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GAP POWER SERIES(1) 

BY 

K. G. BINMORE 

Abstract. Let N be a set of positive integers and let 

F(z) = I Anz" 

be an entire function for which An- 0 (n 0 N). It is reasonable to expect that, if D 
denotes the density of the set N in some sense, then F(z) will behave somewhat 
similarly in every angle of opening greater than 2vD. For functions of finite order, 
the appropriate density seems to be the P6lya maximum density 9. In this paper 
we introduce a new density 9 which is perhaps the appropriate density for the con- 
sideration of functions of unrestricted growth. It is shown that, if III > 2i9, then 

log M(r) log M(r, I) 

outside a small exceptional set. Here M(r) denotes the maximum modulus of F(z) 
on the circle lzl =r and M(r, I) that of F(ret0) for values of 0 in the closed interval 
I. The method used is closely connected with the question of approximating to 
functions on an interval by means of linear combinations of the exponentials etx" 
(n E N). 

1. Introduction. Let S be a normed vector space over the complex field. If 
Tc S, let V(T) denote the subspace of S generated by T. 

Let E= {en i n = O, 1, .. . } be a linearly independent subset of S and, if x E V(E), 
write x = : xnen, where all but a finite number of terms are zero. 

The set E is said to be free in S if no element of E belongs to the closure of the 
vector subspace generated by the other elements of E. A necessary and sufficient 
condition that E be free in S is the existence of positive constants Cn (n = 0, 1, ...) 
with the property that 

|Xn| <_ CnIIXII (n = O, 1,.) 

whenever x E V(E). It follows that, if E is free in S, each x E cl V(E) has a unique 
formal expansion x- :x en. Here Xn =Ln(x), where each Ln (n = 0, 1,...) is a 
continuous linear functional on cl V(E). 

The set E is said to be fundamental in S if V(E) is dense in S. 
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In this paper, we particularise S to be one of the spaces YP(- vA, irA), where 
1 ?p ? oo and 0 < A ? 1. We let A = {AJ} be a strictly increasing sequence of positive 
integers and take the elements of E= EA to be 

en = exp (ixAn) (n = O,1,...) 

It was shown by L. Schwartz [14] that, if EA is nonfundamental in YP(-rA, 7rTA), 
then EA is free in YP(- IrA, 7rA). Further, if EA is free in YP(-17TrA, 7TA) and A'> A, 
then EA is nonfundamental in YP(-7rA', 7Ti'). 

As before we have that, if EA is free in YP(-7TA, 7TA), then there exist positive 
constants Cn (n=0 1, . . .) such that (2) 

(1.1) Ian I-< Cn$lfIlp (n = 0, 1....), 

wheneverf is a function of cl V(E) with expansion 

00 

(1.2) f aneixxn. 
n=O 

In attempting to use inequality (1.1), two questions arise. 
(1) What structural properties of the sequence A imply that EA is free in 

YP( - 7T, 7T\) ? 

(2) Given that EA is free in YP(-7TA, 7rA), how large are the constants Cn 
(n=O, 1,. ..)? 

An answer to (1) has been given by Beurling and Malliavin [2]. For an expository 
account of their work, see Kahane [8]. For each sequence A they construct a 
number V (which we call the Beurling-Malliavin density of A) with the property 
that EA is fundamental in 9P(- 7TA, 7rA) if A < S and nonfundamental (and there- 
fore free) if A > -. 

Some estimates for the constants Cn in (2) have been obtained in [1], [3] and [4] 
under various hypotheses. (See also [5] and [7].) In this paper we obtain another 
theorem of this type and discuss an application it has to the theory of entire 
functions with gap power series. The proof of the theorem is elementary and does 
not depend on the work of Beurling and Malliavin. 

2. Density conditions. The Polya maximum density 9 (see e.g. Levinson [11]) 
of a sequence A may be defined in the following way. Let r denote the class of 
functions y(x) = 71x (O <v < 1). Then 

9 = sup lim sup N[x-y(x), x) 
yr x- o y(X) 

where N[a, b) = N(I) denotes the number of terms of A contained in the interval 
I= [a, b). We have that ' < ,. 

(2) Except where otherwise noted Jjfjj,,= -f, If(x)IP dx}""', with the usual understanding 
for the case p= oo. 
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We now introduce a new density condition which is closely related to the 
Beurling-Malliavin density - but defined in a similar way to Y. 

