satisfies
the 3-D scalar wave equation everywhere in space, which for
a mode with propagation constant (bound or radiation), takes
the usual form (time dependence omitted) in a Cartesian coor-
dinate system [26]

(1)

The refractive index distribution [see Fig. 1(a)] equals
to inside the core and elsewhere. Bound mode FDM re-
lies on the nonlinear conformal transformation (2), in which the
infinite -plane is mapped onto a unit square in an alternative
uv-coordinate system shown in Fig. 1(b).

(2)

Fig. 2. Periodic property of transformation (2). Original ��-domain is mapped
into an infinite number of periodically arranged unit squares in the uv-domain,
with period of 1 unit length in both �- and �-directions.

As described in [21], and in (2) are free scaling parameters,
which if chosen appropriately, yield rapid convergence. Upon
substitution of (2) into (1), the transformed wave equation in
the uv-coordinate system becomes

(3)

Bound modes, must satisfy the Sommerfeld radiation condition,
stating that fields as well as their transverse derivatives, should
tend to zero as or , which, in turn, translates
to a zero field boundary condition when or in
the transformed domain. The authors in [21] used this property
to apply equivalent metallic boundary conditions at
and and solutions for , were expressed as a linear
superposition of a set of sinusoidal basis functions, (4a), with
zero values at the boundaries of the square

(4a)

where are the coefficients of the double Fourier series in
(4a).

At this point RFDM starts to depart from FDM. Two cru-
cial observations are e ploited in the calculation of radiation
modes. First, transformation (2) is not unique but in fact a pe-
riodic mapping of the -space into the uv-space as shown in
Fig. 2. This feature serves as the basis to define the Fourier se-
ries for the radiation modes. Second, neither the Sommerfeld
nor Neumann boundary conditions are strictly satisfied by radi-
ation modes and, therefore, solutions should be allowed to take
arbitrary values at the boundaries of each unit square. Based on
these observations, radiation modes may be represented by the
following 2-D Fourier series:

(4b)
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with the following abbreviations for the basis func-
tions: ,

, ,
and , , ,

and the amplitude coefficients of each one of the four
double series, respectively. Equation (4b) consists of a com-
bination of orthonormal cosinusoidal and sinusoidal functions
with a fundamental spatial period of 1 unit length in the -di-
rection and 1 unit length in the -direction to embody the
periodicity of the transformation (2). Sinusoidal terms express
fields with odd symmetry about planes or about
planes , while cosinu-
soidal terms express fields with even symmetry. The way these
sinusoidal and cosinusoidal basis functions enter (4b) implies
that the total field is expressed as a linear combination of four
fields, each one possessing a different symmetry combination
in the -direction (or equivalently in the x-direction) and in the

-direction (or equivalently in the -direction). According to
the order they appear in (4b), these symmetries are the odd–odd

, the even–odd , the odd–even and the
even–even respectively.

To calculate the amplitude coefficients for a given radiation
mode in (4b), we assume that this radiation mode consists of
a known free-space part, and a response field due to the pres-
ence of the waveguide. This in effect means that we treat each
radiation mode as a perturbation of a free-space propagating
wave, as explained in [14] and [27]. By applying this pertur-
bation method, we gain not only the knowledge of the yet unde-
termined amplitude coefficients , but in addition, a means to
normalize the radiation modes. The earlier steps are another sig-
nificant departure from FDM . There, the amplitude coefficients
of the bound modes were calculated by substituting the Fourier
series (4a) into the transformed wave (3), multiplying by a basis
harmonic function, and integrating over the unit square. This
process led to an eigenvalue equation whose solutions corre-
sponded to the discrete set of propagation constants of the bound
modes.

However, if the same approach was followed by RFDM, the
determinant of the system for the radiation modes would be non-
vanishing so that the propagation constants form a continuum
[2, p. 23]. Such an equation would not be soluble for any radia-
tion mode propagation constant , and so it would not give the
amplitude coefficients of the Fourier series.

