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Chapter 1

Introduction

Biological data and the number of studies generating them grows exponen-

tially [11], [12]. Altough most of such data are deposited and freely available

in biological databases, only a small of them re-analyzed by researchers in-

dependent from the source research group. In turn complexity of life implies

biological data have huge potential for discoveries. People comes other disci-

plines can look data in other aspects and using other methods resulted new

explorations. Moreover as science are developing new questions emerge and

the answers for them may be in data deposited earlier by a study group who

searced answers for completely different questions. Data mining is a discipline

specialized extracting knowledge from large data sets [13] In the dissertation

we collect our explorations in various biological data sets (namely genomes,

metagenomes and connectomes) and biological data mining tools developed

by us. In the further part of this chapter we sortly summaries these results

and methods.

DNA sequencing technologies are applied widely and frequently today to

describe metagenomes, i.e., microbial communities in environmental or clin-

ical samples, without the need for culturing them. Phylogenetic analysis of

6



the metagenomic data presents significant challenges for the biologist and the

bioinformatician. The program suite AMPHORA and its workflow version

are examples of publicly available software that yield reliable phylogenetic

results for metagenomic data.

We have developed AmphoraNet, an easy-to-use webserver that is ca-

pable of assigning a probability-weighted taxonomic group for each phy-

logenetic marker gene found in the input metagenomic sample; the web-

server is based on the AMPHORA2 workflow. We believe that the occa-

sional user may find it comfortable that, in this version, no time-consuming

installation of every component of the AMPHORA2 suite or expertise in

Linux environment are required. The webserver is freely available at http:

//amphoranet.pitgroup.org.

The results mentioned above are detailed in the subsection 2.1 based on

the paper [1].

We have developed a visual analysis tool that is capable of demonstrat-

ing the quantitative relations gained from the output of the AMPHORA2

program or the easy–to–use AmphoraNet webserver. Our web-based tool,

the AmphoraVizu webserver, makes the phylogenetic distribution of the

metagenomic sample clearly visible by using the native output format of

AMPHORA2 or AmphoraNet. The user may set the phylogenetic resolu-

tion (i.e., superkingdom, phylum, class, order, family, genus, species) along

with the chart type, and will receive the distribution data, detailed for all

relevant marker genes in the sample. The visualization webserver is avail-

able at the address http://amphoravizu.pitgroup.org. The source code

of the AmphoraVizu program is available at http://pitgroup.org/apps/

amphoravizu/AmphoraVizu.pl.

The results mentioned above are detailed in the subsection 2.2 based on
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the paper [2].

DNA sequencing technologies usually return short (100-300 base-pair

long) DNA reads, and these reads are processed by metagenomic analysis

software that assign phylogenetic composition-information to the data set.

We have evaluated three metagenomic analysis software (AmphoraNet, MG-

RAST and MEGAN5) for their capabilities of assigning quantitative phy-

logenetic information for the data, describing the frequency of appearance

of the microorganisms of the same taxa in the sample. The difficulties of

the task arise from the fact that longer genomes produce more reads from

the same organism than shorter genomes, and some software assigns higher

frequencies to species with longer genomes than to those with shorter ones.

This phenomenon is called the “genome length bias”.

Dozens of complex artificial metagenome-benchmarks can be found in

the literature. Because of the complexity of those benchmarks, it is usually

difficult to judge the resistance of a metagenomic software to this “genome

length bias”. Therefore, we have made a simple benchmark for the evaluation

of the “taxon-counting” in a metagenomic sample: we have taken the same

number of copies of three full bacterial genomes of different lengths, break

them up randomly to short reads of average length of 150 bp, and mixed

the reads, creating our simple benchmark. Because of its simplicity, the

benchmark is not supposed to serve as a mock metagenome, but if a software

fails on that simple task it will surely fail on most real metagenomes.

We applied three software for the benchmark. The ideal quantitative

solution would assign the same proportion to the three bacterial taxa. We

have found that AMPHORA2/AmphoraNet gave the most accurate results

and the other two software were under-performers: they counted quite reli-

ably each short read to their respective taxon, producing the typical genome
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length bias.

The results mentioned above are detailed in the subsection 2.3 based on

the paper [3].

The first giant virus was identified in 2003 from a biofilm of an indus-

trial water-cooling tower in England. Later, numerous new giant viruses

were found in oceans and freshwater habitats, some of them having even

2,500 genes. We have developed a bioinformatics software called the “Gi-

ant Virus Finder” that is capable of discovering the very likely presence of

the genomes of giant viruses in metagenomic shotgun-sequenced datasets.

The new workflow is applied to numerous hot and cold desert soil sam-

ples as well as some tundra- and forest soils. We show that most of

these samples contain giant viruses and especially many were found in the

Antarctic dry valleys. The results imply that giant viruses could be fre-

quent not only in aqueous habitats but in a wide spectrum of soils on

our planet. The Giant Virus Finder software is available at the address

http://pitgroup.org/giant-virus-finder.

The results mentioned above are detailed in the subsection 2.4 based on

the paper [4].

The Kutch desert (Great Rann of Kutch, Gujarat, India) is a unique

ecosystem: in the larger part of the year it is a hot, salty desert that is

flooded regularly in the Indian monsoon season. In the dry season, the

crystallized salt deposits form the ”white desert” in large regions. The first

metagenomic analysis of the soil samples of Kutch was published in 2013,

and the data was deposited in the NCBI Sequence Read Archive. At the

same time, the sequences were analyzed phylogenetically for prokaryotes,

especially for bacterial taxa.

We have been searching for the DNA sequences of the recently discovered
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giant viruses in the soil samples of the Kutch desert. Since most giant viruses

were discovered in biofilms in industrial cooling towers, ocean water and

freshwater ponds, we were surprised to find their DNA sequences in the soil

samples of a seasonally very hot and arid, salty environment.

The results mentioned above are detailed in the subsection 2.5 based on

the paper [5].

Fine-tuned regulation of the cellular nucleotide pools is indispensable for

faithful replication of DNA. The genetic information is also safeguarded by

DNA damage recognition and repair processes. Uracil is one of the most fre-

quently occurring erroneous base in DNA; it can arise from cytosine deami-

nation or thymine-replacing incorporation. Two enzyme families are primar-

ily involved in keeping DNA uracil-free: dUTPases that prevent thymine-

replacing incorporation and uracil-DNA glycosylases that excise uracil from

DNA and initiate uracil-excision repair. Both dUTPase and the most effi-

cient uracil-DNA glycosylase UNG is thought to be ubiquitous in free-living

organisms.

We have systematically investigated the genotype of deposited fully se-

quenced bacterial and archaeal genomes. Surprisingly, we have found that

in contrast to the generally held opinion, a wide number of bacterial and

archaeal species lack the dUTPase gene(s). The dut- genotype is present

in diverse bacterial phyla indicating that loss of this (or these) gene(s) has

occurred multiple times during evolution. We have identified several survival

strategies in the lack of dUTPases.

The results mentioned above are detailed in the subsection 2.6 based on

the paper [6].

The human braingraph or the connectome is the object of an intensive

research today. The advantage of the graph-approach to brain science is that
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the rich structures, algorithms and definitions of graph theory can be applied

to the anatomical networks of the connections of the human brain. In these

graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray

matter, and two vertices are connected by an edge, if a diffusion-MRI based

workflow finds fibers of axons, running between those small gray matter areas

in the white matter of the brain.

The connectomes of different human brains are pairwise distinct: we can-

not talk about an abstract ”graph of the brain”. Two typical connectomes,

however, have quite a few common graph edges that may describe the same

connections between the same cortical areas.

We have developed the Budapest Reference Connectome Server v2.0

which generates the common edges of the connectomes of 96 distinct cor-

texes, each with 1015 vertices, computed from 96 MRI data sets of the Hu-

man Connectome Project. The user may set numerous parameters for the

identification and filtering of common edges, and the graphs are download-

able in both csv and GraphML formats; both formats carry the anatomical

annotations of the vertices, generated by the FreeSurfer program. The result-

ing consensus graph is also automatically visualized in a 3D rotating brain

model on the website.

The consensus graphs, generated with various parameter settings, can

be used as reference connectomes based on different, independent MRI

images, therefore they may serve as reduced-error, low-noise, robust

graph representations of the human brain. The webserver is available at

http://connectome.pitgroup.org.

The results mentioned above are detailed in the subsection 3.1 based on

the paper [7].

We have constructed 1015-vertex graphs from the diffusion MRI brain
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images of 395 human subjects and compared the individual graphs with

respect to several different areas of the brain. The inter-individual variability

of the graphs within different brain regions was discovered and described.

We have found that the frontal and the limbic lobes are more conserva-

tive, while the edges in the temporal and occipital lobes are more diverse.

Interestingly, a “hybrid” conservative and diverse distribution was found in

the paracentral lobule and the fusiform gyrus. Smaller cortical areas were

also evaluated: precentral gyri were found to be more conservative, and the

postcentral and the superior temporal gyri to be very diverse.

The results mentioned above are detailed in the subsection 3.2 based on

the paper [8].

One main question of connectomics today is discovering the directions of

the connections between the small gray matter areas. Our previous work, the

Budapest Reference Connectome Server, generates the consensus braingraph

of 96 subjects in Version 2, and of 418 subjects in Version 3, according to

selectable parameters. After the Budapest Reference Connectome Server

had been published, we recognized a surprising and unforeseen property of

the server. The server can generate the braingraph of connections that are

present in at least k graphs out of the 418, for any value of k = 1, 2, . . . , 418.

When the value of k is changed from k = 418 through 1 by moving a slider

at the webserver from right to left, certainly more and more edges appear in

the consensus graph. The astonishing observation is that the appearance of

the new edges is not random: it is similar to a growing tree. We refer to this

phenomenon as the dynamics of the consensus connectomes.

We hypothesize that this movement of the slider in the webserver may

copy the development of the connections in the human brain in the following

sense: the connections that are present in all subjects are the oldest ones,
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and those that are present only in a decreasing fraction of the subjects are

gradually the newer connections in the individual brain development.

Based on this observation and the related hypothesis, we can assign di-

rections to the edges of the connectome as follows: Let Gk+1 denote the

consensus connectome where each edge is present in at least k + 1 graphs,

and let Gk denote the consensus connectome where each edge is present in at

least k graphs. Suppose that vertex v is not connected to any other vertices

in Gk+1, and becomes connected to a vertex u in Gk, where u was connected

to other vertices already in Gk+1. Then we direct this (v, u) edge from v to

u.

The results mentioned above are detailed in the subsection 3.3 based on

the paper [9].
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Chapter 2

Data Mining in Genomics and

Metagenomics

2.1 AmphoraNet: The Webserver Imple-

mentation of the AMPHORA2 Metage-

nomic Workflow Suite

2.1.1 Introduction

Next generation sequencing technologies and the parallel development of high

throughput short-read assembly methods make possible to view ourselves and

our living environment quite differently than before [36, 43, 51, 56]. Metage-

nomics methods yield tools to discover and identify microorganisms in diverse

clinical and environmental samples, without the need of culturing them [39].

These methods may shed light to the system of interactions between hu-

man and microbial cells that may lead to or prevent from diseases such as

type 1 and type 2 diabetes [25, 31, 59, 68, 72, 85], oral- and colorectal can-
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cers [28, 30, 34, 36, 40, 71, 77], autoimmune syndromes [29, 49, 52, 64, 76, 89] or

obesity [37,42,50,84,88], just to list a few examples.

The results mentioned above from the last 2-3 years imply that in the

next decade metagenomics will be an area of massive development both in

biology and bioinformatics. Recognizing this trend, complex bioinformatical

workflows were developed for analyzing metagenomics data, and assigning

phylogenetic attributes to short nucleotide reads, coming from diverse species

and environments [26,62,63,66,67,92].

One of the successful approaches is the AMPHORA [90] suite of pro-

grams, together with its improved workflow version, called AMPHORA2

[87, 91].The AMPHORA2 workflow was already applied by numerous stud-

ies [41, 44, 78, 79]. Both AMPHORA and AMPHORA2 make use of several

components of previously developed tools, such as getorf from EMBOSS [74],

the HMMER sequence-search and alignment tool [45, 58], BioPerl compo-

nents [80, 81] and RAxML [82, 83]. AMPHORA searches for phylogenetic

marker genes with HMMER [45, 58], and makes suggestions for their phylo-

genetic placements using RAxML and a reference database. More detailed

description of AMPHORA is in [90] and of AMPHORA2 is in [91].

2.1.2 Results and Discussion

While an installation script is supplied with AMPHORA2 [91], the proper

installation of the numerous components of AMPHORA2 is not always an

easy task, especially, if older versions of some components were previously

installed, or the installation is done without superuser privileges. If the

user is not familiar with Linux systems, the local installation is definitely

a challenge. In order to make available the capabilities of this great suite

of programs for more scientists, we prepared a web-server version of the

15



AMPHORA2 workflow under the address http://amphoranet.pitgroup.

org. Phylogenetic analysis is a resource-hungry task, so if one needs to use

AMPHORA2 on a daily basis with large amounts of data we suggest to install

and use the programs locally. For occasional users, or just those who want to

test the capabilities of AMPHORA2 quickly, our webserver can be a valuable

tool.

The AmphoraNet webserver does not require any registration, and no e-

mail address of the user is solicited. The user chooses between nucleotide and

amino-acid sequences, specifies if bacterial or archaeal marker gene sequences

are to be searched for, and then simply uploads the file in FASTA format, by

clicking a button labeled ”Check values”. Next, the server verifies whether

the file-size is under the limit allowed, and outputs basic characteristics of

the file. Then the user may start the fully automatic workflow by clicking the

”Schedule your job” button. Next, a unique web page is created, that will

contain the results of the run. Since the processing may take more than 20

minutes, the user is advised to bookmark that unique web page, and return

later to the output of the job. The identity of that unique web page is known

only for the user; this feature allows moderate privacy for the users (since

we do not require registration, we are not able to implement sophisticated

access control measures).

Currently, there is a 50 MB upload limit for every single file into the

AmphoraNet webserver. Larger jobs can be uploaded in several parts, as

it is suggested in the support forum of the AmphoraNet user community:

https://groups.google.com/forum/#!forum/amphoranet.
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Sample Datasets

For the convenience of the users, we gave several sample input- and out-

put files on the support forum of the server: https://groups.google.com/

forum/#!topic/amphoranet/SbsSWm6wVx8

• For a complete bacterial genome, Treponema pallidum subsp. pallidum

DAL-1, of 1.1 million base pairs (bp), AmphoraNet finishes in 30 min-

utes;

• For a complete archaeal genome, Archaeoglobus profundus DSM 5631,

of 1.5 million bp, AmphoraNet gives a result in 15 minutes;

• For a sample from the Human Microbiome project (Buccal Mucosa

sample (SRS050007)), of 0.7 million bp, AmphoraNet finishes in 20

minutes.