Let T denote the class of functions b which are positive and continuous on 
(1, oo) and which satisfy 

(1) (x)t oo; 

(2.1) (2) x-l+(x); 0; 

(3) {x-20(x)dx < oo. 

We then define the "T-density" 9 of A by 

(2.2) 9 = inf lim sup N[x-+(x), x) 

We have 9'_9. 

3. Statement of results. 

THEOREM 1. Suppose A has 'F-density 9 and 9 < A <1. Then EA is free in 
YP(-,iTA, ii) (1_?p<oo), and there is a b - 'F, which depends only on A and A, 
such that 

(3.1) lanI < exp AnVIIP (n = 0, 1, ..) 

wheneverf is a function of cl V(E) with expansion (1.2). 

COROLLARY 1. A sufficient condition that EA be nonfundamental in YP(F-,iA, iiA) 
(1 ?p<oo) is that A >9. 

It is interesting to compare the above corollary with the following theorem of 
Redheffer [13]. 

THEOREM A. Let 0 be a function which is positive and continuous on (1, oo) and 
which satisfies 

(1) OW x o; 

(2) x -10(x)$~0; 
(3) f1 x - 2(x) dx = oo. 

Then there is a sequence A with 

lim N[x-qO(x),x) = 
x- O (x) 

such that EA is fundamental in Y(-7r, 7r). 

We suppose that F is an entire function which is not a polynomial and has the 
gap power series expansion 

00 

(3.2) F(z) = An. 
n=O 
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where the sequence A= {Aj} has T-density 9 < 1. We define 

M(r) = max IF(z)I (Izi = r) 

and, if I denotes a closed interval, 

M(r, I) = max IF(z)I (IzI = r; arg z E I). 

With these definitions we have the following theorem. 

THEOREM 2. If A > 9, then 

(3.3) log M(r) log M(r, I) 

outside a set of finite logarithmic measure(3) provided that I=I(r) varies so that 

II >27rA. 

Polya [12] showed in 1929 that, if F is of finite order and A has 9 =0, then 

lim sup log M(r, I)-1 
r- co log M(r) 

provided III > S. Various authors have discussed theorems of this type since that 

date, in particular Kovari [9] who, writing in 1958, gives references to earlier work. 

More recently, it is shown in [1] that, if A> Q/, where 

= lim limsupN[X-q,x) 
q-+O X q 

and F is a function of finite order, then (3.3) holds with no exceptional set provided 
lI >2,rA. 

4. Some remarks on Theorem 1. (1) The requirement that A be a sequence of 

positive integers is not critical in the proof of Theorem 1. If A is a countable 

collection of real numbers which can be ordered by increasing magnitude, let 
A + be the subset of nonnegative elements and A - the subset of negative elements, 

the latter with their signs reversed. We can then define the T-density of A to be the 

larger of 9+ and 9-, where these are defined in the obvious way using (2.2). 
With this definition, the obvious extension of Theorem 1 holds, provided that 

IA-/-L ' y > 0, 

whenever A and ,u are distinct elements of A. Even this last condition may be 

relaxed, the critical requirement being merely that a suitable analogue of Lemma 2 

(iv) be true. 
(2) If it is known that 

A > lim sup N[x- Oo(x), x) 
x(f dt c0(X) 

(3) I.e. a set E for which f E t - 1 dt < x. 
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where 00 E T satisfies 

00(X)1lOg X -> oo (X - oo) 

then the conclusion of Theorem 1 holds with b(x) =A Oi(Bx), where A and B are 
positive constants. 

As a consequence we have, for example, the following result. Let 

g = lim lim sup N[x-xa, x) 
a-1- X-oo X 

and suppose that < A < 1. Then, for each p (1 <p < oo), there are constants A 
and B (B< 1), which depend only on A and A, such that 

lanI < exp (AAI)Ilf IIP (n = 0, 1, ...), 

wheneverf is a function of cl V(EA) with expansion (1.2). 
(3) Given any A (O < A < 1) and any b E T, there exists a sequence A of positive 

integers with T-density 9 ? A such that 

sup i > exp (W(AJ)) f eclV(EA) p 

for an infinite set of n. 
Proof. Let b0(x) = C+(x), where C is a positive constant to be chosen later. Let 

p= I1-ei"AI. 