To calculate the amplitude coefficients for the radiation mode
Fourier series, we proceed as following. Equation (3) is recast
in the convenient operator form

(5)

where the operator in (5) is defined as

(6)

and

. (7)

Then, the radiation-mode field is expressed as the
combination of a free-space part and a response part

as

(8)

and (8) is substituted into (5) to obtain

(9)

Equation (9) is derived using the fact that since is a
free-space field, it has to satisfy the free-space wave equation

(10)

Equation (4b) is next split into free-space and response com-
ponents (see (11) at the bottom of the page) and, finally, the
expressions for and are substituted from
(11) into (9), and the result is multiplied by a basis function

, and integrated over any of the unit
squares shown in Fig. 2 to give

(12)

(11)
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In (12), the upper limits for and are truncated from in
(4b), to and respectively, which must be large enough to
ensure convergence. The matrices in (12) are defined to be

(13)

(14)

(15a)

(15b)

(15c)

(15d)

The analytic expressions for (15a)–(15d) are too long to be pre-
sented here, and so they are provided in Appendix A.

Equation(12) contains all of the necessary information to cal-
culate the radiation modes. The known free-space field coeffi-
cients provide the unknown response coefficients
by solving the system of linear equations (12). The radiation-
mode coefficients then simply follow from (8) and (11)
giving

(16)

Once the spectrum coefficients are calculated, the Fourier
series (4b) is used to calculate the radiation mode in the uv-do-
main. The last step is to use (2) to transform the radiation modes
back to the original -domain. The RFDM algorithm steps are
summarized in Fig. 3. An important feature of this method is
that only one type of symmetry expressed by the indexes and
, enters (12) at a time. Therefore, radiation modes of different

sets of symmetries can be calculated independently, thereby sig-
nificantly simplifying calculations.

A. Free-Space-Mode Selection

Radiation modes are to some degree arbitrary since they de-
pend on the choice of the free-space fields used to generate
them. A different selection of free-space modes gives rise to
a different set of radiation modes. The only requirement for
the selected set of free-space modes is that they are complete
and orthonormal [27]. Guided by the Cartesian geometry of
our system, we choose plane waves to represent the free-space
part of the radiation modes. These plane waves are assumed to
emerge from four harmonic sources placed at ,

Fig. 3. Algorithm for the calculation of the radiation modes of a rectangular
waveguide with the RFDM.

, , and . The four sources are assumed
to oscillate with equal amplitudes and with relative phases de-
termined by the symmetry being considered. The free-space
mode with even–even symmetry (even in both - and -direc-
tions), for example, is generated from four plane waves oscil-
lating in-phase as

(17a)

Similarly, for the free-space modes of the other symmetries, we
have

(17b)

(17c)

(17d)

where is the wavenumber in , and the wavenumber in ,
connected via the usual equation

(18)

and the transverse wavenumber . It is now a trivial
task to transform the fields in (17a)–(17d), from the -domain
to the uv-domain through (2) and Fourier transform the result
to calculate the coefficients for a given and type of
symmetry.

B. Examples of Radiation Modes

Figs. 4 and 5, show representative selections of radia-
tion modes calculated by RFDM. Fig. 4 shows the odd–odd
free-space mode, the response field, and the odd–odd radiation
mode for a m m waveguide with ,

, nm, for low spatial frequencies
m . The chosen waveguide parameters

are typical for optical interconnect applications [28]. Fig. 5(a)
and (b) shows the even–even and odd–even free-space and
radiation modes, respectively, for the same parameters, as in the
previous example. Fig. 5(c) shows an even–even mode, which
is of high frequency in the -direction and of low frequency
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Fig. 4. (a) Free-space mode, (b) response field, and (c) resulting radiation mode for an odd–odd radiation mode with � � � � ������ �m . Waveguide
parameters: � � � � �� �m� � � ������ � � ������� and � � 	�� nm. Fields have been normalized to unit amplitude for illustration purposes.

Fig. 5. (a1) and (a2) Free-space mode, and radiation mode for an even–even mode with � � � � ������ �m . (b1) and (b2) Free-space mode, and
radiation mode for an even–odd mode with � � � � ������ �m . (c1) and (c2) Free-space mode, and radiation mode for an even–even mode with � �

������ �m , � � ������ �m . (d1) and (d2) Free-space mode, and radiation mode for an odd–odd mode with � � � � ��	
�� �m . Fields have been
normalized to unit amplitudes for illustration.

in the -direction m m ,
and, finally, Fig. 5(d) shows an odd–odd radiation mode,
which is of high spatial frequency in both -and -directions

m . As can be seen in Figs. 4 and 5,
radiation modes differ significantly from the free-space modes
that generated them and, therefore, it is not advisable for the
former modes to be replaced by the latter in propagation loss or
other calculations, as has been suggested in [11].