2.2 Visual Analysis of the Quantitative Com-

position of Metagenomic Communities:

the AmphoraVizu Webserver

2.2.1 Introduction

Metagenomic communities contain numerous known and unknown bacterial

and archaeal species. The DNA of most of the unknown species will probably

not be sequenced in the next several years. Consequently, we can infer phylo-

genetic information on the metagenomes only from the highly inhomogeneous

short DNA reads gained from next generation sequencing methods [43,51,56].
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Clearly, with techniques available to date, detailed classification is not

possible for samples containing hundreds of unknown species. The proba-

bilistic inference of higher level taxa is, however, possible by comparing the

nucleotide sequences of unknown species and already identified species from

standard repositories.

One possible method is applying sequence alignment tools (e.g., BLAST

and its clones) between the translated short reads found in the sample and

the reference protein sequence databases (e.g., the MEGAN suite applies

this approach, [53–55, 104]). An alternative way is looking for some pre-

defined phylogenetic marker genes in the sample, and using these genes for

phylotyping (e.g., AMPHORA in [90] and of AMPHORA2 in [91] or [1]).

The 31 phylotyping marker genes that were chosen in AMPHORA [90]

are (i) universally present in bacteria, (ii) most of them are single copy genes

in the known bacterial genomes, and (iii) they are housekeeping genes that

are relatively recalcitrant to lateral gene transfer [57]. Because of they are

mostly single-copy genes in genomes, one may infer quantitative relations by

counting them for each taxa identified. Since, for bacteria, only 31 genes

are considered, their alignment and HMM profile search is fast compared to

the speed of the BLAST pre-processing needed for MEGAN: AMPHORA

compares only these marker genes to the reference genomes, while similarity

based methods compare every single contig to the reference genomes. The

probability that the short reads in a metagenome contain several fragments

from these 31 genes is much higher than for a smaller set of possible marker

genes (e.g., where only 16S ribosomal RNA was used).

The AmphoraNet [1] is an easy–to–use webserver implementation of the

AMPHORA2 suite of programs. It is capable of inferring phylogenetic infor-

mation from metagenomic sets of short reads. Until now a graphical quan-
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titative analysis tool for the textual output, generated by AMPHORA2 or

AmphoraNet, was missing.

2.2.2 Results and Discussion

Here we present a graphical analysis webserver, called AmphoraVizu, that

returns publication-quality charts with phylogenetic classifications according

to marker genes identified in the sample.

The AmphoraVizu webserver does not require any registration, and no

e-mail address of the user is solicited. The user needs to upload the Am-

phoraNet (http://amphoranet.pitgroup.org) or the AMPHORA2 output

file to the visualization tool, and then has to specify the phylogenetic res-

olution of the chart by entering the lowest taxonomic rank requested; the

following options are provided: superkingdom, phylum, class, order, family,

genus, species. After choosing the chart type (i.e., bar chart or pie chart),

by hitting the ”Visualize” button, the graph is drawn.

The bar chart version (e.g., Figure 2.1) visualizes the phylogenetic distri-

bution of the sample according to each marker gene in two modes: it com-

putes either the relative frequencies or the absolute numbers of the identified

genes.

Using the ”Advanced Options” button, it is possible to filter the results

according to minimum confidence [91] and minimum average, where the av-

erage height of the marker gene bars are computed for each identified phylo-

genetic unit separately. Therefore, the AmphoraVizu page is a visualization

extension of the easy-to-use AmphoraNet webserver [1] that also facilitates

to analyze the phylotyping distribution of the sample.

The source code of the AmphoraVizu program is available for download

at http://pitgroup.org/apps/amphoravizu/AmphoraVizu.pl.
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Figure 2.1: Screenshot of the chart generated by AmphoraVizu for the AM-

PHORA2 processing of the union of control (non-diabetic) gut metagenome

datasets of the study [72]. On the right, the color codes of the marker genes

are presented. The bar chart gives the distribution of bacteria into classes

according to each marker gene; bacteria in unspecified classes are placed in

the last group. The height of the bars represents the ratio of a given marker

gene identified belonging to the labeled class. Only the taxa reaching the

average height 0.02 are represented (this cut-off value can be modified by

the advanced option ”Minimum average to show”). Note that the sum of the

heights of all bars of the same color is 1, except when some of them is missing

due to the cut-off ”Minimum average to show” value. The metagenome data

was downloaded from http://gigadb.org/dataset/100036.
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2.3 Evaluating the Quantitative Capabilities

of Metagenomic Analysis Software

2.3.1 Introduction

Metagenomic analysis software, like MG-RAST [66], MEGAN [53,104], AM-

PHORA [90], AMPHORA2 [91], AmphoraNet [1], AmphoraVizu [2] are ca-

pable of inferring phylogenetic classification from raw metagenomic data. In

the analysis of the metagenomes, we are interested in the detection and iden-

tification of the species or genera in the data, and very frequently, we need

to know their phylogenetic distribution: that is, the fraction of bacterial cells

in each taxon screened.

If the lengths of all genomes in the sample were the same, then this

task would be relatively easy: one has to make the phylogenetic assignment

to each read and evaluate the result. If the lengths of the genomes vary,

then it is likely that short reads of the longer genomes are identified more

frequently than short reads from the shorter ones, simply, because the reads

from the long genome appear more frequently than those from the shorter

ones. Consequently, for quantitative metagenomic analysis we need to use

software that is capable of such tasks.

AMPHORA [90] and AMPHORA2 [91] applies marker genes for phylo-

genetic inference, and these marker genes are chosen to appear just once in

the known bacterial genomes. Therefore, both short and long genomes will

be counted just once. Naturally, the still unknown bacterial genomes could

not be scanned for validating this property.

The MEGAN suite [53,104] applies BLAST search for the individual short

reads, and attempts to identify those short reads phylogenetically. Therefore,

MEGAN and similar methods will identify short reads from long genomes
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more frequently than short reads from short genomes.

In the present work we demonstrate the hypothesis above on an example:

we created a benchmark from three known bacterial genomes of different

lengths, and found that AMPHORA2 [91], and its webserver implementation,

AmphoraNet [1] worked very precisely in assigning quantitative phylogenetic

information to the test data. Our benchmark is not intended to use as a

general-purpose simulated metagenome, it was created only for the fast and

straightforward analysis of the quantitative capabilities of the metagenomic

annotation software.

Clearly, if a software fails on these straightforward and easy-to-evaluate

tests, it will fail in numerous – but not necessarily all – real life scenarios as

well.

However, the opposite implication is not necessarily true: if a workflow

performs well in this simple benchmark, then, in the real life scenarios, where

the number of taxa (both known and unknown) could be large and the cov-

erage of the genomes by the short reads can fluctuate wildly from taxon to

taxon, the workflow could fail to be quantitative. The reason for this phe-

nomenon is that the marker genes, which are looked for in AMPHORA2, will

not be found typically in genomes with very low coverage.

2.3.2 Results and discussion

Artificially, in silico created metagenome benchmarks are frequently used

for testing metagenomic analysis software [65, 75]. We prepared a simple

benchmark to evaluate the quantitativity of some software workflows in this

work.

The four artificial metagenomes in the benchmark were constructed as

described in the Methods section.
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In Dataset 1, we have taken the same count of genomes of three species

(H. pylori, B. bacteriovorus, D. carboxyvorans of different genome lengths,

so the correct distribution expected is 33.3%-33.3%-33.3%. The results of

the tests are demonstrated in Figure 2.2 and Table 2.1.

Figure 2.2: Summary of the results of the phylotyping software on the genus

level: From left to right: The ideal annotation would give the same proportion

for the three bacteria; the result of AmphoraNet with the AmphoraVizu

evaluation; results of MG-RAST both with the rRNA option and the default

settings; the result of the blastn annotation with MEGAN5; the short read

distribution between taxa. Numerical results with more parameters are given

in Table 2.1.

In Dataset 2, we have taken the same count of genomes of H. pylori and

B. bacteriovorus, and twice as many from D. carboxyvorans; therefore, the

correct distribution expected is 25%-25%-50%. The results of the tests are

given in Figure 2.3.

In Datasets 3 and 4 we have taken genome-count distributions of the

species to be 25%-50%-25% and 50%-25%-25%, resp. The results of the tests
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H. pylori B. bacter. D. carb. SQ

AmphoraVizu

Species (prop, conf=0.5) 0.312 0.328 0.201 0.01569

Species (prop, conf=0.1) 0.315 0.328 0.307 0.00106

Genus (prop, conf=0.9) 0.319 0.328 0.321 0.00039

Genus (prop, conf=0.5) 0.320 0.328 0.335 0.00021

Species (amount, conf=0.9) 0.169 0.330 0.153 0.05954

Species (amount, conf=0.1) 0.267 0.330 0.289 0.00638

Genus (amount, conf=0.9) 0.285 0.330 0.323 0.00245

Genus (amount, conf=0.5) 0.288 0.330 0.343 0.00216

MG-RAST

Genus 0.206 0.368 0.285 0.01975

Species 0.207 0.378 0.339 0.01799

Genus (SSU/LSU) 0.170 0.190 0.480 0.06590

MEGAN5

Species (top=1) 0.195 0.456 0.349 0.03443

Species (top=10) 0.193 0.458 0.348 0.03545

Genus (top=1) 0.194 0.456 0.350 0.03474

Genome size distribution 0.196 0.456 0.348 0.03412

Taxon distribution 0.333 0.333 0.333 0

Table 2.1: The frequencies detected by different software for different phy-

lotypes. For AmphoraNet, different confidence settings (conf) and two

quantifying methods are applied in the AmphoraVizu evaluation of the re-

sults: ”proportion” (prop) and ”amount”. The last column gives the value∑3
i=1(xi − 1

3
)2, where xi, i = 1, 2, 3, are the numbers of the row. Clearly, SQ

is zero if and only if xi = 1
3
, i = 1, 2, 3. For the taxon distribution (in the last

row) SQ is zero; the closer is SQ to zero, the better is the result computed.
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are given in Figures 2.4 and 2.5.

Figure 2.3: The results of the metagenomic analysis software for the Dataset

2 on genus level. Here we have taken the same count of genomes of H.

pylori and B. bacteriovorus, and twice as many from D. carboxyvorans;

therefore, the correct distribution expected is 25%-25%-50%. (the Taxon

distribution). The dataset is available at http://pitgroup.org/static/

2D100kavg150bps.fna.

The software examined were the webserver implementation of AM-

PHORA2 [91]: the AmphoraNet [1]; MG-RAST [66] and MEGAN5 [53,104].

2.3.3 Methods

Design of the benchmark. Three bacterial genomes were chosen ran-

domly from the list of full bacterial genomes maintained at the European

Bioinformatics Institute Genomes Pages

http://www.ebi.ac.uk/genomes/bacteria.html, namely Bdellovibrio

bacteriovorus HD100, Desulfotomaculum carboxydivorans CO-1-SRB and He-

licobacter pylori Puno120. The genomes have lengths 3,782,950 bp, 2,892,255
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Figure 2.4: The results of the metagenomic analysis software for the Dataset

3 on genus level. Here we have taken the same count of genomes of H.

pylori and D. carboxyvorans, and twice as many from B. bacteriovorus;

therefore, the correct distribution expected is 25%-50%-25%. (the Taxon

distribution). The dataset is available at http://pitgroup.org/static/

2B1D1H100kavg150bps.fna.

bp, 1,624,979 bp respectively.

Next, MetaSim [75], a shotgun sequencing simulator, was applied to these

genomes. 100,000 simulated reads were chosen by MetaSim, each with an

expected length of 150 bp and standard deviation of 10.

In Dataset 1, the probability of a read chosen from a given genome was

proportional to the length of that genome: this distribution simulates the

case when we have the same number of cells, or in other words, the same

number of genomes from the three species; for example, simulated reads from

Desulfotomaculum carboxydivorans were chosen by more than twice more

frequently than reads from Bdellovibrio bacteriovorus. The exact values are

as follows: B. bacteriovorus is represented by 45,516 reads, D. carboxydivoran
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Figure 2.5: The results of the metagenomic analysis software for the Dataset

4 on genus level. Here we have taken the same count of genomes of B.

bacteriovorus and D. carboxyvorans, and twice as many from H. pylori;

therefore, the correct distribution expected is 50%-25%-25%. (the Taxon

distribution). The dataset is available at http://pitgroup.org/static/

2H100kavg150bps.fna.

by 35,001 reads and H. pylori by 19,483 reads. Note that while the bacteria

with longer genomes are represented by more reads than those with a shorter

genome, the artificial metagenome created describes a community with the

same number of each of the three bacteria.

The simulated reads are available for downloading at

http://pitgroup.org/static/3RandomGenome-100kavg150bps.fna.

In Datasets 2, 3 and 4 we have simulated the scenario when one of the

species has twice as many cells as each of the other two.

In Dataset 2 twice as many Desulfotomaculum carboxydivorans cells are

simulated as each of the other two, in Dataset 3 twice as many Bdellovibrio

bacteriovorus cells as each of the other two, and in Dataset 4 twice as many
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Helicobacter pylori cells are simulated as each of the other two. The links

to those sets are given in the “Availability” section, and the results in the

Figures 2.3, 2.4 and 2.5.

The application of the benchmark. The webserver implementation of

AMPHORA2 [91], AmphoraNet [1], with the evaluation/visualization com-

ponent AmphoraVizu [2]; MG-RAST [66] and MEGAN5 [53, 104] were ap-

plied to the datasets of the benchmark.

The AmphoraNet webserver’s running times were between 48m and 52m.

The result file was processed by the AmphoraVizu webserver [2]. The results

are given in Table 2.1 for Dataset 1.

The MG-RAST webserver [66] was run on the benchmarks both with

the default settings (on the ”Metagenome Overview” page the ”Taxonomic

Hits Distribution” section) and with the rRNA-based marker genes (in the

”Metagenome Analysis” section, choosing both SSU RNA and LSU RNA

databases; the results are denoted by “MG-RAST(SSU/LSU)” on the fig-

ures). The default settings were applied (Max. e-Value Cutoff 1e-5; Min. %

Identity Cutoff 90%; Min. Alignment Length Cutoff 60); the running time –

with the ”Data will be publicly accessible immediately after processing com-

pletion - Highest Priority” option chosen – was between 1 hours and 1 h 23

m for the datasets. Table 2.1 summarizes the data from the pie chart of the

”Taxonomic Distribution” section of the MG-RAST results page for Dataset

1. For other datasets, the results are visualized in the Figures 2.3, 2.4 and

2.5.