Then 0< p <2 and we may choose a so that p < a <2. Given a sequence {nk} of 
positive integers, let w, = [Ao(nk)], mk= nk- Wk and Xk = mk + [4-wk]. We choose 
{nk} so that 

(l) mk-OO(Mk)> nk-1 (k = 1, 2,. *) 
(2) Zk= 

' 
(p/g)Wk < (27A) - 1/p 

We now obtain A by deleting the positive integers which lie outside the intervals 
[Mk, nk) (k= 1, 2,. . .). The sequence A has T-density 9 _? A. Let 

(4.1) f(x) = 
e 

(- ) exp (ixmk). 

Then 11f p < 1. Also f E cl V(EA), its expansion being obtained by expanding each 
term of (4.1) by the binomial theorem. If Xk = An, we have 

|an > Awck > A o(nk) > AV10(Xk) = ACVI(n) 

The constants AO, A1 and A2 are all greater than 1, since a < 2. With an appropriate 
choice of C we obtain the required result. 

5. Proof of Theorem 1. We begin by giving a rough indication of the structure 
of the proof. First note that the insertion of a finite number of terms into the 
sequence A does not alter the truth of Theorem 1. We therefore prove the theorem, 
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in the first instance, with A replaced by AN={AN, AN+l,. ..}. Here N is a large 
positive integer determined by technical considerations. 

Given the number A' with 9 < A' < 1, our aim is to find a b in the set T with 
which we can associate functions vn (n = N, N+ 1, . . .) which are uniformly bounded 
and whose support lies in [- irA', 7rA']. Further, the Fourier transforms Vn of 
these functions must satisfy a number of special properties which we discuss below. 

Suppose now that T is a trigonometric polynomial with exponents drawn from 
the sequence AN, say T(x) = I ak exp (iAkx). Then 

J T(x)vn(x) dx = 2 akVVn(Ak). 

In order to obtain an inequality for the coefficient an from this expression, it is 
desirable that the term anVn(An) should dominate the sum on the right-hand side 
whenever lanj is not too small compared with the other coefficients. We ensure 
this by contriving that the functions Vn we construct vanish at each point Ak 
(other than An) which lies in the interval [AN, 2An) and are quite small compared 
with Vn(An) in the interval [2A4, so). The functions Vn are related to the function 
, by the estimate I Vn(An) I > exp (_- (An)). This explains roughly how the in- 
equality of Theorem 1 is obtained. 

The construction of Vn is somewhat complex and is organised in the following 
way. The set AN is split up into three parts, S, T and U. The set U consists of those 
Ak which satisfy Ak > 2A,. The set S is a subset of the interval [AN, 2An). It is itself 
the union of a large number of subsets of AN constructed with the help of Lemma 
1. Each of these subsets includes An but they are otherwise disjoint. The points of 
each particular subset will be far apart, and, on either side of An, each subset will 
look almost like an arithmetic progression from which certain terms have been 
omitted. Finally, T will consist of those points of AN which are too close to An 
to be included in the union S. 

The Fourier transform V, is constructed as the product of three others, Rn, Pn 
and Qn associated with the sets S, T and U respectively. (In the notation of the 
proof, Rn(X) is R(x-An)) Pn(x) is P(x-An) and Qn(x) is Q(x-An).) Lemma 2 is 
used to construct P,, as a Fourier transform (of a function with small support) 
which vanishes at the points of T but is not too small at An. The function Rn is a 
Fourier transform (of a function with support of length slightly less than 27rA') 

which is not too small at An but vanishes at the other points of S. Its construction is 
based on the application of Lemma 4 to each of the component sets which make up 
S. Finally Qn will be a Fourier transform (of a function of small support) provided 
by Lemma 3. It has the property of being quite small at the points of U, but not 
too small at An. 

We now embark on the proof proper. 

LEMMA 1. Suppose the sequence A has 'F-density B. Let 8 > 9 and T < 1. Then 
there is an X> 0 and a b E T such that, whenever X< a < b, there is afinite collection 
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of disjoint, half-open intervals {I,, I2,.. ., IK} with the following properties: 

K 

(1) [a,b) = U Ij; j=1 

(5.1) (2) N(I) < &/(b) (j = 1,2,.. ., K); 

(3) -rT(b) < IIj1 ? +(b) (j= 1,2,...,K-1). 