Strictly speaking, the Fourier transforms of the free-space
fields in (17a)–(17d), and so of the radiation modes, do not
exist everywhere in the uv-domain. For example, the even–even
free-space mode in (17a), takes the following form
in the uv-domain:

(19)

Due to the tangent functions, this signal has a chirped frequency
in the - and -directions, which steadily increases as we move
from the center, , of the unit square toward
its edges, , or , , until it becomes infinite on the
boundary. Since an infinite number of oscillations occur within
a finite interval, the signals (17a)–(17d) cannot have a Fourier
representation close to the boundaries of the unit square. How-
ever, their Fourier transform is still valid everywhere else. This
minor complication is not restrictive for our purposes since the
radiation mode representation fails only at infinity in the orig-
inal -domain. Moreover, the application of the coupled mode
theory requires the knowledge of the fields very close to the
waveguide only, with the information about the fields every-
where else being redundant. Finally, we give a brief e plana-
tion about the physical arguments that force the frequency of the
free-space mode oscillations to go to infinity. If the frequency
of were to be finite at , and , then the
free-space modes (17a)–(17d) would take a well defined value
there, which, in turn, would translate to a well defined value at

and in the original -domain. However,
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this is not possible, as all harmonic functions in (17a)–(17d) are
undefined, although bounded, at infinity. Therefore, an infinite
frequency at the boundaries of the unit square in the uv-domain
restores the uncertainty in the harmonic function values at in-
finity in the -domain.

III. VERIFICATION OF RFDM

In this section, we compare the radiation modes of a slab
waveguide calculated by the RFDM with existing analytic
expressions for slab radiation modes in order to validate our
method. The example of the slab waveguide was selected
because it is a Cartesian waveguide geometry where analytic
expressions for radiation modes exist.

The core of the slab waveguide under examination extends
across the region . In the following, we
concentrate on the TE radiation modes of the slab waveguide,
which have the field components , , and According
to [2, pp. 21–28], the analytic expressions for the electric field
of the even radiation modes, for example, are shown in (20) at
the bottom of the page, where the propagation constant is
related to the wavenumber inside the core by

, and to the wavenumber in the cladding by
. The radiation modes in (20) have been normalized to unit

impulse power flow (power flow, which is a delta function with
unit amplitude), as explained in [2].

A. Comparison Between RFDM Calculated and Analytic Slab
Radiation Modes

We now proceed to compare the analytic solutions [see (20)]
for the radiation modes to those calculated with the RFDM
method for two representative examples. In the course of the
comparison, the importance of the scaling parameters and in
(2) will be demonstrated. Equations(12)–(16) are used for the
RFDM calculated radiation modes but with
to reflect the single dimensionality of the problem.

In a first example, a slab waveguide is investigated with the
following properties: m, ,
and nm. In this case, the radiation-mode propagation
constants are found in the region m ,
for forward propagating modes. An even radiation mode with

m is examined in order to illustrate the effect
of choosing a “very small” value of . Fig. 6(a) plots the radi-
ation mode calculated from the analytic expressions [see (20)],
the RFDM calculated mode when and , and
the difference between the two, in the -domain. On a second

-axis, the Cartesian coordinate as a function of is plotted.
Fig. 6(a) reveals that a “very small” value of brings the bound-
aries of the waveguide very close to the boundaries of the unit
square in the -domain. In this regime, the waveguide lies in
the nonlinear region of the tan function relating and via (2),

where small deviations in cause very large deviations in . As
a result, although the peaks of the oscillations of the radiation
mode are well separated from each other close to , they
are brought very close to each other in the vicinity of
and resulting in a high-frequency signal. Due to this high
spatial frequency, the RFDM algorithm fails to resolve the radi-
ation mode correctly close to the waveguide boundaries for the
specific number of Fourier components .

However, the situation changes if a larger value of is chosen,
even though is kept unchanged. Fig. 6(b) compares the an-
alytic and RFDM radiation mode for this time, again
with . As shown in Fig. 6(b), the waveguide is now
placed within the linear region of the tan function, and both ana-
lytic and RFDM radiation modes agree well, at least close to the
waveguide boundaries, without having to increase the number of
Fourier components, .