MEGAN5 [53,104] was applied as follows: firstly blastn was run against

the nt nucleotide sequence database of the NCBI, on our local server the

processing times were between 1886 m and 2085 m. Next, MEGAN5 was

applied for the evaluation of the raw blast file, it was completed in around
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10 m. Table 2.1 shows the read distribution among distinct phylotypes,

predicted by MEGAN5 for Dataset 1. For other datasets, the results are

visualized in the Figures 2.3, 2.4 and 2.5.

In summary, we have constructed a simple artificial benchmark for ex-

amining the quantitative capabilities of metagenomic phylotyping software,

consisting of four datasets. Our results show that the marker-gene detect-

ing AMPHORA2 pipeline highly outperforms the other software examined.

MEGAN5 detected very reliably the phylotypes of the short reads (as seen by

comparing the last two rows of Table 2.1), but the percentages there returns

the correct proportions of the short-read distribution between the genomes,

but unfortunately, not the genome-distribution within the sample.

2.3.4 Availability

The benchmarks, with the marked genome compositions, are available at the

following addresses:

Dataset 1 with distribution 1H-1B-1D (results shown in Figure 2.2 above):

http://pitgroup.org/static/3RandomGenome-100kavg150bps.fna,

Dataset 2 with distribution 1H-1B-2D (results shown in Figure 2.3):

http://pitgroup.org/static/2D100kavg150bps.fna,

Dataset 3 with distribution 1H-2B-1D (results shown in Figure 2.4):

http://pitgroup.org/static/2B1D1H100kavg150bps.fna,

Dataset 4 with distribution 2H-1B-1D (results shown in Figure 2.5):

http://pitgroup.org/static/2H100kavg150bps.fna.

AmphoraVizu [2] is available at http://pitgroup.org/amphoravizu/, its

source code at http://pitgroup.org/apps/amphoravizu/AmphoraVizu.

pl. AmphoraNet [1] is available at http://amphoranet.pitgroup.org.
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2.4 The “Giant Virus Finder” Discovers

an Abundance of Giant Viruses in the

Antarctic Dry Valleys

2.4.1 Introduction

The discovery of new giant viruses caused a considerable turmoil in virology

in the last decade: these viruses are larger than numerous bacteria and may

have even more than 2,500 genes [32,38,73,93]. They are parasitic to amoeba

cells living in freshwater reservoirs or seawater habitats. Until now, they were

not reported to be found in soil samples or arid environment.

The Acanthamoeba polyphaga mimivirus was first found in a cooling tower

of Bradford, England in 1992, and was later identified as the first giant virus

in 2003 [60]. Its genome consists of 800,000 basis pairs (bp).

Marseillevirus was found in the biofilm of a cooling tower near Paris [33];

its genome contains 368,000 bp.

The Cafeteria roenbergensis virus (CroV) was discovered in the seawater

off the Texas coast in the early 1990s [46, 47]; its genome contains 730,000

bp.

The Megavirus chilensis [27] was discovered in 2010 in a seawater sample

off-coast Chile; it has a 1.2 million bp DNA that encodes 1,100 proteins.

Pandoraviruses [70] were discovered in 2013 and they have the largest

genome of any viruses known. Their diameter is close to 1 µm. Pandoravirus

salinus was found in seawater off-coast Chile, and has a 2.5 million bp genome

that encodes around 2,500 proteins. Pandoravirus dulcis was found in a

garden pond in Latrobe University, Melbourne, Australia, has a 1.9 million

bp genome.
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The Samba virus [35] was found in surface water samples of the Amazon

river system in Brazil. Its 1,200,000 bp long DNA encodes 938 proteins.

The Pithovirus sibericum was identified in a thirty-thousand year old

frozen Siberian sample [61]. Its 610 kbp long genome encodes 467 proteins.

The Mollivirus sibericum was also identified from the same sample as

the Pithovirus sibericum [23]. Its genome-size is 651 kbp, and it has 523

protein-coding genes.

It is reported in [48] that DNA strands similar to that of the Mimivirus

can be found in the Sargasso sea environmental sequences database [86].

In the present section we re-analyze a dataset published with the arti-

cle [102], describing the soil microbiota of 16 samples of diverse geographic

locations, including the North-American prairie, the Chihuahuan- and the

Mojave deserts in New Mexico and California, the Antarctic dry valleys, the

Alaskan tundra, and several forests in tropical and temperate regions. The

focus of the work of [102] was the thorough metagenomic analysis of 16 envi-

ronmental samples for bacteria and archaea, enlightening phylogenetic- and

functional annotation of the nucleotide sequences found. No detailed analysis

was performed for viruses and viral genes.

Applying our new Giant Virus Finder workflow, we have found DNA

segments of giant viruses in the samples, implying the very probable presence

of giant viruses in these diverse soils.

The Giant Virus Finder

The “Giant Virus Finder” is a general workflow that we have developed for

the task of finding giant virus nucleotide sequences in metagenomic sam-

ples. The workflow is a collection of scripts with carefully set parameters

for BLAST-based searches [103] of short-read metagenomic data sets. The
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“Giant Virus Finder” is available at the address http://pitgroup.org/

giant-virus-finder.

The workflow is presented in detail in the “Methods” section in Figure

2.7. We emphasize here three important features:

(ı) We have prepared a list of giant viruses that takes into account only

the genome or (if there is no complete genome deposited) sequence size:

viruses with 300 kbp or longer genomes or sequences are the members

of the list. Clearly, all of the known giant viruses are on the list, but

some large viruses, usually not listed as ”giants”, are also there; e.g.,

the Canarypox virus, or some large bacteriophages. We note that the

user of the method can easily adjust this 300 kbp threshold to arbitrary

other value.

(ıı) Our method searches for the whole short read (and not only the best-

aligned subsequence of the short read), taken from the metagenomic

dataset, in the NCBI Nucleotide Collection (nt). This is an important

point: if a giant virus is present in the sample, then some short reads

come entirely from its genome.

(ııı) The word size in the BLAST searches [103] are set cautiously: Too

long word size in BLAST searches would not find highly scored non-

giant virus sequences in the specificity validation step. Short word

sizes, however, increase the precision and also the computational time

considerably. We have used w = 7 word size in blastn search [103]

(instead of the default w = 28 word size in Megablast or the w = 11

word size in blastn.) In a 16-core server, the running time was a little

over four days.
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2.4.2 Results and discussion

We have examined the metagenomes collected and deposited with the article

[102] for the presence of nucleotide sequences characteristic of giant viruses.

The summary of our results is given in Figure 2.6. A detailed list of the

best hits with extremely good E-values are given in Table 2.2.

Figure 2.6: Summary of the results of the application of the Giant

Virus Finder for the 16 metagenomes of [102]: Each metagenome is de-

noted on axis x by its geographic location, and the bars visualize the

number of the giant virus reads found in the dataset. Detailed results

can be found at http://pitgroup.org/public/giant-virus-finder/

Giants-in-16Soil-metagenomes.

While the “Giant Virus Toplist”, defined in the “methods” section, con-

tains large phages and a few other viruses that are usually not considered

to be Giant viruses, our top results — measured by E-values and given in

Table 2.2 — contains mostly giant viruses when applied to the metagenomes

of [102]. For the criterion of assigning a short read to Giant viruses we use
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Read identifier MTG Location E-value Identity Putative taxa

6:88:18701:16918 803 Lake Bonney Valley 4e-30 91/100 O.Lake phycodnavirus 1

6:47:2094:15918 902 Lake Fryxell Valley 8e-26 87/99 Mimiviridie [family]

7:99:13938:20909 904 Wright Valley 3e-25 86/98 P.bursaria Chlor.virus

4:84:16596:9047 876 Bonanza Creek 1e-24 87/100 Mimiviridie [family]

4:2:19051:10732 876 Bonanza Creek 1e-23 86/100 Mimiviridie [family]

4:114:18824:12821 876 Bonanza Creek 1e-23 86/100 Mimiviridie [family]

4:46:3341:11752 876 Bonanza Creek 1e-22 84/98 Mimiviridie [family]

6:81:6130:14704 803 Lake Bonney Valley 2e-20 83/99 Mimiviridie [family]

6:114:9759:15200 902 Lake Fryxell Valley 3e-19 71/80 Pandoravirus dulc./sal.

4:22:15009:3518 876 Bonanza Creek 3e-19 80/95 Enterobact.[fam.]phage

4:104:7691:17992 901 Lake Bonney Valley 3e-19 83/100 Enterobact.[ord.]phage

6:73:2193:17269 902 Lake Fryxell Valley 4e-18 82/100 Mimiviridie [family]

6:62:15221:2441 803 Lake Bonney Valley 1e-17 72/84 Mimiviridie [family]

6:66:10892:20320 902 Lake Fryxell Valley 4e-17 76/91 Mimiviridie [family]

6:89:6245:20070 900 Garwood Valley 1e-16 81/98 Mimiviridie [family]

6:114:12016:8378 902 Lake Fryxell Valley 5e-16 74/89 Mimiviridie [family]

4:22:17523:8570 876 Bonanza Creek 5e-16 75/91 Mimiviridie [family]

6:79:15305:6160 872 Chihuahuan Desert 5e-16 80/99 Mimiviridie [family]

6:39:10664:8341 900 Garwood Valley 6e-15 72/86 Mimiviridie [family]

7:52:4423:10207 904 Wright Valley 6e-15 60/67 Mimiviridie [family]

7:16:9740:9012 904 Wright Valley 6e-15 73/89 Mimiviridie [family]

4:7:2721:12270 873 Chihuahuan Desert 2e-15 66/75 P.bursaria Chlor.virus

5:83:4473:7350 874 Toolik Lake 2e-15 65/75 Mimiviridie [family]

5:42:4010:17638 899 Duke Forest 2e-15 81/99 C.roenbergensis virus

7:31:3572:1747 904 Wright Valley 2e-15 74/90 Moumovirus

Table 2.2: Best hits, ordered by the E-value, found by applying the Giant

Virus Finder for the 16 metagenomes of [102]. Read identifier: identifies

the read. MTG: relevant digits that identify the metagenome. Location:

Geographic name of the source sample. E-value: in Phase 2, the smallest

(i.e., best) E-value of the hits found. Identity: the number of identical nu-

cleotides in the best-aligned hit. Putative taxa: Assigned taxon using the

top 20% rule similarly to the MEGAN LCA algorithm [104].

a MEGAN5-like approach [104]: if every taxon in the top-scored 20% of the

Phase 2 alignments are listed in the “Giant Virus Toplist”, then we accepted
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the read as a giant virus hit.

Samples from Lake Fryxel Valley, Garwood Valley and the Wright Valley,

Antarctica, and from Bonanza Creek Forest LTER, Alaska contained the

most giant virus taxa. No positive evidence (in the sense described in the

“Methods” section) was found for the presence of giant virus DNA fragments

in the sample originated from the Manu National Park, Peru.

It is surprising that both hot and cold desert soils contain giant viruses;

this finding is in line with our previous result concerning the presence of the

giant viruses in the soil samples of the Indian Kutch saline desert [5].

It is worth mentioning that the independent validation of the results

presented is easy with the NCBI blastn webserver: one needs to choose a

result file which has “GiantVirusFinder-0.2.fasta” filename ending and then

needs to feed it into the NCBI blastn webserver selecting the “Somewhat

similar sequences (blastn)” program option and setting the word size 7 at

the “Algorithm parameters setting” option.

2.4.3 Methods

We believe that the method, presented here, is a general workflow: it could

also be applied for identifying other sets of taxa, not only giant viruses. The

steps of the general workflow:

(ı) Identify the set X of genomes to be searched for (in our application

example X is the set of genomes of the giant viruses);

(ıı) Apply subsequence-search for the sequences in X in the target metage-

nomic shotgun sequence database Y (in our example Y is one of the

16 metagenomes of [102]);
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(ııı) Verify the specificity of the hits: the whole fragments in the metage-

nomic dataset, containing the highest-scored alignments, are aligned

to the sequences of a large nucleotide database. Suppose that the top

scored hit has score z. If all the hits with scores greater than 0.8×z are

from the set X, ACCEPT, otherwise REJECT the hit (in our exam-

ple, the hits are aligned to the sequences of the Nucleotide Collection

(nt) of the NCBI; and a hit is accepted only if every sequence in the

top-scored 20% belong to set X that is, to the giant virus list).

10% cut-off is applied as a default value in the MEGAN phylogenetic

analysis tool [104] for a similar decision. We have found this number is too

low for our purpose so we set a more stringent value of 20%. Users can simply

change this threshold.

The steps of the method are summarized in Figure 2.7, and in the

README file of the GiantVirusFinder-1.1.zip archive on http://pitgroup.

org/giant-virus-finder/latest.

The Giant Virus Toplist

In the workflow described above, we need a list X of the genomes and se-

quences of the organisms we are searching for. Defining what is a giant

virus and what is not, is a difficult question. We would not like to use po-

tentially questionable and much disputed phylogenetic information in this

definition: we simply have constructed the list of viruses with viral genomes

or partial genomes (if there is no complete genome deposited) larger than

300 kbp as it is detailed in http://pitgroup.org/giant-virus-toplist/.

Reference genome data are taken from the ftp://ftp.ncbi.nlm.nih.gov/

genomes/Viruses/all.fna.tar.gz file from the NCBI Genome FTP. Note

that the length of distinct genome sequences (segments) belonged to a sin-
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Figure 2.7: Summary of the Giant Virus Finder workflow. First, the giant

virus genomes are selected: the selection criterion is a viral genome of a size

of at least 300,000 bp (if only a partial genome is deposited, its size needs to

be at least 300,000 bp). Next, all genomes of giant viruses are aligned to all

DNA short reads in the metagenomic dataset. If a high-scored alignment is

found, then the whole read that contains the aligned subsequence (and not

only the subsequence of the high-scored alignment) is blasted to the whole

NCBI Nucleotide Collection (nt). The short read is accepted as a DNA short

read from a giant virus if every sequence from the top 20% scored hits, found

in the NCBI Nucleotide Collection, corresponds to giant viruses.

gle genome are summarized. Other sequences are added from the NCBI

Nucleotide database using the search term: ”Viruses”[Organism] AND

300000:10000000[Sequence Length] NOT ”Bacteria”[Organism] NOT ”Ar-

chaea”[Organism]. The list of the viruses found is also given in Table S2

in the supporting material, together with the sequence accession numbers

applied in this work.
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The inspiration for the Giant Virus Toplist came from http://www.

giantvirus.org/top.html. Our toplist is more up-to-date and contains

not only the complete, but also partial genomes.