Proof. Since A has T-density 9, defined by (2.2), there exists a 00 Ec T and an 
X> 0 such that 

(5.2) N [x - 0(x), x) _- 800(x) (x > X). 

Write q(x) = b1(x) = x - i0(x) and let Oj(x) = (j- 1(x)) (j >2). For a given value of 
x, write xo=x and x1= j(x) (f >1). Then xo>x1>i . Let N be the smallest 
positive integer with (N- 1)/N> . 

We now define 

+(X) = X- ON(X) 

= o0(XO) + 00(X1) + + Vo(XN -1) 

We must first show that 0 E ', the set T being defined by (2.1). 
Since b0(x)?< O(x)?N+o(x), it is clear that b(x)--oo (x--oo), x- l(x)--O 

(x -- oo) and 

T x -20(x) dx < oo. 

It remains to prove that +(x) t and x-10(x) 4. 
Since x-10(x)= 1 -x 1-/o(x), we have that x-10(x) f . This implies that i(x) t 

and therefore that Oj(x) t (j> 1). Thus x<y implies xj<yj (j> 1). Hence, if x<y, 

+(X) = 0(Xo) + * * + O(XN-1) 

< Mo(Yo) + + (yN-1) 

= +(y) 

and therefore +(x) ' . Further, since x-1+(x) f and 0,(x) f (j_ 1), we have that 

k1+i(x)/Ak(x) = 0(0j(X))/0j(X) 

is monotone increasing. Writing 

AN(X) - N(X) ON-1(X) i(X) 

X ON _ lX) ON-2(X) X 

it is clear that x- 1ON(x) t . Butx - 10(x) = 1 -X- 1qN(X), and so x-10(x) . 

This completes the proof that b E T. 
Given a and b (X< a < b), we let I1 = [b-+b(b), b) = [bN, bo). For j> 2, we define 

Ij inductively by Ij = [bpj, b,1 1) where pj is the smallest s with the property that 

N-i 
bp l-b8 > N+() 
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terminating the construction at j=K- 1 if bps ? a and taking IK= [a, bpl_). Thus 

N- I 
J IjI >N 

4 +(b) > -r(b) (1 = 1, ..., K-1). 

But 

I IjI-o(bpj) = bpj 1-bp1+1 < N +I(b) (j = 1, .. ., K- 1). 

Since +(x) t, we have that b0t(bp1) ? N- 1+(b), and so 

N-N +(b) +I4(b) = +(b) j(=1,...,K-1). 

Finally, it follows from (5.2) that 

N(Ij) -< 80(b) (J = ,... K). 

LEMMA 2. Let N be a set of nonzero integers containing at most N elements and 
with Nc [-a, a], where 2a > N. Let 1 _ iTNa -1. Then there is afunction p E Y(-oo, oo), 
which is zero outside (-1, 1) and which satisfies 

(i) sup Ip(X)I -/1; 
(ii) J. ip(x)I dx < 1; 

and whose Fourier transform(4) P satisfies 

(iii) P(x)=0 (x E N); 
(iv) I P(0) I - 1 <_ (I1/7TN)(2,7Te1j)n. 

REMARK. The similarity of the constant in (iv) above to that which appears in 
"Turan's Lemma" (see [15, p. 30]) is not a coincidence. For small values of the 
parameter 8 figuring in its statement, Turan's Lemma can be obtained from the 
above result. 

Proof. Let {V1, V2, VN} be a collection of nonzero integers in [-a, a] which 
contains N. Consider the product 

N 

H(x) = [ cos 11N-1{x-vk + 7Nh-1} 

N 

= Ck exp (ix(IlN I )k), 
k= -N 

in which expression k - N ICkl ? 1. Take 

P(X) = ( ilx)(x) (P(O) = ri(o)). 

This is the Fourier transform of the function 

N 

p(t) = 2 Ck8l(t- 1kN-1), 
k= -N 

(4) I.e. P(u)fS,. eUXp(x) dx. 
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where 
81(t) = 1-1, ItI < 31, 

= 0, It I > 1. 

We have that p is zero outside (-1, 1) and 

(i) sup Ip(x) I 1 k=- N ICkI< I/; 

(ii) f _ , |p(x)| dx _ EkN=_N|k_ . 