On the other hand, allowing to become arbitrarily large also
causes inaccuracies. This is explained with the aid of the second
example shown in Fig. 6(c) and (d). In these graphs, the radia-
tion mode with m of a similar slab waveguide
is investigated but with m. Fig. 6(c) compares the
analytic with the RFDM calculated mode when and

. Although the waveguide is clearly within the linear
region of the tan function the RFDM algorithm fails again, as
can be seen in Fig. 6(c). The explanation is that each radiation
mode has a certain number of oscillatory circles inside the wave-
guide core. A “large” value of causes the waveguide bound-
aries to be brought very close to each other in the -domain
and, therefore, these oscillations are squeezed within the very
narrow waveguide width. This causes a high-frequency signal
in the waveguide core this time (rather than close to the unit
square boundaries, as in the previous example), which cannot
be resolved with the selected value of . Reducing (but al-
ways staying in the linear region of the transformation), gives
good agreement between the RFDM algorithm and the analytic
solutions, as shown in Fig. 6(d) for the same , but for .
The two previous examples show that a good choice for is
the one, which balances the frequency components required to
accurately reconstruct the radiation mode inside the waveguide
and just outside of it. The conclusions from these two examples
are summarized in Fig. 7, where we have plotted the normalized
rms error between the RFDM and the analytic solution inside the
core, as a function of the scaling parameter for our represen-
tative radiation mode with m , and

. As we see in Fig. 7, for small values of the error is
large, then as increases it reaches an optimum region beyond
which rms error starts increasing again for larger .

Finally, the importance of the number of frequency compo-
nents , required for convergence is discussed. Different radi-
ation modes require a different number of Fourier components

(20)
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Fig. 6. Radiation modes calculated by the RFDM method compared to those calculated by an analytic method and the difference between the two showing the
error of the RFDM method (a) Even radiation mode in the �-domain for � � �� ��� � � ����� �m ; � � ��� and � � � for the RFDM calculated mode
that fails to resolve the rapidly oscillating part of the radiation mode close to the waveguide boundaries. (b) Same radiation mode as in (a) but with � � ��. In this
case, RFDM solution accurately converges to the analytic solution inside the waveguide and close to its boundaries. (c) Even radiation mode in the �-domain for
� � �� �m� � � ����� �m ; � � ��� and � � ��� for the RFDM obtained solution that fails. (d) Same radiation mode as in (c) but with � � ��. Again
good convergence is observed inside and near the waveguide. Waveguide parameters: 	 � �����, 	 � ����	
� and 
 � ��� nm. Dashed lines correspond
to the core boundaries in the �-domain.

Fig. 7. Relative rms error of (RFDM-analytic) solutions inside the core of a
slab waveguide as a function of scaling parameter �, and slab dimensions � �
�� �m, 	 � ������,	 � ����	
� and 
 � ��� nm, � � ����� �m ,
� � ���.

for accurate representation. This can be better understood with
the aid of (20). Radiation modes that have propagation con-
stants with have a small value of , and so oscil-
late with a low spatial frequency. A small number of Fourier
components, , is adequate in this case. On the other hand, the
wavenumber becomes very large for propagation constants
with , resulting in high-frequency radiation modes.
These modes require a larger value of, , in general, to resolve
accurately their fine detail. Note that although it is unavoid-
able to have to increase to calculate radiation modes with
higher spatial frequencies, the number of Fourier components
used should be kept to a bare minimum by a judicious choice
of scaling parameters in accordance with the recommendations
of the previous paragraph. This is because it has been observed
that the calculation time increases linearly with in the case
of the slab waveguide and increases quadratically with and

in the case of the rectangular waveguide.