Sequence alignments

The metagenomic data of the article [102] is deposited in the MG-

RAST archive: http://metagenomics.anl.gov/metagenomics.cgi?page=

MetagenomeProject&project=2997. We downloaded and converted the files

into fastq formats. Next, with the stand-alone BLAST distribution [103]

downloadable makeblastdb program we created 16 BLAST databases for each

of the 16 metagenomes.

In Phase 1 (Figure 2.7) we used the stand-alone UNIX blastn program

with the default Megablast algorithm changed the word-size from 28 to 16

and e-value from 10 to 0.01, all the other parameters and the scores and

penalties were the default for blastn.

Next, in Phase 2, the hits with better E-value than 0.01 were collected

from each alignment, and were aligned using blastn with word-size of 7

against the whole Nucleotide Collection (nt) of the NCBI. Suppose that the

top scored hit has score z. If all the hits with scores greater than 0.8× z are

from the Giant Virus Toplist, we accepted the hit, otherwise rejected it.

The summary of the results of the two-phase search process with

the highest scored giant viruses is given in Figure 2.6. All the files

created by the workflow are given at http://pitgroup.org/public/

giant-virus-finder/Giants-in-16Soil-metagenomes/.
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The advantage of the two-phase method

Using a straightforward one phase method (simply blastn all reads against

the nt database with the word-size=7 option) would require about 1080 years

(about 0,084 h/read) in a machine using a single CPU core. Selecting 9,829

candidate reads from the whole 112,674,624 reads of the 16 metagenomes in

Phase 1 reduced the running time to about 34 days in a single-core machine.

Data availability: The metagenomes of the article [102] can

be downloaded from http://metagenomics.anl.gov/metagenomics.cgi?

page=MetagenomeProject&project=2997. The Giant Virus Finder is

downloadable from http://pitgroup.org/public/giant-virus-finder/

latest. The detailed alignment results in both phases of the

search are found in http://pitgroup.org/public/giant-virus-finder/

Giants-in-16Soil-metagenomes.

2.5 Giant Viruses of the Kutch Desert

2.5.1 Introduction

In the present section we analyze the Kutch desert metagenome [69], collected

from soil samples with high salinity levels, by “The Giant Virus Finder”

workflow detailed in the previous section.

2.5.2 Results and discussion

The results of the two-phase method are given in

http://pitgroup.org/public/giant-virus-finder/

Giants-in-Kutch-metagenomes/phase2-results/. The top 20 hits are

listed in Table 2.3, the numbers of giant viruses found in each metagenome
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are visualized in Figure 2.8.

The geographic locations of the metagenomes are given in Figure 2.9.

Read identifier Length E-value Identities Putative taxa

SRR1245949.120967 233 2e-77 209/230 Organic Lake phycodnavirus 1

SRR1245949.1849224 204 1e-59 171/197 Cafeteria roenbergensis virus BV-PW1

SRR1245949.597441 204 1e-59 171/197 Cafeteria roenbergensis virus BV-PW1

SRR1245949.1759145 160 6e-56 145/158 Organic Lake phycodnavirus 1

SRR1245949.1643015 215 2e-46 176/216 Organic Lake phycodnavirus 1

SRR1246239.1961729 241 2e-45 186/239 Moumouvirus Monve isolate Mv13-mv

SRR1245949.1773289 255 1e-42 195/255 Organic Lake phycodnavirus 1

SRR901749.176694 201 7e-38 158/198 Mimiviridae [family]

SRR901747.2102813 234 1e-35 175/229 Bacillus phage G

SRR901747.2102154 218 1e-34 149/188 Phaeocystis globosa virus strain 16T

SRR901749.48809 211 5e-34 164/213 Mimiviridae [family]

SRR901747.677984 127 4e-31 112/130 Phaeocystis globosa virus strain 16T

SRR901749.794757 215 8e-31 155/201 Phaeocystis globosa virus strain 16T

SRR901749.784789 219 4e-29 127/161 Enterobacteriaceae [Family] phage

SRR901749.92543 225 1e-28 142/184 Choristoneura biennis entomopoxvirus ’L’

SRR901747.2414554 131 1e-25 109/133 dsDNA viruses, no RNA stage

SRR1246238.1084710 146 4e-26 117/144 Mimiviridae [family]

SRR901747.1262471 184 2e-24 136/182 Bacillus phage G

SRR901749.1594958 207 3e-24 111/139 Bacillus phage G

SRR901747.197000 159 2e-23 114/145 Bacillus phage G

Table 2.3: The top 20 hits of Giant Virus Finder in the Kutch metagenomes.

Note the extremely good E-values of the hits.
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Figure 2.8: The number of giant virus sequences found in the metagenomes

of the Kutch desert.

Figure 2.9: Locations of the sample sources. Left to right: red: S5, blue:

S4, S6, S7, black: S3, green: S1, orange: S2. (Made with http://www.

copypastemap.com/ and Google Maps).

2.5.3 Materials and Methods

The “Giant Virus Finder” workflow was applied for the search in

the metagenomes published in [69]. The “Giant Virus Finder” work-

flow is described in detail on its web page http://pitgroup.org/
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giant-virus-finder, in [4], and the previous section. Here we give a short

overview of the method.

Step 1 A list of the giant viruses was generated, containing virus genomes of

size 300 kbp or more; called the “Giant Virus Toplist”.

Step 2 Sequential similarities are searched for between the Giant Virus Toplist

and the Kutch metagenomes [69] by a blastn search.

Step 3 The best hits of Step 2 were identified, and the metagenomic short read

(let us denote it with R), which contained the best hit, is aligned to

the whole NCBI Nucleotide Collection (nt) with blastn with a wordsize

w = 7 instead of the default w = 28.

Step 4 Suppose that when we aligned R against the nt database, and the score

of the top scored hit from nt was z. Now, we say that R is ACCEPTED

as a giant virus DNA segment, if all hits from nt of scores greater than

0.8z are from Giant Virus Toplist, otherwise we REJECT.

We note that Step 1 is needed for the speed-up of the process: without

Step 1, all the short reads from the metagenome could have aligned to the

whole nt database, and the acceptance could have been defined exactly as in

Step 4. In this case, however, the running time was several processor hundred

years instead of several CPU days with the Giant Virus Finder. More exactly,

on a single CPU core, the Giant Virus Finder’s phase 2 runs for 17 days, for

the 2517 candidate reads. Without phase 1, however, with the w = 7 word

size, for the 17,401,054 reads, the running time were 319 years.

We also note that setting the word size to w = 7 is crucial. From our top

20 hits, with the default word size, 16 give negative results (No significant

similarity found). On the other hand, when the specificity is verified in Step
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4, we require that the top 20% of the hits are giant viruses. Unfortunately,

blast with the default word size would not find numerous non-giant virus

hits, and, consequently, would yield false positive results.

For a graphic description of the process, we refer to Figure 2 in [4].

It is worth mentioning that the independent validation of the re-

sults presented are easy with the NCBI blastn webserver: choose a re-

sult file from here http://pitgroup.org/public/giant-virus-finder/

Giants-in-Kutch-metagenomes/phase2-results/ which has

”GiantVirusFinder-0.2-with hits.txt” filename ending and feed it into the

NCBI blastn webserver, choose the ”Somewhat similar sequences (blastn)”

program option and set the word size w = 7 at the “Algorithm parameters”

setting and uncheck ”Low complexity regions”.

Data availability

The metagenomes of the article [69] can be downloaded from the NCBI

Short Read Archive, the download links are given in our supplementary Ta-

ble S1. The Giant Virus Finder is downloadable from http://pitgroup.

org/public/giant-virus-finder/latest. The detailed alignment results

in both phases of the search are found in http://pitgroup.org/public/

giant-virus-finder/Giants-in-Kutch-metagenomes/.

2.5.4 Conclusions

In the last two section we have shown, by our knowledge at the first time, the

very probable presence of giant viruses in diverse environmental soil samples

by a two-phase search strategy in metagenomic samples and the NCBI Nu-

cleotide Collection (nt). Our result implies that not only the oceans, biofilms
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in cooling towers or small freshwater ponds, but in various non-aqueous envi-

ronments as the Kutch Desert, the Antarctic dry valleys, the Mojave desert,

the prairie and several forest-soil can also accommodate these newly discov-

ered viruses.

2.6 Life without dUTPase

2.6.1 Introduction

The DNA macromolecule is the repository for genomic information in most

organisms (with the notable exception of RNA viruses). Stable storage and

faithful transmission of genomic information would optimally require a stable

macromolecule for these roles. However, the inherent chemical reactivity of

DNA and the presence of reactive metabolites and other molecular species

within the cell leads to numerous chemical modifications within the DNA

even under normal, physiological conditions [113–116]. Mutations arising

from these modifications need to be kept under control, and numerous DNA

damage recognition and repair processes evolved to deal with these prob-

lems [117]. It is also important to mention that mutations are important

instruments in driving evolutionary changes and development, as well. Espe-

cially for single cell organisms, eminently for bacteria, increased mutational

rates leading to new phenotypes may be even advantageous for the species –

appearance of antibiotic resistant strains may be a prominent example in this

respect [118, 119]. Meanwhile, cells that acquired mutations deleterious for

the phenotype will be overgrown by cells with advantageous mutations. In

multicellular eukaryotes, such evolutionary changes are more complex since,

in these organisms, the viable phenotype is more restricted due to the highly

increased interactions within the cellular environment and also with the other

44



cells/organs.

In response to the need of conserving the DNA-encoded information, a

number of specific and highly efficient DNA repair pathways have evolved,

such as base-excision repair, nucleotide excision repair, mismatch repair and

double-strand break repair [120]. These are strongly conserved from bac-

teria to man, and the protein factors responsible for these processes are

usually ubiquitous, although the cognate protein families and isoforms may

differ among organisms of different evolutionary branches. For pathways of

key significance, it is also frequently observed that multiple protein fami-

lies with similar functions are present in one organism to safeguard DNA-

encoded information [121]. In addition to the dedicated DNA damage recog-

nition and repair pathways, sanitization and proper balance of the nucleotide

pools are also of high importance [122]. Hence, regulation of nucleotide de

novo biosynthesis and salvage pathways need to be fine-tuned, and unwanted

dNTPs, such as dUTP and dITP have to be removed. Sanitizing enzymes are

usually dNTPases catalyzing pyrophosphorolysis of the specific un-orthodox

dNTPs [123]. A prominent example in this regard is the dUTPase enzyme

family, representatives of which are considered to be ubiquitous and essential

for viability in all free-living organisms [115, 124, 125]. There is an intimate

cross-talk between enzymes responsible for sanitizing of nucleotide pools and

the respective base-excision repair DNA N-glycosylases that act hand in hand

first to prevent incorporation of the unwanted nucleotide building block con-

taining modified bases into newly synthesizing DNA and second, to excise

those moieties that escaped the preventive measure or got produced within

the DNA in situ. For the uracil moiety, the preventive/excising enzyme activ-

ities are presented by the dUTPase and the uracil-DNA glycosylase enzyme

families, respectively [124–128].
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The crosstalk between preventive and excising activities constitutes joint

functional efforts with the aim to guard genome integrity. For the dUT-

Pase/UNG enzyme pair, knock-out of the preventive activity of dUT-

Pase is highly dangerous for the cell because it induces numerous uracil-

incorporation events that will overload the base excision repair mechanism

and transforms it into a hyperactive futile cycle [124,125,129,130]. Knock-out

of UNG, however, can be tolerated [131]. In an ung- background, comple-

menting enzyme families with uracil-DNA excising activities (TDG/MUG,

SMUG, MPD4 enzyme families) are still functional, although less effec-

tive [121, 132]. Also, organisms with uracil-substituted DNA are still viable

in lack of UNG, the most efficient uracil-excising enzyme [125,133].

In a dUTPase knock-out background, viability can be still restored in

some cases by simultaneous UNG knock-out [126, 127, 134], or by inhibiting

the UNG enzyme with its specific and highly efficient protein inhibitor, UGI.

In the double mutant organisms, the uracil content within DNA is highly

elevated, however, the cells can survive, most probably since the majority of

uracil moieties under these conditions are present as thymine-replacements,

i.e., with the same Watson-Crick coding characteristics. Such circumstances

have been observed in artificially engineered bacteria (E. coli), or simi-

lar situations are also found in specific life stages of wild type Drosophila

melanogaster where dUTPase is down-regulated during development and the

ung gene is absent from the genome [125,133].

However, to our knowledge, there is no report published on any free-living

organism where the gene for dUTPase is not present within the genome. Our

recent observations in several Staphylococcus strains shed light on circum-

stances where the dUTPase gene on the bacterial chromosome is present

only due to insertion of a phage-encoded gene (in prophage form) [128]. A

46



wide survey of Staphylococcal strains also revealed several occasions where

strains are viable and infectious in the absence of dUTPase gene(s) present

in the genome, still, these strains are viable [135,136]. This intriguing situa-

tion prompted us to investigate in details the genotypes of prokaryotes and

Archaea with respect to the existence of genes primarily involved in uracil-

DNA metabolism. Towards this aim, we have analyzed all fully-sequenced

bacterial and archaeal genomes deposited in NCBI, that is, 2261 bacterial

and 151 archaeal genomic sequence sets. In these investigations, we have

specifically looked for the existence or lack of the genes of the dUTPase en-

zyme families, UNG the most proficient uracil-DNA glycosylase, as well as

the genes for the proteins, described up to date as inhibitors of either dUT-

Pase or UNG. Results clearly showed that numerous investigated microbes

do not possess dUTPase genes, and this genotype can be paired with different

patterns of presence/absence of UNG and inhibitor proteins. We conclude

that the genetic distribution of proteins involved in uracil-DNA metabolism

is unexpectedly diverse, and these conditions may have physiological conse-

quences.