Further, 

(iii) P(vk)=(sin i lVk/+flVk)H(Vk)=0 (k= 1, 2,..., N). 
It remains to prove (iv). We have 

N 

IP(0)1-1 = IN Icos-IIN-1C(,TN1- _Vk)1 -1 
k=1 

N 

= I7 Isin 1IN-1Vk1 -1. 
k=1 

Since l? TNa-1, 

I I N-1vkI < 1IN-la _ 7T/2 (k = 1, 2,. .., N). 

Hence, using the inequality 

Isin xl ? 2Ixl/7r (lxi I ir/2); 

we obtain 
N 

P 2N 1 

(k =1 ) N k= 

(iv) _(N N )2{[N]} 

< 1 {2re 

I 2-aIeJ 

LEMMA 3 (INGHAM [6]). Suppose that 1>0 and e denotes a positive, monotone 
decreasing function with domain (1, oo). Then a necessary and sufficient condition 
that there exist a function q e (- oo, oo) which is zero outside (-1, 1) and which 
satisfies 

(i) fc . q(x)I dx<1; 
and whose Fourier transform Q satisfies 

(ii) Q(x)= O(exp (- IxIe(IxI))) (Ixli - oo); 

(iii) Q(0) = 1 
is that 

(5.3) x dx < oo. 
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REMARK. We use only the sufficiency which is easily proved by taking 

Q(X) = f?I sin PkX 
k=1 PkX 

where the sequence {Pk} is chosen appropriately. 

LEMMA 4 (INGHAM [4]). Let N be a finite set of integers which includes zero, and 
has the property that Im - nI ? a>0 for each distinct m and n in N. Then there is a 
function r E ?(-oo, oxc) which is zero outside (-orIT-', ua- 1) and which satisfies 

(i,J) fo r(t) Idt <1; 
and whose Fourier transform R satisfies 

(ii) R(x)=O (x E N but x#O); 

(iii) I R(O) - 12. 

REMARK. Construct the functions k and K of Ingham's paper appropriate to the 
set {va 'IN E v}, defining k(t) to be zero for It I > 7r. We may then take 

R(x) -1 K(xr -) 
2 K(0) 

which implies that 

r(t) 1 ak(at) 
2 K(0) 

LEMMA 5 (L. SCHWARTZ [14]). A necessary and sufficient condition that EA be 

free in ?P(- ITA, 7rA), where 1 p < oo and A >0, is the existence of functions 

gn (n=0, 1, . . .) in ?q'_(-7rA, rA) (1/p+ 1/q= 1) such that 

exp (iAkx)gfl(x) dx =1, k =n, 
-nA 

=0, k n, 

where II gn i1q is the smallest Cn which satisfies (1.1). 
An analogous result holds for p = oo. 

REMARK. The sufficiency is obvious. For the necessity, note that the con- 
tinuous linear functional Ln of ?1 may be extended to -TP( - i7A, vA) by the Hahn- 
Banach theorem. An application of the Riesz representation theorem then yields 
the lemma. 

LEMMA 6. Let AN={AN, AN+ 1,...} and suppose that the set E' =EA, 
is free in 

fP(x-7A', 7rA') for some p (1 <p<oo) and some A'>0, and that Ian ICI 
wheneverf E cl V(E') has expansion (1.2)(5). 

Then, if A > A', the set E=EA is free in T"(-7r A, 7rA) and IanI < Cn If || 1, whenever 

fE cl V(E) has expansion (1.2). Here Cn - HAN + 1Cn (n > N), where H is a constant 
which depends only on N, A' and A. 

(5) In this sentence, cl V(E') denotes the closure of V(E') in the space .rP(- irA', irA') 

and 11 IIP denotes the norm of this space. 
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Proof. We consider only the case 1 ?p < ox.x When p = oo there is an analogous 
argument. 

The proof consists of constructing functions g,, (n = 0, 1,...) which satisfy 
Lemma 5 with p - 1. The existence of functions h, (n = N, N+ 1,...) in 
Tq(-7A', -TA') with 

rAl 

T exp (iAkx)hn(X) dx = 1, k = n, 
= O, k > Nbutk # n, 

and 1hnllq =< Cn (n ? N) is already assured by Lemma, 5. 
We now construct a bounded function in which vanishes outside (-1, 1), where 

I< I (A - A') and satisfies 

fr exp (iAkx)jn(x) dx = 1, k =n, 

=0, k_k<N. 