IV. COUPLED POWER THEORY

In this section, the main aspects of the coupled power theory,
adapted specifically for rectangular cross section waveguides,

Fig. 8. (a) Top view of a rectangular waveguide with sidewall roughness.
(b) Angled view of a randomly deformed waveguide. The 1-D deformation,
���
, affects only the width of the waveguide, while its thickness 
 remains
constant. Also shows the � field of the even �th mode in � and � field of
the even �th mode in �, on the waveguide left boundary.

are presented. We refer the reader to see [1]–[8] for a more
detailed description of the coupled power theory for slab
waveguides and optical fibers. Fig. 8 shows a schematic of
a waveguide that will be analyzed. A piece of an imperfect
waveguide of length , where can be infinite, is attached to a
perfect waveguide at . The refractive index of the perfect
waveguide is a function of the transverse coordinates only,

. However, when we enter the distorted region,
the refractive index varies along the propagation direction
as . Specifically, for waveguides fabricated
photolithographically, it has been observed [22]–[25] that the
sidewall roughness is caused by the roughness of the mask and
by the etching pattern. In this case, it is sufficient to assume that
the distortion is 1-D only and independent of the -coordinate

. In addition, we assume that the distor-
tion function of the left core boundary is a stationary random
process described by the function and that that of the right
boundary is also a stationary random process described by
the function . The two processes are assumed statistically
independent, and so, we can treat them separately.
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If we ignore for the time being, the power in each of
the bound waveguide modes is found to be the solution of
a system of first-order differential equations according to the
coupled power equations [2, p. 184]

(21)

where and correspond to the power in the and
modes, respectively, is the attenuation coefficient of the th
mode due to coupling between radiation and bound modes, and

is the power coupling coefficient between the th and
bound modes that is written with the aid of the Wiener–Khinchin
theorem as

(22)

In (22), the brackets imply averaging over , is a con-
stant to be defined later, and is the Fourier trans-
form of the roughness function calculated at the difference
between the propagation constants and of the - and

-coupled modes correspondingly. Usually, Gaussian or ex-
ponential distributions are assumed representative of the under-
lying statistics of the roughness functions. In the Gaussian case,
the spectral density function of becomes, for example,

(23)

where is the autocorrelation length and the standard de-
viation of the random function, .

By substituting the trial solutions in (21),
where is a constant depending on the amplitude of the th
mode and is one of the eigenvalues of the system, the set of
differential (21) is converted to a homogenous system of linear
equations. Based on the solutions of these linear equations, the
general solution for the average power of the th mode in the
waveguide can be expressed as

(24)

where are arbitrary amplitude coefficients
are the orthogonal eigenvectors corresponding to

the th mode and are the eigenvalues of
the system, not necessary all different, which are calculated
from the system’s determinant. Each eigenvector in (24) is
calculated by solving the homogenous system for the th eigen-
value . Finally, the solution is completed by calculating the
amplitude coefficients . This calculation is carried out using
(24) and by taking advantage of the orthogonality condition of
the eigenvectors at to give

(25)

Equation (25) implies that the coefficients are expressed as
a linear combination of the powers of the bound modes at
the beginning of the waveguide where the power distribution is
assumed to be known.

If the eigenvalues are arranged in ascending order as
then the ratio between the first term

and the second term in (24) is

(26)

This ratio monotonically increases with . Therefore, for
large , only the first term in (24) is important and dominates
over the rest of the eigenvectors. The implication of the pre-
vious equation is that the distribution of power between modes
ultimately becomes independent of the initial power in the
modes and converges to a constant distribution determined by
the first eigenvector only. The distance required for the
power distribution to reach this equilibrium can be calculated
from (26) to be

(27)

Equation (27) implies that equilibrium is reached when the
largest term of the general solution (24) is times larger than
the second largest term. In most applications, is a
reasonable estimate.

Let us now consider the evolution of the modal power distri-
bution after equilibrium has been reached. Since the first eigen-
vector is the dominant one, the power distribution propagates as

(28)

According to (28), power is lost at equilibrium at a rate that de-
pends on the first eigenvalue only. As a consequence, the
eigenvalue corresponds to the waveguide average propa-
gation loss rate due to scattering of bound modes to radiation
modes.