2.6.2 Materials and Methods

Here we describe the workflow that has generated the list of bacterial and

archaeal genomes without dUTPase and from these genomes those with and

without UNG, UGI, SAUGI and P56. The list, tables and the source of

the in-house programs referred below, are available at the website http:

//pitgroup.org/static/life_wo_dutpase/.
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Finding bacterial genomes that do not contain dUTPase

The source of the bacterial and archaeal genome sequences was down-

loaded from the NCBI FTP site: ftp://ftp.ncbi.nlm.nih.gov/genomes/

Bacteria/all.fna.tar.gz. For sequence search and alignment, the stand-

alone UNIX blast program [137] was applied from the site http://www.

ncbi.nlm.nih.gov/books/NBK52640/ on our local servers. Next, with

the makeblastdb program, databases were generated for the genomic se-

quences for processing with blast. We filtered out the DNA sequences corre-

sponding to plasmids by applying our in-house scripts GenAllGenomesFile-

Names.sh and allgenomes wo-plasmids.pl. Search for dUTPase sequences,

the UNG sequence and the UNG inhibitor UGI-SAUGI-P56 sequences were

directed by the run-blast.pl script that calls the program tblastn; the ap-

plied fasta files to search for in the database were: dUTPase-tri-di1-di2-

arch.fasta,UNG.fasta, UGI-SAUGI-P56.fasta., all downloadable from http:

//pitgroup.org/static/life_wo_dutpase/. The dUTPase fasta file con-

tains one trimeric (E. coli dUTPase, UniProt: P06968), two dimeric (C. je-

juni and S. aureus phiEta phage dUTPases, UniProt: O15826 and Q9G011,

respectively), as well as and one archaeal dUTPase-like sequence (the pu-

tative dCTP deaminase from Pyrococcus furiosus, Uniprot accession num-

ber Q8X251). The UNG fasta file contains the NCBI Reference Sequence

WP 001262716.1 of Enterobacteriaceae uracil-DNA glycosylase. The fasta

file for the UNG inhibitor proteins consists of the sequences corresponding

to the UniProt accession numbers P14739, Q936H5 and Q38503.

The evaluation of the tblastn results was performed by the script find-

nohits.pl that returned a table of the bacterial/archaeal genomes without

dUTPase genes where no alignments were found with smaller than 0.01 E-

value for any of the three dUTPases we search for. The genomes without
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dUTPase hits were also partitioned into classes (i) according to the con-

tainment of UNG genes with better than 0.01 E-value, and (ii) containment

of any UNG inhibitors with sequence-similarities from the fasta file UGI-

SAUGI-P56.fasta of 0.01 E-value or less. The genomes without dUTPase

and with UNG are listed in Supplementary Table S1. The memberships

in the partitions of (i) and (ii) are denoted in the first two columns of Ta-

ble S1. The genomes without both dUTPase and UNG are listed in Sup-

plementary Table S2. The supplementary material is downloadable from

http://uratim.com/Life_without/LWO_Supplementary.zip.

The interested reader can easily reproduce the results in each

row of Tables S1 and S2 by using the on-line webserver at NCBI

at the site: http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=

tblastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome by choosing the

“Align two or more sequences” option, copying the content of the fasta file

tri-di1-di2-arch-UNG-UGI-SAUGI-P56.fasta in the first and copying the NC

number of the row of the table into the second input field, and setting “Ex-

pect threshold” value to 0.01 at the “Algorithm parameters” menu (see the

Supplementary Figure S2 for a screenshot). The hits are colored black while

the sequences without hits by gray color.

Generating the taxonomic distribution figure from the results Ta-

bles S1 and S2:

We have used the MEGAN5 [138] metagenomic analysis software in a cre-

ative way for generating the evolutionary distribution of the genomes with

and without dUTPase and UNG. Certainly, we do not have metagenomes

here, but we can exploit a particular capability of the MEGAN5 software

as follows. MEGAN5 is capable of comparing the taxonomic distribution of
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three metagenomes, and it can generate a phylogenetic tree to visualize the

distribution. The membership in the three metagenomes can be described

by a length-3 0-1 characteristic vector, the ith value is 0 if the taxon is not

in the metagenome and 1 if it is in the metagenome, for i = 1, 2, 3. Here

we substitute these “memberships in metagenomes” with the memberships

of sets of genomes with and without dUTPase and UNG as follows: 1,0,0

is substituted if the genome contains dUTPase gene, 0,1,0 is written if the

genome does not contain dUTPase but it contain UNG, and 0,0,1 is written

if the genome does not contain dUTPase and UNG.

The more technical description of the workflow is as follows.

First, the file that maps the gi values the Taxonomy IDs was downloaded

from the NCBI FTP site: ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/

gi_taxid_nucl.dmp.gz. From this file, using the non-plasmid bacte-

rial/archaeal genome-headers, with a script enclosed as Annot-w-TAXID.pl,

NC-numbers were mapped to gi and Taxonomy IDs; the resulting file is NC-

GI-TAXID-wo-plasmid.csv.

Next, the gen-megan.pl script of ours was applied to get life wo di1-di2-

tri-arch dUTPase E001.megan file that was opened by the MEGAN5 soft-

ware (downloadable from http://ab.inf.uni-tuebingen.de/software/

megan5/. The evolutionary tree figures were created by setting the Rank, and

in the Tree menu by setting the Show Number of Read Summarized and Show

values on log scale options. The leaves, containing only few genomes can be

filtered by setting the Tree/Hide Low Support Nodes option in MEGAN5.

2.6.3 Results and Discussion

Figure 2.10 describes how UNG and dUTPase collaborate to keep DNA

uracil-free and also shows the inhibitory protein factors described so far in the
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literature for either dUTPase or UNG. To date, only one dUTPase-inhibitory

protein has been identified at the molecular level, namely, the repressor pro-

tein termed Stl. This protein is encoded within the S. aureus SaPIBov1

pathogenicity island. For UNG, three different proteins have been identified

with significant inhibitory effectivity. Two of these (UGI and p56) are en-

coded by different bacteriophages (phages PBS1/PBS2 and phi29 of Bacillus

subtilis ( [139,140], respectively). The UGI function encoded in phages is ei-

ther required to allow synthesis of uracil-enriched DNA (in the case of phages

PBS1/PBS2) or protects against the cleavage of phage genome at uracil po-

sitions thereby facilitating viral DNA replication [141]. The third protein

with UNG inhibitory activity was recently identified in S. aureus (SaUGI)

and interestingly, this is the first such case where a UNG inhibitor is encoded

in the cellular genome itself [142].

Both dUTPase and UNG are generally presumed to be ubiquitous in free-

living organisms. It was, therefore, an unexpected finding that in S. aureus,

the dUTPase gene is only found located on phages or prophages inserted

into the cellular genome, while in strains cured of prophages and phages, the

dUTPase gene is absent from the genome [128]. Such conditions where the

dUTPase enzymatic activity is down-regulated or missing are highly dele-

terious but may be well tolerated if the uracil-DNA glycosylase activity is

diminished. In light of the recent studies on dUTPase and UNG inhibitory

proteins, we set out to investigate the genotypes of prokaryotes and Archaea

and in these organisms, we describe the distribution of genes that act for or

against of uracil occurrence in DNA.

In our studies, we investigated those prokaryote and Archaea genomes

that are fully sequenced and deposited in the NCBI Genome database. For

dUTPases, two protein families have been described to date, the all-beta
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Figure 2.10: Pathways and protein factors involved in the metabolism of

uracil-substituted DNA.The scheme illustrates that dUTPase and UDG are

responsible for keeping uracil out of DNA by dNTP pool sanitization or

uracil-excision, respectively. Inhibitor proteins against UDG (UGI, SaUGI

and p56) and dUTPase (Stl) are also included on the figure, showing their

point of inhibitory attack.

trimeric and the all-alpha dimeric dUTPases [123], hence we used represen-

tative sequences of these families in our search (dUTPases from E. coli and

C. jejuni, respectively). Some Staphylococcal phages also encode a variety of
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dimeric dUTPase, hence one such sequence was also inserted in the search.

In addition, some dCTP deaminases, especially from Archaea, were shown to

belong to the trimeric dUTPase fold and acting as bifunctional dCTP deam-

inase/ dUTPase enzymes. One such sequence was therefore also included

(namely dCTP deaminase from P. furiosus). For uracil-DNA glycosylase,

the sequence of the UNG enzyme from E. coli was used in our search, as

this subfamily of uracil-DNA glycosylases is associated with the major uracil

excising efficiency.

The result of screening the bacterial and archaeal genomes for the pres-

ence/absence of dUTPase and UNG genes is shown in Figure 2.11. Inter-

estingly, this systematic approach revealed that the lack of dUTPase genes

is far more frequent than usually thought. Numerous evolutionary branches

showed up where a few or more species do not encode dUTPase protein (note

the colored segments in Figure 2.11). In fact, most of the phyla contained

some species where the dUTPase genes were not found. These instances are

widely occurring on the bacterial evolutionary tree, and also among Eur-

yarchaeota. These cases were further distributed into two groups depending

on the simultaneous absence or presence of UNG gene (cf blue and pink

segments in Figure 2.11, respectively). These two groups are expected to

constitute highly different physiological conditions. Dual lack of both dUT-

Pase and UNG possibly results in a viable phenotype with uracil enrichment

in the DNA while the lack of dUTPase and presence of UNG is expected to

result in genomic instability, and in many cases, cell death.

A more detailed analysis of the evolutionary distribution of species that

do not have dUTPase genes is shown in Figure S1 (cf also Table S1 and S2).

Table 2.4 summarizes those evolutionary groups where the occurrence of dut-

genotypes is detected in > 5% of all genomes within the given evolutionary
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Figure 2.11: The distribution of bacterial/archaeal genomes without dUT-

Pase. Only those classes are shown that have at least 15 genomes examined.

Each node of the tree is labeled by three numbers: the first is the number of

genomes with dUTPase under the node; the second is the number of genomes

without dUTPase and UNG; the third is the number of genomes without

dUTPase and with UNG. Since we show only the classes with at least 15

genomes at the right, the not shown classes account for the genomes, missing

from the summation.

group and also indicates if the UNG gene is present or absent.

In summary, despite the usual textbook knowledge, we have clearly

demonstrated that dUTPase is far from being ubiquitous in prokaryotes and

Euryarcheota. It is of immediate further interest to understand how the dif-

ferent organisms may cope with this unexpected situation, especially when

UNG is still present.

Inhibitory proteins of UNG may modify the physiological scenario, hence

we investigated if any of the UNG inhibitory proteins may be encoded in those

bacterial and archaeal genomes that showed up as dut-ung+ in our analysis.
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Table 2.4: Distribution of dut genotypes among bacteria and Archaea. Evo-

lutionary branches where the dut-ung+ or dut-ung- genotype occurs in > 5%

of all genomes within the given evolutionary group

dut – ung+ dut – ung –

Staphylococcaceae Oscillatoriophycideae

Flavobacteriaceae Thermoanaerobacterales

Bacillaceae Oceanospirillales

Enterococcaceae Mycoplasmataceae

Vibrionaceae Thermotogaceae

Spirochaetaceae Methanomicrobia

Mycoplasmataceae

We found that none of the phage-related UGI or p56 protein genes could

be located on the genomes investigated. The gene for SaUGI, the S. aureus

UNG inhibitory protein was located on the S. aureus genome, and a similar

sequence was also found on the Butyrivibrio proteoclasticus genome but not

elsewhere. Hence, uracil-DNA metabolism basically remains to be governed

by the dUTPase and UNG enzymes, with only a very few exceptions, mostly

S. aureus strains.

Survival strategies and possible physiological consequences

Since the dut-ung+ genotype is expected to result in genomic instability, it

was of interest to investigate if any specific strategy may be employed by the

species that are characterized by this unusual feature. First of all, it is im-

portant to mention that for S. aureus, numerous phages have been described

that encode dUTPase (representatives from either the all-beta trimeric or the

all-alpha dimeric dUTPase enzyme families). It has been also described that
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in Salmonella enterica, the S. enterica Serovar Typhimurium Myophage May-

nard also encodes a bona fide dUTPase gene [143]. Although fully genomic

sequence information is limited for other Salmonella phages, this specific in-

stance of phage-encoded dUTPase in the Myophage Maynard indicates the

possibility that Salmonella strains also rely on phage-provided dUTPases.

Another strategy to supply some dUTPase-like enzymatic activity was

found in Deinococcus radiodurans. This organism, known for its high re-

sistance against ionizing radiation [144], encodes a MazG-like enzyme, with

a rather promiscuous substrate specificity [145]. Among numerous dNTPs,

the MazG-like D. radiodurans enzyme also cleaves dUTP [145]. Although

less efficient and less specific, this supplementation of dUTPase enzymatic

activity may ensure viability. In this respect, it is relevant to point out that

in several systems, strong inhibition of dUTPase did not lead to lethality

indicating that a residual dUTPase activity might be still enough for sur-

vival [124, 146]. Under these circumstances, the genomic DNA may contain

a somewhat elevated level of incorporated deoxyuridine moieties.

For Thermatoga and Methanomicrobia, data from the literature indicate

that the dut-ung- genotype found in our present work may be compensated

for by including genes for a less specific MazG-like dNTPase together with

an Archaea-like uracil-DNA glycosylase [147]. Lateral gene transfer between

Archaea and bacteria has been suggested as the underlying mechanism that

led to the appearance of Archaea-like uracil-DNA glycosylase in Thermatoga.

In conclusion, we have shown that the genes for the common dUTPase en-

zyme families are far from being ubiquitous in prokaryotes and Archaea. This

unexpected genotype is observed in evolutionary well-separated branches sug-

gesting that loss of the dut gene(s) might have occurred on multiple inde-

pendent occasions during evolution.
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Supplementary tables and figures

The supplementary material is downloadable from http://uratim.com/

Life_without/LWO_Supplementary.zip

Figure S1 depicts the taxonomic distribution of bacterial/archaeal

genomes without dUTPase on the family level. Only those families are shown

that have at least 15 genomes examined. Each node of the tree is labeled by

three numbers: the first is the number of genomes with dUTPase under the

node; the second is the number of genomes without dUTPase and UNG; the

third is the number of genomes without dUTPase and with UNG. Since we

show only the families with at least 15 genomes at the right, the not shown

classes account for the genomes, missing from the summation. Blue color

denotes the proportion of genomes without dUTPase and UNG, while pink

genomes without dUTPase and with UNG.

Figure S2 is a screenshot showing the proper settings for the verification

of our results with the NCBI tblastn webserver.

Table S1 gives the list of the bacterial/archaeal genomes without dUTPase

but with the UNG gene. The second column shows the presence of UNG

inhibitors in the genome.

Table S2 gives the list of the bacterial/archaeal genomes without dUTPase

and UNG.
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Chapter 3

Data Mining in Connectomics

3.1 The Budapest Reference Connectome

Server v2.0

3.1.1 Introduction

Several large-scale projects for brain–mapping are being executed [20, 105],

but the neuron-scale graph of the human brain, where the nodes are the

neurons, and two neurons are connected by an edge if they are joined

through a synapse, is out of reach today [22]. The difficulties come from

the number of the neurons to be mapped, and also from the lack of the

high-throughput methods for mapping their connections. The neuron-scale

graphs were constructed only for very simple organisms with a very small

number of neurons [15,16,21] or for just small cortical areas of more complex

organisms [14,17].