To do this, take N ={Ak-An I O < k < N}, a = An and l= min {1r(A-'), 7rNa} 
in Lemma 2. We obtain functions p and P with the properties described in the 
lemma. Now define 

jn(x) = {P(O)} exp (- ixAn)p(x). 

Then jn satisfies the condition specified above and also 

sup Ii(x)I <? (2ire) 

For n _ N, we now define gn =in * hn. The functions gn (n ? N) now satisfy Lemma 
5 with p = 1, and llgnll -o <HAN+1hllhnll , where H is a constant which depends only 
on N, A' and A. 

A similar argument may be used to construct the functions gn (n < N). 
Proof of Theorem 1. We begin by selecting functions A', A", A' and Aiv of 9 

and A in such a way that 

, < Aiv < A't < A" < A' < A ? 1, 

and 

(5.4) -A(A, - A"l) < rAiv. 

Let 

(5.5) p _= A"//A# > 1 

and define h to be the smallest positive integer which satisfies 

(5.6) h/(h-1) < p. 

Further, let 

(5.7) 7 = AIV/Alr < 1 
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We define 

(5.8) AN = {AN, AN+1,** 

Here N is a constant, depending only on A and A, on which we shall make a num- 
ber of requirements during the course of the proof. 

The body of the proof consists of showing that the set 

EAN = {exp (iAx) I A E AN} 

is free in YP(-,A', WTA'). 
In Lemma 1, we take 8= AIV and i as in (5.7). Then there is a 00 E T and an 

X> 0 for which the conclusions of the lemma hold. Our first requirement on the 
constant N in (5.8) is therefore that AN > X. 

Let 01 be a second function in T which has the property that b1(x) ? 00(x) for 
each x> 0 and 

(5.9) 01W/)Iog X oo (X -> oo). 

We now define the function e by 

(5.10) E(x) = AV1(4x)/x 

where the constant A, which will be specified later, is to depend only on A and A. 
In view of conditions (2.1), e is positive, monotone decreasing and 

Jr e(x) dx < oo. 
1x 

Further xe(x) t . Finally, we define 

(5.11) +(x) = B01(2x), 

where, again, B is a positive constant to be specified later and depends only on A 
and A. Clearly b E T. 

We now fix a positive integer k _ N and write 

(5.12) q qk= 00(2Ak); X = Xk = [qAvI.] 

(Since 00(x) -* oo (x -> oo), we make a further minor requirement on N in (5.8) 
that Xk ->1 (k_ N).) 

From Lemma 1, we obtain that there exists a finite collection of disjoint half- 
open intervals {I,, I2,..*, IK} such that 

K 

(i) [AN, 2Ak) = U Ij; 
J=1 

(5L13) (ii) N(I,) _ X (t = 1i co let K); 

(iii) Tq < I Ij I q ( =1,..K-1). 

Let Is, be the interval from this collection which contains Ak. 
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Recalling that h is defined by (5.6), we suppose that a is an integer satisfying 
1 < a ? hX. Then a can be written in the form a =:3X + y, where : and y are integers 
and 1 ? y ? X. Let Sa be that subset of AN n [AN, 2Ak) which contains precisely the 
following elements: 

(1) Ak; 

(2) the yth smallest element of AN, where this exists, contained in each interval 

's+rh+fl (r= 1, 2, ..); 
(3) the yth largest element of AN, where this exists, contained in each interval 

is-rh-,I (r= 1, 2, .). 
In view of (5.13) (iii), the sets Sa (a = 1, 2, . . ., hX) have the property that 

(5.14) rm-nl ? (h-1)rq 

whenever m and n are distinct elements of S,* (The construction of the sets S is 
similar to a construction used in [1], where a diagram is available.) 

Let T be the set of those elements of AN n [AN, 2Ak) which do not belong to 
S= U x= 1 S,* Then 

(5.15) T' [Ak-hq,Ak+hq] 

and contains at most 2Xh terms. 
Finally, let U= AN n [2Ak, oo). Then AN= S U T u U. 
In Lemma 4 we take, for a given value of a (1 _ a _ hX), N = {A-Ak IA E SO} and 

a = (h - 1)rq. In view of (5.14), it follows from the lemma that there exists a function 
r, zero outside (- r - 1, 1ra-1) with 

(i) fcorlr(t) Idt < I; 
and whose Fourier transform Ra satisfies 

(ii) R((A-Ak) = O (A E Sa but A#Ak); 

(iii) I Ra(O) < 2. 
If we now define r=r1 * r2 r* * h r, we have that r(t) is zero for 

t I > irXh/r = 7ihX/(h- 1)iq. 