A. Derivation of Coupling Coefficients

In order to implement the coupled power theory, it is neces-
sary to calculate the coupling coefficients between the bound
modes and to calculate the attenuation coefficients of the bound
modes due to coupling to the continuum of radiation modes. Ac-
cording to [2, p. 106], the coupling coefficient between the

and forward propagating bound modes is expressed in
an integral form involving the transverse and longitudinal elec-
tric field components of each mode as

(29)

Both modes in (29) are normalized to unit power flow. By ap-
plying the dielectric boundary conditions for the transverse and
longitudinal field components at and by taking into
account that everywhere except at , and
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that for the -type modes in the rectangular wave-
guide, (29) reduces for rectangular waveguides to

(30)

or equivalently

(31)

where is the constant first introduced in (22) and is now seen
to be

(32)

The power coupling coefficients can now be calculated with
the aid of (22) and (23). Careful study of (30)–(32) leads to
a very important conclusion. The coupling coefficient be-
tween any two bound modes is proportional to the product of
their electric field values taken on the waveguide boundary and
then integrated in the direction of its thickness. However, if
the two modes have different symmetries in the direction of
the waveguide thickness, for example the th mode has even
symmetry in and the th mode has odd symmetry in [see
Fig. 8(b)], then their product is an odd function whose inte-
gral along a symmetrical interval about is exactly zero.
According to the modal symmetries defined in Section II, the
modes with even–even and odd–even symmetry only couple
with the modes of the same symmetry group (even–even and
odd–even). Similarly, modes with odd–odd and even–odd sym-
metry can only couple to odd–odd and even–odd modes only.
The presence of two uncoupled sets of modes implies that two
independent modal distributions survive at equilibrium for rect-
angular waveguides with 1-D sidewall roughness.

B. Attenuation Coefficients Due to Coupling of Bound to
Radiation Modes

Equations (30)–(32) can be used to express the power cou-
pling coefficient between any two modes although, in the pre-
vious section, special reference was made to coupling between
bound modes. If one mode were a radiation one, then the same
equation would still hold, but this time it would describe the
power coupling between a bound and a radiation mode. The only
difference is that radiation modes are normalized to an impulse
power flow. Therefore, similarly to (22), if the th bound mode
is replaced with the th radiation mode, the power coupling co-
efficient between the th bound and the th radiation mode
is given by

(33)

with as in (32) with . If we assume that the power
coupled from bound to radiation modes is lost, then the attenua-
tion coefficient of the th guided mode is given by integrating
over all radiation modes [2, p. 116]

(34)

where is the transverse wavenumber of the th radiation mode
(18). The symbol in (34) implies summation over the four
different sets of symmetries of the radiation modes. We note
that similar arguments as in the case of the bound-to-bound
mode coupling, suggest that bound modes of a specific sym-
metry group can lose energy due to coupling to radiation modes
of the same symmetry group only.

V. APPLICATION OF THE COUPLED POWER THEORY TO

RECTANGULAR CROSS SECTION WAVEGUIDES

In this section, the coupled power theory is applied to a mul-
timode rectangular cross section waveguide (see Fig. 1) with
parameters m, nm, ,
and used in optical backplane interconnection
applications [28]. The aim here is to calculate the power dis-
tribution of the modes at equilibrium, the steady-state propaga-
tion loss and, finally, the propagation distance at which equilib-
rium is reached. Based on measurements by atomic force mi-
croscopy (AFM), the sidewalls of a waveguide were found to
have a roughness with standard deviations varying in the range

nm nm and autocorrelation lengths varying in
the range m m. Bound modes of the waveguide
were calculated using the FDM method [21] and a total of 1052
nondegenerate bound modes were found. Radiation modes were
calculated with the RFDM method introduced in Section II.

A. Segmentation of Radiation Modes

The attenuation of any propagating bound mode is calculated
by integrating over the continuum of radiation mode propaga-
tion constants [see (34)]. Since RFDM is semianalytic, the radi-
ation-mode spectrum has to be segmented and the integrations
performed numerically. The segmentation follows from the def-
inition of the transverse wavenumber [see (18)]. The locus of

is a circle with radius and we can write

(35)

with and , for the forward prop-
agating free-space modes in (17a)–(17d). In order to calculate
all free-space modes, and hence, all radiation modes, we simply
need to scan along the two parameters, the angle and the trans-
verse wavenumber , between their limiting values. In fact, we
can confine our calculations to the vicinity of only for the
transverse wavenumbers . This is because the power coupling
coefficients between bound and radiation modes [see (33)] are
proportional to the spectral density function of the waveguide
roughness [see (23)], which decreases rapidly as the radiation
mode propagation constant decreases. If we assume that the
propagation constant of the last bound mode (closest to cutoff)
is , and we assume that there are no contributions to
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Fig. 9. (a) Constellation diagram of � and � wavenumbers used to discretize
the free-space mode spectrum. (b) Although � � � � �� , only the thin
annulus with �� � � � � � �� is necessary for the bound-to-radiation
coupling and attenuation coefficient calculations.