The application of magnetic resonance imaging (MRI) offers numerous

methods for mapping physical and functional connections between subdi-

vided anatomical areas of the brain (called ”Regions of Interests”, ROIs),
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each consisting of millions of neurons. The vertices are the ROIs, and two

ROIs are connected by an edge if connections are detected between them by

an MRI-based method. This method can either be diffusion MRI imaging,

depicting the Brownian motion of water molecules in axons, consequently,

mapping the axons between different cortical areas; or functional MRI (fMRI)

imaging, depicting brain areas of elevated blood flow while the subject rests

or performs different mental tasks.

In this note we present a web-server, which, starting from the diffusion

MRI data published as a result of the Human Connectome Project [105],

compiles differently parametrized reference graphs from the common edges of

the graphs describing 96 different 1015-vertex graphs of 96 human subjects.

Additionally, a default, single graph, the Budapest Reference Connectome

v2.0 is also presented in two downloadable formats.

The resulting graphs may be used for identifying more robust, more error-

free connections between the cortical areas, represented by ROIs: for exam-

ple, in the default reference graph (i.e., the Budapest Reference Connectome

v2.0), if an edge is present then it is present in at least 14 different source

graphs. In general, one may set the ”Minimum edge confidence” to value k

anywhere between k = 1 (where an edge is included if it is present in at least

one source graph) through k = 96 (where an edge is present in the reference

graph if it can be found in all the 96 source graphs).

Therefore, the resulting graphs contain common, consensus edges (i.e.,

Fig. 3.1) originated from multiple graphs with user-specified parameters,

computed from the diffusion MRI data of different subjects.

Version 2.0 of the Budapest Reference Connectome Server is described

here in detail. Choosing Version 1.0 is also possible on the website: Version

1.0 applies the source data from the already classical article of [19], describing

59



Figure 3.1: The black edges of graphs A and B are common edges; they form

graph C, the consensus graph.

six connectomes of five subjects, each with 998 vertices. Version 1.0 of the

webserver computes the consensus edges, with several parameter options,

from those six graphs only.

By filtering edges with very few occurrences or those with small weights,

one may get a connectome with more reliable edges and weights than in the

case of any single dataset in the input. Therefore, we may get robust edges

and weights in the consensus graphs generated by the server.
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3.1.2 Results and Discussion

The Budapest Reference Connectome Server Version 2.0 is available at

http://pitgroup.org/connectome/?version=1. The newest version, v3.0

(available at http://pitgroup.org/connectome) is not detailed in this sec-

tion. The default, canonical “Budapest Reference Connectome v2.0” can be

downloaded by simply hitting the ”Download graph” button without chang-

ing the default options. This default graph has 1015 vertices, 8507 edges.

The following options can be set after choosing the ”Show options” but-

ton:

(i) Version 1.0 or Version 2.0. The default choice is 2.0, using the graphs

of 96 subjects, computed from the Human Connectome Project [105].

The user may alternatively choose Version 1.0, that applies only six

graphs computed and described by the classical article of [19].

(ii) Minimum edge confidence: The graph to be constructed will contain

all the edges that are present in at least k graphs, between the very

same vertices in each graph. The valid choices for k = 1, . . . , 96. The

last choice means that each source graph needs to contain the edge in

order to be presented in the resulting consensus graph.

For each edge {u, v} , the weight of that edge is a fraction n/L, where n

is the number of fibers connecting u and v, and L is the average length of

the fibers.

(iii) Minimum edge weight: One may set a slider to a value of minimum

weight required. The returned graph will contain edges whose mean

or median weights are larger than or equal to this value. The mode of

computation (mean or median) can be set by the next option.
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(iv) Weight calculation mode: There are two choices: Median or Mean.

Choice ”Median” means that from the list of weights appearing as

the weights of the same edge in different graphs, we use the ”central”

element, that is, first we sort the weights, and next the element is

chosen that separates the upper half of the weights from the lower half

of the weights. ”Mean” means the arithmetic average of the weights.

The default choice is the median, since the median is more robust than

the mean: typically extreme large or small strengths have less impact

to the median than to the mean.

The resulting graph can be downloaded in CSV or GraphML formats, or

can readily be visualized on the web page. The downloaded file-names inherit

the parameter-settings as follows: e.g., the Budapest Reference Connectome

Version 2.0 is given as the file ”budapest connectome 2.0 14 0 median.csv”,

that is, the csv file contains the graph generated by Version 2.0 of the server,

with a minimum confidence of 14 (i.e., each edge of the graph is contained in

at least 14 input graphs), and the minimum edge weight is 0 and the weights

of the edges of the reference graph are computed as the median of the weights

of the corresponding edges of the input graphs.

The format of the CSV file is demonstrated in Table 3.1.

The number of the common edges in at least n graphs (n = 1, 2, . . . , 96)

are given in Figure 3.2.

3.1.3 Methods

The main server, denoted as ”v2.0”, was created as follows:

The dataset is a subset of Human Connectome Project 500 Subjects

Release (http://www.humanconnectome.org/documentation/S500/), con-
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Label Description

id node1 the numerical ID of the first vertex of the edge

id node2 the numerical ID of the second vertex of the edge

name node1 the anatomical name of node 1

name node2 the anatomical name of node 2

parent id node1 the ID of the parent region of node 1 on the 83-region atlas

parent id node2 the ID of the parent region of node 2 on the 83-region atlas

parent name node1 the name of the parent region of node 1 on the 83-region atlas

parent name node2 the name of the parent region of node 2 on the 83-region atlas

minimum edge confidence the number of the graphs in which the edge is contained

median the median of the weights of the same edge in different graphs

average the average of the weights of the same edge in different graphs

Table 3.1: The column labels of the result file in csv format. The 83-region

atlas refers to the atlas of the FreeSurfer tool.

Figure 3.2: The plot of the number of common edges.

taining MRI images of healthy adult males and females between the ages of

22 and 35. The data was downloaded in October, 2014.

Partitioning, tractography, and graph construction were done by the Con-

nectome Mapper Toolkit (http://cmtk.org).
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Partitioning of the grey matter was done by the Lausanne2008 method

[19] into 1015 ROIs of surface area of about 1.5 mm2.

For tractography, the deterministic streamline method was applied.

The graphs were constructed as follows: Two ROIs were connected by an

edge if there exists at least one fiber, determined by the tractography step,

that connects these two ROIs. The number and the length of the fibers are

taken care of by computing the weights of the edges: For each edge {u, v},

the weight of that edge is a fraction n/L, where n is the number of fibers

connecting u and v, and L is the average length of the fibers.

After 96 graphs were computed, each with 1015 vertices, we identified the

common edges, their confidence, and weights, computed according to their

median and mean. The large, pre-computed tables were integrated into the

webserver.

Version 1.0 of the webserver applies the six graphs that were described

in [19]. The definition of weight (called strength) and its computation,

and also the parcellation of the cortex used are described in [19]. The

six connectomes were downloaded from http://www.cmtk.org/datasets/

homo_sapiens_01.cff in September, 2014.

The visualization component applies a modified version of the WebGL

Brain Viewer [18].

3.1.4 Data availability

The assembled graphs that were used to build the Budapest Reference Con-

nectome Server can be downloaded at the site http://braingraph.org/

download-pit-group-connectomes/.

Source codes and the workflow to reproduce our results are avail-

able at https://github.com/kerepesi/Brain-Graph-Tools (see the ”BU-
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DAPEST REFERENCE CONNECTOME WORKFLOW” section of the

README file).

3.2 Comparative Connectomics: Mapping

the Inter-Individual Variability of Con-

nections within the Regions of the Hu-

man Brain

3.2.1 Introduction

Large co-operative research projects, such as the Human Connectome Project

[105], produce high-quality MRI-imaging data of hundreds of healthy indi-

viduals. The comparison of the connections of the brains of the subjects is

a challenging problem that may open numerous research directions. In the

present work we map the variability of the connections within different brain

areas in 395 human subjects, in order to discover brain areas with higher

variability in their connections or other brain regions with more conservative

connections.

The braingraphs or connectomes are the well-structured discretizations of

the diffusion MRI imaging data that yield new possibilities for the comparison

of the connections between distinct brain areas in different subjects [106,107]

or for finding common connections in distinct cerebra [7], forming a common,

consensus human braingraph.

Here, by using the data of the Human Connectome Project [105], we

describe, by their distribution functions, the inter-individual diversity of the

braingraph connections in separate brain areas in 395 healthy subjects of
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ages between 22 and 35 years.

Since every brain is unique, the workflow that produces the braingraphs

consists of several steps, including a diffeomorphism [149] of the brain atlas

to the brain-image processed. After the diffeomorphism, corresponding areas

of different human brains are pairwise identified through the atlas and, con-

sequently, can be compared with one another. The braingraphs, with nodes

in the corresponded brain areas, are prepared from the diffusion MRI im-

ages of the individual cerebra through a workflow detailed in the “Methods”

section. Every braingraph studied contains 1015 nodes (or vertices). The

vertices correspond to the subdivision of anatomical gray matter areas in

cortical and subcortical regions. For the list of the regions and the number

of nodes in each region, we refer to Table 3.4 and Figure 3.6 in the Appendix.

Next, we describe the variability, or the distribution of the graph edges in

each brain region, and also in each lobe. Note in this section we use the term

lobe in a unique manner as a meaning with “larger area” (not restricted to

only cortical areas).

Figure 3.3 contains a simplified example on three small graphs (1,2,3) each

with only two regions (A & B). The example clarifies the method, the way

the results are presented through a distribution function, and the diagrams

describing these functions.

For any fixed brain area, and for any x : 0 ≤ x ≤ 1, let F (x) denote

the fraction of the edges1 in the fixed area2 that are present in at most the

fraction x of all braingraphs, (for a more exact definition of F (x) we refer

to the “Methods” section). We note that F (x) is a cumulative distribution

function [148] of a random variable described in the “Methods” section.

1i.e., the number of the edges in question, divided by the number of all edges in the

fixed area;
2i.e., with both vertices in the fixed area;
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Figure 3.3: A simple example of computing the edge distribution between brain areas. In the example,

there are three “braingraphs”, each with two areas: A and B. We intend to count the edges that are

present in all three graphs, only in two graphs and only in a single graph, respectively (between the same

nodes, but in different graphs). For example, the copies of edge e are present in all three A areas, copies

of edge h in all three B areas, copies of edge g in two B areas and edge f is present only in B1. The

edges crossing the boundary of A and B (colored green) are ignored when counting the edge distribution

within the areas A and B. In area A, two edges are present once, two edges twice and also two edges

(including edge e) exactly three times. In area B, two edges (including f) are present once, four edges

(including g) twice and one edge – h – three times. In the diagram on the bottom, we give the F (x)

distribution functions for both areas. On axis x, the fractions of the graphs are given, 1/3 correspond

to one graph, 2/3 for two and 1.0 for all three graphs. F (x) is defined as the fraction of the edges in

the fixed area that are present in at most the fraction x of all braingraphs. Data points corresponding

to area A are on the same blue line (1/3, 2/3, 1) and those, corresponding to area B are on the broken,

red line (2/7, 6/7, 1). We remark that if all three graphs are the same, then the data points are (0,0,1)

(the extremely conservative case, orange line). Similarly, if no two graphs have the same edges, the data

points are (1,1,1) (that is the extremely diverse case, green line). This type of diagram is used for the

presentation of the results of the distribution of the edges in separate areas of the brain: The faster the

line reaches the top F (x) = 1 value, the more diverse is the edge set in the corresponding brain area. We

also note that in the diagram the lines connect the data points corresponding to the discrete values on axis

x, and do not describe the step-function F (x) between the data points: we have chosen this visualization

method because of its clarity even if a higher number of areas are shown (c.f. Figures 3.4 and 3.3 with

numerous crossing lines).
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Figure 3.4: The diversity of the edges in different lobes, measured by the

distribution function F (x). Only the areas with more than 10 nodes and

F (x) values of more than 0.8 are visualized. The lobes, whose lines faster

(i.e., with smaller x) reach value 1, have higher diversity. The fusiform gyrus

and the paracentral lobule clearly moves from the bottom to the top of the

diagram, relative to the other lines: this observation suggests that some

of their edges are very conservative, and other areas have high diversity.

An interactive version of this figure can be found at http://uratim.com/

diversity/Figure_2.html

3.2.2 Results and Discussion

Table 3.2 summarizes the edge diversity results for the 395 graphs for the

lobes of the brain, described by the distribution functions F (x). The last

column contains the data for the whole brain with 1015 nodes and 70,652

edges. The sum of the edges of the lobes in Table 3.2 is 30,326: these edges
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Figure 3.5: The diversity of the edges in different cortical areas of the left

hemisphere, measured by the distribution function F (x). The areas, whose

lines faster (i.e., with smaller x) reach value 1, have higher diversity. An inter-

active version of this figure can be found at http://uratim.com/diversity/

Figure_3.html

have both endpoints in the same lobe. More than forty thousand edges

are present and accounted for only in the last column, because these edges

connect nodes from different lobes. Therefore, the values in the last column

cannot be derived from the other columns, since that column contains the

contribution of edges that do not contribute to any other columns.

We want to find out which brain areas are more conservative and which

are more diverse than the others. We suggest designating an area as “con-

servative” if for most x values, its F (x) distribution function is less than the

F (x) of the all brain, given in the last column. We also suggest designating

an area as “diverse” if for most x values, its F (x) distribution function is

greater than the F (x) of all brain, given in the last column.
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Table 3.2: The number of nodes, the number of edges and the diversity of

the edges in different lobes, measured by the distribution function F (x). The

list includes some brain areas that usually are not counted as lobes: like the

fusiform gyrus, basal ganglia, and the paracentral lobule. The lobes, whose

columns reach the value 1 faster (i.e. have more 1’s at the bottom) have

higher diversity. For example, the frontal and the limbic lobes are more

conservative, while the temporal and the occipital lobes are more diverse.

The distribution of the edges in the fusiform gyrus is particularly interesting:

more than 10% of the graphs contain 46% of the edges which means this

is a conservative brain area in that parameter domain, compared to the

other lobes. The fusiform gyrus remains conservative for x = 0.2 and even

for x = 0.3, but more than 50% of the graphs contain only 0.7% of the

edges. Therefore, some edges of the fusiform gyrus are well conserved, and

some other parts are very diverse. The paracentral lobule has a similar

distribution. The data are also visualized in Figure 3.4 and an interactive

figure http://uratim.com/diversity/Figure_2.html

The most conservative lobes are the smallest ones: the brainstem, the

thalamus and the basal ganglia contain only 1, 2 and 8 nodes, resp., and

most of the edges in those regions are present in almost all braingraphs. If
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we take the average number of the braingraphs containing an edge from those

regions, we get 316, 390 and 213 graphs, resp.