But X= [qAiv], from (5.12). Hence X< qAiv. Therefore, by (5.5)-(5.7), 

TXI1< Th- A- = h All < 7T\PA" = 7TA". 
a =h-1 T - (h -1) 

It follows that the function r vanishes outside (- rl", ITA"). Further 

(i) fco, r(t)| dt_l1. 
The Fourier transform of r is R = R1, R2,..., RX, which satisfies 

(ii) R(A-Ak) = O (A e S but A Ak); 

(iii) IR(0) 1 < 2Xh; 

and, in view of (i), 

(iv) IR(x) _ 1. 
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In Lemma 2 we take N={A-Ak I A E T}, with N=2Xh, a=hq and l as in (5.4). 
Then N?2a, and since X> q&v - 1, 

/ = 4r(A'-Al") < fTiv < (X?)7 < _ - ah-l = irNa . 

The conditions of Lemma 2 are therefore satisfied and so there exists a function 
p, zero outside (-1, 1) with 

(i) f00 p(t)l dt -< ; 
(ii) sup Ip(t)l -<1- 1; 

and whose Fourier transform P satisfies 
(iii) P(A-Ak) = 0 (A E T); 
(iv) |P(0)1-1 <C2hX 

(where C= 27rel- 1). In view of (i), we also have 

(v) IP(x)I?1. 
In Lemma 3, we take 1 as in (5.4) and e as in (5.10). There then exists a function 

q, zero outside (-1, 1) with 

(i)f 
0 
I |q(t)l dt _l; 

and whose Fourier transform Q satisfies 
(ii) I Q(x)l ? E exp {- jxjE(Ixj)} (Ixl > Y), 

where E and Y are constants which depend only on 1 and the function e; 

(iii) Q(0)=1. 
We now take u =p * q * r. Then u has Fourier transform U=P. Q -R. Finally, 

we define Vk(X)=exp(iAkx)u(x) which has Fourier transform Vk(x)=U(x-Ak). 

The function Vk(X) is zero for ixi >rA" + 21=7TA'. Further, 

(5.16) (i) sup Ivk(t )I| I; 
(ii) Vk(A,)=O (AN_AjI<2Akbutji#k); 

(iii) iVk(x) I _ E exp {-(x-Ak)e(X-Ak)} (X > Y+ Ak); 

(5.17) (iv) I Vk(Ak)I 1 FXk (where F= (47rel 1)2). 

At this stage, we require further of N in (5.8) that 

(5.18) AN > Y. 

So far we have constructed, for each fixed k _ N, functions vk and Vk with the 
above properties. In the remainder of the proof, k is no longer fixed. 

Consider now an arbitrary trigonometric polynomial with exponents drawn 
from AN, say T(x) = _N aMk exp (iAkx). We fix our attention on a value of n with 
the property that 

(5. 19) |jan Vn(An) | max I a, Vk(Ak)j| 
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Then 

T IT(x)vn(x)l dx _ J T(x)vn(x) dx 

= ak= eiAkx Vn(x) dx 
k=N -nA' 

M 

(5.20) = 2 ak Vn(Ak) 
k=N 

= | aVn(An)+ akVn(Ak) 
2An?Ak?AM 

> IanVn(An){ 1- Vk(Ak) } 
Now 

I Vn(Ak) E F exp {-(Ak-An)e(Ak-An)} (Ak > Y+ An). 

But, if Ak- _2An, then Ak-Anf_iAk_ An> AN> Y by (5.18). At the time e was chosen 
(i.e. after (5.10)), it was noted that xe('x) t . Hence 

(5.21) 1 Vn(Ak)l ? Eexp -iAke(iAk)} (Ak _ 2An). 