the power coupling coefficients (33) when the spectral density
function has dropped by more than of its maximum value,
then for Gaussian statistics, we find from (23) an upper limit

for

(36)

We can therefore assume that and are now confined within
the new regions

(37)

The two free-space-mode parameters and are next seg-
mented into and discrete steps, respectively (see Fig. 9), as

(38)

(39)

Initial simulation tests revealed to be a reasonable
choice, giving . These choices assured convergence
of the attenuation coefficients to four decimal points (in deci-
bels per centimeter). Based on the AFM measurements, the
worst autocorrelation length m (36) and (37) gives

m . Based on our tests we chose
thus giving With these values, a total of 2880
radiation modes were generated. In order to normalize the
radiation modes, we only had to normalize their free-space
part, as suggested in [14]and [27]. This normalization step is
carried out in Appendix B.

B. Computation of Radiation Modes

In order to achieve convergence of the RFDM algorithm, a
Fourier series with components was used.
After quantization, this yielded a linear system of equations with

unknowns. Memory constraints prohibited the solu-
tion of this system on a single computer. Thus, a parallel solver
was employed. In order to solve the system of linear equations
(12), we used the scaLAPACK library, specifically the PDGESV
routine, which is based on an LU decomposition method [29].
Each radiation mode required 17 min to calculate on a 4 4
processor grid array comprising nodes equipped with 900 MHz
processors and 4 GB RAM.

C. Mode Propagation in m m Waveguides

First, we examine the effect of the waveguide sidewall rough-
ness standard deviation on the equilibrium loss and equilibrium
length. This is shown in Fig. 10(a) for a waveguide whose rough-
ness autocorrelation length has been set to m and its
standard deviation varied in the range nm nm.
As mentioned previously, two independent distributions coexist
at equilibrium, one for each set of symmetries. The equilibrium
loss and length for the even–even and odd–even ensemble are
shown with circles in Fig. 10(a), while those for the odd–odd,
even–odd ensemble are shown with rectangles. We also show
with triangles the equilibrium loss and length for a slab wave-
guide with the same physical parameters
as the square waveguide under investigation, for comparison
purposes.

As the standard deviation increases, we observe that the
equilibrium loss increases for both symmetries in Fig. 10(a).
A larger standard deviation corresponds to a waveguide with
“rougher” sidewalls, which, in turn, causes bound modes
to be coupled more strongly to the radiation modes. There-
fore, a larger propagation loss is expected at equilibrium. In
addition, we observe that the length, required to reach the
equilibrium follows an opposite trend and decreases. This is
because, not only does the magnitude of the bound-to-radiation
coupling coefficients increase, but also the magnitude of the
bound-to-bound coupling coefficients increases. As bound
modes are coupled more strongly to each other, they exchange
energy at faster rates and equilibrium is reached in shorter
lengths. Compared to the square waveguide, a slab waveguide
with similar properties has a lower steady-state loss and a
longer equilibrium length. However, the results for the slab
waveguide are of the same order of magnitude as those for the
square waveguide. Therefore, a slab waveguide can be used in
cases when a fast but relatively inaccurate approximation for
the propagation loss and length is required. The steady-state
loss for the odd–odd, even–odd ensemble is slightly higher
than that of the even–even and odd–even ensemble. It is not yet
clear why this is the case.

As a particular example, a waveguide with autocorrelation
length m and standard deviation of sidewall rough-
ness nm, has a steady-state loss for the even–even,
odd–even modes of and equilibrium
length . The odd–odd and even–odd modes
have a steady-state loss of , and
equilibrium length . Only 1 mode out of the
537 modes belonging in the even–even/odd–even symmetry
ensemble [see Fig. 11(a)], and 1 mode out of the 515 modes
belonging in the odd–odd/even–odd ensemble [see Fig. 11(b)]
survive at equilibrium. Fig. 11(a) shows that the mode that sur-
vives from the even–even/odd–even symmetry ensemble is the
fundamental mode of the waveguide with m .
Similarly, Fig. 11(b) shows the mode that survives from the
odd–odd/even–odd symmetry ensemble is the first even–odd
mode with m . Therefore, our theory predicts
dual-mode operation at equilibrium for the specific example. In
fact, it can be shown that dual-mode operation is expected for
all autocorrelation lengths and roughness standard deviations
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Fig. 10. (a) Steady-state loss and equilibrium length as a function of the sidewall roughness standard deviation for � � � �m. (b) Steady-state loss as a function
of the roughness autocorrelation length for � � �� nm.