It is much more interesting to review the diversity of the connections in

larger areas. The frontal and the limbic lobes are conservative for most values

of x (i.e., their F (x) values are less than that of the last column), while the

temporal and the occipital lobes are diverse for larger x’s. The distribution

of the edges in the fusiform gyrus is particularly interesting: more than 10%

of the graphs contain 46% of the edges which means this is a conservative

brain area in that parameter domain, compared to the other lobes. The

fusiform gyrus remains conservative for x = 0.2 and even for x = 0.3, but

more than 50% of the graphs contain only 0.7% of the edges. That means

that some edges of the fusiform gyrus are well conserved, and some parts are

very diverse. The paracentral lobule has a very similar distribution.

Table 3.3 summarizes the diversity results for those cortical areas which

have more than 222 edges (see Table 3.5 in the Appendix for the edge num-

bers).

3.2.3 Methods

We have worked with a subset of the anonymized 500 Subjects Re-

lease published by the Human Connectome Project [105]: (http://www.

humanconnectome.org/documentation/S500) of healthy subjects between

22 and 35 years of age. Data were downloaded in October, 2014.

We have applied the Connectome Mapper Toolkit [151] (http://cmtk.

org) for brain tissue segmentation, partitioning, tractography and the con-

struction of the graphs. The fibers were identified in the tractography step.

The program FreeSurfer was used to partition the images into 1015 cortical

and sub-cortical structures (Regions of Interest, abbreviated: ROIs), and was
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Table 3.3: The diversity of the edges in different cortical areas, measured by

the distribution function F (x). The abbreviation “ctx-lh” stands for “cortex

left-hemisphere”, “ctx-rh” for “cortex right-hemisphere”. The areas, whose

columns reach the value 1 faster (i.e., have more 1’s at the bottom) have

higher diversity. As in Table 3.2, the frontal regions are relatively more

conservative, while the parietal regions are more diverse. Both precentral

gyri are also conservative, and the postcentral and the superiortemporal gyri

are more diverse. The last row contains the expected number of the graphs

which contain a randomly chosen edge from the brain area indicated. Large

expected number implies a conservative area, a small value implies a more di-

verse area. The data for the left hemisphere are also visualized in Figure and

on an interactive figure http://uratim.com/diversity/Figure_3.html

based on the Desikan-Killiany anatomical atlas [151](see Figure 4 in [151]).

Tractography was performed by the Connectome Mapper Toolkit [151], using

the MRtrix processing tool [150] and choosing the deterministic streamline

method with randomized seeding.

The graphs were constructed as follows: the 1015 nodes correspond to

the 1015 ROIs, and two nodes were connected by an edge if there exists at

least one fiber connecting the ROIs corresponding to the nodes.
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The distribution function

The variability of the edges in regions or lobes are described by cumulative

distribution functions (CDF) (also called just the “distribution function”) of

the edges [148]. The general definition of the CDF is as follows:

Definition 1 Let Y be a real-valued random variable. Then

F (x) = P (Y ≤ x)

defines the cumulative distribution function of Y for real x values.

For example, if a is the maximum value of Y then F (a) = 1, and if b is

less than the minimum value of Y , then F (b) = 0.

CDFs are used the following way: Suppose that our cohort consists of

n persons’ braingraphs (in the present work n = 395). For a given, fixed

brain area, our random variable Y takes on values Y = u/n, u = 0, 1, . . . , n.

The equation Y = u/n corresponds to the event that a uniformly, randomly

chosen edge is in exactly u graphs from the n possible one, and the probability

P (Y = u/n) gives the probability of this event. Or, in other words, the

equation Y = u/n corresponds to the set of edges — with both nodes in

the fixed brain area — which are present in exactly u braingraphs, and the

probability P (Y = u/n) gives the fraction of the edges that are present in

exactly u braingraphs. Therefore, F (x) = P (Y ≤ x) gives the fraction (i.e.,

the probability) of the edges that are present in at most of a fraction x of all

the graphs.

The number of nodes and edges in each brain regions are given in sup-

porting Tables S1 and S2 in the Appendix. We remark that we counted the

edges without multiplicities: that is, if an edge e was either present in, say,

42 copies or just 1 copy of the braingraph, in both cases we counted it only

once.
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The distributions were computed by counting the number of appearances

of each edge in all the 395 braingraphs. Then the distribution of these num-

bers was evaluated in lobes and smaller cortical areas.

3.2.4 Conclusions:

By our knowledge for the first time, we have mapped the inter-individual

variability of the braingraph edges in different cortical areas. We have found

more and less conservative areas of the brain: for example, frontal lobes are

conservative, superiortemporal and the post-central gyri are very diverse.

The fusiform gyrus and the paracentral lobule have shown both conservative

and diverse distributions, depending on the range of the parameters.

Data availability:

The unprocessed and pre-processed MRI data are available at the Human

Connectome Project’s website:

http://www.humanconnectome.org/documentation/S500 [105].

The assembled graphs that were analyzed in the present work

can be accessed and downloaded at the site http://braingraph.org/

download-pit-group-connectomes/.

Source codes and the workflow to reproduce our results are available

at https://github.com/kerepesi/Brain-Graph-Tools (see the ”BRAIN

DIVERSITY WORKFLOW” section of the README file).

3.2.5 Appendix

Abbreviations: ctx-rh: cortex right-hemisphere ctx-lh: cortex left-

hemisphere
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Area name No. Of nodes

ctx-lh-superiorfrontal 45

ctx-rh-superiorfrontal 42

ctx-rh-precentral 36

ctx-lh-precentral 35

ctx-lh-postcentral 31

ctx-rh-postcentral 30

ctx-lh-superiorparietal 29

ctx-rh-superiorparietal 29

ctx-rh-rostralmiddlefrontal 27

ctx-lh-superiortemporal 26

ctx-lh-rostralmiddlefrontal 26

ctx-rh-inferiorparietal 26

ctx-rh-superiortemporal 25

ctx-rh-lateraloccipital 23

ctx-rh-precuneus 23

ctx-lh-lateraloccipital 23

ctx-lh-precuneus 22

ctx-lh-inferiorparietal 22

ctx-lh-supramarginal 21

ctx-rh-supramarginal 20

ctx-rh-middletemporal 19

ctx-lh-fusiform 18

ctx-rh-lateralorbitofrontal 17

ctx-rh-fusiform 17

ctx-rh-lingual 17

ctx-lh-insula 17
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ctx-lh-lingual 17

ctx-lh-inferiortemporal 16

ctx-rh-insula 16

ctx-rh-inferiortemporal 16

ctx-lh-middletemporal 16

ctx-lh-lateralorbitofrontal 16

ctx-lh-caudalmiddlefrontal 13

ctx-rh-paracentral 12

ctx-lh-paracentral 11

ctx-rh-caudalmiddlefrontal 11

ctx-rh-medialorbitofrontal 11

ctx-lh-medialorbitofrontal 10

ctx-lh-parsopercularis 10

ctx-lh-posteriorcingulate 9

ctx-rh-posteriorcingulate 9

ctx-rh-parsopercularis 9

ctx-rh-parstriangularis 8

ctx-rh-cuneus 8

ctx-rh-pericalcarine 8

ctx-lh-cuneus 7

ctx-lh-pericalcarine 7

ctx-lh-isthmuscingulate 7

ctx-lh-parstriangularis 7

ctx-rh-parahippocampal 6

ctx-lh-bankssts 6

ctx-rh-caudalanteriorcingulate 6

ctx-rh-isthmuscingulate 6
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ctx-lh-parahippocampal 6

ctx-rh-bankssts 6

ctx-lh-rostralanteriorcingulate 5

ctx-lh-caudalanteriorcingulate 5

ctx-rh-parsorbitalis 4

ctx-lh-transversetemporal 4

ctx-lh-parsorbitalis 4

ctx-rh-rostralanteriorcingulate 4

ctx-lh-entorhinal 3

ctx-lh-temporalpole 3

ctx-rh-temporalpole 3

ctx-rh-transversetemporal 3

ctx-lh-frontalpole 2

ctx-rh-entorhinal 2

ctx-rh-frontalpole 2

Left-Thalamus-Proper 1

Left-Amygdala 1

Right-Hippocampus 1

Right-Amygdala 1

Right-Putamen 1

Right-Accumbens-area 1

Left-Hippocampus 1

Left-Pallidum 1

Right-Pallidum 1

Right-Thalamus-Proper 1

Left-Putamen 1

Right-Caudate 1
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Left-Caudate 1

Left-Accumbens-area 1

Brain-Stem 1

Sum of nodes 1015

Table 3.4: The number of nodes in each ROI.

Figure 3.6: The number of nodes in ROIs and lobes. The interactive figure

can be viewed at http://uratim.com/diversity/Figure_S1-Krona.html

’all’ 70652

’ctx-lh-superiorfrontal’ 910

’ctx-rh-superiorfrontal’ 774

’ctx-rh-precentral’ 500

’ctx-lh-precentral’ 448
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’ctx-rh-rostralmiddlefrontal’ 352

’ctx-rh-inferiorparietal’ 340

’ctx-lh-rostralmiddlefrontal’ 331

’ctx-lh-superiorparietal’ 317

’ctx-rh-superiorparietal’ 314

’ctx-lh-postcentral’ 305

’ctx-rh-postcentral’ 273

’ctx-rh-lateraloccipital’ 263

’ctx-lh-lateraloccipital’ 254

’ctx-lh-superiortemporal’ 250

’ctx-lh-inferiorparietal’ 242

’ctx-rh-superiortemporal’ 228

’ctx-rh-precuneus’ 227

’ctx-lh-precuneus’ 222

’ctx-lh-supramarginal’ 209

’ctx-rh-supramarginal’ 206

’ctx-rh-middletemporal’ 176

’ctx-lh-fusiform’ 157

’ctx-rh-lateralorbitofrontal’ 144

’ctx-lh-inferiortemporal’ 135

’ctx-rh-insula’ 131

’ctx-lh-lingual’ 131

’ctx-rh-fusiform’ 130

’ctx-rh-inferiortemporal’ 130

’ctx-lh-lateralorbitofrontal’ 127

’ctx-lh-insula’ 125

’ctx-lh-middletemporal’ 119
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’ctx-rh-lingual’ 114

’ctx-lh-caudalmiddlefrontal’ 91

’ctx-rh-paracentral’ 76

’ctx-rh-caudalmiddlefrontal’ 65

’ctx-lh-paracentral’ 64

’ctx-rh-medialorbitofrontal’ 59

’ctx-lh-parsopercularis’ 55

’ctx-lh-medialorbitofrontal’ 54

’ctx-lh-posteriorcingulate’ 45

’ctx-rh-parsopercularis’ 45

’ctx-rh-posteriorcingulate’ 43

’ctx-rh-parstriangularis’ 36

’ctx-rh-cuneus’ 35

’ctx-rh-pericalcarine’ 35

’ctx-lh-cuneus’ 28

’ctx-lh-pericalcarine’ 28

’ctx-lh-isthmuscingulate’ 28

’ctx-lh-parstriangularis’ 28

’ctx-lh-bankssts’ 21

’ctx-rh-caudalanteriorcingulate’ 21

’ctx-lh-parahippocampal’ 21

’ctx-rh-parahippocampal’ 20

’ctx-rh-isthmuscingulate’ 20

’ctx-rh-bankssts’ 20

’ctx-lh-rostralanteriorcingulate’ 15

’ctx-lh-caudalanteriorcingulate’ 15

’ctx-rh-parsorbitalis’ 10
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’ctx-lh-parsorbitalis’ 10

’ctx-rh-rostralanteriorcingulate’ 10

’ctx-lh-transversetemporal’ 8

’ctx-lh-entorhinal’ 6

’ctx-rh-transversetemporal’ 5

’ctx-lh-temporalpole’ 4

’ctx-rh-entorhinal’ 3

’ctx-rh-temporalpole’ 3

’Left-Thalamus-Proper’ 1

’Left-Amygdala’ 1

’ctx-lh-frontalpole’ 1

’Right-Hippocampus’ 1

’Right-Amygdala’ 1

’ctx-rh-frontalpole’ 1

’Right-Putamen’ 1

’Right-Accumbens-area’ 1

’Left-Hippocampus’ 1

’Left-Pallidum’ 1

’Right-Pallidum’ 1

’Right-Thalamus-Proper’ 1

’Left-Putamen’ 1

’Right-Caudate’ 1

’Left-Caudate’ 1

’Left-Accumbens-area’ 1

’Brainstem’ 1

Table 3.5: The number of edges in each ROI.
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3.3 How to Direct the Edges of the Connec-

tomes: Dynamics of the Consensus Con-

nectomes and the Development of the

Connections in the Human Brain

3.3.1 Introduction

The Human Connectome Project [105] has produced high-quality MRI-

imaging data of hundreds of healthy subjects. The enormous quantity of

data is almost impossible to use in brain research without introducing some

rich structure that helps us to get rid of the unimportant details and allow

us to focus on the essential data in the set. We believe that the braingraph

or the connectome is such a structure to apply.

The braingraphs or connectomes are discretizations of the diffusion MRI

imaging data. Being a graph, it has a set of vertices and some pairs of these

vertices are the edges of the graph. Each vertex corresponds to a small (1-

1.5 cm2) areas (called Regions of Interest, ROIs) of the gray matter, and

two vertices are connected by an edge, if a diffusion-MRI based workflow

finds fibers of axons, running between those ROIs in the white matter of

the brain. In other words, the braingraph concentrates on the connections

between areas of gray matter (this is an essential part of the data) and forgets

about the exact spatial orbits of the axon-fibers, running between these gray

matter areas in the white matter of the brain (these are the unimportant part

of the data). The braingraphs may record the length or the width of these

fibers as edge-weights but definitely does not contain any spatial description

of their orbit in the white matter.
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An important question is the determination of the direction of the graph –

or connectome – edges in these braingraphs. By our knowledge, the present

diffusion-MRI based workflows have no data showing the direction of the

neuronal fiber tracts between the ROIs.

Hundreds of publications deal with the properties of the human connec-

tome every year (e.g., [106–109], but very few analyze the common edges and

the edge-distributions between distinct subjects and distinct brain areas [7,8].

In [8] we have mapped the inter-individual variability of the braingraphs in

different brain regions, and we have found that the measure of the variability

significantly differs between the regions: there are more and less conservative

areas of the brain.

3.3.2 Results

In the construction of the Budapest Reference Connectome Server http:

//connectome.pitgroup.org [7], [10], not those edges were mapped that

differ [8], but, on the contrary, those that are the same in at least k subject’s

braingraphs, for k = 1, 2, . . . , 418. These parametrized consensus-graphs

describe the common connectomes of healthy humans, parametrized with k.