Moreover, from (5.12) and (5.17), 

(5.22) I Vk(Ak) I F <k ? exp (Coj(2Ak)), 

since b0(x) ? 01(x). Here C denotes a positive constant which depends only on A 
and A. Combining (5.21) and (5.22), we have 

I Vn(Ak)/ Vk(Ak)I ? exp {Chl(2Ak) - iAke(iAk)} 

= exp {Cbl(2Ak)- Aol(2Ak)}, 

where we have substituted for e, using (5.10). 
By (5.9) we have that 

{exp (-C/u(x)) dx < oo. 

Hence, if we choose A=2C in (5.10), we obtain 

Ak22An (Ak ) | exp (- Ch1(2Ak)) 

(5.23) ? { exp (-Cb1(x) dx) 
2n 

< 1/2 

for An>Z, where Z is a constant which depends only on A and A. The final 
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requirement on the constant N of (5.8) is therefore that AN> Z. Returning to 
(5.20), we deduce from (5.23) that 

an Vn(An) I < 2 IT(x)vn(x) I dx 

< 21-1 J IT(x)I dx, 

by (5.16). But, by (5.19), 

IakVk(Ak)I _ janVn(An)1 _ 21-1 T(x)I dx (k = N, .. ., M), 

atnd so, by (5.22), 

Iakj ? 21-1 exp (CW1(2Ak)) J - T(x) I dx (k N, .. ., M). 
-ZA, 

The extension of this inequality to the case when T is no longer an element of 
V(EAN) but of cl V(EAN) is trivial. 

It now follows from Lemma 6 that 

Iakl < RAN ' exp (C/u(2Ak))IIlf (k = 0, 1, . ...), 
whenever f E cl V(EA) has expansion (1.2). Here R, N and C are constants which 
depend only on A and A. In view of (5.9), there is a constant S, which again 
depends only on A and A, such that 

RAN+ 1 < exp (Soj(2Ak)) (k = 0, 1,.. .). 

If we define the constant B of (5.11) by B= S+ C we then obtain that 

|akl ? exp (b(Ak)) I|f 1 1 (k = 0, 1, ... ). 

Theorem 1 is therefore proved for the case p = 1. Since the general case follows 
from Holder's inequality, the proof is thus complete. 

6. Proof of Theorem 2. In addition to the notation concerning entire functions 
which was introduced in ?3, we also require the following. Let ,u(r) denote the 
modulus of the maximum term of (3.2) and let v(r), the "central index", denote 
the largest value of An for which this maximum is attained. Clearly ,u(r) ? M(r), 
but also 

LEMMA 7 (VALIRON [16]). Outside a set offinite logarithmic measure 

M(r) _ ik(r) log tk(r). 

LEMMA 8 (KOVARI [10]). Let f be any positive monotone increasing function 
defined on (0, oo) which has 

(6.1) dx 

Then, outside a set of finite logarithmic measure, 

v(r)/1(log v(r)) < log pA(r). 
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It suffices to prove Theorem 2 when I= [y-iriA, y+ 7A] and y=y(r) varies in 
an arbitrary fashion. 

For a given value of r, we apply Theorem 1 with p = oo to 

F{r exp (iQ( + y))} = > (a.nr exp (iyA.)) exp (iOAJ), 

which is considered as a function of 0. We obtain that there exists a b E T such 
that 

IanrAnl _ exp (b(AJ)) max IF(reiO) I (n = 0, 1,...). 
OcI 

In particular, ,u(r) ? exp {b(v(r))}M(r, I). Hence 

log ,u(r) _ 0(v(r)) + log M(r, I). 

Let 0,1 be a second function in 'F with the property that O(x) = o(ob(x)). Then 

(6.2) log ,(r) < o{Ql(v(r))}?+log M(r, I). 

Choose q so that +(log x) = x/lo(x). Then q is positive, monotone increasing 
and satisfies (6.1) because 

fdyfc dx _ 01(x) dx 
Jo A(Y)J1 x(logx)J1 X2 

by (2.1). We therefore obtain from Lemma 8 that 

1(v(r)) = v(r)/l(log v(r)) < log ,u(r), 

outside a set of finite logarithmic measure. Using this result in (6.2) we have that, 
outside a set of finite logarithmic measure, 

(6.3) (1 + o(1)) log ,(r) ? log M(r, I). 

But, by Lemma 7, 

(6.4) log p(r) - log M(r), 

outside a set of finite logarithmic measure. Together, (6.3) and (6.4) yield that 

log M(r) - log M(r, I), 

outside a set of finite logarithmic measure, as required. 
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