Fig. 11. Modes surviving at equilibrium for a �� �m� �� �m square wave-
guide having sidewall roughness with statistical parameters, standard deviation,
� � �� nm, autocorrelation length, � � � �m. (a) Fundamental wave-
guide mode surviving from the even–even, even–odd mode ensemble. (b) First
even–odd mode surviving from the odd–odd, even–odd mode ensemble.

examined in this section. A roughness with much smaller
autocorrelation length that would couple bound modes much
stronger with each other would be required to allow the survival
of a larger set of modes at equilibrium.

The next set of calculations examine the effect of the auto-
correlation length of the roughness. The standard deviation is
set to nm and the autocorrelation length is varied
over the range, m m. Fig. 10(b) shows that
the steady-state loss increases as the autocorrelation length of
the sidewall roughness increases until 10 m, when the
steady-state loss begins to decrease. These results are similar to
the results for optical fibers and slab waveguides in [2, p. 187]
where it was reported that the steady-state loss reaches a max-
imum value when the radius of the fiber (or the width of the slab)
was approximately 0.3–0.4 times smaller than the autocorrela-
tion length. For square cross section of m m waveg-
uides with 1-D sidewall roughness, we find that the steady-state
loss reaches a maximum value when the width of the waveguide
is 0.2 times smaller than the autocorrelation length. It is, there-
fore, advisable to avoid fabricating waveguides with widths,
thicknesses, and autocorrelation lengths satisfying this relation-
ship, if possible, to avoid the maximum propagation loss.

VI. CONCLUSION

We introduced RFDM, a new semianalytic method to con-
struct radiation modes in rectangular cross section waveguides

and used coupled power theory to describe mode propagation
in waveguides with random sidewall roughness. The calculated
coupling coefficients between bound-to-bound and bound-to-ra-
diation modes showed that modes that have different symmetry
along the waveguide thickness direction, cannot interact with
each other in the presence of 1-D sidewall roughness. Therefore,
two sets of modes propagate independently from each other
inside the waveguide and gradually converge to two uncorre-
lated distributions at equilibrium. Investigation of the propaga-
tion properties of m m waveguides, typically used
in optical backplane interconnections, showed that the equilib-
rium loss reaches a maximum value when the width of the wave-
guide was about five times the autocorrelation length of the side-
wall roughness. It was also shown that equilibrium lengths were
much larger than the length of any backplane. There is a dif-
ficulty in assigning a unique propagation loss to a waveguide
as the loss at the start of the waveguide is high due to loss of
more radiation modes and gradually reduces up to the equilib-
rium length of 30 m. The results also imply that the experi-
mentally measured loss depends on the excitation conditions.

APPENDIX A

The matrices in (15a)–(15d) take the following analytic form
for the odd–odd case:

(40)

(41)

(42)

(43)

(44)
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(45)

follows from and follows from by replacing
and . Similar results are obtained for the matrices

for the other symmetries.

APPENDIX A

In this appendix, we present the normalization of the free-
space modes of (17a)–(17d). We start by calculating all field
components of the modes. We follow Marcatilli’s approach [26]
for the field representation, which assumes for the
polarized modes, and express all field components as a function
of the transverse components

(46)

(47)

(48)

(49)

with , the magnetic permeability, , the vacuum dielectric
constant, and , the angular frequency of light. The even–even
free-space radiation mode whose component is given
in (17a) has the following transverse field components, for
example

(50)

(51)

(52)

To calculate the power flow through a waveguide cross-sec-
tion, we need the Poynting vector

(53)

The power flow through a plane perpendicular to the direc-
tion of propagation is found by substituting (50)–(52) into (53)
and integrating over an infinite cross section to give

(54)

(55)

where is the Dirac delta function in (55). For unit power flow
we have from (55)

(56)

The normalization of the other radiation modes is the same
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