For k = 418 we get only those edges that are present in all the 418

braingraphs. For k = 1 we get those edges that are present in at least one

braingraph from these 418. Therefore, if we change the value of k, one-by-

one, from k = 418 through k = 1, we will have more and more edges in the

graph (Figure 3.7).

We have observed that the order of the appearance of the new edges

when we were decreasing the value of k from 418 through 1, is not random at

all. More precisely, it resembles a growing tree: the newly appearing edges

are usually connected to the already existing edges. This phenomenon is
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Figure 3.7: Snapshots on the tree-like structure of the Budapest Reference

Connectome Server v2.0. The edges of the smallest graph can be identified

easily with using the webserver. For example, the edges that are present in

all braingraphs include edges between Right-Caudate and Right-Pallidium,

Left-Thalamus-Proper and Brain-Stem, Right-Thalamus Proper and Right-

Putamen.

observable in the animation at https://youtu.be/EnWwIf_HNjw (we remark

that graph-theoretically, the growing structure is not a tree as a graph). The
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same observation was done in Version 2 (with 96 braingraphs) and Version 3

(with 418, 476 and 477 braingraphs, depending on the fiber-numbers selected)

of the server.

In what follows, we clarify the implications of this observation to the

(i) description of the individual development of the connections in the

human brain, and

(ii) the determination of the direction of the edges in the human connec-

tome.

The observation is verified by Figure 3.8, made for the Version 3.0 of

the server, with 418 braingraphs. For steps ` = 0 through ` = 417, for

k = 418 − `, we have visualized the number of those new edges (that were

present in k connectomes, but were not present in k+1 connectomes), which

connect two vertices, which were not adjacent to any edges before (i.e., they

were isolated vertices). We have compared

• a random model, where exactly that many new edges were added ran-

domly in uniform distribution, as in the graph generated by the Bu-

dapest Reference Connectome Server,

• and the graph of edges drawn by the Budapest Reference Connectome

Server.

3.3.3 Discussion

In the random model, in each step, the same number of edges were added

to the graph randomly (independently, in a uniform distribution), as in the

Budapest reference Connectome Server.
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Figure 3.8: The comparison of the random simulation and the real buildup

of the edges in the Budapest Reference Connectome server v3.0.

The difference is very clear in Figure 3.8: in the random model, dramat-

ically more new edges appear that are not connected to the old ones.

Another visualization of this surprising phenomenon is the component

tree of the evolving graph, made for Version 2 with 96 braingraphs. As k

decreases from 96 to 1, zero or more new edges are added to the existing graph

in each step. In the step corresponding to k, those edges appear that are

present in exactly k graphs. This may result in the forming of new connected

components, and/or the merging of some older components of the graph. The

phenomenon can be visualized on a graph-theoretical tree, where each level of

the tree corresponds to some value of k. On each level, some leaf nodes may

appear (for each new component), and the existing nodes may merge into a

parent node. We can also assign colors to the nodes according to the following

scheme: the leaves get a new color, and a parent node gets the color of its

child node corresponding to the largest merged component. The component-

tree of the graph is visualized on a very large, labeled interactive figure at
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the site http://pitgroup.org/static/graphmlviewer/index.html?src=

connectome_dynamics_component_tree.graphml.

We hypothesize that those edges that are contained in many of the graphs

were developed in an earlier stage of the brain development than those that

are present in fewer subjects. As a possible explanation, we think that those

neurons that connect to the developing braingraph at https://youtu.be/

EnWwIf_HNjw will not receive apoptosis signals [110–112] and will survive,

while other neurons, which are not connected to the older graph, will be

eliminated by receiving apoptosis signals in the individual brain development.

In other words, we assume that the connections that are present in almost

all braingraphs (c.f., the upper left panel of Fig.3.7) were developed first.

Next, new connections were developed, but those neurons whose connections

were disconnected from these oldest neurons were eliminated. Next, new

neuronal connections were developed, but only those neurons survived that

were connected to the building network. Since the deviation between the

new edges among the subjects was increased step-by-step, the newer the

connections, the fewer the subjects have those edges.

This assumption explains our findings, and it is in line with the “compe-

tition hypothesis” of the brain development [112].

How to direct the edges of the human connectome?

For any neuron, there exists a well-defined direction of the signal propagation

from the soma through its axon. Diffusion MRI-based methods can be used

to identify the spatial location of the fiber tracts, consisted of axons, but

their directions, by our present knowledge, cannot be discovered from the

MRI data.

If the order of development of the edges in the connectome is known then
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we can easily assign a direction to those edges that connects a vertex to

another one, such that the first vertex was not connected to any other vertex

before, but the second vertex was already connected to the network, when

we consider the transition of the edges that were present in at least k + 1

graphs through the edges that were present in at least k graphs.

More exactly, the observation described above implies a straightforward

method for directing some (but not all) the edges of the connectome. Con-

sider the undirected edge u, v, and our goal is to assign a direction to this

edge. Let Gk+1 denote the consensus connectome where each edge is present

in at least k + 1 graphs, and let Gk denote the consensus connectome where

each edge is present in at least k graphs. Both Gk+1 and Gk have the same

set of vertices, all the edges of Gk+1 are also the edges of Gk, but Gk typically

has more edges than Gk+1. Assume that vertex v was not connected to any

other vertices in Gk+1, and becomes connected to a vertex u in Gk, where

u was connected to other vertices in Gk+1. Then we direct this (v, u) edge

from v to u, and denote it as an ordered pair (v, u) (Figure 3.9). Obviously,

if our hypothesis is correct, then the undirected edge u, v remained in the

consensus connectome since vertex v did not get an apoptosis signal, since u

was already been connected to the growing network.

We remark that those new edges that connect two, previously isolated

points (”isolated edges”), or those that connect two vertices, where both of

them were connected to the network before, cannot be directed this way.

3.3.4 Methods

The description of the program and the methods applied in the construc-

tion of the Budapest Reference Connectome Server http://connectome.

pitgroup.org is given in [7].
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Figure 3.9: Let Gk+1 denote the consensus connectome where each edge is

present in at least k+1 graphs, and let Gk denote the consensus connectome

where each edge is present in at least k graphs. Both Gk+1 and Gk have the

same set of vertices, all the edges of Gk+1 are also the edges of Gk, but Gk

typically has more edges than Gk+1. The (v, u) edge is directed from v to u,

if v is not connected to any other vertices in Gk+1, and becomes connected

to a vertex u in Gk, where u was connected to other vertices in Gk+1. Then

we direct this (v, u) edge from v to u.

The animation at https://youtu.be/EnWwIf_HNjw were prepared by our

own Python program from the tables generated by the Budapest Reference

Connectome Server [7] with the following settings: Version 2 (i.e., 96 sub-

jects), Population: All (i.e., both male and female subjects), Minimum edge

confidence running from 100 % through 26%, Minimum edge weight is 0,

Weight calculation model: Median. It contains the common edges found in k

subject’s braingraphs, from k = 96 through k = 25. The number of vertices

is 1015.
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3.3.5 Conclusions:

We have observed that the buildup of the consensus graphs in the Budapest

Reference Connectome Server is far from random when the k parameter is

changed from k = 418 through 1. This observation suggests an underlying

structure in the consensus braingraphs: the edges, which are present in more

subjects are most probably older in the individual brain development than

the edges, which are present fewer individuals. This assumption is in line

with the “competition hypothesis” of the brain development [112]. We be-

lieve that this observation is applicable to discover the finer structure of the

development of the connections in the human brain.

Based on this hypothesis we were able to assign directions to some of the

otherwise undirected edges of the connectome, built through a diffusion MRI

based workflow.

Data availability:

The unprocessed and pre-processed MRI data that served as a source of our

work are available at the Human Connectome Project’s website:

http://www.humanconnectome.org/documentation/S500 [105].

The assembled graphs that were used to build the Budapest Reference

Connectome Server can be downloaded at the site http://braingraph.org/

download-pit-group-connectomes/.

Source codes and the workflow to reproduce our results are available

at https://github.com/kerepesi/Brain-Graph-Tools (see the ”BRAIN

EVOLUTION WORKFLOW” section of the README file).
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Chapter 4

Outlook and Future

Perspectives

AmphoraNet was used in 6 published studies (interestingly all of them are

genomics rather than metagenomics) since December 2013 and run more

than 2300 jobs. We hope it will be used with success in more studies. For

the reason that its popularity and the fact that the number of Bacteria and

Archaea complete genomes growth rapidly it would be worth updating the

marker gene set in the near future.

It would be very interested to search giant viruses in various arid or not

arid metagenomes for example in Hungarian soda pans or in the human

body and then characterize where infect giant viruses and what are they

doing. Giant Virus Finder is a suitable tools for this purpose.

Our dUTPase findings raise questions about how can live organisms with-

out this important enzymes and can lead to discover new pathways which

would be helpful to better understand DNA repair mechanisms in humans.

Brain graphs created by us are downloadable (http://braingraph.org)

freely so it is open for other researcher for exploring. For example can
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be valuable to analyze the correlation between behavioral data (contain-

ing results of psichological tests) and brain graphs. Other promising re-

search direction is comparing our brain graphs to brain graphs created from

MRI data of people suffered from various diseases (for example using the

MRI data of the Alzheimer’s Disease Neuroimaging Initiative database -

http://adni.loni.usc.edu/). Our open source brain graph analysis tools

(https://github.com/kerepesi/Brain-Graph-Tools) can be helpful for

the future analysis and developing.
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Chapter 5

One Page Summaries

93



5.1 Summary in English

We have developed AmphoraNet, an easy-to-use webserver that is capable

of assigning a probability-weighted taxonomic group for each phylogenetic

marker gene found in the input metagenomic sample; the webserver is based

on the AMPHORA2 workflow. Then we have developed a visual analysis tool

that is capable of demonstrating the quantitative relations gained from the

output of the AMPHORA2 program or the AmphoraNet webserver and then

we have evaluated three metagenomic analysis software for their capabilities

of assigning quantitative phylogenetic information for the data.

On the area of Giant Viruses we have developed a software, called “Giant

Virus Finder” that is capable to discover the very likely presence of the

genomes of giant viruses in metagenomic datasets. The software is applied

to numerous hot and cold desert soil samples as well as some tundra- and

forest soils and the soil samples of the Kutch desert.

During investigating the genotype of deposited fully sequenced bacterial

and archaeal genomes we have surprisingly found that a wide number of

bacterial and archaeal species lack the dUTPase gene.

We have developed the Budapest Reference Connectome Server which

generates the common edges of the connectomes of distinct cortexes, each

with 1015 vertices, computed from MRI data sets of the Human Connectome

Project. After the server had been published, we recognized a surprising

property of the server. Decreasing the minimum edge confidence from the

maximal value, more and more edges appear in the consensus graph. The

observation is that the appearance of the new edges similar to a growing tree.

We have also discovered the inter-individual variability of the graphs within

different brain regions and we have found that the edges in the temporal and

occipital lobes are the most diverse.
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5.2 Summary in Hungarian

Létrehoztuk az AmphoraNet-et, egy könnyen használható webszervert,

amely minden egyes a metagenomban talált filogenetikai marker gén

szekvenciához kijelöl egy rendszertani csoportot. A webszerver az AM-

PHORA2 munkafolyamaton alapul. Az AmphoraNet után kifejlesztettük

az AmphoraVizu webszervert, amely az AmphoraNet nehezen feldolgo-

zható szöveges outputjához nyújt interakt́ıv képi megjeleńıtést. Ezek után

kiértékeltük az általunk fejlesztett AmphoraNet+AmphoraVizu-t és két

másik metagenomikai elemző szoftvert abból a szempontból, hogy mennyire

ı́rják le jól adott baktériumok előfordulási gyakoriságát ugyanazon mintában.

Ezután kifejlesztettük a Giant Virus Finder szoftvert, amely képes kimu-

tatni óriás v́ırus specifikus szekvenciák jelenlétét metagenomokban. Az új

szoftver seǵıtségével óriás v́ırusok jelenlétét mutattuk ki számos forró és hideg

sivatagi talajmintában.

Megvizsgáltuk az összes baktérium (2261 db) és archaea (151 db) teljes

genomi szekvenciára, hogy tartalmaznak-e dUTPáz gént. Meglepő módon azt

találtuk, hogy nagy számú baktérium és archaea fajban hiányzik a dUTPáz

gén.

Kifejlesztettük a Budapest Reference Connectome szervert, amely MRI

felvételekből számolt agygráfokhoz számolja ki a referencia agygráfot. A szer-

vert vizsgálva felfedeztünk egy meglepő tulajdonságot. Amikor a szerveren a

maximum értéktől indulva csökkentjük a ”Minimum edge confidence” értéket

egyre több él jelenik meg az referencia agygráfban. A megdöbbentő észrevétel

az, hogy az élek nem véletlenszerűen tűnnek fel, hanem egy kis összefüggő

konzervat́ıv gráfból kiindulva egymás után épülve belülről kifelé. Ezen ḱıvül

számı́tásokat is végeztünk 395 egyén agygráfjára, felmérve az agyi régiók

egyének közötti különbözőségét.
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Chapter 6
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Abrahão. Samba virus: a novel mimivirus from a giant rain forest, the

Brazilian Amazon. Virol J, 11:95, 2014.

[36] Cancer Genome Atlas Network. Comprehensive molecular characteriza-

tion of human colon and rectal cancer. Nature, 487(7407):330–337, Jul

2012.

[37] Patrice D. Cani. Gut microbiota and obesity: lessons from the micro-

biome. Brief Funct Genomics, 12(4):381–387, Jul 2013.

[38] Philippe Colson, Natalya Yutin, Svetlana A Shabalina, Catherine

Robert, Ghislain Fournous, Bernard La Scola, Didier Raoult, and Eu-

gene V Koonin. Viruses with more than 1,000 genes: Mamavirus, a

new Acanthamoeba polyphaga mimivirus strain, and reannotation of

Mimivirus genes. Genome Biol Evol, 3:737–742, 2011.

[39] Committee on Metagenomics: Challenges and Functional Applications,

National Research Council. The New Science of Metagenomics: Reveal-

103



ing the Secrets of Our Microbial Planet. The National Academies Press,

2007.

[40] Michael A Conlon, Caroline A Kerr, Christopher S McSweeney,

Robert A Dunne, Janet M Shaw, Seungha Kang, Anthony R Bird,

Matthew K Morell, Trevor J Lockett, Peter L Molloy, Ahmed Regina,

Shusuke Toden, Julie M Clarke, and David L Topping. Resistant

starches protect against colonic DNA damage and alter microbiota and

gene expression in rats fed a Western diet. J Nutr, 142(5):832–840, May

2012.

[41] Daniel de Oliveira, Kary ACS Ocaña, Eduardo Ogasawara, Jonas Dias,
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